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ABSTRACT

Recent development in microfabrication technology has brought much attention 

to the development of miniaturized, inexpensive and high-accuracy MEMS devices and 

microsystems. The ultimate goal of our project is to develop a versatile, three- 

dimensional, high precision sensor platform, which can be used for displacement, 

velocity or acceleration measurement. The first step, on which this dissertation is based, 

is to fabricate a one-dimensional (parallel with the Z axis) tunneling sensor, which in turn 

can be developed into two- and three-dimensional sensor platforms through structural and 

functional integration.

Since the invention of mini-structured high-sensitivity silicon-based tunneling 

sensor in 1993, the synthesis and fabrication of PMMA-based tunneling sensors still 

remains an over-looked area. Compared with traditional silicon-based tunneling sensors, 

PMMA is less expensive, has little stiffness, and is easier to work with micro-machining 

process. Moreover, this all-PMMA-based tunneling sensor is one of the first generations 

of functional micro-sensors/devices for organic compatible applications.

The hot embossing technique, one of the most widely used micromachining 

approaches in “soft-lithography”, was chosen for its fast turnaround, fewer processing 

parameters, and simplicity. Because the mold can be used repeatedly, the potential of 

mass-production is further highlighted in this dissertation. •

iii
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All-PMMA-based tunneling vertical sensors have been successfully fabricated. 

The overall size of the packaged sensor is 8 mm x 8 mm x 1 mm, with the measurement 

circuits bounded together. The natural frequency of the sensor structure is 133 Hz. The 

bandwidth of the feedback system is 6.3 kHz with voltage over acceleration sensitivity of

20.6 V/g. The resolution at 192 Hz is 0.2485 fig /  j H z .

Compared with the silicon-based tunneling sensor, the PMMA sensor’s apparent 

advantages are: low cost, less processing time, less processing instruments, high yields, 

wider bandwidth, and theoretically lower noise level. Given all our research results, we 

can expect that the PMMA-based tunneling sensor platform to become the base for the 

next generation of highly sensitive micro-sensors in many important areas, notably in 

chemical, magnetic, infrared, and organic applications.
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CHAPTER 1

INTRODUCTION TO RESEARCH

1.1 Research Review 

The interdisciplinary use of lithographic, micromachining, and other micro 

fabrication technologies to prepare miniaturized, reliable, and inexpensive sensors, 

actuators, and circuit components has made tremendous breakthroughs in numerous 

modem fields such as mechanical [1], optical [2], thermal [3], chemical [4], biological 

[5], fluidic [6], and magnetic [7] technologies. Since the Nobel Prize was awarded to 

Binnig and Rohrer in 1986 for building the first scanning tunneling microscope (STM) by 

utilizing tunneling current, the possibility of producing high-sensitive tunneling 

displacement transducers has been actively explored. Several years after the advent of 

the first tunneling transducer [8], sensors with a displacement resolution approaching

lO^AlJTTz were developed by Waltman [9] and Kenny [10]. In electron tunneling 

transducers, sub-angstrom changes in displacement induce measurable changes in 

tunneling current. This high sensitivity is independent of the lateral size of the electrodes 

because the tunneling current occurs between two metal atoms located at opposite 

electrode surfaces. Due to its high sensitivity and miniature size, a micromachined 

tunneling transducer makes it possible to fabricate sensors with high performance, small

1
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size, light mass, and low cost. The sensors are in great demand in applications such as 

microgravity measurement, acoustic measurement, seismology, and navigation.

Gold-coated

Deflection He erodes
Tip

Figure 1-1 Cross-section schematic of a micromachined tunneling sensor 

Since the advent of the scanning tunneling microscope (STM), much research 

[11][12][13] on transforming the high displacement sensitivity of the tunneling process 

into high sensitivity sensors have been made. Because tunneling only requires one metal 

atom on the surface of each side of the gap, this sensitivity is independent of the lateral 

dimensions of the electrodes. Therefore, many silicon micro-machined accelerometers 

with small size and light mass have been developed with high performance in both 

sensitivity and resolution [9][10][14]. Due to the strong distance dependence of the 

tunneling current, the tunneling effect is an attractive new technology for accelerometer 

instrumentation, which enables measurements of sub-A scale displacements. Based on a 

STM design, the sensitivity of the tunneling current can be exploited to build relatively 

simple accelerometers. A typical membrane tunneling accelerometer is shown in Figure 

1-1. The function is described following.

1.2 Objective

Because of the electron tunneling effect, the tunneling current could exponentially 

increase with displacement changes, by which tunneling sensors excel over most of the 

existing sensors, such as piezoelectric, capacitive, piezoresistive, and interferential
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3

schemes. Also, the tunneling effect may happen between only two atoms, which make it 

possible to reduce the size and volume.

The use of PMMA as a kind of elastomer has drawn a lot of attention for 

softlithography and micro- to nano-fabrications. The reasons are clear: The price of 

PMMA is less than $0.1 per square inch, which is ten times less than that of the Silicon. 

The bond temperature is about 150 °C, much lower than that of silicon bond temperature. 

It is easier to seal between PMMA-to-Si surface than between Si-to-Si surface. The 

PMMA is softer than Silicon and therefore more easily machined. The compatibility to 

bioorganic material and applications makes the PMMA welcome over Silicon. And the 

low cost in entry research encourages PMMA-related innovations.

The hot embossing technique intended for quick fabrication and high product rate 

is also employed. Due to the repeated use of templates in hot embossing, the cost of mold 

fabrication can be neglected in the whole process. The unlimited replication of structures 

from template to PMMA makes it a real mass-production process. In addition, the whole 

time for such a replication is less than 30 minutes, which is rather quick compared to 

silicon processing.

All in all, the objective of this project is to argue for the use of polymer, instead of 

silicon, to fabricate an inexpensive, batch-fabricated, high-yield and high sensitive 

tunneling displacement sensor. The first step of this project is to get 1-D vertical devices 

(sensitive to Z axis normal to wafer surface). Lateral 1-D and 2-D devices will be 

fabricated elsewhere in same research group. The ultimate goal of this project is to 

acquire 3-D micro sensor platforms for different kinds of applications. Once the polymer
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4

sensor platform is implemented, five application areas will be considered to take 

advantage of the potential of this advanced MEMS technology. They are the 

accelerometer, the chemical sensor, the IR (infrared Radiation) sensor, the displacement 

sensor, and the magnetic sensor. The Accelerometer will be the first structure under 

consideration because of its simplicity.

1.3 Methodology

The metal tip and the counter electrode construct a tunneling junction. Under low- 

bias regime (millivolt) and vacuum conditions, the tunneling current, I, varies 

exponentially with the gap size S [A]. The formula is written as:

/  oc V exp(-a»Vd>)

Where, 0[eV] is the height of the tunneling barrier (or work function), V is the 

bias voltage, and a  is 1.025[A'‘ eV'1/2]. Let us give an estimation about the current 

changes corresponding to the gap changes. For the Au electrode, we have work functions 

of 5.1 eV (110) and 5.31 eV (111). If we take O as 5.2 eV, we have e*2337=10.35 when 

there is 1 A gap change. That is to say that the current decays about one order of 

magnitude for each A change. Therefore, if there is one-tenth change in current, we can 

measure a 10'2 A gap change in distance. By the aid of mass proof, we can easily find a 

pg resolution for an accelerometer. If we keep constant tunneling current, we can easily 

d\nV
get: const = -------

as
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This means we can get the exponential relationship between the bias voltage and 

the separation gap. The formula above is useful when proving the tunneling effect and 

feed back control in a closed loop measurement.

1.4 Process Instruments and Measurement System

1.4.1 Photolithography and Clean 
Room

Positive photo resist PR 1813, one of the SI800 Series Photo Resists, is mostly 

used in our clean room. Microposit SI800 Series Photo Resists are positive photoresist 

systems engineered to satisfy the microelectronics industry’s requirements for the 

fabrication of advanced IC devices. The system has been engineered using a 

toxicologically safer alternative casting solvent to the ethylene glycol derived ether 

acetates. The dyed photoresist versions are recommended to minimize notching and 

maintain line width control when processing on highly reflective substrates.

The features of Microposit SI800 Series photo resists are similar and listed as 

follows:

Product Assurance

■ Lot-to-lot consistency through state-of-the-art physical, chemical, and functional 

testing

■ Filtered to 0.2 um absolute 

Coating properties

■ Cellosolve acetate and xylene free

■ Striation-ffee coating

■ Excellent adhesion
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6

■ Excellent coating uniformity

■ A variety of standard viscosities are available for single-layer processing 

Exposure properties

■ Optimized for G-line exposure

■ Effective for broad-band exposure

■ Reflective notch and linewidth control using dyed versions 

Development properties

■ Optimized for use with the Microposit MF-319 metal-ion-free developer family

■ Compatible with metal-ion-bearing microposit developers

■ Removal property

■ Residue-free photoresist removal using standard microposit removers 

The optimized condition for photolithography is listed in Table 1-1.

Table 1-1. Optimized Conditions for PR1813

High resolution process parameters
Substrates: Silicon
Photoresist: Microposit SI813 Photoresist
Coat: 1.23 pm
Softbake: 115 °C/60 sec, hotplate
Exposure: G-line (0.54 NA), 150 mJ/cm2
Development: MF-319 15+50 sec. @21 °C

Negative photoresist NR9-1500P is also used when necessary. The negative 

photoresist process is described here:

It is essential to have a clean and dry wafer surface for a good photoresist 

adhesion. Initial cleaning and baking at about 200 °C for 15 to 20 minutes on a hot plate
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7

is required immediately prior to the photoresist application (except in cases when wafers 

were taken directly from oxidation furnace or E - beam evaporator).

An additional surface treatment with hexamethyldisilizane (HMDS) adhesion 

promoter may be necessary in some cases:

■ Place wafers in a desiccator containing a small beaker with HMDS.

■ Connect desiccators to vacuum line.

■ Keep wafers in desiccators under vacuum for ~ 5 minutes.

Photoresist application

■ Negative photoresist: Futurrex NR9 -  1500P.

■ Fill pipette with resist to about 1.5 inch and dispense on wafer.

■ Spread, static, 2 seconds recommended; spin at 3000 rpm for 40 seconds

(thickness ~ 1.0 pm).

■ Soft bake at 130°C for 3 minutes on hot plate.

■ Align mask and expose.

■ Total energy required is ~ 200 mJ / cm2. Measure intensity (mW/cm2 at 366 nm

wavelength) and calculate necessary exposure time: Intensity (mW/cm2) x Time

(s) = Energy (mJ/cm2).

■ Post bake at 100°C for 2 minutes on a hot plate.

■ Develop by immersion and mild agitation in RD6 developer;

■ developing time is ~ 8 seconds.

■ Rinse in deionized (DI) water for 60 seconds immediately after developing. Spin 

dry. Inspect under microscope.
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■ If insufficiently developed, develop for 1 to 2 more seconds and check again. 

Photoresist stripping: in oxygen plasma or with negative resist remover RR2. 

The conditions for each way are shown in Table 1-2.

Table 1-2. Optimized Conditions for NR9 stripping

Oxygen plasma: Negative resist remover:
Oxygen flow: 12 cc/min. Heat solution to ~ 110 °C.
Power: 360 Watts Place wafers in solution/5 min
Pressure: 380 mTorr Rinse in DI water for 1 min
Time: 5 minutes Spin dry and check

Clean room: A class-100 clean room is often used as work place for 

microfabrication. Here are some introductions to the clean room conditions and 

technologies:

Clean rooms are a work area with controlled temperature and humidity to protect 

sensitive equipment from contamination of air borne particles. Usually they are built with 

plastic walls and ceilings, external lighting, and a continuous intake of clean, particle free 

air. The room is cleaned daily to prevent further contamination.

Different industries require the use of a clean room. Medical facilities, integrated 

circuit manufacturers, and hard disk fabrication plants are just a few. Any firm which is 

involved with data recovery should have at least have a class 100 or better clean room to 

perform even the most basic recovery procedures.

Any class 100 clean room must adhere to strict control of the environmental 

conditions in order to insure a quality room. The environmental conditions in a clean 

room are controlled by positive air pressure, which is cleaned by a Hepa filter.
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Equipment and diagnostic tools used in a clean room environment depend on the 

level of cleanliness needed. Many fabrication plants adhere to the established Federal 

Standard STD-209E. This standard outlines the airborne particulate cleanliness classes, 

so a class 100 clean room there would be no more than 100 particles (0.5 micron), in any 

given cubic foot of air.

The clean room is separated from the rest of the buildings air supply. It is 

ventilated with filtered air during construction to prevent contamination. Another risk 

factor is leakages in the system. To help guard against this, the Filter Fan Concept aids in 

the recalculation of about 96% of the total air volume within the clean shell and also 

ensures high flexibility.

Monitoring must be controlled 24 hours a day, and very closely during operation. 

Extremely sensitive measuring and testing equipment must be in place to ensure that the 

clean room is running properly, with no particulate above stated standard.

All operators are required to wear non lining body suits, shoes, gloves, head 

coverings and masks. Our clean room has a pass-through air blast/docking station, which 

because people represent the greatest influx of particle contamination and upon entering 

removes particles to ensure minimal contamination of the environment.

1.4.2 Hot Embossing

When manufacturing high-quality microstructures with a high aspect ratio from 

plastics by means of the LIGA method (LIGA is a German acronym for X-ray 

lithography, electrodeposition, and molding. In this technique, X-rays are used to carve
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out deep patterns in a resist), there are three means for molding: reacting injection 

molding, injection molding, and hot embossing molding.

Hot embossing is the process of pressing a mold into a pre-fabricated semi

finished plastic product that is located on a substrate under vacuum. The process takes 

place at a temperature that ensures sufficient fluidity of the plastic materials. After the 

mold insert, the plastic material is cooled down to a temperature, which provides for a 

sufficient strength so the microstructured plastic material can be demolded. Figure 1-2 

depicts the process steps of hot embossing.

Heating Molding Demolding

Figure 1-2 Process of hot embossing

Compared with injection molding, hot embossing has several significant 

advantages:

■ The small deformation rates arising during molding result in small low velocities, 

which facilitate the molding of very fine structures without deformation 

occurring.

■ Because the process conduct is close to the thermal equilibrium and the order of 

structural height has small flow path, the internal stresses in the molded plastic 

material can be minimized.
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■ Precise control of the process parameters, such as molding forces and 

temperatures, allows manufacturing microstructures with very thin, unstructured 

carrier layers.

Because a flowable state in enhancing temperature is needed, only thermoplastic 

amorphous (ex. PMMA) or semi-crystalline plastics (ex. POM) are suited for embossing. 

For amorphous plastics there exist glass transition temperature, Tg, and crystalline 

melting temperature, Tm. Semi-crystalline plastics show only a sharp decrease of 

strength in melting temperature (Shown in Figure 1-3). When filling the micro cavities in 

the embossing process and setting a certain carrier layer thickness, certain fluidity must 

be reached. In the case of semi-crystalline plastic material, the fluidity may be achieved 

in a narrow temperature range above the crystallite melting temperature. When 

amorphous polymers are concerned, the embossing temperature is mostly far above the 

glass temperature.

C iav«l;rO M  (i— i iiymlUm) 
Cur»« a  yviXA (aaaiphara)

tus

so ? too0 100

Figure 1-3 Thermo-mechanical behavior of material

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

By reducing the process temperature to below the glass temperature in the case of 

amorphous plastics and below the melting temperature for semi-crystalline plastics, an 

increase in the mechanical strength of the plastic material is achieved. In the case of 

amorphous plastics, a demolding temperature far below Tg must be reached due to the 

larger softening range, which means smaller cycle times can be attained for semi

crystalline plastics compared to amorphous plastics.

During demolding, if the demolding stress exceeds the yield stress of the plastic 

materials, tear off and shearing as well as distortions and deformations may occur in the 

demolding direction of the microstructures. The generation mechanisms of demolding 

stress are of variable nature. Mostly, they are heat-induced stress, tension or compression 

induced stress, and mold deformation induced stress.

Here is a primary means to minimize the demolding stresses. Taking into account 

the temperature influence on the material data, the developing demolding stresses can be 

described s follows [15]:

T

a  = + f1' 4 f (7L (QW (T) -  a lhM (T))dT where,
rj l - 2  vr {T)

a : demolding stress; Ep: Young’s modulus; vP: Poisson’s ratio (plastic) a lhJ, : thermal

expansion coefficient (plastic); a lhM: Thermal expansion coefficient (mold); Td,Tg :

demolding and glass temperature.

The mathematical solution for the above equation is complicated. We can follow 

the experimental steps:
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■ First we get the p (pressure), v (volume), T (temperature) diagram of the plastics 

as a function of temperature. The thermal expansion coefficient can be obtained 

from the slope of the curve.

■ To minimize the demolding stresses that may cause structure distortions, the 

demolding temperature must be avoided where abrupt changes of expansion 

occur.

■ We also need to plot Young’s modulus dependence of temperature, where we 

should choose a proper temperature to keep a sufficiently high mechanical 

strength for applying demolding forces to the plastic material.

■ By use of the equation above as well as these two plots, we plot demolding 

stresses as a function of temperature and Young’s modulus. With the purpose of 

reduction of demolding stresses, we can determine the appropriate demolding 

temperature for optimum molding of microstructures.

More discussion about PMMA (Poly methyl methacrylate) and POM (Poly Oxy 

methylene) can be found in reference [16].

Time
Record

PMMA/Ref | I —’ FFT
.Sensor ! ! Reference; Analyzer

Record
_________! i

Figure 1-4 Function illustration of measurement
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1.4.3 Measurement System

The function blocks of the measurement system is plotted in Fig. 1-4, which 

includes three function blocks of generation, calibration, and analysis. The exciter 4809 

produces acceleration by aid of a service instrument, which is installed on an anti

vibration station. The fabricated tunneling sensors together with a reference 

accelerometer record the original signal and generate time, frequency, and noise 

information. The laser vibrometer gives out the exact displacement of proof mass, which 

is used for identification of the tunneling work function. The control and feedback circuit 

shows the measured value and helps to control the sensor at a stable condition. The 

oscillometer and vib-analyzer measure the output signal and analyze the sensor 

information.

Operation Principle of VDD 650 Vibrometer. Polytec’s Vibrometer with 

Digital Demodulation (VDD) is a PC-based signal processing system, which adds the 

option of digital demodulation of the Doppler signal from the optical sensor to Polytec’s 

laser vibrometer. The digital signal processing technology of the VDD 650 enables you 

to decode the measured quantities of displacement, velocity, and acceleration with a 

degree of precision and a resolution that a conventional laser vibrometer would not be 

capable of. Through immediate integration of signal decoding and signal evaluation in 

the PC, the system VDD 650 works without additional signal conversion and signal 

transmission, both of which can have a negative effect on the high level of accuracy 

attained when measuring with the laser Doppler method.
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Signal decoding in the VDD 650 is carried out using purely numerical methods in 

the PC. This signal processing method requires the Doppler signal being made available 

as a two-channel quadrature signal, also known as an I&Q signal. This type of signal is 

familiar from classical interferometers used for length measurement, and from other 

incremental sensors. As, however, the heterodyne interferometer used in the optical 

sensor generates the Doppler signal as a one-channel carrier frequency signal, this 

initially has to be converted electronically into an equivalent I&Q signal. The signal 

conversion is done in the digital front end. The I&Q signal pair is run from the interface 

EXTENSION on the back of the digital front end via the junction box VDD-Z—1- to two 

synchronously sampled input channels on the data acquisition board in the PC. Here, the 

I&Q signal pair is translated into two data streams with an amplitude resolution of 12 bit 

and a maximum sampling rate of 5.12 Msa/s. If required, the reference signal is acquired 

by another input channel, the resolution of which is between 12 it and 16 bit, depending 

on the selected analysis bandwidth.

Figure 1-5 Scheme of the PC-based digital vibrometer system VDD 650 

The metrological properties attained by the VDD system are primarily determined 

by the algorithms for the numerical decoding of the Doppler information implemented in 

the software VibSoft. In this connection, the amplitude resolution and accuracy of the

— — - j  Interferometer
'Carrocr signal Digital frontend

40 MHz DFE-650

[Junction box I 
VDD-Z-010
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A/S converter only have a negligible influence on the properties of the system, in contrast 

to the conventional acquisition of the analog measurement signals. The nominal 

resolution of the data acquisition board of 12 bit is thus not directly connected to the 

resolution and the measurement range of the whole system which can be attained. 

Residual errors from the A/D conversion are corrected in the VDD while decoding with 

the aid of the mathematical methods.

LAN A O  449

Portable Unit 2827

LAN interface 4/2-ch Input/O utput 
Module 7533 M odule 3109

Figure 1-6 Portable PULSE measurement system 

After decoding, which primarily provides the displacement signal, a reduction of 

data is carried out initially, which adapts the output data rate to the analysis bandwidth 

required. With VibSoft set appropriately, the displacement signal is also used to calculate 

the velocity or acceleration information in the time domain with a high degree of 

accuracy through single of double differentiation. With the aid of digital filter functions, 

noise components can be removed from the time signal. At the same time, a high- 

performance two channel FFT analyzer is available for signal analysis in the frequency 

range. The measurement data from the VDD is not available online but can be exported 

in various formats. The diagram of VDD 650 function is plotted in figure 1-5.

The Multi-analyzer system type 3560C—PULSE is the product of BrOl & Kjaer 

Company for PULSE analysis. The system (type 3560C) consists of a PC with LAN
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interface, Pulse software, Windows NT/2000, Microsoft Office, and IDA Data 

Acquisition Front-ends hardware. The system can contain up to 128 input channels 

located in up to ten front-ends of the same or different type. (See figure 1-6) Our system 

specifically contains:

■ PULSE DATA ACQUISITION SYSTEM for 2 input channels for FFT analysis, 

and 1 output signal generator (sine, sine sweep, random, pseudo-random), auto 

and Cross-Spectrum calculations, with 1 reference signal, and 25.6 kHz frequency 

range.

■ Type 2827 Portable Acquisition Frame for 3560C. Can be operated with two 

QB0048 batteries (not Included).

■ Type QB0048 Batteries. Rechargeable Ni-MH Batteries for 2827. The 2827 can 

hold two QB0048 batteries.

■ Type 7533 10Mbit LAN Interface Module, 150 kHz bandwidth, lch Input.

■ Type 3109 4/2-Channel Input/Output Module. Four channels with BNC/LEMO 

connections for direct, DeltaTron/IsoTron, and microphone inputs. Two channels 

for generator outputs.

■ Type 7770G Noise and Vibration Analysis Software, 2 Channel License, FFT

»  Analyzer.

■ Type UL0166NA2 Dell Computer C610 Minimum specs 1GHz PIII, 256MB 

RAM, 20GB HD, CD-ROM, Ethernet/modem, Windows 2000 Pro, MS Office 

XP Pro (max 75 beats). The analyzer is a PC based analyzer. The hardware
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includes the acquisition front-end, and the software on the PC controls the 

hardware and the channels.

Also, a shaker system to produce exciter signal and accelerometer is included:

■ Type 4809 Vibration Exciter system, 45N Force Rating, Frequency range 10Hz to 

20 kHz. Very Low rocking motion and transverse vibration of the moving part.

■ Type 2718 Power Amplifier system for the drive of shaker 4809, Low distortion, 

and flat frequency response from 10Hz to 20 kHz (+-0.5dB). Signal generated by 

the PULSE analysis system and connected to the Power Amplifier.
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CHAPTER 2

STRUCTURE DESIGN AND SIMULATION

2.1 Design Methodology 

The design flow chart for the accelerometer is shown in Figure 2-1. The chosen 

method of tunneling effect can indicate a Z-axis sensitivity of the device. This Z-axis 

sensitivity then indicates the size and the geometry of the proof mass, tip, and other 

process condition. The open loop character is then inspected. The tunneling current-gap 

relation should be obtained. Then, with proper design of feedback circuits, together with 

parameter changes and electrostatic actuator utility, a closed loop system is obtained. And 

accelerometer is marked with the help of gravimeter.

2.2 Design of Manufacturing 

Figure 2-2 is the cross-section sketch of tunneling accelerometer. The sensor itself 

is made up of PMMA. The proof mass has a specific size and mass. Because Au has a 

stable identity, we use Au film as the electrode. A layer of Ti (about 0.3 nm) is sputtered 

for better adhesion between Au metal electrode and PMMA. The tip and the counter 

electrode compose the tunneling structure. The deflection electrode and the counter 

electrode adjust the distance of the gap. The adjusting force is electrostatic force. When 

operating, the device works by applying an offset voltage to the deflection electrode to 

electrostatically deflect the proof mass fixed on the membrane towards the tip. When a

19
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small tunneling current appears between the tip and the counter electrode, the device is 

operated at open loop condition. The relation between tunneling current Lnl (or LriW) and 

distance of the gap is checked to prove the tunneling effect. Then a feedback voltage is 

added to the offset voltage on the deflection electrode to maintain the current at a 

constant value. When an external force is applied to the proof mass, the feedback circuit 

responds by applying a balancing electrostatic force. The external forces are determined 

by monitoring the feedback control voltage.

Close loop system

Tunneling method

Sensitivity

Feed back electronic

Open-bop character

Topography and 
process flow Tip, process, proof 

mass, size and 
geometry changes, 

electrostatic Actuator

Figure 2-1 Design flowchart 

The complete fabrication process has been presented in figure 2-3. Figure (a) and 

(b) are for top parts. The structure is obtained directly by hot embossing with proper sizes 

of proof mass and lateral lengths. The thin sheet is then grounded into thinner membrane 

by mechanical and RIE etching. The Ti/Au layer is sputtered thereby. For the lower part, 

which is shown in figure (b) and (c), the processing is more simple. Just get the structure
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directly from hot embossing and then pattern the electrodes after metal film deposition. 

Finally, these two parts are bonded together by epoxy glue. Detailed descriptions can be 

found in chapter four.

Metal

PMMA
Counter
electrode

Proof Mas*

dclclction - >. 
electrode Tunneling l ip

A
Figure 2-2 Cross section of vertical tunneling accelerometer

Mental 

m  PMMA Proof Mass

(a) proof mass molding by hot embossing

H  Mental 

C J  PMMA
Counter

'electrode

.. Proof Mass
/

/

(b) Ti/Au counter electrode sputtering

■a Mental 

'.1 PMMA Tunneling Tip

' Mental

PMMA defection Tunneling Tip
electrode

—I H—-—/v
(c) Bottom structure molding by hot embossing (d) Ti/Au electrodes sputtering and patterning

Figure 2-3 Processing flow chart for PMMA tunneling sensor
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2.3 tProof mass and Mechanical Simulation bv ANSYS

2.3.1 Introduction to ANSYS

The ANSYS Product Suite includes its time-tested, industry-leading applications 

for structural, thermal, mechanical, computational fluid dynamics, and electromagnetic 

analyses, as well as solutions for transient impact analysis. ANSYS software solves for 

the combined effects of multiple forces, accurately modeling combined behaviors 

resulting from "Multiphysics" interactions. The software also features advanced nonlinear 

material simulation and the best solvers money can buy.

MEMS is an abbreviation for Micro Electro Mechanical Systems. MEMS 

technology is at the center of a rapidly emerging industry combining many different 

engineering disciplines & physics: electrical, electronic, mechanical, optical, material, 

chemical, and fluidic engineering disciplines. As the smallest commercially produced 

"machines", MEMS devices are similar to traditional sensors and actuators although 

much, much smaller. The broad physics capability of ANSYS/Multiphysics has been 

progressively enhanced to meet the unique simulation requirements of the Microsystems / 

MEMS device designer.

As parts of multiphysics subfunctions, Mechanical and Structural analysis are 

necessary in my research. Thanks to its full complement of nonlinear elements, nonlinear 

and linear material laws, and inelastic material models, ANSYS/Structural easily 

simulates even the largest and most intricate of structures. Plus, its world-class nonlinear 

contact functionality allows for the analysis of complicated assemblies. 

ANSYS/Structural offers users an intuitive, tree-structured GUI for easy definition of
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even the most intricate material models and a choice of iterative and direct solvers for 

optimal results (Note: Supplementary solvers may be added via the Parallel Performance 

for ANSYS module.) On the other hand, ANSYS/Mechanical includes a full complement 

of non-linear and linear elements, material laws ranging from metal to rubber, and the 

most comprehensive set of solvers available. It can handle even the most complex 

assemblies—especially those involving non-linear contact—and is the ideal choice for 

determining stresses, temperatures, displacements and contact pressure distributions on 

all your component and assembly designs.

2.3.2 Static Analysis

Static analysis is used to determine the displacements, stresses, strains, and forces 

in structures or components caused by loads that do not induce significant inertia and 

damping effects. Steady loading and response conditions are assumed; that is, the loads 

and the structure's response are assumed to vary slowly with respect to time. The static 

analysis describes the changes when a force or other kinds of loadings are applied onto 

the structures. The structures are treated as ideal elements by “meshing” nodes without 

inertia and damping. Also, the time varying load is analyzed later.

As shown in figure 2-4, the key parts of movement are thin sheets of proof mass 

located at the center. The four areas of sheet edges have zero displacement because of the 

connection with substrate bulk. The applied force or acceleration is applied onto the 

whole area with a vertical direction of Z. When the sheet thickness is about 20 to 50 pm, 

and the height of proof mass is about 50 to 60 pm, all the items are seen as “block” 

instead of “sheet”, which, however, greatly slows down the speed of analysis simulation.
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Because the force is a kind of field existing everywhere of the sensor, the force is loaded 

as a static force instead of a point force. The maximum displacement at Z direction can 

be obtained from the analysis and is used for the calculation of spring constant K.

Table 2-1. Structure Parameter with Simulated AT Values

1 Sheet parameter X (m) Y(m) Z(m) K  (N/m)
M=2.3E-7 kg 
F=1E-6N 
D=1150 (kg/mA3) 
Sheet size: 
2mm,2mm,50um

0.00E+00 O.OOE+OO O.OOE+OO 12.77043
2.00E-04 2.00E-04 5.00E-05 5.810744
4.00E-04 4.00E-04 5.00E-05 6.778926
6.00E-04 6.00E-04 5.00E-05 9.226624
8.00E-04 8.00E-04 5.00E-05 11.65925
1.00E-03 1.00E-03 5.00E-05 17.01505

M=9.2E-8kg 
F=1E-6N 
D=1150 (kg/mA3) 
Sheet size: 
2mm,2mm,20um

0.00E+00 0.00E+00 0.00E+00 12.77043
2.00E-04 2.00E-04 5.00E-05 0.118318
4.00E-04 4.00E-04 5.00E-05 0.159804
6.00E-04 6.00E-04 5.00E-05 0.222509
8.00E-04 8.00E-04 5.00E-05 0.334351
1.00E-03 1.00E-03 5.00E-05 0.491777

M=2.07E-7 kg 
F=1E-6N 
D=1150 (kg/mA3) 
Sheet size: 
3mm,3mm,20um

0.00E+00 0.00E+00 0.00E+00 0.024473
2.00E-04 2.00E-04 5.00E-05 0.029583
4.00E-04 4.00E-04 5.00E-05 0.592624
6.00E-04 6.00E-04 5.00E-05 0.765562
8.00E-04 8.00E-04 5.00E-05 0.658605
1.00E-03 1.00E-03 5.00E-05 0.863126

M=3.68E-7 kg 
F=1E-6N 
D=1150 (kg/mA3) 
Sheet size: 
4mm,4mm,20um

0.00E+00 0.00E+00 O.OOE+OO 0.027666
2.00E-04 2.00E-04 5.00E-05 0.100214
4.00E-04 4.00E-04 5.00E-05 0.158581
6.00E-04 6.00E-04 5.00E-05 0.10161
8.00E-04 8.00E-04 5.00E-05 0.1777
1.00E-03 1.00E-03 5.00E-05 0.205081

M=8.28E-7 kg 
F=1E-6N 
D=1150 (kg/mA3) 
Sheet size: 
6mm,6mm,20um

0.00E+00 0.00E+00 O.OOE+OO 0.011623
2.00E-04 2.00E-04 5.00E-05 0.028607
4.00E-04 4.00E-04 5.00E-05 0.026068
6.00E-04 6.00E-04 5.00E-05 0.017345
8.00E-04 8.00E-04 5.00E-05 0.027685
1.00E-03 1.00E-03 5.00E-05 0.02722
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Figure 2-4 Structure schematic and loading conditions at static analysis
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Figure 2-5 Spring constant versus proof mass size at different sheet parameters 

Several sizes, thicknesses, and heights of sheet and proof mass were chosen and 

are listed on table 2-1. The corresponding plots of spring constant k v.s. sheet length are 

showed in figure 2-5. From the plot of figure 2-5, the spring constant k changes a lot 

when either the sheet parameters or the proof mass changes. However, the main condition
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to determine the k  values is the sheet parameters in magnitude scale while the proof mass 

only changes one to two times. The scale rule of structure with features is important when 

optimizing the characteristics of transducer. A detailed discussion can be found later.

2.3.3 Model Analysis

We use model analysis to determine the vibration characteristics (natural 

frequencies and mode shapes) of a structure or a machine component while it is being 

designed. It can also be a starting point for another, more detailed, dynamic analysis, such 

as a transient dynamic analysis, a harmonic response analysis, or a spectrum analysis.

AN AS

Figure 2-6 First vibration model simulated by AnSys 

The natural response of the mechanic system is so important that it gives out 

almost all the dynamic properties of the structure. The frequency upper limit is 

determined by the system natural frequency and other characteristics, such as spectrum 

analysis, mode harmonic and transient response, are all related. The model analysis 

provided by ANSYS is a linear analysis, which helps to determine the vibration
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characteristics of the structure. The damping or pre-stressed structures can also be 

included when model analysis is performed.

AN

Figure 2-7 Second vibration model simulated by AnSys

The structure is constructed as 4 mm x 4 mm x 20 pm sheets together with a 400 

pm x 400 pm x 50 pm proof mass. The applied force is added by a way of pressure 

because the force field is applied on total upper area instead of one point or all-nodes. A 

good way to estimate acceleration to pressure is as follows: 

ci d VP = --------- ; Where, a is applied acceleration, d  is material density, V is material
S

volume and S  is sheet area. Then one mili-g acceleration is about 2.3 x 10° Pa.

Four possible vibration models are simulated. The first model is natural response 

to applied force, which is about 150 Hz (Shown in figure 2-6). The resonant frequency is 

important in that it reflects both the open loop spring constant and the maximum 

sensitivity. More discussion about natural frequency is found in Chapter 3.
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Figure 2-8 Twist as third vibration model by AnSys

A

Figure 2-9 Fluctuation as the fourth vibration model by AnSys 

The second vibration model is shown in figure 2-7. The torque produced by 

comer makes the twist toward two comers. The corresponding frequency is about 1680 

Hz, which is higher than natural frequency. In order to avoid the twist, the sampling 

frequency should be lower than the first resonant frequency.
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A third vibration model is plotted in figure 2-8. This twist is produced by edge 

torque, which excites a frequency of 17315 Hz. This is such a high model that there is no 

response at all expected disturbance.

The last vibration model is a wave-like fluctuation (shown in figure 2-9). The four 

comers fluctuate up and down in pairs. The corresponding frequency is about 26135 Hz, 

which is also high enough to be omitted because of a low exciter frequency of less than 

150 Hz.

2.3.4 Harmonic Response

AN

Figure 2-10 Displacement response vs. frequency 

Harmonic response analysis is a technique used to determine the steady-state 

response of a linear structure to loads that vary harmonically with time. The idea is to 

calculate the structure's response at several frequencies and obtain a graph of some 

response quantity (usually displacements) versus frequency. "Peak" responses are then 

identified on the graph and stresses reviewed at those peak frequencies. Three harmonic
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response analysis methods are available: full, reduced, and mode superposition. The full 

method is the easiest of the three methods. It uses the full system matrices to calculate the 

harmonic response (no matrix reduction). The matrices may be symmetric or asymmetric.

Figure 2-11 Displacement contour plot at 1 mg acceleration 

Fifty frequencies near natural frequency are calculated and the center point 

displacement changes are given out in figure 2-10. When the excited frequency is lower 

than 100 Hz, the maximum displacement is about 10‘5 meter (Applied force is 1 Newton, 

rather large compare to the real value). When the frequency is near the resonant value of 

150 Hz, the displacement response rises greatly and reaches its maximum value of two 

degrees larger in magnitude. This maximum value is also distributed differently over the 

entire sheet. A contour plot (figure 2-11) of displacement can tell that the center point is 

the greatest in magnitude. The plot also shows that the distribution is center symmetric.
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2.3.5 Static Force and Bending

Table 2-2. Electrostatic Deflection Summary

€3 
< 

1
1

Gap (um)
PMMA
(um) Voltage (V) Gold (um) Displacement (um)

500*500 50 20 100 2 0.322757
500*500 50 20 200 2 1.38
500*500 10 20 100 2 139.947
500*500 10 20 50 2 3.901
500*500 15 20 100 2 20.993
500*500 15 20 50 2 0.993301
500*500 15 50 100 2 0.323847
500*500 15 50 200 2 1.532
2000*2000 15 50 100 2 1.43
2000*2000 15 50 150 2 5.472
2000*2000 20 50 100 2 1.386
2000*2000 20 50 150 2 3.897
2000*2000 15 70 100 2 0.537061
2000*2000 15 70 150 2 1.316
2000*2000 15 70 200 2 2.788
2000*2000 15 100 200 2 0.877284
2000*2000 15 100 250 2 1.463
2000*2000 15 100 300 2 2.333
2000*2000 50 50 200 2 0.446758
2000*2000 50 50 300 2 1.024

The relation between stress distribution and applied force induced by actuator 

voltage is so important that it constrains the spring limitation as well as the force 

tolerance. The maximum stress and strains distribution can be found in figure 2-12, 

which describes the stress as located mainly at center point. The maximum deform is 

about 2 pm when the actuator area is 0.5 mmx0.5 mm with a distance o f 15 pm. The 

applied voltage is about 50 V, which produces an actuation ratio of 0.04 pm per volt. 

Moreover, for a parallel plate capacitor, the electrostatic forces are given by:
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e A V2
F  = — 0 a “ ; where eQ is the electric permittivity, Aa is the actuator area; Va is the

2(g0 +z)

applied voltage, and g0 is the nominal gap. The calculation value from the parallel

capacitor formula with the same sizes is 2.3 pm, which coincides well with the 

simulation value, though it neglects the dissipation of force because of edge effect.

The static force distribution is plotted in figure 2-13. The force is almost uniform 

at the center, and there is some dissipation at the edges. A simulated parameter list is 

plotted in Table 2-2, which gives a good estimation of electrostatic deflection summary.

AN'.'i

Figure 2-12 Deformation when 50 V applied on to actuator

2.3.6 Parameter Design Based on 
ANSYS

From the analysis by ANSYS, all the characteristics of a vertical tunneling 

PMMA accelerometer can be simulated before fabrication. The parameters of several 

sized sensors are listed in table 2-3. From the data, we can see the larger the sheet size, 

the lower the natural frequency. If we keep the sheet size constant, the natural frequency
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is almost constant, while spring constants change about 10 times. A 4 mm><4 mm sheet 

with 200 pm square proof mass is the optimum condition.

Figure 2-13 Static force distribution produced by actuator

2.4 Electronic Control and Feedback Circuit 

The accelerometer operates at the constant current model. The tunneling current is

sensed like a trans-impedance amplifier. The transfer function of this amplifier is given as
*

V
— = f(R,C,a>), where R, C is the sensor dynamic resistance and parasitic capacitance.
A

co is the simulative frequency. The tunnel voltage then connects to a readout circuit and 

negative feed back actuation voltage is sent to the electrostatic actuation pad. When the 

sensor is accelerated, the proof mass experiences an inertial force, which causes its 

motion to lag that of the sensor. Generally, we operated with high gain to ensure the 

proof-mass motion was small (less than 1 A) so the negative voltage of the amplifier 

could bring the tunneling tip closer to or farther from its counter-electrode. The feed back
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circuit is simple, and many low pass amplifier circuits [17][18] can be followed. Figure 

2-14 is one of them.

Table 2-3. Parameter List of Different proof Mass Sheet

Sheet size Frequency (Hz) Displacement Spring constant
2mm sheet,
0 proof mass 4161 8.45E-06 0.118318

2mm sheet, 
200pm P.M. 2148 6.26E-06 0.159804

2mm sheet, 
400pm P.M. 2124 4.49E-06 0.222509

2mm sheet, 
600pm P.M. 2168 2.99E-06 0.334351

2mm sheet, 
800pm P.M. 2288 2.03E-06 0.491777

2mm sheet, 
1000pm P.M. 2440 1.43E-06 0.697345

4mm sheet, 
200pm P.M. 810.3 3.61E-05 0.027666

4mm sheet, 
400pm P.M. 1204 9.98E-06 0.100214

4mm sheet, 
600pm P.M. 1258 6.31E-06 0.158581

4mm sheet, 
800pm P.M. 1054 9.84E-06 0.10161

4mm sheet, 
1000pm P.M. 1164 5.63E-06 0.1777

6mm sheet, 
200pm P.M. 434.7 8.60E-05 0.011623

6mm sheet, 
400pm P.M. 620.3 3.50E-05 0.028607

6mm sheet, 
600pm P.M. 539 3.84E-05 0.026068

6mm sheet, 
800pm P.M. 468.9 5.77E-05 0.017345

6mm sheet, 
1000pm P.M. 518.6 3.61 E-05 0.027685
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When the proof mass is within about 10 A of the tip, the tunnel current is about

1.5 nA from the tip to the counter electrode. So the pre-amplifier gain should be 6 to 7 

orders in magnitude. Usually, the tunneling current is fed into a trans-resistance 

amplifier. This voltage signal is then compared to a reference signal proportional to the 

desired tunneling current. When there is a fluctuation in the gap, an error signal is 

produced which adjusts the actuator signal to control the tunnel gap. Therefore, the gap is 

controlled to a separation defined by the reference set point.

-M-

~ J T
AA/------- 1 U

7-/ii

Figure 2-14 Feedback and control circuit for accelerometer 

Two crucial problems need to be presented here. The first one is that feedback 

speed must be fast enough to respond, which requires an operation frequency lower than 

the natural oscillation frequency of the proof mass. In most cases, the natural frequency is

described by: con = 2n 4 k lm  . If we think all the deviation is small and the membrane 

vibrates at linear spring area, we can estimate the k/m ratio. Because we have 

kAz = mAa , k/m should be Aa! A z . Following the estimated value Aa is about KT6 g and
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Azis about 10"4 A, we have con to be about 104 r/s. So we can conclude that the proof

mass automatically satisfies the response time requirement. Also, we can measure the 

natural frequency of system by operating it at open loop condition. So a low pass readout 

or preamplifier circuit is necessary.

The second problem is to consider the noise. From the study [19] of the noise 

spectrum, the dominant noise is low frequency noise, which is mainly generated by 

thermal expansion mismatch. So a relative higher operation frequency is reasonable. A 

100~200 Hz operated frequency would be chosen.
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CHAPTER 3

MODELING AND CONTROL SYSTEM 

SYNTHESIS BY MATLAB

3.1 Introduction

Several years after the advent of the first tunneling transducer [8], sensors with 

displacement resolution approaching 10"4 A/VHz were developed by Waltman [20] and 

Kenny [9]. In electron tunneling transducers, a 1% change in 1.5 nA current between 

tunneling electrodes corresponds to a displacement fluctuation of less than 0.1 A. This 

high sensitivity is independent of the lateral size of the electrodes because the tunneling 

current occurs between two metal atoms located at opposite electrode surfaces. Due to its 

high sensitivity and miniature size, micro machined tunneling transducers make it 

possible to fabricate a high performance, small size, light mass, inexpensive 

accelerometer, which is in great demand in applications such as microgravity 

measurements, acoustic measurements, seismology, and navigation.

Considerable research work on accelerometers [21] [22] [23] has been developed. 

However, most micro machined tunneling accelerometers still suffer the problem of 

enhancing resolution while broadening measurement bandwidth. Liu et al developed a 

controller design by p-synthesis [24] which accomplished a high precision, wide-

37
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bandwidth micro machined tunneling accelerometer [25], However, the method is 

complicated and frustrating, especially to new device designers, who intend either to 

devise innovative tunneling sensors or to reconstruct revised structures for better 

performance. Because their purpose is not to accommodate different sensors for mass 

production like Liu’s p-synthesis method, a simple, effective and effortless design 

method is necessary. In this paper, a Computer Aided Engineering (CAE) tool, MatLab 

Simulink, is chosen as a kind of technical computing language to model and simulate the 

function of the tunneling accelerometer. After approximation at small signal input, a 

simpler means to synthesis control systems is established. The designed transfer function 

is evaluated and compared with the real system. At the same time, some simulation 

results of the mechanical performance, frequency response, system stability, time history, 

and dynamic range of tunneling accelerometers are plotted and discussed. Moreover, 

since the design and analysis of control systems could be done prior to the micro 

machining process, further research and mass production processes can be greatly 

expedited and streamlined.

Proof Mass Electrode Hinge

\ \
1 Vacuum 1 ---- —

\! 1 Proof Mass _13
----- ■r-i -■ y 1 , y -

Tunneling Tip Deflection Electrode

Figure 3-1 Cross section schematic of micromachined tunneling accelerometer
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3.2 Accelerometer Structure 

A typical tunneling accelerometer has mechanical components and three 

electrodes. In order to simplify the situation, the silicon based cantilever type 

accelerometer is analyzed here. The mechanical components comprise a fixed cantilever 

with a tunneling tip on the bottom and a mass component, or poof mass, suspended by a 

flexible hinge on the top. The electrodes include a tip electrode, proof mass electrode, 

and deflection electrode. The metal of the electrode is a layer of Au film because of its 

inert chemical characteristics as well as its relatively high work function. When 

operating, the accelerometer maintains a constant tip-to-proof mass distance by applying 

an electro statistic feedback force on the proof mass. The cross section of the tunneling 

accelerometer is illustrated in Fig. 3-1. Usually, at this constant distance operation point, 

the distance between the tip and proof mass electrode is about 10 A and the tunneling 

current is about 1.5 nA. More detailed descriptions about tunneling structures and 

operation principles can be found in Ref. [26] [27] [28] [29]

3.3 Modeling

A MatLab Simulink Model Block Diagram is constructed according to the 

accelerometer function structures as shown in Fig. 3-2. The external acceleration Aa is 

applied on the proof mass and produces external force Fexh which causes a displacement 

change, AX, between the tip and proof mass. In order to reduce mechanical noise induced 

by thermal fluctuations, the tunneling transducer always operates at vacuum environment. 

Because of this, air damping can be omitted here. At force balance there exists 

Fspring=Facceieration, that is KAX=mAa, where m and K  are the mass and stiffness of the
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proof mass. The K/m ratio is very important because it is inversely proportional to the

sensitivity KX/Aa and describes the proof mass natural frequency cd„ = -jK Im  . The K

value is mainly determined by the sensor’s structure and size, which can be calculated 

either by mathematical methods for simple structure or by simulation methods aided by 

ANSYS or other Finite Element Analysis (FEA) software. It is easier to measure the 

natural frequency and we can always arbitrarily choose the mass of the proof mass to 

satisfy the need for the K/m ratio. Here the natural frequency is chosen as the input 

parameter for MatLab. In order to exhibit fast response time and large bandwidth, 

accelerometers require high natural frequencies. For better sensitivity and resolution 

performance, a small K/m ratio is needed. The most challenging task for a tunneling 

accelerometer design is to enhance the resolution while broadening the bandwidth.

Banin
Height

A X“a*T(«XWn )̂

Fin

I-Io*e*p(-a*eqrt(Fi)*X)

To: Scope

Vo

02

W»(V)
I(BiL)VI CV)

Protection

Figure 3-2 MatLab Simulink Modeling Block diagram
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When a force is applied on a tunneling transducer, the distance change is 

AAr = ~ T ( s )  , where T(s) is the proof mass frequency response,
O)n

(t)2T(s) = —---------------- —, with a second order model simulation. The relation between
s2+2a>n£-s+co2n

damping C, and quality factor Q is £-Q  = \ / 2 . Because tunneling accelerometers are

flexible and they often operate under a vacuum environment, it is easy to obtain a large Q 

value of 100 or more. Thus, the other purpose for control systems is to increase the 

damping to get Qejf=0.707. The change between the tip and the proof mass, AX, induces 

an exponential tunneling current I  = I„ exp(-a V® AZ), where a  is a constant, a= 1.025

(A^eV0- 5) and ® is the effective height of the tunneling barrier, whose typical value is 

0.2 eV. The tip voltage, Vlip, from the sample resistor, is compared with reference 

voltage, Vref, and amplified by a pre-amplifier thereafter. A control circuit with transfer 

function Hc is followed and feedback voltage Vjb is produced. V# is input into an 

electrostatic actuator, which produces a feedback force F */. Usually the actuator is a

eS(V +V )2
parallel capacitor whose force can be described as F ,  = ------ — where Vm is a
* * *  2(D + AX)2

high DC voltage applied onto the actuator to set the operation point, D is the nominal gap 

between the electrodes, e  is the permittivity, and S  is the overlap area of the electrode 

pads. Fdef, in turn, counterbalances the external force and keeps the tunneling tip at the 

operation point. The magnitude of feedback voltage Vjb is proportional to the external 

force and is also called output voltage V0.
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3.4 Small Input Analysis 

In the simulation model of a tunneling accelerometer, there are two non-linear 

blocks. One is the block between displacement changes and tunneling current, and the 

other is the block between the feedback voltage and deflection force. In order to 

synthesize the system, these two blocks are analyzed and linearized based on practical 

small signal input.

The changes of tunneling tip-proof mass distance, AX, is about 10'3~10"1 A, which 

has been measured by laser vibration measurement system [4l  AX is small compared with 

the normal operation position of 10 A. The current can be developed by Taylor Series as 

/  = /„ (1 -  ayftb&X) . Because sample resistor Ri is chosen such that the product of IoRi is

equal to the reference voltage Vrj, it is easy to get V^V^-A-aJ^-AX, where A is the 

amplitude of the pre-amplifier.

For an actuator, the electrostatic force is proportional to (Vhi+VJh) 2 , that is 

V
V,2 (1 + — )2. Because Vu is a DC constant voltage, about 100V, and is much larger than

ĥi

Vff, several milli-volts, the force can also be re-written as being proportional to 

Vm + 2VhiVfl, ■ The first item is to set the operation point and the second item is what we 

are concerned with. That is to say the change of the deflection force is proportional to 

VuVfi , more simply, = F V ^ , where F  is called feedback factor. The value of F  can

be either estimated or tested in a real actuator. An estimated value is 1.5x 10'5 (N/V) with 

an overlap area of 0.2x0.2 mm2, a high voltage of 160V, and a nominal distance of 2 pm.
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With the above approximations, the non-linear system now can be treated as a 

linear system at wavelet analysis. If Fex, is the input variable and V0 is output variable, the

open and closed loop transfer function is H =H - T(s) and H  = ——— ,
mu] 1+ FH0

respectively.

3.5 Feedback and Control Design 

When considering accelerometer resolution, smaller natural frequency 

corresponds to a higher resolution. If the minimum resolved displacement is 1 0 '2 A, a 700 

Hz proof mass should resolve 2 pg (g = 9.8 ms‘2) acceleration. The natural frequency of a 

proof mass cannot be chosen larger if a pg resolution is wanted. The open loop property 

of tunneling accelerometers ceases to respond when the applied acceleration frequency is 

larger than the resonance frequency. The purpose for control system design is to keep a 

high sensitive and flexible tunneling proof mass while broadening the bandwidth. In 

addition, the transfer function, T(s), is an unstable system. The control system needs to 

enhance the system stability so as to protect the tunneling tip against parameter 

disturbances and signal impulses. From the relation between H  and Ho, the control circuit 

with transfer function Hc should be synthesized so that the system transfer function H  

satisfies:

■ The bandwidth of the system should be larger than the interested signal 

bandwidth.

a The system should be a stable system.

■ The system needs to have a small response time so as to respond quickly enough.
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■ The system damping should be optimized so as to get instant response and protect 

the tunneling tip.

■ Within interested frequency bandwidth, the sensitivity should be linear.

Bode Diagram

|FHo| in crease-20

O -45

-135

Frequency (Hz)

Figure 3-3 Normalized closed loop transfer function H\

By feedback theory, the bandwidth and stability can be enhanced by a factor of 

\FH„\. We hope to have \FHa\» 1, which means a large open operation amplifier in the

system is necessary. On the other hand, the system transfer function can be simplified as 

H = l /F  in a deep negative feedback system. In order to have a higher sensitivity, we 

prefer a smaller F  value. The strategy to lower F is to lower the DC bias voltage, A 

large overlap area electrode and small nominal proof mass-deflection electrode distance 

are then often chosen. When starting to design, we first give a testing H0, and then 

evaluate the closed loop transfer function H. If some conditions above are unsatisfied, we 

then change the controller Hc and give a correct testing H0. All the synthesis processes 

are trial and evaluation. In fact, because of a large \FH„\ value, it is not difficult to find 

proper control system functions to meet the design requirements.
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Step Response
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Figure 3-4 Step response of normalized closed loop system

Bode Diagram

n•r-20

-45

Frequency (Hz)

Figure 3-5 Bode diagram of synthesized control system 

The changes of normalized closed loop transfer function H ’ dependent on \FHn\

value are shown in Fig. 3-3. When the \FH„\ value increases, the system stability also

increases. The ultimate goal for us is to make a damping factor of a closed loop system 

^=0.707. A more detailed method of system damping chosen can be obtained from the 

step response of the normalized closed loop system. As shown in Fig. 3-4, a system with 

a settling time of 0.1 ms and an overshoot of less than 1% is marked. By choosing
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feedback and a control system, the overall system can be both prompt to applied signals 

and stable with a proper damping ratio.

100

Wgc
Margir

-100

Freqiency (r id/sec)

10210"1

Figure 3-6 Gain Margin and Phase Margin illustration for control System 

Without regarding that it represents a significantly better methodology, this 

method presents an easy alternative for new designs. Compared with the p-synthesis 

method, our intended control system is not an exact and specific resolution for 

consideration. This relaxed requirement for the circuit is superior, though our designed 

control system is not as robust a controller as Liu’s. However, as shown in Fig. 3-5, our 

control system has a similar property with this p-synthesis controller.,7). The very small 

low frequency sensitivity (-20dB) indicates the closed loop gain suffers minimally from 

open loop gain variation. At high frequencies, the applied signal gets phase 

compensation. At a bandwidth of 100Hz to 1 kHz, the overshoot and noise are 

suppressed.
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3.6 Simulation Results and Discussions

3.6.1 Closed loop system 
evaluation

Gain & Phase Margin. The gain margin is defined as the change in open loop 

gain required making the system unstable. Systems with greater gain margins can 

withstand greater changes in system parameters before becoming unstable in closed loop. 

The phase margin is defined as the change in open loop required phase shift to make a 

closed loop system unstable. In bode plot, the phase margin is the difference in phase 

between the phase curve and -180 deg at the point corresponding to the frequency that 

gives us a gain of OdB (the gain cross over frequency, Wgc). Likewise, the gain margin is 

the difference between the magnitude curve and OdB at the point corresponding to the 

frequency that gives us a phase of -180 deg (the phase cross over frequency, Wpc), as 

shown below.

Figure 3-6 gives the gain and phase margin of the system. The gain margin is 

infinite and the phase margin is about 90 degrees, both of which are near the ideal value. 

The system is well stable.

^  e > K H(S)
i .

Figure 3-7 Illustration of root locus concept
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Root Locus. The root locus of an (open-loop) transfer function H(s) is a plot of 

the locations (locus) of all possible closed loop poles with proportional gain k and unity 

feedback (as shown in Figure 3-7).

Root Locus
0.9970.999 0.994: 0.9083000 0.88

0.9991
2000

1000

>1000

•2000

•3000 0.999 0.997 0.994 0.988 0.97 0.681 1
Real Axis x 104

Figure 3-8 Root locus of closed loop system 

The poles of the closed loop system are values of s such that 1 + KH(s) = 0. We 

will consider all positive values of k. In the limit as k goes to 0, the poles of the closed- 

loop system are the poles of H(s). In the limit as k goes to infinity, the poles of the 

closed-loop system are the zeros of H(s). No matter what we pick k to be, the closed-loop 

system must always have n poles, where n is the number of poles of H(s). The root locus 

must have n branches; each of them starts at a pole of H(s) and goes to a zero of H(s). 

Since the root locus is actually the locations of all possible closed loop poles, from the 

root locus we can select a gain such that our closed-loop system will perform the way we 

want. From the value of phase margin 90 degree, the damping is about 90/100=0.9, 

which corresponding to an overshoot of approximately 1%. And the system will be close 

to being over damped. To determine what part of the locus is acceptable, we can plot a
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line of constant damping ratio, as shown in Fig. 3-8. On the plot, the two white dotted 

lines at about a 43 degree angle indicate pole locations with damping of £=0.9; in 

between these lines, the poles will have £> 0.9 and outside of the lines £ < 0.9. In order to 

make the overshoot less than 1%, the poles have to be in between the two white dotted 

lines. All the poles in this location are in the left-half s-plane, so the closed-loop system 

will be stable.

3.6.2 Tunneling Accelerometer 
Function Simulation

x 10

Vo vs a (with 50ng/iqrt(Hz) Input noise)1.5

§  0.5

®-0.5

-1.5

-0.5 0 0.5
Acceleration: g (at 700Hz)

1.5
.4

X  10

Figure 3-9 Transfer function of the tunneling accelerometer 

The controller system is proved to have been successively synthesized from the 

evaluation of transfer function characteristics and system stability above. The functions 

of an accelerometer at an estimated noise environment are then simulated. A well- 

estimated thermo-mechanical noise level for tunneling sensor (equivalent as acceleration)

is r KKTeo" , where, Kb is Boltzmann constant; T is temperature; a*, is resonant
1 mPQ
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frequency of the proof mass; mp is proof mass and Q is mechanical quality factor. [30]

[31]

If we give Q as 50, the calculation value of the accelerometer noise is about 50 

ng/^Hz. Fig. 3-9 is the plot of feedback voltage dependent on input acceleration. The 

linearity is kept until the input is out of the dynamic range, which is about 1 .2  mg and it 

is well matched with the measured value. The small dynamic range is the price of high 

sensitivity because of the small k/m value. When horizontal signals are under 

consideration and the whole system is put in the horizontal direction, the small dynamic 

range would not cause problems in the earth’s 1 g gravitational field.

x 10'

Time history of output voltage

0-1

0 0.001 0.002 0.003 0.004 0.006 0.006 0.007 0.008 0.009 0.01
Time (second)

Figure 3-10 Time history of output voltage 

Fig. 3-10 is the time history of accelerometer output at 700Hz when the input 

acceleration is 1.5 jug and the white noise level is 50 ngJ /̂Hz. Fig. 3-11 is the semi log of 

current that depends on the bias deflection voltage to verify the tunneling effect. Without 

acceleration input and an open loop condition, the deflection voltage causes changes in 

tip current. The relation between semi log tunneling current and the deflection voltage fits
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to the exponential tunneling equation very well and also can be used to measure tunnel 

barrier height, which is 0.2 eV as the MatLab Simulink designed. Finally, the sensitivity 

magnitude frequency responses of an open system and a closed loop system are plotted in 

Fig. 3-12. Though the sensitivity of closed loop is lowered at low frequency, the stability 

of the system is greatly enhanced and the sensitivity of voltage with respect to external 

force is about 95 dB up to 4 kHz.

Log(ln) vs VIb plot (with 50ng/sqrt(Hz) noise)

,-0 39

1.5 2.5-2.5 -1.5 -1 -0.5
Deflection

0.5 1
Deflection Voltage Vfb: V x 10°

Figure 3-11 Tunneling current vs deflection voltage

Bode Magnitude Diagram
160

150

Frequency (Hz)

Figure 3-12 System sensitivity frequency responses
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3.7 Summaries

In order to keep high sensitivity, the proof mass has a low resonant frequency and 

a high quality factor. On small input signal approximations, the tunneling accelerometer 

model is analyzed and linearized. The relationships of control systems, open loop 

systems, and closed loop systems are derived. Based on this approximation, a simple but 

effective means to synthesize a control system is successively exerted so that the closed 

loop system has broadened the bandwidth and optimized damping while maintaining its 

high sensitivity. The analysis of gain and phase margin, root locus, and pole distribution 

show the system is stable.

A model of a tunneling accelerometer sensor is constructed with MatLab 

Simulink. All the tunneling accelerometer functions, such as dynamic range, output 

voltage dependent input acceleration, exponential response of tunneling current, and 

frequency response of measurement are simulated and plotted.
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CHAPTER 4

FABRICATION AND PROCESSES

4.1 PMMA Material Properties

The advantages of choosing PMMA substitute for silicon wafer to fabricate the 

tunneling sensor are its lower price, special mechanical properties and thermal 

characteristics. Here is a simple introduction about PMMA.

PMMA, (Polymethyl methacrylate), was originally used as a shatterproof 

replacement for glass. The barrier at an ice hockey rink, which protects fans from flying, 

is made of PMMA. The chemical company Rohm and Haas makes windows out of it and 

calls it Plexiglas. Ineos Acrylics also makes it and calls it Lucite. Lucite is used to make 

the surfaces of hot tubs, sinks, the ever-popular one-piece bathtub and shower units, 

among other things. PMMA is a transparent (>90% transmission), hard, stiff material 

with excellent UV stability, low water absorption and high abrasion resistance. It is very 

stable in high electrical fields (good track and arc resistance) and releases little smoke on 

combustion.

There is a great deal of interest in modeling PMMA molecular motions in 

condensed phases. However many of these motions take place over quite long time 

scales, while molecular dynamics are limited. This is because typically a time step of 1 *

53
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1 0  s is used. Here is an illustration of the rotation of the ester- and alpha-methyl groups 

in poly (methyl methacrylate) (PMMA):

chain backbone

Figure 4-1 PMMA molecule and its rotation

CH=CH

K+ "o,SO CH-CHs OSO, K

Figure 4-2 PMMA molecular structure 

The ester-methyl group rotations in PMMA are fast, so this process can be 

modeled using dynamics as well. This enables a comparison between dynamics and
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alternative (e.g. quasi-static) approaches to be made. Experimental data from Neutron 

Scattering are also available for this process.

Table 4-1. PMMA (Polymethyl methacrylate) at A Glance [32][33][34]

Physical Properties
Uses Thermoplastics
Monomer methyl methacrylate
Polymerization Free radical vinyl polymerization
Structure Amorphous
Humidity absorption, 24hrs 0.3%
Density 1.18 g/cm3

Linear Mold Shrinkage 0.004
Melt Flow; load 3.8kg 5.8 cm3/10min
Mechanical Properties
Young's Modulus (E) 3.2GPa
Poisson's Ratio 0.43
Compression Strength 75.8-131 MPa
Tensile Strength 48-75.8 MPa
Tensile Modulus 2.4~3.4 GPa
Flexural Strength 82.7-117 MPa
Flexural Modulus 2.1-3.4 GPa
Impact Strength, Izod Notched 0.12 J/cm; 0.22 ft-ib/in
Gardner Impact 1.4J; l.Oft-Ib
Hardness R120; M80-M100
Stress at break 71 MPa
Strain at break 3.5%
Thermal Properties
Melting Point 112-130°C
Glass Temperature 100-105°C
Injection Molding, melt temperature 250 °C
Mold temperature 80°C
Deflection Temperature, 1.8MPa 90 °C
Max Operation (Service) Temp 80-93 °C
Vicat Softening Point 100°C
Coefficient of thermal expansion, linear, 7 xl0'5/°C
Electrical Properties
Dielectric constant; (lOOHz/lMHz) 3.212.9
Dissipation Factor 0.04
Breakdown field 6 x 1 0 4 V/mm
Index of Refraction 1.48-1.5
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A PMMA molecular structure is also plotted in Figure 4-2, which explains how 

the Unit can connect with other similar Units.

We checked the model of PMMA (G77) in I/M, and found the parameters of it as 

described in Table 4-1.

4.2 Fabrication of Mold

4.2.1 Photolithography

The purpose of photolithography is to transfer the pattern from glass masks, 

which are covered with Chrome films, onto SiC>2 coated Silicon wafer. Because the mold 

is the counter part of the sensor, the patterns should be transferred by negative 

photolithography when the pattern mask is clear field (The features are dark and the field 

is transparent). The negative photo resist used is NR9-1500. Here are the steps and 

explanation.

■ The wafers must be clean and dry for good adhesion. The wafers need to be 

soaked in a solution of H2SO4 (98%) plus H2O2 with ratio of 7:3 at 70 °C for one 

or two hours. After being thoroughly rinsed, the wafers are baked on a hot plate 

for 30 minutes at 250 to 260 °C.

■ When the dried wafers are cool, they are spun with NR9-1500 at a rate of 3000 

rpm (revolutions per minute) for 40 seconds. Because of its large viscosity, the 

photo resist is thicker than positive photoresist, such as PR1813 or AZ1350. The 

thickness of NR9-1500 is 1.5 pm. The wafers are double spin so that the Silicon 

dioxide at back plane is also protected. The soft bake time is 4 minute for the back
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side and 3 minutes for the front side. The bake temperature is about 130 °C. Only 

by soft bake can the photoresist become relatively hard and UV light sensitive.

■ The soft baked wafers are loaded into an aligner. Due to the large critical 

dimension of about 30 pm, the exposure type is set as a close field exposure with 

a distance of 1 0  pm.

* The light is measured by a light intensity meter. The intended wavelight is 366

nm. The measured value is 188 mW/cm2. Because the total energy needed for 

NP9-1500 is 160~180 mJ/cm2, the exposure time is set as 10 seconds.

■ At alignment, the pattern should keep parallel to the wafer’s crystal line. A 

distorted pattern could cause inconvenience later.

■ Post bake is necessary because the property of photo resist needs to be changed 

(the exposed part will change into polymer). The condition is not so strict here. It 

could be either 100 °C x 120 sec or 115 °C * 90 sec.

■ After post bake, the wafers can be immersed directly into developer RD6 . With a 

little agitation, the patterns appear at about 12 seconds. One or two seconds are 

needed for over development.

■ After development, wafers are rinsed thoroughly. The wafers are blown dry and 

the patterns are checked under microscope.

■ After photolithography, we still remedy the edge for post treatment. The purpose 

is to repair the defects made by tweezers scratches. A well-protected edge of 

wafer is necessary for BOE etching.
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A photographic picture of a negatively patterned wafer is shown in Figure 4-3. 

The lines are straight and the strips are clear. If check under microscope, the pattern is 

perfect for wet etching.

Figure 4-3 Patterned wafer by negative photolithography 

4.2.2 BOE Etching

BOE (Buffered Oxide Etch) etching is the standard operating procedure for Si0 2 . 

Because HF solutions are considered both toxic and corrosive, uses of Trionic chemical 

gloves, safety glasses and a fume hood are required as a minimum. BOE is a very 

selective etchant, which means that it stops at the silicon and does not etch further. The 

etch may be used in many steps, such as exposing the active region near the beginning of 

a process or defining contact holes at the end.

BOE consists of HF acid at high concentration levels (about 10 times greater than 

the oxide strip in the RCA clean). HF acid is very dangerous and HF bums are 

particularly hazardous. An insidious aspect of HF bums is that there may not be any
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discomfort until long after exposure. These bums are extremely serious and may result in 

tissue damage. If you contact HF, flush the area well and be sure to work under and 

around your fingernails. Fingernails and cuticles are the typical areas where people 

receive bums, having washed off the HF without washing under their nails. If washed off 

immediately after exposure, HF may do no harm. Also, immediately let the lab 

instructors know of any HF contact (immediately after flushing the area with water).

The Procedures of etching is as follows:

■ Preparation of Solution - Will be done prior to each etching.

Chemicals include:

A. DI Water (DIH2O)

B. Hydrofluoric Acid (HF)

C. Ammonium Fluoride (NH4F)

■ Here are the steps I followed in lab:

A. Mix 400 g of Ammonium Fluoride with 600 ml of water.

B. Carefully mix Ammonium Fluoride Solution with HF in a 6:1 ratio.

■ The overall reaction for etching Si0 2  with BOE is:

Si0 2  + 4HF = >  SiF4 + 2 H2O, where SiF4 is solved into water.

■ The buffering agent, ammonium fluoride (NH4F), is added to maintain HF 

concentration and to control pH (to minimize photoresist attack).

The buffering reaction is:

NH4F < = > N H 3 + HF.

■ Etching Procedure are as follows
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A. Mount wafer on Teflon wafer holder.

B. The etch rate for BOE is about 80 nm/min. An estimate of the appropriate etch 

time required is based on the known oxide thickness. There are two kinds o f wafers are 

used, one covered with 1 pm oxide and the other with 2 pm oxide. The corresponding 

etching time are 13 min and 25 min, respectively.

C. Immerse wafer in BOE for the desired time. When complete, remove and rinse 

well with DI water, and blow dry with nitrogen.

D. If the etching was complete, then BOE and water should bead or "dewet" off 

the wafer because the silicon itself is hydrophobic.

E. After the etching is completed, inspect the wafers under the microscope. The 

etched regions with exposed silicon should appear to be silicon-colored (white or 

metallic-colored). If the exposed patterned regions still appeared colored, the wafers 

should be returned to the BOE.

F. Strip off the photoresist using oxygen plasma in the RIE. Alternatively, 

positive photoresist can be removed in acetone (possibly with ultrasonic agitation).

G. Using the Surface Profiler Meter to characterize the topography of the wafers 

to ensure that the etching was complete, especially when the condition of etching is not 

optimized at first experiments.

Figure 4-4 is the instrument of BOE etching. The Teflon holder is 4 inches in 

diameter with a rubber seal O ring. Tweezers are also plastic because metals are easily 

etched by the HF. The entire procedure is performed under a ventilated hood.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

Figure 4-4 BOE etching of Si02

4.2.3 KOH Anisotropic Etching

Heated KOH solutions can be used for preferential etching of silicon along crystal 

planes. The etch rate will depend on the doping and crystal orientation of the silicon and 

the type of KOH solution used, but is typically on the order of about a micron per 

minute.[35] Potassium (K+) is an extremely fast-diffusing alkali metal ion, and a lifetime 

killer for MOS devices. Thus, KOH etching is limited. Lab members using KOH must 

absolutely observe proper procedures to avoid contaminating any metal-ion sensitive 

processes and equipment elsewhere in the lab. KOH-etched substrates, however, may be 

later processed in "Clean" equipment, but only providing that the procedures for 

decontamination described here are strictly followed.

■ Chemical Hazards
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KOH solutions are caustic. The primary hazard classifications for KOH solutions 

are: Corrosive, air/water reactive. If you are using Isopropyl Alcohol in your KOH 

solution, remember that it is a solvent and that it is Flammable.

The 1:1:1 = H20:H202: HC1 and 5:1:1 = H20:H202: HC1 solutions are used for 

decontamination of wafers and tools following KOH etching. The primary hazard 

classifications for these solutions are: Corrosive, oxidizer, air/water reactive.

■ Process Hazards

General process hazards involve handling of chemicals, and materials which 

come into contact with chemicals, used at this station. Wet benches are potentially the 

most dangerous operations in the lab. Be sure you understand all hazards and proper 

handling procedures before working at any wet bench. Be aware that KOH etching 

solutions and the H2 0 :H2 0 2 :HC1 decontaminating solutions are heated, and not only 

present thermal hazards, but also chemical hazards that are more severe than what may be 

listed in the typical MSDS. (Material Safety Data Sheets)

■ Operation process of KOH Silicon Etching

KOH Etching is done in the constant temperature. KOH decontamination may be 

performed with appropriately clean quartz containers or at silicide in the designated hot 

pot.

a Etching with heated KOH

A hot plate is used with temperature auto control by probe. By this way, the 

temperature can be reached within one hour and this set is more suitable for our little 

amount use. The typical instrument is shown in Figure 4-5. The rotation stir has a rotation
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rate of 200 rounds per minute. The wafer is fixed by a Teflon holder. The lid of the 

beaker has been removed for the photograph. All the processing is fixed under the 

ventilated hood.

Figure 4-5 KOH etching process

■ Information on KOH Etching of Silicon

Hot, concentrated solutions of KOH (and other alkali metal hydroxides) will etch 

along the (100) crystal plane several hundred times faster than along the (111) plane. 

KOH etching through mask openings >lmm will result in a V-shaped pit that can go all 

the way through a (100) wafer of standard thickness. [36] MEMS engineers frequently 

design structures which exploit this etch preference, thus making KOH the most common 

method of machining silicon. Our window is 70 pm in each side and the intended pit is 

pyramid like with a height of 50 pm and base length of 70 pm.

Figure 4-6, 4-7 and 4-8 are illustrations of SEM pictures made when hot KOH 

etching. The cross section view shows the anisotropic etching angle is about 55°; the Si02
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mask layer is clear in the plot. The top views of the pyramid-like pit give us a clear view 

on what the mold like.

Figure 4-6 Cross section view of mold sidewall

Figure 4-7 Top view of silicon window etched by hot KOH

Photoresist will not hold against the KOH etching. Silicon oxide can serve as a 

mask, although it still etches somewhere on the order of about 1 nm/min (oxide to silicon 

selectivity is a bit better in TMAH solutions). Silicon nitride is the preferred mask 

material (as little as 250 A is sufficient for masking (100) etch all the way through a
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wafer). For detailed process info, including references and recipes, consult Greg Kovacs1 

indispensable book, "Micromachined Transducers Sourcebook."

Figure 4-8 Top view of pyramid pit after hot KOH etching

Figure 4-9 SEM plot of silicon mold made by hot KOH anisotropic etching 

■ KOH etching of Silicon molds for hot embossing

The molds for hot embossing have two kinds of structures. In order to simplify 

the processes, we designed two molds for different structures. The top mold includes 

proof mass and vibration sheet, and the bottom mold includes a tunneling tip and an
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uphold bank. The most difficult thing is etching the pyramid-like pit, which has been 

shown in previous headlines.

The last masters for next processing should be clean, smooth, and preciously 

positioned. Clean molds can prevent the contamination of PMMA when hot embossed, 

which can not only destroy the PMMA structure, but is also harmful to the hot emboss 

system. A smooth surface is necessary because the demolding process needs the molds to 

be smooth enough for non-friction movement. The positions of structures are also 

important because the electrodes pattern needs to be exactly mounted on the right place. 

One photograph of such silicon wafer after hot KOH wet etching is shown in Figure 4-9. 

As shown in the plot, the mold is clean, smooth, and accurately mounted.

4.3 Hot Embossed Sensor Structure 

With the development of LIGA technology [3 7] [3 8] [39] — X-ray Lithography, 

Electroforming (Galvanoformung) and molding (Abformung), three ways, 

electroforming, moulding, and embossing, to fabricate high aspect ratio structures have 

been attached more and more importance in Micro-electro-mechanical System (MEMS). 

As one of the most attractive micromaching techniques, hot embossing for replicating 

microstructures at a high performance-to-cost ratio has such advantages as: good 

uniformity, a surface roughness of only 3.9 nm at the large substrate area [40]; simple 

processing, needing only one step instead of multiple steps; and high resolution, a lateral 

resolution of only a few nanometers [41]. Moreover, by using inexpensive thermoplastic 

materials, such as polymethyl-methacrylate (PMMA) or polycarbonate (PC), the cost of 

the product can be further reduced. In addition, hot embossing itself consumes less
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chemicals, takes less time, and needs fewer instruments than conventional 

semiconducting machinery. Therefore, hot embossing has been selected as one of the 

most popular tools for mass production.

In recent years, hot embossing has been used in many applications by exploiting 

the characteristics of thermoplastic materials. Because of such characteristics as 

insulating, biocompatible, and transparent, PMMA has been used in many applications 

like mircofluidic channels [42], biotechnology patterns [43], and optical gratings [44][45]. 

In my research project, PMMA is specifically used in fabricating tunneling transducers 

because it is relatively softer than Silicon, which produces a potentiality in higher 

sensitivity.

Figure 4-10 Hot Embossing illustration

4.3.1 Introduction About Hot 
Embossing

Hot embossing has its origins as the last step of the Lithographie, Galvanik und 

Abformung (LIGA) process, developed at the Karlsruhe Research Center, ‘Abformung’
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being the German term for ‘replication’. [46][47][48] A polymer plate is laid onto the 

bottom heating plate of the embossing machine and the surrounding vacuum chamber is 

closed. Then, under vacuum, the heated mould insert is pressed into the softened 

polymer. After subsequent cooling, demolding takes place by removing the plastic part 

from the cavities. The microstructured part can be taken out of the machine. The 

processing is shown in Figure 4-10. Also, an embossing master and an embossed part in 

the machine are illustrated in Figure 4-11 and Figure 4-12, respectively.

Figure 4-11 Hot embossing master

Figure 4-12 Photograph of embossed PMMA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

Figure 4-13 Top part of hot embossing machine

S u b s t r a t e

Figure 4-14 Bottom part of hot embossing machine 

In hot embossing, high aspect ratio structures (>10mm) can be replicated quite 

easily, compared with injection moulding. It is possible to work with thin plastic sheets 

(<0.5 mm) in cases where a customer’s needs restrict the thickness of the part. Due to 

rheological reasons, comparable injection-molded parts with a sufficient quality of the
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microstructures need a minimum thickness of approximately two millimeters. For 

prototyping, hot embossing is far better suited than injection-molding, due to the easy 

mounting procedure and the fewer parameters required varying the replication process.

Recent progresses in machine technology have allowed reducing cycle-time in hot 

embossing significantly for certain polymers. Figure 4-13 illustrates a top part in hot 

embossing machine and Figure 4-14 is a bottom part in the machine.

4.3.2 Parameters and Properties

Our hot embossing machine is produced by JENOPTIC MIKROTECHNIK 

GMBH Inc., Germany. The range of embossing force is up to 50 kN and the process 

speed is controllable from 1 pm/min to 8 mm/s. The main components include:

■ Object system

Vacuum chamber, upper part 

Upper non-parallelity correction 

Demolding unit 

Tool chuck

■ Positioning unit

Lower non-parallelity correction 

Sliding stage

Vacuum chamber, lower part 

Substrate chuck

■ Vacuum system 

Pump
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Ventilation 

Vacuum measurement

■ Temperature control unit 

Heating/cooling

Temperature control of object system

■ Electronics/software unit 

Electronic cabinet 

Software

The description of molding process is as follows. The central chamber part is 

movable. It has a square ring to seal it off against the stationary chamber part, and an O- 

ring which presses against the sliding plate at the chamber bottom. As analyzed in 

chapter 2, the glass temperature of PMMA is about 100 ~ 105 °C and melting 

temperature is about 112 ~ 130 °C. We set the molding temperature about 165 °C, which 

is a bit above the melting temperature, in case of uncertainty. When molding, the 

chamber is compressed down, and the maximum contact force is 18 kN. The background 

pressure is about 1.5 mbar. The master is held on for about 60 seconds and then the 

temperature is reduced. The demolding process is more important because all the 

parameters should be well controlled so that the microstructures are not destroyed by 

either cracking of the mold or friction against the side wall. The demolding system is 

designed to overcome the holding forces between tool and work piece material after 

molding. To achieve this, pressurized air is applied from the top. As shown in figure 4- 

15, the whole demolding process is in two steps:
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1. Port for seal pressure 2. Pressure plate 
3. Volume for seal pressure 4. Port for demold pressure 
5. Tool 6. Substrate

Figure 4-15 Schematic of demolding procedure

First step: the pressure plates are sealed off against the substrate (diagram in the 

middle of the Figure 4-15). The air is introduced through port 1 and it builds up pressure 

in volume (3) and causes the pressure plate (2) to act like a pneumatic cylinder, i.e., the 

plate moves down, sealing the chamber space against the substrate.

Figure 4-16 Flowchart of the hot embossing process 

Second step: a demolding force is applied (right diagram in Figure 4-15) on the 

tool (5), the pressure plate (2) and the substrate, creating one common volume, which is 

filled with pressurized air via port 4. If the tool and the substrate move apart at low speed, 

the pressurized air will support the demolding in the substrate’s marginal areas by force. 

As the apart motion continues, more and more parts of the substrate area become exposed
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to pressurized air, until the substrate is completely demolded. In our case, the temperature 

is set as 80 °C when demolding. The speed of mold moving is 1 mm/min.

Table 4-2. Hot Embossing Commands and Explanation

Initial force control (true/false)=l; basic force unit is initialized.
Temper (Top = 40 °C, Bott= 40 °C); start heating of substrate and 

embossing tool
Close Chamber 0; close the vacuum chamber
Evacuate Chamber (); evacuate the vacuum chamber
Wait (120 s); wait, let the background vacuum stable
Touch Force (Force = 500 N); tool and substrate move together till 

contact
Wait (60 s); wait 60 seconds for system stable
Heating (Top=60 °C Bott= 90 °C); start heating the tool and substrate 

slowly
Temper (temper>= 80 °C channel = 
10);

system keep heating till 80 °C is 
reached

Wait time= 30 s; wait until the temperature is stable
Heating (Top =60 °C, Bott =170 ’C); keep heating the tool and substrate
Temper (temper>= 160 °C); heater continues until 160 °C is reached
Heating (Top= 60 °C, Bott=160 °C); keep the tool and substrate temperature
Wait (30 s); the function wait for 30 seconds
Force-Force controlled (Force =20kN, 
Vel = 1 mm/min);

applies a force of 20kN for molding

Wait time (Time = 120 s); system waits for 120 seconds
Cooling (Top = 60 °C Bott = 70 °C); starts cooling the substrate
Wait (Time = 20 s); wait the temperature cooling
Temper (temper<= 85 °C channel = 
10);

system waits until a temperature of 85
°C

DemoldingO; demolds tool and substrate
Venting (); vents the chamber
Open chamberO; opens the chamber
Temp (Top = 30 °C, Bott = 30 °C); sets the tool and substrate above room 

temperature, incase of moisture

The flow chart of hot embossing for a microstructure is illustrated in Figure 4- 

16[49], The lists of command set in software are saved in macro-files. One typical
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example for our PMMA hot embossing is plotted in table 4-2, with explanations at the 

right side.

Figure 4-17 Hot Embossing machine overview

Figure 4-18 SEM plot of sensor right after hot embossing 

The overall view of hot embossing machine is shown in Figure 4-17. A SEM 

picture of bottom sensor part is plotted at Figure 4-18. Compared with Silicon mold, the 

microstructure is totally transferred and without any defect. A close look of the tunneling
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tip is shown in Figure 4-19. The tip is sharp and the edges are clear with a perfect 

pyramid structure. The tip height is about 50 pm, and each edge is about 70 pm.

Figure 4-19 Close-up of tunneling tip made by hot embossing 

4.4 Assembling and Packaging

4.4.1 Electrode Pattern

Figure 4-20 Photograph of patterned electrode
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The metal film for electrodes is Gold because of its high work function as well as 

constant characteristics when current passing by the electrodes. In order to get better 

adhesion, there is a layer of Ti (titanium) film deposited before gold sputtering. The 

electrodes are patterned by positive photolithography with two steps of standard wet 

etchings. When etching Gold Electrode, we need to etch as follows:

■ Au wet etching recipe (two kinds):

12 +KI+H2O = 10 kg + 360 kg + 1750ml; etching rate: 100 A/min

13 g KI (potassium iodide) + 7 g Iodine crystals + 250 cm3 water.

Our recipe is fc: KI: H2O=l:5:50 (weight), which produces an etching rate of 300 

A/min. After dissolving the KI in water, the solution may need to be heated to dissolve 

the iodine. This Au etch does not attack photoresist.

Figure 4-21 Close-up of electrodes

■ Ti film etching

The most often used etching solution is BOE (Buffered Oxide Etch, usually used 

for etching Si02 on Si), which does not attack photoresist. BOE etches a 200 Angstroms 

Ti film within a few seconds.
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After two steps of etching of Au and Ti, the PMMA sheets are well rinsed by DI 

water and dried by Nitrogen gas. A photograph of a patterned PMMA sample is shown in 

Figure 4-20, which has clear and golden areas for different parts. Figure 4-21 is the close- 

up of the central area, where a pyramid with gold coating is shown clearly.

4.4.2 Package

Figure 4-22 Packaged PMMA tunneling sensors 

Our wire-electrode is not connected by wire bond but by electrical conductive 

glue. The model of our electrical conductive glue is Conductive Silver Epoxy Kit. This 

two-part silver epoxy is an electrically conductive silver filled epoxy adhesive 

recommended for a wide range of electronic bonding and sealing applications that require 

a combination of good mechanical and electrical properties. This two-part smooth paste 

formulation of refined pure silver and epoxy is free of solvents and copper or carbon 

additives. It develops strong bonds and coating between many different and dissimilar 

materials such as metals, ceramics, glass and plastic laminates. Two Part Silver Epoxy 

cures at room temperature and can be used as a "cold solder" for heat sensitive
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components where hot soldering is impractical. It also can be used for the assembly and 

repair of electrical modules, printed circuit boards, wave guides, flat cable, and high 

frequency shields. This adhesive complies with the requirements of NASA's out gassing 

specification. There are also several important applications for the typical SEM 

laboratory. For example, this special silver filled epoxy is perfect for fastening down a 

sputter coater cathode to the head. And it is the ideal adhesive, when strength is really 

needed, for mounting a valuable or heavy sample onto a small (in comparison) SEM 

mount prior to analysis [50].

The two parts of our PMMA sensor are glued together also by the adhesive. Then 

it is fixed onto a 20-pin socket. The photographs of several packaged sensors are shown 

in figure 4-22.
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CHAPTER 5

MEASUREMENTS AND DISCUSSIONS

5.1 Function Frame of Measurement System

The detailed measurement circuits are too complicated to get a clear overview. In 

order to explain the measurements in a concise way, the measurement system function 

frames are shown in Figure 5-1. In this figure, the measurement system is plotted as one 

negative feedback system while only the electrodes and connections are highlighted.

V+
'I
I

Vbi,

V ref

. . .

1 Irip

V t i p

, L
; Vdef

V hi

Figure 5-1 Function frames for measurement 

The biased voltage is set as about 280 mV, which could produce about 1.5 nA 

when the tunneling tip is close to the counter electrode with about 10 A, the counter 

electrode is pulled down by the high DC voltage Vhi. The tunneling tip then produces 

about 30 mV through a 20 MQ resistor. The reference voltage is also set at 30 mV so that

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

the output voltage is zero. When the applied acceleration (force) gives a small 

disturbance, the tip voltage will change, and then a negative feedback voltage is 

introduced to the deflection electrodes, which produces a force counter-balanced the 

applied force. In this way, a closed loop is set up. If we measure the feedback voltage, it 

should be proportional to the applied force. This is the mechanism of the tunneling 

accelerometer.

5.2 Resonance of Proof Mass

The measurement of resonant frequency does not need to connect the sensor with 

the circuits. This property is one of the mechanical characteristics. As shown in Figure 5- 

2, the packed tunneling sensor is glued onto the exciter. The vibration force is kept 

constant while the exciter’s frequency changes. The induced vibration is measured by the 

laser vibrometer. The first resonant frequency produces a response peak at the response 

curve, which is also called natural frequency.

i
j

Vibrometer !

1 i
j :    ,

 tunneling
sensor

, I — I _____ _____________________

j  Stage j  j

r  i - ■j Exciter | - .

Graph Monitor

Figure 5-2 Resonant frequency measurement
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The plot of measured data of the PMMA tunneling sensor is shown in Figure 5-3. 

The response is measured at an exciter of lmg. The sharp peak corresponds to the natural 

frequency of f 0= 130 Hz. Comparing with the simulated result of 150 Hz in chapter two, 

the difference is about 13.3%. The main reason should be the uncertainty of membrane 

thickness, which could range from 50 to 80 pm instead of a constant value of 50 pm.

Sample #2 
V • 150 V

o
*2
3  400

d e f

§ 200

i>
100

Frequency (Hz)
150 200

Figure 5-3 Measurement of natural frequency 

5.3 Open Loop Measurement 

Open loop disconnects both the reference signal and the tunneling tip with the 

amplifier input. As shown in Figure 5-4, the feed in signal now is the reference voltage, 

which is modulated by a frequency lower than natural frequency f 0. The induced signals 

of deflection voltage and tunneling tip voltage have a relation if the high dc voltage is 

applied properly. When measuring, both of the deflection voltage and tip voltage should 

have the same frequency. The signals are all measured as effect value. The measured
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curve of deflection voltage and tunneling voltage is plotted in Figure 5-5. From the curve, 

there is an exponential relationship between these two voltages. Later analyses provide 

proof of the tunneling effect.

V *
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Figure 5-4 Open loop measurement

Sample: PMMA 1215 
fit: /-Aexp(x/t)
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Figure 5-5 Tunneling current changes depend on deflection voltage
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5.3.1 Electrode Deflection Rule
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Figure 5-6 Actuator deflection rule measurement
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Figure 5-7 Deflection rule measurement 

As the analyses in Chapter 2 and Chapter 3 indicate, the deflection voltage is 

linearly proportional to the tip movement because the capacitor actuator has a reciprocal 

square law between the gap and voltages. However, this relation must be measured 

before the sensor is quantified. The measurement is also at open loop status. As shown in 

Figure 5-6, the measure circuits are shortened with ground, which means there is no input 

signal into the circuits. Only a small ac voltage is directly applied to the deflection
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electrodes. At the same time, the laser vibrometer is measuring the vibration amplitude

when the deflection voltage is changing. The frequency o f this deflection voltage should

also be kept constant. This frequency is usually chosen as less than the natural frequency

because there is no response for the mechanical system if not does so.

The measured curve is plotted in Figure 5-7, where the relation between

deflection voltage and displacement movement is given out. The high dc voltage 50V is

also given and should be written down because later on, we will use it.

5.3.2 Tunneling Current 
Verification

Displacement Change (angstrom)

Figure 5-8 Tunneling relation between current and displacement 

Derived from analysis above, the data of Figure 5-5 can be changed as the relation 

between the tunneling current and the movable tip-counter electrodes gap. This is the 

demonstration of the tunneling effect. The semilog plot is shown in Figure 5-8, where the
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effective barrier height <J> = 0.1685 eV is obtained according to the formula of 

/ocFexpfW O), which is rather similar with the values from other groups [25][29].

5.4 Closed loop Responses 

The characteristics obtained above are the basic properties of tunneling sensors. In 

order to transfer the acceleration into voltage, the closed loop measurements are 

necessary. Here are the descriptions of the measurements.

5.4.1 Sensitivity

Distortaion

1/3 

§  60

Ji 50 S=20.6 V/g @ 1kHz

2.00.5

Applied Acceleration (mg)
1.0 2.5o .o

Figure 5-9 Sensitivity measurement of PMMA accelerometer 

Sensitivity describes the property of the sensor’s ability to transfer the 

acceleration to the measurable electrical signal. Here the output is the effective value of 

deflection electrodes. At a frequency lower than natural frequency, this transfer curve 

should keep a linear relation between acceleration and voltage. Figure 5-9 is the 

illustration of such a sensitivity measurement result. From the acquired data, the
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sensitivity is 20.6 V/ g (lg  = 9.8 ms'2), which, however, can only be kept lower than 1.5

mg, where the linear relation is ruined (As shown in the insert picture of sensitivity log 

plot).

5.4.2 Frequency Response

The sensitivity is constant at the linear range of acceleration input when the 

exciter frequency is located at some area. The frequency characteristics are also 

important because they describe the possible work frequency range. The sensitivities at 

different frequencies are measured while the input accelerations are kept the same. There 

exists a cut off frequency at the sensitivity vs frequency curve, where there is no quick 

frequency response. The value of bandwidth, B = 6.3 kHz, is plotted in Figure 10. It is no 

surprise that B is larger than natural frequency f 0 because the feedback system improved 

the stability, broadened the bandwidth and lessened the fluctuation, as described in 

chapter three.

25

20

100 1000 

Frequency (Hz)
10000

Figure 5-10 Bandwidth measurement of PMMA sensor
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5.5 Resolution Measurement

Maybe the most important characteristic of sensors is their resolution, which 

describes the smallest signal one sensor can measure. Before the resolution measurement, 

we need to know what the noise is.

Noise, also known as white noise, is kind of signal that never repeats and has a 

flat frequency spectrum. Random noise is generally considered to have a Gaussian 

amplitude distribution, but numerically generated noise can also have a flat amplitude 

distribution. The amplitude of random noise is normally measured as the RMS value. In 

order to get a clear understanding of noise measurement, the basic concepts and 

fundamental equations related to noise are introduced below.

5.5.1 Noise

Noise, and its effect on electronic communication, is defined in many ways. There 

are many definitions of noise, such as white noise, pink noise, thermal noise, shot noise, 

equivalent noise, signal-to-noise, noise factor, and noise figure. Here, we will limit our 

investigation of noise to the following illustrations and equations.

Figure 5-11 Elementary thermal Noise Generator 

First, assume there is a circuit as shown in Figure 5-11. This schematic resembles 

a simplified representation of a base-band laboratory signal generator where the Sjg is
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assumed to be the signal output, which is noise free. However, the generator also has a 

noise output, and it is represented by RNoise, the generator's internal resistance.

The noise power produced by a given, defined resistor noise source is 

approximately: PKSis, =PN =kTB; Where:

P n = thermal noise power output of a resistor 

k = Boltzmann constant, 1.38><10*23 joules/K 

T = absolute temperature, Unit: K = 273 + C 

B = system bandwidth

The noise voltage produced by RNoise is approximately: VN = jAkTBR , that is

Although the relation between noise power and noise voltage is derived from 

thermal resist noise, it is also in effect at other places such as here, where an engineer unit 

instead of voltage is involved.

In most cases, the measured systems are more complicated. At least, there is an 

amplifier with gain S playing an important role between signal input and output. 

However, the real noise at output is something more “net” than original noise because the 

system has a bandwidth, which filters most of the noise at higher frequencies. Then the 

concept of spectral density is important.

Power Spectral Density (PSD) is used when measuring continuous broadband 

noise, and normalizes the power to an equivalent bandwidth of 1 Hz, irrespective of the 

actual bandwidth of the filter being used. That is to say, we need to transfer all the noise
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power into power spectral density so that we can compare and use it to get the original 

signals.

There are many methods to measure a noise. Here, only two ways are used.

5.5.2 Time History Record

As shown in Figure 5-12, the tunneling sensor is put into a quiet environment, 

where there is no force or acceleration. The feed-ins are all set at zero, which produces 

zero thermal fluctuation noise from resists. The defection voltage, which now comes 

from noise, is recorded for a period of time and then analyzed.

V+

Vbi.

Vref

X L
1------- /

Vv lip ,----—-------

L

- vHi
Vdcf ( / < / o)

Figure 5-12 Noise measurement 

If you are making an RMS measurement on a random noise signal, the error of the 

measurement will typically be dominated by the effective number of statistical averages 

performed, and not as much on the actual "sine wave" (data sheet) accuracy of the 

instrument. The random error (with 95% confidence which corresponds to 2 sigma

(standard deviations)) of a measurement on random noise signals is equal to e  = ;

where B = Bandwidth of the measurement in Hz; and T = the average time in seconds.
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So, the measure time of 1 second is long enough to make sure the error is below 5% if the 

bandwidth is 100 Hz.

The recorded noise voltages Vm  are peak to peak value. The RMS noise voltage

5.5.3 Noise Level Resolution

The second way to measure noise is to get the frequency spectrum of noise 

directly. The reason we are concerned more about the noise mechanism is that we are 

concerned about the distribution of the noise and the real reason of noise. Usually, the 

spectrum is measured on one block of data and no averaging is performed with FFT. The 

spectrum consists of a number of periodic components (one vector per frequency), which

The Figure 5-13 gives the time history record of noise. After

being transferred to the input end, the noise level is:

which is in the same order as designed value.

1.0

0.8

0.6

o  0.2

0.0
0 3 6 9 12 15

Time (s)

Figure 5-13 Time history record for 15 seconds
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are most often displayed as magnitude and phase information. Most instruments do not 

show the phase part. Normally, the magnitude is expressed in Volts (V) or power (V2). 

When the FFT is used to calculate the Frequency Spectrum, the frequency components 

will have a linear spacing. For example, a 1000 points time block will be transformed 

into 500 frequency components that are equally spaced.

Figure 5-14 is the frequency spectrum of sensor noise. The noise behaves as white 

noise at the frequencies higher than 192 Hz. The white noise level is 405 pV. At lower 

frequencies, the noise increases quickly, which shows a 1 I f  behavior. The reason for noise 

origin is still an open question, though there are some concerns that the noise comes from 

the thermal fluctuation of environment.

0.05

Comer frequency: 192 Hz 
Noise level: 405 mV 
Corresponding to: 0.2485 |ig  HzJ

0.02

c/3
•S  0.01

10* 192 Hz 10J 104

Frequency (Hz)

Figure 5-14 Noise spectrum of PMMA tunneling sensor 

Again, the noise is transferred into the input end as:

N . - Z l -  V(K*):/fl = 0.2485HS/JOz '■> w h e re  N « is  th e  acce le ra tio n  re so lu tio n  d e sc r ib e d  in
s s

g/yfHz  .
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This project includes two parts. The first part is to use hot embossing technique to 

realize the PMMA micromachining. The second part is to fabricate vertical tunneling 

transducer with all-PMMA materials instead of the more conventional Silicon. With two 

years of hard work, these two purposes have been reached with the specifications below.

6.1.1 Structure Simulation bv
ANSYS

Just before the fabrication, the mechanical and possible structure data are 

simulated through all kinds of software. By ANSYS, the data were obtained before 

fabrication. The related properties are:

Static analysis: The structure deflects and bends at the static force application. 

The thickness of proof mass film should be about 50 pm. The force will not produce 

distortion within the tension limitation.

Model analysis: Four possible vibrations are simulated and the first frequency is 

obtained when damping is neglected. The other high vibrations could be avoided if the 

excitation of the system at a frequency lowers than natural frequency, which is the 

resonant frequency.

92
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Harmonic response; The tension and steady response are analyzed when the 

proof mass parts are synthesized. The displacement response, when damping exists, is 

simulated and shown, which gives estimation how much the proof mass film is needed 

under static force.

Static force and bending: The actuator parameters are simulated according to the 

static force analysis. The distance of parallel capacitor actuator is about 20 to 50 pm, 

which set the height of the tunneling tip to range from 20 to 50 pm. The lateral sizes of 

the tunneling tip are then also set because of the relation angle of 55° with anisotropic 

etching.

Electrostatic actuator: The actuator parameters are also analyzed with the bend, 

applied ac voltage and high bias dc voltage on the deflection electrode. All possible 

values are included into the table 2-2.

6.1.2 Feedback and Control
System Synthesis bv MatLab

This is the first time the tunneling transducer has been linearized in a 

mathematical model. I have successfully used the Taylor series to linearize the tunneling 

current-gap relation and therefore make the entire closed loop system. With the aid of an 

actuator and feedback circuit, a simple but effective control system is obtained by CAD 

software of MatLab.

By choosing a feedback factor, the stability of the system is evaluated. From the 

gain margin and phase margin analysis, the open and closed loops of the system are all 

stable. The root locus illustration also shows all the unstable poles are in the stable 

district.
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The tunneling accelerometer functions are also evaluated. The transfer function, 

which corresponds to the sensitivity of about 20 mV/mg, can only be kept within 1.2 mg. 

Both the sensitivity value and the dynamic range are quite similar to the measured value 

later. The time history record and output signal with noise have been simulated and 

predicted.

6.1.3 Combination Technique to 
Fabricate Silicon Mold for 
Hot Embossing

Both anisotropic KOH etching and plasma etching are used when Silicon masters 

are fabricated. The fabricated master has a smooth surface with positive profile, which is 

necessary when demolding. The pyramid silicon pit has sharp edges and a steep sidewall. 

The angle of 55° is automatically formed because of anisotropic wet etching.

6.1.4 All-PMMA Vertical 
Membrane Tunneling 
Structure Fabrication

An all-PMMA vertical membrane structured tunneling transducer has been 

successfully fabricated. The micro structures with pyramid tips in height of 50 pm 

possess smooth surface, steep edges and sharp angles. The proof mass blocks are also 

perfectly replicated from Silicon mold to PMMA.

6.1.5 Tunneling Effect 
Measurement and Evaluation

The exponential relation between the tunneling current and movable displacement 

proved that this tunneling transducer platform is highly sensitive and miniature. The 

measured resonant frequency is 130 Hz with about 400 nm in vibration magnitude. The 

sensitivity is about 20.6 mV/mg and restrains in linear area up to 1.5 mg. Then the
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bandwidth of the closed loop is 6.3 kHz. Two kinds of noise measurement show the noise

level is under 0.3pig 14Hz with 1/f noise behaviors lower than 190 Hz.

6.1.6 Comparison with silicon- 
based tunneling sensor

The performances of a built PMMA-based tunneling sensor are better than or at 

the same order in magnitude as silicon-based tunneling sensor. A brief comparison of 

these two sensors is listed in Table 6-1. The data of silicon-based sensor are from one of 

the best groups until now at Stanford University.

Table 6-1. Brief comparison of PMMA- to silicon- based tunneling sensor

Properties PMMA-based Silicon-based
Natural response 133 Hz 100 Hz
Tunnel barrier height 0.1685 eV 0.212 eV
Actuator responsivity 400 nm/V 480 nv/V
Resolution 0.2485//g/V7fe OA/ug/jHz
Dynamic range 0-1.5 mg 0-1 mg
Sensitivity 26 V/g 44 V/g
Bandwidth 6.3 kHz 1.5 kHz

6.2 Future Work

This dissertation is just the first step for other applications based on all-PMMA

tunneling transducer platform. There are two concerns right now.

6.2.1 Three-dimensional 
Accelerometer

The vertical PMMA sensor is objective to Z direction or one-dimensional sensors. 

However, three-dimensional sensors should be the ultimate purpose since the detected 

signal changes are unknown before measurement. Also, 3-D sensors can be widely used 

in industry environments.
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The main idea is to integrate three identical sensors at three directions. Triple 

circuits are needed with similar output.

6.2.2 PMMA IR Sensor

The first application of an all-Silicon tunneling sensor was IR sensor, which has 

the exact same membrane structure as our PMMA platform. So it is convenient to 

directly use a PMMA structured IR sensor. Two membrane structured PMMA sheets are 

bonded together. The cavity with trapped gas, instead of proof mass this time, is sensitive 

to thermal radiation.

6.2.3 Chemical Sensor

Chemical sensors based on tunneling sensors can detect the changes of chemical 

density, mass, or other parameters when studying chemical reactions. This type of sensor 

is accomplished by the use of a membrane surface, which can detect the displacement 

amplitude changes produced by reactions. The small size of tunneling sensors enables 

many of them to be accurately inserted into a small volume of tissue or other specific 

place that is under investigation, a perfect situation for microsensors.

6.2.4 Magnetic Sensor

The PMMA-based tunneling sensor can meet the needs for low cost, low power 

and small, accurate sensors for civil, industry, military, and especially medical 

applications. The magnetic film, particle, and field properties then can be detected or 

inspected by the aid of this tunneling sensor. Cooperation with Louisiana State University 

for magnetic nano particle study has begun.
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