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ABSTRACT

In this study, I investigate and conduct an experiment on two-stage clustering 

procedures, hybrid models in simulated environments where conditions such as 

collinearity problems and cluster structures are controlled, and in real-life problems 

where conditions are not controlled. The first hybrid model (NK) is an integration 

between a neural network (NN) and the k-means algorithm (KM) where NN screens 

seeds and passes them to KM. The second hybrid (GK) uses a genetic algorithm (GA) 

instead o f  the neural network. Both NN and GA used in this study are in their simplest- 

possible forms.

In the simulated data sets, I investigate two properties: clustering performance 

comparisons and effects o f  five factors (scale, sample size, density, number o f clusters, 

and number o f variables) on the five clustering approaches (KM, NN, NK, GA, GK). 

Density, number o f clusters, and dimension influence the clustering performance o f all 

five approaches. KM, NK, and GK classify well when all clusters contain a similar 

number o f  observations, while NK and GK perform better than the KM. NN performs 

well when one cluster contains more observations than any other cluster. The two 

hybrid models perform at least as well as KM, although the environments are in favor of 

the KM. The most crucial information, the true number o f  clusters, is provided to the 

KM only. In addition, the cluster structures are simple: the clusters are well separated; 

the variances and cluster sizes are uniform; the correlation between any pair o f variables

iii
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and collinearity problems are not significant; and the observations are normally 

distributed.

Real-life problems consist o f three problems with a known natural cluster 

structure and one problem with an unknown natural cluster structure. Overall results 

indicate that GK performs better than KM, while NK is the worst performing among the 

five approaches. The two machine learning approaches generate better results than KM 

in an environment that does not favor KM.

GK has shown to be the best or among the best in a simulated environment and 

in real-life situations. Furthermore, the GK can detect firms with promising financial 

prospect such as acquisition targets and firms with “buy” recommendation, better than 

all other approaches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to 

reproduce, by appropriate methods, upon request, any or all portions of this Thesis/Dissertation. It is 

understood that “proper request” consists of the agreement, on the part of the requesting party, that said 

reproduction is for his personal use and that subsequent reproduction will not occur without written approval 

of the author of this Thesis/Dissertation. Further, any portions of the Thesis/Dissertation used in books, 

papers, and other works must be appropriately referenced to this Thesis/Dissertation.

Finally, the author of this Thesis/Dissertation reserves the right to publish freely, in the literature, at 

any time, any or all portions of this Thesis/Dissertation.

Author

Date

GS Form 14 
(4/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DEDICATION

To The Lertwacharas:

Yaowanit & Viroj (Mom & Dad),

Kaveepan & Kaveechok (Brothers), 

Thammahatai & Thammajade (Motivators), and 

Wilawan (Wife)

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT............................................................................................................................iii

LIST OF TABLES........................................................................................................................ ix

LIST OF FIGURES......................................................................................................................xi

ACKNOWLEDGEMENTS...................................................................................................... xii

CHAPTER 1 INTRODUCTION................................................................................................. 1

CHAPTER 2 LITERATURE REVIEW .....................................................................................7

Section 2.1 Traditional Clustering Techniques................................................................. 7

Section 2.1.1 Hierarchical Procedures.........................................................................8

Section 2.1.2 Nonhierarchical Procedures................................................................ 11

Section 2.2 Machine Learning Approaches and Clustering...........................................14

Section 2.2.1 Cluster Analysis and N N s.................................................................. 15

Section 2.2.2 Cluster Analysis and G A s.................................................................. 21

Section 2.3 Hybrid M odels................................................................................................. 24

Section 2.4 Summary........................................................................................................... 26

CHAPTER 3 DATA AND PROCEDURE.............................................................................. 28

Section 3.1 Simulation Analysis........................................................................................ 28

Section 3.1.1 Data and Experimental Design.......................................................... 29

Section 3.1.2 Methodology......................................................................................... 32

Section 3.2 Analysis o f  Empirical Data............................................................................ 35

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vii

Section 3.2.1 Acquisition Targets and Bankruptcy Predictions............................35

Section 3.2.2 Analysts’ Stock Recommendations...................................................37

Section 3.2.3 Mutual Fund Classifications...............................................................38

Section 3.2.4 Risk Classification for Dot-Com Companies.................................. 40

CHAPTER 4 RESULTS ON SIMULATED DATA..............................................................41

Section 4.1 Correct Classification and the Five Factors................................................ 41

Section 4.2 Ranked Performance.......................................................................................46

CHAPTER 5 EMPIRICAL EVIDENCE................................................................................. 51

Section 5.1 Acquisition Targets and Bankruptcy Predictions.......................................52

Section 5.1.1 Random Sampling Method................................................................. 53

Section 5.1.2 Matched Sampling M ethod................................................................ 55

Section 5.2 Analysts’ Stock Recommendations..............................................................57

Section 5.2.1 Five-Cluster Structure.........................................................................57

Section 5.2.2 Two-Cluster Structure.........................................................................59

Section 5.3 Mutual Fund Classifications..........................................................................61

Section 5.3.1 No-load Funds......................................................................................62

Section 5.3.2 Load Funds........................................................................................... 64

Section 5.4 Overall Results on the Real-Life Problems with
Natural Cluster Structure............................................................................................ 67

Section 5.5 Risk Classification for Dot-Com Companies............................................. 70

CHAPTER 6 CONCLUSION, LIMITATION, AND
FUTURE RESEARCH................................................................................................73

APPENDIX A: SAS Code for Simulation............................................................................... 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



viii

APPENDIX B: Example SAS Code for 5 Clusters with 5 Variables.................................. 82

Section B .l The K-means Algorithm............................................................................... 83

Section B.2 The Neural Network.......................................................................................83

Section B.3 The Genetic Algorithm................................................................................. 84

REFERENCES............................................................................................................................91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table 1
Correlation Matrix ..........................................................................................................31

Table 2
Main and Interaction E ffects.........................................................................................42

Table 3
Mean Percent o f  Correct Classifications..................................................................... 45

Table 4
Analysis o f Variance o f  Contrast Variables.................................................................45

Table 5
Main and Interaction Effects on R ank..........................................................................48

Table 6
Mean Rank by F ac to rs ...................................................................................................49

Table 7
Analysis o f Variance o f  Contrast Ranked V ariables.................................................49

Table 8
Descriptive Statistics for the Acquisition and Bankruptcy Problem .......................54

Table 9
Correct Classifications for the Acquisition and Bankruptcy Problem.................... 55

Table 10
Descriptive Statistics for the Acquisition and Bankruptcy Problem .......................56

Table 11
Correct Classifications for the Acquisition and Bankruptcy Problem.................... 56

Table 12
Descriptive Statistics for the Analysts’ Recommendations Problem ..................... 58

Table 13
Correct Classifications for the Analysts’ Recommendations Problem................... 59

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X

Table 14
Descriptive Statistics for the Analysts’ Recommendations Problem..................... 60

Table 15
Correct Classifications for the Analysts’ Recommendations Problem...................61

Table 16
Descriptive Statistics for the Sample o f No-Load Funds..........................................62

Table 17
Correct Classifications for the No-Load Funds Problem..........................................64

Table 18
Descriptive Statistics for the Sample o f  Load Funds................................................ 65

Table 19
Equality o f  Means and V ariances............................................................................... 66

Table 20
Correct Classifications for the Load Funds Problem................................................ 66

Table 21
Relative Frequency o f  Overall Correct Classifications ...........................................68

Table 22
Rank o f  the Overall Correct Classifications..............................................................69

Table 23
Descriptive Statistics for the Sample o f Dot-Com Companies................................71

Table 24
Internal Criteria: Pseudo-F and Cubic Clustering Criterion ................................... 72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 1
Fully Connected N N ..................................................................................................... 16

Figure 2
C rossover........................................................................................................................22

Figure 3
M utation..........................................................................................................................22

Figure 4
Inversion .........................................................................................................................22

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I am greatly indebted to my family, dissertation committee, teachers, mentors, 

friends, and colleagues. First, I would like to thank my dissertation committee members: 

Dr. James J. Cochran, my academic mentor and dissertation committee chairman, for his 

time, patience, advice, encouragement, and motivation; Dr. Joe M. Pullis and Dr. Otis W. 

Gilley, who are always available to offer invaluable suggestions and support in many 

ways. I also would like to thank Dr. Anita Pennathur who suggested the mutual fund 

classifications and Dr. Zaiyong Tang who introduced the genetic algorithm to me.

Secondly, I wish to express my gratitude to teachers who have educated and 

encouraged me, especially Dr. Hani I. Mesak for his words o f  wisdom, encouragement, 

and inspiration; Dr. Dwight Anderson for his support, and advice; Dr. Gene Johnson; Dr. 

Thomas L. Means; and Dr. Marc C. Chopin for providing support and opportunities.

I should also thank friends and colleagues, especially the staff in the College o f 

Administration and Business; Ms. Linda Newbold, Ms. Brenda Sanderson, Ms. Sandra K. 

Nicklas, Ms. Sharon G. Hughes, Ms. Cherry D. Taylor, and Mr. Darrell Eddy, who 

kindly assisted me throughout my doctoral study.

I cannot conclude this section without expressing my appreciation to my family, 

especially my first and greatest teachers, my mom and dad. Without all o f  my teachers, 

mentors, friends, colleagues, and family, my name would not have been on the front 

cover o f this document.

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

Since the beginning o f  human kind, humans have dealt with classifying objects 

into groups. Humans have to be able to make distinctions between edible and poisonous 

objects. They may not initially recognize that there are distinct groups o f  poisonous and 

edible objects. Nevertheless, once they experience sickness and death, humans leam that 

there are two groups (poisonous and edible) that comprise the objects. This classification 

process, in which the number o f  groups is not known prior to the classification process, is 

known as ‘cluster analysis.’ In cluster analysis a large number o f  objects are classified 

into a smaller number o f meaningful groups based on pre-defined criteria. Therefore, a 

massive amount o f  information may be summarized so that it is easily understood and 

effectively employed. Everitt et al. (2001) state that cluster analysis is a  collection o f 

techniques that discover groups in data. These techniques are similar to discrimination 

methods except that clustering techniques do not generate any discriminating rule and the 

number o f  groups is not known prior to the clustering process. Although the techniques 

originated from biology, practitioners and researchers apply cluster analysis to various 

applications across disciplines including market segmentation, modeling economic 

prospects, price discrimination, information retrieval, and disease diagnosis. In market 

segmentation, for example, marketers can apply an appropriate marketing strategy to

1
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2
each market segment once the market is clustered based on various attributes such as 

age, gender, disposable income, and geography. The marketer can economically conduct 

experiments on how the market responds to a new product by taking a random sample 

from each market cluster in the entire market. Since the size o f  the sample is smaller than 

the size o f  the entire market, the marketer benefits from cluster analysis because o f  

reduced costs and time associated with the market testing. In another application, Sinclair 

and Cohen (1992) use cluster analysis to uncover five clusters in the softwood industry in 

North America based on the technology adoption levels. The cluster structure they 

uncover also explains the softwood producers’ profitability, investment intensity, and 

market share.

This study focuses on the clustering procedure known as the “k-means 

algorithm.” A k-means algorithm begins with a pre-determined starting point, called a 

‘seed,’ for each cluster. Observations are then aggregated into clusters based on their 

distances from the seeds. The k-means algorithm (KM) recalculates the center o f  the 

clusters every time an object is introduced to the group. Observations are then segregated 

according to their distances from these new centroids. The process is repeated until 

satisfaction o f some decision rule. In addition, KM is designed for non-overlapping 

clusters (Milligan and Cooper, 1987; and Wedel and Kamakura, 1997). Moreover, 

MacQueen (1967) and Murty and Krishna (1981) state that KM is efficient in terms o f 

storage requirements and computation time. Applications o f KM appear in a wide range 

o f disciplines such as biology, astronomy, image retrieval, data retrieval, economics, 

management, and market research. Church and Waclawski (1998), for example, 

investigate the relationship between personality orientation and executive leadership
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3
behavior utilizing cluster analysis. They find four distinct groups: innovators, analytical 

coordinators, implementers, and motivators. Their findings indicate that executives’ 

personalities do relate to their leadership styles. Ng and Huang (1999) use KM to identify 

new classes o f stars. Green, Schaffer, and Patterson (1988) analyze three real-world 

examples in market segmentation using a modified k-means algorithm.

KM is sensitive to the sequence o f  the data, specified number o f  clusters, and 

initial seeds. I f  the number o f clusters is misspecified and/or the specified seeds are not 

close to the true cluster means, it is likely that KMs will not effectively and efficiently 

discover the latent cluster structure. The well-established practice is to use prior 

knowledge and/or associated theories to estimate the number o f clusters and select the 

initial seeds randomly. Although this approach is expedient, there is evidence that 

randomly selected seeds are ineffective. Milligan (1980) finds that KM ineffectively 

identifies the latent cluster structure compared to the other clustering techniques when the 

seeds are randomly selected. However, his results also demonstrate that once the initial 

seeds are refined, KM effectively uncovers the latent cluster structure. Thus a random 

selection o f the initial seeds for KM is not recommended (Wedel and Kamakura, 1997), 

and a need for determining effective initial seeds for KM arises. The process o f searching 

for effective initial seeds for KM involves extensive computations, since computation 

requirements increase dramatically as the number o f clusters, objects, and variables 

increase.

The recent development o f computationally intensive approaches such as machine 

learning has raised interest in utilizing such approaches to identify the number o f clusters 

and approximate the effective initial seeds for KM. Machine learning approaches adjust
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4
parameters computed in previous step until some goodness o f  fit criterion is met. 

Machine learning approaches involved in this study include artificial neural network 

(NN) and genetic algorithm (GA). Backer (1995) defines NNs as “computational models 

designed to generate performance similar to that o f  the human brain.” A NN adjusts 

parameters computed in the previous step based on a learning rule until either an 

objective function satisfies a pre-determined requirement or a significant improvement in 

the objective function does not present. On the other hand, GAs are heuristic optimization 

techniques that imitate genetic production using genetic operators to repeatedly 

manipulate members in the population, generation after generation, attempting to 

eventually reach an optimum. Machine learning approaches are nonlinear in nature; 

therefore, they do not require certain assumptions such as normality and homogeneity o f  

variance, and they are flexible to a variety o f forms o f  objective functions. In addition, 

Chiou and Lan (2001) state that GAs, in particular, do not require prior assumptions 

regarding cluster structure. Moreover, the authors also add that the type o f  variables and 

the number o f  variables used in the analysis do not severely affect the accuracy o f  the 

GAs but do affect the computation storage and time o f GAs. Machine learning 

approaches have been used in a variety o f  applications such as analyzing credit card 

fraud, forecasting machine tool loading, capital markets analysis, crop forecasting, 

product marketing, and property tax analysis. Considering the weaknesses and 

requirements o f  KMs together with the computational ability o f the machine learning 

approaches, it is conceivable that the machine learning approach may contribute a 

significant improvement to KM in recovering the latent cluster structure.
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5
This study investigates clustering power that machine learning approaches 

contribute to KMs in both simulated problems and actual financial problems. The 

simulated problems are generated in accordance with an experimental designed to allow 

for investigations o f  the accuracy and the efficiency o f  the clustering techniques 

corresponding to different levels o f various factors such as the number o f attributes, 

number o f  groups in the data set, density level, sample sizes, and distances between 

clusters. The financial problems incorporate acquisition targets and corporate failures 

predictions, analysts’ stock recommendations, mutual funds classification, and latent 

clusters discovery among dot-com companies. The financial problems are investigated 

through financial ratios. Machine learning approaches, including NNs and GAs, are 

employed to determine the number o f  clusters and their initial seeds to be used as initial 

values in KM. The clustering performances o f  KMs with and without assistance from 

machine learning approaches are compared for the simulated problems and o f other 

benchmarks in financial applications in term o f the correct classification rate. In 

summary, this study attempts to answer the following two research questions.

Research Question #1: Does the k-means algorithm with initial seeds from machine

learning approaches outperform the k-means algorithm with 

random seeds?

Research Question #2: Do the accuracy o f the tested clustering approaches differs

across levels o f the five previously discussed factors?

The academic literature regarding traditional clustering techniques, machine 

learning approaches, and hybrid models is reviewed in Chapter 2. In Chapter 3 we
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6
describe the process by which our simulated problems are generated and discuss the 

data collection processes for financial problems. The architectures o f  NNs and GAs are 

also discussed in this chapter. We report and discuss the results o f  our analyses on 

simulated data in Chapter 4. In Chapter 5 we present findings on the real financial 

problems. Finally, we summarize our results, report limitations o f this study, and indicate 

direction o f future research in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

This chapter summarizes and discusses scholarly research in cluster analysis. In 

addition, this chapter also includes an overview o f approaches related to cluster analysis. 

This chapter is divided into three sections. Section I provides an overview o f traditional 

clustering techniques and summarizes relevant research in the literature. Section II 

includes an overview o f machine learning approaches and a discussion o f research in 

machine learning approaches to cluster analysis. Section III discusses hybrid models in 

cluster analysis.

2.1 Traditional Clustering Techniques 

Cluster analysis (sometimes known as numerical taxonomy, grouping analysis, or 

unsupervised pattern recognition) is a multivariate procedure that organizes observations 

into a small number o f  relatively homogenous and meaningful groups. Generally, there 

are three types o f  clustering techniques: overlapping, non-overlapping, and fuzzy models. 

This study deals exclusively with non-overlapping techniques. These techniques only 

allow an observation to be in one cluster only. These techniques can be further divided 

into hierarchical and nonhierarchical methods. The following subsections include 

overviews o f hierarchical and nonhierarchical clustering techniques.

7
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8
2.1.1 Hierarchical Procedures

Rather than generate a set o f clusters directly, these procedures produce a 

hierarchical tree representing relationships among observations based on a pre

determined measure o f  their similarity or dissimilarity. Researchers must use judgment in 

determining the cluster structure. Hierarchical procedures can be further grouped into two 

classes: agglomerative and disagglomerative. Agglomerative hierarchical procedures start 

with the maximum possible number o f  clusters (which is equal to the number o f 

observations). In each proceeding iteration, the number o f clusters is reduced by one. 

This reduction is accomplished by merging the two closest clusters. Obviously, at the last 

step only one cluster that includes all observations remains. On the other hand, 

disagglomerative hierarchical techniques (sometimes called divisive procedures) start 

with one cluster that contains all observations. The most dissimilar observation is then 

separated from others. This results in repeated formation o f  singular clusters. Therefore, 

each final cluster contains only one member. Neither type o f hierarchical procedures 

requires a starting point, but they do require a desired number o f clusters; otherwise, a 

stopping rule must be employed. The stopping rule can be derived from an index that can 

be classified as internal and external criteria. Internal criteria emerge during the 

clustering process, while external criteria require some additional information that is not 

used in the clustering process. The additional information can take a form o f a separate 

data set or a variable that is not involved in the clustering process, or can be prior 

knowledge o f the latent cluster structure (which is not practical for conducting cluster 

analysis using the real data sets). Milligan (1981) examines cluster recovery measures o f 

30 internal criteria based on their agreement with four external criteria. Milligan and
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9
Cooper (1985) also investigate 30 internal criteria normally employed to develop 

stopping rules for the best number o f clusters in the data set. The Calinski and Harabasz 

(1974) index and the Cubic Clustering Criterion (CCC) (Sarle, 1983) are found to be 

superior to other internal criteria (Milligan and Cooper, 1985). Both indices are 

automatically given by SAS’s FASTCLUS procedure. A larger value o f either o f these 

indices indicates better cluster recovery by the clustering techniques. Milligan and 

Cooper also suggest that these internal criteria are also applicable for nonhierarchical 

clustering techniques although these internal criteria are examined via hierarchical 

clustering techniques.

Many studies have investigated cluster recovery achieved by various types o f 

hierarchical techniques. Milligan et al. (1983) investigate the effects o f  cluster size, 

dimensionality, and the number o f  clusters on ability to recover the latent clusters for four 

hierarchical clustering methods. In addition to these three factors, four types o f  error 

perturbations are also included in the simulation. The performances are evaluated on the 

basis o f  four external criterion measures, including the Rand’s (1971) index, corrected 

Rand (Childress, 1981), Jaccard statistics (Anderberg, 1973), and Fowlkes and Mallows 

statistics (Milligan et al., 1983). Their findings indicate that the best number o f  clusters, 

provided by the four external criteria, is negatively correlated with the ability to recover 

the latent cluster structure o f  the hierarchical clustering techniques given a fixed number 

o f  observations in the data set. On the other hand, the recovery ability increases as the 

number o f  relevant attributes increase.

Hierarchical clustering techniques effectively classify data regardless o f clusters’ 

shapes (Punj and Stewart, 1983). For this reason, applications o f the hierarchical
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clustering procedure generally appear in variety o f  areas. Klastorin (1982) uncovers 

five clusters among short-term hospitals using a hierarchical clustering technique. These 

five clusters differ in terms o f location, income o f  the local population, number o f 

facilities and services, and average cost per case. Kamrani et al. (1993) and Biles et al. 

(1991) apply hierarchical cluster analysis to a problem o f manufacturing design and find 

a significant contribution o f  cluster analysis in the efficiency o f  the new design 

manufacturing. Sinclair and Cohen (1992) investigate the effect o f  continuous technology 

adoption on profitability, investment intensity, and market share in the North American 

softwood industry. They find five clusters in the data set that suggested relationship 

between the continuous adoption o f new technologies and market share and growth. 

Hofstede (1998) investigates subcultures in organizations and found professional, 

administrative, and customer interface subcultures. His results suggest that managers 

must clarify job classifications correctly in order to make appropriate assignments o f 

personnel to jobs. Harvey (1986), Sackett et al. (1981), and Cornelius et al. (1979) also 

study job classification using hierarchical clustering procedures.

Despite the usefulness o f the hierarchical clustering procedures, drawbacks o f 

these techniques should be noted as well. First, the hierarchical clustering procedures are 

only applicable to qualitative data. Frequently, one must deal with both qualitative and 

quantitative data; under such conditions, hierarchical clustering techniques are o f limited 

use. Second, once an observation is classified into a group by a hierarchical clustering 

procedure, the observation remains in that group throughout the process. If the 

observation fits better in any other group at any later stage, its membership is not 

changed. In addition, hierarchical clustering techniques are sensitive to outliers and
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irrelevant attributes (Punj and Stewart, 1983). Moreover, Murty and Krishna (1981) 

add that hierarchical clustering techniques involve high storage and computation 

requirements. As a result, practical application o f  hierarchical clustering techniques is 

limited to small sample sets. Furthermore, Milligan (1980) suggests that the hierarchical 

clustering techniques are sensitive to types o f  error perturbations in the data set, which 

include error-free (explain), outliers, distances, random noise dimensions, distance 

measurements, and standardization. Allowing for these weaknesses, the nonhierarchical 

clustering procedures are preferred to the hierarchical procedures (Murty and Krishna, 

1981; and Punj and Stewart, 1983).

2.1.2 Nonhierarchical Procedures

Nonhierarchical procedures, sometimes referred to as the k-means algorithm 

(KM) or iterative partitioning methods, are generally preferred to hierarchical clustering 

techniques when the sample size is large and the data set includes at least one continuous 

variable (Wedel and Kamakura, 1997). KM begins with a pre-determined starting 

centroid, or seed for each cluster. Observations are then grouped on the basis o f  their 

distances from the seeds. In some nonhierarchical procedures, each observation is placed 

into the cluster with the nearest centroid and the centroids are recalculated after all 

observations are assigned to a cluster. In other nonhierarchical procedures, the centroids 

are recalculated after each observation is assigned to a cluster. In either instance, the 

clustering procedure is continues (using the new centroids) until some stopping criterion 

is met.

Wedel and Kamakura (1997) mention five dominant nonhierarchical methods: 

Forgy’s method, Jancey’s (1966) method, MacQueen’s (1967) method, the convergence
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method, and the exchange algorithm o f Banfield and Bassil (1977). Forgy’s method 

and Jancey’s (1966) methods recompute a new set o f seeds after all observations are 

completely assigned. This procedure is repeated until there is no improvement based on 

an optimization criterion (such as minimizing the sum o f squared Euclidean distances 

between members and their segment mean). MacQueen’s (1967) method, the 

convergence method, and the exchange algorithm o f Banfield and Bassil (1977) 

recalculate the seed every time an observation is merged. Unlike the convergence method 

and the exchange algorithm o f  Banfield and Bassil (1977), MacQueen’s (1967) method 

ends after the first round o f  reallocating all observations; thus, MacQueen’s (1967) 

method consumes the least time relative to the other four dominant nonhierarchical 

methods (Anderberg, 1973).

Research on KM appears in a wide range o f disciplines. Slater and Olson (2001) 

perform KM on firms’ marketing strategies and find four marketing strategies: aggressive 

marketers, mass marketers, marketing minimizers, and value marketers. They also find 

that firms perform well i f  specific marketing strategies are matched with specific business 

strategies. Barrett and Wilkinson (1985) apply KM to Australian manufacturing firms to 

eliminate problems in exporting their products and services.

Unfortunately, the nonhierarchical techniques are sensitive to the sequence o f  the 

data, specified number o f  clusters, and initial seeds (Murty and Krishna, 1981; Punj and 

Stewart, 1983; Milligan and Cooper, 1987; and Wedel and Kamakura, 1997). 

Furthermore, nonhierarchical procedures require a pre-specified number o f  clusters and 

starting points based on the desired number o f cluster. These requirements usually cause 

the two most common problems in classification problems: incorrectly determining the
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numbers o f clusters, and incorrectly assigning observations to clusters. The well- 

established practice is to initially use a hierarchical clustering technique, prior knowledge 

and/or associated theory to estimate the number o f  clusters. The initial seeds are then 

selected randomly. In addition, the nonhierarchical procedures tend to converge to local 

optima. Punj and Stewart (1983) summarize cluster analysis in marketing research. 

According to Punj and Stewart (1983), the purposes o f  clustering in marketing include 

market segmentation, buyers’ behavior identification, and competitors’ recognition. They 

indicate four issues dealing with using the cluster analysis: data transformation, desired 

number o f clusters, validity, and variable selection. Data transformation does not affect 

the final outcome o f cluster analysis except when a substantial correlation is present in 

the data set. Punj and Stewart (1983) point out that only when the initial seeds are 

specified nonrandomly and the number o f clusters is correctly specified, KM 

demonstrated superior performance compared to the hierarchical clustering procedure. 

Therefore, they recommend a two-stage clustering technique where a hierarchical 

clustering technique supplies the number o f  clusters and the initial seeds to a 

nonhierarchical clustering technique. To verify the stability o f  the cluster solution, they 

suggest that it should be applied to a holdout sample for a cross-validation.

Milligan (1980), Hruschka and Natter (1999), Balakrishnan et. al. (1994), Green 

and Krieger (1995), and Krieger and Green (1996) make extensive performance 

comparisons between k-means and other clustering algorithms. Milligan (1980), in 

particular, examines the effect o f  six types o f error perturbation on fifteen clustering 

techniques including KM. In addition to the six types o f  error perturbation, the 

experiment includes three factors: number o f clusters, number o f attributes, and
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distribution patterns. Milligan (1980) suggests that the Rand’s (1971) index and the 

point-biserial correlation can be used as external and internal criteria when a comparison 

involves hierarchical and nonhierarchical clustering procedures because both indices are 

general and applicable for both hierarchical and nonhierarchical clustering procedures. 

The results reveal that KM is less successful, relative to hierarchical clustering 

techniques, in recovering the latent cluster structure and is ranked the worst among all 

clustering techniques in the framework. However, KM satisfactorily recoveres the latent 

cluster structure once the number o f  clusters and initial seeds are specified by a 

hierarchical clustering technique. Through Monte Carlo simulation, Helsen and Green 

(1991) and Murty and Krishna (1981) affirm Milligan’s (1980) findings that the initial 

seed selection process does affect the clustering performance o f KM.

Consequently, identifying effective initial seeds for KM is o f  interest to many 

researchers (Milligan and Cooper, 1987). However, the process is computationally 

intensive and intractable because o f  the high number o f  possible combinations for the 

initial seeds and its combinatorial character (Pinter and Pesti, 1991).

2.2 Machine Learning Approaches and Clustering 

Many machine learning approaches have been applied to clustering problems. 

Machine learning is a computer system that learns from experiences. The data set passes 

through the system repeatedly, and the system evaluates its configuration on every 

repetition until a predetermined criterion is satisfied. Machine learning approaches, which 

include neural networks (NN) and genetic algorithm (GA), are computationally intensive 

and are expected to demonstrate promising clustering performances. In addition, NNs are 

generally less sensitive to dispersion level compared to traditional clustering algorithms
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(Chen et al., 1995). The dispersion level measures the within-group variation (the 

higher dispersion level, the higher within-group variation). However, the results are 

inconclusive regarding this speculation when each o f the machine learning approaches 

performs cluster analysis individually (Krishnamurthy et al., 1990; Balakrishnan et al., 

1994; and Balakrishnan et al., 1996).

The performance o f  NNs has been shown to degrade as the number o f  clusters 

increases (Balakrishnan et al., 1994). Moreover, the NNs require tremendous amounts o f 

computational time (Tam and Kiang, 1992). Balakrishnan et al. (1996) also add that the 

NNs are sensitive to number o f  attributes and error levels, where “error” represents data 

collection and measurement error that may cause a missclassification. The following 

subsections provide a general background o f  NNs and GAs and discuss research 

regarding the use o f NNs and GAs in clustering.

2.2.1 Cluster Analysis and NNs

NNs mimic a mechanism o f  the brain (Hecht-Nielsen, 1990). A NN consists o f at 

least two layers: input and output. Any layer between input and output layers is called a 

hidden layer. As many hidden layers as desired may be inserted between the input and 

output layers. Each layer consists o f  a number o f  processing units. These processing units 

are called neurons or nodes and are computing devices. Each neuron in the hidden layer 

receives inputs from other neurons in the previous layer and sends outputs to neurons in 

the next layer. Each signal, either input or output, is multiplied by a weight before it is 

passed on to the next layer. Upon receiving the weighted inputs or signals from neurons 

in the previous layer, each neuron applies a function (called an activation function) to 

these signals. The numbers o f nodes in each layer need not to be equal. NNs leam a
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cluster structure from a training data set by adjusting weights for each node in the 

network to fit the data on a basis o f either external or internal measurements. An example 

o f a fully connected (explain) NN is illustrated in Figure 1. All nodes in a layer are 

connected to all nodes in the previous and following layer.

Input Layer Hidden Layer Output Layer

Figure 1: Fully Connected NN

NNs can be categorized on the basis o f how they monitor their output and how the 

data flow through them (Garson, 1998). Based on how the networks monitor their results, 

NNs can be classified into two groups: supervised and unsupervised. Supervised NNs 

compare their results with target outputs or actual outcomes. These NNs adjust their
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weights until a measurement o f  the differences between the results and the targets falls 

within a preset tolerance level. Conversely, unsupervised NNs leam from the data set as 

each observation is fed into the network without comparing their results to a target 

output.

Based on the direction o f the data flow, NNs can be also divided into two groups: 

feedforward and feedback (Chester, 1993). The data flow through the network once at 

each round for feedforward NNs. The weights are adjusted as observations pass through 

using only the information o f  the current observation. Signals are sent in one direction 

from input layer to the output layer through the hidden layer, i f  any exist. The signals do 

not travel from the later layer back to the earlier layer. On the other hand, the data are 

circulating in the networks for feedback NNs. The signals can travel back and forth 

between layers. The weights are adjusted using both the current and previous 

observations. The number o f  circulations and how the data circulate depend on the 

architecture o f the networks.

Many NN approaches, including backpropagation (BP) and the self-organizing 

map (SOM), have been applied to clustering problems. BP can be designed to be either a 

feedback or a feedforward NN. BP generally uses mean square error and gradient descent 

to determine the fitness o f its predictions and has at least two layers: input and output. 

The connections are designed based on the objective o f  researchers. SOM, first 

introduced in early 1980s by Kohonen (2001), is generally used to (1) classify a data set, 

(2) establish clusters o f  different variables, (3) reduce a larger input vector to a smaller 

number o f  clusters, and (4) solve routing problems such as the traveling salesman 

problem (Ritter et al., 1992). In the input layer, the number o f neurons is the same as the
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number o f the input variables, and each o f  these neurons is connected to all neurons in 

the next layer. In the next, Kohonen, layer, the number o f  neurons must be at least equal 

to the number o f  observations. Each observation belongs to the nearest neuron. Once an 

observation is assigned to a neuron, the weight or the location o f  the neuron is 

recalculated. The recalculation process is referred to as the Kohonen’s learning rule.

The use o f  NNs in cluster analysis has been investigated by a number o f 

researchers. Tam and Kiang (1992) apply NNs to bankruptcy predictions problems and 

suggest that NNs are superior to linear discriminant analysis because (1) the potentially 

non-linear function produced by a NN is suitable to a multi-modal data set, (2) NNs are 

capable o f adaptively adjusting the model according to a change in the real-world data, 

and (3) NNs do not assume any probability distribution and do not require any specific 

form o f input or output. Nonetheless, Tam and Kiang (1992) add that there are some 

disadvantages in NNs. First, there is no formal procedure in configuring the network. 

Second, NNs require a tremendous amount o f training time. And finally, a symbolic form 

of the NN is complicated. The authors also suggest combining the NN with other 

algorithms.

Balakrishnan et al. (1994) apply two types o f NNs: Kohonen’s learning rule, both 

with and without conscience, to a  simulated data set which is generated following 

guidelines o f Milligan (1980, 1983, and 1985). They define a NN with conscience as a 

NN that adjusts not only weights o f  the winning node but also weights o f  the nodes 

surround it. Balakrishnan et al. (1994) compare the results to a k-means algorithm’s 

performance. The results o f  their study indicate that KM generates less misclassification
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than the two types o f  NNs. Furthermore, Balakrishnan et al. (1994) add that the 

performance o f  NNs worsens as the number o f  clusters increase.

Krishnamurthy et al. (1990) introduce the frequency-sensitive competitive 

learning algorithm (FSCL). The FSCL is a modified version o f  SOM with a penalty 

applied to the winning node if  it wins too often. The weights o f  the winning node are 

adjusted to the opposite direction it should be. For example, i f  the winning node has a 

value o f  5 and the corresponding value is 7, the value o f  the winning node would change 

from 5 to 4 or 4.5 rather than 6 or 5.5. The FSCL and SOM perform well with vector 

quantization (VQ) o f  speech and images. As described by Kohonen (2001), VQ is a 

classical signal-approximation method that forms sets o f  vectors, which are usually called 

a codebook, to represent the input data vector in the learning phrase. Then the closest 

vector in the codebook as measured by the Euclidean metric will represent a new input 

vector. Subsequently, the vector from the codebook will then be transmitted or processed.

NNs have been compared to many traditional clustering algorithms, especially 

KM. Many researchers have found inconclusive results regarding comparative 

performance between KM and NNs but a hybrid between KM and NN is usually found 

superior to either basic approach and is recommended. Balakrishnan et al. (1996) 

compare performances o f  FSCL and K-means algorithms using real data and simulated 

data generated as prescribed in Milligan (1980, and 1985). On the other hand, the real 

data used in their study incorporate brand choice data in the coffee industry. With 

simulated data, FSCL’s performances are very sensitive to the number o f  clusters, 

number o f attributes, and error levels, while KM’s performances are only sensitive to 

error levels according to their analysis o f  variance. With the brand choice data set, the
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FSCL provides clusters with similar sizes and high interpretability. However, the 

FSCL misclassifies members more frequently than KM for the brand choice data. 

Therefore, they hypothesize that a combined approach might provide a superior cluster 

solution (in terms o f frequency o f  misclassified observations). The starting seeds for KM 

are estimated by FCSL. The performances are in between the performances o f  the FSCL 

and KM in terms o f  their interpretabilities and the similarities o f  cluster sizes. 

Balakrishnan (1996), therefore, recommends an investigating a hybridization o f  a NN and 

a clustering algorithm.

Chen et al. (1995) compare SOM to seven traditional clustering algorithms: single 

linkage, complete linkage, average linkage, centroid method, Ward’s minimum variance, 

two-stage density linkage, and the Kth-nearest neighbor density linkage. Data sets used in 

the comparison are randomly generated and varied on four factors: number o f  clusters, 

number o f variables, relative dispersion within the clusters, and number o f  observations. 

The results indicate the SOM is superior to conventional classification algorithms, 

especially at relatively high levels o f  dispersion.

Hruschka and Natter (1999) compare a feedforward NN to KM for cluster-based 

market segmentation. Hruschka and Natter (1999) also analyze the usages o f  brands o f 

household cleaners in different situations. In their study, a feedforward NN outperforms 

KM based on the Davies-Bouldin index (Davies and Bouldin, 1979). The NN suggests a 

two-cluster structure, while KM fails to recover the latent cluster structure on the basis o f 

an external criterion. Hruschka and Natter (1999) also suggest that researchers should 

consider using feedforward NNs in cluster analysis.
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Cinca (1996) complements the SOM and compares it with multivariate 

statistical models and a multilayer perceptron NN in a framework o f financial diagnosis. 

He reports that the results o f  the integrated SOM are compromising. In his study, Cinca 

finds SOMs to be superior to linear discriminant analysis and the multilayer perceptron 

NN. He also suggests that an integration o f NNs with a statistical approach or another 

machine learning approach would be a very powerful tool.

Results from previous studies are somewhat mixed. In many occasions, NNs are 

found to be superior to traditional clustering procedures. However, there is evidence that 

the opposite is true. This discrepancy may be the result o f deviation in network 

architecture. Furthermore, NNs (like other heuristic approaches) are not effective in 

finding a global optimum (Pinter and Pesti, 1991).

2.2.2 Cluster Analysis and GAs

GAs emulate genetic production in a search for solutions to optimization 

problems (Holland, 1992). Members o f  each generation are usually called chromosomes 

and represent a feasible solution to the problem. Each chromosome consists o f basic 

elements that are referred to as genes. As described by Goldberg (1989) and many others, 

the processes o f  GAs are as follows. The initial generation is usually randomly selected. 

Consequently, members o f the initial population are randomly selected to be parents o f 

the next generation with probability o f  selection based on the member’s success in the 

first generation (a member with a higher evaluating value based on some pre-determined 

criteria has a higher likelihood o f  selection). Then the selected chromosomes pass 

through one or more processes o f  crossover, mutation, and inversion. Crossover is simply 

a process o f swapping parts o f  the two selected chromosomes. Figure two illustrates a
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simple example o f  a crossover. A crossover point is randomly selected. Then, all genes 

behind the crossover point o f  the two selected chromosomes are swapped. Mutation 

deviates randomly selected genes. Figure three shows how genes are mutated. First, 

target genes are randomly selected. Then values o f the selected genes are changed. 

Inversion flips the series o f genes. Figure four demonstrates a basic inversion operation. 

First, the GA randomly selects a series o f genes. Then the series o f  selected genes will be 

reversed. The new chromosomes are substituted for chromosomes with low evaluating 

values from the previous generation. Thus, the new generation consists both of 

chromosomes with high evaluating values and new chromosomes. The process is 

repeated until the improvement in the evaluating value is less than some pre-determined 

value.

1 0 1 1 1 1 1 1 0 I o h ------------ H  o | i | i o 1 i 1 o

1 t 1 o | 1 0 1 1 1 0 1------------- H  i 1 o 1 i 1 1 o I 0
y r  y r

Crossover Point Crossover Point

Figure 2: Crossover

0 I l I 1 I l I 0 I Q I----------------- M Q I 0 I 1 I l I j I 0

▼ ▼ i  ▼
Selected Genes Selected Genes

Figure 3: Mutation

2__Ll.Lj.lj  I 0 I...0 I-------- Mo Ml OMl j l Q

Selected Genes Selected Genes

Figure 4: Inversion
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GAs are also widely compared to and combined with NNs to solve classification 

problems (Faulkenauer, 1998). Varetto (1998) performs comparisons between GA and 

linear discriminant analysis (LDA). The data consists equally o f  insolvent and solvent 

firms. LDA yielded a slightly better discriminant rule but consumed more time than GA 

did. Sexton and Dorsey (2000) configure three GAs and three BP NN models. The six 

machine learning models are examined in ten different real-world data sets referred to as 

cancer, card, diabetes, gene, glass, heart, heartc (heart data set without incomplete 

observations), horse, soybean, and thyroid. Cancer data are originally generated at the 

University o f  Wisconsin, Madison by Dr. William H. Wolberg. Card, Diabetes, Gene, 

Glass, Horse, and Soybean were from the UCI repository o f  machine learning databases. 

Heart and Heartc data sets are obtained from four sources: Hungarian Institute o f 

Cardiology, Budapest, Andras Janosi, MD; Univeresity Hospital, Zurich, Switzerland, 

William Steinbrun, MD; University Hospital, Basel, Switzerland, Matthias Pfisterer MD; 

and V.A. Medical Center, Long Beach and Cleveland Clinic Foundation, Robert Detrano, 

MD, Ph.D. A source o f  the Thyroid data set is not identified. All three GA models 

outperform each o f  the NNs except in the Horse data set, where the GA models are 

ranked first, second, and fourth in terms o f  an average classification error percentage.

GAs are recognized for their ability to locate a global optimum. GAs have been 

widely used in applications in many areas such as improving performance o f NNs, 

designing intelligent production lines, identifying images, and predicting stock market 

movements. Performances o f GAs are generally found to be excellent in previous studies. 

Chiou and Lan (2001) investigate clustering abilities o f  three configurations o f  GAs by
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comparing the clustering performances o f the GAs to an agglomerative hierarchical 

clustering method. The results indicate that the GAs perform better than the hierarchical 

clustering techniques when the sample size is medium to large. However, GAs included 

in their study require tremendous storage space relative to the hierarchical clustering 

technique. Finally, the authors also recommend a hybrid model between a GA and other 

traditional clustering techniques.

2.3 Hybrid Models

The hybrid systems are expected to eliminate weaknesses and capture strengths o f  

both KM and the machine learning algorithms. Machine learning algorithms are 

demonstrated to be more accurate than traditional clustering algorithms in many studies 

(Kattan and Cooper, 1998; Cinca, 1996; and Hruschka and Natter, 1999). In addition, the 

machine learning approach can identify and ignore influential variables. Moreover, the 

machine learning approaches do not require assumptions that must be met when using 

traditional clustering analyses. However, the machine learning approaches consume more 

time and storage than traditional clustering procedures. Another drawback for NN 

algorithms is that they are sensitive to cluster sizes in the same data set (Balakrishnan 

1996). If  all the clusters have approximately equal size, NNs generally perform better 

than KM. Moreover, results from NNs tend to be unstable and easily converge to local 

optima if  the sequence o f  the data changes. On the other hand, GAs are insensitive to the 

data sequence and usually discover a global optimum.

Hybrid models between hierarchical clustering techniques, KM, and machine- 

learning approaches have also been tested. The integrated approaches are found to be 

superior to individual procedures (Milligan, 1980; Milligan and Sokol, 1980; Murty and
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Krihna, 1981; Punj and Stewart, 1983; Wong and Lane, 1983; Scheibler and 

Schneider, 1985; Milligan and Cooper, 1987; Lee et al., 1998; Lee et al., 1996; and 

Markham & Ragsdale, 1995). Murty and Krihna (1981) report satisfactory performances 

o f a hybrid model between the MacQueen’s k-means algorithm and a hierarchical 

clustering technique for concentric and chain-like clusters in terms o f accuracy, 

computation time, and storage requirements. KM performs cluster analysis in the first 

stage and then passes the seed points to a hierarchical clustering technique. Data used in 

Murty and Krihna’s (1981) study are generated manually in the two-dimensional 

Euclidean space to form a concentric and a chain-like cluster. The results reaffirm the 

notion that integrated approaches are superior to individual clustering techniques.

Lee et al. (1998) examine a combined (traditional clustering algorithm and NN) 

approach. The performance o f  the integrated procedure is promising in the context o f 

software development cost estimation. Five data sets are randomly generated from the 

total data sets o f software development costs and fed into the clustering algorithm. The 

clustering analysis identifies a data set that produces the smallest error rate. This 

information is then passed to the NN in phrase two. Thereafter, five NNs with different 

configurations are tested. The best configuration is applied to the NN. Finally, a 

comparison between the NN and the combination o f  NN and the clustering analysis is 

examined using four different testing cases. The combined approach adds significant 

improvement to the NN approach.

Lee et al. (1996) also use hybrid NN models in a framework o f  bankruptcy 

predictions. Their study includes SOM, multivariate discriminant analysis (MDA), and 

induction o f decision tree (ID3) (Quinlan, 1986). MDA is similar to LDA except that
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MDA is used only when more than one attribute is incorporated in constructing a 

discriminant mle. ID3’s computational time increases only linearly with an increase in 

the number o f  observations and attributes. However, the decision tree must be rebuilt 

entirely upon a new observation available. The hybrid SOM and MDA model outperform 

other models: MDA, ID3, MDA-assisted NN, ID3-assisted NN, and a hybrid SOM and 

ID3 models.

Markham & Ragsdale (199S) combine Mahalonobis Distance Measures (MDM) 

with BP into a supervised multilayer feed-forward NN. Three approaches are compared 

on two types o f data sets: oil quality and bank failure. Similar to the jackknifing 

procedure, each type o f  data set is replicated thirty times. The hybrid approach 

discriminates on the average better than either MDM or NN does individually. The 

hybrid model produces a smaller average rate o f misclassifications than does MDM and 

NN at a 0.005 significance level.

2.4 Summary

From the literature reviewed in this chapter, one can draw several conclusions. 

First, hierarchical clustering techniques are only suitable for small data sets with 

qualitative variables because o f their high computation and storage requirements (Murty 

and Krihna 1981). Second, KM executes cluster analysis better than hierarchical 

clustering techniques with large sample that include at least one quantitative variable. 

Third, KM performs cluster analysis poorly if  the initial seeds are incorrectly specified; 

therefore, this condition necessitates effective initial seeds for successful use o f  KM. 

Fourth, researchers have investigated the utility o f the NNs in classification and cluster 

analysis problems and find inconclusive results whether or not the NNs cluster data better
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than traditional clustering techniques. Fifth, studies o f  application o f  GAs to cluster 

analysis problems provide promising results; however, the number o f references is 

limited. And finally, researchers widely agree that the initial seeds developed by other 

clustering techniques improve clustering performance o f  the k-means technique.
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CHAPTER 3

DATA AND PROCEDURE

Milligan and Cooper (1987) identify three strategies in validation techniques for 

cluster analysis: mathematical derivation, simulation analysis, and analysis o f empirical 

data sets. They also indicate that the mathematical derivation has often been complicated 

and provides limited value for applied analyses in the area o f cluster analysis. Therefore 

it is disregarded in this study. Consequently, experiments in this study incorporate two 

types o f analyses: simulation analysis and analysis o f empirical data sets. The sections o f 

this chapter proceed as follows. The first section discusses experimental design, data 

simulation, and clustering techniques used in simulated problems. The second section 

discusses empirical problems and related data collections, variables, and methodology.

3.1 Simulation Analysis 

According to Milligan and Cooper (1987), there are three steps in the simulation 

analysis: data generation, cluster analysis using clustering techniques o f  interest, and 

verification o f  the cluster results. In this section, data generation, experimental design, 

and clustering techniques used in this study are discussed.

28
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3.1.1 Data and Experimental Design

Simulated data sets are generated following guidelines in Milligan (1985). 

Milligan’s simulation procedure has been used in several references including 

Balakrishnan et al. (1994, 1996), Chen et al. (1995), Milligan (1980, 1981a, 1981b, 

1985), Milligan & Cooper (1985, 1987), Milligan & Sokol (1980), Milligan et al. (1983). 

The data are simulated using SAS version 8 because the SAS can simulate data sets, 

perform the k-means algorithm (KM), neural network (NN) and genetic algorithm (GA). 

The data are also normally distributed in Euclidean space. Since KM is designed for 

uncovering non-overlapping cluster structure, clusters must not be overlapping. Thus, 

cluster seeds are randomly selected except on the first dimension so that the clusters can 

be controlled to be non-overlapped at least on the first dimension. In order to generate 

data that possess these characteristics, we follow the simulation process suggested by 

Khattree and Naik (1999) using the following equation:

Y = XG + M 

where Y is the matrix o f  the simulated data ranges from 0 to 10.

X is a matrix o f  random variables that follows the multivariate normal 

distribution with the means and standard deviation o f 0 and 1.

G is a root matrix o f a diagonal variance-covariance matrix.

M is a matrix o f  variable means.

The standard deviations for all variables in matrix G are set to be 1.00 except for first 

variable, which is a controlled variable. The standard deviation o f the first variable equals 

0.09; therefore, there are sufficient separations between clusters on this variable (non
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overlapping clusters). Although the data are simulated through a diagonal variance- 

covariance matrix, there is no guarantee that the collinearity problem will not exist 

because o f the randomization in the process. We can only assure that the problem is not 

substantial. It is worth noting that well-separated clusters and minimal-collinearity data 

are conditions in favor o f KM.

Three basic and two hybrid approaches are tested on five factors: number o f 

clusters, density, dimension, proximity, and sample size with two replications per cell. 

The numbers o f latent clusters are 2, 3, and 7. Three levels o f  density are 0%, 20%, and 

60%, where 0% density represents equal cluster size. A  density level o f 20% indicates 

that 20% o f all observations are in one cluster and the remaining 80% o f all observations 

are equally assigned to the remaining clusters. In the same manner, 60% density 

designates 60% o f all observations into one cluster and the remaining 40% o f all 

observations into the remaining clusters equally. Effects o f  dimension are tested on three 

levels: 3 ,5 , and 7. Proximity or relative distance between clusters includes three levels: 1, 

1.5, and 2 standard deviations from the groups’ means. The data are truncated on the first 

dimension at 1 standard deviation from the mean at the relative distance level o f 1. In the 

similar manner, the data are truncated for the relative distance level o f 1.5 and 2 at 1.5 

and 2 standard deviation from the cluster means on the first dimension. Two levels o f  

sample size are 210 and 420 observations. Thus, 324 data sets (3 levels o f number o f 

clusters, 3 levels o f density, 3 level o f  dimensions, 3 levels o f proximity, 2 levels o f 

sample size and 2 replications) are analyzed. In addition to clustering performance 

comparisons, an analysis o f  variance (ANOVA) is performed to evaluate the impact o f 

the five factors on each o f  the clustering approaches.
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Table 1: Correlation Matrix

CORRELATION TOLERANCE
X I X2 X3 X4 X5 X6 X7

XI 1.00000 -0.0063
0.7598

-0.0140
0.4976

-0.0091
0.6583

-0.0156
0.4509

-0.0034
0.8688

-0.0213
0.3013

0.99895

X2 -0.0063
0.7598

1.00000 -0.0183
0.3694

-0.0075
0.7169

-0.0052
0.7996

-0.0104
0.6145

-0.0332
0.1073

0.99829

X3 -0.0140
0.4976

-0.0183
0.3694

1.00000 0.0138
0.5040

-0.0096
0.6424

0.0067
0.7458

-0.0013
0.9484

0.99912

X4 -0.0091
0.6583

-0.0075
0.7169

0.0138
0.5040

1.00000 0.0023
0.9113

-0.0176
0.3928

0.0106
0.6088

0.99926

X5 -0.0156
0.4509

-0.0052
0.7996

-0.0096
0.6424

0.0023
0.9113

1.00000 0.0150
0.4682

-0.0180
0.3820

0.99907

X6 -0.0034
0.8688

-0.0104
0.6145

0.0067
0.7458

-0.0176
0.3928

0.0150
0.4682

1.00000 -0.0246
0.2340

0.99870

X7 -0.0213
0.3013

-0.0332
0.1073

-0.0013
0.9484

0.0106
0.6088

-0.0180
0.3820

-0.0246
0.2340

1.00000 0.99738

Three data sets are generated for three levels o f  proximity: 1, 1.5, and 2. The 

characteristics o f  the three data sets are similar except for that the values o f the first 

variable vary based on where the data are truncated. For, example, the proximity o f  1 

indicates that each cluster is truncated at 1 standard deviation from the cluster means. 

Table 1 illustrates correlation matrix o f  the seven simulated variables used in this study 

where numbers on the top line are Pearson correlation coefficients and the numbers on 

the second line are p-values for each row. Based on the correlation matrix, we do not 

detect a serious correlation between any pair o f  variables. Table 1 also provides 

evidences o f  acceptable correlations in the data set. The tolerance levels are higher than 

0.990 for all variables, which indicates that no variable can be explained by a linear 

combination o f  all other variables in the analysis.
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3.1.2 Methodology

KM, two machine learning approaches, and two hybrid models are compared on 

the basis o f  their ability to maximize the within-group variance and are evaluated using 

SAS version 8. The FASTCLUS procedure in SAS is used as KM. KM is allowed a 

maximum number o f  iterations o f five hundred and randomly selects seeds from the data 

set. Furthermore, KM is given the true number o f  latent clusters. These configurations 

should provide an optimal condition for KM. NN is coded by modifying SAS code 

implemented by Sarle (1994). The GA is implemented using data step and macro 

commands in SAS. The configurations o f  NN and GA are discussed in the following 

sections. Finally, the two hybrid models are combinations o f KM and machine learning 

approaches. Each o f  the machine learning approaches is used to identify starting seeds 

and numbers o f  clusters for KM. The results o f  the machine learning approaches are used 

as “fine-tuned” starting points for the k-means. These two hybrid models are referred to 

as NN-assisted k-means (NK) and genetic-assisted k-means (GK). The comparisons are 

presented in terms o f  correctness o f cluster recovery and the rank o f  all methods in each 

scenario.

NN, a fully connected feedforward neural network as shown in figure 1 with only 

one node in the output layer, consists o f  three layers: input, hidden, and output layers. 

This NN is modified from Sarle’s (1994) NN. Sarle (1994) provide a prototype o f a 

simple supervised NN using SAS’s PROC NLP while the NN in this study is 

unsupervised NN. The number o f input nodes is exactly the same as the number o f 

attributes. The number o f nodes in the hidden layer is equal to the number o f desired or 

expected clusters. Once the initial weights are randomly selected, the observation is fed
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into the system through the input layer. The hidden layer applies a logistic function 

(sometimes called “softmax function”) to the observation:

where Yy is a function o f attributes for the y,h observation at the /th hidden node. The 

output layer then transforms Z, into a probability using the multinomial logistic function:

Probjj= Zjj / I fZ y )

where Probj represents the probability that the j th observation belongs to group /. The 

output layer applies a competitive rule allowing the competitive node with the highest 

probability to win and assigns the observation to the winning node (which represents a 

cluster). The procedure is repeated until there all observations are assigned. As with KM, 

we allow the NN a maximum of 500 iterations. Bentz and Merunka (2000) configure 

similar architecture (except that their NN is a generalized form o f the multinomial 

logistic function) that they refer to as a “NN with softmax output.” The distinction 

between the NN1 and the multinomial logistic function is that the multinomial logistic 

function is a function for classification problems where group memberships are known 

before a clustering process begins.

Our GA starts with 10 chromosomes in the first generation. Each chromosome, 

which represents a possible solution for the cluster structure, comprises clusters’ means. 

Therefore, each chromosome consists o f pxk elements, where p  is the number o f 

attributes and k is number o f clusters. Accordingly, the fitness value (the multiplicative 

inverse o f the sum o f square error) for each chromosome is calculated and compared. 

Parents o f  new chromosomes in the next generation are selected through “the roulette-
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wheel selection” where opportunity to be selected is determined by the fitness value. A 

chromosome with a high fitness value is assigned a higher likelihood o f being selected as 

a parent for new members in the next generation. This process is also called “mating.” 

The reproduction process incorporates crossover, mutation, and inversion. A crossover 

procedure randomly mates two chromosomes, where the probability o f  being selected for 

each chromosome is calculated based on its fitness value. Then two crossover points are 

randomly selected. Next, the two chromosomes are swapped between two crossover 

points. This generates two new chromosomes that will replace the worst least fit 

chromosomes from the current generation. Mutation points are randomly selected at a 

rate o f 10% and mutated based on the range o f the variable. For example, we have p x k  

genes; so we selected 10% o i p  x k  for mutation. If  the selected gene has a value o f  2.74 

on a variable that ranges from 0 to 10, then the gene takes 10 - 2.74 = 7.26 as a new 

value. Subsequently, a series of genes are randomly selected and inverted at a 10% rate. 

The reproduction process is repeated until at least eight chromosomes with the same 

fitness value are present in the same generation or until the maximum number o f 

iterations is reached.

Unlike KM and NN, the GA is only allowed 50 maximum iterations because it is 

extremely slow (Chiou and Lan, 2001). The GA can also stop if  at least eight out o f  ten 

chromosomes indicate approximately similar fitness value. In another word, if  seven 

other chromosomes provide fitness values within 300 units o f  the best fitness value, the 

system can stop.
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3.2 Analysis o f Empirical Data 

Our analyses o f  the empirical data sets also consist o f  two parts. We first compare 

cluster structures recovered by the k-means, NN, GA, NK, and GK to the observed 

cluster structure within finance applications (acquisition target and bankruptcy 

predictions, mutual fund classifications, and analysts’ stock recommendations). We then 

attempt to discover latent clusters among dot-com companies based on various types o f 

financial information using NK and GK. The following subsections discuss the data 

gathering process for each financial application. Data used in these financial applications 

are typically not normally distributed and are likely to contain outliers. Therefore, it is 

reasonable to speculate that considerable improvement in clustering power would occur 

when using machine learning approaches. Clustering results are compared to the actual 

outcome. The results from the hybrid models are expected to be more accurate than the 

results provided by KM, NN, and GA.

3.2.1 Acquisition Targets and 
Bankruptcy Predictions

In recent years the economy has fluctuated dramatically. As a result, many 

companies have been acquired in a bull market and many others fail in a bear market. In 

explaining these two events, Jain and Kini (1999) point out that a company can reach 

three different stages for a given period: remaining an independent firm, going out o f 

business, or being acquired. Corporate failures not only cause economical and social 

losses to the community but also to the management, stockholders, employers, customers, 

and others (Sung et al., 1999). The prediction o f  a corporate failure can be an early 

warning sign to regulators, management, investors, and stakeholders. When such a
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prediction occurs, corrective actions such as regulations, problem eliminations, 

immunizations, protections, and improvements can be implemented (Tam and Kiang, 

1990). Barnes (1990) suggests that the prediction o f  corporate failure alone is worthy o f 

research, but that forecasting a merger target is even more desirable. Dietrich and 

Sorensen (1984) add that a merger decision characterizes a form o f investment decision. 

The net present value o f  the acquisition should dominate other investment alternatives for 

the acquiring firm. The increased wealth contributed to shareholders, especially the 

shareholders o f  the acquired firm, mainly arises from the synergy o f  the acquisition 

(Hanson, 1992). The predictions o f  the three outcomes are not only helpful for society 

and stakeholders but also for investors to speculate, analyze, and diversify their 

portfolios. In addition, a technique that can predict bankrupted firms and merger targets 

would enable investors to avoid poor investment decisions and to improve their return on 

investment. These potential benefits motivate the investigation o f clusters in the publicly 

traded companies, where three clusters represent the three potential outcomes (acquired, 

bankrupted, and independent firms). Predicting the three outcomes requires consideration 

o f  two sets o f models: merger targets prediction and bankruptcy prediction models 

studied by various researchers such as Altman (1968), Palepu (1986), Cheng et al. 

(1989), Tam and Kiang (1992), and Altman et al. (1994).

This study incorporates commonly considered financial ratios, which include 

sales per total assets, leverage, working capital per share, EBIT, dividend payout, and 

price-to-book value. The sales, leverage, and market-to-book value tend to undermine the 

possibility o f  being acquired. On the other hand, growth rate, liquidity, earnings, and 

payout ratio appear to enhance the probability o f  getting acquired (Palepu, 1986; Allen
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and Cebenoyan, 1991; Ambrose and Megginson, 1992; Thompson, 1997; and Cudd 

and Duggal, 2000). Kane et al. (1998) indicate also that the possibility o f  going bankrupt 

is positively correlated with leverage and payout ratio. Focusing on the effects o f  the 

leverage variable, one might realize that the variable positively correlates to both 

possibilities o f  being acquired and going bankrupt. Therefore, one might conclude that 

analyzing the leverage variable alone is not sufficient to reach a conclusion on which 

stage the company might arrive.

Data for the year 2000 are collected from Compustat’s Research Insight. The 

bankruptcies and acquisitions occurring in 2000, 2001, and 2002 are considered. A 

random sample is drawn from mining or manufacturing companies (SIC: 1000-3999). I 

exclude biotech and pharmaceutical companies (SIC: 28XX), electronics and telecom 

(SIC: 3653-3689), and computer and technology (SIC: 357X) because they exhibit 

different characteristics (so, that the clustering algorithms do not classify these firms 

based on the industry). Companies in regulated industries such as financial services and 

utility providers, which operate under different environment and regulation, are also 

ignored.

3.2.2 Analysts’ Stock Recommendation

Analysts’ recommendations have significant impact on individual investors since 

many investors rely on analysts’ recommendations. Givoly and Lakonishok (1984) praise 

stock recommendation as the most notable output o f financial analysts. Stanley, 

Lewellen, and Schlarbaum (1980), Francis and Soffer (1997), and Gilson (2000) have 

indicated that individual investors trade stocks according to analysts’ recommendations. 

Barber and Loeffler (1993) and Hirchey, Richardson, and Scholz (2000a, 2000b) also
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report significant abnormal returns and volumes following “buy” announcements. 

Hence, analysts’ recommendations become interesting subjects to be investigated through 

empirical evidences.

Although there are substantial bodies o f  research regarding analysts’ 

recommendations, determinant variables used to derive a recommendation have scarcely 

been revealed. Previous studies focus mainly on abnormal returns following the 

announcements o f  the recommendations. For example, Hirschey et al. (2000) examine the 

effects o f online recommendations on stock price. They find significant increases on 

“Buy” and decreases on “Sell” recommendations (after an announcement o f  the 

recommendations). Barber and Loeffler (1993) provide descriptive characteristics o f  four 

portfolios: pros’ picks, dartboard stocks, S&P 500, and NYSE firms. These four 

portfolios are compared in terms o f  growth, dividend yield, PE ratio, monthly volume, 

and beta.

Data for the year 2000 are collected from Compustat’s Research Insight . Two 

hundred and ten companies are randomly drawn from firms in the non-regulated 

industries and the observed recommendations are used as an external criterion. The 

cluster analysis, in this problem, incorporates five variables: size, dividend yield, PE 

ratio, monthly volume, and beta.

3.2.3 Mutual Fund Classification

Recent policy changes regarding retirement plans and social security benefits 

have resulted in increasing popularity o f mutual funds (among other investment vehicles) 

because o f their diversification and cost efficiency. Mutual funds are classified on the 

basis o f  their stated objectives. These objectives are also related to the fund managers’
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investment styles and different level o f  risk. In other words, a fund with a higher 

aggressiveness investment style is associated with a higher level o f  risk relative to a fund 

with a less aggressive style. These funds’ objectives must be stated and should accurately 

reflect investment styles o f the funds’ managers so that investors can choose funds to 

invest in based on preferred objectives and risks. A fund misclassification occurs when 

investment style o f  the fund’s manager is inconsistent with the stated objectives. Kim et 

al. (2000) point out that misclassifications are sometimes intentional because o f the 

competitiveness within the mutual funds industry. However, the danger o f  funds 

misclassification becomes higher as social security benefits diminish and people 

increasingly invest their savings and retirement funds in these mutual funds.

This part o f the analysis examines whether or not mutual funds are misclassified. 

The fund’s stated objective is used as an external criterion by which the clustering results 

are be evaluated. Brown and Goetzmann (1997) present evidence o f misclassification 

and suggest that past performances and fund characteristics provide an indication o f 

mutual funds’ classes. Grinblatt and Titman (1989), DiBartolomeo and Witkowski 

(1997) and Payne et al. (1999) add that the size o f the fund, expense ratio, management 

fee, and turnover also affect the fund classification. Therefore, variables included in this 

part o f  the analysis include percent cash, expense ratio, percent assets in the top 10 

holdings, turnover ratio, and manager tenure.

The current data o f  four hundred and twenty mutual funds are randomly collected 

from Momingstar’s Principia Pro database. Once the classification is identified, effects 

o f  misclassifications are also examined.
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3.2.4 Risk Classification for Dot-Com Companies

Technology has changed the way business has been conducted over the past 

several years. Electronic commerce has become an important sector in the business 

world. Companies in this sector are sometimes called dot-com companies because they 

receive customers’ orders mainly via the Internet or network. Beside analysts’ 

recommendations (which are still ambiguous regarding their reliabilities and risk), 

classifications for companies in this sector have never been investigated. The companies 

in this sector (SIC code 737) should be inspected separately because there is no unique 

characteristic for this sector except that they conduct their business mainly on the 

Internet. These companies have offered varieties o f products and services ranging from 

booksellers to Internet service providers; hence, heterogeneity o f product is high among 

the dot-com companies. Thus, multi-levels o f risk are expected among companies in this 

sector o f  the economy. This section attempts to discover a latent cluster structure within 

this sector. The risk classifications for these companies provide insight concerning their 

creditworthiness. This information is useful for creditors in making decision regarding 

the granting o f finance services to these companies. Srinivasan and Kim (1987) include 

current ratio, quick ratio, net worth to total debt, total assets, net income to sales, and net 

income to total assets when modeling creditworthiness. Variables used by Srinivasan and 

Kim (1987) are expected to correlate positively with the creditworthiness.

Data for the year 2000 are collected from Compustat’s Research Insight. Only the 

best clustering algorithm and KM are used in the analysis to uncover the latent cluster 

structure. The CCC and psudo-F indices are criteria used to identify the best cluster 

structure.
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RESULTS ON SIMULATED DATA

In the first part o f the analysis on the simulated data, I analyze the percent o f 

correct classification for each o f the five clustering approaches. First, I test if the five 

factors and their first-order interactions affect the accuracy o f the five clustering 

approaches using analysis o f variance (ANOVA). Table 2 reports the F-statistics for the 

main effects and the first-order interaction effects, the average correct classification, and 

its variation.

4.1 Classification Accuracy and the Five Factors 

The k-means algorithm (KM) is the most sensitive but stable approach. Although its 

accuracy is ranked number three, it varies by all five main effects and by six interaction 

effects at a significant level o f 0.01. However, KM produces the most stable results on 

the basis o f  the Root MSE (within-group variation). The neural network (NN) is less 

sensitive to the main and interaction effects. NN is only sensitive to four main and four 

interaction effects. The numbers o f  clusters and dimensions factors, in particular, 

illustrate similar results to the finding o f  Balakrishnan et al. (1994, 1996). The two 

factors deviate the clustering performance o f  NN. However, NN is ranked second to 

worst in term o f accuracy and the worst in term o f variation o f the accuracy. It should be

41
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noted that NN is not given the true number o f  latent clusters. NN also takes longer time 

than KM, which is consistent with Tam and Kiang (1992)’s findings.

Table 2: Main and Interaction effects

KM NN NK GA GK
Scale (SC) 5.54

(0.0044)
6.41

(0.0019)
1.41

(0.2460)
2.14

(0.1193)
1.53

(0.2194)
Size (SI) 11.79

(0.0007)
1.76

(0.1863)
13.59

(0.0003)
5.68

(0.0178)
3.29

(0.0707)
Density (DN) 61.84

(<.0001)
151.70

(<.0001)
105.58

(<.0001)
7.47

(0.0007)
9.14

(0.0001)
Cluster (CL) 16002.90

(<.0001)
922.80

(<.0001)
15559.30
(<.0001)

49.36
(<.0001)

5524.30
(<.0001)

Dimension (DI) 16.11
(<.0001)

235.36
(<.0001)

30.07
(<.0001)

29.98
(<.0001)

5.79
(0.0034)

SCxSI 0.56
(0.5724)

0.07
(0.9299)

3.34
(0.0369)

0.69
(0.5012)

0.71
(0.4926)

SCxDN 4.34
(0.0020)

0.23
(0.9232)

0.94
(0.4418)

1.23
(0.2986)

1.12
(0.3461)

SCxCL 4.37
(0.0019)

1.75
(0.1397)

1.28
(0.2785)

1.02
(0.3998)

0.58
(0.6764)

SCxDI 0.51
(0.7288)

9.87
(<.0001)

4.22
(0.0025)

1.91
(0.1088)

0.59
(0.6697)

SIxDN 14.06
(<.0001)

0.34
(0.7137)

5.75
(0.0036)

0.85
(0.4266)

0.84
(0.4335)

SIxCL 8.75
(0.0002)

0.36
(0.7012)

7.71
(0.0005)

0.23
(0.7923)

1.59
(0.2058)

SIxDI 0.19
(0.8258)

0.51
(0.6005)

0.80
(0.4483)

2.24
(0.1084)

1.10
(0.3345)

DNxCL 64.14
(<.0001)

93.07
(<.0001)

47.90
(<.0001)

1.83
(0.1236)

11.93
(<.0001)

DNxDE 1.75
(0.1383)

102.10
(<.0001)

2.19
(0.0703)

0.24
(0.9180)

1.67
(0.1559)

CLxDI 14.23
(<.0001)

14.03
(<.0001)

20.84
(<.0001)

0.47
(0.7573)

2.41
(0.0495)

R-Square 0.991421 0.925849 0.991197 0.436419 0.975365
Mean 0.659125 0.449879 0.660075 0.356342 0.664394
Root MSE 0.027505 0.048341 0.027949 0.065076 0.046724
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The hybrid o f  the neural network and the k-means algorithm (NK) performs 

well on the basis o f  correct classification. Its results are also second best based on the 

Root MSE. However, the NK is sensitive to four main and seven interaction effects. Its F- 

statistic values are generally between the F-statistics o f  KM and NN. Even though the 

number o f sources that affect clustering performance o f  NK equals that o f  KM, the 

significance levels are generally lower. The NK appears to preserve the accuracy o f  KM 

and retain the insensitivity o f  NN.

The accuracy o f  the genetic algorithm (GA) fluctuates across levels o f  four 

factors: size, density, cluster, and dimension. Similar to NN, GA performs poorly because 

the true number o f latent clusters is not given and it is also a heuristic approach. GA 

consumes more time than KM and NN, which is consistent with Chiou and Lan (2001). 

However, the hybrid o f  the genetic algorithm and the k-means algorithm (GK) inherits 

the accuracy o f KM and the stability o f GA. GK possesses the highest accuracy among 

the five clustering approaches while it is only sensitive to four factors at a 0.01 significant 

level.

I then test how the accuracy o f the five clustering approaches differ across various 

levels o f  the five factors using analysis o f  variance (ANOVA). Table 3 illustrates the 

percent correct classification o f  the five clustering approaches at each level o f  the five 

factors. The subscription represents group membership; for example, KM correctly 

classifies 66.4372% o f observations on average when the sample size is 210 and 

65.3879% when the sample size is 420. The two percentages are significantly different at 

a 0.05 level. Therefore, the increase in sample size appears to coincide with a decrease in 

the accuracy o f KM. KM seems to work best when the scale factor is at 1.5, when cluster
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sizes are similar (density level equals to 0), and at the minimum level o f number o f 

clusters. Unexpectedly, the performance o f  KM decreases as the number o f dimensions 

increases. The results on NN seem to be the opposite o f the results on KM. The NN’s 

performance is nonlinearly correlated to the scale since the accuracy is at the lowest point 

when the scale factor is 1.5. NN seems to work better as the scale deviates from 1.5 while 

it works best at the lowest level o f  dimension. Sample size does not affect the NN’s 

performance. NN produces the lowest correct classification when the cluster sizes are 

approximately equal. The number o f  clusters appears to be inversely related to the NN’s 

performance. Relationship between the five factors and NK seems to be linear. NK is 

insensitive to the scale factor and ability to correctly cluster observations is inversely 

related to sample size, number o f  clusters, and number o f dimensions. NN does not work 

well when one cluster contains most o f  the observations (high density). Similar to NK, 

GA is insensitive to the scale factor and inversely related to sample size, number o f 

clusters, and number o f dimensions. However, GA does not perform well when one 

cluster contains less observation than all other clusters. GK is insensitive to both scale 

and size factors. It preserves the reaction o f  the KM to the density, cluster, and dimension 

factors.
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Table 3: Mean Percent of Correct Classifications
45

VARIABLE LEVEL KM NN NK GA GK
Overall 65.9125 44.9879 66.0075 35.6342 66.4394
Scale 1.0 65.5507 45.7626 65.8152 34.6252 65.9744

1.5 66.6317 43.6328 65.8313 36.4154 67.0542
2.0 65.5552 45.5683 66.3761 35.8619 66.2894

Size 210 66.4372 45.3437 66.5799 36.4958 66.9102
420 65.3879 44.6321 65.4352 34.7725 65.9685

Density 0 68.1524 40.2909 67.7828 36.0646 68.0090
20 65.5469 43.3019 67.4161 33.7481 65.6592
60 64.0383 51.3709 62.8237 37.0897 65.6499

Cluster 2 100.0000 58.1969 100.0000 39.3585 100.0000
3 64.6644 46.6789 65.0974 36.7636 66.1504
7 33.0731 30.0880 32.9252 30.7804 33.1677

Dimension 3 67.0807 53.0331 67.4387 39.3208 67.6743
5 65.6524 42.5087 66.0911 35.0400 65.9828
7 65.0044 39.4219 64.4928 32.5417 65.6610

I next test to determine if  the correct classification rate o f KM differs from that o f

hybrid models using the analysis o f variance o f  contrast variables. Table 4 reports results 

o f  the ANOVA o f contrast variables. NK and KM perform equally well while GK 

provides a higher correct classification rate than KM at 0.10 significant level within an 

environment that favors KM. These results (summarized in Tables 4 and 5) lead me to 

conclude that GK generally outperforms KM with regards to rate o f correct classification.

Table 4: Analysis o f Variance o f  Contrast Variables

SOURCE DF TYPE III SS MEAN SQUARE FVALUE P > F
NK
MEAN 1 0.00029241 0.00029241 0.14 0.7079
ERROR 323 0.67136121 0.00207852
GK
MEAN 1 0.00899231 0.00899231 2.81 0.0948
ERROR 323 1.03463784 0.00320321
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In conclusion, density level, number o f clusters, and number o f dimensions 

greatly and consistently influence the clustering accuracy o f  all approaches. KM appears 

to be the most sensitive approach to all five factors, but it performs cluster analysis with 

the most consistency. I f  we run KM on the same data set for multiple times, the results 

would likely to be the same for all repetition (not the case for NN and GA). Although the 

two machine learning approaches (NN and GA) appear to be insensitive to the testing 

factors, these two approaches do not achieve comparable rates o f correct classification 

because the simulation process intentionally generates problems that favor KM (so as to 

enable us to compare the two hybrid approaches to KM under the most rigorous o f 

conditions). However, NK and GK appear to inherit the insensitivity o f the machine 

learning approaches as well as the accuracy and the consistency o f  KM. Both hybrid 

models classify observations at least as good as KM even in conditions in favor o f  KM.

4.2 Ranked Performance 

In the first part in this chapter we find that the five factors and their interactions 

explain much o f the differences in the accuracy o f the five tested clustering approaches; 

however, we do not know if  the changes in accuracy initiate changes in rank. In another 

words, we do not have enough information to decide if  the five approaches react in a 

similar manner to the five factors. In the second part o f  the analysis on the simulated data,

I investigate the relationships between the five factors and their interactions on the 

relative ranks o f  the five clustering approaches (based on their clustering performances). 

I, first, rank the five approaches from one to five where one is the approach with the 

highest correct classification rate and 5 is the approach with the lowest correct 

classification rate on each o f  the 324 data sets. I then test to determine if  the five factors
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and their first-order interactions are related to the ranks o f  the five clustering 

approaches using analysis o f  variance (ANOVA).

Table 5 reports the F-statistics for the main effects and the first-order interaction 

effects, the average rank, and its variation. The rank o f  KM is related to three main 

effects: scale, density, and cluster. Its deviation is high according to the root MSE but the 

mean rank is between the first and the second. The rank o f NN is the most sensitive but 

stable approach. All five main factors are related to the rank o f the NN. The NN is ranked 

between the third and the fourth on average and this ranking does not vary much. The 

rank o f  GA also varies by the density, cluster, and dimension factors. GA is ranked 

between the fourth and the fifth and this rank is very consistent. The ranks o f  the two 

hybrid models are similar to the rank o f  KM and are each related to density and cluster 

factors. Since the ranks o f  all five approaches are related to the five factors, I conclude 

that the rank o f the five clustering approaches differ across various levels o f the five 

factors especially the density levels and number o f clusters.
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Table 5: Main and Interaction effects on Rank

KM NN NK GA GK
Scale (SC) 3.19

(0.0426)
4.46

(0.0124)
1.00

(0.3705)
0.22

(0.8046)
0.68

(0.5093)
Size (SI) 0.98

(0.3231)
3.96

(0.0475)
0.03

(0.8711)
0.03

(0.8521)
0.47

(0.4943)
Density (DN) 17.48

(<.0001)
317.52

(<.0001)
62.88

(<.0001)
11.60

(<.0001)
8.24

(0.0003)
Cluster (CL) 136.70

(<.0001)
8.61

(0 .0002)
153.26

(<.0001)
238.97

(<.0001)
123.85

(<.0001)
Dimension (DI) 1.17

(0.3118)
37.70

(<.0001)
0.64

(0.5280)
4.03

(0.0188)
4.23

(0.0155)
SCxSI 1.90

(0.1517)
1.08

(0.3398)
0.44

(0.6431)
1.42

(0.2437)
0.33

(0.7195)
SCxDN 6.20

(<.0001)
1.37

(0.2439)
1.57

(0.1823)
0.35

(0.8452)
2.05

(0.0881)
SCxCL 1.00

(0.4097)
0.67

(0.6119)
1.33

(0.2578)
1.99

(0.0956)
0.49

(0.7463)
SCxDI 1.68

(0.1546)
2.79

(0.0267)
2.73

(0.0296)
1.16

(0.3297)
1.32

(0.2633)
SIxDN 2.10

(0.1241)
0.22

(0.8031)
4.01

(0.0193)
1.11

(0.3325)
3.80

(0.0236)
SIxCL 2.29

(0.1035)
0.38

(0.6815)
1.99

(0.1391)
1.99

(0.1381)
1.68

(0.1878)
SIxDI 2.04

(0.1318)
1.25

(0.2887)
2.86

(0.0591)
0.90

(0.4091)
0.90

(0.4070)
DNxCL 19.82

(<.0001)
173.39

(<.0001)
29.39

(<.0001 )
8.99

(<.0001)
16.84

(<.0001)
DNxDE 4.12

(0.0029)
32.52

(<.0001)
1.45

(0.2172)
2.71

(0.0304)
0.63

(0.6393)
CLxDI 4.95

(0.0007)
16.94

(<.0001)
0.53

(0.7129)
1.73

(0.1429)
2.43

(0.0481)
R-Square 0.632696 0.854578 0.681060 0.675956 0.575867
Mean 1.845679 3.910494 1.913580 4.382716 1.842593

1 Root MSE 0.673527 0.474390 0.683927 0.595436 0.73.0674
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Table 6: Mean Rank by Factors

1 VARIABLE LEVEL KM NN NK GA GK
Overall 1.84567 3.91049 1.91358 4.38271 1.42593
Scale 1.0 1.92593 3.83333 1.92593 4.39815 1.82407

1.5 1.71296 4.01852 1.97222 4.39815 1.79630
2.0 1.89815 3.87963 1.84259 4.35185 1.90741

Size 210 1.80864 3.96296 1.90741 4.37654 1.81481
420 1.88272 3.85802 1.91975 4.38889 1.87037

Density 0 1.66667 4.41667 1.69444 4.43519 1.70370
20 1.71296 4.34259 1.53704 4.54630 1.75000
60 2.15741 2.97222 2.50926 4.16667 2.07407

Cluster 2 1.00000 4.06481 1.00000 4.93519 1.00000
3 2.07407 3.82407 2.17593 4.85185 1.98148
7 2.46296 3.84259 2.56481 3.36111 2.54630

Dimension 3 1.92593 3.61111 1.89815 4.44444 2.00926
5 1.81481 4.16667 1.87037 4.25000 1.76852
7 1.79630 3.95370 1.97222 4.45370 1.75000

Table 6 summarizes the average rank o f all five approaches in details. Ranks o f 

all approaches are worse when one cluster contains most o f the observations (at higher

density). The performance o f  GA improves as the number o f clusters increases while all 

other approaches perform worse under similar conditions. KM, NK, and GK perform 

well when there are only two clusters.. The results summarized in Table 7 indicate the 

hybrid approaches perform at least as good as KM on average.

Table 7: Analysis o f  Variance o f Contrast Ranked Variables

SOURCE DF TYPE III SS MEAN SQUARE F VALUE P > F
NK
MEAN 1 1.4938272 1.4938272 0.92 0.3373
ERROR 323 522.5061728 1.6176662
GK
MEAN 1 0.0030864 0.0030864 0.00 0.9625
ERROR 323 450.9969136 1.3962753
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In conclusion, the five factors (scale, size, density cluster, and dimension) are 

related to the five clustering approaches in term o f correct classification. However, the 

accuracy o f the five approaches differ similarly across various levels o f  the five factors. 

The density level and number o f  clusters are two major effects most strongly related to 

the ranks o f  the five approaches. KM is the most sensitive to the five factors while GA 

provides the least accurate results but it is the least sensitive to the five factors. The 

hybrid models inherit the sensitivity o f the machine learning approaches and the accuracy 

and stability o f KM. There is no evidence that KM outperforms either o f  the two hybrid 

models under conditions favorable to KM. GK is even found to be superior to KM at a 

0.10 level o f  significant on average. Therefore, we expect the hybrid models to dominate 

KM when applied to the empirical problems in the next chapter (where the conditions do 

not necessarily favor KM).
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CHAPTER 5

EMPIRICAL EVIDENCE

In the previous chapter, I investigate the performance o f  the five clustering 

procedures in an environment where clusters are well-separated, variances are 

approximately equal, observations are normally distributed, correlation between any pair 

o f  variables is not substantial, and collinearity problem is at an acceptable level. In 

addition, the latent number o f  clusters is only supplied to the k-means algorithm (KM) in 

all previous analyses. Therefore, the environment created in the simulated problems from 

the previous chapter favor KM over the other tested clustering approaches. In this chapter 

I test the five clustering approaches on real-world problems where the test conditions are 

not controlled, i.e., the clusters may not be well-separated, clusters’ variances may not be 

uniform, observations in each cluster may not be normally distributed, a significant 

correlation between the dimensions may be present, and collinearity problem may be 

severe. The real-world problems investigated in this study include both problems with 

and without natural clusters. Problems with natural clusters include acquisition targets 

and bankruptcy predictions, analysts’ stock recommendation, and mutual funds 

classification. Finally, I attempt to uncover a latent cluster structure in the dot-com 

industry since the industry comprises o f  several o f  types o f companies (and so no natural 

cluster structure exists).

51
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5.1 Acquisition Targets and Bankruptcy Predictions 

Data for this problem are collected from CompactDisclosure and Compustat’s 

Research Insight covering the year o f 20 0 0 .1 first search for the bankrupt and acquired 

firms in the CompactDisclosure using keywords such as bankrupt, acquired, and merged. 

Next, I exclude firms with “active” status. I then search for the companies in the same 

SIC code in the Compustat’s Research Insight using the company-name-lookup feature. 

This data set includes only bankruptcies and acquisitions occurring between the year 

2000 and 2002. The random sample contains only mining and manufacturing companies 

(SIC: 1000-3999). To avoid industry effects, I exclude biotech and pharmaceutical 

companies (SIC: 28XX), electronics and telecom (SIC: 3653-3689), and computer and 

technology (SIC: 357X) because companies in these sectors possess characteristics and 

risk different than the mining and manufacturing companies. I identify 2,577 companies 

in the Research Insight through the search procedure described earlier. O f these 2,577 

companies, twenty-three suffered bankruptcy and eight were acquired. Variables used in 

this analysis include sales per total assets (XI), financial leverage (X2), working capital 

per share (X3), EBIT (X4), and dividend payout (X5). I denote independent firms as 

group 1(G1), acquired firms as group 2 (G2), and bankrupted firms as group 3 (G3).

There are two popular sampling methods found in literature regarding bankruptcy 

predictions: (a) randomly draw a pre-specified number o f firms and (b) match the number 

o f  bankrupt and acquired firms by SIC code and total assets. It is obvious that the second 

sampling method is not probabilistic and does not preserve the true proportions o f  the 

three groups. That persuades some researchers to prefer the first approach to the second 

sampling methods. However, other researchers argue that the prior and posterior
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probabilities may not be the same, especially in a dynamic setting such as in financial 

problems. As a result, the proportions o f the three groups change over time. Thus, the 

second sampling method may be as robust as the first method. Since a clear conclusion 

regarding which sampling method is the best has not been identified, I analyze the 

problems using both sampling methods.

5.1.1 Random Sampling Method

I first randomly select seventy-four independent companies. Thus, the sample size 

includes twenty-three bankrupt and eight acquired firms as well as seventy-four 

independent companies (for a total sample o f  hundred and five firms). Table 8 reports 

descriptive statistics for this data set. Note that the variables are not measured on the 

same scale. The standard deviations also significantly vary from cluster to cluster as 

indicated by the Hartley’s F-Max test (or the Folded Form F test in SAS). For example, 

the standard deviation o f X2 is only 2.939 in the second group and 141.751 in the third 

group. The clusters are not well-separated on any single dimension; for instance, XI 

ranges from 0.000 to 5.054 in the first group while it ranges from 0.008 to 2.433 in the 

third group, thus these two clusters overlap on this dimension. The descriptive statistics 

suggest a more complex cluster structure than what was analyzed in the previous chapter.
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Table 8: Descriptive Statistics for the Acquisition and Bankruptcy Problem.

Group VAR G1 G2 G3 Hartley’s 
F-Max Test

p-value

N 74.000 8.000 23.000
Max XI 5.054 4.244 2.433

X2 9.666 7.973 35.192
X3 23.220 16.012 9.449
X4 1822.000 95.058 272.734
X5 3815.150 0.000 71.618

Min XI 0.000 0.000 0.008
X2 -201.035 -1.261 -672.796
X3 -16.607 -26.965 -21.949
X4 -86.273 -16.222 -177.000
X5 -29.774 -3.914 -3.330

Mean XI 1.034 1.263 1.040
X2 -0.848 2.397 -27.710
X3 2.981 1.727 -0.465
X4 81.676 12.709 4.869
X5 65.143 -0.489 3.521

Standard XI 0.837 1.276 0.665 3.682 0.007
Deviation X2 23.775 2.939 141.751 2326.232 0.000

X3 4.977 12.651 7.908 6.461 0.000
X4 244.814 35.557 73.149 11.201 0.001
X5 446.594 1.384 15.191 104124.658 0.000

Table 9 provides classification results for the five tested clustering procedures. 

Classification results for the KM, genetic algorithm (GA), and the hybrid between the k- 

means and genetic algorithm (GK) are similar. The neural network and its hybrid (NN 

and NK) do not perform as well as the KM, GA, and GK. However, only NN and NK 

were able to detect the merger targets (group 2). I also test to determine if  the relative 

frequency o f the KM differs significantly from that o f  other clustering approaches. Baesd 

on McNemar’s test, NN’s thirty-eight and NK’s fifty-eight frequencies in the first group 

are significantly lower than the KM’s seventy-two at 0.01 level.
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Table 9: Correct Classifications for the Acquisition and Bankruptcy Problem

Group Actual KM NN NK GA GK
1 74 72 38a 58a 71 72
2 8 0 1 4b 0 0
3 23 3 10a 3 5 3
Overall 105 75 49a 65a 76 75
c significant difference from the k-means’ at 0.10  level 
b significant difference from the k-means’ at 0.05 level 
a significant difference from the k-means’ at 0.01 level

5.1.2 Matched Sampling Method

Using the matched sampling approach, I match each o f  twenty-three bankrupt and

eight acquired firms with the company in the same industry (four-digit SIC code) with the

closest size (total assets). As a result, this data set contains sixty-two companies: twenty-

three bankrupt, eight acquired, and thirty-one independent firms. The descriptive

statistics for this data set are provided in Table 10. Characteristics o f the second and third

groups are the same as in Table 8 since the sample o f  bankrupt and acquired firms is

unchanged. Although the descriptive statistics o f the first group change, the cluster

structure continues to be complex. Variables are still measured on different scales. The

standard deviations still vary from cluster to cluster. The clusters are again not separated

on any single dimension. Table 11 presents clustering performances o f  the five clustering

approaches. The two hybrids perform as well as the KM while the two machine learning

approaches illustrate a higher number o f overall correct classifications than that o f the

individual approaches. The two machine learning approaches (NN and GA) appear to be

able to identify bankrupted firms better than the KM. However, the machine learning

approaches detects fewer independent firms than the KM.
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Table 10: Descriptive Statistics for the Acquisition and Bankruptcy Problem.

Group VAR G1 G2 G3 Hartley’s 
F-Max Test

p-value

N 31.000 8.000 23.000
Max XI 4.176 4.244 2.433

X2 6.687 7.973 35.192
X3 29794.000 16.012 9.449
X4 338.200 95.058 272.734
X5 149.257 0.000 71.618

Min XI 0.000 0.000 0.008
X2 -201.035 -1.261 -672.796
X3 -10.850 -26.965 -21.949
X4 -25.970 -16.222 -177.000
X5 0.000 -3.914 -3.330

Mean XI 1.255 1.263 1.040
X2 -4.332 2.397 -27.710
X3 966.642 1.727 -0.465
X4 32.018 12.709 4.869
X5 12.786 -0.489 3.521

Standard XI 0.870 1.276 0.665 3.682 0.007
Deviation X2 36.563 2.939 141.751 2326.232 0.000

X3 5350.140 12.651 7.908 457716.925 0.000
X4 77.685 35.557 73.149 4.773 0.013
X5 32.787 1.384 15.191 561.217 0.000

Table 11: Correct Classification for the Acquisition and Bankruptcy Problem

Group Actual KM NN NK GA GK
1 31 26 16a 26 17a 25
2 8 0 0 1 2 0
3 23 1 16a 1 15a 1
Overall 62 27 32b 28 34a 26
c significant difference torn the k-means’ at 0.10 evel
b significant difference from the k-means’ at 0.05 level 
a significant difference from the k-means’ at 0.01 level
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5.2 Analysts’ Stock Recommendations 

This part o f analysis incorporates five variables: five-year average growth (XI), 

beta (X2), PE ratio (X3), dividend payout (X4), and volume (X5). The data used for this 

analysis are also comprised o f  five groups: buy (G l), buy/hold (G2), hold (G3), sell/hold 

(G4), sell (G5). Data regarding beta, PE ratio, dividend payout, and volume for this 

analysis are collected from Compustat’s Research Insight during the period o f 2000. 

During this period there are 231 companies in the real estate investment trust (REIT) 

industry (SIC 6798). The average analysts’ recommendations and five-year growth rate 

as o f December 2002 are collected from YahoolFinance’s stock screener website. There 

are 201 REITs available from the website, 107 o f which remain after elimination o f  the 

incomplete observations.

5.2.1 Five-Cluster Structure

Table 12 provides descriptive statistics on the data set. No “sell” recommendation 

exists in this industry, so G5 has zero frequency. Two relatively high-density and two 

relatively low-density clusters are present in the data set. The variables are also measured 

on different scales. For example, XI ranges from -0.445 to 0.651 while X5 ranges from 

32.800 to 15,502.400. Mean ranges from 0.052 for XI in G l to 3381.793 for X5 in G3. 

Standard deviations for each dimension vary from group to group; thus, cluster geometric 

areas are not constant. The clusters are not well-separated on any single dimension; for 

instance, XI ranges from 0.026 to 0.122 in the first group while it ranges from -0.445 to 

0.651 in the second group, thus the first cluster resides in the second cluster on this 

dimension. The descriptive statistics for this problem also suggest a more complex cluster 

structure than what was analyzed in the previous chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58
Table 12: Descriptive Statistics for the Analysts’ Recommendation Problem.

Group VAR G l G2 G3 G4 G5 Hartley’s
F-Max

Test

P-
value

N 4.000 35.000 59.000 9.000 0.000
Max XI 0.122 0.651 0.391 0.230 0.000

X2 0.865 0.865 0.510 0.390 0.000
X3 23.922 127.500 94.222 28.560 0.000
X4 310.739 1601.000 523.962 293.241 0.000
X5 757.400 10493.400 15502.400 2739.800 0.000

Min XI 0.026 -0.445 -0.169 0.000 0.000
X2 0.080 -0.132 -0.164 -0.075 0.000
X3 4.439 5.630 5.429 6.172 0.000
X4 47.703 46.448 46.379 53.509 0.000
X5 32.800 38.400 219.600 206.300 0.000

Mean XI 0.052 0.077 0.070 0.084 0.000
X2 0.293 0.205 0.178 0.179 0.000
X3 10.312 20.126 17.768 15.248 0.000
X4 133.455 201.029 149.402 135.257 0.000
X5 289.650 1840.206 3381.793 809.567 0.000

Std. XI 0.047 0.151 0.080 0.075 0.000 10.322 0.017
Dev X2 0.382 0.198 0.153 0.158 0.000 6.234 0.000

X3 9.229 23.668 12.114 7.243 0.000 10.678 0.000
X4 123.156 286.609 93.201 65.917 0.000 18.905 0.000
X5 339.351 1983.974 3678.184 786.307 0.000 117.481 0.000

Classification results for the analysts’ recommendation data are presented in 

Table 13. The two machine learning approaches, NN and GA, are more accurate than the 

KM in classifying the observations. They both identify the members o f the third group 

(the “hold” recommendation) better than the KM. The GA, in particular, makes 50% 

correct prediction on the first group (the “buy” group), while the KM fail to detect any 

members o f this group. The KM, NK, and GK illustrate similar accuracy. However, NK 

is less accurate than KM in classifying the observations, which is consistent with the 

findings in the acquisition and bankruptcy problem.
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Table 13: Correct Classification for the Analysts’ Recommendations Problem

Group Actual KM NN NK GA GK
1 4 0 0 0 2 1
2 35 27 13a 15a 7a 27
3 59 15 48a 23 57a 15
4 9 0 0 0 0 0
5 0 0 0 0 0 0
Overall 107 42 61b 38 66a 43
c significant difference from the k-means’ at 0.10  level 
b significant difference from the k-means’ at 0.05 level 
a significant difference from the k-means’ at 0.01 level

5.2.2 Two-Cluster Structure

Since the first, fourth, and fifth groups are sparse; I collapse the first and second

group together and also combine the third, fourth, and fifth groups. This results in the

formation o f two groups: “buy” (G l) and “not-buy” (G2). Table 14 reports the

descriptive statistics for the new data set for the analysts’ recommendation problem. The

characteristics o f  the new data set presented in Table 14 are similar to that o f the old data

set presented in Table 12. For example, variables are not measured on the same scale,

cluster geometric areas are not equal, and the clusters are not well-separated. The cluster

structure for the resulting problem is complex

Table 15 reports the correct classification for the five tested clustering methods.

NN, GA, and GK generate higher numbers o f  correct classifications than the KM.

However, the KM and NK illustrate similar classification results, which supports the

conclusions reached in the analysis o f the simulated data set (that the KM and NK are

equally accurate and perform equally well with two-cluster structure). Another interesting

point that should be addressed is that the GA and GK identify members o f  the first group

(“buy” recommendations) better than the KM. We also see the NN and GA detect more
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bankrupted and acquired firms than the KM in the acquisition targets and bankruptcy 

predictions problem. Therefore, I conclude that machine learning approaches (NN and 

GA) and the two hybrids (NK and GK) are more effective than the KM in detecting 

members o f  a minor group.

Table 14: Descriptive Statistics for the Analysts’ Recommendation Problem.

Group VAR G1 G2 Hartley’s 
F-Max Test

p-value

N 39.000 68.000
Max XI 0.651 0.391

X2 0.865 0.510
X3 127.500 94.222
X4 1601.000 523.962
X5 10493.400 15502.400

Min XI -0.445 -0.169
X2 -0.132 -0.164
X3 4.439 5.429
X4 46.448 46.379
X5 32.800 206.300

Mean XI 0.075 0.072
X2 0.214 0.178
X3 19.120 17.435
X4 194.099 147.530
X5 1681.174 3041.351

Standard XI 0.144 0.079 3.323 0.000
Deviation X2 0.218 0.152 2.057 0.005

X3 22.739 11.577 3.858 0.000
X4 274.093 89.7874 9.319 0.000
X5 1938.564 3543.538 3.341 0.000
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Table 15: Correct Classification for the Analysts’ Recommendation Problem.
61

1 Group Actual KM NN NK GA GK

1
39 1 0 1 5b 4c

2 68 62 68b 62 65 65
Overall 107 63 68c 63 70c 69c
c significant difference from the k-means’ at 0 .10  level 
b significant difference from the k-means’ at 0.05 level 
a significant difference from the k-means’ at 0.01 level

5.3 Mutual Fund Classification 

Originally there are 7,938 domestic stocks funds in Momingstar’s Principia Pro. I 

eliminate funds that do not have one o f the following seven objectives: aggressive growth 

(G l), asset allocation (G2), balanced (G3), equity income (G4), growth (G5), growth and 

income (G6 ), and small company (G7) because funds with other objectives engage 

heavily in either bonds, foreign securities, or utility companies. That might cause the 

clustering algorithm to classify funds based on types o f  securities, environment, or 

restriction rather than objectives. As a result, 6,633 domestic stock funds remain the 

database. Unfortunately, there are only 4,258 funds remaining with complete information. 

Out o f  4,258 funds, 2,017 funds are no-load funds and 2,241 funds are load funds. I 

randomly select four hundred and twenty no-load funds and four hundred and twenty 

load funds from the funds with complete information for the percent cash (x l), expense 

ratio (x2), percent assets in the top 10 holdings (x3), turnover ratio (x4), and manager 

tenure (x5). I then analyze both samples separately because load and no-load funds 

possess different characteristics (shown later in section 5.3.2).
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5.3.1 No-Load Funds

As illustrated by the summary statistics in Table 16, the latent cluster structure is 

very complex because o f  the following reasons. First, the clusters are not uniform in 

geometric area based on their standard deviations on the five dimensions. Second, the 

means and standard deviations on the five dimensions suggest that the clusters are 

relatively close together, which implies that clusters are not well-separated. In addition, 

five variables are measured on different scales - XI ranges from 0 to 69 while X2 extends 

from 0 to 3.48. X3 and X4 possess higher ranges than X I, X2, and X5.

Table 16: Descriptive Statistics for the Sample o f  No-Load Funds.

Group VAR Gl G2 G3 G4 G5 G6 G7 Hartley’s
F-Max

Test

P-
value

N 13.0 20.0 30.0 18.0 200.0 64.0 75.0
Max XI 8.0 36.4 51.8 25.5 69.7 20.2 33.4

X2 3.5 3.0 3.1 1.6 2.8 2.4 2.5
X3 100.0 130.0 100.0 84.0 100.0 89.3 101.5
X4 255.0 242.0 227.0 179.0 869.0 218.0 242.0
X5 12.0 19.0 10.0 13.0 25.0 23.0 15.0

Min XI 0.0 0.0 0 .0 0.0 0.0 0.0 0.0
X2 0.2 0.1 0 .0 0.5 0.0 0.1 0.1
X3 17.5 12.5 12.7 15.6 7.1 19.8 2.3
X4 6.0 2.0 12.0 8.0 3.0 3.0 3.0
X5 2.0 1.0 1.0 1.0 1.0 1.0 1.0

Mean XI 4.0 8.1 7.5 5.5 5.2 3.7 5.1
X2 1.5 0.9 0.9 0.9 1.2 0.8 1.2
X3 44.6 55.1 38.7 29.1 35.4 33.9 25.1
X4 126.9 77.8 83.1 65.0 119.5 69.7 94.0
X5 4.5 5.2 4.9 5.2 4.3 4.9 4.6

Std. XI 2.9 9.3 10.6 7.1 10.2 4.3 6.4 13.360 0 . 0 0 0
Dev X2 1.0 0.7 0.6 0.3 0.4 0.4 0.5 11.111 0 . 0 0 0

X3 25.9 37.2 26.6 15.6 15.8 13.0 14.9 8.188 0 . 0 0 0
X4 77.8 70.7 58.6 43.1 128.9 51.1 57.2 8.944 0 . 0 0 0  I
X5 2.6 4.6 2.3 3.4 3.8 3.5 2.7 4.000 0 . 0 0 0 1
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Next I perform cluster analysis using the five clustering approaches on the no- 

load funds data. Table 17 reports the number o f funds correctly classified by approach 

and by cluster. As illustrated in Table 16 and 18, the numbers o f observations are unequal 

and range from 13 to 200. Assuming that the fund’s manager supervises his/her fund 

consistently with the stated fund’s objective, NK provides the least accurate results 

(correctly classifies 120 out o f 420 funds). This is true even though NN generates the 

most accurate classification (correctly classifies 170 out o f  420 funds). The two machine 

learning approaches (NN and GA) perform better than KM on the basis o f the overall 

correct classification. The number o f funds correctly classified by NN (124 out o f 200) 

exceeds the number of funds correctly classified by KM (84 from 200) at a 0.01 level of 

significance. The rate o f  correct classification achieved by KM is not significantly better 

than the corresponding rate achieved by NK, although does KM generate a relatively high 

number o f correct classifications which supports the conclusions reached in the analysis 

o f the simulated data set and in the analysts’ recommendation problems (that the KM and 

NK are equally accurate). Based on the results, the NN, GA, and GK perform cluster 

analysis significantly better than KM.
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Table 17: Correct Classifications for the No-Load Funds Problem
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Group Actual KM NN NK GA GK
1 13 0 0 0 0 3c
2 20 2 0 7b 0 3
3 30 2 0 9b 4 1
4 18 2 0 3 4 3
5 200 84 124a 77b 99a 85
6 64 10 32a 6 5c 34a
7 75 22 14c 18 24 17
Overall 420 122 170a 120 136b 146a

evelc significant difference from the k-means’ at 0.10 
b significant difference from the k-means’ at 0.05 level 
a significant difference from the k-means’ at 0.01 level

5.3.2 Load Funds

Table 18 reports descriptive statistics for the load funds and indicates one high-, 

two medium-, and four low-density clusters. Overall descriptive statistics reported in this 

table are similar to the descriptive statistics o f  the no-load funds reported in Table 16. 

Cluster structure for load fund is also complex because o f  reasons similar to those cited in 

the analysis o f  the no-load funds. However, some discrepancies occur; for example, the 

mean o f X2 for the second group (G2) changes from 0.948 for no-load funds to 1.604 for 

load funds. A question, then, arises whether load and no-load funds possess the same 

characteristics. Thus, I perform the t-test for equality o f means and the F-test 

(Satterthwaite’s) for equality o f variance on load versus no-load funds in each objective 

category.
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Table 18: Descriptive Statistics for the Sample o f Load Funds.

Group VAR Gl G2 G3 G4 G5 G6 G7 Hartley’s
F-Max

Test

p-value

N 14.0 21.0 24.0 14.0 202.0 77.0 68.0
Max XI 16.9 18.0 9.0 9.6 45.5 31.1 19.4

X2 2.6 2.1 2.3 2.3 2.9 2.4 2.7
X3 97.1 99.8 100.0 37.3 77.2 99.9 100.0
X4 305.0 165.0 334.0 179.0 684.0 270.0 360.0
X5 6.0 9.0 6.0 12.0 15.0 12.0 18.0

Min XI 0.0 0.0 0.0 0.0 0.0 0.0 0.0
X2 0.0 0.5 0.0 0.9 0.6 0.0 0.9
X3 13.5 18.8 14.4 16.1 7.8 17.6 7.3
X4 27.0 11.0 6.0 15.0 4.0 3.0 5.0
X5 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Mean XI 5.6 7.2 3.3 3.1 3.5 4.6 4.2
X2 1.5 1.6 1.6 1.6 1.8 1.5 1.8
X3 37.0 48.0 35.8 25.1 32.6 33.5 23.3
X4 137.8 64.1 74.8 90.5 107.5 76.2 120.5
X5 3.1 3.6 3.0 3.9 3.5 3.8 3.7

Std. XI 5.5 5.7 2.9 3.6 5.6 5.4 5.1 3.863 0.001
Dev X2 0.7 0.4 0.5 0.5 0.5 0.5 0.4 3.063 0.010

X3 26.8 30.2 27.1 5.4 12.2 14.1 14.0 31.277 0.000
X4 104.2 56.1 68.3 48.2 87.7 56.2 81.9 4.673 0.003
X5 1.7 2.1 1.6 2.7 2.0 2.5 2.4 2.848 0.012

Table 19 reports the t-statistics and the test statistics o f  the Hartley’s F-Max Test

by group and by variable. The mean o f the second variable and the variance o f  the first 

variable seem to be significantly different for all groups while the fifth group is 

significantly different. Therefore, I conclude that load funds differ from no-load funds 

and should be analyzed separately (otherwise the clustering algorithm might classify 

funds based on whether the fund is load or no-load fund).
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Table 19: Equality of Means and Variances
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V
A
R

G l G2 G3 G4 G5 G6 G7 1

XI -0.92
(0.3696)

-0.38
(0.7090)

2.04
(0.0486)

1.27
(0.2153)

2.09
(0.0384)

-1.06
(0.2952)

-0.92
(0.3764)

N j
7;

X2 -0.02
(0.9831)

-3.64
(0 .0010 )

-4.27
(<.0001)

-4.51
(<.0001)

-13.43
(<.0001)

-8.32
(<.0001)

-0.02
(<.0001)

i

I0)s
X3 0.75

(0.4576)
0.67

(0.5085)
0.40

(0.6904)
1.01

(0.3237)
1.99

(0.0479)
0.16

(0.8726)
0.75

(0.4530)
X4 -0.30

(0.7630)
0.69

(0.4965)
0.48

(0.6322)
-1.58

(0.1253)
1.09

(0.2744)
-0.72

(0.4736)
-0.30

(0.0284)
X5 1.66

(0.1092)
1.39

(0.1842)
3.33

(0 .0011)
1.18

(0.2483)
2.45

(0.0148)
2.12

(0.0422)
1.66

(0.0358)
XI 3.53

(0.0360)
2.64

(0.0364)
13.50

(<.0001)
3.90

(0.0167)
3.33

(<.0001)
1.53

(0.0826)
1.56

(0.0672)

<Do

X2 1.80
(0.3056)

2.72
(0.0315)

1.17
(0.7061)

2.48
(0.0812)

1.27
(0.0946)

1.40
(0.1730)

1.34
(0.2203)

§ X3 1.07
(0.9108)

1.51
(0.3663)

1.04
(0.9142)

8.47
(0.0004)

1.68
(0.0003)

1.16
(0.5366)

1.13
(0.6002)

X4 1.80
(0.3188)

1.59
(0.3128)

1.36
(0.4330)

1.25
(0.6587)

2.16
(<.0001)

1.21
(0.4386)

2.05
(0.0028)

X5 2.52
(0 .1110)

4.72
(0 .0011)

2.01
(0.0896)

1.67
(0.3520)

3.67
(<.0001)

1.96
(0.0052)

1.24
(0.3698)

Table 20: Correct Classifications for the Load Funds Problem

Group Actual KM NN NK GA GK
1 14 2 0 2 0 2
2 21 10 0a 9 6b 4b

3 24 0 0 0 0 0

4 14 0 0 0 0 1
5 202 89 159a 68c 181a 103
6 77 15 24b 15 8a 18
7 68 15 7a 23b 3a 13
Overall 420 131 190a 117c 198a 141c
c significant difference from the k-means’ at 0.10  level 
b significant difference from the k-means’ at 0.05 level 
a significant difference from the k-means’ at 0.01 level
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I then perform cluster analysis using the five clustering approaches on the no- 

load funds data. Table 20 reports the number o f funds correctly classified by approach 

and by cluster. Results for the load funds data partially support the conclusions reached in 

analysis o f the no-load funds in Table 17. The NN, GA, and GK still outperform the KM 

at the 0.01 level o f significance. The KM still achieves a higher rate o f  correct 

classifications than the NK. In conclusion, the results reported in this mutual fund 

problem support the conclusion drawn from the simulated data. The hybrid models 

generally perform as well as the KM and occasionally outperform the KM. The machine 

learning approaches also outperform the KM as expected since the cluster structure is 

more complex than it is in the simulated problem.

5.4 Overall results on the real-life problems 
with natural cluster structure

In this section, I examine the overall correct classifications o f  all five clustering 

approaches in real-life problems with the natural cluster structure. Table 21 summarizes 

correct classification rate o f  the overall results o f all clustering approaches. GA 

consistently outperforms KM in all real problems. Similarly, GK provides better accuracy 

than KM in the last four problems; 1.61% less accuracy than KM in the matched sample 

o f the acquisition and bankruptcy problems; and similar accuracy in the random sample 

o f the acquisition and bankruptcy problems. KM performs better than NN and NK in the 

random sample in the acquisition and bankruptcy problem while it achieve the lowest rate 

o f  correct classification for the matched sample in the same problem and in the no-load 

funds data set. KM outperforms the NK in all cases except in the matched sample o f the 

acquisition and bankruptcy problems. However, the differences between performances o f
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KM and NK are not statistically significant. Thus, we can assume that KM and NK 

perform equally well. As expected, the two machine learning approaches perform better 

than KM on average since the conditions are not in favor o f  KM in the real-life data sets 

as they are in the simulated data sets. Note that the machine learning approaches also 

outperform the two hybrids.

Table 21: Relative Frequency o f Overall Correct Classifications

Problem
Average
Percent
Correct

Acquisition & 
Bankruptcy

Analysts’ Stock 
Recommendations

Mutual Funds 
Classification

Random
Sample

Matched
Sample

Five-
Cluster

Two-
Cluster

No Load 
Funds

Load
Funds

Size 105 62 107 107 420 420
# Clusters 3 3 5 2 7 7
KM 45.56% 71.43% 43.55% 39.25% 58.88% 29.05% 31.19%
NN 50.76% 46.67% 51.61% 57.01% 63.55% 40.48% 45.24%
NK 42.98% 61.91% 45.16% 35.51% 58.88% 28.57% 27.86%
GA 55.64% 72.38% 54.84% 61.68% 65.42% 32.38% 47.14%
GK 47.73% 71.43% 41.94% 40.19% 64.49% 34.76% 33.57% |

All approaches perform relatively better in the random sample in the acquisition 

and bankruptcy problem (average correct classification o f above 60%) than in the mutual 

funds classification problem (average correct classification o f  below 40%). This may 

have occurred because the number o f  clusters and the accuracy are inversely correlated as 

we have seen in the simulated problems. However, there is no evidence in the real-life 

data set that the two-cluster structure always allows an optimal clustering performance 

for clustering approaches except for the NN. The correct classification rates o f KM, NK, 

GA, and GK are at peak in the random sample o f the acquisition target and bankruptcy 

predictions problems where a three-cluster structure presents.

Table 22 illustrates the rank performance o f  the five clustering approaches in each 

o f the real-life problems. The GA is ranked number one in all real-life data sets except for
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the no-load funds classification problem, while the KM is ranked the fourth in all data 

sets except for the random sample o f  the acquisition and bankruptcy predictions problem. 

NK fails to achieve a better clustering performance than KM. The GK outperforms the 

KM in all scenarios except for the matched sample in the acquisition and bankruptcy 

problem (where the KM outperforms the GK by just 1.61% or one company, which is not 

significant at all level).

Table 22: Rank o f  the Overall Correct Classifications

Problem Average
Rank

Acquisition & 
Bankruptcy

Analysts’ Stock 
Recommendations

Mutual Funds 
Classification

Random
Sample

Matched
Sample

Five-
Cluster

Two-
Cluster

No Load 
Funds

Load
Funds

Size 105 62 107 107 420 420
# Clusters 3 3 5 2 7 7
KM 3.67 2 4 4 4 4 4
NN 2.50 5 2 2 3 1 2
NK 4.33 4 3 5 4 5 5
GA 1.33 1 1 1 1 3 1
GK 2.83 2 5 3 2 2 3

In conclusion, GK should be preferred since it is ranked in the top three in 

simulated data sets and in the real-life problems. KM performs very well in simulated 

data sets where the environments are in favor o f  KM but its performance is relatively 

poor in the less favorable environments o f our real problems. The machine learning 

approaches achieve superior clustering results in the real-life problems where the cluster 

structure is complex but perform relatively poorly in the simulated environments (they 

are consistently ranked the fourth and fifth). If  information regarding complexity o f  the 

cluster structure is available, I would employ KM when the cluster structure is simple and 

GA when the cluster structure is complex. However, such information is generally not 

available, and under such circumstances I would prefer an approach that performs
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relatively well in both situations. The GK satisfies the criterion because it provides the 

best clustering results in the simulated environment and arguably the third best in the 

real-life problems. Therefore, I conclude that the GK is the best among the five clustering 

approaches in this study and should be used in the next problem to uncover the cluster 

structure among the dot-com companies.

5.5 Risk Classification for Dot-Com Companies 

Data regarding dot-com companies (SIC: 737X) are collected from Compustat’s 

Research Insight covering the year o f  20 0 0 .1 identify 1037 companies in the database. 

After elimination o f incomplete observations, 892 firms remain in the data set. I 

randomly select 420 firms o f  these remaining firms. The seven variables used in this 

analysis include current ratio (XI), quick ratio (X2), liability per net worth (X3), total 

assets (X4), net income per sales (X5), net income per total assets (X6 ), and price to book 

ratio (X7).

Table 23 summarizes the descriptive statistics for this sample. XI and X2 show 

similar means, standard deviations, and ranges. Variables X3, X4, X5, and X7 have much 

larger ranges and variances. Interestingly, the net income per total assets (X6) has a 

negative mean and a maximum o f 0.52709 while its minimum is -53.3781. This should 

imply that companies in this industry have earned little profit or actually suffered loses 

but were still attractive to many investors during this period.
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Table 23: Descriptive Statistics for the Sample of Dot-Com Companies

Variable N Mean Standard Deviation Minimum Maximum
XI 420 3.54611 3.72262 0.0020 24.47200
X2 420 3.29231 3.65552 0.0010 24.15300
X3 420 104.06020 907.39760 -2878.0000 16425.00000
X4 420 742.20750 5188.00000 0.0260 88349.00000
X5 420 -26.18160 462.21650 -9468.0000 174.78960
X6 420 -1.22365 4.82738 -53.3781 0.52709
X I 420 -17.5408 486.42750 -9878.0000 1100.00000

Next I perform cluster analysis on this sample using the GK since it is chosen to 

be the best clustering algorithm in this study when complexity o f cluster structure is 

unknown.. The results o f the KM and NK are also used for comparisons. The three 

approaches (KM, NK, and GK) are configured to uncover cluster structure that includes 2 

to 10 clusters. I then decide on the number o f clusters using the pseudo-F statistics and 

the cubic clustering criterion (CCC) as internal criteria. Table 24 reports the results on 

this data set. Two local optima are present in the sample based on the pseudo-F statistics 

and CCC. One is within the range o f  2 to 6  clusters and another occurs between 7 and 10 

clusters. If we intend to cluster the observations into no more than six groups, the KM 

and NK suggest that five is the optimal number o f groups as the pseudo-F statistics and 

CCC are maximized in the range. At the same time, the GK indicates that observations 

should be classified into only four groups. We also can obtain another solution with the 

number o f clusters above six. Both KM and NK agree that there are ten natural clusters in 

the data set while the GK argues that the true number o f latent clusters is either seven, 

based on the pseudo-F statistics, or eight based on the CCC. If  we have not conducted 

prior investigation on the three approaches in simulated environments and real-life 

problems with natural clusters, we might have made a wrong decision by choosing the
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10-cluster structure as the optimal solution based on recommendations o f KM and NK. 

Since we have investigated performance o f  the three clustering approaches earlier and the 

GK illustrates a superior performance to the KM and NK, I would conclude that the true 

number o f latent clusters in this industry is seven or eight.

Table 24: Internal Criteria: Pseudo-F and Cubic Clustering Criterion.

Number
of

Clusters

Expected 
Overall R- 

Square

Pseudo-F CCC

KM NK GK KM NK GK

2 0.45268 364.24 85.263 364.24 0.897 -15.606 0.897
3 0.57221 362.74 287.83 309.65 6.344 0.727 2.446
4 0.63174 369.34 215.26 370.40 13.017 -2.693 13.108
5 0.67208 626.16 307.43 307.37 38.961 12.213 12.207
6 0.70187 552.11 260.86 285.98 36.586 9.426 12.547
7 0.72512 602.71 255.24 667.85 41.977 10.972 45.917
8 0.74395 594.89 227.07 665.88 43.133 9.007 47.387
9 0.75961 608.70 215.49 230.39 44.468 8.939 11.127
10 0.77292 665.93 632.67 170.22 47.016 47.203 2.871
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CHAPTER 6

CONCLUSION, LIMITATIONS, 

AND FUTURE RESEARCH

Cluster analysis has been around for quite sometime whether or not we realize it. 

In the last several decades, researchers have paid more attention to the cluster analysis 

since it can be used as a tool to uncover meaningful information from a vast pool o f  data. 

Researchers have invested attention and effort developing robust clustering procedures. 

The k-means algorithm (KM) is one o f  the popular and robust approaches. It is generally 

available in many widely used statistical software packages such as SAS and SPSS. It 

also consumes small amount o f  computational time dealing with a large data set. 

Furthermore, KM requires users to specify the number o f  clusters and initial clusters’ 

means (seeds). Researchers customarily decide on the number o f  clusters on the basis o f 

either theory or previous experiment and randomly select seeds for KM. However, it has 

been demonstrated by many researchers that KM does not perform well with the random 

seeds. Thus, many researchers have suggested a two-stage approach where the seeds are 

determined in the first stage by some other procedure and KM is performed in the second 

stage. Promising evidence o f  the effectiveness o f  two-stage approaches have been 

reported in many scholarly research such as Milligan (1980), Helsen and Green (1991), 

and Murty and Krishna (1981). Nonetheless, the mentioned researchers have employed

73
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procedures that require a great deal o f computational time and so are unable to handle 

large data sets efficiently.

With current computing technology, the computational intensive procedures such 

as machine learning become viable. Two machine learning approaches have 

demonstrated attractive clustering abilities. The neural network (NN) and the genetic 

algorithm (GA) are flexible in term o f functional forms. They do not require some 

assumptions that must be met when using linear and parametric procedures. Both NN and 

GA have been configured to handle tasks in cluster analysis and perform well. Yet they 

have not been used to pre-screen the seeds for KM.

In this study I investigate and conduct an experiment on two-stage clustering 

procedures, hybrid models in simulated environments where conditions such as 

collinearity and cluster structure are controlled. The performance o f  these procedures is 

also evaluated on real-life problems where conditions are not controlled. The first hybrid 

(NK) model integrates a neural network with KM. NN screens seeds and passes them to 

KM. The second hybrid (GK) is similar but uses a genetic algorithm instead o f NN to 

screen the seeds for KM. Both NN and GA used in this study are o f the simplest possible 

form. NN used in this study is a simple feedforward unsupervised system that consists o f 

three layers. The number o f nodes is equal to the number o f  variables in the first layer 

and is equal to the number o f clusters in the second layer. A single node in the last layer 

classifies observations into groups. GA used in this study utilizes ten chromosomes. Each 

chromosome represents a possible solution to the clustering problem where the solution is 

a set o f  clusters means. GA utilizes a two-point crossover, ten percent mutation rate, and
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ten percent inversion rate. The parent chromosomes for the member o f  the next 

generation are selected through roulette-wheel selection.

In simulated data sets I investigate two properties: comparative clustering 

performance and the impact o f five factors (scale, sample size, density, number o f 

clusters, and number o f  variables) on the performance o f the five clustering approaches 

(KM, NN, NK, GA, GK). I find that density, number o f clusters, and number o f 

dimensions are related to the clustering performance o f  all five approaches. The KM, NK, 

and GK classify well when all clusters contain similar number o f observations (equal 

density) while GK outperform the KM on average. NN performs well when one cluster 

contains more observations than any other cluster (high density). All five approaches are 

at their peak performance when there are only two clusters in the data set. The 

performances degrade as the number o f clusters and/or number o f  variables increases. In 

the clustering performance comparison, the two hybrid models perform at least as well as 

the KM even though the simulated environment favors the KM. The most crucial 

information, the true number o f latent clusters, is provided to only the KM. In addition, 

the clusters structure is simple (the clusters have equal variance, equal number o f 

observations and are well separated). Furthermore, there is relatively low correlation 

between all pairs o f variables. Observations in each cluster are normally distributed. The 

two machine learning approaches (NN and GA) do not compete well in term o f 

classification accuracy in the simulated problems since they are not given the true 

number o f latent clusters. Thus, they are ranked the fourth and fifth in most scenarios.

The relative performances o f the five clustering approaches are evaluated on three 

real problems with known natural cluster structure and one real problem with unknown
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natural cluster structure. Overall results indicate that the GK performs better than the 

KM while the NK is the worst among the five approaches (when natural structure exists). 

The two machine learning approaches generate relatively superior results in these 

problems (where an environment does not necessarily favor KM). In the first real 

problem with known natural cluster structure, the five clustering procedures are used to 

classify acquisition targets and bankruptcy firms. The GA and GK perform at least as 

well as the KM while there is no conclusive evidence that the KM outperform the NN 

and NK. The KM identifies more independent firms but fewer bankrupt and acquired 

firms than any other approach. In the second problem with known natural cluster 

structure (analysts’ stock recommendations), the two machine learning approaches and 

the GK consistently outperform the KM. The GA and GK detect more firms with “buy” 

recommendation than any other approach. In the last problem with a known natural 

cluster structure (mutual funds’ classifications), results are similar to the results reported 

in the analysts’ stock recommendation problem. The KM performs worse than the two 

machine learning approaches and the GK.

In practice, information regarding cluster structure generally cannot be obtained 

prior to a cluster analysis. Therefore, we need an algorithm that performs relatively well 

regardless o f  environment. The GK has shown to be the best in simulated environment 

and the third best in real-life situations. Furthermore, the GK can detect firms with 

promising financial prospect such as acquisition targets and firms with “buy” 

recommendation than all other approaches. Thus, I would conclude that the GK is the 

best among the five approaches. I also attempted to uncover a latent cluster structure 

among dot-com companies using the GK. The GK recommends seven-cluster structure
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based on the pseudo-F statistics and eight-cluster structure based on CCC while KM 

and NN fail to recover similar cluster structure.

The results and conclusions reported in this study should be true for the problems 

only within the boundary o f  the parameters in the simulated and real problems evaluated 

in this study. For example, we find that the correct classification o f the KM is lower in 

seven-cluster structure than in two-cluster structure. One should not conclude with 

certainty that the result o f the KM in eight-cluster structure is better than it is in the nine- 

cluster structure since the eight- and nine-cluster structure are beyond the boundary o f  the 

parameters tested in this study. Such an inference is only based on extrapolation o f my 

study results.

Future research may involve three different areas: effects o f  some error 

perturbations on these clustering approaches more sophisticated machine learning 

approaches in cluster analysis and a wider variety o f  applications. It is possible to 

investigate effects o f  some error perturbations on the five clustering approaches using 

Milligan’s (1980) framework as a prototype. One factor that could be incorporated in the 

simulation process is the shape o f the clusters. In this study, all clusters have similar 

shape, ellipsoidal in all dimensions. In a more advanced study, the shape o f one or more 

clusters could be distorted. Another factor that may be worthy o f investigation is 

misclassification cost. This factor could influence the outcomes dramatically, especially 

for the machine learning approaches since they provide less consistent results than does 

KM. In addition, the machine learning approaches tested in this study are in their simplest 

forms and could possibly be improved in the manner described in previous section. Yet 

they exhibit promising outcomes in the real problems. Finally, each real problem has a
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unique set o f  characteristics. It is relevant to investigate cluster structure o f the real-life 

problems individually.
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PROC XML;
SEED = 0; 
N = 1764;

. = { 0 . 0 9 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 ,
0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 ,
0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 ,
0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 ,
0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 ,
0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 ,
0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0  } ;oooooo

0 , 0 } ;
p = n ro w (s ig m a ) ;  
m = r e p e a t ( m u ' , n ,  1 ) ;  
g  = r o o t ( s i g m a ) ;  
z = n o r m a l ( r e p e a t ( s e e d , n , p ) ) ;  
y  = z*g + m;
p r i n t  ’Multivariate Normal Sample’; 
c r e a t e  s im d a t  from  Y; 
append from  Y; 
c l o s e  S im da t;

DATA FINA (KEEP=G X1--X7); 
SET SIMDAT;
NUM=_N_;
Xl=COL2;
X2=COL3;
X3=COL4;
X4=COL5;
X5=COL6;
X6=COL7;
X7=COL8;

IF XI < -0 6 THEN XI =
IF X2 < -2 THEN X2 = -2
IF X3 < -2 THEN X3 = -2
IF X4 < -2 THEN X4 = -2
IF X5 < -2 THEN X5 = -2
IF X6 < -2 THEN X6 = -2
IF X7 < -2 THEN X7 = -2
IF XI > 0. 6 THEN XI =
IF X2 > 2 THEN X2 = 2
IF X3 > 2 THEN X3 = 2
IF X4 > 2 THEN X4 = 2
IF X5 > 2 THEN X5 = 2
IF X6 > 2 THEN X6 = 2
IF X7 > 2 THEN X7 = 2
X2 = (2. 5*X2)+5;
X 3 = ( 2 . 5 * X 3 ) + 5 ;
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X4=( 2 . 5*X4)+5;
X5=( 2 . 5*X5)+5;
X6=( 2 . 5*X6)+ 5;
X7=( 2 . 5*X7)+ 5;
IF  NUM <= 252 THEN 

DO;
G=1 ;
XI = X l+ 1 .2 5 ;  
X2 = X 2+0.25; 
X3 = X 3+0.25; 
X4 = X 4+0.25; 
X5 = X 5+0.25; 
X6 = X 6+0.25; 
X7 = X 7+0.25;

END;
IF  252 < NUM <= 504 THEN 

DO;
G=2;
XI = X l+ 8 .7 5 ;

END;
IF  504 < NUM <= 756 THEN 

DO;
G=3;
XI = X l+5;

END;
IF  756 < NUM <= 1008 THEN 

DO;
G=4 ;
XI = X l+ 7 .5 ;

END;
IF  1008 < NUM <= 1260 THEN 

DO;
G=5;
XI = X l+ 2 .5 ;

END;
IF  1260 < NUM <= 1512 THEN 

DO;
G=6;
XI = X l+ 3 .7 5 ;

END;
IF  1512 < NUM <= 1764 THEN 

DO;
G=7;
XI = X l+ 6 .2 5 ;

END;
RUN;
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EXAMPLES SAS CODE FOR 5 CLUSTERS 
WITH 5 VARIABLES

B.l The K-means Algorithm

PROC FASTCLUS DATA=SimDat MEAN=MeanKM OUT=KOUT MAXCLUSTERS=5 
MAXITER=500;

TITLE "K-means";
VAR XI X2 X3 X4 X5;

RUN;

B.2 The Neural Network

PROC NLP data=Sim D at random= 50 o u t e s t = e s t  out=OutNNl m a x i te r=  500; 
a r r a y  x [ 5 ]  x l  x2 x3 x4 x5; 
a r r a y  h [ 5 ] ;  '"“ hidden neurons;
a r r a y  a [ 5 ] ; '■ “ bias for input;
a r r a y  b [ 5 , 5 ]  ; '"“ wieghts between input and hidden;
* c bias for output in this case it is zero; 
a r r a y  d [ 5 ] ; ***wieghts between hidden and output;
a r r a y  p [ 5 ] ;  *"* ‘probability for group 1 and 2;
a r r a y  m [5 ,5 ]  ;
a r r a y  r [ 5 , 5 ] ; '"'‘distance between an observation and its seed;

* + ■* + » bidden layer -number of neuron in hidden layer equal, to number of
clusters;
do i h = l  t o  5;

s u m = a [ ih ] ; 
do i x = l  t o  5;

sum=sum+x[ix] * b [ i x , i h ]  ;
end;

***** logistic function for hidden, neurons; 
h [ih ] =exp (sum) ;

end;

***** output; 
sum=0;
do i h = l  t o  5; •♦***♦*** ih is cluster number; 

su m = su m + h [ ih ]* d [ ih ] ;
end;

logistic function for output; 
do i h  =1 t o  5;
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p  [ i h ]  =  h [ i h ] / s u m ;
end;

***** Assign group membership; 
q = l ;
do ih = 2  t o  5;

i f  p [q ]  < p [ i h ]  th e n  q = ih ;  
end;

***** residual;

do i q = l  t o  5; ******** iq is cluster number;
do i p = 1 t o  5; ******** ip i s  var number; 

IF  q  = i q  THEN r [ i p , i q ] = ( x [ i p ] - m [ i p , i q ] )** 2; 
ELSE IF  q o i q  THEN r [ i p , i q ]  = 0; 

end;
end;
g= g;
Sumr= 0; 
do i q = l  t o  5;

do i p = l  t o  5; 
s u m r = s u m r + r [ ip , i q ] ; 

end;
end;

min sumr;

parms a l - a 5  b l - b 2 5  c d l - d 5  m l-m25 ;
RUN;

B.3 The Genetic Algorithm

Title ’Genetic Algorithm’;
%LET CHR = 10;
%LET c l  = 5;
%LET VAR = 5;
%LET N_M = %eval(&CL*&VAR*&CHR); 
%LET NumMu = %eval(&N_M/&CHR); 
%LET I t e r a t i o n  = 50;
%LET Accu = 100;
%LET Q u i t  = 9;

** . *■ * Assigning the 1st Generation for GA;
DATA S e e d s ;

ARRAY M[&CHR,&CL,&VAR];
NUM=_N_;
IF NUM > 1 THEN DELETE;
DO i c = l  to &CHR;

DO i g = l  to &CL;
DO i x = l  to &VAR;

M [ i c , i g , i x ]  = 10*RANUNI( 0 ) ;
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END;

END;
END;
KEEP M1--M&N_M;

RUN;
%MACRO U pd_Seeds;
DATA F i r s tG e n ;

IF  _ n _ = l  THEN SET S eeds ;
SET SimDat;
NUM=_n_;
DROP n;

RUN;
%MEND Upd_Seeds;

%MACRO A jC lu s;
DATA NextGen;

SET F i r s tG e n ;
ARRAY M[&CHR, &CL,&VAR] ;
ARRAY X [&VAR];
ARRAY R [StCHR, &CL] ;
ARRAY CLUS[&CHR];
ARRAY SmallR[&CHR];
ARRAY TotR[&CHR];
ARRAY INV[&CHR];
ARRAY P_INV[&CHR];
ARRAY TP_INV[&CHR];

* Find the best, worst, second best, and second worst Chromosomes; 
do i c = l  t o  &CHR; ********* ig is chromosome number;

do i q = l  t o  &CL; ******** iq  i s  cluster number;
R [ i c ,  iq ]  = 0 ;  
end;

end;
do i c = 1 t o  &CHR; ********* ig is chromosome number;

do i q = l  t o  &CL; ******** i q  i s  cluster number;
do i x - 1  t o  &VAR; ******** iq is cluster number;
R [ i c , i q ] = ( ( x [ i x ] - m [ i c , i q , i x ] )** 2 ) + R [ i c , i q ] ; 
end ;

end ;
end;
do i c = l  t o  &CHR; ******** iq is chromosome number;

C LU S[ic]=1;
S m a l lR [ ic ] = R [ ic ,  1 ] ;

end;
do i c = l  t o  &CHR; ********* ;.g is chromosome number;

do iq= 2  t o  &CL; ******** i q  is cluster number;
IF  S m a l lR [ i c ] > R [ i c , iq ]  THEN CLU S[ic]=iq;

IF  S m a l lR [ i c ] > R [ i c , iq ]  THEN S m a l l R [ i c ] = R [ i c , i q ] ;
end;

end;
do i c = l  t o  &CHR; ********* ic is chromosome number;

T o tR [ ic ]+ S m a l lR [ ic ]  ;
end;

RUN;
%MEND A_Clus;
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%MACRO Worat_C;
DATA W_Chroms (DROP=Xl--X&VAR);

SET NextGen;
ARRAY M[&CHR,&CL,&VAR];
ARRAY X[&VAR];
ARRAY R[&CHR,&CL];
ARRAY CLUS[&CHR];
ARRAY SmallR[&CHR];
ARRAY TotR[&CHR];
ARRAY INV[&CHR];
ARRAY P_INV[&CHR];
ARRAY TP_INV[&CHR];
ARRAY Counter[&CHR];
IF  NUM=107 THEN 

DO;
DO i c = l  t o  &CHR;

c o u n t e r [ i c ]  = 1;
END;

DO i a = l  To &CHR;
DO i b = l  To &CHR;

IF i a  NE i b  Then 
DO;

IF  a b s ( T o t R [ i a ] - T o t R [ i b ] ) <
SAccu THEN c o u n t e r [ i a ]  = c o u n t e r [ i a ] +  1;

END;
END;

End;

c o u n t= l ;
Do i c = l  t o  &CHR-1;

IF  C o u n te r [ i c ]> c o u n t  THEN c o u n t = C o u n t e r [ i c ] ;
END;

DO i c = l  t o  &CHR;
IN V [ic ]= 1 / (T o tR [ i c ] ) ;

END;

T_INV=INV1+INV2+INV3+INV4+INV5+INV6+INV7+INV8+INV9+INV10;

DO i c = l  t o  &CHR;
P_INV[ic] = 100*INV[ic]/T_INV;

END;

TP_INV1=P_INV1/ 100;

DO ic = 2  t o  &CHR;
TP_INV[ic] =TP_INV[ic- 1] +P_INV[ic] / 1 0 0 ;

END;

BEST1=1;

DO i c = l  t o  &CHR;
IF  P_INV[BEST1]<P_INV[ic] THEN BESTl=ic;

END;
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B e s t2 = ( ic )

W o rs t l= ic ;

W ors t2= (ic)

IF  BEST1 = 1 THEN BEST2=2; ELSE BEST2=1;

DO ic = 2  t o  &CHR;
IF i c  NE B e s t l  Then
IF  P_INV[Best2]<P_INV[ic] THEN

END;

W o r s t l= l ;
DO ic = 2  t o  &CHR;

IF  P_INV[W orstl]>P_INV [ic] THEN

END;

IF  W o rs t l  = 1 THEN W orst2= 2; ELSE W0RST2=1; 
DO ic = 2  t o  &CHR;

IF  i c  NE W ors tl  Then 
IF  P_INV[Worst2] >P_INV[ic] THEN

END;

87

END;
END;

ELSE DELETE;
RUN;
%MEND Worst_C;

%MACRO CroaaO;
DATA W_C_CO;

SET W_Chroms;
ARRAY M[&CHR,&CL,&VAR];
ARRAY TP_INV[&CHR];
ARRAY INV[&CHR];
ARRAY INW [&CHR] ;
ARRAY TP2_INV[&CHR];
ARRAY NewCl[&CL,&VAR];
ARRAY NewC2[&CL,&VAR];

IF  coun t  < &Quit THEN 
DO;

'■*Randomly Select 2 Chromosomes;
RN1=RANUNI (0) ; *«• + ■** + ****■■* * Random a number between 0 and 1;
DO i c = l  t o  &CHR; ** * * * ■* * * * * r Find out. the random number f a l l  Into 

vi h i c h c h r on i o s on i e s;
IF  TP_INV[&CHR-ic+ 1] > RN1 THEN RC1= (&CHR-ic+ 1 ) ;

END;
DO i c = l  t o  &CHR; ■*•>*■*■* »" T a k e  out the v a lu e  o f  the first selected 

chromosome;
IF  i c  = RC1 THEN INW [ ic ]  = 0 ;
ELSE IN W [ic ]  =INV[ic] ;

END;
*' +  i r - k + ' + i r  -it *• + +  • * +  +  +  -if *r +  ' k ' k  +  [a '  c j  r j  £  f  f t  f t  p  v- ;  ̂  *

T2 INV=INW1+INW2+INW3+INW4+INW5+INW6+INW7+INW8 + INW9+INW
1 0 ;

TP2_INV1=INW1/T2_INV;
DO ic= 2  t o  &CHR;

TP2_INV[ic] =TP2_INV[ic- 1] + IN W [ic]  /T2_INV;
END;
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+ the second chromosome;
RN2=RANUNI(0);
DO i c = l  t o  &CHR;

IF  TP2_INV[&CHR-ic+ 1] > RN2 THEN RC2=(&CHR-ic+1)
END;

*** + *** + -*********** + £anciomize Crossover Point;
X_Randm= 1+ ( ( (&VAR) - 1) *RANUNI (0 ) )  ;
X_Rand=ROUND (X_Randm, 1) ;
CL_Randm=l+( ( ( &CL)- 1 ) *RANUNI( 0 ) ) ;
CL_Rand=ROUND (CL_Randm, 1) ;

+ + t Crossover;
IF  CL_Rand > 1 THEN 
DO;

DO i q = l  t o  (CL_Rand-1 ) ;
DO i x = l  t o  &VAR;

N ew Cl[iq ,ix]=M [RC1, i q , i x ] ;
NewC2 [ iq ,  ix ]  =M [RC2, i q ,  ix ]  ;

END;
END;

END;

DO i x = l  t o  X_Rand;
NewCl[CL_Rand,ix]=M[RC1, CL_Rand, ix ]  ;
NewC2[CL_Rand,ix]=M[RC2, C L _ R an d ,ix ] ;

END;

IF  X_Rand < (&VAR+ 1) THEN 
DO;

DO ix= (X_Rand+1) t o  &VAR;
NewCl[CL_Rand,ix]=M[RC2, C L _R and ,ix ] ;
NewC2[CL_Rand,ix]=M[RC1, CL_Rand, ix ]  ;

END;
END;

IF  CL_Rand < (&CL+ 1) THEN 
DO;

DO iq= (CL_Rand+1) t o  &CL;
DO i x = l  t o  &VAR;

N e w C l[ iq , ix ]= M [R C 2 ,iq , ix ] ;
N e w C 2 [ iq , ix ]= M [R C 1 ,iq , ix ] ;

END;
END;

END;
"•■•••Substitute Two 'Worsts by Two New Chromosomes;

DO i q = l  t o  &CL;
DO i x = l  t o  &VAR;

M [W O R S T l, iq , ix ]= N ew C l[ iq , ix ] ;
M[WORST2, iq , ix ]= N ew C 2 [iq ,  ix] ;

END;
END;

END;
RUN;
%MEND CrossO;

%MACRO M utat;
DATA CO MU;
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SET W_C_CO;
ARRAY M[&CHR,&CL,&VAR];
ARRAY MuC[&NumMu];
ARRAY MuQ[&NumMu];
ARRAY MuX[&NumMu];

IF  c o u n t  < StQuit THEN 
DO;
* + + Mutation;

Do i = l  t o  &NumMu;
M u C [i]= l+ { ( (&CHR)- 1 ) *RANUNI( 0 ) ) ;
MuQ[i] = l + ( ( (&CL) - 1 ) *RANUNI( 0 ) ) ;
MuX[i]= 1 + ( ( (&VAR)-1)*RANUNI( 0 ) ) ;
MC=ROUND (M uC[i], 1 ) ;
MQ=ROUND (MuQ[i ] , 1) ;
MX=ROUND (MuX[i], 1) ;
M[MC,MQ,MX] = 10-M[MC,MQ,MX] ;

END;
END;
RUN;
%MEND M utat;

%MACRO In vera ;
DATA I n v e r s i o n ;

SET C0_MU;
ARRAY M[&N_M];
ARRAY SM[&N_M];

IF  co u n t  < &Quit THEN 
DO;
*• + ■** *** ***■«* + + ■«*•* + ■»* + ** * Randomly Select Two Points;

INVP1=1+(&N_M-1 ) *RANUNI( 0 ) ;
INVP2=1+(&N_M-1 ) *RANUNI( 0 ) ;
INVP1=R0UND (INVP1, 1) ;
INVP2=ROUND (INVP2, 1) ;

*•** *** ***** * Figure out Which is Start, and Which is End Point; 
DIFF=INVP1- INVP2;
IF  DIFF>0 THEN

DO; INVP3=INVP1;
INVP1=INVP2;
INVP2 = INVP3 ;

END;
Numlnv=abs(INVP2- INVP1) ;
MP_Inv=NumInv/2;
MP_Inv=Round (Mp_Inv, 1) ;

**.**.*****•.**». * * * * * * * * *sWap Them;
Do i = l  t o  M P_Inv-1;

SM [INVPl+i-1 ] =M[INVPl+i- 1] ;
M [IN VPl+i-1 ] =M[INVP2-i+1 ] ;
M [INVP2-i+l]=SM[INVPl+i- 1] ;

END;
END;
RUN;
%MEND Invers;
%MACRO R ep la ce ;
DATA S eeds;

SET I n v e r s i o n ;
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KEEP M1--M&N_M B E S T 1 ;
RUN;
%MEND R ep lace ;
%MACRO GA_Seeds;
DATA SeedGA (KEEP=Xl--X&NumMu);

SET SEEDS;
ARRAY M[&CHR, &CL,&VAR];
ARRAY X[&CL,&VAR];
DO i q = l  t o  &CL;

DO ix = 1 t o  &VAR;
X [ iq , ix ]= M [B e s t l ,  i q ,  ix ]  ;

END;
END;

%MEND GA_Seeds;
%MACRO I t e ;
PROC PRINT DATA=Inversion;

TITLE "This is the Siteration iteration"; 
VAR BEST1 BEST2 WORST1 W0RST2;

RUN;
%MEND I t e ;

%MACRO MyGA;
%D0 i = l  %to t l t e r a t i o n ;

%Upd_Seeds 
%A_CIus 
%Worst_C 
hCrosaO 
%Hfti t a t  
%Invera 
%R e p la c e;

%END;
%Xte
%GA_Seeda 

%MEND MyGA;

%UyGA
RUN;
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