
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2006

Stochastic propagation modeling and early
detection of malicious mobile code
Xin Xu
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Xu, Xin, "" (2006). Dissertation. 538.
https://digitalcommons.latech.edu/dissertations/538

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/538?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu


STOCHASTIC PROPAGATION MODELING AND EARLY 

DETECTION OF MALICIOUS MOBILE CODE

By

Xin Xu, M.S.

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

August 2006

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



UMI Number: 3259729

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3259729 

Copyright 2007 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

May 17, 2006_______________________
Date

We hereby recommend that the thesis prepared under our supervision

by__________________Xin Xu___________________________________________

entitled______________________________________ ________________________________________________

________S tochastic  Propagation  Modeling an d  Earlv D etection of Malicious Mobile C ode________

be accepted in partial fulfillment o f the requirements for the Degree of 

 D octor of Philosophy in C om putational A nalysis and  Modeling__________________________

Recommendation concurred in:

\JaX  u w /u a
gupervisor o f Thasis Research 

A J2J2-gU  f
Head o f Department

CAM__________
Department

Approved:

Director of Graduate Studies

, I w
Dean o f the College / /  M

Advisory Committee

Approved:

Dean of the Graduate School

GS Form 13 
(5/03)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



ABSTRACT

Epidemic models are commonly used to model the propagation of malicious 

mobile code like a computer virus or a worm. In this dissertation, we introduce stochastic 

techniques to describe the propagation behavior of malicious mobile code. We propose a 

stochastic infection-immunization (INIM) model based on the standard Susceptible- 

Infected-Removed (SIR) epidemic model, and we get an explicit solution of this model 

using probability generating function (pgf.). Our experiments simulate the propagation of 

malicious mobile code with immunization. The simulation results match the theoretical 

results of the model, which indicates that it is reliable to use INIM model to predict the 

propagation of malicious mobile code at the early infection stage when immunization 

factor is considered.

In this dissertation, we also propose a control system that could automatically 

detect and mitigate the propagation of malicious mobile programs at the early infection 

stage. The detection method is based on the observation that a worm always opens as 

many connections as possible in order to propagate as fast as possible. To develop the 

detection algorithm, we extend the traditional statistical process control technique by 

adding a sliding window. We do the experiment to demonstrate the training process and 

testing process of a control system using both real and simulation data set. The 

experiment results show that the control system detects the propagation of malicious 

mobile code with zero false negative rate and less than 6% false positive rate. Moreover,

iii
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we introduce risk analysis using Sequential Probability Ratio Test (SPRT) to limit the 

false positive rate. Examples of risk control using SPTR are presented. Furthermore, we 

analyze the network behavior using the propagation models we developed to evaluate the 

effect of the control system in a network environment. The theoretical analysis of the 

model shows that the propagation of malicious program is reduced when hosts in a 

network applied the control system. To verify the theoretical result, we also develop the 

experiment to simulate the propagation process in a network. The experiment results 

match the mathematical results.
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CHAPTER 1

INTRODUCTION

1.1 Computer Security

The security of a computer system or a network system includes the 

confidentiality, integrity and assurance of the system. The definitions of confidentiality, 

integrity and assurance are as follows [Phoha 2002]:

Confidentiality: “The property of not being divulged to the unauthorized parties. 

A confidentiality service assists in the prevention of disclosure of information to 

unauthorized parties.”

Integrity: “a condition in which data or a system itself has not been modified or 

corrupted without authorization.”

Assurance: “ensuring the availability, integrity, authentication, confidentiality and 

non-repudiation of information and information systems by incorporating protection, 

detection and reaction capabilities to restore information systems.”

An intrusion is a series of malicious activities that attempts to comprise the 

security of a computer or a network system [Ye 2000]. An intrusion detection system 

analyzes the activities performed in a computer or network to look for evidence of 

malicious behavior. There are two categories of intrusion detection method. One is 

anomaly detection, and the other is misuse detection. Intrusion detection systems using

1
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the anomaly detection method generally build profiles for normal activities, and identify 

system activities which vary from the established profile as intrusion attempts [Eckmann 

2002]. An intrusion detection system using misuse detection technique builds a profile 

with signatures of known attacks and compares current activities with those signatures. 

An intrusion is signaled when there is a match between current activities and the profiled 

intrusion activities.

Both anomaly detection and misuse detection have advantages and disadvantages. 

Anomaly detection is able to detect unknown attacks, but there is always a trade off 

between false negative and false positive. False negative is defined as “events that are not 

flagged intrusive, although they actually are,” and false positive is defined as “anomalous 

activities that are not intrusive but are flagged as intrusive [Denning 1990].” Anomaly 

detection systems are also computationally expensive because we need to keep track of, 

and update all system profiles. Misuse detection has a relatively low false positive rate, 

but it cannot detect unknown attacks.

Intrusions exploit the flaws of the system architecture, the operating system, the 

server system, or the other software systems. A complete secure system is not really 

feasible because designing and implementing a totally secure system is an extremely 

difficult task. Flaws in the programs and operating systems are prevalent [Miller 1995]. 

In practice, it is not possible to build a completely secure system.

The financial loss caused by the intrusion of malicious programs accounts for a 

large amount of losses caused by computer security problems [Usa 2001]. The following 

section gives a brief view of malicious mobile code.
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1.2 Malicious Mobile Code

This section talks about malicious mobile code. We will discuss the current 

defense methods against malicious code and the general idea of mathematical modeling 

of malicious code propagation.

1.2.1 What Is Malicious Mobile Code?

A malicious mobile code is a software program intentionally designed to move 

from computer to computer or from network to network and modify the system without 

the consent of the user [Grimes 2001]. Major types of malicious mobile code include 

viruses, worms, Trojans, and rogue Internet content. The first malicious program is a 

computer virus developed by Fred Cohen [Cohen 1985, 1987] for research purpose. In 

the early 1980s, Cohen did extensive theoretical research as well as setting up and 

performing numerous practical experiments regarding viral type programs. Cohen's 

definition [Cohen 1994] of a computer virus is "a program that can 'infect' other programs 

by modifying them to include a version of itself." This definition has been generally 

accepted as a standard definition of a computer virus [Fites 1992] [Levin 1990].

Worms are very similar to viruses in that they are computer programs that 

replicate themselves and often, but not always contain some malicious functions that will 

disrupt the normal use of a computer system or a network system [Grimes 2001] 

[Denning 1990] [Levin 1990]. Unlike viruses, worms exist as separate entities; they do 

not attach themselves to other files or programs. Worms were first noticed as a potential 

computer security threat when Christmas Tree [Denning 1990] attacked IBM mainframes 

in December 1987. Christmas Tree is an executable file attached in an e-mail. Once 

executed, it displays a Christmas tree and sends a copy to everyone in the victim’s
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address list. Someone argued that Christmas Tree is not a true computer worm program 

but just a Trojan program with replicating mechanism [Denning 1990] [NISTIR4939]. 

The first computer worm, Morris, was released on November 2, 1988 [Spafford 1989a] 

[Spafford 1989b]. It utilized the TCP/IP protocols, common application layer protocols, 

operating system bugs, and a variety of system administration flaws to propagate. Morris 

infected approximately three thousand computers during eight hours o f activity 

[Spafford 1989a].

Malicious programs are created by exploiting the flaws of the system. Since it is 

impossible to design a perfect system, there is always a possibility for new malicious 

codes to be designed. The malicious function of these programs might be different, but 

they usually have similar infection strategy. For instance, one class o f worm programs 

always try to connect to as many hosts as possible so that they can be distributed easily 

and quickly through the network. The increasing connectivity of network and the 

growing use o f computers have led to more and more concerns about security problems 

caused by malicious mobile codes like worms. In the past few years, the fast spreading 

malicious mobile codes have disrupted tens of thousands of businesses and homes 

worldwide and caused millions of dollars in loss [Usa 2001]. Famous ones include Code 

Red [CERT01-19] and Nimda [CERT01-26] in 2001, SQL Slammer [CERT03-04], 

Blaster [CERT03-20] and Welchia [SYMANTEC03] in 2003, and Netsky [CERT04-02] 

and Sasser [CERT04-05] in 2004.

1.2.2 Defense against Malicious Mobile Code

Anti-virus tools are now installed on almost all computers to detect and prevent 

the spread of such programs. Common techniques applied by these tools are activity
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monitors, integrity management systems and virus scanners [Kumar 1992]. Activity 

monitors alert users about system activity that is commonly associated with viruses. 

Integrity management system warns the user of suspicious changes that have been made 

to files. These two methods are quite generic, and can be used to detect unknown viruses 

in the system. The drawback of these two methods is that they often flag or prevent 

legitimate activities, and hence, disrupt normal work. As a consequence, the user may 

ignore their warnings altogether. Virus scanning is the most commonly used method for 

anti-virus tools because it is the most simple, economical way for virus detection. Virus 

scanners search files, boot records, memory and other locations where executable codes 

can be stored for characteristic byte patterns that occur in one or more known viruses. 

The drawback is that virus scanners rely on the priori knowledge of the viral code, which 

means they can only detect previously known viruses, but not new viruses. Thus, the 

scanner has to be updated frequently [Forrest 1994] [Kumar 1992] [Wang 2000]. [Xu 

2002] [Phoha 2003] and [Xu 2004] introduce a novel approach to control the spread of 

virus and presents a technique to make them ineffective which is a complement of current 

virus detection techniques. This approach models the process as a discrete event system 

such that supervisory control theory can be applied to control the reproduction and 

propagation of the malicious code. The drawback is that this approach is only effective 

for executable files whose execution process could be modeled as a discrete event 

system.

The detection of worm programs is still an open problem [White 1998], especially 

for unknown worms. Currently, the most general way is to embed the worm detection 

component in the anti-virus tools or intrusion detection systems. The methodology is
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similar as those used in the virus detection tools. In other words, use known signatures to 

catch the known worms. For unknown worms, we do not have a general solution yet.

1.2.3 Epidemic Modeling of Malicious Code

The epidemic modeling of biological viruses and their dissemination has a history 

of about three hundred years [Andersson 2000] [Daley 2001]. Daniel Bemoullli presented 

the first theoretical approach about the effects of the disease in 1760 [Daley 2001]. At 

that time, the smallpox was widespread in Europe and affected a large proportion of the 

population. In the early twentieth century, Ross and Hudson, Scoper, as well as Kermack 

and Mckendrick, began to provide a firm theoretical framework for the investigation of 

the infectious diseases [Anderson 1992], The mathematical models they provided help to 

understand the mechanism by which diseases spread to predict the future spreading of the 

epidemic and to control the spread of the diseases.

Epidemic modeling of malicious code has become a popular research topic for 

computer scientists since computer worm Morris was released in 1988 [Spafford 1989a] 

[White 1998]. Propagation modeling helps us to understand the life cycle and fast 

propagation nature of such malicious mobile codes. It also helps us understand the impact 

of countermeasures [Chen 2004] [Serazzi 2003], network traffic, and network topology 

[Satorras 2001][Satorras 2002]. The propagation models of malicious code are extensions 

of the classic epidemic models [Zou 2003] [Zou 2002] [Kephart 1991] [Boguna 2002] 

[Stamford 2002] [Wang 2003] [Chen 2003]. This dissertation will give the general classic 

epidemic models and the related works of malicious code propagation modeling in 

Chapter 2.
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7

1.3 The Contributions of This Dissertation

This dissertation first models the propagation of the malicious code using 

stochastic technique, then proposes a control system that automatically detects and 

mitigates the propagation of such a malicious code. The control system works as a 

complement to the current intrusion detection systems. The detection method of the 

control system belongs to the anomaly detection method. We analyze the normal 

connection behavior of a host and compare the current connection behavior with the 

normal behavior to identify the anomaly. The simulation experiment results match the 

theoretical results.

1.3.1 Propagation Modeling of Malicious Code

This dissertation introduces stochastic techniques to model the propagation of 

malicious mobile code. We build a stochastic propagation model that considers the 

factors of recovering and immunization. This model gives the probability that an 

infection will or will not happen instead of a deterministic yes-or-no answer that relies on 

the law of large numbers. This model also allows probabilistic analysis of the virus and 

propagation phenomenon. It is more precise than the deterministic method when we 

study the infection scale and speed inside a community or an organization with varying 

population size.

1.3.2 Early Detection and Propagation 
Mitigation of Malicious Code

This dissertation proposes a control system to detect the propagation of malicious 

code at the early infection stage. It also mitigates the propagation of malicious code over 

the network so that the overall damage to our society could be reduced. It is novel to 

apply the statistic process control technique to detect the malicious code. The general
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steps of building a control system are given and the details of each step are presented in 

simulation experiments. The framework of building the control system can be easily 

extended and applied to other scenarios.

1.3.3 Risk Control and Network Performance Analysis

This dissertation also introduced Sequential Probability Ratio Test (SPRT) to 

control the false positive rate of the control system. Examples of risk control using SPRT 

are presented using simulation data. To analyze the network effect of the control system, 

we give a quantitative analysis of propagation mitigation. We build propagation models 

to describe the propagation behavior of malicious code inside a network with and without 

the control system. Mathematical analysis of both models shows a significant difference 

in propagation speed and scale when the control system is applied on every machine in 

the network. To verify the theoretical results, we simulate malicious code propagation on 

virtual network using computer programs. All simulation results match the theoretical 

results from the propagation model.

1.4 The Organization of This Dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives the 

background information and related research in both propagation modeling of malicious 

mobile code using epidemic models and the early detection of malicious code. Chapter 3 

introduces the stochastic method to describe the propagation models and proposes the 

Infection-Immunization (INIM) model using the stochastic techniques. Chapter 4 gives 

the framework of building a control system to detect and mitigate the malicious code, and 

then shows the experimental details of the training process and testing process of the 

control system. The testing results are presented in Chapter 4. Chapter 4 also presents the
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effect of the control system by analyzing the network performance. Both theoretical 

results and simulation results are presented. Chapter 5 is the conclusion and suggestions 

for future work.
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CHAPTER 2

BACKGROUND AND RELATED RESEARCH

This dissertation first uses stochastic techniques to model the propagation of 

malicious mobile code, and then proposes a control system to detect and mitigate the 

propagation of malicious mobile code at the early infection stage. The detection 

algorithm of the control system uses extended Process Control technique. This chapter 

provides background information of epidemic modeling, statistical Process Control, and 

related research in areas o f malicious code propagation modeling as well as early 

detection of malicious code.

2.1 Epidemic Models

The mathematical modeling of diseases and their propagation has a history of 

about three hundred years [Daley 2001]. Epidemic modeling has three main aims [Daley 

2001]. The first is to understand the mechanism by which diseases spread. The second 

aim is to predict the future course of the epidemic. The third aim is to understand how we 

may control the spread of the epidemic. A good epidemic model captures the essential 

features of the epidemic, makes reasonable predictions, and evaluates the effect of control 

method. The following two subsections give a brief review of the early mathematical 

models for the spread of infectious diseases. Readers who want a more detailed overview 

are referred to [Bailey 1975] and [Anderson 1992].

10
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2.1.1 Deterministic Modeling

In this section, we introduce two classical deterministic epidemic models, the 

Susceptible Infected (SI) model and Susceptible, Infected and Removed (SIR) model. 

Both models assume that the population is homogeneously mixed. If we consider each 

individual as a vertex in a graph, from the graph theory point of view, a homogeneously 

mixed population means a fully connected graph.

2.1.1.1 Deterministic SI model

In this model, each host stays in one of the two states: susceptible (S) or infectious

(I). SI model assumes that once a host is infected, it becomes infectious and it will never 

become susceptible again. The only state transition is: S -> I (see Figure 2.1).

N  is the size of the population;

S(t) -  S  is the number of susceptible hosts at time t, 

I(t) = I  is the number of infected hosts at time t.

P  is the pair wise infection rate.

At any time t, we have S(t) + I(t) = N.

Using Ordinary Differential Equation, we have

Susceptible Infected

Figure 2.1: State transition of SI model.

^ = /» ( < ) /»
at

2.1
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which is the same as

^ p -  = P ( N - m ) l ( t )  2.2
at

Let k - ) 6N, i(t) = I{t) / N , Equation 2.2 becomes

^ = 4 - i ( o K o
at

ekt
=> *'(0 = ekt - c  

I  - N
Let /(0) = 10, so z'(0) = 10 / N , we get c = —-------. Plugging c into the above equation,

I q

we get

I 0ekt
i(t) =

( N - I 0) + I 0eu ’ 

which is the same as

Figure 2.2 shows the infection evolution process given N = 10000, /3 = 1/ N  I 0 =1.

time units

Figure 2.2: Infection evolution of SI Model.
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Figure 2.2 illustrates that the infection evolution procedure can be roughly divided 

into three stages: the slow starting stage, the fast spreading stage, and the saturating stage. 

Let i(t) = I(t)/N, at the beginning, when i(t) —>■ 0, the number of infectious hosts grows 

almost exponentially.

From Equation 2.3, time t needed to infected I  individuals of the whole population 

is derived as

1 , (N - I 0)I
t =  In- —  2.4

fiN (N -1 )1 0

Table 2.1 presents the time steps needed to infect certain proportion of the population 

with a different number of initially infected individual I 0. The time step values in all the

three tables (Table 2.1, Table 2.2, and Table 2.3) are calculated using Equation 2.4.

Table 2.1: Time steps needed to infect /  individuals when 70 varies
(N=  10000, f i  = 0.0001)

100 1000 5000 9999

i 4.61 6.91 9.21 18.42

10 2.31 4.71 6.91 16.12

100 — 2.40 4.59 13.81

Table 2.1 shows that as the initial number of infected nodes / 0 increases, the time

steps needed to infect the population decrease dramatically at the beginning. For 

example, the time steps needed to infect 1,000 individuals in a population of 10,000 when 

I 0 is 100 is almost one third of the time steps needed when I 0 is 1. But the time steps 

needed to infect the whole population does not change that much as we can see from
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Table 2.1. Table 2.2 presents the time steps needed to infect a certain proportion of the 

population when population size N  varies.

Table 2.2: Time steps needed to infect certain percentage of N  when /V varies
( I o = l , 0  = l / N )

N/100 N/10 N/2 N-l

1000 2.31 4.71 6.91 13.81

10000 4.61 7.01 9.21 18.42

100000 6.92 9.31 11.80 23.02

Table 2.2 shows that when the population size increases, the time steps needed to 

infect the same proportion of the population also increase, and they increase faster at the 

beginning (I = N/100) than near the end (I = N/2). From Table 2.2, we know that when 

population N increases, the slow starting stage gets longer. Table 2.3 gives the time steps 

needed to infect a certain number of individuals when N  varies.

Table 2.3: Time steps needed to infect I  individuals when N  varies
( I 0 = l , / 3  = l / N )

5 10 100 500 999

1000 1.61 2.31 4.71 6.91 13.81

10000 1.61 2.30 4.62 6.27 7.01

100000 1.61 2.30 4.61 6.22 6.92

From Table 2.3, we observe that the infection is slow at the very beginning. It 

infects less than 10 individuals during the first two time steps. Then suddenly it increases
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almost exponentially. During the next two time steps, more than 50 individuals are 

infected. The infection slows down when the infection comes to the third stage. It takes 

almost the same time steps to infect a certain number of individuals (see Table 2.3), but it 

takes more time steps to infect the whole population if  the population size is larger (see 

the last column of Table 2.2).

2.1.1.2 Deterministic SIR model

The first complete mathematical model for the propagation of infectious diseases 

was a deterministic model given by Kermack and McKendrick in 1927 [Dailey 2001]. In 

this model, each host is in one of the three states: susceptible (S), infectious (I), or 

removed (R). This model assumes that once a host is infected, it will recover or die in the 

end. Whether dead or recovered, it will never be susceptible to the same disease; 

therefore, it will stay in the removed state forever. So the state transitions of the SIR 

model is: S -» I ->R  (see Figure 2.3).

RemovedInfected

Figure 2.3: State transition of SIR model.

If we let R(t) represent the number of removed hosts at time t, then we have N  = 

S(t) + I(t) + R(t). L e t/ represent the removal rate. In a homogeneously mixed 

community, we have

dS(t)
dt

dl(t)
dt 

dR(t) 
dt

= - m ) m

= PS(t)I{t)-yI{t)  

= yl(t)
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with initial conditions S(0) = S0, 1(0) = I Q, and R(0) -  0 .

The Kermack-McKendrick model improves the SI model by considering that the 

infectious hosts may recover or die after some time. But this model does not consider the 

immunization of the susceptible hosts while immunization has become a very popular 

way, not only to prevent the outbreak of the infectious diseases, but also to prevent the 

outbreak of the infectious malicious code.

2.1.2 Stochastic Modeling

Stochastic modeling has been used to model the growth of population, the price 

changing of the stock market, the queuing process, etc. This section gives a brief 

introduction to stochastic process and stochastic epidemic modeling of diseases.

2.1.2.1 Introduction to stochastic process

A stochastic process is a family of random variables X(t) describing an empirical 

process whose development is governed by probability laws [Chiang 1980]. The time 

parameter t could be either discrete or continuous. In diffusion processes, both X(t) and t 

are continuous variables, while in Markov chains, X(t) and t take discrete values. The 

main interest is the probability distribution p k (t) = Pr{X(t) - k } ,  k  = 0 ,1, 2,3 • • • .

2.1.2.2 Stochastic epidemic modeling

A simple stochastic epidemic modeling assumes that the population consists of 

only susceptible individuals and infective individuals. Once a susceptible individual is 

infected, it becomes infective and stays at the infected state forever. Let random variable 

X(t) = S(t), and Y(t) = I(t), recall that S(t)+I(t) = N, so X(t)+Y(t) = N, then the only 

transition from t to t + A is (S, I) to ( S  - 1 , /  +1) with probability /?.
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We have Pr{(X, Y){t + A) = (S -1 , /  +1) | (X,  Y)(t) = (S , /)} = J3SIA + o(A ), 

and Pr {(Z, Y)(t + A) = (S , I)  \ (X, Y)(t) = (S , /)} = 1 -  J3SIA -  o(A)

where o(a ) represents the higher order function of A such thato(A)/A -> 0 when A -> 0. 

Then, the forward Kolmogorov equation system for the state probability 

A (<)=Pr{X(() = S |X (0 ) = iV -l} is

4P»
dt

dPj
dt

dPo
dt

= - j3 ( N - I ) I p N(t)

= -/3i{N -  I )Pi(t) + /?(/ +1 )(N - 1 -1  )pM (0  

= - f3 (N - \ ) IPl(t)

In matrix form, for P(t) = ( p N (t), p N_x (t), ■ ■ ■, p 0 (t))r , we have

= -/3

1 1 0 0 o' Pn O)**-111 1 1 + 0 0 p N-\(t)
0 +1 

..

11 (N  -  2)(7 + 2) 0 PN-2(t)

0 0 . . . - l ( iV - l )  0_ . Po (0  .

Ek .) _
dt

= - pAP(t)

We can use the matrix analysis [Dailey 2001] to solve the equations, and the 

solution is known to be P(t) = e~pAt p (0). But the explicit result is not easy to be derived 

with this method. We may use Laplace transform or probability generation function or a 

mixture of both to obtain the explicit solution. This dissertation uses the probability 

generation function (pgf) to get the probability that /  individuals are infected at time t. 

We will introduce pgf in Chapter 3 and show the details of using pgf technique to solve 

the stochastic propagation model of malicious mobile code.
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2.2 Literature Review of Malicious Mobile Code 
Propagation Modeling

A reliable propagation model helps us to understand the life cycle of a self- 

replicating program, to predict the propagation scale and speed, and to estimate the effect 

of factors like network topology, network traffic, and countermeasure techniques [Chen 

2004] [Serazzi 2003] [Satorras 2001].

Kepart and White [Kephart 1991] built a SIS (Susceptible-Infected-Susceptible) 

model to model the virus propagation, and use deterministic Ordinary Differential 

Equations (ODEs) to approximate the SIS model. They also present hierarchical model 

and spatial model in [Kephart 1991]. Later, they introduced the Kill signal as a 

countermeasure to reduce the spreading of computer virus and build a model for virus 

propagation with the Kill signals and concluded that the Kill signal is effective in 

reducing the spread of the virus [Kephart 1993]. Stamford et al. [Staniford 2002] 

constructed deterministic SI (Susceptible-Infected) model based on the empirical data 

from the outbreak of the Code Red worm. Serazzi and Zanero [Serazzi 2003] surveyed 

the existing models for virus and worm and came out with a compartment-based model 

that deals with the propagation inside and outside of an Autonomous System (a sub

network administered by a single authority). Zou et al. [Zou 2002] gave a model for Code 

Red Worm propagation based on the classical SIR (Susceptible-Infected-Removed) 

model. They introduced two factors that might affect the worm propagation; that is, the 

countermeasure effect and decreased infection rate because of Internet congestions 

caused by the worm. Ramualado Pastor-Satorras et al. studied the effects of network 

topology on epidemic models [Boguna 2002] [Satorras 2001] [Satorras 2002].
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All the above models use a deterministic approach to represent the models; that is, 

the models are described by a system of Ordinary Differential Equations (ODEs) except 

[Kephart 1991]. [Kephart 1991] gave a linear birth and death process when discussing the 

expected lifetime of the infection.

Under the homogeneous assumption, every individual in the population is 

assumed to be equally likely to infect or to be infected by every other individual. This 

approximation works well when each individual has many randomized contacts with 

others. However, if the number of contacts that a typical individual has with others is 

fairly small and/or the pattern of contacts is more or less localized, the homogeneous 

approximation fails. We suspect that the majority of today's computer populations are 

characterized by a degree of sparsity and locality that invalidates the homogeneous 

mixing approximation. In this dissertation, we introduced a factor B, the average number 

of contactors an individual could have, into the epidemic models.

Although ODEs can be safely used to approximate a stochastic process when the 

population size is large, it is more accurate to use stochastic models when the population 

size varies. Moreover, the spread of infectious disease or malicious programs is actually 

stochastic [Zou 2003] [Daley 2001] [Andersson 2000], so it is natural to model it with the 

stochastic model. The stochastic model gives the probability that an event will happen 

instead of deterministic yes-or-no answer relying on the law of large numbers [Andersson 

2000]. Actually, when the population size is big, it shows that the deterministic model is 

the convergence of a stochastic model. We believe both models are important to 

understand the propagation of a malicious mobile program like a worm or a virus.
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Andersson and Britton [Andersson 2000] concluded that stochastic models are preferred 

when their analysis is possible; otherwise, the deterministic model should be used.

This dissertation focuses on the stochastic propagation characteristics of malicious 

mobile programs; thus, we use stochastic models to describe the spreading of a malicious 

program over the Internet. The benefits of the stochastic model are: (1) It gives the 

probability of whether or not an infection will happen instead of a deterministic yes-or-no 

answer relying on the law of large numbers; (2) It allows probabilistic analysis of the 

malicious code propagation phenomenon; (3) It is more precise than the deterministic 

method when we study the infection process inside a community or organization where 

the population size varies; and (4) We could further derive the waiting time for the 

occurrence of the Ath infection based on the stochastic model.

2.3 Literature Review of Early Detection 
of Malicious Mobile Code

The propagation speed of malicious code has increased dramatically in recent 

years. As we pointed out before, a malicious code spreads almost exponentially at the 

early infectious stage when there is no counter action taken, so we need to respond 

automatically before it is identified. Cliff Zou [Zou 2003] proposed an early detection 

system by monitoring the illegitimate network traffic. A Kalman filter is used to detect 

the presence of a worm by detecting the trend. When the monitoring system encounters a 

singe of illegitimated network traffic, the Kalman filter is activated. The traffic is claimed 

to be caused by worm propagation when the estimated infection rate stabilized and 

oscillated a little bit around a constant positive value. One disadvantage of the approach 

is that the machine will be quarantined when illegitimated traffic is detected. This may
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irritate the users when false alarm happens. Users tend to disable the intrusion detection 

system even when the false alarm rate is not very high.

[Williamson 2002] proposed a filter algorithm based on the observation of 

connection behavior. Evidence from [Heberlein 1990] and [Hofineyr 1999] showed that 

during virus propagation, an infected machine will connect to as many machines as 

possible in order to spread as fast as possible. The idea of the filter algorithm is to use a 

series of timeouts to restrict the rate of connections to the new hosts; any traffic that 

attempts to connect at a higher rate is delayed. The filtering mechanism is user 

transparent, which means a user cannot take active actions to remove the malicious code 

and fix the system flaws the malicious program exploits.

The control system we proposed here is based on the same observation as in 

[Williamson 2002]. We applied statistical Process Control technique to automatically 

detect and mitigate the propagation of the malicious code. The advantages of this 

approach are: (1) The detection delay is small; the propagation of a malicious code can be 

detected as the very first beginning; (2) An explicit message will be given when anomaly 

connection behavior is detected so that a user could take active counteractions to fight for 

the malicious program; (3) The propagation rate of the malicious code is reduced 

automatically so that the overall damage is reduced; and (4) The control system does not 

disconnect the machine from the Internet so that users will not feel annoyed caused by 

the false alarms. Furthermore, we could give a mathematical estimation of the 

propagation mitigation scale using mathematical propagation models. Besides, the 

hypothesis test underlying the detection algorithm gives quantitative evaluation of the 

false alarm rate.
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2.4 Statistical Process Control

2.4.1 A Brief Review of Process Control

The use of statistical method in process control began at the Bell Lab in the 1920s 

[Hansen 1987], It has been widely used in the industry to manage, monitor and control 

the production quality [Hansen 1987]. The basic idea of Process Control is collecting and 

analyzing the past data, and comparing new data with past data to identify process 

violations.

Figure 2.4 gives the general outline of statistical Process Control. To apply 

Process Control techniques, we assume that the sample data follows normal distribution. 

Thus, when a process is in control, we know (1) about 68% of the plotted points lie in one 

standard deviation of the central line and 34% at each side; (2) about 13.5% of the plotted 

points lie in between one and two standard deviations on both sides of the central line; 

and (3) about 2.5% of the plotted points lie in between two standard deviations and three 

standard deviations. If the quality of a product changes, the plotted points will not follow 

the variation patterns given above. The operator needs to investigate the possible causes 

and adjuss it so that the quality of production is consistent. Control charts, like X  chart 

and R chart, are useful tools to help us visualize the quality control so that we can identify 

the change of quality more easily and straightforward.

The hypothesis being tested at the monitoring period is

H 0 -Mx = Mo

against the alternative

H x - Mx *  Mo
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where ji0 comes from the base period and jux is the mean of the sample data we just 

collected. There are two types of error defined with this hypothesis test. One is called 

type I error ( a ) ,  which is defined as the probability that we reject H 0 when H 0is true.

Type I error also means the probability when a point is beyond the control limit, and we 

identify it as a signal of quality change but actually it is not. Another one is called type II 

error (/?), which is defined as the probability that we accept H 0 when H 0 is not true.

Type II error is also the probability of a point is inside the control limit, and we identify 

the process is under control, but the process is actually out of control. The power of the 

hypothesis test is given by (l -  /?). In industry, control limits are usually established at 

three standard deviations from the central line. Then, the probability that a type I error 

will occur is 0.26%.

Algorithm: Outline of Process Control 
Phase 1: Base period
Step 1: Collect sample data 
Step 2: Estimate the parameters 
Step 3: Calculate the control limits 
Step 4: Check each observation of the base data 
Step 5: If it is over control limits, remove it and back to step 2 
Step 6: If all observations are within the control limits 

Extend the control limits to monitoring period

Phase 2: Monitoring period
Use the control limits established during base period to test the hypothesis 
that “the process is in control”.

Figure 2.4: Outline of process control.

We can see the idea of Process Control is very similar to the idea of anomaly 

detection, which is profiling the normal pattern of an object and comparing the current
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pattern with the profile to determine the possible violation. We will apply Process

Control technique to design the detection algorithm of the control system.

2.4.2 An Overview of Building the Control 
System Using Process Control 
Techniques

The control system includes a controller and a monitor. It takes three phases to 

build the proposed control system. Phase one is the training period during which the 

monitor collects normal connection behavior as the base data, then the control rule is 

defined for the controller using the base data. Phase two is the testing phase during which 

the reliability of the control system is tested using both normal and abnormal connection 

data. Phase three is the monitoring period during which the controller checks each and 

every observation the monitor collected to determine whether the current activity of the 

machine is legal.

This dissertation extends the traditional Process Control technique by adding a 

sliding window so that the base data always includes the most recent normal 

observations. This makes our system adaptive to the changes of process mean, and the 

false alarm rate is therefore reduced. The experiments demonstrate the reliability and 

flexibility of the control system. Furthermore, we present and compare the propagation 

models of malicious mobile code with and without the control system in order to evaluate 

the effect of the control system. The theoretical analysis shows that the detection method 

is effective and the propagation is reduced more when more hosts adopt the control 

system. Later, we simulate the propagation of malicious mobile programs in a network 

with a certain number of nodes. The simulation results match our theoretical analysis,
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which indicate a success of the propagation models and verify the effectiveness of the 

control system.

The idea of our approach is simple and straightforward, and so is Williamson’s 

approach [Williamson 2002], People did not think about it before, mainly because most 

people concentrate on how to protect ourselves from being infected. We install anti-virus 

tools, firewalls, filters, and intrusion detection systems to keep us secure. But people 

seldom think about minimizing the damage over the whole network if  we have been 

infected unfortunately by a malicious program. This dissertation provides a mechanism to 

not only detect but also reduce the propagation of malicious codes at the early infection 

stage so that human beings could gain precious time to take counter actions like patching 

their system or upgrading their anti-virus tools to fight for the malicious mobile code.

2.5 Summary

This chapter provided the background information and related works of this 

dissertation. We first introduced the deterministic and stochastic models of epidemic 

modeling, and then we showed how epidemic modeling has been used to model the 

propagation of malicious code. We talked about the related work of early detection of 

malicious code and discussed the advantages of our detection system. After that, we 

introduced the process control technique and showed the framework of building the 

proposed control system using the process control technique.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



CHAPTER 3

STOCHASTIC PROPAGATION MODELING 

OF MALICIOUS MOBILE CODE

This chapter uses stochastic modeling to model the propagation of malicious 

mobile code. Standard SI model and SIR model assume that the population is 

homogeneous. In fact, the number of individuals a given individual contacted in a certain 

period of time is limited. In this chapter, we introduce a new factor B, the average 

number of neighbors an individual has, into our model. In this dissertation, machine g  

becomes one of the neighbors of machine h only when machine g  and machine h have 

direct contact with each other; for example, g sends an email to h, g  downloads a file 

from h, g  visits the website provided by h, etc., and vice versa.

We first present a stochastic SI model, and show how to get the explicit solution 

of the SI model using the pgf technique; then we present the stochastic INIM (Infection- 

Immunization) model which models the propagation of malicious code at the early 

infection stage. We get the approximate solution of INIM model using the pgf technique. 

We simulate the propagation evolution of a malicious mobile code using the INIM 

model. The theoretical results approximate the simulation results, which indicates that we 

can use the theoretical model to predict the propagation of malicious mobile code.

26
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3.1 Stochastic SI Model for Malicious 
Code Propagation

The standard SI model divides the computer systems into two groups: one is 

susceptible, and the other is infected. Any system is at either susceptible state or at 

infected state. In the SI model, we assume that if a machine gets infected, it will never 

recover and become susceptible again, so the only state transition is S -» I.

Let,

N be  the size of the population.

I  it) = i : denote the number of infected machine at time t.

P i j ( 0 , t )  = Pr(/(0  = j  11 ( 0 )  =  i )  i, j  =  0 ,1, 2,• • - where p i j ( 0 , t )  denotes the probability

of j  infections at time t,  given that there are i infections at time zero.

P : The infection rate. In reality, this rate varies over time because the propagation of 

malicious code depends on the network bandwidth. At the beginning, a copy of the 

malicious code could always infect a susceptible machine successfully since the 

bandwidth of the network is enough to transfer all the byte stream of the malicious code, 

while later on, each copy of the malicious code could not reach the susceptible machine 

successfully because of the network traffic congestion; therefore, the infection rate 

decreases over time. In our model, for simplicity, we assume the infection rate to be a 

constant.

B : The number of machines that could be contacted by each machine during certain time 

unit. Generally, B would vary, but for simplicity, we assume that B is a constant. B  is the 

same as the population size N  in a homogeneous network, because any machine could 

contact any other machine in the population at any time.
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Assume that one machine is infected at the beginning, and A is a small time interval in 

which no more than one infection could happen within it. Let o(A) represent any function 

of A which tends to 0 faster than A . Following the analysis of a simple Poisson process, 

we have:

(1) The probability that exactly one infection event happens in ( t , t  + A) is 

J3B(1 -  i / N)(i -  l)A + o(A ). This is so because in time interval A, one infected 

machine could contact B  machine, and i?(l -  i / N)  of those are susceptible, so 

f3B(\ -  i / N)A machines could be infected by one infected machine. Now, the 

number of infected machines is (i -1 ) ,  so the total number of machines that could 

be infected in time interval A is /3B(\ -  i / N ^ i  -  l)A . Hence, ySfi(l - i / N ) ( i -  l)A 

is the probability that exactly one infection occurs. At the early infection stage 

i « N , so the probability that one infection event occurs is 

approximately j3B(i -  l)A . Since the probability that i-1 infection happened in (0, 

t) is A,;-i(O,0, probability that i infection events occur in time interval 

(0, t + A) is Pij^i (0, t) [/3B(i -  l)A + o(A)].

(2) The probability that more than one event, say q events, occurs during time 

interval A is o(A ). The probability that i - q  infection events happen in time

interval (0, t) is So, the probability that i infection happen in time

interval (0, t + A) is o(A).

(3) The probability that no event occurs in time interval A is 1 -  /3BiA -  o{A ). The 

probability that all infection events happen in (0, t)  is />u (0,t). So, the
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probability that i infection events happen in time interval (0, t + A) is 

P \ , i  (0,0[1 -  fiBiA -  o(A)].

Since only one of the above three is possible and they are mutually exclusive, we can 

combine all the three possibilities, so we have

P \ , i  (0> t + A) = P i  i-\ (o, t) [0B(i -  1)A + o(A)] + p x. (0,0[1 -  /IBiA -  o(A)]

+ Pu-q(Q̂ )  ° (A)-

Moving p u (0,t) from the right side to the left, and dividing both sides by A,

since -> 0 , we get 
A

P' ’(°’l + A) = - Phl(o,t)fiBi + pu^{0,t)pB(i - 1).

Therefore, we have 

dpXJ(0,t)
=  ~ P u  ( ° » l ) P B i  +  A ,  i - i  ( ° >  f ) P B (* ~  0  3  • 1 • 1dt

The initial conditions are as follows. According to our assumption that only one machine 

is infected at time* = 0, sop xl(0,0) = 1, and the probability of more than one machine

being infected is zero, so p xi (0,0) = 0, z > 1.

We use probability generation function (pgf) to solve Equation 3.1.1. The pgf is 

given by

00

Gi M = T lPu(°>ty  3-L2
1=1

By differentiating Equation 3.1.2, and substituting Equation 3.1.1, we get
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We can ignore 
the values of the 
first term when i 

+Bj3s2Y d{ i - l )p hi_l{0 , ty -2 = 0 and of the
<>i i>i second term

when i = 1, 
because the 
probabilities are 
not valid.

= - B j 3 s ^ -  + Bfis2^ -  3.1.3
ds ds

which can be written as

^  = B / 3 s { s - \ ) ^ ~  
dt ds

^  _  B J3s(s -  \ ) ^ -  =  0 3 .1 .4
dt ds

To solve the partial differential equation of 3 .1 .4 ,  we write the auxiliary equations

ds
=> ----------= Bfddt and dG,(s;t) = 0.

s ( l - s )

Using the following equality,

r 1 1 t 2ax + b - y l b 2 - 4 ac 2—  -------------------  - In ...................   if b - 4 a c  > 0
ax +bx + c -db2 - 4 a c  2ax + b + sib2 -4 a c  

we get,

=> In — = B(3t + c =>——  = ceBpt => - —- e Bfit = constant 
s - 1 5 - 1  s

From the second auxiliary equation, we get G7 (s;t) = constant.

Therefore, the general solution of 3 .1 .4  is

5 —1
Gf (s;t) = 0 ( ------e Rfit ) where O is an arbitrary differentiable function.

5
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To obtain the particular solution, plug in the initial condition, and we get

5 - 1 1  1
Let 0 =  => 5 = ------- , we get 0 (0 ) -= ------

5 1 - 0  1 - 0

1So, G,(s;t) = 0 (  * '* )  = — — ------   ^
s + s — 1 nnt s — \s  — Y)e

s

The solution of Equation 3.1.4 is

g > M = - -  (5 -  \)eE 3.1.5

Taking the first order derivatives of G, (s;t), we get the expectation of I  as

d4 < )]=
dGj
ds

m t

15—1 " ( s - ( s -  \ ) e » nB f $ t \ 2  ' 5=1

Taking the second order derivative, we get

m i -  d ] = ^ = ( - 2)
l - e B[St

e B p t  I s = i  = (~2)(1 -  eBpt )eW\„Bpt
ds2 ( s - ( s -  \)eBptf

So, the variance of / is a 2 = e \i 2 ] -  (£[/])2 = E[l(l - 1)] + £ [ /] -  (^[f])2

= (—2)(1 -  em  )em  + eBpt -  (eBp‘ f  = eBpt (em  - 1)

Taking the z'th order derivative, we could get

d ‘G = K  iv '-i;, (1 - e BptT Xem  _ M (1 -eBptr leBpt
ds1 i\ \ s - ( s -  \)eBpt)M =0 {em Y

(eBpt - l ) M ( eBpi - l V _1
m t

1
Bpt

1 V- l

pm\  e J

1

3.1.6

3.1.7

According to the properties of pgf, we get
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3.1.8

3.2 Infection-Immunization (INIM) Model 
for Worm Propagation

In the Infection-Immunization model, the population is divided into three groups; 

that is, susceptible, infected, and removed, which is the same as the standard SIR model. 

The difference is that instead of recovered and therefore immunized after infected, a 

machine could be immunized when it is healthy, which makes the propagation model 

closer to reality because, for example, a computer user could immunize a machine by 

downloading the patch or updating the anti-virus tool when the users get the message 

about the malicious program. Both [Zou 2002] and [Wong 2004] present similar ideas of 

immunization from a healthy machine, but neither of them gives a stochastic analysis of 

their models.

Figure 3.1 shows the state transitions of epidemic propagation. The removed 

machines include those immunized when still healthy and those recovered after infected. 

A recovered machine is immunized and cannot be infected by the same worm again. If 

we do not specify, the immunized machine includes both cases. In Figure 3. l ,a,/3,  and 

y  are the immunization rate, infection rate and recover rate, respectively. 

s ( ‘) = s is the number of susceptible machines at time t.

/(<)=/ is the number of infected machines at time t.

M(l) = m is the number of immunized machines at time t.
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Susceptible
(healthy)

. S ©  ,

Infected
(infectious)

x  Removed x  
(immunized or recovered) 
v M(t) >

Figure 3.1: State transition diagram of INIM model.

3.2.1 Stochastic Analysis of INIM Model

Assume that only one machine is infected at time zero, and A is a small time 

interval in which no more than one infection could happen within it. To build the INIM 

model, following the similar analysis of SI model, we have:

(1) The probability that exactly one infection event happens in (t, t + A) is 

J3BQ. -  (i - 1)/ N  -  m / N)(i -  l)A+ o(A). This is so because in time interval A, one 

infected machine could contact B machine, and ( l - ( z - l ) / A  - m l  N)  A of those are 

susceptible, so 0 B ( l - ( i  - 1)/ N  - m l  N)  A machines could be infected by one infected 

machine. Now, the total number of infected machine is (i - 1), so the number of 

machines that could be infected in time interval A is ySS(l -  (z - 1 ) / N  - m  / N)(i -  l)A . 

We assumed that A is a small time interval that no more than one event could occur 

within it. Hence, f3B(l -  (i - 1)/ N  - m l  N)(i -  l)A is the probability that exactly one 

infection occurs. At the early stage of infection, since i «  N  and m «  N , the 

probability o f one infection is approximately Bj3(i- l)A+o(A) . The probability that
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i - 1 infection events happen in (0,/) is (0,f); therefore, the probability that i 

infection occur in time interval (0, t + A) is p u _x (0,t)( J3B(i -  l)A+ o(A)).

(2) The probability that exactly one recover event occurs in (t, t + A) is (i + l)yA + o(A ). 

This is so because the probability that one infected machine is recovered during time 

interval A is yA . The total number of infected machine is i +1, so the number of 

machine that could be recovered during A is (i + l)yA. We assumed that A is a small 

time interval that no more than one event could occur within it. Hence, the probability 

that exactly one recover occurs is (i + \)yA. The probability that i +1 infection event 

happens in (0, t) is p l M (0,t) ; therefore, the probability that i infection occurs in 

time interval (0, t + A ) is p X M (0,/)( (z + l)/A+ o(A)).

(3) The probability that exactly i infection events happen in (0, t) and the number of 

infection events does not change, i.e., no infection or recover occurs, during (t, t + A ) 

is (l -  pBiA -  iyA -  o(A)). So the probability that i infection occurs in time interval 

(0, t + A ) is p u (0,fXl- pBiA - i y A - o ( A)).

(4) The probability that more than one infection, say q infections, occurs during time 

interval A, but no recover occurs is o(A). The probability that i -  q infection events

happen in time interval (0, t) is p hî (0 , t }  So, the probability that i infection happens 

in time interval (0, t + A) is p X i_q (0,t) o(A) .

(5) The probability that more than one recover events, say q recover events, occur during 

time interval A but no infection occurs is o(A). The probability that i + q infection
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events happen in time interval (0, t) is p hi+q(0,t} So, the probability that i infection

occur in time interval (0, t + A) is p u+q (0,t) o(A ).

Since only one of the above six is possible and they are mutually exclusive, we can

combine all three possibilities, so we have

p hi(0,t + A)= (l -  PBiA -  iyA -  o(A))/?u (0,r)

+ A,m ( 0 ,0 [ ^ ( i -1)A + O(A)]

+ Pv+i (°»0 [O' + 0 rA + ° (A)] 

+ Pu-i (°»*) ° (A) + P u*  ( ° > ° ( A>

Moving p u (0,t) from the right side to the left, and dividing both sides by A,

since —> 0 , we get 
A

P,J(0,t + A ) - p u (0,l ) = (_ m _ i r )  M
A

+  P l , i -

+ P v + i M ( i + l )y

Therefore, the differential equation is

dphj®’l l  = -  iy )pXi (0, t)

+ p u _x(Q,t)PB{i-\)  3-2-1

+Pi,1+i(°^X i'+ 1V

The initial conditions are as follows. According to our assumption that only one machine

is infected at timet = 0, sopI t(0,0) = 1, and the probability of more than one machine

being infected is zero, so p xi (0,0) = 0, i > 1.

Define pgf as

oo

G , M = I > u ( 0 > 'y  3.2.2
i= l
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Differentiating Equation 3.2.2 and substituting Equation 3.2.1, we have

= z  dPuf f -  = i y  H/®* -  (°>o+Pv-i (°»om* -  o +a,,+i (o, *x* -at t at i 

By extending the summation to each term, we get

i

+ Z  P u -ifeO M 1' - 1)5'
i

+ Z  /vi(°>*X*‘+1V
i

Rearranging each term, we get

i

+ s 2Z  ,
i

+ Z  /V ifeO fr'+ iW
i

which can be written as

dG / _ \ dG DO 2 dG dG—  = -{BP + y )s —  + BPs2—  + y — . 
at as as cts

Let BP = A , we get

r/G /„ \ r/G . 2 ^G <̂ G . . 2 \ \ ^G „
—  = -(A  + y >  —  + As2 —  + y —  = > —  - (A s 2 - ( A  +  y )s  +  y ) —  = 0
dt ds ds ds dt ds

To solve partial differential Equation 3.2.3, we write the auxiliary equations

dsdt = ------ ;— ------r  and dG, (s;t) = 0
-  (As ~(A + y )s  + y )

I f  A > y

From the first auxiliary equation, we get

[dt = f -------;— j—----r ds.
-  (As ~ ( A  + y )s  + y )
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Using the following equality

r 1 1 , 2ax + b--yjb2 -Aac  . . ,  2 . „—  ----------- = —...-.-••••••-— In-------------- if  b -Aac  > 0,
Jax +bx + c V^2 -Aac  2ax + b + 4b2 -Aac

(In this case, a = - l , b= (A + y),  c = - y , Vb2 -Aac  = ^ j ( A - y )2 = A - y )

1 -2As  + (A + y ) - ( A - y )  1 A s - yw get C + t = -------- In-----------------------  ̂ — = ------- In- '
A - y  -  2 As + (A + y) + ( A - y )  A - y  1(5 -1)

/Ls"
c.e(l~7)> = -------— where c, is the new constant contains C.
' 1 (5 -1 ) 1

( 5 - 1 )

c7ea r)t = ——— where c7 is the new constant contains c ,. 
2 (5-1) 2 1

e a - r » ( L J L  = C2
A s - y

From the second auxiliary equation, we get Gf (s; t) = constant. Therefore, the general 

solution of Gf (s;t) is

G(s;t) = a > { ^ 9 - e (*-r)t}
A s - y

To obtain the particular solution, plug in the initial condition, we get

G(5;0) = p lt (0 ,0 )5 ' = 5 (see initial conditions of Equation 3.2.1)

so G(s;0) = <D{ e(X-y)0} = <D{ = 5 .
As — y A s - y

Let 6 = =>s = ^ l z l  w egeto ( 0 ) = . - f c i
A s - y  0 1 -1  0A- 1

Therefore, the particular solution is
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y —  L g f 1 -? ') '

G(s .t) = Oi  ( s - V  CW } ~  ** ~ y _________ y ( s - \ ) e ^ r)t - ( A s - y )
t e - r  x l z L e( ^ _ !  M s - i ) e ^ - ( A s - r )

A s - y

_ y( 1 -  s)e{ r) + (As -  y)
~ A ( l - s ) e (X~r)t + ( A s -y )

If A, < y , from the first auxiliary equation, we get

\dt = f  --------— - 4  r ds.
■* •* -  (As -  (A + y)s + y)

Using the following equality,

r 1 1 , 2ax + b - ^ b 2 -  Aac .Cl2 A—   = , = l n ..............................  if b -Aac  > 0,
Jax +bx + c ^ ( b 2 -4ac)  lax  + b + Vh2 -  Aac

(In this case, a= -  A, b= (A + y),  c = -  y , Vh2 -  Aac = -yJ(y-A)2 = y - A )  

we get

t+ c = - ! ~  ln^ - V + r ) - V - r )
y - A  2As - ( A  + y) + ( A - y )  y - A  A s - y

Similar to solving the equation when A > y ,  we have 

(r-X)t _ M s ~ 1)cxe
A s - y  

cxeir~‘i>t IA(r-w s 3 _  C* - 1 )
A s - y

e(r-»i*LJL = c
s - 1 2

AsThe general solution of the second auxiliary equation isG(s;t) = <E>{ - e iy~X)t )
s -1

Using the initial condition of Equation 3.2.1, we haveG(s;0) = /?n (0,0)5'1 = s .

3.2.4
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So, G(j;0) = ®{— ^ e (y-Z)0} = = s .
5 -1  5 -1

Let0 = ̂ Z  r~e
5 - 1  x - e  x - e

Therefore, the particular solution is

 y_p(>'-w

G(S;0  = 4
yl t e - r  cM t  X ( s - l ) - ( X s - y ) e (r~X)t 

5 - 1

If A = y , we have

l d t = I  - ( ^ - ( l  + rV  + y ) * '

Using the following equality,

f— -— ------- = ------  —  if b2 -Aac  = 0,
J ax +bx + c lax  + b

(In this case, a = -  X , b= (A + / ) ,  c = -  / ,  Vb2 -  Aac = y j ( y -X ) 2 -  0 ) 

we get

2 2 1
t + C — ■

• 2/ls + (X + y) 2ys ~ (y  + y) y(s - 1) 

1 -t = C
y ( s - 1)

The general solution of the second auxiliary equation is

G ( s ; ( )  =  ® { — ! - — - ( }
r ( 5 - i )

Using the initial condition of Equation 3.2.1, we have G(s;0) = ®{—  ------- 0}
y(s ~ 1)
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Let 6 = ------ -—  =>5 = 1 + —  ,
y ( s - 1) By

we get 0 (0 ) = 1 + — .
6y

Therefore, the particular solution is 

G(s;t) = 0{—   1} = 1 +   t 1 = 1+ 1
K '- O  ( - 4 - O r

H 5 -1 ) X (5-l)

5 -1  _ 1 -  ty (5 -1 ) + (5 -1 ) _ 5 -  ty(s - 1)
1 -  ty(s -1 ) 1 -  ty(s -1 ) 1 -  ty(s - 1)

Rearrange the terms, we get

G ( s -,t ) = s ( l ~ , r )  +  , r . 
l + ty — tys

We apply the properties of pgf to get the mean and variance of I.

If A > y , taking the first order derivative of Equation 3.2.4, we get

4 G _  . + l r ( l „ s ) e ^ + ( A s _ r ) ] .
ds A(l - s ) e (*-y)l + (A s -y )  (~l)[A(l -  s)e(X~r)t + (As ■

Let 5 = 1, we get

dG . y{- \ )e (X-r)t + A , ,  -  Ae(X~r)t + A
—  Li= ;— + ( * - r ) -----------------

=e(X~r)t.

d s 's=' ( A - y )  " ( - 1)[(z - y ) ] 2

_  y( - \ )e (l~y)t + A -  (~Ae(X~y)t + A) _  (A -  y)e(X~y)t 
( A - y )  ( A - y )

According to the properties of pgf, we get 

ds

Taking the second derivative of Equation 3.2.4, we get
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d 2G _ ( - y e ^ y)t + A ) ( - A e ^ ‘ +A) ,+[ w +A] ~ ^ r)'
ds2 (-1 X A i l - s ^ - 7* + ( A s - y ) f  (-1 ) [ A ( l - s ) e ^ y)l+ ( A s - y ) f

- A e (X~y)t + A
+[ y( 1 -  s)e(l-y)t + (As -  y)](-2)

(-1 )[A(l -s )e(A-y)l + (As-y)]

d 2G x ( ~ y e ^ y)t+ A ) ( -A e ^ y)l+A) ir _ u „r)t , „ - A e ™ + A ,
ds2 u ‘ (-1 ) [ ( i - r )]2 W i - j O ]2

■AfiW' 7') ,+A
+2[(A-y)]-

P - y ) ] 3

= (-2)[-ye(A-y)t + A] ^  + A +2 ^  ** + A
(A -  y) (A -  y)2

= 2 ~Ae{X 7)t + 1 (i +
(2 - r )2

According to the properties of pgf, we get

Since <j2 = e [i 2 ] -  (^[/])2 = E[l{l - 1)] + £[/] -  (e [i ])2 , we get

cr2 =2 M l l - f - - ? .). [l + -  ^] + g(A- ^  -  [e^ - ^ ] 2
-  r) 2

- 2  ^  [i + -  A]+ ^ v  (-1- r ?
(A -  y)2 (A -  y f

ri _ (A-y)t \
= ̂ —  ----^ . [ ( A 2 + y 2) e ^ y)t +2 A -  2 A2] 3.2.7

( A - y ) 2

If A < y,  taking the first order derivative of Equation 3.2.5, we get

do  =  r - x e " - n  +  r (S - i  ) - ^ - r )elr-n‘ _
ds A ( s - l ) - ( A s - r y r~:‘>' ( - l ) ( M s - t ) - ( A s - r ) e " - " ] '

Let s = 1, we get
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dG\ -  Y ( A - y ) e ^ 1 (r_ „
d s ]°=' _ (A_ y)e(r-^  [_(A_ r)e ( ^ ]2 ^  Ae )

-  y - * * ™  i f l  _ .
- ( A - y y ^  [ ( A - y y ^ r  '

_ A e(7-Z)t - y  + j Z - A e ^ ' )  _  - y  + Z
(.X - r ) e (y-X)t ( Z - y ) e (r~X)t

So, E[l] = —  3.2.8
ds

Taking the second derivative of Equation 3.2.5 G (s;t), we get

—  = (-1) (r -  -  Ae'1--^) + r  -  ,
ds2 ( - t )U(s  -1)  -  (1, -  y)e(' - r" y  '

+ (_2) b U  -  0  - ( *  -  I * ™ ] ! *  -  f -»■] w  _

rf f£ , 1)( r - ^ (' - ,)- ) a - ^ - J)')  , r - ^ > '
<*! 1 l - ( z - r y r ' A):f  (-OK * - r ^ ’ ^ ’Y

+ ( - 2 )  >

^ { y - t e ^ W - X e ^ 1) ^ Z - y ) e ^ l ) t { Z - Z e ^ ‘] fy_„(

~ ( > [ W - r ^ r  + 2  [ W - r ^ r — (* _ *  5

+ 2  j * - * ™ ]  (, _ ^ . W)
[ ( A - y ) ^ - ^ ] 2 [ ( A - y y ^ ' ] 2

= 2 ^ ~ lg(r ^  [(2- -  Ae0'-**) -  (y -  ^ - A)()]
[ ( A - y y ^ ] *

[ X - A e {y- x)t] „  ,

— 2 -------------------- - (a — y )  9 ? Q
t ( A - y y ^ ] 2 3 -2 ' 9

Therefore, the variance of l(t) could be obtained as
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<72 = e [i 2]-{e [i ]}2 = e [i (i -  1)]+e [i ]-(£[/D 2

- { X - r ) + e ™  -  ( e ™ Y  3.2.10
[A -  Ae^ 1)(] „ u  (i-r)i 2

[ U - y ) ^ ' ]

From the above derivations, we can see the solution for the expectation of I  is the same 

when A * y ; that is,

I ( t )=e{X~r)t 3.2.11

But the solution for the variance o f / i s  different (See Equation 3.2.7 and 3.2.10).

/ \ s(\ — ty} ~h ty
When A = y ,  we haveG (s;t) = -----------------. Taking the first order derivative of

1 + ty -  tys

Equation 3.2.6, we get

dG 1 - y t  r . , - t y^-[ty + ( \- ty )s]-
ds 1 + yt-yts  (—1)(1 + t y - t y s ) 2

According to the property of pgf, the expectation of /  is

ds y t - y t - 1 (—1)[—1]

Taking the second derivative of Equation 3.2.7, we get

d 2G (l-yt)(-yt )  , r 1 - y t  , „ , , (-2 )(-yt) n
— r  =  — -— ' ■■■ + ty[ - - - - - - - - - - - - - - - - - - - 7  +  (ty +  (1  -  yt)s) v A  . ]
ds ( - 1 ) ( 1  + yt-yts) (l + t y - t ys )  (l + t y - t y s f

Let s = 1, and according to the properties of pgf, we get

3.2.12

lv n ds2 i-i (-1) j [1]3-

: yt ~ (yt)2 + ty\\ + yt]=2yt

So the variance of I  could be

a 2 =E[l2}-(E[l]jl =E[l(l -l) \  + E[l]-(E[l])2 = 2y t  + 1 -1 2 = 2 y t  3.2.13
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We can see that when X = y , the expected number of infected machines is a 

constant as the initial value (See Equation 3.2.12), and the variance is a linear function of 

t.

3.2.2 Discussion about Stochastic Model 
and Deterministic Model

The corresponding deterministic model of the INIM model is

at
dM(t)

dt
aS(t)+yl(t) .

with initial conditions 7(0) = 1, S ( 0 ) - N - l ,  and M ( 0) = 0. 

The first equation of 3.2.14 can be written as

dl(t)

i(t)

dl(t) _

(BJ3-y)dt.

3.2.14

Integrate both sides, we get f —z y  = [ (B/3-y)dt=>  In I(t) = (BJ3 - y ) t
J I(t) J

+ c

I  {t) = c,e

Use initial condition 7(0) = 1, we get cl = 1. So, the number of infected machines at time

t is

/ ( 0 = 3.2.15

Notice that if we assume the machines are fully connected (homogenous network), B 

equals to S(t), and the first equation in equation system 3.2.14 becomes

dl{t) _
dt

3.2.16
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In [Wong 2004], the authors also give a deterministic model with immunization 

rate//. They call the model a “delayed immunization model” because immunization 

starts at a time moment when a certain proportion of hosts is infected. In their model, 

they use (N - 1) to represent the number of suspected nodes S(t) , but it should be ( N - I ~  

M) as given in the third equation of equation system 3.2.14 if  we consider the 

immunization from the healthy machine. The authors of [Wong 2004] ignored the 

number of immunized node M  when building the propagation model, but they did not 

specify this approximation. As [Wong 2004] stated, the number of immunized nodes and 

immunization rate is not easily observable, so we are not sure how much this 

approximation affects the model’s accuracy. We can only ignore the number of 

immunized machine M  and approximate the number of susceptible node S(t) as N - I  at 

the early stage of infection. That is why we assume I(t) « N  and M(t) « N  and get 

equation system 3.2.14. This assumption makes our model more applicable at the early 

stage of infection which includes both the starting stage and the fast-growing stage. This 

is also why the infected nodes grow exponentially as shown in Equation 3.2.15 instead of 

logistically as given in Chapter 2.

From Equation 3.2.15, we can see the number of infected machines we get from 

the deterministic model is exactly the same as the expected value of the stochastic model. 

The solutions agree with the theory that the stochastic model converges to the 

deterministic model when the population size is large [Andersson 2000].

From the stochastic model, we get both the expectation and variance of those 

values at any time t so that we can evaluate the best and the worst infection situation 

instead of a single number of infected machines. This evaluation could be important
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under certain circumstances. For example, when the infection rate and the recover rate 

are the same, the deterministic model shows the number of infected machines will not 

change and keep the same number as the initial state. The expected value of the stochastic 

model agrees with this result. But from the stochastic model, we also know that the 

variance is increasing as time goes on, and the number of infected machines could be 

infinite when t -»  oo.

3.3 Simulation Analysis

3.3.1 Simulation Setup

The simulation program is written using C++ compiled with Microsoft Visual 

C++ compiler under Windows XP environment. First, we randomly generate a simulated 

network with a given number of nodes, say N  nodes. Each node has r neighbors; r is a 

random number ranging from a to b, where a and b are given real numbers and

~ ~ ~  = B , so 0 < a <r <b < N . Then for each node g , we randomly choose r nodes out

of the N  nodes as its neighbor. When node h is selected as the neighbor of g , we also 

add g  as one of the neighbors of h . When we generate the neighbors for h , we will 

randomly choose ( r -  existing number of neighbors) as h ’s neighbors so that the total 

number of neighbors is still r . The average number of neighbors each node has is B.

Our infection simulation system is based on this randomly generated simulation 

network. The infection simulation system has three main procedures: infection, 

immunization, and recovering. When we start the simulation, one node will be randomly 

selected as the infected node. At each time step, all three events, infection, immunization 

and recovering, occur simultaneously. In the infection procedure, each infected machine
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infects its neighbors with rate /?. Similarly, the recovering procedure checks all infected 

nodes and tries to recover it with rate y, and the immunization procedure immunizes the 

susceptible machines with rate a .

3.3.2 The Random Number Generator

The random number generator provided by C++ library is a function rand( ). 

First, we need to initialize the random number generator by invoking srand{seed). Each 

initializing seed generates a different random number sequence. We get one random 

number from the sequence every time we call rand{ ) function. Those random numbers 

returned by calling rand( ) function range from 0 to RAND_MAX, where RAND_MAX 

is the maximum number a machine could generate. If we want uniform random numbers 

in [a, b], we can use the expression x -  a + (b -  a) rand( )/(RAND_MAX+1.0). But the 

problem with the random number generator is that the same seed always generates the 

same random sequence. The random number generator we use to generate the random 

network is provided by [Vetterling 2002], This generator avoids the problem we 

mentioned in rand( ) function given by the C++ library.

3.3.3 Simulation Results and Results Analysis

We run the infection simulation using different a, P  and y  values with a same 

network of 1,000 nodes. Figure 3.2 - Figure 3.5 plot the simulation results. Each curve of 

the plots is the average of 100 simulation runs.

Figure 3.2 plots the simulated number of infected machines with different 

parameters. In Figure 3.2, s, is the simulation result of no immunization from healthy 

machines, while s2 and sz show the simulation result when healthy machines are 

immunized before getting infected. The difference of s2 ands3 is that s2 is the
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simulation result when the infection rate is less than the recover rate; s3 is the simulation 

result when the infection rate is equal to the recover rate. The effect of immunization 

from healthy machines is not negligible since both s2 and s3 increase slower than 5,. We 

can sees, grows very slow since the infection rate is less than the recover rate.

Figure 3.3, Figure 3.4, and Figure 3.5 give the simulation results and the expected 

values from INIM model. Figure 3.3 shows when X > y , i.e., infection rate is greater than 

the recover rate, the number of infected machine (s, is the simulation result, s2 is the 

expected value from INIM model ) is increasing as time goes on. Since healthy machines 

are immunized at the same time, the number of infected machines (s, and s2) do not 

grow tremendously even though the infection rate is greater than the recover rate. With 

the same immunization rate, when infection rate is equal to the recover rate (see Figure 

3.4), the expected number of infection shown by the model ( s 2) is always a constant as 

its initial value, which is 1. The simulation result (.s,) shows that the number of infected 

machines is increasing very slowly instead of at a constant. The simulation result is 

reasonable since our model shows the variance of the expected number of infection is 

increasing as a function of time t (see Equation 3.2.11). If the infection rate is less than 

the recover rate, the expected number of infection is zero (see s2 in Figure 3.6). The 

simulation result is not zero but very close to it (see s, in Figure 3.5).

In all three figures (Figure 3.3, Figure 3.4, and Figure 3.5), the simulation result 

( s 3) and theoretical result ( s4) o f the number of immunized machine grows much faster

than the number of infected machines. Also, we can see the theoretical results ( s4) fit the 

simulation results (53) better when infection just gets started. As time goes on, the
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difference between 53and s4 in all three figures (Figure 3.3, Figure 3.4, and Figure 3.5)

becomes bigger. This is because when we build the model, for simplicity we assume 

(i+m)/N -» 0 , but as time goes on, the number of immunized node is increasing, which 

makes (i+m)/N bigger and not ignorable. Therefore, we cannot directly apply this model 

to the whole life cycle of propagation of a malicious mobile code. In the future, we may 

use the exact value to build the stochastic model, but the solution of such a model will be 

much more difficult to obtain.
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s3: a  = 0.02, p  = 0.01, y = 0.01

Figure 3.2: The simulation results of the number of infected 
machines with different parameters.
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Figure 3.3: Simulation results and expected results when B * p > y
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3.4 Summary

This chapter introduces the stochastic propagation modeling of a malicious 

mobile code. Instead of modeling the propagation in a homogeneous network, we 

introduce a new factor B which represents the average number of neighbors a machine 

could have. We proposed an INIM model propagation model which considers the 

immunization from healthy and infected machines. We then use the probability 

generation function method to obtain the expectation and variance of the number of 

infected machines at time t. The simulation result showed that it is effective to use our 

model to predict the propagation of malicious mobile programs, especially at the early 

stage. Later on, we may use the exact value instead of the approximation that (i+m)/N 

—» 0 , so that the time parameter will have less effect on the prediction accuracy. Using 

the exact value of (i+m)/N makes the equation much more complex and the solution 

becomes very difficult to obtain. We may explore other methods to solve the model in the 

future.

In the INIM model we proposed in this chapter, the infection rate, immunization 

rate, and recover rate are constant. This model could be refined by extending these 

parameters to be time dependent.

This chapter discusses only the propagation of malicious self-replicating 

programs. Similar models could be built to model the propagation of useful information 

through the network. For example, we could model the propagation of benign mobile 

code, also called “good virus”. Analyzing the parameters that affect the propagation of 

benign mobile code could help us design future network that favors the propagation of 

such benign programs but throttle the propagation of those malicious programs.
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CHAPTER 4

EARLY DETECTION AND PROPAGATION MITIGATION 

OF MALICIOUS MOBILE CODE

This chapter proposes a control system to automatically detect and mitigate the 

propagation of malicious mobile programs such as computer worms at the early infection 

stage. The detection method is based on the observation that a worm always opens as 

many connections as possible in order to propagate as fast as possible. Therefore, we can 

monitor the connection rate to identify whether the status of a machine is normal or not. 

To develop the control system, we propose a detection algorithm, in which we provide an 

extension to the traditional statistical Process Control technique by introducing a sliding 

window. We apply sequential probability ration test to control the risk of the detection 

system so that the false positive rate is under certain threshold. We perform experiments 

to demonstrate the training phase and the testing phase of the control system using both 

real data and simulation data sets. Figure 4.1 shows the overall structure of the control 

system.

The experiment shows that by adjusting the tuning parameters appropriately, the 

control system can detect the propagation of malicious code with a zero false positive rate 

and less than 6% false negative rate, which asserts that our control system is effective.

54
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We also analyze the propagation behavior of a network when the control system is 

applied to different proportions of the machines.

Detedmg

Abnormal
Behavior

Yes

Re-TiTesting

Trailing

Infected Host

System
Monitoring

Target
Compromised

Malicious Code 
Arrived on Target

(Mafcciau9 Code Propagation)

Control System

The steps o f  malicious code propagation: (1) Initial infection; (2) Acquire target; (3) Transfer malicious 
code; (4) Execute malicious code. When abnormal behavior detected, the control system  w ill quarantine the 
infected host, therefore, no more machines w ill be infected.

Figure 4.1: The structure of the control system.

4.1 The Development of the Control System

Our control system includes a monitor and a controller. The monitor keeps track 

of the connection rate and reports it to the controller in real time. The controller makes 

the decision about whether or not there is an anomalous behavior, based on its knowledge 

from past experiences. This method belongs to behavior blocking, which is one of the 

anomaly detection methods. We extend the traditional Process Control technique to
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devise the detection algorithm for the controller. The general steps of building a control 

system are:

Step 1. Data collection: Collect a normal data set for training

Collect a normal data set for testing 

Collect an abnormal data set for testing 

Step 2. Assumption checking: Check the normality assumption of the training data 

Step 3. Training: Train the controller with the training data

Step 4. Testing: Test the control system using both the normal and the abnormal data.

Once these four steps are completed and the testing results are satisfying, the 

control system could be put into monitoring. The following subsections give the details of 

each step.

4.1.1 Data Collection

Since we are using the network connection behavior as an indicator of normal or 

anomalous behavior, we need to collect both normal and abnormal connection data, both 

from the same host. Under practical conditions, it is almost impossible to get connection 

data, both normal and abnormal, under the same circumstances, because we have no idea 

when there will be an outbreak of the malicious code. Fortunately, Goldsmith [Dave

2001] provided a connection request through TCP port 80 on July 18, 2001, the day when 

the network is normal (see Table 4.1), and on July 19, 2001, the day when Code Red 

broke out (see Table 4.2). The data was collected hourly.

The total connection rate Tc is defined as the total number o f TCP connections

that are built up in a given interval of time while the unique connection rate Uc is defined
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as the number of TCP connections built up to distinct destinations in a given interval of 

time. Thus, we have

Q
T =  — , where c is the number of connections in time t, 

t

uU = — where u is the unique number of connections in time t. 
t

For example, if a machine builds up j  connections to the same destination in a given time 

interval t, the total connection rate is j/t, while the unique connection rate is 1/i.

Table 4.1 gives the data from which we can calculate the average Uc, and it is 

about 17 connections per hour (cph) on July 18, 2001, while Table 2 gives the data from 

which we can calculate the average Uc, and it is about 37,549 cph on July 19, 2001. We 

plot the unique connection rate of both Table 4.1 and Table 4.2 in Figure 4.3. Here, we 

choose the unique connection rate instead of the total connection rate because a worm 

program always tries to connect to as many new hosts as possible. Connecting to a new 

host means opening a new connection from a local host to a remote machine. If we use 

total connection rate, sometimes the rate is high simply because we need to build more 

connections to the same remote machine, but not because of the propagation of malicious 

code. For example, when we browse a web page, we build up connections to the remote 

server through TCP port 80 of the local machine. If the web page contains more than one 

object, each object needs a TCP connection in order to make sure that the whole web 

page is viewed properly. Web pages are formatted in a markup language called HTML 

(HyperText Markup Language). Each picture file or audio file or video file is embedded 

as an object in the HTML file of that web page. It is common for a web page to contain 

more than one object and very few web pages contain only text. So when we open a web
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page with many objects, the total connection rate becomes high. However, since all these 

connections are to the same remote machine, the unique connection rate will not change 

unless we open new web pages that connect to another remote server.

Figure 4.2 plots the raw data from Table 4.1. We can see that the variation of Tc

is much larger than Uc. Generally, we prefer sample data with smaller variations because

small variation means that the data is more stable and hence the control system will give 

fewer false alarms.

From Figure 4.3, we can see that Uc was small on July 18, 2001, when the

network was normal, then it grew tremendously when the malicious code started 

propagating at about 10:00 a.m. on July 19, 2001. Figure 4.3 reinforces the idea that we 

can detect the propagation of malicious code by monitoring the connection behavior, 

specifically, the unique connection behavior of a machine. We analyze the characteristics 

of the real data so that later on we can generate simulation data following the same 

distribution as that of the real data for training and testing purposes. Let Y be a discrete 

random variable that represents the number of the unique connections per hour, and 

y x, y 2, • • • y„ be n observations. The mean value of the normal sample y  is

4.1
n

The standard deviation of the sample s is calculated as

n

X O . - t )2 4.2
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We have 24 observations, so n = 24. Plugging the values of the unique connection rate 

from Table 4.1 into Equation 4.1 and 4.2, respectively, we get y  = 17.62 and s = 3.23.

Table 4.1: Connection attempts from a host on July 18,2001

Hour Total

Connections

Unique

Connections

0 143 20

1 148 15

2 89 15

3 96 18

4 144 22

5 127 16

6 98 15

7 111 16

8 116 15

9 149 22

10 143 18

11 175 24

12 134 22

13 146 20

14 118 21

15 95 17

16 133 22

17 104 17

18 78 17

19 76 15

20 67 15

21 85 15

22 62 12

23 105 14
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Table 4.2: Connection attempts from a host on July 19,2001

Hour Total

Connections

Unique

Connections

0 120 17

1 81 12

2 62 11

3 97 20

4 85 18

5 128 20

6 140 20

7 212 34

8 645 137

9 5717 1281

10 36879 8186

11 150913 34361

12 362011 79789

13 519846 111148

14 556220 117946

15 547087 115193

16 540009 115983

17 519810 111290

18 499565 107106

19 390019 89331

20 14541 3493

21 9733 2233

22 9093 1882

23 8539 1672
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4.1.2 Assumption Checking

There are two reasons to check the normality assumption of the normal data:

(1) To know the distribution of the real data so that we can generate a simulation data 

with the same distribution as that of the real data, to train the control system, and

(2) To be able to apply the Process Control (or Quality Control) technique because the 

base data needs to satisfy the normality assumption.

-  Y "  y-We present the observed connection rate asy; = y  + en  where y = - •' is the
n

average of the sample data and s t is the error term. Thus, checking the normality 

assumption of y { becomes checking the normality assumption of the residual s (. We use

normal probability plot, which is a plot of standardized residual against their normal 

scores, to check the normality assumption of real data. Normal scores are the percentiles 

of the standard normal distribution. Statisticians [Dean 1999] found that if  the normality 

assumption holds, a plot of the q th smallest standardized residual against the 

100[(<y -  0.375)/(« + 0.25)] th percentile of the standard normal distribution for each 

<7 = 1,2, • • • n would show points roughly on a straight line through the origin with a slope 

equal to 1.0. These percentiles are also called Blom’s normal scores. Blom’s q th 

percentile is the value e  for which

P(Z < s q ) = (q -  0.375) /(« + 0.25)

where Z is a standard normal random variable. From the past experiences, statisticians 

conclude that normality plot is useful when sample size n is at least 15 [Dean 1999].

The normality plot generated by a SAS program is shown in Figure 4.4. In Figure 4.4, the 

Y-axis is the residual, and X-axis is Blom’s normal score sq . The points shown in Figure
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4.4 are roughly on a straight line through the origin, with slope equals to one. Although 

the line is not absolutely linear, it does not exhibit extremely heavy tails. Consequently, 

the normality assumption can be presumed to be approximately satisfied.
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A means that there is one observation corresponding to that particular point;
B means that there are two observations corresponding to that particular point, 
and so on.

Figure 4.4: Normality plot of normal connection data on July 18,2001.

4.1.3 Simulation Data Generation

The reason we use simulation data instead of collecting real data is that we can 

only collect normal connection behavior data, and it is almost impossible to get 

anomalous connection behavior data under the same circumstances, since the outbreak of 

malicious code does not happen very often and we have no idea when it will happen. The 

control system we propose is host-based, which means each user needs to install it on the 

local host to make it work. We cannot use the normal data of one host to train the control
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system and then put it to monitor the behavior of another host because the characteristics 

of the connection behavior are different for one host to another. The best we can do is to 

use the data provided by [Dave 2001], since this data is collected from the same host 

under the same circumstances.

To generate the simulation data with the normal distribution as that of the real 

data, we write a C++ program using the algorithm from Numerical Recipe [Vetterling

2002] which generates random numbers that follow a normal distribution. The function 

Normal ( )  can generate random numbers with distribution N (0 ,1). We know that if a

X  — iirandom variable X  has a distribution ofN(/u, a 2) , then Y = ------— has a distribution
a

o fN (0 ,1). So the random variable X can be written asX  = crY + /u. Therefore, we can 

generate sequences of random numbers with any normal distribution N ( ju ,a 2) using 

function the Normal ( ) that generates random numbers with a distribution ofN{Q,1). 

Using this method, we generated a training data set and a testing data set.

4.1.3.1 Training data generation

We generate 30 training samples to represent the normal connection behavior of 

one month, each day with 24 elements, with each element representing the unique 

Internet connection rate (Uc) per hour. The elements of the training data set have a 

normal distribution of 7v(l7, 32), which is the same as the distribution that is obtained 

from the real data we presented in Table 4.1.

4.1.3.2 Testing data generation

Every time we run the data generation program, the program generates a testing 

data set with 1,000 samples that includes 600 normal samples and 400 abnormal samples.
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Each sample has 24 randomly generated elements to represent the number of unique 

connections during each hour. For a better description, we number the samples from 0 to 

999.

Sample 0-sample 599 simulate the normal connection behavior of a host.

The elements of sample 0-sample 199 follow the distribution of iv(l7, 32).

To simulate a normal gradual increase of process mean,

the elements of sample 200-sample 249 follow iv(l 8.5, 32), 

the elements of sample 250-sample 399 follow iv(20, 32), 

the elements of samples 400-sample 449 follow tV(21.5, 32), and

the elements of samples 450-sample 599 follow n (23, 32).

Sample 600-sample 999 simulate the abnormal connection behavior of a host. To 

simulate the change of the connection rate, in each of the abnormal samples, the first 8 

elements still follow the distribution of normal connection behavior at tv(23, 32), and 

the rest of the elements have abnormal connection rates. To make the sample closer to 

real data, the value of the sample elements increase a little bit after the eighth element, 

and the value of the later elements keep increasing afterwards (as Figure 4.3 shows). To 

simulate the stealthy worm whose connection rate generally does not increase to an 

obvious high level, we generate random numbers from 29 to 39 as the abnormal elements 

of sample 600-sample 799. To simulate the connection behavior of most current worms,

i.e., their attempt to connect to as many machines as possible, we generate random 

numbers from 40 to 100 as the abnormal elements of sample 800-sample 999. So in the 

simulation data, even the highest connection rate (which is 100) is much less than the

connection rate of the real data (which is 1281, at 9 am, when the malicious code broke
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out) as seen in Table 4.2. But the connection rate is still high enough to demonstrate the 

efficiency of our control system. For each abnormal sample, when we generate the 

random numbers as abnormal elements, we sort them from small to large, so that each 

sample is similar to the real data shown in Table 4.2.

This kind of simulation is rough, but this is the best we can do based on the observation 

of connection behavior and the real data that we have. Figure 4.5 shows the overall 

distribution of the testing data sets by calculating the average of every 50 samples 

sequentially.

iO u u m l Data

150 250 350 450 950

Sam ples

Figure 4.5: Distribution of testing data.

4.1.4 Detection Algorithm and Its 
Statistical Analysis

Traditional Process Control technique includes two stages. Stage one is called the 

Base Period during which the base data is collected and the normality assumption of the
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base data is checked as explained in Section 4.1.2. If the assumption is satisfied, we 

estimate the mean and variance and then calculate the control limit (CL) from the mean 

( / / )  and variance ( cr ) as

CL = fi ± A a

where A is a parameter determined by the control criteria. A bigger A makes the control 

limit wider. Consequently, the probability of making a type I error is smaller, but the
r

probability of making a Type II error is greater.

Stage two is called the Monitoring Stage during which each new sample is 

collected and identified to see whether it is within the control limit or not. If the sample is 

beyond the control limit, a violation is detected. Figure 4.6 shows the procedure of the 

detection of the malicious mobile code using the traditional Process Control.

Upper Control Limit

17

Monitoring periodBase period

0  2  4  6  8  1 0  1 2  1 4  1 6  1 8  2 0  2 2  0  2  4  6  8  1 0

Time (United States Central time) 

Figure 4.6: Traditional process control chart.
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The traditional Process Control procedure makes the operation simple, but it is 

less adaptive to the changes developing in the process mean. Therefore, we extend the 

traditional Process Control technique by adding a sliding window with size w so that the 

base data always includes the most recent w observations. Whenever / new observations 

are collected, we move the window forward to include these/  observations but still keep 

the size of the window the same. This way, the control system learns any change of the 

connection behavior and adapts to it by itself, and the false alarm rate is therefore 

reduced; /  represents the updating frequency of the control limit. If / i s  set to be 1, the 

control limit is updated once a new observation is collected. High updating frequency 

(i.e. low value off )  adds unnecessary computation complexity to the system, while low 

updating frequency (i.e. high value off )  may lower the detection accuracy. Choosing an 

optimal frequency (f) is discussed in the experiment section.

Figure 4.7 gives the framework of building a control system for a given host using 

the extended Process Control technique. Figure 4.8 presents the monitoring procedure.

Algorithm: Early detection and propagation mitigation of malicious mobile code. 
Procedure 1: Early Detection ( )

Initialize w and/;  initialize i=0

1. Collect r samples as base data;

2. Check the normality assumption of base data.

3. If normality assumption is satisfied, continue to 4, otherwise stop.

4. Estimate mean and variance of base data;

5. Calculate the upper control limits;

6. Set sliding window with the most w samples of the base data.
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7. While system is online 

Do 

{
Call Monitoring Procedure;
If (z equals f)

{

Let i=0;
Move the sliding window forward so that the base data includes the most recent 
/  observations;
Update mean, variance, and upper control limits;

} //end if 
Otherwise i++;

}
End while

Figure 4.7: Early detection and propagation mitigation algorithm.

Procedure 2: Monitoring ( )
Begin

Collect new connection rate 
Check the control limit 

{
If new observation is within control limit, back to while loop of Procedure 1. 
Otherwise, limit the outgoing connection and investigate the system

}
End.

Figure 4.8: Monitoring algorithm.

Figure 4.9 shows the control system using sliding window. We can see that the 

window with size w keeps moving forward as the monitoring period goes on. Each time 

when the sliding window has been moved forward, the mean and variance of the unique 

connection rate are updated.
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S t e p  l :  Collect base

Check normality 
assumption

mue
S t e p  3 :  Estimate N ( f t  „ , a  , )

4 :  Create sliding window 
‘Wn’ over base data

cr

S t e p  6 :  Update W„ using the k- 
shifl parameter to generate Wx~

UCL,= rt +3q
S t e p  7: Update N ( f t , ,  cj-,)

e p  8 :  Update upper control 

limit ‘UCLV to ‘UCL,’.

At+*

Time in hours

W0, Wl etc., are the sliding windows. Each time when /  new observations are collected, the sliding 

window moves forward, and the upper control limit (UCL) is updated.

Figure 4.9: Flow chart of the detection algorithm.

4.1.4.1 Confidence interval for mean u

Let X  be the mean of a random sample of size n from a normal distribution with 

mean ju and standard deviation s, the random variable

T = ^X JL  4 3

s H n

has t distribution with n -1  degrees of freedom. The area between - t ajln_ 5 and ta/2 is

( I - a )  (area a  12 lies in each tail), so probability

< T  <?a/2,»-l) = 1- «  4.4
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Consequently, the 100(1 - a ) %  confidence interval for n  is

( - ^  U / 2 , n - l  I— ’ U / 2 , n - l  i— ) •
yin yin

4.5

Moreover, when the area of the upper tail is a  , then probability

P {T < ta^ )  = \ - a . 4.6

So the upper confidence bound for /j. is

4.7

If we let a  be 0.01, using Equation 4.5, the confidence interval for mean fj. of normal 

unique connection rate is obtained as

Simplifying it, we get the 99% confidence interval for mean // as (15.77, 19.47), which 

means the probability that the mean value of the normal unique connection rate lies in the 

interval (15.77, 19.47) is 99%. Using Equation 4.7, the 99% upper confidence bound for 

H is obtained as 19.27, which means the probability that the mean value of the normal 

unique connection rate is less than 19.27 is 99%.

4.1.4.2 Upper control limit

In the industry, if the random sample of a monitored process falls in the area of 

ju ± 3 a , we believe that the process is under control. In our case, we assume that the 

mean ju and standard deviation cr are known, and their values are 17.62 and 3.23, 

respectively. Hence, the control limit for the control system is 17.62 ± 3 x 3.23. Since we 

know that when a malicious code propagates, it always increases the unique connection
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rate, then we only need to be concerned about the upper control limit. Therefore, when a 

random sample falls beyond ju + 3a  =27.31, an out of control signal will be given.

4.1.4.3 Level of significance

Let random variable Y denote the unique connection rate. It has normal 

distribution with mean ft and variance a . Yl ,Y2,Y3,---,Yn are the random samples of the

unique connection rate. The monitoring period includes a hypothesis test at the given 

significant level a  , that is:

Null hypothesis

H 0 : Yt =fi

Against alternative hypothesis

Hr- r ,> f i

where ft is the estimated mean value using the connection data in the sliding window. 

The Test statistic TS is obtained as

TS = 4.8

which has a Z distribution, so this hypothesis test is also called a Z test.

The rejection region for level a  test is TS > za , where za is defined as the point

such that P(Z > za) = a ;  za is also called the critical value. An out-of-control signal 

occurs whenever a point falls in the rejection region, and an investigation for possible 

reasons should be initiated; a  is the probability that we reject H 0 when H 0 is true,

which means we identify a connection behavior to be an anomalous behavior since it is 

beyond the control limit when it actually is normal.
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Traditionally, the control limit is defined as /) ± 3cr . But since malicious programs 

only increase but never decrease the connection rate, we are only concerned with the 

upper limit, which is defined as ju + 3 a , and

Hence, the significance level a  is 0.0013, which implies that the probability a 

normal connection rate falls beyond the UCL is 0.13%.

4.1.4.4 P-value of the hypothesis test

The P -value is the smallest level of significance at which H 0 would be rejected

when a specified test procedure is based on a given data set. If the significance level is 

greater than P  -value, the null hypothesis will be rejected; otherwise, the null hypothesis 

will be accepted. The P  -value of a hypothesis test lets us know whether the null 

hypothesis is barely rejected or barely accepted by comparing the significance level 

a  and the P  -value. Figure 4.10 illustrates the P-value in a Z test where the P-value is 

greater than significance level a  . So, TS does not lie in the rejection region and the null 

hypothesis will not be rejected in the example given in Figure 4.10.

P(Z  > (// + 3<t)) =0.0013

//
\ P-value

0

Figure 4.10: The P-Value of a Z  test (TS: Test Statistic).
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The P-value of a Z test can be obtained by checking a standard normal 

probability table. For example, if  the connection rate is 24, using Equation 4.8, the test 

statistic is obtained as

r a = 24- 17-65= 1.966.
3.23

From the standard normal probability table, we approximately get

P (Z >  1.966) = 0.0247.

Hence, the P-value is 0.0247. Since the significance level we set is 0.0013, which is 

much less than 0.0247, we can strongly conclude that the null hypothesis H 0 should not 

be rejected.

4.1.4.5 Average run length

When a process is in control, we should observe many samples before we come 

across one sample that is beyond the control limit (a false alarm). Define a random 

variable S, such that S  = the first i for which Y{ falls outside the control limit.

If  we think of each sample as a trial and an out-of-control sample as a success, then S is 

the number of trials necessary to observe a success. The expectation of S (E(S)) is called 

the Average Run Length (ARL), and ARL for a false alarm to appear could be obtained as

ARL = E ( S ) = - .  4.9
a

One reason why network users do not want to enable the intrusion detection systems is 

that the intrusion detection systems may give off false alarms and these false alarms are 

irritating to most people. Therefore, we need to make the false alarm rate as low as 

possible, i.e., to make the ARL value as large as possible.
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For example, if  the significance level of the hypothesis test is set at a  =0.005, i.e., we 

take Y + 2.575a  as the upper control limit, then the false alarm rate is 0.5%. By 

calculating, we get

ARL = E(S)=  — = —-— =200, 
a  0.005

which means when the process is under control, one false alarm could happen for every 

200 observations.

The control system we designed takes Y + 3& as the upper control limit; 

therefore, the hypothesis test is at significance level a  =0.0013. Hence, we could get the 

Average Run Length as

ARL = E(S) = —= — -— =769.23, 
a  0.0013

which means when the process is under control, at the utmost, one false alarm could 

happen for every 769 observations if we set the upper control limit of the connection rate 

at 27.31.

4.2 Experiments

This section presents the details of building a control system using the simulation 

data. The purpose of the experiments is:

• To demonstrate the training process and the testing process of the control 

system.

• To test the reliability and the adaptability of the control system.

• To give a quantitative evaluation of how sliding window improves the 

performance.
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• To evaluate the effect of tuning parameters like, the sliding window size (w) 

and the updating frequency (/).

4.2.1 Training

Before we train the control system, we should check whether or not the training 

data follows normal distribution. Since we already checked the normality assumption of 

the real data and the simulation data is generated following the same distribution as that 

of the real data, we know that the training data also satisfies the normality assumption. So 

we feed the training data to the controller and the controller learns the mean, variance, 

and upper control limit from it.

4.2.2 Testing

We build two controllers: controller one uses the traditional Process Control

technique; controller two uses the extended Process Control technique with the sliding

window. We perform experiments using both controllers. This section shows the

reliability of the control system and the performance of each controller. We also discuss

the choice of the optimal tuning parameters by testing their effects.

4.2.2.1 Performance analysis of the 
control system

The performance of the control system can be analyzed by comparing the false 

negative and the false positive rates of the two controllers (one using the traditional 

Process Control and the other using the extended Process Control).

False Negative:

We first train the two controllers with the training data set. Then we run the controller 

program 100 times to test the reliability, each time with a different testing data set. Both
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controllers detect all anomaly samples when malicious code starts spreading, so the false 

negative rate of both of them is zero.

False Positive:

Figure 4.11 plots the false positive rate of each experiment run. The false positive rate of 

controller one is about 30% to 35% and the false positive rate of controller two is lower 

than six percent. Therefore, we can demonstrate that the false positive rate is greatly 

reduced when we apply the sliding window.

From Figure 4.11, we can also see that the performance of controller two is quite 

reliable. It has an average false positive rate of 4.35% and no false positive rate higher 

than 6% in any single run. Therefore, we conclude that the control system using the 

extended Process Control technique is effective in detecting the propagation behavior of 

malicious codes. The sliding window plays an important role in reducing the false 

positive rate when the process behavior changes. The effectiveness of the extended 

Process Control can be attributed to this introduction of a sliding window, which causes 

the control system to be more adaptable to the changes of the connection behavior.

0.4-  

0.35 - 

0.3-
S
g 0.25 +-

8 02 +T
!  0.15- 

“■ 0.1 - 
0.05-H 

0-
1

□False positive of ti 

□Falsepositive of

:racStionai Process Cotirol

□L CL a i d a
3 4 5 6 7

Experiment run

10

Figure 4.11: Reliability of the control system applying traditional 
and extended Process Control technique (w = 6 0 0 ,/ = 20).
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4.2.2.2 The effect of sliding window w

If the size of the sliding window w is too small, it will result in an inadequacy of 

the model to properly represent the system dynamics, and will therefore lead to a poor 

general performance. Conversely, if the window is too larger then the computational 

complexity is unnecessarily increased. To choose an optimal value for w, we perform an 

experiment with different sizes of the sliding window. For each size of the sliding 

window, we run the experiment ten times and get the average false negative rate and the 

false positive rate from these ten runs. Figure 4.12 and Figured 4.13 plot the average false 

negative rate and false positive rate respectively when the window size varies from 20 to 

720.

Figure 4.12 shows that when w increases, the false negative rate decreases. 

The control system gets zero false negative rate when w is greater than 480. Figured 4.13 

shows that when w is too small, the false positive rate is high, but it converges quickly to 

about 6% when w increases above 40. The overall performance analysis of the control 

system we presented in Figure 4.11 is given at w = 600.

0,9

0.8

0.5 ■- 
0.4 • -
0.3 • -  

0.2 - -

Size o f th e  slid ing  w indow

Figure 4.12: False negative rate of the control system when the size of 
sliding window w  varies (The value of f  is fixed at 1/ 20).
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0 .16  T

0.14

0.12  - -

? 0.1 J-

'B 0 .08  - -  o
8 0 06 -H

0.04

0.02

20 40 60 80  100 1 2 0  240 360  480 6 0 0  720

Size o f th  e  s lid ing  windo w

Figure 4.13: False positive rate of the control system when the size of 
Sliding window w varies (The value of f  is fixed at 1/ 20).

4.2.2.3 The effect of updating frequency f

Let the number of new observations in the sliding window to be os , then the

updating frequency /  is defined as /  = — . When /  is larger, the control system moves

the sliding window more frequently. Since the control rules are updated each time the 

sliding window is moved forward, the computation complexity is increased. If /  is too 

small, the control system cannot catch the dynamic change of the connection behavior in 

real time. Hence, the performance of the control system is degraded.

Figure 4.14 and Figure 4.15 plot the average false positive rate and false negative 

rate respectively when /  varies. Figure 4.14 shows that the false negative rate becomes 

zero when 1/ f >  16. Figure 4.15 shows that the false positive rate is stabilized when 

/  < 26 but increased dramatically when l / / >  26. Overall, the optimal/ value is between
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1/16 and 1/26. The overall performance analysis of the control system we presented in 

Figure 4.11 is given at 1/f -  20.

0.3

0.25

1  0.15O)

L L
0.05 -

Figure 4.14: False negative rate when/ varies 
(The value of w is fixed at 600).

0.4

0.35

0.3

0.25

0.2

0.15

u.

0.05

Figure 4.15: False positive rate when/ varies 
(The value of w is fixed at 600).
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4.3 Risk Analysis of the Control System

All intrusion detection systems have a false positive rate. Therefore, there is 

always a probability that a detection system detects a propagation that does not exist at 

all. In statistics, this is also called producer’s risk. For an intrusion detection system, it is 

extremely important to reduce the producer’s risk because it may lead to a complete 

rejection of usage. This section analyzes producer’s risk and introduced a novel idea of 

using Sequential Probability Ratio Test (SPRT) to control the risk.

4.3.1 Risk Analysis Using SPRT

Let the inspection result of the ith unit be denoted as X t, then X t=\ if  there is 

malicious code propagation detected; X t = 0 otherwise.

Let /  represents the probability function of A , then 

f ( \ , p )  = p  and f (0,p)  = I - p .

Here, p  is interpreted as the false positive rate, that is, the probability of detecting a 

malicious behavior of a healthy machine.

To test the hypothesis of H 0 : p  = p 0 against H x \ p  = p x, let p 0m and p lm be the

probability of getting d m false detection in the sample (X l, X 2, - - , X m) o f  size m under 

H 0 and H ] , respectively. Then the Likelihood Ration

4 . 10
n m rt \ m~“m
Pom U f ( Xi, P o ) P  0 t 1 Po)

1=1

( 1 A

log An = dm log— + ( m - J m)lOg
P o i - P o

4 .ll
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The SPRT for a hypothesis H 0 : p  = p 0 against its alternative H x : p  = p x is

carried as follows:

If log Am > A , reject H 0 and terminate the process.

If logAm < B , accept H 0 and terminate the process.

If B < logAm< A ,  collect observation X  m+x, calculate \ogAm+x and compare the 

value of log/Lm+1 with A and B again.

Where A and B are constants defined as

. , 1 - p  _  . PA = log — and B = log———
a  I - a

4.12

If we write

P o  . V l ~ P o )

4.13

then Equation 4.11 becomes

l°gAm = d mg x - ( t n - d m )g 4.14

So, we reject H 0 if

g x + g 2 g l + g 2
4.15

We accept H 0 if

d mg x - { m - d m) g 2 < B  = >  d m < — - —  +  m — g -2 - -

gx g 2 g x + g 2
4.16

Then, the rejection line Lx is
d m = h  i +  sm 4.17

and the acceptance line L2 is
d m =h7 + smm l 4. 18

where hx = ---------- , h2 = -----------, and s = ------ —
g x + g  2 g x + g 2 g x + g 2

4.19
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From Equation 4.17 and Equation 4. 18, we can see hx and h2 are the interception of line 

Z, and line L2 on the d m axis respectively, while s is the slope of both lines. Below is 

the Risk Control Algorithm using line Lx, L2 and point (m,dm ) . And Figure 4.16 is the 

control chart based on the risk control algorithm.

Risk Control Algorithm

1) Determine p 0, p x, a  , /?;

2) Calculate A and B using Equation 4.12; Calculate gx and g 2 using Equation 4.13;

3) Get the value of hx, h2 and s using Equation 4.19;

4) Draw rejection line Lx and acceptance line Z2 using 5 as slope and hx, h2 as 

interception for Lx and Z2 respectively as Figure 4.16 shows;

5) Get the mth sample, count dm;

6) Plot point (m, dm );

7) If point (m,dm) lies between Lx andZ2, back to 5; otherwise, stop.

(Rejection Region)

Conti

A

nne

m

LjZ dm = h} 

(Acceptance Kcgion)

Figure 4.16: Risk control chart. If point (m,dm) lies below Z2, accept H 0; 
if it lies above Z,, reject H 0; otherwise, keep sampling.
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4.3.2 Examples of Risk Control Using SPRT

Let the false positive rate be p 0, since we are using a one-sided control process

with 3cr as the control limit, />o=0.001. To test the hypothesis that the false positive rate 

is p Q, we have

H 0 :p  = p 0 against H x: p  = p x 

Letp x = 0.002, a  -  0.01, /? = 0.05, we get

A =log1~ ° 'Q5 = 1.978 
0.01

B=log— =-1.297 
0.99

, 0.002 „ . . .g x = log--------= 0.301
1 0.001

. 1-0.002 .g 7 = -  log------------- = 4.349x10
2 1-0.0013

hx =— - — =6.563 
g l + g 2

h2 = — - — =- 4.303 
gx+gl

s=  8 2  = 0.0014.
gl+g2

Therefore, the rejection line Lx is: dr = 6.563 + 0.0014/w; the acceptance line L2 is

da =-4.303 + 0.0014w.

Table 4.3 lists two examples of using SPRT to control the risk of false positive. 

We plot the acceptance example on Figure 4.17. From Figure 4.17, we can see that points 

lies in the middle until m = 3800.1ies acceptance region when, which means we should 

Haccept hypothesis 0. In other words, the false positive rate is the same as we expected 

from the theory. We also take one sample from the stealthy malicious code whose 

propagation is hard to observe because of the low connection rate. Using the detection
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result of the stealthy malicious code, the sequential ratio test is processed as Table 4.3 

Example 2 shows. Plot Example 2 on Figure 4.18, we can see when m = 760, the point

Hlies in the rejection region, which means 0 is rejected and we should accept the 

alternative. Therefore, we should adjust the control limit so that the false positive rate 

could be reduced to what we expected.

Table 4.3: Risk analysis using SPRT

Example 1: An Acceptance Example Example 2: A Rejection Example

M d m dm d.

0 0 -4.303 6.563

1 0 -43016 65644

10 0 -4.289 6577

100 0 -4.163 01703

1000 0 -2J903 7-963

1500 1 -2203 6663

2000 1 -1.503 9J363

3000 1 -0.103 10.763

3000 1 0.737 11.603

3700 1 0.877 11.743

3000 1 1J017 11-883

n dm dM d.

0 0 -4.303 6563

1 0 -43016 65644

10 0 -4.289 6577

100 1 -4.163 01703

200 2 -4.023 6.843

300 3 -3883 6983

400 3 -3.743 7.123

500 4 -3.003 7263

600 5 -3463 7.403

700 7 -3323 7.543

700 8 -3183 7.683

(Rejectum Segjon)

X,: <7, =6_5ti3-t-0.0014 m

Cnrtmne

(0,1000) (1,1500) 0,2500) 0,3500) 0,3100)

L,: d a = -4 303 +0 0014 m  

(AaxptBnx Region)

Figure 4.17: An acceptance example of risk control (Since point (1,3800) 
falls in the acceptance region, we should accept the hull hypothesis).
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(Rejection Region) .A®-760®
V(7,TO0)

d T =  6.563+0JMI14»i (5.6009
Continue(4,5009 (3,300) (3,4009 *

0,3009
(1,1009

02.109

i j : rf„— 4_303+0JM14xi

(Acceptance Ecgjun)

Figure 4.18: A rejection example of risk control (Since point (8, 760) 
falls in the rejection region, we should reject the hull hypothesis).

4.4 Network Performance Analysis

This section analyzes the propagation behavior of malicious code when the control 

system applied. We compare the performance of a network when different number of 

machines applied the control system. The performance is evaluated by the mathematical 

propagation models. We extend the propagation models introduced in Chapter 2 by 

introducing a new factor, which we will give the detail in the following section. We also 

design a serial of propagation simulations in a network with control system. The 

simulation result is consistent with the theoretical result, which implies the success of the 

control system. The notation we use in this section follows the same definition given in 

Chapter 2.

4.4.1 Extended SI Model

In Chapter 2, we have presented the standard SI model that assumes the 

population is homogeneously mixed, which is not true in the real world. In Chapter 3, we 

have introduced a new factor B, the average number of contactors an individual has in a
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given time period, into the stochastic propagation model. Here, we will present the

deterministic SI model with factor B.

Assuming we have only one machine infected at time zero, the total number of

infected individuals can be modeled as:

dlif) = B N  -  l i t)  ^  with = 1 
dt N  w

Let i = I / N  and k = J3-B, dividing both sides of Equation 4 .2 0  by N, we get

di(t)/dt = £ (1  -  i(t))i(t) 4 .2 1

The solution of the general epidemic model given as Equation 4 .2 1  is

ekt1(0 = f 77 4 .2 2
N - l  + ekl

where k  is the infection rate. Infection rate is the number of machines that could be

infected by one infectious machine in one time unit.

4.4.1.1 Fitting the observed data with 
extended SI model

The computer worm Code Red exploits the buffer-overflow vulnerability in 

Microsoft’s IIS web server [Moore 2 0 0 2 ] .  The propagation of Code Red is noticed at 

about 1 0 : 0 0  am (central time) on July 1 9 . The propagation stops at 1 2 : 0 0  midnight by the 

designing of Code Red. It infected more than 3 5 9 ,0 0 0  machines during approximately 13  

hours of propagation [Moore 2 0 0 2 ]  [Caida 2 0 0 1 ] .  Code Red randomly generates 1 0 0  

threads; each thread randomly chooses one IP address and connects to the machines with 

corresponding IP addresses through port 8 0  [Zou 2 0 0 2 ] ,  It installs the mechanism for 

remote, administrator-level access to the infected machine so that the machine could be

used to execute any code [Moore 2 0 0 2 ] .  Therefore, it is highly dangerous. Figure 4 .1 9
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shows the observed Code Red propagation. The infection came to saturating around 

20:00, and the propagation stops at 12:00 midnight, so the number of infected host in 

Figure 4.19 does not change after 12:00 midnight.

Assume that the total number of vulnerable hosts is 400,000. If we fit the model 

with k = 0.8, we get the theoretical result o f Code Red propagation in Figure 4.20.. 

Compare Figure 4.19 and Figure 4.20, we conclude that even the simple SI epidemic 

model provides a reasonably good approximation of malicious mobile code propagation. 

The observed value does not grow as smooth as the theoretical model because the 

network bandwidth is exhausted by the malicious code so that it cannot connect and 

infect the target machine as it does at the early infection stage.

4 0 0 0 0 0

3 5 0 0 0 0

3 0 0 0 0 0

2 5 0 0 0 0

3  £00000  -

150000

100000

5 0 0 0 0

Code Red Norm - infected hosts

0 0 : 0 0 0 4 : 0 0 0 8 : 0 0
0 7 / 1 9

1 2 : 0 0  1 6 : 0 0  
time <UTC>

0 0 : 0 8  
0 7 / 2 0

0 4 : 0 0

Figure 4.19: Observed Code Red propagation (From www.Caida.orgl.
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Figure 4.20: Theoretical result of Code Red propagation.

4.4.2 Propagation Modeling with 
Control System

As we discussed in Chapter 2, when propagation starts, the speed is slow at the 

very beginning, then it comes to the fast spreading stage during which the number of 

infected nodes grows tremendously, and finally the infection speed slows down since 

very few susceptible nodes are still available. At the first and the second stages, the 

number of infected nodes grows almost exponentially. If all hosts use the control system, 

the infection speed could be greatly reduced and the infection may never get to the third 

stage because countermeasures taken by humans could immunize nodes when they are 

healthy. In the following subsection, we present the propagation model with the control 

system and give a quantitative evaluation of the effects of the control system. We do not 

consider immunization and recover in this model.
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When a malicious code detection system is applied in a network, a healthy host 

might be flagged as infected (False Positive), and an infected host might not be detected 

and therefore declared as healthy (False Negative) (See Figure 4.21). A false positive will 

not affect the propagation of a malicious code, so we do not need to consider it in the 

propagation model. Suppose p  percent of the hosts installed the control system and the 

detection rate of the control system is d. We know that the false negative rate is 1 -  d .

Figure 4.21: State transition of extended SI model with detection system.

When a machine is detected with malicious code, its connection rate is limited. 

Ignoring the one unit detection delay, we have

where /, = I  ■ p - d , I 2 = I  • (l -  p)+1  • p - ( l - d ) ; B l is the limited number of contactors a 

machine could have when infection is detected; B2 is the number of contactors a machine 

could have when infection is not detected, and B2 »  Bx.

S: Susceptible I: infected
FP: False positive FN: false negative

4.23

Let kx = /?•#, ,  k2 - /3 - B 2, i = I  I N , / , = / , /  N , i2 = I 2 1 N , then from Equation 4.23,

we obtain

di I dt = k , (1 — i)/j +k2( 1 — i)i2 4.24

The solution of Equation 4.24 is
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Figure 4.22 shows the infection delay when a different percentage of hosts install 

the control system. Obviously, the more hosts installing the control system, the better the 

results are. If only 20% of the hosts adopt the control system, the overall effect is very 

limited. When p  is about 80% or 90%, the difference is huge.

0 5

©IW-
p=0 8

T im e  Unit

Figure 4.22: Infection evolution with different p  values 
(N = 10,000, j3 = 0.8, d  = 1.0).

4.4.3 Simulation

This section conducts simulation experiments to verify the prediction of the 

spreading speed and scale given by the models. We first simulate a simple epidemic 

propagation model, and then we simulate the propagation model with the control system.
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4.4.3.1 Simulation setup

Our simulation program includes a network generator and an infection process. 

Every time we run the simulation, the network generator will generate a random network 

with 5,000 nodes. Each node has a switch. If the switch is on, the control system is turned 

on; otherwise, the control system is off. The number of neighbors has a uniform 

distribution of (1, 20). The neighbors of each node are randomly generated. Neighbors of 

a given node are defined as the nodes that the given node will contact in an infection 

process. Figure 4.23 gives the general structure of each node in C++ style. Once node j  is 

randomly chosen as the neighbor of node i, we also add node i as node f  s neighbor.

General Structure of Each Node in the Random Network

struct node {

// declare the Unique ID of the node 
int id;

//the number of neighbors allows; this number has uniform distribution 
int egNo;

//node status; 1 = healthy; 0 = infected; -1 = immunized 
int status;

// switch of the control system,
bool control; // control=l, control system on; control = 0, no control system

//to specify the node is infected or not in current dt or before 
bool newlnf;

// store the id of its neighbors 
int array nborID[ ];

// the total number of neighbors 
int nborNo;

} End node

Figure 4.23: General structure of each node.
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One node is randomly selected as the initially infected node. We use time step to 

represent the time unit dt in the propagation models. During each time step, each infected 

node tries to infect its neighbors with pair wise infection rate (3.

4.4.3.2 Propagation simulation of SI model

To simulate the simple epidemic model without the control system, we just turn 

off the switch. We run the simulation 100 times. Figure 4.24 plots the infection process 

by taking the average of all simulation runs. The simulation is a little slower than the 

theoretical model at the early infection stage. Overall, the simulation results are close to 

the theoretical results, so we conclude that simple epidemic model given by Equation 

4.20 matches the general propagation phenomena. Since the real data have validated the 

accuracy of the theoretical model as shown in Section 4.4.1, and the simulation result is 

close to the theoretical model, we conclude that the simulation does approximate the real 

infection phenomenon. Therefore, we are confident that our further simulations 

approximate the real propagation scenarios.

9 simulation r e s i t  

• model result

V  \<-

Time s tep

Figure 4.24: Simulation results and theoretical results of 
SI model ( k = 0.4, p  = 0).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



94

4.4.3.3 Propagation simulation 
with control system

We simulate four cases of worm propagation with control system. In each case, 

the percentage of nodes with control system on is different. Every time we run the 

infection simulation, we randomly choose p percent of the nodes with control system 

turned on. During propagation, an infected node tries to infect its neighbors with a lower 

infection rate (k value) if  the switch is on; otherwise, we keep using the same infection 

rate (k value) as in Section 4.4.3.2. We run the simulation 100 times for each case. Table

4.4 shows the average time units needed to infect certain percentage of the network nodes 

under different cases.

Table 4.4: Simulation results of four different p  values

Case No. P T1 T2

1 20% 5.5 68.7

2 50% 9.9 124.9

3 80% 12.1 161.4

4 90% 25.2 192.4

p  is the percentage of hosts with control system on.
T1 is the time steps needed to infect half of the nodes. 
T2 is the time steps needed to infect all the nodes.

Figure 4.25 and Figure 4.26 show the infection evolution when p  = 0.8 and 

p  = 0.9, respectively. We also plot the infection results of the theoretical model. We can 

see the theoretical results match the simulation results. Furthermore, the average time 

needed to infect the population decreases dramatically when increased from 0.8 to 0.9.
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From Table 4.4, we know it takes about 12 time steps to infect half o f the nodes when 

p  = 0.8, but 25 time steps when p  = 0.9.

Table 4.4, Figure 4.25, and Figure 4.26 illustrate that when p is less than 20%, the 

propagation limiting effect is very small, but when p is more than 50%, the slowing down 

effect is obvious. In summary, both simulation and theoretical model show the 

effectiveness of applying the control system. To fight the malicious mobile programs 

efficiently and to minimize the overall damages, we should not just think about protecting 

ourselves from the outside world, or just depend on a few hosts to do the good deeds. In 

order to get the satisfactory result of propagation restriction, we need to have at least 50% 

of the hosts of an organization or community to install the control system. This is also the 

limitation of the control system.

simulation result -theoretical result

0.8

0.6

0.4S)

0.2

t i m e  s t e p

Figure 4.25: Simulation result and theoretical result of malicious code 
propagation when p  = 0.8 ( N=  5000).
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—•—simulation result a theoretical result

t im e  s t e p

Figure 4.26: Simulation result and theoretical result of malicious 
code propagation when p  = 0.9 (N  = 5000).

4.4.4 Conclusion

In this section, we modify the standard SI model by introducing a new factor B. 

We present the propagation models with and without the control system. We fit the 

observed Code Red propagation data into the theoretical model and the result is 

satisfactory. The simulation of Code Red propagation is close to the observed data. 

Therefore, we conclude that the propagation simulation approximates the real 

propagation of malicious mobile code, and the conclusions we draw from the simulation 

experiments are reasonable.

The mathematical analysis of modified SI models (Equation 4.20) and the model 

with control system (Equation 4.23) shows that the control system helps reducing the 

spread of malicious code. The propagation scale is reduced more when more other hosts
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are using the control system. Further simulation verifies the prediction of the number of 

infected hosts using the theoretical models.

4.5 Discussion

The proposed control system is host-based and it is adaptive to the characteristics 

of the local host. Once installed, it leams the local host’s connection behavior and blocks 

the anomalous behavior based on the host’s own normal behavior. Besides, when the 

host’s behavior changes, the detection system leams the changes and makes the 

corresponding changes in its operating parameters, and thus ensures that the false alarm 

rate is reduced.

4.5.1 Detection Delay

The detection delay of the control system depends on the time interval between 

two observations. In this experiment, since the unique connection rate data is recorded 

per hour, the detection delay is one hour. However, when we put the system into real use, 

the one-hour monitoring interval is too long when malicious code really exists. We 

should set the monitor interval smaller: for instance, one minute, or even one second 

depending on the security requirement. In the experiment, we use one-hour interval just 

because the real data we have is collected per hour. Besides, the main purpose of the 

experiment is to demonstrate the effectiveness of the control system.

4.5.2 The Advantages of the Control System

Normally, the side effect of high false positive rates in intrusion detection systems 

is that when an anomaly is detected, the machine is isolated from the network by the 

intrusion detection system. This may lead to the annoyance of a network user whose 

work will be hampered and ultimately may cause the user to discard the intrusion
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detection system. In order to decrease this side effect, the control system does not isolate 

the machine from the network when anomaly is detected but just limits the connection 

rate to a lower level. The advantage of doing this is that a user will not get annoyed and 

discard the control system because of the false alarms. The propagation of malicious code 

is automatically reduced, though not completely blocked, if hosts have the control system 

installed. Therefore, the overall damage to the machine and the network and thereby our 

society, caused by the malicious code is reduced, and the degree of reduction highly 

depends on the percentage of hosts that adopt the control system in the community. In the 

next chapter, we will discuss the relationship between the propagation scale and the 

percentage of hosts that have the control system installed, using some mathematical 

models.

4.5.3 The Limitation of the Control System

One limitation of the control system is that it cannot detect malicious code that 

does not propagate through Internet connections. For example, some malicious code may 

propagate through e-mail, usually as e-mail attachment. The machine gets infected when 

people open the attachment. The malicious code will scan the address list of the victim 

and sends e-mails with the same malicious attachment to everybody in the address list 

automatically. In this case, we can define the normal behavior as the traffic size or the 

number of e-mails sent/received by a machine in a certain period of time. The same 

framework can be applied to build and train the control system. The only difference is 

that the monitored behavior is not the number of connection requests but the number o f e- 

mails sent/received in a given period of time. Similarly, we can extend the control system 

and apply it to monitor the behavior of the server system. The important thing is that we
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need to define the normal behavior that can differentiate the normal and abnormal status 

of a system.

Another limitation is that the network performance relies on the portion of 

machines with control system. The performance improvement evaluated by infection 

delay does not have a linear relationship with the portion of machines with control 

system. In fact, the control system has little effect if  only a few machines of the whole 

network are using it.

4.6 Summary

This chapter presented the development of the control system using Process 

Control technique. We checked the normality assumption of the real data and generated 

the simulation data with the same characteristics o f that of the real data. Then, we showed 

the training and the testing process of the control system. The test results showed that the 

control system achieved zero false negative rate and less than 6% false positive rate when 

we used the optimal tuning parameters. Therefore, the control system is reliable in 

detecting the propagation of malicious mobile code. We also discussed the detection 

delay, the advantages and limitations of the control system. The uniqueness of this 

approach includes:

• It is novel to apply the Process Control theory in the early detection of 

malicious mobile code propagation.

• The addition of a sliding window to the traditional Process Control algorithm 

is very aboriginal, and this makes the system adaptive to the changes of the 

connection behavior.
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• The hypothesis test underlying the monitoring period gives a statistical

explanation and quantitative measurement of the detection accuracy.

• The Sequential Probability Ratio Test ensures the quality o f the detection

system.

• The mathematical models validate the efficiency of the control system in a

network environment.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation discusses propagation modeling of malicious mobile code, and 

proposes a control system to detect and mitigate the propagation of malicious code 

automatically. The goals of our work are: (1) Propagation evaluation and prediction of 

malicious code using stochastic models; (2) Early detection and propagation mitigation of 

malicious code. We have been successful in achieving the goals since the simulation 

results match the theoretical results from the propagation models, and the control system 

we proposed detects the propagation of malicious code with zero false negative rate and 

less than 6% false positive rate.

Chapter 1 is an overview of this dissertation. Chapter 2 introduces the 

backgrounds and related research.

Chapter 3 presents stochastic propagation modeling of malicious mobile code. We 

build a propagation model, INIM model, considering passive immunization from both 

healthy machines and infected machines. Probability generation function technique is 

used to get the explicit solution of the stochastic propagation models. The propagation 

results from the solution match the simulation results, which implies that it is reliable to 

use the propagation model to evaluate and predict the propagation of a malicious mobile

101
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code. To detect and mitigate the propagation of malicious mobile code automatically, we 

propose a control system using statistical process control techniques in Chapter 4. We 

extend the traditional process control by adding a sliding window so that the changes of 

process mean will not affect the detection result. We present the general steps of building 

a control system and give a statistical analysis of the control system. We also present the 

details of data collection, assumption checking, training, and testing. The simulation data 

we used in training and testing are generated based on the real data we have. In the 

simulation experiments, we discuss the effects of tuning parameters like the size of the 

sliding window and the updating frequency. The testing results are satisfying and the 

false positive rate is reduced from more than 30% to less than 6% when the sliding 

window is applied. We also used sequential probability ratio test to control the false 

positive rate so that it will never exceed the threshold. Network performance analysis 

shows that the relationship between propagation mitigation effect and the portion of 

machines applied control system is not linear. Experiments show that if  less than 30% of 

the machines in a network applied the control system, the effect is negligible, but if  more 

than 90% of the machines applied control system, the propagation delay is significant, 

which gained us precious time to fight for it.

5.2 Future Work

5.2.1 Network Immunization

Malicious computer mobile codes have been considered as a form of artificial life 

[Spafford 1994] [Thimbleby 1998] since (1) it exists in space and time; (2) it has the 

characteristic self-reproduction; (3) information is stored when malicious mobile code 

replicates itself; (4) it interacts with the environment and damages are caused by these
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interactions; (5) it has interdependent parts as live organism has; and (6) it mutates.

People also argue that malicious mobile code has a kind of metabolism because it takes

electrical energy to disseminate its patterns of instructions and infect other systems

[Spafford 1994]. Biologically inspired immune systems are developed for computer

systems [Forrest 1997] [Harmer 2002] [D'haeseleer 1996] [Kephart 1994]. These immune

systems profile the normal activities of a machine as self and detect intrusions as non-self.

Immune systems proposed in [Forrest 1997] [Harmer 2002] [D'haeseleer 1996] [Kephart

1994] are basically intrusion detection systems using misuse detection method. The

immunization we discuss in this chapter is different from the immune systems. The

immunization of malicious mobile code is more like the immunization of epidemic

diseases of human beings.

Immunization has been very successful in controlling epidemic diseases of human

beings. Small pox, the disease that originated the research of epidemic modeling, has

been eradicated since vaccination is available to everyone. This chapter defines two

immunization strategy terms for immunization of malicious mobile code. One is called

passive immunization; the other is called active immunization. Propagation models of

malicious mobile code considering the effect of passive immunization and active

immunization are presented, respectively. In active immunization, we present the idea of

using beneficial mobile code to fight against malicious code.

5.2.1.1 Propagation modeling with 
passive immunization

When an active malicious code is found propagating along the network system, a 

security expert will analyze its signature. The way to remove the malicious and fix the
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system will be released to the public once it is available. Users whose machines have 

been infected will take action to immunize the machine.

Definition: An immunization is called passive immunization if  the immunization action 

is taken by human beings.

We divide the lifetime of a malicious code T into two stages. Stage one (Tx) is the 

period during which the immunization of certain malicious code is not available. Stage 

two (T2 ) is the period during which the immunization method has been announced. The 

propagation models we presented in Network Performance Analysis of Chapter 4 

describe the propagation of malicious code in Tx. Here, we present the propagation model 

in T2.

Suppose the immunization rate of infected machine is y . Following the same 

notations given in previous chapters, in a homogeneous network, the deterministic 

propagation model in T2 is 

' dS(t)
dt 

dl(t)

= -0 S (t)I(t)

_  5.1

= y l( t)

dt t> t1
dM(t)

dt
S(t) + I(t) + M (t) = N

with initial conditions S(0) = N - I 0, 7(0) = / 0, and M (0) = 0 ; tl is the moment that

immunization method is available.

Usually, when a computer system is infected, the user of that system may tell this 

to his/her friends. Also, people may get the message from the media or the Internet. The 

warning message about the malicious code will be disseminated, and people may take
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action to prevent the machine from getting infected. Therefore, healthy machines could 

also be immunized. The warning message traverses through the social network of human 

beings. The network topology has little effect on passive immunization rate since the 

spread of warning message does not go through the computer network. Chapter 3 gives 

the model which considers passive immunization from both healthy and infected 

machines. The model we present below considers the control system we proposed in 

Chapter 4.

Let a  denote the immunization rate of a healthy machine and y  denote the 

immunization rate of the infected machine. Suppose p  percent of the machines in our 

network installed the control system, and the average number of neighbors a machine has 

is B, then the propagation model of the malicious code is given as

dS^  = - aS(t) -  / XJ3BX ^  -  I 2(3B
dt w  w 1 N  2 2 N

dt ' ' N  L * N  w  t> t ,

^ j p -  = ctS(t)+jf(t)

S(t)+ l(t) + M (t)= N

with initial conditions ,5(0) = N - I 0, 1(0) = / 0, M (0) = 0. I x, / 2, Bx and B2follow the

same notations we gave in Chapter 4.

5.2.1.2 Propagation modeling with 
active immunization

Mobile programs are also called self-replicating programs because it has a self- 

reproducing mechanism. Self-replicating mobile codes are considered to be malicious by 

most people since the earliest and most prevalent self-replicating mobile program is 

malicious. However a self-replicating mobile program does not have to be malicious; it

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



106
r

can be designed to be beneficial [Chen 2004] [Eugster 2004] [Thimbleby 1999] 

[Bontchev 1994]. For example, mobile 'code can be designed to travel from machine to 

machine and do useful work in a distributed environment [Levis 2002] [Eugster 2004]; 

mobile code can be used to fight against the malicious programs [Bontchev 1994]. The 

designed network should favor the dissemination of benign mobile code but throttle the 

spread of malicious mobile code. If a beneficial mobile code that is designed to fight 

against the malicious one spreads faster than the malicious one, the overall network 

system will become less vulnerable.

Definition: An immunization is called active immunization if the immunization action is 

automatically taken by benign mobile code.

Suppose a benign mobile code immunizes the healthy machines with rate a  and 

the infected machines with rate y . In a homogeneous network, the propagation model of 

the malicious code becomes

= -j3S(t)I(t) -  aS(t)M(t)
dt

dt t > tr 5.3

= aS(t)M (t)+yI(t)M (t)
dt

S(t) + I(t) + M (t) = N

with S(0) = N - I 0, 7(0) = 70, M(0) = 0 , and M (t1) = M 0; M(t) still denotes the number

of machines that has been immunized. The big difference between these immunized 

machines and the ones in previous models are that these immunized machines 

automatically disseminate a copy of the benign mobile code to its neighbors so that the 

neighbors of this machine could also be immunized.
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Suppose the average number of neighbors a machine has is B, and the benign 

mobile code propagates through exactly the same network as the malicious one does. In 

the network that p  percent of the machines applied the control system, then the 

propagation model of malicious mobile code is

= ^  - I 2J3B2 ^

= I l/3Bl ^  + I 2j3B2^ - - y B  
■ dt N  2 2 N

=  c c B ^ M ( t ) +  y B ^ M ( t )  
dt N  N

S(t)+ l(t)+ M (t)= N  

with 5(0) = N  — I 0, 1(0) = I 0, M ( 0) = 0 , M (tl ) = M 0

The idea of using benign mobile code to fight against the malicious code has been 

implemented in current commercial anti-virus tools. When fixing method of a malicious 

code is available, the anti-virus companies will automatically update its users’ virus 

definition database. But the anti-virus companies will do this only if  people pay them. 

Furthermore, a user’s machine cannot disseminate the updating to other machines.

5.2.1.3 Simulation

The immunization simulation is an extension of the propagation simulation with 

the control system. An immunization procedure is added to the simulation program we 

used in Chapter 4. Each time we run the simulation, when t is less than /,, it follows 

exactly the same infection evolution we have done in Chapter 4; when t is larger than tx, 

which means immunization method becomes available, both infection and immunization 

procedures are running and they are running independently. In the simulation, we assume 

the immunization method is available when t -  15. A node cannot be infected if it has

m
N

M i f )
t > t 5.4
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been immunized. The simulation results demonstrate the efficiency of the immunization 

strategies. Each result is obtained by running the simulation 10 times based on the same 

random network with 5,000 nodes.

Simulation of Passive Immunization

In passive immunization, the immunization procedure randomly immunizes the 

infected node with rate gamma, and the healthy node with rate alpha. It is more likely that 

an infected machine becomes immunized because a user with an infected machine is 

more likely to seek out available methods to fix the problem. In the simulation, we set 

alpha = 0.01, and gamma = 0.1. Figure 5.1 shows the infection evolution of propagation 

model given by Equation 5.2 in which the effect of passive immunization is modeled.

-  inf  susimm

0.4

0.2

time step

Figure 5.1: Infection evolution with passive immunization 
(TV = 5000, a  = 0.01, y  = 0.1, p  = 0.8, tx = 15).

Simulation of Active Immunization

In active immunization, it is easier for a benign mobile code to immunize a

healthy machine than an infected machine because for a healthy machine, the benign
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program just needs to fix the flaw that has been exploited by the certain malicious code, 

while for an infected machine, it has to remove the malicious program as an additional 

work. Therefore, we set alpha = 0.1, and gamma = 0.05 in the simulation. Figure 6.2 

shows the infection evolution of model given by Equation 5.4 in which the effect of 

active immunization is modeled. Comparing Figure 5.2 to Figure 5.1, we can see active 

immunization is slower than passive immunization at the beginning, but once there are 

have enough “good” seeds in the network, the machines are immunized at a dramatic 

speed. After 50 time units, almost all machines are immunized if active immunization 

applied, and only one third are immunized if  passive immunization applied. Overall, 

active immunization has better performance. However, the implementation of such 

benign mobile code is not easy. If not properly designed, the benign mobile code may 

bring another disaster.
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Figure 5.2: Infection evolution with active immunization 
(N = 5000, a  = 0.1, y = 0.05, p  = 0.8, = 15).
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5.2.2 Passive Immunization and 
Network Topology

The immunization strategies we used to prevent infectious diseases for human 

beings include:

• Random immunization.

• Target immunization, for example, immunization by group.

We could have similar strategies when we apply passive immunization to malicious 

mobile code. The immunization we discuss in Section 5.2.1 is purely random, and we 

have no idea who will and who will not immunize the machine. In the future, we could 

have the security experts apply passive immunization according to the priority of the 

machines. For example, we immunize the Internet routers or network backbones first, 

then we immunize the nodes with a higher number of neighbors. The information of 

network topology helps us to decide the target nodes with more than an average number 

of neighbors. We should analyze the effect of random immunization and target 

immunization under network topologies so that we can apply the optimal immunization 

strategy for a network with certain topology.

5.2.3 Active Immunization and 
Network Topology

If we use a graph to represent a subnet in which malicious code traverse, we get a 

graph whose nodes are machines infected by the malicious code, and the lines between 

nodes are the ways malicious code propagate. The propagation model we give as 

Equation 5.4 assumes that benign mobile code propagates through the same subnet a 

malicious one does. In reality, these two may not propagate through the same subnet. 

Also the spreading rate of benign mobile code must be higher than the malicious one to
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prevent the outbreak of malicious code. Previous research has shown that the topology of

underlying subnet affects the spread of mobile code dramatically [Chen04]. We will do

more research on how topology affects the propagation speed of mobile code. In the

future, we will build propagation models that could catch the effect of topology and

design networks that makes a benign mobile code spread faster.

5.2.4 Distributed Malicious Mobile 
Code Detection

The control system we propose in this dissertation is host based. The effect of 

propagation mitigation is not good if  the number of machines in a network that applied 

the control system is small. It takes much time and effort to make sure that every machine 

in the network applied the control system properly. A better way to achieve the same 

effect is to build a control center. Monitors are distributed in the network and each 

monitor reports to the control center periodically. When a host is identified with 

abnormal behavior, its outgoing Internet connections will be limited. At the same time, 

the control center will send a message to other machines in the network. We do not want 

to disable the function of the whole network. One way to defend against the possible 

malicious code is choosing some nodes in the network and limiting the outgoing 

connection of these nodes so that the propagation of malicious code will be slowed down. 

More research needs to be done on how to decide the number of nodes we should choose, 

and the policy of choosing specific nodes so that the propagation could be slowed down 

maximally with minimum effect on the normal function of the network.
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