
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2006

Stochastic propagation modeling and early
detection of malicious mobile code
Xin Xu
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Xu, Xin, "" (2006). Dissertation. 538.
https://digitalcommons.latech.edu/dissertations/538

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/538?utm_source=digitalcommons.latech.edu%2Fdissertations%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

STOCHASTIC PROPAGATION MODELING AND EARLY

DETECTION OF MALICIOUS MOBILE CODE

By

Xin Xu, M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

August 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: 3259729

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3259729

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

May 17, 2006_______________________
Date

We hereby recommend that the thesis prepared under our supervision

by__________________Xin Xu___

entitled______________________________________ __

________S tochastic Propagation Modeling an d Earlv D etection of Malicious Mobile C ode________

be accepted in partial fulfillment o f the requirements for the Degree of

 D octor of Philosophy in C om putational A nalysis and Modeling__________________________

Recommendation concurred in:

\JaX u w /u a
gupervisor o f Thasis Research

A J2J2-gU f
Head o f Department

CAM__________
Department

Approved:

Director of Graduate Studies

, I w
Dean o f the College / / M

Advisory Committee

Approved:

Dean of the Graduate School

GS Form 13
(5/03)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ABSTRACT

Epidemic models are commonly used to model the propagation of malicious

mobile code like a computer virus or a worm. In this dissertation, we introduce stochastic

techniques to describe the propagation behavior of malicious mobile code. We propose a

stochastic infection-immunization (INIM) model based on the standard Susceptible-

Infected-Removed (SIR) epidemic model, and we get an explicit solution of this model

using probability generating function (pgf.). Our experiments simulate the propagation of

malicious mobile code with immunization. The simulation results match the theoretical

results of the model, which indicates that it is reliable to use INIM model to predict the

propagation of malicious mobile code at the early infection stage when immunization

factor is considered.

In this dissertation, we also propose a control system that could automatically

detect and mitigate the propagation of malicious mobile programs at the early infection

stage. The detection method is based on the observation that a worm always opens as

many connections as possible in order to propagate as fast as possible. To develop the

detection algorithm, we extend the traditional statistical process control technique by

adding a sliding window. We do the experiment to demonstrate the training process and

testing process of a control system using both real and simulation data set. The

experiment results show that the control system detects the propagation of malicious

mobile code with zero false negative rate and less than 6% false positive rate. Moreover,

iii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

we introduce risk analysis using Sequential Probability Ratio Test (SPRT) to limit the

false positive rate. Examples of risk control using SPTR are presented. Furthermore, we

analyze the network behavior using the propagation models we developed to evaluate the

effect of the control system in a network environment. The theoretical analysis of the

model shows that the propagation of malicious program is reduced when hosts in a

network applied the control system. To verify the theoretical result, we also develop the

experiment to simulate the propagation process in a network. The experiment results

match the mathematical results.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Author

Date

GS Form 14
(5/03)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF TABLES...x

LIST OF FIGURES..xi

LIST OF NOTATIONS...xiii

ACKNOWLEDGMENTS ... xv

CHAPTER 1 INTRODUCTION ..1

1.1 Computer Security... 1

1.2 Malicious Mobile Code... 3

1.2.1 What Is Malicious Mobile Code?... 3

1.2.2 Defense against Malicious Mobile Code..4

1.2.3 Epidemic Modeling of Malicious Code..6

1.3 The Contributions of This Dissertation..7

1.3.1 Propagation Modeling of Malicious Code..7

1.3.2 Early Detection and Propagation Mitigation of Malicious Code 7

1.3.3 Risk Control and Network Performance Analysis.............................8

1.4 The Organization of This Dissertation... 8

CHAPTER 2 BACKGROUND AND RELATED RESEARCH.......................................10

2.1 Epidemic Models...10

2.1.1 Deterministic Modeling... 11

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.1.1.1 Deterministic SI m ode...11

2.1.1.2 Deterministic SIR model.. 15

2.1.2 Stochastic Modeling... ..16

2.1.2.1 Introduction to stochastic process...16

2.1.2.2 Stochastic epidemic modeling.. 16

2.2 Literature Review of Malicious Mobile Code Propagation Modeling 18

2.3 Literature Review of Early Detection of Malicious Mobile Code............. 20

2.4 Statistic Process Control.. 22

2.4.1 A Brief Review of Process Control..22

2.4.2 An Overview of Building the Control System Using Process
Control Techniques.. 24

2.5 Summary..25

CHAPTER 3 STOCHASTIC PROPAGATION MODELING OF MALICIOUS
MOBILE CODE.. 26

3.1 Stochastic SI Model for Malicious Code Propagation.................................27

3.2 Infection-Immunization (INIM) Model for Worm Propagation.................32

3.2.1 Stochastic Analysis of INIM Model...33

3.2.2 Discussion About Stochastic Model and Deterministic Model 44

3.3 Simulation Analysis..46

3.3.1 Simulation Setup... 46

3.3.2 The Random Number Generator.. .47

3.3.3 Simulation Results and Results Analysis..47

3.4 Summary...53

CHAPTER 4 EARLY DETECTION AND PROPAGATION MITIGATION OF
MALICIOUS MOBILE CODE...54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

viii

4.1 The Development of the Control System... 55

4.1.1 Data Collection.. 56

4.1.2 Assumption Checking... 63

4.1.3 Simulation Data Generation.. 63

4.1.3.1 Training data generation... 64

4.1.3.2 Testing data generation... 64

4.1.4 Detection Algorithm and Its Statistical Analysis............................ 66

4.1.4.1 Confidence interval for mean p ..70

4.1.4.2 Upper control limit...71

4.1.4.3 Level of significance..72

4.1.4.4 P-value of the hypothesis test...73

4.1.4.5 Average run length...74

4.2 Experiments..75

4.2.1 Training................. 76

4.2.2 Testing...76

4.2.2.1 Performance analysis of the control system.........................76

4.2.2.2 The effect of sliding window w78

4.2.2.3 The effect of updating frequency / 79

4.3 Risk Analysis of the Control System... 81

4.3.1 Risk Analysis Using SPRT.. 81

4.3.2 Examples of Risk Control Using SPRT... 84

4.4 Network Performance Analysis.. 86

4.4.1 Extended SI M odel.. 86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.4.1.1 Fitting the observed data with extended SI model.............. 87

4.4.2 Propagation Modeling with Control System...................................89

4.4.3 Simulation..91

4.4.3.1 Simulation setup...92

4.4.3.2 Propagation simulation of SI m odel.................................... 93

4.4.3.3 Propagation simulation with control system........................94

4.4.4 Conclusion...96

4.5 Discussion..97

4.5.1 Detection D elay.. 97

4.5.2 The Advantages of the Control System.. 97

4.5.3 The Limitation of the Control System................................. 98

4.6 Summary..99

CHAPTER 5 CONCLUSION AND FUTURE WORK.. 101

5.1 Conclusion... 101

5.2 Future Work... 102

5.2.1 Network Immunization...103

5.2.1.1 Propagation modeling with passive immunization........... 105

5.2.1.2 Propagation modeling with active immunization 105

5.2.1.3 Simulation.. 107

5.2.2 Passive Immunization and Network Topology.............................110

5.2.3 Active Immunization and Network Topology..............................110

5.2.4 Distributed Malicious Mobile Code Detection.............. I l l

References... ..112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF TABLES

Table 2.1 Time steps needed to infect I individuals when 70 varies...........................13

Table 2.2 Time steps needed to infect certain percentage of A when N varies 14

Table 2.3 Time steps needed to infect I individuals when N varies............................. 14

Table 4.1 Connection attempts from a host on July 18,2001.......................................59

Table 4.2 Connection attempts from a host on July 19,2001.......................................60

Table 4.3 Connection risk analysis using SPRT..85

Table 4.4 Simulation results of four different p values... 94

x

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF FIGURES

Figure 2.1 State transition of SI model.. 11

Figure 2.2 Infection evolution of SI model...12

Figure 2.3 State transition of SIR model... 15

Figure 2.4 Outline of process control.. 23

Figure 3.1 State transition of INIM model..33

Figure 3.2 The pseudo code of uniform random number generator............................. 49

Figure 3.3 Simulation results and expected results when B * p > y 50

Figure 3.4 Simulation results and expected results when B* p = y51

Figure 3.5 Simulation results and expected results when B * p < y 52

Figure 4.1 The structure of the control system... 55

Figure 4.2 Total connection rate and unique connection rate of normal data
(UCT: United States Central tim e)... 61

Figure 4.3 Normal and abnormal connection behavior
(UCT: United States Central tim e)...61

Figure 4.4 Normality plot of normal connection data on July 18, 200163

Figure 4.5 Distribution of testing data set...66

Figure 4.6 Traditional process control chart...67

Figure 4.7 Early detection and propagation mitigation algorithm................................69

Figure 4.8 Monitoring algorithm..69

Figure 4.9 Flow chart of the detection algorithm... 70

xi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.10 The P-Value of a Z test...73

Figure 4.11 Reliability of the control system applying traditional and extended
control technique (w = 60 0 ,/= 20)...77

Figure 4.12 False negative rate of the control system when the size o f the sliding
window w varies (The value of f is fixed at 1/ 20)..................................... 78

Figure 4.13 False positive rate of the control system when the size of the sliding
window w varies (The value of f is fixed at 1/ 20)..................................... 79

Figure 4.14 False negative rate of the control system when/ varies
(The value of w is fixed at 600)..80

Figure 4.15 False positive rate of the control system when/ varies
(The value of w is fixed at 600)..80

Figure 4.16 Risk Control (If point (m ,dm) lies below L2, accept H 0; if it lies
above Z ,, reject H 0; otherwise, keep sampling)...83

Figure 4.17 An acceptance example of risk control (Since point (1, 3800) falls in
the acceptance region, we should accept the hull hypothesis)................... 85

Figure 4.18 A rejection example of risk control (Since point (8, 760) falls in the
rejection region, we should reject the hull hypothesis)............................... 86

Figure 4.19 Observed Code Red propagation (From www.Caida.org)........................... 88

Figure 4.20 Theoretical result of Code Red propagation... 89

Figure 4.21 State transition of SI model with detection system.......................................90

Figure 4.22 Infection evolution with different p values
(N = 10,000, /?= 0.8, d = 1.0)............. 91

Figure 4.23 General structure of each node.. 92

Figure 4.24 Simulation results and theoretical results of SI model (k = 0.4, p = 0)93

Figure 4.25 Simulation result and theoretical result of malicious code propagation
whenp = 0.8 (N= 5000)... 95

Figure 4.26 Simulation result and theoretical result of malicious code propagation
whenp = 0.9 (N= 5000)..96

Figure 5.1 Infection evolution with passive immunization.. 108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 5.2 Infection evolution with active immunization

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

LIST OF NOTATIONS

B Number of contactors a host has

Bx Limited number of contactors a host could have when infection detected

B2 Number of contactors a host could have when infection not detected

d Detection rate of the control system

/ Updating frequency of the upper control limit

I(t) Number of Infected hosts at time t

/j Number of infected hosts whose connection rated is limited, /, - I ■ p -d

I 2 Number of infected hosts whose connection rate is not limited,

I2 = I - (l - p) + I - p - (l - i) = I ~ h

i(t) Proportion of infected hosts, i(t)= I(t)/N

z'j Fraction of infected hosts whose connection rate is limited, q = /, I N ,

i2 Fraction of infected hosts whose connection rate is not limited, i2 = I2 / N

k Infection rate, k = BJ3

kx Infection rate with control system, k] = /? • Bx

k2 Infection rate without control system k2 = fi-B 2

M{t) Number of immunized hosts at time t

N Size of a population; total number of hosts in a network

xiv

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

XV

p Percentage of hosts that installed the control system in a network

R(t) Number of removed hosts at time t

r(t) Proportion of removed hosts, r(t)= R(t)/N

S(t) Number of susceptible hosts at time t

s(t) Proportion of susceptible hosts, s(t) = S(t)/N

h The moment that immunization method of certain malicious code is available

w Size of the sliding window

a Immunization rate of healthy machine

P Pair wise infection rate

7 Immunization rate of infected machine

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ACKNOWLEDGEMENTS

I would like to thank Dr. Vir Phoha, principle advisor, for his guidance,

encouragement and generous support throughout my study at Louisiana Tech University.

I would also like to thank my committee members, Dr. Raja Nassar, Dr. Weizhong

Dai, and Dr. Andrea Paun for their generous help, valuable advice and guidance.

Thank you Dr. Greechie for providing me the opportunity to study in CAM program

and always being so supportive.

Thank you Weihua Song for the valuable discussion about the research, and the

support she gave me.

Special thanks for my parents. They have been patient, supportive and considerate

for all the years. Without their love and support, I could never make what I have done so

far. Also, I want to thank my cousin, Xi Xu, from the bottom of my heart. She is always

so considerate and always gives as much help as she could.

xvi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 1

INTRODUCTION

1.1 Computer Security

The security of a computer system or a network system includes the

confidentiality, integrity and assurance of the system. The definitions of confidentiality,

integrity and assurance are as follows [Phoha 2002]:

Confidentiality: “The property of not being divulged to the unauthorized parties.

A confidentiality service assists in the prevention of disclosure of information to

unauthorized parties.”

Integrity: “a condition in which data or a system itself has not been modified or

corrupted without authorization.”

Assurance: “ensuring the availability, integrity, authentication, confidentiality and

non-repudiation of information and information systems by incorporating protection,

detection and reaction capabilities to restore information systems.”

An intrusion is a series of malicious activities that attempts to comprise the

security of a computer or a network system [Ye 2000]. An intrusion detection system

analyzes the activities performed in a computer or network to look for evidence of

malicious behavior. There are two categories of intrusion detection method. One is

anomaly detection, and the other is misuse detection. Intrusion detection systems using

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the anomaly detection method generally build profiles for normal activities, and identify

system activities which vary from the established profile as intrusion attempts [Eckmann

2002]. An intrusion detection system using misuse detection technique builds a profile

with signatures of known attacks and compares current activities with those signatures.

An intrusion is signaled when there is a match between current activities and the profiled

intrusion activities.

Both anomaly detection and misuse detection have advantages and disadvantages.

Anomaly detection is able to detect unknown attacks, but there is always a trade off

between false negative and false positive. False negative is defined as “events that are not

flagged intrusive, although they actually are,” and false positive is defined as “anomalous

activities that are not intrusive but are flagged as intrusive [Denning 1990].” Anomaly

detection systems are also computationally expensive because we need to keep track of,

and update all system profiles. Misuse detection has a relatively low false positive rate,

but it cannot detect unknown attacks.

Intrusions exploit the flaws of the system architecture, the operating system, the

server system, or the other software systems. A complete secure system is not really

feasible because designing and implementing a totally secure system is an extremely

difficult task. Flaws in the programs and operating systems are prevalent [Miller 1995].

In practice, it is not possible to build a completely secure system.

The financial loss caused by the intrusion of malicious programs accounts for a

large amount of losses caused by computer security problems [Usa 2001]. The following

section gives a brief view of malicious mobile code.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.2 Malicious Mobile Code

This section talks about malicious mobile code. We will discuss the current

defense methods against malicious code and the general idea of mathematical modeling

of malicious code propagation.

1.2.1 What Is Malicious Mobile Code?

A malicious mobile code is a software program intentionally designed to move

from computer to computer or from network to network and modify the system without

the consent of the user [Grimes 2001]. Major types of malicious mobile code include

viruses, worms, Trojans, and rogue Internet content. The first malicious program is a

computer virus developed by Fred Cohen [Cohen 1985, 1987] for research purpose. In

the early 1980s, Cohen did extensive theoretical research as well as setting up and

performing numerous practical experiments regarding viral type programs. Cohen's

definition [Cohen 1994] of a computer virus is "a program that can 'infect' other programs

by modifying them to include a version of itself." This definition has been generally

accepted as a standard definition of a computer virus [Fites 1992] [Levin 1990].

Worms are very similar to viruses in that they are computer programs that

replicate themselves and often, but not always contain some malicious functions that will

disrupt the normal use of a computer system or a network system [Grimes 2001]

[Denning 1990] [Levin 1990]. Unlike viruses, worms exist as separate entities; they do

not attach themselves to other files or programs. Worms were first noticed as a potential

computer security threat when Christmas Tree [Denning 1990] attacked IBM mainframes

in December 1987. Christmas Tree is an executable file attached in an e-mail. Once

executed, it displays a Christmas tree and sends a copy to everyone in the victim’s

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

address list. Someone argued that Christmas Tree is not a true computer worm program

but just a Trojan program with replicating mechanism [Denning 1990] [NISTIR4939].

The first computer worm, Morris, was released on November 2, 1988 [Spafford 1989a]

[Spafford 1989b]. It utilized the TCP/IP protocols, common application layer protocols,

operating system bugs, and a variety of system administration flaws to propagate. Morris

infected approximately three thousand computers during eight hours o f activity

[Spafford 1989a].

Malicious programs are created by exploiting the flaws of the system. Since it is

impossible to design a perfect system, there is always a possibility for new malicious

codes to be designed. The malicious function of these programs might be different, but

they usually have similar infection strategy. For instance, one class o f worm programs

always try to connect to as many hosts as possible so that they can be distributed easily

and quickly through the network. The increasing connectivity of network and the

growing use o f computers have led to more and more concerns about security problems

caused by malicious mobile codes like worms. In the past few years, the fast spreading

malicious mobile codes have disrupted tens of thousands of businesses and homes

worldwide and caused millions of dollars in loss [Usa 2001]. Famous ones include Code

Red [CERT01-19] and Nimda [CERT01-26] in 2001, SQL Slammer [CERT03-04],

Blaster [CERT03-20] and Welchia [SYMANTEC03] in 2003, and Netsky [CERT04-02]

and Sasser [CERT04-05] in 2004.

1.2.2 Defense against Malicious Mobile Code

Anti-virus tools are now installed on almost all computers to detect and prevent

the spread of such programs. Common techniques applied by these tools are activity

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

monitors, integrity management systems and virus scanners [Kumar 1992]. Activity

monitors alert users about system activity that is commonly associated with viruses.

Integrity management system warns the user of suspicious changes that have been made

to files. These two methods are quite generic, and can be used to detect unknown viruses

in the system. The drawback of these two methods is that they often flag or prevent

legitimate activities, and hence, disrupt normal work. As a consequence, the user may

ignore their warnings altogether. Virus scanning is the most commonly used method for

anti-virus tools because it is the most simple, economical way for virus detection. Virus

scanners search files, boot records, memory and other locations where executable codes

can be stored for characteristic byte patterns that occur in one or more known viruses.

The drawback is that virus scanners rely on the priori knowledge of the viral code, which

means they can only detect previously known viruses, but not new viruses. Thus, the

scanner has to be updated frequently [Forrest 1994] [Kumar 1992] [Wang 2000]. [Xu

2002] [Phoha 2003] and [Xu 2004] introduce a novel approach to control the spread of

virus and presents a technique to make them ineffective which is a complement of current

virus detection techniques. This approach models the process as a discrete event system

such that supervisory control theory can be applied to control the reproduction and

propagation of the malicious code. The drawback is that this approach is only effective

for executable files whose execution process could be modeled as a discrete event

system.

The detection of worm programs is still an open problem [White 1998], especially

for unknown worms. Currently, the most general way is to embed the worm detection

component in the anti-virus tools or intrusion detection systems. The methodology is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

similar as those used in the virus detection tools. In other words, use known signatures to

catch the known worms. For unknown worms, we do not have a general solution yet.

1.2.3 Epidemic Modeling of Malicious Code

The epidemic modeling of biological viruses and their dissemination has a history

of about three hundred years [Andersson 2000] [Daley 2001]. Daniel Bemoullli presented

the first theoretical approach about the effects of the disease in 1760 [Daley 2001]. At

that time, the smallpox was widespread in Europe and affected a large proportion of the

population. In the early twentieth century, Ross and Hudson, Scoper, as well as Kermack

and Mckendrick, began to provide a firm theoretical framework for the investigation of

the infectious diseases [Anderson 1992], The mathematical models they provided help to

understand the mechanism by which diseases spread to predict the future spreading of the

epidemic and to control the spread of the diseases.

Epidemic modeling of malicious code has become a popular research topic for

computer scientists since computer worm Morris was released in 1988 [Spafford 1989a]

[White 1998]. Propagation modeling helps us to understand the life cycle and fast

propagation nature of such malicious mobile codes. It also helps us understand the impact

of countermeasures [Chen 2004] [Serazzi 2003], network traffic, and network topology

[Satorras 2001][Satorras 2002]. The propagation models of malicious code are extensions

of the classic epidemic models [Zou 2003] [Zou 2002] [Kephart 1991] [Boguna 2002]

[Stamford 2002] [Wang 2003] [Chen 2003]. This dissertation will give the general classic

epidemic models and the related works of malicious code propagation modeling in

Chapter 2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7

1.3 The Contributions of This Dissertation

This dissertation first models the propagation of the malicious code using

stochastic technique, then proposes a control system that automatically detects and

mitigates the propagation of such a malicious code. The control system works as a

complement to the current intrusion detection systems. The detection method of the

control system belongs to the anomaly detection method. We analyze the normal

connection behavior of a host and compare the current connection behavior with the

normal behavior to identify the anomaly. The simulation experiment results match the

theoretical results.

1.3.1 Propagation Modeling of Malicious Code

This dissertation introduces stochastic techniques to model the propagation of

malicious mobile code. We build a stochastic propagation model that considers the

factors of recovering and immunization. This model gives the probability that an

infection will or will not happen instead of a deterministic yes-or-no answer that relies on

the law of large numbers. This model also allows probabilistic analysis of the virus and

propagation phenomenon. It is more precise than the deterministic method when we

study the infection scale and speed inside a community or an organization with varying

population size.

1.3.2 Early Detection and Propagation
Mitigation of Malicious Code

This dissertation proposes a control system to detect the propagation of malicious

code at the early infection stage. It also mitigates the propagation of malicious code over

the network so that the overall damage to our society could be reduced. It is novel to

apply the statistic process control technique to detect the malicious code. The general

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

steps of building a control system are given and the details of each step are presented in

simulation experiments. The framework of building the control system can be easily

extended and applied to other scenarios.

1.3.3 Risk Control and Network Performance Analysis

This dissertation also introduced Sequential Probability Ratio Test (SPRT) to

control the false positive rate of the control system. Examples of risk control using SPRT

are presented using simulation data. To analyze the network effect of the control system,

we give a quantitative analysis of propagation mitigation. We build propagation models

to describe the propagation behavior of malicious code inside a network with and without

the control system. Mathematical analysis of both models shows a significant difference

in propagation speed and scale when the control system is applied on every machine in

the network. To verify the theoretical results, we simulate malicious code propagation on

virtual network using computer programs. All simulation results match the theoretical

results from the propagation model.

1.4 The Organization of This Dissertation

The rest of the dissertation is organized as follows. Chapter 2 gives the

background information and related research in both propagation modeling of malicious

mobile code using epidemic models and the early detection of malicious code. Chapter 3

introduces the stochastic method to describe the propagation models and proposes the

Infection-Immunization (INIM) model using the stochastic techniques. Chapter 4 gives

the framework of building a control system to detect and mitigate the malicious code, and

then shows the experimental details of the training process and testing process of the

control system. The testing results are presented in Chapter 4. Chapter 4 also presents the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

effect of the control system by analyzing the network performance. Both theoretical

results and simulation results are presented. Chapter 5 is the conclusion and suggestions

for future work.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 2

BACKGROUND AND RELATED RESEARCH

This dissertation first uses stochastic techniques to model the propagation of

malicious mobile code, and then proposes a control system to detect and mitigate the

propagation of malicious mobile code at the early infection stage. The detection

algorithm of the control system uses extended Process Control technique. This chapter

provides background information of epidemic modeling, statistical Process Control, and

related research in areas o f malicious code propagation modeling as well as early

detection of malicious code.

2.1 Epidemic Models

The mathematical modeling of diseases and their propagation has a history of

about three hundred years [Daley 2001]. Epidemic modeling has three main aims [Daley

2001]. The first is to understand the mechanism by which diseases spread. The second

aim is to predict the future course of the epidemic. The third aim is to understand how we

may control the spread of the epidemic. A good epidemic model captures the essential

features of the epidemic, makes reasonable predictions, and evaluates the effect of control

method. The following two subsections give a brief review of the early mathematical

models for the spread of infectious diseases. Readers who want a more detailed overview

are referred to [Bailey 1975] and [Anderson 1992].

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.1.1 Deterministic Modeling

In this section, we introduce two classical deterministic epidemic models, the

Susceptible Infected (SI) model and Susceptible, Infected and Removed (SIR) model.

Both models assume that the population is homogeneously mixed. If we consider each

individual as a vertex in a graph, from the graph theory point of view, a homogeneously

mixed population means a fully connected graph.

2.1.1.1 Deterministic SI model

In this model, each host stays in one of the two states: susceptible (S) or infectious

(I). SI model assumes that once a host is infected, it becomes infectious and it will never

become susceptible again. The only state transition is: S -> I (see Figure 2.1).

N is the size of the population;

S(t) - S is the number of susceptible hosts at time t,

I(t) = I is the number of infected hosts at time t.

P is the pair wise infection rate.

At any time t, we have S(t) + I(t) = N.

Using Ordinary Differential Equation, we have

Susceptible Infected

Figure 2.1: State transition of SI model.

^ = /» (<) /»
at

2.1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

which is the same as

^ p - = P (N - m) l (t) 2.2
at

Let k -) 6N, i(t) = I{t) / N , Equation 2.2 becomes

^ = 4 - i (o K o
at

ekt
=> *'(0 = ekt - c

I - N
Let /(0) = 10, so z'(0) = 10 / N , we get c = —-------. Plugging c into the above equation,

I q

we get

I 0ekt
i(t) =

(N - I 0) + I 0eu ’

which is the same as

Figure 2.2 shows the infection evolution process given N = 10000, /3 = 1/ N I 0 =1.

time units

Figure 2.2: Infection evolution of SI Model.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

Figure 2.2 illustrates that the infection evolution procedure can be roughly divided

into three stages: the slow starting stage, the fast spreading stage, and the saturating stage.

Let i(t) = I(t)/N, at the beginning, when i(t) —>■ 0, the number of infectious hosts grows

almost exponentially.

From Equation 2.3, time t needed to infected I individuals of the whole population

is derived as

1 , (N - I 0)I
t = In- — 2.4

fiN (N -1)1 0

Table 2.1 presents the time steps needed to infect certain proportion of the population

with a different number of initially infected individual I 0. The time step values in all the

three tables (Table 2.1, Table 2.2, and Table 2.3) are calculated using Equation 2.4.

Table 2.1: Time steps needed to infect / individuals when 70 varies
(N= 10000, f i = 0.0001)

100 1000 5000 9999

i 4.61 6.91 9.21 18.42

10 2.31 4.71 6.91 16.12

100 — 2.40 4.59 13.81

Table 2.1 shows that as the initial number of infected nodes / 0 increases, the time

steps needed to infect the population decrease dramatically at the beginning. For

example, the time steps needed to infect 1,000 individuals in a population of 10,000 when

I 0 is 100 is almost one third of the time steps needed when I 0 is 1. But the time steps

needed to infect the whole population does not change that much as we can see from

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

Table 2.1. Table 2.2 presents the time steps needed to infect a certain proportion of the

population when population size N varies.

Table 2.2: Time steps needed to infect certain percentage of N when /V varies
(I o = l , 0 = l / N)

N/100 N/10 N/2 N-l

1000 2.31 4.71 6.91 13.81

10000 4.61 7.01 9.21 18.42

100000 6.92 9.31 11.80 23.02

Table 2.2 shows that when the population size increases, the time steps needed to

infect the same proportion of the population also increase, and they increase faster at the

beginning (I = N/100) than near the end (I = N/2). From Table 2.2, we know that when

population N increases, the slow starting stage gets longer. Table 2.3 gives the time steps

needed to infect a certain number of individuals when N varies.

Table 2.3: Time steps needed to infect I individuals when N varies
(I 0 = l , / 3 = l / N)

5 10 100 500 999

1000 1.61 2.31 4.71 6.91 13.81

10000 1.61 2.30 4.62 6.27 7.01

100000 1.61 2.30 4.61 6.22 6.92

From Table 2.3, we observe that the infection is slow at the very beginning. It

infects less than 10 individuals during the first two time steps. Then suddenly it increases

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

almost exponentially. During the next two time steps, more than 50 individuals are

infected. The infection slows down when the infection comes to the third stage. It takes

almost the same time steps to infect a certain number of individuals (see Table 2.3), but it

takes more time steps to infect the whole population if the population size is larger (see

the last column of Table 2.2).

2.1.1.2 Deterministic SIR model

The first complete mathematical model for the propagation of infectious diseases

was a deterministic model given by Kermack and McKendrick in 1927 [Dailey 2001]. In

this model, each host is in one of the three states: susceptible (S), infectious (I), or

removed (R). This model assumes that once a host is infected, it will recover or die in the

end. Whether dead or recovered, it will never be susceptible to the same disease;

therefore, it will stay in the removed state forever. So the state transitions of the SIR

model is: S -» I ->R (see Figure 2.3).

RemovedInfected

Figure 2.3: State transition of SIR model.

If we let R(t) represent the number of removed hosts at time t, then we have N =

S(t) + I(t) + R(t). L e t/ represent the removal rate. In a homogeneously mixed

community, we have

dS(t)
dt

dl(t)
dt

dR(t)
dt

= - m) m

= PS(t)I{t)-yI{t)

= yl(t)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

with initial conditions S(0) = S0, 1(0) = I Q, and R(0) - 0 .

The Kermack-McKendrick model improves the SI model by considering that the

infectious hosts may recover or die after some time. But this model does not consider the

immunization of the susceptible hosts while immunization has become a very popular

way, not only to prevent the outbreak of the infectious diseases, but also to prevent the

outbreak of the infectious malicious code.

2.1.2 Stochastic Modeling

Stochastic modeling has been used to model the growth of population, the price

changing of the stock market, the queuing process, etc. This section gives a brief

introduction to stochastic process and stochastic epidemic modeling of diseases.

2.1.2.1 Introduction to stochastic process

A stochastic process is a family of random variables X(t) describing an empirical

process whose development is governed by probability laws [Chiang 1980]. The time

parameter t could be either discrete or continuous. In diffusion processes, both X(t) and t

are continuous variables, while in Markov chains, X(t) and t take discrete values. The

main interest is the probability distribution p k (t) = Pr{X(t) - k } , k = 0 ,1, 2,3 • • • .

2.1.2.2 Stochastic epidemic modeling

A simple stochastic epidemic modeling assumes that the population consists of

only susceptible individuals and infective individuals. Once a susceptible individual is

infected, it becomes infective and stays at the infected state forever. Let random variable

X(t) = S(t), and Y(t) = I(t), recall that S(t)+I(t) = N, so X(t)+Y(t) = N, then the only

transition from t to t + A is (S, I) to (S - 1 , / +1) with probability /?.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

We have Pr{(X, Y){t + A) = (S -1 , / +1) | (X, Y)(t) = (S , /)} = J3SIA + o(A),

and Pr {(Z, Y)(t + A) = (S , I) \ (X, Y)(t) = (S , /)} = 1 - J3SIA - o(A)

where o(a) represents the higher order function of A such thato(A)/A -> 0 when A -> 0.

Then, the forward Kolmogorov equation system for the state probability

A (<)=Pr{X(() = S |X (0) = iV -l} is

4P»
dt

dPj
dt

dPo
dt

= - j3 (N - I) I p N(t)

= -/3i{N - I)Pi(t) + /?(/ +1)(N - 1 -1)pM (0

= - f3 (N - \) IPl(t)

In matrix form, for P(t) = (p N (t), p N_x (t), ■ ■ ■, p 0 (t))r , we have

= -/3

1 1 0 0 o' Pn O)**-111 1 1 + 0 0 p N-\(t)
0 +1

..

11 (N - 2)(7 + 2) 0 PN-2(t)

0 0 . . . - l (iV - l) 0_ . Po (0 .

Ek .) _
dt

= - pAP(t)

We can use the matrix analysis [Dailey 2001] to solve the equations, and the

solution is known to be P(t) = e~pAt p (0). But the explicit result is not easy to be derived

with this method. We may use Laplace transform or probability generation function or a

mixture of both to obtain the explicit solution. This dissertation uses the probability

generation function (pgf) to get the probability that / individuals are infected at time t.

We will introduce pgf in Chapter 3 and show the details of using pgf technique to solve

the stochastic propagation model of malicious mobile code.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

2.2 Literature Review of Malicious Mobile Code
Propagation Modeling

A reliable propagation model helps us to understand the life cycle of a self-

replicating program, to predict the propagation scale and speed, and to estimate the effect

of factors like network topology, network traffic, and countermeasure techniques [Chen

2004] [Serazzi 2003] [Satorras 2001].

Kepart and White [Kephart 1991] built a SIS (Susceptible-Infected-Susceptible)

model to model the virus propagation, and use deterministic Ordinary Differential

Equations (ODEs) to approximate the SIS model. They also present hierarchical model

and spatial model in [Kephart 1991]. Later, they introduced the Kill signal as a

countermeasure to reduce the spreading of computer virus and build a model for virus

propagation with the Kill signals and concluded that the Kill signal is effective in

reducing the spread of the virus [Kephart 1993]. Stamford et al. [Staniford 2002]

constructed deterministic SI (Susceptible-Infected) model based on the empirical data

from the outbreak of the Code Red worm. Serazzi and Zanero [Serazzi 2003] surveyed

the existing models for virus and worm and came out with a compartment-based model

that deals with the propagation inside and outside of an Autonomous System (a sub­

network administered by a single authority). Zou et al. [Zou 2002] gave a model for Code

Red Worm propagation based on the classical SIR (Susceptible-Infected-Removed)

model. They introduced two factors that might affect the worm propagation; that is, the

countermeasure effect and decreased infection rate because of Internet congestions

caused by the worm. Ramualado Pastor-Satorras et al. studied the effects of network

topology on epidemic models [Boguna 2002] [Satorras 2001] [Satorras 2002].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

All the above models use a deterministic approach to represent the models; that is,

the models are described by a system of Ordinary Differential Equations (ODEs) except

[Kephart 1991]. [Kephart 1991] gave a linear birth and death process when discussing the

expected lifetime of the infection.

Under the homogeneous assumption, every individual in the population is

assumed to be equally likely to infect or to be infected by every other individual. This

approximation works well when each individual has many randomized contacts with

others. However, if the number of contacts that a typical individual has with others is

fairly small and/or the pattern of contacts is more or less localized, the homogeneous

approximation fails. We suspect that the majority of today's computer populations are

characterized by a degree of sparsity and locality that invalidates the homogeneous

mixing approximation. In this dissertation, we introduced a factor B, the average number

of contactors an individual could have, into the epidemic models.

Although ODEs can be safely used to approximate a stochastic process when the

population size is large, it is more accurate to use stochastic models when the population

size varies. Moreover, the spread of infectious disease or malicious programs is actually

stochastic [Zou 2003] [Daley 2001] [Andersson 2000], so it is natural to model it with the

stochastic model. The stochastic model gives the probability that an event will happen

instead of deterministic yes-or-no answer relying on the law of large numbers [Andersson

2000]. Actually, when the population size is big, it shows that the deterministic model is

the convergence of a stochastic model. We believe both models are important to

understand the propagation of a malicious mobile program like a worm or a virus.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

20

Andersson and Britton [Andersson 2000] concluded that stochastic models are preferred

when their analysis is possible; otherwise, the deterministic model should be used.

This dissertation focuses on the stochastic propagation characteristics of malicious

mobile programs; thus, we use stochastic models to describe the spreading of a malicious

program over the Internet. The benefits of the stochastic model are: (1) It gives the

probability of whether or not an infection will happen instead of a deterministic yes-or-no

answer relying on the law of large numbers; (2) It allows probabilistic analysis of the

malicious code propagation phenomenon; (3) It is more precise than the deterministic

method when we study the infection process inside a community or organization where

the population size varies; and (4) We could further derive the waiting time for the

occurrence of the Ath infection based on the stochastic model.

2.3 Literature Review of Early Detection
of Malicious Mobile Code

The propagation speed of malicious code has increased dramatically in recent

years. As we pointed out before, a malicious code spreads almost exponentially at the

early infectious stage when there is no counter action taken, so we need to respond

automatically before it is identified. Cliff Zou [Zou 2003] proposed an early detection

system by monitoring the illegitimate network traffic. A Kalman filter is used to detect

the presence of a worm by detecting the trend. When the monitoring system encounters a

singe of illegitimated network traffic, the Kalman filter is activated. The traffic is claimed

to be caused by worm propagation when the estimated infection rate stabilized and

oscillated a little bit around a constant positive value. One disadvantage of the approach

is that the machine will be quarantined when illegitimated traffic is detected. This may

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

irritate the users when false alarm happens. Users tend to disable the intrusion detection

system even when the false alarm rate is not very high.

[Williamson 2002] proposed a filter algorithm based on the observation of

connection behavior. Evidence from [Heberlein 1990] and [Hofineyr 1999] showed that

during virus propagation, an infected machine will connect to as many machines as

possible in order to spread as fast as possible. The idea of the filter algorithm is to use a

series of timeouts to restrict the rate of connections to the new hosts; any traffic that

attempts to connect at a higher rate is delayed. The filtering mechanism is user

transparent, which means a user cannot take active actions to remove the malicious code

and fix the system flaws the malicious program exploits.

The control system we proposed here is based on the same observation as in

[Williamson 2002]. We applied statistical Process Control technique to automatically

detect and mitigate the propagation of the malicious code. The advantages of this

approach are: (1) The detection delay is small; the propagation of a malicious code can be

detected as the very first beginning; (2) An explicit message will be given when anomaly

connection behavior is detected so that a user could take active counteractions to fight for

the malicious program; (3) The propagation rate of the malicious code is reduced

automatically so that the overall damage is reduced; and (4) The control system does not

disconnect the machine from the Internet so that users will not feel annoyed caused by

the false alarms. Furthermore, we could give a mathematical estimation of the

propagation mitigation scale using mathematical propagation models. Besides, the

hypothesis test underlying the detection algorithm gives quantitative evaluation of the

false alarm rate.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2.4 Statistical Process Control

2.4.1 A Brief Review of Process Control

The use of statistical method in process control began at the Bell Lab in the 1920s

[Hansen 1987], It has been widely used in the industry to manage, monitor and control

the production quality [Hansen 1987]. The basic idea of Process Control is collecting and

analyzing the past data, and comparing new data with past data to identify process

violations.

Figure 2.4 gives the general outline of statistical Process Control. To apply

Process Control techniques, we assume that the sample data follows normal distribution.

Thus, when a process is in control, we know (1) about 68% of the plotted points lie in one

standard deviation of the central line and 34% at each side; (2) about 13.5% of the plotted

points lie in between one and two standard deviations on both sides of the central line;

and (3) about 2.5% of the plotted points lie in between two standard deviations and three

standard deviations. If the quality of a product changes, the plotted points will not follow

the variation patterns given above. The operator needs to investigate the possible causes

and adjuss it so that the quality of production is consistent. Control charts, like X chart

and R chart, are useful tools to help us visualize the quality control so that we can identify

the change of quality more easily and straightforward.

The hypothesis being tested at the monitoring period is

H 0 -Mx = Mo

against the alternative

H x - Mx * Mo

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

where ji0 comes from the base period and jux is the mean of the sample data we just

collected. There are two types of error defined with this hypothesis test. One is called

type I error (a) , which is defined as the probability that we reject H 0 when H 0is true.

Type I error also means the probability when a point is beyond the control limit, and we

identify it as a signal of quality change but actually it is not. Another one is called type II

error (/?), which is defined as the probability that we accept H 0 when H 0 is not true.

Type II error is also the probability of a point is inside the control limit, and we identify

the process is under control, but the process is actually out of control. The power of the

hypothesis test is given by (l - /?). In industry, control limits are usually established at

three standard deviations from the central line. Then, the probability that a type I error

will occur is 0.26%.

Algorithm: Outline of Process Control
Phase 1: Base period
Step 1: Collect sample data
Step 2: Estimate the parameters
Step 3: Calculate the control limits
Step 4: Check each observation of the base data
Step 5: If it is over control limits, remove it and back to step 2
Step 6: If all observations are within the control limits

Extend the control limits to monitoring period

Phase 2: Monitoring period
Use the control limits established during base period to test the hypothesis
that “the process is in control”.

Figure 2.4: Outline of process control.

We can see the idea of Process Control is very similar to the idea of anomaly

detection, which is profiling the normal pattern of an object and comparing the current

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

24

pattern with the profile to determine the possible violation. We will apply Process

Control technique to design the detection algorithm of the control system.

2.4.2 An Overview of Building the Control
System Using Process Control
Techniques

The control system includes a controller and a monitor. It takes three phases to

build the proposed control system. Phase one is the training period during which the

monitor collects normal connection behavior as the base data, then the control rule is

defined for the controller using the base data. Phase two is the testing phase during which

the reliability of the control system is tested using both normal and abnormal connection

data. Phase three is the monitoring period during which the controller checks each and

every observation the monitor collected to determine whether the current activity of the

machine is legal.

This dissertation extends the traditional Process Control technique by adding a

sliding window so that the base data always includes the most recent normal

observations. This makes our system adaptive to the changes of process mean, and the

false alarm rate is therefore reduced. The experiments demonstrate the reliability and

flexibility of the control system. Furthermore, we present and compare the propagation

models of malicious mobile code with and without the control system in order to evaluate

the effect of the control system. The theoretical analysis shows that the detection method

is effective and the propagation is reduced more when more hosts adopt the control

system. Later, we simulate the propagation of malicious mobile programs in a network

with a certain number of nodes. The simulation results match our theoretical analysis,

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

which indicate a success of the propagation models and verify the effectiveness of the

control system.

The idea of our approach is simple and straightforward, and so is Williamson’s

approach [Williamson 2002], People did not think about it before, mainly because most

people concentrate on how to protect ourselves from being infected. We install anti-virus

tools, firewalls, filters, and intrusion detection systems to keep us secure. But people

seldom think about minimizing the damage over the whole network if we have been

infected unfortunately by a malicious program. This dissertation provides a mechanism to

not only detect but also reduce the propagation of malicious codes at the early infection

stage so that human beings could gain precious time to take counter actions like patching

their system or upgrading their anti-virus tools to fight for the malicious mobile code.

2.5 Summary

This chapter provided the background information and related works of this

dissertation. We first introduced the deterministic and stochastic models of epidemic

modeling, and then we showed how epidemic modeling has been used to model the

propagation of malicious code. We talked about the related work of early detection of

malicious code and discussed the advantages of our detection system. After that, we

introduced the process control technique and showed the framework of building the

proposed control system using the process control technique.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 3

STOCHASTIC PROPAGATION MODELING

OF MALICIOUS MOBILE CODE

This chapter uses stochastic modeling to model the propagation of malicious

mobile code. Standard SI model and SIR model assume that the population is

homogeneous. In fact, the number of individuals a given individual contacted in a certain

period of time is limited. In this chapter, we introduce a new factor B, the average

number of neighbors an individual has, into our model. In this dissertation, machine g

becomes one of the neighbors of machine h only when machine g and machine h have

direct contact with each other; for example, g sends an email to h, g downloads a file

from h, g visits the website provided by h, etc., and vice versa.

We first present a stochastic SI model, and show how to get the explicit solution

of the SI model using the pgf technique; then we present the stochastic INIM (Infection-

Immunization) model which models the propagation of malicious code at the early

infection stage. We get the approximate solution of INIM model using the pgf technique.

We simulate the propagation evolution of a malicious mobile code using the INIM

model. The theoretical results approximate the simulation results, which indicates that we

can use the theoretical model to predict the propagation of malicious mobile code.

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.1 Stochastic SI Model for Malicious
Code Propagation

The standard SI model divides the computer systems into two groups: one is

susceptible, and the other is infected. Any system is at either susceptible state or at

infected state. In the SI model, we assume that if a machine gets infected, it will never

recover and become susceptible again, so the only state transition is S -» I.

Let,

N be the size of the population.

I it) = i : denote the number of infected machine at time t.

P i j (0 , t) = Pr(/(0 = j 11 (0) = i) i, j = 0 ,1, 2,• • - where p i j (0 , t) denotes the probability

of j infections at time t, given that there are i infections at time zero.

P : The infection rate. In reality, this rate varies over time because the propagation of

malicious code depends on the network bandwidth. At the beginning, a copy of the

malicious code could always infect a susceptible machine successfully since the

bandwidth of the network is enough to transfer all the byte stream of the malicious code,

while later on, each copy of the malicious code could not reach the susceptible machine

successfully because of the network traffic congestion; therefore, the infection rate

decreases over time. In our model, for simplicity, we assume the infection rate to be a

constant.

B : The number of machines that could be contacted by each machine during certain time

unit. Generally, B would vary, but for simplicity, we assume that B is a constant. B is the

same as the population size N in a homogeneous network, because any machine could

contact any other machine in the population at any time.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

28

Assume that one machine is infected at the beginning, and A is a small time interval in

which no more than one infection could happen within it. Let o(A) represent any function

of A which tends to 0 faster than A . Following the analysis of a simple Poisson process,

we have:

(1) The probability that exactly one infection event happens in (t , t + A) is

J3B(1 - i / N)(i - l)A + o(A). This is so because in time interval A, one infected

machine could contact B machine, and i?(l - i / N) of those are susceptible, so

f3B(\ - i / N)A machines could be infected by one infected machine. Now, the

number of infected machines is (i -1) , so the total number of machines that could

be infected in time interval A is /3B(\ - i / N ^ i - l)A . Hence, ySfi(l - i / N) (i - l)A

is the probability that exactly one infection occurs. At the early infection stage

i « N , so the probability that one infection event occurs is

approximately j3B(i - l)A . Since the probability that i-1 infection happened in (0,

t) is A,;-i(O,0, probability that i infection events occur in time interval

(0, t + A) is Pij^i (0, t) [/3B(i - l)A + o(A)].

(2) The probability that more than one event, say q events, occurs during time

interval A is o(A). The probability that i - q infection events happen in time

interval (0, t) is So, the probability that i infection happen in time

interval (0, t + A) is o(A).

(3) The probability that no event occurs in time interval A is 1 - /3BiA - o{A). The

probability that all infection events happen in (0, t) is />u (0,t). So, the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

29

probability that i infection events happen in time interval (0, t + A) is

P \ , i (0,0[1 - fiBiA - o(A)].

Since only one of the above three is possible and they are mutually exclusive, we can

combine all the three possibilities, so we have

P \ , i (0> t + A) = P i i-\ (o, t) [0B(i - 1)A + o(A)] + p x. (0,0[1 - /IBiA - o(A)]

+ Pu-q(Q̂) ° (A)-

Moving p u (0,t) from the right side to the left, and dividing both sides by A,

since -> 0 , we get
A

P' ’(°’l + A) = - Phl(o,t)fiBi + pu^{0,t)pB(i - 1).

Therefore, we have

dpXJ(0,t)
= ~ P u (° » l) P B i + A , i - i (° > f) P B (* ~ 0 3 • 1 • 1dt

The initial conditions are as follows. According to our assumption that only one machine

is infected at time* = 0, sop xl(0,0) = 1, and the probability of more than one machine

being infected is zero, so p xi (0,0) = 0, z > 1.

We use probability generation function (pgf) to solve Equation 3.1.1. The pgf is

given by

00

Gi M = T lPu(°>ty 3-L2
1=1

By differentiating Equation 3.1.2, and substituting Equation 3.1.1, we get

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

30

We can ignore
the values of the
first term when i

+Bj3s2Y d{ i - l)p hi_l{0 , ty -2 = 0 and of the
<>i i>i second term

when i = 1,
because the
probabilities are
not valid.

= - B j 3 s ^ - + Bfis2^ - 3.1.3
ds ds

which can be written as

^ = B / 3 s { s - \) ^ ~
dt ds

^ _ B J3s(s - \) ^ - = 0 3 .1 .4
dt ds

To solve the partial differential equation of 3 .1 .4 , we write the auxiliary equations

ds
=> ----------= Bfddt and dG,(s;t) = 0.

s (l - s)

Using the following equality,

r 1 1 t 2ax + b - y l b 2 - 4 ac 2— ------------------- - In if b - 4 a c > 0
ax +bx + c -db2 - 4 a c 2ax + b + sib2 -4 a c

we get,

=> In — = B(3t + c =>—— = ceBpt => - —- e Bfit = constant
s - 1 5 - 1 s

From the second auxiliary equation, we get G7 (s;t) = constant.

Therefore, the general solution of 3 .1 .4 is

5 —1
Gf (s;t) = 0 (------e Rfit) where O is an arbitrary differentiable function.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

To obtain the particular solution, plug in the initial condition, and we get

5 - 1 1 1
Let 0 = => 5 = ------- , we get 0 (0) -= ------

5 1 - 0 1 - 0

1So, G,(s;t) = 0 (* '*) = — — ------ ^
s + s — 1 nnt s — \s — Y)e

s

The solution of Equation 3.1.4 is

g > M = - - (5 - \)eE 3.1.5

Taking the first order derivatives of G, (s;t), we get the expectation of I as

d4 <)]=
dGj
ds

m t

15—1 " (s - (s - \) e » nB f $ t \ 2 ' 5=1

Taking the second order derivative, we get

m i - d] = ^ = (- 2)
l - e B[St

e B p t I s = i = (~2)(1 - eBpt)eW\„Bpt
ds2 (s - (s - \)eBptf

So, the variance of / is a 2 = e \i 2] - (£[/])2 = E[l(l - 1)] + £ [/] - (^[f])2

= (—2)(1 - em)em + eBpt - (eBp‘ f = eBpt (em - 1)

Taking the z'th order derivative, we could get

d ‘G = K iv '-i;, (1 - e BptT Xem _ M (1 -eBptr leBpt
ds1 i\ \ s - (s - \)eBpt)M =0 {em Y

(eBpt - l) M (eBpi - l V _1
m t

1
Bpt

1 V- l

pm\ e J

1

3.1.6

3.1.7

According to the properties of pgf, we get

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(i Y-1 i
P l , i (0 » 0 - “ e Bpit ^ e Bpt

32

3.1.8

3.2 Infection-Immunization (INIM) Model
for Worm Propagation

In the Infection-Immunization model, the population is divided into three groups;

that is, susceptible, infected, and removed, which is the same as the standard SIR model.

The difference is that instead of recovered and therefore immunized after infected, a

machine could be immunized when it is healthy, which makes the propagation model

closer to reality because, for example, a computer user could immunize a machine by

downloading the patch or updating the anti-virus tool when the users get the message

about the malicious program. Both [Zou 2002] and [Wong 2004] present similar ideas of

immunization from a healthy machine, but neither of them gives a stochastic analysis of

their models.

Figure 3.1 shows the state transitions of epidemic propagation. The removed

machines include those immunized when still healthy and those recovered after infected.

A recovered machine is immunized and cannot be infected by the same worm again. If

we do not specify, the immunized machine includes both cases. In Figure 3. l ,a,/3, and

y are the immunization rate, infection rate and recover rate, respectively.

s (‘) = s is the number of susceptible machines at time t.

/(<)=/ is the number of infected machines at time t.

M(l) = m is the number of immunized machines at time t.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

33

Susceptible
(healthy)

. S © ,

Infected
(infectious)

x Removed x
(immunized or recovered)
v M(t) >

Figure 3.1: State transition diagram of INIM model.

3.2.1 Stochastic Analysis of INIM Model

Assume that only one machine is infected at time zero, and A is a small time

interval in which no more than one infection could happen within it. To build the INIM

model, following the similar analysis of SI model, we have:

(1) The probability that exactly one infection event happens in (t, t + A) is

J3BQ. - (i - 1)/ N - m / N)(i - l)A+ o(A). This is so because in time interval A, one

infected machine could contact B machine, and (l - (z - l) / A - m l N) A of those are

susceptible, so 0 B (l - (i - 1)/ N - m l N) A machines could be infected by one infected

machine. Now, the total number of infected machine is (i - 1), so the number of

machines that could be infected in time interval A is ySS(l - (z - 1) / N - m / N)(i - l)A .

We assumed that A is a small time interval that no more than one event could occur

within it. Hence, f3B(l - (i - 1)/ N - m l N)(i - l)A is the probability that exactly one

infection occurs. At the early stage of infection, since i « N and m « N , the

probability o f one infection is approximately Bj3(i- l)A+o(A) . The probability that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

34

i - 1 infection events happen in (0,/) is (0,f); therefore, the probability that i

infection occur in time interval (0, t + A) is p u _x (0,t)(J3B(i - l)A+ o(A)).

(2) The probability that exactly one recover event occurs in (t, t + A) is (i + l)yA + o(A).

This is so because the probability that one infected machine is recovered during time

interval A is yA . The total number of infected machine is i +1, so the number of

machine that could be recovered during A is (i + l)yA. We assumed that A is a small

time interval that no more than one event could occur within it. Hence, the probability

that exactly one recover occurs is (i + \)yA. The probability that i +1 infection event

happens in (0, t) is p l M (0,t) ; therefore, the probability that i infection occurs in

time interval (0, t + A) is p X M (0,/)((z + l)/A+ o(A)).

(3) The probability that exactly i infection events happen in (0, t) and the number of

infection events does not change, i.e., no infection or recover occurs, during (t, t + A)

is (l - pBiA - iyA - o(A)). So the probability that i infection occurs in time interval

(0, t + A) is p u (0,fXl- pBiA - i y A - o (A)).

(4) The probability that more than one infection, say q infections, occurs during time

interval A, but no recover occurs is o(A). The probability that i - q infection events

happen in time interval (0, t) is p hî (0 , t } So, the probability that i infection happens

in time interval (0, t + A) is p X i_q (0,t) o(A) .

(5) The probability that more than one recover events, say q recover events, occur during

time interval A but no infection occurs is o(A). The probability that i + q infection

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

events happen in time interval (0, t) is p hi+q(0,t} So, the probability that i infection

occur in time interval (0, t + A) is p u+q (0,t) o(A).

Since only one of the above six is possible and they are mutually exclusive, we can

combine all three possibilities, so we have

p hi(0,t + A)= (l - PBiA - iyA - o(A))/?u (0,r)

+ A,m (0 ,0 [^ (i -1)A + O(A)]

+ Pv+i (°»0 [O' + 0 rA + ° (A)]

+ Pu-i (°»*) ° (A) + P u* (° > ° (A>

Moving p u (0,t) from the right side to the left, and dividing both sides by A,

since —> 0 , we get
A

P,J(0,t + A) - p u (0,l) = (_ m _ i r) M
A

+ P l , i -

+ P v + i M (i + l)y

Therefore, the differential equation is

dphj®’l l = - iy)pXi (0, t)

+ p u _x(Q,t)PB{i-\) 3-2-1

+Pi,1+i(°^X i'+ 1V

The initial conditions are as follows. According to our assumption that only one machine

is infected at timet = 0, sopI t(0,0) = 1, and the probability of more than one machine

being infected is zero, so p xi (0,0) = 0, i > 1.

Define pgf as

oo

G , M = I > u (0 > 'y 3.2.2
i= l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Differentiating Equation 3.2.2 and substituting Equation 3.2.1, we have

= z dPuf f - = i y H/®* - (°>o+Pv-i (°»om* - o +a,,+i (o, *x* -at t at i

By extending the summation to each term, we get

i

+ Z P u -ifeO M 1' - 1)5'
i

+ Z /vi(°>*X*‘+1V
i

Rearranging each term, we get

i

+ s 2Z ,
i

+ Z /V ifeO fr'+ iW
i

which can be written as

dG / _ \ dG DO 2 dG dG— = -{BP + y)s — + BPs2— + y — .
at as as cts

Let BP = A , we get

r/G /„ \ r/G . 2 ^G <̂ G . . 2 \ \ ^G „
— = -(A + y > — + As2 — + y — = > — - (A s 2 - (A + y)s + y) — = 0
dt ds ds ds dt ds

To solve partial differential Equation 3.2.3, we write the auxiliary equations

dsdt = ------ ;— ------r and dG, (s;t) = 0
- (As ~(A + y)s + y)

I f A > y

From the first auxiliary equation, we get

[dt = f -------;— j—----r ds.
- (As ~ (A + y)s + y)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

37

Using the following equality

r 1 1 , 2ax + b--yjb2 -Aac . . , 2 . „— ----------- = —...-.-••••••-— In-------------- if b -Aac > 0,
Jax +bx + c V^2 -Aac 2ax + b + 4b2 -Aac

(In this case, a = - l , b= (A + y), c = - y , Vb2 -Aac = ^ j (A - y)2 = A - y)

1 -2As + (A + y) - (A - y) 1 A s - yw get C + t = -------- In----------------------- ̂ — = ------- In- '
A - y - 2 As + (A + y) + (A - y) A - y 1(5 -1)

/Ls"
c.e(l~7)> = -------— where c, is the new constant contains C.
' 1 (5 -1) 1

(5 - 1)

c7ea r)t = ——— where c7 is the new constant contains c ,.
2 (5-1) 2 1

e a - r » (L J L = C2
A s - y

From the second auxiliary equation, we get Gf (s; t) = constant. Therefore, the general

solution of Gf (s;t) is

G(s;t) = a > { ^ 9 - e (*-r)t}
A s - y

To obtain the particular solution, plug in the initial condition, we get

G(5;0) = p lt (0 ,0)5 ' = 5 (see initial conditions of Equation 3.2.1)

so G(s;0) = <D{ e(X-y)0} = <D{ = 5 .
As — y A s - y

Let 6 = =>s = ^ l z l w egeto (0) = . - f c i
A s - y 0 1 -1 0A- 1

Therefore, the particular solution is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

38

y — L g f 1 -? ') '

G(s .t) = Oi (s - V CW } ~ ** ~ y _________ y (s - \) e ^ r)t - (A s - y)
t e - r x l z L e(^ _ ! M s - i) e ^ - (A s - r)

A s - y

_ y(1 - s)e{ r) + (As - y)
~ A (l - s) e (X~r)t + (A s -y)

If A, < y , from the first auxiliary equation, we get

\dt = f --------— - 4 r ds.
■* •* - (As - (A + y)s + y)

Using the following equality,

r 1 1 , 2ax + b - ^ b 2 - Aac .Cl2 A— = , = l n if b -Aac > 0,
Jax +bx + c ^ (b 2 -4ac) lax + b + Vh2 - Aac

(In this case, a= - A, b= (A + y), c = - y , Vh2 - Aac = -yJ(y-A)2 = y - A)

we get

t+ c = - ! ~ ln^ - V + r) - V - r)
y - A 2As - (A + y) + (A - y) y - A A s - y

Similar to solving the equation when A > y , we have

(r-X)t _ M s ~ 1)cxe
A s - y

cxeir~‘i>t IA(r-w s 3 _ C* - 1)
A s - y

e(r-»i*LJL = c
s - 1 2

AsThe general solution of the second auxiliary equation isG(s;t) = <E>{ - e iy~X)t)
s -1

Using the initial condition of Equation 3.2.1, we haveG(s;0) = /?n (0,0)5'1 = s .

3.2.4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

So, G(j;0) = ®{— ^ e (y-Z)0} = = s .
5 -1 5 -1

Let0 = ̂ Z r~e
5 - 1 x - e x - e

Therefore, the particular solution is

 y_p(>'-w

G(S;0 = 4
yl t e - r cM t X (s - l) - (X s - y) e (r~X)t

5 - 1

If A = y , we have

l d t = I - (^ - (l + rV + y) * '

Using the following equality,

f— -— ------- = ------ — if b2 -Aac = 0,
J ax +bx + c lax + b

(In this case, a = - X , b= (A + /) , c = - / , Vb2 - Aac = y j (y -X) 2 - 0)

we get

2 2 1
t + C — ■

• 2/ls + (X + y) 2ys ~ (y + y) y(s - 1)

1 -t = C
y (s - 1)

The general solution of the second auxiliary equation is

G (s ; () = ® { — ! - — - (}
r (5 - i)

Using the initial condition of Equation 3.2.1, we have G(s;0) = ®{— ------- 0}
y(s ~ 1)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.5

= 5

40

Let 6 = ------ -— =>5 = 1 + — ,
y (s - 1) By

we get 0 (0) = 1 + — .
6y

Therefore, the particular solution is

G(s;t) = 0{— 1} = 1 + t 1 = 1+ 1
K '- O (- 4 - O r

H 5 -1) X (5-l)

5 -1 _ 1 - ty (5 -1) + (5 -1) _ 5 - ty(s - 1)
1 - ty(s -1) 1 - ty(s -1) 1 - ty(s - 1)

Rearrange the terms, we get

G (s -,t) = s (l ~ , r) + , r .
l + ty — tys

We apply the properties of pgf to get the mean and variance of I.

If A > y , taking the first order derivative of Equation 3.2.4, we get

4 G _ . + l r (l „ s) e ^ + (A s _ r)] .
ds A(l - s) e (*-y)l + (A s -y) (~l)[A(l - s)e(X~r)t + (As ■

Let 5 = 1, we get

dG . y{- \)e (X-r)t + A , , - Ae(X~r)t + A
— Li= ;— + (* - r) -----------------

=e(X~r)t.

d s 's=' (A - y) " (- 1)[(z - y)] 2

_ y(- \)e (l~y)t + A - (~Ae(X~y)t + A) _ (A - y)e(X~y)t
(A - y) (A - y)

According to the properties of pgf, we get

ds

Taking the second derivative of Equation 3.2.4, we get

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.2.6

Y) f

41

d 2G _ (- y e ^ y)t + A) (- A e ^ ‘ +A) ,+[w +A] ~ ^ r)'
ds2 (-1 X A i l - s ^ - 7* + (A s - y) f (-1) [A (l - s) e ^ y)l+ (A s - y) f

- A e (X~y)t + A
+[y(1 - s)e(l-y)t + (As - y)](-2)

(-1)[A(l -s)e(A-y)l + (As-y)]

d 2G x (~ y e ^ y)t+ A) (-A e ^ y)l+A) ir _ u „r)t , „ - A e ™ + A ,
ds2 u ‘ (-1) [(i - r)]2 W i - j O]2

■AfiW' 7') ,+A
+2[(A-y)]-

P - y)] 3

= (-2)[-ye(A-y)t + A] ^ + A +2 ^ ** + A
(A - y) (A - y)2

= 2 ~Ae{X 7)t + 1 (i +
(2 - r)2

According to the properties of pgf, we get

Since <j2 = e [i 2] - (^[/])2 = E[l{l - 1)] + £[/] - (e [i])2 , we get

cr2 =2 M l l - f - - ? .). [l + - ^] + g(A- ^ - [e^ - ^] 2
- r) 2

- 2 ^ [i + - A]+ ^ v (-1- r ?
(A - y)2 (A - y f

ri _ (A-y)t \
= ̂ — ----^ . [(A 2 + y 2) e ^ y)t +2 A - 2 A2] 3.2.7

(A - y) 2

If A < y, taking the first order derivative of Equation 3.2.5, we get

do = r - x e " - n + r (S - i) - ^ - r)elr-n‘ _
ds A (s - l) - (A s - r y r~:‘>' (- l) (M s - t) - (A s - r) e " - "] '

Let s = 1, we get

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

42

dG\ - Y (A - y) e ^ 1 (r_ „
d s]°=' _ (A_ y)e(r-^ [_(A_ r)e (^]2 ^ Ae)

- y - * * ™ i f l _ .
- (A - y y ^ [(A - y y ^ r '

_ A e(7-Z)t - y + j Z - A e ^ ') _ - y + Z
(.X - r) e (y-X)t (Z - y) e (r~X)t

So, E[l] = — 3.2.8
ds

Taking the second derivative of Equation 3.2.5 G (s;t), we get

— = (-1) (r - - Ae'1--^) + r - ,
ds2 (- t)U(s -1) - (1, - y)e(' - r" y '

+ (_2) b U - 0 - (* - I * ™] ! * - f -»■] w _

rf f£ , 1)(r - ^ (' - ,)-) a - ^ - J)') , r - ^ > '
<*! 1 l - (z - r y r ' A):f (-OK * - r ^ ’ ^ ’Y

+ (- 2) >

^ { y - t e ^ W - X e ^ 1) ^ Z - y) e ^ l) t { Z - Z e ^ ‘] fy_„(

~ (> [W - r ^ r + 2 [W - r ^ r — (* _ * 5

+ 2 j * - * ™] (, _ ^ . W)
[(A - y) ^ - ^] 2 [(A - y y ^ '] 2

= 2 ^ ~ lg(r ^ [(2- - Ae0'-**) - (y - ^ - A)()]
[(A - y y ^] *

[X - A e {y- x)t] „ ,

— 2 -------------------- - (a — y) 9 ? Q
t (A - y y ^] 2 3 -2 ' 9

Therefore, the variance of l(t) could be obtained as

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

43

<72 = e [i 2]-{e [i]}2 = e [i (i - 1)]+e [i]-(£[/D 2

- { X - r) + e ™ - (e ™ Y 3.2.10
[A - Ae^ 1)(] „ u (i-r)i 2

[U - y) ^ ']

From the above derivations, we can see the solution for the expectation of I is the same

when A * y ; that is,

I (t)=e{X~r)t 3.2.11

But the solution for the variance o f / i s different (See Equation 3.2.7 and 3.2.10).

/ \ s(\ — ty} ~h ty
When A = y , we haveG (s;t) = -----------------. Taking the first order derivative of

1 + ty - tys

Equation 3.2.6, we get

dG 1 - y t r . , - t y^-[ty + (\- ty)s]-
ds 1 + yt-yts (—1)(1 + t y - t y s) 2

According to the property of pgf, the expectation of / is

ds y t - y t - 1 (—1)[—1]

Taking the second derivative of Equation 3.2.7, we get

d 2G (l-yt)(-yt) , r 1 - y t , „ , , (-2)(-yt) n
— r = — -— ' ■■■ + ty[- - - - - - - - - - - - - - - - - - - 7 + (ty + (1 - yt)s) v A .]
ds (- 1) (1 + yt-yts) (l + t y - t ys) (l + t y - t y s f

Let s = 1, and according to the properties of pgf, we get

3.2.12

lv n ds2 i-i (-1) j [1]3-

: yt ~ (yt)2 + ty\\ + yt]=2yt

So the variance of I could be

a 2 =E[l2}-(E[l]jl =E[l(l -l) \ + E[l]-(E[l])2 = 2y t + 1 -1 2 = 2 y t 3.2.13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

44

We can see that when X = y , the expected number of infected machines is a

constant as the initial value (See Equation 3.2.12), and the variance is a linear function of

t.

3.2.2 Discussion about Stochastic Model
and Deterministic Model

The corresponding deterministic model of the INIM model is

at
dM(t)

dt
aS(t)+yl(t) .

with initial conditions 7(0) = 1, S (0) - N - l , and M (0) = 0.

The first equation of 3.2.14 can be written as

dl(t)

i(t)

dl(t) _

(BJ3-y)dt.

3.2.14

Integrate both sides, we get f —z y = [(B/3-y)dt=> In I(t) = (BJ3 - y) t
J I(t) J

+ c

I {t) = c,e

Use initial condition 7(0) = 1, we get cl = 1. So, the number of infected machines at time

t is

/ (0 = 3.2.15

Notice that if we assume the machines are fully connected (homogenous network), B

equals to S(t), and the first equation in equation system 3.2.14 becomes

dl{t) _
dt

3.2.16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

In [Wong 2004], the authors also give a deterministic model with immunization

rate//. They call the model a “delayed immunization model” because immunization

starts at a time moment when a certain proportion of hosts is infected. In their model,

they use (N - 1) to represent the number of suspected nodes S(t) , but it should be (N - I ~

M) as given in the third equation of equation system 3.2.14 if we consider the

immunization from the healthy machine. The authors of [Wong 2004] ignored the

number of immunized node M when building the propagation model, but they did not

specify this approximation. As [Wong 2004] stated, the number of immunized nodes and

immunization rate is not easily observable, so we are not sure how much this

approximation affects the model’s accuracy. We can only ignore the number of

immunized machine M and approximate the number of susceptible node S(t) as N - I at

the early stage of infection. That is why we assume I(t) « N and M(t) « N and get

equation system 3.2.14. This assumption makes our model more applicable at the early

stage of infection which includes both the starting stage and the fast-growing stage. This

is also why the infected nodes grow exponentially as shown in Equation 3.2.15 instead of

logistically as given in Chapter 2.

From Equation 3.2.15, we can see the number of infected machines we get from

the deterministic model is exactly the same as the expected value of the stochastic model.

The solutions agree with the theory that the stochastic model converges to the

deterministic model when the population size is large [Andersson 2000].

From the stochastic model, we get both the expectation and variance of those

values at any time t so that we can evaluate the best and the worst infection situation

instead of a single number of infected machines. This evaluation could be important

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

46

under certain circumstances. For example, when the infection rate and the recover rate

are the same, the deterministic model shows the number of infected machines will not

change and keep the same number as the initial state. The expected value of the stochastic

model agrees with this result. But from the stochastic model, we also know that the

variance is increasing as time goes on, and the number of infected machines could be

infinite when t -» oo.

3.3 Simulation Analysis

3.3.1 Simulation Setup

The simulation program is written using C++ compiled with Microsoft Visual

C++ compiler under Windows XP environment. First, we randomly generate a simulated

network with a given number of nodes, say N nodes. Each node has r neighbors; r is a

random number ranging from a to b, where a and b are given real numbers and

~ ~ ~ = B , so 0 < a <r <b < N . Then for each node g , we randomly choose r nodes out

of the N nodes as its neighbor. When node h is selected as the neighbor of g , we also

add g as one of the neighbors of h . When we generate the neighbors for h , we will

randomly choose (r - existing number of neighbors) as h ’s neighbors so that the total

number of neighbors is still r . The average number of neighbors each node has is B.

Our infection simulation system is based on this randomly generated simulation

network. The infection simulation system has three main procedures: infection,

immunization, and recovering. When we start the simulation, one node will be randomly

selected as the infected node. At each time step, all three events, infection, immunization

and recovering, occur simultaneously. In the infection procedure, each infected machine

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

47

infects its neighbors with rate /?. Similarly, the recovering procedure checks all infected

nodes and tries to recover it with rate y, and the immunization procedure immunizes the

susceptible machines with rate a .

3.3.2 The Random Number Generator

The random number generator provided by C++ library is a function rand().

First, we need to initialize the random number generator by invoking srand{seed). Each

initializing seed generates a different random number sequence. We get one random

number from the sequence every time we call rand{) function. Those random numbers

returned by calling rand() function range from 0 to RAND_MAX, where RAND_MAX

is the maximum number a machine could generate. If we want uniform random numbers

in [a, b], we can use the expression x - a + (b - a) rand()/(RAND_MAX+1.0). But the

problem with the random number generator is that the same seed always generates the

same random sequence. The random number generator we use to generate the random

network is provided by [Vetterling 2002], This generator avoids the problem we

mentioned in rand() function given by the C++ library.

3.3.3 Simulation Results and Results Analysis

We run the infection simulation using different a, P and y values with a same

network of 1,000 nodes. Figure 3.2 - Figure 3.5 plot the simulation results. Each curve of

the plots is the average of 100 simulation runs.

Figure 3.2 plots the simulated number of infected machines with different

parameters. In Figure 3.2, s, is the simulation result of no immunization from healthy

machines, while s2 and sz show the simulation result when healthy machines are

immunized before getting infected. The difference of s2 ands3 is that s2 is the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

48

simulation result when the infection rate is less than the recover rate; s3 is the simulation

result when the infection rate is equal to the recover rate. The effect of immunization

from healthy machines is not negligible since both s2 and s3 increase slower than 5,. We

can sees, grows very slow since the infection rate is less than the recover rate.

Figure 3.3, Figure 3.4, and Figure 3.5 give the simulation results and the expected

values from INIM model. Figure 3.3 shows when X > y , i.e., infection rate is greater than

the recover rate, the number of infected machine (s, is the simulation result, s2 is the

expected value from INIM model) is increasing as time goes on. Since healthy machines

are immunized at the same time, the number of infected machines (s, and s2) do not

grow tremendously even though the infection rate is greater than the recover rate. With

the same immunization rate, when infection rate is equal to the recover rate (see Figure

3.4), the expected number of infection shown by the model (s 2) is always a constant as

its initial value, which is 1. The simulation result (.s,) shows that the number of infected

machines is increasing very slowly instead of at a constant. The simulation result is

reasonable since our model shows the variance of the expected number of infection is

increasing as a function of time t (see Equation 3.2.11). If the infection rate is less than

the recover rate, the expected number of infection is zero (see s2 in Figure 3.6). The

simulation result is not zero but very close to it (see s, in Figure 3.5).

In all three figures (Figure 3.3, Figure 3.4, and Figure 3.5), the simulation result

(s 3) and theoretical result (s4) o f the number of immunized machine grows much faster

than the number of infected machines. Also, we can see the theoretical results (s4) fit the

simulation results (53) better when infection just gets started. As time goes on, the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

49

difference between 53and s4 in all three figures (Figure 3.3, Figure 3.4, and Figure 3.5)

becomes bigger. This is because when we build the model, for simplicity we assume

(i+m)/N -» 0 , but as time goes on, the number of immunized node is increasing, which

makes (i+m)/N bigger and not ignorable. Therefore, we cannot directly apply this model

to the whole life cycle of propagation of a malicious mobile code. In the future, we may

use the exact value to build the stochastic model, but the solution of such a model will be

much more difficult to obtain.

■a—Si —*—S2 —x— S3

120

= 100

I 80

C
o
h_0)a
E3
Z

10 20 30 40 50 60 70 80 90 100
Time

Sj: a = 0, p = 0.01, y = 0.06
s2\a = 0.02, p = 0.01, y = 0.06
s3: a = 0.02, p = 0.01, y = 0.01

Figure 3.2: The simulation results of the number of infected
machines with different parameters.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

—*— ^3 —0— £4
800

700

Sc
IEL)CO
E
o
s»-a
Emt
Z

600

500

400

300

200

100
- A

10 20 30 40 50 60 70 80 90 1001

Time

a = 0.01, /? = 0.01, y = 0.02
s , : Simulated number of infected machine
s2: Expected number of infected machine
s3: Simulated number of immunized machine
s4 : Expected number of immunized machine

Figure 3.3: Simulation results and expected results when B * p > y

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

700 n

600

8 500S
!E
| 400

£ 300
A| 200
z

100

1 10 20 30 40 50 60 70 80 90 100
T i m e

a = 0.01, p = 0.004, y = 0.02
5,: Simulated number of infected machine
s2: Expected number of infected machine
s3: Simulated number of immunized machine
s4: Expected number of immunized machine

Figure 3.4: Simulation results and expected results when B * p = y .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

—«>— Sj — t - r - S 2 — *— S 3 — «— S i

800

700

© 600 £
5 500
(8

5 400o
© 300a
| 200
Z ' '

100
6

1 10 20 30 40 50 60 70 80 90 100

Time

a = 0.01, P - 0.01, y = 0.06
5,: Simulated number of infected machine
s2: Expected number of infected machine
s3: Simulated number of immunized machine
s4: Expected number of immunized machine

Figure 3.5: Simulation results and expected results when b * p < y .

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

53

3.4 Summary

This chapter introduces the stochastic propagation modeling of a malicious

mobile code. Instead of modeling the propagation in a homogeneous network, we

introduce a new factor B which represents the average number of neighbors a machine

could have. We proposed an INIM model propagation model which considers the

immunization from healthy and infected machines. We then use the probability

generation function method to obtain the expectation and variance of the number of

infected machines at time t. The simulation result showed that it is effective to use our

model to predict the propagation of malicious mobile programs, especially at the early

stage. Later on, we may use the exact value instead of the approximation that (i+m)/N

—» 0 , so that the time parameter will have less effect on the prediction accuracy. Using

the exact value of (i+m)/N makes the equation much more complex and the solution

becomes very difficult to obtain. We may explore other methods to solve the model in the

future.

In the INIM model we proposed in this chapter, the infection rate, immunization

rate, and recover rate are constant. This model could be refined by extending these

parameters to be time dependent.

This chapter discusses only the propagation of malicious self-replicating

programs. Similar models could be built to model the propagation of useful information

through the network. For example, we could model the propagation of benign mobile

code, also called “good virus”. Analyzing the parameters that affect the propagation of

benign mobile code could help us design future network that favors the propagation of

such benign programs but throttle the propagation of those malicious programs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 4

EARLY DETECTION AND PROPAGATION MITIGATION

OF MALICIOUS MOBILE CODE

This chapter proposes a control system to automatically detect and mitigate the

propagation of malicious mobile programs such as computer worms at the early infection

stage. The detection method is based on the observation that a worm always opens as

many connections as possible in order to propagate as fast as possible. Therefore, we can

monitor the connection rate to identify whether the status of a machine is normal or not.

To develop the control system, we propose a detection algorithm, in which we provide an

extension to the traditional statistical Process Control technique by introducing a sliding

window. We apply sequential probability ration test to control the risk of the detection

system so that the false positive rate is under certain threshold. We perform experiments

to demonstrate the training phase and the testing phase of the control system using both

real data and simulation data sets. Figure 4.1 shows the overall structure of the control

system.

The experiment shows that by adjusting the tuning parameters appropriately, the

control system can detect the propagation of malicious code with a zero false positive rate

and less than 6% false negative rate, which asserts that our control system is effective.

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

We also analyze the propagation behavior of a network when the control system is

applied to different proportions of the machines.

Detedmg

Abnormal
Behavior

Yes

Re-TiTesting

Trailing

Infected Host

System
Monitoring

Target
Compromised

Malicious Code
Arrived on Target

(Mafcciau9 Code Propagation)

Control System

The steps o f malicious code propagation: (1) Initial infection; (2) Acquire target; (3) Transfer malicious
code; (4) Execute malicious code. When abnormal behavior detected, the control system w ill quarantine the
infected host, therefore, no more machines w ill be infected.

Figure 4.1: The structure of the control system.

4.1 The Development of the Control System

Our control system includes a monitor and a controller. The monitor keeps track

of the connection rate and reports it to the controller in real time. The controller makes

the decision about whether or not there is an anomalous behavior, based on its knowledge

from past experiences. This method belongs to behavior blocking, which is one of the

anomaly detection methods. We extend the traditional Process Control technique to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

56

devise the detection algorithm for the controller. The general steps of building a control

system are:

Step 1. Data collection: Collect a normal data set for training

Collect a normal data set for testing

Collect an abnormal data set for testing

Step 2. Assumption checking: Check the normality assumption of the training data

Step 3. Training: Train the controller with the training data

Step 4. Testing: Test the control system using both the normal and the abnormal data.

Once these four steps are completed and the testing results are satisfying, the

control system could be put into monitoring. The following subsections give the details of

each step.

4.1.1 Data Collection

Since we are using the network connection behavior as an indicator of normal or

anomalous behavior, we need to collect both normal and abnormal connection data, both

from the same host. Under practical conditions, it is almost impossible to get connection

data, both normal and abnormal, under the same circumstances, because we have no idea

when there will be an outbreak of the malicious code. Fortunately, Goldsmith [Dave

2001] provided a connection request through TCP port 80 on July 18, 2001, the day when

the network is normal (see Table 4.1), and on July 19, 2001, the day when Code Red

broke out (see Table 4.2). The data was collected hourly.

The total connection rate Tc is defined as the total number o f TCP connections

that are built up in a given interval of time while the unique connection rate Uc is defined

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

as the number of TCP connections built up to distinct destinations in a given interval of

time. Thus, we have

Q
T = — , where c is the number of connections in time t,

t

uU = — where u is the unique number of connections in time t.
t

For example, if a machine builds up j connections to the same destination in a given time

interval t, the total connection rate is j/t, while the unique connection rate is 1/i.

Table 4.1 gives the data from which we can calculate the average Uc, and it is

about 17 connections per hour (cph) on July 18, 2001, while Table 2 gives the data from

which we can calculate the average Uc, and it is about 37,549 cph on July 19, 2001. We

plot the unique connection rate of both Table 4.1 and Table 4.2 in Figure 4.3. Here, we

choose the unique connection rate instead of the total connection rate because a worm

program always tries to connect to as many new hosts as possible. Connecting to a new

host means opening a new connection from a local host to a remote machine. If we use

total connection rate, sometimes the rate is high simply because we need to build more

connections to the same remote machine, but not because of the propagation of malicious

code. For example, when we browse a web page, we build up connections to the remote

server through TCP port 80 of the local machine. If the web page contains more than one

object, each object needs a TCP connection in order to make sure that the whole web

page is viewed properly. Web pages are formatted in a markup language called HTML

(HyperText Markup Language). Each picture file or audio file or video file is embedded

as an object in the HTML file of that web page. It is common for a web page to contain

more than one object and very few web pages contain only text. So when we open a web

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

page with many objects, the total connection rate becomes high. However, since all these

connections are to the same remote machine, the unique connection rate will not change

unless we open new web pages that connect to another remote server.

Figure 4.2 plots the raw data from Table 4.1. We can see that the variation of Tc

is much larger than Uc. Generally, we prefer sample data with smaller variations because

small variation means that the data is more stable and hence the control system will give

fewer false alarms.

From Figure 4.3, we can see that Uc was small on July 18, 2001, when the

network was normal, then it grew tremendously when the malicious code started

propagating at about 10:00 a.m. on July 19, 2001. Figure 4.3 reinforces the idea that we

can detect the propagation of malicious code by monitoring the connection behavior,

specifically, the unique connection behavior of a machine. We analyze the characteristics

of the real data so that later on we can generate simulation data following the same

distribution as that of the real data for training and testing purposes. Let Y be a discrete

random variable that represents the number of the unique connections per hour, and

y x, y 2, • • • y„ be n observations. The mean value of the normal sample y is

4.1
n

The standard deviation of the sample s is calculated as

n

X O . - t)2 4.2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

59

We have 24 observations, so n = 24. Plugging the values of the unique connection rate

from Table 4.1 into Equation 4.1 and 4.2, respectively, we get y = 17.62 and s = 3.23.

Table 4.1: Connection attempts from a host on July 18,2001

Hour Total

Connections

Unique

Connections

0 143 20

1 148 15

2 89 15

3 96 18

4 144 22

5 127 16

6 98 15

7 111 16

8 116 15

9 149 22

10 143 18

11 175 24

12 134 22

13 146 20

14 118 21

15 95 17

16 133 22

17 104 17

18 78 17

19 76 15

20 67 15

21 85 15

22 62 12

23 105 14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table 4.2: Connection attempts from a host on July 19,2001

Hour Total

Connections

Unique

Connections

0 120 17

1 81 12

2 62 11

3 97 20

4 85 18

5 128 20

6 140 20

7 212 34

8 645 137

9 5717 1281

10 36879 8186

11 150913 34361

12 362011 79789

13 519846 111148

14 556220 117946

15 547087 115193

16 540009 115983

17 519810 111290

18 499565 107106

19 390019 89331

20 14541 3493

21 9733 2233

22 9093 1882

23 8539 1672

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Total co n n e c t io n r a te Unique c o n n e c t io n r a te
2 0 0 -r

1 8 0 - -

1 6 0 - -

1 4 0 -

1 2 0 -

1 0 0 - -

T im e (UCT)

Figure 4.2: Total connection rate and unique connection rate
of normal data. (UCT: United States Central time).

140000 -r

120000
O)
2 100000
:S

E 80000

Qo
CD
3
.S’£

60000

40000

20000

•Normal A b n o rm a l

Q ■> <b ^ ^ ^ ^1

T im e (UCT)

Figure 4.3: Normal and abnormal connection behavior.
(UCT: United States Central Time).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

62

4.1.2 Assumption Checking

There are two reasons to check the normality assumption of the normal data:

(1) To know the distribution of the real data so that we can generate a simulation data

with the same distribution as that of the real data, to train the control system, and

(2) To be able to apply the Process Control (or Quality Control) technique because the

base data needs to satisfy the normality assumption.

- Y " y-We present the observed connection rate asy; = y + en where y = - •' is the
n

average of the sample data and s t is the error term. Thus, checking the normality

assumption of y { becomes checking the normality assumption of the residual s (. We use

normal probability plot, which is a plot of standardized residual against their normal

scores, to check the normality assumption of real data. Normal scores are the percentiles

of the standard normal distribution. Statisticians [Dean 1999] found that if the normality

assumption holds, a plot of the q th smallest standardized residual against the

100[(<y - 0.375)/(« + 0.25)] th percentile of the standard normal distribution for each

<7 = 1,2, • • • n would show points roughly on a straight line through the origin with a slope

equal to 1.0. These percentiles are also called Blom’s normal scores. Blom’s q th

percentile is the value e for which

P(Z < s q) = (q - 0.375) /(« + 0.25)

where Z is a standard normal random variable. From the past experiences, statisticians

conclude that normality plot is useful when sample size n is at least 15 [Dean 1999].

The normality plot generated by a SAS program is shown in Figure 4.4. In Figure 4.4, the

Y-axis is the residual, and X-axis is Blom’s normal score sq . The points shown in Figure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

4.4 are roughly on a straight line through the origin, with slope equals to one. Although

the line is not absolutely linear, it does not exhibit extremely heavy tails. Consequently,

the normality assumption can be presumed to be approximately satisfied.

I, '
lU--

I
V* / fc. ■ ":J'
■■ |

' . i *5 :

' -Mi-

■W : T
:: :s . 3 :

r
i . I . . V I

• 1
. . • ■ I.

My . .i

m
Mormal Score

A means that there is one observation corresponding to that particular point;
B means that there are two observations corresponding to that particular point,
and so on.

Figure 4.4: Normality plot of normal connection data on July 18,2001.

4.1.3 Simulation Data Generation

The reason we use simulation data instead of collecting real data is that we can

only collect normal connection behavior data, and it is almost impossible to get

anomalous connection behavior data under the same circumstances, since the outbreak of

malicious code does not happen very often and we have no idea when it will happen. The

control system we propose is host-based, which means each user needs to install it on the

local host to make it work. We cannot use the normal data of one host to train the control

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

64

system and then put it to monitor the behavior of another host because the characteristics

of the connection behavior are different for one host to another. The best we can do is to

use the data provided by [Dave 2001], since this data is collected from the same host

under the same circumstances.

To generate the simulation data with the normal distribution as that of the real

data, we write a C++ program using the algorithm from Numerical Recipe [Vetterling

2002] which generates random numbers that follow a normal distribution. The function

Normal () can generate random numbers with distribution N (0 ,1). We know that if a

X — iirandom variable X has a distribution ofN(/u, a 2) , then Y = ------— has a distribution
a

o fN (0 ,1). So the random variable X can be written asX = crY + /u. Therefore, we can

generate sequences of random numbers with any normal distribution N (ju ,a 2) using

function the Normal () that generates random numbers with a distribution ofN{Q,1).

Using this method, we generated a training data set and a testing data set.

4.1.3.1 Training data generation

We generate 30 training samples to represent the normal connection behavior of

one month, each day with 24 elements, with each element representing the unique

Internet connection rate (Uc) per hour. The elements of the training data set have a

normal distribution of 7v(l7, 32), which is the same as the distribution that is obtained

from the real data we presented in Table 4.1.

4.1.3.2 Testing data generation

Every time we run the data generation program, the program generates a testing

data set with 1,000 samples that includes 600 normal samples and 400 abnormal samples.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

65

Each sample has 24 randomly generated elements to represent the number of unique

connections during each hour. For a better description, we number the samples from 0 to

999.

Sample 0-sample 599 simulate the normal connection behavior of a host.

The elements of sample 0-sample 199 follow the distribution of iv(l7, 32).

To simulate a normal gradual increase of process mean,

the elements of sample 200-sample 249 follow iv(l 8.5, 32),

the elements of sample 250-sample 399 follow iv(20, 32),

the elements of samples 400-sample 449 follow tV(21.5, 32), and

the elements of samples 450-sample 599 follow n (23, 32).

Sample 600-sample 999 simulate the abnormal connection behavior of a host. To

simulate the change of the connection rate, in each of the abnormal samples, the first 8

elements still follow the distribution of normal connection behavior at tv(23, 32), and

the rest of the elements have abnormal connection rates. To make the sample closer to

real data, the value of the sample elements increase a little bit after the eighth element,

and the value of the later elements keep increasing afterwards (as Figure 4.3 shows). To

simulate the stealthy worm whose connection rate generally does not increase to an

obvious high level, we generate random numbers from 29 to 39 as the abnormal elements

of sample 600-sample 799. To simulate the connection behavior of most current worms,

i.e., their attempt to connect to as many machines as possible, we generate random

numbers from 40 to 100 as the abnormal elements of sample 800-sample 999. So in the

simulation data, even the highest connection rate (which is 100) is much less than the

connection rate of the real data (which is 1281, at 9 am, when the malicious code broke

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66

out) as seen in Table 4.2. But the connection rate is still high enough to demonstrate the

efficiency of our control system. For each abnormal sample, when we generate the

random numbers as abnormal elements, we sort them from small to large, so that each

sample is similar to the real data shown in Table 4.2.

This kind of simulation is rough, but this is the best we can do based on the observation

of connection behavior and the real data that we have. Figure 4.5 shows the overall

distribution of the testing data sets by calculating the average of every 50 samples

sequentially.

iO u u m l Data

150 250 350 450 950

Sam ples

Figure 4.5: Distribution of testing data.

4.1.4 Detection Algorithm and Its
Statistical Analysis

Traditional Process Control technique includes two stages. Stage one is called the

Base Period during which the base data is collected and the normality assumption of the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

base data is checked as explained in Section 4.1.2. If the assumption is satisfied, we

estimate the mean and variance and then calculate the control limit (CL) from the mean

(/ /) and variance (cr) as

CL = fi ± A a

where A is a parameter determined by the control criteria. A bigger A makes the control

limit wider. Consequently, the probability of making a type I error is smaller, but the
r

probability of making a Type II error is greater.

Stage two is called the Monitoring Stage during which each new sample is

collected and identified to see whether it is within the control limit or not. If the sample is

beyond the control limit, a violation is detected. Figure 4.6 shows the procedure of the

detection of the malicious mobile code using the traditional Process Control.

Upper Control Limit

17

Monitoring periodBase period

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 0 2 4 6 8 1 0

Time (United States Central time)

Figure 4.6: Traditional process control chart.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The traditional Process Control procedure makes the operation simple, but it is

less adaptive to the changes developing in the process mean. Therefore, we extend the

traditional Process Control technique by adding a sliding window with size w so that the

base data always includes the most recent w observations. Whenever / new observations

are collected, we move the window forward to include these/ observations but still keep

the size of the window the same. This way, the control system learns any change of the

connection behavior and adapts to it by itself, and the false alarm rate is therefore

reduced; / represents the updating frequency of the control limit. If / i s set to be 1, the

control limit is updated once a new observation is collected. High updating frequency

(i.e. low value off) adds unnecessary computation complexity to the system, while low

updating frequency (i.e. high value off) may lower the detection accuracy. Choosing an

optimal frequency (f) is discussed in the experiment section.

Figure 4.7 gives the framework of building a control system for a given host using

the extended Process Control technique. Figure 4.8 presents the monitoring procedure.

Algorithm: Early detection and propagation mitigation of malicious mobile code.
Procedure 1: Early Detection ()

Initialize w and/; initialize i=0

1. Collect r samples as base data;

2. Check the normality assumption of base data.

3. If normality assumption is satisfied, continue to 4, otherwise stop.

4. Estimate mean and variance of base data;

5. Calculate the upper control limits;

6. Set sliding window with the most w samples of the base data.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

69

7. While system is online

Do

{
Call Monitoring Procedure;
If (z equals f)

{

Let i=0;
Move the sliding window forward so that the base data includes the most recent
/ observations;
Update mean, variance, and upper control limits;

} //end if
Otherwise i++;

}
End while

Figure 4.7: Early detection and propagation mitigation algorithm.

Procedure 2: Monitoring ()
Begin

Collect new connection rate
Check the control limit

{
If new observation is within control limit, back to while loop of Procedure 1.
Otherwise, limit the outgoing connection and investigate the system

}
End.

Figure 4.8: Monitoring algorithm.

Figure 4.9 shows the control system using sliding window. We can see that the

window with size w keeps moving forward as the monitoring period goes on. Each time

when the sliding window has been moved forward, the mean and variance of the unique

connection rate are updated.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

70

S t e p l : Collect base

Check normality
assumption

mue
S t e p 3 : Estimate N (f t „ , a ,)

4 : Create sliding window
‘Wn’ over base data

cr

S t e p 6 : Update W„ using the k-
shifl parameter to generate Wx~

UCL,= rt +3q
S t e p 7: Update N (f t , , cj-,)

e p 8 : Update upper control

limit ‘UCLV to ‘UCL,’.

At+*

Time in hours

W0, Wl etc., are the sliding windows. Each time when / new observations are collected, the sliding

window moves forward, and the upper control limit (UCL) is updated.

Figure 4.9: Flow chart of the detection algorithm.

4.1.4.1 Confidence interval for mean u

Let X be the mean of a random sample of size n from a normal distribution with

mean ju and standard deviation s, the random variable

T = ^X JL 4 3

s H n

has t distribution with n -1 degrees of freedom. The area between - t ajln_ 5 and ta/2 is

(I - a) (area a 12 lies in each tail), so probability

< T <?a/2,»-l) = 1- « 4.4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

71

Consequently, the 100(1 - a) % confidence interval for n is

(- ^ U / 2 , n - l I— ’ U / 2 , n - l i—) •
yin yin

4.5

Moreover, when the area of the upper tail is a , then probability

P {T < ta^) = \ - a . 4.6

So the upper confidence bound for /j. is

4.7

If we let a be 0.01, using Equation 4.5, the confidence interval for mean fj. of normal

unique connection rate is obtained as

Simplifying it, we get the 99% confidence interval for mean // as (15.77, 19.47), which

means the probability that the mean value of the normal unique connection rate lies in the

interval (15.77, 19.47) is 99%. Using Equation 4.7, the 99% upper confidence bound for

H is obtained as 19.27, which means the probability that the mean value of the normal

unique connection rate is less than 19.27 is 99%.

4.1.4.2 Upper control limit

In the industry, if the random sample of a monitored process falls in the area of

ju ± 3 a , we believe that the process is under control. In our case, we assume that the

mean ju and standard deviation cr are known, and their values are 17.62 and 3.23,

respectively. Hence, the control limit for the control system is 17.62 ± 3 x 3.23. Since we

know that when a malicious code propagates, it always increases the unique connection

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

72

rate, then we only need to be concerned about the upper control limit. Therefore, when a

random sample falls beyond ju + 3a =27.31, an out of control signal will be given.

4.1.4.3 Level of significance

Let random variable Y denote the unique connection rate. It has normal

distribution with mean ft and variance a . Yl ,Y2,Y3,---,Yn are the random samples of the

unique connection rate. The monitoring period includes a hypothesis test at the given

significant level a , that is:

Null hypothesis

H 0 : Yt =fi

Against alternative hypothesis

Hr- r ,> f i

where ft is the estimated mean value using the connection data in the sliding window.

The Test statistic TS is obtained as

TS = 4.8

which has a Z distribution, so this hypothesis test is also called a Z test.

The rejection region for level a test is TS > za , where za is defined as the point

such that P(Z > za) = a ; za is also called the critical value. An out-of-control signal

occurs whenever a point falls in the rejection region, and an investigation for possible

reasons should be initiated; a is the probability that we reject H 0 when H 0 is true,

which means we identify a connection behavior to be an anomalous behavior since it is

beyond the control limit when it actually is normal.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

73

Traditionally, the control limit is defined as /) ± 3cr . But since malicious programs

only increase but never decrease the connection rate, we are only concerned with the

upper limit, which is defined as ju + 3 a , and

Hence, the significance level a is 0.0013, which implies that the probability a

normal connection rate falls beyond the UCL is 0.13%.

4.1.4.4 P-value of the hypothesis test

The P -value is the smallest level of significance at which H 0 would be rejected

when a specified test procedure is based on a given data set. If the significance level is

greater than P -value, the null hypothesis will be rejected; otherwise, the null hypothesis

will be accepted. The P -value of a hypothesis test lets us know whether the null

hypothesis is barely rejected or barely accepted by comparing the significance level

a and the P -value. Figure 4.10 illustrates the P-value in a Z test where the P-value is

greater than significance level a . So, TS does not lie in the rejection region and the null

hypothesis will not be rejected in the example given in Figure 4.10.

P(Z > (// + 3<t)) =0.0013

//
\ P-value

0

Figure 4.10: The P-Value of a Z test (TS: Test Statistic).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

74

The P-value of a Z test can be obtained by checking a standard normal

probability table. For example, if the connection rate is 24, using Equation 4.8, the test

statistic is obtained as

r a = 24- 17-65= 1.966.
3.23

From the standard normal probability table, we approximately get

P (Z > 1.966) = 0.0247.

Hence, the P-value is 0.0247. Since the significance level we set is 0.0013, which is

much less than 0.0247, we can strongly conclude that the null hypothesis H 0 should not

be rejected.

4.1.4.5 Average run length

When a process is in control, we should observe many samples before we come

across one sample that is beyond the control limit (a false alarm). Define a random

variable S, such that S = the first i for which Y{ falls outside the control limit.

If we think of each sample as a trial and an out-of-control sample as a success, then S is

the number of trials necessary to observe a success. The expectation of S (E(S)) is called

the Average Run Length (ARL), and ARL for a false alarm to appear could be obtained as

ARL = E (S) = - . 4.9
a

One reason why network users do not want to enable the intrusion detection systems is

that the intrusion detection systems may give off false alarms and these false alarms are

irritating to most people. Therefore, we need to make the false alarm rate as low as

possible, i.e., to make the ARL value as large as possible.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

75

For example, if the significance level of the hypothesis test is set at a =0.005, i.e., we

take Y + 2.575a as the upper control limit, then the false alarm rate is 0.5%. By

calculating, we get

ARL = E(S)= — = —-— =200,
a 0.005

which means when the process is under control, one false alarm could happen for every

200 observations.

The control system we designed takes Y + 3& as the upper control limit;

therefore, the hypothesis test is at significance level a =0.0013. Hence, we could get the

Average Run Length as

ARL = E(S) = —= — -— =769.23,
a 0.0013

which means when the process is under control, at the utmost, one false alarm could

happen for every 769 observations if we set the upper control limit of the connection rate

at 27.31.

4.2 Experiments

This section presents the details of building a control system using the simulation

data. The purpose of the experiments is:

• To demonstrate the training process and the testing process of the control

system.

• To test the reliability and the adaptability of the control system.

• To give a quantitative evaluation of how sliding window improves the

performance.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

76

• To evaluate the effect of tuning parameters like, the sliding window size (w)

and the updating frequency (/).

4.2.1 Training

Before we train the control system, we should check whether or not the training

data follows normal distribution. Since we already checked the normality assumption of

the real data and the simulation data is generated following the same distribution as that

of the real data, we know that the training data also satisfies the normality assumption. So

we feed the training data to the controller and the controller learns the mean, variance,

and upper control limit from it.

4.2.2 Testing

We build two controllers: controller one uses the traditional Process Control

technique; controller two uses the extended Process Control technique with the sliding

window. We perform experiments using both controllers. This section shows the

reliability of the control system and the performance of each controller. We also discuss

the choice of the optimal tuning parameters by testing their effects.

4.2.2.1 Performance analysis of the
control system

The performance of the control system can be analyzed by comparing the false

negative and the false positive rates of the two controllers (one using the traditional

Process Control and the other using the extended Process Control).

False Negative:

We first train the two controllers with the training data set. Then we run the controller

program 100 times to test the reliability, each time with a different testing data set. Both

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

77

controllers detect all anomaly samples when malicious code starts spreading, so the false

negative rate of both of them is zero.

False Positive:

Figure 4.11 plots the false positive rate of each experiment run. The false positive rate of

controller one is about 30% to 35% and the false positive rate of controller two is lower

than six percent. Therefore, we can demonstrate that the false positive rate is greatly

reduced when we apply the sliding window.

From Figure 4.11, we can also see that the performance of controller two is quite

reliable. It has an average false positive rate of 4.35% and no false positive rate higher

than 6% in any single run. Therefore, we conclude that the control system using the

extended Process Control technique is effective in detecting the propagation behavior of

malicious codes. The sliding window plays an important role in reducing the false

positive rate when the process behavior changes. The effectiveness of the extended

Process Control can be attributed to this introduction of a sliding window, which causes

the control system to be more adaptable to the changes of the connection behavior.

0.4-

0.35 -

0.3-
S
g 0.25 +-

8 02 +T
! 0.15-

“■ 0.1 -
0.05-H

0-
1

□False positive of ti

□Falsepositive of

:racStionai Process Cotirol

□L CL a i d a
3 4 5 6 7

Experiment run

10

Figure 4.11: Reliability of the control system applying traditional
and extended Process Control technique (w = 6 0 0 ,/ = 20).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

78

4.2.2.2 The effect of sliding window w

If the size of the sliding window w is too small, it will result in an inadequacy of

the model to properly represent the system dynamics, and will therefore lead to a poor

general performance. Conversely, if the window is too larger then the computational

complexity is unnecessarily increased. To choose an optimal value for w, we perform an

experiment with different sizes of the sliding window. For each size of the sliding

window, we run the experiment ten times and get the average false negative rate and the

false positive rate from these ten runs. Figure 4.12 and Figured 4.13 plot the average false

negative rate and false positive rate respectively when the window size varies from 20 to

720.

Figure 4.12 shows that when w increases, the false negative rate decreases.

The control system gets zero false negative rate when w is greater than 480. Figured 4.13

shows that when w is too small, the false positive rate is high, but it converges quickly to

about 6% when w increases above 40. The overall performance analysis of the control

system we presented in Figure 4.11 is given at w = 600.

0,9

0.8

0.5 ■-
0.4 • -
0.3 • -

0.2 - -

Size o f th e slid ing w indow

Figure 4.12: False negative rate of the control system when the size of
sliding window w varies (The value of f is fixed at 1/ 20).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

79

0 .16 T

0.14

0.12 - -

? 0.1 J-

'B 0 .08 - - o
8 0 06 -H

0.04

0.02

20 40 60 80 100 1 2 0 240 360 480 6 0 0 720

Size o f th e s lid ing windo w

Figure 4.13: False positive rate of the control system when the size of
Sliding window w varies (The value of f is fixed at 1/ 20).

4.2.2.3 The effect of updating frequency f

Let the number of new observations in the sliding window to be os , then the

updating frequency / is defined as / = — . When / is larger, the control system moves

the sliding window more frequently. Since the control rules are updated each time the

sliding window is moved forward, the computation complexity is increased. If / is too

small, the control system cannot catch the dynamic change of the connection behavior in

real time. Hence, the performance of the control system is degraded.

Figure 4.14 and Figure 4.15 plot the average false positive rate and false negative

rate respectively when / varies. Figure 4.14 shows that the false negative rate becomes

zero when 1/ f > 16. Figure 4.15 shows that the false positive rate is stabilized when

/ < 26 but increased dramatically when l / / > 26. Overall, the optimal/ value is between

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

80

1/16 and 1/26. The overall performance analysis of the control system we presented in

Figure 4.11 is given at 1/f - 20.

0.3

0.25

1 0.15O)

L L
0.05 -

Figure 4.14: False negative rate when/ varies
(The value of w is fixed at 600).

0.4

0.35

0.3

0.25

0.2

0.15

u.

0.05

Figure 4.15: False positive rate when/ varies
(The value of w is fixed at 600).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

81

4.3 Risk Analysis of the Control System

All intrusion detection systems have a false positive rate. Therefore, there is

always a probability that a detection system detects a propagation that does not exist at

all. In statistics, this is also called producer’s risk. For an intrusion detection system, it is

extremely important to reduce the producer’s risk because it may lead to a complete

rejection of usage. This section analyzes producer’s risk and introduced a novel idea of

using Sequential Probability Ratio Test (SPRT) to control the risk.

4.3.1 Risk Analysis Using SPRT

Let the inspection result of the ith unit be denoted as X t, then X t=\ if there is

malicious code propagation detected; X t = 0 otherwise.

Let / represents the probability function of A , then

f (\ , p) = p and f (0,p) = I - p .

Here, p is interpreted as the false positive rate, that is, the probability of detecting a

malicious behavior of a healthy machine.

To test the hypothesis of H 0 : p = p 0 against H x \ p = p x, let p 0m and p lm be the

probability of getting d m false detection in the sample (X l, X 2, - - , X m) o f size m under

H 0 and H] , respectively. Then the Likelihood Ration

4 . 10
n m rt \ m~“m
Pom U f (Xi, P o) P 0 t 1 Po)

1=1

(1 A

log An = dm log— + (m - J m)lOg
P o i - P o

4 .ll

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The SPRT for a hypothesis H 0 : p = p 0 against its alternative H x : p = p x is

carried as follows:

If log Am > A , reject H 0 and terminate the process.

If logAm < B , accept H 0 and terminate the process.

If B < logAm< A , collect observation X m+x, calculate \ogAm+x and compare the

value of log/Lm+1 with A and B again.

Where A and B are constants defined as

. , 1 - p _ . PA = log — and B = log———
a I - a

4.12

If we write

P o . V l ~ P o)

4.13

then Equation 4.11 becomes

l°gAm = d mg x - (t n - d m)g 4.14

So, we reject H 0 if

g x + g 2 g l + g 2
4.15

We accept H 0 if

d mg x - { m - d m) g 2 < B = > d m < — - — + m — g -2 - -

gx g 2 g x + g 2
4.16

Then, the rejection line Lx is
d m = h i + sm 4.17

and the acceptance line L2 is
d m =h7 + smm l 4. 18

where hx = ---------- , h2 = -----------, and s = ------ —
g x + g 2 g x + g 2 g x + g 2

4.19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

83

From Equation 4.17 and Equation 4. 18, we can see hx and h2 are the interception of line

Z, and line L2 on the d m axis respectively, while s is the slope of both lines. Below is

the Risk Control Algorithm using line Lx, L2 and point (m,dm) . And Figure 4.16 is the

control chart based on the risk control algorithm.

Risk Control Algorithm

1) Determine p 0, p x, a , /?;

2) Calculate A and B using Equation 4.12; Calculate gx and g 2 using Equation 4.13;

3) Get the value of hx, h2 and s using Equation 4.19;

4) Draw rejection line Lx and acceptance line Z2 using 5 as slope and hx, h2 as

interception for Lx and Z2 respectively as Figure 4.16 shows;

5) Get the mth sample, count dm;

6) Plot point (m, dm);

7) If point (m,dm) lies between Lx andZ2, back to 5; otherwise, stop.

(Rejection Region)

Conti

A

nne

m

LjZ dm = h}

(Acceptance Kcgion)

Figure 4.16: Risk control chart. If point (m,dm) lies below Z2, accept H 0;
if it lies above Z,, reject H 0; otherwise, keep sampling.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

84

4.3.2 Examples of Risk Control Using SPRT

Let the false positive rate be p 0, since we are using a one-sided control process

with 3cr as the control limit, />o=0.001. To test the hypothesis that the false positive rate

is p Q, we have

H 0 :p = p 0 against H x: p = p x

Letp x = 0.002, a - 0.01, /? = 0.05, we get

A =log1~ ° 'Q5 = 1.978
0.01

B=log— =-1.297
0.99

, 0.002 „ . . .g x = log--------= 0.301
1 0.001

. 1-0.002 .g 7 = - log------------- = 4.349x10
2 1-0.0013

hx =— - — =6.563
g l + g 2

h2 = — - — =- 4.303
gx+gl

s= 8 2 = 0.0014.
gl+g2

Therefore, the rejection line Lx is: dr = 6.563 + 0.0014/w; the acceptance line L2 is

da =-4.303 + 0.0014w.

Table 4.3 lists two examples of using SPRT to control the risk of false positive.

We plot the acceptance example on Figure 4.17. From Figure 4.17, we can see that points

lies in the middle until m = 3800.1ies acceptance region when, which means we should

Haccept hypothesis 0. In other words, the false positive rate is the same as we expected

from the theory. We also take one sample from the stealthy malicious code whose

propagation is hard to observe because of the low connection rate. Using the detection

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

85

result of the stealthy malicious code, the sequential ratio test is processed as Table 4.3

Example 2 shows. Plot Example 2 on Figure 4.18, we can see when m = 760, the point

Hlies in the rejection region, which means 0 is rejected and we should accept the

alternative. Therefore, we should adjust the control limit so that the false positive rate

could be reduced to what we expected.

Table 4.3: Risk analysis using SPRT

Example 1: An Acceptance Example Example 2: A Rejection Example

M d m dm d.

0 0 -4.303 6.563

1 0 -43016 65644

10 0 -4.289 6577

100 0 -4.163 01703

1000 0 -2J903 7-963

1500 1 -2203 6663

2000 1 -1.503 9J363

3000 1 -0.103 10.763

3000 1 0.737 11.603

3700 1 0.877 11.743

3000 1 1J017 11-883

n dm dM d.

0 0 -4.303 6563

1 0 -43016 65644

10 0 -4.289 6577

100 1 -4.163 01703

200 2 -4.023 6.843

300 3 -3883 6983

400 3 -3.743 7.123

500 4 -3.003 7263

600 5 -3463 7.403

700 7 -3323 7.543

700 8 -3183 7.683

(Rejectum Segjon)

X,: <7, =6_5ti3-t-0.0014 m

Cnrtmne

(0,1000) (1,1500) 0,2500) 0,3500) 0,3100)

L,: d a = -4 303 +0 0014 m

(AaxptBnx Region)

Figure 4.17: An acceptance example of risk control (Since point (1,3800)
falls in the acceptance region, we should accept the hull hypothesis).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

86

(Rejection Region) .A®-760®
V(7,TO0)

d T = 6.563+0JMI14»i (5.6009
Continue(4,5009 (3,300) (3,4009 *

0,3009
(1,1009

02.109

i j : rf„— 4_303+0JM14xi

(Acceptance Ecgjun)

Figure 4.18: A rejection example of risk control (Since point (8, 760)
falls in the rejection region, we should reject the hull hypothesis).

4.4 Network Performance Analysis

This section analyzes the propagation behavior of malicious code when the control

system applied. We compare the performance of a network when different number of

machines applied the control system. The performance is evaluated by the mathematical

propagation models. We extend the propagation models introduced in Chapter 2 by

introducing a new factor, which we will give the detail in the following section. We also

design a serial of propagation simulations in a network with control system. The

simulation result is consistent with the theoretical result, which implies the success of the

control system. The notation we use in this section follows the same definition given in

Chapter 2.

4.4.1 Extended SI Model

In Chapter 2, we have presented the standard SI model that assumes the

population is homogeneously mixed, which is not true in the real world. In Chapter 3, we

have introduced a new factor B, the average number of contactors an individual has in a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

87

given time period, into the stochastic propagation model. Here, we will present the

deterministic SI model with factor B.

Assuming we have only one machine infected at time zero, the total number of

infected individuals can be modeled as:

dlif) = B N - l i t) ^ with = 1
dt N w

Let i = I / N and k = J3-B, dividing both sides of Equation 4 .2 0 by N, we get

di(t)/dt = £ (1 - i(t))i(t) 4 .2 1

The solution of the general epidemic model given as Equation 4 .2 1 is

ekt1(0 = f 77 4 .2 2
N - l + ekl

where k is the infection rate. Infection rate is the number of machines that could be

infected by one infectious machine in one time unit.

4.4.1.1 Fitting the observed data with
extended SI model

The computer worm Code Red exploits the buffer-overflow vulnerability in

Microsoft’s IIS web server [Moore 2 0 0 2] . The propagation of Code Red is noticed at

about 1 0 : 0 0 am (central time) on July 1 9 . The propagation stops at 1 2 : 0 0 midnight by the

designing of Code Red. It infected more than 3 5 9 ,0 0 0 machines during approximately 13

hours of propagation [Moore 2 0 0 2] [Caida 2 0 0 1] . Code Red randomly generates 1 0 0

threads; each thread randomly chooses one IP address and connects to the machines with

corresponding IP addresses through port 8 0 [Zou 2 0 0 2] , It installs the mechanism for

remote, administrator-level access to the infected machine so that the machine could be

used to execute any code [Moore 2 0 0 2] . Therefore, it is highly dangerous. Figure 4 .1 9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

88

shows the observed Code Red propagation. The infection came to saturating around

20:00, and the propagation stops at 12:00 midnight, so the number of infected host in

Figure 4.19 does not change after 12:00 midnight.

Assume that the total number of vulnerable hosts is 400,000. If we fit the model

with k = 0.8, we get the theoretical result o f Code Red propagation in Figure 4.20..

Compare Figure 4.19 and Figure 4.20, we conclude that even the simple SI epidemic

model provides a reasonably good approximation of malicious mobile code propagation.

The observed value does not grow as smooth as the theoretical model because the

network bandwidth is exhausted by the malicious code so that it cannot connect and

infect the target machine as it does at the early infection stage.

4 0 0 0 0 0

3 5 0 0 0 0

3 0 0 0 0 0

2 5 0 0 0 0

3 £00000 -

150000

100000

5 0 0 0 0

Code Red Norm - infected hosts

0 0 : 0 0 0 4 : 0 0 0 8 : 0 0
0 7 / 1 9

1 2 : 0 0 1 6 : 0 0
time <UTC>

0 0 : 0 8
0 7 / 2 0

0 4 : 0 0

Figure 4.19: Observed Code Red propagation (From www.Caida.orgl.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.Caida.orgl

89

450000

350000

300000

250000

200000

150000
100000

50000

timeQJTC)

Figure 4.20: Theoretical result of Code Red propagation.

4.4.2 Propagation Modeling with
Control System

As we discussed in Chapter 2, when propagation starts, the speed is slow at the

very beginning, then it comes to the fast spreading stage during which the number of

infected nodes grows tremendously, and finally the infection speed slows down since

very few susceptible nodes are still available. At the first and the second stages, the

number of infected nodes grows almost exponentially. If all hosts use the control system,

the infection speed could be greatly reduced and the infection may never get to the third

stage because countermeasures taken by humans could immunize nodes when they are

healthy. In the following subsection, we present the propagation model with the control

system and give a quantitative evaluation of the effects of the control system. We do not

consider immunization and recover in this model.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

90

When a malicious code detection system is applied in a network, a healthy host

might be flagged as infected (False Positive), and an infected host might not be detected

and therefore declared as healthy (False Negative) (See Figure 4.21). A false positive will

not affect the propagation of a malicious code, so we do not need to consider it in the

propagation model. Suppose p percent of the hosts installed the control system and the

detection rate of the control system is d. We know that the false negative rate is 1 - d .

Figure 4.21: State transition of extended SI model with detection system.

When a machine is detected with malicious code, its connection rate is limited.

Ignoring the one unit detection delay, we have

where /, = I ■ p - d , I 2 = I • (l - p)+1 • p - (l - d) ; B l is the limited number of contactors a

machine could have when infection is detected; B2 is the number of contactors a machine

could have when infection is not detected, and B2 » Bx.

S: Susceptible I: infected
FP: False positive FN: false negative

4.23

Let kx = /?•#, , k2 - /3 - B 2, i = I I N , / , = / , / N , i2 = I 2 1 N , then from Equation 4.23,

we obtain

di I dt = k , (1 — i)/j +k2(1 — i)i2 4.24

The solution of Equation 4.24 is

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 4.22 shows the infection delay when a different percentage of hosts install

the control system. Obviously, the more hosts installing the control system, the better the

results are. If only 20% of the hosts adopt the control system, the overall effect is very

limited. When p is about 80% or 90%, the difference is huge.

0 5

©IW-
p=0 8

T im e Unit

Figure 4.22: Infection evolution with different p values
(N = 10,000, j3 = 0.8, d = 1.0).

4.4.3 Simulation

This section conducts simulation experiments to verify the prediction of the

spreading speed and scale given by the models. We first simulate a simple epidemic

propagation model, and then we simulate the propagation model with the control system.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

92

4.4.3.1 Simulation setup

Our simulation program includes a network generator and an infection process.

Every time we run the simulation, the network generator will generate a random network

with 5,000 nodes. Each node has a switch. If the switch is on, the control system is turned

on; otherwise, the control system is off. The number of neighbors has a uniform

distribution of (1, 20). The neighbors of each node are randomly generated. Neighbors of

a given node are defined as the nodes that the given node will contact in an infection

process. Figure 4.23 gives the general structure of each node in C++ style. Once node j is

randomly chosen as the neighbor of node i, we also add node i as node f s neighbor.

General Structure of Each Node in the Random Network

struct node {

// declare the Unique ID of the node
int id;

//the number of neighbors allows; this number has uniform distribution
int egNo;

//node status; 1 = healthy; 0 = infected; -1 = immunized
int status;

// switch of the control system,
bool control; // control=l, control system on; control = 0, no control system

//to specify the node is infected or not in current dt or before
bool newlnf;

// store the id of its neighbors
int array nborID[];

// the total number of neighbors
int nborNo;

} End node

Figure 4.23: General structure of each node.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

93

One node is randomly selected as the initially infected node. We use time step to

represent the time unit dt in the propagation models. During each time step, each infected

node tries to infect its neighbors with pair wise infection rate (3.

4.4.3.2 Propagation simulation of SI model

To simulate the simple epidemic model without the control system, we just turn

off the switch. We run the simulation 100 times. Figure 4.24 plots the infection process

by taking the average of all simulation runs. The simulation is a little slower than the

theoretical model at the early infection stage. Overall, the simulation results are close to

the theoretical results, so we conclude that simple epidemic model given by Equation

4.20 matches the general propagation phenomena. Since the real data have validated the

accuracy of the theoretical model as shown in Section 4.4.1, and the simulation result is

close to the theoretical model, we conclude that the simulation does approximate the real

infection phenomenon. Therefore, we are confident that our further simulations

approximate the real propagation scenarios.

9 simulation r e s i t

• model result

V \<-

Time s tep

Figure 4.24: Simulation results and theoretical results of
SI model (k = 0.4, p = 0).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

94

4.4.3.3 Propagation simulation
with control system

We simulate four cases of worm propagation with control system. In each case,

the percentage of nodes with control system on is different. Every time we run the

infection simulation, we randomly choose p percent of the nodes with control system

turned on. During propagation, an infected node tries to infect its neighbors with a lower

infection rate (k value) if the switch is on; otherwise, we keep using the same infection

rate (k value) as in Section 4.4.3.2. We run the simulation 100 times for each case. Table

4.4 shows the average time units needed to infect certain percentage of the network nodes

under different cases.

Table 4.4: Simulation results of four different p values

Case No. P T1 T2

1 20% 5.5 68.7

2 50% 9.9 124.9

3 80% 12.1 161.4

4 90% 25.2 192.4

p is the percentage of hosts with control system on.
T1 is the time steps needed to infect half of the nodes.
T2 is the time steps needed to infect all the nodes.

Figure 4.25 and Figure 4.26 show the infection evolution when p = 0.8 and

p = 0.9, respectively. We also plot the infection results of the theoretical model. We can

see the theoretical results match the simulation results. Furthermore, the average time

needed to infect the population decreases dramatically when increased from 0.8 to 0.9.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

95

From Table 4.4, we know it takes about 12 time steps to infect half o f the nodes when

p = 0.8, but 25 time steps when p = 0.9.

Table 4.4, Figure 4.25, and Figure 4.26 illustrate that when p is less than 20%, the

propagation limiting effect is very small, but when p is more than 50%, the slowing down

effect is obvious. In summary, both simulation and theoretical model show the

effectiveness of applying the control system. To fight the malicious mobile programs

efficiently and to minimize the overall damages, we should not just think about protecting

ourselves from the outside world, or just depend on a few hosts to do the good deeds. In

order to get the satisfactory result of propagation restriction, we need to have at least 50%

of the hosts of an organization or community to install the control system. This is also the

limitation of the control system.

simulation result -theoretical result

0.8

0.6

0.4S)

0.2

t i m e s t e p

Figure 4.25: Simulation result and theoretical result of malicious code
propagation when p = 0.8 (N= 5000).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

96

—•—simulation result a theoretical result

t im e s t e p

Figure 4.26: Simulation result and theoretical result of malicious
code propagation when p = 0.9 (N = 5000).

4.4.4 Conclusion

In this section, we modify the standard SI model by introducing a new factor B.

We present the propagation models with and without the control system. We fit the

observed Code Red propagation data into the theoretical model and the result is

satisfactory. The simulation of Code Red propagation is close to the observed data.

Therefore, we conclude that the propagation simulation approximates the real

propagation of malicious mobile code, and the conclusions we draw from the simulation

experiments are reasonable.

The mathematical analysis of modified SI models (Equation 4.20) and the model

with control system (Equation 4.23) shows that the control system helps reducing the

spread of malicious code. The propagation scale is reduced more when more other hosts

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

97

are using the control system. Further simulation verifies the prediction of the number of

infected hosts using the theoretical models.

4.5 Discussion

The proposed control system is host-based and it is adaptive to the characteristics

of the local host. Once installed, it leams the local host’s connection behavior and blocks

the anomalous behavior based on the host’s own normal behavior. Besides, when the

host’s behavior changes, the detection system leams the changes and makes the

corresponding changes in its operating parameters, and thus ensures that the false alarm

rate is reduced.

4.5.1 Detection Delay

The detection delay of the control system depends on the time interval between

two observations. In this experiment, since the unique connection rate data is recorded

per hour, the detection delay is one hour. However, when we put the system into real use,

the one-hour monitoring interval is too long when malicious code really exists. We

should set the monitor interval smaller: for instance, one minute, or even one second

depending on the security requirement. In the experiment, we use one-hour interval just

because the real data we have is collected per hour. Besides, the main purpose of the

experiment is to demonstrate the effectiveness of the control system.

4.5.2 The Advantages of the Control System

Normally, the side effect of high false positive rates in intrusion detection systems

is that when an anomaly is detected, the machine is isolated from the network by the

intrusion detection system. This may lead to the annoyance of a network user whose

work will be hampered and ultimately may cause the user to discard the intrusion

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

detection system. In order to decrease this side effect, the control system does not isolate

the machine from the network when anomaly is detected but just limits the connection

rate to a lower level. The advantage of doing this is that a user will not get annoyed and

discard the control system because of the false alarms. The propagation of malicious code

is automatically reduced, though not completely blocked, if hosts have the control system

installed. Therefore, the overall damage to the machine and the network and thereby our

society, caused by the malicious code is reduced, and the degree of reduction highly

depends on the percentage of hosts that adopt the control system in the community. In the

next chapter, we will discuss the relationship between the propagation scale and the

percentage of hosts that have the control system installed, using some mathematical

models.

4.5.3 The Limitation of the Control System

One limitation of the control system is that it cannot detect malicious code that

does not propagate through Internet connections. For example, some malicious code may

propagate through e-mail, usually as e-mail attachment. The machine gets infected when

people open the attachment. The malicious code will scan the address list of the victim

and sends e-mails with the same malicious attachment to everybody in the address list

automatically. In this case, we can define the normal behavior as the traffic size or the

number of e-mails sent/received by a machine in a certain period of time. The same

framework can be applied to build and train the control system. The only difference is

that the monitored behavior is not the number of connection requests but the number o f e-

mails sent/received in a given period of time. Similarly, we can extend the control system

and apply it to monitor the behavior of the server system. The important thing is that we

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

99

need to define the normal behavior that can differentiate the normal and abnormal status

of a system.

Another limitation is that the network performance relies on the portion of

machines with control system. The performance improvement evaluated by infection

delay does not have a linear relationship with the portion of machines with control

system. In fact, the control system has little effect if only a few machines of the whole

network are using it.

4.6 Summary

This chapter presented the development of the control system using Process

Control technique. We checked the normality assumption of the real data and generated

the simulation data with the same characteristics o f that of the real data. Then, we showed

the training and the testing process of the control system. The test results showed that the

control system achieved zero false negative rate and less than 6% false positive rate when

we used the optimal tuning parameters. Therefore, the control system is reliable in

detecting the propagation of malicious mobile code. We also discussed the detection

delay, the advantages and limitations of the control system. The uniqueness of this

approach includes:

• It is novel to apply the Process Control theory in the early detection of

malicious mobile code propagation.

• The addition of a sliding window to the traditional Process Control algorithm

is very aboriginal, and this makes the system adaptive to the changes of the

connection behavior.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

100

• The hypothesis test underlying the monitoring period gives a statistical

explanation and quantitative measurement of the detection accuracy.

• The Sequential Probability Ratio Test ensures the quality o f the detection

system.

• The mathematical models validate the efficiency of the control system in a

network environment.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation discusses propagation modeling of malicious mobile code, and

proposes a control system to detect and mitigate the propagation of malicious code

automatically. The goals of our work are: (1) Propagation evaluation and prediction of

malicious code using stochastic models; (2) Early detection and propagation mitigation of

malicious code. We have been successful in achieving the goals since the simulation

results match the theoretical results from the propagation models, and the control system

we proposed detects the propagation of malicious code with zero false negative rate and

less than 6% false positive rate.

Chapter 1 is an overview of this dissertation. Chapter 2 introduces the

backgrounds and related research.

Chapter 3 presents stochastic propagation modeling of malicious mobile code. We

build a propagation model, INIM model, considering passive immunization from both

healthy machines and infected machines. Probability generation function technique is

used to get the explicit solution of the stochastic propagation models. The propagation

results from the solution match the simulation results, which implies that it is reliable to

use the propagation model to evaluate and predict the propagation of a malicious mobile

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

code. To detect and mitigate the propagation of malicious mobile code automatically, we

propose a control system using statistical process control techniques in Chapter 4. We

extend the traditional process control by adding a sliding window so that the changes of

process mean will not affect the detection result. We present the general steps of building

a control system and give a statistical analysis of the control system. We also present the

details of data collection, assumption checking, training, and testing. The simulation data

we used in training and testing are generated based on the real data we have. In the

simulation experiments, we discuss the effects of tuning parameters like the size of the

sliding window and the updating frequency. The testing results are satisfying and the

false positive rate is reduced from more than 30% to less than 6% when the sliding

window is applied. We also used sequential probability ratio test to control the false

positive rate so that it will never exceed the threshold. Network performance analysis

shows that the relationship between propagation mitigation effect and the portion of

machines applied control system is not linear. Experiments show that if less than 30% of

the machines in a network applied the control system, the effect is negligible, but if more

than 90% of the machines applied control system, the propagation delay is significant,

which gained us precious time to fight for it.

5.2 Future Work

5.2.1 Network Immunization

Malicious computer mobile codes have been considered as a form of artificial life

[Spafford 1994] [Thimbleby 1998] since (1) it exists in space and time; (2) it has the

characteristic self-reproduction; (3) information is stored when malicious mobile code

replicates itself; (4) it interacts with the environment and damages are caused by these

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

103

interactions; (5) it has interdependent parts as live organism has; and (6) it mutates.

People also argue that malicious mobile code has a kind of metabolism because it takes

electrical energy to disseminate its patterns of instructions and infect other systems

[Spafford 1994]. Biologically inspired immune systems are developed for computer

systems [Forrest 1997] [Harmer 2002] [D'haeseleer 1996] [Kephart 1994]. These immune

systems profile the normal activities of a machine as self and detect intrusions as non-self.

Immune systems proposed in [Forrest 1997] [Harmer 2002] [D'haeseleer 1996] [Kephart

1994] are basically intrusion detection systems using misuse detection method. The

immunization we discuss in this chapter is different from the immune systems. The

immunization of malicious mobile code is more like the immunization of epidemic

diseases of human beings.

Immunization has been very successful in controlling epidemic diseases of human

beings. Small pox, the disease that originated the research of epidemic modeling, has

been eradicated since vaccination is available to everyone. This chapter defines two

immunization strategy terms for immunization of malicious mobile code. One is called

passive immunization; the other is called active immunization. Propagation models of

malicious mobile code considering the effect of passive immunization and active

immunization are presented, respectively. In active immunization, we present the idea of

using beneficial mobile code to fight against malicious code.

5.2.1.1 Propagation modeling with
passive immunization

When an active malicious code is found propagating along the network system, a

security expert will analyze its signature. The way to remove the malicious and fix the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

104

system will be released to the public once it is available. Users whose machines have

been infected will take action to immunize the machine.

Definition: An immunization is called passive immunization if the immunization action

is taken by human beings.

We divide the lifetime of a malicious code T into two stages. Stage one (Tx) is the

period during which the immunization of certain malicious code is not available. Stage

two (T2) is the period during which the immunization method has been announced. The

propagation models we presented in Network Performance Analysis of Chapter 4

describe the propagation of malicious code in Tx. Here, we present the propagation model

in T2.

Suppose the immunization rate of infected machine is y . Following the same

notations given in previous chapters, in a homogeneous network, the deterministic

propagation model in T2 is

' dS(t)
dt

dl(t)

= -0 S (t)I(t)

_ 5.1

= y l(t)

dt t> t1
dM(t)

dt
S(t) + I(t) + M (t) = N

with initial conditions S(0) = N - I 0, 7(0) = / 0, and M (0) = 0 ; tl is the moment that

immunization method is available.

Usually, when a computer system is infected, the user of that system may tell this

to his/her friends. Also, people may get the message from the media or the Internet. The

warning message about the malicious code will be disseminated, and people may take

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

105

action to prevent the machine from getting infected. Therefore, healthy machines could

also be immunized. The warning message traverses through the social network of human

beings. The network topology has little effect on passive immunization rate since the

spread of warning message does not go through the computer network. Chapter 3 gives

the model which considers passive immunization from both healthy and infected

machines. The model we present below considers the control system we proposed in

Chapter 4.

Let a denote the immunization rate of a healthy machine and y denote the

immunization rate of the infected machine. Suppose p percent of the machines in our

network installed the control system, and the average number of neighbors a machine has

is B, then the propagation model of the malicious code is given as

dS^ = - aS(t) - / XJ3BX ^ - I 2(3B
dt w w 1 N 2 2 N

dt ' ' N L * N w t> t ,

^ j p - = ctS(t)+jf(t)

S(t)+ l(t) + M (t)= N

with initial conditions ,5(0) = N - I 0, 1(0) = / 0, M (0) = 0. I x, / 2, Bx and B2follow the

same notations we gave in Chapter 4.

5.2.1.2 Propagation modeling with
active immunization

Mobile programs are also called self-replicating programs because it has a self-

reproducing mechanism. Self-replicating mobile codes are considered to be malicious by

most people since the earliest and most prevalent self-replicating mobile program is

malicious. However a self-replicating mobile program does not have to be malicious; it

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

106
r

can be designed to be beneficial [Chen 2004] [Eugster 2004] [Thimbleby 1999]

[Bontchev 1994]. For example, mobile 'code can be designed to travel from machine to

machine and do useful work in a distributed environment [Levis 2002] [Eugster 2004];

mobile code can be used to fight against the malicious programs [Bontchev 1994]. The

designed network should favor the dissemination of benign mobile code but throttle the

spread of malicious mobile code. If a beneficial mobile code that is designed to fight

against the malicious one spreads faster than the malicious one, the overall network

system will become less vulnerable.

Definition: An immunization is called active immunization if the immunization action is

automatically taken by benign mobile code.

Suppose a benign mobile code immunizes the healthy machines with rate a and

the infected machines with rate y . In a homogeneous network, the propagation model of

the malicious code becomes

= -j3S(t)I(t) - aS(t)M(t)
dt

dt t > tr 5.3

= aS(t)M (t)+yI(t)M (t)
dt

S(t) + I(t) + M (t) = N

with S(0) = N - I 0, 7(0) = 70, M(0) = 0 , and M (t1) = M 0; M(t) still denotes the number

of machines that has been immunized. The big difference between these immunized

machines and the ones in previous models are that these immunized machines

automatically disseminate a copy of the benign mobile code to its neighbors so that the

neighbors of this machine could also be immunized.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

107

Suppose the average number of neighbors a machine has is B, and the benign

mobile code propagates through exactly the same network as the malicious one does. In

the network that p percent of the machines applied the control system, then the

propagation model of malicious mobile code is

= ^ - I 2J3B2 ^

= I l/3Bl ^ + I 2j3B2^ - - y B
■ dt N 2 2 N

= c c B ^ M (t) + y B ^ M (t)
dt N N

S(t)+ l(t)+ M (t)= N

with 5(0) = N — I 0, 1(0) = I 0, M (0) = 0 , M (tl) = M 0

The idea of using benign mobile code to fight against the malicious code has been

implemented in current commercial anti-virus tools. When fixing method of a malicious

code is available, the anti-virus companies will automatically update its users’ virus

definition database. But the anti-virus companies will do this only if people pay them.

Furthermore, a user’s machine cannot disseminate the updating to other machines.

5.2.1.3 Simulation

The immunization simulation is an extension of the propagation simulation with

the control system. An immunization procedure is added to the simulation program we

used in Chapter 4. Each time we run the simulation, when t is less than /,, it follows

exactly the same infection evolution we have done in Chapter 4; when t is larger than tx,

which means immunization method becomes available, both infection and immunization

procedures are running and they are running independently. In the simulation, we assume

the immunization method is available when t - 15. A node cannot be infected if it has

m
N

M i f)
t > t 5.4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

108

been immunized. The simulation results demonstrate the efficiency of the immunization

strategies. Each result is obtained by running the simulation 10 times based on the same

random network with 5,000 nodes.

Simulation of Passive Immunization

In passive immunization, the immunization procedure randomly immunizes the

infected node with rate gamma, and the healthy node with rate alpha. It is more likely that

an infected machine becomes immunized because a user with an infected machine is

more likely to seek out available methods to fix the problem. In the simulation, we set

alpha = 0.01, and gamma = 0.1. Figure 5.1 shows the infection evolution of propagation

model given by Equation 5.2 in which the effect of passive immunization is modeled.

- inf susimm

0.4

0.2

time step

Figure 5.1: Infection evolution with passive immunization
(TV = 5000, a = 0.01, y = 0.1, p = 0.8, tx = 15).

Simulation of Active Immunization

In active immunization, it is easier for a benign mobile code to immunize a

healthy machine than an infected machine because for a healthy machine, the benign

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

program just needs to fix the flaw that has been exploited by the certain malicious code,

while for an infected machine, it has to remove the malicious program as an additional

work. Therefore, we set alpha = 0.1, and gamma = 0.05 in the simulation. Figure 6.2

shows the infection evolution of model given by Equation 5.4 in which the effect of

active immunization is modeled. Comparing Figure 5.2 to Figure 5.1, we can see active

immunization is slower than passive immunization at the beginning, but once there are

have enough “good” seeds in the network, the machines are immunized at a dramatic

speed. After 50 time units, almost all machines are immunized if active immunization

applied, and only one third are immunized if passive immunization applied. Overall,

active immunization has better performance. However, the implementation of such

benign mobile code is not easy. If not properly designed, the benign mobile code may

bring another disaster.

—+ - l m m in f s u s

i .z ■

1 -
V)

U.O ■
Wo
jBk n r - : Y /© U.o ■ &
©
S m .

v 0r . \ T

1

8. n t .
/ - / - k

.„ . 4 ■ V / . . . AU.Z "

0 ■

K

jt \
■Y N lW * .. .

w y w i W 1! i"i n i11 i*i*i*i*i*i*Tii i i i i iar~7¥ T ^ 't¥ T r Y :i)¥¥¥¥V'Yy|lflw r w **i!*f*'

^ ^ & $ rfr f$> f£> $ ^

t i m e s t e p

Figure 5.2: Infection evolution with active immunization
(N = 5000, a = 0.1, y = 0.05, p = 0.8, = 15).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

110

5.2.2 Passive Immunization and
Network Topology

The immunization strategies we used to prevent infectious diseases for human

beings include:

• Random immunization.

• Target immunization, for example, immunization by group.

We could have similar strategies when we apply passive immunization to malicious

mobile code. The immunization we discuss in Section 5.2.1 is purely random, and we

have no idea who will and who will not immunize the machine. In the future, we could

have the security experts apply passive immunization according to the priority of the

machines. For example, we immunize the Internet routers or network backbones first,

then we immunize the nodes with a higher number of neighbors. The information of

network topology helps us to decide the target nodes with more than an average number

of neighbors. We should analyze the effect of random immunization and target

immunization under network topologies so that we can apply the optimal immunization

strategy for a network with certain topology.

5.2.3 Active Immunization and
Network Topology

If we use a graph to represent a subnet in which malicious code traverse, we get a

graph whose nodes are machines infected by the malicious code, and the lines between

nodes are the ways malicious code propagate. The propagation model we give as

Equation 5.4 assumes that benign mobile code propagates through the same subnet a

malicious one does. In reality, these two may not propagate through the same subnet.

Also the spreading rate of benign mobile code must be higher than the malicious one to

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I l l

prevent the outbreak of malicious code. Previous research has shown that the topology of

underlying subnet affects the spread of mobile code dramatically [Chen04]. We will do

more research on how topology affects the propagation speed of mobile code. In the

future, we will build propagation models that could catch the effect of topology and

design networks that makes a benign mobile code spread faster.

5.2.4 Distributed Malicious Mobile
Code Detection

The control system we propose in this dissertation is host based. The effect of

propagation mitigation is not good if the number of machines in a network that applied

the control system is small. It takes much time and effort to make sure that every machine

in the network applied the control system properly. A better way to achieve the same

effect is to build a control center. Monitors are distributed in the network and each

monitor reports to the control center periodically. When a host is identified with

abnormal behavior, its outgoing Internet connections will be limited. At the same time,

the control center will send a message to other machines in the network. We do not want

to disable the function of the whole network. One way to defend against the possible

malicious code is choosing some nodes in the network and limiting the outgoing

connection of these nodes so that the propagation of malicious code will be slowed down.

More research needs to be done on how to decide the number of nodes we should choose,

and the policy of choosing specific nodes so that the propagation could be slowed down

maximally with minimum effect on the normal function of the network.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

REFERENCES

[Anderson 1992] Roy M. Anderson, Robert M. May, B. Anderson, Infectious Diseases o f
Humans: Dynamics and Control, Oxford University Press; (December 1, 1992) ISBN:
019854040X.

[Andersson 2000] Hakan Andersson, Tom Britton, Stochastic Epidemic Models and
Their Statistical Analysis, Springer-Verlag 2000, ISBN 0-387-95050-8.

[Bailey 1975] N. Bailey. The Mathematical Theory o f Infectious Diseases and its
Applications, Oxford University Press, New York, 1975.

[Bertino 2004] Elisa Bertino, Rrithi Ramamritham, Data Dissemination on the Web,
IEEE Computer, Vol. 8, No. 3, p27-28, May/June 2004

[Boguna 2002] Marian Boguna, Romualdo Pastor-Satorras, Epidemic Spreading in
Correlated Complex Networks, Physical Review E, Volume 66, 047104, 2002.

[Bontchev 1994] Vesselin Bontchev, Are ‘Good’ Computer Viruses Still a Bad Idea, in
Proceeding o f EICAR ’94 Conference, pp. 25-47.

[Caida 2001] http://www.caida.org/analvsis/security/code-red/coderedv2 analvsis.xml.
last accessed April 21, 2005.

[CERT01-19] http://www.cert.org/advisories/CA-2001 -19.html, last accessed April 9,
2005.

[CERT01-26] http://www.cert.org/advisories/CA-2001-26.html, last accessed April 9,
2005.

[CERT03-04] http://www.cert.org/advisories/CA-2003-04.html, last accessed April 9,
2005.

[CERT03-20] http://www.cert.org/advisories/CA-2003-20.html. last accessed April 9,
2005.

[CERT04-02] http://www.cert.org/incident_notes/IN-2004-02.html, last accessed April 9,
2005.

[CERT04-05] http://www.us-cert.gov/current/archive/2004/Q5/ll/archive.html. last
accessed April 9, 2005.

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.caida.org/analvsis/security/code-red/coderedv2
http://www.cert.org/advisories/CA-2001
http://www.cert.org/advisories/CA-2001-26.html
http://www.cert.org/advisories/CA-2003-04.html
http://www.cert.org/advisories/CA-2003-20.html
http://www.cert.org/incident_notes/IN-2004-02.html
http://www.us-cert.gov/current/archive/2004/Q5/ll/archive.html

113

[Chen 2003] Z.Chen, L.Gao, K.Kwiat, Modeling the Spread of Active Worms, in
Proceedings o f IEEE INFOCOM 2003, San Francisco, CA, April 2003.

[Chen 2004] Li-Chiou Chen, Kathleen M Carley, The Impact of Countermeasure
Propagation on the Prevalence of Computer Viruses, IEEE Trans Syst Man Cybern B
Cybern, 2004 Apr; 34(2); 823-33.

[Chiang 1978] Chin Long Chiang, An Introduction to Stochastic Processes and Their
Applications, Krieger Publish Company, 1978.

[Cohen 1985] Fred Cohen, Computer Viruses, PhD thesis, University of Southern
California, 1985.

[Cohen 1987] F. Cohen. Computer Viruses: Theory and Experiments. Computers &
Security, Vol.6 22-35,1987.

[Cohen 1994] Frederick B. Cohen. A Short Course on Computer Viruses, 2 edition
Wiley; New York, 1994, ISBN 0471007684 .

[Csrc 2005] http://csrc.nist.gov/publications/nistir/threats/threats.html, last accessed April
9,2005 [link2]

[Daley 2001] D. J. Daley and J. Gani, Epidemic Modeling: An Introduction, Cambridge
University Press, May 2001, ISBN 0-521-01467-0.

[Dave 2001] Dave Goldsmith, “Possible Code Red Connection Attempts", available at:
http://lists.iammed.com/lncidents/2001 /07/0158.html last accessed February 9,2005.

[Dean 1999] Angela Dean and Daniel Voss, Design and Analysis o f Experiments,
Springer-Verlag, New York, 1999, ISBN 0-387-98561-1.

[Denning 1990] Peter Dinning, Computers under attack : intruders, worms, and viruses,
Addison-Wesley, New York, N.Y., 1990, ISBN 0201530678

[D'haeseleer 1996] P. D'haeseleer, S. Forrest and P. Helman. An immunological approach
to change detection: algorithms, analysis, and implications. In Proceedings o f the IEEE
Symposium on Computer Security and Privacy, IEEE Computer Society Press, Los
Alamitos, CA, 1996, 110— 119,1996.

[Eckmann 2002] Steven T. Eckmann, Giovanni Vigna and Richard A. Kemmerer,
STATL: An Attack Language for State-based Intrusion Detection System, Journal o f
Computer Security, 10(1/2): 71-104 (2002).

[Eugster 2004] Patrick T. Eugster, Richid Guerraoui, Anne-Marie Kermarrec, Laurent
Massoulie, Epidemic Information Dissemination in Distributed Systems, IEEE Computer
37(5): 60-67 (2004).

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://csrc.nist.gov/publications/nistir/threats/threats.html
http://lists.iammed.com/lncidents/2001

114

[Fites 1992] Philip Fites, Peter Johnston, Martin Kratz, The Computer Virus Crisis, 2nd
ed, Van Nostrand Reinhold, New York, 1992, ISBN 0442006497.

[Forrest 1994] Stephanie Forrest, Alan S.Perlelson, Lawrence Allen, Rajesh Cherukuri,
Self-Noneself discrimination in a Computer, in Proceedings o f 1994 IEEE Symposium on
Research in Security and Privacy.

[Forrest 1997] S. Forrest, S. Hofmeyr, and A. Somayaji, Computer Immunology,
Communications o f the ACM Vol. 40, No. 10, pp. 88-96 (1997).

[Grimes 2001] Roger Grimes, Malicious Mobile Code : Virus Protection fo r Windows,
OReilly & Associates, Sebastopol, C A , 2001, ISBN 15659268X.

[Hansen 1987] Bertrand L. Hansen and Proabhakar M. Ghare, Quality Control and
Application, Prentice-Hall, 1987, ISBN 0-13-745225-X.

[Harmer 2002] Paul K. Harmer, Paul D. Williams, Gregg H. Gunsch, Gary B. Lamont,
An artificial immune system architecture for computer security applications, IEEE
Transactions on Evolutionary Computation, Volume 6, Number 3, June 2002 252-280.

[Heberlein 1990] L.Heberlein, G.Dias, K.Levitt, B. Mukheijee. J. Wood, and D. Wolber,
“A Network Security Monitor”, in proceedings o f the IEEE symposium on Security and
Privacy, May 1990 pp.296-304.

[Toyoizumi 2002] Hiroshi Toyoizumi, Atsuhi Kara, Predators: Good Will Mobile Codes
Combat against Computer Viruses, in Proceeding o f the New Security. Paradigms
Workshop, Virginia Beach, Virginia, 2002.

[Hofmeyr 1999] S. A. Hofmeyr, A Immunological Model o f Distributed Detection and Its
Application to Computer Security, PhD thesis, Department of Computer Science,
University of New Mexico, Apr. 1999.

[Kephart 1991] Jeffrey O Kephart and Steve R White, Directed-Graph Epidemiological
Models of Computer Viruses, in Proceedings o f the 1991 IEEE Computer Society
Symposium on Research in Security and Privacy, pages 343-359, May 1991.

[Kephart 1993] Jeffrey O Kephart and Steve R White. Measuring and Modeling
Computer Virus Prevalence, in Proceedings o f the 1993 IEEE Computer Society
Symposium on Research in Security and Privacy, May 1993.

[Kephart 1994] Jeffrey O. Kephart, a Biologically Inspired Immune System for
Computers, Artificial Life IV: Proceedings o f the Fourth International Workshop on the
Synthesis and Simulation o f Living Systems, 1994.

[Kumar 1992] S. Kumar and E. H. Spafford (1992). A generic virus scanner in C++, in
Proceedings o f the 8 th Computer Security Applications Conference, IEEE Press.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

115

[Levin 1990] Richard B. Levin, The Computer Virus Handbook, Osborne McGraw-Hill,
Berkeley, 1990, ISBN: 0078816475.

[Levis 2002] P. Levis and D. Culler, Mate: A Tiny Virtual Machine for Sensor Networks,
the International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, 2002.

[Miller 1995] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty,
Ravi Murthy, Ajitkumar Natarajan, Jeff Steidl, Fuzz Revisited: A Re-examination o f the
Reliability o f UNIX Utilities and Service, Computer Sciences Department, University of
Wisconsin, 1995. (NOT IN ENDNOTE)

[Moore 2002] David Moore, Colleen Shannon, Jeffery Brown, Code-Red: a case study on
the spread and victims of an Internet worm, in Proceeding o f the Internet Measurement
Workshop (IMW), Marseille, France, November, 2002.

[NISTIR4939] Lawrence E. Bassham and W. Timothy Polk, Threat Assessment o f
Malicious Code and Human Threats, the United States National Institute of Standards
and Technology, 1992.

[Phoha 2002] Vir V. Phoha, The Springer Dictionary o f Internet Security, Springer-
Verlag, New York, (Forthcoming) January 2002.

[Phoha 2003] V. Phoha, X. Xu, A. Ray and S. Phoha, Supervisory Control Automata
Paradigm to Make Malicious Executables Ineffectual, in Proceedings o f the 5TH IF AC
Symposium on Fault Detection, Supervision and Safety, Washington D.C., 2003, pp.
1167-1172.

[Satorras 2001] Romualdo Pastor-Satorras and Alessandro Vespigani, Epidemic
Dynamics and Endemic States in Complex Networks. Physical Review E, Volume 63,
066117, 2001.

[Satorras 2002] Romualdo Pastor-Satorras. Epidemics and Immunization in Scale-Free
Networks, in S.Bomholdt and H.G. Schuster, editors, Handbook o f Graphs and networks:
From the Genome to the Internet, Wiley-VCH, Berlin, May 2002.

[Serazzi 2003] Giuseppe Serazzi and Stefano Zanero. Computer Virus Propagation
Models. In M. C. Calzarossa, E. Gelenbe, editor, Tutorials o f the 11th IEEE/ACM Int'l
Symp. On Modeling, Analysis and Simulation o f Computer and Telecom. Systems -
MASCOTS 2003, Springer-Verlag, 2003.

[Spafford 1989a] Eugene H. Spafford, the Internet Worm: Crisis and Aftermath,
Communications o f the ACM, 32(6):678-687, June 1989.

[Spafford 1989b] Eugene Spafford, The Internet Worm Program: An analysis, Computer
Communication Review, 19(1), January 1989.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

116

[Spafford 1994] Eugene H. Spafford, Computer Viruses as Artificial Life, Journal o f
Artificial Life, volume XI, pages 371-408.

[Stamford 2002] Stuart Stamford, Vem Paxson, Nicholas Weaver. How to Own the
Internet in You Spare Time. In Proceedings o f the 11th USENIX Security Symposium,
2002.

[S YM ANTEC03 Ihttp:// securitvresponse. Symantec .com/avcenter/venc/data/w32. welchia.
worm.html. last accessed April 9, 2005.

[Thimbleby 1998] Harold W. Thimbleby, Ian H. Witten, and David J. Pullinger,
Concepts of Cooperation in Artificial Life, IEEE Transactions on Systems, Man &
Cybernetics, 25(7), ppll66— 117, 1998.

[Thimbleby 1999] H. Thimbleby, S. Anderson and P. Cairns, A Framework fo r Modeling
Trojans and Computer Virus Infection, The Computer Journal, 41 (1999), pp. 444-458.

[Usa 2001] USA today news. The cost of Code Red: $1.2 billion.
htto ://www.usatodav.com/tech/news/2001 -08-01 -code-red-costs.htm. last accessed
February 9, 2005.

[Vetterling 2002] William T. Vetterling, Brian P. Flannery, Numerical Recipes in C++,
Cambridge University Press, 2 edition (February, 2002), ISBN 0521750334.

[Wang 2000] Yongge Wang, Using Mobile Agent Result to Create Hard-to-detect
Computer Viruses, Information Security fo r Global Information Infrastructures, the 16th
IFIP SEC (2000), pages 161— 170.

[Wang 2003] Yang Wang, Chenxi Wang. Modeling the Effects of Timing Parameters on
Virus. In Proceedings o f the ACM CCS Workshop on Rapid Malcode, 2003.

[White 1998] Steve R. White. Open Problems in Computer Virus Research. Virus
Bulletin Conference, Oct 22,1998, Munich Germany.

[Williamson 2002] Matthew M. Williamson, “Throttling Viruses: Restricting propagation
to defeat malicious mobile code”, in Proceedings o f the 18th Annual Computer Security
Applications Conference, 2002, p 61.

[Wong 2004] Cynthia Wong, Chenxi Wang, Dawn Song, Stan Bielski, Gregory R.
Ganger, Dynamic Quarantine of Internet Worms, in Proceedings o f the International
Conference on Dependable Systems and Networks (DSN-2004), Italy. June 28th - July 1,
2004.

[Xu 2002] Xin Xu, Supervisory Control Automata as a New Paradigm to Make Malicious
Executables Ineffectual, M.S. thesis, Louisiana Tech University, 2002

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.usatodav.com/tech/news/2001

117

[Xu 2004] X. Xu, V. V. Phoha, A. Ray and S. P. Phoha, “Supervisory Control of
Malicious Executables in Software Processes”, in A. Ray, V. V. Phoha and S. P. Phoha,
eds., Quantitative Automata-Based Supervisory Decision and Control, Springer-Verlag,
New York, 2004

[Ye 2000] Nong Ye, Mingming Xu and Syed Masum Emran, Probabilistic Networks with
Undirected Links for Anomaly Detection, in Proceedings o f the 2000 IEEE Workshop on
Infromation Assurance and Security, June, 2000.

[Zou 2002] Cliff Changchun Zou, Weibo Gong, and Don Towsley, Code Red Worm
Propagation Modeling and Analysis, in Proceedings o f the 9th ACM Conference on
Computer and Communication Security, November 2002.

[Zou 2003] C.C.Zou, L.Gao, W. Gong, and D.Towsley, Monitoring and Early Warning
for Internet Worms, in Proceedings o f the l (fh ACM conference on Computer and
communication security, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2006

	Stochastic propagation modeling and early detection of malicious mobile code
	Xin Xu
	Recommended Citation

	tmp.1563371343.pdf.CAflp

