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ABSTRACT

This dissertation investigates the development of a multistage micro gas 

compressor utilizing multiple pump stages cascaded in series to increase the pressure rise 

with passive microvalves and piezoelectric unimorph diaphragms. This research was 

conducted through modeling, simulation, design, and fabrication of the microcompressor . 

and its components. A single-stage and a two-stage microcompressor were developed to 

demonstrate and compare the performance and effectiveness of using a cascaded 

multistage design.

Steady fluid flow through static microvalves structure was studied to gain insight 

on its gas flow dynamics and characteristics. Transient analysis combined with the 

structure’s interaction was investigated with an analytical model and FEM model. The 

static analysis and transient analysis enabled lumped model parameter extraction for 

modeling and simulations. The transient FEM solution of the microvalve fluid-structure 

interaction (FSI) allows for extraction of the damping ratio for the lumped model. The 

microvalves were fabricated with MEMS microfabrication methods and integrated into a 

machined microcompressor housing. Study from the simulation of the microvalve fluid- 

structure dynamics in Simulink showed the frequency of the micro valves, at which 

frequency the microvalve is more prone to leakage. Simulation indicated that the reverse



leakage from the sealing of the microvalve can have.a significant impact on the pressure 

rise performance of the compressor.

A model of the single- and the two-stage microcompressor were developed with 

Simulink to observe the dynamics and performance of the multistage microcompressor. 

The simulation shows the dead volume between the two chambers to decrease in the 

overall pressure rise of the multistage microcompressor. Operating scenarios with 

different frequency and in phase and out of phase actuation between stages were 

simulated to understand the dynamics and performance of the multistage design. The 

fabricated single- and two-stage microcompressor produced a maximum pressure rise of 

10 kPa and 18 kPa, respectively, and a maximum flow rate of 32 seem for both. To obtain 

these maximum pressure rises, the microcompressors were operated at high frequency at 

the resonance of the piezoelectric diaphragm. This dissertation investigated the feasibility 

and operation of a multistage gas microcompressor with passive microvalves, allowing 

the exploration of its miniaturization.
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CHAPTER 1

INTRODUCTION

Since the emergence of Micro Electromechanical System (MEMS), researchers 

have adapted this technology towards the development of micropumps due to their 

potential use in many life sciences, biological, and microfluidic applications. 

Miniaturization of micropumps allow for more precise control of fluids that are needed in 

some applications; it also allows for portability, low power consumptions, and small 

footprint integration. As micropump technology matures with liquids, researchers are 

using this technology to develop micro gas pumps and micro gas compression 

applications.

Electronics such as infrared sensors, low-noise amplifiers, and superconducting 

devices require cryogenic temperatures to improve their performance. Signal-to-noise 

ratios and bandwidth improve as thermal noise decreases under cryogenic temperature 

conditions. Electronics that operate in space such as micro satellite systems would benefit 

from active cooling due to the lack of air molecules in vacuum space. Micro cryogenic 

cooling can provide the solution to these applications by miniaturizing a vapor 

compression system such as a Joule-Thomson (JT) cooling system, which is currently 

investigated for miniaturization. JT MCC successful development is still hindered by a 

lack of a successful micro gas compressor (microcompressor) closed cycle operation.
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Microcompressors are needed to pressurize the gas to flow through an orifice 

valve for the expansion process in the vapor compression system. One of the challenges 

for microcompressors has been the large pressure and pressure ratio requirement for such 

systems. Work has been done on improving the technology of the JT MCC system. To 

meet the high gas pressure demand for thermal cooling, a cascaded multistage 

microcompressor connected in series is investigated to enhance the performance of the 

microcompressor. Passive micro valves are used as check valves to control the flow 

between each stage.

1.1 Objectives

The objective of this dissertation is to investigate the feasibility and develop a 

multistage microcompressor design using a piezoelectric diaphragm and passive 

microvalve cascaded in series to produce large pressure and pressure ratio for micro 

cooling applications. To accomplish this objective, modeling, prototyping and 

experimental tests are conducted in this dissertation.

The modeling and simulation of the multistage microcompressor used a lumped 

model approach and is simulated with Matlab Simulink tool. To first develop this model, 

an understanding of the characteristics of the microvalve and piezoelectric unimoprh 

actuator in the microcompressor are necessary. Interaction of the microvalve structure 

with the gas flow is first modeled with a static and quasi-steady flow approach. Steady- 

state and transient analysis of the valve plate response to the flow through the valve is 

analyzed with finite element method to determine the fluid-structure parameters for the 

lumped model. The piezoelectric unimorph diaphragm is characterized with FEM,
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analytical method and experimentally to extract the proper volume stroke in response to 

various input parameters.

The compressor is modeled as a lumped model. With the test data of the valve 

sealed reverse leak, the reverse leak model is incorporated into the lumped model to 

provide a better fit to validate the microcompressor’s performance. A single-stage and 

multistage microcompresssor is designed, fabricated, assembled, and tested to be 

compared with the model. The assembled multistage and microcompressor is used to 

validate the feasibility of the utilizing multistage design with passive microvalves.

1.2 Thesis Organization

Chapter 2 discusses the different variation and operating principles of previously 

developed micropumps and their characteristics. Micropumps are typically designed for 

incompressible fluids such as water. It is worth discussing these because they share 

similar operation principles, fabrications, and assembly methods. A review of the 

previous microcompressors, multistage microcompressors, microactuators, and 

microvalves are also discussed. The Joule-Thomson cooling is also discussed to 

understand the requirements needed from a microcompressor.

Chapter 3 is divided into two sections to study the components in the 

microcompressor. The first half of the chapter deals with the sudy and characterization of 

the piezoelectric unimorph diaphragm. The second half deals with the study of the 

micro valve fluid-flow interaction model and transient analysis. Testing and finite element 

analysis is also presented to aide with the characterization processes.

Chapter 4 presents the lumped model and simulation of the microvalve, the 

single-stage and the two-stage microcompressors. The simulation studies include the
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dynamic of these systems and the performance curve of the microcompressors. The two- 

stage simulation also includes a model of the dead volume of the interconnect chamber 

which exists between the two chambers. In phase and out of phase actuation between 

stage one and stage two of the two-stage device were carried via simulation.

Chapter 5 presents the fabrication and assembly processes of the single-stage and 

two-stage microcompressor devices.

Chapter 6 presents the test results of the two fabricated devices including its 

characterization results.

Chapter 7 summarizes the findings and discusses future works and improvements 

of the microcompressor to satisfy the microcooling requirements.



CHAPTER 2

MECHANICAL MICROCOMPRESSOR FOR MICRO CRYO 
COOLING TECHNOLOGY

2.1 Mechanical Compression Pump

Since the introduction of Micro Electro Mechanical Systems (MEMS), efforts 

have been made to develop micropump for precise control of the fluid in the micro and 

nano liter range. The silicon bulk microfabrication techniques have made it possible to 

realize many different variations of micropumps for various applications. One of the 

earliest device reported by Lintel [1] in 1988 was made of piezoelectric disc and silicon 

check valves. Micropumps are typically configured as a mechanical compression pump 

that utilizes a mechanical actuator to displace the fluid in the chamber, transferring the 

fluid from an inlet port to the outlet port. Early micropumps were designed for 

incompressible fluid such as water, making it more suitable for many applications in the 

biological, pharmaceutical, and chemical applications. As micropump technology mature 

in the last two decades, researchers are currently exploring the gas domain applications, 

expanding into other areas such as gas chromatography and microelectronic cooling, 

which would require a micro gas compressor.

Micro gas compression pumps (microcompressors) operate within the same 

principle as a micropump. They still require a pump chamber to compress the gas and 

check valves for the inlet and outlet ports to prevent a reverse gas flow. Although
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micropumps can pump liquids due to the incompressibility property of liquids, it can 

become incapable of pumping a liquid when a gas bubble is introduced and trapped in the 

chamber. Bubble toleration can be possible with increases in the compression ratio of the 

pump chamber. Linnemann [2] reported a micropump that is bubble tolerant by 

maximizing the stroke volume and minimizing the dead volume. Gas compression pumps 

are more of a challenge than liquid micropumps due to the compressibility of gas. 

Additionally, micro actuators produce little volume displacement and generate low force, 

displacing lesser volume at high back pressure. The low stroke volume from the actuator 

makes the microcompressor more sensitive to the dead volume that is a challenge to 

eliminate completely. Furthermore, reverse leakage from the microvalve can attenuate the 

pressure rise in the compressor. To develop a microcompressor, a review of micropumps 

is needed to understand its limitations and applications.

In the last decades, there have been extensive research in utilizing different 

strategies in developing micropumps. Many micropumps except for the Knudsen pump 

[3] rely on a moving membrane to pump fluids mechanically or compress gas in the 

chamber. With the exception of using diffuser valves [4], mechanical micro check valves 

are typically used for the inlet and outlet port of the pump chamber. Micropumps have 

many different designs and actuation mechanisms. Most of these technologies are 

transferrable and compatible for designing a multistage microcompressor. In this chapter, 

a review and identifications of the various micropump technologies are that are useful in 

developing a multistage micro gas compressor are presented. The first review includes 

some of the general forms of micropumps that were initially designed for liquid handling, 

different variations of the micropumps, the advantages and limitations of these various



types of micropumps, and the microvalves and microactuation methods. The second 

review presents various micro gas pumps and compressors that have been developed, and 

the multistage configurations that have been developed.

2.2 Literature Review on Micropumps

Previous work on micropumps with piezoelectric membrane and passive 

microvavles can be seen in [2], [5]—[13]. In one example, Linneman et al. [2] developed a 

micropump made from silicon using piezoelectric diaphragm actuator as shown in Figure 

2-1. Linneman was able to maximize the dead volume making the pump tolerant to gas 

bubbles trapped in the chamber. Kamper [7] developed a piezoelectric micropump from 

injection molding as shown in Figure 2-2. The micropump delivered a maximum flow 

rate of 400 pl/min and maximum pressure rise of 2.1 kPa for water, and a maximum flow 

rate of 3.5 ml/min and 0.5 kPa for air.

pumpcbamber pump diaphragm piezo disc

inlet outlet

Figure 2-1: Micropump made from silicon and micro fabrication [2].



8

p u m p  mAmhran«» piezo actuator

inlet
outlet

inlet valve outlet valve

fluid connections

valve membrane

Figure 2-2: Micro mold injection micropump [7].

One of the undesirable effect of a micropump is the sensitivity of trapped gas 

bubble in the pump chamber. This situation may limit the reliability of the pump and 

its performance. These pumps developed by Linneman and Kamper, have self

priming capability and are bubble-tolerant due to the high compression ratio. The 

compression ratio is the ratio of the stroke volume to the dead volume of the pump 

chamber. Compression ratio of more than 1.13 [2] was suggested by Linneman.

Stemme [4] developed a valveless micropump with no moving parts for the 

inlet and outlet microvalves. This type of microvalve used converging and diverging 

shape ducts which can behave like a diffuser or a nozzle, depending on the mode of 

the pump as shown in Figure 2-3. During the supply mode, the inlet behaves as a 

diffuser when it has less flow restriction going into the chamber than the outlet nozzle, 

thus allowing net flow into the chamber. In the pump mode, the outlet valve has less 

flow restriction for fluid to flow out of the chamber than the inlet, thus resulting in net 

flow out of the outlet duct. Gerlach [14] reported successful gas pumping using a
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diffuser type pump similarly shown in Figure 2-3. Maximum pressure rise of 2.8 kPa 

and maximum flow rate 7.5 ml/min at zero load were achieved at a resonance 

operating frequency of 12.1 kHz.

SUPPLY MODE PUMP MODE

increasing 
chamber volume Decreasing 

chamber volume

Diffuser Nozzle Nozzle Diffuser
action |0 j|> |0o| action action |0 j|<|0 o| action

Figure 2-3: [15] Valveless diffuser micropump schematic.

These pump designs produced pressure fluctuation and oscillating flow. In 

Figure 2-4 Olsson [16] suggested using a two-pump chamber operating in parallel 

with the antiphase operation to reduce these effects and to enhance the performance of 

the micropump. The performance of the valveless micropumps in Figure 2-4 can be 

less than the conventional micropump with valves. However, the valveless 

micropump can be more robust and reliable compared to the micropump with 

microvalves. Furthermore, it may be more suitable for biological applications where 

micro particles may be present in the fluid and that would interfere with mechanical 

micro valves.
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Figure 2-4: [16] Valveless micropump in parallel.

Peristaltic micropumps similar to the one shown in Figure 2-5 can be classified as 

a multistage micropump. These types are comprised of three chambers that operate in 

peristaltic sequence to drive the fluid, eliminating the need for a check valve. Each 

chamber is actuated by its own actuator, and depending on its sequence, it acts either as a 

valve or pump. Jang and Yu [17] developed a piezoelectric peristaltic pump made from 

Pyrex glass and silicon that can pump air at a flow rate of 17.58 pl/min with no back 

pressure reported. With a similar design, Hsu [18] generated 217 l/min and 9.2 kPa with 

water. This type of pump requires a microcontroller to control the action sequence of 

each pump to drive the fluid peristaltically.
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Figure 2-5: Peristaltic micropump [17].

2.2.1 Micropump Fabrication and Assembly

Micropumps are typically fabricated using MEMS fabrication made from silicon 

and glass substrate. This involves bulk micromachining of the substrate and bonding 

multiple wafer substrates together [19] through methods such as anodic bonding, 

adhesive bonding with an intermediate layer, eutectic bonding, and fusion bonding [20]. 

Yoon bonded silicon substrate-based micropump with Au as the intermediate layer [21]. 

This method is also useful with heterogeneous materials, such as copper [22] and gold 

[23]. Adhesive bonding may involve an intermediate layer such as evaporated glass, 

resist, or polyimides providing lower temperature bonds that are not suitable for certain 

MEMS application.

In micropump, certain components can be sensitive to the high temperature bond 

method. Piezoelectric materials lose their piezoelectric properties beyond the Curie 

temperature starting above 200°C. Bonding methods that require high temperature with 

the piezoelectric layer already attached to the substrate would limit the selection of 

bonding methods. Bulk micromachining of the substrate to make the valve features, 

channel, and chamber feature often requires wet etching or the DRIE etch method. This
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involves the photolithography process. Utilizing microfabrication methods can be 

complex and involve many processes. Additionally, this method can still be very 

expensive due to equipment and labor intensive processing.

There are other means of fabrication and assembly of microcompressor using the 

mass manufacturing method such as injection molding. Kamper has produced a 

piezoelectric injection mold micropump [7] and Cabuz produced a dual diaphragm pump 

using electrostatic actuation with injection mold [24]. New techniques and methods of 

micro injection molding can provide plastic and metal parts with features down to 100 

pm size [25]—[27]. With the capability of micro machining such as micro-electrical- 

discharge-machining (pEDM), focused ion-beam milling (FIB), high resolution mold 

inserts can be fabricated and integrated into the mold for high resolution molded parts 

[28], [29].

2.2.2 Multistage Micropump and Gas Microcompressor

This section provides a review of the different microcompressors including some 

with multistage configurations. A summary of the microcompressors in this section is 

provided in Table 2-1. Review in literature showed the type of actuation micro gas 

pumps and microcompressors that have shown success are the electrostatic diaphragm, 

piezoelectric diaphragm, stack piezoelectric pump, and the Knudsen pump type. The 

overview and operation of principle for these types of pumps is discussed in the later 

section of this chapter. Thus far, the search in the literature has shown micro gas pump 

development has been focused on vacuum pumping for micro gas analyzer [30] such as 

micro gas chromatography (pGC) [31], whereas micro gas compressor is focused on 

micro cooling applications.



Table 2-1: Summary of microcompressors and micro gas pumps.

;Gas Micro com pressor
Author Configuration Fluid Pressure Flow Rate Pressure

Ratio
Voltage/
Power

Size

Sathe [35]

Electrostatic R123 23 kPa 420 V

Cabuz 24]

Electrostatic R123 2 kPa 28 seem

| ] t

1.5 x 1.5 x 
0.1 cm

Kim [361
Electrostatic,

active
microvalves

17.7 kPa, 
18 stage

4  seem 57 mW
25.1 x 19.1 x 

1 mm3

Besharatian [45]
Electrostatic,
multistage,
active
microvalves

4.4 kPa 0.36 seem
<100V 
10 mW 4 mm

Yoon [21]
Piezoelectric 
diaphragm, 
passive 
micro valve

R123 17kPa
1.17,

1.31

VanapalK [38]

Stack flexure 
piezoelectric

nitrogen
gas

2.5 MPa 1.11
100 V 

2.73 W

Zhou [8] -J
External
pneumatic
pressure

gas
uknown

21.8 kPa 
(Vacuum 
Pressure)

Lewis [39]

"S
Stack
piezoelectric, 
passive 
micro valves

0.4 MPa 20 seem 4:1
42 Vpp 1 

W ~4 cm
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In 1999 and 2001, Shannon [32] and Cabuz et al. [24] developed a dual 

diaphragm gas micropump utilizing electrostatic actuation consisting of metallized 

Kapton diaphragms for the actuation and valve’s mechanisms. Their design achieved 2 

kPa of pressure and a flow rate of 28 ml/min. To achieve larger pressure rises, Cabuz 

suggested an array of stages (multistage) to increase the pressure head of the pump. Sathe 

[33]—[35] designed a similar electrostatic gas pump focusing on the application of micro 

vapor compression cooling. The pump reached 23 kPa at actuation voltage of 420 V 

According to Sathe, the pump can theoretically compress the gas to 315 kPa, but 

limitations on the elastic strain of the diaphragm can prevent operating against a high 

back pressure.

Kim et al. [36] developed multiple multistage electrostatic gas pumps each 

consisting 2-, 4-, and 18-stages. When operating at 15 kHz, the multistage utilized fluidic 

resonance that occurs in the chamber to achieve a high flow rate and pressure rise of 2.5, 

7, and 17 7 kPa, respectively. The maximum flow rate achieved respective to the number 

of stages are 2.1, 3, and 4 ml/min. This micro gas pump is smaller in scale compared to 

previous electrostatic pump mentioned by Cabuz, Sathe and Shannon. It employs 

separate chambers for electrostatic active valves to control the gas transfer between each 

stage. The active valves in the device are critical to the gas pumping operation by serving 

as control valves. In a closed position, the active valves wait for the pressure to build up 

in the diaphragm chamber and open up at an optimized time to allow gas flow into the 

next stage. Active valves increase the complexity of the overall device but can be 

valuable in minimizing the valve leakage.
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Yoon et al. [37] developed a micro gas compressor and arranged the two 

compressors in series with a connecting tube and showed that the pressure ratio can be 

improved. Passive cantilever valves were used between the pump chambers. The 

maximum pressure ratio achieved at zero flow rate was 1.17 for a single stage and 1.31 

for a two-stage with refrigerant 134a as the test gas. Yoon et al. demonstrated that the 

pressure ratio can be increased with micro gas compressors in series.

In 2008, Vanapalli et al. [38] developed a micro gas microcompressor to power a 

micropulse tube cryocooler. The device was capable of delivering pressure of 2.5 MPa 

and pressure ratio of 1.11. The large pressure generated was contributed from the stacked 

piezoelectric actuator amplifying the displacement with a flexure structure integrated to 

the piezoelectric. It provided large a stroke volume in combination with high force 

generation. These types of compressors require a stack piezoelectric integrated to a 

flexure structure, which can make the overall compressor a little bit larger in size, being 

approximately 050 mm X 45 mm. Lewis et al. [39] from the University of Colorado 

Boulder developed an improved micro gas compressor with a similar configuration. No 

flexure structure was incorporated to the stacked piezoelectric actuator. The maximum 

back pressure the pump can deliver is 0.4 MPa with a pressure ratio of 4:1. This device 

was one of the first successful micro gas compressor integrated into a JT microcooler.

Yoon and Lewis developed a multistage microcompressor using passive 

microvalves to increase the pressure rise in each stage [21], [39]. An integrated 

cascaded multistage micro gas compressor has not yet been developed. Not much is 

known how the interaction of the microvalves between the pump chambers and the phase 

of the pump would affect the performance of the microcompressor.
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Zhou [8] developed a silicon micro vacuum pump capable of pumping down to 

164 torr of absolute pressure, equivalent to a pressure difference of 79 kPa. It was one of 

the first to achieve such high pressure for gas pumping, although external pneumatic 

pressure was used to actuate the diaphragm and to actively control the microvalves. 

Similar to previous pumps, dead volume reduction in the pump chamber was the key to 

having a successful pump.

2.2.3 Micro Actuation Mechanism Literature Review

One of the limitations for a high performance microcompressor is the availability 

for an actuator to have all the needed characteristics: high actuation force, large volume 

displacement, small in size, fast response time, low thermal losses, and minimal power 

consumption. When designing a micro gas pump or microcompressor, the actuation 

mechanism is crucial to the design. It can dictate the size of the compressor, its 

configuration, operation, and the overall performance of the compressor. Here a 

discussion of the operation principle for different types of actuation mechanisms that 

have been developed for a microcompressor are presented. Numerous variation of 

actuation mechanisms have been seen in the literature. The one that are viable for gas 

compression will be focused on in the discussions.

2.2.3.1 Electrostatic Acutation

Electrostatic actuation is widely used in MEMS. Zengerle [40] was one of the first 

to adopt electrostatic actuation to a micropump. The micropump utilized electrostatic 

attraction between two oppositely charged electrode plates to generate displacement from 

the plate. The electrode is typically configured with a rigid body and a deformable
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diaphragm. When a voltage V is applied, the electrostatic force pulls the deformable

towards the other rigid electrode. The electrostatic force is given as

e A V 2 r  tF  = ------- Eq. 2-1
2 h2

where e is the permittivity of free space, A is the surface area, h is the gap between the 

two plates. When the actuation voltage is removed, the deformable membrane is released. 

This creates a reciprocating pump cycle. The performance with electrostatic micropump 

and gas micropump have improved with recent advances made by [36], [41]—[46].

2.2.3.2 Stack Piezoelectric

Several researchers have integrated stack piezoelectric into their micropumps for 

diaphragm actuation [47], [48]. This type of actuation requires piezoelectric stacked 

together forming a longer length to achieve a larger force and displacement as shown in 

Figure 2-6. Despite the increase in displacement, a 10 mm length actuator from 

PiezoDrive could only produce a stroke of 14 pm with 330 N of force.

Figure 2-6: Stack piezoelectric actuator from PiezoDrive.

To increase the displacement of these actuators, flexure structure are connected to the 

actuator as shown in Figure 2-7 to amplify the displacement, making it more suitable for 

micro gas compression. However, this can make the overall size of the compressor larger.
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Figure 2-7: Stack piezoelectric actuator with flexure structure to amplify displacement.

2.2.4 Vacuum Pump: Knudsen Type

Micropump is also developed for the vacuum needed application for portable 

chemical and biological analytical instruments. The Knudsen pump [3], [49]—[52] is a 

thermal molecular pump that relies on the temperature difference in two chambers, one 

cold chamber and a hot chamber to produce a forward flow of gas from the hot to the 

cold chamber. The temperature difference between the two chambers generates a pressure 

differential from the difference in the rate of the molecular flux [51]. This type of pump 

consists of a wide channel and a narrow channel for each alternating stages as shown in 

Figure 2-8. The wide narrow channel is used to generate the temperature difference 

between each stage to transport the gas in the viscous regime from the hot to the cold 

chamber, and the narrow channel needs a hydraulic diameter less than the mean free path 

of the gas.
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Figure 2-8: [3],[53] 48-stage Knudsen pump schematic and picture.

While these pumps have been designed to generate vacuum pressure down to only 

50 Torr, it may be worthwhile to review its design because of its attractive characteristics. 

The pump requires no moving parts and can be kept at a microscale level. Developed by 

the University of Michigan [3], [50], the multistage cascaded stages devices were 48- and 

168-stage, capable of generating a vacuum pressure of < 50 Torr.

2.2.4.1 Hydraulic Amplification

Hydraulic amplification [54], [55] is a method used to overcome small 

displacement in micro actuators with a large force. Steyn et al. [56] and Robert et al. [6] 

utilized stacked piezoelectric with silicone oil to amplify the stroke of a microvalve from

0.65 pm to 26 pm, resulting in 40x amplification as shown in Figure 2-9. It was designed 

and intended for active valves. However, it is feasible to utilize this method for gas 

compression. This device can be complicated to fabricate at the microscale level, but is a 

viable option that meets most of the criteria in a micro actuator.
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Figure 2-9: Piezoelectric hydraulic amplification for microvalve.

2.2.5 Microvalves

Microvalves are used as check valves to allow the flow of gas or fluid flow in a 

forward direction and restrict the flow in the reverse direction. It controls the gas flow 

between the ambient conditions and the pump chamber, and it is crucial for the function 

of a microcompressor. It is also needed for use in multistage chambers, where the 

microvalves are used to control the flow and pressure between each stage. With positive 

bias pressure, the microvalve opens for forward gas flow and closes when there is 

negative bias pressure to prevent reverse flow. Microvalves can be categorized as passive 

or active valves. Each has its own inherent advantages and disadvantages.

Passive microvalves are dependent on the pressure difference generated by the 

pump chamber to control the open and close position. If not designed properly, the 

microvalves cannot open due to its high cracking pressure which stems from high 

stiffness and stiction between the microvalve surface and the seat. Reverse leakage can 

cause the pump chamber to lose some of the generated pressure. Reverse leakage occurs
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when the microvalve is still open due to the lag in the dynamic of the structure in 

response to the fast rate of change of chamber pressure, allowing gas to flow in the 

reverse direction.

Microvalve designed for gas application requires better valve sealing between the 

valve’s surface and its seats. Smooth surface and larger sealing surface is needed due to 

the large mean free path of the gas passing through the sealing surface. A larger surface 

area can provide better gas sealing, but it would generate more stiction force. This can 

become a trade-off between the sealing and the stiction force [57].

2.2.5.1 Passive Microvalve and its Literature

Passive microvalves designed in the microscale are configured as a cantilever, 

tether, and ball valves [58]. Materials raning from silicon/nickel [59], [60], aluminum 

[61] parylene, PDMS [62], SU8 [63], to polyimide [12] have been used to fabricate 

micro valves. Feng [5] made a comparison between a cantilever and tethered type valves 

made from parylene microvalves and noted the [60] effect of how the two types of 

structures would have on the flow rate of the micropump. The cantilever had a lower 

resonant frequency than the tether microvalves. At a certain frequency range, the inlet 

and outlet microvavle can come out of phase with the pump chamber actuation frequency 

and decrease the flow rate of the fluid. Micro valves developed by Li et al. [59] is robust 

enough to withstand pressure of up to 350 psi and up to 10 kHz of pumping frequency.

2.2.5.2 Active Microvalve and its Literature

Active microvalves can diminish reverse leakage and require extra control 

through other means of actuation for the open and close operation. The holding forces of 

the microvalve can be limited to the forces generated by the actuator. Electrostatic
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microvalves have been demonstrated by Yang [57] and Kim [36]. Micro-hydraulic is one 

of the means for actuation for active valves to amplify the displacement of the microvalve 

and provide high force and high deflection [64]. Piezoelectric diaphragm [65] and 

stacked piezoelectric actuator [59], [66] have also been used for active valves.

2.3 Micro Cooling Technology Summary and Requirement

Several groups have been working on developing micro cryogenic cooler (MCC) 

since the inception of micro technology. Jeong [67] identified one of the key challenges 

in the development of an MCC is the miniaturization of a mechanical compressor. Other 

groups from [68]—[74] have previously developed the cold stages for a JT MCC. 

Examples of the JT MCC shown in Figure 2-10 have no moving parts (except for the 

microcompressor), making it easy for miniaturization [75]. Previous pressure requirement 

for the JT MCC was in the range of 20 MPa. In a recent effort by Lewis et al. [76], there 

has been success in lowering the pressure requirement for a JT cooling system. Lewis et 

al. demonstrated a JT MCC using a new different mixture of hydrocarbons to lower the 

high pressure requirement to 0.4 MPa, cooling down to 200 K, lowering the current 

minimum pressure ratio down to 4:1 for a JT MCC. Previous JT MCC [71] developed 

were incomplete MCC devices, in which the device would operate in an open loop 

system using a pressurized gas tank to drive the refrigerant into the system. Additional 

recent advances by Lewis [39] utilized a closed-loop system with the integration of a 

miniaturized compressor.
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Wow

Figure 2-10: Left: JT MCC cold stage developed by Lerou [71]. Right: JT MCC cold 
stage developed by Ma et al. [77].

2.3.1 Joule-Thomson Principle Operation

In a JT MCC system, with the schematic shown in Figure 2-11, the gas 

compressor pressurizes the gas through a counter flow heat exchanger, and heat is 

exchanged with the low pressure side. The low pressure side absorbs heat from the high 

pressure side. Isenthalpic expansion occurs as gas from the high pressure line expands 

through a restriction valve to the low pressure side. The refrigerant changes phase from a 

liquid to a gas and cools to a low temperature. The cooled liquid goes through the 

evaporator and absorbs heat from its surroundings where it is interfaced with the 

electronic component [70]. At this stage, the cooled liquid is heated and is evaporated 

back into the cold stage line to flow through the counter flow heat exchanger. This cools 

the high pressure side and the fluid is fed back into the compressor to complete the cycle.
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Figure 2-11: Schematic of a Joule-Thomson MCC system [71].

2.3.2 Microcompressor Integration with JT Cooler

Lewis et al. [72] successfully integrated a miniature sized compressor to a JT 

microcooler. Improvement on the mixture of hydrocarbon gas [73], [76] allows for the 

reduction of maximum operation pressure and pressure ratio to 0.4 MPa and a 4:1 

ratio, respectively. Miniaturized oscillator piston pumps and stacked piezoelectric 

pump have shown to be successfully integrated into a JT MCC system [39], [72]. 

Check valves were needed to interface and control the gas between the compressor 

and the JT microcooler. MEMS based fabrication methods were used to produce the 

micro valves and JT-microcooler components.

Guo et al. [78] proposed a conceptual MEMS-based Stirling cooler by 

utilizing an array of electrostatic diaphragm actuator integrated with the cooling 

system as shown in Figure 2-12. The device can generate 200 kPa with helium. As of
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date, the design still remains a concept, due to the challenges in recovering fluid from 

the cold side to the hot side in an actual device.

cold-side ho t-sideactive

in HInti-—

5 mm

x diaphragm s regenerators
channels

MEMS
Stirling
elem ents

Figure 2-12: The proposed concept of an electrostatic Stirling cooler by Guo [78],



CHAPTER 3

PIEZOELECTRIC DIAPHRAGM ACTUATOR AND TETHER 
MICROVALVE DESIGN PARAMETERS

The review of the different types of micropumps, microcompressors and 

components in Chapter 2 allows for various approaches in designing the multistage 

device. Components such as the stack piezoelectric actuator provide large force 

generation with very small displacement. Electrostatic actuation requires large voltage to 

operate against high back pressure. Piezoelectric diaphragm provide small deflection and 

unknown force generation. Although the force generation from a piezoelectric is 

unknown, it is well studied and proven to be integrable into a micropump at the 

microscale.

Microvalves component is also discussed in Chapter 2 with various types, i.e. 

cantilever, tether and electrostatic types, which are all integrable at the microscale level. 

The cantilever and tether type belongs in the passive valves category and is less complex 

to integrate into a microcompressor. There are disadvantages of utilizing these passive 

valves that rely on the pressure difference to open and close itself, which may result in 

the reverse leakage and reduction of the flow rate at high frequency operation. However, 

SU8 tether micro valves is chosen for its ease of microfabrication on a silicon wafer and 

integration into a machined compressor housing.

This chapter discusses the analysis of the microcompressor components and its

design parameters, which consists of a piezoelectric diaphragm and a tether microvalve.

2 6
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First, a literature review of the various piezoelectric diaphragm configurations and 

fabrication methods are discussed. Testing, analytical modeling and finite element 

analysis are performed to characterize the piezoelectric diaphragm volume strokes under 

static and dynamic conditions. In the second part of this chapter, analytical modeling of 

the tether microvalve is presented and compared with the experimental result of the 

pressure-flow relations. Finite element analysis is used to aid in the characterization of 

the fluid-structure interaction and extract the lumped model parameters of the 

microvalve.

3.1 Piezoelectric Unimorph Diaphragm

A piezoelectric unimorph diaphragm is composed of a piezoelectric layer bonded 

to a passive layer as shown in Figure 3-1. This type of diaphragm has been widely used 

for microactuation in micropumps. Consequently, there is a depth of study in literature on 

this type of microactuator. The diaphragm has been used for micropumps where typical 

operational frequencies are below 1 kHz of operation. The microcompressor developed in 

this work utilized high frequency operation to obtain large deflection resulting in larger 

stroke volume and less dead volume. In this microcompressor design, a 0  20 mm 

piezodisc buzzer is utilized for the investigation of a multistage microcompressor.
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V s = -Heioelectdc-
rassive Layer

Yop electrode

Piezoelectric layer: PZT 
Bottom Electrode

Bonding layer: Epokv

Passive layer: Brass

Figure 3-1: Piezoelectric unimorph schematic.

There are several parameters to improve the performance of a unimorph diaphragm 

design that will be further explained in this chapter. The design parameters include:

1. Design configuration -  There are several design configurations in literature 

that are potential candidates in improving the performance of a microscale 

piezoelectric diaphragm in terms of improving the deflections or force 

generation.

2. Design Parameters -  Several researchers developed an analytical model of 

the diaphragm, and discussed the optimization method to improve its 

performance through:

a. improvement in the piezoelectric material,

b. improvement in the synthesis of PZT and the microfabrication method, 

and

c. geometric design parameters.

3. Operational Parameters - Different operational parameters affect the 

performance of the diaphragm and can improve the diaphragm’s performance 

such as the:
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a. drive voltage,

b. resonant frequency, and

c. pressure load.

3.1.1 Piezoelectric Unimorph Diaphragm Principle of Operation

For a piezodisc, there is an adhesive layer to bond the piezoelectric layer to the 

passive layer. Thin layers of electrode exist at the top and bottom of the piezoelectric.

The bending of the diaphragm occurs when voltage is applied to the top and bottom 

electrode of the piezoelectric generating an electric field in the z-direction, the 

piezoelectric material strained in the both z and radial direction. The piezoelectric 

material is bonded to the passive layer; therefore, the strain in the radial direction 

generates a bending moment on the passive layer. Applied alternating voltage causes the 

piezoelectric to contract and elongate in the radial direction, generating bending in an 

upward or downward direction as shown in Figure 3-1.

3.1.2 Literature Review of Piezoelectric Diaphragm Design Configuration 

Piezoelectric unimorph diaphragm is known to generate small deflections, which

can lead to small stroke volume compromising the pressure ratio of the microcompressor. 

A 9 mm x 9 mm x 200 pm square PZT-silicon unimorph diaphragm developed for a 

micropump by Feng and Kim [5] generated a maximum deflection of 6 pm at 200 V 

Hong et al. [79] generated a larger deflection of 7 pm using interdigitated PZT 

diaphragm (at 100 V) with only a 800 pm diameter diaphragm. The diaphragm stroke 

was limited to 10 kPa of pressure load. There have been several designs to improve the 

performances of a piezoelectric unimorph diaphragm.
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Yao et al. [80] developed a multimorph piezoelectric actuator which consists of 

multiple layers of piezoelectric to increase the force generated to bend the passive later 

actuator, increasing the displacement and resonant frequency of the actuator. Although 

the actuator was designed as a cantilever, multilayer composition can be utilized for a 

diaphragm with the same benefit. Another method is to design a unimorph diaphragm 

with a low Young’s modulus passive layer to increase the flexibility of the diaphragm. 

The piezoelectric microspeaker developed by Cho et al. shown in Figure 3-2 utilized a 

polyimide material and PZTs at the outer quadrant of the membrane. This added low 

residual stress and produced large displacement. Flexible material such as polyimide 

material can reduce the high pressure load the diaphragm can withstand.

Figure 3-2: Polyimide piezoelectric membrane [81].

Interdigitated electrodes (IDE) have been recently developed as another form to 

generate bending in piezoelectric unimorph cantilevers [82] and diaphragms [79], [83], 

[84]. This design takes advantage of the piezoelectric constant in the d33 mode by 

removing a bottom electrode layer and placing the electrode on the same plane with the 

top electrode with an interdigitated spacing as illustrated in Figure 3-3, where both 

electrodes are shaped and spaced in a comb like manner. The interdigitated electrodes

Pad
Membrane

Si Substrate

PZT Actuator



create an electric field in the lateral direction for a cantilever case and the radial direction 

of the circular membrane. Since the electric field generated is in the parallel or radial 

direction, the resulting piezoelectric coupling coefficient utilizes the d33 mode.

dmidde
Hoimm.,

F lec iro d e

Figure 3-3: Illustration of interdigitated piezoelectric cantilever [85].

The dy constant is the ratio of the free strain to the applied electric field, where i is 

the direction that the electric field is applied and j is the utilized direction for the 

displacement or force of the piezoelectric. Hong et al. [79] noted the circular IDE 

piezoelectric actuation for the circular membrane in Figure 3-4 generated strain in the, 

d3 i andd33 mode. The d33 constant is typically 2-3 times larger than the d3 i constant. Myer 

et al. [84] developed a 650 pm diameter IDE PZT unimorph membrane and achieved 

center deflection of 10 pm.

Figure 3-4: IDT unimorph diaphragm developed by Hong et al. [79].
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Thus, numerous variations of piezoelectric diaphragms have been analyzed and 

tested for different application purposes, i.e. micropumps, microphones and 

microtransformer applications. A summary of the various types of piezoelectric 

diaphragm actuators is given in Table 3-1. Each of these piezoelectric diaphragm are 

designed either specifically to increase the resonance frequency [86], displacement, or 

generate large pressure output [81].

Table 3-1: Summary of different types of piezoelectric actuators.

A u th o r ' ' ' D escription M ateria l 
layers ]

Ri ■; Ro Deflection Voltage

C h° [82] Square with 
PZT at outer 
edges

PZT/
Polyimidi

2 mm
large

displacement

Feng [5] BBB0 W Square 

8 x 8  m nf, 
unimorph

PZT
silicon 6 pm 200

“ " H

Circular,
interdigitated

PZIY
silicon
oxide 800 pm 7 pm 100

Circular.
interdigitated

PZT
silicon
oxide 150 pm 650 pm 7 pm 180

Yao [81 ] Rectangular
Mulitlavcr
Bimorph

PZT/

Al:0 3
- 1

3.1.3 Piezoelectric Material

Lead Zirconate Titanate (PZT) is commonly employed as the piezoelectric layer 

due to its higher transverse piezoelectric constant, d3 i of around -190 pC/N. Other 

piezoelectric materials such as Aluminum Nitride (AIN) and ZnO have lower values of 

-1.3 pC/N and -2.87 pC/N, which will result in smaller deflection magnitude. These 

materials can be grown with a low sputtering temperature (300°C), making it suitable to
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deposit more of a flexible layer such as a polymer material that has low glass transition 

temperature. PZT requires a high anneal temperature of 650°C to epitaxially crystallize 

the perovskite structure of PZT. This is beyond the melting temperature of most flexible 

polymers. Therefore, a transfer process is required and involves removing the thin film 

PZT from the substrate and attaching it to the plastic substrate.

3.1.4 PZT Synthesis and Fabrication of Piezoelectric Review

Currently, the methods to deposit PZT on diaphragm are: sol gel [87]—[90], screen 

print [90]-[93], aerosol [94] and direct-write [95]. Currently, the two main methods 

feasible for micro size integration feasible allow fast and low cost manufacturing 

processes are sol gel and screen printing.

The sol gel method [87], [89], [96] provides a maximum layer thickness of up to 1 

pm and requires a maximum deposition of 250 nm layer thickness at a time via spin 

coating and rapid annealing temperature at around ~600°C range. The screen print 

method [90], [97]—[99] requires a screen mesh and a squeegee to apply the PZT paste on 

a substrate as illustrated in Figure 3-5 to pattern the PZT directly without etching. This 

method provides thicknesses in the 20-110 pm range.

coating blade
screen

p rin t stroke

snap off

printed pattern substrate

squeegee

Figure 3-5: Schematic of screen printing PZT [100].
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The aerosol method [94], [101] deposit PZT at room temperature and is annealed.. 

at high temperature to form PZT on a substrate with thicknesses ranging from 1-500 pm. 

PZT particles in the submicron range are mixed with a carrier gas such as helium to form 

an aerosol through a nozzle and depositing the PZT on the substrate surface. Liftoff 

method is used to form a patterned PZT microstructure. Direct-write method can utilize 

sol-gel [95] or PZT paste [93] using a deposition pen such as a MicroPen™ to deposit 

complex pattern of the PZT on a 2D surface producing thickness comparable to screen 

printing. This method is cheaper, but more suitable for small-scale production.

3.1.5 Diaphragm Geometric Design Optimization Parameters

The piezoelectric unimorph diaphragm generates the stroke volume in the 

compressor chamber. Therefore, it is an integral part in the generation of the compressor 

pressure. Mo et al. [102] and Herz et al. [103] studied the geometric optimization of a 

piezoelectric unimorph diaphragm to maximize the volume stroke. The optimized 

thickness ratio was determined analytically by Herz using the classical laminate plate 

theory (CLPT). For a pin support at the outer edge of the actuator, the optimal thickness 

ratio is given as

T
‘_p_ _ ^  [103] Eq. 3-1

rP

where Tp and Td is the piezoelectric thickness and diaphragm thickness, and Yd and Yp is 

the Young’s modulus for the diaphragm and piezoelectric, respectively. Herz also points 

out that maximizing the radius of the piezoelectric layer to the radius of the passive layer 

will maximize the stroke volume. This is limited by the clamp area and strain at the outer 

rim of the diaphragm.
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The CPLT method provides the stroke volume of the actuator as a function of the 

input voltage to the piezoelectric layer and the pressure load on the actuator given as

Vstroke = CPP +  CEV [103], [104] Eq. 3-2

where CP and CE is the fluidic capacitance and volumetric-electrical coupling. P is the 

pressure load on the diaphragm and V is the input voltage to the piezoelectric material. 

These coefficients are calculated in Appendix A using the CLPT method from Desphande 

[104],

3.1.6 Diaphragm Test Characterization

To characterize the piezoelectric diaphragm, the following analysis method are 

conducted:

1) Quasi-static: Due to the limitation in the availability of the experimental 

measurement in measuring the deflection profile of the piezoelectric 

diaphragm. Furthermore, a Laser Doppler Vibrometer (LDV) can only 

measure the dynamic deflection of the diaphragm. Thus, FEA and the CLPT 

method are used both to determine the deflection profile of quasi-static study 

and used to validate their results.

2) Dynamic analysis: The piezoelectric diaphragm operates in the dynamic 

mode at high frequencies to generate the stroke. A frequency sweep of the 

diaphragm center deflection is determined with FEA and compared against the 

frequency sweep measurement of the LDV to determine its accuracy.

Due to the limitation of the two mode of analyses, the stroke volume at the resonance 

peak is determined by correlating the center magnitude of static deflection profile to the 

dynamic measurement of the center deflection peak.



The diaphragm is modeled using a quasi-static analysis with input voltage to the 

top and bottom electrode of the piezoelectric. The thin layer of electrodes and the 

bonding layer between the piezoelectric and passive layer were neglected in the FEA 

analysis to simplify the meshing to provide easier convergence. Figure 3-7(b-c) 

illustrate a clamp plate and an O-ring for the mounting that represent the compressor and 

test fixture. A simplified fixed constraint model is used at the outer radial surface of the 

diaphragm as illustrated in Figure 3-7(a) for the FEA model and CLPT model. Static 

pressure load was also applied to the diaphragm.

A commercially available piezo disc bender in Figure 3-6 with parameters from 

Table 3-2 is used as the diaphragm actuator for the microcompressor.

Figure 3-6: Piezo disc diaphragm actuator.
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Table 3-2: Piezo disc parameters.

Ri Ro TP Td ^31 Y

(mm) (mm) (mm) (mm) (C/N) Young’s Modulus 

(GPa)

PZT-5A 7.5 - 0.21 - - 63

Brass - 10 - 0.21 175 x 10’12 110

(a) FEA BCs

f>**d
u t t t t t t t t t t t t t t

Pressure load

(b ) d8mp (C)

P ? - j - rT{{T|{}|}{|}|Tr
o-ring _

Model of actual
Actual BC s  boundary conditions

Figure 3-7: Boundary conditions (BCs) for the piezoelectric diaphragm.

A test rig in Figure 3-8 was used to characterize the diaphragm deflection in 

response to the applied voltage and drive frequency using a Polytec LDV A pressure 

manometer was used to measure the pressure load in the chamber generated from the 

syringe pump. A LDV was used to measure the center diaphragm deflection. An O-ring 

seal was installed to replicate the actual compressor design and seal the diaphragm under 

air pressure load.
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■\
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Figure 3-8: Unimoprh diaphragm deflection test setup.

It is difficult to measure the deflection profile of the diaphragm from a single 

point measurement using a LDV without a 2D or 3D surface laser profilometer to 

determine the stroke volume of the actuator. Additionally, the stroke volume of the 

diaphragm from a static analysis may be different from the dynamic stroke volume as 

observed in Figure 3-11, where the deflection change as a function of the drive 

frequency. FEA and the CLPT analysis offers a quasi-static deflection profile of the 

diaphragm. Details of the CLPT analysis is given in Appendix A with the deflection plot 

given in Figure A-l. These deflections depends on the voltage and the pressure load 

given in [103], [104] Eq. 3-2. From Figure 3-9, the static deflection of the brass-PZT 

disc requires 400 V to achieve 35 pm of center deflection. Additionally, from Figure 

3-10, it can be seen that the diaphragm can only withstand up to 10 kPa of pressure load 

at 60 V of static actuation before collapsing under pressure.

The percentage difference between the results CLPT and FEA results are 

summarized in Table 3-3 and Table 3-4 for Figure 3-9 and Figure 3-10, respectively. 

The percent difference is compared at the center deflection of the piezoelectric
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diaphragm, and the two methods are within a 5% difference except where the diaphragm 

experienced 10 kPa of pressure load, which resulted in a 28.9% difference. Note that the 

magnitude for the deflection at 10 kPa is only 0.4 pm difference between the two 

methods. Due to the small magnitude in the deflection of only 0.128 and 0.165 pm, the 

0.4 pm contribute to a larger percent difference.

60 V CLPT

§.30

10 V PEA

60  V FEA

|  20 V 200 V FEA

400 V PEA

-10
D ia p h r a g m  R a d i u s  ( m m )

Figure 3-9: Static analysis of piezoelectric unimorph diaphragm deflection profile 
comparing FEA and CLPT method at zero pressure load.

6 0 V6

OkPaCLPT

4

(£Zo
a .

§
*0 1*a w
% -100
1
&6

6 kPa FEA

4

-6
D ia p h r a g m  R a d iu s  ( m m )
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Figure 3-10: Static analysis of piezoelectric unimorph diaphragm deflection profile 
comparing FEA and CLPT method under pressure load at 60 V

Table 3-3: Comparision of the results from Figure 3-9 of the center deflection 
magnitude.

Voltage
(V)

CLPT
(pm)

FEA
(pm)

%
Difference

10 0.872 0.84 3.7%
60 5.23 5.04 3.6%

200 17.4 16.8 3.4%
400 34.89 33.63 3.6%

Table 3-4: Comparision of the results from Figure 3-10 of the center deflection 
magnitude under pressure load.

Under Load, at 60 VPP
Pressure

(kPa)
CLPT
(pm)

FEA
(pm)

%
Difference

0 5.23 5.04 3.6%
6 2.01 1.91 5.0%
10 -0.128 -0.165 -28.9%
20 -5.49 -5.377 2.1%

m

3.1.6.1 Diaphragm Frequency Response

Due to the dynamic cycling operation of the actuator in the compressor, a 

dynamic analysis is needed to determine the dynamic stroke volume. A frequency 

response of the diaphragm, gives a more accurate evaluation of the stroke deflection 

during compressor operation. With the same test rig as set up in Figure 3-8, and without 

pressure load from the syringe pump, the deflection of the diaphragm was measured at 

different frequencies. Table 3-5 shows the summary of the FEA and experimental 

frequency response; the FEA results shows a 3.37% difference in the center deflection
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magnitude from the experimental and a 9.3% difference in the peak frequency from the 

experimental.

Table 3-5: Summary of piezoelectric diaphragm frequency response analysis.

Frequency (Hz) Center Deflection (pm)
FEA 4700 55.2

Experimental 4300 53.4
Percentage Error 9.30% 3.37%

The diaphragm achieved 55 pm peak-to-peak deflection at near the resonant 

frequency as shown in Figure 3-11. This is close to the frequency response of the FEA 

analysis of the diaphragm, where the simulated modal frequency response is 4.72 kHz. 

The small shift in frequency can be contributed to the boundary condition of the 

constraint difference of the diaphragm and the exact material properties of the piezo disc.

60 20 Vpp

—♦— Experim ental - LDV 

— FEA - Comsol
50

£ 4 0

30

20

10

0
0 2000 4000 6000 8000 10000

Frequency (Hz)

Figure 3-11: Frequency response of the diaphragm deflection at resonant frequency 
driven at 20 Vpp with no pressure load.
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The diaphragm behaves like a membrane, and the resonance frequencies is given

as

a
w  =

2nR2
D
ph

[86] Eq. 3-3

where w is the angular resonant frequency, a  is the constant for the vibration mode, R is 

the radius, h is the membrane thickness, p is membrane density, D are flexural rigidity

given as

D =
Eh3 [86] Eq. 3-4

1 2 (1 - v 2)

where E is the Young’s modulus and v is the Poisson’s ratio.

To determine the dynamic stroke volume, the static deflection profile is 

extrapolated to match the measured dynamic deflection. The stroke volume is determined 

in Figure 3-12.

xlO-3

4.00

3.50

3.00

2.50

2.00
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1.00

0.50
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15 30 35 400 5 10 20 25

Center Deflection (nm)

Figure 3-12: Extrapolated dynamic stroke volume
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The diaphragm also experienced pressure generated in the chamber and generated 

back pressure from its outlet port. Figure 3-13 shows the deflection characteristics of the 

diaphragm deflection under pressure load using the test set up in Figure 3-8. Pressures in 

the test rig was loaded with a pump syringe up to a maximum of 35 kPa at 40 Vpp. 

Pressure beyond 30 kPa load resulted in a fast leak rate from the syringe and the O-ring 

seal, causing inaccurate and unsteady pressure reading from the manometer. Here, 500 

Hz was first tested to get a base comparison under non-resonance dynamic mode. The 

deflection at 500 Hz can operate up to 10 kPa and can no longer deflect at higher 

pressure. Note that at resonance, the deflection follows a similar horizontal trend line up 

to 10 kPa and can still generate deflection at higher pressure. Frequency of 4.18 kHz and 

4.14 kHz were tuned with the largest deflection under pressure load. At resonance, the 

diaphragm maintained its stroke volume up to 10 kPa and has a maximum deflection at 

15 kPa. At a larger load of more than 15 kPa, the diaphragm shows a more decreasing 

trend after 15 kPa up to 30 kPa.
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Figure 3-13: Preliminary measured center deflection of piezoelectric diaphragm under 
pressure load.

3.2 Microvalve Model and Design

The microvalve design is based on a tether check valve designed as shown in 

Figure 3-14 fabricated using MEMS microfabrication technique as described in Chapter 

5. Here, modeling and characterization of the micro valve and its interaction with the gas 

flow are discussed. Modeling and FEM analysis allow for the development of lumped 

model parameters of the microvalve. A 2D illustration of the microvalve model is shown 

in Figure 3-15. The tether valve is designed with SU8 material with its parameters given 

in Table 3-6.



inlet outlet

Figure 3-14: Microvalve model.

Outlet

Microvalve Plate

Ph

Inlet

Z iL

l - a - r2

Figure 3-15: 2D schematic of microvalve model.

Table 3-6: Microvalve parameters.

rx (mm) r2 (mm) tv (pm) Ph (mm) h (pm)

0.5 0.8 100 0.7 10

3.2.1 Flow Conditions

To develop the model for air flow through a small opening of the micro valve, 

certain flow conditions is assumed. In the micro scale, the fluid flow is typically laminar
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with low Reynolds number. The Reynolds number is given as the ratio of the inertia force 

over the viscous force or friction of the air flow and is given as:

pUL Eq. 3-5
Re =

where p, U, L, i9 is the fluid density, mean fluid velocity, characteristic length of the 

surface, and dynamic viscosity. For a non circular diameter, the characteristic length is 

the hydraulic dynamic given as

r, 4 A 4(2nrh ) ,D  = —  -  v ' = 2h Eq. 3-6n Pw 2(21rr) M

where A and Pw is the cross section area of the channel or fluid flow, and Pw is the 

wetted perimeter. The mean velocity is defined as

U = -  =  Eq. 3-7
A 2nrh

where Q is the volumetric flow rate and A is the cross sectional area of the flow.

The Reynolds is rewritten as

pUDh Eq. 3-8
Re = — -—.

0

To determine the Reynolds number, the pressure-flow rate relationship through 

the valves is needed. Once the pressure-flow rate relationship is described, further 

discussion of the Reynolds # is presented in the later section.

The compressibility of the air flow is determined by the Mach number given as

U Eq. 3-9
M = c

where c is the speed of sound.
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Using Eq. 3-7, the Mach number can be given in terms of the flow rate through the valve 

and can be rewritten as

M =  - -  , Eq. 3-10
c2nrh

For M < 0.3, the flow is still considered incompressible. The Mach number of the design

is revisited in the next section.

3.2.2 Pressure-Flow Rate Model

The flow between the valve plate and the lower surface is considered as a fully

developed, radial flow between parallel plates. The applicable steady flow Navier Stokes

equations for radial momentum and continuity equations [105], [106] are

dp ( d 2u  ld u  u d 2u \  Eq. 3-11
dr ^ \ d r 2 ^ r d r  r 2 d z2j

du u n Eq. 3-12
—  + — — 0. 
dr r

The velocity flow is assumed a parabolic profile for the flow between two radial 

parallel plate starting the entrance to the outer edge of the. valve plate at rt < r  <  r2. No 

slip boundary conditions is applied, where the u(z = 0) and u(z = h) = 0.

3Q /zs / Z \  Eq. 3-13
u = m - dnrh w  ' hJ

The Eq. 3-11 to Eq. 3-13 that yield the pressure difference along the radius of the 

parallel valve plate is

,  ̂ r 6t*Qi r 2 r QQ2 Eq. 3-14
P(r2) - p ( r 0  = 4 ~2j ^  + ^

Thus, the pressure drop is contributed from the friction loss and the inertia loss, where the

/  ii A a A 2
first term, -2-^In—, is the viscous effect and the second term, —f 2 ~  rr, is thenh3 ri 47r2h2(r2+r1)2



inertia effects of the flow. If the inertia effect has a smaller order of magnitude than the 

viscuous effect, then the inertia term can be ignored. ^  and £2 are the loss coefficients 

that have to be determined from experimental data. Here, the loss coefficients are 

determined from numerical simulation with FEM and are discussed in section 3.2.3.1.1.

It can be seen that Eq. 3-14 is comparable to the Bernoulli’s equation in Eq. 3-15 

and is rewritten to Eq. 3-16.

pU2 p t/f  Eq. 3-15

p W 2 -  Ui)  Eq. 3-16

Pi +  a —  = pz + a —  + pL

A p = pL + a -

where pL is the viscous loss due to friction and the second term is the inertia loss.

Given by the Hagen-Poiseuille law, the resistance [107] of the micro valve is given as

A P
R = —  Eq. 3-17

where AP is the pressure drop and Q is the flow rate. The resistance is

( z6pin
R = Eq. 3-18

7T k 3

The total load of the gas acting on the bottom surface of the valve plate can be 

found by integrating the pressure distribution from the integration of the curve in Eq. 

3-14. The force load, W, is given as

W = Pinnri +  In  pdr
f r2 Eq. 3-19

p a r
•Jri
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3.2.3 Microvalve Fluid-Structure Characterization

The modeling of the fluid structure interaction of the microvalve is modeled with 

two approaches using the quasi-steady flow.

3.2.3.1 Quasi-Steady Flow Throush a Fixed Valve Plate

The first approach is the analysis of a quasi-steady flow through a fixed plate at 

height, hi as shown in Figure 3-16: Schematic of the pressure-flow through the 

microvalve fixed-plate model with an initial gap height, hi. The inlet pressure generates a 

steady air flow with a load, W, on the fixed valve plate. Here, the initial condition of our 

assembled valve is modeled where the applied UV adhesive layer leaves an initial gap 

height, hi, between the valve plate and the valve seat.

Figure 3-16: Schematic of the pressure-flow through the microvalve fixed-plate model 
with an initial gap height, hi.

The pressure-flow relation [108] is given as

Fixed support

nhlPin
Eq. 3-21

The flow rate, Qt , at different gap height, hx, is plotted in Figure 3-17.
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Figure 3-17: Calculated flow rate from Eq. 3-21 with £ = 1.

The Reynolds number through valve structure at various fixed gap heights is 

observed. The Reynolds number in Figure 3-18 is estimated with Eq. 3-21 without the 

loss coefficient calculated at the entrance radius, ty. A Re number <2100 indicates 

laminar flow, and it can be seen that the flow remains laminar for the gap height 

parameters in Figure 3-18. From Figure 3-19, compressible and incompressible flow 

condition can be considered at different conditions. The incompressible flow exists at gap 

height, h < 10 pm. At a gap height of 20 pm with inlet pressure below 15 kPa, the flow 

remains incompressible. Thus, the analysis conducted in this dissertation considers the 

flow to be incompressible. At a larger gap height, the modeling results is expected to 

deviate from this model. Analysis for a compressible flow model is beyond the scope of 

the study.
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Figure 3-18: Reynolds number for air flow through microvalve.
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Figure 3-19: Mach number at different gap height with a fixed valve plate height.

3.2.3.1.1 Viscous and Inertia Effect

The quasi-steady pressure-flow relation of the microvalve fixed-plate model in 

terms of its viscous and inertia effects is given in Eq. 3-14. Since the Reynolds number 

gives the ratio of the inertia effect over the viscous effect, it can give a good indication of
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when the inertia effect would be significant in the micro valve model. To examine these 

effects contributing to the pressure loss of the microvalve flow without knowing the loss 

coefficient factor, <f, the viscous and inertia effects are plotted Figure 3-20 and Figure 

3-21. To plot these figures, it is first assumed that the derived model from Eq. 3-14 is a 

perfect model representation of the pressure-flow through the microvalve orifice by 

assuming f 1/Z = 1. From the two figures, the viscous effect has one order of magnitude 

larger than the inertia effect at a low gap height of h < 30 pm. Thus, at a low gap height, 

the viscous effect is more significant. At h > 30 pm, the magnitude of the pressure loss 

from the viscous effect decreases and reaches closer to the order of magnitude of inertia 

effect at the same gap height. Similarly, the Reynolds number from Figure 3-18 has a 

larger magnitude at a larger gap height, indicating that the inertia effect is more 

significant as the gap height increases.

Analytical Pressure Loss vs Flow Rate (Viscous Term only, ^ = 1 )

20

O.OE+OO 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05 1.2E-05

Qin m(3/s)

Figure 3-20: Plot of the pressure loss due to viscous effect from the fixed microvalve 
model.
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Analytical Pressure Loss vs Flow Rate (Inertia, ^= 1)
5.0 

4 .5

4 .0
—♦—10 jim

—r - 5  jim

—♦—40  jim

- ♦ —15 Jim

—♦—25 jim

—♦—30 jun

—♦—35 jim

—9—20 jim

O.OE+OO 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05 1.2E-05

Qin (m3/s )

Figure 3-21: Plot of the pressure loss due to inertia effect for the fixed microvalve 
model.

3.2.3.1.2 Microvalve Fixed-Plate Model Comparison with FEM

Figure 3-22 shows a plot of the quasi-steady flow relations using FEM analysis. 

The FEM results is then compared to the analytical pressure-flow curves in Figure 3-23. 

At a low gap height, h < 15 pm, the simulated flow is linear and fits the analytical model. 

As the gap height increases, h > 20 pm, the FEM results show a nonlinear pressure-flow 

relation. As mentioned in the previous section, at a large gap height, the viscous effect is 

smaller contributing to a smaller pressure loss. At a larger height, the fluidic resistance is 

less, and allowing increase in gas flow velocity. The gas flow velocity contributes to the 

inertia effect in pressure loss at the large gap height.
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Pressure loss vs Flow Rate (FEM)
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Figure 3-22: Pressure loss from the microvalve at different gap height and flow rate 
from FEM analysis. These curves are fitted with second order polynomial to determine 
the viscous and inertia loss coefficient.
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Figure 3-23: Flow rate vs. pressure of steady flow through microvalve. Comparison 
between analytical and FEM result.
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The FEM result of the pressure-flow relations is replotted in Eq. 3-25 and is fitted 

as a second order polynomial. The pressures difference along the valve plate from Eq. 

3-14 is rewritten as

P l  =  a i  Q + «2 Q 2 Eq- 3-22

<h
?i = Jl/L ln ll Eq. 3-23

7lh? Tx

0-2
=  P ' Eq. 3-24

4 n 2h2(r2 +  rx)2

By using a second order polynomial fit from Eq. 3-22 to fit the pressure-flow 

curves in Figure 3-22, the coefficients ax and a2 are obtained for each curve given in 

Table 3-7. The loss factors, and <f2 given in Figure 3-24 and Figure 3-25, are 

determined from ax and a2 using Eq. 3-23 and Eq. 3-24. The loss factors %x and £2 are 

determined from Table 3-7. With these parameters, the analytical pressure-flow relation 

for a 30 pm gap height is adjusted to match the FEM result as shown in Figure 3-26.

Table 3-7: Pressure-flow polynomial fitted coefficients

h (pm) ax a2 6
5 2.00E+11 1.00E+16 0.61 8.88
10 4.00E+10 2.00E+15 0.97 7.11
15 1.00E+10 8.00E+14 0.82 6.40
20 4.00E+09 5.00E+14 0.78 7.11
25 2.00E+09 4.00E+14 0.76 8.88
30 9.00E+08 3.00E+14 0.59 9.59
35 7.00E+08 2.00E+14 0.73 8.70
40 4.00E+08 2.00E+14 0.62 11.37
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Figure 3-24: Viscous loss factors.
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Figure 3-25: Inertia loss factors.
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Figure 3-26: Pressure-flow relation with corrected loss factors for a 30 |iim gap height.

3.2.3.2 Flow throush a Flexible Valve Plate

The second approach is illustrated in Figure 3-2 7(a), where the valve rest 

perfectly on the seat surface with no initial gap as shown Figure 3-27(a). The valve plate 

is modeled as a spring-mass system. With quasi-steady pressure-flow, the inlet pressure, 

pin develops steady gas flow and deflects the valve to an equilibrium height, h2, as 

illustrated in Figure 3-27(b).
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Pin Pin

Figure 3-27: (a) Schematic of the micro valve plate in the close position, (b)
Schematic of the steady gas flow of the microvalve deflecting the microvalve to an 
equilibrium gap height.

With the flow rate relating to the. load, W in Eq. 3-20 is set as the spring force of 

the valve, kvh2

Combining Eq. 3-21 into Eq. 3-25, the flexible micro valve gap height at the equilibrium 

point in relation to the inlet pressure is

V;r,n(r? -  r?)

•i
Eq. 3-25

Eq. 3-26

The flow at the equilibrium position is given as

w/ifPin
Eq. 3-27

The flexible microvalve gap height from Eq. 3-26 is plotted in Figure 3-28. 

Subsequently, the calculated flow rate from Eq. 3-27 is plotted in Figure 3-29.
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Figure 3-29: Pressure-Flow characteristic curve for flexible valve model, Q2.



3.2.4 Pressure-Flow Micro valve Test Characterization

60

An experiment was designed to further characterize the pressure-flow of the 

microvalve and validate the quasi-steady flow model. Various inlet diameter sizes were 

used to obtain the pressure flow relation.

3.2.4.1 Experimental Setup

To obtain the pressure-flow relation, a micro valve test jig with an array of 

different inlet diameter was developed as shown in Figure 3-30. To test the flow of the 

microvalve and pressure relation, the microvalve pressure and flow was generated from a 

syringe pump as shown in the test set up in Figure 3-31. The flow rate through the 

microvalve was determined from the syringe pump rate set from the equipment. A 

pressure manometer was tapped to measure the generated back pressure. Forward flow 

was measured with the setup shown in Figure 3-31(a). Reverse flow was measured by 

applying flow at the outlet of the microvalve with the setup shown in Figure 3-31(b). A 

collection tube was used to measure the flow rate, since reverse leakage would be small 

and would require some back pressure to generate the reverse flow.

C ross-Section

Figure 3-30: Microvalve test jig.
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Forward Flow

microvalve te s t  jig

Reverse Flow

microvalve te s t jig

Figure 3-31: (a) Micro valve pressure-flow test set up for forward flow, (b) Micro valve 
pressure-flow test set up for reverse leakage flow.

The microvalves are attached to the valve seats using the same method as the 

microcompressor device with UV adhesive. As a result of manually attaching the 

microvalves, variations in adhesive thickness layer in between the microvalve and its seat 

resulted in different gap height. Subsequent to the pressure-flow measurement, the 

microvalves were removed from the valves seat with the UV adhesive still intact with the 

valve seat. The thickness of the adhesive was measured with a 3D optical profilometer 

(Zeta instrument) to obtain the average gap height.

3.2.4.2 Pressure-Flow Test Characterization

Figure 3-32 shows the forward pressure-flow curve and the reverse leakage for 

the micro valves with inlet hole diameters ranging from 0.5 -  0.8 mm and its 

corresponding gap height from the UV adhesive. It can be seen that for the forward flow
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relation is linear at the lower inlet pressure range. At this lower region, there is an initial 

gap height in the microvalve. The initial gap height of the valve plate remains constant as 

the pressure increases and the flow increases through the valve plate. As the pressure 

reaches a threshold, the valve plate begins to deflect and allows for increase flow rate of 

gas through the plate. Hence, it is observed that there is an exponential increase trend in 

the flow rate as a function of pressure once it passed the threshold.

Microvalve Flow Test
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Figure 3-32: Microvalve pressure-flow test for forward and reverse flow.

The magnitude of the sealed-reverse leakage of the microvalve is shown to be 

linearly dependent on the magnitude of back pressure and is modeled as

Mt = PAP Eq. 3-28

where the reverse flow coefficient, /?, is the slope of the pressure-flow curve from 

Figure 3-32, given in the amount of reverse flow per unit of back pressure. From the 

reverse leak test result summarized in Table 3-8, the 0.5 mm hole has /? =  0.207
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("kPa")’ ’n<̂ ĉat'n§ most reverse flow resistance to back pressure despite its large

gap height. There is an increase in sealed surface area for 0.5 mm hole. The 0.6 mm 

hole provides the least reverse leak resistance to pressure, even less than the 0.7 and 

0.8 mm hole. The smaller gap height of 4.4 pm and 9.8 pm in the 0.7 and 0.8 mm 

hole contributed to a better reverse leak resistance than the 0.6 mm hole where there is 

a larger gap height.

Table 3-8: Reverse flow coefficients of the experimental test from Figure 3-32.

dx (mm) 

Hole diameter

n ,sccm^
P ^ k P a '

Back pressure leak rate coefficient

0.5 0.147

0.6 2.663

0.7 0.722

0.8 1.176

The quasi-steady model developed in the previous section is compared with the 

measured pressure-flow relation and to provide insight of the valve behavior. In Figure 

3-33 and Figure 3-34, the 0.5 and 0.6 mm measured pressure-flow relations are 

compared to the model from Eq. 3-21 and Eq. 3-27 As shown in Eq. 3-21, the flow rate 

model, Qi, is modeled as a fixed plate. The flow rate model, Q2, is used to model the 

pressure-flow curve for a flexible valve plate.
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Figure 3-33: Comparison of experimental pressure-flow curve to model for a 0.5 mm 
inlet hole.
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Figure 3-34: Comparison of experimental pressure-flow curve to model for a 0.5 
mm inlet hole.
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The model of the fixed valve plate and the flexible valve plate model required 

parameter adjustments as shown in Table 3-9 to obtain a good fit where it can match the 

experimental pressure-flow curve. The gap height, h, from the experimental test was 

measured at 30 pm. However, the fixed plate model required a 7 pm gap height for it to 

fit the experimental curve. The flexible valve plate model showed a good fit to the 

experimental curve for the 0.5 mm hole. Furthermore, the tested 0.6 mm hole pressure- 

flow curve was fitted against the fixed-plate model and the flexible valve plate model. 

Similarly, a gap height of 15 um was needed to show a good fit at the port of the 

pressure-flow curve. The flexible model provided a better fit at higher pressure.

Table 3-9: Summary of microvalve pressure-flow model and experimental parameters.

1 A p e n  m e n t a l  1
 ̂ , Fiex-fble Y al ve.pfate' mo del

00.5 mm 
inlet hole

nti(p in

( ^ )

_ nhlvin

h = 30 pm h -== 7 pm _ p inn ( r 2 - r ? )  

Szkv2Ln ( ^ )

- - kv = 475 N/m

(x = 0.3

O
N

oIICM

00.6 mm 
inlet hole

” nhlvtn  

^ 6 pin

n h lp in

$26pln

h = 32 pm h = 15 pm P i n ^ i r i  -  r l )  

*2 ~~ / r  \
f 2kv2 L n {£ )

- - kv = 475 N/m

- ^ 1  =  0.6 <f2 = 0.85
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The FEM simulation of the pressure-flow characteristic follows the experimental 

trend of the flow characteristics. The error is likely due to the error in the material 

properties of the SU8 materials. Post exposure bake temperature of the SU8 changes the 

Young’s modulus and Poisson ratio [109]. Other errors which were not accounted for 

includes the flow restriction at the experimental inlet and variations in the gap height 

from the adhesive.

Summary: A pressure-flow curve for a fixed valve plate is developed and the 

loss coefficients at different gap heights were determined using the result from the FEM 

analysis. The fixed plate model includes the viscous and inertia effect contributing to the 

pressure loss. It was determined that the inertia effect is an order of magnitude less than 

the viscous effect and has some low gap height of the valve plate.

3.2.5 Tethered Arm Model

The total stiffness constant of the valve is F — k ty , where F is the force acting on 

the valve plate, k t is the combined total spring constant of the three tethered arms and is 

given in Eq. 3-29, and y is the displacement of the valve plate. The design of the 

tethered arms shown in Figure 3-35 is modeled as a beam with a fixed end and a guide- 

end. Each of the three arms are considered as a spring in parallel and is given in Eq. 3-29, 

where k t is the total spring constant of the 3 arms, and ka is the spring constant of each 

arm. Each arm has three individual beams connected in series. For beams connected in 

series, its spring constant is evaluated in parallel as given in Eq. 3-30.
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Figure 3-35: Schematic of valve spring model.
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The inertial of the beam is given as

I = -
w h3
12

Eq. 3-29 

Eq. 3-30

Eq. 3-31

where w and h is the width and height of the beam. The spring constant for a fixed-guide 

beam is given as

12 El
k =

L3 '
Eq. 3-32

3.2.6 Transient Couple Fluid Structure FEM Analysis of Microvalve 

The transient dynamic behavior of the microvalves with the interaction of the gas flow is 

difficult to determine experimentally because of the small scale of the structure and the 

high frequency behavior of the micro valves. Ulrich [110] and Koch [111] have studied 

the static and dynamic flow simulation of a cantilever microvalve using FEM coupled 

with CFD simulations. Transient simulation can be time consuming and computationally
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intensive. However, it can give information on the damping property of the microvalve 

structure and the effective mass of the microvalve. A microvalve structure can be 

represented as a 2nd order differential equation:

m z + cz + kz = F Eq. 3-33

3D transient FSI FEM was set up in Ansys using a 2-way fully coupled transient 

structural and fluent flow (Fluent) with the boundary conditions shown in Figure 3-36. 

The inlet port was set at 7 kPa and the outlet port was set to 0 kPa. The end of the tether 

valve is fixed. The microvalve plate has an initial gap height of 10 pm to allow for mesh 

to exist between the valve plate and the valve seat. Microvalves fabricated from 

literatures [39], [60], [110], [112] have been shown to have an initial gap height after the 

release of the microvalve from the substrate.

fluid-5 tructure 
coupled boundary

Figure 3-36: FSI FEM boundary conditions setup.

Air was used as the fluid medium in the simulation. Figure 3-37 shows the fluid 

domain with tetrahedral mesh, the structural domain with quadrilateral mesh, and the 

deformation of the microvalve structure. The deflection response of the microvalve from 

the flow generated by the inlet pressure is given in Figure 3-38.
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Figure 3-37: (Top left) quadrilateral mesh for the microvalve. (Top right) Deflection of 
the microvalve with fluid force. (Bottom left) tetrahedral mesh for fluid with the top 
boundary hidden. (Bottom right) tetrahedral mesh for fluid with the bottom boundary 
hidden.
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Transient Response
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Figure 3-38: Microvalve plate structural displacement response to transient FSI 
simulation.

The damping ratio, £ is given as

1
S =  -  In 

n *71+1
Eq. 3-34

Eq. 3-35
V47T2 + S2

where xx is the first deflection peak, and xn+1 is the nth peak. The effective mass, m ef f  is

given as

ojr = I n f  =
m

Eq. 3-36
e / /

where cor is the resonant frequency (radian/sec) of the structure.
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The frequency f  is determined from the oscillation peaks of the valve’s response 

and is given as

f  = Eq. 3-37
txl tX2

where txl and tx2 are the times of the first and second oscillation peaks. The parameters 

of the microvalve lumped model is summarized in Table 3-10. The first mode resonant 

frequency of the microvalve is at 5.76 kHz and decreases to 4.0 kHz under load, with the 

effective mass remaining the same.

Table 3-10: Differential equation parameters of microvalve structure determined from 
static and transient analysis.

Static Transient (FEM)

Resonant Frequency 5.76 kHz 4.0 kHz

Mass 749 ng 749 ng

Damping Ratio, C, - 0.0950

Spring stiffness, k 473 N/m -

The pressure distribution on the lower surface of the microvalve is shown in 

Figure 3-39. At this pressure and height, the inlet pressure is mainly concentrated at the 

center of the valve plate.
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Figure 3-39: Pressure distribution of microvalve at steady state

3.3 Summary

This chapter discussed the analysis of the two critical components in the 

microcompressor’s design, the piezoelectric unimorph diaphragm, and the microvalve 

and its pressure-flow interaction. Piezoelectric diaphragms are widely used as a 

micropump actuator and is easily available to fabricate in the microscale with proven 

microfabrication processes such as the sol-gel and screen printing method discussed in 

this chapter. The. static deflection with respect to the input voltage of the piezoelectric 

unimorph diaphragm was predicted with the CLPT method and FEA. Due to the 

nonlinearity of the diaphragm at high resonant frequency, the prediction of the 

piezoelectric diaphragm deflection requires a frequency response test and FEA analysis 

and correlation to the deflection shape to obtain the stroke volume generated from the 

diaphragm. There are limitations of the piezoelectric unimorph diaphragm from the 

amount of stroke it can generate under pressure load.

The microvalve pressure-flow model was presented and compared with the fluid- 

structure interaction FEA analysis to determine its flow coefficients. Both the fixed-plate 

and flexible plate models were presented to characterize the measured pressure-flow
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relations (Figure 3-32 - Figure 3-34) and were used to explain the test results in Figure

3-32. According to the microvalve analytical models and test results, larger inlet 

microvalve inlet radiuses reduce the fluidic impedance of the microvalve. However, it 

also reduces the sealing surface area of the valve plate and its seat. Thus, it reduces the 

sealed-reverse leakage of the microvalve at large back pressure which can be detrimental 

to the generation of large pressure rise. In the second part of the analysis, transient fluid- 

structure interaction FEA were implemented to determine the damping ratio and used for 

the lumped model simulation studies of the microvalve in Chapter 4.



CHAPTER 4

SINGLE AND MULITSTAGE MICROCOMPRESSOR MODELING 
AND SIMULATION

This chapter presents the simulation and analysis to predict the performance of a 

single and multistage microcompressor. The simulation tool developed in this chapter is 

used to study the behavior between the dynamics in each microcompressor chamber, and 

the valves dynamics between each chamber. The objectives of this study are to:

• Use a lumped model simulation to study the feasibility and the effectiveness 

of utilizing passive micro check valves to control the transfer of gas between 

each stage and how it can affect the overall pressure ratio and performance of 

a multistage microompressor.

• Study different configurations of the multistage microcompressor. In 

configuration one, simulate the multistage microcompressor without dead 

volume in the chamber, and utilizing one microvalve between cascading 

chambers. In configuration two, simulate the multistage microcompressor 

with an interconnection chamber in between each stage, and having two 

micro valves to control the transfer of gas between stages.

• Validate the lumped model simulation to the experimental device.

Figure 4-1 shows the flow chart for the development of a simulation model for

the single-stage and two-stage microcompressor designs. The microcompressor is first
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designed with a CAD model to obtain realistic pump chamber volume. The microvalve 

simulation model is developed with Simulink prior to developing the compressor model. 

FEA is used to obtain pressure-flow relations for the microvalve model and verified with 

the lumped model result in Simulink. Parameters and characteristics from the unimorph 

diaphragm are extracted from experimental data and FEA for the single-stage 

microcompressor model. Once the lumped parameters for the single-stage are extracted 

and developed in Simulink, it is expanded into a two-stage model with Simulink. The 

fabricated single and two-stage devices are tested and compared with lumped model 

simulation results.

I
Pump Chamber Volume

Microcompressor CAD Testins FEA
Design Unimorph Diaphragm. Maximum Stroke Volume

¥ Deflection
Microvalve Simulink 

Architecturect̂ ec

Verify Accuracy with FEA 

¥
Microcompresor 

Mathematical Model

I
Single-Stage

Microcompressor
Architecture/Results

T
2-State Microcompressor 

Architecture/Results

Correlate stroke volume with 
measured deflection

I
Calculated Stroke Volume 

from FEA

Testing of Device
Single and Two-Stage 

Microcompressor 
Performance Curve:

Comparison
Performance Curve 

Compare Pressure Ratio-Flow Rate

Figure 4-1: Flow chart for the design of microcompressor architecture and simulation 
results.

Previous methods to simulate a single-stage microcompressor used the Warner 

and fourth order Runge-Kutta method to obtain the numerical solutions [37], [113].
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Lumped model parameters equation derived from compressor thermodynamics was used 

to build a simulation in Matlab Simulink.

4.1 Principle of Operation

A schematic of the single-stage microcompressor is shown in Figure 4-2(a), 

which consists of a piezoelectric diaphragm and two passive micro check valves, each for 

the inlet and outlet ports. The piezoelectric diaphragm is in a unimorph configuration and 

actuated with bipolar sine voltage up to deform the membrane for mechanical gas suction 

and compression in the chamber. In the suction phase, the membrane bends upward to 

expand the volume of the chamber and creates a negative pressure difference, causing the 

inlet microvalve to open and allow gas to flow into the inlet port, and the outlet 

microvalve to close to preventing gas backflow. In the compression phase, the membrane 

bends downward to compress the gas, creating positive pressure difference in the 

chamber for the inlet valve to close and outlet valve to open. With input voltage sine 

wave to the piezoelectric, the cycle repeats to generate gas flow and pressure rise from 

the compressor.

The multistage microcompressor (two-stage) schematic shown in Figure 4-2(b) is 

designed with configuration similar to the single-stage design. For the two-stage design, 

the chambers are connected in series to increase pressure rise. Two interconnected 

microvalves exist between the connecting chambers to control the gas transfer between 

each stage. The microvalve opens and closes as the pressure difference between chamber 

1 and chamber 2 varies. Two passive micro check valves are used for each chamber. The 

first stage is placed at the top and the 2nd stage is placed at the bottom to minimize the 

overall size of the device.
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Figure 4-2: (a) single-stage microcompressor schematic, (b) multistage, two-stage, 
microcompressor schematic.

The microcompressor is designed to achieve high pressure rise and flow rate, low 

power consumption and small footprint to fit the need of a micro cryogenic cooler 

(MCC). The pressure ratio is given as

where the maximum pump chamber volume, Vmax is when the actuator or diaphragm is at 

its maximum suction stroke. The chamber volume is at its minimum, Vmin, when the 

actuator is at its compression stroke. The compression stroke of the actuator does not fill 

the whole chamber, and the dead volume, Vmin, is left. Dead volume from the inlet and 

outlet ports of the chamber are also considered dead volume. Leakage from the 

microvalve is also considered as dead volume. Microscale size actuators are limited by 

the force they can generate against the head pressure of the microcompressor. The dead

4.1.1 Theoretical Pump Performance

/HnozX
\VmJmin

Eq. 4-1
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volume becomes larger as the actuator reaches its limitation to compress against the head

pressure of the gas in the chamber.

The compressor flow rate is given as

Q =  A t rokef^f  4 “2

where f  is the operation frequency. Ef is the static rectification efficiency [14] of the

compressor and where it is the net flow into the chamber for a suction cycle divided by

the total flow out of the chamber for a compression cycle. is given as

n et flo w  in 0 1+ -  0 2_
Ef = -----—--------- =   --------  —  Eq. 4-3
1 net flo w  out <p2+ ~  <Pi-

where ^  and (p2 denote the flow at the inlet and outlet valve, respectively. The + and -

denote flow forward and reverse flow direction, respectively. During the suction cycle,

0 1+ is the flow into the chamber at the inlet microvalve, and (p2-  is the reverse flow at

the outlet micro valve as a result of reverse leakage and sealed-reverse leakage. For the

compression cycle, (p2+ is the forward flow at the outlet microvalve, and is the

reverse flow at the inlet microvalve due to the reverse leakage and sealed-reverse.

Vapor compression system requires high pressure ratio as well as a volumetric

flow rate. Sathe [43] suggested a flow rate of 1,141 seem for an 80 W laptop cooler

using R134a. For Lewis [72], a flow rate of 270 seem was needed at maximum efficiency

and 50 seem to stabilize the temperature in their JT MCC. For a multistage compressor,

the pressure ratio is given as

W j  (Vmaxi\n Eq.4-4

0 ‘in) j  \4 jn m  j  )

where j is the stage number. The overall pressure ratio of the multistage compressor for 

M number of stages is given as



(p \ .. JL, /]/ \ n Eq. 4-5
K̂ o) m _  1  T /  vm axj\

(Pin) -  l i y V m i n j )

The j th stage inlet pressure is equal to outlet pressure o f the previous stage,

(Pin)} =  (T0) ;_x, for j = 1,2, 3,..M, where M is the total number of stages. For a two- 

stage microcompressor, the pressure ratio of the 1st stage is multiplied with the pressure 

ratio of the 2nd stage to obtain the total pressure ratio of multistage as given in Eq. 4-5. 

The volume ratio is given as

= V^= Vs Eq. 4-6
£ vc vs + vd

where Vs and Vd are the stroke volume and dead volume of the chamber, respectively. 

The theoretical pressure ratios for a single-stage from the designed microcompressors is 

determined by using Eq. 4-5. Thus, values for Vs and Vd are needed to determine the 

pressure ratio. First, Vs is determined from Figure 3-12 at 13 pm center deflection, where 

the center deflection of the piezoelectric diaphragm at 13 pm, the calculated volume 

is 1.5 x  10-9 m 3 Since the diaphragm deflection is symmetric in the up and down 

positions, the total stroke volume is twice the calculated volume, where Vs =

3.0 x  10-9 m 3 Then the dead volume is calculated which comes from two sources in the 

chamber:

1) from the uncompressed volume of the chamber when the diaphragm is at its 

maximum stroke down position,

2) from the volume of the inlet and outlet holes connected to the microvalves. 

The calculated dead volume from the design is Vd = 1.0 x  10“8 m 3 The calculated Vs 

and Vd gives the volume ratio and the theoretical pressure ratio in Table 4-1. Figure 4-3
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shows the expected increase of pressure ratio for n number of stages if  each stage has the 

same volume ratio.

Table 4-1. Theoretical pressure ratio of a single and multistage.

# of Stages Volume Ratio, e Theoretical P ressure Ratio

1 0.23 1.44

2 0.23 2.09

30.0

25.0

I 20-0
|  15.0
W
Vi
E 10.0

5.0

0.0

Theoretical Pressure Ratio for n Number of Multistages

•  27.33

18.93

•  13.11
•  9.07

•  144* 2.osf 3 01...7 f-rvji ..— ___—i
,• 4.35

•  6.28

4 5 6
Number of Stages

10

Figure 4-3: Theoretical pressure ratio for a given number of stages given by the 
volume ratio.

4.1.2 Compressor Model

The model of the multistage microcompressor follows the conservation of mass 

and the ideal gas law [113] as illustrated in Figure 4-4.



Figure 4-4: Compressor chamber control volume

For a control volume, the change in mass of the chamber is given as

dm c _  , _
—  = m in -  m out. Eq. 4-7

The mass in the chamber and the density in the chamber are given as

m c =  pcVc Eq. 4-8

p  s i  In

( t )Pc ~  Pco
N1 CO

The differential equation for the pressure in the chamber, Pc, varying with time relating to 

the volume chamber, mass flow rate in and out of the chamber is derived from the 

conservation of mass and momentum [113] is given as

dPc —nPc dVc nPc ,  ̂ Eq. 4-10

To reduce complexity of the nonlinearity in the unimorph membrane actuation, the 

volume displacement is simplified to

V,
Vc = Vc + - ( 1 -  cos (w t)) Eq. 4-11

where the volume stroke is constant. The magnitude of deflection for a unimorph 

membrane is linearly dependent on the drive voltage at a low frequency range. At the 

resonant frequency, the unimorph membrane exhibits its largest deflection magnitude.



The nonlinearity near the resonant frequency has not been modeled in literature and may 

jequire extrapolation from experimental data for the simulation model. Equation 4-11 is 

used to ignore these linear and nonlinear effects that the membrane actuator has on the 

stroke volume to simplify the complexity of the microcompressor model. Equation 4-12 

-  Equation 4-15 is the mass flow rate through the inlet and outlet microvalves.

Derived from the Bernoulli equations, the mass flow rate through the microvalve 

orifice is given in Eq. 4-12 to Eq. 4-15.

Tfl-in — CfAin^2pin(Pin Pin <  Pc Eq. 4-12

~rilin  ~ Cf^in^l2pc(Pc ~~ Pin) Pc >  Pin Eq. 4-13

m0 = Cf Aoy/2pc(Pc -  Pin) Pc >  Pin Eq. 4-14

~ tH0 = CfA0-yj2pin(Pin — Pin) Pin ^  Pc Eq. 4-15

Figure 4-5: Schematic of the microvalve structure.

As the microvalve opens, the mass flow cross-sectional area is a function of the 

valve plate height, z, and is given in Eq. 4-16 and Eq. 4-17 for the inlet and outlet,
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..respectively. The orifice cross-sectional area, Ain and A 0 is modeled as the cylindrical r 

surface that the gas flows through the valve. opening;as a function of height:

Ain = nDinz  Eq. 4-16

A0 = nD0z  Eq. 4-17

m vz  -f cz + kvZ = CdAv(Pc -  Pin) Eq. 4-18

m vz  + cz + kvz  = CdAv(Pin -  Pc) Eq. 4-19

^ M  = _r^tU  Eq. 4-20
d t d t

Eq. 4-18 and Eq. 4-19 describe the outlet and inlet microvalve dynamics, 

respectively. Equation 4-20 describes the restitution of the microvalve dynamics, when 

the microvalve impacts the valve seat right before collision at t_ and bounces back with a 

negative velocity right after collision with the valve seat at time t+. For r = 1, the impact 

is considered fully elastic, and for r = 0, the impact is fully inelastic. The coefficients 

cannot be predicted from the elastic material properties alone, due to the other fluid- 

structure interactions [114] such as stiction and air damping between the valve plate and 

the seat. Habing [114] and Maclaren [115] gave r coefficients ranging from 0.2 to 0.4 

based on different valve models and published values that they found. Based on their 

study, a value of 0.2 was assigned to the valve dynamic model simulation.

4.1.3 Microvalve Model and Analysis

This section discusses the modeling and simulation of the micro valve dynamics 

combined with the fluid flow interactions of the gas flow through the valve structure. In 

order to compile the architecture of the multistage microcompressor, the microvalve 

architecture was designed separately from the microcompresssor architecture. The 

approach in designing the microvalve lumped model simulation is illustrated in Figure



4-6. The design of the microvalve CAD model and FEA analysis were utilized to extract 

the parameters of the design for the lumped model simulation in Simulink. The CAD 

provided the mass of the microvalve for Eq. 4-19 and Eq. 4-20. Due to the irregular 

shape of the tethered arm in microvalve design, quasi-static analysis with FEA was 

implemented to determine its stiffness, kv. To implement a realistic simulation of the 

microvalve structural behaviors with the interaction of the gas flow prior to fabrication 

and testing, fluid-structure interaction (FSI) analysis with finite element analysis was 

used to verify and correct the lumped model simulation result. This ensured that the 

microvalve simulation results were accurate prior to the integration of the 

microcompressor architecture.

Microvalve CAD Design

T
Parameters Extraction

Quasi-static 

1
Dynamics

M ass 
Valve Dimensions

Tethered Valve Spring 
constant design, k

Fhud-structure 
Interaction (FSI)

Material Properties

Simulink Architecture
Lunro model

Adjust Flow 
coefficient, C f

Results No

Open Loop Step 
Response 

Pressure vs. flow

Verification Yes Integrate to
Pressnre-flow Microcompressor
relation curve architecture

Figure 4-6: Flow chart of the microvalve Simulink simulation design.
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The CAD model provided the mass for the lumped model of the micro valve 

dynamics given in Eq. 4-19 and Eq. 4-20. To extract the spring’s stiffness (k) of the 

microvalve, a quasi-static FEA in COMSOL was conducted. Varying static force loads 

were applied to the surface of the valve to determine plate displacement. Figure 4-7 

shows the displacement result from the FEA result with respect to the force load on the 

valve’s body surface. From the slope of the linear relations in Figure 4-8, k is found to be 

473 N/m. This is comparable, and in the same order of magnitude with a silicon dioxide, 

three arm tether microvalve developed by Hu et al. [60] has a stiffness of 851 N/m.

Afr.50

Figure 4-7: FEA result of the microvalve spring force constant.
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Figure 4-8: Microvalve force versus displacement.

4.1.4 Microvalve Simulink Architecture

The microvalve architecture is developed with equations Eq. 4-12 to Eq. 4-20. 

Since the dynamics for the outlet valve is similar to the inlet, the same modeling analysis 

is used. The assumptions made are: 1) that the stiction force is neglected, 2) the valve seat 

has an initial gap height, 3) force of the gas flow given by [116] is ignored, 4) the 

damping coefficient of the valve dynamic system determined from Table 3-10 the FEA 

FSI analysis is used for the valve model, and 5) the restitution coefficient is given a low 

number of 0.2. The Simulink architecture for the inlet valve is designed to couple Eq.

4-12, Eq. 4-13, Eq. 4-16, Eq. 4-18, and Eq. 4-20. The coupling of these equations in 

Simulink is shown in Figure 4-9.
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Figure 4-9: Microvalve architecture of fluid-structure dynamics with step pressure 
input.
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Figure 4-10: Step response of the microvalve Simulink simulation, (a) step input of the 
pressure at 7 kPa. (b) velocity response of the valve plate, (c) the response of the valve 
plate mass flow rate, (d) the response of the valve plate height.

A step input function in Figure 4-10(a) is used to set the input pressure at a steady 

set point. The result from the simulation shows the valve plate response velocity (b), 

valve height (c), and mass flow rate through the valve (d). At 7 kPa at the inlet, the 

microvalve plate opens to 20 pm height at a mass flow rate of 1 pkg/s. The lumped 

model simulation results are compared to the FEA simulation results in the next section.

4.1.5 Steady-State Fluid Structure Interaction (FSD Analysis

In the first approach, discussed in Section 3.2.6, the transient analysis of the valve 

fluid-structure was conducted to obtain the dynamic response and extract the 2nd order 

dynamic system lumped parameters, such as the resonant frequency and damping ratio 

which are then utilized for this Simulink valve model. Further analysis of the valve FSI is 

needed to validate the pressure-flow relations of this design. Such analysis with a 

transient FEA FSI analysis requires a large amount of computer resources and 

computation time. Thus, a second analysis using quasi-steady FSI FEA analysis is 

simulated to extract the pressure-flow relation, avoiding the long computation times and 

large computer resources required from a transient dynamic steady gas flow.

The steady-state FSI simulation consists of a 3D tether valve structure bounded by 

the valve orifice and valve seat as illustrated in Figure 4-11. The three tether arms 

connected to the valve have a non-axisymmetric design, so a full 3D model FSI 

simulation was used. The analysis was conducted with inlet pressure assigned at the inlet 

and zero pressure is assigned to the outlet surface. In Figure 4-11, the input pressure is 

varied from 1 to 11 kPa at the inlet, and 0 kPa was set at the outlet boundary to generate
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steady gas flow. An initial gap height of 5 pm between the microvalve and the valve seat 

was needed for meshing to exist between the surfaces as the valve deflects away from the 

seat. Furthermore, the initial gap height presents a simulation of the actual assembly, 

where the gap height would exist from the fabrication processes.

▲ 12.3 m /s
Velocity magnitude and Total displacement

O utle t 
Pressure = 0

Input
Pressure

Figure 4-11: Fluid-structure interaction of microvalve with steady steady pressure- 
displacement, showing the cross section of the velocity magnitude and displacement of 
the microvalve with 7 kPa at the inlet.

The first validation of the Simulink model is shown in Figure 4-12, which 

shows the deflection of the microvalve as a function of input pressure matches the 

from the COMSOL results. Secondly, the transient response of the Simulink valve 

simulation (Figure 4-13) is compared to the transient result from Figure 3-38. Lastly, 

the mass flow rate as a function of the input pressure was compared in the COMSOL 

and Simulink result as shown in Figure 4-14. The lumped model simulation result of



the mass flow rate shows some deviations to the COMSOL results. For flow through 

an ofifiee with a valve plate, viscous and convective losses are represented as the loss 

coefficient, Cf in Eq. 4-12 to Eq. 4-15. Doll et al. [117] showed that there are 

different viscous and convective loss coefficient values at different gap heights that 

are nonlinear [117]. This would require interpolations from a data table in Simulink 

for different Cf values in relation to the gap height. To simplify the lumped model 

architecture, a single adjusted Cf value was used to obtain a close fit to the COMSOL 

mass flow rate curve in Figure 4-14.

*15

J io •  Comsol Result

■Simulink
Result

8 120 2 4 6 10
Pressure (kPa)

Figure 4-12: FSI result of the valve plate displacement at various constant inlet 
pressures.
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Figure 4-13: Comparison of the adjusted micro valve plate Simulink simulation 
result to the FEA FSI transient analysis result.
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Figure 4-14: FSI result of the mass flow rate through the microvalve at various inlet 
pressure.

In this section, it was shown that the microvalve lumped model simulation 

developed in Simulink derived from the microvalve FSI FEA analysis utilizing both the



quasi-steady and transient FSI analysis matched well with one another with respect to the 

motion dynamics of the valve plate. However, comparisons of the simulated mass flow 

rate with respect to inlet pressure (Figure 4-15) shows some difference in the curves. The 

lump modeling of the mass flow rate through the microvalve relies on the Bernoulli 

equations (Eq. 3-12 to Eq. 3-15) and require different loss coefficients at different gap 

height. An improved Simulink architecture to incorporate different Cf  values would 

improve the results of the Simulink lump model in matching the FEA FSI mass flow rate 

results. Nonetheless, this provided a good approximation of the mass flow rate through 

the microvalves.

4.1.5.1 Microvalve Frequency Response

In the previous section, a lumped model simulation of the microvalve was 

developed and validated with FSI FEA. In this section, observation of the effect of the 

microvalve in response to cyclic pressure generated from the compressor chamber is 

shown in Figure 4-15. At high operation frequency, the dynamic movement of the 

closing and opening of the valve plate can lag behind the cyclic pressure change in the 

chamber. The microvalve plate cannot open fast enough for air to flow through in the 

suction phase, and it cannot close fast enough to prevent flow from coming back into the 

chamber during the compression phase.
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Figure 4-15: Microvalve lumped model dynamic simulation.

A frequency response of the microvalve height as a function of pressure 

frequency at the inlet microvalve was simulated. Sine function with a pressure of 10 

kPa was set at the inlet to simulate the response of the valve plate height and its mass 

flow rate shown in Figure 4-16. It can be seen that reverse flow (reverse leakage) is 

apparent when there is negative pressure, and the microvalve is still in its open state.
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Figure 4-16: Frequency response of the valve plate height.

From Figure 4-17, it is observed that the total flow rate is attenuated as the 

pressure increases to higher frequencies. This is largely due to the attenuation of the 

valve plate gap height shown in Figure 4-16, where the reduction in the valve gap 

height further restricts the flow rate through the valve orifice. At higher pressure 

frequencies, the structural dynamics of the valve plate cannot react fast enough to 

respond to the fast pressure change; therefore, the valve plate will experience a 

change in pressure before reaching its maximum gap height. The reduction in the total 

flow rate through the valve orifice is also partly caused by the large reverse flow at 

higher frequencies. The increase in reverse flow at high frequencies is shown in 

Figure 4-17 and can be seen from the valve dynamics plotted in Figure 3-15. Notice 

that the reverse flow decreases at pressure frequencies existing beyond 3.5 kHz. 

Beyond this frequency, the gap height will decrease below 7 pm, and as result, this



will limit the reverse flow. The relationship of the flow rate through the valve is 

described as

Qt =  Qf  +  Qi Eq. 4-21

where Qt, Qf, Qt is the total flow rate, forward flow rate, and leakage flow rate. The 

reduction of gas flow rate at high frequency is contributed more from the reduction in 

gap height rather than the reverse leakage.

'P  15
FlovTota Rate

B 10
vardFon ow

Reverse leakage

100 1000 10000 100000
Pressure Frequency (Hz)

Figure 4-17: Simulation result of mass flow rate through the passive microvalve as 
a function of chamber pressure frequency.

4.2 Microcompressor Lumped Model Simulations

To realize a Simulink model of a two-stage microcompressor, the modeling and 

development approach were taken as follow:
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1. The microvalve Simulink model was developed, simulated, and verified with 

FEA in the previous section. Parameters were adjusted to match the FEA results. 

The model is then integrated into the single-stage lumped model.

2. The single-stage Simulink model is developed, simulated, and analyzed.

3. A two-stage Simulink model is developed from the single-stage model.

This section discusses the details of the Simulink model architecture.

4.2.1 Single-Stage Microcompressor Simulink Architecture

The Simulink model of the microcompressor is divided into separate sub models 

with.each representing its own set of equations as shown in the flow chart in Figure 4-18. 

Parameters of the the single-stage compressor Simulink model is given in Appendix B. 

Details of the single-stage compressor Simulink model is given in to Figure B-l to 

Figure B-4. The figure shows the coupled parameters and its flow from one set of 

equations to the next. To simulate the dynamics of the microcompressor model developed 

in Figure 4-19, various inputs were used.

1. The inlet pressure, Pin, is set to an atmospheric pressure of 101 kPa.

2. The outlet pressure, P0, is set to a desired back pressure, the microcompressor 

compressor.

3. The drive frequency, f, is set to a frequency by the user.

4. Vd and Vs are set to a desired dead and stroke volume. The simulation output of 

the. mass flow rate of the microcompressors, and the parameters such as the valve 

plate height, pressure variation in the chamber, and gas flow through the valves 

were monitored to examine the dynamics in the microcompressors.

Several assumptions are made in this simulation architecture.



1. Vd and Vs are set as a constant volume.

2. The sealed reverse leak rate5, Mi, caused by back pressure when the valve is in the 

closed position is neglected in this Simulation design.
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Figure 4-18: Flow chart of the variables and its relationship to each block in Simulink.
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Figure 4-19: Simulink model of a single-stage microcompressor which include the 
pump chamber, volume chamber control, inlet and outlet microvalves block.

4.2.2 Compressor Chamber Model and Simulink Architecture

The compressor chamber is governed by Eq. 4-9 and Eq. 4-10. These equations 

are represented in the Simulink architecture in Figure 4-20.

\
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Figure 4-20: The Simulink architecture for a compressor chamber representing Eq. 4-9 
and Eq. 4-10.

4.3 Simulink Simulation Results

4.3.1 Single-Stage Dynamic Simulation Results

The pump performance curve in Figure 4-22 is determined from the Simulink 

simulation. To simulate this curve, the inlet pressure, Pin, is set to atmospheric pressure, 

and the back pressure (outlet pressure, P0) is set to a desired constant value to observe the 

flow rate out of the microcompressor. To verify the Simulink architecture, the single- 

stage microcompressor dynamics is observed in Figure 4-21. It shows the inlet and outlet 

microvalves’ response to the volume of the chamber and pressure generated.
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Figure 4-21: Dynamics of single-stage microcompressor. The chamber pressure is 
monitored along with the valve height and mass flow rate for the inlet and outlet valve, 
respectively.

The performance curve in Figure 4-22 shows the flow rate at a different pressure 

ratio. The curve confirms that the maximum pressure ratio is dependent only on the
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volume ratio of the chamber and independent of the actuation frequency. This is based on 

our assumption that the stroke volume is constant and independent of the actuation 

frequency. Operation at 1 kHz provided the best performance from the microcompressor. 

As the frequency increases, the flow rate decreases. A summary of Figure 4-22 is 

provided in Figure 3-20 where the maximum flow rate and maximum pressure ratio is 

extracted. For this design simulation, at frequencies higher than ~1 kHz, the maximum 

flow rate and the overall flow rate curve decrease. As discussed previously in Section

4.1.5 .1, this is caused by the decrease in the gap height of the valve plate which 

significantly decreases the forward flow rate through the valve, and from reverse leakage 

at higher frequency.
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Figure 4-23: Summary of the single-stage microcompressor performance.

4.3.2 Two-Stage Simulink Model Configuration A

The two-stage microcompressor model is developed with two different 

configurations shown in Figure 4-24. The model for configuration A is modeled with the 

assumption that there is no dead volume at the interconnect chamber between the two 

stages, and it has one microvalve at the outlet of the first stage to control the transfer of 

gas to the second stage.
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Configuration A

Configuration B

Figure 4-24: Schematic of a two-stage multistage microcompressor for configuration 
A and configuration B.

The two-stage microcompressor Simulink model utilizes the single-stage 

Simulink architecture to develop the multistage architecture shown in Figure 4-25. 

Details of the two-stage microcompressor Simulink model is given in Figure B-5 to 

Figure B-7.
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Figure 4-25: Simulink dynamic model of a two-stage multistage microcompressor.
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4.3.3 Two-Stage Dynamic Simulation Results

The two-stage simulation is similar to the single-stage where the inlet pressure 

and outlet pressure are set to a value and the flow rate is observed. Each chamber has its 

own set of parameters, where the stroke volume and the chamber volume is set for each 

stage. A dynamic simulation scenario is given in Figure 4-26. In this simulation scenario, 

the two stage operates out of phase with the same stroke and dead volume for each 

chamber. The outlet backpressure of stage 2 is set to 150 kPa. Stage 1 is operated at 5X 

faster than stage 2 as seen by the volume of the pump chamber in Figure 4-26(b). In 

Figure 4-26(a), the pressure in chamber 2 experiences larger internal pressure in the 

chamber than chamber 1. In Figure 4-26(c), the transfer of gas between stage 1 and stage 

2, m0l, where gas flow out of the outlet valve from stage 1 occurs when the pressure in 

stage 2 falls below the pressure in stage 1. It can also be seen that gas transfer between 

the two stages does not occur when stage 2 is in the compression stroke. Reverse leakage 

is also observed between the transfer of gas between stage 1 and 2 in as shown Figure 

4-26(c). In Figure 4-26(d), the flow rate at the outlet valve port of chamber 1, Q0l, and 

flow rate at the outlet valve port of chamber 2, Qo2, is observed.

The multistage performance curve is shown in Figure 4-27, with both stages 

driven at the same frequency, and in phase with one another. In these conditions, the 

multistage stage exhibits similar results as the single stage, with an increase in the 

maximum pressure ratio. Similar to the single-stage microcompressor, flow rate begins 

to decrease beyond ~1 kHz threshold as shown in Figure 4-27 To further verify the



multistage simulation results, the simulated maximum pressure ratio is compared to the 

theoretical pressure ratio in Table 4-2 which matches well with the theoretical value.
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Figure 4-26: Dynamic simulation for a two-stage microcompressor, (a) volume for the 
1st stage (in black) and volume for the 2nd stage (violet), (b) shows the current pressure 
in each chamber, (c) the mass flow rate through the interconnect micro valve and outlet 
micro valve, (d) shows the total flow rate out from stage 1 and 2.
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Figure 4-27: Performance curve for a two-stage microcompressor in series operating in 
phase. Stage 1 and 2 are operating at the same frequency.

Table 4-2: Theoretical pressure ratio comparison to the simulated pressure ratio from 
Simulink.

# o f Stages Volume Ratio, £ Theoretical Pressure Ratio Maximum Simulated Pressure Ratio

1 0.23 1.44 1.44

2 0.23 2.09 2.10

4.3.4 Two-Stage Drive Operational Scenarios

A study of the two-stage microcompressor (configuration A) driven at a different 

combination of frequencies is conducted to observe and determine the optimal drive input 

to achieve the best pressure ratio performances. The frequency in chamber 1 is simulated 

to operate at various frequencies relative to chamber 2 and vice versa. Additionally, the
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two-stage is also simulated if operating in phase or out of phase will affect the pressure 

ratio. When operating in phase, it means that stage 1 and stage 2 will start off with the 

compressor driven in sync with one another in terms of the compression and suction 

stroke. When operating 180° out of phase, stage 1 would start off in the compression 

stroke and stage 2 in the suction stroke and would alternate cyclically. In instances where 

one stage operates faster than the other stage, fi = 100 Hz and f2 = 200 Hz:

1. for an in phase operation, for every two cycles, stage 2 would be in phase with 

stage 1,

2. for an out of phase operation, for every two cycles, stage 2 would be out of 

phase with stage 1.

Simulation results in Figure 4-28 show that as long as the two chambers are 

operating out of phase, the frequency ratio will not have an effect in lowering the 

pressure ratio from its theoretical value. When the two stages operate in phase, there are 

certain frequency ratios that will decrease the pressure ratio of the microcompressor. The 

worst case occurs when stage 2 operate in phase at IX, 2X or 3X faster than stage 1. This 

can be explained from the dynamics simulations, which shows that there is no transfer of 

gas between each stage. In Figure 4-28(a), when stage 1 is operating faster than stage 2, 

the overall pressure ratio is at maximum or close to the maximum pressure ratio of 2.08 

regardless if it is in phase or out of phase. However, in Figure 4-28(b), the pressure ratio 

performance is seen to deteriorate when stage l ’s frequency is lower than stage 2 when 

they are in phase.
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Figure 4-28: Simulated results of maximum pressure ratio generated, (a) Stage 1 
operates at a higher frequency than stage 2. (b) Stage 2 operates at a higher frequency 
than stage 2.

4.3.5 Two-Stage Simulink Model Configuration B

This section investigates the two-stage multistage microcompressor with 

configuration B in Figure 4-29. This design case is more representative of a real case 

scenario where dead volume exists between the junctions of the micropump chambers. 

The volume of the interconnected chamber is investigated on how it will affect the
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overall pressure rise of the multistage microcompressor. First, the modeling of this 

configuration and how the Simulink architecture changed from configuration A to 

configuration B is discussed. Next, effect of this interconnected volume has on the 

overall pressure ratio of the multistage microcompressor is shown and discussed.

Configuration B

Interconnect cham ber

Figure 4-29: Multistage two-stage schematic of configuration B with an 
interconnecting chamber.

Comparing to configuration A, configuration B has two microvalves that exist 

between the two chambers. To model configuration B, the interconnect volume between 

the two chambers is considered as a pump chamber with constant volume and with no 

volume variation, where ^  = 0. As a result, Eq. 4-10 is simplified to

= p 7  ^ in - r h o n t ) .  Eq. 4-22

For conventional purpose, Eq. 4-22 is rewritten and given as

dPint nPint , .
—7— = -  (rhin in t  -  rhout int). Eq. 4-23

a t P in tV in t

From Eq. 4-22, the variables that cause variations in the pressure of the interconnected 

chamber is the mass flow rate in and out of the interconnected volume. The multistage 

microcompressor B Simulink architecture is shown in Figure 4-30. An interconnected 

chamber model using Eq. 4-23 is added to the multistage microcompressor lumped



model architecture as shown in Figure 4-31. Figure 4-31 shows the first stage Simulink 

architecture, which includes the inlet and outlet microvalve architecture. Figure 4-32 

shows the interconnected chamber architecture with dV/dt = 0 and the volume V is the 

volume of the interconnected chamber. The interconnected chamber is considered dead 

volume that extends from chamber 1, which can lessen the pressure rise in stage 1. 

Figure 4-33 shows the internal Simulink architecture of the second stage.
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Figure 4-30: Simulink Architecture for a two-stage microcompressor configuration B.
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Figure 4-33: The internal architecture of the 2nd stage Simulink block of the 
multistage microcompressor Simulink architecture.

4.3.5.1 Multistage Microcompressor Confieuration B Simulation Results

Here, the configuration B model is simulated with the same parameters as 

configuration A, with the two stages simulated in phase at 1 kHz. For configuration A, 

there is no interconnected volume, and it can be considered as configuration B with an 

interconnected volume of 0. From Figure 4-34, it can be seen that the multistage with 

minimal interconnected volume has the better performance curve. The performance 

curve in Figure 4-34 shows the decrease in the maximum pressure ratio of the 

multistage compressor as the volume of the interconnected stage is increased.
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Figure 4-34: Performance curve simulation result for two-stage microcompressor 
with various interconnected volume (configuration B).

To validate the simulation results, the interconnect volume is considered as an 

extension of chamber 1 and calculated as dead volume as illustrated in Figure 4-29 

Thus, for the two-stage microcompressor configuration B, the pressure ratio in Eq. 4-5 is 

represented as

where V) is the interconnected volume. The design for the chamber 1 stroke volume, Vsl, 

is equivalent to the stroke volume, Vs2, for chamber 2, and the dead volume in chamber 1, 

Vdl, is the same as the dead volume in chamber 2, Vd2. The maximum pressure ratio from 

the performance curve Figure 4-34 matches well with the analytical calculation (Eq.

4-15) in Table 4-3.

Eq. 4-24
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Table 4-3: Pressures ratio validation for two-stage microcompressor between Simulink 
and analytical results.

V*i =  5̂2

(cm3)

Vdl = Vd2 

(cm3)

V/1

(cm3)

0 *0)2

CPin)

Simulink

0 *0)2

0*in)

Analytical

0.003 0.01 0 1.98 2.09

0.003 0.01 0.01 1.88 1.76

0.003 0.01 6.23 1.48 1.45

o;oo3 0.01 100 1.43 1.44

4.4 Simulation Conclusion

The dynamics of a single-stage and a cascaded two-stage multistage 

microcompressor is presented and simulated in Simulink. Characterization of the airflow 

and valve interaction is implemented in COMSOL to generate and extract parameters for 

the dynamic equations for the microcompressor model. The Simulink microcompressor 

subsystem can be arranged in combinations of parallel and series to study its 

effectiveness in multistaging at the microscale. Ideally, unimorph piezoelectric actuator is 

used to create the compression and suction action of the gas in the chamber. Here, the 

volume displacement of the diaphragm actuator is modeled as an oscillating volume. The 

stroke volume is a linear function of the input voltage at low drive frequency. It becomes 

nonlinear near the resonance of the diaphragm actuator. Built up pressure load in the 

latter cascaded stages of the multistage compressor can cause a decrease in the stroke
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volume from the membrane actuator as well. These two characteristics are not taken into 

account in this study to simplify the modeling and simulation of the microcompressor.

Minimal dead volume is most important in increasing the pressure ratio in a 

microcompressor. This simulation shows that the multistage cascaded series with passive 

microvalves will the improve pressure ratio performance of the microcompressor. Others 

from [36], [42], [45] have shown multistaging to be effective for the micro gas 

compressor with electrostatic membrane utilizing electrostatic active valves that can 

control the gas flow between stages. Here the simulation showed that multistage micro 

gas compressor with passive valves can be as effective in multistaging as well, which, if 

successfully developed, may simplify the complexity of a multistage micro gas 

compressor.



CHAPTER 5

DEVELOPMENT OF THE SINGLE AND MULTISTAGE 
MICROCOMPRESSOR DEVICE

5.1 Introduction

Many iterations were made to develop the multistage microcompressor. The 

original goal was to fabricate a gas micro compressor using microfabrication method with 

silicon and glass wafer substrates. The process proved costly and time consuming, and 

many process developments were needed. We chose to meet the main goal of the 

research by investigating the feasibility and characteristics of a multistage 

microcompressor with passive microvalves by fabricating the device with a different 

approach. A larger scale micro gas compressor were designed to meet these goals 

eliminating the tasks of completely using MEMS microfabrication methods to prove the 

feasibility of a multistage with passive microvalves. Once proven, the miniaturization of 

the multistage microcomopressor in the microscale can be developed for future work 

such that a two stage can exist within the range of a 5 x 5 mm x 2 mm size.

A working single-stage microcompressor was needed in the first step to isolate 

some of the design flaws and to develop the fabrication processes and characterize the 

pump performances. In the second step, a two-stage microcompressor was developed to 

demonstrate the effectiveness of a multistage design.

116
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5.2 Microvalve Fabrication

Researchers have developed microvalves with silicon [60] and polymeric 

materials such as parylene [5], polymide [39], and SU8 [63]. Passive check valves are 

typically configured as a cantilever or tethered type. SU8 is fabricated with standard 

photolithography method and using either SiCh or Omnicoat as the release layer. The 

fabrication process is depicted in Figure 5-1.

Spin coat Onmicoat 
Si

Spin coat 
SU8-100

Photolithography

Release

Figure 5-1: Microvalve fabrication steps.

A thin layer of Omnicoat by MicroChem was used as the intermediate layer for 

the release of the SU8 (from MicroChem) microvalves. It was spin coated on a 100 mm 

silicon wafer and baked for 200°C for 1 min and cooled. A 100 pm thick SU8-100 

photoresist was spin coated onto the wafer and exposed to UV light with a high- 

resolution transparency mask. The exposed SU8 was developed with SU8 developer 

solution and rinsed with a mixture of SU8 developer and isopropanol. The preleased
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image of the microvalve structure is shown in Figure 5-2. The substrate was placed in the 

MF-316 developer solution to remove the Omnicoat layer, which released the 

microvalves. It was observed that at low anneal temperature of 100°C prior to the release 

of the valve, the SU8 valves were brittle and prone to breakage when handled. At 

annealing temperature of 200°C prior to release, improvement in the valve strength and 

flexibility allowed it to be handled and function as a valve.

8.31°

 ----- R1.7S

R! .15

R1.40

Figure 5-2: Image of micro valve structure on silicon substrate.

5.3 Single-Stage Design

5.3.1 Single-Stage Fabrication Process

The first single-stage design iteration shown in Figure 5-3 is a design fabricated 

using mainly stereolithography (SLA) with a Formlab printer. The lower body housing 

was 3D printed with features incorporated to the body housing. Barbed tube nipples were



integrated to the lower body housing to allow for easy connection to the inlet and outlet 

port. Square recessed surfaces were integrated for the microvalve seats. A square thin 

plastic piece was laser cut to provide a reinforcement for the inlet microvalve. Another 

square thin plastic sheet was laser cut for the outlet microvalve seat. The released SU8 

micro valves were assembled directly onto the lower housing with UV adhesive. The 

cutout plastic sheets were adhered to the microvalves and chamber with UV adhesive. A 

silicone sheet was laser cut into a flat O-ring shape to seal the chambers between the 

piezo disc and the chamber. Initial effort in sealing the piezo disc with UV glue and 

epoxy and mounting the piezo disc flat to the chamber surface was carried out. However, 

after operating the microcompressor a short period of time, the deformation of the piezo 

disc created a leak through the adhesives. Clamping with a plate and screws provided a 

better seal. A top body printed with SLA was used to clamp the outer edge of the piezo 

disc to the lower body housing with screws and bolts.



120

Clamp 
3D printed

020 mm 
Piezodisc

Clear plastic 
sheet (laser cut) 

SU8 valves

Silicone seal 
(laser cut)

Body housing 
3D printed

Figure 5-3: 3D printed model of single stage microcompressor.

2X01.6 mm

7mm

The 3D printed microcompressor provided poor compressor performances for a 

few reasons. There were designs, fabrications, and assembly flaws which led to poor 

performances of the microcompressor.

Design Flaws:

• UV adhesive was used to adhere the thin plastic sheet on top of the microvalves. 

There was excess UV adhesive after the application process which would produce 

extra gap height between the piezo disc and chamber surface.

Fabrication and Assembly Flaws:

• The piezo disc chamber surface is designed to completely mate with the lower 

chamber surface. The SLA 3D print of the lower body housing produced non-
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uniform flat surfaces of the lower chamber surface, which created gaps between 

the piezo disc and the chamber’s surface. This increased the dead volume.

• The Formlab printer was unable to produce an accurate height dimension of the 

recessed area of the microvalve seat. The inconsistent dimension output from the 

3D printer required that the recessed height to be larger than the stacked up 

dimension of the combined microvalve and plastic sheet thickness, so that the 

plastic sheet would not be higher than the chamber surface when assembled. This 

left some gap between the chamber surface and the recessed plastic sheet, 

resulting in more dead volume of the chamber.

• Large surface roughness resulted from the SLA output, resulted in poor valve 

sealing between the valve’s surface and the 3D printed surface’s seat, which 

resulted in large reverse flow leakage.

One of the challenges was the integration of the SU8 microvalves to the recessed 

seat. Since the microvalves were released from a silicon wafer, handling of the 

microvalves was a challenge. Several microvalves were broken during the handling 

process. The micro valves had to mate well with the valve seat’s surface to provide a good 

seal when in the closed position. To attach the micro valves to the recessed area of the 

body housing, a small amount of UV adhesives was applied to the microvalve’s outer 

edges and placed in the recessed area, and cured with UV light. Small amounts of UV 

adhesive seep between the microvalve’s surface and its valve seat, which formed a thin 

layer of adhesive ranging from 5 to 40 pm thick. The extra layer of thickness could cause 

unwanted reverse leakage.



After the adhesive process, the microvalves were tested for reverse leakage using 

a syringe pump to pressurize air in the forward and reverse direction. To test for reverse 

leakage, a syringe pump was connected to the outlet port to test for the leakage in the 

outlet valve and similarly to the inlet port to test for leakage thru the inlet valve. For 

reverse leakage in the inlet valve, the syringe was pulled to create air suction. After the 

suction process, the syringe piston was released and check for the distance the piston 

returned away from its original position. For the outlet valve port, the syringe piston was 

compressed to create back pressure to the outlet microvalve. The syringe piston is then 

released to check if it fully returns to its original position.

The 3D microcompressor performance curve in Figure 5-4 produced a maximum 

pressure rise of 1.7 kPa and a maximum flow rate of 120 seem at its resonant frequency. 

Poor microvalve sealing and extra dead volume described previously resulted in low 

pressure rise. To mitigate this a different design is described in the next section.

120

100

<j«i
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Figure 5-4: 3D printed microcompressor performance curve.
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5.3.2 Single-Stage Microcompressor Design - Final Version

The flaws from the 3D printed prototype version required a new method of 

manufacturing the microcompressor with more precise parts and more predictable 

dimensions. Additionally, to produce the final version of the single-stage 

microcompressor shown in Figure 5-5, further improvement in the reduction of dead 

volume and reverse leakage from the microvalve was implemented. A redesign of the 

microvalve integration to the microcompressor was implemented by placing the 

microvalve on the bottom side of the thin layer membrane of the chamber surface of part 

IV. Efforts to reduce the dead volume of the chamber were conducted to maximize the 

pressure rise of the microcompressor by machining a flat plane for the chamber lower 

surface using a fly cutting tool.
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Figure 5-5: CNC single-stage microcompressor.

The single-stage microcompressor consists of the following components. The 

piezoelectric unimorph diaphragm is a 0  20 mm x 0.21 mm thick piezo disc buzzer (part 

II), and is sealed with a 0  1 mm thick x 0  18 mm ID O-ring placed in between the piezo 

disc and chamber surface (part III). The piezo disc is clamped with a ring plate (part I) 

held together with screws and nuts, providing easy access and interchangeability to the
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chamber and piezo disc during testing. Part I was 3D printed with SLA using a Formlab 

3D printer. The components’ dimensions are given in Figure C-l and Figure C-2.

5.3.2.1 Part IV  Machining 1

The CNC fabrication process for the microcompressor body presented a challenge 

of its own. Polycarbonate was the first material used to machine the microcompressor’s 

body housings, and it resulted in many residual burrs from the cutting of the endmill. 

Acrylic is found to be easier to machine without any issues with residual burrs leftover 

from the edges.

A CNC Tormach was used to machine the microcompressor body parts IV and VI 

with acrylic. The chamber surface was machined flat as possible with a fly cutter tool. A 

0.5 mm hole was drilled for the inlet port, and four 0.5 mm holes were drilled for the 

outlet port. The inlet and outlet port diameters were minimized to reduce dead volume 

without sacrificing too much pressure restriction from a small diameter hole. The radius 

ratio of the inlet to the valve plate was minimized to increase the sealing surface area. 

Fabrication from the CNC machine allowed for a smooth valve seat surface and accurate 

recessed depth for the O-ring. After machining, the housing parts were ultrasonicated for 

20 min in DI water to remove residual particles attached to the parts from the micro 

drilling process.

5.3.2.2 Assembly o f the Single Staee Final Design

The assembly of this single-stage involved the attachment of the microvalves onto 

the body housing of part IV and VI in Figure 5-5. In this design, the inlet microvalve is 

attached to the recessed surface of part VI with UV adhesive, and the outlet is attached to 

the recessed surface of part IV The microvalves were applied to the recessed seat by
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applying a small amount of UV adhesive to the edge of the released microvalve and 

carefully placing it on the microvalve seat, and curing it with UV light.

Careful attention was paid to the microvalve’s assembly. A recessed surface 

roughness of Ra = 3.9 pm was obtained with a 1 mm endmill to provide the sealing 

between the acrylic surface and SU8 valves. After adhering the microvalve with UV 

adhesive Loctite 3751, the inlet and outlet microvalves were checked for reverse leakage 

by attaching a syringe pump to the inlet and outlet port to apply reverse flow through the 

microvalves.

After the attachment of the microvalves to the body part IV and VI, these two 

body parts were joined together with epoxies, sealing the compressor. A syringe was 

filled with epoxies and injected at the filling port to fill the recessed area of the body’s 

housings. Epoxies were used due to the acrylic not being transparent enough for UV light 

to transmit through and fully cure the UV adhesive. It was found that injecting epoxy 

after the acrylic was clamped provided the best adhesion and sealing between the 

housing. The single-stage microcompressor shown in Figure 5-5 is assembled and 

clamped together with screws and nuts.

5.3.3 Single-Stage Performance with Model Fit

In this section, the single-stage microcompressor performance is evaluated 

experimentally and compared to the simulated model developed in Section 4.3.1. Results 

from Figure 5-7 shows the performance of the fabricated single-stage microcompressor 

is much less than the simulated model. Leak test from Figure 3-32 showed that when 

back pressure is applied to the microvalve in the closed position, the microvalve does not 

completely seal, and there exists some reverse leakage as a function of the back pressure.
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Thus, a model of the reverse leakage is needed to be incorporated into the simulation 

model to obtain a more accurate fit to the test result. Here, this reverse leakage, Mh will 

be called the sealed-reverse leakage to differentiate between the dynamic reverse 

leakages of the microvalve. The magnitude of the sealed-reverse leakage of the 

microvalve is shown to be linearly dependent on the magnitude of back pressure and is 

modeled as

M rfH P  Eq. 5-1

where /? is the rate of the reverse leakage per unit of pressure, and AP is the back pressure 

difference applied to in the reverse direction of the microvalve. The modified mass flow 

rate from Eq. 4-12 and Eq. 4-14 through the inlet and outlet microvalve is given as

rain = CfAinyj p̂iniPin ~ Pci — Pin ^ fc Eq. 5-2

rh0 = CfA j2 p c(Pc -  Pin) - M t Pc > Pin. Eq. 5-3

Prior to the simulation, the theoretical dead volume and stroke volume of the 

fabricated microcompressor was determined to simulate an accurate model of the 

fabricated microcompressor. Since the microcompressor was designed with a CAD 

model and fabricated from CNC machining, the theoretical dead volume was determined 

from the dimensions of the microcompressor CAD model. The dead volume is mainly 

contributed from the holes of the inlet and outlet connecting to the microvalve as shown 

in Figure 5-6. The diaphragm is assumed to mate completely with the chamber surface; 

therefore, no dead volume is assumed between the piezo disc and the chamber’s bottom 

surface. The calculated parameters for the fabricated model of the microcompressor are 

given in Table 5-1. With the dead volume, Vd, and stroke volume, Vs, given in Table 5-1,
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the pressure ratio of the tested single-stage and two-stage microeompressor is compared 

to the theoretical pressure ratio without the leakage rate model in Table 5-2.

Figure 5-6: Dead volume of single-stage microcompressor.

Table 5-1: Parameter for simulation model.

Vd(m 3) Vs(m 3) 8 (SCCm)H K kPa ’

Experimental, from Table 3-8

7.86xl0~9 4.8x l0-9 0.147
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Table 5-2: Gomparions of the theoretical pressure ratio to the single-stage and two-stage 
fabricated device with respect to the calculated volume ratio of the assembled device.

# o f

Stages

Volume 

Ratio, e

Theoretical Pressure 

Ratio

Pressure Ratio of 

Fabricated Device

1 0.38 1.95 1.09

2 0.38 3.8 1.18

The pressure ratio of the fabricated devices is significantly less than the 

theoretical pressure ratio, which can be caused by reverse leakgage shown in Figure 5-7. 

In Figure 5-7, the effect of the sealed-reverse leakage has on the microcompressor 

performance can be seen. The increase in sealed-reverse leakage significantly affects the 

pressure-flow performance curve. With the dead volume and stroke volume from Table

5-1, and /? adjusted from 0.147 sccm/kPa to 2.45 sccm/kPa, the simulated model closely 

matches the single-stage performance curve. Details of the test results is described in the 

next chapter.
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Figure 5-7: Modeled performance curve compared to the experimental curve of single- 
stage with various back pressure leak rate.

5.4 Multistage Two-Stage Design

The multistage microcompressor (two-stage) shown in Figure 5-8 and Figure 

5-10 is designed with a similar configuration to the single-stage design. A cross-section 

of the two-stage designed is shown in Figure 5-9. The components’ dimensions are given 

in Figure C-3 to Figure C-5. Two passive micro check valves are used for each 

chamber. The first stage is placed at the top and the second stage is placed at the bottom 

overlapping the first to minimize the overall size of the device. An O-ring is used to seal 

the piezo disc actuator and the chamber for each stage. The housing consists of a bottom, 

middle, and top body, which were machined from acrylic material.
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Figure 5-8: Cross-section and exploded view of the two-stage microcompressor 
design.

In Figure 5-8, four passive micro check valves were placed on and adhered to the 

recessed areas of the housing bodies 1, 2, and 3 with UV adhesive before bonding the 

three bodies together with epoxies. The first microvalve is adhered to the inlet recessed 

area of body 2 with UV adhesive. This serves as the inlet microvalve for stage 1. The 

second microvalve adheres to the recessed area of body 1, serving as the outlet 

mierovalve for stage 1. The third microvalve adheres to the backside of the recessed area 

of body 2, serving as the inlet micro valve for stage 2. The fourth micro valve adheres to 

the backside recessed area of body 3, serving as the outlet microvalve.
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Figure 5-9: Injection of epoxy into the cavity for bonding and sealing. Assembly is 
screwed together and clamped at the center to ensure no epoxy flow into the valve 
surface.

The next step involved the bonding of the three body housings. The assembly of 

the multistage compressor required the three body housings, 1, 2, and 3 in Figure 5-9, to 

have a good seal with the epoxy bond to prevent any gas leakage in between which can 

compromise the compressor performance. Shown in Figure 5-9, a filling port was drilled 

in bodies 1 and 2 to provide a port for the filling of epoxies. Epoxies were used in 

replacement of UV adhesive due to acrylic not being transparent enough for UV light to 

transmit through and folly cure the UV adhesive. It was found that injecting epoxy after 

the acrylic was clamped provided the best adhesion and sealing between the housing.

To complete the bonding process of the three bodies, the parts were mated 

together via self-alignment, by their rectangular shape, and provided a slip fit from the 

close tolerance machining processes. When assembled together, bowing of the thin wall 

of the chamber plane was noticeable from the stress of the machining process. As a result
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of this, when the cavity was filled with epoxies, it seeped into the valve seat. Clamps 

were used to push down on the bowing while holding the three housings together along 

with the screws and nuts as shown in Figure 5-9. A syringe pump was used to inject the 

epoxies into the cavities in between bodies 1 and 2, and between bodies 2 and 3. When 

the cavity was filled with epoxies, an air pocket was noticeable. To prevent the air pocket 

in the filling process, an air relief hole was drilled in bodies 1 and 3, allowing for better 

epoxies flow. Once the epoxies were filled in both cavities, the assembly was cured for 

24 h with the clamps and screws on. After the curing process, the screws and clamps 

were removed.

Figure 5-10: Photograph of the two-stage micro gas compressor.

The final assembly required the two O-rings and the two piezo discs to be placed 

on the bonded body assembly using the two clamp plates and secured in place with 

screws and bolts as shown in Figure 5-10.



CHAPTER 6

MICROCOMPRESSOR TESTING, RESULTS, AND DISCUSSION

This chapter presents the testing and characterization of the finalized single-stage 

and two-stage microcompressors by evaluating their performances; this is implemented 

by measuring the pressure-flow rate curves. Testing of the single-stage performance 

curves allows for a baseline comparison with the two-stage, which can prove the success 

and capabilities of utilizing multiple stages. The dynamics performance of the 

microcompressor is characterized by driving the microcompressor across its operating 

frequency range.

6.1 Test Setup

A schematic of the pressure-flow test setup is illustrated in Figure 6-1. A Dwyer 

Series 475 Mark III digital manometer was used to measure the pressure rise. Flow rate is 

measured by placing the output air tube into a volumetric glass tube partially submerged 

in water. Change of volume in the water inside the glass tube is measured over time to 

determine the output flow rate of the microcompressor. A needle valve was used to 

restrict the flow rate and generate various levels of back pressure from the micro gas 

compressor during operation. In addition, a Laser Doppler Vibrometer (LDV) system 

was used to measure the center deflection magnitude of the microcompressors piezo disc. 

The LDV system provided a fast fourier transform (FFT) analysis to determine the 

deflection response of the diaphragm at varying drive frequency. To drive the

134
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compressors, sine wave signal from the function generators were inputed to custom 

signal voltage amplifiers [118] to the drive compressor at 60 Vpp with piezoelectric 

bipolar actuation.

Laser
Vibrometer

2 Pow er Supply 
+ /-1 6 V

Function
Generator Custom  op 

amp 
LM324Function

Generator

atmospheric
pressure

G 3 CD

Pressure
manometer

Figure 6-1: Performance curve and deflection test set-up.

For the two-stage compressor, each stage is driven independently with its own 

function generator. To tune the multistage microcompressor to its maximum pressure 

rise, each stage was tuned to its own resonant frequency while the other stage was 

turned off. After the 1st stage was tuned, the second stage was ramped up to its own 

resonant frequency to generate the maximum pressure rise from the multistage.
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6.2 Single-Stage Microcompressor Test Results

From the measured pressure-flow performance curve in Figure 6-2, the 

single-stage microcompressor produced a maximum pressure rise of 9.5 kPa at zero 

flow rate and a maximum flow rate of 32 seem at zero back pressure; this was driven 

at 60 Vpp tuned to the piezoelectric diaphragm resonance. The microcompressor 

produced its max pressure rise at 5.8 kHz closely matching the resonant frequency of 

the finite element model (FEM) result of 5.4 kHz. The variation in resonance can be 

attributed to the differences in the exact material properties, diaphragm construction 

and constraint of the piezoelectric diaphragm as assumed in the Simulink model. The 

diaphragm .construction showed a non-concentric position of the piezo layer to that of 

the brass layer, which also may alter the resonant frequency. Secondly, the finite 

element model was modeled as a fixed constraint at the outer radial edges, while the 

actual model is constrained with the clamping of the ring plate and O-ring as 

described in Section 3.1.6. At the resonant frequency, sine wave voltage signal from 

the function generator supplied to the op amp generated 0-60 Vpp.
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Figure 6-2: The pressure-flow performance curve of the single and two-stage 
microcompressors.

To characterize the voltage dependency of the microcompressor, input voltage 

of 0-60 Vpp was applied to the single-stage microCompressor. The maximum pressure 

rise was measured by plugging the outlet tube of the microcompressor, allowing zero 

flow rate output. The measurement was taken by first tuning the resonant frequency of 

the microcompressor, then a varying voltage was applied to the piezoelectric 

diaphragm. Maximum pressure rise was obtained once the pressure reading from the 

pressure manometer stabilized to its maximum. It can be seen from Figure 6-3 that 

the increase in voltage generated larger pressure rise from the microcompressor. From 

the study in Section 3.1.6, it shows that the voltage increase resulted in an increased 

deflection of the diaphragm, thus increasing the stroke volume of the 

microcompressor chamber. It was found that voltage greater than 60 Vpp degraded
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the diaphragm, which may have delaminated the PZT from the electrodes, resulting in 

a damaged piezoelectric diaphragm actuator.
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Figure 6-3: The pressure rise of the compressor at its maximum resonant frequency 
with different voltage applied to the maximum operating voltage of the piezoelectric 
diaphragm of 60 Vpp.

A frequency sweep of the single-stage and two-stage devices were conducted 

to observe their frequency response. Figure 6-4 shows an overlap of the single-stage 

microcompressor pressure rise and the piezoelectric diaphragm deflection driven with 

a sinusoidal max input voltage of 60 Vpp. This test was carried out with the 

experimental setup similarly shown in Figure 6-1 but with the outlet plugged, 

allowing zero flow rate. As observed from Figure 6-4, the single-stage 

microcompressor, generated most of its pressure rise at the diaphragm resonant 

frequency. At the peak of the pressure rise of the microcompressor, the diaphragm 

deflection shows a decrease in its deflection. Under large back pressure, the 

diaphragm can only generate a maximum deflection of 10 pm. Additionally, it was



observed that the microcompressors were sensitive to the tuning of the diaphragm 

frequency and needed to operate near the resonant frequency of the piezo disc to 

generate a significant pressure rise.
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Figure 6-4: Maximum pressure rise occurs at resonant frequency of the piezo 
diaphragm actuator.

Characterization of the two-stage microcompressor follows the same test 

method as the single stage. The first characterization test for the two-stage device was 

carried out measuring the pressure-flow performance curve shown in Figure 6-2 

using the test setup in Figure 6-1. The test was carried out with the two-stage device 

driven at the maximum input voltage of the diaphragm, at Vpp = 60 V, and at its 

resonant frequency. Stage one was first tuned to its maximum pressure rise with the 

tuning of the voltage frequency. With the first stage, the second stage voltage 

frequency was tuned to obtain the overall maximum pressure rise of the device. Stage

6.3 Two-Stage Microcompressor Test Results



one was altered again to ensure that the maximum pressure rise is obtained. From the 

pressure-flow curve in Figure 6-2, the two-stage microcompressor developed a 

maximum pressure rise of 18 kPa, achieving twice the pressure rise of the single 

stage. At maximum flow, with no back pressure, the two-stage device produced a 

same maximum flow rate of 32 seem to that of the single-stage device.

The second characterization test conducted was a frequency sweep of the two- 

stage device by measuring the response of the generated pressure rise and the 

diaphragm deflection. In the first part of the frequency sweep test, each stage was 

driven separately, with the other stage turned off to measure the pressure generated 

and diaphragm deflection. Figure 6-5 and Figure 6-6 show the measured result of the 

pressure rise and deflection in each stage in response to the drive frequency. 

Comparing the two figures, stage 2 in Figure 6-6 exhibited a maximum pressure rise 

of 9.8 kPa, larger than stage 1 shown in Figure 6-5, with only 6.6 kPa. The deflection 

of the diaphragm in stage 2 followed the same pattern as that of the single-stage 

microcompressor; where the diaphragm deflection decreases at the maximum pressure 

rise. Stage 1 does not follow this similar trend, where diaphragm deflection has no 

: local minimum when generating large pressure rise. This is likely due to the extra 

dead volume at the interconnection chamber that exist between the stage 1 outlet and 

stage 2 inlet port. The interconnection chamber becomes an extension of stage 1; 

therefore, extra dead volume reduces the pressure rise in stage 1. Due to the pressure 

rise in stage 1 being at minimal (6 kPa), the diaphragm can still maintain its large 

deflection.
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Figure 6-5: Stage 1 of the two-stage microcompressor device frequency.
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Figure 6-6: Stage 2 of the two-stage microcompressor device frequency response.

The second part of the characterization test is shown in Figure 6-7; it shows 

the frequencies sweep of the two-stage operating in combination to generate pressure 

rises. This was conducted by first determining that the best combination frequencies
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were 4.8 kHz and 5.26 kHz for stages 1 and 2, respectively. To obtain the two 

frequency sweep curves in Figure 6-7, each stage was fixed to its peak frequency 

while the other stage drive frequencies were swept from 0-8 kHz. It can be noted that 

stage 1 shifted from 5.0 kHz to 4.8 kHz, and stage 2 shifted from 5.4 kHz to 5.26 kHz 

from the test in Figure 6-5 to Figure 6-6, respectively. Thus, when operating 

together, the multistage has a combination of frequencies which may produce its own 

system resonance as a multistage.

Interestingly, there is another local point (A) in Figure 6-7 that shows a local 

point of system resonance in the multistage device. This occurs at point A when the 

frequency in stage 1 was fixed at 4.8 kHz While the frequency in stage 2 was tuned to 

2 kHz. System resonance can occur in this tuning sequence since stage 1 is operating 

at high frequency, and since it is producing the pressure in the system, it becomes the 

dominant stage and controls the opening of all the valves, under the condition that 

stage 2 is operating at low frequency As the frequency in stage 2 increases beyond 0 

Hz, it aides stage 1 in the pressure output, and once it reaches 2 kHz, there is a system 

resonance that occurs generating a local pressure rise.

Moreover, this local peak does not exist when conducted vice versa as seen 

with the top curve in Figure 6-7 It is concluded that when stage 2 is operating at a 

fixed frequency of 5.26 kHz, it becomes the dominant stage from the large pressure it 

generates. Thus, stage 2 is in control of its inlet check valves preventing any reverse 

flow or reverse pressure back into stage 1. Stage 2 behaved as it is operating 

independently of stage 1, as long as stage 1 frequency is below its resonant frequency
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Therefore, this can be viewed as stage 2 being decoupled from stage 1, preventing any 

system resonance from happening.
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Figure 6-7: Frequency sweep of the two-stage microcompressor.

6.4 Microcompressor Efficiency

The efficiency of the microcompressor can be calculated by first determining the

power consumption of the piezoelectric diaphragm. AC voltage and current are supplied

to the piezoelectric diaphragm. The power consumption of the piezoelectric actuator is

[119] determined as

1 r T
P =  -  J V{t)l{t)dt .  Eq. 6-1

The average power consumption is

P piezo ~  ^ rm s f r m s  ̂ O s ( 0 )

Eq. 6-2



where Irms, Vrms is the the root mean square of the current and voltage peak, and 9 is the 

phase shift between the current and the voltage. The peak current and voltage is measured 

using a voltage probe and current probe connected to a Tektronic oscilloscope and 

converted to its root mean square (rms) value.

The power output from the microcompressor is given as [21]

The compressor’s efficiencies at various back pressure in Figure 6-8 shows a 

maximum efficiency of 0.55% and 0.25% for the single-stage and two-stage, 

respectively. The efficiency of the single-stage showed a comparable value to the 

compressor developed by Yoon et al. [21] with 0.12%. Although the two-stage has two 

actuators requiring more electric power to the piezoelectric diaphragm, the two-stage is 

driven at lower resonance frequencies than the single-stage. Thus, with the lower power 

consumption and larger pressure rise, the efficiency of the two-stage is better than the 

single-stage.

comp Eq. 6-3

The efficiency of the compressor is given as

P -nipzn
Eq. 6-4

piezo
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Figure 6-8: Measured pressure-flow performances and compressor efficiencies of the 
single-stage and two-stage microcompressors.

6.5 Conclusion

This chapter covered the experimental test result of the fabricated single-stage and 

two-stage microcompressor. Using the single-stage as a baseline comparison, the two- 

stage microcompressor device was proven successful as it generated twice the pressure 

rise of the single-stage. The characterization tests were carried out at its maximum 

driving parameters, with 60 Vpp to the piezoelectric diaphragm and at its resonant 

frequency to determine the pressure-flow performance. The test shows that the single- 

stage and the two-stage device can generate a maximum pressure rise of 9.5 kPa and 18 

kPa, and a maximum flow rate of 32 seem using air as the gas medium. Frequency sweep 

characterization of both devices showed that the developed piezoelectric 

microcompressors need to operate at a high resonant frequency close to or at the 

diaphragm resonance to achieve maximum performance output.



The interconnect volume that exists between stage 1 and stage 2 of the two-stage 

device is considered as extra dead volume in stage 1, which resulted in lowering the 

pressure rise of stage 1. Overall, piezoelectric unimorph diaphragm with passive 

microvalves configured in a series was proven successful in increasing the pressure rise 

of the overall multistage device at a high resonant frequency.



CHAPTER 7

SUMMARY, CONCLUSIONS, AND FUTURE WORK

This chapter summarizes the findings and major points of this dissertation. 

Additionally, dissertation motivation and objectives are summarized. The conclusions are 

based on the major points from the literature review in Chapter 2, the piezoelectric 

diaphragm and microvalves study in Chapter 3, the single and multistage 

microcompressor modeling and simulation in Chapter 4, the fabrication of the single and 

two-stage microcompressor in Chapter 5, and characterization results of the fabricated 

devices in Chapter 6.

7.1 Summary

The motivation of this dissertation was to investigate a multistage 

microcompressor utilizing passive microvalves to drive a micro vapor compression 

system and use with other micro gas applications. The primary objective was to develop 

an initial conceptual experimental device which can demonstrate the effectiveness of 

using a multistage micro gas compressor with micro components. The second objective 

was to develop support studies to further the understanding, characterization, 

development, and optimization of the device.

Chapter 2 provided a review of the mechanical compression micropump to 

understand its limitations and challenges in incorporating it to a micro cooler such as a 

Joule-Thomson system. The current requirement from a Joule-Thomson requires a 4:1
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pressure ratio with a maximum output of 0.4 MPa from the microcompressor. For a 

microscale device, this needs not only a high performance microactuator, but also 

microvalves which can provide a good seal from reverse leakage at high pressure, and 

enclosed chamber materials that can withstand large back pressure at the microscale 

level. Out of the different microactuators reviewed in Chapter 2, stack piezoelectric 

actuator with a flexure structure has successfully satisfied this requirement. Piezo- 

hydraulic is another promising microactuator that can help overcome the limited 

displacement from a stack piezoelectric actuator. At the microscale level, microactuator 

provides very limited stroke, and reduction of the dead volume has shown to be effective 

and more important at the microscale level in increasing the pressure ratio. However, this 

is riot the only challenge, large output force from the microactuator is also needed to 

overcome the high backpressure of the gas and provide the stroke in the chamber.

Chapter 3 presents a detailed study of the piezoelectric diaphragm and the 

passive microvalve. A literature review of the different piezoelectric diaphragm 

configurations, its fabrication methods, synthesis of the piezoelectric material, and 

geometric design optimization were discussed to provide a means for developing a high 

performance piezoelectric unimorph diaphragm microactuator. Characterization of the 

piezoelectric diaphragm was conducted with analytical analysis and FEM, and compared 

to the experimental results. Input driver voltage, the frequency response of the 

diaphragm deflection, and pressure load on the diaphragm were characterized and tested.

In the second part of Chapter 3, characterizations of the passive microvalves were 

carried out. In the first part of the micro valve study, an analytical model of the gas 

pressure-flow relationship was developed using a fixed micro valve plate structure in a



quasi-steady flow study. This model was also carried out with FEM analysis to determine 

the loss coefficient in the analytical model. The: second model was a flexible valve plate 

model, which was developed to predict the valve plate response with respect to the flow 

rate through the valve in a quasi-steady flow. The two analytical models, the fixed valve 

plate and flexible valve plate were used to explain the experimental result of the pressure- 

flow relationship. A quasi-steady fluid-structure interaction FEA was also used to 

compare the results. Lastly, a transient fluid-structure interaction FEA analysis was 

carried out to observe the response of the microvalve plate height, damping ratio and 

resonant frequency.

Chapter 4 presents the lumped model simulation of the single and two-stage 

microcompressor which can provide the dynamic performance of the microcompressor 

chamber, microvalve dynamics, and the mass dynamics. The model was developed based 

on the assumption that the stroke volume from the piezo disc is a constant volume 

independent of the operating frequency. To develop the multistage lumped model 

simulation, several steps were taken. First, the microvalve fluid-structure lumped model 

was developed, simulated and validated with the result from the FEA fluid-structure 

quasi-steady flow analysis. Second, the single-state lumped model was then developed 

and simulated based on a lumped model of the compressor and the validated microvalve 

lumped model. Dynamic results and the pressure-flow rate performance curve were 

plotted. Lastly, the two-stage simulation model was then developed by arranging two 

single-stage models in a series. Two different configurations of the two-stage 

microcompressor simulation were presented. One with no interconnected chamber, and
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the second with an interconnected chamber. Drive frequency ratio between stage one and 

two of the multistage was simulated to observe the pressure rise as well.

Chapter 4 results highlight:

• There exist two types of reverse leakage. Dynamic reverse leakage which exists from 

the frequency lag of the microvalve structure, and sealed-reverse leakage which exists 

when gas leaks in the reverse direction when the valve plate is in a closed position.

• Reduction in the microvalve flow rate in the forward direction at high pressure 

frequency is a result of the attenuation of the micro valve plate height at high 

frequency. Dynamic reverse leakage contributes to a smaller amount than the plate 

height attenuation.

• Operating the two-stage microcompressor out of phase provides the best case 

scenario to achieve high pressure ratio from a simulation standpoint.

• The interconnected volume is considered dead volume to its previous stage, which 

can result in pressure ratio loss. Therefore, it is critical to minimize dead volume in 

the design of a multistage device:

Chapter 5 covers the fabrication and assembly of the single-stage and two-stage 

microcompressor devices. The finalized microcompressors were developed using a 

mixture of microfabrication process and machining. A pressure-flow performance curve 

of the single-stage microcompressor was plotted. This curve was compared to the 

simulation model developed in Chapter 4. A sealed-reverse leakage model of the 

microvalves was added to the lumped model simulation to compare to the single-stage 

device.
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Chapter 6 presented the characterization of the single- and two-stage devices. 

Using the single-stage as a baseline performance comparison to the multistage, the 

pressure-flow curve tests, drive voltage test, and frequency response tests were carried 

out to evaluate the device’s pressure, flow, and diaphragm deflection output. The single- 

stage and two-stage devices produced a maximum pressure rise of 9.5 kPa and 18 kPa, 

respectively, with both outputting a max flow rate of 32 seem driven at its maximum 

operating condition of 60 Vpp and at the resonant frequency (~ 4.8 -  6.3 kHz). Tests 

from the two-stage device showed that stage one generated less pressure rise than stage 

two because of the interconnect volume that exists between stage one and stage two, 

which acts as dead volume for stage one.

7.2 Conclusion

The tested single-stage and two-stage microcompressors were successfully 

developed with passive microvalves and piezoelectric unimorph disc and were shown to 

increase gas pressure when arranged in series. The two-stage microcompressor operates 

with each.stage at its own resonant frequency at ~4.5-6.3 kHz and operates independently 

of one another to achieve a pressure rise of 18 kPa.

7.2.1 Dissertation Contributions

1; This multistage device developed in this dissertation has laid the groundwork 

for developing a true microscale multistage piezoelectric diaphragm micro gas 

compressor.

2. Passive micro valves and piezoelectric unimorph diaphragm have been 

modeled and analyzed and are viable components for integration in a 

multistage device.
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3. Lumped modeling of the multistage microcompressor enables the study of 

microcompressor dynamics and prediction of the overall device performances.

4. A comparison of a fabricated single-stage and a two-stage microcompressor 

device arranged in a series is shown to improve the overall pressure rise of a 

microcompressor by utilizing piezoelectric diaphragm and passive

micro valves.

a. High resonant frequency operation is needed to achieve larger stroke 

volume to produce larger pressure rise.

b. The piezoelectric diaphragm stroke volume generation is limited to 

higher back pressure. Thus, improvement in a microactuator large 

force generation is needed to operate at a higher pressure ratio.

c. Operation at high frequency generates undesirable acoustic sound from 

the piezo disc.

7.3 Future Work and Recommendations

The work in this study was intended for the investigation of a multistage 

microcompressor utilizing micro components that are possible for scaling down to a true 

microscale size. The requirement for a micro cryogenic cooler using the Joule-Thomson 

system with a pressure ratio of 4:1 at 0.4 MPa were not achieved with the two-stage 

microcompressor. However, the result of this dissertation proved that the utilization of 

multistage chamber in a series with microactuators and passive micro check valves can 

be promising for future work. Here is a list of identified issues which can further the 

development of a multistage microcompressor and improve its performance.
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7.3.1 Microactuator Improvement

The implementation of the piezoelectric unimorph diaphragm (piezo disc) showed 

to be promising. However, as shown from the deflection analysis in Figure 3-10 and the 

test result in Figure 6-4, the membrane can only deflect up to a pressure limit of 30 kPa 

operating at the resonant frequency with 60 Vpp (Figure 3-13). To increase the upper 

load limit, improvement in the piezoelectric material properties and unimorph layers 

construction to prevent delamination and breakage at high voltage it needed to yield 

larger pressure load limits to allow the microcompressor to generate a larger pressure 

rise.

A promising microactuator to implement is the piezo-hydraulic type described in 

Section 2.2.4.1. This can be used to amplify the stroke at least 40X from 0.65 pm to 26 

pm while still maintaining large enough force generation to overcome the back pressure 

in the chamber. Improvement in the development of these microactuators in terms of 

fabrication complexity will yield an improved multistage microcompressor.

7.3.2 Microvalve Improvement

The microvalves in this thesis were developed with SU8 using the 

microfabrication process, released from the silicon substrate and attached to a recessed 

valve seat made from machining acrylic. The attachment of the microvalve to the 

machine housing of the microcompressor leads to a reverse-sealed leak problem. The 

manual bonding process of the UV adhesive leads to an inconsistent thickness adhesive 

layer between the valve plate and its seat, leading to some unpredictability in the 

pressure-flow characterization. The large gap from the adhesive can exist if the operator 

applies a large amount of UV adhesive during the bonding process.



A more consistent or improved approach in the bonding process may help with 

these issues. A recommended approach for future work is to leave the microvalve on the 

silicon substrate and only release the valve plate diameter as shown in Figure 7-1 using a 

release layer. The release layer can be materials such as SiC>2 and others that are 

compatible with the micro fabrication process. The microvalves will have a very thin 

consistent gap layer for the pressure-flow characterization, and the layer will be thin 

enough for good reverse seal. The micro valve assembly can be diced from the silicon 

substrate and integrated directly into the microcompressor housing. Other microvalve 

material such as silicon, parylene, and polyimide, have been developed with success even 

at a high back pressure of up to 350 psi [59].

Plate release layer

Figure 7-1: Microvalve future recommendation.

7.3.3 Improvement in the Characterization of Microvalve Fluid-Structure 

Interaction

A quasi-steady equilibrium microvalve model shown in Eq. 3-26 was developed 

to predict the valve plate height with respect to the steady air flow through the valve plate 

orifice. The valve plate height in response to the steady air flow was not measured for 

model validation due to limitations of the measurement equipment. The LDV was



capable of measuring the dynamic displacement but unable to obtain measurements of the 

static displacement of the valve plate at steady-state flow equilibrium. Additionally, the 

SU8 material is a clear material which does not reflect the LDV well enough to obtain 

measurable signal strength. Metal deposition on the SU8 can improve reflection. 

However, it changes the microvalve structural stiffness which needs to be accounted. 

Moreover, the LDV needs to be set up to capture the timing and triggering of the valve 

plate response. Other measurement methods such as stroboscope interferometry [120] can 

measure out-of-plane motion using a CCD camera system may address this issue.

7.3.4 Lumped Model Simulation Improvements

The mass flow rate (given in Eq. 4-12 - Eq. 4-15) through the microvalve orifice 

in the lumped model simulation used was based on Bernoulli’s equation. In Chapter 2, 

the pressure-flow through the micro valve orifice given in Eq. 3-21 was based on the 

aerostatic thrust bearing flow model [121], [122], also called the radial flow between 

parallel disks [123], [124]. The simulation lumped model can be designed to use the 

aerostatic thrust bearing model to replace Bernoulli’s equation.

The lumped model simulation used in Eq. 4-11 for the stroke modeling of the 

compressor chamber ignored the modeling of the piezoelectric diaphragm and its 

nonlinearity at the resonance peak and assumed an oscillating volume. The classical 

laminate plate theory (CLPT) provides a model of the diaphragm deformation for a quasi

static deformation based on the input voltage and pressure load. The magnitude of the 

center deflection of the diaphragm from the CLPT match closed to the deflection of the 

experimental test deflection between 500 -  2,500 Hz. The dynamic deflection becomes 

non-linear at higher frequency range near its resonance. A dynamic model of the
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diaphragm may be of interest for the future study of using a diaphragm for the 

microcompressor, unless the diaphragm compressor is designed to operate at a low 

frequency

7.3.5 Device Characterization Test Recommendation

Characterization test of the two-stage device was carried out by driving each stage 

independently at its own resonant frequency to ensure that each diaphragm generates its 

maximum stroke. In the simulation model, it was predicted that driving each stage out of 

phase provided the maximum overall pressure rise of the multistage device. Due to the 

dependency of the diaphragm resonant frequency, validation of this simulation results 

was not carried out. In future work, a microcontroller is needed to control the timing of 

each, stage to validate further the in-phase and out of phase timing of each stage.

7.3.6 Redesign for a True Microscale Multistage

The microcompressor was designed with components which can be scaled down 

to microscale sizes using microfabrication methods and MEMS method. Numerous work 

on micropumps have been developed from silicon and glass substrates. Similar methods 

can be used to develop a multistage microcompressor device. To achieve a large pressure 

ratio from a microcompressor for current Joule-Thomson requirement, an alternative to 

piezoelectric diaphragm is needed because it cannot withstand large pressure loads. 

Piezo-hydraulic microactuator is a better choice for integration with MEMS technology 

to develop the next generation of multistage microcompressors.
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The analytical model for the static deflection of the circular piezoelectric 

unimorph diaphragm is given by Desphande [104] and Lin [125]. The matlab code 

generates output of the diaphragm profile as shown in Figure A -l or it can be modified 

to output the volume that is displaced by the unimorph diaphragm as a function of input 

voltage and pressure.

clear all; clc;

%% Radius m, thickness of layer
Ri=7.5E-3; % for Silver, PZT, Silver, Bonding Epoxy,
Ro=10E-3; % Brass outer, passive layer
tag=0; % top silver thickness
tpz=.21E-3; % PZt thickness
tag=0; % bottom silver thickness (same as top)
tbo=0; % bonding epoxy
tbr=.21E-3; % Brass

properties 
E (1)=Ebr; 
v (1)=vbr;
E (2)=Ebo; 
v (2)=vbo;
E (3)=Eag; 
v (3)=vag;

E (4)=Epz; 
v (4)=vp z;
E(5)=Eag; 
v (5)=vag;

d31=175E-12;

Ebr=110E9; 
vbr=0.27; 
Ebo=5.17E9; 
vbo=0.3; 
Eag=40E9; 
vag=0.35; 
Epz=63E9; 
vpz=0 3;

of layers
%Brass Elastic modulus
%Poisson' ratio of brass
%Bonding epoxy Elastic modulus
%Poisson' ratio of bonding epoxy
%Pa unit, silver paste. Elastic modulus
%Poisson' ratio of silver
%PZT Elastic modulus
%Poisson' ratio of pzt-
%Silver Elastic modulus
%silver poissoh ratio
%C/N

%% thickness of the different layers
zo=-tbr/2;
zl=zo+tbr;
z2=zl+tbo;
z3=z2+tag;
z4=z3+tpz;
z5=z4+tag;
% %

z (1)=zo; 
z (2)=zl; 
z (3) = z 2; 
z (4)=z3; 
z (5)=z4; 
z ( 6) = z 5 ;

Aintll=0; Bint11=0; Dint11=0; n=5; 
Aintl2=0; Bint12=0; Dint12=0; 
for k=l:5
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Aintll = Aintll + E (k) * (z(.k+l)-z (k) ) / (l-v.(k) A2)
Aintl2 = Aintl2 + v(k) *E (k) *-(z (k+1)-z (k) ) / (l-v(k) A2)
Bintll = Bint11 + 0 . 5*E (k) * (z(k+1)A2-z(k)A2)/ (1-v(k)A2)
Bintl2 = Bintl2 + 0.5*v(k)*E(k)*(z (k+1)A2-z(k)A2 )/(1-v(k)A2 )
Dintll = Dintll + (1/3) *E (k) * (z (k+1) A3-z (k) A3) / (1-v (k) A2)
Dintl2 = Dintl2 + (1/3) *v (k) *.E (k) * (z (k+1) A3~z (k) A3 ) / (1-v (k) A2 )

end

Aextll=0; Bextll=0; Dextll=0; n=l;
Aextl2=0; Bextl2=0; Dextl2=0; 
for k=l:n

Aextll = Aextll + E(k)* (z(k+1)-z(k))/(1-v(k)A2)
Aextl2 = Aextl2 + v(k)*E(k)* (z(k+1)-z(k))/(1-v(k)A2 )
Bextll = Bextll + 0.5*E(k)* (z(k+1)A2-z(k)A2)/ (1-v(k)A2)
Bextl2 = Bextl2 + 0.5*v(k)*E(k)*(z (k+1)A2-z(k)A2 )/(1-v(k)A2 )
Dextll = Dextll + (1/3) *E(k)* (z(k+1)A3-z(k)A3)/ (1-v(k)A2)
Dextl2 = Dextl2 + (1/3)* v (k)*E(k)*(z (k+1)A3-z(k)A3)/(1-v(k)A2 )

end

%% comment out V=200 and P=1 and uncomment both V= sym('V') and 
%% P= sym(’P')if user want to obtain the expression for the volume 
displaced
%% as a function of Voltage V, and Pressure, P
% V=200 % temporarily assign V, voltage input Create a function
variable for this
%P=1 % temporary assignment of pressure
V— sym('V') % create a variable for V
P= sym('P') % create a variable for P

Npr=(l+vpz)*Epz*V*d31*(z(5)- z (4)) / ((l-vpzA2 )*tpz)
Mpr=0.5*(1+vpz)*Epz*V*d31*(z(5)A2- z (4)A2 ) / ((1-vpzA2 )*tpz)

A = [RoA2 log(Ro) 1 0  0 0 0 0
2*Ro 1/Ro 0 0 0 0 0 0
0 0 0 Ro 1/Ro 0 0 0
RiA2 log(Ri) 1 0  0 -RiA2 -1 0
2*Ri 1/Ri 0 0 0 -2*Ri 0 0 
0 0 0 Ri 1/Ri 0 0 -Ri
-2 * (Dextll+Dextl2) (Dextll-Dextl2)/RiA2 0 (Bextll+Bextl2) - 

(Bextll-Bextl2)/RiA2 2 * (Dintll+Dintl2) 0 - (Bintll+Bintl2)
2 * (Bextll+Bextl2) - (Bextll-Bextl2)/RiA2 0 - (Aextll+Aextl2) 

(Aextll-Aextl2)/RiA2 -2*(Bintll+Bintl2) 0 (Aintll+Aintl2)]

D= [-(1/64)*(Aextll*RoA4*P)/ (Aextll*Dextll-BextllA2 )
-(1/16)*(Aextll*RoA3*P)/ (Aextll*Dextll-BextllA2)
-(1/16)*(Bextll*RoA3*P)/ (Aextll*Dextll-BextllA2 )
-(1/64)*(Aextll/(Aextll*Dextll-BextllA2) - Aintll/(Aintll*Dintll- 

BintllA2 ))*(RiA4)*P
-(1/16)*(Aextll/(Aextll*Dextll-BextllA2) - Aintll/(Aintll*Dintll- 

BintllA2 ))*RiA3*P
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-(1/16)*(Bextll/(Aextll*Dextll-BextllA2 ) - Bintll/(Aintll*Dintll- 
BintllA2 ))*RiA3*P

-Mpr+(1/16)*((Aextll*Dextl2-Bextll*Bextl2)/ (Aextll*Dextll-BextllA2)
- (Aintll*Dint12-Bintll*Bint12)/(Aintll*Dintll-BintllA2))*RiA2*P

Npr-(1/16)*((Aextll*Bextl2-Aextl2*Bextll)/(Aextll*Dextll-BextllA2)
- (Aintll*Bintl2-Aintl2*Bintll)/ (Aintll*Dintll-BintllA2 ))*RiA2*P]

C=A\D 
v p a (C ,10)

k=200
r i = [0:Ri/k:Ri] 
ro=[Ri:(Ro-Ri)/k :Ro]

wintr= (1/64)*Aintll*ri.A4*P/(Aintll*Dint11-Bint11A2) + C(6)*ri A2 +
C {7)
wextr= (1/64)*Aextll*ro A4*P/(Aextll*Dextll-BextllA2) + C(l)*ro.A2 +
C (2)*log(ro) + C (3) 
wintr=vpa(wintr,5)

w=[wintr,wextr] 
r=[ri,ro] 
w = [fliplr(w),w] 
r=[-fliplr(r),r]

plot(ri,wintr,ro,wextr) 
figure(2) 
plot(r,w)

%this display the volume displacement equation. Uncommment the variable 
%V and P sym(V) above as variable to display it as variables. 
vdisp=(1/192)*pi*P*( (Aintll*RiA6/(Aintll*Dintll-BintllA2 )) +
(Aextll* (Ro''6-RiA6) / (Aextll*Dextll-BextllA2 ) ) )

+ .5*pi*C(l)* (RoA4-RiA4) +pi*C(2)*( (log(Ro)- 5)*RoA2 - (log(Ri) 
-.5)*RiA2)

+ pi*C(3)* (RoA2-RiA2) + .5*pi*C(6)*RiA4 + pi*C(7)*RiA2 

vpa(vdisp,10)
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Matlab Output

Diaphragm Deflection (Classical Laminate Theoryx 10
2.5

2

1.5

1

0.5

0

° l0 1  -0.008 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.008 0.01
Radius (m)

Figure A-l: Deflection profile of the piezoelectric diaphragm actuator from the Matlab 
source code using the CLPT method.
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B.l Single-Stage Microcompressor Simulink Model

The following is lumped model Simulink model to simulate the single-stage 

microcompressor. The Matlab m-file is the variables values for the lumped model needed

for the single-stage and two-stage simulation.

clc; clear all;
% This section calculate the Reynolds number

dinlet = 0.5e-3; %diameter of the inlet port, meter
mu = 1  983e-5; % dynamica viscosity of air

% this plot the flow pressure curve for the orficie only

rhoair = 1.225; % kg/mA3
patm = 101325; % Pa
Cd = 0 7; % flow coefficient
Aol = pi*(dinlet)A2/4 % cross sectional area of the entrance orfice
rvalve = 0.4e-3 % radius for surface valve
zv = 100e-6 % height for opening of the vavlve
Ao2 = 2*pi*rvalve*zv; % area for the opening of the valve
Aosurf = 2 Ole-6; % m A2, surface area of the valve face
k = 473; % N/m
volvalve = 624 9e-9 % m A3 volume of the valve
rhosu8 = 1145 % kg/mA3 density of su8
massvalve = rhosu8*volvalve; % mass of the valve
Vd = 1 0e-8; % m A3 dead volume
Vs = 3-0e-9; % m A3 stroke volume
Vdinit=Vd;
Vsinit=Vs;
n=1.401 % polytropic constant for air
constant = 101e3/(rhoairAn)



164

<N

v

:1 ! o  lit

Figure B-l: Single-stage top level Simulink model.

Fb
w

at
 c

utl
et 

va
t/e

 
[k

g/
a}



165

i v

a.

Figure B-2: Single-stage inlet micro,valve sub-level model.

Co
mp

are
 

To 
Ze

ro



25

01 E

1 7

T - ^ T 7  1 L J

i i

Figure B-3: Single-stage outlet micro valve Simulink sub-level model.

Co
ffip

a-f
tlb

ZM
O



167

Figure B-4: Single-stage outlet microvalve Simulink sub-level model.
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Figure B-5: Two-stage microcompressor Simulink top level model.
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Figure C-2: Dimensions of single-stage microcompressor for part I, part VI, piezo disc 
and O-ring.
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