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ABSTRACT

Organic field effect transistors (OFETs) with poly(3-hexylthiophene) (P3HT) as 

the active layer are developed and studied. The device characteristics are significantly 

affected by source/drain contact resistance, and P3HT-Si02 interface and the traps. These 

results are verified by the numerical device simulations. The temperature dependence of 

device mobility is studied, which indicates that the carrier transport is either heat-assisted 

or heat-limited at different temperature ranges. The on/off ratio and threshold voltage are 

found to be dependent on the temperature. Hysteresis effect due to gate electric stress is 

investigated. The silanol groups present at the Si02 surface are thought to be the key 

factor, which could trap the gate-induced electrons forming immobile negative ions, and 

shift the device threshold voltage.

Replacing gold with modified poly(3,4-ethylenedioxythiophene)-polystyrene 

sulfonate (PEDOT-PSS) for the source/drain electrodes, reduces contact resistance and 

leads to an improved device performance. The SiC>2 surface is also improved. Annealing 

the SiC>2 surface prior to the deposition o f the P3HT layer is found to improve the 

performance o f the device significantly. The device mobility is increased from 0.01 to 

0.026 cm2/Vs, the on/off ratio increased from 2.3><103 to 8.2 xlO3, and subthreshold slope 

decreased from 3.6 to 2 V/dec. The enhanced device performance is attributed to the 

possible reduction o f physically adsorbed water molecules and hydroxyl groups at the 

Si0 2  surface upon annealing.

iii
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Polymer heterostructure OFETs are also developed for establishing a method to 

fabricate new devices and the possibility to increase the device performance. This idea 

stems from the conventional inorganic modulation doped field effect transistors 

(MODFETs) that have shown strikingly high carrier mobility. The operation of 

conventional MODFETs is based on the technique o f “modulation doping” which 

provides a good means o f introducing carriers into the conduction layer without the 

adverse effects o f donors. A polymer heterojunction structure is made o f P3HT and 

poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) and is integrated into a field effect transistor. 

The resulting device characteristic shows the “modulation doping” effect. To our 

knowledge, the modulation doping effect with a polymer heterojunction has not been 

reported so far. This finding opens a potential pathway to improve the OFETs’ device 

performance.
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CHAPTER ONE

INTRODUCTION

1.1 Organic Thin Film Transistor 

Organic electronics have attracted tremendous research efforts over the last 

twenty years. It offers several advantages over the traditional inorganic semiconductor 

technologies for low cost, easy processing, good compatibility with a variety o f substrates 

including flexible plastics and low temperature processing with little or no vacuum 

process involved. The interests in organic electronics are mostly driven by the demand 

for low cost, large area, flexible and lightweight devices. Organic light emitting diodes 

(OLEDs) and organic field effect transistors (OFETs) are two mainstream technologies in 

this area. OLED technology is now being commercialized, and there is a tremendous 

market for such devices. OLEDs have already been used in small displays in cellular 

phones, digital cameras, handheld computer games, and other consumer devices [1]. 

Meanwhile, OFET has also received considerable attention, although on a reduced scale. 

Since the first organic field effect transistor was reported in 1986 [2], there has been a 

very impressive progress both in the development o f new fabrication techniques and the 

materials performance. OFETs have been demonstrated in applications, such as electronic 

paper, sensors, and memory devices including radio-frequency identifications tags [3-4]. 

Although they are not intended to replace conventional inorganic counterparts due to the

1
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2

upper limit o f the switching speed, they have a great potential for a wide variety of 

applications, such as electronic newspapers, low-end smart tags, and large-area drive 

circuits for flexible displays [5].

A field effect transistor (FET) with organic material as the semiconductor is 

normally called organic FET. An organic FET consists o f materials ranging from 

conductors and semiconductors, to insulators. A typical device structure is shown in 

Figure 1-1. Here, the gate electrode, insulated from the semiconductor by an insulator, is 

used to control the current flow between the source and drain electrodes. A transistor is 

called p-channel device if  the major charge carrier is hole, and on the contrary n-channel 

device when the major charge carrier is electron.

^ e m ^ n d u rto r

|  Source Drain |  
% (conductor) (conductor) £

Gate dielectric 
(insulator)

Substrate (gate, conductor)

Figure 1-1 A schematic structure o f a typical OFET.

1.1.1 Active Channel -  Organic 
Semiconductor

One important feature that makes organic semiconductor attractive is the 

possibility for them to be deposited from solution for low-cost manufacturing. However, 

only a small number o f soluble p-type organic semiconductors have been reported to 

show high performance, and a very few n-type organic semiconductors are soluble with 

reasonably high mobility. In order to build transistors with high mobility from solutions,
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the materials should be soluble, and it should be possible to create large-area uniform 

films, in which the semiconducting molecules are desired to be well-ordered. The ir- 

stacking between these molecules forms the conducting path for charge carriers to hop 

from one molecule to another molecule. However, with highly ordered materials it is 

usually difficult to form uniform films due to their high crystallinity. In contrast, 

polymers can easily form uniform films, but it is more difficult to obtain polymer films 

with high ordering. The polymer that gets around these two limitations is the regioregular 

poly (3-hexylthiophene) [6]. Therefore in our work, P3HT was selected for field effect 

transistor to demonstrate our strategies for improving OFET’s performance.

1.1.1.1 Pol v(3 -hex vlthiophene)

Poly(3-hexylthiophene) (P3HT) has been o f particular interest due to its self­

organizing properties to form a microcrystalline structure in films. Self-organization in 

P3HT results in a lamellar structure with two-dimensional conjugated sheets formed by 

interchain stacking [7]. Differences in the regioregularity in P3HT samples have been 

found to cause markedly different orientations relative to the substrate. As shown in 

Figure 1-2, the lamellae can adopt two different orientations: parallel and perpendicular 

to the substrate, the mobilities o f which differ by more than a factor o f 100. In samples 

with high regioregularity (96%) and low molecular weight, the preferential orientation o f 

ordered domains is with the (lOO)-axis normal to the film and the (OlO)-axis in the plane 

o f the film (Figure l-2a). Here (lOO)-axis is with the lamella layer structure (“a” in Figure 

l-2a) and (OlO)-axis is with 7T-1T interchain stacking (“b” in Figure l-2a). In contrast, in 

samples with low regioregularity (81%) and high molecular weight, the crystallites are
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preferentially oriented with the (lOO)-axis (“a” in Figure l-2b) in the plane and the (010)- 

axis (“b” in Figure l-2b) normal to the film.

Charge modulation spectroscopy (CMS) has been used to study the charge 

carriers present in region-regular P3HT [8]. It was demonstrated that the CMS spectra o f 

charge carriers in high-mobility region-regular P3F1T FET’s are independent o f charge 

density, modulation frequency, and temperature. This was the evidence for the presence 

o f a single, intrinsic charge carrier that was identified as a singly charged polaron.

Figure 1-2 Packing orientation o f P3HT films relative to substrate with (a) 95% and (b) 
81% regioregularity, as determined by X-ray diffraction [7].

P3HT can be dissolved in a variety o f solvents, such as chloroform, 

chlorobenzene, tetrahydrofuran, p-xylene and toluene, etc. It has been noted that the 

field-effect mobility can vary significantly with different solvents [9]. The mobility as 

high as 0.2 cm2/Vs has been reported with P3HT film cast from chloroform solution and 

the SiC>2 gate dielectric covered with a hydrophobic self-assembly monolayer [10]. It was 

recently found that the dependence o f mobility on the solvents could be related to the 

boiling points o f the solvents [11]. Low boiling and rapid evaporation limit time for 

crystallization during spin coating process resulting in lower field effect mobility. 

Solution processes, such as drop casting, contact printing, Langmuir-Blodgett deposition,
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5

dip coating, spin coating, and inkjet printing can be used to deposit P3HT films [12] [13] 

[14] [15]. One drawback of P3HT is that it is sensitive to moisture and oxygen when it is 

exposed to air, leading to the degradation o f the device performance [16].

1.1.1.2 Other organic semiconductors

Examples o f other organic semiconductors include p-type materials such as Cu- 

phthalocyanine [17], tetracene [18], phthalocyanine [19], a-sexithiophene [20], pentacene 

[21], a-co-dihexyl-sexithiophene [22], poly[2-methoxy-5(2'-ethyl-hexyloxy)-l,4-phen- 

ylene vinylene] (MEH-PPV) [23], poly(9-9’-dioctyl-fluorene-co-bithiophene) [24], and 

dihexyl-anthradithiophene [25], etc., and n-type materials such as C6o [26], TCNQ [27], 

FieCuPc [28], and NTCDA [29]. It should be noted that most o f the work to date has 

focused on p-type materials. The disproportionate development o f p-type OFETs vs. n- 

type should be due to the inherent instability o f n-type organic materials that react with 

water and oxygen under operating conditions, thus offering unstable devices [30]. Two 

methods have been proposed to improve the stability o f n-type organic semiconductors in 

air. One is achieved by carefully tuning the electron affinity o f n-type materials, since the 

stability o f n-type doped materials depends strongly on the value o f the overpotential 

associated with the chemical processes. The other is accomplished by kinetically 

inhibiting the undesired redox processes. For example, the incorporation o f hydrophobic 

functionalities into the chemical structure o f the organic semiconductor could thwart the 

penetration o f water [30].

1.1.2 Gate Dielectric - Insulator

As compared to the extensive research efforts on organic semiconductors, there 

has not been much research on dielectric materials so far, even though they are extremely
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crucial for high-performance and reliable organic devices. The basic requirements for 

such dielectric materials are their ability to form thin, pinhole-free films with a high 

breakdown voltage and good long-term stability. Additionally, the dielectric material 

should be compatible with organic semiconductors. For instance, the dielectric films must 

have low surface trapping density, low surface roughness, low impurity concentration 

and must not degrade the performance o f ordered organic semiconducting films [6]. 

Silicon dioxide has been the most extensively used dielectric material so far, since it 

possesses most o f the desired features and it offers a simple fabrication process for 

organic devices that are built on the silicon substrate. However, the natural hydroxyl 

groups present at the SiC>2 surface acted as surface traps reducing the hole mobility and 

quenching n-channel FET activity o f organic semiconductors that do not have sufficiently 

large electron affinities [31] [32]. Pre-treatment o f the Si-SiC>2 substrate with silylating 

agents replacing the hydroxyl groups with non-polar alkyl group has resulted in hole 

mobility o f as high as 0.1 cm2/Vs [31] and ambipolar activity [32] in P3HT FETs. A 

number o f organic dielectric materials have also been found to give reasonable transistor 

performance. Examples are poly(methyl methacrylate) [33], poly(vinylphenol) [34], and 

polyimide [35]. From reliability and manufacturing yield considerations, a minimum 

dielectric layer thickness o f 1000A or more is necessary for large-area electronics [30]. 

Thicker dielectric layers are more suitable for large area applications since they suppress 

the formation o f pinholes and the problems with step coverage. In this sense, a higher 

dielectric constant gate insulator is the more appropriate solution for low operation- 

voltage OFETs [36]. However, exceptional examples are known to exist. For example, 

recently, thin (2.3-5.5nm) self-assembled organic dielectric multilayers were integrated
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into OFET structures to achieve sub-IV operating characteristics [37]. It was claimed that 

these thin dielectrics were smooth, nanostructurally well defined, strongly adherent, 

thermally stable, virtually pinhole-free, and with excellent insulating properties.

1.1.3 Electrodes -  Conductor

Besides the organic semiconductor and gate dielectric, the conductor material, as 

the third component in an OFET’s structure, has decisive impacts on the device electrical 

characteristics. The heavily doped silicon substrate is commonly used as the gate 

electrode for a simple fabrication process. Gate contact normally would affect the 

operation voltage o f the OFET, but not at a significant level since organic devices 

normally operate at high voltages. For the source and drain electrodes, specific 

requirements need to be met. They have to be energetically well-matched with the 

organic semiconductor layer so that ohmic contact can be formed to allow efficient 

charge injection. For p-channel OFETs, charge carriers are holes. They are injected from 

or onto the highest occupied molecular orbital (HOMO) levels o f the organic 

semiconductors. High work function conductors are usually preferred for an efficient 

injection due to a low injection barrier. On the other hand, n-channel OFETs, charge 

carriers are electrons. Conductors with low work function are normally required to 

achieve efficient injection o f electrons from the lowest unoccupied molecular orbital 

(LUMO) levels o f the organic semiconductors. Among those contact metals that have 

been employed in organic electronic devices, gold is the most frequently used one. It was 

found to form ohmic contact with many p-type organic semiconductors, resulting in good 

device performance. For n-type FET, electrode materials are usually metals o f low work 

function, such as Ca, and Mg. However, they are very reactive in air and require a
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vacuum or inert environment for device preparation. Since the inkjet printing emerged as 

a direct writing method for metallization, conducting polymers, such as PEDOT-PSS, 

have become promising electrode materials to achieve low-cost and high-performance 

devices [38]. Metals, such as gold [39] and silver [40], have also been deposited by 

printing for source/drain (S/D) electrodes giving good OFET performance.

1.2 Technology Computer Assisted Design

1.2.1 Overview

Technology Computer Aided Design, or TCAD, is the term used to describe a 

wide range o f modeling and analysis activities that comprises detailed simulation of 

fabrication processes, electrical performance o f single or multiple device and extraction 

o f discrete parameters for equivalent circuit models. Numerical simulation o f 

semiconductor device fabrication and operation is significant to the design and 

manufacturing o f integrated circuits because it provides insights into complex phenomena 

that cannot be obtained through experimentation or simple analytical models. Simulation 

tools also provide a controlled and repeatable numerical experiment which can yield 

information that cannot be measured with present equipment. For the simulation tools to 

be useful in a practical environment, they should be physically accurate, computationally 

robust, and usable by those other than the software developers [41]. TCAD has been 

widely used by IC manufacturers during technology development. The software 

examples are SUPREM, PISCES, PROPHET, ATHENA, ATLAS, TSUPREM4, 

MEDICI, TAURUS, DIOS, and DESSIS, etc. Figure 1-3 shows schematically a typical 

TCAD flow. Starting from a process recipe and knowledge o f the layout, a structure is 

created via process simulation. This structure is fed directly into the device simulator,
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which produces I-V or C-V curves. One important benefit from simulation is a better 

understanding o f how devices really operate. The simulation allows one to see inside the 

devices. For example, one can see how the electric field, and charge carriers distribute in 

the device structure; one can visualize where depletion regions are located. Apart from 

the flow information as shown in Figure 1-3, device simulation can also be performed 

without process simulation. In this case, doping profiles can be specified as Gaussian 

functions, which is suitable for many applications. This approach is very fast compared to 

process simulation. Another TCAD application is associated with the concept o f inverse 

modeling. One starts with known device characteristics, and then searches for a structure 

that reproduces these curves.

Process Reeipe • i

Deposit 2000A Poly
Implant Arsenic, 1e15/cm2, 5 keV
Diffusion 1050°C, 1 second

Device simulation: Idrain vs Vgs

I E - 5

I E - 10

IE -15

: Vt
idsa t

DIBLi/ /

A  Subthre
......./ / . ’.........

shoid sk>pe

/ !
■ y  D iode leakac le

Process simulation: MOSFET

[J* •  . D

• 0 . 5 0 . 5 1 . 5

Figure 1-3 A typical TCAD flow [42].
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However, examples can always be found where the simulation results do not 

match experimental results. The differences could arise from the insufficient physics for 

new materials, inaccuracies in metrology especially for gate length and oxide thickness, 

improper use o f software tools such as models, and missing process details such as 

temperature ramp [42],

1.2.2 Device Simulation

Device simulation is usually done by employing the drift-diffusion (DD) model for 

electron transport. The equations for the flow o f electrons and holes were given by 

Shockley consisting o f three partial differential equations (PDEs) including electron and 

hole-current continuity equations and Poisson’s equation [41]. Besides the DD model, 

there exists a density gradient (DG) model, which is an extension to the DD equations. It 

applies a quantum potential correction in the current density expression and is capable o f 

calculating confined carrier concentrations and other quantum effects such as tunneling. 

Some o f its advantages over other quantum models include the ability to handle complex 

geometries and to be readily applied in ID, 2D and 3D [43].

1.3 Dissertation Objectives 

The objective o f this project is to present the previously discussed strategies to 

improve organic field effect transistors. First, poly(3-hexylthiophene) OFETs are 

fabricated and characterized based on a solution process. Then we will use TCAD 

simulations to gain better understanding o f our devices and to identify the key factors that 

could limit the device performance. After that our device improvement strategies will be 

demonstrated. Based on our understanding o f the inorganic and organic semiconductors 

and the gate insulated FETs, we will present polymer heterojunction modulation doped
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field effect transistors, which could offer an alternative pathway for improving OFET’s 

performance.

1.4 Organization o f this Dissertation

Chapter One introduces organic field effect transistor as an ensemble o f three 

components, namely, conductor, semiconductor and insulator. Related work that has been 

done and special requirements on these three components are briefly addressed in order 

to highlight the issues that could lead to high-performance OFETs. Then TCAD is 

introduced, highlighting the importance o f the numerical simulation on the design and the 

understanding o f the semiconductor devices. Finally, the objectives o f our work are 

described.

Chapter Two covers the theoretical background that has been applied in this work. 

The conducting mechanisms of the organic semiconductors are introduced, followed by 

the operation principles o f the OFETs. The conducting mechanisms include hopping 

transport, multiple trapping and release models, and field-dependent mobility. In the 

operation principles o f the OFETs, we focus on the energy band diagrams, electric 

characteristics, contact resistance effects, trapping effects and gate bias dependent 

mobility.

Chapter Three introduces the fabrication and characterization techniques. Two 

solution processes, i.e. spin coating and inkjet printing, as well as the device 

characterization technique are emphasized.

Fabrication and analysis o f  poly(3-hexylthiophene) field effect transistors are 

given in Chapter Four. Device characteristics are investigated considering contact
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resistance effect, gate voltage dependence o f mobility, temperature dependence of 

mobility. The hysteresis effect o f the fabricated devices is also explored.

In Chapter Five, we simulate the P3HT FET using 2-D Taurus-Device simulator 

in order to gain better understanding o f device operation. The simulation is carried out 

based on drift-diffusion model. Traps and contact resistance are modeled.

With the knowledge o f the fundamental issues that could affect P3HT device 

characteristics and performance, our strategies to improve P3HT device are demonstrated 

in Chapter Six, including improving S/D contact and semiconductor-insulator interface.

In Chapter Seven, instead o f a single P3HT layer as the active channel, a polymer 

heterojunction involving P3HT is utilized as the channel material. The polymer 

heterojunction FETs show “modulation doping” effect analogous to that in conventional 

inorganic modulation doped field effect transistor (MODFET).

We will conclude our work in Chapter Eight and high-light some issues that should 

be done in the future.
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CHAPTER TWO

THEORETICAL BACKGROUND

2.1 Charge Transport in Polymeric Semiconductors

2.1.1 Overview

The main element o f conjugated polymers is the carbon atom, which has four 

electrons in the outer electronic level. The orbitals o f these electrons could mix to create 

four equivalent degenerate orbitals called sp3 hybrid orbitals around the carbon atom. 

These sp3 hybrid orbitals arrange in a tetrahedral configuration. If  only three chemical 

bonds are formed, three sp2 hybridized orbitals will be created at an angle o f 120° with 

each other in a plane. These bonds are called a-bonds, associated with highly localized 

electrons in the plane o f the molecule. The one remaining free electron per carbon atom is 

located in the pz orbital, which is normal to the sp plane. The pz orbitals on the adjacent 

carbon atoms overlap to form 7r-bonds. A schematic representation o f this hybridization is 

illustrated in Figure 2-1, for the simplest conjugated polymer polyacetylene [44]. 

Molecules with a -  and 7r-bonds are schematically represented by single and double 

alternating chemical bonds between the carbon atoms. They are called conjugated 

molecules. Due to the 7T-bonds, a delocalized electron density distributes above and below 

the plane o f the molecule. It is the nature o f these delocalized ir-electrons that provide 

conjugated polymers interesting electrical and optical properties [44].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

o-bonds

pz-orbital

Figure 2-1 (a) The molecular structure o f polyacetylene. The alternating single and 
double bonds indicate that the polymer is conjugated, (b) Schematic representation o f the 
electronic bonds in polyacetylene [44].

There exist significant differences between the 3-dimensional crystal lattice o f 

most inorganic semiconductors and the amorphous structure o f conjugated polymers. 

Inorganic semiconductor crystalline lattices are characterized by long range order and 

strongly coupled atoms. Long-range delocalized energy bands are separated by a 

forbidden energy gap. Charge carriers added to the semiconductor can travel in these 

energy bands with a relatively large mean tree path. The restrictive factor for this band 

transport is the scattering o f the charge carriers due to thermal lattice vibrations, as 

illustrated by Figure 2-2a, where straight line represents a free carrier delocalized and 

moving freely in a perfect crystal [44]. Since lattice vibrations increases with increasing 

temperature, the mobility o f the charge carriers decreases with increasing temperature. 

On the other hand, in conjugated polymers, the polymer chains are weakly bound by Van 

der Waals forces. These polymers generally have narrow energy bands. They can easily 

be disrupted by disorder. Although electric charge is delocalized along the 7T-conjugated 

segments o f the polymer backbone, the length o f such perfectly conjugated segments is 

generally limited to around several nm. These conjugated segments are separated by
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-3

chemical defects, such as a non-conjugated sp hybridized carbon atom on the polymer 

backbone, or by structural defects, such as, chain kinks or twists out o f coplanarity. Due 

to the disorder, the semiconductor can not be considered simply as having two 

delocalized energy bands separated by an energy gap. Instead, the charge transport sites, 

the segments o f the main polymer chain, have a Gaussian distribution o f energies [44]. 

The motion o f the carriers in the amorphous conjugated polymers is thought to be via 

hopping process. The lattice vibrations are essential for a carrier to move from one site to 

another. The mobility normally increases with increasing temperature. The charge 

transport in these amorphous material system is schematically illustrated in Figure 2-2b.

(a ) B and type conduction 

4  Applied vo ltage ■

D elocalized electron

. «  -L attice vibration

S cattered  electron
- T V

(b) Hopping conduction

Electron localized 
by de fec ts  
or d iso rd e r .A  or o isoraer 

»  vibration

Figure 2-2 Charge transport mechanisms in solids: (a) band transport in a crystal structure, 
such as, silicon and (b) hopping transport in an amorphous structure such as conjugated 
polymer [44],
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2.1.2 Hopping

As mentioned above, due to the disorder and localization o f charges, the transport 

o f charge carriers in polymeric semiconductors occurs by hopping between localized 

states. The transport is assisted by phonons, thus the mobility increases with increasing 

temperature. Several models have been developed for the hopping transport. In most 

cases, the temperature dependence o f the mobility follows

A = A0ex p [-(r0 / r ) 1/a] (2-1)

where a  is an integer ranging from 1 to 4 [2],

2.1.3 Field Dependent Mobility

In organic materials, the mobility generally becomes field dependent at high 

electric field, i.e., larger than ~105 V/cm. This effect is generally explained as follows: 

the coulombic potential near the localized levels could be modified by the applied electric 

field in a way that the tunnel transfer rate is increased between sites. The field 

dependence o f the mobility is expressed by

= M 0 )e x p (X )SV £) (2-2)
k T

P  =  { q l n s s 0f 2 (2-3)

where /x(0) is the mobility at zero electric field, (3 the Poole-Frenkel factor determined by 

Equation 2-3, E the magnitude of the electric field, e permittivity o f the semiconductor, 

and q electron charge [45].

2.1.4 Multiple Trapping and Release

Multiple trapping and release (MTR) model has been used to explain gate voltage 

dependent mobility in amorphous silicon. This model assumes that charge transport takes
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place in extended states, and most o f the carriers injected into the semiconductor are 

trapped in states localized in the band gap. Then by a thermally activated process, the 

trapped carriers are released to the extended states. The trapped-controlled drift mobility 

related to the mobility in the delocalized band can be expressed by Equation 2-4 [45] [46]

o ^ e x p ( - ^ )  (2-4)
k T

where ju,d and jUo are effective drift mobility and the mobility in the delocalized band, 

respectively, Et is the distance between the trap level and the delocalized band edge. In 

the case o f single level o f trapping states, X is the ratio of the density o f states at the 

delocalized band edge and the density o f traps.

2.2 Operation o f Polymeric Field Effect Transistors 

Figure 2-3 shows schematic diagrams o f thin film transistors (TFTs) based on 

bottom-contact and top-contact structure, respectively. Both structures have been widely 

used in organic field effect transistor with their own advantages. The operation mode o f 

a TFT is different from that o f a conventional metal-insulator-semiconductor field effect 

transistor (MISFET). The operation o f a conventional MISFET is through a minority- 

carrier channel which forms in the strong inversion regime. The source and drain regions 

are oppositely doped as compared to the semiconductor channel. At zero gate voltage, 

structure from source to drain actually consists o f two back-to-back p-n junctions, thus 

giving extremely low off-currents. In the TFT, source and drain electrodes have low 

contact resistance. The low source-drain current at zero gate voltage is simple due to the 

low conductivity o f the semiconductor. Field-enhanced current occurs through majority- 

carrier injection in the accumulation layer. Organic (or polymer) field effect transistors
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share the common features with the TFTs, in that, it also operates in the accumulation 

regime and not in the inversion region, and the low off currents are only guaranteed by 

the low conductivity o f the organic semiconductors.

Source
(conductor)

Drain
(conductor)

Source
(conductor)

Drain
(conductor) Semiconductor

1
Gate dielectric 

(insulator)
Gate dielectric 

(insulator)

Substrate (gate, conductor)Substrate (gate, conductor)

(a) (b)

Figure 2-3 Schematic structures o f a TFT with (a) bottom-contact and (b) top-contact 
configuration.

2.2.1 Energy Band Diagrams

The energy band diagrams o f a p-type MISFET at different operation conditions 

are schematically shown in Figure 2-4. Due to the work function potential difference 

between the semiconductor and the metal, a gate voltage is applied so that the Fermi 

levels o f metal and semiconductor align, then no band bending will occur in the 

semiconductor as shown in Figure 2-4a. This gate voltage is called the flat band voltage 

V fb

E n
(2-5)

Here, <fim is the metal work function, x  the electron affinity, Eg the semiconductor

bandgap, q the electron charge, and (j)h the potential between the Fermi level and the

intrinsic Fermi level Ej. If  the work function o f metal is similar to the Fermi level o f 

semiconductor, the flat band voltage will be close to 0. Here we are not considering the
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interface charges that also affect the flat band voltage. Applying a negative gate voltage 

will induce charges at the semiconductor-insulator interface. This causes band bending- 

up as shown in Figure 2-4b, indicating accumulation o f holes at the interface. Under this 

condition, the p-channel transistor is turned on. When a positive gate voltage (or gate 

voltage higher than the flat band voltage) is applied, the mobile holes are depleted from 

the semiconductor-insulator interface due to the electric field, causing band bending 

down in the p-type semiconductor illustrated by Figure 2-4c.

Vg=W b W ^ fb W >^ fb
Flat-band Accumulation Depletion

Ec (LUMO)

Ev (HOMO) Vg<0|

(b)

Figure 2-4 Energy gap diagram of a MIS structure with p-type semiconductor under (a) 
flat band condition, (b) accumulation, and (c) depletion. LUMO and HOMO apply for 
organic semiconductors.

2.2.2 Current-Voltage Characteristics

The drain current L up to the saturation point was predicted by a model derived 

by Borkan and Weimer [47]. An incremental section o f length dx o f a TFT, at an 

arbitrary distance x from the source, is shown in Figure 2-5, where the source is grounded, 

and the gate and drain are negatively biased. The charge at position x induced by gate is 

Ci(Vg-Vx) per unit area, where Q  is the gate capacitance per unit area o f the insulator, V g 

is the gate potential, and Vx is the potential o f the dx section relative to the source. The
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potential V x changes continuously along the semiconducting channel from zero at the 

source to Va at the drain. If  the initial free carrier concentration in the semiconductor is po 

(p type) per unit area o f surface, then the total conducting charge per unit area in the 

semiconductor is poq + Ci(Vg-Vx). Then at low drain voltage, the current la is given by 

Equation 2-6[48]

d V
h  =  wju[ P o<1 +  C t (Vg -  Vx)]— i  (2-6)

dx

where w is the width o f the TFT, fi is the carrier mobility, and dVx is the potential 

difference across the dx section. Having V t =  -poq/Q, Equation 2-6 becomes

/ ,  (  d x  = C , w M ( '  l (Vt  - V T) - V J  d V , )  (2-7)

where L is the channel length, the distance from the source to drain. By integration, 

Equation 2-7 becomes

<2-8>

V t  represents the applied gate voltage required for the onset o f the conduction. If  V t  is 

positive, the TFT is thought to operate in the enhancement mode, whereas the device is 

said to operate in the depletion mode if  V t is negative.

v„<ov

Gate
dielectric

dx

Figure 2-5 Channel formation in a TFT.
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Equation 2-8 indicates that for a given Vg, the current increases with drain 

voltage and reaches a maximum value when Vd=Vg-Vr. At a low drain voltage and a 

large negative gate voltage, the quadratic term in Equation 2-8 could be ignored, and then 

Equation 2-8 could be simplified to

Under this condition, there will be a uniform accumulated charge density 

throughout the channel. However, as the drain bias becomes increasingly negative, the 

voltage drop across the insulator and semiconductor will be a function o f a position along 

the channel [49]. The accumulation charge density decreases along the channel from the 

source to the drain, as shown in Figure 2-5. When drain voltage reaches Vg-Vx, charge 

accumulation disappears near the drain, resulting in the so-called “pinch-off’ o f the 

channel. Then the TFT starts with a saturation region, where drain current remains 

substantially constant with increasing drain voltage. The saturation current is given by

Equation 2-10 is obtained by simply substituting in Equation 2-8 with V ^V g-V r. 

From the I-V characteristics, two important technological parameters viz. the channel 

conductance gd and transconductance gm can be determined. The channel conductance is 

obtained in the linear regime expressed by

The transconductance in the linear and saturation regimes are given by Equations 

2-12 and 2-13, respectively,

(2-9)

(2-10)

d  Vp-cons  tan t

- V T ) (2-11)
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% Vd=const

W
(2-12)

S m= ^ C , . ( r g - F 0) (2-13)

Another significant technological parameter is mobility, which is normally taken 

as a measure o f device performance. Higher mobility is preferred. For simplicity,

saturation regime. The x-intercept o f the curve determines the threshold voltage. In the 

linear operation region, the mobility estimated using Equation 2-12 is usually gate- 

dependent, which is due to a nonlinear V g~Id relationship at low drain voltage. As 

addressed afterwards, this nonlinearity could be attributed to the source/drain contacts 

and the trapping effects in the organic field effect transistors.

2.2.3 Contact Resistance Effects

Source/drain contact resistance in OFETs have been investigated and found to 

strongly affect the overall device performance [50][51][52]. In the metal-organic 

semiconductor system, a large contact resistance normally arises from a Schottky contact 

between them. This non-ohmic contact is dependent on the gate electric field [53], 

resulting in the nonlinearity o f V g~Id as mentioned above. By matching the energy levels 

between electrode and semiconductor, an ohmic contact could be reached. However, at 

the transition area between organic semiconductor and source/drain electrodes, the 

organic semiconductor could be poorly ordered forming a low-mobility region, resulting 

in a significant contact resistance. Accounting for the parasitic series resistance at source 

and drain Rp, Equation 2-9 could be improved to [51]

mobility value can be derived from Equation 2-10 by plotting ID1/2 against Vg in the
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I d = j C M V g - V T)(Vd - I dRp) 

( w / L ) C lM(VK - V 0)Vd

1 +  ( w / L ) C iR p (Vg - V 0)

Since Rp can not be directly measured, estimating mobility from Equation 2-13 seems to

be complicated. Nevertheless, Rp could be removed by some numerical manipulations

[51]. First, we calculate the drain conductance g<j (Equation 2-14) and transconductance

gm (Equation 2-15) at low drain voltage

81 d l d ( w / L ) C ^ ( V g - V T)

g d  d v d Vd 1 +  ( w / L ) C iJuRp (Vg - V T)

d l d { w l L ) C ^ V d

Sm d V g [1 +  ( w / L ) C iMR p (Vg - V T) ] 2

To eliminate the parasitic resistance, Equation 2-14 is divided by the square root 

o f Equation 2-15 giving the following equation [51]

7 t f ^ r M V ‘ - VT) ( 2 ' 1 6 )

Therefore Equation 2-16 could be used to estimate field effect mobility, which is 

corrected for contact resistance and therefore it could describe the carrier mobility in 

organic semiconductor channel more accurately. The parasitic contact resistance could be 

derived from Equation 2-14 and has the following form

R  = - --------------   (2-17)
p w MC t (Vg - V T)

Parasitic contact resistance could also be estimated by channel length series 

method, in which a set o f devices with various channel lengths are characterized at low 

drain voltage [54] [55]. For each device at each gate voltage, the linear portion o f Id-Va,
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is used to find total source-to-drain resistance Rtotai, which is then plotted as a function of 

channel length. The extrapolated resistance corresponding to zero channel length gives 

parasitic contact resistance Rp. Then channel conductance R^, can be obtained by 

subtracting Rp from the Rtotai- The mobility threshold voltage can be derived from the 

linear fit o f sheet channel conductance as a function of gate voltage, with the slope and x- 

intercept o f fitted line giving the intrinsic mobility and threshold voltage, respectively.

2.2.4 Trapping Effects

As described earlier in section 2.1 in this chapter, for the amorphous 

semiconductors, especially polymeric semiconductors, the material system is featured 

with a disordered structure having a significant density o f defects that could trap carrier 

charges. The device behaviors o f the OFETs, like the amorphous silicon TFTs [48], have 

been successfully explained by the trapping effects [56] [57] [58]. Proposed by Horowitz 

et al., [57], the trapping effect on the OFETs is divided into three regions.

(1) Region 1 extends from V =0 to V =V i. V) corresponds to the surface potential 

where all traps are filled. The free and trapped carrier distribution can be 

approximated by the Boltzman distribution

n f = N v exp(- —  ^  — ) =  n fQ e x p |^  (2-18)

n t ~ N t exp( - E> E p  q V ) = nt0 e x p (2-19) 
k T  k T

where n ro and n to are the bulk free and trapped carrier density. Bulk free/trap

carrier-density ratio is introduced and expressed by

n f00O = ------- f- —  ( 2- 20)
n ,n + n M
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Taking into account the trapping effects, Equation 2-10 could be rewritten as

l d s a t = 0 »  M o - C ^ - V , ) 2  ( 2 - 2 1 )

where jUo could represent the intrinsic mobility o f organic semiconductor.

(2) Region 2 extends from V) to V2, where nt is equal to nf. This region 

corresponds to the so-called subthreshold regimes. The saturation current varies 

exponentially with the gate voltage.

(3) Region 3 extends beyond V2. The ffee-carrier concentration is higher than the 

trapped carrier density. Therefore the total carrier concentration can be taken as 

the free carrier concentration resulting in 6 0 approximating 1. Then the intrinsic 

field effect mobility is approximately equal to the experimentally determined 

mobility.

Besides the above mentioned bulk traps that are associated with the organic 

semiconductor itself, interface traps at the insulator-semiconductor interface due to the 

defects on the insulator should not be neglected. The interface trapping effect could be 

significant due to the fact that the most o f the charge transport occurs in one or two 

monolayers near the insulator-semiconductor interface. Recent reports [59] [60] 

suggested that the thermally grown S i02 surface carries SiOH silanol groups o f a 

concentration up to (3-7) *1013 cm'2, which greatly exceeds the typical carrier 

concentration o f 1013 cm'2. These SiOH groups could trap induced electrons creating 

immobile SiO" ions (SiOH + e'-> SiO' + 1/2H2), which compensate or enhance gate 

electric field depending on the polarity o f gate voltage, as illustrated in Figure 2-6, where 

© represents the immobile negative ions, Ei gate electric field, E2 the field due to the 

negative ions, E j’ the effective gate electric field. One can see that, for a negative gate
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voltage, the effective electric field is enhanced by the negative ions, and vice versa for 

positive gate voltage.

V„>0

(a) E1’ = E1+E2 (b) E1’ = E 1 -E 2
0 :  im m obile negative ions 
E.,: e lectric  field  due to  gate bias  
E2: electric  field  due to  ions 
E.,’ : effective e lectric  field

Figure 2-6 The effect o f immobile negative ions on the electric field at the SiC>2 surface,
(a) ions enhance the gate electric field and (b) ions compensate the gate electric field. The 
length of the arrows schematically represents the amplitude o f the electric field.

2.2.5 Gate Bias-Dependence Mobility

As mentioned above in the section 2.2.4, the gate voltage dependent mobility is 

associated with the trapping effect. The gate voltage dependence o f mobility simply 

comes from its dependence on mobile carrier density. Varying the gate voltage tunes the 

ratio between the densities o f free carriers and trapped charge carriers, resulting in 

changing effective mobility. The gate dependence of mobility can be described by an 

empirical equation [61]

f ,  =  a ( V e - V „ y (2-22)

where a  and /3 are fitting constants, Vg the gate voltage and Vo the fitting threshold 

voltage.
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CHAPTER THREE

FABRICATION AND CHARACTERIZATION 

METHODS

3.1 Introduction

In this work, several micro-fabrication processes and characterization techniques 

were used. They include metallization processes, such as thermal evaporation, sputtering, 

e-beam deposition, lithography, lift-off, etc.; polymer deposition processes, such as spin 

coating and inkjet printing; film characterization techniques such as atomic force 

microscope (AFM), scanning electron microscopy (SEM), Alpha step profilometer, 

Fourier transform infrared spectroscopy (FTIR), ellipsometer, roughness step tester 

(RST), etc.; device characterization system, such as Keithley probe station. Inkjet 

printing, spin coating, and device characterization techniques are most frequently used 

and thus are highlighted as follows.

3.2 Inkiet Printing

3.2.1 Introduction

Inkjet printers may operate in either continuous or drop-on-demand (DOD) mode. 

In continuous-mode inkjet printing, the ink is pumped through a nozzle to form a liquid 

jet. It is mostly used for high-speed graphical applications. In our work, drop-on-demand

27
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mode is used. In a DOD inkjet printer, an acoustic pulse ejects ink droplets from a 

reservoir through a nozzle. The pulse can be generated either thermally or 

piezoelectrically (Figure 3-1). In a thermal DOD inkjet printer, ink is heated locally to 

form a rapidly expanding vapor bubble that ejects an ink droplet. Thermal DOD usually 

uses water as a solvent and may therefore impose restriction on the type o f polymers that 

can be printed using this technique. Piezoelectric DOD inkjet printing, on the other hand, 

relies on the deformation o f some piezoelectric material to cause a sudden volume change 

and hence generate an acoustic pulse. Piezo-electric DOD is suitable to a variety of 

solvents [62].

Transducer 
(piezo or heater)

SubstrateOrifice

Substrate
Motion

Drive ju iiL n
D ata P u lse  Train

Fluid at
Ambient Pressure

C haracter D ata

Figure 3-1 Schematic representation o f a drop-on-demand ink-jet printing system [63]. 

3.2.2 Suitable Inks

The key part o f inkjet printing technology is the ink. It must have specific physical 

properties particularly for the viscosity and surface tension. The viscosity should be 

suitably low, typically less than 20mPas. The polymer solution should therefore be 

sufficiently dilute. The surface tension is responsible for the spheroidal shape o f the
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liquid drop from the nozzle. Finally, the wetting behavior of fluid and nozzle material is 

o f importance, as wetting of nozzle outlet face results in spray formation.

3.2.3 Coffee-Drop Effect

A serious problem with inkjet printing is the “ coffee-drop effect” : after 

evaporation o f a printed solution droplet, most of the solute is accumulated as a ring that 

marks the original contact line [64]. This effect was explained by the pinning of the 

contact line o f the droplet in combination with increased evaporation at the edges. 

However, to pin the contact line, liquid evaporated at the edges must be replenished by 

liquid from the interior. The resulting outward flow can carry virtually all the dispersed 

material to the edge [65] [66]. This “coffee-drop effect” could be overcome by the use o f 

solvent mixtures to make polymer solutions, in which one solvent has a high boiling 

point and a low solubility for the polymer, and the other solvent has a low boiling point 

and a high solubility for the polymer. The dissolving potential o f the solvent gradually 

decreases during evaporation and the polymer precipitates before a ring is formed. This 

method has been applied by Tekin et al., to avoid ring formation [67].

3.2.4 Microdrop Inkjet Printing 
System

All printing experiments are performed on a drop-on-demand (DOD) Microdrop 

Dispensing System (Microdrop GmbH, Germany, Figure 3-2). A printer head nozzle with 

an internal diameter o f 50 pm and a 4 ml ink reservoir is used for our work. The printer is 

capable o f simultaneously accommodating four printer head nozzles. The nozzle is driven 

by a voltage pulse signal, whose amplitude, pulse width, and frequency are determined by 

the printing program.
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An MD-P-705 positioning system controls the movements o f the nozzle in a XYZ 

station. The positioning accuracy is ±10 pm. The repetition accuracy is ±3 pm. The 

minimum step width o f movement is 1 pm in X, Y and Z directions.

The substrate holder is a hotplate which is controlled by a PID (Proportional, 

Integral, and Derivative) regulator. The substrate holder can be heated up to 150 °C. A 

microscope connected with a monitor is used to accurately position printer head in order 

for the ejected droplets falling at the desired locations on the substrate.

Figure 3-2 The Microdrop Dispensing System.

3.3 Spin Coating

Spin coating is a commonly used process in microfabrication to deliver solid films 

from solutions. Uniform film with desired thickness is achieved by controlling solution 

properties and spin coating parameters. A spin-coating process can be divided into three 

stages. Full knowledge o f each stage is helpful for the formation o f films with desired 

properties. The three stages are deposition and spin up, spin off, and film drying [68].
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The first stage is the deposition and spin up [68]. At this stage, a liquid solution is 

first applied over the substrate. Next, the substrate is accelerated to its final rotational 

speed. At this stage, the majority of the liquid is sloughed from the substrate due to the 

overwhelming force o f the centrifugal acceleration. Conversion to a thin, nearly uniform 

film takes place within the first second or two o f spinning.

The second stage is the spin off [68], During this stage the film is thinned due to a 

combination o f convection and solvent evaporation. The centrifugal forces act to drive 

the fluid radially off the edge o f the substrate impeded only by the viscous resistance. 

This radial flow quickly diminishes because the film has become exceedingly thin and 

evaporation o f solvent has increased the viscosity by several orders o f magnitude. During 

fluid flow, the film is also thinned by solvent evaporation. It is the trade-off between 

these two mechanisms that controls the film thickness, uniformity, and the success o f the 

spin-coating process.

The third stage is the drying o f the film [68]. In this final stage o f spin coating, 

fluid flow has basically stopped and further shrinkage o f the film arises from solvent loss 

alone. Concentration profiles depend on fluid convection flow through the cross terms in 

the solvent conservation equation [68]. However, as the velocity components drop to zero, 

this dependence becomes unimportant, and solvent conservation may be considered 

independently. It is at this point where the spin off stage ends and the film drying stage 

begins.

Figure 3-3 shows the dependence o f final film thickness on the solution properties, 

rotational speed, and spin time. It indicates that increasing solvent weight fraction results 

in linearly decreased film thickness. A power-law dependence (see Figure 3-3b) is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

predicted for the dependence o f the final film thickness on the rotational speed. In the 

case o f the dependence o f film thickness on spin time (Figure 3-3c), it is shown that the 

film thickness first rapidly decreases within a short period o f spin time, and then almost 

saturates with prolonged spinning time. These relationships will serve as an important 

guidance for spin coating work in our experiments.

7 -

6 - Power law fit: h - 1 4 0  (co)-050

i
5 -
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4 - 2JS E-

i
i
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3 -

2 - B<

1000too0.78 0.80 0.82 i
Initial Solvent Weight Fraction

0.74 0.76 0.84 0.86
Rotational Speed (radians/second)

o 10

I-----------r------• J I £ v i 9 I----------- F------i i i  M i l l
10 100 1000 

Spin Time (seconds)

Figure 3-3 Dependence o f final film thickness on the solvent fraction, rotational speed, 
and spin time (Du Pont PI2525 polyimide was used) [68].
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3.4 Device Characterization

3.4.1 Keithlev Probe Station

Device characterization is one o f the most important steps in our work. In general, 

devices are tested for their current-voltage (I-V) and capacitance-voltage (C-V) 

characteristics. All electrical measurements are carried out on Keithley Probe station as 

shown in Figure 3-4, which is controlled by a computer via the IEEE-488 bus. The probe 

station includes three source measurement units for I-V characterization. Two-, three- 

and four-terminal devices, such as resistor, diode, capacitor, JFET, BJT, and MOSFET, 

can all be measured on this system. The measurable current is in the range of 1 PA to 

100mA. The voltage could be applied to as high as 110V. Besides the I-V measurements, 

the probe station also allows to perform C-V measurements. It includes two additional 

source units for low frequency and high frequency capacitance measurements. The probe 

station is equipped with interactive characterization software (ICS) to remotely control 

the source units, allowing for fast and reliable measurements.

Figure 3-4 Photograph of Keithley probe station.
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3.4.2 Required Measurements

Characterization o f the organic transistor requires two primary sets of 

measurements. First, the transfer ( IDs vs. V gs)  curves that allow for determination o f 

field-effect mobility, and threshold voltage and on/off ratio. These data are typically 

necessary for characterization o f the semiconductor transport properties. 

Transconductance is also derived from this measurement. Second, the output 

characteristics ( I ds v s . V ds)  that provide channel conductance, current saturation and 

general electrical performance information. This curve is normally used to determine 

whether the device exhibits FET-like behavior [18].

3.4.3 Guidelines for OFET 
Characterization

Step size should be small enough to give a minimum of 10 data points per curve; 

25 or more points are recommended. Increased number o f data points results in more 

accurate curve fitting and greater noise/outlier tolerance, and therefore, more accurate 

parameter extraction [69].

Gate voltage values for V ds v s . I ds measurements are chosen to give a minimum 

o f three curves; five or more curves are recommended. Values for gate voltage are to 

reflect the full expected operating range and/or demonstrate full device operating range.

A sufficiently long dwell time is required allowing organic materials to 

effectively respond to the electric signals. Minimum dwell time is 10 ms, but 100 ms or 

more is strongly recommended for each data point. Required dwell time is dependent on 

factors, such as device and instrument impedance values, field effect mobility, etc., and is 

selected sufficiently long so that transient effects do not affect measurement significantly.
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Range o f chosen values accurately represents full device operating range. These 

values are chosen so that device behavior is shown for the full expected operating range. 

Too high biases should be avoided to prevent damaging the devices under test.
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CHAPTER FOUR

POLY (3 -HEXYLTHIOPHENE) FET

4.1 Introduction

One key feature that makes organic semiconductors attractive is the possibility for 

them to be deposited from solution thus offering great potential for low-cost 

manufacturing. Semiconducting polymers provide good solubility in organic solvents 

enabling the formation of uniform film over large areas. However, compared with the 

OFETs made o f the vacuum deposited small molecules, the polymer FETs normally have 

significantly lower field effect mobility thus reducing the possibility to put them into 

practical applications, such as drive circuits for organic displays. Semiconducting 

polymer poly(3-hexylthiophene) (P3HT) is an exception. It has good solubility in 

commonly used organic solvents, such as chloroform, chlorobenzene, p-xylene, and 

toluene, etc. Due to its high level o f intrachain order, P3HT cast from solution self- 

assembles into regions o f high-interchain order. Two-dimensional charge transport has 

been demonstrated in the film cast from regioregular P3HT solution. The 2-D nature of 

charge transport allows the charge carriers to spread over neighboring chains thus 

enhancing mobility. Field effect mobility as high as 0.2 cm2/V.s has been reported in 

OFETs with P3HT film cast on the hydroxyl free Si02 surface [10]. Remarkable 

properties o f P3HT make it a material o f choice to study OFET device physics and to
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develop strategies for improving OFETs performance. In this work, field effect 

transistors composed o f P3HT as the active layer are prepared and studied. 

Understanding o f OFET device physics is achieved by analyzing the electrical 

characteristics o f the device. This work serves as a base for further work that will be 

addressed in the next chapters.

Poly (3-hexylthiophene) (P3HT) thin film transistors were built on thermally

gate dielectric layer. The highly doped substrate serves as the gate electrode. A layer o f 

5 0 0 A  A u / 3 0 A Ti was deposited on the SiC>2 as the source/drain electrodes by sputtering 

and patterned by a lift-off process. Then a 20nm P3HT film, as the active semiconductor 

layer, was spin-coated on the SiCh surface, forming a bottom-contact structure as shown 

in Figure 4-1. The regioregular P3HT with head-to-tail linkages greater than 98.5% was 

obtained from Aldrich Chemical Company. The P3HT was used as received. The solution 

was made by mixing P3HT with p-xylene at a weight ratio of 0.5mg/ml.

Figure 4-1 Schematic cross section o f P3HT FET structure, above which molecular 
structure o f P3HT is shown.

4.2 Device Fabrication

oxidized heavily n-doped silicon wafers. The silicon oxide has a thickness o f 1000A for

( T V 1  (p3HT)

rrzzzzzzzzzzzn rzzzzzzzzzzzmr r  L  u p p i
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4.3 Results and Discussion

The fabricated devices were measured on a Keithley probe station in air at room 

temperature. The investigated devices have the channel length and channel width of 

10/un and 500/un, respectively.

4.3.1 Device Characteristics

Figure 4-2 shows the output and transfer characteristics o f the devices at room 

temperature.

Figure 4-2 Output (a) and transfer (b) characteristics o f poly(3-hexylthiophene) FETs.

These devices display the characteristics o f a typical p-type thin film transistor: a 

negative gate voltage enhances while a positive gate voltage reduces the channel 

conduction; at a given gate voltage, the drain current linearly grows with the low drain 

voltage, then gradually saturates at high drain voltage regime. A substantial current level 

can be seen at zero gate voltage, which could be due to the unintentional doping o f P3HT 

probably by oxygen [70]. As a result, a positive gate voltage has to be applied to turn off 

the device leading to a positive threshold voltage as determined afterwards. The residual 

doping level o f P3HT can be estimated as follows, which was described in R ef [10].

Gate voltage: 
— — 15V  
—  -10V 
- A - - 5 V  
- T -  0V

5V /

Drain voltage: 
— -  -30V

-20 -10 0 10 20 

Gate voltage (V)
0 -5 -10 -15 -20 -25 -30

Drain Voltage (V)

(a) (b)
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Given the gate capacitance o f 34.5nF/cm2, the injected charged density at Vg= -10V is

2.1 x io 12/cm2 according to Q = CjVg/q, where Q is the charge number per cm2, Q  is 

34.5nm/cm2 and q is the electron charge. Assuming the injected charges are confined to 

20A [10] , which is based on the fact that most o f the accumulated charges are located 

within about one to two monolayers near insulator-semiconductor interface, the hole 

charge density is estimated to be 1.1 x l0 19cm'3. Next, from the ratio o f the channel 

conduction in the linear region at Vg = -10V and Vg= 0V, the hole density at Vg= 0V, 

which approximately equals the residual doping concentration, is calculated to be 

approximately 2 x l0 17cm'3 throughout the 20nm P3HT layer.

As described in Chapter Two, the mobility values in the saturation regime and the 

linear regime are obtained from Equations 2-10 and 2-11, respectively. In the saturation 

regime, I ]J 2 is plotted against Vg in Figure 4-3a, giving rise to a threshold voltage and 

mobility o f 4V and 0.016 cm /Vs, respectively. In the linear regime, the threshold 

voltage is 2V and the mobility is 0.007 cm /Vs, which are extrapolated from the dla/dVd 

vs.Vg data as shown in Figure 4-3b. In the both curves shown in Figure 4-3, the slope 

determines the mobility, and the threshold voltage is read from the x-intercept.

The on/off current ratio and the subthreshold slope are the other two important 

device parameters, and can be determined from the device transfer characteristics. In the 

saturation region, the device has an on/off current ratio o f 6 x io 3 and a subthreshold 

slope o f 3.3V/dec.

One can see that a considerable difference exist between the threshold voltage V t 

and the tum-on voltage V t0, which is the gate voltage where the drain current starts to 

increase exponentially. In the saturation regime, V t is 4V  and V t0 10V, giving Vtt0=V t -Vto
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to be 6V. This difference was attributed to the trap states in the bandgap and therefore 

could serve to estimate the trap density Ntrap [71]. Using the equation N trap =  CoxVtto/q, 

where Cox is the oxide capacitance and q is the electron charge, one can obtain a trap 

density o f ~ 6 x l0 17cm'3.
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_  0.0025

Drain Voltage = -30V0.0020

3 0.0015

Q  0.0010

3 0.0005 ,V0=4V

0.0000
-20 -10

Gate voltage (V)

2.5x1 O'7

2.0x10'7

— 1.5x10'7

5.0x10'

0.0
10 20-20 -10 0

Gate voltage (V)

(a) (b)

Figure 4-3 (a) I XJ 2 vs. Vg in the saturation regime and (b) dId/dV«j vs.Vg in the linear 
regime.

As noted in Chapter Two, the dependence o f the field effect mobility on the gate 

voltage is quite typical in organic semiconductors due to the trapping effect, which has 

been studied in FETs with active layers o f sexithiopene [72] and pentacene [73]. From 

the super linear Id -  Vg characteristics in the linear region in our P3HT FETs, a gate- 

voltage dependence o f mobility is expected according to Equation 2-9. However, this 

could not been identified using the above extraction method that assumes a constant 

mobility. Using Equation 2-12, the gate-voltage dependent mobility can be observed, as 

illustrated in Figure 4-4. We notice that the mobility grows with the increasing negative 

voltage and then become almost constant at high gate voltages. However, a clear 

relationship between gate voltage and mobility still can not be drawn before we take into
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account o f the contact series resistance that has been found to significantly affect OFETs’ 

device characteristics.

0.008

0.007

0.006

>  0.005

§ 0.004

=  0.003

5  0.002

0.001

0.000
-10 -15 -20

Gate Voltage (V)

Figure 4-4 Mobility versus the gate voltage in P3HT FETs without considering the 
contact resistance.

Accounting for the contact series resistance, the field effect mobility can be 

corrected using Equation 2-16, which is rewritten as

S d  \— Y ± = f 7 i ( v  - V ) (4-1)

Then the corrected mobility is plotted as a function o f the gate voltage Vg in Figure 4-5. 

For comparison, the uncorrected mobility curve is also presented. It can bee seen that the 

corrected mobility is larger than the uncorrected value by as high as 4 times and it has 

almost a linear relationship with the gate voltage. This will be described later.
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Figure 4-5 Mobility versus gate voltage corrected for the contact series resistance.

Based on the corrected and uncorrected mobility, the contact series resistance can 

be estimated according to the following equation

R = —-------------    (4-2)
'  g ,  w/j.Ci (Vg - V 0)

which is recalled from Equation 2-17. Figure 4-6 shows the estimated contact series 

resistance as a function o f the gate voltage. It suggests that the contact series resistance 

can be tuned by the gate voltage. This should be related to the bottom-contact structure. 

The injection o f charge carriers occurs near the semiconductor-insulator interface, where 

the accumulated charges are located. A higher gate voltage induces a higher density of 

the accumulated charges, which in turn reduces the charge injection barrier at the S/D 

contact. Thus, we see the contact series resistance decreasing with the increasing gate 

voltage.

~i ■----1--- '--- 1--- » i--- ■--- 1--- ■--- 1--- ■--- r
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Figure 4-6 Contact series resistance as a function of the gate voltage.

4.3.2 Gate Voltage Dependent 
Mobility

As illustrated in Figure 4-5, the corrected mobility has almost a linear relationship 

with the gate voltage. It is consistent with the multiple traps and release (MTR) model, 

which splits the gate induced charges Qtot into the trapped charges Qf and the free charges 

Qf [61]. The free charge is the effective portion that generates the channel conductance. 

The field effect mobility is thus related to the ratio #=Qf/Qtot- Increasing the gate voltages 

makes more traps to be filled and higher density o f free charges. It leads to an increasing 

6 and thus an increasing mobility. When the gate voltage is so high that Q f » Q t ,  then 6 

approaches unity and the mobility saturates. This has not been seen under the currently 

investigated biasing conditions. As mentioned in the second chapter, the gate voltage 

dependence o f mobility could be expressed in a power law

f i  =  a ( V g - V 0) p (4-3)
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where a  is a constant, Vo is the fitting threshold voltage. From the excellent fit as shown 

in Figure 4-7, we obtained a =  1.6 x 10'4, Vo = 21V and /3 = 1.15.

!5
o

0 -5 -10 -15 -20 -25 -30
Gate Voltage (V)

Figure 4-7 Mobility versus gate voltage.

4.3.3 Temperature Dependence of 
Mobility

The mobility o f semiconductors is dependent on the operating temperature. As 

illustrated in Chapter Two, in a band-transport semiconductor such as silicon, the 

mobility is decreased by increasing temperature due to carrier scattering by thermal 

lattice vibrations. While in a polymeric semiconductor, the carrier transport is mainly 

through the hopping process assisted by thermal lattice vibrations, therefore the mobility 

normally increases with the increasing temperature. This temperature dependence of 

mobility has been investigated in organic semiconductor, such as, sexithiophene [8]. The 

mobility can vary up to three orders o f magnitude from low temperature (3 OK) to room 

temperature (300K) [61]. In this work, our devices are studied over the temperature range 

from 300 to 560K. As illustrated in Figure 4-8, the temperature dependence o f mobility
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experiences two stages. First the mobility increases with the increasing temperature up to 

380K, and then it decreases gradually with the further increasing temperature. Here, the 

mobility has been corrected for the contact series resistance. This temperature 

dependence o f mobility can be explained as follows. In an amorphous semiconductor 

system, the lattice vibrations assist the charge carriers to move. Increase in temperature 

results in the increase o f the mobility as illustrated by the first stage (T < 380K). In the 

meantime, we can imagine that when the lattice vibrations are so strong, due to a 

sufficiently high temperature, that carrier scattering could become important. Then we 

would see a decreasing mobility, for instance, when the temperature is higher than 380K 

in our study.
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Figure 4-8 Mobility versus the operation temperature.

The other two important parameters, such as, the threshold voltage and on/off 

ratio are also investigated. Figure 4-9 (a) shows that the threshold voltage gradually 

shifts to the negative direction with the increasing temperature up to 440K. Figure 4-9(b) 

exhibits the temperature dependence o f the on/off ratio, showing that a lower on/off ratio
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corresponds to a lower temperature. These phenomena could be explained by the stability 

o f the P3HT FETs in air, which has been extensively studied in terms o f the effects o f 

oxygen and the humidity. In the normal ambient (i.e. air), it is believed that oxygen reacts 

with P3HT increasing its doping level, and water molecules could form a dipole layer at 

the insulator-P3HT making the transistor harder to be turned off [16]. According to Ref 

[16], P3HT FETs are more sensitive to humidity than to oxygen. This could explain our 

results. When the temperature is increased, oxygen could more effectively react with the 

P3HT. On the other hand, the concentration o f water molecules reduces with the 

increasing temperature. The effect o f the later process is stronger, thus resulting in the 

negative shift o f the threshold voltage and increasing on/off ratio. But as the temperature 

increases, the concentration of water molecules is decreasing, leading to a reducing effect 

on the P3HT FETs. At the same time, the effect o f the oxygen becomes increasingly 

important with increasing temperature. This translates into the observation that when the 

temperature is higher than 440K, the threshold voltage shifts to positive direction and the 

on/off ratio decreases with the increasing temperature.
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Figure 4-9 (a) Threshold voltage and (b) on/off ratio versus temperature in the linear 
region (Vd = -3V).
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4.3.4 Hysteresis

The hysteresis is normally depicted by different threshold voltages for the sweep 

from positive to negative bias and in the reverse direction [74], Although they have been 

ignored in most cases, the hysteresis effects occur usually in organic devices. The exact 

mechanism for the hysteresis effect is not certain yet. The hysteresis effect observed in 

MIS capacitors based on P3HT was attributed to carrier trapping and/or migration o f 

dopants [8]. Scheinert et al. attributed the hysteresis effect to the interface charges arising 

from the possible oxidation o f the active polymer [74], All P3HT FETs under 

investigation demonstrated hysteresis effects in our experiments. By fixing drain voltage 

at -40V, the transfer characteristics o f a P3HT FET with the gate voltage swept from -30 

to 20V and from 20 to -30V are shown in Figure 4-10. A clear hysteresis window arising 

from a significant threshold voltage shift is observed.

Gate Voltage (V)

Figure 4-10 Hysteresis behavior in a P3HT FET. Arrows represent the gate voltage scan 
directions.

-30 -20 -10 0 10 20
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As depicted in Chapter Two, the hydroxyl groups (SiOH) present on the SiCh 

surface were suggested to be mainly responsible for this hysteresis effect. The SiOH 

groups could trap the electrons that are induced by positive gate biases, generating 

immobile SiO" ions, equivalent to applying a negative gate voltage [32]. It results in a 

positive shift o f the threshold voltage when the gate bias is swept from positive to 

negative as compared to the reverse sweep direction.

The above argument could be verified by the following experiments, where the 

starting gate voltages are varied when sweeping the transfer characteristics. For example, 

with the drain voltage fixed at -40V, we chose the starting gate voltages to be -10, 0, 5, 

10 and 20V, respectively, and all sweeps ended at -30V. As illustrated in Figure 4-11, the 

first two curves almost overlap, but as the starting gate voltage increases to positive, the 

corresponding curves progressively shift to the positive direction.

-30 -20 -10 0 10 20 30
Gate Voltage (V)

Figure 4-11 Transfer characteristics o f a P3HT FET starting with various gate voltages.

Vg scan range:

—  -10V to -30V 
—o— 0V to -30V 
- a -  5V to -30V 
—▼ 10V to -30V  

20V to -30V
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By manipulating the data in Figure 4-11, the threshold voltages can be determined 

as illustrated in Figure 4-12. In the inset o f Figure 4-12a, the sweeps that start from -10 

and 0V have the same threshold voltage. However, when the starting gate biases are 

positive, the threshold voltage has a linear relationship with the amplitude o f the starting 

gate biases. Therefore it could be assumed that hysteresis effect arises not from the 

negative but from the positive gate stress. The linear relationship demonstrated in Figure 

4-12b is consistent with the above “electron-trapping” argument. When a sweep starts 

from a more positive gate bias, a higher density o f electrons is induced near the P3HT- 

SiC>2 interface and trapped by silanol groups. Correspondingly, more immobile SiO' ions 

are generated, moving the threshold voltage to more positive value. A slope o f close to 1 

in Figure 4 -12b implies that the main part o f the gate-induced electrons is trapped by the 

silanol groups. This is consistent with the phenomenon that P3HT FETs shows no n- 

channel activity, if  no pretreatment is made on Si0 2  surface.

Gate Voltage (V) Starting gate voltage (V)

(a) (b)

Figure 4-12 (a) Square root o f drain current versus gate voltage o f the P3HT FET under 
various gate sweep conditions and (b) threshold voltage versus the starting gate bias.
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4.4 Summary

P3HT deposited from solution offers great potential for low-cost manufacturing of 

organic electronics. The performance of the P3HT FETs not only depends on P3HT itself, 

but also significantly on other issues such as S/D contact, and P3HT-insulator interface, 

and optimizing them may lead to higher performance of the P3HT FETs. The temperature 

dependence o f mobility implies that the charge transport in P3HT could be depicted by 

the hopping process. The mobility that has been corrected for contact resistance shows an 

approximately linear relationship with the amplitude o f negative gate bias. It is the result 

o f trapping effect, which could be explained by the MTR models. The hysteresis effect 

observed in the investigated devices can be attributed to the silanol (SiOH) groups that 

trap gate-induced electrons and form immobile negative ions at the P3HT-Si02 interface, 

leading to the positive shifts o f the threshold voltages.
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CHAPTER FIVE

MODELING AND SIMULATION OF P3HT FET

5.1 Introduction

As discussed earlier in Chapter One, OFETs technology has progressed very fast in 

recent years. Understanding o f the device operation and the fundamental issues was 

important for the progress. An adequate understanding o f the device operation normally 

relies on numerical simulation and modeling, by which the measured data were analyzed. 

Recently, numerical simulations using technology computer aided design (TCAD) 

simulator have been seriously carried out to describe the behaviors o f OFETs with 

various emphasis such as, bulk traps effect [57] [75] [76] [77], field dependent mobility 

[78] [79], device structures (i.e. bottom contact or top contact) [80], S/D contact [81] [82] 

and channel length dependence [83], etc. Comprehensive study was conducted 

considering various effects simultaneously [84], These numerical simulations were 

typically based on the drift-diffusion (DD) model, which does not depend on the type of 

the transport mechanism, and thus is also valid in the case o f hopping transport in organic 

material system [85].

The P3E1T thin films utilized in our work were deposited by the spin coating 

process. Despite the relatively well-ordered structure as a result o f self-organization in 

P3HT, the polymeric thin film is basically o f an amorphous or polycrystalline nature. A

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

great number o f defects in this material could give rise to a large density o f traps within 

the bandgap. These trap states exert strong effects on the OFETs’ device characteristics 

by trapping mobile carriers located within the channel, which is evidenced by a 

significant difference between the turn-on voltage and threshold voltage as described in 

Chapter Four. Meanwhile, interfacial charges may also be introduced during the 

formation of P3HT thin film. They could have a similar role as the gate voltage to induce 

additional carriers in the channel, along with the unintentional doping o f P3HT, 

generating a significant level o f drain current even at zero gate voltage. The contact 

resistance was also found to be important as described in Chapter Six. In order to gain a 

comprehensive understanding of the P3HT OFETs made in our experiment, numerical 

simulation is carried out in the following section considering these effects. Taurus-device 

(Synopsys®) simulator is employed to simulate the device characteristics, and obtain 

results to compare with the experimental data.

5.2 Description o f the Models 

Our simulation of P3HT FET is based on the DD model. The Taurus-Device 

simulator self-consistently solves the two-dimensional Poisson’s equation, together with 

hole and electron current continuity equations. The Poisson’s equation is solved for the 

electrical potential

e re < F 2<P =  - q ( p - n  +  N l - N - A) - p s (5-1)

where and eT are the relative and vacuum permittivity, respectively, <f> is the intrinsic 

potential, q the elementary charge, p and n are hole and electron density, respectively, 

Nd+ and Na’ are ionized donor and acceptor concentrations, respectively, and p s is the 

surface charge density. The electron and hole continuity equations are
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^  = (5-2)
ot  q

d t  q
V - J p - U p (5-3)

where Un and Up are net electron and hole recombination, respectively. Both electron and 

hole current density, respectively, Jn and Jp, involve drift and diffusion current and are

related to the quasi-Fermi potential <j>Fn and <()fp

J„  = - q n j u y c p p n  + q D . V n  =  q n p nE„ +  q D nV n  (5-4)

J p  =  -<1PMpV<Pfp -  <lD pV p  =  q n p „ E p  +  q D pV p  (5-5)

where p  is the mobility and D the diffusivity, the electron and hole concentration n and p 

are given by

n =  n j e x  p—— (5-6) 
<j)T

<Pfp -<P
P  =  n, exp— —----- (5-7)

Y T

with

- E „
n, =  *JNCN V exP ^ r  (5-8)

where m is the intrinsic carrier concentration, is the thermal voltage, Nc and Ny are the 

effective density o f states for the conduction band and valence band, respectively, and Eg 

is the energy band gap o f the material. The mobility p  correlates with the diffusivity D 

by the Einstein relationship based on Boltzmann statistics

JrT
D n = — P n (5-9)

q
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where footnotes n and p indicate electron and hole, respectively. Since the investigated 

P3HT FETs are not characterized for the n-type conductance, the observed drain currents 

are from mobile holes. Thus the electron current continuity equation could be ignored. As 

addressed afterwards in our investigations, trapping effect is first modeled and it is then 

coupled with contact resistance effect.

5.3 Device Structure

The investigated two-dimensional device structure is schematically shown in 

Figure 5-1. The dimensions o f the device were chosen to approximate those o f the real 

devices.

J ,20nm 20nm

Source Drain
' )20nm P3HT

■(■IB
10pm “ 1

lQQnm ■ - ^ =. I
.  1 ': ; .

Gate: n+-Si

Figure 5-1 Schematic representation o f the P3HT OFET structure.

The material parameters are shown in Table 5-1. Dielectric constant e and 

effective density o f states Ny and Nc o f P3HT are from Ref [81], and the electron affinity 

(equivalent to LUMO level) and the energy bandgap are from R ef [86]. Mobility and 

doping concentration are obtained from the experimental results in Chapter Four. The 

S/D contacts are gold with work function o f 5.1eV. The gate contact is n+-Si with work
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function o f 4.2eV. For the mobility, the experimentally determined value is used, which 

is /X p=0.016cm /Vs at Vd=-30V. The simulation input commands can be found in 

Appendix A.

Table 5-1 Basic material parameters used in simulation

P3HT S i02

£ 3.0 3.9

X(eV) 3.0

Eg (eV) 2.1

Nc, Nv (cnr3) 2 xlO21

Na" (cm 3) 2 x 1017

pp (cm2/V s) 0.016

5.4 Results and Discussion 

In this study, all equations are solved based on the classical model (without 

considering quantum confinement effects).

The energy level diagram o f the MIS structure under thermal equilibrium is 

shown in Figure 5-2, by solving the Poisson’s equation. Here, Ec and Ey in P3HT are 

equivalent to the LUMO level and the HOMO level, respectively. Ef stands for the Fermi 

level. Being highly doped, n+-Si as the gate electrode has a Fermi level close to Ec. Its 

electric property is thus similar to a metal. Due to the difference o f the work function 

between n+-Si {(j>m ) and P3HT ), the Fermi levels align under thermal

equilibrium, leading to a slight depletion (band bending down) o f the P3HT channel near 

the P3HT-Si02 interface.
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Distance(nm)

Figure 5-2 Energy level diagram of the MIS (n+-Si-Si02-P3HT) structure under thermal 
equilibrium. The cut line is chosen at the center o f the device.

5.4.1 Channel Formation

Figure 5-3 shows the calculated hole concentration profiles in the P3HT layer, 

which is obtained from a cut-line at the middle o f the channel starting from the P3HT 

surface. The gate voltage is -10V and both the source and drain voltages are 0V. The 

background doping profile is also shown. The right y-axis in Figure 5-3 shows a linear 

scale o f the hole concentration. One can see that the charge carriers are predominately 

located within 2nm from the P3HT-Si02 interface where the carrier concentration reaches 

its maximum. This reveals the importance o f the interface. Therefore, it is practically 

significant to improve the interface in order to enhance the electrical characteristics o f the 

resulting devices.
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2x1019

1x1019

0
0.000 0.005 0.010 0.015 0.020

y distance (|im)

Figure 5-3 Hole concentration profile in the channel along the direction normal to P3HT- 
S i02 interface. The inset shows the cut line at the center o f the channel. P3HT surface is 
the starting point.

The profiles o f electric field and potential are shown in Figure 5-4. The cut line is 

also selected at the center o f the device and the bias conditions are same as those in 

Figure 5-3. We can see that the electric potential curve is continuous when extended 

from S i0 2 to P3HT, while the electric field curve is discontinuous at the interface. This is 

due to the different dielectric constants o f S i02 and P3HT. The distribution o f electric 

field in P3HT channel is similar to that o f holes, rapidly decreasing from the P3HT-Si02 

interface into the bulk P3HT. This is consistent with Equation 5-1.
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1  3x105-
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1x10s-

SiO.

- 0.02 0.00 0.02 0.04
y distance (jim)

Figure 5-4 Electric field and potential profile in P3HT channel and part o f SiC>2 , the cut 
line is chosen at the center o f the device. P3HT surface is the starting point.

5.4.2 Simulation with Trapping Effect

A model with a constant mobility coupled with traps is assumed. This model 

could be equivalent to the gate-voltage dependent mobility model, since the trapping 

effect, as described in Chapter Two, is responsible for the gate voltage dependent 

mobility. Trapping is modeled using Shockley-Read-Hall (SRH) model [43]. The trap

17 ^density o f 6><10 cm' was estimated in Chapter Four. The knowledge o f the trap 

distribution is not sufficient in the investigated P3HT. For simplicity, the trap level Et 

(the distance from intrinsic Fermi level) was fixed at 0.5eV, approximately the half way 

between the valence band edge and the intrinsic Fermi level. This method was expected 

to give a reasonable accuracy. The detailed information and the input commands can be 

found in Appendix A. Figure 5-5 shows the simulation results, providing a comparison 

with the experimental data. A noticeable discrepancy between the simulation and 

experimental results is observed. We can see that all calculated values are higher than the
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experimental ones. This may not mean invalid assumption of the trapping effect. It, 

however, led us to consider another important factor, the contact resistance, which has 

been identified in Chapter Four. The importance o f contact resistance has also been 

numerically addressed for inorganic devices [87].

Solid line: simulation with traps 
' Dots: experimental ^ —’-4.0x10

-3.0x10
<
c
£ V=-10V—-2.0x10
3O

q  -1.0x10 V =-5V —

0.0
V =ov

0 -10 -15 -20 -25 -30■5

Drain voltage (V)

Figure 5-5 Output characteristics o f OFETs including bulk traps o f 6><1017cm'3 
(Et=0.5eV).

5.4.3 Simulation with Traps Coupled 
with Contact Resistance

Continuing with the above simulation, we additionally included the contact

resistance in the model. The values o f contact resistance are obtained from the results in

Chapter Four (Figure 4-6). Figure 5-6 shows that a considerable voltage drop could be

consumed due to the contact resistance, resulting in the effective channel voltage

significantly lower than the total drain voltage. As shown in the inset in Figure 5-6, the

percentage o f the effective channel voltage as part o f the drain voltage could be as low as

57% at Vg=-15V. Therefore, the inclusion o f the contact resistance in device modeling is
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important especially for devices with relatively short channel, which has resulted in a 

good match between the simulation and the experiment as shown in Figure 5-7.

-30

-25

-20

>  -15X 
> °

-10 
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0
0 -5 -10 -15 -20 -25 -30

Vs

Figure 5-6 Effective channel voltage as a function o f the applied S-D voltage with the 
effect o f the contact resistance. The inset shows the percentage o f channel voltage as a 
part o f the total source-drain voltage at Vg=-15V.
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Figure 5-7 Output characteristics o f OFETs including bulk traps and contact resistance.
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5.4.4 Simulations on Devices with Low 
Contact Resistance Effect

The importance o f the contact resistance effect could be verified from an opposite 

perspective, where a device is made with a lower contact resistance effect. The 

experimental work o f the devices will be addressed in the next chapter [88]. Here, a brief 

description o f this device is given. This device is made from improved S/D contact using 

modified PEDOT-PSS as the S/D contact material. The channel length is 20/xm, which is 

almost two times longer than the previously simulated devices. Longer channel length, 

coupled with lower contact resistance results in a reduced contact resistance effect. In 

this simulation, trap model is included and the contact resistance is intentionally ignored. 

It is found that a good match has been reached between the simulation and experimental 

data as shown in Figure 5-8.

-6.0x10

Solid line: simulation with traps 
Dots: experimental-5.0x10

V = -40 V

-4.0x10
<
C
£
3
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.E -2.0x10

-30V
2Q

-1.0x10

0.0
0V

-10 -15 -300 ■5 -20 -25
Drain Voltage (V)

Figure 5-8 Simulation results o f OFETs with low contact resistance effect including only 
traps model
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5.5 Summary

Modeling and simulation is important for adequate understanding o f the device 

operation. In this work, numerical simulation is carried out considering the effects of 

traps and contact resistance on the device characteristics. It is found that trapping effect 

coupled with the contact resistance could well describe the behavior o f the P3HT FETs. 

The effect o f contact resistance has been verified again from an opposite perspective, 

where simulation was carried out on a device with improved S/D contact and long 

channel length.
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CHAPTER SIX

P3HT FET WITH ENHANCED PERFORMANCE

6.1 Introduction

As described in Chapter One, the improvement o f OFET’s performance is 

normally achieved through three approaches. First, create the organic semiconductor 

films with appropriate structures that can promote the charge transport. This can be done 

either by developing highly-ordered material or by optimizing deposition conditions for 

the organic semiconductors. For example, in the growth o f pentacene fillms, the substrate 

temperature and deposition rate could significantly influence the grain size and 

crystallinity which tend to affect the carrier mobility [89], For the solution-based P3HT, 

choice o f solvents plays a significant role. A solvent with higher boiling point has a 

slower evaporation rate thus allowing the formation of P3HT films with increased 

crystallinity and mobility [11]. Second, optimize the electrode-semiconductor interface to 

increase the injection rate o f the charge carriers. For instance, a metal with a high work 

function, such as Au, is typically used for p-channel FETs for ohmic source/drain 

contacts. Third, improve the characteristics o f gate dielectric so that higher output 

currents are generated. For example, employment o f high-k material is able to induce a 

higher density o f accumulated charges in the semiconductor, and increase the output 

current. Treatments o f gate dielectric surface could also improve the performance o f the
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resulting OFETs [90] [91]. In this chapter, we demonstrate simple methods for improving 

S/D contacts and the gate dielectric surface. As a result, the P3HT FETs’ device 

performance is improved.

6.2 Improving S/D Contact 

Since inkjet printing technique emerged as an attractive method to deposit solution 

based materials, solution based conducting polymers have become very promising 

electrode materials for high-performance OFETs. Poly(3,4-ethylenedioxythiophene) 

doped with polystyrene sulfonate (PEDOT-PSS) is an outstanding example [38] [92] [93]. 

Different from metals, which rarely form ohmic contact with the organic semiconductors 

[94], conducting polymer PEDOT-PSS was found to form ohmic contact with p-type 

organic semiconductor such as P3HT [28]. However, the performance of P3HT FETs is 

still limited by the relatively low conductivity o f the commercial PEDOT-PSS. Therefore 

commercial PEDOT-PSS is modified in this work to increase its conductivity. Enhanced 

performance o f P3HT FETs was achieved by using the modified PEDOT-PSS.

6.2.1 Experiments

The conducting polymer PEDOT-PSS (Baytron P) water solution obtained from

H.C. Stack Company was mixed with polar solvent dimethyl sulfoxide (DMSO). The 

mixed solution was stirred continuously for 3 days at room temperature. The solution 

was spin coated on a glass substrate to form the film, which was then cured on a hot plate 

at 100°C for 60 minutes in air. The film conductivity was measured on Lakeshore Hall 

Effect measurement system. Controlled experiments were done on the original PEDOT- 

PSS.
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The modified PEDOT-PSS solution was filtered through a 1/xm membrane syringe 

filter. The original PEDOT-PSS was diluted with deionized (DI) water by a volume ratio 

o f 1:1 to be suitable for inkjet printing. Both PEDOT-PSS materials were then patterned 

as S/D electrodes using inkjet printing technique. Gold (Au, lOOnm thickness) in addition 

to titanium (Ti, 5nm thickness) was also used as S/D electrode material for comparison. 

All devices were made on a bottom contact structure as shown in Figure 6-1. The 

starting substrates are heavily n-doped silicon, which act as the gate electrodes. The gate 

insulator is 1000A oxide thermally grown on silicon. The regioregular poly(3- 

hexylthiophene) with head-to-tail linkages greater than 98.5% (from Aldrich Chemical 

Company) was used as the semiconductor material. The P3HT film was deposited by spin 

coating technique from chloroform solution with a concentration o f lmg/ml. Film 

thickness was measured to be around 50nm by a Alpha-step profilometer. The FETs 

were completed after the P3HT films were deposited.

C6h13

PEDOT-PSS P3HT PEDOT-PSS
(or Au) ^°r

S i02
n+-Si

Figure 6-1 Schematic diagram of P3HT field effect transistor with inkjet printed PEDOT- 
PSS or gold as S/D electrodes. The chemical structure o f P3HT is also shown.
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Ink-jet printing work was carried out using a drop-on-demand Microdrop printer 

described in Chapter Three. The substrates were heated at 80°C during inkjet printing in 

order to enhance the evaporation rate o f solvent and improve the S/D electrode patterns. 

Devices were characterized at room temperature in air using Keithley probe station.

6.2.2 Results and Discussion

The conductivity and stability o f the electrode materials are investigated. The 

variations o f conductivities o f modified and original PEDOT-PSS as a function o f time 

are shown in Figure 6-2. The conductivity o f spin coated film from the original PEDOT- 

PSS solution was measured to be 0.072 S/cm. It decreased significantly within a day to 

0.038 S/cm and saturated at 0.034 S/cm in a few days. The conductivity o f modified 

PEDOT-PSS was 30 S/cm, which reduced slightly to 29.6 S/cm within a day. It further 

decreased at a slow rate, and almost saturated at 20.8 S/cm after 60 days.

30 *  
25 -

— ▼ ------------

Modified PEDOT-PSS

E 10 o
<2, 5 
£  : 
-  0.07 
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0.02 
0.01 
0.00

o3
T3
Coo

Unmodified PEDOT-PSS
------------------- A --------- A —A —A,

0 10 20 30 40 50 60 70 80 90 100

Time (day)

Figure 6-2 The variations o f conductivities o f the modified and unmodified PEDOT-PSS 
as a function o f time in air at room temperature.
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Inkjet printing o f PEDOT-PSS solution requires the substrate to be heated at a 

temperature ranging from 80 to 100°C. Therefore, the aging o f the conductivity o f the 

modified PEDOT-PSS was investigated under thermal stress. It was monitored from a 

resistor made o f the modified PEDOT-PSS film. Figure 6-3 illustrates that the resistance 

increases slowly with the time. The conductivity decreased 10% after heating at 

100°C for 200 minutes in air.

5

4

E
j=O*

3

a>o
cm4->

H eated  a t 100°C
2

1

0
40 80 120 160 2000

Tim e (min)

Figure 6-3 The variation o f resistance o f a modified PEDOT-PSS resistor as a function o f 
time. The resistor was heated at 100°C in air.

To summarize, the enhanced conductivity o f modified PEDOT-PSS exhibits long 

term stability at room temperature and short term stability at high temperature (100°C) in 

air. Both o f these properties enable the modified PEDOT-PSS to be the material o f choice 

for the S/D electrode contacts.

Figure 6-4 shows the output characteristics o f P3HT TFTs with modified 

PEDOT-PSS S/D electrodes. The devices with gold electrodes show similar characteristic, 

while the curves from the devices with unmodified PEDOT-PSS are less smooth.
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Figure 6-4 Output characteristic o f P3HT TFT with modified PEDOT-PSS S/D 
electrodes.

Figure 6-5 shows the transfer characteristics o f these devices in the saturation 

regime. Normalized drain currents are provided for comparison. They are obtained by 

dividing the actual device drain currents by the ratio o f channel width to channel length 

(W/L). The ratios are 20, 24, and 18 for the devices with modified PEDOT-PSS, gold, 

and unmodified PEDOT-PSS electrodes, respectively. The on/off current ratios are found 

to be 46, 2.87><103 and 4.26x103 for the devices with unmodified PEDOT-PSS, modified 

PEDOT-PSS and gold, respectively, revealing the importance o f improving PEDOT-PSS 

conductivity. The low on/off current ratio for the devices with unmodified PEDOT-PSS 

is related to the high electrode resistance as explained afterwards.
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Figure 6-5 Normalized output characteristics o f P3HT TFTs in the saturation regimes. 
Arrows represent the sweep direction o f gate voltages.

The field effect mobility is first extracted using Equations 2-9 and 2-10, 

corresponding to the linear and the saturation regimes, respectively. As mentioned earlier 

in Chapter Two, the calculated mobility does not represent the intrinsic properties of 

materials. But it could serve for evaluating overall device performance. The threshold 

voltage is extracted from the (dIDs/dVDs) vs.Vqs data in the linear regime, and from the 

(lDsat1/2 vs. Vgs) data in the saturation region as shown in Figure 6 -6 . Then the mobility 

can be determined by plugging the threshold voltage into both equations. This method is 

applied for all devices giving results summarized in Table 6-1. One can observe that the 

devices with modified PEDOT-PSS have the field effect mobility slightly higher than 

those with gold electrodes, and significantly higher than the devices with unmodified 

PEDOT-PSS.
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Figure 6 - 6  Plot o f dlos/dVos as a function o f gate voltage in the linear regime. The inset 
shows the square root o f saturation current as a function o f gate voltage.

Table 6-1 Extracted parameters using conventional MOSFET equations with and without 
considering the parasitic series resistance (‘corrected’ represents extraction taking into 
account parasitic series resistance)

Device with Device with Device with
modified gold unmodified PEDOT-

PEDOT-PSS PSS
Vxiin (V) -15 - 2 0 3
/tiin(cm2/Vs) lx lO '2 9 x l0 '3 1.5xl0 ’3

V Tsat (V) - 6 - 1 0 8

Jttsat(cm2/Vs) 1.2x1 O’2 lxlO '2 1.7x10'3

Vxiin, (V) (corrected) -16 - 2 2 -18
jUiin (cm2/Vs) (corrected) 1.6x1 O'2 1.7x1 O'2 1.5xl0 '2

On/off ratio 2.9x103 4.3xlOJ 46

As described in Chapters Two and Four, parasitic contact resistance has a 

significant effect on the OFET’s behavior. Since all the investigated devices were made 

using the same device structures and fabrication conditions expect for the S/D electrodes. 

The difference in the examined device characteristics should mainly arise from the S/D
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contacts. Here we use channel length series method [53] [54] [55] to extract the parasitic 

series resistance to verify its effect. Experiments included three groups o f devices. All 

devices were prepared with channel width o f 1 0 0 0 /mi, while the channel lengths were 

varied. Figure 6-7 shows the relation between the overall resistance and channel length in 

the linear regime, for the devices with modified PEDOT-PSS. Y-intercepts o f the fitted 

lines (solid lines) give the parasitic series resistance at various gate voltages. Same 

method is applied for the devices with gold and unmodified PEDOT-PSS. The parasitic 

series resistances at various gate voltages for all devices are summarized in Figure 6 -8 . 

We can see that although gold has much higher conductivity than modified PEDOT-PSS, 

the devices with modified PEDOT-PSS have slightly lower parasitic series resistance 

than the devices with gold. Parasitic series resistance difference between them changes 

with the gate bias. A lower difference is accompanied with a higher gate bias. This is 

attributed to the effect o f the gate-dependent contact resistance. Lower parasitic series 

resistance could suggest a reduced contact barrier between modified PEDOT-PSS and 

P3HT. Alternatively, it might be because the contact-semiconductor transition region is 

probably o f higher quality when using PEDOT-PSS contact. On the other hand, the 

parasitic series resistance in the devices with unmodified PEDOT-PSS is significantly 

higher than the devices with modified PEDOT-PSS. But the parasitic series resistance 

difference between them stays almost constant at different gate voltages. It might be due 

to the gate-independent electrode series resistance, which is originated from the 

unmodified PEDOT-PSS film with low conductivity (~0.07S/cm).
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Figure 6-7 Overall device resistance as a function o f channel length at gate voltages from 
0 to -40V for the devices with modified PEDOT-PSS.
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Figure 6 - 8  Parasitic series resistance as a function o f gate voltage for the devices with 
modified PEDOT-PSS, gold, and unmodified PEDOT-PSS.

Taking into account the parasitic series resistance, in the linear regime, we use the 

following equation [54]

d V n
= DS

81DS
■ + R .

WM,ct ( y 0 - v TJ) p
(6-1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

where Ron is the overall device resistance, Rch is channel resistance, and Rp is parasitic 

series resistance. The intrinsic mobility /q and threshold voltage V T,i can be derived from 

the linear fit o f sheet conductance as a function o f gate voltage V q. The slope and x- 

intercept o f fitted line give the intrinsic mobility and threshold voltage, as shown in 

Figure 6-9, for the devices with modified PEDOT-PSS. The same method is also applied 

for the devices with unmodified PEDOT-PSS and gold. The results are presented in Table 

6-1. We can see that the intrinsic mobility is quite similar for all three devices. Once 

parasitic contact resistances are taken into account, the corrected intrinsic mobility is 

increased by about 2 times in the devices with modified PEDOT-PSS and gold. While for 

devices with unmodified PEDOT-PSS the intrinsic mobility is nearly an order of 

magnitude higher than the uncorrected mobility, again indicating the significant effect o f 

the electrode resistance.

14

12

x 10

8

6

4

2

0
-40 -30 -20 -10 0

Gate voltage (V)

Figure 6-9 Sheet conductance o f the active channel region as a function o f gate voltage 
using Equation 6-1 for the devices with modified PEDOT-PSS.
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The effect o f the electrode resistance could be clearly illustrated by plotting the 

transfer characteristics in a linear scale as shown in Figure 6-10 for the devices with 

unmodified PEDOT-PSS. Sweeping the gate voltage, one can observe that the growth of 

the drain current is restricted at high gate voltages. This drain current restriction 

phenomenon could be understood when we consider overall source-to-channel resistance 

(R o n )  as a function o f the gate voltage. R o n  includes three parts: electrode series resistance 

( R s /d ) ,  contact resistance (Rc) and channel resistance ( R c h )- R c h  and Rc are both gate- 

dependent and decrease with increasing negative voltage [53]. R s/d  is gate-independent. 

In the devices with gold (a  ~ 4.46x105 S/cm) and modified PEDOT-PSS (-30  S/cm), Rs/d 

is negligible. Ron is strongly gate modulated at all gate voltages. Therefore no saturation 

phenomenon is observed. While for the devices with unmodified PEDOT-PSS 

(~0.07S/cm), R s /d  is significant. At high gate voltage, R c h  and Rc are reduced to a 

relatively low level. R s /d  becomes increasingly dominant, which results in the overall 

resistance decreasingly modulated by the gate voltage. Drain current grows at a 

decreasing rate as the gate voltage increases. Finally, it appears to saturate. This drain 

current restriction effect has resulted in the reduced on/off current ratio.
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Figure 6-10 Transfer characteristics (in lin-lin scale) of P3HT TFT with the unmodified 
PEDOT-PSS source/drain electrodes at V ds= -3 0 V . The drain current appears to saturate 
at high negative gate voltage.

6.3 Improving the P3HT-SiO? Interface 

The performance o f OFETs depends largely on the gate dielectric-semiconductor 

interface. Treatment o f Si0 2  gate dielectric prior to organic semiconductor deposition has 

been found to be an effective way o f improving performance o f OFETs [10] [95]. Most 

studies have focused on the growth o f a self-assembly monolayer on the Si0 2  surface to 

passivate the SiOH groups, which were believed to be a key root cause limiting the 

OFET’s characteristics [32]. The following work presents that significantly improved 

P3HT FETs can be obtained by simply annealing the gate dielectric Si0 2  before the 

P3HT film is deposited.

6.3.1 Experiments

The devices were made following a procedure similar to that described in 

Chapter Four. Flighly n-doped silicon wafers having thermally grown 1000A thick oxide
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were used as the starting substrates. A layer o f 500A Au/30A Ti was deposited by 

sputtering and then patterned by a lift-off process for S/D electrodes. The highly n-doped 

silicon acts as the gate electrode and SiC>2 as the gate dielectric. The prepared samples 

were then annealed at 300°C in vacuum for 4 hours, followed by the deposition o f the 

P3HT films on SiC>2 . The P3HT films having thickness o f about 20nm were cast from a 

p-xylene solution (0.5mg/ml) using spin coating technique. A set o f P3HT FETs were 

then finished. Without annealing the SiC>2 substrates, the other set o f P3HT FETs were 

also prepared. All devices were measured on a Keithley probe station in air at the room 

temperature. These devices have a channel width o f 500 jam and channel length of 50 /am.

6.3.2 Results and Discussion

Figure 6-11 shows the transfer characteristics o f both devices. With the drain 

voltage fixed at -30V, where the devices operate in the saturation region, the gate 

voltages were swept from -20 to 20V, then swept back. Both devices show hysteresis 

effect. But an apparently wider hysteresis window is observed in the devices with the 

non-annealed SiC>2 . Device parameters such as threshold voltage, field effect mobility, 

subthreshold slope, and the on/off ratio were extrapolated from the data in the reverse 

scan (20V to -20V). The results were summarized in Table 6-2. Annealing the SiC>2 was 

found to improve the device performance. The saturation mobility increases from 0.01 to 

0.026 cm2/Vs, the threshold voltage shifts closer to zero, subthreshold slope decreases 

from 3.7 to 1.9 V/dec and the on/off ratio increases by 4 times. The difference in the 

characteristics between the two investigated devices is related to the properties o f SiC>2 

surface. According to Sneh et al, the dehydroxylation (2SiOH ->  Si-O-Si + H2O) o f the 

SiC>2 surface proceeded quickly when the Si0 2  was annealed [96]. At low temperatures
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(<100°C), the SiC>2 surface rapidly loses physically adsorbed or bulk molecular water, 

and at about 150°C and higher temperature, the condensation o f hydroxyl groups occurs 

on the silica surface [97].

Si02 annealing condition:

— annealing @300°C 
—̂ -w ithout annealing

V=-30V

Gate scan sequence: 
-20V to 20V 
20V to-20V

-20 -10 10 200

Gate voltage (V)

Figure 6-11 Transfer characteristics o f P3HT FETs with annealed and non-annealed SiC>2

It has been described earlier in Chapter Four that the hysteresis effect is mainly 

attributed to the electrons trapped by the silanol groups forming immobile SiO' ions. At 

the same time, the absorbed water molecules could form a dipole layer at the insulator- 

P3HT interface [16]. Both factors could contribute to a positive shift o f the threshold 

voltage. Annealing SiC>2 at 300°C for 4 hours decreases both the silanol groups and the 

physically absorbed water molecules thus reducing the hysteresis effect, moving the 

threshold voltage closer to zero (see Table 6-2). The increased mobility could be due to 

the reduced scattering at the SiC>2 surface with less trapping sites. For the subthreshold 

slope, it is commonly known that its value is linked to the interfacial trap density [98]. A 

significantly smaller subthrehold slope in the devices with annealed SiC>2 is probably due 

to a smaller trap density. It should be noted that the annealing and device fabrication 

were carried out in air. These could lead to a reduced efficiency o f dehydroxylation and
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might introduce a certain level of rehydroxylation. Better device performance is possible 

if  the device could be fabricated and characterized in vacuum. Higher annealing 

temperature is desirable for more complete dehydroxylation. It is possible that the P3HT 

FETs could be further increased.

Table 6-2 Comparison o f device parameters between devices with annealed and non­
annealed SiC>2 .

Without annealing 
S i02

Si02 annealed at 
300°C (4 hrs)

Threshold voltage 
(V)

8.5 6

Saturation mobility 
(cm2/V s)

0.01 0.026

On/off ratio 2.3 x 103 8.2 x io3

Subthreshold slope 
(V/dec)

3.6 2

6.4 Summary

The performance o f OFETs could be improved by various methods. In this work, 

improvements o f S/D contacts and gate dielectric are considered. We used conducting 

polymer PEDOT-PSS as S/D electrodes, instead o f commonly used metal such as Au. 

PEDOT-PSS was modified to be highly conductive leading to reduced contact resistance 

as compared to that o f Au contacts. As a result, the performance o f P3HT FETs is 

improved. The other improvement is achieved by simply annealing the Si0 2  gate 

dielectric. We attribute the device performance improvement to the reduced density o f 

hydroxyl groups and physically absorbed water molecules on the Si0 2  surface as a result 

o f annealing.
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CHAPTER SEVEN

POLYMER MODULATION DOPED FET

7.1 Introduction

Conventional modulation doped field effect transistor (MODFET) technology 

provides a good approach to achieve high electron mobility o f the device [99] [100] [101]. 

The high electron mobility is made possible by using a heterostructure which consists of 

two materials with different bandgaps. AlGaAs/GaAs structure is an outstanding example, 

which has been most extensively used and studied. AlGaAs has a wide bandagap as 

compared with GaAs. In AlGaAs/GaAS heterostructure, band discontinuity is present at 

both conduction band and valence band. Once n-doped, AlGaAs is put next to undoped 

GaAs, electrons will diffuse from the wide-band AlGaAs to the narrow-band GaAs, 

leaving behind a positive space charge region. The conduction band discontinuity and the 

accumulation o f electrons setup a barrier to prevent the electrons from going back to 

AlGaAs. The diffused electrons are confined in a thin layer at GaAs side near the 

heterointerface and can freely move within the thin layer along the interface surface. 

Since the electrons are spatially separated from the donors, ionized impurity scattering is 

greatly reduced, resulting in field effect mobility in the thin layer almost only limited by 

lattice scattering. As a result, mobilities above 2><106 cm2V s  at 4K can be achieved in 

properly designed structures [98].

79
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Ultrahigh speed devices made of GaAs/AlGaAs heterojunction have enabled themselves 

to be used for supercomputers [99],

It is worth noting that the striking device performance o f MODFETs arises from 

the technique namely “modulation doping”, which provides a perfect means of 

introducing electrons into conduction layer without the adverse effects o f donors [99]. At 

present, OFET has become an extremely active research topic due to its potential for low 

cost manufacturing. However, they currently suffer from low carrier mobility, and 

therefore can rarely be used for practical applications. If the basic operation principle of 

the conventional MODFETs can be used for the OFETs, one may expect significantly 

improved device characteristics o f OFETs. Here, a fundamental question needs to be 

answered: could “modulation doping” be valid in organic heterojunctions? As described 

in Chapter Two, the charge transport o f an organic (or polymeric) semiconductor is 

described by a hopping process. Therefore, it is not clear whether the “modulation 

doping” as a phenomenon of band transport can still occur in organic (polymeric) 

semiconductor. Despite its importance, this issue has not been addressed so far. In this 

work, a polymer heterojunction is designed and integrated into a field effect transistor. 

Our observations indicate that “modulation doping” could exist in the poymer 

heterostructure.

7.2 Polymer Heterostructure 

The polymer heterostructure is built and characterized in the configuration of a 

MOSFET. It is designed in such a way that “modulation doping” effect could be judged 

from the transistor characteristics. Two materials o f different bandgaps are chosen that 

the one with wide bandgap has a low mobility and is intentionally doped, and the other
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one with narrow bandgap has a relatively high mobility and low doping. This is 

analogous to AlGaAs/GaAs heterostructure. Two selected materials are P3HT for narrow 

band gap well layer, and Poly(9,9-dioctylfluorenyl-2,7-diyl) (PFO) for the wide band gap 

barrier layer. Both polymers are p-type conducting materials. The hole mobility o f P3HT 

is normally 2-3 orders o f magnitude higher than that o f PFO. The highest occupied and 

lowest unoccupied molecular orbital (HOMO and LUMO) levels o f P3HT are 5.1eV and 

3.0eV giving a bandgap o f 2.1eV [8 6 ], and those o f PFO are 5.8eV and 2.6eV resulting in 

a bandgap o f 3.2eV [102]. Following the work reported by Hwang et al., [102], organic 

molecules tetrafluorotetracyanoquinodimethane (F4-TCNQ) is introduced to dope PFO 

through the co-solution method. The doping was achieved by means o f charge transfer 

between two molecules, owing to a very high electron affinity o f F4-TCNQ (5.24 eV) 

[103]. The doping level, defined as the ratio between the density o f F 4-TCNQ molecules 

and repeating units o f PFO, was controlled to be around 10%. The energy level structures 

o f two materials before contact are shown in Figure 7-1, indicating a 0.7eV of HOMO 

level offset between them.

PFO P3HT
2.6eV-----------------------

-----------------------3.0eV LUMO

-----------------------5.1 eV HOMO
0.7eV

Figure 7-1 Energy level schematic diagram of PFO and P3HT before contact.
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P3HT was dissolved in p-xylene at a weight ratio of 0.5mg/ml to form a solution 

for spin-coating. PFO and F4-TCNQ are mixed and dissolved in chlorobenzene and ultra­

sonicated overnight for complete mixing and dissolution.

7.3 Device Fabrication 

As shown in Figure 7-2, devices were made on heavily n-doped silicon, which also 

acted as the gate electrode. A layer oflOOOA thermally grown oxide served as the gate 

dielectric insulator. In addition, 5 0 0 A  A u / 3 0 A  Ti metal layer was deposited on the Si0 2  

as the S/D electrodes by sputtering and patterned by a lift-off process. Next, a 20nm thick 

P3HT layer was spin-coated on the Si0 2  surface and allowed to dry under vacuum at 

room temperature for 2 days. The P3HT FET was then finished. It was measured and 

recorded. Continuing on this device, a doped PFO layer was deposited over the P3HT 

film via a transfer method [104], which prevented the P3HT film from being attacked by 

the PFO solution. In this transfer method, a sodium poly(styrenesulfonate) (PSS-Na) 

sacrificial layer was first spin coated on a silicon wafer and dried by heating at 100°C for 

1 hour, then the PFO was coated on the PSS-Na film. After drying in vacuum for 2 days, 

the PFO film was transferred onto the P3HT surface. Since both P3HT and PFO films 

were water insoluble and extremely hydrophobic, the samples were put in de-ionized (DI) 

water for 30 minutes to remove the PSS-Na sacrificial layer leaving the PFO film on the 

P3HT layer. The PFO film is about 40nm. Then the PFO/P3HT FET was finished. The 

PFO/P3HT FET was dried in vacuum at room temperature for 2 hours before 

measurement. Like the earlier measured P3HT FETs, the PFO/P3HT FETs were 

measured using Keithley probe station at room temperature in air.
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PFO P3HT

trr/nTT??,
U -P F O
t«-P3HTSi02

Figure 7-2 A schematic cross-section o f a fabricated quantum-well polymer field effect 
transistor (Si0 2 : lOOnm, P3HT: 20nm, PFO: 40nm, S/D: 500A gold/30A titanium, 
channel length: 10pm, and channel width: 500pm). The molecular structures o f PFO and 
P3HT are also shown.

Figure 7-3a shows the output characteristics o f the P3HT FET as well as the 

PFO/P3HT FET. Noticeably higher drain currents are observed in the PFO/P3HT device 

at various gate voltages. The transfer characteristics o f both devices are presented in 

Figure 7-3b, which also shows significantly higher drain currents in the PFO/P3HT 

device. The PFO layer conductance was found to be negligible, as illustrated in Fig 7-3b. 

The conductance was estimated from a PFO FET made in the same device configuration 

as the P3HT transistor.

It is apparent that the sum o f drain currents from the separated P3HT and PFO 

layer is significantly lower than the drain current o f stacked layers o f P3HT and PFO. In 

other words, the heterojunction generates the enhanced current elements. This is a typical 

phenomenon of “modulation doping”, which is explained as follows. The holes diffuse 

from the doped PFO into the P3HT where they are confined near the interface. Due to the 

significantly higher hole mobility o f P3HT, the confined holes move much faster in the

7.4 Results and Discussion
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P3HT. They accumulate at the interface leading to a high carrier density. Consequently, 

more current is generated than that if  the carriers were transported in PFO, under the 

force o f the source-drain electric field. Hence, the “modulation doping” translates into the 

observed increase o f the drain current.

PFO/P3HT

P3HT

/ XZ_*Vg=-10V
Active layer:
— P3HT 
  PFO/P3HT

Drain Voltage--30V

Drain Voltage (V) Gate voltage (V)

Figure 7-3 (a) Output characteristics and (b) transfer characteristics o f the P3HT-only and 
the PFO/P3HT FETs. For comparison, the transfer characteristics o f a PFO FET in the 
same device configuration are shown in (b).

To simplify the analysis o f this polymer heterostructure, the “modulation doping” 

effect with the P3HT/PFO heterojunction is schematically depicted by the conventional 

energy band diagram as shown in Figure 7-4. The Fermi levels line up at thermal 

equilibrium resulting in discontinuity in the energy bands at the heterointerface. The 

discontinuity in the valence bands allows holes to spill over from the PFO layer into the 

P3HT layer, where they become trapped in the potential well. As a result, holes are 

confined on the P3HT side near the heterointerface. The inset in Figure 7-4 schematically 

shows the two dimensional hole gas in the potential well. It is these holes that result in 

the significantly increased current observed in the heterostmcture OFETs.
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PFO i P3HT

Figure 7-4 Schematic energy band diagrams o f PFO and P3HT in the thermal equilibrium. 
The inset shows the confined holes.

Since the P3HT layer is sandwiched by the gate oxide and the PFO layer, two 

competing conducting channels exist in the P3HT layer. The one near the PFO/P3HT 

interface due to the confined holes will dominate at zero or positive gate voltages. The 

second one near the P3 HT/Si0 2  interface arises from the injected holes induced by the 

gate electric field. In order to estimate the hole concentration profile in the P3HT channel 

under the effect o f the PFO layer, two-dimensional Poisson’s equation is solved by 

Taurus-Device simulator. The material parameters for P3HT have been described in 

Chapter Five; those for PFO can be seen in Figure 7-1, and the doping concentration o f 

PFO is set at 1 xlOt8cm"3, estimated from the PFO FET results; dielectric constant used is 

3, which is a typical value for a polymer material. The source and drain are grounded, 

and the gate is biased at -10V. The simulated results are shown in Figure 7-5. For 

comparison, the hole concentration profile for the device without the PFO layer is also 

shown. One can see that the effect o f the PFO layer is mainly on the region near P3HT- 

PFO interface in our device. Under currently biasing condition (Vg = -10V), the hole
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concentration due to the polymer hetero-junction is slightly lower than that due to the 

gate electric field.

1 0 19

2 1018

o 1017

-5 0 5 10 15 20 25
Distance (nm)

Figure 7-5 Simulated hole concentration profile in the P3HT layer with and without PFO 
layer in contact with it (at Vg=-10V). The cut line is chosen at the center o f the device.

Figure 7-6 shows the simulated hole concentration profile in the P3HT layer as a 

part o f the P3HT-PFO heterostructure, at Vg = 0V and -10V, and with the source and 

drain grounded. We can see that when a zero gate voltage is applied, the P3HT channel is 

dominated by the channel near the heterojunction interface, whereas, with a negative gate 

voltage, the gate-induced channel becomes to dominate. This indicates an increasing 

effect o f the gate-induced channel when the gate voltage is increased in the negative 

direction. Therefore, we observe that the PFO/P3HT drain current gradually approaches 

to the P3HT drain current when the gate voltage is increased to be more negative, as 

shown in Figure 7-3b. It should be noted that all simulations in this study are based on 

the classical model. The simulated hole concentration profile and device characteristics 

could be different if  the quantum confinement effects were considered.
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Figure 7-6 Simulated hole concentration profile in the P3HT layer in the P3HT-PFO 
heterojunction at different gate biases. The cut line is chosen at the center o f the device.

Due to the confined holes, a higher threshold voltage was expected in the 

PFO/P3HT FET. From the x-intercept on the curve o f ( I d 1/2 v s .  Vq) in the saturation 

region (Vd=-30V), the threshold voltage was 11V in the PFO/P3HT FET and 6 V in the 

P3HT FET. The field effect mobility in the saturation region was estimated using the 

following equation

W o
I D = t ‘ C o x - ( V G - V T ) 1  (7-1)

where Ip is the drain current, ja the mobility, Cox the gate oxide capacitance per cm , W 

channel width, L channel length, VG gate voltage, and V t threshold voltage. The 

calculated field effect mobility is about 0.018 cm2/Vs for both P3HT and PFO/P3HT 

FETs.
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1.5 Summary

This study is to explore the potential possibility o f enhancing OFET 

characteristics by using polymeric heterostructure as the active layer. Polymer 

heterojunction FETs were developed and characterized. The drain current was found to 

significantly increase in the PFO/P3HT transistors as compared to the P3HT devices. 

This increased drain current is likely from the charge carriers flowing from the wide 

bandgap PFO into the narrow bandgap P3HT. This phenomenon is called “modulation 

doping”. The conventional heterojunction energy band theory is able to explain the 

operation o f the polymer heterojunction FETs. Analyzing the fabricated devices, we 

found that PFO/P3HT FET showed a more positive threshold voltage than the P3HT FET. 

This was attributed to the confined holes in the potential well near the hetero-interface.

'y
These two devices have a similar field effect mobility o f 0.018 cm /Vs. We expect our 

findings in this work could open an alternative approach for improving organic 

transistor’s device performance.
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CHAPTER EIGHT

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, field effect transistors composed o f P3HT as the active layer have 

been fabricated and analyzed. Fundamental issues that could affect device characteristics, 

such as contact resistance, and the semiconductor-insulator interface were investigated. 

Hysteresis effect o f the fabricated devices has been studied and possible explanation was 

given. Gate-voltage dependent mobility was fitted based on a reported model and 

explained in terms o f the trapping effect. The devices have been studied with varying 

operation temperatures, implying hopping transport o f the charge carriers.

To gain an adequate understanding o f device operation, we carried out 2-D 

numerical simulations on Taurus-Device simulator, which self-consistently solved 

Poisson’s equation, and current continuity equations. The simulations were implemented 

considering the contact resistance and traps, resulting in the simulation results to be in 

good agreement with the experimental data.

With the knowledge o f the key issues that could limit device performance, 

corresponding improvements have been made. First, we aimed to improve the S/D 

contact. The commercial poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate 

(PEDOT-PSS) was modified and studied. The modified PEDOT-PSS was utilized as the

89
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source/drain electrode material in P3HT FETs, giving considerably lower contact 

resistance than the commonly-used gold electrodes. As a result, device characteristics 

were improved. Thus the modified PEDOT-PSS for S/D electrodes is a promising low- 

cost contacting technique. Second, we intended to improve semiconductor-insulator 

interface, which was done by simple annealing Si0 2  surface prior to the deposition o f the 

P3HT layer. Consequently, device characteristics are significantly improved. The 

mobility is improved from 0.01 to 0.026 cm2/Vs, on/off ratio from 2.3><103 to 8.2 xlO3, 

subthreshold slope improved by approximately 2 times, from 3.6 to 2 V/dec. The 

hysteresis window is also reduced. The enhanced device performance could be attributed 

to the reduction o f physically absorbed water molecules and hydroxyl groups at the SiC>2 

surface upon annealing.

Polymer heterostructure OFETs have been also developed for establishing a 

method to fabricate new devices and the possibility to increase the device performance. 

The resultant device characteristics indicate the “modulation doping” effect at the 

P3HT/PFO heteijunction. It seems analogous to the conventional inorganic 

heterojunction MODFETs, which have shown strikingly high field effect mobility due to 

the “modulation doping” effect. This finding could open a potential way to achieve high- 

performance OFETs.

8.2 Future Work

8.2.1 Side Effects o f Solvents

One key issue o f using solution process in the fabrication o f organic devices is the 

solvent compatibility problem. It has two aspects. First, the solvents from the 

subsequently layer may dissolve and damage the underlying layer. Second, the
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subsequent solvents may not dissolve and damage the underlying layer, but could affect 

the properties o f the underlying layer. The first aspect is apparent and easily identified. 

The second aspect is more complicated. It could result in misinterpretation o f unusual 

device characteristics. In-depth investigation is required to find out the root causes and 

thus eliminate the side effects. For example, we have found that the solvent, isopropyl 

alcohol (IP A), did not dissolve P3HT but significantly affected the electrical properties of 

P3HT. Figure 8-1 shows the results from a P3HT FET before and after it is exposed to 

liquid IPA. It seems that IPA could dope P3HT layer and result in significantly increased 

current and reduced control capability o f the gate on the P3HT channel.

0.0 

-5.0x1 O'6

1  -1.0x1 O'5
3o
.= -1.5x1 O’5
2o

-2.0x1 O'5 

-2.5x1 O'5

Figure 8-1 P3HT device characteristics showing the side effect o f isopropyl alcohol.

This effect is very relevant in the fabrication of an all-polymer field effect 

transistor, in which gate dielectric is deposited from a solution process. For example, 

polymeric gate dielectric poly-4-vinylphenol (PVP) dissolved in IPA has strong side 

effect on P3HT properties. Figure 8-2 shows device characteristics o f a P3HT FET before

v =iov’ =ov

v =-10 v

V =10V

v=ov

Empty s ig n s: ex posed  to  liquid IPA 
Solid s ig n s: no t exposed  to  liquid IPA
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and after PVP film was deposited on the P3HT layer. The striking difference in device 

characteristics should be mainly attributed to IPA. However, it is unknown so far what 

the exact root cause is. A systematic study on this issue is therefore technically and 

theoretically important and necessary.

Addition of a layer of PVP on P3HT
1.0x10‘7

V=10V 0.00. 0 -

V =5V 
■■it--■»■■

V =ov -2.0x10

= -4.0x10"£  -2.0x10 -
V=10V 
V =5V 
1^=0V 
V=-5V 
V=-10V

V =-5V
O  -6.0x10

2  -8.0x10"
V =-10V

-1.0x10"

Drain voltage (V) Drain voltage (V)

Figure 8-2 P3HT device characteristics showing the effect o f PVP cast from isopropyl 
alcohol solution; (a) without PVP layer and (b) with PVP layer on P3HT.

8.2.2 Leakage Current

Currently fabricated P3HT FETs exhibit a significant level o f leakage current. In 

order for practical applications, it should be reduced. We have found that the leakage 

current was sensitive to fabrication process, especially to gate oxide process conditions. 

For example, oxygen plasma or KOH treatments o f SiC>2 surface prior to the deposition 

o f P3HT layer was found to significantly increase the leakage current. Figure 8-3 shows 

that oxygen plasma treatments o f oxide surface has led to leakage current up to several 

f iA,  which is almost two orders o f magnitude higher than the device with gate oxide 

without oxygen plasma treatment. This high leakage current has very detrimental effect 

on device characteristics. Therefore, further study is necessary on this topic.
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Figure 8-3 P3HT FET drain leakage current at Vg=0V.

8.2.3 Polymer Modulation Doped
OFET

This is a very promising area, and our initial results have demonstrated the 

“modulation doping” effect in polymer heterojunction. It seems analogous to the 

conventional modulation doped field effect transistors that have shown strikingly high 

mobility. Further work could be focused on optimized designs o f the polymer 

heterojunction stacked layers. The layer thickness, band discontinuity level and doping 

profile need to be studied. New models should be developed to describe the operation of 

the devices. This could be implemented with the help o f numerical simulations. In this 

thesis, we had initial simulation results which described the operation o f the polymer 

heterostructure. However, our simulation is based on the classical model. Part o f the 

further work should be focused on modeling o f polymer heterostructure by considering 

the quantum confinement effects. A systematic comparison should be made between the 

results from the classical model and the quantum effect model. By comparing the
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simulation results and the experimentally observed device characteristics, a better 

understanding o f the polymer MODFETs should be possible. The other issue that needs 

to be further addressed is the film-growth technique. Due to the solvent compatibility 

problem, we used a transfer method (see Chapter Seven). This is not technically preferred, 

since it does not allow growing thin film o f high-quality (i.e. sufficiently dense, uniform 

film), which may introduce trapping and scattering centers for the carriers located within 

the well region.

8.2.4 Treatments o f Gate Silicon 
Oxide

It has been shown that the P3HT device characteristics can be significantly 

improved by simply annealing the Si0 2  surface. It could be attributed to the reduced 

physically absorbed water molecule and a certain level o f dehydration at the Si0 2  surface 

upon annealing. Due to the limitation o f lab instruments, our annealing experiment was 

carried out at a moderate temperature (300°C) and FET devices were prepared in air. We 

expected that a higher curing temperature and a very dry environment for FET fabrication 

could further improve the device characteristics.

8.2.5 Inkiet Printing Technique

Inkjet printing technique has been explored in our work. It has enabled us to 

deposit and pattern electrodes from materials, such as, conducting polymers and metals, 

for high-performance devices. This technique allows for deposition o f solution on 

selected areas, and therefore is very helpful to reduce leakage current if  the active 

channel layer could be deposited by inkjet printing. However, we have not achieved 

satisfactory results in our efforts so far. Much work could be further done for optimizing
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solutions and conditioning substrate surface in order to achieve uniform and highly- 

ordered films.

8.2.6 Other Issues

Stability o f the devices in air is important. However, current devices show a 

certain level o f degradation when exposed to air for extended time. It has been attributed 

to the diffusion o f oxygen and water molecules into P3HT thin film as described earlier. 

Further work should be done on the passivation o f these devices from air to prolong 

device’s lifetime.

Furthermore, due to the low mobility o f organic semiconductors, devices with 

short channel are desirable for high speed circuits. Vertical device structure seems to be 

promising [105]. Extended work could include structure designs and process 

optimizations. Full understanding o f the key issues, such as, short-channel effect, and 

leakage current, etc., is necessary.
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Taurus {device}

DefmeDevice ( 

name=devicemesh 

minX=0.0 maxX=20 

minY=-70nm maxY=200nm 

region(material=silicon, name=channel 1 ), 

region(material=silicon, name=channel2 ), 

region(material=silicon, name=chamiel3), 

region(material=silicon, name=channel4), 

region(material=silicon, name=channel5), 

region(material=aluminum,name=sourcel), 

region(material=aluminum,name=drainl), 

region(material=oxide, name=oxide) 

region(material=polysilicon, name=gatematerial) 

region (material=Ambient name=ambientl) 

x^O.O dx=200nm 

x=4 dx=200nm 

x=5 dx=10nm 

x=5.2 dx=200nm 

x=14.8 dx=T0 nm 

x=15 dx=2 0 0 nm 

x= 2 0  dx=2 0 0 nm 

y=-70nm dy=10nm
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y=-2 0 nm dy=1 0 nm 

y=-10nm dy=5nm 

y=-5nm dy=lnm 

y=Onm dy=0.5nm 

y=5nm dy=5nm 

y=1 0 0 nm dy=50nm 

y=2 0 0 nm dy=50nm

)

Defineboundary(

region=gatematerial,

polygon2 d(

point(x=0 , y=1 0 0 nm), point(x=2 0 ,y=1 0 0 nm), point(x=2 0 , y=150nm), 

point(x=0 ,y=l 50nm)))

Defineboundary(

region=oxide,

polygon2 d(

point(x=0, y=Onm), point(x=20,y=0nm), point(x=20,y=100nm), point(x=0,y=l OOnm))) 

DefineBoundary( 

region=sourcel, 

polygon2 d(

point(x=0,y=-50nm), point(x:=5,y=-50nm),point(x=5,y=0nni),point(x=0,y=0nm))) 

DefineBoundary( 

region=channel 1 ,
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polygon2 d(

point(x=5,y=-50nm), point(x=5.02,y=-50nm),point(x=5.02,y=0nm),point(x=5,y=0nm))) 

DefineBoundary( 

region=channel2 , 

polygon2 d(

point(x=5.02,y=-20nm), point(x=14.98,y=20nm),point(x=14.98,y=0nm), 

point(x=5.0 2 ,y=0 nm)))

DefmeBoundary( 

region=channel3, 

polygon2 d(

point(x=14.98 ,y=-5 Onm), point(x=15 ,y=-5 Onm),point(x=15 ,y=Onm), 

point(x=l 4.98,y=0nm)))

DefmeBoundary(

region=drainl,

polygon2 d(

point(x=15, y=-50nm), point(x=20, y=-50nm),point(x=20, y=0nm), 

point(x=15, y=Onm)))

DefineBoundary(

region=channel4,

polygon2 d(

point(x=0,y=-70nm), point(x=5.02,y=-70nm),point(x=5.02,y=-50nm), 

point(x=0, y=-50nm)))

DefineBoundary(
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region=channel5, 

polygon2 d(

point(x=14.98,y=-70nm), point(x=20,y=-70nm),point(x=20,y=-50nm), 

point(x=14.98, y=-50nm))) 

save (meshfile=FETO.tdf)

Regrid (

MinX=4, MaxX=16, MinY=-60nm, MaxY=100nm,

MaxDeltaY=50nm,

Criterion (Name=AllInterfaces)) 

save (meshfile=FETl.tdf)

# Define contact regions

Definecontact (name=source, X (min^O, max=5) Y(min=-50nm, max=0nm)) 

Definecontact (name=drain, X (min=15 max=20) Y(min=-50nm, max=0nm)) 

Definecontact (name=gate, X (min=0 max=20) Y(min=150nm, max=151nm)) 

Regrid (minx=5, maxx=15, MinY=-10nm, maxY=0, MaxDeltaY=2nm) 

save (meshfile=FET3.tdf)

#—  semiconductor material definition and solve equations 

Taurus {device}

DefineDevice(Name=tft, meshfile=FET3.tdf, areafactor=500)

#doping profile:

profile (name=ptype, region=channell, uniform(value=2el7)) 

profile (name=ptype, region=channel2 , uniform(value=2el7))
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profile (name=ptype, region=channel3, uniform(value=2el7)) 

profile (name=ptype, region=channel4, uniform(value=2el7)) 

profile (name=ptype, region=channel5, uniform(value=2el7)) 

profile (name=ntype, region=gatematerial, uniform(value-5el8))

Physics(

Aluminum(

global (workfiinction=5.1),

electricConductance(

electricConductivity(sigmaO=5e6))))

Physics(silicon(holecontinuity(mobility(constant=true,mup0=0.016))))

Physics(Silicon(global(global

conductionDensityOfStates(AtRoomT emperature=2e21),

V alenceDensityOfStates( AtRoomT emperature=2e21))))) 

Physics(Silicon(Global

(Permittivity=3, ElectronAffmity=3.0, Bandgap(Eg300=2.1)))) 

#contact(name=gate, workfitnction=5.0 )

#contact(name=source,type=schottky, workfunction=5.1  )#to set contact 

# barrier(optional)

#contact(name=drain, type=schottky, workfiinction=5.1)

#contact(name-source,type=ohniic)# default: ohmic

#contact(name=drain, type=ohmic)

#set Attributes {T raps(material=silicon,

#trap(ilevel=0, dgen=2, et=-0.5, nt=-6el7,taup=le-5))}
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in te rface  (q f - - le l2 , material(mO-silicon, ml=oxide))

SetBias (value=0.0) {Contact (name=source, type=voltage)}

SetBias (value=0.0) {Contact (name=gate, type=voltage)}

SetBias (value=0.0) {Contact (name=drain, type=voltage)}

# Specify zero-carrier solution 

Symbolic (carriers=0)

numerics (iterations=100, relativeerror=le-3)# to alleviate convergence

# problem

# initialization that only solve poisson’s equation 

Solve {}

Save (meshfile=initial.tdf)

# solve poisson’s equation and hole current continuity equation 

Symbolic (carriers=l, holes)

# simulate output characteristics 

ramp (

voltage (electrode=gate,endvalue=-15,nsteps=l 5)

Ramp (logfile=Idl.data

Voltage (electrode=drain, startvalue=0, endValue=-30, nSteps=30)) 

ramp (

voltage (electrode=gate,endvalue=-10,nsteps=5))

Ramp (logfile=Id2.data

Voltage (electrode=drain, startvalue=-30, endValue=0, nSteps=30)) 

ramp (
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voltage (electrode=gate,endvalue=-5, nsteps=5))

Ramp (logfile=Id3.data

Voltage (electrode=drain, startvalue=0, endValue—30, nSteps=30)) 

ramp (

voltage (electrode=gate, endvalue-0, nsteps=5))

Ramp (logfile=Id4.data

Voltage (electrode=drain, startvalue=-30, endValue=0, nSteps=30)) 

Save (meshfile=gateN 15.tdf)

Stop

#—PMEI user defined field dependent mobility model-----

EquationDatabase{poissons.db,holecontinuity.db,electroncontinuity.db}

DefineEquation

(

Name=Mobility,

Material=Silicon,

IsDeviceEquation,

V ariableN ame=Dummy,

Parameter (Name=k, Default=8.62e-5), # eV/k 

Parameter (Name=T, Default=300), #k 

Model (Name=TempField 

Expression {" Sqrt(electricfield* electricfield)" }

)

Model (Name=Mu,
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Parameter (Name=MuO, Default=0.016) 

Parameter (name=EO, default=le5) 

Expression {"MuO*sqrt(Tempfield*KT/EO)" 

#expression {"MuO*sqrt(Tempfield/EO)"

}

)

Model

(

Name=PmeiLowFieldMobility,

Expression {"(Mu)"}

X

Expression {"dummy"}

)
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