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ABSTRACT

MADS (Multi-mission Attitude Determination System) is a new  software package 

used to determine the attitude o f  instruments on a high-altitude balloon employed for 

scientific experiments. There is no existing system for the automated determination o f  

the attitude o f instruments in balloon experiments, so we have developed MADS to do 

the data analysis for balloon experiments to find the location o f astrophysical sources 

such as gamma-ray or x-ray sources.

The two areas that required most work were modeling star trackers and modeling 

the motion o f  the balloon. Star trackers are used on satellites, but are far too expensive 

and sophisticated to use on balloons. Their processes have to be modeled using only the 

data from simple CCD cameras. The motion o f  a  three-axis-stabilized satellite moving 

in a prescribed orbit is very much simpler than the motion o f  a balloon, which is carried 

by stratospheric winds and always retains to some degree its initial spinning and 

pendular motions.

Another area that had to be addressed was interpolation when the balloon is out o f  

range o f a sufficient number o f  GPS satellites to determine it position (This may happen 

in the Arctic or Antarctic).

The software package, with documentation written to NASA standards, is being 

made available to NASA at their request.
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CHAPTER 1 

INTRODUCTION

The Multi-mission Attitude Determination System (MADS) is a software package 

that analyzes data from balloon experiments to find the attitude o f  a telescope on a 

balloon. All instruments intended for use on astrophysical satellites must first be tested on 

high-altitude balloons. Until now, no automated system for determining  the attitude o f  a 

detector on a balloon has been available. This dissertation presents a system for 

determining the pointing and rotation o f a telescope at any time during a balloon flight. 

This attitude determination system has been made available to NASA and will be used by 

NASA and university balloon groups.

1.1 BALLOON EXPERIMENTS 

Many important observations in fields such as hard X-ray/gamma-ray and infra 

red astronomy, cosmic rays, and atmospheric studies have been made from balloons 

because balloons offer a low-cost, quick-response method for doing scientific 

investigations. Balloons have important advantages over satellites. They can be launched 

where a scientist needs to conduct the experiment. Balloon can be readied for flight in as 

little as six months. Balloon payloads provide information on the atmosphere, the 

universe, the Sim, and the near-Earth and space environments. A  balloon flight mission is 

relatively simple. The balloon is partially filled with helium and launched with the

1
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payload suspended beneath it. As the balloon rises, the helium expands and fills out the 

balloon until it reaches its peak altitude two to three hours after launch. After the scientist 

has concluded the experiment, a radio com m and is sent from a  ground station to separate 

the payload from the balloon. The parachute opens and floats the payload back to the 

ground so it can be reused. The payload reaches the ground about 45 minutes after it has 

been separated from the balloon. Payload separation creates a-tear in the balloon, which 

falls to the ground, where it is retrieved and discarded.

Ballooning gives scientists an inexpensive way o f getting telescopes above most 

Earth’s atmosphere. From altitudes o f  38km altitude (126,000 feet or 23.8 miles), where 

the remaining atmospheric pressure is only 3 millibar (about 1/3 o f  1 percent o f sea level 

pressure), instruments can see the universe almost as clearly as the Hubble Space 

Telescope and other orbiting observations. And while the ride usually lasts only 30 or 40 

hours, it is far cheaper than a space launch (or satellite), so many research projects used 

balloon instruments to achieve their goals.

The newly developed capability for long duration ballooning has greatly 

expanded the opportunities for scientific studies from balloons. The long duration balloon 

project is to develop balloon systems capable o f supporting scientific observation above 

99% o f the Earth’s atmosphere for a  duration approaching 100 days. The design goal is to 

support to a scientific payload o f 2 2 0 0  pounds and to be able to deliver 800 watts o f 

continuous power to the scientific instrument. Using this kind o f  balloon, a scientist can 

command his instrument and receive scientific data at his home institution via the 

internet. This long duration balloon will have global flight capability. Using balloons is a 

major technical challenge in the research of the atmospheric and astrophysics.
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1.2 DATA ANALYSIS IN BALLOON EXPERIMENTS 

As we have seen, the balloon has a  great advantage for rapid, low-cost access to 

space. Balloons have been used for research on cosmic ray studies, gamma-ray and X-ray 

astronomy, optical and ultraviolet astronomy, infrared astronomy, atmospheric sciences, 

magnetospherics, and micrometeorite particles. For these kinds o f  research, the balloon 

has a telescope or other prim ary detector to detect the sources'

The purpose o f  a  telescope, regardless o f type, is to gather light in  some form that 

allows one to construct a picture o f  the sky. For the part o f  the electromagnetic spectrum 

ranging from radio through ultraviolet, telescopes operate in roughly the same manner 

using the basic optical principles o f  reflection or reflection. However, for photon energies 

higher than ultraviolet, light begins to interact with matter in different ways, and in 

general, phenomena such as reflection no longer exist. The telescope w ill be a different 

type detector. Telescopes which observe high-energy photons are therefore based on 

rather different principles. Low-energy X-rays (0.1-5keV) can be made to reflect from 

certain metals provided they are incident at very shallow angles. In this energy range, one 

can construct a grazing incidence telescope, which uses a series o f nested hyperbolic 

mirrors to focus low energy X -ray onto an X-ray detector. Hard-energy X-rays (5- 

lOOkeV) do not reflect at all, so the hard X -ray telescope uses a coded-aperture mask 

where a special pattern o f holes is machined into some dense material. In the g am m a-ray 

region (above a few  hundred keV), photons have so much energy that they begin to 

penetrate even the densest materials, generally creating secondary background radiation 

in the process. The Compton telescope makes use o f this interaction to observe photons 

in this energy range.
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Determining the pointing and rotation angle o f  a  telescope at any given time turns 

out to be the one o f most important projects in a balloon experiment. How to analyze the 

data from the secondary instruments carried on a balloon to determinate the pointing and 

rotation angle o f telescope is itself a research area in balloon experiments. Based on the 

pointing and rotation angle o f  telescope, a  scientist can find the position of, for example, 

X-ray and gamma-ray sources in the sky. So the main goal of-data analysis for balloon 

experiment is to find the pointing and rotation angle o f  telescope, which is the called 

attitude o f telescope.

There is no existing system for the automated determination o f attitude in balloon 

experiments; however, we have developed an attitude determination system suitable for a 

variety o f balloon missions. This dissertation will describe this attitude determination 

system.

1.3 MADS SUPPORT OF DATA ANALYSIS 

FOR BALLOON EXPERIMENTS

The Multi-mission Attitude Determination System (MADS) was originally 

designed to do the data analysis to locate gamma-rays sources in the sky. It determines 

where the X- ray or gamma-ray source detector is pointing in the sky and the detector 

angle o f rotation with respect to the pointing vector.

MADS accepts information from secondary instruments to determine the attitude 

o f  the primary balloon detector. These data— such as (1) Global Positioning System 

(GPS) data, which will be discussed in chapter 4; (2) Charged Coupled Device (CCD) 

cameras, which will be discussed in chapter 5; and (3) gyroscope data, which will be

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



5

discusses in chapter 3 — are basic information for the attitude determination system.

These data are obtained from the balloon experiment to determine the attitude o f  the 

balloon’s primary detector from MADS. MADS will use these data to calculate the 

pointing and rotation angle o f  the telescope as an attitude quaternion and represent it as a 

vector with a timetag at each time step during the balloon flight. The quaternion will be 

discussed in chapter 6 .

MADS has developed a determination system for balloon experiments based on 

the Multimission Three-Axis Stabilized Spacecraft (MTASS) package, which provides 

the star identification procedure. MTASS is a software system that supports attitude 

determination and analysis for satellites, but not for balloons. A balloon flight is different 

in many ways from a satellite’s. A  satellite moves with a predictable direction, but 

balloon fly in random directions. A  balloon also carries different instruments from a 

satellite's thereofre, MADS operates differently to determine the attitude o f  balloon 

instruments. It provides a full system to determine the attitude o f  a balloon instrument 

with user-provided data such as GPS data, CCD camera data, gyro data, and a ground- 

level initial quaternion, which will be discussed in chapter 3. MADS will pre-process the 

CCD camera data and GPS data first, then use these processed data and a ground-level 

initial quaternion to calculate the later attitude quaternions.

MADS is a very useful software package for balloon experiments. It can do the 

data analysis and find the attitude o f balloon instruments as a function o f time, which 

means that it provides the vector o f telescope pointing and rotation angle at each time 

step during the balloon flight time. It allows a scientist to analyze the pointing and the 

rotation angle o f  telescope not only at end o f a balloon experiment but at any
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intermediate time. MADS will be used in NASA’s scientific balloon program and by 

other university balloon groups for their experiments.
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CHAPTER 2 

SATELLITE ATTITUDE AND MTASS

The Multimission Three-Axis Stabilized Spacecraft (MTASS) package is a 

software system developed by Flight Dynamics Support System o f  NASA. Its original 

function was to support attitude determination and analysis for satellites.

2.1 OVERVIEW OF MTASS 

The MTASS software system grew out o f  the earlier satellite missions such as the 

Hubble Telescope, the Solar Maximum Mission, and the Gamma Ray Observatory. The 

motivation was to reduce errors and development, testing, and maintenance costs by 

having the functions common to m any users contained within a single system.

MTASS system generally cannot satisfy all the software requirements for 

supported mission. Besides orbit determination and control, MTASS does not provide for 

other mission-specific functions such as telemetry processing or science and mission 

planning and generation. It concentrates on features generic to attitude support. 

Specifically, it provides the following:

- An attitude determination system that adjusts telemetry, identifies, and 

computes attitude using either differential corrector or quaternion estimation 

methods. These functions are often used with a mission—specific telemetry 

processor to build a real-time attitude determination system.

7

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



8

- Validation o f  attitude and ephemerides computed onboard the spacecraft

- On-orbit calibration o f spacecraft attitude sensors and gimballed platforms.%

- Prediction o f  attitude, antenna contacts, and guide star occultations.

MTASS tends to be generic, but the MTASS system does contain some mission-

specific elements. Missions supported by  MTASS have included:

- Upper Atmosphere Research Satellite (UARS)

The Upper Atmosphere Research Satellite is the first major flight element 

o f  NASA’s mission to Planet Earth. It is designed to help scientists learn more 

about the fragile mixture o f gases protecting Earth from the harsh environment o f 

space.

- Extreme Ultraviolet Explorer (EUVE)

- Solar, Anomalous, and Magnetospheric Particle Explorer

- Solar and Heliospheric Observatory (SOHO)

Solar and Heliospheric Observatory SOHO is designed to study the internal 

structure o f the Sun. It will help scientist to understand the interactions between 

the Sun and the Earth's environment.

- Tropical Rainfall Measuring M ission (TRMM)

- Rossi X-Ray Timing Explorer (RXTE)

The RXTE is maneuverable ( 6  deg/minute) so that it can be made to point 

to a chosen source rapidly. This flexibility allows the instrument to respond to 

short-lived new phenomena as they are discovered. We are actually using the 

RXTE version o f MTASS to as a basis for the MADS package for balloon 

experiments.
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2.2 DETERMINATION OF ATTITUDE 

FOR A  SATELLITE 

The attitude o f a satellite is usually represented by the pointing and rotation 

angle o f the primary detector, e.g., a telescope, at any moment in time. The determination 

system o f  attitude for a satellite includes the following functions: adjust ment o f  

processed data, assembling reference data, determination o f coarse attitude, determination 

o f fine modular attitude (which computes the attitude o f  the operational modular frame 

using a least squares differential correction algorithm), determination o f  definitive 

modular attitude, and determination o f a gimbaled platform attitude. The basic ideas o f 

determination are using star tracker data to find, the observation vectors o f stars with 

respect to the satellite, then using ephemeris data and gyroscope data to calculate the 

reference vectors (explained in chapter 6  ) o f  stars with respect to Earth center. 

Comparison o f  the reference and observation vectors o f  stars enables the stars to be 

identified and the attitude o f star trackers to be determined. Finally one calculates the 

attitude o f the satellite’s primary detector.

1. Representation o f Attitude

There are many different ways to represent satellite attitude. In MTASS, 

attitudes are represented in three ways:

• Attitude quaternions

The attitude quaternion is a four-dimensional vector whose format 

is expressed as (qi, q2, q3 , q4 ), defined as
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(Eq. 2.2.1)

. eq 2 =eysm- (Eq. 2.2.2)

(Eq. 2.2.3)

9
q* = cos- (Eq. 2.2.4)

where (ex, ey, ez) is a unit vector in the geocentric coordinate system. The 

geocentric coordinate axes originate in the Earth’s center. The +Z-axis 

points north along the Earth’s spin axis, the +X-axis points to the vernal 

equinox direction in the Earth’s equatorial plane, and the +Y-axis 

completes the orthogonal triad. Because the Earth’s spin axis precesses 

about the ecliptic pole with a period o f  approximately 26,000 years, the 

geocentric axes move slowly in inertial space at a rate o f  approximately 50 

arc-sec per year. Therefore, a reference time (epoch) has to be attached to 

the definition o f  geocentric coordinate to make them truly fixed inertially.

0  is a rotation angle about the pointing reference vector (ex, ey, ez). 

Since a quaternion presents the attitude o f the balloon telescope and in 

order to understand the quaternion, note Figure 2.2.1:

Let X, Y, Z, be the axes in geocentric coordinate system, (ex, ey, ez) 

be a unit attitude vector, and (qi, q2, q3 , q4 ) an attitude quaternion.
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X

Figure 2.2.1 Attitude quaternion in geocentric coordinate

a  is right ascension, and 0  < a  <2n,

8 is declination, and -7t/ 2  < 5 < n/2,

0 is the angle o f  rotation about OP and 0 < 0 < 27t.
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Since

ex =  cos 8  cos a  (Eq. 2.2.5)
ey = cos 8  sin or (Eq. 2.2.6)

ez = s m S  (Eq. 2.2.7)

from Eq. 2.2.1 and Eq. 2.2.2,

. 6
&yx SU1 2  _  e y

q . - 0  e,e . s m -
(Eq. 2.2.8)

2
From Eq. 2.2.5.and Eq. 2.2.6 

ey cos<5csinar
= ta n a  (Eq.2.2.9)

ex cos <5c cos a

Using Eq.2.2.8 and Eq. 2.2.9, we get ta n a  = — , so a  — tan ' 1 — , where

the quadrant is determined by the signs o f  q, and q2.

To calculate 8 , use Eq. 2.2.3, and Eq. 2.2.7, we have

sin = - ^ _  (Eq.2.2.10)
. c/ sin—2

Also since

cos 8  — ^ e x2 + e y 2 ( Eq. 2.2.11)

From Eq. 2.2.1 and Eq. 2.2.2,

<7 2 + ^ 2 2 = (e x2 + ej,2 )s in 2|  (Eq.2.2.12)

Substituting Eq. 2.2.12 into Eq. 2.2.11,
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sin—
2

(Eq.2.213)

Then from Eq. 2.2 11 and Eq. 2.2.13, we get:

(Eq.2.2.14)

Where the quadrant is determined by the sign o f  q3.

For the rotation angle 0, from Eq. 2.2.4, we get:

0  =  2  cos - 1  qA (Eq.2.2.15)

Since the attitude can be represented by a quaternion, and a , 5, 0 can be 

represented by quaternion, the attitude can be represented as a vector 

which incorporates pointing and rotation using geocetric coordinates.

The attitude also can be represented in two other ways:

• Euler angle rotations with respect to an attitude reference frame, which 

may be either the geocentric reference frame or an orbital coordinate 

system.

The Euler angle are represented as (y, r, p ), where y is a yaw angle, i.e 

the rotation about the Z- axis, r is the roll angle, i.e the rotation about the 

X-axis, and p is pitch angle, i.e rotation about the Y-axis.

• Attitude matrix

The attitude matrix is a 3 x 3 matrix. Its elements are related to the y , r, p 

and also can represented by the quaternion.
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2. Relation between the three types o f attitudes

The attitude matrix is related to the y, r, p as the following:

A n = cos p  cos y  -  sin r sin p sin y  

A 12 =  cos p sin y  + sin r sin p cos y  

A 13 = -sin p cos y  

A21 =  - cos r sin y 

A22 =  cos r cos y  (Eq. 2.2.16)

A2 3  =  sin r •

A31 =  sin p  cos y  + cos p sin r sin y 

A32 =  sin p sin y  - cos p sin r cos y 

A 3 3  = cos r cos p

The Euler angles also can be represented by elements o f the attitude 

matrix as following:

y  — arctan - A i
A 22

y = arcsin f^  ]

p  = arctan
- A 13

33

0  < y  < 2 k  

-  j d l  < y < k ! 2  

0  <  p  <  2 k

(Eq. 2.2.17)

The attitude can also be expressed in quaternion form. There are four 

possible ways to compute the quaternion from the attitude matrix ( Shuster 1993). 

Here the quaternion are designed the denominators are not equal to zero. One o f 

four w ay is presented as:
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4x

4z =

4s =
44 4

( A s ~ A z )

(Ax - A s )

(Az A i )

A

(Eq.2.2.18)

44 — — 2  ^ + ^ 1 1  '/ 4 22 + As )

The relation between the quaternion components and attitude matrix can 

be presented as below:

A r  \  2 2 2 . 2
A i (.4) = 4 i ~ 4 z  ~ 4 s  + 4 4  

A z(.4) = 2(.4i4 z + 434a ) 

A s ( 4 ) = 2(4 x4s ~ 4 24 a)

A x(4)  = 2 (4 x4 z ~ 4 s4a)
a r  \  2 , 2 2 . 2

A z ( 4 ) = - 4 l + 4 z ~ 4 s 4 a 

A s (4)  = 2(424s + 4 x4 a) 

A i ( .4 ) = 2(4 x4 s + 4 z4a)

^ 3 2 ( t f ) = 2 ( ? 2 ? 3  - ^ 1^ 4 )

^ 2 2 (? )  = - 4 x  - 4 z  +4s + 4 a

(Eq. 2.2.19)
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2.3 THE BASIC DATA IN MTASS

The RXTE version o f  MTASS uses spacecraft ephemeris data, fixed-head star 

tracker data, inertial reference unit or gyroscope data, and an attitude history file for the 

attitude determination system.

The spacecraft ephemeris gives the position o f spacecraft at time t,. An ephemeris 

is in principle a  table whose entries are function o f  time. The entries may be calculated 

from formulas as need. For time ts, MTASS first generates references Earth-to-spacecraft 

vector, and a spacecraft velocity vector, both in geocentric coordinates, by either reading 

the spacecraft ephemeris file or by using an analytic orbit generator. Then MTASS uses 

the spacecraft position vector and velocity vector for processes such as star 

identification.

The fixed head star tracker data are for attitude determination and control. In 

general, a fixed head star tracker measures star position vectors relative to itself.

Typically, its output consists o f  three parameters: H, the horizontal coordinate o f the star 

in the filed o f view; V, the vertical coordinate o f  the star in the filed o f view; and I, the 

star-generated signal intensity. In principle I can be used to determine the star magnitude, 

but since magnitude measurement error typically is quite high, and a majority o f stars are 

variable, it gives only limited help in identifying the star. MTASS uses fixed head star 

tracker data to calculate the star observation vector and star reference vector in geocentric 

coordinates. Both vectors then are used in the star identification process and 

determinationof attitude processes.
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The gyro data in MTASS provide angular rate information about the spacecraft. 

MTASS uses gyro data in star identification and in determining an attitude by 

propagation o f  an attitude quaternion.

The attitude history file contains the attitude quaternion from the attitude 

determination functions described, or from the onboard computer solutions as extracted 

by the telemetry processor. MTASS allows to use an attitude history file to find the final 

quaternion for the attitude spacecraft i f  user choice to use attitude history file in attitude 

determination system.

Since MTASS is an attitude determination system for multiple missions, it also 

use other kinds o f  data such as a  three-axis magnetometer, an Earth sensor assembly, and 

coarse and fine Sim sensor for determination o f attitude.

2.4 THE PROCESSES OF MTASS

The basic processes includes telemetry processing, data adjustment, star 

identification, attitude determination, attitude and ephemeris validation, and sensor 

calibration. These process will now be described in more detail.

1. Telemetry Processing: This process includes importing the raw sensor, 

actuator, and control system data from an external file source and placing it in 

internal array for later processing. The telemetry processor converts files in an 

arbitrary format to arrays in the MATLAB memory used by MTASS. In RXTE 

version o f  MTASS, it loads data from the gyro, two star trackers, and or an on­

board computer attitude history file.
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2. Data Adjustment: This process includes converting raw sensor and actuator 

data to observed vectors in  the spacecraft body coordinates and attaching 

reference vectors for each time point, except that the fixed head star trackers are 

not matched up with reference vector in  this process. Data adjusted in this process 

include fixed head star tracker data and gyroscope data.

The raw fixed head star tracker data, includes information: (1) time, (2) 

phi, a angle present the horizontal coordinate o f  star in the field o f view, (3) theta, 

an angle present the vertical coordinate o f  star in the field o f  view, (4) 

temperature, which is measured from the camera, (5) intensity, the star-generated 

signal intensity, and (6) flag. The data adjustment process calculates the star’s 

observation vector in spacecraft body coordinates and its magnitude.

The raw gyro data include information on time and values o f  rotation 

about the x-axis, y-axis, and z-axis o f  the gyro. The data adjustment process 

computes a corrected rate vector in spacecraft body coordinate system.

3. Star Identification: This process matches up stars with their reference vectors 

and is performed by use o f  a  direct match and /or a  pattern match method based 

on an angular separation matching technique. The star identification process uses 

ephemeris data, fixed head star track data, gyro data, and SKYMAP data. The 

SKYMAP is a star catalog that provides a  star’s identification, reference vector, 

and magnitude. The observed star vectors and candidate star vectors are used in 

the direct match method and doublet match method for the star identification.

The direct match algorithm tests the angles 0 and magnitude difference Am
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etween each observed star vector W and the reference star vector W R against 

limits Gnax and ninax, where

G = c o s ~ \ W » W R) 

and Am — \m — m R\

The vectors W  and W R are in geocentric coordinates. The direct match 

process first calculates observed star vector W , then chooses candidate stars from

SKYMAP to have their reference vector W R. The geometry for direct match is 

shown in figure 2.4.1 (page 28). For every set o f observed and reference star 

vectors, i f  0 <  0 ^  and Am< m ^,, the observed star is matched with the candidate 

star. When a star is matched, it has the same information such as star ID and 

position as candidate star, so the observed star has the same reference vector with 

respect to the Earth center as candidate star. This method is the basis o f  star 

identification.

The doublet match computes the angle 0 between each two o f observation 

star vectors and compares it to the angle 0R between their corresponding candidate 

stars’ reference vectors (found in the direct match); that is, for the match pairs 

( Wx, W R i ) and (W2iW R 2  ), the angles 0 and 0R are computed from:

e = cos~l (Wl *W2)

and

GR = c o s -X{WXR *W2 )
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The doublet match assumption is that i f  Wx and W2 are properly matched

to W Ri and W R2 respectively, then 0 should be close to 0R. Closeness tested 

against a  limit:

|0 - e * |< A «
A A .

All pairs ( W,  W  ) which satisfy this condition pass the doublet match.

The geometry for the doublet match is in figure 2.4.2.

4. Attitude Determination: The RXTE version o f  MTASS uses an Extended 

Kalman Filter to compute to computer the spacecraft attitude. The Extended 

Kalman Filter solves for the attitude and gyro bias. It uses a gyro, fixed head star 

tracker observed vector and reference vectors, and attitude history data to 

calculate the attitude quaternion from the previous time step and propagate it 

using the latest gyro rates compensated by the latest gyro bias.

5. Attitude and Ephemeris Validation: This process allows the user to compare 

any pair o f  attitude history files. Comparson provides a  check on the ground- 

based or on-board computer ephemeris, by comparing their predictions with later 

actual positions.

The Figure 2.4.3 is a data flow diagram for processes in MTASS.
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W

X

* ’ W R

>  Y

Figure 2.4.1 Geometry for direct match

In  Figure 2.4.1, X, Y, Z are axes in geocentric coordinate system, * is a 

observed star, W is observed star reference vector. *’ is a candidate star for 

observed star. WR is candidate star reference vector.
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W.

W-

X

^  A w2R

Figure 2.4.2 Geometry for doublet match

In figure 2.4.2, X, Y, Z are axes in geocentric coordinate system, * is a 

observed star, W j , W 2 are observed star reference vectors. A is a candidate star 

for observed star. W ,R, W 2R are candidate star reference vectors.
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gyro, star tracker .attitude history data

Telemetry Process
Put gyro, star track .attitude
history data into arrays

Star
Observed
vector.Ephemeris data Data Adjustment 

Convert for gyro, star 
track .attitude history data

Attitude history dataGyro

Star Identification

Star reference vector Attitude Determination

Attitude quaternion

Attitude and Ephemeris 
Validation

Figure 2.4.3 Data flow diagram for processes in MTASS

Note: : output d a ta ,------- : input data, CT : process
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2.5 THE RESULTS FROM MTASS FOR SATLLITE 

The attitude determination system has been described for satellites. In the RXTE 

version o f  MTASS, we input the gyro data, fixed head star track data, on-board computer 

attitude history file, and we use the spacecraft ephemeris that we got from NASA to run 

the MTASS. We used the Data Adjuster, Star Identification, and Extended Kalman Filter 

to determinate the attitude quaternions o f  satellite. The results'are in the Table 2.5.1 and 

Table 2.5.2. Table 2.5.1 shows the mean and stand deviation o f  observation stars’ 

reference vectors. Table 2.5.2 shows the final attitude quaternion o f  the telescope on the 

satellite at the time.

Table 2.5.1 Sensor result in Extended K alm an Filter

Sensor #obs. mean-x mean-y mean-z std-x Std-y std-z
Star
tracker# 1

4797 0.00001 -0.00001 0.00068 0.00008 0.00211 0.00198

Star
tracker#2

3849 -0.00013 0.00019 -0.00060 0.00018 0.00100 0.00091

Table 2.5.2 Quaternion result

Epoch Time 960823.021814128
Quaternions q. q2 q3 q4

-0.45707327 -0.58050044 0.33566653 0.58552252
Gyro Bias(deg/sec) X y z

-0.00000470 -0.000001057 0.00001329
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CHAPTER 3

AN ATTITUDE DETERMINATION SYSTEM FOR 

BALLOONS

MTASS is a attitude determination system for satellites. For balloon experiments, 

an attitude determination system called Multi-mission Attitude Determination System 

(MADS) has been developed to determ ine  attitude quaternions for balloon detectors.

3.1 A NEW SOFTWARE PACKAGE: MAD

As explained in chapter 2, MTASS is a software package used by  NASA to 

determine the attitude o f  a satellite. MADS is a software package that has been developed 

using MTASS as a basis, and the m ain function o f MADS is to support an attitude 

determination system for balloon missions carrying instruments such as gamma-ray or x- 

ray telescopes. This software package has been presented to NASA for NASA itself and 

university balloon experiments to determine the attitude o f  balloon detectors. It has same 

user interface as MTASS, but it uses very  different kinds o f data to determine the attitude 

o f the balloon detectors. The balloon offer a low-cost, quick- response method for doing 

science investigations, so the balloon is widely used in atmospheric studies and in 

astronomy.

MADS is intended for off-line attitude determination o f  a balloon. The essential 

purpose o f  MADS is to determine the position and orientation o f a telescope or detector

25
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on a balloon with respect to the sky. The balloon experiments will measure and store the 

instruments’ orientation data during a  balloon flight. MADS will analyze this information 

to determine the balloon’s motion and the attitude o f the primary detector at any time.

3.2 ATTITUDE OF BALLOON DETECTOR 

B y the attitude o f  a balloon, w e mean the pointing direction and rotation o f the 

telescope with respect to the sky. MADS uses the same basic principle as MTASS in 

determining the quaternion for the attitude o f  balloon. There are again three ways to 

represent the attitude o f  balloon detector: 1. Attitude quaternion, which is a  four- 

dimension vector in geocentric coordinate system. It is defined as (e* sin0/2, ey sin0/2, e* 

sin0/2, cos0/2). 2. Three Euler angles (  y, r , p). 3. Attitude matrix, which is a 3-by-3 

matrix. The explanation o f  each parameter is the same as in chapter 2.2, but here the 

calculation o f  attitude quaternions are dependent on the different conditions and different 

initial quaternions. One o f  the first difference is that the balloon cannot move likes 

satellite on a certain (or predicted) orbital track. The balloon flies in random directions 

carried by  atmospheric currents. We need two initial quaternions at two different time in 

order to find the attitude o f  balloon detector. The first initial quaternion is found at time 

when the balloon is launched. We call this initial quaternion the ground-level initial 

quaternion. The second initial quaternion is associated with the time when the balloon has 

become stable and the CCD camera begins to take the useful data. We call this one the 

initial quaternion. This initial quaternion is found by propagation o f the ground-level 

initial quaternion using gyro data only in the time interval between the time o f balloon 

launch and the time when the CCD camera begins to take the useful data. W e have to use
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this second initial quaternion at tim e when the attitude determination system starts to use 

the CCD data, GPS data and gyro data to calculate the attitude quaternions and propagate 

them time by time. The calculation for ground-level initial quaternion is based on the 

CCD camera’s angles represented in  the geocentric coordinate system and can be 

measured when the balloon experiment is being prepared for launch.

Suppose the camera is set up with a box. The box is forward to +Z direction in  the 

geocentric coordinate system. Figure 3.3.1 gives the view o f box in the geocentric 

coordinate system. From this set up, suppose (e„ ey, ez) is unit vector o f  ground-level 

initial quaternion in geocentric coordinate system and a ,  5, 0 can be measured when the 

camera is set up.
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box

X

Figure 3.3.1 Ground-level initial quaternion in geocentric coordinate system

a  is right ascension, and 0 < a  <2n,

8 is declination, and -n/2 < 8 < tc/2,

0 is the angle o f rotation about OP and 0 < 0 < 2 t z .
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The ground-level initial quaternion in geocentric coordinate system is calculated 

from following steps:

1. Find the unit vector (e„ ey, ez) o f  ground-level initial quaternion

Since the a ,  5 are the angles for the unit vector, so 

ex =cos<5cosa (Eq.3.3.1)

ey =  cos 8  sin a  (Eq. 3 .3.2)

e. =sin<5' (Eq.3.3.3)

2. Find the ground-level initial quaternion (qi, q2, q3 , q»)

Since 0 is known from the measurement for camera, use the definition o f  

attitude quaternion in chapter 2 (Eq 2.3.1) to (Eq 2.3.4), the primary quaternion 

can be solved as:

0 0 qx = ex sin—= cos £  cos a: s in — (Eq.3.3.4)
3
0 0q 2 = ey s in y  = cos<5*sin trs in — (Eq.3.3.5)

0 0q3 = ez s i n s in S  (Eq. 3.3.6)

q 4 = cos~  (Eq. 3.3.7)

The (qi, q2, q3 , q4 ) here is the ground-level initial quaternion at the time before the 

balloon start to move. Using this ground-level initial quaternion, MADS will create the 

initial quaternion for the attitude determination system. This will be discussed in chapter 

3 .5 .
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3.3 BASIC DATA FOR MADS 

There are three basic types o f  data for M ADS to process in the attitude 

determination system for balloon:

1. Data from two CCD cameras

The CCD data, measure the stars in  the star fields. The data are taken from 

CCD camera once every predetermined tim e interval so that we can have pictures 

o f  stars at each time interval during the balloon flight. Each CCD camera frame 

includes all the stars in a fields within m  x n  degrees, the numbers depending on 

the lens and the chip. For the Apogee A PI camera, a frame consists o f  512x768 

pixels. W hen a star is focused, its light falls on one pixel, but the camera is then 

defocused slightly, so that the light falls on  roughly 2x2 pixels. A  window o f 

about 8x8 pixels centered on the star is used to obtain its centroid and magnitude. 

MADS uses the CCD camera data and the GPS data to calculate the star’s 

observation vector and its reference vector with respect to Earth’s center in order 

to do the star identification for the attitude determination system. The CCD data 

flow diagram is shown in Figure 3.3.2 and will be explained in detail in chapter 5.
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CCD raw data

Pre-process CCD 
data

GPS data MADS data process 
for CCD

Star Identification

Intensity o f star

Centroid o f star

Star observaed vector 
with resnect to camera

Star reference vector with 
resoect to Earth center.

Note:

Figure 3.3.2 CCD data in MADS 

: output data, ______ input data, ^  : process
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2. Three-axis Gvro Data

The gyro data measure the rotation o f  the balloon while in flight, they also 

measures the motion o f the balloon between camera pictures and provide an 

estimate o f  the next camera position. The gyro gives information about the rate o f 

rotation about its x-axis, y-axis and z-axis in radians per unit time. MADS uses 

gyro data to calculate and propagate attitude quaternions from one to the next 

time step. The gyro data are also used to predict the attitude quaternion for 

balloon within a time period.

3. Global Positioning System (GPS') D ata

The GPS data give the location o f  the balloon during its flight. The 

location is represented in the three geodetic coordinates: latitude, longitude, and 

altitude at universal time. The GPS data only provide information about the 

location o f  balloon’s center o f  mass. The altitude is measured perpendicular to the 

tangent plane o f  the Earth. MADS use GPS information to calculate the position 

vector and velocity vector o f the balloon w ith respect to Earth’s center. Then with 

the star observed vector calculated from CCD data and the reference star vector 

obtained from SKYMAP, MADS calculates the observed star’s reference vector 

with respect to Earth’s center using the star identification processes. The GPS 

data flow diagram is shown in Figure 3.3.3 and will be discussed detail in chapter

4.

The attitude determination system for balloon uses these data and the 

initial quaternion to determine the attitude quaternion that gives the direction and 

rotation o f  the telescope.
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GPS raw data

Convert GPS into geocentric 
rectangular coordinates, 

format (t, x, y , z)

GPS

■ ^ (^ ^ F it  gaps for GPS

CCD data

Star Identification

Figure 3.3.3 GPS data in MADS

Note: output data, : input data, CZZD' Process
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3.4 CONSTRUCTION OF MADS 

MADS is an attitude determination system. The raw data used in MADS first 

need to be pre-processed and additional parameters calculated to-get the data into the 

format that the attitude determination system uses. For off-line data analysis, we divide 

the post-flight data processing into two parts: part A, which handles pre-processing of 

raw data; and part B, which deals with mission-independent data analysis.

Part A  pre-processes the raw data so that they can match the format expected in 

the main attitude determination system, and be ready as input data for MADS. In part A, 

the CCD data and GPS data are processed, and additional parameters that would be 

supplied by  a star tracker are calculated here.

Since the GPS data are obtained as latitude, longitude, and altitude at universal 

time, we first convert them into geocentric rectangular coordinates and put them into the 

format as (t, x, y, z). The GPS data also need to be checked for gaps which may occur 

when the GPS receiver is out o f  range of a sufficient number o f satellites. In this case, we 

will use polynomial interpolation to interpolate the across gaps. The detail about pre­

processing GPS data will be discussed in chapter 4.

In processing the CCD camera data, first select up to the five brightest stars from 

each frame. For each star, determine the apparent magnitude and the location in the frame 

o f  its centroid. Then correct these positions for such effects as distortion by a spherical 

lens, and distortion due to temperature, which affects the focal length o f the lens. The 

format o f CCD camera data in MADS is presented as:

(time, phi, theta, temperature, intensity, flag). The details o f  CCD camera data are 

explained in chapter 5.
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Part B is the mission independent analysis, essentially the attitude determination 

system. It uses data from part A, which include CCD data and GPS data, to calculate the 

observed vector o f  a star in balloon body coordinates using the data adjuster process, and 

the reference vector o f the star with respect to Earth’s center using the star identification 

process. To calculate the attitude quaternion of balloon telescope, we must follow two 

steps. First, we generate the initial quaternion at the time the CCD camera starts to take 

the useful pictures o f  star. This initial quaternion is found by propagation o f  the ground- 

level initial quaternion using gyro data only in the time interval between the time of 

balloon launch and the time when the CCD camera begins to take the useful data (i.e., the 

balloon has become stable). The ground-level initial quaternion is measured from the 

CCD camera set up on the balloon. In the second step, we find the attitude quaternion o f  

balloon telescope with camera data, initial quaternion, and gyro data over a second time 

interval that is the same as the CCD camera data time interval.

Based on the discuss above, MADS has:

1. Calculation o f  parameters provided automatically by star trackers.

2. Algorithms for (i) locating stars, (ii) finding centroids o f star with 

respect to camera, and (iii) calculating apparent magnitudes o f  star.

3. Algorithms for filling gaps in GPS data

4. Determination o f  the ground-level initial quaternion at the time 

balloon starts launch and initial quaternion at the time the balloon has became to 

be stable.

5. Algorithms for finding quaternion at any specified time using gyro

data.
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The construction o f  MADS is showed in Figure 3.4.1, and details about 

calculations o f  the observaed vector, reference vector, star identification, and attitude 

quaternions will discusses in chapter 6.

Processed 
CCD data

Processed 
GPS data

Attitude quaternionInitial quaternions

MADS

Part A 
Data pre-processing

Part B 
Attitude determination system

Figure 3.4.1 Construction o f  MADS
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3.5 SUMMARY OF THE PROCESSES OF M APS 

For a balloon experiment, the off-line data analysis is performed by  MADS in two 

parts. The processes o f  MLADS are shown in Figure 3.5.1. The raw data measured from 

balloon experiment include CCD data, Gyro data, and GPS data. The ground-level initial 

quaternion is calculated from angle measurements o f  the camera when it fixed on the 

balloon before launch.

The CCD raw data and GPS raw  data are first pre-processed in  part A, which has 

one section for CCD raw  data and one for GPS raw data. The CCD raw data give the 

counts o f  each pixel in a  CCD camera frame. From the counts in each pixel, the part A 

process for CCD data calculate the centroids o f stars with respect to the center o f frame, 

and also find the intensity o f  stars. The centroids and intensity are put in an array along 

with the time for each observed star. The GPS raw data represent the position o f the 

balloon in  latitude, longitude, and altitude. The pre-processing for the GPS data in part A 

converts this information into geocentric coordinates. The GPS data will be checked for 

gaps, and i f  necessary these will be filled by interpolation. The GPS data are put in an 

array ordered chronologically by time.

Part B of MADS uses the processed CCD data and GPS data from part A, Gyro 

data, and a  ground-level initial quaternion o f  the telescope to calculate the attitude 

quaternions o f the balloon telescope during the flight. Part B has two main processes: 

creation o f  initial quaternions, and calculation o f attitude quaternions.

Part B of MADS first does data adjustments for processed CCD data and gyro 

data. The gyro data are the rate o f  rotation about its x-axis, y-axis, and z-axis at time. The 

adjustment o f gyro data computes a corrected rate. The adjustment for processed CCD
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data involves taking CCD data from part A and convert it to observed vectors in balloon 

body coordinates.

Creation o f  initial quaternions is done in two stages. The ground-level initial 

quaternion is a  pre-flight quaternion. It is determined from the attitude o f  the camera, 

rotated to give the telescope’s attitude using the carefully measured angles between their 

axes. The measurement o f  CCD camera axes include (1) deviation from North, and (2) 

deviation o f perpendicular axes from horizontal latitude and longitude. The angles 

between these axes and the axes o f  the primary detector must be measured accurately to 

set up a rotation matrix.

The balloon will initially be very unstable, spinning and swinging like a 

pendulum as it rises. Since camera exposure times are typically on the order o f 1/10 

second, the camera frames will be unusable until the balloon stabilizes, several hours 

after launch. For a particular flight, this time will have to be determined by inspecting the 

camera frames. We need an initial quaternion at the time the balloon has stabilized.

The initial quaternion is determined by running MADS w ith only the ground-level 

initial quaternion and gyro data. Process propagate the ground-level initial quaternion to 

the time when camera data begins.

The calculation o f attitude quaternions process areas follows first, the star’s 

reference vectors are calculated, using GPS data druing the star identification process.

Then based on the reference vectors, initial quaternion, and gyro data, we use the 

Extended Kalman Filter to calculates the attitude quaternions. Details will be discussed in 

chapter 6.
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The MADS software package is different from MTASS in the following ways: (1) 

the preprocessing o f  CCD data to give parameters supplied automatically by a star 

tracker, (2) establishment o f  a  ground-level initial quaternion at the time balloon starts 

launch and an initial quaternion at the time balloon has became stabilized, (3) 

preprocessing o f  GPS data to identify and interpolate across gaps, (4) replacement o f 

orbital ephemeris by GPS data, (5) preparation o f  a  file containing an attitude history 

consisting o f all o f  the quaternions calculated.
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CHAPTER 4 

GPS DATA PROCESSES IN PART A

This chapter describes the GPS data and the pre-process for the GPS data in 

MADS part A. There are two treatments for the row GPS data. The first is converting the 

raw GPS data from geodetic coordinates to geocentric rectangular coordinates. The 

second is fitting the GPS data if  there are any missing GPS data within a  required time 

interval during the balloon flight.

4.1 VIEW OF GPS DATA

The Global Positioning System, or GPS , is the only system today able to show an 

exact position on the Earth. GPS is a  satellite-based radionavigation system developed 

and controlled by the U.S. Department o f  Defense (DOD) for over 20 years. While there 

are many thousands o f  civil users o f GPS world-wide, the system was designed for and is 

operated by the U. S. military. The Global Positioning System consists o f  21 satellites, as 

well as three back-up satellites in predictable orbits around the Earth.

GPS has three parts: the space segment, the user segment, and the control 

segment.

The space segment consists o f 24 operational satellites, each in its own orbit 

11,000 nautical miles above the Earth. The satellites continuously broadcast position and 

time data to users throughout the world. The GPS user segment consists o f  receivers and

41
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the user community. The control segment consists o f  ground network o f tracking stations, 

which monitor and control the GPS satellites in orbit to make sure the satellites are 

working properly.

Four satellites are required to compute the four dimensions o f X, Y, Z (position) 

and time. GPS satellites send two signals: a  carrier and a pseudo-random code. The 

signals are timed by an atomic clock in  the satellite, and the GPS receiver generates a 

matching code timed by its own synchronized clock. To measure precise latitude, 

longitude, and altitude, the receiver measures the time it took for the signal from four 

separate satellites to get the receiver. By checking its time against the time o f  three 

satellites whose position are known, a receiver can pinpoint its longitude, latitude, and 

altitude.

The idea behind GPS is to use satellites in space as reference points for locations 

here on Earth. The satellites transmit signals that can be detected by any with GPS 

receiver. The GPS works in five logical steps:(l) Triangulating from satellites: this is the 

basis o f GPS, (2) measuring distance from a satellite, (3) getting perfect timing, (4) 

knowing where a satellite is in space, (5) correcting errors.

The GPS system depends on two things to make it work:

•  First, each satellite has an onboard atomic clock that gives it an 

extremely precise time base. The satellites send radio signals to the receiver, and 

the extremely precise time bases make it possible for the receiver to determine 

exactly how far away each satellite is. The receiver can to calculate exactly how 

long it took for the signal to travel from the satellite to the receiver, and from that 

time determine the exact distance between the receiver and the satellite.
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• Second, each receiver has stored in m em ory an almanac that indicates 

exactly where each satellite is in  its orbit at any moment. The almanac is possible 

because o f  the extremely precise orbit flown by the satellites.

The purpose o f  m any balloon experiments is to search for or research energy 

sources in the sky. To find the pointing and rotation o f  telescope, the position and 

velocity o f balloon are very important information, so the GPS receiver is used on a 

balloon to find the position and velocity o f  the balloon at universal time during its flight.

4.2 GPS DATA IN BALLOON EXPERIMENTS 

A  balloon experiment first uses the GPS to get the position o f  the balloon at 

launch and later uses the GPS data to calculate reference vectors o f stars with respect to 

Earth’s center. The GPS receiver gives the location o f  the balloon and universal time. The 

balloon’s position is given in terms o f  its latitude, longitude, and altitude at a universal 

time. The format o f the GPS data from the receiver is actually presented as 

(time, latitude, longitude, altitude). These track the motion o f  the center o f  mass o f  the 

balloon. The altitude is measured perpendicular to a tangent plane o f the Earth. Since the 

GPS data are in geographical coordinates, we need to convert those coordinates to 

geocentric rectangular coordinates. The balloon position represented by GPS data is 

shown in Figure 4.2.1.
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Figure 4.2.1 Balloon position data from GPS

q> is the latitude o f  the balloon from GPS. 

cp' is the geocentric latitude o f  balloon, 

h  is the altitude o f  the balloon from GPS. 

p is the radius o f  Earth.
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Figure 4.2.1 gives the position o f  the balloon respect to the Earth center. The 

angle q> is read out from the GPS data as the latitude o f  the balloon, and h  is altitude o f  

balloon. To calculate the balloon position in  geocentric rectangular coordinates, we first 

need to know the quantities psincp' and pcos<p', where p is the radius o f Earth at that 

latitude, and cp' is the geocentric latitude o f  balloon.

As w e know, the Earth is not quite spherical, but is instead more like a spheroid o f  

revolution, being flattened along the line joining the north and south poles. A  cross- 

section through the Earth along any line o f  longitude would be approximately elliptical, 

while a cross-section along any line o f  latitude would be circular. In the figure 4.2.1page 

52), the Earth is drawn with its north and south poles, N  and S. When the balloon at 

position P locates its zenith by means o f  a  plumb line to be along the line PZ; the angle 

this makes w ith the equatorial plane defines the balloon’s geographical latitude, cp. Since 

the Earth is not quite spherical, the balloon’s geocentric latitude cp' is slightly different 

than the balloon’s geographical latitude, cp. The calculation o f  psincp' and pcoscp', are 

done as following:

u = tan-1 {0.996647 tanp}

(A/6378140)

(Peter D. Smith 1981). Here, h  is the altitude o f the balloon, which is its height above 

sea-level. The constant 6378140 is the equatorial radius o f  the Earth in meters. The h' is a 

correction o f  height h above sea-level. Then,

p  sin q>' =  0.96647 * sin u + h '*  sin (p 

pcos<p' = cosm + h' * cos <p
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and O' = 0

where O' is the geocentric longitude.

4.3 PRINCIPLES OF TRANSFORMATION OF GPS DATA

Figure 4.2.1 shows the balloon position with respect to Earth. We have known the 

quantities psincp' and pcoscp', so we can show the balloon's position in rectangular 

coordinates in Figure 4.3.1:

This is a geocentric rectangular coordinate system with Z  =  X x Y. The geocentric 

coordinate axes originate in the Earth’s center. The +Z -axis points north along the 

Earth’s spin axis, the +X-axis points to the vemal equinox direction in the Earth’s 

equatorial plane, and the +Y-axis completes the orthogonal triad. P(x, y, z) represents a 

position of balloon in the system. P ' is point o f  projection from P on the XY-plane. The

A  Z

| p s i n c p '

pcoscp

PCX, y, z)

X

Figure 4.3.1 Balloon position in rectangular coordinate system
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cp' is an angle between the OP and OP' in the plane that includes point P and is 

perpendicular to the XY-plane. The psincp' is the distance from P to XY- plane, and 

pcoscp' is distance from origin o f  system to P '. 0 ' is the angle between the X axis and OP' 

in XY-plane. The angles cp' and 0 ' are in different planes.

In the OPP'-plane,

sin<p' = z / p .

In the XY-plane,

s in # ' = — - —  and cos# ' = ---- —----- .
pcos(p' pcos<p'

So the balloon position P(x, y, z) in geocentric rectangular coordinates system is 

represented as:

x  =  p  cos cp' cos# ' 

y  = p  c o s^ 's in # ' 

z = psvaq)'

The GPS data are translated from geographical coordinates into geocentric 

rectangular coordinates. So now  the GPS represent the balloon position as (t, x, y, z,) 

which are the x coordinate, y  coordinate, and z  coordinate with universal time at that 

position. MADS will use the balloon position (t, x, y, z,) to calculate the reference vector 

for star.
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4.4 INTERPOLATIONS FOR MISSING GPS DATA

During a balloon flight, the GPS receiver m ay be out o f  the range o f enough 

satellites to determine its position for some time interval, due to the random motion o f  the 

balloon. This is especially likely to happen in the Arctic and Antarctic which are used for 

long duration flights. In this case, GPS data for the balloon position will be missing for 

that time interval. The GPD receiver is fixed on the balloon. F o ra  10-day flight, there is 

no guarantee that GPS receiver will receive the signal from enough satellites at all times. 

Since the GPS determines the position o f balloon, i f  GPS data miss for a too long a time 

interval, we need to fit the missing data for the time gap to predict the position o f  balloon.

Even though the flight balloon moves randomly in the sky, the track for a balloon 

will be a curve, so the fitting methods will use polynomial interpolation to interpolate the 

across time gaps. As we know, the GPS data are represented in four-components (time, x, 

y, z). For each spatial component x, y, and z, we use same method to do the curve fitting 

over a time gap. A  function g(x) is said to be an interpolation function for a given set o f

data points (ti, Xi), (t2, x2), (tn, xn) i f  its graph passes through (not just close to)

selected accurately tabulated points pj(t;, x*) in the tx-plane, where x; = f(tj) is rounded to 

the accuracy of the table. Geometrically, interpolation is the game o f  “follow the dots.” 

The analytic challenge is to find functional descriptions for curves that do this. Once such 

a function is found, its value at t  can be used to approximate f(t) when t  is not a tabulated 

value tj This geometric problem is usually solved by transforming it to the algebraic 

problem o f  solving equations.

The most natural curve to try to pass through (n + 1) tabulated p,’s is a polynomial 

having (n + 1) coefficients, that is o f  degree n. This is called polynomial interpolation.
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There are several polynomial interpolation such as Lagrange, Newton, and piecewise. The 

piecewise interpolation also has two kinds o f interpolation functions. One is linear 

interpolations, and other is piecewise cubic splines. We will use the piecewise cubic 

splines interpolation method to fit the missing data for the GPS because the balloon’s 

motion will not be linear, and the GPS data will be an curve. I f  GPS data are missing for 

two hours during a balloon flight, we will need to find the interpolation function based on 

data before and after the missing data time interval. The method for the interpolation is as 

following:

1. D efin ition

Suppose the GPS data miss in time interval [ta ttj, so pick up 2m ’s GPS

data points at time: ta.m,ta<m-i),-- -ta-i, tb+i, W ,  tb+m. The first m ’s GPS data

points are in the time interval before the missing data time interval. The rest o f  

m’s GPS data points are picked up from the time interval after the missing data 

time interval. For convenience o f explaining the methods, we write them as: to,

ti, tn, where n  =  2m -1 and to< ti<  <tn. Let Pk(tk,Xk) represent the first

component o f  GPS data at the time t*, where Xk = f(tk). k  = 0,1,2,... .n.

The function s(t) is called a piecewise cubic on [to,tn] i f  there exist cubic 

functions qo(t),.. -qn-i(t) such that

s(t) =  qk(t) on [tfotkf t ] for k  = 0,1,2,... .n-1

must satisfy:

qk(tk) = xk and qk(tk+i) = xk+i (Eq. 4.4.1) 

q'k-i(tk) = q'k(tk) [=s'(tk)] for k = 1,2,.. ..n-1 (Eq. 4.4.2) 

q"k-i(tk) =  q"k(tk) [=s"(tk)] for k = 1,2,....n-1 (Eq. 4.4.3)
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There are 2n conditions in Eq. 4.4.1, together with n-1 condition in 

each o f  Eq. 4.4.2 and Eq. 4.4.3, ensure that s(t) and both its first and second 

derivatives are continuous on [to,tn].

2. Find sit) in each fh. ti^-il

Since s(t) is a piecewise cubic function on the [ to ,tn] ,  then its second 

derivative s"(t) is piecewise linear on the [ to , tn] ;  By Eq.4.4.3, q"k(tk) =s"(tk), 

q”k(t) is linear and interpolates (tk, s"(tk) ) and ((tk+i ,s”(tk+i) ) in [tk, tk+i]- By 

lagrange’s piecewise-linear interpolation form,

k = 0 ,l , .. .n - l  (Eq. 4.4.4)
*k+1 k+l *k

let hk =  tk+l -  tk for k  = 0,1 ,...n

crk = s"(tk) for k  = 0,l,...n 

Then Eq. 4.4.4 can be written as

? i'W =  -» ), k = 0 ,l , . . .n - l  (Eq. 4.4.5)
K  K

where the hk’s and cr’k s are constants, with the cr’k s to be determined. So,

* K ,  k = 0 ,l , .. .n - l  (Eq. 4.4.6)
hk 2 hk 2

fc>' , —  + + \ ( t ) ,  k = 0 ,l , .. .n - l  (Eq. 4.4.7)
hk 6 hk 6

here, At (t) = Ak( t - t k) + Bk (tk+l - 1) .

Solving Ak and Bk by using (Eq.4.4.1):
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Let t  =  tk , then,

K  6 

i-e qk (tk ) =  ~jj~h 2t  + B khk = tk

Let t =  ri+1, then,

g . f a . , ) = *?*' ^ " H ’ + f a f a . ,  
K  6

i e  C*+i) =  + AkK = h +i

*t+l f-
So, A = -----------------

K

Put Ak and Bk into (Eq. 4.4.7), we have:

,  °Vt-i r.2 f  j  2
. .  cr* ( £ * - £ ) 3 cT'jt+i C t ~ t k ) 2 *+l 6  * ✓ n * 6  *  ̂ ^a t ( 0 = — — — — + ——  -----— + ---------- 2------- (* -* * )+ -----------  ('*+i - 0A, 6 6 A* A* A* W+1

i.e

gt f a  =  %■■C ^ T T ^ ~ A»(f a ' ~ ~ )3 - * « (t - « » »
6 ** 6 H‘ , (Eq. 4.4.8)

+ <»% ' ° - < f a . , g - ^  k = 0 , l ..n -1
A*

The qk(t) are the piecewise cubic functions on [t^ ttn ] for k = 0 ,1 ,...n-1. 

They can be used to evaluate s(t) (as qk( t ) ) for tk< t<tk+i once we know the values
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o f  CTk and ctich. There are n-1 piecewise functions on [tp,tn], with o o  o n.The

following step is finding the cr0  crn for the piecewise function s(t).

3. Solving the system o f  o n  crn

In order to solve the o o  crn, w e first find the equation system for oo

 On • Differentiating (Eq. 4.4.8) gives

<7*(0 = -

Let t -  tk , and Axk

9k(tk)= - 6

<1;  ( ', )  = {-2h , } + ^  {-h t } + Ax, 
o o

(Eq.4.4.9)

Let t — tk+l, then

i.e

* ; ('*.,) = ^ -{ + * ,}  + £ ^ L{2At } + Ax, (Eq. 4.4.10)

Let k-1 replace k in (Eq. 4.4_7), w e have

(Eq. 4.4.11)

By (Cond. 4.4.2)
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Ss- {-2A,} + Ssa- {-h ,  } + &xt  = SfcL {+AW } + 2s- {2 V . } + Ar,., 

i.e

V iO 't-i +  2(ht-i + K  )crk + hkcrk+l = 6[Axk -  Axk_x ] k  =  1,2, n -1 (Eq. 4.4.12)

In (Eq. 4.4_9) , there are n-1 ’s equations with n-H unknown d o  a n. I f

cro and C7n are given by boundary condition, this equation system includes n-1

equations and n-1 unknown variables cti <y„-i. This system is presented as

. A c  = D  (Eq. 4.4.13)

where

2(A0 +Al) hx
/z, 2(/z,+/z2) h 2

A _  K  2(/z2 +/z3) h 3

K-2 2 (hn_2 +hn_{)

/T o\ /-N jr i * V-
/ 1 O C?

__
__

__
_
1

°1

^ 2
6(Ax 2 — A c ,)

• D =

/T 6(A cn_2 -  A c„_3)
-  n-I _ _6(Acn_, -  Axn_2) - h n_xa n_

This system is a (n-1) x  (n-1) tridiagonal system. Since ho, h i ,  hn.i are

positive and coefficient matrix A  is a diagonally dominant, so (Eq. 4.4.13) can

always be solved uniquely for cti crn-i (using Gaussian Elimination Algorithm).

There are some strategy for calculating the boundary condition o f ctq and cyn. We
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tried using them to find the best boundary conditions for the GPS data fitting 

problem.

4. Endpoints strategies

The equation system Eq.4.4.13 A ct =  D  for do  o n has n-1

equations. The equation (E l)  and equation (En-1) have Oo and on that can be 

eliminating b y  endpoints o f  interval [to,tn]. W e have four case o f eliminating for 

and On.

Case 1. oo =s"(to), and o n = s"(tn)

In this case, the values o f  s"(to) and s"(tn), are calculated base on the 

endpoints to, ti, t2 and tn, tn.l5 tn-2 -

Suppose s" ( tQ ) =  A0s(t0 ) +  AjsCt, ) + A2s(t2 )

Here

*('1 ) = s(t0 + h )=  s (t0 ) + hs'(tQ ) +  y ^ 0) + O(A3)

s(t2) = s(t0 +  2 h) = s(tQ ) +  2 hsXt0) + ^ - s "(t0 ) + O (h3)

So,

s"(t0) = A0s(t0 ) + A, {s(t0 ) + hs’Qo ) + Y S"(t° )} + A* {sQo} + 2hs'(t°) + )>

i.e

s ,,(t0) = CA0 + A 1 + A 2)s(t0) + (A l + 2A2)hs'(t0) + (Al + 4  A2) ^ s " ( t 0)

Then
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s " M = i r s< f> y -ljsW + -k -s ( .h '>h h h

and s"(t, ) = ± rs ( tn ) -  ) + j t HK-2 )

since s(tt-) = x t. fo ri =  0,1,2, n , so the s"(to) and s"(t„) can be calculate

values. Put ct0 =s"(to), and crn =  s"(tn) into (Eq. 4.4.13), We can get uniquely

Oo  On-

Case 2. oo ctj, and C7u.i

In this case, assume that s"(t) is constant near the endpoint. Replace Co 

=Kyi, and

on =  o n_i into (Eq.4.4.13), we got:

~3h0 +2hx 
h.

K
2 {K +h2)

A =
2 {h2 +h3)

n—2 2 K_2 + 3  hn_x
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D =

6(Axx —Ax0) 
6(Ax2 — Axt)

6(Ax„_2 -Ax*-3) 
6(Ax„_x -Ax„_2)

(Eq. 4.4.14)

Solve this equation system, we can get the unique value for cr’s.

1Case 3. cr0 = — {(/i0 + h l)cr, —h0cr2} and
h

1
" h -{~hn-lCrn-2 +(K-2

n—1

In this case, assume that s''(t) is linear near the endpoint Replacing oo and 

ct„ into (Eq.4.4.13), the system is became as:

A =

( 2 + ^ X K + 2 h ,)
hx h,

h\ 2(Aj + h2)
2 (h2 + h,)

hn—2 (2+ A = i-)(V 2
n—2 rt—2

and D is same as (Eq.4.4.14). Solve this system, we can get the unique values for

<r s.

3 1 3  1
C ase4. a 0 = — [Ar0 - s 'C f o ) ] - - ^ ,  and cr„ = -— [s '(tn) - A x n_x] - - a n_x 

hn 2 hn_x 2
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In this case, specify the values o f  s'(t) at endpoint. The s'(t) calculated here 

are based on the points to, ti, t2  and tn, tn.t, tn-2 -

By Three-point formulas for differentiation, we have

2 h 2h

Replacing <j0 and crn into (Eq.4.4.13), the system is becomes:

A =

2(Jh + h2) h 2
h2 2(h2 +h3) h 3

K -i  2 A _ ,+ (2 ~ i)A _ 1

6(Ax, — Ax0) — (Ax0 - s ' ( t 0 )) 
6(A x2 — A x,)

D =

6(A x„_2 - A x„_3)

_6(Axr„_j -  Ax„_2 ) -  (s'(tn ) -  Ax„_,)

Solve this equations system, we also get other set o f values for a ’s.

Those four endpoint strategies treat the second derivative on endpoints to and tn in 

different ways. Which one is best is will depend on the data curve. Since the balloon 

moves slowly, the GPS data for balloon follow a very smooth curve, so those methods 

give us very similar results o f  interpolation o f the missing data. The Figure 4.4. and
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Figure 4.4.2 give the fitting curve on x component and y  component by using third 

method o f  endpoint strategies respectively. For the better fitting, w e choose 45 data points 

before the GPS data missing time interval and 45 data points after the GPS data missing 

time interval. W e also tried to use only 20 data points before the GPS data missing time 

interval and 20 data points after the GPS data missing time interval, but the curve did not 

fit the data very well.

Once we solve the system o f  equations and get a set o f  values for cr’s, the 

interpolation cubic function s(t) =  qk(t) is determined on each interval [tk, tk+i] for k  =  0,

1 , . .  .n-1. The length o f interval [tk, tk+i] are not same for each interval, because [to, tn] 

includes the interval [ta tb] that missing the GPS data for balloon positions. Use 

interpolation cubic function qa(t) on [ta tb] to calculate the x(ti) w ithin [ta tb].

Here i  = a + ih0 and a < i < b .

The GPS data have four components: (t, x, y, z). We use the same interpolation 

methods on each component x, y, and z respectively to get the interpolation values x, y, 

and z such that they fit the GPS data curve. Then put them into format (t, x, y, z) data file 

for MADS to use. We have separate programs for each endpoints strategies to interpolate 

the GPS missing data. Since w e perform the third method which is using endpoints as

o-0 = 7 "{(Ao +Ai)o*i and <?„ = ~ r~ {-K ~ i(=rn-i + (K -i > the program
K n—2

for this method has been down for each component. Other programs are for one

component.
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CHAPTER 5 

REDUCTION OF CAMERA DATA

To identify stars, a balloon experiment uses CCD cameras to take pictures o f stars 

and determines the orientation o f  the balloon instruments. This chapter discusses the 

appropriate reduction o f CCD camera data.

5.1 MODELING A STAR TRACKER

1. Principles o f  operation o f  a star tracker

Satellites use fixed head star tracker information for identification o f  stars 

in MTASS. Most satellite attitude control systems or attitude determination 

systems today use star trackers. These will never view the Sim or Earth, since each 

has an associated bright object sensor and a stray light shield. A  star tracker is 

designed to acquire and track stars in a predetermined magnitude interval and 

field o f view. The trackers provides two-axis position information relative to its 

chip.

A  fixed head star tracker consists o f  six basic subsystems: sensor h ead , 

signal processor, synchronous logic unit, power converter, digital deflection unit, 

and input/output interface unit.

When power is applied to the system, the fixed head star tracker will 

automatically start searching the total field o f  view. The search scan pattern is a
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horizontal (El) direction sawtooth sweep with a staircase signal applied to the 

vertical (V) direction. The track pattern centers on the star image and a 'star 

present’ bit is generated in the output words signifying that two-axis position and 

intensity data are available. I f  the star moves in the field o f  view due to balloon 

attitude changes, the track scan pattern will follow and remain centered on the star 

image. The star’s position is identified by  a positive of negative H coordinate and 

a positive or negative V coordinate.

As the star moves in the field o f  view due to satellite attitude changes, the 

track pattern remains locked onto the star image, and the position information, is 

continuously updated. The fixes head star tracker sees only the acquired star; it is 

not influenced by and provides no information about other targets in the field o f  

view. Tracking o f  the same star continues until the star leaves the field o f view or 

the star intensity falls below the commanded level. The number o f stars followed 

by a tracker is different for each model; the Ball star tracker used by RXTE tracks 

up to five stars.

In general, a  fixed head star tracker determines star position vectors. The 

fixed head star tracker output consists o f  three parameters: H, the horizontal 

coordinate o f  the star in the field o f  view; V, the vertical coordinate of the star in 

the field o f  view; and I, the star-generated signal intensity. The intensity 

determines the star magnitude. The magnitude measurement error typically is 

quite high, so it gives only limited help in identifying the star. In MTASS, fixed 

head star tracker data are used to calculate observed vectors o f  stars with respect 

to the tracker in the satellite, and the ephemeris data are used to calculate
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reference vectors o f  star with respect to Earth’s center. Then comparison of 

observed star’s vectors and candidate star’s reference vectors is used to identify 

the stars, h i MTASS, the fixed head star tracker data is input data with format: 

(time, phi, theta, temperature, intensity, flag).

2. M odeling a star tracker using a CCD camera

Balloon experiments use CCD cameras to take pictures o f  stars at 

predetermined intervals, for example, at once a minute. Storing the images is a 

problem i f  telemetry is not available. The images have to be either stored on board 

or sent down by telemetry.

In MADS, the CCD camera data are used to calculate observed vectors o f 

stars with respect to the camera in the balloon, and GPS data are used to calculate 

the reference vectors o f stars with respect to Earth’s center (The star’s observed 

vectors and reference vectors will be discusses in chapter 6). Then observed 

vectors and reference vectors are used to identify stars as in the case o f  the 

satellite. The CCD data are used one frame at a time, and each picture includes all 

stars in the field of view.

The raw data o f  the CCD camera are counts o f  pixels in the chip. To use 

the CCD data for MADS, the CCD camera data have to be pre-processed. In the 

pre-processes o f CCD camera, we need to pick up between three and five o f the 

brightest stars from each frame because MADS requires three to five stars in the 

frame for identifying stars. For each star, calculate the angles phi, and theta, and 

its intemsity (Figure 5.1.1). Finally, we put the data into the format (time, phi,
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theta, camera temperature, intensity, flag) for each star in one frame at the time. 

With a different time tag, there are different camera frame data.

The CCD camera frame coordinate system is shown on the figure 5.1.1.

• b is distance along the boresight from the lens to the chip.

• V is vertical component in the plane o f CCD chip.

• H is horizontal component in the plane o f CCD chip and 

perpendicular to V, so H =  V  x b, where b is a vector along the boresight, dircted 

from the chip to the 16ns.

•  0 is angle associated with vertical component o f image position.

•  <j> is angle between the boresight and the projection onto the plane 

of the boresight and H o f  the line of sight to the star. It is associated with 

horizontal component o f  image position
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H

Center o f lens

boresight

Star line o f  sight

Figure 5.1.1 CCD camera coordinate system

In this figure, (H, V) are the coordinates o f the centroid o f the image with 

respect to the frame center. The angles cp and 0 are the corresponding to centroid 

coordinates H  and V o f  image, b is a length within the camera and takes a  constant 

value. So

tan <*> =  —  (Eq.5.1.1)
b

and

tan#  =  (Eq.5.1.2)
b
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Suppose a  balloon experiment uses a  CCD cameras to measure a star’s 

position vectors, and suppose the camera takes a  picture o f  the star field every 

minute. That is, each picture frame gives a position vector o f  star at that time. To 

use the CCD camera's output data for MADS, w e need to find the brightest stars 

in each picture frame, find the centroid o f each bright star with respect to frame 

center, and the magnitude o f  each star.

5.2 FINDING BRIGHT SOURCES IN A CCD CAMERA FRAME 

CCD chips are high quantum efficiency, linear detectors, and many balloon 

experiments use CCD cameras to record star fields. The data from a CCD frame are 

recorded in a one dimensional array with timetag. Each time is associated with a picture 

Same. The Kodak chip in the Apogoe camera records 512x768 +2 rows for each frame, 

and these can be represented in a 512x768 matrix from the first row o f the first column to 

the last row o f  the last column. For each data frame, the first entry is the number o f 

column in the matrix, and the second entry is number o f  row in the matrix. The 512x768 

rows data are the elements o f  matrix.

Many stars are recorded in one frame. We need to find the 3-5 brightest stars from 

among them. Each star in the frame needs an associated star+sky window and an 

associated star box for the star image. When a star is focussed, its fight falls on one pixel, 

but the camera is then defocused slightly so that the fight falls on roughly 2x2 pixels. The 

motion o f  the balloon causes trailing o f  star images. The right choice o f  lens for the chip 

and chosen exposure time, usually—1 / 1 0  second, allows the trail image to 2  pixels, giving 

an image size up to 4x4 pixels. Allow a margin o f error for such problems as further
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defocusing due to changes in the temperature o f  camera, and use a 6 x 6  star box; for the 

star image. To include a sky 'annulus' around this star box, cut a star+sky window with 

final size 8 x 8  pixels.

For star identification, we don’t use stars near an edge o f the matrix, and since the 

size o f  star window is 8 x 8 , we cut the data in first and last 8  rows; also we cut the data in 

first and last 8  columns. In a star+sky window, the count o f  pixel in the center with the 

biggest value.

To identify the brightest star, we first have to find the maxim um  value maxIst in 

the matrix with their row  iIst and column j Ist indexes. Then, from intersection of iU[ row 

and j lst column as center we cut the 8 x8  pixels from the frame chip as a  star+sky window 

for the first brightest star. The star+sky window represents the region o f  the frame 

containing light from the brightest star. In the remaining frame matrix, we will 2nd the 

second brightest star. To do this, we have to find the maximum value maxM in the 

remaining matrix with their row i^, and column j 2th indexes. Then, from intersection o f  i2th 

row and j2th column as center we also cut another 8 x8  pixels as a star+sky window for the 

second star. In the remaining matrix, use the same way to find the third brightest star so 

on until we find the numbers o f star required, for example, 3 to 5 brightest stars. It shows 

in Figure 5.2.1.
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i—1, j—1 i=lj=768

Star+sky window

Sitar box
*

♦

*

i = 512, j = 1 i = 512, j=768

Figure 5.2.1 Stars+sky window and star box in a CCD frame

CCD frame has 512x768 pixels.
Star+sky window has 8 x 8  pixels.
Star box has 6 x 6  pixels.
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To implement these idea, our program drivecccLm in part A o f  MADS for the 

camera data reads each camera frame data, then calls the program matrix.m to put them 

into the matrix. In this matrix, w e do not use stars in the edge o f  the matrix, so we set the 

values that are in the edge o f  the matrix to be zero, since the values o f  element in the 

matrix are positive numbers. As we have discussed above, the size o f  a  star+sky window 

is 8 x 8 , so the number of rows and columns are to be the edge o f  the matrix are 8 . In the 

matrix, the search for the maximum value o f  element with its index o f  row and column. It 

belongs to the brightest star in the frame. Then we choose 8 x 8  elements from the 

intersection o f  maximum value’s row and column indexes. Once we identify the first 

brightest star, we set values in the star window o f  first brightest star to be zero, so when 

we do maximum value search for next brightest star in the frame, this star will not be 

selected again. The program w ill continue to select the brightest star in the frame until it 

reaches the given number o f  bright stars. For balloon experiments that use MADS to 

determine the attitude of balloon, we need to set the maximum number o f  brightest stars 

to be five. The program CCDsort.m does this task. The number o f  brightest stars in this 

program is a parameter that can be given by the user.

When the program finished the selection o f  the required number o f  brightest stars, 

we need to find the centroid o f  those brightest stars with respect to the center o f  frame.
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5.3 FINDING THE CENTROID AND MAGNITUDE FOR A STAR 

The technique for performing photometry using CCD frames makes the 

assumption that the frames have been “fully processed,” which means they are assumed 

to be bias-subtracted, flattened, and cosmic-ray cleaned.

The principle o f  measuring the brightness o f  a star is to add up the counts in all 

the pixels that contain light from the star. Then we estimate the contribution to these 

pixels from the sky background using nearby pixels, and then subtract the sky 

contribution to get the net signal from the star. We must first determine the center o f  a 

stellar image in a  CCD frame. This is o f  fundamental importance in  astrometry. There are 

a variety o f methods to perform this task. But for the balloon experiments, we are going 

to use an image centroiding method to find the centroid o f  the star since we know that the 

peak count is at the center o f  the star+sky window within the star+sky box. Hence, it 

makes sense to concentrate on these pixels nearest the center o f the star box. This star box 

is in  the star+sky window. The star+sky window is a submatrix o f the frame matrix that 

only contains only one starwith size 8 x 8 . So the size for the star box w e choose is 6 x 6 . 

The center o f the box we initial as (ib, jb ), where (ib, jb ) is the row number and column 

number o f brightest pixel.

The calculation o f  centroid for brightest star is described below.

(1) Calculation o f  marginal sums o f box

We begin by computing the x and y marginal sums for the box.

The x and y  marginal sums, p(x;) and p(y,) are formed by  the sum m ing  the 

pixels' counts at each columns in i rows or summing the pixels' counts at 

each rows in i column, respectively among the star box. Let 2a be the size
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o f  star box, then a =  3 since the size o f  star box is 6 x6 . Suppose (ih, jb) 

represents the row number and column o f  the brightest star.

I f  Iij is counts at pixel (i j ) ,  then the marginal sums are defined as

a

P O , )  = 2  I s h e r e i = - a :  a, (Eq. 5.3.1)
j = - a

P i y  j )  =  X  I  u here j  = - a : a. (Eq. 5.3.2)
I = — a

Here, we can see that p( x t) is row marginal sums for row i, here i from - a  

to a, and p { y () is column marginal sums for column j  for j  from —a to a, in the 

star box.

(2) Calculation of mean o f  counts for row and column marginal sums

Once we have the marginal sums for each row and each column, it is easy 

to computer the mean o f  the marginal sums over rows or columns. We define 

them as x  and y :

* = - i > 0 , )  (Eq. 5.3.3)
2a + 1 ,“

and

( E q ' 5 ' 3 ' 4 )

Here, the 2a is size o f star b o x ,, i from —a to a and j  from —a to a, in the 

star box.

(3) Calculation of centroids o f brightness in matrix frame

For the centroids o f  the brightest star, we will use the values calculated

above:
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a

£ ( / * * , ) - x * f 
*c =  ̂ --------------------------------  (Eq. 5.3.5)

y c =  ̂ ==--------------------------------  (Eq. 5.3.6)
2](PO'y)-57)
y—a

(xc , yc ) are the centroids o f brightest s ta r  with respect to the center o f  

CCD frame. They are the row and column numbers o f the star’s centroids in the 

frame. Here, p(x,-), p(yj) are marginal sums in. the star box. Xi and y\ take values 

from - a : a.

If  (xc » yc ), lies within two pixel o f  the: (ib j b), then we consider that this 

estimation is a good one. Otherwise, it is necessary to repeat the process with (xc , 

yc ) as the new initial value (ib jb )- This m ethod is an iterative process.

The centriod (xc , yc ) represents in CC D  frame now are row number and 

column number in frame matrix which has a s ize  as 512 x768. For the MADS to 

use, we need to represent the centroids in (H, V )  coordinate.

(4) Present the centroids o f  brightest star in fHT.V") coordinate

To use (H,V) coordinates known in term s o f the row and column o f  frame 

matrix, we know that a frame matrix represents one CCD frame, so the center o f  

HV coordinate system, or the origin (ho,vo) o f coordinates (H, V), is at (786/2, 

512/2). The matrix system and (H,V) coordinates are show in the Figure 5.3.1.
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Figure 5.3.1 HV —Coordinate, in CCD frame
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I f  (ho, v0) is the origin o f  the H, V-coordinates, then (ho,vo) =  (0,0) is in H, 

V coordinate system, but in the matrix o f  frame, ho, is column number and vo row 

number for center o f  matrix frame. So (ho,v0) = (768/2,512/2). Suppose (Xc, yc ) 

represents the centroids o f brightest star in the frame matrix, (He, Vc ) represents 

the centroids o f brightest star in the H,V coordinate system. Then:

Here (He , Vc j are the coordinates in the H,V system. The He is the 

horizontal coordinate and. Vc is the vertical coordinate.

(5) Calculation o f  angles 0 and cd

We have calculated the centroid o f  the brightest star and represent them 

by (H,V ) coordinates. Since the format o f  CCD camera data for input to MADS 

use 0  and cp to represent the centroid o f  the star, we need to calculate angles 0 , cp 

from the HV- coordinates o f  the centroid o f  the star. The CCD camera coordinate 

system is shown in Figure 5.1.1. From it we can see 0 and cp, corresponding to V 

and H respectively, are the angles from the star1 line-of-sight, as explained in 

chapter 5.1

By Eq. 5.1.1 and Eq. 5.1.2, we calculate 0 and <p as:

Since = 7 6 8 /2  and v0  = 521 /2

So H c = y c — K  and vc = vo ~ x c (Eq. 5.3.7)

0  = arctan(-^-) (Eq. 5.3.8)

<j) =  arctan(—-) (Eq. 5.3.9)
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Here b is a distance between camera lens and camera chip. The He is 

horizontal coordinate o f  centroid for the star and Vc is vertical coordinate of 

centroid for the star.

(6 ) Calculation o f  the mode for skv background

The sky background is the signal that would be in the aperture if  the star o f  

interest were not there. To determine the sky background, the usual procedure is 

to look at the signal in an annular region centered on the star or a symmetrically 

placed region centered on the star. The size o f star+sky window is 8 x 8 . The 

annular region is between the star+sky window and star box. This region includes 

pixels in the star+sky window but not in the star box. These pixels are used to 

calculate the mode for the star+sky window. The star+sky window is shown in 

Figure 5.3.2.

Sky

*
star box

Figure 5.3.2 Star+sky window

Suppose the annulus includes the pixels in the star+sky window 

but not in the box. With the pixels in this annulus, we first calculate the 

mean and then the median of the values o f  these pixels. Let ANNU ={ 

counts o f  pixels in the annulus}. I f  the counts from pixels in the annulus
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would have a Gaussian form, the appropriate value for the sky background 

w ould be the mean o f  the distribution. A  mode is calculated to compensate 

for the fact that some light from another star or nebulosity might be 

included.The mode is estimated from the formula (Kendall, Stuart, 1977): 

median = median(ANNU) 

mean =  mean(ANNU)

Then mode =  3 * median-2 * mean. (Eq. 5.3.10)

Here mode represents the sky background.

(7) Calculation o f  the background intensity

Since we have choose size o f star+sky window is 8 x 8 , we can calculate 

the background intensity for a  star. In the star+sky window, there are 8 x 8  elements 

whose distance from the (Xb, yb) is less than 4 pixels in the CCD frame matrix. 

These pixels represent the signal for this star. We calculate the intensity o f the 

star, based on those pixels. The formula is showed as below:

t - ' L I ' - n + * i+  (Eq. 5.3.11)

here Y .  /,. is summation that carried out over the pixels in star+sky window. So,

8 8

Y .  ly = YL I  a Here Ig is counts o f pixel or signal o f  star in its field.
«= /=I

The npix is number o f pixels in the star+sky window. So 

nPix = 8 * 8  =  64

The i ^  here is the background sky value which is the mode that we calculated at 

step 8 ). So isicy = mode or this star intensity, our final calculation is for the star 

magnitudes.
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(8 ) Calculation o f magnitudes o f brightest star

The magnitudes o f  a  star is used in  the MADS as one parameter o f  the 

CCD data for the attitude determination o f  balloon. Its calculation is basis on the 

intensity o f  star and an zero point number z p t  found by calibrating the

camera. This value is typical in the rang 23.5 to 25.0.

The magnitude of a star we is calculated as 

m — zpt — 2.5 * lo g /

where m is the magnitude o f  a star, and I is intensity o f  star calculated in part 7). 

W e have discussed the method for the calculation o f  centroid, cp, 0, and the 

intensity o f  a star in the star window. A CCD camera frame includes many stars, and we 

have picked a maximum o f five stars in the frame. We have to find a centroid, cp, 0, and 

intensity for each star that we picked up in the frame. The program for this algorithm 

repeat this processes to find the centroid, 9 , 0 , and intensity for each star we have picked 

up in the frame.

When CCD picture frames are taken over a time period, the program will repeat 

the calculations for each frame, then put the results into a data file with the format and 

time tag needed by MADS.

This CCD image center determination algorithm is used to find the centroid o f  the 

brightest stars in one CCD frame at one point in  time. Each CCD frame is at different 

time. It can find as many of the brightest stars as many as the user requires for from each 

frame. This algorithm is different with others because it finds more than one brightest star 

in the CCD frame and calculate the centroid and magnitude for each star in the CCD 

frame. This algorithm also converts the star’s centroid from HV-coordinates to angles 9
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and 0. The final output from the CCD camera data processes will be in format (time, (p, 0, 

temperature, magnitude, flag). The temperature is the camera temperature, measured by a 

sensor attached to it. The flag is a value for data quality, zero indicating that the data are 

good, nonzero indicating a basic problem.

5.4 RELATED RESEARCH

Our method o f  calculating centroid and magnitudes are for unmagnified star 

images. There is also other research about the zero point parameter zpt, and calculation o f 

magnitude and estimate o f the size o f star+sky window.

In the general case, the size o f the star+sky window will be much bigger i f  the 

camera is attached to a telescope.

Writers on basic photometry techniques discuss this problem from a consideration 

o f  the errors involved in star+sky window for aperture photometry (e.g., Newberry,

1991). Assume that a star window with radius R  contains light o f  total intensity L* from a 

star. Then the number o f  photoelectrons generated is just ISID, D  is star sky. Photons 

follow a Poisson distribution, so the standard deviation associated with signal IstD  

photons in star +sky window is just (IJD)l/z. The magnitude error is then 

m ± 5 m l = zpt -  2.5 log(Ist ± <j (Ju ))

and 8mx = 1 .09<7(/fl)= — ( /ttf l  +  r 2 « cJ 1/;
I .  I J >

where r is the readout noise, and nPjX is the number of pixels include in the star 

window. The error in the magnitude decreases with increasing star window size, since I& 

increases with increasing star window radius. However, this proposition is not hue
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indefinitely because once the star window includes “almost all the pixels,” 8 mi remains 

constant or may actually increase due to the readout noise contribution o f  the extra pixels.

Another source o f  noise arises, as follows: the sky background iSky is presumably 

well determined since it is derived from a large number o f  pixels. But the actual sky 

signal in the star window is subject to Poisson statistics in the same way as the intensity. 

So this source also a ffects the magnitude as:

Sm
D

In this equation, the 8 m 2  increases with increasing star window size, and this error 

is clearly minimized for a  small star window.

The combined error is then:

7 ++)>''2
■* St

This equation indicates that there are two limiting cases:

(a) ”brighf ’ stars for which IstD » n p ix (r 2 +iskyD). In this situation, larger star+sky 

windows that contain “all” the light are acceptable.

(b) ’’faint” stars for which IstD does not dominate npixCr2+iSky). In this situation, 

small star+sky windows, which will not contain all the light, are preferred.

Other parameters, such as a, the size o f star box, which is a constant, we have 

discussed when we calculated them.

For the image center determination, there is another technique called the marginal 

sum method (Auer & van Altena 1978, Stetson 1979). This method first extracts from the 

CCD frame a star window centered on an initial guess for the center o f the star. The size
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o f  star window has to be large enough so that it contains not only the star o f  interest but 

also enough pixels to allow an estimation o f the sky background- Usually the size will be 

5 times the full w idth at half m axim um  o f  the image- From this star box calculate the x 

and y marginal sums:

P(xi) = 2 X  and P( y j )  = I X
j  i

here i and j  are row and column numbers o f star window. If a one-dimensional function, 

such as the Gaussia, is then fitted to each of these marginal sums, a estimate o f  the image 

center in each coordinate will result. I f  the star o f  interest is isolated, then the center 

determined by this method will be perfectly adequate for placing at the center o f  the 

measurement aperture. But i f  the star has nearby companions that fall within the star 

window, then the derived center is likely to be invalid because background, center, width, 

and height fits are rather easily biased by the presence o f nearby companions.

So in our algorithm, we used the image centroiding method which makes use o f  

the fact that the star o f  interest is presumably near the center o f  the star window.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



81

5.5 TESTING FOR ALGORITHM OF CENTROID OF STAR 

The algorithm we use for the calculation o f  the centroid o f  star and intensity o f 

star are used for pre-processing the CCD cam era data. Then the GCD data can be used by 

MADS to determine the attitude o f  the telescope.

We have used data from an Apogee CCD camera to test the programs. This data 

set includes 18 frames. We pick up three brightest stars in each frame, and calculate their 

centroids, the angles <p, 0 , and intensity, then pu t them in to a  file with the format required 

for MADS. Table 5.5.1 shows the CCD camera data processed using the centroiding 

algorithm we have developed for the CCD camera data. This table has data for four 

frames o f data, with the three brightest stars picked out in each frame. The data are in a 

format ready for MADS to use.

Figure 5.5.1. shows horizontal coordinate vs. vertical coordinate for stars in each 

frame at a point in time. (18 frames). From the graph, we can see the star has moved 

relative to the camera in 18 frames.

Figure 5.5.2 shows the three brightest stars in one frame we can see them in 

different positions in the frame.
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Table 5.5.1 Processed CCD camera data 

Tim e p h i  t h e t a  Temp i n t e n s i t y  f l a g

9 .9 1 2 0 0 0 0 1 0 4 8 3 1904e+05 1 .46727 - 1 .5 0 9 1 5 2 . 0 1 .2 2 5 1 1 0 .0

9 . 912 0000104831904e+05 - 1 .5 3 6 1 9 - 1 .5 2 7 2 8 2 . 0 6 .43600 0 .0

9 .9 1 2 0 0 0 0 1 0 4 8 3 1 9 04e+05 -1 .5 4 2 6 9 - 1 .3 6 1 6 4 2 . 0 9 .7 7999 0 .0

9 .9 1 2 0 0 0 0 1 1 5 3 7 6 5 94e+05 1 .47882 -1 .4 9 8 0 0 2 . 0 1 .4 6739 0 .0

9 .9 1 2 0 0 0 0 1 1 5 3 7 6 5 94e+05 - 1 .5 3 9 9 4 - 1 .3 8 9 3 2 2 . 0 6 .39199 0 .0

9 .9 1 2 0 0 0 0 1 1 5 3 76594e+05 1 .5 2175 - 7 .2 9 9 7 4 2 . 0 6 .78800 0 .0

9 . 9120000125932298e+05 1 .48812 - 1 .4 8 1 8 7 2 . 0 7 .06159 0 .0

9 . 9120000125932298e+05 1 .54368 1 .51 2 1 5 to o - 8  .72799 0 .0

9 . 9120000125932298e+05 -1 .5 4 2 1 2 - 1 .5 2 2 5 8 2 . 0 -6 .0 3 6 0 0 0 .0

9 - 9120000140498998e+05 1 .49584 -1 .4 5 6 6 3 2 . 0 1 .17479 0 .0

9 .9120000140498998e+05 1.54123 - 1 .5 2 9 2 4 2 . 0 1 .37279 0 .0

9 .9 1 2 0 0 0 0 1 4 0 4 9 8 998e+05 -1 .2 8 6 1 7 -1 .5 2 2 4 6 2 . 0 -5 .8 8 8 0 0 0 .0
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Figure 5.5.1 Star tracker: horizontal coordinates vs. vertical coordinates
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CHAPTER 6 

MODELING MOTION OF BALLOON IN MADS

MADS is used in data analysis for balloon experiments. It uses the star vectors 

found from the CCD data, and GPS data, gyro vectors, and initial attitude quaternions to 

find the attitude quaternions o f  balloon telescope during the balloon flight time. This 

chapter will discusses the modules that we used or modified in the MADS.

6.1 REPLACING EPHEMERIS BY GPS IN MADS

The GPS data are used to find the position and velocity o f the balloon. The 

position and velocity are used in the calculation o f the observed vector and reference 

vector o f  a  star in preparation for identifying the star by  comparison with a catalog. The 

position vectors and velocity vectors o f  balloon are in the geocentric coordinate system.

In part A  o f MADS, the GPS data have been translated into geocentric 

coordinates which is GCI coordinates system. In the part B o f MADS, the velocity vector 

o f the balloon is calculated from the position vectors at each time.

Let , y ;_x, zf_,) and (x(, y,-, z,.) be position vectors o f balloon at times

and;,.. The position vectors o f balloon have been calculated in part A o f  MADS, as 

discussed in  chapter 4. Suppose (vx, vy ,v x) is a  velocity vector o f balloon at time t. in 

geocentric coordinates. Then
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(Eq. 6.1.1)

(Eq. 6.1.2)

v.z (Eq. 6.1.3)

Since the balloon flight is for a period o f  time, and the velocity o f  balloon changes 

during the flight time, we have to calculate the velocity o f balloon in each time interval 

during the flight. These velocity vectors o f the balloon are used to correct the reference 

vectors o f  stars when we calculate these.

The observation vectors and reference vectors o f stars are used to determine the 

attitude quaternion for the balloon telescope. The attitude quaternion represents the 

pointing and rotation o f  the telescope in geocentric coordinates. The observation vector 

represents the star’s position with respect to the camera, which has coordinates in a 

balloon body coordinate system, and the reference vector represents the star’s position 

with respect to the Earth’s center, which is the origin o f the geocentric coordinate system. 

The figure 6.2.1 shows observation and reference vector o f a star.

As discussed in the chapter 5, the CCD cameras take pictures o f stars during the 

balloon flight. Using CCD data, we first calculated the centroids o f  star with respect to 

the frame centers and the intensity o f each star in the frame for all the frames taken over 

the period o f  balloon flight time. This data analysis has been finished in part A o f MADS 

using the centroid and intensity o f  each star, MADS calculates the observation vector of

6.2 OBSERVED AND REFERENCE VECTORS OF STAR
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the star with respect to the camera (which is the balloon body coordinate system) in the 

data adjuster’ processes. Then it converts the observed vector from the balloon body 

coordinate system to the geocentric coordinate system. The reference vector o f  the star is 

generated during the star identification process. We discuss them in the following 

sections.

1 . Calculate observation vector with respect to balloon body coordinate system 

The observation unit vector W 5 in the balloon coordinates system is a 1x3 

vector. Since w e have determined the centroid o f  a  star and its representation by 

<j>, 0 in the chapter 5, the CCD-measured star unit vector Ws. in CCD coordinate 

system is defined as (V. Johnson and M. Woodard, 1995):

— tan 9  
Ws. =  ta n ^  ws, 

1

-I (Eq. 6.2.1)

where

ws. =  (1 +  tan 2  9  + tan 2  <f>) 2 (Eq. 6.2.2)

Let mssr be the transformation matrix from the CCD camera coordinate

system to balloon body system. It defined as (V. Johson/M. Woodard 1994):

X X '  Y - X '  Z - X ’ 
ma.=  X T  Y - Y ’ Z Y '  

X - Z '  Y - Z '  Z Z ’
(Eq. 6.2.3)

where the X ,  Y, Z  are unit vectors in the balloon body coordinate system

and X ' ,Y ' ,Z '  are unit vectors in the CCD coordinate system. These unit vectors
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are determined when the CCD is fixed in the balloon and balloon body coordinate 

system is fixed.

The star observation vector in balloon coordinate system is then:

Ws = m„.W , (Eq. 6.2.4)

2. Find the reference vectors o f  star bv star identification.

MADS uses direct match and doublet match methods to do the star 

identification. These two methods have discussed in the chapter 3. The observed 

vector o f  a star is in the balloon body coordinate system and converted to a vector 

in the geocentric coordinate system during the star identification process. Figure 

6.2.1 shows the observed and reference vectors o f  star. The basic idea o f star 

identification is comparing a observed star’s vector with a candidate reference 

star’s vector. The candidate reference star is picked up from SKYMAP. If  they 

match, then the vector o f  the candidate reference star will be assigned to the 

matching star as its reference vector. The velocity aberration correction will be 

performed on the position vector o f  the reference star, by using the velocity o f  the 

balloon calculated from the processed GPS data. The calculation o f  the velocity o f  

balloon is performed in  calling to rungps.m, rdgps.m and calveLm programs in 

MADS. Again, this reference vector o f star is in the geocentric coordinate system.

So far, we know the observed vector o f  the star in balloon body coordinate 

system and the reference vector o f  the star in  geocentric coordinate system.

MADS uses these vectors with gyro data, and a initial attitude quatenion at the 

time when the balloon has been stabilized, to calculate the attitude quaternion for 

the balloon during the flight time.
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Figure 6.2.1 Observed and reference vectors o f  star

Balloon
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6.3 PRINCIPLE OF ATTITUDE DETERMINATION IN MADS

A  frame o f  data is defined to be a timetag and a  set o f  observation vectors and 

reference vectors associated with that time. The observation vectors are in the balloon 

body coordinate system and reference vectors are in the geocentric coordinate system. 

MADS uses a quaternion estimation algorithm (Shuster and Oh, 1981; Wertz, 1985) to 

estimate the attitude quaternion from observed and reference vectors for the stars in a 

single camera frame. The observed vectors and reference vectors are showed in the figure 

6 .2.1(page 98). The description o f  estimation o f  the attitude quaternion using identified 

stars is as follows:

For any given time t, is an observation unit vector in the balloon body

coordinate system, and V. is a reference unit vector in geocentric coordinate system. A is 

a rotation matrix that transforms vectors from the geocentric to the body coordinate 

system. A  is also an attitude matrix as we have discussed in chapter 2.2. A loss function 

1(A) (M. Lambertson, J. Keat 1994) is defined as

(Eq. 6.3.1)

2
where a. = —^

<?.■
(Eq. 6.3.2)

(Eq. 6.3.3)

1
n

1 (Eq. 6.3.4)

n

(Eq. 6.3.5)
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n is number o f  CCD canera. The loss function 1(A) is a  function o f attitude 

matrix. The optional attitude matrix A t, is the matrix that minimizes 1(A) . Alternatively, 

it maximizes the gain function g (A ) , where 

g ( A ) = l - l ( A )

From the Eq. 6.3.1, the g(A)  is represented as

g (A )  = A?, (Eq. 6.3.6)
f=i

Since A  is the attitude matrix, as w e have discussed in chapter 2, it can been 

represented in terms o f  attitude quaternions. From Eq. 2.2.19, expressing^ in terms o f 

quaternions:

A(q)  =  0q2  - 0 « 0 ) [ / ] 3  + 2Q Q T ~ 2 q Q '  (Eq.6.3.7)

(Eq. 6.3.8)

Then g(A)  is expressed in  terms o f  quaternions by substituting Eq. 6.3.7 into 

Eq.6.3.6

g(q)  =  cr(q2 - Q * Q )  + Q TSQ  +  2 q Q . Z  (Eq.6.3.9)

W here q = ~Q
. 0 =

a “
a z , and O ' =

'  0  

03
-0 3

0

!P
.1

j i .
Qs. 0 2 0 , 0

n

a - Y .a W r ,
(=1

n

z = T aMxr,
i=l

S = Y,at<W,V? +v?r?)

(Eq. 6.3.10) 

(Eq. 6.3.11) 

(Eq.6.3.12)
i=i

For the optimal attitude quaternions, we write Eq. 6.3.9 in matrix form:
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where K

g ( q ) = q TKq (Eq.6.3.13)

(Eq. 6.3.14)
S  — cr[ / ] 3 Z  

Z T a-

Then the problem o f  obtaining the optimal attitude estimate can be reduced to 

finding the quaternion, qopt, which maximizes g(q)  w ith the quaternion normalization 

constraint

q Tq = l  (Eq. 6.3.15)

Use the method o f  Lagrange multipliers to derive a new gain function, 

g'(jq) which can be maximized without constraint, as

g \ q )  =  q TK q - Z q Tq (Eq. 6.3.16)

where X is chosen to satisfy the constraint ( q Tq =  1). A  stationary value o f  g ’(q) 

is obtained when

^ p | ^  = 0 (Eq. 6.3.17)
dq

that is

K q = Z q  (Eq. 6.3.18)

From the Eq. 6.3.13, we have

g(q)  = q T Kq  = q T Xq — q Tq 1  = A (Eq. 6.3.19)

Therefore, g{q) is maximum when X is maximum. The corresponding quaternion 

is the optimum quaternion qopt. hi other words, the quaternion is the eigenvector 

corresponding to the maximum positive eigenvalue o f K.
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This optimum quaternion qopt is the estimated quaternion obtained from the

observation star vector and reference star vector at this time. MADS then uses gyro 

information to propagate the previous quaternion from the previous time to this time. 

Then it uses the estimated quaternion and the quaternion that has been propagated using 

gyro data and the least squares methods to find the best quaternion for the telescope at 

this time. This function is performed in the Extended Kalman Filter process.

6.4 PROPAGATION OF QUATERNIONS

The sensors for MADS consist o f  two CCD cameras and a three-axis gyro. These 

data are assumed to be independent and are individually timetagged. For the generation 

o f the initial quaternion at the time when the balloon has been stabilized, we only use 

gyro data to propagate the ground-level initial quaternion at the time balloon is launched 

to the time the balloon has stabilized. After this time, MADS uses observed vectors and 

reference vectors to calculate an estimated attitude quaternion at time t,- for each camera, 

and propagates a previous quaternion at time tj_i to this time t,- using gyro data. Then we 

use these three quaternions in the least square method to determine the attitude 

quaternion o f each balloon telescope at the time tj. The propagation o f  quaternion is based 

on the gyro data over the time internal (ti_i, t,-). W ith continuous gyro data, the estimated 

quaternion at time t( can be propagated to time t n based on the following module:

q(Pn) = D (.tn^n-i)D{tn_l, tn_2)  D ( t2,tx)q(tx) (Eq. 6.4.1)

where, in the time interval (f - ,t  -_t) ,

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



94

(Eq. 6.4.2)

and

at-
Cj = co s[-j-(ry- (Eq.6.3.3)

co.
S j  = sin  C-j-CO (Eq. 6.3.4)

and £• = [—^ ] , = [ -^ L ] , ^  = [ - ^ - ] , and to, = ku , the average angular
CD - CO CO j

rate (Oj is in the interval ) which is computed from gyro data.

Since the quaternions represent the attitude o f  telescope at time t,-, the quaternions 

are functions of time. In other words, at any time during the balloon flight, there is an 

attitude quaternion o f  the telescope. This quaternion at any particular time is found by the 

least-squares method in MADS.

With each CCD camera single frame, an estimated quaternion is determined from 

the observation vectors and reference vectors o f identified stars and each CCD camera 

has a timetag , which is the time for the frame. So this quaternion is estimated at time 

tf . To get the best quaternion, MADS will use gyro data to propagate the previous 

quaternion at time / ,-_ 1 to ti . This procedure provides a second quaternion at time tt . If

the CCD camera frame is the first frame, the propagation is done with an input initial 

quaternion. We assume there are only two kinds o f  sensors data; CCD camera data and 

gyro data, in a balloon experiment. So there are only three quaternions at the time tj one

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



95

from each o f  the camera and one from the gyro. Then the least-squares method is used on 

these three quaternions to find the best quaternion at the time ti . MADS also save this

quaternion into an attitude history file with timetag t . . It then becomes the previous

quaternion for the time tM .

The gyro data are used for propagating quaternion from the time to time by using 

the module Eq. 6.4.1. This propagation depends only on the previous quaternion and gyro 

data. In this attitude determination system, a ground-level initial quaternion is calculated 

before launch.

To use MADS, we first propagate the ground-level initial quaternion at the time 

when the balloon is launched to the time right before the balloon is steady and the 

cameras start to take the useful pictures o f stars. This propagated quaternion becomes the 

initial quaternion for later use and will itself be propagated for the first frame.

We employ this propagation method to propagate the previous quaternion from 

frame to frame in order to use the least-squares m ethod with the estimated quaternion at 

frame time, and find the best (or final) quaternion for each time within the time span o f  

the CCD camera frames.

This propagation method also predicts the quaternion at a time between camera 

frames. I f  there is a previous quaternion is at the time t t , and next frame is at time tM ,

we can find a quaternion between the camera frame at tt and the camera frame at tM , i.e 

within the time interval (r(. , tM ). This quaternion is determined without using CCD 

camera data.
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6.5 TESTING MADS 

W e have tested MADS using data from  a satellite mission. NASA's requirement 

for a new  software to be considered 'operational' is that it run using data files from 

another mission. We have been supplied w ith files from the Rosi X-ray Timing Explorer 

satellite, h i our testing o f MADS, we used fhstl_raw.data, £hst2_raw.data from the fixed 

head star trackers as preprocessed data from the two cameras. We also use the file 

gyro .data as three axis gyro data and a file m at 1.data data from the RXTE ephemeris as 

the GPS data. For an initial quaternion, we pick up one from the onboard computer 

attitude history file within the gyro time interval. The processes for running MADS are 

described detail in the Readme file and RUN_mads file. The Readme file and RUN_mads 

are in the appendix A.

The output attached in Figure 6.5.1 gives us the attitude quaternion at the end time 

o f  the star trackerdata. The first part o f  this output is the mean and stand deviation for the 

observed s ta r 's  vectors taken from two cameras. The second part o f  the output gives us 

the attitude quaternion at the end time o f  star tracker data and also shows the bias o f gyro.

Since the attitude quaternion o f the balloon telescope is a  function o f time, it 

means that for any time during a balloon flight, there is an attitude quaternion for the 

telescope. MADS save these attitude quaternions into a separate quaternion file so that 

the user can late do the analysis o f  determining the pointing and rotation o f  the telescope 

at any time during a balloon flight.

This quaternion file includes five columns. Table 6.5.1, showa the quaternion file 

we got when we tested MADS. The data in the first column are the timetags. The second
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through fifth columns contain the quaternion components qi through q4 . Since this data 

file is too big, we show only the first ten and the last timetags and quaternions in the file.
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Table 6,5.1 A ltitude quaternion o f  balloon  telescope from  M A D S

qi q2 q3 q4

9 .6 0 8 2 3 0 1000274997e+05 
9 .6082301000374998e+05 
9 .6082301000474999e+05 
9 .6 0 8 2 3 0 1000574999e+05 
9 .6082301000675000e+05 
9 .6082301000912802e+05 
9 .6082301001012803e+05 
9 .6082301001112803c+05 
9 .6082301001212804e+05 
9 .6 082301001312805e+05

-4.5705646e-001 
-4 .5706180e-001 
-4.5707254e-001 
-4 .5707164e-001 
-4.5706775e-001 
-4.5706438e-001 
-4.5706205e-001 
-4.5706007e-001 
-4.5705859e-001 
-4.5705825e-001

-5 .8051145e-001 
-5.8050559e-001 
-5.8049480c-001 
-5.8049586e-001 
-5.8049997e-001 
-5.8050341e-001 
-5.8050534e-001 
-5,8050708e-001 
-5 .8050647e-001 
-5,8050629e-001

3.3357371e-001
3.3357601 e-001
3.3358508e-001
3 .3357996e-001 '
3.3357202e-001
3.3356622e-001
3.3356280e-001
3.3356146e-001
3.3355822e-001
3.3355854e-001

5.8552065e-001 
5.8552098e-001 
5 ,8551812e-001 
5.8552069e-001 
5.8552418e-001 
5.855267 le-001 
5 .8552856e-001 
5 .8552915e-001 
5.8553275e-001 
5.8553301e-001

9 .6082 3 0 2 1 8 0 5 l2797e+05 
9 .6082302180612797e+05 
9 .6082302180712798e+05 
9 .6 0 8 2 3 0 2 I 8 0 8 12799e+05 
9 .6 082302180912800e+05 
9 .6082302181012800e+05 
9 .6 082302181112801e+05 
9 .6 082302181212802e+05 
9 .6082302181312803e+05 
9 .6082302181412803e+05

-4.5705590e-001 
-4.5705442e-001 
-4.57054 lSe-001 
-4.5705079e-001 
-4.5704898e-001 
-4.5705422e-001 
-4.5705817e-001 
-4 .5706466e-00l 
-4.5706950e-001 
-4.5707220e-001

-5.8050268e-001 
-5.8050417e-001 
-5.8050423e-001 
-5.8050785e-001 
-5 .8 0 5 1008e-001 
-5.8050564e-001 
-5.8050307e-001 
-5.8049672e-001 
-5.8049212e-001 
-5.8048971e-001

3.3354124e-001 
3.335401 le-001 
3.3354055e-001 
3.3353620e-001 
3.3353367e-001 
3.3354370e-001 
3.3355694e-001 
3.3356058e-001 
3 .3356159e-001 
3.3356092e-001

5.8554827e-001
5.8554860c-001
5.8554850e-001
5,8555000e-001
5.8555064e-001
5.8554525e-001
5.8553717e-001
5.8553633e-001
5,8553653e-001
5.8553720e-001

VO
00



Sensor #obs mean-x mearvy mean-z std-x std-y std-z

FHST#1 (deg) 752 -0.00000 0.00011 0.00092 0.00091 0.01348 0.00608 

FHST#2(deg) 830 -0.QQ026 0.00043 -0.00107 0.00025 0.00145 0.00122

Epoch Time: 960823.021814128

Quaternion: -0.45707220 -0.58048971 0.33356092 0.58553720.

Gyro Bias (degfeec): -0.00000431 -0.00001152 0.00001337

Figure 6.5.1 Quaternion output from MADS
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6.6 CONCLUSIONS 

MADS is a multimission attitude determination system, used for the data analysis 

for balloon experiments. The basic sensors for this attitude determination consist o f  two 

CCD camera and a three-axis gyro. Then with GPS data for the balloon position, MADS 

will calculate the attitude quaternion o f the telescope at any time during the balloon 

flight.

The attitude quaternion is represented as a vector

0 0 0 - 0  (ex s in—,ey sin—,ez sin—, cos—). The vector (ex,ey ,ez) is a unit vector in the

geocentric coordinate system, and 9  is rotation angle about this vector. The attitude 

quaternions are a function o f time, which means that for any timetag of a CCD frame, 

there is a quaternion at the same time. These attitude quaternions are saved as an attitude 

history file, and the user can find the attitude quaternion for the telescope at any time 

within the time span o f CCD camera frames.

To find the attitude o f  telescope w ithin the time from one camera frame to next, 

MADS provides a method o f propagating the attitude quaternion using gyro information 

from the previous timetag to the desired time so that the user can find the attitude 

quaternion at any user required time w ithin the gyro time span.

This attitude determination system will be useful to the NASA balloon group and 

other university balloon groups.

We have presented this attitude determination system to NASA with a set o f 

documentation that includes documentation for MADS, a readme for MADS and a guide 

for using MADS. These are in Appendix A.

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  rep roduction  prohibited w ithout perm iss ion .



Appendix A Documentation for MADS as Supplied to NASA 

A. 1 Documentation for balloon position and velocity 

A. 2 MADS Read Me 

A. 3. MADS Guide
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A. 1 Documentation for balloon position and velocity
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Abstract

MTASS (Multimission Three-Axis Stabilized Spaceraft) is a package 
used by NASA to determine satellite attitude. It has been adapted for use by 
balloon missions carrying instruments such as gamma-ray telescopes. The 
new package, which we have named MADS (Multi-mission Attitude 
Determination System) first uses pre-launch data and gyroscope data to 
determine the initial in-flight quaternion at the time when useful camera data 
becomes available, and then replaces the satellite ephemeris using GPS 
data.

Additional sections have added for the convenience o f balloon users on 
interpolating across gaps in GPS data, extracting information equivalent to 
star tracker data from ordinary CCD camera data, interpolating later between 
camera frames if these are taken infrequently because o f storage limitations, 
and decoding the quaternions into time-tagged pointing direction and 
rotation angle.
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U2 Introduction

Following the example o f MTASS, we divide the post-flight data 
processing into two parts: part A handles pre-processing o f  raw data, and 
part B deals with mission-independent data analysis.

Data to be processed in part A:
Gyro data: The Gyro data formats in MADS are x-axis, y-axis

z-axis angles in radians or counts. They are rotation 
angles about the x-axis, y-axis, z-axis.

GPS data: MADS uses a GPS(Global Positioning
System) data file which gives the location o f the 
balloon with respect to Earth at universal time, instead 
o f ephemeris files which are used for a satellite. The 
GPS data are read as latitude, longitude, and altitude 
at universal time, We need to convert those into 
geocentric rectangular coordinates, and put 
them in the format (t,x,y,z) used by MADS.
The GPS raw data also need to be checked for gaps
which happen when the GPS receiver is
out of range o f the satellites. In this case, we use
polynomial interpolation to interpolate the across
gaps.

CCD data: For the CCD camera data, first select up to five
brightest stars from each frame. For each star, 
determine the apparent magnitude and location in the 
frame of its centroid. Then correct these for such 
effects as distortion by spherical lens, and distortion 
due to temperature. The format of CCD camera in 
MADS is

(time, phi, theta, temperature, intensity, flag), 
where the angles are explained in the documentation.

Part B: Mission Independent Analysis.
Use GPS data to calculate the velocity of balloon at time t. 
Then we have data for balloon position and velocity at the 
time t.
This document includes a description of the functions 
that prepare GPS data for use in the main body o f MADS,
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corresponding to part B of MTASS, where they will replace the 
satellite’s ephemeris.

Major difference between MADS and MTASS:
1. A balloon group must determine two initial quaternions 

a pre-launch quaternion, and another at a time when the 
balloon has became to be stabilized sufficiently for the cameras 
to provide useful data.

2. A balloon has no predetermined orbit, so ephemerides cannot 
be used. These are replaced by parameters calculated from the 
GPS data.

3. Camera frames are taken much less frequently, e.g. one per 
minute on long flights, because o f data storage problems. 
MADS will initially calculate a new quaternion for a time 
interval containing a camera frame. Eventually, additional 
quaternions will have to be found by interpolation using the 
gyro data at times corresponding to triggers from the primary 
detector.

In addition, since balloon groups will typically be unfamiliar with 
the conversion o f quaternions to astronomical coordinates, a 
routine for this will be supplied.
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2J1 Determination of initial Attitude___________________________
Determination o f the initial attitude o f the primary detector or 

telescope is facilitated by the use o f an orientation cube. This will be 
attached to the assembly consisting o f the telescope and thattitude 
determination instruments: the CCD cameras and the gyroscope. Since the 
cube itself will probably not be machined very accurately, grooves are 
milled into the faces of this cube that set accurately at right angles, or their 
deviations measured. The angles between these grooves and the primary 
axis o f the telescope, the boresights o f the cameras, and the axes of the 
gyroscope must also be measured as accurately as possible, at least to 
within 1/10 degree.

Before launch, the alignment o f this cube relative to magnetic north 
must be measured, and also the deviation from horizontal in two 
perpendicular directions. (The cube should be attached to the assembly in 
a position which will facilitate sighting along the grooves.) The other 
quantity needed is the exact time o f launch. From this, the hour angle, or 
celestial longitude, o f the zenith at the time of launch can be found from 
the web site of the U.S. Naval Observatory. These angles allow the 
telescope’s right ascension and declination to be calculated, 
and the components of its initial quaternion to be found.
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3.0 Extract Equivalent of Star Tracker Information from
CCD Camera Files

In order to identify the stars, satellites use star tracker information in 
MTASS. Most satellites today used fixed head star trackers. The star 
trackers used on the RXTE satellite are designed to acquire and track stars 
whose magnitude is between +5.7 and +2.0 in an 8 degree square field-of- 
view. In general, a fixed head star tracker measures star position vectors. 
The fixed head star tracker's output consists of three parameters: H, the 
horizontal coordinate o f the star in the field-of-view, or an equivalent 
angle; V, the vertical coordinate o f the star in the field-of-view, or an 
equivalent angle; and I, the star-generated signal intensity. The intensity is 
used to determine the star magnitude. In MTASS, the fixed head star 
tracker data is input data with format:
(time, phi, theta, temperature, intensity flag). MTASS uses fixed head star 
tracker data to calculate an observed vector for each star with respect to the 
camera, and use this with ephemeris data to calculate a reference vector 
with respect to Earth’s center. Then it compares the observed star's 
reference vector with a catalog star's reference vector to identify the star. 
Balloon experiments use CCD cameras to take pictures o f stars, to measure 
the stars in the background star fields. The images taken by the camera will 
be processed and the magnitude of the background stars in the field-of- 
view will be calculated. The images are very large and to store them on­
board the balloon system would require massive amounts o f the storage 
media. In MADS, the CCD camera data are used to calculate observed 
vectors for stars with respect to camera, and GPS data are used to calculate 
reference vector of star with respect to Earth’s center. Then comparison of 
observed vectors and reference vectors is used to identify the stars. The 
CCD camera data has to be in the format:
(time, phi, theta, temperature, intensity flag). Corresponding to each time, 
there is one camera frame. In order to be useful, each camera frame has to 
be included at least three stars.

The programs analyzing CCD camera data include: Drivecam.m, 
matrix.m, CCDsort.m, imgcent.m.
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3.1 CCD camera coordinate system_______________

The CCD camera coordinate system is shown in following:
• b distance from center o f lens to CCD chip.
• v is vertical component relative to chip.
• H is horizontal component relative to chip.
• (j> is angle associated with horizontal component o f image 

component.
• 0 is angle associated with horizontal component o f image 

component.

Center o f lens

bore-sight

Star line of sight

Figure 3.3.1 CCD camera coordinate

From this graph, (H, V) are centroid o f image with respect to image centre, 
b is a constant value and is given by CCD camera. So 

tan (p = H/b; and tan9 = V/b;
The cp and 0 are represented by the centroid o f image. These <p and 0 are 
the variables that used in MADS as camera data for star position.
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3.2 CCD camera frame is as a matrix____________________
For the Surpose of illustration in this document, let us suppose that the 

CCD camera chip has 512x768 pixels, as for the Kodak chip. Assume that 
the camera data are stored in a file as one column, and there are 512x768+2 
rows of data for each frame. The one datum in the first row is the number 
o f row of pixels and the datum in second row is the number of column of 
pixels. Based on those two numbers, the program called mtatix.m will put 
the data into a 512x768 matrix from the first row of the first column to the 
last row o f the last column.
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3.3 Finding the brightest star in the CCD camera frame

A CCD frame will contain the images o f many stars. In MADS, we 
need at least the three brightest stars to do the star identification but no 
more than five. So we need to find 3-5 brightest stars from the CCD frame, 
and those stars must not be at the edge o f frame. Each star in the frame has 
a star+sky window. The size o f this window is dependent the on the choice 
o f lens and exposure time for a camera. The best choice of lens for the 
Apogee Apl are a 55 mm lens (Rossi XTE) or a 50 mm lens (standard) (N. 
Zotov, 1998). Normally the point source o f  light is focused on one pixel. 
For any given CCD chip, the lens is chosen so that the starlight, which has 
been defocused to fall on 2x2 pixels, will trail by no more than two pixels 
during an exposure. Ball allows 6x6 pixels for star box, making allowance 
for changes in temperature and 8x8 pixels for a star+sky window. So for a 
CCD chip, the 8 fixels from the chip edge are not using for calculation o f 
centroid o f the stars. Figure 3.3.2 shows the star box and star+sky window 
in a CCD chip.

i=l j=786

Star+sky window

s tar box
*

i = 5 12 , j= l i = 512, j=786

Figure 5.2 . 1  Stars+sky window and star box in the frame
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3.3.1 Finding the brightest star in frame INPUT
M = matrix o f  CCD camera frame. The element in the matrix 

is the value o f pixel in the frame, 
groundbval = the lower bound value, such that the value

bigger then will be consider to represent light 
from the star, 

winsize = 8 is size o f of star+sky window, 
egsize = 8 is the size of row or column o f edge in frame 

matrix.
n  = number o f rows for matrix,
m = number o f columns for matrix,
max = maximum value o f pixels in the frame.

3.3.2 Finding the brightest star in frame PROCESSES

1. Cut the edge o f  matrix
let Mcutedge be a remain matrix that have cut first 8 rows and 
columns pixels, also cut last 8 rows and 8 columns from 
from the CCD frame. Only picks up brightest from Mcutcdse 
so that star won't be in the edge o f the chip.

2. Finding the maximum counts maxist from Mcutedge with its row 
and column number (iist, jist).

3. Cut the star+sky window
The brightest star in the frame has maxist at (ilst, ), The 
stai+sky window has 8x8 pixels and its center is at (ilst, j lst), 
and set the counts in this window to be zero in order to find 
the second brightest star in remain matrix, so that it does't 
pick up the same counts .

4. Repeat the processes
Repeat the processes from step 1 to step 3 in the remaining 

submatrix to find second, third brightest stars in the 
frame until has been found maximum five stars in the 
frame even the frame includes many stars.

3.3.3 Finding the brightest star in frame OUTPUT

st = k x 3 matrix for k stars with the maximum pixel value o f 
each, and its row and its number. The 
values o f pixels are sorted in increasing order.
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3.4 Calculation of centroid and intensity or brightness of a star
For each star in the frame, find the star’s centroid with respect to the 

frame’s center. This will be used later for calculation o f (p and 0. The 
intensity o f  the star is a measure of its brightness above the sky background 
background.

3.4.1 Calculation of centroid and Intensity INPUT

M = matrix o f CCD camera frame. The elements in the 
matrix are values o f the pixels in the frame, 

st =  k x 3 matrix for k stars. The first column of matrix is 
value of the brightest for star. The 2nd and 3 rd columns 
are the row number and column number of the 
brightest pixels.

3.4.2 Calculation of centroid and intensity PROCESSES

1. Size of star box

The size of star box is 6 x 6.

2. Calculation o f marginal sums of star box

/> (*,)= i > j ,
/ = - 3

and

p(.xJ) = Y , I ui—3
Here the Iy are the value o f pixels in box.

3. Calculation mean intensities

The mean intensities in the box for each marginal is:

X

and

y

=  7 "7 7 2 > (* ')l a  + i z l

—— ■—  Y .  p (x i)2a + l .to
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4. Calculation of centroids of brightness 

Let Xj = -3 :3 , and y,- = -3:3

xc = J= |___________

X ( p O t- ) - * )
i— 3

£(/>0',-)-.y).yf
= i±2---------------------

Z(pCy,)-y)
1— 3

here (xc, yc) is centroids coordinate of brightness 
which represent the rows and columns in the frame 
matrix.

5. Calculation of centroids with respect to center of frame

Since one frame includes 512 rows and 768 columns, 
so the center of frame (H0,V0) in HV coordinate is at 
(512/2,768/2) (row and column) in the frame matrix. 

Let
h0 = 16%12 

v0  = 5 1 2 /2
Then the centroid represent by the HV coordinate is:

H c = y c ~ K
and

V c  =  - V 0

(HC,VC) is a centroid of brightest with respect to the 
center o f frame.

6. Calculation of the sky background intensity

The star+sky window is 8 by 8 matrix. The star box is a 
6x6 matrix within this matrix. The 'annulus' are
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between star+sky window and box includes the pixels 
that in the star matrix but not in the box. Those pixels 
are used to calculate the intensity o f sky background. 
Let ANNU = { all values of pixels in the annulus }

Median = median(ANNU),

Mean = mean(ANNU).

mod e = 3 * Median — 2 *  Mean 

So, the intensity of sky background is as:

I  =  Y a I i J - n p i x * i sky

here, is summation that carried out over the 
pixels in star matrix,

npit =  cutrow * cutcol
and

isky = mode

7. Calculation of magnitudes of brightest stars

Let zpt be the zero point determined by calibrating 
the camera. The typical values are around 23.5 to 25. 
Then the magnitude o f background is:

m — z p t— 2.5 lo g /  
here I is intensity o f background.

3.4.3 Calculation of centroid and intensity OUTPUT

He = horizontal coordinate o f centroid of brightest star.
Vc = Vertical coordinate o f centroid o f brightest star in.
I = intensity of brightest background.
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3.3 Calculation of q> and 0

In the Figure 3.1.1, the cp and 0 are angles related to the horizontal 
and vertical coordinates (H,V) o f a star in the plane o f the CCD 
chip.

3.5.1 Calculation of <p and 0 INPUT

H = horizontal coordinate o f centroid.
V = Vertical coordinate of centroid, 
b = distance from lens to camera frame.

3.5.2 Calculation of <p and 9 PROCESSES

As shows in Figure 3.1.1, 0 is an angle that related to the 
vertical coordinate o f centroid, and cp is angle that related to 

the horizontal coordinate of centroid.
So

tancj? = H  l b ,
and

tan<9 = V I b  .
Then,

q> = arctan(iT /  b)
and

6 = arctan(F lb)

3.5.3 Calculation of <p and 6 OUTPUT

cp = angle relate to the horizontal coordinate of 
centroid

0 = angle related to the vertical coordinate of 
centroid..
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The final output for CCD camera data program is saved in file imgdat.dat. 
This is the CCD data file will be used in MADS. It is in the format:

(time, phi, theta, temperature, intensity, flag), where

time = time when the picture was taken.
phi =  (p, angle related to the horizontal coordinates of centroid, 
theta = 0, angle that related to vertical coordinates of centroid, 
temperature = temperature measured by a camera sensor. This allows the 

user to calculate loss of apparent intensity as camera 
defocuses due to temperature changes . 

intensity = I, intensity of star in a star background, 
flag = Boolean value, as star track for the flag In MTASS.
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4J1 A review of GPS data____________________________________

The Global Positioning System (GPS) will give three geodetic 
coordinates o f the balloon gondola: latitude, longitude, and altitude at 
universal time. We have to convert the geodetic coordinates to geocentric 
rectangular coordinates and reformat the data records as (t, x, y, z) for 
MADS to use.

We assume that the following complement of instruments is available: 
a GPS receiver, two CCD cameras, and a gyroscope. All the instruments are 
fixed relative to the telescope or primary detector.

The position vectors with their associated time coordinates determined 
by the GPS are used to calculate velocity vectors for the balloon. Up to five 
stars have previously been selected from each camera frame. The GPS 
position and velocity vectors now allow the calculation of an “observed” 
vector and a reference vector for each star. The observed vector gives the 
position of a star relative to axes fixed in the balloon, and the reference 
vector gives its position relative to geocentric axes that are fixed in the 
Earth. The reference vectors for each frame are compared with catalog star 
vectors, using files from MTASS, to identify the stars. The pointing 
direction and rotation angle of each camera can then be determined, and this 
information is combined with gyro data to determine the attitude o f the 
telescope or other primary detector.
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4.1 Transformation for GPS data
The GPS data is assumed to be stored in the format 

(t, latitude, longitude, altitude) in a file called GPS.dat. They are in 
geocentric coordinates. We convert those coordinates to geocentric 
rectangular coordinates using the function gpstrans.m and save those into 
gpscvnew.dat.

4.1.0 Balloon position represented by GPS data.

balloon

Equator (pcoscp psincp')

S

Figure 4.1.1.a Balloon position given by GPS data
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This graph gives the position o f the balloon with respect to Earth. The angle 
cp is read out from GPS data as the latitude o f the balloon, p is the radius of 
Earth at that latitude, and h is the altitude o f the balloon.

P(x, y, z)

psinip'
Center of the Earth

pcoscp'

Figure 4.1.b

The figure shows the balloon position in rectangular coordinates.

4.1.1 Transformation for GPS data INPUT

t = The universal time o f a position measurement for the 
balloon.
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cp = The geographical latitude o f the balloon, determined 
using a normal to the Earth’s surface(which does not 
go through the center o f the Earth).

0 = The geographical longitude o f balloon which is 
measured from the longitude through Greenwich.

h = The altitude of the balloon, which is its height above 
sea-level.

4.1.2 Transformation for GPS data PROCESSES

1. Find the geocentric latitude cp' in terms o f the function 
sin cp' and cos cp'.

Let

u =  tan - 1  (0.996647 * tan^}.

cp' must be reckoned as positive in the northern 
hemisphere and negative in the southern hemisphere. 
(See the reference (1))
Let

h! =  ( / i /6378140).

where h' is a correction o f height h above sea-level. The 
equatorial radius o f the Earth is 6378140m.

Let
p  sin qf = 0.96647 * sin u + h' * sin cp. 
p  cos cp' =  cos u + h' * cos (p.

2. The geocentric longitude O':

0 '  =  0

3. Find the coordinates in the geocentric coordinate system,
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using

x =  p  cos (p'cos 6'.

y  — p  cos (p'smO'.

z  =  psin cp'.

The coordinates (x ,y ,z )  give the balloon’s position with 
respect to Earth’s center.

4. Put data into processed GPS format as (t, x, y, z), 
where

t is the same in the new GPS data file, 
and x, y, z have be calculated by process 2.

We save them into a file gpscvnew.dat. It is ready for 
MADS to use in functions that require the balloon’s 
position and velocity.

References:
(1) Practical Astronomy with Your Calculator.

Duffe Smith, Peter 1980.
(2) Explanatory Supplement to the Astronomical 

Almanac, Ed. P. Kenneth Seidelmann
( U.S. Naval Observatory), University Science 
Books, 1992.

4.1.3 Transformation for GPS data OUTPUT

t = Universal time for position of balloon, 
x = x-coordinate value o f balloon position in 

the geocentric coordinate system, 
y = y-axis value of balloon position in
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the geocentric coordinate system, 
z = z-axis value of balloon position in 

the geocentric coordinate system.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



125

4.2 Files for using GPS data

The GPS data have been translated into geocentric coordinates 
and MADS will use them to find the position and velocity o f the 
balloon.

The determination of balloon position and velocity is done by three 
programs in MADS:

rimgps.m, rdgps.m, calvel.m.
The file rungps.m is a main program for finding balloon position and 

velocity. First, it reads a GPS file that has been reformatted by the program 
rdgps.m. Then it calculates a velocity vector of the balloon using the 
program calvel.m, and passes back position and velocity vectors.

The program rdgps.m reads gps data using a given initial reading time or 
a line number and reading one line o f data at each calling, so that it can 
start and end the read time as we want.

The program calvel.m is used to calculate the velocity vector 
o f balloon movement over each one second interval, assuming that is the 
interval between camera frames.

The program named predict.m can be used to fit the missing data when 
the balloon is out o f range o f GPS satellites over a time interval. We have 
decided to interpolate for missing data in part A o f MADS, so at this stage 
the GPS data file is without gaps. We use a natual cubic spline interpolation 
method to fitting missing data.

These functions perform the task o f using GPS data files for balloon 
position and velocity in part B of MADS instead of using ephemeris files as 
in MTASS for satellite position and velocity.
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 Balloon position and velocity_______________________________

4.3.1 Balloon position and velocity INPUT

inipos = initial value for position of balloon.
iniTim = initial value for time.
iniLine = gps file start line o f reading Gps data.
• time = column array o f input times.
• gps_name = GPS data file name.
• gps_parm = GPS parameters.
• unit_number = unit number to use gps access.

4.3.2 Balloon position and velocity PROCESSES

1. Find size of input time column array.
2. If size of time is less then zero, input time is invalid.
3. Initialize ri, Vi, r, v, as zero matrixes,

Where ri is 1x3 matrix for one position o f balloon 
V! is 1x3 matrix for one velocity o f balloon 
r is 3xn matrix for balloon position 
v is 3xn matrix for balloon velocity

4. Get j* position o f balloon at line j in GPSdata file.
j is the line number of GPS data to be read from GPS file.
Calling rdgps.m to get the balloon position at j*  line in pgs file.

r i = ( r j  (1), ij (2), rj(3)) read from GPS data file at j*
line.

ti =  time where the balloon at position r^
5. Put rL into matrix r as j*  column o f matrix r for output format.

6. Get the velocity o f balloon at j* position from calvel.m .
Using ri; t r 0, to, as input variables to call calvel.m to get the 
Velocity of balloon vtat ri.

As

7. Put V[ into matrix v as j* column of matrix v for output format.

8. Put r t, ti as initial value r0 ,to , iterate to do the processes 4,5,6, 7 
to get r ls r2  rp and vIs v2  vp for balloon at required time.
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9. T h er is a 3xn matrix, n is dependent on input time or dependent on 
how many GPS data points we need to read.

10. The r  is a 3xn matrix, n  is dependent on input time or dependent 
on how many GPS data points we need to read.

4.3.3 Balloon position and velocity OUTPUT

• position o f balloon during a time period.
This is a 3 x n matrix.

• Velocity o f balloon during a time period.
This is a 3 x n matrix.

• quality is a variable that indicates the quality flag.
The quality is zero if  reading the GPS file was successful and 
is not zero if there was a problem on reading the GPS file.
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4.3.4 Balloon position and velocity 

A rdgps.m
This function is used to read the GPS data from the GPS file. 
It reads one line data by given line number^ so that we can 
get the data as we need it.

1. rdgps.m INPUT

• The first line number.

• The processed GPS file name for reading the 
data.

• The unit number for using GPS data.

• The GPS parameters. In our case, we only use 
parm (l,l) =  2;

2. rdgps.m PROCESS

• Open the input GPS file

• Read the data from the specified line.

• Put data value into GPS position vector as 
gpspos (1x3) matrix for output format.

• Put data value into GPS time vector as 
gpstim ( lx l )  matrix for output format.

3. rdgps.m OUTPUT

• Balloon position vector (x,y,z,t) at universal 
time t.

• Time o f balloon position.

• Message for reading the GPS data file.
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B calvel. m

This function is used to calculate the velocity vector for 
balloon at a given point in space and time. The balloon 
moves with different velocities at different times.

1. calvel.m  INPUT

• Initial position vector for balloon.

• Next position vector for balloon at end of time 
period.

• Initial time for starting calculation of balloon 
velocity.

• The end time for interval At.

2. ca lv e lm  PROCESS

The position vector o f balloon with respect to 
center o f Earth in geocentric coordinates. The 
position vector we use is from the GPS data 
file. The position vector is in (x, y, z ) format.

a) Find the change o f position vector in the 
Period time interval.

A x  — x  — Xo 

A y  = y  — y 0

A z — z  — Zo

b) Find the change o f time in the period time 
interval.

A t  — t  — to
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3. calvel.m
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Find the velocity vector of balloon at position 
(x, y, z).

Ay Az,
v = (T7-TT

The velocity vector is a (1x3) matrix.

OUTPUT

The velocity vector of balloon during a 
time interval At at position (x, y, z).

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



131

 2J2 Conclusion

The functions determining balloon position and velocity are used to 
find the position vector o f balloon in the geocentric coordinate system and 
the velocity vector at that position using GPS data. MTASS uses ephemeris 
data to find the position and velocity vectors for satellite but no ephemeris 
are available for balloon experiments. The GPS data are received from a 
GPS receiver on the balloon. We use MATLAB to run the software 
package that processes the GPS data.

The files and documentation will enable a balloon group to use 
NASA’s MTASS package to determine the attitude of balloon instruments 
at any point in time. Since the geocentric coordinate system is used, MADS 
can be used at any latitude or altitude.
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Welcome to the MADS 

(Multimission Attitude Determination System ) 

for Balloon Missions 

This document contains information on:

1 . View o f  MADS

2. Getting started (Creation o f MADS)

3. A  list o f  files for MADS

1. View of MADS

MADS (Multi-mission Attitude Determination System) is a new 
software package which is used to determine the attitude of 
instruments on a high-altitude balloon. It is an adaptation o f NASA’s 
MTASS (Multimission Three-Axis Stabilized Spacecraft), whose 
original function was to determine satellite attitude. Among the 
differences are MADS’s use of the GPS, rather than ephemerides, to 
locate the balloon, and a suite o f programs to process raw CCD data to 
obtain the information that is available from the star trackers carried on 
satellites.

MADS has two parts, corresponding to the division of MTASS: Part A 

includes the programs that are used to treat raw data including gyro data, GPS 

data, and CCD data. Part B is the mission-independent section, which includes 

locating the balloon, identifying the stars in the CCD frames, and determining 

the attitude o f instruments such as a telescope.

2. Getting started (Creation of MADS)
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(1) Request a copy o f MTASS from Guidance, Navigation and 
Control center Flight Dynamics Analysis Branch. Contact 
Mr. Rick Horman at
(rhannan@pop500.gsfc.nasa.gov) to get a  copy o f 

the RXTE version o f  MTASS.

(2) Use Part A to treat the raw data.
In Part A, there are three folders: GPS, Gyro, and Camera.

1. The GPS folder includes the programs-that transform GPS

data from geodetic coordinates to geocentric rectangular 

coordinates, and put them into the file GPSnew. dat. Use 

the program drivegps.m to carry out this process.

2. The Camera folder includes the programs drivecam.m, 

matrix.m, CCDsort.m, and imgcent.m. Those programs read 

the camera data from the CCD frame data file, find the 

brightest stars in the frame, calculate the centroids o f  the 

brightest stars in the frame and put them into the file 

imgdatl.data, using the program drivecam.m to do this. In 

order to run this program, you need to submit the CCD camera 

data file name to the program imgdat.m for it to open and read 

the CCD raw data from the camera data file. I f  there are two 

CCD cameras, you will need to change the input file name and 

the output file name to imgdat2 .dat in place o f  imgdat.m for 

processing data from the second CCD camera.

(3) Creating Part B o f  MADS

Part B includes the programs rungps.m, rdgps.m, and calvec.m.
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1. In a  copy o f MTASS, rename the file runephem.m, so that you 

can return to the original file i f  you need to.

2. Rename rungps.m to runephem.m in Part B, which is in folder 

Part B.

3. Copy new runephem.m, rdgps.m, and calvec.m from Part B 

into the copy o f  MTASS. The new runephem.m has the same 

name as an MTASS file that is used for satellites, but its 

function is using GPS data to locate the balloon.

4. Copy GPSnew.data from mads_rawgps folder in Part A  into 

the copy o f MTASS

5. Copy imgdatl.data and imgdat2.data from mads_rawccd 

folder in Part A  folder into the copy o f  MTASS.

MADS has now been created from MTASS by adding these 
new files.

(4) Use MADS to determine the attitude o f  the balloon

1. In MADS, modify file xte_nl.m which is the namelist for the 

RXTE MATLAB Ground System. In xte_nl.m, do the 

following set up:

■ reset ephem_name = ’ GPSnew.data’;

■ reset fhstl_raw_dsn = ‘im gdatl .data’;

■ reset fhst2 _raw_dsn = ‘imgdat2 .data’;

■ reset ekf_state_parm( 1 , 1  )= 1 ; (user input quaternion)

■ reset ekf_state_parm(2,l)=l; (user QUEST attitude

history file)
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■ reset si_direct_parm(8 ,l)= l; (for using input quaternion)

■ reset si_direct_parm(9,l)=0; (not using on-board attitude

history file)

■ reset si_doub_parm(2 ,l)= l; (min #  o f  doublet match in

star identification)

2. Run MADS to find the attitude o f balloon instruments in two 

steps: ( 1 ) Generate initial quaternion at the time when the 

balloon stabilizes. (2) Find the attitude o f  balloon instruments 

during the flight time. Following the direction in file 

RUN MADS.doc to use MADS.

3. A list o f files for MADS

Part A  folder includes two subfolders: 

GPS folder: drivegps.m

Camera folder:

Part B: rungps.m

rdgps.m 

calvec.m

gpstrans.m

drivecam.m

CCDsort.m

matrix.m

imgcentm
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A. 3. MADS Guide
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Direction for running attitude determination system in MADS

Since MADS is a adaptation from MTASS, the directions for MADS are modified 
from the directions o f  running M TASS for Attitude Determinate System by Michael 
Lee at Guidance, navigation and Control Center Flight Dynamics Analysis Branch.

Using MADS in the determination o f  attitude for balloon instruments includes two

processes:

Process 1: Generate initial quaternion at the tim e the CCD camera starts to take useful 

pictures o f stars. This initial quaternion is found by  propagation o f  a  ground-level initial 

quaternion using gyro data only in th e  time interval between the time o f  balloon launch 

and the time when the CCD cam era begins to take the useful data (i.e the balloon has 

become stable). The ground-level initial quaternion is calculated from angles measured 

from the CCD camera case which is  set up on the balloon.

The file gyro_rawl.data should include the gyro data in this time interval.

Process 2: Find the attitude quaternion o f balloon instruments using camera data, the

initial quaternion, and gyro data over a  second tim e interval that is the same as the CCD 

camera data time interval.

The file gyro_raw2.data should include the gyro data in the second time interval.

When you open the MATLAB and go to the M ADS directory, take the following steps: 

Open up MATLAB. Go to the directory containing MADS.

Process 1: Generate initial quaternion

In file xte_nl.m: set iru_raw_dsn— gyro_raw l.data '; T hen  i n  MATLAB:
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(1) T ype“runxte”

(2) Using the mouse, click on the “DATA ADJUSTER” button in the graphical 

interface.

(3) Click on the “LOAD RA W  SENSOR DATA ” button. In the display window, 

only Load IRU raw data s e t . Then click on “LOAD DATA AND EXIT ” button.

(4) After data has been loaded, the timespans o f  the available data can be see by 

clicking the “START AND END TIMES” button.

(5) Click on the ‘EX ECU TE DATA ADJUST” button. The gyro data for the balloon 

has now be ingested in the MATLAB environment in a usable format.

(6) Click on the ‘EXTENDED KALMAN FILTER” button, then click on the “USER 

INPUT ATTITUDE” button. In window for input attitude:

Initial attitude source, check for ‘quaternion’.

Attitude reference, check on ‘GCF

Attitude time, input an attitude time within gyro time (i.e within 

gyro_rawi.data file timetag)

Then input the primary quaternion determined from ground measurements 

into attitude relative to reference frame

Quat. com pl,

Quat. comp2,

Quat. comp3,

Quat. comp4,

Then click “SAVE INPUT” button, and ‘EX IT”.
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(7) Click “EXECUTE EKF” button. This w ill display the quaternion with the epoch 

time. This quaternion is the initial quaternion at the time when the CCD camera 

starts to take the useful pictures o f  stars.

Exit the EKF MAIN MENU, and back to XTE MATLAB GROUND SYSTEM.

(8) Exit MADS.

Process2: Find attitude quaternion for balloon instruments

hi file xte_nl.m: set iru_raw_dsn—g y ro _ ra w 2 .d a ta 'Then i n  MATLAB :

1.Type “runxte”

2. Using the mouse, click on the “DATA ADJUSTER “ button

3. Click on the “LOAD RAW SENSORDATA” button then click “LOAD DATA 

AND EXIT” button

4. After the data have been loaded, the timespans o f  the available data can be see by 

clicking the “ START AND END TIME “ button (then EXIT the GUI)

5. Click on the “EXECUTE DATA ADJUST “ button. The gyro, CCD camera and 

onboard attitude for the balloon have now been ingested in the MATLAB environment 

in a usable format.

6. Next, input the user attitude as follows. EXIT from the data adjuster(“DA”) executive 

display and click on The “EXTENDED KALMAN FILTER” button then, the “USER 

INPUT ATTITUDE ”. In window for input attitude:

Initial attitude source, check for quaternion.

Attitude reference, check on GCI.

Attitude time, input an attitude time within gyro time (which is within 

gyro_raw2.data file timetag)
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Then input the initial quaternion that was determined from process 1:

Quat. com pl,

Quat. comp2,

Quat. comp3,

Quat. comp4,

Then click “SAVE INPUT” button, and “E X IT ’.

7. Next, perform star identification. EXIT from the “EKF” executive display and click 

on the “STAR ID” button.

8. Read in the star catalog (already included for the example data in a  *.mat file format). 

Click on the “GENERATE STAR CATALOG” button and then the “LOAD DATA 

AND EXIT” button.

9. The namelist parameters have been set up for the RXTE case (use the same set for 

balloon). Click on the “EXECUTE DIRECT MATCH” button (which does a 

preliminary star identification) and then “EXECUTE DOUBLET MATCH” button. The 

stars should now be identified and the blue buttons can be clicked for a graphical 

display for the results. The “POS-DA” plots show the right ascension and declination o f 

all the processed tracked observations (represented as white circles) in the Geocentric 

inertial coordinates(GCI) o f the mission (J2000 for RXTE) assuming that the a priori 

attitude is correct. The “PRE-SI” plots show the clump star observations and the 

reference stars resulting from the direct match algorithm. The observations are white 

circles and the yellow crosses are the candidate reference stars. Finally, the “POST-SF’
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plot includes the reference stars identified with the observations along with the other 

items from the ‘TRE-SF’ plot. EXIT from the star identification GUI when ready.

10. An attitude determination method can now be applied. The “EXTENDED 

KALMAN FILTER” options have already been preset for the example case. Click on 

this button,

then click on the “EXECUTE EKF” button. There will be plots o f  star tracker (FHST #

1 and #2) residuals if  using satellite data, or CCD camera (CCD #1 and #2) residuals for 

the balloon case and the solved for quaternions will be available -u se  the labeled 

buttons.

11. In the satellite case, the performance o f  the onboard computations can be 

compared with the ground attitude. Click on the “ATTITUDE COMPARSION’ and 

then the “execute compare” buttons, the system is present to compare the EKF attitude 

solution with the onboard solutions. Check the “ATTITUDE COMPARISON PLOTS” 

and about a 15 arcsecond rediual will be seen in the “Comparison Residuals” plot. This 

difference is due to not performing velocity abberration corrections on the star tracker 

data. For this correction, the Solar, Lunar and Planetary ephemeris information (SPL 

file) is needed. This file and the SKMAP star catalog are available on the internet at ???

12. The SLP data and the star catalogs can be obtained by following the directions on 

the Web page.
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Appendix B Programs for MADS

B. 1 MADS Part A  programs

1 . dirvecam.m
2. C C D sortjn
3. m atrix.m
4. imgcent.m
5. drivegps.m
6 . gpstrans.m
7. g p sfitl.f
8 . gpsfit2 .f
9. gpsfit3.f
10. gpsJ5t4.f
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1. drivecam.m

% This function is used to find the brightness stars in CCD camera
% frame and put tem into CCD camera data file with the format as FHST
% data in MTASS by reading raw CCD data from camera.
% INPUT: raw CCD data file.
% OUTPUT: CCD camera data file in format:
% (time phi theta temperature intensity flag)
% MODIFY: Liping Mo
[fid,message] = fopen('rawccd.dat'); 
j = l;
while(feof(fid))==0
position = ftell(fid);
stude = fseek(fid,position,-1);
u = fscanf(fid, '%g', [1,1]);
%disp (u)
position = ftell(fid); 
k = feof(fid); 
if k ==0
stude = fseek (fid,position,-1); 
v = fscanf(fid, '%g %g', [1,1]) ; 
v = v' ;
%disp (v) ,-
position = ftell(fid);
stude = fseek(fid,position,-1);
w = fscanf(fid, '%g %d' , [1,3]) ;
w = w' ;
disp(w) ;
position = ftell(fid);
A = fscanf(fid,1%d %d' , [l,w(2,1)*w(3,1) ] ) ;
A = A' ;
[a,b,M] = matrix(w(3,1) ,w (2,1) ,A) ,- %put the frame into matrix.
[B] = CCDsort(M); %find the brightness stars in

frame.
%% put the brightness into format 
[stnum,stinf] = size(B);
len=10; % This len has to choice by user.
tempeture=2; % This tempture has to measure from CCD camera. 
flag=0;
for i = 1:stnum
img(i+(j-1) *5,1) =v(l,l);
img(i+(j-l) *5,2) = atan(B (i, 1)/10) ;
img(i+(j-l) *5,3) = atan(-B(i,2)/10);
img(i+(j-l) *5,4) = 2;
img(i+(j-l) *5,5) =B(i,3);
img(i+(j-1)*5,6) = flag;
%cent(i+(j-1)*5,1)= B(i,l); %centroid of star in H_axis 
%cent(i+(j -1)*5,2)= -B(i,2); %centroid of star in V_axis 
%cent(i+(j -1)*5,3)= B(i,3); %intensity of star in the frame, 
end;
j = j+i;
end %for k==0 

end; %while() 
fclose(fid);
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%save centriod.dat cent -ascii;
save imgdat.dat img -ascii -double; %save the data into the file
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2. CCDsort.m

% This function is used to sort the CCD data for one frame.
% We just use the data that great than the background value.
% THis program first find the count of data that great than
% background value. Then just sort for those data. Put the
% sort data with their index of the matrix into the file 
% for stwin4.m to use to call imgcentl3 .m to find the centriod 
% of star with respect to center of frame.
% INPUT: Read a CCD data file which has been in matrix for a
% frame from the orgin CCD data file. It come out from
% matrix.m.
% OUTPUT: The data file which has been sorted with-the index
% of matrix with respect to a frame.
% MODIFY: Liping Mo 3-14-99
function[B] = CCD1(imgmatrix);
%filename = 1;
%load imgmatrix.dat , %Read the matrix of CCD data
%ty = [imgmatrix] ;
%load s 111.dat 
%ty = [sttl];
ty = imgmatrix; %imgmatrix is input 8-1-99 
[n,m] = size(ty);
groundbval = 230; %Set up the background value which
decied
cutrow = 10;
cutcol = 10;
egrow = 15;
egcol = 15 ;
stamum = 3; %by histgram of orgin CCD
data.
%% Sort for data that great than background.

% as bright stars. So it is also number of
bright

% stars.
for k = 1: stamum % loop only runing number of data that
great
MAX = groundbval; % background value times.
Rc = 0; % use for index of row for sort data.
Cc = 0; % use for index of colcumn for sort data,

for i = egrow:n-egrow 
for j =egcol:m-egcol 
if ty(ifj)-=0 %This condition is for checking the element not

0 .
if ty(i,j)>MAX 

MAX = ty(i,j) ;
Rc = i;
Cc = j;

% disp(i)
end; 

end; 
end; 

end;
A(k,1) = MAX;
A(k, 2) = Rc;
A(k,3) = Cc;
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% ty(RcrCc) = 0; % try(Rc,Cc) is the max in this serach time.
Sing
for i = Rc-cutrow:Rc+cutrow

for j  = Cc-cutcol:Cc+cutcol
t y ( i , j ) = 0 ;

end;
end; % it as zero, so next serach time

end; % end for sort loop,
a = 1; 
b = 1;
%save sortl.dat A -ascii;
st = [A] ;

[n,m] = size(st);
for i = 1 :n

[centxl, centyl, ma'gl] = 
imgcent(st(i,1),st(i,2),st(i,3),imgmatrix); 

B(i,l) = centxl;
B(i,2) = centyl;
B(i,3) - magi;

end;
%disp (A) ;
% save centriod2.dat A -ascii -double;
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3. matrix.m

% This function is going to read CCD images star data file for 
% one frame that come from ADSDAQ system. The data are in one 
% colcumn. This function will read the data and put them into a 
% matrix for function imgcentl3.m to use for finding the centriod 
% of bright source.
% This program use led6.dat data from Dr.Greedwood
%

%

%INPUT:
% 1. Read the data of CCD images which are pixes values in
% one frame.
% 2. The first value from data file is the column number of
% matrix.
% 3 . The second value from data file is the row number of
% matrix.
%OUTPUT:
% a row number of matrix.
% b column number of matrix.
% Matrix of frame. It save as ascii file.
%MODIFICATION: 11/12/98 Liping
% 6-20-1999 Liping ouput row and column number
% for stwin4.m to use.
%function[radius,centerx,centery] = starcent(rownum,colnum) 

function[a,b,frame] = matrix(mcol,mrow,A) ; 
d = 1;
% load star.dat; %File from Dr. zotov hand working

%%Load the CCD image data as line data,then put them into a matrix 
% load led6.dat; %File from Dr.Greenwood/pub/margie/image
% try = [led6];

ty = A;
% disp(try);

c = mcol; %Get the matrix column number from CCD data file
r = mrow; %Get the matrix row number from CCD data file

%%create the elements of matrix for one frame, 
for 1 = l:r 

for s = 1:c 
I(l,s) = t y ((1-1)*c+s) ; 

end
end %end for read line data code,

frame = [I]; %Matrix for CCD data file
[N,M] = size(frame); %n is row number of matrix
a = N; 
b = M;

%save matrix.dat frame -ascii,- 
%disp(frame(44,6));
%disp(frame(49,15) ) ;
%disp(frame(32,32) ) ,- 
%disp(frame(32,28) ) ;
%disp(frame(24,16) ) ;
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4 . im gcen t.m

%This function is going to read CCD images star data, find the center 
%ofthe bright source and the radius of bright source matrix.
%This program use LED.dat data from Dr.Greedwood 
%

%

%INPUT:
% MAX : The pixel value of brightest
% rownum(lxl) : The row number of star in the frame.
% colnum(lxl) : The colnum number of star in the frame.
% imgmat : The CCD frame matrix.
%OUTPUT *-
% centerx(lxl) : The x-axis value of centroid of source.
% centery(lxl) : The y-axis value of centroid of source.
% intensity(lxl): The intensity of star.
%MODIFICATIOM: . Liping MO 11/12/98
%function [centerH, centerV, intensity] = starcent (rownum, colnum) 

function [centerH, centerV, intensity] = 
imgcent (MAX, rownum, colnum, imgmat) ;

ty = imgmat; %use matrix as input 8-1-99
frame = [ty]; %Matrix for CCD data file
[N, M] = size (frame);
% disp(ty) ;

% c = ty(l) ; %Get the matrix column number from CCD data file
% r = ty(2) ; %Get the matrix row number from CCD data fi le

%%Cut a window matrix for one star. It is 12 by 12 matrix
SR = rownum; %SR is row number of a star in the frema
SC = colnum; %SC is colnum number of a star in the frerria
stars = frame(SR-4:SR+4,SC-4:SC+4);
[n,m] = size (stars) ,-

%%Calculate the marginal sums for one window.
py = sum(stars'); %Marginal sums by columns in images

%matrix
px = sum(stars); %Marginal sums by rows in images nnatri
Hmax = MAX/2; %Half maximum value

% Box size is dependent onthe lens of earner 
a=3;

%% Create the boxsize matrix as (2ax2a) size from the CCD data martrix. 
stars2 = stars(n/2-a:n/2+a,m/2-a:m/2+a);

% disp(stars2);
pyl = sum(stars2 ') ,- %Marginal sums of boxsize matrix by

%columns
pxl = sum(stars2) ,- %Marginal sums of boxsize matrix by rows
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A = -a:a;
avgy = (1/ (2*a+l) ) *sum (pyl) ; %mean of columns 
avgx = (1/ (2*a+l) ) *sum (pxl) ; %mean of rows

%%Calculate the centriod of bright source, 
corx = (pxl - avgx); 
for i = 1:2*a+l

if corx(i) > 0 %choose the elements of corx, such
that

corx(i) = corx(i); %corx>0.
else corx(i) = 0;
end

end
corxl = corx.*A;

given
%The elements of numerator. A is 
%as x(i) values from array(-a:a).

a:a)

sxl = sum(corxl),- %numerator of centroid formula
sx = sum(corx); %denominator of centroid formula
centerxl = sum(corxl)/sum(corx); %X-axis value of centroid.

that

cory = (pyl - avgy) 
for i = 1:2*a+l

if cory(i) > 0
cory(i) = cory(i) 
else cory(i) = 0; 
end

end
coryl = cory.*A;

%chose the elements of cory, such 
%cory>0.

sy = sum(cory); 
syl = sum(coryl); 
centeryl = sum(coryl)/sum(cory) ,-

%The elements of numerator. A is 
%given as x(i) values from array(-
%The numerator of centroid formula 
%The demerator of centriod formula

%y-axis value of centroid.
%%Find the centerxl,centeryl with respect to frame center. 
%%frame will be 512x768 pixes- The origin will be (768/2,512/2) 
%%here I use DR. greenwood data, it 50x50 frame. (50/2,50/2)

frameorgV = 512/2,- 
frameorgH = 768/2,- 
cxl= centerxl+colnum; 
centerH = cxl-frameorgH; 
cyl = centeryl+rownum; 
centerV = frameorgV-cyl;

%column in the matrix) 
%row in the matrix) 
%column in matrix. 
%Horizontal coordinate
%Vertical coordinate

%%didn't use rl,r2,cl,c2 in follow calculate. Just for fun I
rl = n/2 - a; %Up row edge of box matrix
r2 = n/2 + a; %Down row edge of box matrix
cl = m/2 - a,- %Left column edge of box matrix
c2 = m/2 + a; %Right column edge of box matrix
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%%Find four parts from outside of boxsize(5ax5a if the data is 
enought)
%%matrix.

A1 = stars(1:(n/2)-a, :) ; %Up part of boxsize
matrix

A2 = stars ((n/2)-a: (n/2)+a, 1: (m/2)-a-1) ; %Left part of 
boxsize matrix

A3 = stars((n/2)-a:(n/2)+a,(m/2)+a+l:m); %Right part of 
boxsize matrix

A4 = stars((n/2)+a+l:n,:); %Down part of boxsize
matrix

%%Put each part into the a column vector. This goes by columns. Then 
%%create row for all background data selected, 

al = A1 (:); 
a2 = A2 ( :) ; 
a3 = A3 ( :) ; 
a4 = A4 ( :) ;
a = [al' , a2 ' , a3 ' , a4 ' ] %Row vector of background data.
% disp (a);

sorta = sort (a) ; %sort the vector in increasing order
md = median(sorta); %The median value of background data
me = mean (sorta) ; %Tbe mean value of background data
mode = 3 * md - 2 * me; %The mode value of background data

%%Put Starmagl3.m here to calculate the magenitude of star. 11-12-98
%%calculate the Marginal sums from rows.

px = sum(stars) ; %Marginal sums by rows in images matrix

%%Find the new matrix after backgourd subtraction, 
stars3 = stars - mode;

%%Calculate intensity in background.
npix = n * m; %npix is the number of pixels in the aperture
isky = mode,- Srisky is the background sky value (per pixel)
sumimg = sum(px) ; ^summation is carried out over original image

%data.
intensity = sumimg - npix * isky;

%%Calculate magenitude for one star.
zpt = 23.5; %zpt is an arbitray number used to produce

^treasonable output values for the magnitudes 
%I choose the value as 23.5.

mag = zpt - 2.5 * loglO(intensity) ;
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5. drivegps.m

% This function is used to call function gogcv.m. We use this function 
%to set up the GPS data file name and the number of gps data for 
reading.
% INPUT:
% gpsfile:
% gpsnum :
%

% MODIFY: Liping Mo 7-30-99
gpsfile = 'rawgps.dat'; 
gpsnum = 100;
[a] = gpstrans(gpsfile,gpsnum);
disp{'The conversion of GPS data is in "gps-dat"');

GPS data file name.
Number of gps data for reading.
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6. gpstrans.ni

%This function transformat the GPS data from the latitude, longitude, 
%and altitude to GCI (t,x,y,z) coordeate system. Liping 1-10-99.
%This function read a GPS data file.
%This function convert the data as (time, latitude, longitude, 
%altitude) and save them into gpscv.dat file.
%function [t,x,y,z] = gpstransO 
function [a] = gpstrans (gps_name, gpsnum) ,- 

% gpsnum = 10 ,- 
gps=zeros(gpsnum,4);
[fid,message] = fopen(gps_name, 'r') ,- 
for j = 1:gpsnum 
position = ftell (fid) 
stude = fseek(fid,position,-1);
A  = fscanf(fid,'%g %g %g %g',[4,l]);
A  = A' ;

u = atan(0.996647*tan (A(l,2))); 
h = A(l,4)/6378140;
psin = 0.99467*sin(u)+h*sin(A(l,2)); 
pcos = cos (u) +h*cos (A(l, 2) ) ,*

% disp ( 'psin') ,- 
%disp(psin);
%disp('pcos');
%disp(pcos);
gps (j,2) = pcos*cos(A(l,3)) ; 
gps (j , 3) = pcos*sin (A(l, 3) ) ,- 
gps (j ,4) = psin; 
gps (j , 1) = A(l, 1) ; 
end;
fclose(fid); 
a = 1,-
save gps.dat gps -ascii -double;
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7. gpsfitl.f

c This is a correct program 6/28/2000 for case 1 
C
C NOTE: qk(x) = q(k) /6.0* [ (t (k+1) -t) **3/h(k) -h(kF* (t (k+1)-t) ]
C +q(k+l)/6.0* [(t-t(k) **3/h(k) -h(k) * (t-t (k)) ]
C +y (k) * [ (t (k+1) -t (k) ) /h (k) ] +y (k+1) * [ (t-1 (k) ) /h (k) ]
C FOR t(k) < t < t(k+1), k=0,----n-1
C

dimension h (150),t (150),y(150)
dimension aa(150),bb(150),cc(150),dd(150),q(150) 
double precision t,h,y,aa,bb,cc,dd,q 
n=96 

c tt=t0 
c ss0 =
c ssn=
c input data

open(unit=06,file='mtax.dat') 
do i=l,n+l

read (6, *) t(i),y(i)
enddo 
close(6)

c set up Aq=b 
do k=l,n 
h (k) =t(k+1)-t(k) 
enddo 
do k=3,n-l 
aa (k) =-h(k-l) 
bb (k) =2.0* (h(k-l) +h(k) ) 
cc (k) =-h (k)
dd(k) =6.0* ( (y(k+1) -y(k) ) /h(k) - (y (k) -y(k-l) ) /h(k-l) ) 
enddo

c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

a a (2)=0.0
b b (2)=2.0*h(1)+2.0*h(2) 
c c (2)=-h(2)
dd(2) =6.0* ( (y(3) -y(2) ) /h(2) - (y (2) -y(l) ) /h(l) )
$ -h(1)*ss0
aa (n) =-h (n)
bb (n) =2 . 0*h (n) +2 . 0*h (n-1) 
cc (n) =0 .0
dd(n) =6.0* ((y (n+1) -y (n)) /h(n) - (y (n) -y (n-1) ) /h(n-l) ) 
$ -h(n)*ssn
call trid(aa,bb,cc,dd,q,n)
q (1)=ss0 
q (n+1)=ssn

c call calqk(tt,qk,t,y,h,q,n) 
c output the data into a file

open(unit=06, file= 'mtax_resultl .data') 
do i=l,n+l 
write(6,l) i,q(i)
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enddo 
1 format(i2,e20.10) 

c write(6,2) tt,qk 
c 2 format (fl2.8, lx, f 12 .8) 

close(6) 
end

c Tridiagonal linear system
subroutine trid(aa,bb,cc,dd,yy,n)
dimension aa(150),bb(150),cc(150),dd(150),yy(150) 
dimension b e (152),ar (152) 

double precision aa,bb,cc,dd,yy,be,ar 
b e (1)=0.0 
a r (1)=0.0 
do 1 k=2,n
be(k)=cc(k)/ (bb(k)-aa(k) *be (k-1))

1 ar(k) = (dd(k)+aa(k)*ar(k-1))/(bb(k) -aa(k)*be(k-1)) 
yy(n+1)=0.0
do 2 k=2,n 

j =n+2-k
2 yy (j ) =be (j ) *yy (j+1)+ar (j  ) 

return
end

subroutine calqk(tt,qk,t,y,b,q,n) 
dimension h(150),t (150),y(150),q(150) 
double precision h,t,y,q, tt,qk 
do 1 k=l,n
if(tt-ge.t(k).and.tt.It.t(k+1))then

qk = q(k)/6.0*((t(k+l)-tt)**3/h(k) -h(k)* (t(k+1)-tt)) 
$ +q(k+1)/6.0*((tt-t(k))**3/h(k)-h(k)* (tt-t(k)))
$ +y(k)* (t(k+1)-tt)/h(k)+y(k+1)* (tt-t(k))/h(k)
endif

1 continue 
return 
end
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8. gpsfit2.f

c This is a correct program 5/4/2000 for case 2.
C
C NOTE: qk(x) = q(k)/6.0*[(t(k+l) -t)**3/h(k) -h (kl* (t (k+1) -t) ]
C +q(k+l)/6.0*[(t-t(k)**3/h(k) -h (k) * (t-t (k) )]
C +y (k) * [ (t (k+1) -t (k) ) /h(k) ] +y (k+1) * [ (t-t (k) ) /h(k) ]
C FOR t(k) < t < t(k+l), k=0,....n-l
C

dimension h(150),t(150),tt(150),qk(150),y(150) 
dimension aa(150)fbb(150),cc(150),dd(150),q(150) 
double precision tt,t,qk,h,y,aa,bb,cc,dd,q,hx,kx,tO 
n=96 

m=10
t0=0.014035148 
hx=0.0000182 
kx=50 

do i=l,m 
tt (i)=t0+i*hx 
enddo 

c input data
open(unit=06, file= 'mtaxnew.dat') 
do i=l,n+l

read (6, *) t(i),y(i)
enddo 
close(6)

c set up Aq=b 
do k=l,n 
h(k)=t (k+1) -t (k) 
enddo
do k=3,n-1 
aa(k)=-h(k-l) 
bb (k) =2 . 0* (h (k-1) +h (k) ) 
cc (k) =-h (k)
dd(k) =6.0* ((y (k+1) -y (k) ) /b(k) - (y (k) -y(k-l) ) /h(k-l) )
enddo
aa(2)=0.0
b b (2)=3.0*h(1)+2.0*b(2) 
cc(2)=-h(2)
dd(2) =6. 0* ((y (3) -y (2) ) /h(2) - (y (2) -y(l) )/h(l) ) 
aa(n)= -h(n-1) 
bb(n)=3.0*h(n)+2.0*h(n-1) 
cc (n) =0 . 0
dd(n) =6.0* ((y (n+1) -y(n) ) /b(n) - (y(n) -y(n-l)) /h(n-l)) 
call trid(aa,bb,cc,dd,q,n) 
q ( 1 )  = q ( 2 )  
q(n+l) =q(n)
call calqk(tt,qk,t,y,h,q,n,m) 

c output the data into a file
open(unit=06,file='mtax_resultl.data') 
do i=l,n+l 
write(6,l) i,q(i) 
enddo

close(6)
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open(unit=06,file=,mtax_fit.data')
1 format(i2,e20.10) 

do k=l,kx
write (6,2) t(k),y(k)

2 format(f12.8, lx, fl2.8) 
enddo
do k=l,m-1
write (6,21) tt(k),qk(k)

21 format (f 12 . 8, lx, f 12 . 8) 
enddo

do k=kx+l,n+1 
write (6,22) t(k),y(k)

22 format(fl2.8,lx,f12.8) 
enddo 

close(6) 
end

c Tridiagonal linear system
subroutine trid(a‘a,bb, cc, dd,yy,n)
dimension aa(150),bb(150),cc(150),dd(150),yy(150) 
dimension be(152),ar(152) 

double precision aa,bb,cc,dd,yy,be,ar 
be(l) =0.0 
ar (1)=0.0 
do 1 k=2,n
be (k) =cc (k) / (bb (k) -aa (k) *be (k-1) )

1 ar (k) = (dd (k) +aa (k) *ar (k-1) ) / (bb (k) -aa (k) *be (k-1) )
yy (n+1) =0 . 0
do 2 k=2,n 

j =n+2-k
2 yy(j) =be(j) *yy(j+l)+ar(j)

return
end

subroutine calqk(tt,qk,t,y,b,q,n,m)
dimension h(150),tt(150),qk(150),t(150) ,y(150),q(150) 
double precision h, t,y, q, tt, qk 
do i=l,m 
do 1 k=l,n
if(tt(i) .ge.t(k) .and.tt(i) .It.t(k+1)) then

q k (i)= q(k)/6.0*((t(k+1)-tt(i))**3/h(k)-h(k) * (t(k+1)-tt(i) 
$ +q(k+l)/6.0*((tt(i)-t(k))**3/h(k)-h(k) * (tt(i)-t(k)))
$ +y (k) * (t (k+1) -tt (i) ) /h (k) +y (k+1) * (tt (i) -t (k) ) /h (k)
endif 

1 continue 
enddo 
return 
end
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9. gpsfit3.f

c This is a correct program 12/21/2000 for case 3.
C
C NOTE: qk (x) = q (k) f S . 0* [ (t (k+1) -t) **3/h (k) -h (k)-* (t (k+1) -t) ]
C +q (k+1) / 6 . 0 *  [(t-t (k) **3/h.(k) -h.(k) * (t-t (k) ) ]
C +y (k) * [ (t (k+1) -t (k) ) /h (k) ] +y (k+1) * [ (t-t (k) ) /h (k) ]
C FOR t(k) < t < t(k+1), k=0 ----n-1
C

dimension h(150),t(150),xx(150),yy(150),zz(150),tt(150) 
dimension qkx(150),qky(150),qkz(150),q(150) 
double precision tt,t,h,xx,yy,zz,qkx,qky,qkz,qJhx,kx,tO 
n=89 
m=10

t0=0.014035148 
hx=0.0000182 
kx=50 
do i=l,m 
tt(i)=t0+i*hx 
enddo 

c input data
open(unit=0 5,file='mtal.dat') 
do i=l,n+1

read(5,*) t (i),xx(i),yy(i) , zz(i)
enddo
close(5)
do k=l,n
h(k)=t(k+1)-t(k)
enddo
call cubic_fit(t,xx,q,h,n) 
call calqk(tt,qkx,t,xx,h,q,n,m) 

call cubic_fit (t,yy,q,h,n) 
call calqk (tt, qky, t,yy,h,q,n,m) 
call cubic_fit(t,zz,q,h,n) 
call calqk(tt,qkz,t,zz,h,q,n,m) 

c output the data into a file 
c open(unit=0S, file=1 mtax_result3 .data') 
c do i=l,n+1 
c write(S,l) i,q(i) 
c enddo 
c close(6)

open (unit=06, f ile=' mtax_f it_all. data') 
do k = 1, kx 

write(S,2) t (k) ,xx(k),yy(k),zz (k) 
enddo
do k = l,m-l
write(6,2) tt(k),qkx(k),qky(k),qkz(k) 
enddo
do k = kx+l,n+l
write(6,2) t(k),xx(k),yy(k),zz(k) 
enddo

2 format (f 12 .8, lx, f 12 . 8, lx, f 12 . 8, lx, f 12 .8)
close(6)

open(unit=06,file='mtax_fit_x.data') 
do k = 1, kx
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write(6,3) t(k),xx(k) 
enddo
do k = 1, m-1
write(6,2) tt(k),qkx(k)
enddo
do k = kx+1,n+1 
write (6,2) t(k),xx(k) 
enddo

3 format(f12.8,lx,f12.8) 
close(6)
open(unit=OS,file=1mtax fit y.data')
do k = 1,kx
write (6,4) t(k),yy(k)
enddo
do k = l,m-l 
write(6,4) tt(k),qky(k) 
enddo
do k = kx+1,n+1 
write (6,4) t(k),yy(k) 
enddo

4 format (f 12 .8, lx, f 12 . 8)
close(6)
open(unit=06,file='mtax_fit_z.data')
do k = 1, kx
write(6,5) t(k),zz(k)
enddo
do k = l,m-l
write(6,5) tt(k),qkz(k)
enddo
do k = kx+1,n+1 
write(6,5) t(k),zz(k) 
enddo

5 format (fl2 . 8, lx, f 12 .8) 
close(6)
open(unit=05, file='mtax_x.data') 
do k = l,n+l 
write(6,6) t(k),xx(k) 
enddo

6 format(f12.8,lx, f 12 .8) 
close(6)
open(unit=06,file='mtax_y.data')
do k = l,n+l
write(6,7) t(k),yy(k)
enddo

7 format (fl2 . 8, lx, f 12 .8)
close(6)
open(unit=06,file='mtax_z.data') 
do k = l,n+l 
write(6,8) t(k),zz(k) 
enddo

8 format (f 12 . 8, lx, f 12 . 8) 
close(6)

end
subroutine cubic_fit(t,y,q,h,n) 
dimension h{150),t (150), y (150)

dimension aa(150),bb(150),cc(150),dd(150),q(150)
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double precision t,h,y, aa,bb, cc, dd, q 
c set up Aq=b

do k=3,n-1 
aa(k)=-h(k-1) 
bb (k) =2 .0* (h (k-1) +b(k) ) 
cc (k) =-b (k)
dd(k) =6.0* ((y(k+1) -y(k) ) /h(k) - (y(k) -y(k-l) ) /h'(k-l) ) 
enddoc ****************************************** 
a a (2)=0.0
bb (2) = (2 . 0+h (1) /h(2) ) *(h(l)+h(2) ) 
cc (2) =-h (2) +h(l) *h (1) /h (2)
dd(2)=6.0*( (y(3) -y(2) )/h(2)-(y(2) -y(l))/hU) ) 
aa (n) =-h (n-1) + (h (n) *h(n) /h (n-1) )
bb (n) =2* (b (n-1) +b (n) ) +h (n) * (h (n-1) +b (n) ) /h (n-1) 
cc(n)=0.0
dd (n) =6. 0* ( (y (n+1) -y (n)) /h (n) - (y (n) -y (n-1) ) /b (n-1) )

call trid(aa,bb,cc,dd,q,n)
q(l) = ((b(l) +b (2) ) *q (2) -b(1) *q (3) )/h (2) 
q(n+l) = ((h(n-l) +b(n) ) *q(n) -h(n) *q(n-l)) /h(n-l) 

return 
end

c Tridiagonal linear system
subroutine trid(aa,bb,cc,dd,ql,n)
dimension aa(150),bb(150),cc(150) ,dd(150) ,ql(150) 
dimension b e (152),ar(152) 

double precision aa,bb,cc,dd,ql,be,ar 
be(l) =0.0 
a r (1)=0.0 
do 1 k=2,n
be(k) =cc(k)/ (bb(k)-aa(k)*be(k-1))

1 ar (k) = (dd (k) +aa (k) *ar (k-1) ) / (bb (k) -aa (k) *be (k-1) )
ql (n+1)=0.0
do 2 k=2, n 

j=n+2-k
2 ql (j) =be (j ) *ql (j+1)+ar (j )

return
end

subroutine calqk(tt,qk,t,y,b,q,n,m)
dimension b(150),tt(150),qk(150) ,t(150),y(150) ,q(150) 
double precision h,t,y,q,tt,qk 

do i=l,m 
do 1 k=l,n
if(t t (i) .ge .t(k) .and.tt (i) .11 .t(k+1))then

qk(i) = q(k)/6.0*((t(k+1)-tt(i) ) **3/h(k)-h(k) * (t(k+1)-tt(i))) 
$ +q(k+1)/6.0*((tt(i)-t(k)) **3/h(k)-h(k) * (tt(i)-t(k)))
$ +y (k) * (t (k+1) -tt (i) ) /h (k) +y (k+1) * (tt (i) -t (k) )/h(k)
endif 

1 continue 
enddo
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return
end
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10. gpsfit4.f

c This is a correct program 5/4/2000 for case 2.
C
C NOTE: qkCx) = q(k) /6.0* [ (t (k+1) -t) **3/h(k) -h(k)-*(t (k+1)-t) ]
C +q(k+l)/6.0*[(t-t(k) **3/h.(k) -h(k) * (t-t(k) ) ]
C +y (k) * [ (t (k+1) -1 (k) ) /h (k) ] +y (k+1) * [ (t-t (k) ) /h (k) ]
C FOR t(k) < t < t(k+1), k=0 ____n-1
C

dimension h(150),t(150),tt(150),qk(150),y(150) 
dimension aa(150),bb(150),cc(150),dd(150),q(150) 
double precision tt, t, qk,h,y,aa,bb, cc,dd,q, hx,kx, to, sO, sn,h.O 
n=96

m=10
t0=0.014035148 
hx=0.0000182 
kx=50 

do i=l, m 
tt (i)=t0+i*hx 
enddo 

c input data
open(unit=06,file='mtaxnew.dat') 
do i=l,n+l

read (6, *) t(i),y(i)
enddo 
close(6)

c calculate s0,sn 
h0=2.0*hx
s0=(-3.0 *y(1 )+4.0 *y (2 )-y(3))/ho 
sn=(-3.0*y(n+1)+4.0*y(n)-y(n-1))/ho 

c set up Aq=b 
do k=l,n 
b(k)=t(k+1)-t(k) 
enddo
do k=3,n-1 
aa (k) =-h (k-1) 
bb (k) =2 . 0* (h (k-1) +h (k) ) 
cc (k) =-h (k)
dd(k) =6.0* ((y (k+1) -y (k) ) /h(k) - (y(k) -y(k-l) ) /h(k-l) )
enddo
a a (2)=0.0
bb (2) =2.0*h(1)+2.0*h(2)+h(l)/2 
cc (2) =-h(2)
dd(2) =6. 0* ( (y (3) -y (2) ) /h(2) - (y (2) -y (1) ) /h (1) )
$ -3 . 0* ((y (2) -y (1) ) /h. (1) -sO)
aa (n) =-b(n-l)
bb (n) =2.0*h (n) +2 . 0*h (n-1) -h. (n) /2 
cc (n) =0 . 0
dd(n) =6.0* ( (y (n+1) -y (n) ) /h(n) - (y (n) -y (n-1) ) /h(n-l) )
$ -3 .0* (sn-(y (n)-y(n-l) )/h(n-l) )
call trid(aa,bb,cc,dd,q,n)
q (1) =3 . 0* ( (y (2) -y(l) )/h(l) -s0)/h(l) -q(2)/2 
q (n+1) =3.0* (sn- (y (n+1) -y (n) ) /h (n) ) /h(n) -q (n) /2 
call calqk(tt,qk,t,y,h,q,n,m)
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c output the data into a file
open (unit=OS,file='mtax_result4.data') 
do i=l,n+l 
write(6,l) i,q(i) 
enddo

close(6)
open(unit=06, file='mtax_fit4.data')

1 format(i2,e20.10) 
do k=l,kx

write(6,2) t(k),y(k)
2 format(f12.8,lx,f12 .8) 

enddo
do k=l,m-1
write(6,21) tt(k),qk(k)

21 format(f12.8, lx, f12.8) 
enddo

do k=kx+l,n+1 
write(6,22) t(k),y(k)

22 format (f 12.8, lx, f"12 . 8)
enddo 

close(6) 
end

c Tridiagonal linear system
subroutine trid(aa,bb,cc,dd,yy,n)
dimension aa(150),bb(150),cc(150),dd(150),yy(150) 
dimension b e (152),a r (152) 

double precision aa,bb,cc,dd,yy,be, ar 
be(l)=0.0 
ar(1)=0 .0 
do 1 k=2, n
be (k) =cc (k) / (bb (k) -aa (k) *be (k-1) )

1 ar (k) = (dd (k) +aa (k) *ar (k-1) ) / (bb (k) -aa (k) *be (k-1) ) 
yy(n+1)=0 .0
do 2 k=2,n 

j =n+2-k
2 yy(j ) =be (j ) *yy (j+1)+ar (j ) 

return
end

subroutine calqk(tt,qk,t,y,h,q,n,m)
dimension h(150) ,tt(150),qk(150),t (150),y(150) ,q(150) 
double precision h,t,y,q,tt,qk 
do i=l,m 
do 1 k=l,n
if(tt(i).ge.t(k).and.tt(i).It.t(k+1))then

qk(i)= q(k)/6.0*((t(k+1)-tt(i))**3/h(k)-h(k)* (t(k+1)-tt(i) 
$ +q(k+1) / 6 . 0 * ((tt(i)-t(k))**3/h(k)-h(k)* (tt(i)-t(k)))
$ +y (k) * (t (k+1) -tt (i) ) /h (k) +y (k+1) * (tt (i) -t (k) ) / h  (k)
endif 

1 continue 
enddo 
return 
end
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B.2 MADS Part B programs

1 . ningps.m
2 . rdgps.m
3. caivec.m
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1 . rungps.ni

% This function reads a standard code GPS file by rdgps2.m,
% uses a formula to calculate velocity vectors and passes 
% back the position at the required times...
% This function is just like the runephem.m file in mtass.
% For reading a gps file, only the time and gps_name are needed
% as input. The unit_number and gps parm do not need to be
% included in your function call. For a testing, I used 
% gps_name = 'matx.mat' as a GPS file.
%

%

% INPUT:
% time(nxl) Column array of input times.
% format yymmddhhmms s .
% gps_name GPS file name.
%

% gps_parm(16,1) GPS paramters:
% (l,l)=(l=use fitting function;
% 2=use GPS)
% (2,1)= 0 ^Elements Epoch time for GPS is 0
% (3,1) = (l=use keplarian elements;
% 2=use pos/vel). Only using 2 for balloon.
% (4,1)= 0 sugges those values are zero.
% (5,1)= 0 Those are used for ephemeirs for
% (6,1)= 0 satellite. Don't use for GPS in
% (7,1)= 0 balloon case.
% ( 8 , 1 ) =  0
% (9,1)= 0
% (11:13,1) =posit ion vector (km)
% (14:16,1)=velocity vector(km/sec)
%

% OUTPUT:
% r(3xn) Column array of position vector
% at required times .
% v(3xn) Column array of velocity vector
% at required times.
% quality Quality flag
% 0=ok
% >0 GPS read problem.
% -1= invalid input times.
% MODIFY: Liping Mo 07/00.
% function [r,v,quality] = rungps(time,gps_name,unit_number,gps_parm) 

function [r,v,quality] =
runephem (time, gps_name, unit_number, gps parm) ;
% gps_name = 'mtal.dat';

inipos = [0, 0, 0]; %Substitute the initial value for position of
%balloon.

iniTim = 960428.013857148; %Initial time for a supplied satellite 
data

%f ile
if nargin==2 %input two arguments in function.

unit_number=10; gps_parm (1,1) =2 ,- 
end;
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if nargin==3 %input three arguments in function.
gps_parm(1,1) =2; 

end;

p=size(time,1); quality = 0;
%%Make sure there are input times available 

if p>0
rl=zeros(1,3); %change row to p rows 
vl=zeros(1,3);
r=zeros (3 ,p) ,- %Initial the r and v, so the si^e of r, v 
v=zeros(3,p); %are same as runephem.m in MTASS.-

% open GPS file here....
[rl,tl,ierr] = rdgps (2,gps_name, 10,gps_parm(1,1)) ,- 

%% Ensure the GPS file can be opened sucessfully....
if ierr == 0 %read GPS file here.....

i = 2; % i is a integer number for start to read the line of
file

a = i; %a is a integer number for while loop useing
while i < 200+a, i = i+1;
[rl,tl,ierr] = rdgps(i, gps_name, 10, gps parm(1,1)) ;

%Using integer to call
rdgps2.m

%The integer is number of
line in

%gps data

%%put rl(px3) to r(3xp) 
for j  = 1 : 3  
r (j ,i-a) = r l (1,j); 
end;

delT = tl - iniTim;
[vl] =calvel(inipos,rl,iniTim,tl); 
%%put vl(px3) to v(3xp) 

for j =1 : 3  
v (j,i-a) = v l (1,j ); 
end; 

inipos = rl; 
iniTim = tl;
quality = quality + ierr; 

end; %end for while loop
else
quality = ierr;
end; %end for if ierr==0

else
quality = -1; 

end; %End for p>0 block if....
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2. rdgps.m

%This function reads in gps data from gps.txt.
% Input:
% line(Lxl): line number for read GPS data-
% gps_parm(16,1) GPS paramters:
% GPS^name: gps files name, (like gps_txt)
% output:
% gpspos(nx3): subset of gps data for position vector.
% gpstim(nx3): subset of gps data for time vector.
% ierr : = 0 ok to read GPS file.
% >0 Problem to read GPS file.
%function [gpspos,gpstim,ierr] = 
rdgps1 (line,gps_name,unit number,gps parm) 
function [gpspos,gpstim,ierr] = 

rdgps2(line,gps_name,unit_number, gps parm) ;
if nargin==2 %input two parmeters for function.
unit_number=10; gps_parm(l,1)=2;
end;
if nargin==3 %input three parmeters for function.

gps _parm(l, 1) =2; 
end;
if nargin==4 %input four parmeters for function.

[fid, message] = fopen(gps_name) ; 
if fid -=-1 

n = line;
stude = f seek (fid, 85* (n-1) , -1) ,- 
position=ftell (f id) ,- 
a = fscanf (f id, 1 %g %g %g',[4,l]); 
b = a ' ;
%get gps position from gps file (2,3,4) colcumn 

for i = 1:3, 
gpspos(1,i) = b (1,i+1); 
end;

%get gps time from gps flie(l) colcumn. 
gpstim (1,1) =b(l,l); 
ierr = 0; 
else
disp ( ’ PROBLEM READING GPS DATA! ' ) ; 
disp(message); 
ierr = 1; 

end;
end;
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3. calvec.m

%THis function, calculates the velocity vector using given 
%initial values of position vector and time.
% Input:
% positl(lx3): initial position vector by user given.
% posit2(lx3): The position vector read from GPS data.
% timel(lxl): initial time by user given.
% time2(lxl): The time read from GPS data.
% Output:
% Vel(lx3): velocity vector on time2.
%function [Vel] = calvel(positl,posit2,timel,time2)' 
function [Vel] = Calve2 (positl,posit2,timel,time2); 

for i = 1:3,
deltpos(l,i) = posit2(l,i) - positl(l,i);
deltTim = time2 - timel;
Vel(l,i) = deltpos (1, i)./deltTim; 
end;

% disp(1 The velocity is ');
% disp([Vel] ) ;
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