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ABSTRACT

The healthcare burden and suffering due to life-threatening diseases such as 

cancer would be significantly reduced by the design and refinement of computational 

interpretation of micro-molecular data collected by bioinformaticians. Rapid 

technological advancements in the field of microarray analysis, an important component 

in the design of in-silico molecular medicine methods, have generated enormous amounts 

of such data, a trend that has been increasing exponentially over the last few years. 

However, the analysis and handling of these data has become one of the major 

bottlenecks in the utilization of the technology. The rate of collection of these data has far 

surpassed our ability to analyze the data for novel, non-trivial, and important knowledge. 

The high-performance computing platform, and algorithms that utilize its embedded 

computing capacity, has emerged as a leading technology that can handle such data- 

intensive knowledge discovery applications.

In this dissertation, we present a novel framework to achieve fast, robust, and 

accurate (biologically-significant) multi-class classification of gene expression data using 

distributed knowledge discovery and integration computational routines, specifically for 

cancer genomics applications. The research presents a unique computational paradigm 

for the rapid, accurate, and efficient selection of relevant marker genes, while providing 

parametric controls to ensure flexibility of its application.

The proposed paradigm consists of the following key computational steps: (a)

preprocess, normalize the gene expression data; (b) discretize the data for knowledge

iii
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mining application; (c) partition the data using two proposed methods: partitioning with 

overlapped windows and adaptive selection; (d) perform knowledge discovery on the 

partitioned data-spaces for association rule discovery; (e) integrate association rules from 

partitioned data and knowledge spaces on distributed processor nodes using a novel 

knowledge integration algorithm; and (f) post-analysis and functional elucidation of the 

discovered gene rule sets. The framework is implemented on a shared-memory 

multiprocessor supercomputing environment, and several experimental results are 

demonstrated to evaluate the algorithms. We conclude with a functional interpretation of 

the computational discovery routines for enhanced biological physiological discovery 

from cancer genomics datasets, while suggesting some directions for future research.
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CHAPTER 1

INTRODUCTION

Over the past decade, clinical, biomedical, biological, and healthcare disciplines 

have become increasingly data intensive, advancing the need for novel algorithmic 

methodologies that can leverage rapid and accurate high-performance computing 

capabilities. Such advances in automated data collection technologies have led to an 

unprecedented growth in the size, complexity, and quantity of collected data, resulting in 

an overriding complexity of data that computational scientists do not currently have 

adequate resources to analyze. Furthermore, direct health-care applications in 

personalized molecular medicine are gradually moving towards becoming a clinical- 

reality, soon after which it will be a business necessity for health-care providers to be 

capable of rapidly mining enormous amounts of bioinformatics data for novel 

physiological discovery by fast and accurate means, to provide enhanced quality of care 

and cure for their patients. This continued growth would lead to further renewal of 

demands for the development of innovative technologies designed to organize and mine 

this burgeoning swell of data, and to facilitate and expedite computing and biomedical 

research.

One of the overarching goals of the field of databases and, consequently, high 

performance computing in data mining research, is to successfully and effectively

1
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investigate and employ algorithms that improve the integration and mining of these 

evolving data and knowledge sources. We believe that advances in high performance 

computing provide an excellent research-bed for the development of novel computing 

technologies, especially in the areas of knowledge integration in gene expression 

databases for bioinformatics. This thesis seeks to make a noteworthy contribution in this 

arena.

According to Cantor et al. in [1], if biomedical resources distributed across the 

informational interconnect (such as the internet) are viewed as nodes in a network and 

there is an value in bringing them together for enhanced knowledge discovery, then the 

Metcalfe’s law [2] applies here, which essentially says that the “value of integration” of 

network nodes can be “measured” in proportion of the square of the number of network 

“nodes.” This model highlights the immense enabling advantages that network data 

integration could provide to the medical field. Bioinformatics data can be complex, 

highly context-dependent, and inherently high-dimensional. This multi-faceted 

heterogeneity makes the mapping of data to knowledge a challenging computational task. 

Advances in high-performance computing and high-speed networking have led the efforts 

to utilize this infrastructure for high-end computing challenges originating in 

bioinformatics problems (e.g., gene expression data mining and protein structural 

matching methods). Although crucially important, the research in this problematic 

domain is still in its infancy. According to a presentation by Athey et al. [3], the major 

areas of opportunity in the use of high-performance computing in biomedical sciences 

are, (a) “organizing, managing, mining, and analyzing the large volume of biomedical 

data” (b) “simulation, particularly in multi-scale problems (modeling from the genome to
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the organism)” and (c) “translational medicine -  transforming research into 

clinical practice in the shortest time possible.”

Our unique contribution attempts to meet the first of these challenges by 

proposing and critically evaluating a unique computational framework for fast, 

distributed-node data mining of physiological patterns, a task impossible to perform using 

uni-processor machines.

This chapter provides an introduction to the biological background required to 

describe and understand the problem definition and its significance in addressing the 

problem of gene expression data integration and mining for knowledge discovery.

1.1 The Genetic Material

The identification and isolation of deoxyribonucleic acid (DNA) answers 

questions posed by scientists and philosophers for a number of years: “What is the basis 

of inheritance? And what is the basic, organic difference between living and non living 

things?” [4], DNA is the molecule responsible for the propagation of most inherited 

genetic traits. DNA contains information that enables functioning into living cells, which 

is required for their reproduction and functionality. On the sub-molecular level, the units 

responsible for the characteristics of inheritance are termed as genes. Genes store their 

information as specific sequences of nucleotides that, concatenated into a double-helix, 

form DNA molecules.

1.1.1 Nucleic Acids

Nucleic acid is the generic name for a family of biopolymer organic substances; 

the designation of “nucleic” is indicative of their prevalence in cellular nuclei. Monomers 

are called nucleotides. The two primary nucleic acids found in all living cells are DNA,
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located mainly in the cell nucleus, and ribonucleic acid (RNA), generally found in the 

cytoplasm of the cell, though it is also usually synthesized into the nucleus. DNA is 

structured as a double stranded helix containing two complementary strands. This 

structure was first described by James Watson and Francis Crick in 1953. Each strand is 

composed of four repeating bases, namely: guanine, adenine, thymine, and cytosine (G, 

A, T, C). A phosphate group and a deoxyribose sugar (five-carbon sugar) attach abreast 

each base to form a nucleotide. These nucleotides concatenate into strands according to 

complementary pairing of the A-T and G-C bases, respectively. With two hydrogen 

bonds cohering the A-T base-pair, and three hydrogen bonds holding the G-C pair, the G- 

C interaction is stronger by (approximately) 30%. Adenine and guanine have two-ring 

structured nitrogenous bases called purines while thymine and cytosine have a single-ring 

structure denoted pyrimidines. Human DNA consists of about 3 billion bases, more than 

99% of which are known to be identical in all people. These bases are same in every 

organism, but it is the specific ordering of these common base pairs that make one 

organism different from another.

The second type of nucleic acid, RNA, is usually single-stranded, but any given 

strand has the propensity to fold back upon itself to form double-helical regions. RNA is 

similar to DNA in its chemical and physical properties. It has three identical bases— 

adenine, guanine, and cytosine—but the thymine base that appears in DNA is replaced by 

uracil in RNA. Like thymine, uracil is the complementary base of adenine. The most 

notable difference between the two nucleic acids is the type of sugar they contain: the 

sugar in RNA is ribose, the same as deoxyribose but with the addition of an extra 

oxygen-hydrogen-atom combination called a hydroxyl (OH). DNA contains the genetic
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codes to construct RNA, which in turn stores the structural codes of the primary 

sequences of amino acids that construct proteins, a group of complex organic 

macromolecules that control biochemical reactions and determine the physical structure 

of organisms.

The complete set of information that defines the constructions and functions in an

organism, including both the DNA and RNA, is termed the genome. Complicated genes

can be thousands of nucleotides long, and the genome can be constituted by millions or

even billions of nucleotides. Nucleotides attach to each other by a phosphodiester bond

that connects a phosphate group of one nucleotide to the deoxyribose sugar of another.

These various nucleotide sequences attach to one another to form long chains called a

polynucleotide. When considered on a very large scale polynucleotide chains are called

chromosomes. The human genome consists of 23 chromosomes each of which range in

estimated length from 50 million to 250 million base pairs.

1.1.2 The Central Dogma of 
Molecular Biology

The process of replication begins when DNA copies itself. In eukaryotes 

(organisms which have nucleated cells) DNA replicates itself inside the nucleus using 

one strand of the double helix as a template. In other organisms that have no nucleus 

(prokaryotes), the DNA replicates in the cytoplasm of the cell. In bacteria and other 

simple cell organisms, DNA is distributed more or less throughout the cell. In the 

complex cells found in multi-cellular organisms, most of the DNA is present in the 

chromosomes located in the nucleus. It is via the process of replication that the 

information stored in the DNA can be transmitted and inherited.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

During transcription the information contained in DNA is transcribed to 

messenger RNA (mRNA). The mechanism of transcription is similar to DNA replication. 

mRNA carries coded information to ribosomes (a miniature bioparticle found in the 

cytoplasm of a cell, composed of RNA and protein) which interprets this information and 

uses it for protein synthesis in a process called translation. Thus proteins are formed 

(Figure 1.1 illustrates this process). Proteins are involved in almost all biological 

activities, whether structural or enzymatic, and perform a variety of important functions 

in the metabolic pathways inside the body. The process from DNA replication to the 

translation of proteins is essentially the same for all living organisms and has been 

attributed the moniker, “the central dogma of molecular biology”. Figure 1.1, 

descriptively shows the entire process. This dogma forms the backbone of molecular 

biology.

replication

transcription translation
DNA --------------------- ► RNA --------------------- ►Proteins

Figure 1.1: The central dogma of molecular biology

1.1.2.1 Proteins

Proteins are complex nitrogenous compounds having high molecular weight that 

comprise the structure of cells and direct their activities. Proteins are translated by 

ribosomes as linear chains of amino acids joined by peptide bonds. Proteins are made up 

of 20 different amino acids. Structurally, proteins collapse and fold into unique three 

dimensional configurations known as their naive state. The order in which various amino 

acids are used to assemble a protein is largely responsible for determining the structure
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into which it will fold. The function of a given protein is determined by both its sequence 

of amino acids and by its resultant three-dimensional structure.

1.1.2.2 Function of protein

Proteins are responsible for performing most of the life functions of the cell and 

comprise most of its structure. The main physiological functions performed by proteins 

are

• Enzymatic catalysis-All of the enzymes that catalyze chemical reactions in the 

body are made from proteins. For instance, the hormone insulin involved in blood 

sugar regulation and the thyroid hormone are synthesized from proteins.

• Transport and Storage-Proteins carry out the transportation and storage of small 

molecules. Some examples of the transport proteins are hemoglobin that carries 

oxygen, albumin that carries other proteins, transferrin that carries iron, and 

ceruloplasmin that carries copper.

• Productions of antibodies-Proteins are involved in the production of the 

antibodies responsible for reacting with specific foreign substances in the body.

• Maintaining proper fluid balance-Proteins help control the amount of water inside 

cells by maintaining the osmotic pressure.

• Keeping acid-base balances-Proteins have the ability to combine with both acids 

and bases and thus helps to maintain the normal acid-base balance in the body.

1.1.2.3 Structure of protein

• Primary structure-Proteins are initially constructed as straight chains of amino 

acids. This chain structure is referred as the primary structure of proteins.
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• Secondary structure-The straight chains so formed begin to twist and the 

deformation of each amino acid interacts with the others to form the secondary 

structure. The most common secondary structures are (alpha) helix and (beta) 

sheet.

• Tertiary structure-The regions in the secondary structure of a protein pack 

together and combine with other less structured regions to form a three 

dimensional shape referred to as the tertiary structure of the protein.

• Quaternary structure-After the tertiary structure is formed, several amino acids 

from the tertiary structure fold together to create in a single, large, dense complex 

known as the quaternary structure.

1.2 Microarravs

Gene expression is the process that manifests (or expresses) the nature of the 

controlling and directing stored in the DNA, through replication, in the functions of the 

proteins created in the cell. Microarray technology has addressed a challenge faced by 

several genome biologists in the past: how do we measure the expression profile of 

thousands of genes (presumably at the genome level) under an experimental condition? 

While traditional methods were generally capable of working with only a few genes in a 

single experiment, microarray technology purports the ability to monitor the whole 

genome on a single chip, providing researchers with a clearer picture of the simultaneous 

interactions among thousands of genes, and posing an immense challenge to 

computational scientists for data analysis. Microarray technology allows the researcher to 

take a snapshot of genes while they are in action, revealing which genes are dormant and 

which demonstrate high/low levels of activity. This analysis is accomplished by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

measuring the amount of mRNA present in each gene in a given sample or pair of 

samples to determine which genes are expressing themselves (active).

DNA strands are attached at fixed spots, generally on a glass or plastic slide. 

There may be tens of thousands of spots on an array, each containing a large number of 

identical DNA molecules that can have lengths varying from very few to several 

hundreds of nucleotides. The constructed arrays are then used to detect the presence of 

mRNAs transcribed from different genes, where each gene encodes different proteins. 

Several methods exist for measuring gene expression levels on an array. One of the 

popular methods involves the comparison of gene expression levels from two different 

samples (e.g., the same cell type in a normal and tumor state). The mRNA actively 

transcribed by the DNA in the array is converted to cDNA or cRNA (where c stands for 

the “copy” synthesized using a type of reverse transcriptase). Fluorescent tags are 

chemically attached to these newly synthesized strands. Thus, a cDNA or cRNA 

molecule that contains a sequence complementary to one of the attached single-stranded 

probe sequences will stick, or hybridize, via base pairing, to the spot at which 

complementary probes are affixed. The probe locations will then glow or fluoresce at a 

level of intensity that can be examined using a microarray scanner.

An increase in florescent intensity indicates that cells in the sample have recently 

transcribed. Decreased intensity shows that the genes that contain the probe sequence 

have stopped transcription. Thus, the intensity of the fluorescence is roughly proportional 

to the activity or expression level of that gene. Therefore, microarrays can provide a 

method to profile the activity of genes in the genome in a particular cell type under 

specified conditions.
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1.3 Cancer Genomics

Cancer is basically a "genomic" disease caused by the alterations in genes. The 

origination of cancer is associated with DNA mutations; that is, one or more bases (A, C, 

T, or G) in one or more regions of the DNA sequence are replaced by another due to 

faulty insertion or deletion. This mutated DNA leads to the abnormal production or 

absence of a protein. These abnormal proteins alter the behavior of the cells, often 

preventing them from dying when they ought, or causing rapid cell division. These 

mutated and/or overexpressed forms of normal genes are called oncogenes. As cancer 

progresses, the sequential evolution ion of genetic changes cause the deregulation of 

normal cellular processes such as growth, changes in the structure and function of cells, 

proliferation, and finally, apoptosis (cell death). It is this cell-process deregulation that 

ultimately leads to changes in the gene’s expression.

Cancer genomics involves the analysis of multiple genes, identifying those that 

are actively expressed as well as the alterations in gene expression that arise during 

carcinogenesis. This technology has opened up the possibility of determining an 

individual's susceptibility to cancer at birth, the progression of the disease at selected 

periods during his/her lifetime, and sometimes even the likely cause of death. In addition, 

cancer genomics has enabled the identification of genetic components in cancer at the 

cellular and molecular level, information that will help to identify new therapeutic targets 

that would aid in the effective selection of drugs [5], This information moves the research 

closer to the era of personalized medicine, a paradigm shift in bench-to-bedside 

healthcare.
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CHAPTER 2

INTRODUCTION TO DATA MINING, 

BIOINFORMATICS, AND HIGH 

PERFORMANCE COMPUTING

This section contains an overview of general concepts in data mining, 

bioinformatics, and high performance computing. First, we will cover several data mining 

techniques, current issues and challenges in data mining, and association rule mining as a 

means of extracting information will be covered. Then, we will provide an overview of 

bioinformatics and an elaboration of its key areas will be provided. Finally, a presentation 

of the hardware necessary and the software techniques available in high performance 

computing will follow.

2.1 Data Minine

Data mining, a method for knowledge discovery in databases, is defined as the 

“automated discovery of previously unknown, nontrivial, and potentially useful 

information” (such as knowledge rules, constraints, and regularities) from data in large 

databases [6, 7], The widespread use of automated data compilation technologies in 

application areas ranging from business data analysis, market analysis for business 

intelligence, engineering systems design, and geo-spatial scientific exploration methods 

to the exponential growth of biological data, including but not limited to genomic and

11
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proteonomics data and biomedical images, both at macroscopic and microscopic levels, 

are continuing to challenge us with an impressive rate of data generation. This explosive 

growth in data collection and the creation of their corresponding databases has generated 

an unprecedented and imperative need for new data analysis techniques and tools capable 

of intelligently and autonomously transforming the processed data into useful information 

and knowledge. Consequently, data mining has become an increasingly important 

research area [6, 7, 8].

2.1.1 Data Mining Overview

Data mining derives its name from the similarities between the process of 

searching for valuable information in a large database, and that of unearthing precious 

metals (ore mining) from beneath the earth’s surface. Given databases of sufficient size 

and quality, data mining can generate interesting patterns of knowledge and scientific 

avenues for further investigation (for example, mining of proteonomics data can lead to 

lines for protein engineering in wet-lab experimentation). Data mining can provide 

basically (but not exhaustively) the following capabilities [9]:

(i) Autonomous prediction of trends and behaviors-Data mining automates the 

process of finding predictive information from large databases. This approach 

is more discovery-driven than assumption-driven (a RDBMS: Relational 

Database Management System based approach). For example, a superstore 

would typically keep a transaction record of daily purchase transactions in the 

store and link it with the inventory data (in a typical RDBMS system). 

However, data mining can autonomously discover trends from this data. An 

example of such a trend is it recognizes that there is a subset of customers
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who frequently buys multivitamin products with their groceries. When the 

superstore wants to market a new multivitamin, it can utilize the knowledge 

discovered by data mining to target that recognized subset of customers to 

send promotional mailings, in order to maximize their return on marketing 

investment and inventory management (for cost control).

(ii) Automatic discovery of previously unknown pattems-Data mining tools scan 

databases to identify previously hidden patterns. For example, in a market- 

basket scenario, it might be interesting to note the purchase of uninteresting 

articles together. An example of such a relation might include discovery of a 

potential associative relationship between beer and diapers on a Friday 

afternoon.

Data mining has proved to be widely applicable in areas, ranging from business to

medical diagnostics. Several techniques have been developed for data mining.

2.1.1.1 Steps involved

The general strategy of data mining involves the following steps:

(1) Data Selection-This is the first step, where scanning through the database identifies 

the data relevant for the analysis. It is important to realize that collected data may be 

treated differently depending on requirement, e.g., a department may calculate 

employee effort by hours or task completion, but another may multi-dimensionally 

view the data by department. At this point, a domain knowledge expert intervention is 

much important.

(2) Data Preprocessing-Data extracted from legacy database sources is usually not ready 

for data mining due to several inherent reasons. During and after the data extraction
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process, the data must be configured into a format conducive to mining techniques to 

effectively analysis that data and discover patterns. Some examples of data conditions 

that may require preprocessing operations are

(i) Incompleteness of the data-some attribute values may be missing or lack certain 

attributes of interest.

(ii) Noisiness of the data-the data might contain noise, which includes anomalies or 

outliers.

(iii)Irregularity-inconsistencies in data coding or the name nomenclature. This 

problem may be the result of faulty data collection instruments, human data entry 

error, or errors incorporated in data transmission and aggregation. An example of 

such an inconsistency in name would be calendar year being stated as “Yr” or 

“Year.”

(3) Data Transformation-after the data is inclusive and coherent, it may still be necessary 

to transform it into a representation or structure usable by the target technique or 

algorithm for enhanced knowledge discovery. This step attempts to model the data so 

that the most desirable dimensions could represent it. Data transformation can involve 

the following:

(i) Smoothening-It is a step in data cleaning that further removes noise from the 

data. The typical techniques used for this purpose are binning (equi-depth, equi- 

width, or adaptive), regression, and unsupervised clustering.

(ii) Aggregation-The data is gathered together into a whole and/or summarized in a 

data warehouse. This process helps to construct the data cube necessary for the 

analysis of the data.
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(iii)Generalization-It involves the concept of hierarchy, where the raw data is 

structured according to conceptual level and at various different levels of 

abstraction.

(iv)Normalization-The attributes of the data are scaled to fall within a small, 

specified range, to reach a level of standardization for comparison purposes. 

Types of normalization are min-max normalization, z-score normalization, and 

normalization by decimal scaling.

(v) Attribute/Feature Construction-New attributes or features are constructed from 

the modified dataset and added to the information to further assist the mining 

process. An example of such a transformation is FFT (Fast Fourier 

Transformation).

(4) Data Mining-The actual analysis step. It involves clustering, classification, 

prediction, and association rule mining aimed to derive meaningful information about 

correlations in the dataset. In this step the preprocessed and transformed data is further 

transformed or compressed (dimensionality reduction in multi-dimensional space) in 

order to identify any valuable nuggets of information.

(5) Data Interpretation and Evaluation-After the algorithms generate the results, they are 

analyzed to discover any additional domain knowledge and determine the relative 

importance of the facts generated. These results may also provide certain interesting 

patterns, which can be used to support further scientific decision-making. Results will 

also serve as feedback for any additional iteration of the data mining process, to serve 

as a self-simulated learning computational framework.
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2.1.1.2 Challenging issues in data mining

Data mining technology encompasses several challenges, originating from the 

data domain, knowledge discovery routine employed, and expected results [10], some of 

which are discussed below.

1. Handling diverse databases

Relational databases are widely employed for the development of efficient and effective 

data mining systems. Aside from these, the most common kinds of databases are 

transaction, object-oriented, deductive, spatial, temporal, multimedia, heterogeneous, 

active, legacy, and the internet information databases. These databases each contain 

different types of data and require the construction of specific data mining systems to 

mine them successfully.

2. Efficiency and scalability o f data mining algorithms

In order to effectively extract information from the high magnitude data in datasets, 

mining algorithms must be efficient and scalable.

3. Usefulness and certainty o f data mining results

Knowledge discovered should describe the contents o f the database accurately and 

prove useful for desired applications. Any imperfection in modeling should be 

expressed by measures of uncertainty in the form of approximate or quantitative rules.

4. Various expressions o f results

Different kinds of knowledge can be unearthed from different databases. One may also 

attempt to examine discovered knowledge from different perspectives or present it in 

various forms. Therefore, it is necessary to express both the queries and discovered 

knowledge in high-level languages or visual forms.
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5. Interactive knowledge mining at multiple abstraction levels 

It is difficult to determine what kind of inherent patterns and correlations lie within 

databases. However, data mining still seeks to discover this embedded knowledge. 

Therefore, data mining processes should be interactive. They should allow a user to 

interactively refine a data-mining query and dynamically change data focusing; in 

short, to progressively deepen the data mining process by allowing flexible viewing of 

mining results at multiple abstraction levels and from manifold perspectives.

6. Protection o f privacy and data security 

When data can be viewed from many different angles and abstraction levels, the goal of 

ensuring data security against invasion of privacy is threatened (e.g., when dealing with 

patient medical records). It has become increasingly important, now more now than 

ever, to study, analyze, and increase both public and scientific awareness of the types of 

knowledge discovery activities, which may possibly lead to an invasion of privacy and 

security of information. Consequently, this need has led to several national and 

international consortium efforts in implementing policies and laws for preservation of 

privacy and addressing end-user concerns with data mining on sensitive data.

2.1.2 Data Mining Techniques

There are numerous, widely used data mining techniques, but each is traditionally 

carried out as an independent process. These techniques include, but are not limited to 

classification, clustering, and association rule mining.

2.1.2.1 Classification

Classification involves constructing a function that maps data items into one of 

several predefined categories. It is a two step process. In the first step a model is built
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which predetermines a set of data classes or concepts. Creating these classes usually 

requires the input of labeled training data. The training dataset is usually only a small 

portion of the dataset, but it is treated as a microcosm of the whole and used to develop 

an accurate model for the characterization of classes in the entire dataset. Once a class 

model is developed, incoming data is filtered through this model and classified among 

other objects sharing similar characteristics. Since the class label of each training sample 

is already provided, this step is also known as supervised learning (the algorithm is aware 

of the class labels of each of the training samples).

2.1.2.2 Clustering

Clustering is a process of grouping the data into classes or clusters of data such that 

the members share a common set of characteristics. It is similar to classification, except 

that it is an unsupervised method and no labels are used. The basic characteristic of all 

clustering algorithms is the maximization of intra-cluster similarity and minimization of 

inter-cluster similarity. For example, a commercial bank that desires to group customers 

according to income, age, type of account, and loans claimed could use clustering. The 

clustering algorithm would divide the dataset so that the records, which have similar 

content, are grouped together while simultaneously ensuring that groups are as different 

from one another as possible. Since the categories are unspecified, clustering is 

sometimes referred to as unsupervised learning.

2.1.2.3 Association rule mining

We have applied Association rule to the input dataset obtained from BROAD- 

MIT. This dataset matrix d = (S,y) is organized into samples, S. as rows and genes, £  as

columns of the matrix. Thus, we consider a triple (5 , S, 0) defined as follows:
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d = (dy) where, 1 < j  <n and 1 < i < m ,

S  = {St | St is a row of d and 1 < i < m }, #  = {G ■ | G ■ is a column of 9 and 1 < j  <n} .

For each sample, S i , we define the indicator of S, to be

W (^ ):= { ( ij) |a .. =1}; 

and, for each gene, Gj, and for each set X of genes, X c  we define the present sets

of G, I S , , Gj and X as follows:j  i I J

present(Gj \ £,-) := (j) ifdy = 0 ; {i} if dy= 1,

m
present(Gy) := present(Gj \ S t), and

/=i

present(X) := present(Gj) .
G j e X

We also define for some index set, I, and some set of samples, {St \ i e /} , the present set 

of X given {St | i e l }  as follows:

present(X  | {£,• | i e /} := [J present(Gy \ St).
i e l
G j e X

For X c  we define support of X to be,

s(X)  := number of elements of present(X \ {51, | i e I)

For disjoint subsets X and Y of we write X  => Y to indicate that X  n  Y = 0  and 

present(X) c= present(Y). We refer to X  => Y as an Association Rule. An Association 

rule has a support, s(X  => 7), defined to be,

s(X  =>Y):=#{i | present(X \ {Si | i e / } ) c  present(Y | {S',. | z e /})}. 

Finally, we define the confidence of X  => F as follows:
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This problem of Association rule mining in knowledge discovery applications was 

introduced by Agrawal et al. in [11].

2.2 Bioinformatics

Bioinformatics is the science of employing informatics technologies to biological 

and biomedical datasets to enhance knowledge discovery in both biology and computer 

science. Techniques running the gamut of mathematics, informatics, statistics, and 

computer science are strategically combined to solve biological problems. Rapid 

expansion of genome sequence databases, which includes the human genome database 

and other large datasets, resulting from high-throughput experiments, involving DNA and 

other biomolecules have generated enormous amounts of genomic data. Consequently, 

various computational technologies have been developed to cope with the computational 

interpretation of this surge of sequence information. The term bioinformatics was 

introduced in the mid-1980's and was to broadly associated with computer applications 

that were used in the biological sciences. However, bioinformatics is now referred to as 

the science of managing, mining, and interpreting information from biological entities. 

Major research efforts in the fields related to genomics include, but are not limited to, 

gene finding, protein structure alignment and prediction, and the prediction of gene 

expression. The following section will briefly discuss each of these fields.

2.2.1 Gene Expression Analysis

As discussed in Chapter 1, gene expression begins with transcription and 

translation and is followed by protein folding. The expression level of a gene describes
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the level of gene activity in the requisite tissue under scrutuinization. For example, gene 

expression analysis in human cancer tissues pertains to measure the mRNA responses of 

variety of genes present in the human genome and their flourescent intensities used to 

parametrize the expression value of that gene. However, such gene expression data 

(commonly known as the expression-matrix) is not fit for data analysis by itself. It is 

prone to several noisy errors, essentially due to the limitations of the data eaquisition 

equipment and the estimating tools (microarrays and their supporting routines). Hence, 

there is a need for design and implemnetation of novel data mining methodologies that 

can analyze this data for noise-reduction, feature selection, dimensionality reduction, 

unsupervised classification or clustering, knowledge integration, knowledge 

representation and interpretation, and data visualization. Most of the gene expression 

databases suffer from what is called “small-n large-p” problem, which refer to the fact 

that commonly, number of (tissue) samples in such databases (n) are far fewer (usually in 

small hundreds) compared to number o f genes present (p). Consequently, such analysis 

can present valuable information on the physiology of many genetic diseases, such as 

cancer, by providing invaluable information about active pathways and upregulated 

proteins that participate in relevant metabolic activities.

2.2.2 Protein Structure Prediction

Protein structure prediction is another important application of bioinformatics. It 

aims to determine the three dimensional structure of proteins from their amino acid 

sequences. The amino acid sequence, called the primary structure, can be determined 

easily from the sequence of the gene that codes for it. However, the protein only 

functions properly if it is folded in a very specific and recognizable manner (the folding
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of the protein.) The prediction of folding from sequence alone is quite difficult. 

Functional characterization of a protein using amino acid composition and its electro

chemical properties poses several interesting data mining challenges, and several 

methods for computer predictions of protein folding are currently under development.

2.2.3 Homology in Gene Finding and 
Gene Function Prediction

Homology, the ability to have the same relation and relative position, is emerging 

as one of the important principles of bioinformatics and is attracting lot of interest. While 

it is considered one of the far most promising technologies that can reliably unravel the 

mysteries of the principle of central dogma of biology, the research in this area is far 

from complete. The principles of homology are applied both in the areas of genomics and 

proteonomics. In genomics, homology can predict a function of a gene by finding 

homologous behavior among gene patterns. A similar analogy can be found in predicting 

the function of proteins in structural biology: if two proteins tend to be homologous in 

terms of their core formation and interaction with other proteins, they will likely have 

similar function. So if the function of one protein is known, the functions of the other 

protein can be accurately estimated.

2.3 High Performance Computing (HPQ

Since the beginning of the computer revolution in mid-1980s, numerically 

intensive scientific computation has changed dramatically. The major changes have been 

introduced by increasing computational speed and memory availability, and 

improvements in the area of data acquisition and transfer (input/output devices.) 

Computationally intensive methods require high computing power. Personal computer
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processors, which form the processing core of most workstations and PCs, have been 

doubling in performance (approximately) every 18 months (in accordance with the 

Moore’s law). This enables several diversified applications which were previously run on 

legacy large-scale (such as mainframe) systems to operate on the new generation 

systems, thus making it much cheaper and faster to perform complex computational 

tasks.

Several bioinformatics challenges exist in the areas of gene expression mining, 

phyogenetic analysis, protein-protein interaction, metabolic pathway analysis and 

visualization, and protein functional prediction. Multiprocessor computing or rapid high 

performance computing (HPC) environments provide shared-memory and shared- 

computation environments that can disintegrate the analysis and interpretation of vast 

amounts of data in bioinformatics study for fast and accurate discovery. However, it 

should be noted that although uni-processor machines available today although do 

process improved computation capabilities, they typically fail to analyze such data of 

such kind due to its embedded high-dimensionality and complexity (a paradigm 

commonly known as the “curse of dimensionality”).

2.3.1 Overview of Technology

HPC covers a wide range of hardware platforms and software techniques, some of 

which are discussed below.

2.3.1.1 HPC hardware classification 
schemes

Three computer architectural classification schemes are presented in this section

[12]. Flynn’s taxonomy (1966) classified systems according to the number of instruction 

streams and data streams [13]. This system is a widely used scheme for parallel
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architectures. Hardware classification can also be based on shared memory and 

distributed memory architecture. These schemes are graphically represented as Figures

2.1 and 2.2, respectively.

SISD SIMD MISD MIMD

Single Multiple

Figure 2.1 Flynn’s Taxonomy

DistributedShared Memory

ClusterSymmetric Parallel Massively

Figure 2.2 HPC Classification based on hardware resources

While the hardware categories in Figure 2.2 show a more practical distinction 

between hardware that is useful in the current HPC trends, Flynn’s Taxonomy and Feng’s 

classification are based on the programming paradigm adopted on different architectures.

2.3.1.1.1 Flynn’s taxonomy

• Single Instruction, Single Data (SISD)-A single processor fetches the instructions 

and performs the data processing operations. Most serial computers common today 

work on this scheme.
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• Single Instruction, Multiple Data (SIMD)-A processor uses multiple data streams for 

a single instruction stream to perform operations that may be parallelized. The style 

of programming in SIMD machines is often called Data Parallel Programming. 

Examples of this type of machine are the Thinking Machines CM-2 and the old 

ICL/AMT Distributed Array Processor [14]. Some modem processors that 

intrinsically support SIMD instruction sets are velocity core in Apple G5 and Pentium 

MMX instructions.

• Multiple Instructions, Single Data (MISD)-Several processors operate on a single 

data stream, each with an instmction stream from its own instmction memory. This 

structure has received comparatively little attention; one example of a pipeline 

(MISD) system is CMU Warp.

• Multiple Instructions, Multiple Data (MIMD)-Several processors execute different 

instructions over different data streams. Processors can communicate directly or 

through shared memory. The instructions can be entirely different programs, 

communicating with each other by means of Message Passing Model [15]. 

Distributed architectures follow the MIMD model.

• An extension to this taxonomy is known as Single Program Multiple Data (SPMD) 

model, which describe most of the parallel computers of today. SPMD described as a 

variant of MIMD where multiple independent processors work on different data, but 

execute the same instruction set. The details of this model are covered in Chapter 3.

2.3.1.1.2 HPC model based on the
hardware resources

This section discusses the different categories of HPC hardware technology as

shown in Figure 2.1.
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• Shared Memory-A shared memory machine consists of a number of processors and 

memory modules interconnected by a network [16]. Shared memory is the fastest 

form of inter-process communication. Once the memory is mapped to the address 

space of the processes that are sharing the memory region, no kernel is involved in 

passing the data between the processes [17]. This architecture limitation is normally 

imposed by a processor count due to bus saturation. Shared memory architecture can 

be classified as follows: 

o Symmetric Multiprocessing/Bus-Based Architecture-The simplest inter

connection network is bus-based, as depicted in the following diagram (Figure 

2.3):

Bus

CPUCPU CPU

Cache
Cache

Cache

Main Memory

Figure 2.3 Bus-based shared memory architecture

The parallel nature of the machine is not overtly visible to the user, since the 

operating system manages the allocation of processor time to programs. In 

essence, this structure provides a timesharing, multi-tasking operating system, 

when scheduling programs to run. Each processor has its own dedicated cache 

memory but shares a common pool of main memory with the other processors.
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The drawback of this architecture is that, if multiple processors concurrently try 

to access the memory, the bus can become saturated, possibly resulting in long 

delays between starting an instruction and actually handling data. The bus is 

also the limiting factor for bandwidth so that this architecture does not scale to a 

large number of processors. SMP works well for large databases that are 

updated frequently; since the database is shared, it becomes easier to update 

[18]. Examples of SMP machines are Cray CS-6400, DEC AlphaServer, and 

Sun Enterprise Servers, 

o Non Uniform Memory Access (NUMA)/Switch-Based Architecture-Switch- 

based interconnection networks use a crossbar that can be visualized as a 

rectangular mesh of wires with switches at the points of intersection and 

terminals on its left and top edges. Either processors or memory modules can be 

connected to the perimeter terminals. The switches can either allow a signal to 

pass through in both the vertical and horizontal directions simultaneously, or 

they can redirect a signal vertical to horizontal or vice versa, allowing any 

memory module to be accessed by any processor. The benefit of this approach 

is that the communication between any two units does not interfere with 

communication between others. Hence, the crossbar switches don’t suffer from 

the problems of saturation encountered in a bus-based architecture. One major 

drawback is that crossbar switches tends to be expensive (an m x« crossbar will 

need m x n  hardware switches). A diagram of a crossbar is shown in Figure 2.4.
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CPU

CPU

Switch

MemoryMemory Memory

Figure 2.4 Crossbar Switch

• Parallel Vector Processing-Parallel Vector Processing (PVP) machines are special 

cases of SMP systems using a specialized shared memory model. While SMPs 

use commodity scalar or superscalar RISC processors, PVP systems use custom 

designed vector processors, denoted as registers, which have specially designed 

memory areas (and example of the setup is shown in Figure 2.5). Since it 

performs operations with vectors, all components are dealt with simultaneously 

on different ALU’s. As a result, vector processors are much faster than traditional 

scalar processors. This combination of powerful custom processors and SMP 

architecture makes PVP systems some of the fastest computers available. In PVP 

systems, like SMP systems, the use of shared memory allows the multi-processor 

nature to be hidden from the user by the operating system. Typical PVP systems 

contain between 2 and 32 processors. Examples of PVP machines include Cray 

J90/C90/T90 Series and NEC SX-4 Series [14].
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CPUCPUCPU

Vector VectorVector

Main Memory

Figure 2.5 Parallel Vector Processor (PVP)

• Massively Parallel Processing-Massively Parallel Processing (MPP) machines are a 

form of high performance computing systems that are able to use hundreds or 

thousands of CPUs simultaneously. The CPUs are relatively inexpensive distributed 

memory processors connected together with custom designed, fast interconnects. The 

main difference between MPP and SMP systems is that the former use fully 

distributed memory, where each processor has its own cache and memory chips [19]. 

In case of MMP systems, when a query is sent, software breaks it up so that each 

processor runs a different part of the problem, making the response time very fast. 

MMP systems do not have any bottleneck problems when all the CPUs try to access 

the same area of memory, which is inherent in SMP systems. In MPP systems, 

memory is distributed to each processor as shown in the Figure 2.6, so that 

connecting large numbers of processors together is less difficult as compared to an 

SMP system. Available memory and enhanced scalability makes MPPs one of the 

most powerful computers available today. Examples of MPP systems are Cray T3D
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and T3E systems and IBM SP/2 systems; all are an interconnecting network of 

parallel processors with self-contained cache and memory. Till 1997, the largest MPP 

configuration was the Intel/Sandia Option Red with 9216 processors.

CPU

CPUCPU

CPU

Cache

Cache

Cache

Cache

Memory

Memory

Memory

Memory

Figure 2.6 MPP
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• Cluster Computing-Only a few years ago, HPC was prohibitively expensive. 

However, today a modest parallel computing system can be built using commodity 

off the shelf (COTS) components (workstations and PCs) and a local area network 

(LAN). A cluster is a group of loosely coupled computers that works together such 

that it appears as if it were a single computer. Generally, when two or more 

computers work together to solve a problem, it is considered a cluster. These clusters 

of computers are used for high availability (HA) and high performance and extend the 

potential of their existing computing resources to tackle large scale, computationally 

intensive problems. The cluster-computing model is based on a distributed memory 

parallel architecture. PVM (Parallel Virtual Machine) and MPI (Message Passing 

Interface1) are popular parallel programming frameworks that turn a network of 

computers into a virtual parallel computer. They provide two important functions 

[14]: initializing commands to start a parallel application running on multiple 

computers, and a library of run-time routines to enable parallel applications to 

transfer data between computers.

Each machine in a cluster can be a full-fledged system, usable for wide range 

of computing applications. Replacing a faulty machine in a cluster is easier than 

fixing a part of SMP at fault. Clusters are set up systematically and strategically to 

enhance speed and/or reliability over that provided by a single computer, while 

typically being much more cost-effective than a single computer of comparable speed 

or reliability. Clusters can be categorized into the following types: high avalibility

1 http: //w w w -unix.m c s . anl. gov/m pi/
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(HA), load balancing, HPC clusters, and grid computing clusters.

As an example, the Borg is a 52 node cluster used by McGill University to 

search for pulsations from binary pulsars. With evolutional friendliness and cost 

effectiveness, COTS-based clusters have become the architecture of choice for HPC 

applications. Figure 2.7 shows the statistics provided by top500.org in November 

2005, more than 70% of the 500 most powerful systems are cluster based.

, • 5 0 0 '  A rch itectu res / S y s tem s
*'** v6 November 2005

MPP (20.8*y| ' '

C onstellations  (7 2%)\

.......
CAfl 1 'T.’LLiL   _   ‘ t    h t tp  f f y t o p S U n  ort^j

Figure 2.7 Percentage of computer systems employed based on architecture2

2.3.1.1.3 HPC software technology

The decade has witnessed the explosive growth of software standards for HPC 

applications, making portable and reusable HPC applications a reality [20]. Major 

software techniques and standards in the area of parallel HPC include

• Shared memory and standard high performance programming; Fortran (HPF) for 

rapid parallel development, UPC/Global Array and OpenMP.

2 Source: http://w w w .top500.org/lists/2005/! 1/1/Architectures
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• Message passing programming (MPI), which is an inter-processor communication 

standard [14] for flexible efficient applications.

• Data Parallel Programming-The architecture-independent parallel programming is 

possible by programs written in high-level SIMD programming languages, which 

may be compiled on both shared memory and distributed memory multiprocessors. 

Data parallel programming is focused in developing parallelism strategies to large 

data sets and distributing data over the available processors using a “divide and 

conquer” method, data parallel programming comes in handy when the operations are 

performed on the distributed data subsets that may or may not involve dependencies 

(knowledge integration routines discover and exploit the dependencies in distributed 

datasets), and the application exhibits data locality for computational purposes. The 

basic idea of data parallel languages is that the user does not explicitly specify the 

inherent parallelism in the program but annotates the program with directives on how 

to distribute the data and from there on the compiler takes the charge [18]. However, 

the compiler can never know as much of the application as the programmer does, 

hence as parallel problems gets complex, data parallel compilers generates less 

efficient code [20]. This is the drawback of the data parallel programming approach. 

Two technologies [14] that fall under the umbrella of data parallel programming are 

high performance Fortran and shared memory programming.

o High Performance Fortran-Fortran has been a very popular language in the past, 

especially in the fields of engineering and science. Around 1993, the Fortran 90 

standard extended Fortran 77 to include operations on whole vectors and arrays. 

This feature was a breakthrough towards High Performance Fortran (HPF), which
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is an extension of Fortran 90 [14]. HPF is an extension of Fortran 90 by supplying 

data for parallel constructs and adding directives to let the compiler know, on how 

to distribute the data and to provide assertions so as to enhance the optimization 

of the code being generated. Since the introduction of high performance fortran 

language specification, there has been a great interest in HPF as a language for 

efficient parallel computation. Some of the features include data distribution, data 

parallel execution, and extended library functions. HPF applies much of its 

functionality through compiler directives by giving a single program, which 

includes the directives for data distribution and program assertions that identify 

which loops to parallelize, 

o Shared Memory Programming-As the name suggests, it is the memory that the 

processors can share to communicate with each other. It creates a sense of 

abstraction to the user as it provides the view of the memory similar to the uni

processor. In the shared memory style of programming, the tasks of the program 

read and write from the memory. The access to the shared data is controlled by 

the programmer using critical sections and semaphores. This is the way in which 

parallel tasks, running on multi-processor, coordinate and communicate with each 

other. OpenMP is the industry standard API for shared memory programming 

[21]. It supports parallel programming in C/C++ and Fortran and can run on Unix 

and Windows platforms. Standardization for OpenMP ANSI X3H5 was proposed 

earlier, but it was not formally adopted. The drawback of shared memory 

programming is that it creates contention and coherency problems.
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o Message Passing Programming -  In a parallel program a task can be solved when 

the processes communicate with each other to solve a common task at hand. In 

the message passing model, the tasks are completed by the processes by explicitly 

sending messages to each other. The programmer has to explicitly specify how 

these tasks will synchronize and communicate with each other. Message passing 

systems (MPSs) simplify the communication between more than two programs 

and are not restricted to distributed memory computers alone but provide 

communication between any machines that have multiple processors. The current 

version of MPI assumes that processes are allocated statically, which means that 

the number of processes is set initially before the execution begins, and no 

additional processes are created during the execution. The two specific examples 

of the message passing model are the web services and the Internet. The two most 

common message passing systems are message passing interface (MPI) and 

parallel virtual machine (PVM). 

o Message Passing Interface-This section has been covered in detail in Chapter 3. 

o Parallel Virtual Machine-During 1989, the first version of PVM was written at 

Oak Ridge National Lab in the U.S. It was developed by University of Tennessee, 

Oak Ridge National Lab and Emory University. It was originally designed to 

operate on heterogeneous collection of Unix/Windows workstations and has 

important features for supporting applications in such environments. The software 

is very portable. From its cluster-oriented beginnings, PVM has been ported onto 

SMP and MPP systems. It is a common choice for the MPP systems. It consists of 

two parts: a daemon process that any user can install on a machine, and a user
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library that has routines for initiating processes on other machines. Both parts are 

designed for communication among processes and changing the configuration of 

machines.

There are three different variants o f PVM available for users, namely 

vanilla PVM, MPP PVM and Bproc PVM [22], In vanilla PVM, the daemons 

should ran on each cluster while in MPP PVM the daemon runs only on the main 

node. Bproc PVM is available for cluster systems which use the Scyld Beowulf 

cluster operating system. The feature of PVM that makes it different from MPI is 

dynamic process management, which is the ability to create and destroy processes 

during the lifetime of an application. In MPI this is a higher level feature than the 

type of functions generally defined. PVM and MPI are different solutions to the 

same problem. For further information regarding the difference between MPI and 

PVM, the readers are referred to [23].

2.4 Benefits

To process and extract information from the gene expression data is 

computationally expensive, as it requires intensive numerical operations. Analysis of 

such high dimensional data makes it impractical to solve these computations on a uni

processor machine. HPC provides an optimal price/performance ratio when dealing with 

high dimensional data. It makes the computations faster and distributing the data on 

various processor nodes only makes the analysis and interpretation of such data easier.

2.5 Methodology

The proposed computational paradigm is presented in Figure 2.8 and was 

introduced in [24]. The framework consists of the following key computational steps:
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Figure 2.8: The proposed computational framework for distributed knowledge discovery

(a) Preprocess, normalize, and discretize the gene expression data. The data thus 

obtained is in the standard input format required by the association rule discovery 

(ARD) algorithm.

(b) Partition the data using three proposed methods: partitioning with non-overlapped 

windows, partitioning with overlapped windows, and partitioning employing the 

method of adaptive selection.

(c) Dispatch the partitioned components of the expression matrix to distributed 

processor-nodes for fast and accurate Association Rule Discovery using the 

message passing interface. We have applied the FP-growth [25] algorithm for the 

association rule discovery.

(d) Integrate association rules from partitioned data and knowledge spaces on 

distributed processor nodes using a novel knowledge integration algorithm named 

Genesetmining.
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(e) Post analysis of the result and its interpretation.

We describe each of the above processes in the subsequent chapters.
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CHAPTER 3

DATA PARTITIONING

3.1 Target Database

As our target gene expression dataset, we took the global cancer maps (GCM) as 

reported in [26]. The raw dataset consists of a total of 314 tumor and 98 normal tissue 

samples, out of which 218 tumor and 90 normal tissue samples passed the quality control 

criteria of the referenced authors. Only the samples that passed quality control criteria 

were used for our analysis, leaving tumor samples representing 14 common classes of 

human cancer. These samples and their corresponding gene expression values as reported 

in [26] provide the experimental results from oligonucleotide microarrays containing 

16,063 probe sets scanned using standard Affymetrix protocols and scanners1. For further 

analysis, each probe set was considered as a separate gene. The resulting dataset 

contained 5 million (approximately) gene expression values that are further divided into 

training and a testing datasets.

3.2 Preprocessing of Expression Data

Due to its inherent noise, gene expression data requires preprocessing before 

employing knowledge discovery applications. Preprocessing streamlines and clarifies the

1 The dataset is available from: http://www.broad.mit.edu/cgi-bin/publications/list pubs.cgi.

39
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data through the following steps: (a) a threshold of 20 units and a ceiling of 16,000 units 

are imposed on the dataset using clip values to min/max filter, (b) gene expression values 

are subjected to a variation filter that excluded genes exhibiting less than a 5-fold 

variation and an absolute variation across samples of less than 500 (comparing max/min 

and max-min with predefined values and excluding genes not satisfying both conditions), 

and (c) standardizing each row (gene) using z-score normalization. The dataset remaining 

after preprocessing contains 10,887 genes and 127 samples. It should be noted that the 

elimination of genes with less than 5-fold variation is not expected to exclude many 

marker (onco-) genes, for low expression folds are usually associated with housekeeping 

genes [27] uninteresting to this study.

The samples and genes represent rows and columns in the dataset, respectively, 

and their intersection consists of normalized gene expression values. Consequently, a 

gene may either be expressed or repressed in a particular sample, necessitating 

description using a two-attribute set. Each gene is computationally transformed and 

represented by two items: gene-up (up-expression of the gene) and gene-down (down- 

expression of the gene). If a gene has a value greater than 0, then the flagged attribute 

“gene-up” is set to 1 and “gene-down” is set to 0; on the other hand, if a gene has a value 

less than 1, then the flagged attribute “gene-down” is set to 1 and “gene-up” is set to 0. 

This method of denotation models the conditions of the original dataset where a positive 

expression value indicates that the gene is (over-) expressed while a negative value 

indicates that the gene is repressed. Though we have increased the total number of data 

points two fold (10,887 x 2 = 21,774), the total number of genes in any sample remains 

unchanged. Figure 3.1 illustrates the discretization of the initial dataset.
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samplel samplel samplel sampled sampleS sampled
genel 1.030 -2.600 1.850 -0.236 -0.750 8.980
gene2 1.660 -0.440 1.480 1.810 0.900 -0.450
gene3 -0.650 2.500 -0.980 -0.450 -0.430 0.005
gene4 0.616 -0.380 -0.525 -0.128 -0.658 1.080

D ataset After Discretization

g e n e lu p g e n e ld o w n gene2_up gene2_down gen el up g en e ld o w n gene4_up gene4_down
samplel 1 0 1 0 0 1 1 0
sample2 0 1 0 1 1 0 0 1
samplel 1 0 1 0 0 1 0 1
sample4 0 1 1 0 0 1 0 1
sample5 0 1 1 0 0 1 0 1
sampled 1 0 0 1 1 0 1 0

Figure 3.1: An example demonstrating the discretization of gene expression data

It may be noted that the characteristic of the above mentioned dataset can be 

described as a small n and large p problem [28], Because the resultant dataset is large in 

size, we harness the computational power of high performance computing by partitioning 

the dataset on various processor nodes and running the association rule discovery 

algorithm in parallel on the smaller, partitioned datasets.

3.3 Partitioning

A partition splits up a logical dataset or its constituent elements into distinct, 

independent parts. Partitioning a dataset into different files enhances the efficiency of 

effectiveness of the analysis procedures. There are two primary ways of partitioning a 

dataset: vertically and horizontally. Horizontal partitioning refers to splitting a large 

dataset into small entities row-wise. An example is shown in Figure 3.2.
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g en eljup g e n e ld o w n gene2_up gene2_down gene3_up gene3_down gene4_up gene4_down

| samplel 1 0 1 0 0 1 1 0 1
|  samplel 0 1 0 1 1 0 0 1 1
| sampleS 1 0 1 0 0 1 0 1 1

V Partition 1

r  — — — —
| sample4 0 1 1 0 0 1 0 1 1
| sampleS 0 1 1 0 0 1 0 1 1
| sampleb 1 0 0 l 1 0 1 o 1

Partition 2

|  sample7 1 0 0 1 0 1 0 1 I
|  sampleS 1 0 1 0 0 1 0 1 1
^  sample9 0 1 0 1 0 1 1 0 J

V Partition 3

Figure 3.2 Horizontal partitioning of a dataset

Vertical partitioning separates selected columns from a large dataset and handles

them individually. An example is shown in Figure 3.3.

genel_up geneljdown gene2_up gene2_down gene3_up gene3_down gene4_up gene4_down J
samplel 1 0 1 0 0 1 1 0 !
sample2 0 1 0 1 1 0 0 1
sampleS 1 0 1 0 0 1 0 1 i
sample4 0 1 1 0 0 1 0 1 i
sampleS 0 1 1 0 0 1 0 1 i
sample6 1 0 0 1 1 0 1 0 I
sample7 1 0 0 1 0 1 0 1 !
sample8 1 0 1 0 0 1 0 1
sample9 0 1 0 1 0 1 1 0

Figure 3.3 Vertical partitioning of a dataset

We partitioned the preprocessed dataset using the strategies described below, all 

of which are based on the vertical partitioning scheme.

3.3.1 Non-overlapping Vertical Partitioning

The dataset is divided into w windows in a non-overlapping fashion across the 

progression of the sample gene profile, where the number of windows is equal to the 

number of processor nodes available. Each generated window is then sent to each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

processor node for further analysis such that each node is responsible for exactly the 

same number of genes (equal to the width of the window sample). The total number of 

windows generated (processor load) is the ceiling N/w; where N  is the number of 

elements in the gene expression profile and w is the window size. Figure 3.3 

demonstrates the non overlapped technique, where the dataset is partitioned into two 

windows of equal sizes. The first window ranges from genel_up to gene2_down, while 

second window ranges from gene3_up to gene4_down. As demonstrated by the 

experimental results (provided in Chapter 6), this is an unsatisfactory approach for data 

partitioning. This judgment can also be justified intuitively: using this method, each 

partitioned dataset contains a set of non-overlapped genes. Running the FP-growth 

program on each processor-node generates rules relevant to that particular node (and its 

partitioned dataset). While knowledge integration has the capability of discovering inter

node correlations by exploiting intra-node associative measures, the lack of redundancy 

between distributed nodes inhibits the knowledge integration capabilities of our 

algorithm. In short, if  the dataset on each node does not overlap, there is no shared, 

common basis for comparison, thereby inhibiting inter-node correlations. Consequently, 

the associations among the genes residing on remote processor-nodes may remain 

undetected.

3.3.2 Overlapping Vertical “Partitioning”

The dataset is partitioned into w windows of equal sizes, with an overlap between 

consecutive windows. Again, the number of such windows should be equal to the number 

of processor nodes available. Thus, if the overlap is w -  1, then the resulting total number 

of windows is N  -  w + 1; where N  is the number of total data elements and w is the
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specified window size. Both the window size and the amount of overlap are specified by 

the user. Figure 3.4 shows the overlapped partitioning technique consisting of three 

overlapping windows of equal sizes. Window-1 ranges from genel_up to gene2_down, 

window-2 ranges from gene2_up to gene3_down and window-3 ranges from gene3_up to 

gene4_down. Comparisons of experimental results obtained by varying the window and 

overlap size are available in Chapter 6.

Window-3
Window-1

genel up genel down g e n e lu p  g e n d d o w n gene3_up genc.ldowi gene4_up gene4_down
samplel 
sample2 
sampleS 
sample4 
sampleS 
sample6 
sample 7 
sample8 
sample9

Window-2

Figure 3.4 Overlapped “partitioning” technique

3.3.3 Adaptive Selection 
(“partitioning” using k-means clustering)

Adaptive partitioning is achieved by the £-means clustering algorithm [29]. That 

is, the dataset is partitioned into ^-clusters using the jC-means processing algorithm. This 

algorithm creates the first k  initial clusters (where k is the number of clusters required) by 

choosing k rows of data randomly from the dataset. It then calculates the arithmetic mean 

of each cluster (the mean of all individual records) formed in the dataset. The degree 

deviation of each record from the center of the cluster is also calculated. If the deviation

is less than the threshold value lambda then the record is assigned to that cluster. Based
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on the threshold value, then, each record in the dataset could belong to more than one 

cluster, creating complex overlap among the records. The value of lambda is calculated 

by computing the Euclidean distance between x (x = 16) randomly selected records. The 

mean of the Euclidean distance determines the value of lambda. The ^-clusters so formed 

are then sent to k processor nodes. The computational complexity of sequential /c-means 

results in (3nkd + nk + nd) floating point operations [30]. Each addition, multiplication, 

or comparison is counted as one floating point operation. Here, n is the number of data 

points (genes), k  is the initial number of cluster centers selected, and d is the length of the 

record (profile).

A breakdown for the complexity of the floating point operations shows that each 

part accounts for the following action: 3nkd is the computation required to calculate the 

Euclidean distance of each record from the cluster center, nk computations are required to 

find the closest cluster center for each point, and nd computations are required to update 

the cluster centers. If these iterations run J  times, then the total complexity becomes, 

(3nkd + nk + nd) * J  floating point operations.

3.4 Results

In order to run the experiments, the original, preprocessed dataset was partitioned 

into sizes of 500, 1000, 1500, and 2000 genes per partitioned dataset using the non

overlapped partitioning scheme. Similarly, using the overlapped partitioning technique, 

the dataset was ranged into partition size from 500 to 1000 genes per partition in 100- 

gene increments. For each of the above partitions, the overlap is also ranged between 

50% and 95%, at an increment of 10%. The number of clusters (partitions) created using 

the method of adaptive selection is 8, 16, 32, and 48. The results obtained after the
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association rule discovery and knowledge integration on the partitioned datasets are 

discussed in the subsequent chapters.

For a comparative study, we applied a parallel version of the A:-means algorithm, 

based on the message passing model [31, 32] to provide a faster solution for the 

clustering of similar genes. Parallel k-means has been previously studied for very large 

database applications by [30, 33]. In particular, authors in [32] have examined the factors 

of speedup and scalability by varying the number of data points, dimensions, and clusters 

at various instances. It can be observed that the most computationally intensive step in 

the sequential k-means routine is the distance-from-center deviation of each record. The 

central idea in parallelizing the algorithm is to split the dataset among the processors to 

achieve faster computation. For small datasets, the time taken for communication among 

the processors is greater than the time taken for computation. It is important for any 

parallel algorithm to minimize the communication time between the processor nodes. 

Based on the above discussion, the design of the parallel k-means algorithm is as follows.

1. The process with ID “root” selects the initial k  cluster centers and broadcasts them 

to all the other processes.

2. Each process is only responsible for a portion of the dataset (number of data 

points/number of processes). Hence, each process computes the distance from the 

cluster centers for only its particular portion.

3. The points are assigned to the closest cluster center and the mean is recalculated.

4. This process is repeated for every cluster formed until the convergence criterion is 

met.
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The implementation of the parallel k-means algorithm is based on the single 

program multiple data (SPMD) model using the message passing interface (MPI).

3.5 The Message Passing Model

A typical message passing model is described as a set of processes, P, having 

local memory, that communicates by sending and receiving messages. The data transfer 

from the local memory of one process to the local memory of another requires 

cooperative operations (send data, receive data). Employing the SPMD paradigm of 

parallel programming, the same program is executed on each node, but on different 

datasets. Each processor node possesses a local copy of the executing program and each 

runs independently. Thus, the instruction streams running on each processor node can be 

completely different.

The message passing interface (MPI) is one of the most widely used standards for 

programm ing parallel systems. The interface attempts to be efficient, robust, practical, 

portable, and flexible. MPI was developed between 1992 and 1994 by a combined group 

of researchers from academia and industry. It consists of a library of functions that can be 

called from C/C++ or Fortran 77 programs. From a programmer’s stand point, the 

parallel computing using MPI is as follows. A programmer writes program in C/C++ or 

Fortran 77, compiles it and links it using the MPI library. The object code is loaded on 

the memory of every processor taking part in the computation, creating n parallel 

processes. Each process is assigned a rank between 0 and n -  1. Overall, MPI is a 

complex system consisting of 129 functions, each containing a number of parameters. 

The functions that were used in the parallel k  means algorithm are listed, with a 

corresponding description, in the chart below (Figure 3.5).
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M PI_Init() Starts M PI

M PI_Com m _size() D eterm ines num ber o f processes

M PI C om m _rank() D eterm ines th e  ran k  o f the calling  process

M PI_Bcast(m essage, root)
B roadcasts a  m essage from the process w ith rank  
"root" to all o ther processes o f  the group.

M PI_A llreduce(X , Y , M PI_SUM )
Com bines values from all processes and distribute the 
resu lt back to  all processes.

M PI_W tim e()
R eturns the tim e elapsed in  seconds to  the calling 
processor

M PI G et_processor_nam e() R eturns the processor’s nam e

M PI_Recv() Receives a m essage

M PI_Send() Sends a m essage

M P IF in a liz eQ Term inates M PI execution environm ent

Figure 3.5 MPI functions used in A:-means algorithm

3.6 Performance Analysis

The experiments were carried out on a cluster comprised of one head-node and 

three computing nodes. The head node is a dual Intel Xeon processor with a speed of 

2.8GHz and 1GB of RAM. The computing nodes are each 1.2GHz with 512MB of RAM. 

The MPI implementation is the LAM/MPI version 7.0. The dataset was partitioned using 

the adaptive selection technique by applying the serial X-means and Parallel £-means 

algorithms. In general, for sequential algorithms, the evaluation criterion is the 

correctness of the output. For parallel algorithms, the correctness of the output alone is 

not enough; a demonstrated decrease in execution time and increased ability to handle 

large amounts of data by using more processors is preferred. The two distinct 

characteristics of a parallel algorithm are speed-up and scale-up. The results for 

partitioning the dataset using the adaptive selection method are given below. We 

primarily examine the speed-up and scale-up characteristics as the dataset is partitioned.
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3.6.1 Varying k (number of clusters) and 
Recording Computational Time.

We recorded the computational time by varying the number of clusters (k) as 8,

16, and 24, where the number of processes was 3, 6, 9, and 12, respectively. The results

are shown in Figures 3.6-3.9.

H um ber of p ro c e sse s= 3

10 n

3 16 24 320

N um ber of c lu s te rs  =k

Figure 3.6 Shows the computational time for 3 processes and 8,16, and 24 clusters.

N u m b er o f  p r o e e s se s= 6

6.7522

2.8495

24 32

Num ber of c luste r s^k

Figure 3.7 Shows the computational time for 6 processes and 8, 16, and 24 clusters.
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Number of processes=9

6 5357

2.9435

24

H um ber of c lu ste r s=k

Figure 3.8 Shows the computational time for 9 processes and 8, 16, and 24 clusters.

Number of pro cesses-12

2.7695
- 1 .7907

24

H um ber of c lu ste r s^k

Figure 3.9 Shows the computational time for 12 processes with 8, 16, and 24 clusters.

It is evident from Figures 3.6 through 3.9 that as the number of clusters k  increase, 

the computational time to cluster the entire dataset increases. As discussed above, the 

computational complexity of the &-means algorithm is dominated by (3nkd)*J floating 

point operations. Thus, it is logical and expected that as the number of clusters increase, 

the time taken for computation also increases.
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3.6.2 Varying k (number of clusters! and 
Recording I/O Time

We recorded the I/O time by varying the number of clusters (k) as 8, 16, and 24,

where the number of processes was 3, 6, 9, and 12, respectively. The results are shown in

Figures 3.10-3.13.

Hum ber of p ro ce sses= 3
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Figure 3.10 Shows the I/O time for 3 processes with 8,16, and 24 clusters.
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Figure 3.11 Shows the I/O time for 6 processes with 8, 16, and 24 clusters.
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Figure 3.12 Shows the I/O time for 9 processes with 8, 16, and 24 clusters.
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Figure 3.13 Shows the I/O time for 12 processes with 8, 16, and 24 clusters.

From Figures 3.10 through 3.13 we observe that increasing the number of 

processes does not have any effect on the I/O time; rather, it remains practically the same 

for all tested numbers of processes.
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3.6.3 Varying n (number of processes) with 
Constant Number of Clusters, k

This experiment studies the scalability of the system by varying the number of

processes from 3 to 15 while computing 16 clusters in each case. Figure 3.14 shows the

scalability study graphically.

N u m b er o f  c liisters= 16

3 3608
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Num ber of p ro c e s s e s s = n  

Figure 3.14 Computational time for varying number of processors, but constant k

As demonstrated in Figure 3.14, the computation time decreases as the number of 

processes increases from 3 to 9. However, an increase in computational time occurred as 

the number of processes increased from 9 to 15. This increase in computational time can 

be attributed to thrashing. Thrashing occurs when excessive paging operations are taking 

place. In other words, numerous processes are competing for scarce memory resources. A 

system that is thrashing can be perceived as either very slow or even halted.
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CHAPTER 4 

MINING FREQUENT PATTERNS 

USING FP-GROWTH

4.1 Introduction

The partitioned datasets created in the fashion outlined in Chapter 3 are sent to the 

various processor-nodes using the message-passing interface. The association rule mining 

algorithm, namely FP-growth (Frequent Pattern Growth) [25], takes the partitioned 

dataset and the user specified minimum threshold as inputs to compute the frequent gene- 

sets on each processor node. Usually, association rule mining algorithms classify results 

based on the search strategy they use to find the frequent itemsets. FP-growth adopts a 

depth first search strategy, but the heart of this algorithm lies in the pre-processing step 

where FP-growth derives a highly condensed data structure to represent the original 

transaction data. The choice of algorithm FP-growth is based on the fact that it is 

currently one of the fastest techniques to mine frequent itemsets [34]. We will discuss in 

detail the FP-growth algorithm in this chapter.

Most previous research in the area of association rule mining was based on 

apriori-like algorithms which adopt a breadth first search strategy which can be 

decomposed into a two step process. The first step finds all frequent itemsets, each 

occurring at least as frequently as a threshold determined by the minimum support count.

54
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The second step generates strong association rules from the frequent itemsets by 

calculating the confidence of potential rules and selecting those with a confidence value 

that, again, meets a minimum threshold. Apriori-like algorithms iteratively obtain 

candidate itemsets of size (k+1) from the frequent itemsets of size k, so each iteration of 

candidate set generation requires scanning the database. As a result, this step becomes 

increasingly computationally intensive; the number of considered itemsets grows 

exponentially with respect to only linear growth of the number of items. Therefore, most 

of the previously developed research has focused on addressing the first step of the 

mining process. Han et al. in [25] introduced the FP-growth algorithm for mining 

frequent patterns. It achieves higher efficiency, and is nearly an order of magnitude faster 

than Apriori algorithm.

4.1.1 Pattern Generation Using FP-tree

The FP-growth algorithm uses a depth first search, a recursive process to generate 

frequent patterns from recurrent fragments. The algorithm follows these general steps:

1) The database is compressed into a much smaller data structure called the Frequent 

Pattern Tree (FP-tree). This data structure avoids costly repeated database scans.

2) FP-tree based mining method is developed.

3) The mining search technique employs a “divide and conquer” method that 

decomposes the problem into smaller tasks and reduces the search space 

dramatically.

It should be noted that since we have employed FP-growth to find frequent gene- 

sets from the gene expression dataset, the items refer to the genes and transactions are the 

samples. So the terms sample-space and transactions are used interchangeably.
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The FP-tree is a trie-like structure in which a bin is constructed for each level 

(depth-wise) at which item transactions may be similar. The FP-tree is generated based 

on the genes supported in the transaction database. Starting from frequent length-1 

pattern (as an initial suffix pattern), it examines only its conditional pattern base (a sub

database that consists of the set of frequent items co-occurring with the suffix pattern) 

[25]. For details regarding the conditional pattern base, refer to Section 4.1.1.2. From the 

conditional pattern base, a new, conditional FP-tree is generated. The two steps are 

repeated recursively such that pattern growth is achieved by concatenating the suffix 

patterns which result from each recursive step. The two following sub-sections elucidate 

this process, providing detailed examples.

4.1.1.1 Frequent pattern tree

FP-tree is a prefix tree representation, which is used for storing quantitative 

information about frequent patterns. The construction of an FP-tree is described as 

follows:

1) Root node of the tree is created and labeled as “null.”

2) For each transaction traversed, a branch is created and the gene within are 

processed in reverse order.

3) Each node is represented by three fields: gene-name, count, and node-link. Gene- 

name records which item this node represents; count records the number of 

transactions represented by the portion of the path reaching this node; node-link 

connects to the next node in the FP-tree carrying the same item-name, (when there 

is no node, node-link links to null). This results in a linked-list structure for nodes 

which have the same gene-name.
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4) Specifically, when considering the branches added for each transaction traversed, 

the count of each node along the common prefix is incremented by 1.

5) An item header table is built so that each item points to its occurrences in the tree 

via a chain of node-links.

The transactions are stored in a FP-tree according to descending support values. 

Since more frequently occurring items will be stored closer to the root and will have a 

greater chance of sharing the nodes, the FP-tree is reduced in size. Figure 4.1 shows the 

algorithm for the construction of FP-tree.

The preliminaries are defined in Chapter 2 under §2.1.2.3.

Input: The dataset d and a minimum support s(X  => Y)

Output: Frequent pattern tree, FP-tree.

Method: The FP-tree is constructed in the following steps.

1. Scan the dataset d once. Collect the set of frequent genes F  and their respective

support values. Sort F  in descending order as L, the list of ordered frequent

items.

2. Create the root of FP-tree T, and label it as null. For each sample St in d do the

following:

• Select and sort the frequent genes in S according to the order of L. Let the 
sorted frequent gene list in S be [p\P], where p  is the first element and P is 
the remaining list. Call insertjree ([p\P], T).

• The function insert_tree([p\P],T) is performed as follows. If T has a child 
N  such that N.gene-name = p.gene-name, then increment N. count, else 
create a new node N  and set N.gene-name = p.gene-name, and set N. count 
= 1, linked to its parent T  and its node-link structure. If P  is nonempty, call 
insert_tree(P, N) recursively.

Figure 4.1 FP-tree algorithm
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Let’s take an example of the sample-space (transaction) database, represented in Table 1.

Table 1 A snapshot of a sample-space database

Sample-space ID Genes

1001 § 6 ’ § 1 ’ § 3 ’ <§4’ § 7 ’ § 9 ’ § 1 3 ’ § 16

1002 § 1 5  § 2 ’ § 3 ’ § 6 ’ § 1 2 ’ § 1 3 ’ §  15

1003 § 2 ’ § 6 ’ § 8 ’ § 1 0 ’ § 1 5

1004 § 2  ’ § 3 ’ § 8 ’ § 1 1  ’ § 1 9 ’ § 1 6

1005 § 1 ’ § 6 ’ § 3 ’ § 5 ’ § 1 2 ’ § 1 6 ’ § 1 3 ’ § 14

With this defined structure of the algorithm (see Figure 4.1), we can construct a FP-tree 

given the support threshold of s(X  => y) = 3 and the sample-space database as defined in 

Table 1. With the first scan of the database we gather the list of frequent genes, i.e. 

{(g6:4), (g3:4), (g,:3), (g2:3), (g13:3), (g16:3)} in descending order. The number after 

the gene name indicates the support of a gene in the database. The genes are then sorted 

in each sample-space in descending order of frequency, as shown in Table 2.
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Table 2 Frequent gene-sets arranged in descending order after the first database scan

Sample-space ID Frequent Genes Ordered

1001 § 6 ’ § 3 ’ § 1 ’ § 1 3 ’ § 1 6

1002 § 6 ’ § 3 ’ § 1 ’ § 2 ’ § 1 3

1003 §  6 ’ §  2

1004 §  3 ’ §  2 ’ §  16

1005 § 6 ’ § 3 ’ § 1 ’ § 1 3 ’ § 1 6

In the above example, we can construct the FP-tree from the frequent genes. The 

root of the tree is labeled as null. The scan of the first sample-space accounts for the 

construction of first branch of the tree, with count of each node equal to 1. For the second 

sample-space (g 6, g 3, g x, g 2, g 13), it is observed that it shares a common prefix namely,

(g6, g 3, g ,), with the existing path (g6, g 3, g t , g 13, g 16), so the count for each node

along the prefix is incremented by 1. A new node (g2: 1) is created and is linked as the

child of (g2: 1). The third sample-space (g6, g 2) only shares a prefix (g6) with the

existing paths, g 6 ’s count is then incremented by 1 (for a total count of 3) and a new node

(g2:1) is created and linked as a child of (g6:3). Scanning the fourth sample-space leads

to the construction of the second branch of the tree, < (g3;1)> (§2:1)> (Sis-'1) ^  For the

final sample-space, the gene list (g6, g 3, g l5 g 13, g 16) is identical to the first sample-

space, so the path is shared and the count of each node along the path is incremented by

1. This process produces the following FP-tree shown in Figure 4.2.
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root

Header Table

Head of node linkItem-name

Sl6

Node link

Parent

Figure 4.2 FP-tree constructed from the sample-space database

In order to promote the tree traversal, an item header table is constructed in which 

each gene points to its occurrence in the tree via the head-of-node link. Nodes having the 

same item name are linked in sequence via such node links.

Based on the described algorithm, we observe that the database is scanned twice, 

the first scan collects the set of frequent genes, and the second scan constructs the FP- 

tree.

4.1.1.2 Mining frequent patterns 
using FP-tree.

To mine the FP-tree, the following algorithm is proposed. This algorithm is known as 

FP-growth. Let’s take the example from the previous section and the FP-tree in Figure
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4.1, where the minimum support threshold s(X  =̂> Y) is 3. For node p, we have a frequent 

pattern (g16:3) and two paths in the FP-tree: < ( g 6:4), (g3:3), (g3:3), (g13:2), (gI6:2) >

and < ( g 3:1), (g2:1), (g16:1) >. The first path suggests that (g6, g 3, g , , g 13, g 16) occurs

twice in the database. Although gene (g 6) appears four times, and (g 3) and (g j) both

appear three times, they only appear twice together with g 16 (in sample-spaces 1001 and

1005). We only consider g 16 ’s prefix paths of < ( g 6:2), (g3:2), (g, :2), (g13:2) > and < (

g 3:l), (g 2=l) . These two prefix paths form g | ̂  s conditional pattern base. Construction

of an FP-tree on this conditional pattern base leads to only one branch (g3:3). Hence only

one frequent pattern (g3, g 16) is derived and the search for frequent patterns associated

with p is terminated. An outline of this algorithm is provided below. The steps of this 

algorithm are shown below in pseudo code format in Figure 4.3.
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Input: FP-tree, minimum support threshold X

Output: The complete set of frequent patterns.

Method: Call FP-growth (FP-tree, null)

Procedure FP-growth (Tree, a) //a  is the suffix of the current FP-tree

{

if Tree contains a single path P 

then

for each combination (denoted as /3) of the nodes in the path P do 

generate pattern a  with support = minimum support of nodes in j3 

else

for each a (. in the header of Tree do

{ generate pattern = a . u  a  with support = a .support;

construct /3’s conditional pattern base and then /3’s conditional FP-tree 

if Tree

/3 * 0

then call FP-growth(Tree/3, j3)

Figure 4.3 FP-growth algorithm

4.2 Experimental Results

As mentioned in Chapter 3, our target dataset consists of 21,774 genes (items) and 

127 samples (sample-spaces). We partitioned the original dataset into partitions of sizes 

500, 1000, 1500, and 2000. The algorithm FP-growth was applied on each of these 

partitions with support values ranging from 80 to 90. We report the above experiments on
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the IBM p5-575 Supercomputer consisting of 14 CPUs, each having eight 1.9GHz 

Power5 processors (single chip with HPS interconnect) see Figure 4.4 to Figure 4.7.) 

Memory bandwidth is 16Gbytes/Chip.

With support 80

1200

1000

800

600

400

200

1000 2000500 1500

Number of partitions

Figure 4.4 Time to run FP-growth on partitions of sizes 500, 1000,1500, and 2000,
with support value 80

With support 85

250

200 - -

150 -

100 -

500 1000 1500

Number of partitions

2000

Figure 4.5 Time to run FP-growth on partitions of sizes 500,1000, 1500, and 2000,
with support value 85
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With support 90
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Figure 4.6 Time to run FP-growth on partitions of sizes 500,1000, 1500, and 2000,
with support value 90
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Figure 4.7 Comparison of the time taken to run FP-growth on varying partition sizes with
varying support values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

4.2.1 Complexity Analysis

Let the total number of samples be m, total number of genes be n and total 

number of processors be P. The FP-growth algorithm requires two scans of the database, 

in the first scan, frequent-1 gene-sets are obtained and the second scan is required to 

construct the FP-tree. The number of samples are, m « n , hence the complexity of the 

database scans is 0(n), where n is the size of the largest gene-set. The cost of inserting a 

sample into the FP-tree is 0(«).

By implementing a parallel version of FP-growth, we hope to reduce the total 

computation time by nearly a factor of P. With the proposed partitioning strategies we 

effectively divide n data points into P parts (each of size is n/P, except for the last part) 

and run FP-growth on each of these parts in parallel on a different processor. Let us

assume that P divides n. For a= 0,1,....................P-l, we assume that the process

identified by “a ” has access to the partitioned data {A(i),i= oft!(n/P)+l................. (a

+l)*n/P}. Each processor runs FP-growth algorithm in parallel. In this parallelization 

process, each processor node has to handle only n/P data points, while the number of 

samples remains same for each partition. Hence, the cost of inserting a sample into the 

FP-tree is O(n/P).

4.2.2 Discussion

It is observed that as the support value increases, the time to compute frequent 

gene-sets decreases because as the support threshold is lowered, the number and the 

length of frequent gene-sets increase drastically. As mentioned in Section 4.3.1, the cost 

of inserting a sample is 0(]n\), where \n\ is the number of frequent genes in a sample.
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It is also noted that as the number of partitions increase, the time taken to compute 

frequent gene-sets decreases. This is because the greater the number of partitions 

obtained from the original dataset, the fewer genes present in each sample-space. In 

addition, as noted above, the complexity depends on the number of frequent genes in the 

sample-spaces. However, the I/O time required to obtain each partition file is 

insignificant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5

INCREMENTAL UPDATE OF LARGE 

GENE-SETS

5.1 Introduction

Due to the large size of the dataset, it was partitioned and delegated to numerous 

processor nodes (see Chapter 3). The frequently occurring gene-sets were obtained by 

running FP growth on each node (see Chapter 4). The frequent gene-sets belonging to a 

particular partition reside on the particular processor node to which the partition 

belonged. In order for us to analyze, interpret, and mine the rules between inter-processor 

gene-sets, all rules must be collected on a single node.

A novel and efficient algorithm, Genesetmining, will be employed to merge the 

frequent gene-sets residing on various processor nodes while simultaneously eliminating 

those previously discovered. Mining association rules focuses on finding large gene-sets 

within the dataset from which association rules can be discovered. The challenge of 

incrementally updating association rules reduces to a problem of incrementally updating 

large gene-sets, where the first partitioned dataset becomes the old dataset while, the 

second partitioned dataset to be updated becomes the updated dataset.

This incremental update of gene-sets is similar to the problem of incrementally 

updating large itemsets in data mining when new transactions are added to the database. 

As the size of the database grows some previously discovered itemsets may no longer be
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of interest while previously discovered weak itemsets may become strong; hence it 

becomes important to update and evaluate itemsets as new transactions are added to the 

database. Here, we consider the frequent gene-sets on partitioni (the first partitioned 

dataset) as itemsets discovered from an original database; frequent gene-sets on partition2 

(the second partitioned dataset) will be treated as itemsets discovered from the 

incremental database. The Genesetmining algorithm is applied to update the frequent 

gene-sets.

5.2 Related Research

FUP, which stands for Fast Update [35] was the first incremental strategy 

proposed in this research area. This research compared results from FUP against 

traditional methods by running the Apriori algorithm and DHP (Direct Hashing and 

Pruning) on the updated database; FUP was found to be 2 to 16 times faster than re

running Apriori or DHP. Although it is an efficient algorithm, it faces performance 

overheads in the long run. FUP uses the concept of Apriori algorithms which require 

O(n) scans over both the old and the incremental databases (n is the size of the largest 

itemset). Thomas et al. proposed an approach [36] that identifies the large itemsets of the 

incremental database and scans the original database only if  the negative border of the 

large itemsets expands from that of the original database. In this case only one scan over 

the original database is required to find all large itemsets. Ezeife et al. has proposed two 

algorithms based on FP-tree structure, DB-Tree and PotFP-tree [37]. The DB-Tree is a 

generalized FP-tree that stores the support and count values of all the items in the 

database in descending order. Unlike FP-tree, which stores the frequent-1 itemsets, DB- 

Tree stores all items, hence it is much larger than a FP-tree while remaining smaller than
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the database since items share paths in the tree structure. When a transaction is added, it 

must scan the added transactions to update the tree structure. Like FP-tree, it requires two 

database scans for its construction. PotFP-tree algorithm reduces the number of database 

scans by using a prediction of future possible frequent itemsets when previous small 

itemsets become large after database update. DUP [38] scans the old database exactly 

once and provides flexible minimum support. It proposes a strategy to prune the 

candidate itemsets as early as possible during the course of discovery during knowledge 

integration. UWEP [39] makes a single pass over the old incremented database by using 

transaction id list intersections and has also proposed a prospective strategy to prune 

those itemsets that would no longer be large. The algorithms stated above requires two 

dataset files and a frequent itemset file generated from the old dataset as an input 

parameter, while they can scale only up to two datasets, a limitation that makes them 

unsuitable for our purposes here (our datasets are distributed across n nodes). Moreover, 

our proposed methodology requires only two frequent gene-sets files (that were 

generated, using the FP-Growth algorithm), considerably reducing the file parsing time. It 

scales up to n frequent gene-sets files, where n, is the number of processor nodes.

5.3 Methodology

The knowledge discovery process first finds the large gene-sets among the 

partitioned datasets that satisfy the specified support threshold. Their output is stored in 

the form of a frequent gene-sets (itemsets) file. It then, starts updating the frequent gene- 

sets thus obtained in the following manner. The pseudo code is as follows: 

i f  (mainnode)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

receive first gene-sets file; 

do {

receive gene-sets file; 

call Genesetmining

}

fo r  each additional gene-set

}

else II for child nodes 

{

call Fp-growth();

send gene-sets file; //to main node

}

This process continues until there is only one frequent gene-set file left, that is the 

file remaining after updating n-1 frequent gene-set files, where n is the number of 

frequent gene-set files created, after partitioning the dataset into n partitions.

5.4 Proposed Algorithm: Genesetminins

The Genesetmining algorithm discovers frequent gene-sets by using updates 

occurring in the form of new sample-spaces (transactions) to aggregate frequent gene- 

sets. Those gene-sets that become relatively small in the updated dataset should be 

removed from the previously garnered set of large gene-sets. New gene-sets, which were 

not large in the individual partitions but have become large in the updated dataset, should 

be inserted. This is the process by which the large gene-sets are established from partition 

to partition.
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Consequently, the fact that updating the datasets can introduce new rules and 

simultaneously invalid old ones complicates the incremental update of large gene-sets. 

The proposed algorithm, Genesetmining, efficiently updates the knowledge (large gene- 

sets) obtained from the partitioned datasets whenever the association rule mining 

algorithm is applied to them. The algorithm has the following key features:

1. It can be used for incremental updates when new genes are inserted in the dataset.

2. It can reduce search space: We apply a new technique to prune the candidate 

gene-sets as early as possible in our algorithm by scanning the first partitioned 

dataset only once. This enhances the efficiency of our algorithm.

This reduction of search-space could be useful for users to employ spatial data 

structures such as R-trees [40] or its variants [41] in improving the search performance of 

quantitative range queries. This algorithm can be used, for example, for knowledge 

discovery in market-basket data where sample-space information is inserted in a 

database. Genesetmining scans the first partitioned dataset exactly once. The frequent 

gene-sets in the second partition that are added to the dataset are considered an 

incremental sample-space set. The algorithm uses the frequent gene-sets discovered on 

both the partitions to ferret out large frequent gene-sets while eliminating those that no 

longer satisfy the new minimum support threshold. The two sets of large gene-sets are 

then combined to create the updated large gene-sets. Next, the resultant frequent gene- 

sets are updated with the large frequent gene-sets obtained on the third partitioned 

dataset, where the third partition now becomes the incremental sample-space set. We 

extend this approach to the n-processor nodes, containing n partitions of the original 

dataset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

The list of variables used in the Genesetmining algorithm is described in Table 3. 

Table 3 List of variables used in Genesetmining

Setfile-1 File containing frequent gene-sets on processor-node-1
Setfile-2 File containing frequent gene-sets on processor-node-2.
Setfile-n File containing frequent gene-sets on processor-node-n.
S. The number of samples in datafile-1 from which Setfilel is obtained.
s 2 The number of samples in the datafile-2 from which Setfile2 is obtained.
s S2+ Sx

G, The set of candidate gene-sets that meet the new minimum support found in Setfilel.
G  * The set of gene-sets that do not meet the new minimum support found in Setfilel.

g2 The set of candidate large gene-sets that meet the new minimum support in Setfile2.
Gkx The set of candidate large k gene-sets that meet the new minimum support in Setfilel.
Gk2 The set of candidate large k gene-sets that meet the new minimum support in Setfile2.
MINSUP 0 The minimum support for the FP-growth algorithm.
MINSUP The minimum support needed for updating the rules on processor nodes.
g. frequency , The count of the large gene-set g, where c belongs to G1 or Gl*.
g. frequency 2 The count of the large gene-set g, where c belongs to G2.
g.frequency2 The count of the large gene-set g, where c belongs to G2.

Statement 1

A gene-set can be large in Ouputfile (file that stores large gene-sets o f the 

integrated datasets), i f  and only i f  this gene-set is present in at least one o f the two 

frequent gene-sets file, Setfile-1 and Setfile-2.

Rationale: For the given minimum support value MINSUP, g  is a large gene-set in 

both Setfile-1 and Setfile-2, if  g. frequency >S x MINSUP. When Setjile-1 and Setfile-2

are updated, g. frequency x + g. frequency2 >( Sx x MINSUP + S2 x MINSUP). To find

out if g  is a large gene-set or not, we consider four scenarios:

• In order for g  to be a large gene-set in both Setfile-1 and Setfile-2,

g. frequencyx > SX x MINSUP and g.frequency2 >S2 x MINSUP.

• In order for g  to be a large gene-set in Setfile-1 but a small gene-set in Setfile-2, 

g. frequencyx > SX x MINSUP and g. frequency2 < S2 x MINSUP.
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• In order for g  to be a small gene-set in Setfile-1 but a large gene-set in Setfile-2, 

g.frequencyl < <S, x MINSUP and g.frequency2 >S2 x MINSUP.

• In order for g  to be a small gene-set in Setfile-1 and also a small gene-set in 

Setfile-2, g. frequency\ < Sx x MINSUP and g. frequency2 < S2 x MINSUP.

In the first case, g  is definitely a large gene-set in Setfile-1. In the fourth case, g  is clearly 

a small gene-set in Setfile-1 and Setfile-2. The second and third cases are instances where 

it is unclear if g  is a small or large gene-set, however, we can say that in order to have g  

as a large gene-set in Setfile-1 and Setfile-2 it must be a large gene-set in at least one of 

the two files.

It should be noted that since we have parallelized FP-Growth with the 

Genesetmining algorithm, the old minimum support, MINSUP and the new minimum 

support MINSUPo are the same minimum support provided at the time to run the FP- 

Growth and the Genesetmining algorithm. However, if we first run FP-Growth on a uni

processor machine and then use the frequent gene-sets obtained for knowledge 

integration, the new minimum support can be equal to or greater than the old minimum 

support provided to run the FP-Growth algorithm.

Statement. 2 Minimum support can be flexible

The new minimum support required when updating the partitioned datasets, 

MINSUP, can be equal to or greater than the old minimum support MINSUPo, used for  

finding frequent gene-sets on the partitioned nodes.

Rationale: When MINSUP >MINSUP0, the large gene-sets of Setfile-1 will all be 

included in the overall set of large gene-sets. Similarly, the large gene-sets of Setfile-2 are 

also included in the set of large gene-sets for a new minimum support. Therefore, it is a
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straightforward that we will not miss a candidate gene-set from either of the set files. 

Statement 3 Delete g

I f  g  is not a large gene-set in S, g should be deleted.

Rationale: Since g  is not a large gene-set in Setfdel, we can assume the following: g  

has the largest frequency that makes it a small gene-set in Setfilel. This case can be 

expressed as: Let p  = Sx x MINSUPo. If P is an integer, then let g. frequency, = p  - 1; 

otherwise, let g.frequency j = IN I  (p), which is the integer part of p. Update the count of 

g, g.frequency2 — g. frequencyx + g. frequency2. If g. frequency2 < S  x MINSUP; g 

cannot be a large gene-set in either of the Setfiles. Delete g  and all its children, which are 

supersets of g, from trie G2.

5.4.1 Genesetmining Algorithm

1. Frequent gene-sets are read from Setfilel and Setfile2. We keep the large gene-sets 

from Setfilel in two different tries (a tree like data structure, rooted downwards). One 

trie, Gx, stores the gene-sets that satisfy the new minimum support, which means 

g. frequency x >S , x MINSUP. The other trie, G, *, stores the gene-sets that do not 

satisfy the new minimum support, which means g. frequency x < Sx x MINSUP.

(G, * is maintained because it is likely that the large gene-sets in Setfile2 that are not 

present in G, can be seen in G, *. So the information in trie, Gx * might be useful to 

delete the gene-sets in G2.)

2. Scan the Setfile2 and keep all large-1 gene-sets obtained from it in S2.

O For all the 1-gene-sets g  belonging to Gl j , look up g  in S2.
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• If c belongs to S2, update its count as follows: g. frequency x = 

g. frequency x + g.frequency2. If g.frequency, < Sx MINSUP, delete g  and all

its children, which are supersets of g, from G1, and delete c from S2.

Otherwise, if g. frequencyx >Sx MINSUP, g  is sure to be large in both Setfilel 

and Setfile2. Mark g  as found  in G2. Output g  directly into the output file, 

Outputfile.

• If g <t S2, that is, if  g. frequencyx < S x MINSUP, delete g  and all its 

children, which are supersets of g, from G ,. Otherwise, if g. frequencyx >  

Fx MINSUP, g  is sure to be large in the whole dataset D. Output g  directly 

into the Outputfile. For all the frequent-1 gene-sets for which g  belongs to 

S2 and g g Gl j , look up g  in Gx *.

• If g  belongs to Gx *, update its count (g .frequency2 = g.frequency, + 

g. frequency2). If g.frequencyx < S  x MINSUP, delete g  from S2 and also 

delete g  and its children, which are supersets of g, from Gx *; otherwise, if 

g.frequency2 >S x MINSUP, g  is sure to be large in Setfilel and Setfile2. 

Mark g as found in S2, g as found. Output g  directly into the Outputfile.

• If g <£ Gx *, delete g  and all its children.

3. Set the initial value of k to 2. While G(k - 1)2 tNULL or Gkx tNULL, repeat step 4.

4. Get candidate Fgene-sets in the Setfile2.

O Scan Setfile2 once, for all gene-sets g  belonging to Gkx, update its 

count g. frequencyx.
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O Meanwhile, in the same scan, for all the A-gene-sets g  belonging to Gk2, look up g  

in Gkx.

• If g  belongs to Gkx, mark g  as found and let g.frequency 2 = g.frequency,.

• Otherwise, if  g <£ Gkx, merely update its count g.frequency2.

O When the scan ends, for all gene-sets g  belonging to Gkx,

• If g.frequencyx < S x MINSUP, delete g  and all its children, which are 

supersets of g, from G ,.

• Otherwise, ifg.frequencyx >S x MINSUP, g  is sure to be large in Setfile-1 

and Setfile-2. Output g  directly into the Outputfile.

O For all gene-sets c belonging to Gk2 and g  as found, which means g  belongs 

to Gkx, if g. frequency2 < Sx MINSUP, delete g  from Gk2.

O For all the ^-gene-sets g  belongs to Gk2 and eg Gkx, look up g  in G, *.

• If g  belongs to G, *, update its count (g. frequency2 = g. frequency, + 

g. frequency2). If g. frequency2 < S xMINSUP, delete g  from Gk2 and also 

delete g  and its children from Gx *; otherwise, if g. frequency2 >  Sx 

MINSUP, g  is sure to be large in the whole database T. Mark g  as found 

in Gk2 and output c directly into the Outputfile.

• If Gx *, delete G and all its children.

5. Scan the old database T0 once, for all the candidate gene-sets g  belonging to G2 and g

as found, update its count g. frequency 2. When the scan ends, if  g. frequency2 >S x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

MINSUP, the gene-set g  is a large gene-set of T, output g  directly into the Output file-, 

otherwise, if g. frequency2 < S  x MINSUP, delete g  and all its children from G2.

6. Rename Outputfile to Setfile-1 and the next frequent gene-sets file containing to 

Setfile-2.

7. Step 1 to Step 6 is repeated iteratively, until all the files containing frequent gene-sets 

on ^-processor nodes are integrated.

If the length of the candidate gene-set is k, it takes O(k) time to check if  the candidate 

gene-set is contained in the trie.

5.5 Results

As the frequent gene-sets are obtained by the FP-growth algorithm, 

Genesetmining integrates them. Figures 5.1-5.4, show the time taken to integrate the 

frequent gene-sets. This experiment was performed on the IBM p5-575 supercomputer. 

For details regarding the configuration, please refer to Chapter 4.

With support 80

'2  25 -  -

20  —

15 4

2000500 1000 1500

Number of partitions

Figure 5.1 Time taken to integrate partitions of sizes 500, 1000, 1500, and 2000 at
support threshold of 80
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Figure 5.2 Time taken to integrate partitions of sizes 500, 1000, 1500, and 2000 at
support threshold of 85
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Figure 5.3 Time taken to integrate partitions of sizes 500, 1000, 1500, and 2000 at
support threshold of 90
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Time taken to run Genesetmining
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Figure 5.4 Scalability of Genesetmining with support values of 80, 85, and 90

5.6 Complexity Analysis

For the Genesetmining algorithm, the complexity to read the frequent gene-sets is 

O(n.m), where n is the total number of genes and m is the total number of samples. Since, 

we use the data structure, trie to search, insert and delete a frequent gene-set, the number 

of steps required for the above processes is proportional to the number of genes making 

up the gene-set. The Genesetmining algorithm runs in parallel to update the frequent 

gene-sets, hence the complexity is O(n.logP).

5. 7 Discussion

From the graphs in §5.5 it is noted that, the greater the number of partitions 

created, the higher the time to integrate the frequent gene-sets. This is attributed to the 

I/O time required to obtain a frequent gene-set file and integrate it with the other frequent 

gene-set files. As the number of partitions increases, a larger number of frequent gene-set
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files are created requiring more time to integrate them. We also observe that increases in 

support value result in decreases in the time taken for the Genesetmining algorithm since 

a higher support value yields fewer frequent genes, resulting in smaller frequent gene-set 

files.
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CHAPTER 6

EXPERIMENTAL RESULTS AND ANALYSIS 

6.1 Introduction

This chapter provides a detailed description of the results of the performed 

experiments. These experiments employed an IBM p5-575 Supercomputer consisting of 

14 nodes, each having eight 1.9GHz Power5 processors (single chip with HPS 

interconnect). Memory bandwidth is 16Gbytes/Chip.

6.1.1 Non-Overlapped Partitions

The GCM dataset was divided into partitions of sizes 500, 1000, 1500, and 2000. 

Our experimental results reported, zero frequent gene-sets after performing knowledge 

integration through Genesetmining. This result is congruent with intuitive interpretation: 

each partitioned dataset contains a set of non-overlapped genes such that running the FP- 

growth program on each processor-node generates rules relevant only to that particular 

partitioned dataset. While knowledge integration has the capability to discover inter-node 

correlations by exploiting the intra-node associative measures, the lack of redundancy on 

the distributed nodes inhibit the effectiveness of the knowledge integration capabilities of 

our algorithm. Consequently, associations among genes residing on remote processor- 

nodes may remain undetected. Therefore, in this case we conclude that this is an 

unacceptable approach for data partitioning.

81
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6.1.2 Overlapped Partitions

In this section, overlapped partitioning technique is discussed in detail.

6.1.2.1 Relevant genes discovered versus 
degree of overlap

The GCM dataset was segmented into partitions ranging in size from 500 to 

1000 genes per partition at 100 gene increments. For each of the produced partitions, an 

overlap was specified varying between 50% and 95%, at an increment of 10%. An 

examination of the data/graphs (Table 4, 5/Figures 6.1-6.6) reveals that increasing the 

percentage of overlap results in the discovery of more relevant genes—those genes 

which are statistically significant in terms of gene-class correlations. However, 

reduction of overlap below 50% leads to a significant drop in the number of discovered 

genes. Also, the graphs (Figure 6.7-6.12) show that the rate of growth in the number of 

relevant gene discoveries decreases significantly with increasing overlap. For example, 

the transition from 50 to 60% overlap results in a 400+% increase in the number of 

discovered genes; however, transition above 90% results in only a 2.86% increase. 

Table 4 provides a detailed description of the number of relevant genes obtained by 

varying the overlap size. Table 5 shows the transitional changes in total number of 

relevant genes discovered for number of partitions versus degree of overlap.
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Table 4 Total number of relevant genes discovered for # of partitions versus degree of
overlap

Percentage of Overlap

Partition 
Size 

(# genes)
50% 60% 70% 80% 90% 95%

500 8 40 48 50 55 56
600 7 39 41 47 51 51
700 7 36 39 40 45 45
800 6 32 34 40 41 41
900 4 25 30 32 38 39
1000 3 19 29 33 35 36

Table 5 Transitional changes in total number of relevant genes discovered for # of
partitions versus degree of overlap

Percentage of Overlap
Partition 

Size 
(# genes)

50-60% 60-70% 70-80% 80-90% 90-95%

500 400.00% 20.00% 4.17% 10.00% 1.82%
600 457.14% 5.13% 14.63% 8.51% 0.00%
700 414.29% 8.33% 2.56% 12.50% 0.00%
800 433.33% 6.25% 17.65% 2.50% 0.00%
900 525.00% 20.00% 6.67% 18.75% 2.63%
1000 533.33% 52.63% 13.79% 6.06% 2.86%
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Number of Discovered Genes for Parition Size 500 vs. 
Varying Overlap

■D

100%80% 90%60% 70%50%

P ercen tage Overlap

Figure 6.1 Number of genes discovered for partition of size 500, varying the overlap
percentage

Number of Discovered Genes for Parition Size 600 vs. 
Varying Overlap
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Figure 6.2 Number of genes discovered for partition of size 600, varying the overlap
percentage
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Number of D iscovered G enes for Parition Size 700 
vs. Varying Overlap
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Figure 6.3 Number of genes discovered for partition of size 700, varying the overlap
percentage

Number of Discovered Genes for Parition Size 800 
vs. Varying Overlap
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Figure 6.4 Number of genes discovered for partition of size 800, varying the overlap
percentage
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Number of Discovered Genes for Parition Size 900 
vs. Varying Overlap
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Figure 6.5 Number of genes discovered for partition of size 900, varying the overlap
percentage

Number of Discovered Genes for Parition Size 1000 
vs. Varying Overlap
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Figure 6.6 Number of genes discovered for partition of size 1000, varying the overlap
percentage
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Transitional Changes for Total Number of Genes 
Discovered for Partition Size 500 vs. Varying Percentage

of Overlap
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Figure 6.7 Transitional change for total number of genes discovered for partition size of
500, varying percentage of overlap

Transitional C hanges for Total Number of G enes 
D iscovered for Partition Size 600 vs. Varying 
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Figure 6.8 Transitional change for total number of genes discovered for partition size of
600, varying percentage of overlap

100%
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Transitional Changes for Total Number of Genes Discovered 
for Partition Size 700 vs. Varying Percentage of Overlap
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Figure 6.9 Transitional change for total number of genes discovered for partition size of
700, varying percentage of overlap

Transitional C hanges for Total Number of G enes 
D iscovered for Partition Size 800 vs. Varying 
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Figure 6.10 Transitional change for total number of genes discovered for partition size
of 800, varying percentage of overlap
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Transitional C hanges for Total Number of G enes 
D iscovered for Partition Size 900 vs. Varying 

P ercen tage of Overlap
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Figure 6.11 Transitional change for total number of genes discovered for partition size
of 900, varying percentage of overlap

Transitional Changes for Total Number of Genes Discovered 
for Partition Size 1000 vs. Varying Percentage of Overlap
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Figure 6.12 Transitional change for total number of genes discovered for partition size
of 1000, varying percentage of overlap
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Discussion -- Figures 6.13 and 6.14 show the highest number of genes obtained per

class of cancer. With an overlap of 95% and a partition size of 500, the highest number

of genes were obtained for the lung, breast, leukemia, and renal classes; but no

significant genes were discovered in the colorectal and mesothelioma classes. When the

overlap was lowered to 90%, no significant genes from the colorectal, prostate, or

mesothelioma classes were obtained; however, the breast, leukemia, lung, and renal

classes still maintained the highest number of discovered genes.

6.1.2.2 Number of relevant genes discovered 
versus changing support

Next, we studied the number of relevant genes discovered by varying the 

support value from 60% to 95%, with a overlap varying between 70% and 90%. It is 

evident from the graphs in Figures 6.15-6.20 and Table 6 that increase in support value 

outputs fewer genes. For each of the partitions, an overlap varying between 50% and 

95% in 10% increments was used. Thus, increased overlap percentage uncovers more 

relevant genes. Figures 6.21 and 6.22 are the graphs of the information where the 

classes which yielded the maximum number of relevant genes discovered through 

overlapped partitioning scheme.
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Sample name
Number o f  genes discovered 

(80%ooverlap, partition size = 500)
Bladder 3
Breast 9

Leukemia 8
Lung 7

Colorectal 0
Lymphoma 5
Melanoma 4

Ovary 5
Pancreas 4
Prostate 2
Renal 9

Mesothelioma 0

Number of Gene Markers Discovered for Each Cancer Class

Cancer Class

Figure 6.13 Number of relevant genes discovered for each class of cancer, with a 
partition size of 500 with 80% overlap
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Sample name Number o f  genes discovered 
(90%overlap, partition size = 500)

Bladder 3

Breast 9

Leukemia 8

Lung 7

Colorectal 0

Lymphoma 5

Melanoma 4

Ovary 5

Pancreas 3

Prostate 0

Renal 9

Mesothelioma 0

Number of Gene Markers Discovered for Each Cancer Class

10

C a n c e r  C la ss

Figure 6.14 Number of relevant genes discovered for each class of cancer with a, 
partition size of 500 with 90% overlap
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Table 6 Varying support percentage with partition size and degree of overlap

Support Percentage (at 80% overlap)
Partition 

Size 
(# genes)

60% 70% 80% 85% 90% 95%

500 87 60 54 50 43 32
600 84 56 48 47 39 31
700 74 49 44 40 34 27
800 68 47 42 40 36 25
900 56 38 34 32 26 21
1000 58 40 36 33 23 17

Support Percentage (at 90% overlap)
Partition 

Size 
(# genes)

60% 70% 80% 85% 90% 95%

500 74 80 58 55 41 34
600 69 66 54 51 38 32
700 61 58 48 45 32 27
800 56 53 45 41 31 25
900 50 49 41 38 27 23
1000 46 44 37 35 25 22

Support Percentage (at 70% overlap)
Partition 

Size 
(# genes)

60% 70% 80% 85% 90% 95%

500 65 60 51 48 32 29
600 55 50 43 41 28 24
700 53 47 41 39 28 23
800 46 40 35 34 24 20
900 40 34 30 30 22 17
1000 38 32 28 29 21 14
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Number of Genes Discovered as a Function of Changing 
Support Values for Partition Sizes 500, 600, 700 (80% Overlap)
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Figure 6.15 Number of relevant genes discovered for changing support values, with 
partitions of sizes 500, 600, 700 at 80% overlap

Number of Genes Discovered as  a Function of Changing 
Support Values for Partition Sizes 800, 900,1000 (80% Overlap)
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Figure 6.16 Number of relevant genes discovered for changing support values, with 
partitions of sizes 800, 900, 1000 at 80% overlap
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Number of Genes Discovered as a Function of Changing 
Support Values for Partition Sizes 500,600,700 (90% Overlap)
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Figure 6.17 Number of relevant genes discovered for changing support values, with 
partitions of sizes 500, 600, 700 at 90% overlap

Number of Genes Discovered as a Function of Changing 
Support Values for Partition Sizes 800,900,1000 (90% Overlap)
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Figure 6.18 Number of relevant genes discovered for changing support values, with 
partitions of sizes 800, 900, 1000 at 90% overlap
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Number of Genes Discovered as a Function of Changing 
Support Values for Partition Sizes 500,600, 700 (70% Overlap)
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Figure 6.19 Number of relevant genes discovered for changing support values, with 
partitions of sizes 500, 600, 700 at 70% overlap

Number of Genes Discovered as a Function of Changing 
Support Values for Partition Sizes 800, 900,1000 (70% Overlap)
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Figure 6.20 Number of relevant genes discovered for changing support values, with 
partitions of sizes 800, 900, 1000 at 70% overlap
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Sample name
Number o f genes discovered 

(80%overlap, partition size = 500 and 
support 60%)

Bladder 7

Breast 9

Leukemia 8

Lung 5

Colorectal 6

Lymphoma 5

Melanoma 7

Ovary 9

Pancreas 8

Prostate 3

Renal 9

Mesothelioma 11

Number of Gene Markers Discovered for Each Cancer Class

O)

C l

Cancer Class

Figure 6.21 Number of genes discovered for each class of cancer, with a partition size 
of 500 with 80% overlap and 60% support
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Sample name
Number o f  genes discovered 

(80%overlap, partition size = 600 and 
support 60%)

Bladder 9

Breast 9

Leukemia 8

Lung 5

Colorectal 6

Lymphoma 5

Melanoma 7

Ovary 8

Pancreas 9

Prostate 2

Renal 10

Mesothelioma 6

Number of Gene Markers Discovered for Each Cancer Class

Cancer Class

Figure 6.22 Number of genes discovered for each class of cancer, with a partition size 
of 600 with 80% overlap and 60% support
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Discussion — Figures 6.21 and 6.22 are the graphs of the information where the 

classes which yielded the maximum number of relevant genes discovered through 

overlapped partitioning scheme. In Figure 6.21 the breast, leukemia, ovary, renal, and 

colorectal classes yielded the highest number of genes per class. Likewise, in Figure 

6.22 all the above classes, with the addition of the bladder class, yielded the highest 

number of genes.

6.2 Adaptive Partitioning

These results obtained through the adaptive partitioning technique demonstrate 

how much the discovery of relevant genes can vary with respect to the number of 

clusters used, as well as the value of distance threshold criterion (lambda). The 

introduction of lambda creates a level of redundancy by discovering overlapping 

clusters using the K-means clustering algorithm. This modified version of the original 

algorithm now allows us to discover non-disjointed clusters capable of sharing 

conditions (genes). A sample qualifies as part of a cluster if its distance from the 

current cluster center is less than or equal to lambda. Lowering lambda leads to the 

qualification of fewer genes as part of the cluster, thereby reporting fewer relevant 

genes in consequent results. The graphs in Figures 6.23-6.27, show that this paradigm 

holds true for diverse specification of cluster number. However, the rate of growth in 

the number of relevant genes is not linear and differs depending upon the number of 

clusters used. Specifically, the rate is steeper for higher numbers of clusters. This 

difference can be explained by the fact that relaxing the lambda criterion produces more 

clusters, in turn producing more cases of redundant genes, thereby increasing the rate of 

relevant gene discovery.
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Table 7 shows the total number of relevant genes discovered for varying number of 

clusters and the threshold parameter lambda respectively.

Table 7 Total number of relevant genes discovered for # of clusters
and varying lambda

Varying lambda
# o f

clusters 72 82 92 102 122

8 86 93 101 112 118
16 78 81 84 90 95
32 65 71 72 76 83
48 51 56 61 64 70

Number of Relevant Genes for 8 Clusters

130

8 120

1 100 
0)
0^ n r\«♦-O
<u
•Q
E3
Z

82 92 102 112 122 13262 72

Lambda Threshold

Figure 6.23 Number of relevant genes discovered for number of clusters = 8, with
varying lambda
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Number of Relevant Genes for 16 Clusters
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Figure 6.24 Number of relevant genes discovered for number of clusters =16, with
varying lambda

Number of Relevant Genes for 32 Clusters

5  80

102 112 122 132

Lambda Threshold

Figure 6.25 Number of relevant genes discovered for number of clusters = 32,
with varying lambda
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Figure 6.26 Number of relevant genes discovered for number of clusters = 48,
with varying lambda
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Figure 6.27 Number of relevant genes discovered for number of clusters=8,16, 32, and
48, with varying lambda
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Discussion — Our comparison of the overlapped partitioning technique against 

the Adaptive technique demonstrates that the adaptive technique discovers a greater 

number of relevant genes (See Figure 6.31). Figures 6.28 to 6.30 show the number of 

genes discovered for each class by varying the value of lambda and the number of 

clusters.

Sample name Number o f  genes discovered (Number 
o f  clusters = 8, lambda = 122)

Bladder 9
Breast 9

Leukemia 8
Lung 7

Colorectal 6
Lymphoma 10
Melanoma 10

Ovary 9
Pancreas 13
Prostate 15
Renal 9

Mesothelioma 13
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Figure 6.28 Number of gene markers discovered for each class of cancer for lambda =
122 and number of clusters = 8
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Sample name
Number o f  genes discovered (Number 

o f  clusters = 8, lambda = 112)

Bladder 9

Breast 9

Leukemia 8

Lung 7

Colorectal 6

Lymphoma 10

Melanoma 8

Ovary 8

Pancreas 13

Prostate 15

Renal 9

Mesothelioma 10

Number of Gene Markers Discovered for Each Cancer Class

O)
"O-o

Cancer Class

Figure 6.29 Number of gene markers discovered for each class of cancer for lambda =
112 and number of clusters = 8
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Sample name
Number o f  genes discovered (Number 

o f  clusters = 8, lambda = 92)

Bladder 1

Breast 9

Leukemia 6

Lung 7

Colorectal 6

Lymphoma 10

Melanoma 8

Ovary 8

Pancreas 9

Prostate 15

Renal 8

Mesothelioma 8

Number of Gene Markers D iscovered for Each C ancer C lass
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Cancer Class

Figure 6.30 Number of gene markers discovered for each class of cancer for lambda =
92 and number of clusters = 8
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Number of Gene Markers Discovered for Each Cancer Class
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Figure 6.31 Comparison between number of genes discovered for each cancer class 
using Adaptive and Overlapped technique with varying overlap and support

Discussion -- The combination of 8 clusters and a lambda value of 122 discovered the 

maximum number of relevant genes in each class. Lowering the threshold to 112 

reduced the number of genes discovered in the classes of mesothelioma by 3, 

melanoma by 2, and ovary by 1. Likewise, when the threshold was lowered to 92 and 

even greater number of classes exhibited reduced discovery rates. Specifically, in 

comparison with the experiment when the threshold was 122, the affected classes are 

those of bladder, leukemia, melanoma, ovary, pancreas, renal, and mesothelioma. We 

observed the number of genes in the classes of bladder were reduced by 2, leukemia by 

2, melanoma by 2, ovary by 2, pancreas by 4, renal by 1, and mesothelioma by 5.

6.3 Comparative Analysis for Calculation 
of Precision Accuracy

O The class-level accuracies for each cancer class are calculated using the 

maximum overlap of reported markers. The class-level accuracies are then 

compared to evaluate the strength of the reported markers. The classification
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was performed through support vector machine [31]. Except for lymphoma, 

lung, renal and prostate, our reported markers provide increased accuracy in 

class-level supervised discrimination. Figure 6.32 shows the classification 

accuracy for each cancer class using OVA descriptors, while Figure 6.33 shows 

the accuracy level for each cancer class using Genesetmining gene marker 

selection. Figure 6.34 shows the accuracy achieved in percentage. However, it 

should be noted that OVA methodology is a sequential process compared to our 

parallelized approach. Our approach also uses less than 10% number of markers 

in multi-class discrimination compared to the previous approach.

Classification Accuracy for each Cancer Class 
using OVA Descriptors

100    —      ------------------------------------

9 5 ---------------------------------------------------------------------------------------------------------------------------------------
9 0 ---------------------------------------------------------------------------------------------------------------------------------------
8 5 ---------------------------------------------------------------------------------------------------------------------------------------

Cancer Class

Figure 6.32 Classification accuracy for each cancer class using the OVA descriptors
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Figure 6.33 Classification of accuracy for each cancer class using Genesetmining
gene marker selection
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Figure 6.34 A comparison between accuracy (in percentage), between OVA markers
and Genesetmining

6.4 Comparative Analysis for Performance

On comparing the Overlapped technique with the Adaptive, on the basis of 

performance, we observe that the worst time taken to find almost the similar number of
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genes was high for the overlapped technique. Figures 6.35-6.36 demonstrates the 

results. For example, the worst time taken in overlapped technique to find 74 genes was 

3996.54 seconds, while in case of Adaptive technique; the worst time taken to find 70 

genes was 1587.54 seconds. Hence, we conclude that the performance of adaptive 

technique was better than the Overlapped technique.

Perform ance o f O verlapped tech n iq u e
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Figure 6.35 Performance study for the Overlapped technique

Perform ance of Adaptive tech n iq u e
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Figure 6.36 Performance study for the Adaptive technique

6.5 Scalability

Scalability was studied across a range of 1 to 8 processors while the number of 

nodes remained fixed at 13. As the number of tasks increased, the time required to find
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frequent genes was reduced. This is due to the fact that the turn around time for 

Genesetmining increases along with the number of files that require integration. It was 

observed that as the number of processors was increased three times, the time required 

to run the algorithm was also reduced by approximately three times. However, when we 

further increased the number of processors, the reduction in time was not so significant 

(Figure 6.37).

Time to run the algorithm, keeping number of nodes fixed

1200 n

1000

800

600

400

200

104

Number of processors

Figure 6.37 Time to discover frequent gene-sets and their integration, by varying
number of tasks.

6.6 Relevant Genes

The relevant genes discovered through the two partitioning techniques were 

compared with the given OVA-markers available at the Broad-MIT website (as 

indicated earlier), which specify the gene belonging to a particular sample and its 

significance.
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Table 8 shows the relevant genes discovered through the Overlapped and 

Adaptive partitioning techniques for various samples.

Table 8 The relevant genes discovered for various samples

Distinction Feature Description

Bladder M31667 f at CYTOCHROME P450 IA2

Bladder U49974_f_at Mariner2 transposable element, complete consensus 
sequence

Bladder L00389 f at Cytochrome P-450 4 gene
Bladder X52426 s at KRT13 Keratin 13
Bladder Z19574 mal at Cytokeratin 17

Bladder AA476704_at
EST: zw87h02.rl Soares total fetus Nb2HF8 9w 
Homo sapiens cDNA clone 783987 5', mRNA 

sequence, (from Genbank)
Bladder Y07755 at S100A2 gene, exon 1, 2 and 3
Bladder L77563 at DGS-F partial mRNA
Breast J03460 s at Prolactin-induced protein

Breast AC002077_at GUANINE NUCLEOTIDE-BINDING PROTEIN 
G(T), ALPHA-1 SUBUNIT

Breast HG1763-HT1780 s at Prolactin-Induced Protein

Breast AA059327_i_at
EST: zf65ell.rl Soares retina N2b4HR Homo 

sapiens cDNA clone 381836 5', mRNA sequence, 
(from Genbank)

Breast K03192_f_at-2 Cytochrome P450, subfamily IIA (phenobarbital- 
inducible), polypeptide 6

Breast M97815 at CRABP2 Cellular retinoic acid-binding protein 2

Breast AA393089_at
EST: zt69bl0.rl Soares testis NHT Homo sapiens 
cDNA clone 727579 5', mRNA sequence, (from 

Genbank)

Breast W27961_at
EST: 40a4 Human retina cDNA randomly primed 
sublibrary Homo sapiens cDNA, mRNA sequence, 

(from Genbank)

Breast HG2365 -HT2461 at Glyceraldehyde-3 -Phosphate Dehydrogenase 
(Gb:K03121)

Leukemia L20688_at GDP-dissociation inhibitor protein (Ly-GDI) mRNA

Leukemia X03689_s_at mRNA fragment for elongation factor TU (N- 
terminus)

Leukemia M26708 s at PTMA Prothymosin alpha
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Distinction
Gene name 
(Feature)

Description

Leukemia U43901_mal_s_at 37 kD laminin receptor precursor/p40 ribosome 
associated protein gene

Leukemia HG821-HT821 at Ribosomal Protein S13

Leukemia D87735_at CAG-isl 7 {trinucleotide repeat-containing sequence} 
[human, pancreas, mRNA Partial, 701 nt]

Leukemia RC AA280630 at Glia maturation factor, gamma
Leukemia HG4319-HT4589 at Ribosomal Protein L5

Lung M68519_mal_at Pulmonary surfactant-associated protein SP-A 
(SFTP1) gene

Lung J03890_mal_at

SP-C1 gene (pulmonary surfactant protein SP-C) 
extracted from Human pulmonary surfactant protein 
C (SP-C) and pulmonary surfactant protein Cl (SP- 

Cl) genes

Lung M24461_at PULMONARY SURFACTANT-ASSOCIATED 
PROTEIN B PRECURSOR

Lung M30838_at PULMONARY SURFACTANT-ASSOCIATED 
PROTEIN A PRECURSOR

Lung RCAA521195_at
EST: aa74c01.sl NCI_CGAP_GCB1 Homo sapiens 
cDNA clone EVLAGE:826656 3', mRNA sequence, 

(from Genbank)

Lung W36279_at EST: HFBEST-56 Human fetal brain QBoqin2 Homo 
sapiens cDNA, mRNA sequence, (from Genbank)

Lung RC_AA460257_at
EST: zx67d07.sl Soares total fetus Nb2HF8 9w 
Homo sapiens cDNA clone 796525 3', mRNA 

sequence, (from Genbank)

Colorectal M29540_at CARCINOEMBRYONIC ANTIGEN PRECURSOR

Colorectal M35252 at TUMOR-ASSOCIATED ANTIGEN CO-029
Colorectal D14520 at GC-Box binding protein BTEB2
Colorectal L08044_s_at TFF3 Trefoil factor 3 (intestinal)

Colorectal U07969_s_at Intestinal peptide-associated transporter HPT-1 
mRNA

Colorectal X12901 at VILLIN

Lymphoma AA297912_at EST: EST113641 T-cell lymphoma Homo sapiens 
cDNA 5' end, mRNA sequence, (from Genbank)

Lymphoma RC_AA121879_s_at Proteasome (prosome, macropain) subunit, beta type, 
9 (large multifunctional protease 2)
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Distinction
Gene name 
(Feature)

Description

Lymphoma D83597 at RP105

Lymphoma M89957_at-2 CD79B antigen (immunoglobulin-associated beta)

Lymphoma X12530 s at CD20 RECEPTOR
Lymphoma X07203 at CD20 RECEPTOR

Lymphoma U26174_at GZMK Granzyme K (serine protease, granzyme 3)

Lymphoma H20906_at Homo sapiens mRNA for KIAA0746 protein, partial
cds

Lymphoma AF006083 at Actin-related protein 3

Melanoma RC_AA176812_at

EST: zp32gl2.sl Stratagene neuroepithelium 
(#937231) Homo sapiens cDNA clone 611206 3' 
similar to contains Alu repetitive element;contains 

element THR repetitive element;, mRNA sequence, 
(from Genbank)

Melanoma AA406087 s at TALI (SCL) interrupting locus

Melanoma RCAAO13160_at

EST: ze35el0.sl Soares retina N2b4HR Homo 
sapiens cDNA clone 361002 3' similar to contains 
Alu repetitive element;, mRNA sequence, (from 

Genbank)
Melanoma U06452 at MLANA Differentiation antigen melan-A

Melanoma W39687_s_at
EST: zc21e08.rl Soares senescent fibroblasts NbHSF 

Homo sapiens cDNA clone 322982 5', mRNA 
sequence, (from Genbank)

Melanoma X84707 mal at MIA gene
Melanoma U58516 at Breast epithelial antigen BA46 mRNA
Melanoma Y07759 at Myosin heavy chain 12
Melanoma X96381 mal at Erm gene, exon 2,3,4,5 (and joined CDS)

Melanoma RC_AA417588_at
EST: zv04fl0.sl Soares NhHMPu SI Homo sapiens 

cDNA clone 752683 3', mRNA sequence, (from 
Genbank)

Ovary L02321 at GSTM5 Glutathione S-transferase M5
Ovary M74093 at Gl/S-SPECIFIC CYCLIN E

Ovary M64936_at Retinoic acid-inducible endogenous retroviral DNA

Ovary L00389 f at Cytochrome P-450 4 gene
Ovary U78793 at Folate receptor alpha (hFR) mRNA, partial cds
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Distinction
Gene name 
(Feature)

Description

Ovary RC_AA304344_f_at

EST: EST17092 Aorta endothelial cells, TNF alpha- 
treated Homo sapiens cDNA 3' end similar to EST 

containing Alu repeat, mRNA sequence, (from 
Genbank)

Ovary Ml 1973 cdsl at Gamma-B-crystallin gene (gamma 1-2)
Ovary HG3987-HT4257 at Cpg-Enriched Dna, Clone E06

Ovary RCAAl 90676_at
EST: zp89g09.sl Stratagene HeLa cell s3 937216 

Homo sapiens cDNA clone 627424 3', mRNA 
sequence, (from Genbank)

Pancreas X51698_s_at SPASMOLYTIC POLYPEPTIDE PRECURSOR

Pancreas J00268 s at INS Insulin

Pancreas J05412_at REGIA Regenerating islet-derived 1 alpha 
(pancreatic stone protein, pancreatic thread protein)

Pancreas X52003_at TFF1 Trefoil factor 1 (breast cancer, estrogen- 
inducible sequence expressed in)

Pancreas Z48314 s at MUC5B Mucin 5, subtype B, tracheobronchial

Pancreas U31449_at Intestinal and liver tetraspan membrane protein (il- 
TMP) mRNA

Pancreas M84424 at CATHEPSIN E PRECURSOR

Pancreas AA372630_s_at Homo sapiens GW112 protein (GW112) mRNA, 
complete cds

Pancreas RC_AA26235 l_f_at
EST: zr44g03.sl Soares NhHMPu SI Homo sapiens 

cDNA clone 666292 3', mRNA sequence, (from 
Genbank)

Pancreas AB006781 s at Galectin-4
Pancreas L08010 at Regenerating protein I beta
Pancreas M22612 f at PRSS1 Protease, serine, 1 (trypsin 1)
Pancreas M16653 at Pancreatic elastase IIB mRNA

Prostate U22178_s_at MSMB Beta-microseminoprotein (prostate secreted)

Prostate M24902 at ACPP Acid phosphatase, prostate
Prostate AB002351 at Human mRNA for KLAA0353 gene, partial cds

Prostate RC_AA487879_at
EST: abl2a04.sl Stratagene lung (#937210) Homo 
sapiens cDNA clone 840558 3', mRNA sequence, 

(from Genbank)

Prostate U02082_at Guanine nucleotide regulatory protein (timl) mRNA
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Distinction Gene name 
(Feature)

Description

Prostate U79272 at Clone 23720 mRNA sequence
Prostate RC AA478300 at CD39-like 2
Prostate RC AA281770 at Seven in absentia (Drosophila) homolog 1
Prostate L40401 at (clone zap 12 8) mRNA, 3' end of cds

Prostate L40401_at-2 Homo sapiens (clone zap 12 8) mRNA, 3' end of cds

Prostate RC_AA136471 at
EST: zl01e08.sl Soares pregnant uterus NbHPU 
Homo sapiens cDNA clone 491078 3', mRNA 

sequence, (from Genbank)
Prostate U01833 at Nucleotide-binding protein mRNA

Prostate M18533_at DMD Dystrophin (muscular dystrophy, Duchenne 
and Becker types)

Prostate M l4200 mal at Diazepam binding inhibitor (DBI) mRNA
Prostate U52100 at XMPmRNA

Mesothelioma AFFX-M27830_M_at-2 Human 28S ribosomal RNA gene, complete cds. 
(from Genbank)

Mesothelioma AFFX-M27830 M at AFFX-M27830_M_at (endogenous control)
Mesothelioma XI6662 at ANX8 Annexin VIII

Mesothelioma RCAA419609_at
EST: zv04b06.sl Soares NhHMPu SI Homo sapiens 

cDNA clone 752627 3', mRNA sequence, (from 
Genbank)

Mesothelioma RC_AA406218_at
EST: zu65e08.sl Soares testis NHT Homo sapiens 

cDNA clone 742886 3', mRNA sequence, (from 
Genbank)

Mesothelioma RC_AA195660_at
EST: zr33fl0.sl Soares NhHMPu SI Homo sapiens 

cDNA clone 665227 3', mRNA sequence, (from 
Genbank)

Mesothelioma M62895 s at Annexin II (lipocortin II) pseudogene 2

Mesothelioma RCAA291644_at

EST: zt37al l.sl Soares ovary tumor NbHOT Homo 
sapiens cDNA clone 724508 3' similar to contains 
Alu repetitive element;contains element MER25 

repetitive element;, mRNA sequence, (from 
Genbank)

Mesothelioma M14058 at C1R Complement component Clr

Mesothelioma AA115572_s_at

EST: zl05dl l.rl Soares pregnant uterus NbHPU 
Homo sapiens cDNA clone 491445 5' similar to 
TR:G895845 G895845 PUTATIVE P64 CLCP 
PROTEIN.mRNA sequence, (from Genbank)

Mesothelioma X56667 at CALB2 Calbindin 2, (29kD, calretinin)
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Distinction
Gene name 
(Feature)

Description

Mesothelioma M38591_at S100A10 SI00 calcium-binding protein A10 (annexin 
II ligand, calpactin I, light polypeptide (pi 1))

Mesothelioma X12876 s at KRT18 Keratin 18

Renal T80685_at EST: yd23a06.rl Homo sapiens cDNA clone 109042 
5'. (from Genbank)

Renal X13100_s_at MYH3 Myosin, heavy polypeptide 3, skeletal muscle, 
embryonic

Renal M61853_at CYP2C18 Cytochrome P450, subfamily IIC 
(mephenytoin 4-hydroxylase), polypeptide 18

Renal X92814 at Rat HREV 107-like protein
Renal M64082 at FMOl Flavin-containing monooxygenase 1
Renal M31994 at ALDH1 Aldehyde dehydrogenase 1, soluble
Renal U14588 at Paxillin mRNA

Renal RC_AA434245_r_at
EST: zw24g05.sl Soares ovary tumor NbHOT Homo 

sapiens cDNA clone 770264 3', mRNA sequence, 
(from Genbank)

Renal J03810_at SLC2A2 Solute carrier family 2 (facilitated glucose 
transporter), member 2

In Table 8, the “distinction” represents the tumor class for which the markers 

are high (and low for other classes). Feature is the gene accession number, and 

description is the gene name and annotation. The OVA markers are sorted on the basis 

of the signal to noise ratio phenotype, which show genes correlated with one particular 

class versus all other classes. Thus, the markers are the genes that are differentially 

expressed by a single class, individually, or as groups. The statistical significance of the 

OVA markers is computed by the permutation test on 10%, 5%, and 1% levels of 

significance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7

CONCLUSIONS

The healthcare burden and suffering due to chronic diseases such as cancer would 

be significantly reduced by design and refinement of computational interpretation of 

micro-molecular data collected by bioinformaticians. The unprecedented advances in 

high performance computing have novel opportunities for rapid, precise, and accurate 

analysis of this data for enhanced knowledge discovery, Consequently, biology and 

medicine are moving from bench-based to computer-based science as models replace 

some experiments and complement others. This paradigm shift is leading biology to 

become an increasingly data-rich discipline, further swelling the data growth. Elucidation 

of molecular mechanisms in living cells is one of the major challenges in biology today. 

One of the most important goals of molecular biology is the study of how genes regulate 

each other. A recent breakthrough in methodology for experimental molecular biology is 

microarray technology, which has become an important tool for monitoring and 

analyzing gene expression profiles of thousands of genes simultaneously. The small size 

and high density of the microarray, as well as its compatibility with fluorescent labeling, 

is rapidly leading to its widespread use in the area of molecular genetics. Microrrays have 

already produced huge amounts of valuable genetic data. However, the analysis and 

handling of these data has become one of the major bottlenecks in the utilization of the
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

technology. The rate of collection of these data has far surpassed our ability to analyze 

the data for novel, non-trivial, and important knowledge. High-performance computing 

platform has emerged as a leading technology that can handle data-intensive knowledge 

discovery applications, such as gene expression data analysis, by rapid, accurate, and 

practicable means.

In this dissertation, we have presented a novel-computing paradigm for the 

distributed and concurrent analysis of gene expression data for enhanced biological 

discovery. The framework comprises of methodologies data treatment for preprocessing, 

partitioning for distributed processing, localized concurrent knowledge discovery, 

knowledge integration, and post analysis and interpretation. We draw some key 

conclusions from this research, including but not limited to the following.

- The gene expression data is a very high dimensional entity and our experiment 

proved that running the association rule mining algorithm, FP-Growth on the 

original dataset, did not reveal results because the size of the frequent gene-sets 

generated exceeded the file size limit, even when the experiment was performed 

on an IBM p5-575 supercomputer with a memory bandwidth of 16Gbytes/chip. 

Even though the frequent pattern tree (FP-tree) stores the information about 

frequent patterns in a highly compact data structure, which is substantially smaller 

than the original database, it failed to discover patterns from the gene expression 

dataset.

- Our technique of data preprocessing using normalization and windowed 

thresholding of data enhanced the quality of pattern discovery while reducing its 

dimensionality.
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- By parallelizing FP-Growth, we were able to find frequent gene-sets on the 

partitioned dataset using efficient shared-memory computation. Our proposed 

knowledge integration algorithm, genesetmining, updated the large gene-sets 

discovered on various processor nodes.

- Our elaborative experimental results demonstrate the robustness and precise 

nature of the algorithms under several distinctive experimental parametric 

controls.

- The number of relevant genes discovered depends on several factors as outlined 

below.

o The increase in partition size in overlap partitioning leads to the reduction 

in number of genes discovered, 

o For a partition of fixed size, an increase in overlap between consecutive 

partitions leads to increase in number of relevant genes discovered, 

o While increasing the overlap between partitions, the transitional changes 

in the number if genes discovered tend to lead to a local minima. At that 

point, an introduction of redundancy in the data does not necessarily 

change the number of discovered relevant genes.

- The class-level performance of relevant genes differs for different partition sizes, 

degree of overlap and support percentage. This difference is important as it 

provides parametric controls to researchers to choose the levels of thresholding to 

get optimal results for the classes of the disease that they are interested in.

- It was also observed that accuracy for certain classes was significantly boosted for 

a controlled value of partition size, degree of overlap and support values. This
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observation is significant, as it provides a level of flexibility to users who 

sometimes used tailored microarray chips for analysis of a specific condition or 

condition of a tissue (disease).

- Adaptive partitioning of data for distributed processing proved itself to be an 

improved technique for data partitioning.

- The intra-cluster distance parameterized by threshold lambda is introduced to 

create the level of redundancy in discovering overlapping clusters using K-means 

clustering algorithm. The choice of lambda provides a flexibility to tune the intra

cluster similarity (and consequently inter-cluster dissimilarity) that is desired by 

the user.

- It is also concluded that accuracy for certain classes is enhanced by a selected 

value of lambda. Generally, an increasing value of lambda leads to increase in the 

discovery of relevant genes.

While the challenge of elucidation of molecular markers for diseases such as 

cancer is far from resolved, this dissertation proposes a unique computational framework 

for knowledge discovery from a gene expression database with significant high- 

dimensionality. Our contribution is to propose unique methods of data partitioning and 

running FP-Growth in parallel on the partitioned datasets and to develop computational 

routines for distributed knowledge discovery and integration, specifically for cancer 

genomics applications.

Future work in this area can include bi-clustering (2-way clustering) of expression 

data in shared memory environment for co-discovery of functional dependencies. The
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framework could also be tailored for other normalization methods and microarray 

experimental designs.
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