
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2006

A novel computational framework for fast,
distributed computing and knowledge integration
for microarray gene expression data analysis
Prerna Sethi
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Sethi, Prerna, "" (2006). Dissertation. 565.
https://digitalcommons.latech.edu/dissertations/565

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/565?utm_source=digitalcommons.latech.edu%2Fdissertations%2F565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

A NOVEL COMPUTATIONAL FRAMEWORK FOR FAST, DISTRIBUTED

COMPUTING AND KNOWLEDGE INTEGRATION FOR MICRO ARRAY GENE

EXPRESSION DATA ANALYSIS

by

Prema Sethi, M.C.A

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor Of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

May 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3218991

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3218991

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

April 28, 2006
Date

We hereby recommend that the dissertation prepared under our supervision

by Prerna Sethi__

entitled A Novel Computational Framework for Fast Distributed Computing and Knowledge________

Integration for Microarray G ene Expression Data Analysis__

be accepted in partial fulfillm ent o f the requirements for the Degree o f

Doctor Of Philosophy in Computational Analysis and Modeling____________________________________

iSuoervi^at o f Dissertation Research

WJ J lQ
' Head o f Department

Computational Analysis and Modeling
Department

Recommendation concurred in:

Advisory Committee

Appro' Approved:

Dean of the Graduate SchoiDirector of Graduate Studies

Dean o f the College

GS Form 13
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

The healthcare burden and suffering due to life-threatening diseases such as

cancer would be significantly reduced by the design and refinement of computational

interpretation of micro-molecular data collected by bioinformaticians. Rapid

technological advancements in the field of microarray analysis, an important component

in the design of in-silico molecular medicine methods, have generated enormous amounts

of such data, a trend that has been increasing exponentially over the last few years.

However, the analysis and handling of these data has become one of the major

bottlenecks in the utilization of the technology. The rate of collection of these data has far

surpassed our ability to analyze the data for novel, non-trivial, and important knowledge.

The high-performance computing platform, and algorithms that utilize its embedded

computing capacity, has emerged as a leading technology that can handle such data-

intensive knowledge discovery applications.

In this dissertation, we present a novel framework to achieve fast, robust, and

accurate (biologically-significant) multi-class classification of gene expression data using

distributed knowledge discovery and integration computational routines, specifically for

cancer genomics applications. The research presents a unique computational paradigm

for the rapid, accurate, and efficient selection of relevant marker genes, while providing

parametric controls to ensure flexibility of its application.

The proposed paradigm consists of the following key computational steps: (a)

preprocess, normalize the gene expression data; (b) discretize the data for knowledge

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mining application; (c) partition the data using two proposed methods: partitioning with

overlapped windows and adaptive selection; (d) perform knowledge discovery on the

partitioned data-spaces for association rule discovery; (e) integrate association rules from

partitioned data and knowledge spaces on distributed processor nodes using a novel

knowledge integration algorithm; and (f) post-analysis and functional elucidation of the

discovered gene rule sets. The framework is implemented on a shared-memory

multiprocessor supercomputing environment, and several experimental results are

demonstrated to evaluate the algorithms. We conclude with a functional interpretation of

the computational discovery routines for enhanced biological physiological discovery

from cancer genomics datasets, while suggesting some directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Author j X t t i v l

Date Q 5 / | 2 - / 2 J 3 P £ ___________

GS Form 14
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT...iii

LIST OF TABLES.. viii

LIST OF FIGURES... ix

CHAPTER 1 INTRODUCTION... 1
1.1 The Genetic Material..3

1.1.1 Nucleic Acids.. 3
1.1.2 The Central Dogma of Molecular Biology... 5

1.1.2.1 Proteins... 6
1.1.2.2 Function of protein...7
1.1.2.3 Structure of protein...7

1.2 Microarrays... 8
1.3 Cancer Genomics.. 10

CHAPTER 2 INTRODUCTION TO DATA MINING, BIOINFORMATICS,
AND HIGH PERFORMANCE COMPUTING...11
2.1 Data Mining...11

2.1.1 Data Mining Overview...12
2.1.1.1 Steps involved... 13
2.1.1.2 Challenging issues in data mining...16

2.1.2 Data Mining Techniques...17
2.1.2.1 Classification.. 17
2.1.2.2 Clustering.. 18
2.1.2.3 Association rule mining... 18

2.2 Bioinformatics..20
2.2.1 Gene Expression Analysis... 20
2.2.2 Protein Structure Prediction... 21
2.2.3 Homology in Gene Finding and Gene Function Prediction.................................22

2.3 High Performance Computing (HPC)..22
2.3.1 Overview of Technology... 23

2.3.1.1 HPC hardware classification schemes..23
2.3.1.1.1 Flynn’s taxonomy...24
2.3.1.1.2 HPC model based on the hardware resources...........................25
2.3.1.1.3 HPC software technology.. 32

2.4 Benefits... 36
2.5 Methodology...36

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3 DATAPARTITIONING..39
3.1 Target Database..39
3.2 Preprocessing of Expression D ata.. 39
3.3 Partitioning.. 41

3.3.1 Non-overlapping Vertical Partitioning... 42
3.3.2 Overlapping Vertical “Partitioning” ..43
3.3.3 Adaptive Selection (“partitioning” using k-means clustering)............................44

3.4 Results..45
3.5 The Message Passing M odel...47
3.6 Performance Analysis.. 48

3.6.1 Varying k (number of clusters) and Recording Computational Time................. 49
3.6.2 Varying k (number of clusters) and Recording EO Time.................................... 51
3.6.3 Varying n (number of processes) with Constant Number of Clusters, k53

CHAPTER 4 MINING FREQUENT PATTERNS USING FP-GROWTH.......................54
4.1 Introduction... 54

4.1.1 Pattern Generation Using FP-Tree...55
4.1.1.1 Frequent pattern tree.. 56
4.1.1.2 Mining frequent patterns using FP-tree..60

4.2 Experimental Results... 62
4.2.1 Complexity Analysis...65
4.2.2 Discussion..65

CHAPTER 5 INCREMENTAL UPDATE OF LARGE GENE-SETS.............................67
5.1 Introduction... 67
5.2 Related Research...68
5.3 Methodology...69
5.4 Proposed Algorithm: Genesetmining.. 70

5.4.1 Genesetmining Algorithm.. 74
5.5 Results... 77
5.6 Complexity Analysis.. 79
5.7 Discussion... 79

CHAPTER 6 EXPERIMENTAL RESULTS AND ANALYSIS....................................... 81
6.1 Introduction... 81

6.1.1 Non-Overlapped Partitions.. 81
6.1.2 Overlapped Partitions..82

6.1.2.1 Relevant genes discovered versus degree of overlap...............................82
6.1.2.2 Number of relevant genes discovered versus changing support............. 90

6.2 Adaptive Partitioning... 99
6.3 Comparative Analysis for Calculation of Precision Accuracy................................... 106
6.4 Comparative Analysis for Performance..108
6.5 Scalability... 109
6.6 Relevant Genes...110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7 CONCLUSIONS

REFERENCES.........................

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 1 A snapshot of a sample-space database...58

Table 2 Frequent gene-sets arranged in descending order after the first database scan... 59

Table 3 List of variables used in Genesetmining..72

Table 4 Total number of relevant genes discovered for # of partitions versus degree
of overlap...83

Table 5 Transitional changes in total number of relevant genes discovered for #
of partitions versus degree of overlap...83

Table 6 Varying support percentage with partition size and degree of overlap................ 93

Table 7 Total number of relevant genes discovered for # of clusters and varying
lambda.. 100

Table 8 The relevant genes discovered for various samples..I l l

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF FIGURES

Figure 1.1 The central dogma of molecular biology... 6

Figure 2.1 Flynn’s Taxonomy...24

Figure 2.2 FIPC Classification based on hardware resources.. 24

Figure 2.3 Bus based shared memory architecture...26

Figure 2.4 Crossbar Switch...28

Figure 2.5 Parallel Vector Processor (PVP)... 29

Figure 2.6 M PP..30

Figure 2.7 Percentage of computer systems employed based on architecture................ 32

Figure 2.8 The proposed computational framework for distributed
knowledge discovery... 37

Figure 3.1 An example demonstrating the discretization of gene expression data 41

Figure 3.2 Horizontal partitioning of a dataset... 42

Figure 3.3 Vertical partitioning of a dataset... 42

Figure 3.4 Overlapped “partitioning” technique... 44

Figure 3.5 MPI functions used in £-means algorithm...48

Figure 3.6 Shows the computational time for 3 processes and 8,16, and 24 clusters... 49

Figure 3.7 Shows the computational time for 6 processes and 8, 16 and 24 clusters.... 49

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

Figure 3.8 Shows the computational time for 9 processes and 8, 16 and 24 clusters... 50

Figure 3.9 Shows the computational time for 12 processes with 8, 16 and 24
clusters...50

Figure 3.10 Shows the I/O time for 3 processes with 8, 16 and 24 clusters................. 51

Figure 3.11 Shows the I/O time for 6 processes with 8, 16 and 24 clusters.................51

Figure 3.12 Shows the I/O time for 9 processes with 8, 16 and 24 clusters.................52

Figure 3.13 Shows the I/O time for 12 processes with 8, 16 and 24 clusters..................52

Figure 3.14 Computational time for varying number of processors, but constant k53

Figure 4.1 FP-tree algorithm... 57

Figure 4.2 FP tree constructed from the sample-space database................................... 60

Figure 4.3 FP-growth algorithm...62

Figure 4.4 Time to run FP-growth on partitions of sizes 500, 1000, 1500 and
2000, with support value 80...63

Figure 4.5 Time to run FP-growth on partitions of sizes 500, 1000, 1500 and
2000, with support value 85...63

Figure 4.6 Time to run FP-growth on partitions of sizes 500, 1000, 1500 and
2000, with support value 90...64

Figure 4.7 Comparison of the time taken to run FP-growth on varying partition
sizes with varying support values.. 64

Figure 5.1 Time taken to integrate partitions of sizes 500, 1000, 1500 and 2000
at support threshold of 8 0 ...77

Figure 5.2 Time taken to integrate partitions of sizes 500,1000, 1500 and 2000
at support threshold of 8 578

Figure 5.3 Time taken to integrate partitions of sizes 500, 1000, 1500 and 2000
at support threshold of 9 0 ...78

Figure 5.4 Scalability of Genesetmining with support values of 80, 85 and 90...... . 79

Figure 6.1 Number of genes discovered for partition of size 500, varying the
overlap percentage.. 84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

Figure 6.2 Number of genes discovered for partition of size 600, varying the
overlap percentage..84

Figure 6.3 Number of genes discovered for partition of size 700, varying the
overlap percentage..85

Figure 6.4 Number of genes discovered for partition of size 800, varying the
overlap percentage...85

Figure 6.5 Number of genes discovered for partition of size 900, varying the
overlap percentage...86

Figure 6.6 Number of genes discovered for partition of size 1000, varying the
overlap percentage...86

Figure 6.7 Transitional change for total number of genes discovered for partition
size of 500, varying percentage of overlap...87

Figure 6.8 Transitional change for total number of genes discovered for partition
size of 600, varying percentage of overlap...87

Figure 6.9 Transitional change for total number of genes discovered for partition
size of 700, varying percentage of overlap...88

Figure 6.10 Transitional change for total number of genes discovered for partition
size of 800, varying percentage of overlap...88

Figure 6.11 Transitional change for total number of genes discovered for partition
size of 900, varying percentage of overlap..89

Figure 6.12 Transitional change for total number of genes discovered for partition
size of 1000, varying percentage of overlap..89

Figure 6.13 Number of relevant genes discovered each class of cancer with a,
partition of size of 500 with 80% overlap.................................... 91

Figure 6.14 Number of relevant genes discovered each class of cancer with a,
partition of size of 500 with 90% overlap..92

Figure 6.15 Number of relevant genes discovered for changing support values,
with partitions of sizes 500, 600, 700 at 80% overlap..................................94

Figure 6.16 Number of relevant genes discovered for changing support values,
with partitions of sizes 800, 900,1000 at 80% overlap............... 94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

Figure 6.17 Number of relevant genes discovered for changing support values,
with partitions of sizes 500, 600, 700 at 90% overlap..................................95

Figure 6.18 Number of relevant genes discovered for changing support values,
with partitions of sizes 800, 900, 1000 at 90% overlap................................95

Figure 6.19 Number of relevant genes discovered for changing support values,
with partitions of sizes 500, 600, 700 at 70% overlap..................................96

Figure 6.20 Number of relevant genes discovered for changing support values,
with partitions of sizes 800, 900, 1000 at 70% overlap................................96

Figure 6.21 Number of genes discovered for each class of cancer, with a partition
size of 500 with 80% overlap and 60% support... 97

Figure 6.22 Number of genes discovered for each class of cancer, with a partition
size of 600 with 80% overlap and 60% support... 98

Figure 6.23 Number of relevant genes discovered for number of clusters=8, with
varying lambda.. 100

Figure 6.24 Number of relevant genes discovered for number of clusters=16, with
varying lambda... 101

Figure 6.25 Number of relevant genes discovered for number of clusters=32, with
varying lambda... 101

Figure 6.26 Number of relevant genes discovered for number of clusters=48, with
varying lambda... 102

Figure 6.27 Number of relevant genes discovered for number of clusters=8, 16,
32 and 48, with varying lambda...102

Figure 6.28 Number of gene markers discovered for each class of cancer for
lambda=122 and number of clusters=8... 103

Figure 6.29 Number of gene markers discovered for each class of cancer for
lambda=112 and number of clusters=8... 104

Figure 6.30 Number of gene markers discovered for each class of cancer for
lambda=92 and number of clusters=8... 105

Figure 6.31 Comparison between number of genes discovered for each cancer
class using Adaptive and Overlapped technique with varying
overlap and support..106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.32 Classification accuracy for each cancer class using the OVA
descriptors... 107

Figure 6.33 Classification of accuracy for each cancer class using Genesetmining
gene marker selection.. 108

Figure 6.34 A comparison between accuracy (in percentage), between OVA
markers and Genesetmining..108

Figure 6.35 Performance study for the Overlapped technique...................................... 109

Figure 6.36 Performance study for the Adaptive technique...109

Figure 6.37 Time to discover frequent gene-sets and their integration, by
varying number of tasks...110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

Over the past decade, clinical, biomedical, biological, and healthcare disciplines

have become increasingly data intensive, advancing the need for novel algorithmic

methodologies that can leverage rapid and accurate high-performance computing

capabilities. Such advances in automated data collection technologies have led to an

unprecedented growth in the size, complexity, and quantity of collected data, resulting in

an overriding complexity of data that computational scientists do not currently have

adequate resources to analyze. Furthermore, direct health-care applications in

personalized molecular medicine are gradually moving towards becoming a clinical-

reality, soon after which it will be a business necessity for health-care providers to be

capable of rapidly mining enormous amounts of bioinformatics data for novel

physiological discovery by fast and accurate means, to provide enhanced quality of care

and cure for their patients. This continued growth would lead to further renewal of

demands for the development of innovative technologies designed to organize and mine

this burgeoning swell of data, and to facilitate and expedite computing and biomedical

research.

One of the overarching goals of the field of databases and, consequently, high

performance computing in data mining research, is to successfully and effectively

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

investigate and employ algorithms that improve the integration and mining of these

evolving data and knowledge sources. We believe that advances in high performance

computing provide an excellent research-bed for the development of novel computing

technologies, especially in the areas of knowledge integration in gene expression

databases for bioinformatics. This thesis seeks to make a noteworthy contribution in this

arena.

According to Cantor et al. in [1], if biomedical resources distributed across the

informational interconnect (such as the internet) are viewed as nodes in a network and

there is an value in bringing them together for enhanced knowledge discovery, then the

Metcalfe’s law [2] applies here, which essentially says that the “value of integration” of

network nodes can be “measured” in proportion of the square of the number of network

“nodes.” This model highlights the immense enabling advantages that network data

integration could provide to the medical field. Bioinformatics data can be complex,

highly context-dependent, and inherently high-dimensional. This multi-faceted

heterogeneity makes the mapping of data to knowledge a challenging computational task.

Advances in high-performance computing and high-speed networking have led the efforts

to utilize this infrastructure for high-end computing challenges originating in

bioinformatics problems (e.g., gene expression data mining and protein structural

matching methods). Although crucially important, the research in this problematic

domain is still in its infancy. According to a presentation by Athey et al. [3], the major

areas of opportunity in the use of high-performance computing in biomedical sciences

are, (a) “organizing, managing, mining, and analyzing the large volume of biomedical

data” (b) “simulation, particularly in multi-scale problems (modeling from the genome to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

the organism)” and (c) “translational medicine - transforming research into

clinical practice in the shortest time possible.”

Our unique contribution attempts to meet the first of these challenges by

proposing and critically evaluating a unique computational framework for fast,

distributed-node data mining of physiological patterns, a task impossible to perform using

uni-processor machines.

This chapter provides an introduction to the biological background required to

describe and understand the problem definition and its significance in addressing the

problem of gene expression data integration and mining for knowledge discovery.

1.1 The Genetic Material

The identification and isolation of deoxyribonucleic acid (DNA) answers

questions posed by scientists and philosophers for a number of years: “What is the basis

of inheritance? And what is the basic, organic difference between living and non living

things?” [4], DNA is the molecule responsible for the propagation of most inherited

genetic traits. DNA contains information that enables functioning into living cells, which

is required for their reproduction and functionality. On the sub-molecular level, the units

responsible for the characteristics of inheritance are termed as genes. Genes store their

information as specific sequences of nucleotides that, concatenated into a double-helix,

form DNA molecules.

1.1.1 Nucleic Acids

Nucleic acid is the generic name for a family of biopolymer organic substances;

the designation of “nucleic” is indicative of their prevalence in cellular nuclei. Monomers

are called nucleotides. The two primary nucleic acids found in all living cells are DNA,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

located mainly in the cell nucleus, and ribonucleic acid (RNA), generally found in the

cytoplasm of the cell, though it is also usually synthesized into the nucleus. DNA is

structured as a double stranded helix containing two complementary strands. This

structure was first described by James Watson and Francis Crick in 1953. Each strand is

composed of four repeating bases, namely: guanine, adenine, thymine, and cytosine (G,

A, T, C). A phosphate group and a deoxyribose sugar (five-carbon sugar) attach abreast

each base to form a nucleotide. These nucleotides concatenate into strands according to

complementary pairing of the A-T and G-C bases, respectively. With two hydrogen

bonds cohering the A-T base-pair, and three hydrogen bonds holding the G-C pair, the G-

C interaction is stronger by (approximately) 30%. Adenine and guanine have two-ring

structured nitrogenous bases called purines while thymine and cytosine have a single-ring

structure denoted pyrimidines. Human DNA consists of about 3 billion bases, more than

99% of which are known to be identical in all people. These bases are same in every

organism, but it is the specific ordering of these common base pairs that make one

organism different from another.

The second type of nucleic acid, RNA, is usually single-stranded, but any given

strand has the propensity to fold back upon itself to form double-helical regions. RNA is

similar to DNA in its chemical and physical properties. It has three identical bases—

adenine, guanine, and cytosine—but the thymine base that appears in DNA is replaced by

uracil in RNA. Like thymine, uracil is the complementary base of adenine. The most

notable difference between the two nucleic acids is the type of sugar they contain: the

sugar in RNA is ribose, the same as deoxyribose but with the addition of an extra

oxygen-hydrogen-atom combination called a hydroxyl (OH). DNA contains the genetic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

codes to construct RNA, which in turn stores the structural codes of the primary

sequences of amino acids that construct proteins, a group of complex organic

macromolecules that control biochemical reactions and determine the physical structure

of organisms.

The complete set of information that defines the constructions and functions in an

organism, including both the DNA and RNA, is termed the genome. Complicated genes

can be thousands of nucleotides long, and the genome can be constituted by millions or

even billions of nucleotides. Nucleotides attach to each other by a phosphodiester bond

that connects a phosphate group of one nucleotide to the deoxyribose sugar of another.

These various nucleotide sequences attach to one another to form long chains called a

polynucleotide. When considered on a very large scale polynucleotide chains are called

chromosomes. The human genome consists of 23 chromosomes each of which range in

estimated length from 50 million to 250 million base pairs.

1.1.2 The Central Dogma of
Molecular Biology

The process of replication begins when DNA copies itself. In eukaryotes

(organisms which have nucleated cells) DNA replicates itself inside the nucleus using

one strand of the double helix as a template. In other organisms that have no nucleus

(prokaryotes), the DNA replicates in the cytoplasm of the cell. In bacteria and other

simple cell organisms, DNA is distributed more or less throughout the cell. In the

complex cells found in multi-cellular organisms, most of the DNA is present in the

chromosomes located in the nucleus. It is via the process of replication that the

information stored in the DNA can be transmitted and inherited.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

During transcription the information contained in DNA is transcribed to

messenger RNA (mRNA). The mechanism of transcription is similar to DNA replication.

mRNA carries coded information to ribosomes (a miniature bioparticle found in the

cytoplasm of a cell, composed of RNA and protein) which interprets this information and

uses it for protein synthesis in a process called translation. Thus proteins are formed

(Figure 1.1 illustrates this process). Proteins are involved in almost all biological

activities, whether structural or enzymatic, and perform a variety of important functions

in the metabolic pathways inside the body. The process from DNA replication to the

translation of proteins is essentially the same for all living organisms and has been

attributed the moniker, “the central dogma of molecular biology”. Figure 1.1,

descriptively shows the entire process. This dogma forms the backbone of molecular

biology.

replication

transcription translation
DNA --------------------- ► RNA --------------------- ►Proteins

Figure 1.1: The central dogma of molecular biology

1.1.2.1 Proteins

Proteins are complex nitrogenous compounds having high molecular weight that

comprise the structure of cells and direct their activities. Proteins are translated by

ribosomes as linear chains of amino acids joined by peptide bonds. Proteins are made up

of 20 different amino acids. Structurally, proteins collapse and fold into unique three

dimensional configurations known as their naive state. The order in which various amino

acids are used to assemble a protein is largely responsible for determining the structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

into which it will fold. The function of a given protein is determined by both its sequence

of amino acids and by its resultant three-dimensional structure.

1.1.2.2 Function of protein

Proteins are responsible for performing most of the life functions of the cell and

comprise most of its structure. The main physiological functions performed by proteins

are

• Enzymatic catalysis-All of the enzymes that catalyze chemical reactions in the

body are made from proteins. For instance, the hormone insulin involved in blood

sugar regulation and the thyroid hormone are synthesized from proteins.

• Transport and Storage-Proteins carry out the transportation and storage of small

molecules. Some examples of the transport proteins are hemoglobin that carries

oxygen, albumin that carries other proteins, transferrin that carries iron, and

ceruloplasmin that carries copper.

• Productions of antibodies-Proteins are involved in the production of the

antibodies responsible for reacting with specific foreign substances in the body.

• Maintaining proper fluid balance-Proteins help control the amount of water inside

cells by maintaining the osmotic pressure.

• Keeping acid-base balances-Proteins have the ability to combine with both acids

and bases and thus helps to maintain the normal acid-base balance in the body.

1.1.2.3 Structure of protein

• Primary structure-Proteins are initially constructed as straight chains of amino

acids. This chain structure is referred as the primary structure of proteins.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

• Secondary structure-The straight chains so formed begin to twist and the

deformation of each amino acid interacts with the others to form the secondary

structure. The most common secondary structures are (alpha) helix and (beta)

sheet.

• Tertiary structure-The regions in the secondary structure of a protein pack

together and combine with other less structured regions to form a three

dimensional shape referred to as the tertiary structure of the protein.

• Quaternary structure-After the tertiary structure is formed, several amino acids

from the tertiary structure fold together to create in a single, large, dense complex

known as the quaternary structure.

1.2 Microarravs

Gene expression is the process that manifests (or expresses) the nature of the

controlling and directing stored in the DNA, through replication, in the functions of the

proteins created in the cell. Microarray technology has addressed a challenge faced by

several genome biologists in the past: how do we measure the expression profile of

thousands of genes (presumably at the genome level) under an experimental condition?

While traditional methods were generally capable of working with only a few genes in a

single experiment, microarray technology purports the ability to monitor the whole

genome on a single chip, providing researchers with a clearer picture of the simultaneous

interactions among thousands of genes, and posing an immense challenge to

computational scientists for data analysis. Microarray technology allows the researcher to

take a snapshot of genes while they are in action, revealing which genes are dormant and

which demonstrate high/low levels of activity. This analysis is accomplished by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

measuring the amount of mRNA present in each gene in a given sample or pair of

samples to determine which genes are expressing themselves (active).

DNA strands are attached at fixed spots, generally on a glass or plastic slide.

There may be tens of thousands of spots on an array, each containing a large number of

identical DNA molecules that can have lengths varying from very few to several

hundreds of nucleotides. The constructed arrays are then used to detect the presence of

mRNAs transcribed from different genes, where each gene encodes different proteins.

Several methods exist for measuring gene expression levels on an array. One of the

popular methods involves the comparison of gene expression levels from two different

samples (e.g., the same cell type in a normal and tumor state). The mRNA actively

transcribed by the DNA in the array is converted to cDNA or cRNA (where c stands for

the “copy” synthesized using a type of reverse transcriptase). Fluorescent tags are

chemically attached to these newly synthesized strands. Thus, a cDNA or cRNA

molecule that contains a sequence complementary to one of the attached single-stranded

probe sequences will stick, or hybridize, via base pairing, to the spot at which

complementary probes are affixed. The probe locations will then glow or fluoresce at a

level of intensity that can be examined using a microarray scanner.

An increase in florescent intensity indicates that cells in the sample have recently

transcribed. Decreased intensity shows that the genes that contain the probe sequence

have stopped transcription. Thus, the intensity of the fluorescence is roughly proportional

to the activity or expression level of that gene. Therefore, microarrays can provide a

method to profile the activity of genes in the genome in a particular cell type under

specified conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

1.3 Cancer Genomics

Cancer is basically a "genomic" disease caused by the alterations in genes. The

origination of cancer is associated with DNA mutations; that is, one or more bases (A, C,

T, or G) in one or more regions of the DNA sequence are replaced by another due to

faulty insertion or deletion. This mutated DNA leads to the abnormal production or

absence of a protein. These abnormal proteins alter the behavior of the cells, often

preventing them from dying when they ought, or causing rapid cell division. These

mutated and/or overexpressed forms of normal genes are called oncogenes. As cancer

progresses, the sequential evolution ion of genetic changes cause the deregulation of

normal cellular processes such as growth, changes in the structure and function of cells,

proliferation, and finally, apoptosis (cell death). It is this cell-process deregulation that

ultimately leads to changes in the gene’s expression.

Cancer genomics involves the analysis of multiple genes, identifying those that

are actively expressed as well as the alterations in gene expression that arise during

carcinogenesis. This technology has opened up the possibility of determining an

individual's susceptibility to cancer at birth, the progression of the disease at selected

periods during his/her lifetime, and sometimes even the likely cause of death. In addition,

cancer genomics has enabled the identification of genetic components in cancer at the

cellular and molecular level, information that will help to identify new therapeutic targets

that would aid in the effective selection of drugs [5], This information moves the research

closer to the era of personalized medicine, a paradigm shift in bench-to-bedside

healthcare.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

INTRODUCTION TO DATA MINING,

BIOINFORMATICS, AND HIGH

PERFORMANCE COMPUTING

This section contains an overview of general concepts in data mining,

bioinformatics, and high performance computing. First, we will cover several data mining

techniques, current issues and challenges in data mining, and association rule mining as a

means of extracting information will be covered. Then, we will provide an overview of

bioinformatics and an elaboration of its key areas will be provided. Finally, a presentation

of the hardware necessary and the software techniques available in high performance

computing will follow.

2.1 Data Minine

Data mining, a method for knowledge discovery in databases, is defined as the

“automated discovery of previously unknown, nontrivial, and potentially useful

information” (such as knowledge rules, constraints, and regularities) from data in large

databases [6, 7], The widespread use of automated data compilation technologies in

application areas ranging from business data analysis, market analysis for business

intelligence, engineering systems design, and geo-spatial scientific exploration methods

to the exponential growth of biological data, including but not limited to genomic and

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

proteonomics data and biomedical images, both at macroscopic and microscopic levels,

are continuing to challenge us with an impressive rate of data generation. This explosive

growth in data collection and the creation of their corresponding databases has generated

an unprecedented and imperative need for new data analysis techniques and tools capable

of intelligently and autonomously transforming the processed data into useful information

and knowledge. Consequently, data mining has become an increasingly important

research area [6, 7, 8].

2.1.1 Data Mining Overview

Data mining derives its name from the similarities between the process of

searching for valuable information in a large database, and that of unearthing precious

metals (ore mining) from beneath the earth’s surface. Given databases of sufficient size

and quality, data mining can generate interesting patterns of knowledge and scientific

avenues for further investigation (for example, mining of proteonomics data can lead to

lines for protein engineering in wet-lab experimentation). Data mining can provide

basically (but not exhaustively) the following capabilities [9]:

(i) Autonomous prediction of trends and behaviors-Data mining automates the

process of finding predictive information from large databases. This approach

is more discovery-driven than assumption-driven (a RDBMS: Relational

Database Management System based approach). For example, a superstore

would typically keep a transaction record of daily purchase transactions in the

store and link it with the inventory data (in a typical RDBMS system).

However, data mining can autonomously discover trends from this data. An

example of such a trend is it recognizes that there is a subset of customers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

who frequently buys multivitamin products with their groceries. When the

superstore wants to market a new multivitamin, it can utilize the knowledge

discovered by data mining to target that recognized subset of customers to

send promotional mailings, in order to maximize their return on marketing

investment and inventory management (for cost control).

(ii) Automatic discovery of previously unknown pattems-Data mining tools scan

databases to identify previously hidden patterns. For example, in a market-

basket scenario, it might be interesting to note the purchase of uninteresting

articles together. An example of such a relation might include discovery of a

potential associative relationship between beer and diapers on a Friday

afternoon.

Data mining has proved to be widely applicable in areas, ranging from business to

medical diagnostics. Several techniques have been developed for data mining.

2.1.1.1 Steps involved

The general strategy of data mining involves the following steps:

(1) Data Selection-This is the first step, where scanning through the database identifies

the data relevant for the analysis. It is important to realize that collected data may be

treated differently depending on requirement, e.g., a department may calculate

employee effort by hours or task completion, but another may multi-dimensionally

view the data by department. At this point, a domain knowledge expert intervention is

much important.

(2) Data Preprocessing-Data extracted from legacy database sources is usually not ready

for data mining due to several inherent reasons. During and after the data extraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

process, the data must be configured into a format conducive to mining techniques to

effectively analysis that data and discover patterns. Some examples of data conditions

that may require preprocessing operations are

(i) Incompleteness of the data-some attribute values may be missing or lack certain

attributes of interest.

(ii) Noisiness of the data-the data might contain noise, which includes anomalies or

outliers.

(iii)Irregularity-inconsistencies in data coding or the name nomenclature. This

problem may be the result of faulty data collection instruments, human data entry

error, or errors incorporated in data transmission and aggregation. An example of

such an inconsistency in name would be calendar year being stated as “Yr” or

“Year.”

(3) Data Transformation-after the data is inclusive and coherent, it may still be necessary

to transform it into a representation or structure usable by the target technique or

algorithm for enhanced knowledge discovery. This step attempts to model the data so

that the most desirable dimensions could represent it. Data transformation can involve

the following:

(i) Smoothening-It is a step in data cleaning that further removes noise from the

data. The typical techniques used for this purpose are binning (equi-depth, equi-

width, or adaptive), regression, and unsupervised clustering.

(ii) Aggregation-The data is gathered together into a whole and/or summarized in a

data warehouse. This process helps to construct the data cube necessary for the

analysis of the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

(iii)Generalization-It involves the concept of hierarchy, where the raw data is

structured according to conceptual level and at various different levels of

abstraction.

(iv)Normalization-The attributes of the data are scaled to fall within a small,

specified range, to reach a level of standardization for comparison purposes.

Types of normalization are min-max normalization, z-score normalization, and

normalization by decimal scaling.

(v) Attribute/Feature Construction-New attributes or features are constructed from

the modified dataset and added to the information to further assist the mining

process. An example of such a transformation is FFT (Fast Fourier

Transformation).

(4) Data Mining-The actual analysis step. It involves clustering, classification,

prediction, and association rule mining aimed to derive meaningful information about

correlations in the dataset. In this step the preprocessed and transformed data is further

transformed or compressed (dimensionality reduction in multi-dimensional space) in

order to identify any valuable nuggets of information.

(5) Data Interpretation and Evaluation-After the algorithms generate the results, they are

analyzed to discover any additional domain knowledge and determine the relative

importance of the facts generated. These results may also provide certain interesting

patterns, which can be used to support further scientific decision-making. Results will

also serve as feedback for any additional iteration of the data mining process, to serve

as a self-simulated learning computational framework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

2.1.1.2 Challenging issues in data mining

Data mining technology encompasses several challenges, originating from the

data domain, knowledge discovery routine employed, and expected results [10], some of

which are discussed below.

1. Handling diverse databases

Relational databases are widely employed for the development of efficient and effective

data mining systems. Aside from these, the most common kinds of databases are

transaction, object-oriented, deductive, spatial, temporal, multimedia, heterogeneous,

active, legacy, and the internet information databases. These databases each contain

different types of data and require the construction of specific data mining systems to

mine them successfully.

2. Efficiency and scalability o f data mining algorithms

In order to effectively extract information from the high magnitude data in datasets,

mining algorithms must be efficient and scalable.

3. Usefulness and certainty o f data mining results

Knowledge discovered should describe the contents o f the database accurately and

prove useful for desired applications. Any imperfection in modeling should be

expressed by measures of uncertainty in the form of approximate or quantitative rules.

4. Various expressions o f results

Different kinds of knowledge can be unearthed from different databases. One may also

attempt to examine discovered knowledge from different perspectives or present it in

various forms. Therefore, it is necessary to express both the queries and discovered

knowledge in high-level languages or visual forms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

5. Interactive knowledge mining at multiple abstraction levels

It is difficult to determine what kind of inherent patterns and correlations lie within

databases. However, data mining still seeks to discover this embedded knowledge.

Therefore, data mining processes should be interactive. They should allow a user to

interactively refine a data-mining query and dynamically change data focusing; in

short, to progressively deepen the data mining process by allowing flexible viewing of

mining results at multiple abstraction levels and from manifold perspectives.

6. Protection o f privacy and data security

When data can be viewed from many different angles and abstraction levels, the goal of

ensuring data security against invasion of privacy is threatened (e.g., when dealing with

patient medical records). It has become increasingly important, now more now than

ever, to study, analyze, and increase both public and scientific awareness of the types of

knowledge discovery activities, which may possibly lead to an invasion of privacy and

security of information. Consequently, this need has led to several national and

international consortium efforts in implementing policies and laws for preservation of

privacy and addressing end-user concerns with data mining on sensitive data.

2.1.2 Data Mining Techniques

There are numerous, widely used data mining techniques, but each is traditionally

carried out as an independent process. These techniques include, but are not limited to

classification, clustering, and association rule mining.

2.1.2.1 Classification

Classification involves constructing a function that maps data items into one of

several predefined categories. It is a two step process. In the first step a model is built

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

which predetermines a set of data classes or concepts. Creating these classes usually

requires the input of labeled training data. The training dataset is usually only a small

portion of the dataset, but it is treated as a microcosm of the whole and used to develop

an accurate model for the characterization of classes in the entire dataset. Once a class

model is developed, incoming data is filtered through this model and classified among

other objects sharing similar characteristics. Since the class label of each training sample

is already provided, this step is also known as supervised learning (the algorithm is aware

of the class labels of each of the training samples).

2.1.2.2 Clustering

Clustering is a process of grouping the data into classes or clusters of data such that

the members share a common set of characteristics. It is similar to classification, except

that it is an unsupervised method and no labels are used. The basic characteristic of all

clustering algorithms is the maximization of intra-cluster similarity and minimization of

inter-cluster similarity. For example, a commercial bank that desires to group customers

according to income, age, type of account, and loans claimed could use clustering. The

clustering algorithm would divide the dataset so that the records, which have similar

content, are grouped together while simultaneously ensuring that groups are as different

from one another as possible. Since the categories are unspecified, clustering is

sometimes referred to as unsupervised learning.

2.1.2.3 Association rule mining

We have applied Association rule to the input dataset obtained from BROAD-

MIT. This dataset matrix d = (S,y) is organized into samples, S. as rows and genes, £ as

columns of the matrix. Thus, we consider a triple (5 , S, 0) defined as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

d = (dy) where, 1 < j <n and 1 < i < m ,

S = {St | St is a row of d and 1 < i < m }, # = {G ■ | G ■ is a column of 9 and 1 < j <n} .

For each sample, S i , we define the indicator of S, to be

W (^):= { (ij) |a .. =1};

and, for each gene, Gj, and for each set X of genes, X c we define the present sets

of G, I S , , Gj and X as follows:j i I J

present(Gj \ £,-) := (j) ifdy = 0 ; {i} if dy= 1,

m
present(Gy) := present(Gj \ S t), and

/=i

present(X) := present(Gj) .
G j e X

We also define for some index set, I, and some set of samples, {St \ i e /} , the present set

of X given {St | i e l } as follows:

present(X | {£,• | i e /} := [J present(Gy \ St).
i e l
G j e X

For X c we define support of X to be,

s(X) := number of elements of present(X \ {51, | i e I)

For disjoint subsets X and Y of we write X => Y to indicate that X n Y = 0 and

present(X) c= present(Y). We refer to X => Y as an Association Rule. An Association

rule has a support, s(X => 7), defined to be,

s(X =>Y):=#{i | present(X \ {Si | i e / }) c present(Y | {S',. | z e /})}.

Finally, we define the confidence of X => F as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This problem of Association rule mining in knowledge discovery applications was

introduced by Agrawal et al. in [11].

2.2 Bioinformatics

Bioinformatics is the science of employing informatics technologies to biological

and biomedical datasets to enhance knowledge discovery in both biology and computer

science. Techniques running the gamut of mathematics, informatics, statistics, and

computer science are strategically combined to solve biological problems. Rapid

expansion of genome sequence databases, which includes the human genome database

and other large datasets, resulting from high-throughput experiments, involving DNA and

other biomolecules have generated enormous amounts of genomic data. Consequently,

various computational technologies have been developed to cope with the computational

interpretation of this surge of sequence information. The term bioinformatics was

introduced in the mid-1980's and was to broadly associated with computer applications

that were used in the biological sciences. However, bioinformatics is now referred to as

the science of managing, mining, and interpreting information from biological entities.

Major research efforts in the fields related to genomics include, but are not limited to,

gene finding, protein structure alignment and prediction, and the prediction of gene

expression. The following section will briefly discuss each of these fields.

2.2.1 Gene Expression Analysis

As discussed in Chapter 1, gene expression begins with transcription and

translation and is followed by protein folding. The expression level of a gene describes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

the level of gene activity in the requisite tissue under scrutuinization. For example, gene

expression analysis in human cancer tissues pertains to measure the mRNA responses of

variety of genes present in the human genome and their flourescent intensities used to

parametrize the expression value of that gene. However, such gene expression data

(commonly known as the expression-matrix) is not fit for data analysis by itself. It is

prone to several noisy errors, essentially due to the limitations of the data eaquisition

equipment and the estimating tools (microarrays and their supporting routines). Hence,

there is a need for design and implemnetation of novel data mining methodologies that

can analyze this data for noise-reduction, feature selection, dimensionality reduction,

unsupervised classification or clustering, knowledge integration, knowledge

representation and interpretation, and data visualization. Most of the gene expression

databases suffer from what is called “small-n large-p” problem, which refer to the fact

that commonly, number of (tissue) samples in such databases (n) are far fewer (usually in

small hundreds) compared to number o f genes present (p). Consequently, such analysis

can present valuable information on the physiology of many genetic diseases, such as

cancer, by providing invaluable information about active pathways and upregulated

proteins that participate in relevant metabolic activities.

2.2.2 Protein Structure Prediction

Protein structure prediction is another important application of bioinformatics. It

aims to determine the three dimensional structure of proteins from their amino acid

sequences. The amino acid sequence, called the primary structure, can be determined

easily from the sequence of the gene that codes for it. However, the protein only

functions properly if it is folded in a very specific and recognizable manner (the folding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

of the protein.) The prediction of folding from sequence alone is quite difficult.

Functional characterization of a protein using amino acid composition and its electro

chemical properties poses several interesting data mining challenges, and several

methods for computer predictions of protein folding are currently under development.

2.2.3 Homology in Gene Finding and
Gene Function Prediction

Homology, the ability to have the same relation and relative position, is emerging

as one of the important principles of bioinformatics and is attracting lot of interest. While

it is considered one of the far most promising technologies that can reliably unravel the

mysteries of the principle of central dogma of biology, the research in this area is far

from complete. The principles of homology are applied both in the areas of genomics and

proteonomics. In genomics, homology can predict a function of a gene by finding

homologous behavior among gene patterns. A similar analogy can be found in predicting

the function of proteins in structural biology: if two proteins tend to be homologous in

terms of their core formation and interaction with other proteins, they will likely have

similar function. So if the function of one protein is known, the functions of the other

protein can be accurately estimated.

2.3 High Performance Computing (HPQ

Since the beginning of the computer revolution in mid-1980s, numerically

intensive scientific computation has changed dramatically. The major changes have been

introduced by increasing computational speed and memory availability, and

improvements in the area of data acquisition and transfer (input/output devices.)

Computationally intensive methods require high computing power. Personal computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

processors, which form the processing core of most workstations and PCs, have been

doubling in performance (approximately) every 18 months (in accordance with the

Moore’s law). This enables several diversified applications which were previously run on

legacy large-scale (such as mainframe) systems to operate on the new generation

systems, thus making it much cheaper and faster to perform complex computational

tasks.

Several bioinformatics challenges exist in the areas of gene expression mining,

phyogenetic analysis, protein-protein interaction, metabolic pathway analysis and

visualization, and protein functional prediction. Multiprocessor computing or rapid high

performance computing (HPC) environments provide shared-memory and shared-

computation environments that can disintegrate the analysis and interpretation of vast

amounts of data in bioinformatics study for fast and accurate discovery. However, it

should be noted that although uni-processor machines available today although do

process improved computation capabilities, they typically fail to analyze such data of

such kind due to its embedded high-dimensionality and complexity (a paradigm

commonly known as the “curse of dimensionality”).

2.3.1 Overview of Technology

HPC covers a wide range of hardware platforms and software techniques, some of

which are discussed below.

2.3.1.1 HPC hardware classification
schemes

Three computer architectural classification schemes are presented in this section

[12]. Flynn’s taxonomy (1966) classified systems according to the number of instruction

streams and data streams [13]. This system is a widely used scheme for parallel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

architectures. Hardware classification can also be based on shared memory and

distributed memory architecture. These schemes are graphically represented as Figures

2.1 and 2.2, respectively.

SISD SIMD MISD MIMD

Single Multiple

Figure 2.1 Flynn’s Taxonomy

DistributedShared Memory

ClusterSymmetric Parallel Massively

Figure 2.2 HPC Classification based on hardware resources

While the hardware categories in Figure 2.2 show a more practical distinction

between hardware that is useful in the current HPC trends, Flynn’s Taxonomy and Feng’s

classification are based on the programming paradigm adopted on different architectures.

2.3.1.1.1 Flynn’s taxonomy

• Single Instruction, Single Data (SISD)-A single processor fetches the instructions

and performs the data processing operations. Most serial computers common today

work on this scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

• Single Instruction, Multiple Data (SIMD)-A processor uses multiple data streams for

a single instruction stream to perform operations that may be parallelized. The style

of programming in SIMD machines is often called Data Parallel Programming.

Examples of this type of machine are the Thinking Machines CM-2 and the old

ICL/AMT Distributed Array Processor [14]. Some modem processors that

intrinsically support SIMD instruction sets are velocity core in Apple G5 and Pentium

MMX instructions.

• Multiple Instructions, Single Data (MISD)-Several processors operate on a single

data stream, each with an instmction stream from its own instmction memory. This

structure has received comparatively little attention; one example of a pipeline

(MISD) system is CMU Warp.

• Multiple Instructions, Multiple Data (MIMD)-Several processors execute different

instructions over different data streams. Processors can communicate directly or

through shared memory. The instructions can be entirely different programs,

communicating with each other by means of Message Passing Model [15].

Distributed architectures follow the MIMD model.

• An extension to this taxonomy is known as Single Program Multiple Data (SPMD)

model, which describe most of the parallel computers of today. SPMD described as a

variant of MIMD where multiple independent processors work on different data, but

execute the same instruction set. The details of this model are covered in Chapter 3.

2.3.1.1.2 HPC model based on the
hardware resources

This section discusses the different categories of HPC hardware technology as

shown in Figure 2.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

• Shared Memory-A shared memory machine consists of a number of processors and

memory modules interconnected by a network [16]. Shared memory is the fastest

form of inter-process communication. Once the memory is mapped to the address

space of the processes that are sharing the memory region, no kernel is involved in

passing the data between the processes [17]. This architecture limitation is normally

imposed by a processor count due to bus saturation. Shared memory architecture can

be classified as follows:

o Symmetric Multiprocessing/Bus-Based Architecture-The simplest inter

connection network is bus-based, as depicted in the following diagram (Figure

2.3):

Bus

CPUCPU CPU

Cache
Cache

Cache

Main Memory

Figure 2.3 Bus-based shared memory architecture

The parallel nature of the machine is not overtly visible to the user, since the

operating system manages the allocation of processor time to programs. In

essence, this structure provides a timesharing, multi-tasking operating system,

when scheduling programs to run. Each processor has its own dedicated cache

memory but shares a common pool of main memory with the other processors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

The drawback of this architecture is that, if multiple processors concurrently try

to access the memory, the bus can become saturated, possibly resulting in long

delays between starting an instruction and actually handling data. The bus is

also the limiting factor for bandwidth so that this architecture does not scale to a

large number of processors. SMP works well for large databases that are

updated frequently; since the database is shared, it becomes easier to update

[18]. Examples of SMP machines are Cray CS-6400, DEC AlphaServer, and

Sun Enterprise Servers,

o Non Uniform Memory Access (NUMA)/Switch-Based Architecture-Switch-

based interconnection networks use a crossbar that can be visualized as a

rectangular mesh of wires with switches at the points of intersection and

terminals on its left and top edges. Either processors or memory modules can be

connected to the perimeter terminals. The switches can either allow a signal to

pass through in both the vertical and horizontal directions simultaneously, or

they can redirect a signal vertical to horizontal or vice versa, allowing any

memory module to be accessed by any processor. The benefit of this approach

is that the communication between any two units does not interfere with

communication between others. Hence, the crossbar switches don’t suffer from

the problems of saturation encountered in a bus-based architecture. One major

drawback is that crossbar switches tends to be expensive (an m x« crossbar will

need m x n hardware switches). A diagram of a crossbar is shown in Figure 2.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

CPU

CPU

Switch

MemoryMemory Memory

Figure 2.4 Crossbar Switch

• Parallel Vector Processing-Parallel Vector Processing (PVP) machines are special

cases of SMP systems using a specialized shared memory model. While SMPs

use commodity scalar or superscalar RISC processors, PVP systems use custom

designed vector processors, denoted as registers, which have specially designed

memory areas (and example of the setup is shown in Figure 2.5). Since it

performs operations with vectors, all components are dealt with simultaneously

on different ALU’s. As a result, vector processors are much faster than traditional

scalar processors. This combination of powerful custom processors and SMP

architecture makes PVP systems some of the fastest computers available. In PVP

systems, like SMP systems, the use of shared memory allows the multi-processor

nature to be hidden from the user by the operating system. Typical PVP systems

contain between 2 and 32 processors. Examples of PVP machines include Cray

J90/C90/T90 Series and NEC SX-4 Series [14].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

CPUCPUCPU

Vector VectorVector

Main Memory

Figure 2.5 Parallel Vector Processor (PVP)

• Massively Parallel Processing-Massively Parallel Processing (MPP) machines are a

form of high performance computing systems that are able to use hundreds or

thousands of CPUs simultaneously. The CPUs are relatively inexpensive distributed

memory processors connected together with custom designed, fast interconnects. The

main difference between MPP and SMP systems is that the former use fully

distributed memory, where each processor has its own cache and memory chips [19].

In case of MMP systems, when a query is sent, software breaks it up so that each

processor runs a different part of the problem, making the response time very fast.

MMP systems do not have any bottleneck problems when all the CPUs try to access

the same area of memory, which is inherent in SMP systems. In MPP systems,

memory is distributed to each processor as shown in the Figure 2.6, so that

connecting large numbers of processors together is less difficult as compared to an

SMP system. Available memory and enhanced scalability makes MPPs one of the

most powerful computers available today. Examples of MPP systems are Cray T3D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

and T3E systems and IBM SP/2 systems; all are an interconnecting network of

parallel processors with self-contained cache and memory. Till 1997, the largest MPP

configuration was the Intel/Sandia Option Red with 9216 processors.

CPU

CPUCPU

CPU

Cache

Cache

Cache

Cache

Memory

Memory

Memory

Memory

Figure 2.6 MPP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

• Cluster Computing-Only a few years ago, HPC was prohibitively expensive.

However, today a modest parallel computing system can be built using commodity

off the shelf (COTS) components (workstations and PCs) and a local area network

(LAN). A cluster is a group of loosely coupled computers that works together such

that it appears as if it were a single computer. Generally, when two or more

computers work together to solve a problem, it is considered a cluster. These clusters

of computers are used for high availability (HA) and high performance and extend the

potential of their existing computing resources to tackle large scale, computationally

intensive problems. The cluster-computing model is based on a distributed memory

parallel architecture. PVM (Parallel Virtual Machine) and MPI (Message Passing

Interface1) are popular parallel programming frameworks that turn a network of

computers into a virtual parallel computer. They provide two important functions

[14]: initializing commands to start a parallel application running on multiple

computers, and a library of run-time routines to enable parallel applications to

transfer data between computers.

Each machine in a cluster can be a full-fledged system, usable for wide range

of computing applications. Replacing a faulty machine in a cluster is easier than

fixing a part of SMP at fault. Clusters are set up systematically and strategically to

enhance speed and/or reliability over that provided by a single computer, while

typically being much more cost-effective than a single computer of comparable speed

or reliability. Clusters can be categorized into the following types: high avalibility

1 http: //w w w -unix.m c s . anl. gov/m pi/

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

(HA), load balancing, HPC clusters, and grid computing clusters.

As an example, the Borg is a 52 node cluster used by McGill University to

search for pulsations from binary pulsars. With evolutional friendliness and cost

effectiveness, COTS-based clusters have become the architecture of choice for HPC

applications. Figure 2.7 shows the statistics provided by top500.org in November

2005, more than 70% of the 500 most powerful systems are cluster based.

, • 5 0 0 ' A rch itectu res / S y s tem s
*'** v6 November 2005

MPP (20.8*y| ' '

C onstellations (7 2%)\

.......
CAfl 1 'T.’LLiL _ ‘ t h t tp f f y t o p S U n ort^j

Figure 2.7 Percentage of computer systems employed based on architecture2

2.3.1.1.3 HPC software technology

The decade has witnessed the explosive growth of software standards for HPC

applications, making portable and reusable HPC applications a reality [20]. Major

software techniques and standards in the area of parallel HPC include

• Shared memory and standard high performance programming; Fortran (HPF) for

rapid parallel development, UPC/Global Array and OpenMP.

2 Source: http://w w w .top500.org/lists/2005/! 1/1/Architectures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.top500.org/lists/2005/

33

• Message passing programming (MPI), which is an inter-processor communication

standard [14] for flexible efficient applications.

• Data Parallel Programming-The architecture-independent parallel programming is

possible by programs written in high-level SIMD programming languages, which

may be compiled on both shared memory and distributed memory multiprocessors.

Data parallel programming is focused in developing parallelism strategies to large

data sets and distributing data over the available processors using a “divide and

conquer” method, data parallel programming comes in handy when the operations are

performed on the distributed data subsets that may or may not involve dependencies

(knowledge integration routines discover and exploit the dependencies in distributed

datasets), and the application exhibits data locality for computational purposes. The

basic idea of data parallel languages is that the user does not explicitly specify the

inherent parallelism in the program but annotates the program with directives on how

to distribute the data and from there on the compiler takes the charge [18]. However,

the compiler can never know as much of the application as the programmer does,

hence as parallel problems gets complex, data parallel compilers generates less

efficient code [20]. This is the drawback of the data parallel programming approach.

Two technologies [14] that fall under the umbrella of data parallel programming are

high performance Fortran and shared memory programming.

o High Performance Fortran-Fortran has been a very popular language in the past,

especially in the fields of engineering and science. Around 1993, the Fortran 90

standard extended Fortran 77 to include operations on whole vectors and arrays.

This feature was a breakthrough towards High Performance Fortran (HPF), which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

is an extension of Fortran 90 [14]. HPF is an extension of Fortran 90 by supplying

data for parallel constructs and adding directives to let the compiler know, on how

to distribute the data and to provide assertions so as to enhance the optimization

of the code being generated. Since the introduction of high performance fortran

language specification, there has been a great interest in HPF as a language for

efficient parallel computation. Some of the features include data distribution, data

parallel execution, and extended library functions. HPF applies much of its

functionality through compiler directives by giving a single program, which

includes the directives for data distribution and program assertions that identify

which loops to parallelize,

o Shared Memory Programming-As the name suggests, it is the memory that the

processors can share to communicate with each other. It creates a sense of

abstraction to the user as it provides the view of the memory similar to the uni

processor. In the shared memory style of programming, the tasks of the program

read and write from the memory. The access to the shared data is controlled by

the programmer using critical sections and semaphores. This is the way in which

parallel tasks, running on multi-processor, coordinate and communicate with each

other. OpenMP is the industry standard API for shared memory programming

[21]. It supports parallel programming in C/C++ and Fortran and can run on Unix

and Windows platforms. Standardization for OpenMP ANSI X3H5 was proposed

earlier, but it was not formally adopted. The drawback of shared memory

programming is that it creates contention and coherency problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

o Message Passing Programming - In a parallel program a task can be solved when

the processes communicate with each other to solve a common task at hand. In

the message passing model, the tasks are completed by the processes by explicitly

sending messages to each other. The programmer has to explicitly specify how

these tasks will synchronize and communicate with each other. Message passing

systems (MPSs) simplify the communication between more than two programs

and are not restricted to distributed memory computers alone but provide

communication between any machines that have multiple processors. The current

version of MPI assumes that processes are allocated statically, which means that

the number of processes is set initially before the execution begins, and no

additional processes are created during the execution. The two specific examples

of the message passing model are the web services and the Internet. The two most

common message passing systems are message passing interface (MPI) and

parallel virtual machine (PVM).

o Message Passing Interface-This section has been covered in detail in Chapter 3.

o Parallel Virtual Machine-During 1989, the first version of PVM was written at

Oak Ridge National Lab in the U.S. It was developed by University of Tennessee,

Oak Ridge National Lab and Emory University. It was originally designed to

operate on heterogeneous collection of Unix/Windows workstations and has

important features for supporting applications in such environments. The software

is very portable. From its cluster-oriented beginnings, PVM has been ported onto

SMP and MPP systems. It is a common choice for the MPP systems. It consists of

two parts: a daemon process that any user can install on a machine, and a user

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

library that has routines for initiating processes on other machines. Both parts are

designed for communication among processes and changing the configuration of

machines.

There are three different variants o f PVM available for users, namely

vanilla PVM, MPP PVM and Bproc PVM [22], In vanilla PVM, the daemons

should ran on each cluster while in MPP PVM the daemon runs only on the main

node. Bproc PVM is available for cluster systems which use the Scyld Beowulf

cluster operating system. The feature of PVM that makes it different from MPI is

dynamic process management, which is the ability to create and destroy processes

during the lifetime of an application. In MPI this is a higher level feature than the

type of functions generally defined. PVM and MPI are different solutions to the

same problem. For further information regarding the difference between MPI and

PVM, the readers are referred to [23].

2.4 Benefits

To process and extract information from the gene expression data is

computationally expensive, as it requires intensive numerical operations. Analysis of

such high dimensional data makes it impractical to solve these computations on a uni

processor machine. HPC provides an optimal price/performance ratio when dealing with

high dimensional data. It makes the computations faster and distributing the data on

various processor nodes only makes the analysis and interpretation of such data easier.

2.5 Methodology

The proposed computational paradigm is presented in Figure 2.8 and was

introduced in [24]. The framework consists of the following key computational steps:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Gon«
Expression

Data

Data
P rep ro cessin g

Co-mpLto ■X ,1
' ES m M

b

X I I

Data P re p a r a tio n

Data
Normalization

B

X
Knowledge integration (G®n<$s@tmfaing)

Data
Discretization

Partition -1 ParWl-an -2 Panitlen -3 Partner! -n

V ertical
Partiiiesnrsg

A-daplive
Selection

Data
Discretization

Frequent Frequent Frequent Frequent
<3enesets-1 G eneseis.-2 G enesetts-3 G e n e se is -.i

Figure 2.8: The proposed computational framework for distributed knowledge discovery

(a) Preprocess, normalize, and discretize the gene expression data. The data thus

obtained is in the standard input format required by the association rule discovery

(ARD) algorithm.

(b) Partition the data using three proposed methods: partitioning with non-overlapped

windows, partitioning with overlapped windows, and partitioning employing the

method of adaptive selection.

(c) Dispatch the partitioned components of the expression matrix to distributed

processor-nodes for fast and accurate Association Rule Discovery using the

message passing interface. We have applied the FP-growth [25] algorithm for the

association rule discovery.

(d) Integrate association rules from partitioned data and knowledge spaces on

distributed processor nodes using a novel knowledge integration algorithm named

Genesetmining.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

(e) Post analysis of the result and its interpretation.

We describe each of the above processes in the subsequent chapters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

DATA PARTITIONING

3.1 Target Database

As our target gene expression dataset, we took the global cancer maps (GCM) as

reported in [26]. The raw dataset consists of a total of 314 tumor and 98 normal tissue

samples, out of which 218 tumor and 90 normal tissue samples passed the quality control

criteria of the referenced authors. Only the samples that passed quality control criteria

were used for our analysis, leaving tumor samples representing 14 common classes of

human cancer. These samples and their corresponding gene expression values as reported

in [26] provide the experimental results from oligonucleotide microarrays containing

16,063 probe sets scanned using standard Affymetrix protocols and scanners1. For further

analysis, each probe set was considered as a separate gene. The resulting dataset

contained 5 million (approximately) gene expression values that are further divided into

training and a testing datasets.

3.2 Preprocessing of Expression Data

Due to its inherent noise, gene expression data requires preprocessing before

employing knowledge discovery applications. Preprocessing streamlines and clarifies the

1 The dataset is available from: http://www.broad.mit.edu/cgi-bin/publications/list pubs.cgi.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.broad.mit.edu/cgi-bin/publications/list

40

data through the following steps: (a) a threshold of 20 units and a ceiling of 16,000 units

are imposed on the dataset using clip values to min/max filter, (b) gene expression values

are subjected to a variation filter that excluded genes exhibiting less than a 5-fold

variation and an absolute variation across samples of less than 500 (comparing max/min

and max-min with predefined values and excluding genes not satisfying both conditions),

and (c) standardizing each row (gene) using z-score normalization. The dataset remaining

after preprocessing contains 10,887 genes and 127 samples. It should be noted that the

elimination of genes with less than 5-fold variation is not expected to exclude many

marker (onco-) genes, for low expression folds are usually associated with housekeeping

genes [27] uninteresting to this study.

The samples and genes represent rows and columns in the dataset, respectively,

and their intersection consists of normalized gene expression values. Consequently, a

gene may either be expressed or repressed in a particular sample, necessitating

description using a two-attribute set. Each gene is computationally transformed and

represented by two items: gene-up (up-expression of the gene) and gene-down (down-

expression of the gene). If a gene has a value greater than 0, then the flagged attribute

“gene-up” is set to 1 and “gene-down” is set to 0; on the other hand, if a gene has a value

less than 1, then the flagged attribute “gene-down” is set to 1 and “gene-up” is set to 0.

This method of denotation models the conditions of the original dataset where a positive

expression value indicates that the gene is (over-) expressed while a negative value

indicates that the gene is repressed. Though we have increased the total number of data

points two fold (10,887 x 2 = 21,774), the total number of genes in any sample remains

unchanged. Figure 3.1 illustrates the discretization of the initial dataset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

samplel samplel samplel sampled sampleS sampled
genel 1.030 -2.600 1.850 -0.236 -0.750 8.980
gene2 1.660 -0.440 1.480 1.810 0.900 -0.450
gene3 -0.650 2.500 -0.980 -0.450 -0.430 0.005
gene4 0.616 -0.380 -0.525 -0.128 -0.658 1.080

D ataset After Discretization

g e n e lu p g e n e ld o w n gene2_up gene2_down gen el up g en e ld o w n gene4_up gene4_down
samplel 1 0 1 0 0 1 1 0
sample2 0 1 0 1 1 0 0 1
samplel 1 0 1 0 0 1 0 1
sample4 0 1 1 0 0 1 0 1
sample5 0 1 1 0 0 1 0 1
sampled 1 0 0 1 1 0 1 0

Figure 3.1: An example demonstrating the discretization of gene expression data

It may be noted that the characteristic of the above mentioned dataset can be

described as a small n and large p problem [28], Because the resultant dataset is large in

size, we harness the computational power of high performance computing by partitioning

the dataset on various processor nodes and running the association rule discovery

algorithm in parallel on the smaller, partitioned datasets.

3.3 Partitioning

A partition splits up a logical dataset or its constituent elements into distinct,

independent parts. Partitioning a dataset into different files enhances the efficiency of

effectiveness of the analysis procedures. There are two primary ways of partitioning a

dataset: vertically and horizontally. Horizontal partitioning refers to splitting a large

dataset into small entities row-wise. An example is shown in Figure 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

g en eljup g e n e ld o w n gene2_up gene2_down gene3_up gene3_down gene4_up gene4_down

| samplel 1 0 1 0 0 1 1 0 1
| samplel 0 1 0 1 1 0 0 1 1
| sampleS 1 0 1 0 0 1 0 1 1

V Partition 1

r — — — —
| sample4 0 1 1 0 0 1 0 1 1
| sampleS 0 1 1 0 0 1 0 1 1
| sampleb 1 0 0 l 1 0 1 o 1

Partition 2

| sample7 1 0 0 1 0 1 0 1 I
| sampleS 1 0 1 0 0 1 0 1 1
^ sample9 0 1 0 1 0 1 1 0 J

V Partition 3

Figure 3.2 Horizontal partitioning of a dataset

Vertical partitioning separates selected columns from a large dataset and handles

them individually. An example is shown in Figure 3.3.

genel_up geneljdown gene2_up gene2_down gene3_up gene3_down gene4_up gene4_down J
samplel 1 0 1 0 0 1 1 0 !
sample2 0 1 0 1 1 0 0 1
sampleS 1 0 1 0 0 1 0 1 i
sample4 0 1 1 0 0 1 0 1 i
sampleS 0 1 1 0 0 1 0 1 i
sample6 1 0 0 1 1 0 1 0 I
sample7 1 0 0 1 0 1 0 1 !
sample8 1 0 1 0 0 1 0 1
sample9 0 1 0 1 0 1 1 0

Figure 3.3 Vertical partitioning of a dataset

We partitioned the preprocessed dataset using the strategies described below, all

of which are based on the vertical partitioning scheme.

3.3.1 Non-overlapping Vertical Partitioning

The dataset is divided into w windows in a non-overlapping fashion across the

progression of the sample gene profile, where the number of windows is equal to the

number of processor nodes available. Each generated window is then sent to each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

processor node for further analysis such that each node is responsible for exactly the

same number of genes (equal to the width of the window sample). The total number of

windows generated (processor load) is the ceiling N/w; where N is the number of

elements in the gene expression profile and w is the window size. Figure 3.3

demonstrates the non overlapped technique, where the dataset is partitioned into two

windows of equal sizes. The first window ranges from genel_up to gene2_down, while

second window ranges from gene3_up to gene4_down. As demonstrated by the

experimental results (provided in Chapter 6), this is an unsatisfactory approach for data

partitioning. This judgment can also be justified intuitively: using this method, each

partitioned dataset contains a set of non-overlapped genes. Running the FP-growth

program on each processor-node generates rules relevant to that particular node (and its

partitioned dataset). While knowledge integration has the capability of discovering inter

node correlations by exploiting intra-node associative measures, the lack of redundancy

between distributed nodes inhibits the knowledge integration capabilities of our

algorithm. In short, if the dataset on each node does not overlap, there is no shared,

common basis for comparison, thereby inhibiting inter-node correlations. Consequently,

the associations among the genes residing on remote processor-nodes may remain

undetected.

3.3.2 Overlapping Vertical “Partitioning”

The dataset is partitioned into w windows of equal sizes, with an overlap between

consecutive windows. Again, the number of such windows should be equal to the number

of processor nodes available. Thus, if the overlap is w - 1, then the resulting total number

of windows is N - w + 1; where N is the number of total data elements and w is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

specified window size. Both the window size and the amount of overlap are specified by

the user. Figure 3.4 shows the overlapped partitioning technique consisting of three

overlapping windows of equal sizes. Window-1 ranges from genel_up to gene2_down,

window-2 ranges from gene2_up to gene3_down and window-3 ranges from gene3_up to

gene4_down. Comparisons of experimental results obtained by varying the window and

overlap size are available in Chapter 6.

Window-3
Window-1

genel up genel down g e n e lu p g e n d d o w n gene3_up genc.ldowi gene4_up gene4_down
samplel
sample2
sampleS
sample4
sampleS
sample6
sample 7
sample8
sample9

Window-2

Figure 3.4 Overlapped “partitioning” technique

3.3.3 Adaptive Selection
(“partitioning” using k-means clustering)

Adaptive partitioning is achieved by the £-means clustering algorithm [29]. That

is, the dataset is partitioned into ^-clusters using the jC-means processing algorithm. This

algorithm creates the first k initial clusters (where k is the number of clusters required) by

choosing k rows of data randomly from the dataset. It then calculates the arithmetic mean

of each cluster (the mean of all individual records) formed in the dataset. The degree

deviation of each record from the center of the cluster is also calculated. If the deviation

is less than the threshold value lambda then the record is assigned to that cluster. Based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

on the threshold value, then, each record in the dataset could belong to more than one

cluster, creating complex overlap among the records. The value of lambda is calculated

by computing the Euclidean distance between x (x = 16) randomly selected records. The

mean of the Euclidean distance determines the value of lambda. The ^-clusters so formed

are then sent to k processor nodes. The computational complexity of sequential /c-means

results in (3nkd + nk + nd) floating point operations [30]. Each addition, multiplication,

or comparison is counted as one floating point operation. Here, n is the number of data

points (genes), k is the initial number of cluster centers selected, and d is the length of the

record (profile).

A breakdown for the complexity of the floating point operations shows that each

part accounts for the following action: 3nkd is the computation required to calculate the

Euclidean distance of each record from the cluster center, nk computations are required to

find the closest cluster center for each point, and nd computations are required to update

the cluster centers. If these iterations run J times, then the total complexity becomes,

(3nkd + nk + nd) * J floating point operations.

3.4 Results

In order to run the experiments, the original, preprocessed dataset was partitioned

into sizes of 500, 1000, 1500, and 2000 genes per partitioned dataset using the non

overlapped partitioning scheme. Similarly, using the overlapped partitioning technique,

the dataset was ranged into partition size from 500 to 1000 genes per partition in 100-

gene increments. For each of the above partitions, the overlap is also ranged between

50% and 95%, at an increment of 10%. The number of clusters (partitions) created using

the method of adaptive selection is 8, 16, 32, and 48. The results obtained after the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

association rule discovery and knowledge integration on the partitioned datasets are

discussed in the subsequent chapters.

For a comparative study, we applied a parallel version of the A:-means algorithm,

based on the message passing model [31, 32] to provide a faster solution for the

clustering of similar genes. Parallel k-means has been previously studied for very large

database applications by [30, 33]. In particular, authors in [32] have examined the factors

of speedup and scalability by varying the number of data points, dimensions, and clusters

at various instances. It can be observed that the most computationally intensive step in

the sequential k-means routine is the distance-from-center deviation of each record. The

central idea in parallelizing the algorithm is to split the dataset among the processors to

achieve faster computation. For small datasets, the time taken for communication among

the processors is greater than the time taken for computation. It is important for any

parallel algorithm to minimize the communication time between the processor nodes.

Based on the above discussion, the design of the parallel k-means algorithm is as follows.

1. The process with ID “root” selects the initial k cluster centers and broadcasts them

to all the other processes.

2. Each process is only responsible for a portion of the dataset (number of data

points/number of processes). Hence, each process computes the distance from the

cluster centers for only its particular portion.

3. The points are assigned to the closest cluster center and the mean is recalculated.

4. This process is repeated for every cluster formed until the convergence criterion is

met.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

The implementation of the parallel k-means algorithm is based on the single

program multiple data (SPMD) model using the message passing interface (MPI).

3.5 The Message Passing Model

A typical message passing model is described as a set of processes, P, having

local memory, that communicates by sending and receiving messages. The data transfer

from the local memory of one process to the local memory of another requires

cooperative operations (send data, receive data). Employing the SPMD paradigm of

parallel programming, the same program is executed on each node, but on different

datasets. Each processor node possesses a local copy of the executing program and each

runs independently. Thus, the instruction streams running on each processor node can be

completely different.

The message passing interface (MPI) is one of the most widely used standards for

programm ing parallel systems. The interface attempts to be efficient, robust, practical,

portable, and flexible. MPI was developed between 1992 and 1994 by a combined group

of researchers from academia and industry. It consists of a library of functions that can be

called from C/C++ or Fortran 77 programs. From a programmer’s stand point, the

parallel computing using MPI is as follows. A programmer writes program in C/C++ or

Fortran 77, compiles it and links it using the MPI library. The object code is loaded on

the memory of every processor taking part in the computation, creating n parallel

processes. Each process is assigned a rank between 0 and n - 1. Overall, MPI is a

complex system consisting of 129 functions, each containing a number of parameters.

The functions that were used in the parallel k means algorithm are listed, with a

corresponding description, in the chart below (Figure 3.5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

M PI_Init() Starts M PI

M PI_Com m _size() D eterm ines num ber o f processes

M PI C om m _rank() D eterm ines th e ran k o f the calling process

M PI_Bcast(m essage, root)
B roadcasts a m essage from the process w ith rank
"root" to all o ther processes o f the group.

M PI_A llreduce(X , Y , M PI_SUM)
Com bines values from all processes and distribute the
resu lt back to all processes.

M PI_W tim e()
R eturns the tim e elapsed in seconds to the calling
processor

M PI G et_processor_nam e() R eturns the processor’s nam e

M PI_Recv() Receives a m essage

M PI_Send() Sends a m essage

M P IF in a liz eQ Term inates M PI execution environm ent

Figure 3.5 MPI functions used in A:-means algorithm

3.6 Performance Analysis

The experiments were carried out on a cluster comprised of one head-node and

three computing nodes. The head node is a dual Intel Xeon processor with a speed of

2.8GHz and 1GB of RAM. The computing nodes are each 1.2GHz with 512MB of RAM.

The MPI implementation is the LAM/MPI version 7.0. The dataset was partitioned using

the adaptive selection technique by applying the serial X-means and Parallel £-means

algorithms. In general, for sequential algorithms, the evaluation criterion is the

correctness of the output. For parallel algorithms, the correctness of the output alone is

not enough; a demonstrated decrease in execution time and increased ability to handle

large amounts of data by using more processors is preferred. The two distinct

characteristics of a parallel algorithm are speed-up and scale-up. The results for

partitioning the dataset using the adaptive selection method are given below. We

primarily examine the speed-up and scale-up characteristics as the dataset is partitioned.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

3.6.1 Varying k (number of clusters) and
Recording Computational Time.

We recorded the computational time by varying the number of clusters (k) as 8,

16, and 24, where the number of processes was 3, 6, 9, and 12, respectively. The results

are shown in Figures 3.6-3.9.

H um ber of p ro c e sse s= 3

10 n

3 16 24 320

N um ber of c lu s te rs =k

Figure 3.6 Shows the computational time for 3 processes and 8,16, and 24 clusters.

N u m b er o f p r o e e s se s= 6

6.7522

2.8495

24 32

Num ber of c luste r s^k

Figure 3.7 Shows the computational time for 6 processes and 8, 16, and 24 clusters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Number of processes=9

6 5357

2.9435

24

H um ber of c lu ste r s=k

Figure 3.8 Shows the computational time for 9 processes and 8, 16, and 24 clusters.

Number of pro cesses-12

2.7695
- 1 .7907

24

H um ber of c lu ste r s^k

Figure 3.9 Shows the computational time for 12 processes with 8, 16, and 24 clusters.

It is evident from Figures 3.6 through 3.9 that as the number of clusters k increase,

the computational time to cluster the entire dataset increases. As discussed above, the

computational complexity of the &-means algorithm is dominated by (3nkd)*J floating

point operations. Thus, it is logical and expected that as the number of clusters increase,

the time taken for computation also increases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

3.6.2 Varying k (number of clusters! and
Recording I/O Time

We recorded the I/O time by varying the number of clusters (k) as 8, 16, and 24,

where the number of processes was 3, 6, 9, and 12, respectively. The results are shown in

Figures 3.10-3.13.

Hum ber of p ro ce sses= 3

1.5

0.5

-44)516 ^ 1 D406

------------ 1--------------1------------ 1------------
8 16 24 32

H um ber of c lu ste r s=k

Figure 3.10 Shows the I/O time for 3 processes with 8,16, and 24 clusters.

1.5 T

0.5

Number of processes=6

—M 7 3 6 —

------- 1---------

U J o 5 i . U Ij o j o

8 16 24 32

Hum ber of c luster s=k

Figure 3.11 Shows the I/O time for 6 processes with 8, 16, and 24 clusters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

N u m b er o f p r o c e s s e s = 9

0 .0 7 —

1

'O D T O T

1-------------------

Li id o 1 2

T--------------------

0 8 16 24 32

H um ber of c lu ste r s=k

Figure 3.12 Shows the I/O time for 9 processes with 8, 16, and 24 clusters.

Number of processes=12

1.5

I 1V
Q

0.5

0.0734 OJOOOO 0 9 0 99

—r -
16

— i—

24 32

Num ber of c lu ste r s=k

Figure 3.13 Shows the I/O time for 12 processes with 8, 16, and 24 clusters.

From Figures 3.10 through 3.13 we observe that increasing the number of

processes does not have any effect on the I/O time; rather, it remains practically the same

for all tested numbers of processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

3.6.3 Varying n (number of processes) with
Constant Number of Clusters, k

This experiment studies the scalability of the system by varying the number of

processes from 3 to 15 while computing 16 clusters in each case. Figure 3.14 shows the

scalability study graphically.

N u m b er o f c liisters= 16

3 3608

6 9 12 15 180 3

Num ber of p ro c e s s e s s = n

Figure 3.14 Computational time for varying number of processors, but constant k

As demonstrated in Figure 3.14, the computation time decreases as the number of

processes increases from 3 to 9. However, an increase in computational time occurred as

the number of processes increased from 9 to 15. This increase in computational time can

be attributed to thrashing. Thrashing occurs when excessive paging operations are taking

place. In other words, numerous processes are competing for scarce memory resources. A

system that is thrashing can be perceived as either very slow or even halted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

MINING FREQUENT PATTERNS

USING FP-GROWTH

4.1 Introduction

The partitioned datasets created in the fashion outlined in Chapter 3 are sent to the

various processor-nodes using the message-passing interface. The association rule mining

algorithm, namely FP-growth (Frequent Pattern Growth) [25], takes the partitioned

dataset and the user specified minimum threshold as inputs to compute the frequent gene-

sets on each processor node. Usually, association rule mining algorithms classify results

based on the search strategy they use to find the frequent itemsets. FP-growth adopts a

depth first search strategy, but the heart of this algorithm lies in the pre-processing step

where FP-growth derives a highly condensed data structure to represent the original

transaction data. The choice of algorithm FP-growth is based on the fact that it is

currently one of the fastest techniques to mine frequent itemsets [34]. We will discuss in

detail the FP-growth algorithm in this chapter.

Most previous research in the area of association rule mining was based on

apriori-like algorithms which adopt a breadth first search strategy which can be

decomposed into a two step process. The first step finds all frequent itemsets, each

occurring at least as frequently as a threshold determined by the minimum support count.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

The second step generates strong association rules from the frequent itemsets by

calculating the confidence of potential rules and selecting those with a confidence value

that, again, meets a minimum threshold. Apriori-like algorithms iteratively obtain

candidate itemsets of size (k+1) from the frequent itemsets of size k, so each iteration of

candidate set generation requires scanning the database. As a result, this step becomes

increasingly computationally intensive; the number of considered itemsets grows

exponentially with respect to only linear growth of the number of items. Therefore, most

of the previously developed research has focused on addressing the first step of the

mining process. Han et al. in [25] introduced the FP-growth algorithm for mining

frequent patterns. It achieves higher efficiency, and is nearly an order of magnitude faster

than Apriori algorithm.

4.1.1 Pattern Generation Using FP-tree

The FP-growth algorithm uses a depth first search, a recursive process to generate

frequent patterns from recurrent fragments. The algorithm follows these general steps:

1) The database is compressed into a much smaller data structure called the Frequent

Pattern Tree (FP-tree). This data structure avoids costly repeated database scans.

2) FP-tree based mining method is developed.

3) The mining search technique employs a “divide and conquer” method that

decomposes the problem into smaller tasks and reduces the search space

dramatically.

It should be noted that since we have employed FP-growth to find frequent gene-

sets from the gene expression dataset, the items refer to the genes and transactions are the

samples. So the terms sample-space and transactions are used interchangeably.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

The FP-tree is a trie-like structure in which a bin is constructed for each level

(depth-wise) at which item transactions may be similar. The FP-tree is generated based

on the genes supported in the transaction database. Starting from frequent length-1

pattern (as an initial suffix pattern), it examines only its conditional pattern base (a sub

database that consists of the set of frequent items co-occurring with the suffix pattern)

[25]. For details regarding the conditional pattern base, refer to Section 4.1.1.2. From the

conditional pattern base, a new, conditional FP-tree is generated. The two steps are

repeated recursively such that pattern growth is achieved by concatenating the suffix

patterns which result from each recursive step. The two following sub-sections elucidate

this process, providing detailed examples.

4.1.1.1 Frequent pattern tree

FP-tree is a prefix tree representation, which is used for storing quantitative

information about frequent patterns. The construction of an FP-tree is described as

follows:

1) Root node of the tree is created and labeled as “null.”

2) For each transaction traversed, a branch is created and the gene within are

processed in reverse order.

3) Each node is represented by three fields: gene-name, count, and node-link. Gene-

name records which item this node represents; count records the number of

transactions represented by the portion of the path reaching this node; node-link

connects to the next node in the FP-tree carrying the same item-name, (when there

is no node, node-link links to null). This results in a linked-list structure for nodes

which have the same gene-name.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

4) Specifically, when considering the branches added for each transaction traversed,

the count of each node along the common prefix is incremented by 1.

5) An item header table is built so that each item points to its occurrences in the tree

via a chain of node-links.

The transactions are stored in a FP-tree according to descending support values.

Since more frequently occurring items will be stored closer to the root and will have a

greater chance of sharing the nodes, the FP-tree is reduced in size. Figure 4.1 shows the

algorithm for the construction of FP-tree.

The preliminaries are defined in Chapter 2 under §2.1.2.3.

Input: The dataset d and a minimum support s(X => Y)

Output: Frequent pattern tree, FP-tree.

Method: The FP-tree is constructed in the following steps.

1. Scan the dataset d once. Collect the set of frequent genes F and their respective

support values. Sort F in descending order as L, the list of ordered frequent

items.

2. Create the root of FP-tree T, and label it as null. For each sample St in d do the

following:

• Select and sort the frequent genes in S according to the order of L. Let the
sorted frequent gene list in S be [p\P], where p is the first element and P is
the remaining list. Call insertjree ([p\P], T).

• The function insert_tree([p\P],T) is performed as follows. If T has a child
N such that N.gene-name = p.gene-name, then increment N. count, else
create a new node N and set N.gene-name = p.gene-name, and set N. count
= 1, linked to its parent T and its node-link structure. If P is nonempty, call
insert_tree(P, N) recursively.

Figure 4.1 FP-tree algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Let’s take an example of the sample-space (transaction) database, represented in Table 1.

Table 1 A snapshot of a sample-space database

Sample-space ID Genes

1001 § 6 ’ § 1 ’ § 3 ’ <§4’ § 7 ’ § 9 ’ § 1 3 ’ § 16

1002 § 1 5 § 2 ’ § 3 ’ § 6 ’ § 1 2 ’ § 1 3 ’ § 15

1003 § 2 ’ § 6 ’ § 8 ’ § 1 0 ’ § 1 5

1004 § 2 ’ § 3 ’ § 8 ’ § 1 1 ’ § 1 9 ’ § 1 6

1005 § 1 ’ § 6 ’ § 3 ’ § 5 ’ § 1 2 ’ § 1 6 ’ § 1 3 ’ § 14

With this defined structure of the algorithm (see Figure 4.1), we can construct a FP-tree

given the support threshold of s(X => y) = 3 and the sample-space database as defined in

Table 1. With the first scan of the database we gather the list of frequent genes, i.e.

{(g6:4), (g3:4), (g,:3), (g2:3), (g13:3), (g16:3)} in descending order. The number after

the gene name indicates the support of a gene in the database. The genes are then sorted

in each sample-space in descending order of frequency, as shown in Table 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Table 2 Frequent gene-sets arranged in descending order after the first database scan

Sample-space ID Frequent Genes Ordered

1001 § 6 ’ § 3 ’ § 1 ’ § 1 3 ’ § 1 6

1002 § 6 ’ § 3 ’ § 1 ’ § 2 ’ § 1 3

1003 § 6 ’ § 2

1004 § 3 ’ § 2 ’ § 16

1005 § 6 ’ § 3 ’ § 1 ’ § 1 3 ’ § 1 6

In the above example, we can construct the FP-tree from the frequent genes. The

root of the tree is labeled as null. The scan of the first sample-space accounts for the

construction of first branch of the tree, with count of each node equal to 1. For the second

sample-space (g 6, g 3, g x, g 2, g 13), it is observed that it shares a common prefix namely,

(g6, g 3, g ,), with the existing path (g6, g 3, g t , g 13, g 16), so the count for each node

along the prefix is incremented by 1. A new node (g2: 1) is created and is linked as the

child of (g2: 1). The third sample-space (g6, g 2) only shares a prefix (g6) with the

existing paths, g 6 ’s count is then incremented by 1 (for a total count of 3) and a new node

(g2:1) is created and linked as a child of (g6:3). Scanning the fourth sample-space leads

to the construction of the second branch of the tree, < (g3;1)> (§2:1)> (Sis-'1) ^ For the

final sample-space, the gene list (g6, g 3, g l5 g 13, g 16) is identical to the first sample-

space, so the path is shared and the count of each node along the path is incremented by

1. This process produces the following FP-tree shown in Figure 4.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

root

Header Table

Head of node linkItem-name

Sl6

Node link

Parent

Figure 4.2 FP-tree constructed from the sample-space database

In order to promote the tree traversal, an item header table is constructed in which

each gene points to its occurrence in the tree via the head-of-node link. Nodes having the

same item name are linked in sequence via such node links.

Based on the described algorithm, we observe that the database is scanned twice,

the first scan collects the set of frequent genes, and the second scan constructs the FP-

tree.

4.1.1.2 Mining frequent patterns
using FP-tree.

To mine the FP-tree, the following algorithm is proposed. This algorithm is known as

FP-growth. Let’s take the example from the previous section and the FP-tree in Figure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

4.1, where the minimum support threshold s(X =̂> Y) is 3. For node p, we have a frequent

pattern (g16:3) and two paths in the FP-tree: < (g 6:4), (g3:3), (g3:3), (g13:2), (gI6:2) >

and < (g 3:1), (g2:1), (g16:1) >. The first path suggests that (g6, g 3, g , , g 13, g 16) occurs

twice in the database. Although gene (g 6) appears four times, and (g 3) and (g j) both

appear three times, they only appear twice together with g 16 (in sample-spaces 1001 and

1005). We only consider g 16 ’s prefix paths of < (g 6:2), (g3:2), (g, :2), (g13:2) > and < (

g 3:l), (g 2=l) . These two prefix paths form g | ̂ s conditional pattern base. Construction

of an FP-tree on this conditional pattern base leads to only one branch (g3:3). Hence only

one frequent pattern (g3, g 16) is derived and the search for frequent patterns associated

with p is terminated. An outline of this algorithm is provided below. The steps of this

algorithm are shown below in pseudo code format in Figure 4.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Input: FP-tree, minimum support threshold X

Output: The complete set of frequent patterns.

Method: Call FP-growth (FP-tree, null)

Procedure FP-growth (Tree, a) //a is the suffix of the current FP-tree

{

if Tree contains a single path P

then

for each combination (denoted as /3) of the nodes in the path P do

generate pattern a with support = minimum support of nodes in j3

else

for each a (. in the header of Tree do

{ generate pattern = a . u a with support = a .support;

construct /3’s conditional pattern base and then /3’s conditional FP-tree

if Tree

/3 * 0

then call FP-growth(Tree/3, j3)

Figure 4.3 FP-growth algorithm

4.2 Experimental Results

As mentioned in Chapter 3, our target dataset consists of 21,774 genes (items) and

127 samples (sample-spaces). We partitioned the original dataset into partitions of sizes

500, 1000, 1500, and 2000. The algorithm FP-growth was applied on each of these

partitions with support values ranging from 80 to 90. We report the above experiments on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

the IBM p5-575 Supercomputer consisting of 14 CPUs, each having eight 1.9GHz

Power5 processors (single chip with HPS interconnect) see Figure 4.4 to Figure 4.7.)

Memory bandwidth is 16Gbytes/Chip.

With support 80

1200

1000

800

600

400

200

1000 2000500 1500

Number of partitions

Figure 4.4 Time to run FP-growth on partitions of sizes 500, 1000,1500, and 2000,
with support value 80

With support 85

250

200 - -

150 -

100 -

500 1000 1500

Number of partitions

2000

Figure 4.5 Time to run FP-growth on partitions of sizes 500,1000, 1500, and 2000,
with support value 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

With support 90

140
120
100

1000 1500

Number of partitions

2000500

Figure 4.6 Time to run FP-growth on partitions of sizes 500,1000, 1500, and 2000,
with support value 90

Time to run FP-Growth

1200

1000

800 supp 80
■«— supp 85

■*— supp 90
600

400

200

1500 20001000

Num ber of partitions

500

Figure 4.7 Comparison of the time taken to run FP-growth on varying partition sizes with
varying support values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

4.2.1 Complexity Analysis

Let the total number of samples be m, total number of genes be n and total

number of processors be P. The FP-growth algorithm requires two scans of the database,

in the first scan, frequent-1 gene-sets are obtained and the second scan is required to

construct the FP-tree. The number of samples are, m « n , hence the complexity of the

database scans is 0(n), where n is the size of the largest gene-set. The cost of inserting a

sample into the FP-tree is 0(«).

By implementing a parallel version of FP-growth, we hope to reduce the total

computation time by nearly a factor of P. With the proposed partitioning strategies we

effectively divide n data points into P parts (each of size is n/P, except for the last part)

and run FP-growth on each of these parts in parallel on a different processor. Let us

assume that P divides n. For a= 0,1,....................P-l, we assume that the process

identified by “a ” has access to the partitioned data {A(i),i= oft!(n/P)+l................. (a

+l)*n/P}. Each processor runs FP-growth algorithm in parallel. In this parallelization

process, each processor node has to handle only n/P data points, while the number of

samples remains same for each partition. Hence, the cost of inserting a sample into the

FP-tree is O(n/P).

4.2.2 Discussion

It is observed that as the support value increases, the time to compute frequent

gene-sets decreases because as the support threshold is lowered, the number and the

length of frequent gene-sets increase drastically. As mentioned in Section 4.3.1, the cost

of inserting a sample is 0(]n\), where \n\ is the number of frequent genes in a sample.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

It is also noted that as the number of partitions increase, the time taken to compute

frequent gene-sets decreases. This is because the greater the number of partitions

obtained from the original dataset, the fewer genes present in each sample-space. In

addition, as noted above, the complexity depends on the number of frequent genes in the

sample-spaces. However, the I/O time required to obtain each partition file is

insignificant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

INCREMENTAL UPDATE OF LARGE

GENE-SETS

5.1 Introduction

Due to the large size of the dataset, it was partitioned and delegated to numerous

processor nodes (see Chapter 3). The frequently occurring gene-sets were obtained by

running FP growth on each node (see Chapter 4). The frequent gene-sets belonging to a

particular partition reside on the particular processor node to which the partition

belonged. In order for us to analyze, interpret, and mine the rules between inter-processor

gene-sets, all rules must be collected on a single node.

A novel and efficient algorithm, Genesetmining, will be employed to merge the

frequent gene-sets residing on various processor nodes while simultaneously eliminating

those previously discovered. Mining association rules focuses on finding large gene-sets

within the dataset from which association rules can be discovered. The challenge of

incrementally updating association rules reduces to a problem of incrementally updating

large gene-sets, where the first partitioned dataset becomes the old dataset while, the

second partitioned dataset to be updated becomes the updated dataset.

This incremental update of gene-sets is similar to the problem of incrementally

updating large itemsets in data mining when new transactions are added to the database.

As the size of the database grows some previously discovered itemsets may no longer be

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

of interest while previously discovered weak itemsets may become strong; hence it

becomes important to update and evaluate itemsets as new transactions are added to the

database. Here, we consider the frequent gene-sets on partitioni (the first partitioned

dataset) as itemsets discovered from an original database; frequent gene-sets on partition2

(the second partitioned dataset) will be treated as itemsets discovered from the

incremental database. The Genesetmining algorithm is applied to update the frequent

gene-sets.

5.2 Related Research

FUP, which stands for Fast Update [35] was the first incremental strategy

proposed in this research area. This research compared results from FUP against

traditional methods by running the Apriori algorithm and DHP (Direct Hashing and

Pruning) on the updated database; FUP was found to be 2 to 16 times faster than re

running Apriori or DHP. Although it is an efficient algorithm, it faces performance

overheads in the long run. FUP uses the concept of Apriori algorithms which require

O(n) scans over both the old and the incremental databases (n is the size of the largest

itemset). Thomas et al. proposed an approach [36] that identifies the large itemsets of the

incremental database and scans the original database only if the negative border of the

large itemsets expands from that of the original database. In this case only one scan over

the original database is required to find all large itemsets. Ezeife et al. has proposed two

algorithms based on FP-tree structure, DB-Tree and PotFP-tree [37]. The DB-Tree is a

generalized FP-tree that stores the support and count values of all the items in the

database in descending order. Unlike FP-tree, which stores the frequent-1 itemsets, DB-

Tree stores all items, hence it is much larger than a FP-tree while remaining smaller than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

the database since items share paths in the tree structure. When a transaction is added, it

must scan the added transactions to update the tree structure. Like FP-tree, it requires two

database scans for its construction. PotFP-tree algorithm reduces the number of database

scans by using a prediction of future possible frequent itemsets when previous small

itemsets become large after database update. DUP [38] scans the old database exactly

once and provides flexible minimum support. It proposes a strategy to prune the

candidate itemsets as early as possible during the course of discovery during knowledge

integration. UWEP [39] makes a single pass over the old incremented database by using

transaction id list intersections and has also proposed a prospective strategy to prune

those itemsets that would no longer be large. The algorithms stated above requires two

dataset files and a frequent itemset file generated from the old dataset as an input

parameter, while they can scale only up to two datasets, a limitation that makes them

unsuitable for our purposes here (our datasets are distributed across n nodes). Moreover,

our proposed methodology requires only two frequent gene-sets files (that were

generated, using the FP-Growth algorithm), considerably reducing the file parsing time. It

scales up to n frequent gene-sets files, where n, is the number of processor nodes.

5.3 Methodology

The knowledge discovery process first finds the large gene-sets among the

partitioned datasets that satisfy the specified support threshold. Their output is stored in

the form of a frequent gene-sets (itemsets) file. It then, starts updating the frequent gene-

sets thus obtained in the following manner. The pseudo code is as follows:

i f (mainnode)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

receive first gene-sets file;

do {

receive gene-sets file;

call Genesetmining

}

fo r each additional gene-set

}

else II for child nodes

{

call Fp-growth();

send gene-sets file; //to main node

}

This process continues until there is only one frequent gene-set file left, that is the

file remaining after updating n-1 frequent gene-set files, where n is the number of

frequent gene-set files created, after partitioning the dataset into n partitions.

5.4 Proposed Algorithm: Genesetminins

The Genesetmining algorithm discovers frequent gene-sets by using updates

occurring in the form of new sample-spaces (transactions) to aggregate frequent gene-

sets. Those gene-sets that become relatively small in the updated dataset should be

removed from the previously garnered set of large gene-sets. New gene-sets, which were

not large in the individual partitions but have become large in the updated dataset, should

be inserted. This is the process by which the large gene-sets are established from partition

to partition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Consequently, the fact that updating the datasets can introduce new rules and

simultaneously invalid old ones complicates the incremental update of large gene-sets.

The proposed algorithm, Genesetmining, efficiently updates the knowledge (large gene-

sets) obtained from the partitioned datasets whenever the association rule mining

algorithm is applied to them. The algorithm has the following key features:

1. It can be used for incremental updates when new genes are inserted in the dataset.

2. It can reduce search space: We apply a new technique to prune the candidate

gene-sets as early as possible in our algorithm by scanning the first partitioned

dataset only once. This enhances the efficiency of our algorithm.

This reduction of search-space could be useful for users to employ spatial data

structures such as R-trees [40] or its variants [41] in improving the search performance of

quantitative range queries. This algorithm can be used, for example, for knowledge

discovery in market-basket data where sample-space information is inserted in a

database. Genesetmining scans the first partitioned dataset exactly once. The frequent

gene-sets in the second partition that are added to the dataset are considered an

incremental sample-space set. The algorithm uses the frequent gene-sets discovered on

both the partitions to ferret out large frequent gene-sets while eliminating those that no

longer satisfy the new minimum support threshold. The two sets of large gene-sets are

then combined to create the updated large gene-sets. Next, the resultant frequent gene-

sets are updated with the large frequent gene-sets obtained on the third partitioned

dataset, where the third partition now becomes the incremental sample-space set. We

extend this approach to the n-processor nodes, containing n partitions of the original

dataset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

The list of variables used in the Genesetmining algorithm is described in Table 3.

Table 3 List of variables used in Genesetmining

Setfile-1 File containing frequent gene-sets on processor-node-1
Setfile-2 File containing frequent gene-sets on processor-node-2.
Setfile-n File containing frequent gene-sets on processor-node-n.
S. The number of samples in datafile-1 from which Setfilel is obtained.
s 2 The number of samples in the datafile-2 from which Setfile2 is obtained.
s S2+ Sx

G, The set of candidate gene-sets that meet the new minimum support found in Setfilel.
G * The set of gene-sets that do not meet the new minimum support found in Setfilel.

g2 The set of candidate large gene-sets that meet the new minimum support in Setfile2.
Gkx The set of candidate large k gene-sets that meet the new minimum support in Setfilel.
Gk2 The set of candidate large k gene-sets that meet the new minimum support in Setfile2.
MINSUP 0 The minimum support for the FP-growth algorithm.
MINSUP The minimum support needed for updating the rules on processor nodes.
g. frequency , The count of the large gene-set g, where c belongs to G1 or Gl*.
g. frequency 2 The count of the large gene-set g, where c belongs to G2.
g.frequency2 The count of the large gene-set g, where c belongs to G2.

Statement 1

A gene-set can be large in Ouputfile (file that stores large gene-sets o f the

integrated datasets), i f and only i f this gene-set is present in at least one o f the two

frequent gene-sets file, Setfile-1 and Setfile-2.

Rationale: For the given minimum support value MINSUP, g is a large gene-set in

both Setfile-1 and Setfile-2, if g. frequency >S x MINSUP. When Setjile-1 and Setfile-2

are updated, g. frequency x + g. frequency2 >(Sx x MINSUP + S2 x MINSUP). To find

out if g is a large gene-set or not, we consider four scenarios:

• In order for g to be a large gene-set in both Setfile-1 and Setfile-2,

g. frequencyx > SX x MINSUP and g.frequency2 >S2 x MINSUP.

• In order for g to be a large gene-set in Setfile-1 but a small gene-set in Setfile-2,

g. frequencyx > SX x MINSUP and g. frequency2 < S2 x MINSUP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

• In order for g to be a small gene-set in Setfile-1 but a large gene-set in Setfile-2,

g.frequencyl < <S, x MINSUP and g.frequency2 >S2 x MINSUP.

• In order for g to be a small gene-set in Setfile-1 and also a small gene-set in

Setfile-2, g. frequency\ < Sx x MINSUP and g. frequency2 < S2 x MINSUP.

In the first case, g is definitely a large gene-set in Setfile-1. In the fourth case, g is clearly

a small gene-set in Setfile-1 and Setfile-2. The second and third cases are instances where

it is unclear if g is a small or large gene-set, however, we can say that in order to have g

as a large gene-set in Setfile-1 and Setfile-2 it must be a large gene-set in at least one of

the two files.

It should be noted that since we have parallelized FP-Growth with the

Genesetmining algorithm, the old minimum support, MINSUP and the new minimum

support MINSUPo are the same minimum support provided at the time to run the FP-

Growth and the Genesetmining algorithm. However, if we first run FP-Growth on a uni

processor machine and then use the frequent gene-sets obtained for knowledge

integration, the new minimum support can be equal to or greater than the old minimum

support provided to run the FP-Growth algorithm.

Statement. 2 Minimum support can be flexible

The new minimum support required when updating the partitioned datasets,

MINSUP, can be equal to or greater than the old minimum support MINSUPo, used for

finding frequent gene-sets on the partitioned nodes.

Rationale: When MINSUP >MINSUP0, the large gene-sets of Setfile-1 will all be

included in the overall set of large gene-sets. Similarly, the large gene-sets of Setfile-2 are

also included in the set of large gene-sets for a new minimum support. Therefore, it is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

straightforward that we will not miss a candidate gene-set from either of the set files.

Statement 3 Delete g

I f g is not a large gene-set in S, g should be deleted.

Rationale: Since g is not a large gene-set in Setfdel, we can assume the following: g

has the largest frequency that makes it a small gene-set in Setfilel. This case can be

expressed as: Let p = Sx x MINSUPo. If P is an integer, then let g. frequency, = p - 1;

otherwise, let g.frequency j = IN I (p), which is the integer part of p. Update the count of

g, g.frequency2 — g. frequencyx + g. frequency2. If g. frequency2 < S x MINSUP; g

cannot be a large gene-set in either of the Setfiles. Delete g and all its children, which are

supersets of g, from trie G2.

5.4.1 Genesetmining Algorithm

1. Frequent gene-sets are read from Setfilel and Setfile2. We keep the large gene-sets

from Setfilel in two different tries (a tree like data structure, rooted downwards). One

trie, Gx, stores the gene-sets that satisfy the new minimum support, which means

g. frequency x >S , x MINSUP. The other trie, G, *, stores the gene-sets that do not

satisfy the new minimum support, which means g. frequency x < Sx x MINSUP.

(G, * is maintained because it is likely that the large gene-sets in Setfile2 that are not

present in G, can be seen in G, *. So the information in trie, Gx * might be useful to

delete the gene-sets in G2.)

2. Scan the Setfile2 and keep all large-1 gene-sets obtained from it in S2.

O For all the 1-gene-sets g belonging to Gl j , look up g in S2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

• If c belongs to S2, update its count as follows: g. frequency x =

g. frequency x + g.frequency2. If g.frequency, < Sx MINSUP, delete g and all

its children, which are supersets of g, from G1, and delete c from S2.

Otherwise, if g. frequencyx >Sx MINSUP, g is sure to be large in both Setfilel

and Setfile2. Mark g as found in G2. Output g directly into the output file,

Outputfile.

• If g <t S2, that is, if g. frequencyx < S x MINSUP, delete g and all its

children, which are supersets of g, from G ,. Otherwise, if g. frequencyx >

Fx MINSUP, g is sure to be large in the whole dataset D. Output g directly

into the Outputfile. For all the frequent-1 gene-sets for which g belongs to

S2 and g g Gl j , look up g in Gx *.

• If g belongs to Gx *, update its count (g .frequency2 = g.frequency, +

g. frequency2). If g.frequencyx < S x MINSUP, delete g from S2 and also

delete g and its children, which are supersets of g, from Gx *; otherwise, if

g.frequency2 >S x MINSUP, g is sure to be large in Setfilel and Setfile2.

Mark g as found in S2, g as found. Output g directly into the Outputfile.

• If g <£ Gx *, delete g and all its children.

3. Set the initial value of k to 2. While G(k - 1)2 tNULL or Gkx tNULL, repeat step 4.

4. Get candidate Fgene-sets in the Setfile2.

O Scan Setfile2 once, for all gene-sets g belonging to Gkx, update its

count g. frequencyx.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

O Meanwhile, in the same scan, for all the A-gene-sets g belonging to Gk2, look up g

in Gkx.

• If g belongs to Gkx, mark g as found and let g.frequency 2 = g.frequency,.

• Otherwise, if g <£ Gkx, merely update its count g.frequency2.

O When the scan ends, for all gene-sets g belonging to Gkx,

• If g.frequencyx < S x MINSUP, delete g and all its children, which are

supersets of g, from G ,.

• Otherwise, ifg.frequencyx >S x MINSUP, g is sure to be large in Setfile-1

and Setfile-2. Output g directly into the Outputfile.

O For all gene-sets c belonging to Gk2 and g as found, which means g belongs

to Gkx, if g. frequency2 < Sx MINSUP, delete g from Gk2.

O For all the ^-gene-sets g belongs to Gk2 and eg Gkx, look up g in G, *.

• If g belongs to G, *, update its count (g. frequency2 = g. frequency, +

g. frequency2). If g. frequency2 < S xMINSUP, delete g from Gk2 and also

delete g and its children from Gx *; otherwise, if g. frequency2 > Sx

MINSUP, g is sure to be large in the whole database T. Mark g as found

in Gk2 and output c directly into the Outputfile.

• If Gx *, delete G and all its children.

5. Scan the old database T0 once, for all the candidate gene-sets g belonging to G2 and g

as found, update its count g. frequency 2. When the scan ends, if g. frequency2 >S x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

MINSUP, the gene-set g is a large gene-set of T, output g directly into the Output file-,

otherwise, if g. frequency2 < S x MINSUP, delete g and all its children from G2.

6. Rename Outputfile to Setfile-1 and the next frequent gene-sets file containing to

Setfile-2.

7. Step 1 to Step 6 is repeated iteratively, until all the files containing frequent gene-sets

on ^-processor nodes are integrated.

If the length of the candidate gene-set is k, it takes O(k) time to check if the candidate

gene-set is contained in the trie.

5.5 Results

As the frequent gene-sets are obtained by the FP-growth algorithm,

Genesetmining integrates them. Figures 5.1-5.4, show the time taken to integrate the

frequent gene-sets. This experiment was performed on the IBM p5-575 supercomputer.

For details regarding the configuration, please refer to Chapter 4.

With support 80

'2 25 - -

20 —

15 4

2000500 1000 1500

Number of partitions

Figure 5.1 Time taken to integrate partitions of sizes 500, 1000, 1500, and 2000 at
support threshold of 80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

30

Uct
S

25 -

20 -

15 T
10 j-

5 - ■

0 -f-
500

With support 85

1000 1500

Number of partitions

2000

Figure 5.2 Time taken to integrate partitions of sizes 500, 1000, 1500, and 2000 at
support threshold of 85

30

S' 25UV
V i __
.5 20w 1
§ 15 it «
« 10
s
H 5

With support 90

500 1000 1500

Number of partitions

2000

Figure 5.3 Time taken to integrate partitions of sizes 500, 1000, 1500, and 2000 at
support threshold of 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Time taken to run Genesetmining

30 -*

s
O4>
i / i
a 20

aCJX03

§
H

1000 1500 2000500

-♦— Support 80

-m— Support 85

Support 90

Number of partitions

Figure 5.4 Scalability of Genesetmining with support values of 80, 85, and 90

5.6 Complexity Analysis

For the Genesetmining algorithm, the complexity to read the frequent gene-sets is

O(n.m), where n is the total number of genes and m is the total number of samples. Since,

we use the data structure, trie to search, insert and delete a frequent gene-set, the number

of steps required for the above processes is proportional to the number of genes making

up the gene-set. The Genesetmining algorithm runs in parallel to update the frequent

gene-sets, hence the complexity is O(n.logP).

5. 7 Discussion

From the graphs in §5.5 it is noted that, the greater the number of partitions

created, the higher the time to integrate the frequent gene-sets. This is attributed to the

I/O time required to obtain a frequent gene-set file and integrate it with the other frequent

gene-set files. As the number of partitions increases, a larger number of frequent gene-set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

files are created requiring more time to integrate them. We also observe that increases in

support value result in decreases in the time taken for the Genesetmining algorithm since

a higher support value yields fewer frequent genes, resulting in smaller frequent gene-set

files.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

EXPERIMENTAL RESULTS AND ANALYSIS

6.1 Introduction

This chapter provides a detailed description of the results of the performed

experiments. These experiments employed an IBM p5-575 Supercomputer consisting of

14 nodes, each having eight 1.9GHz Power5 processors (single chip with HPS

interconnect). Memory bandwidth is 16Gbytes/Chip.

6.1.1 Non-Overlapped Partitions

The GCM dataset was divided into partitions of sizes 500, 1000, 1500, and 2000.

Our experimental results reported, zero frequent gene-sets after performing knowledge

integration through Genesetmining. This result is congruent with intuitive interpretation:

each partitioned dataset contains a set of non-overlapped genes such that running the FP-

growth program on each processor-node generates rules relevant only to that particular

partitioned dataset. While knowledge integration has the capability to discover inter-node

correlations by exploiting the intra-node associative measures, the lack of redundancy on

the distributed nodes inhibit the effectiveness of the knowledge integration capabilities of

our algorithm. Consequently, associations among genes residing on remote processor-

nodes may remain undetected. Therefore, in this case we conclude that this is an

unacceptable approach for data partitioning.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

6.1.2 Overlapped Partitions

In this section, overlapped partitioning technique is discussed in detail.

6.1.2.1 Relevant genes discovered versus
degree of overlap

The GCM dataset was segmented into partitions ranging in size from 500 to

1000 genes per partition at 100 gene increments. For each of the produced partitions, an

overlap was specified varying between 50% and 95%, at an increment of 10%. An

examination of the data/graphs (Table 4, 5/Figures 6.1-6.6) reveals that increasing the

percentage of overlap results in the discovery of more relevant genes—those genes

which are statistically significant in terms of gene-class correlations. However,

reduction of overlap below 50% leads to a significant drop in the number of discovered

genes. Also, the graphs (Figure 6.7-6.12) show that the rate of growth in the number of

relevant gene discoveries decreases significantly with increasing overlap. For example,

the transition from 50 to 60% overlap results in a 400+% increase in the number of

discovered genes; however, transition above 90% results in only a 2.86% increase.

Table 4 provides a detailed description of the number of relevant genes obtained by

varying the overlap size. Table 5 shows the transitional changes in total number of

relevant genes discovered for number of partitions versus degree of overlap.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

Table 4 Total number of relevant genes discovered for # of partitions versus degree of
overlap

Percentage of Overlap

Partition
Size

(# genes)
50% 60% 70% 80% 90% 95%

500 8 40 48 50 55 56
600 7 39 41 47 51 51
700 7 36 39 40 45 45
800 6 32 34 40 41 41
900 4 25 30 32 38 39
1000 3 19 29 33 35 36

Table 5 Transitional changes in total number of relevant genes discovered for # of
partitions versus degree of overlap

Percentage of Overlap
Partition

Size
(# genes)

50-60% 60-70% 70-80% 80-90% 90-95%

500 400.00% 20.00% 4.17% 10.00% 1.82%
600 457.14% 5.13% 14.63% 8.51% 0.00%
700 414.29% 8.33% 2.56% 12.50% 0.00%
800 433.33% 6.25% 17.65% 2.50% 0.00%
900 525.00% 20.00% 6.67% 18.75% 2.63%
1000 533.33% 52.63% 13.79% 6.06% 2.86%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

Number of Discovered Genes for Parition Size 500 vs.
Varying Overlap

■D

100%80% 90%60% 70%50%

P ercen tage Overlap

Figure 6.1 Number of genes discovered for partition of size 500, varying the overlap
percentage

Number of Discovered Genes for Parition Size 600 vs.
Varying Overlap

60

50
■o

40

30

20

10

Z 0
90% 100%70% 80%60%50%

Percentage Overlap

Figure 6.2 Number of genes discovered for partition of size 600, varying the overlap
percentage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Number of D iscovered G enes for Parition Size 700
vs. Varying Overlap

60

50

40

30

20

10

0
60% 70% 80%50% 90% 100%

Percentage Overlap

Figure 6.3 Number of genes discovered for partition of size 700, varying the overlap
percentage

Number of Discovered Genes for Parition Size 800
vs. Varying Overlap

60

50

40

30

20

10

Z 0
70% 80%50% 60% 90% 100%

Percentage Overlap

Figure 6.4 Number of genes discovered for partition of size 800, varying the overlap
percentage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

Number of Discovered Genes for Parition Size 900
vs. Varying Overlap

(A0)
C0)O

40v>ooin
O
o
a>■Q
E
3
Z

70%50% 60% 80% 90% 100%
Percentage Overlap

Figure 6.5 Number of genes discovered for partition of size 900, varying the overlap
percentage

Number of Discovered Genes for Parition Size 1000
vs. Varying Overlap

(0o
§ 50
0■o
£ 40 v
1 30
5
O
0)A
E3
Z

60% 70%50% 80% 90% 100%

Percentage Overlap

Figure 6.6 Number of genes discovered for partition of size 1000, varying the overlap
percentage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Transitional Changes for Total Number of Genes
Discovered for Partition Size 500 vs. Varying Percentage

of Overlap

» 450%
o 400%OT3 350%
| 300%
0 250%

200%
>5 150%
5j 100%
1 50%
Z 0%

50% 60% 70% 80% 90% 100%

Percentage Overlap

Figure 6.7 Transitional change for total number of genes discovered for partition size of
500, varying percentage of overlap

Transitional C hanges for Total Number of G enes
D iscovered for Partition Size 600 vs. Varying

Percen tage of Overlap

« 500%
S 4 5 0 % -----
^ 4 0 0 % -----
£ 3 5 0 % -----
| 3 0 0 % -----
« 2 5 0 % -----
5 200% ----
o 1 5 0 % -----
« 100% ----
E 5 0 % -----
Z 0 % ------

50%

P e rc e n ta g e O verlap

Figure 6.8 Transitional change for total number of genes discovered for partition size of
600, varying percentage of overlap

100%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Transitional Changes for Total Number of Genes Discovered
for Partition Size 700 vs. Varying Percentage of Overlap

(A *j£ 4U U /o
© \v? OOU /o
■o \
© \
O ZDU /o "
o \
g ZUUvo - \O 1 DU /o \

\
0%

5C

V .
)% 60% 70% 80% 90% 100%

Percentage Overlap

Figure 6.9 Transitional change for total number of genes discovered for partition size of
700, varying percentage of overlap

Transitional C hanges for Total Number of G enes
D iscovered for Partition Size 800 vs. Varying

Percen tage of Overlap

500%
450%

£ 400%
> 350% -
o0) ind> 300% -
a c 250% -<i)o O 200% -
0)n 150% -
E 100% -
z 50% -

0% -I
50% 60% 70% 80%

P ercen tage Overlap

90% 100%

Figure 6.10 Transitional change for total number of genes discovered for partition size
of 800, varying percentage of overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Transitional C hanges for Total Number of G enes
D iscovered for Partition Size 900 vs. Varying

P ercen tage of Overlap

600%

500%
©
§ 400%

a
o C 300%
o
0)n
E3z

200%

100%

0%
70% 80%50% 60% 90% 100%

P ercen tage Overlap

Figure 6.11 Transitional change for total number of genes discovered for partition size
of 900, varying percentage of overlap

Transitional Changes for Total Number of Genes Discovered
for Partition Size 1000 vs. Varying Percentage of Overlap

600%
Vi<D
| 500%
T3
£_ 400%d>
5O </)
o

300%

200%

I 100%
3
z o%

O

70%50% 60% 80% 90% 100%

Percentage Overlap

Figure 6.12 Transitional change for total number of genes discovered for partition size
of 1000, varying percentage of overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Discussion -- Figures 6.13 and 6.14 show the highest number of genes obtained per

class of cancer. With an overlap of 95% and a partition size of 500, the highest number

of genes were obtained for the lung, breast, leukemia, and renal classes; but no

significant genes were discovered in the colorectal and mesothelioma classes. When the

overlap was lowered to 90%, no significant genes from the colorectal, prostate, or

mesothelioma classes were obtained; however, the breast, leukemia, lung, and renal

classes still maintained the highest number of discovered genes.

6.1.2.2 Number of relevant genes discovered
versus changing support

Next, we studied the number of relevant genes discovered by varying the

support value from 60% to 95%, with a overlap varying between 70% and 90%. It is

evident from the graphs in Figures 6.15-6.20 and Table 6 that increase in support value

outputs fewer genes. For each of the partitions, an overlap varying between 50% and

95% in 10% increments was used. Thus, increased overlap percentage uncovers more

relevant genes. Figures 6.21 and 6.22 are the graphs of the information where the

classes which yielded the maximum number of relevant genes discovered through

overlapped partitioning scheme.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Sample name
Number o f genes discovered

(80%ooverlap, partition size = 500)
Bladder 3
Breast 9

Leukemia 8
Lung 7

Colorectal 0
Lymphoma 5
Melanoma 4

Ovary 5
Pancreas 4
Prostate 2
Renal 9

Mesothelioma 0

Number of Gene Markers Discovered for Each Cancer Class

Cancer Class

Figure 6.13 Number of relevant genes discovered for each class of cancer, with a
partition size of 500 with 80% overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Sample name Number o f genes discovered
(90%overlap, partition size = 500)

Bladder 3

Breast 9

Leukemia 8

Lung 7

Colorectal 0

Lymphoma 5

Melanoma 4

Ovary 5

Pancreas 3

Prostate 0

Renal 9

Mesothelioma 0

Number of Gene Markers Discovered for Each Cancer Class

10

C a n c e r C la ss

Figure 6.14 Number of relevant genes discovered for each class of cancer with a,
partition size of 500 with 90% overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

Table 6 Varying support percentage with partition size and degree of overlap

Support Percentage (at 80% overlap)
Partition

Size
(# genes)

60% 70% 80% 85% 90% 95%

500 87 60 54 50 43 32
600 84 56 48 47 39 31
700 74 49 44 40 34 27
800 68 47 42 40 36 25
900 56 38 34 32 26 21
1000 58 40 36 33 23 17

Support Percentage (at 90% overlap)
Partition

Size
(# genes)

60% 70% 80% 85% 90% 95%

500 74 80 58 55 41 34
600 69 66 54 51 38 32
700 61 58 48 45 32 27
800 56 53 45 41 31 25
900 50 49 41 38 27 23
1000 46 44 37 35 25 22

Support Percentage (at 70% overlap)
Partition

Size
(# genes)

60% 70% 80% 85% 90% 95%

500 65 60 51 48 32 29
600 55 50 43 41 28 24
700 53 47 41 39 28 23
800 46 40 35 34 24 20
900 40 34 30 30 22 17
1000 38 32 28 29 21 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Number of Genes Discovered as a Function of Changing
Support Values for Partition Sizes 500, 600, 700 (80% Overlap)

100

90

80

70

B 60

50

« 40
30| 20

10

1

70%60% 80% 90% 100%50%
S upport (%)

-Partition Size= 500 m Partition Size= 600 —a — Partition Size= 700

Figure 6.15 Number of relevant genes discovered for changing support values, with
partitions of sizes 500, 600, 700 at 80% overlap

Number of Genes Discovered as a Function of Changing
Support Values for Partition Sizes 800, 900,1000 (80% Overlap)

80

70

60

B 50

40

30

5 20

10
70%60% 80% 90% 1 00%50%

S u p p o rt (%)

Partition Size=800 —• — Partition Size= 900 —■— Partition Size= 1000

Figure 6.16 Number of relevant genes discovered for changing support values, with
partitions of sizes 800, 900, 1000 at 80% overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Number of Genes Discovered as a Function of Changing
Support Values for Partition Sizes 500,600,700 (90% Overlap)

90

u
25 70

§ 60
s
I 50

$ 40
'S
oXIE3z

20

70% 80%50% 60% 90% 100%

Support (%)

—♦—Partition Size= 500 —• —Partition Size= 600 —■—Partition Size= 700

Figure 6.17 Number of relevant genes discovered for changing support values, with
partitions of sizes 500, 600, 700 at 90% overlap

Number of Genes Discovered as a Function of Changing
Support Values for Partition Sizes 800,900,1000 (90% Overlap)

60

S 50

I8 40
s
1 30Oe>
2 20
$
E£ 10

60% 70% 80% 100%50% 90%
Support (%)

Partition Size= 800 —• —Partition Size = 900 —■—Partition Size= 1000

Figure 6.18 Number of relevant genes discovered for changing support values, with
partitions of sizes 800, 900, 1000 at 90% overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Number of Genes Discovered as a Function of Changing
Support Values for Partition Sizes 500,600, 700 (70% Overlap)

70

* 60

I 50
.in

1 40
<3 30
■s
j§ 20
E
3
z 10

70% 90% 100%50% 60% 80%
Support (%)

♦ Partition Size= 500 Partition Size = 600 —■—Partition Size= 700

Figure 6.19 Number of relevant genes discovered for changing support values, with
partitions of sizes 500, 600, 700 at 70% overlap

Number of Genes Discovered as a Function of Changing
Support Values for Partition Sizes 800, 900,1000 (70% Overlap)

50

45

H 40
50 35§
a 30

25

70%50% 60% 80% 90% 100%

Support (%)

-Partition Size= 800 —• — Partition Size= 900 —■— Partition Size= 1000

Figure 6.20 Number of relevant genes discovered for changing support values, with
partitions of sizes 800, 900, 1000 at 70% overlap

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Sample name
Number o f genes discovered

(80%overlap, partition size = 500 and
support 60%)

Bladder 7

Breast 9

Leukemia 8

Lung 5

Colorectal 6

Lymphoma 5

Melanoma 7

Ovary 9

Pancreas 8

Prostate 3

Renal 9

Mesothelioma 11

Number of Gene Markers Discovered for Each Cancer Class

O)

C l

Cancer Class

Figure 6.21 Number of genes discovered for each class of cancer, with a partition size
of 500 with 80% overlap and 60% support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Sample name
Number o f genes discovered

(80%overlap, partition size = 600 and
support 60%)

Bladder 9

Breast 9

Leukemia 8

Lung 5

Colorectal 6

Lymphoma 5

Melanoma 7

Ovary 8

Pancreas 9

Prostate 2

Renal 10

Mesothelioma 6

Number of Gene Markers Discovered for Each Cancer Class

Cancer Class

Figure 6.22 Number of genes discovered for each class of cancer, with a partition size
of 600 with 80% overlap and 60% support

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Discussion — Figures 6.21 and 6.22 are the graphs of the information where the

classes which yielded the maximum number of relevant genes discovered through

overlapped partitioning scheme. In Figure 6.21 the breast, leukemia, ovary, renal, and

colorectal classes yielded the highest number of genes per class. Likewise, in Figure

6.22 all the above classes, with the addition of the bladder class, yielded the highest

number of genes.

6.2 Adaptive Partitioning

These results obtained through the adaptive partitioning technique demonstrate

how much the discovery of relevant genes can vary with respect to the number of

clusters used, as well as the value of distance threshold criterion (lambda). The

introduction of lambda creates a level of redundancy by discovering overlapping

clusters using the K-means clustering algorithm. This modified version of the original

algorithm now allows us to discover non-disjointed clusters capable of sharing

conditions (genes). A sample qualifies as part of a cluster if its distance from the

current cluster center is less than or equal to lambda. Lowering lambda leads to the

qualification of fewer genes as part of the cluster, thereby reporting fewer relevant

genes in consequent results. The graphs in Figures 6.23-6.27, show that this paradigm

holds true for diverse specification of cluster number. However, the rate of growth in

the number of relevant genes is not linear and differs depending upon the number of

clusters used. Specifically, the rate is steeper for higher numbers of clusters. This

difference can be explained by the fact that relaxing the lambda criterion produces more

clusters, in turn producing more cases of redundant genes, thereby increasing the rate of

relevant gene discovery.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Table 7 shows the total number of relevant genes discovered for varying number of

clusters and the threshold parameter lambda respectively.

Table 7 Total number of relevant genes discovered for # of clusters
and varying lambda

Varying lambda
o f

clusters 72 82 92 102 122

8 86 93 101 112 118
16 78 81 84 90 95
32 65 71 72 76 83
48 51 56 61 64 70

Number of Relevant Genes for 8 Clusters

130

8 120

1 100
0)
0^ n r\«♦-O
<u
•Q
E3
Z

82 92 102 112 122 13262 72

Lambda Threshold

Figure 6.23 Number of relevant genes discovered for number of clusters = 8, with
varying lambda

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Number of Relevant Genes for 16 Clusters

100

$ 95
c<D
c(0
1 85
O'
*♦—o
«£
E3z

70 4
9272 82 102 11262 122 132

Lambda Threshold

Figure 6.24 Number of relevant genes discovered for number of clusters =16, with
varying lambda

Number of Relevant Genes for 32 Clusters

5 80

102 112 122 132

Lambda Threshold

Figure 6.25 Number of relevant genes discovered for number of clusters = 32,
with varying lambda

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Number of Relevant Genes for 48 Clusters

£ 70

o 65

£ 60

Z 4 5

40
122 13282 92 102 1127262

Lambda Threshold

Figure 6.26 Number of relevant genes discovered for number of clusters = 48,
with varying lambda

Number of Relevant Genes for 8 ,16,32, and 48 Clusters

120

110

100

90

80
&

70

50

40
13282 92 102 112 1227262

L am bda T hreshold

—♦—8 Clusters A 16 Clusters —■—32 Clusters —• —48 Clusters

Figure 6.27 Number of relevant genes discovered for number of clusters=8,16, 32, and
48, with varying lambda

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Discussion — Our comparison of the overlapped partitioning technique against

the Adaptive technique demonstrates that the adaptive technique discovers a greater

number of relevant genes (See Figure 6.31). Figures 6.28 to 6.30 show the number of

genes discovered for each class by varying the value of lambda and the number of

clusters.

Sample name Number o f genes discovered (Number
o f clusters = 8, lambda = 122)

Bladder 9
Breast 9

Leukemia 8
Lung 7

Colorectal 6
Lymphoma 10
Melanoma 10

Ovary 9
Pancreas 13
Prostate 15
Renal 9

Mesothelioma 13

Number of Gene Markers Discovered for Each Cancer Class

5 14

q

0
o
oO

to
CO
CD
a

CD
CO

CD
C

CD
E

> A - •
COoI—

CD oO o
c a: 0
CD Q .

Q . o
CO
CD

Cancer Class

Figure 6.28 Number of gene markers discovered for each class of cancer for lambda =
122 and number of clusters = 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

Sample name
Number o f genes discovered (Number

o f clusters = 8, lambda = 112)

Bladder 9

Breast 9

Leukemia 8

Lung 7

Colorectal 6

Lymphoma 10

Melanoma 8

Ovary 8

Pancreas 13

Prostate 15

Renal 9

Mesothelioma 10

Number of Gene Markers Discovered for Each Cancer Class

O)
"O-o

Cancer Class

Figure 6.29 Number of gene markers discovered for each class of cancer for lambda =
112 and number of clusters = 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

Sample name
Number o f genes discovered (Number

o f clusters = 8, lambda = 92)

Bladder 1

Breast 9

Leukemia 6

Lung 7

Colorectal 6

Lymphoma 10

Melanoma 8

Ovary 8

Pancreas 9

Prostate 15

Renal 8

Mesothelioma 8

Number of Gene Markers D iscovered for Each C ancer C lass

*o-O
Q.

_l

Cancer Class

Figure 6.30 Number of gene markers discovered for each class of cancer for lambda =
92 and number of clusters = 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Number of Gene Markers Discovered for Each Cancer Class

£
I
i0)c
80
1
E

16
14
12
10

8
6
4
2
0 o>c (/)

COCD 0) to(/>

Cancer Class

I)Adaptive Partioning (8, 122 C3)Overlap Partioning (80, 500, 70 □)Overlap Pardoning (70, 500, 90

Figure 6.31 Comparison between number of genes discovered for each cancer class
using Adaptive and Overlapped technique with varying overlap and support

Discussion -- The combination of 8 clusters and a lambda value of 122 discovered the

maximum number of relevant genes in each class. Lowering the threshold to 112

reduced the number of genes discovered in the classes of mesothelioma by 3,

melanoma by 2, and ovary by 1. Likewise, when the threshold was lowered to 92 and

even greater number of classes exhibited reduced discovery rates. Specifically, in

comparison with the experiment when the threshold was 122, the affected classes are

those of bladder, leukemia, melanoma, ovary, pancreas, renal, and mesothelioma. We

observed the number of genes in the classes of bladder were reduced by 2, leukemia by

2, melanoma by 2, ovary by 2, pancreas by 4, renal by 1, and mesothelioma by 5.

6.3 Comparative Analysis for Calculation
of Precision Accuracy

O The class-level accuracies for each cancer class are calculated using the

maximum overlap of reported markers. The class-level accuracies are then

compared to evaluate the strength of the reported markers. The classification

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

was performed through support vector machine [31]. Except for lymphoma,

lung, renal and prostate, our reported markers provide increased accuracy in

class-level supervised discrimination. Figure 6.32 shows the classification

accuracy for each cancer class using OVA descriptors, while Figure 6.33 shows

the accuracy level for each cancer class using Genesetmining gene marker

selection. Figure 6.34 shows the accuracy achieved in percentage. However, it

should be noted that OVA methodology is a sequential process compared to our

parallelized approach. Our approach also uses less than 10% number of markers

in multi-class discrimination compared to the previous approach.

Classification Accuracy for each Cancer Class
using OVA Descriptors

100 — ------------------------------------

9 5 ---
9 0 ---
8 5 ---

Cancer Class

Figure 6.32 Classification accuracy for each cancer class using the OVA descriptors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

C lass i f ic a t io n A c c u ra c y fo r e a c h C a n c e r C la s s
u s in g G en e S e tM in e G e n e M arker s e le c t io n

TO
Eo.cQ_
E>»

Cancer Class

Figure 6.33 Classification of accuracy for each cancer class using Genesetmining
gene marker selection

B ladder

M esothelioma^ B reast

Renal Leukemia

P ro s ta te Lung

C olo recta lP a n c re a s

O vary Lymphoma

M elanom a

O vaM arker b a se d S e lec tio n G eneS etM ine b a se d S e lec tio n

Figure 6.34 A comparison between accuracy (in percentage), between OVA markers
and Genesetmining

6.4 Comparative Analysis for Performance

On comparing the Overlapped technique with the Adaptive, on the basis of

performance, we observe that the worst time taken to find almost the similar number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

genes was high for the overlapped technique. Figures 6.35-6.36 demonstrates the

results. For example, the worst time taken in overlapped technique to find 74 genes was

3996.54 seconds, while in case of Adaptive technique; the worst time taken to find 70

genes was 1587.54 seconds. Hence, we conclude that the performance of adaptive

technique was better than the Overlapped technique.

Perform ance o f O verlapped tech n iq u e

5000

4000

3000

2000

1000

50 60
Number of genes discovered

74 84 87

Figure 6.35 Performance study for the Overlapped technique

Perform ance of Adaptive tech n iq u e

2000

1500

1000

500

51 61 70 81
Number of genes discovered

93

Figure 6.36 Performance study for the Adaptive technique

6.5 Scalability

Scalability was studied across a range of 1 to 8 processors while the number of

nodes remained fixed at 13. As the number of tasks increased, the time required to find

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

frequent genes was reduced. This is due to the fact that the turn around time for

Genesetmining increases along with the number of files that require integration. It was

observed that as the number of processors was increased three times, the time required

to run the algorithm was also reduced by approximately three times. However, when we

further increased the number of processors, the reduction in time was not so significant

(Figure 6.37).

Time to run the algorithm, keeping number of nodes fixed

1200 n

1000

800

600

400

200

104

Number of processors

Figure 6.37 Time to discover frequent gene-sets and their integration, by varying
number of tasks.

6.6 Relevant Genes

The relevant genes discovered through the two partitioning techniques were

compared with the given OVA-markers available at the Broad-MIT website (as

indicated earlier), which specify the gene belonging to a particular sample and its

significance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

Table 8 shows the relevant genes discovered through the Overlapped and

Adaptive partitioning techniques for various samples.

Table 8 The relevant genes discovered for various samples

Distinction Feature Description

Bladder M31667 f at CYTOCHROME P450 IA2

Bladder U49974_f_at Mariner2 transposable element, complete consensus
sequence

Bladder L00389 f at Cytochrome P-450 4 gene
Bladder X52426 s at KRT13 Keratin 13
Bladder Z19574 mal at Cytokeratin 17

Bladder AA476704_at
EST: zw87h02.rl Soares total fetus Nb2HF8 9w
Homo sapiens cDNA clone 783987 5', mRNA

sequence, (from Genbank)
Bladder Y07755 at S100A2 gene, exon 1, 2 and 3
Bladder L77563 at DGS-F partial mRNA
Breast J03460 s at Prolactin-induced protein

Breast AC002077_at GUANINE NUCLEOTIDE-BINDING PROTEIN
G(T), ALPHA-1 SUBUNIT

Breast HG1763-HT1780 s at Prolactin-Induced Protein

Breast AA059327_i_at
EST: zf65ell.rl Soares retina N2b4HR Homo

sapiens cDNA clone 381836 5', mRNA sequence,
(from Genbank)

Breast K03192_f_at-2 Cytochrome P450, subfamily IIA (phenobarbital-
inducible), polypeptide 6

Breast M97815 at CRABP2 Cellular retinoic acid-binding protein 2

Breast AA393089_at
EST: zt69bl0.rl Soares testis NHT Homo sapiens
cDNA clone 727579 5', mRNA sequence, (from

Genbank)

Breast W27961_at
EST: 40a4 Human retina cDNA randomly primed
sublibrary Homo sapiens cDNA, mRNA sequence,

(from Genbank)

Breast HG2365 -HT2461 at Glyceraldehyde-3 -Phosphate Dehydrogenase
(Gb:K03121)

Leukemia L20688_at GDP-dissociation inhibitor protein (Ly-GDI) mRNA

Leukemia X03689_s_at mRNA fragment for elongation factor TU (N-
terminus)

Leukemia M26708 s at PTMA Prothymosin alpha

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Distinction
Gene name
(Feature)

Description

Leukemia U43901_mal_s_at 37 kD laminin receptor precursor/p40 ribosome
associated protein gene

Leukemia HG821-HT821 at Ribosomal Protein S13

Leukemia D87735_at CAG-isl 7 {trinucleotide repeat-containing sequence}
[human, pancreas, mRNA Partial, 701 nt]

Leukemia RC AA280630 at Glia maturation factor, gamma
Leukemia HG4319-HT4589 at Ribosomal Protein L5

Lung M68519_mal_at Pulmonary surfactant-associated protein SP-A
(SFTP1) gene

Lung J03890_mal_at

SP-C1 gene (pulmonary surfactant protein SP-C)
extracted from Human pulmonary surfactant protein
C (SP-C) and pulmonary surfactant protein Cl (SP-

Cl) genes

Lung M24461_at PULMONARY SURFACTANT-ASSOCIATED
PROTEIN B PRECURSOR

Lung M30838_at PULMONARY SURFACTANT-ASSOCIATED
PROTEIN A PRECURSOR

Lung RCAA521195_at
EST: aa74c01.sl NCI_CGAP_GCB1 Homo sapiens
cDNA clone EVLAGE:826656 3', mRNA sequence,

(from Genbank)

Lung W36279_at EST: HFBEST-56 Human fetal brain QBoqin2 Homo
sapiens cDNA, mRNA sequence, (from Genbank)

Lung RC_AA460257_at
EST: zx67d07.sl Soares total fetus Nb2HF8 9w
Homo sapiens cDNA clone 796525 3', mRNA

sequence, (from Genbank)

Colorectal M29540_at CARCINOEMBRYONIC ANTIGEN PRECURSOR

Colorectal M35252 at TUMOR-ASSOCIATED ANTIGEN CO-029
Colorectal D14520 at GC-Box binding protein BTEB2
Colorectal L08044_s_at TFF3 Trefoil factor 3 (intestinal)

Colorectal U07969_s_at Intestinal peptide-associated transporter HPT-1
mRNA

Colorectal X12901 at VILLIN

Lymphoma AA297912_at EST: EST113641 T-cell lymphoma Homo sapiens
cDNA 5' end, mRNA sequence, (from Genbank)

Lymphoma RC_AA121879_s_at Proteasome (prosome, macropain) subunit, beta type,
9 (large multifunctional protease 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Distinction
Gene name
(Feature)

Description

Lymphoma D83597 at RP105

Lymphoma M89957_at-2 CD79B antigen (immunoglobulin-associated beta)

Lymphoma X12530 s at CD20 RECEPTOR
Lymphoma X07203 at CD20 RECEPTOR

Lymphoma U26174_at GZMK Granzyme K (serine protease, granzyme 3)

Lymphoma H20906_at Homo sapiens mRNA for KIAA0746 protein, partial
cds

Lymphoma AF006083 at Actin-related protein 3

Melanoma RC_AA176812_at

EST: zp32gl2.sl Stratagene neuroepithelium
(#937231) Homo sapiens cDNA clone 611206 3'
similar to contains Alu repetitive element;contains

element THR repetitive element;, mRNA sequence,
(from Genbank)

Melanoma AA406087 s at TALI (SCL) interrupting locus

Melanoma RCAAO13160_at

EST: ze35el0.sl Soares retina N2b4HR Homo
sapiens cDNA clone 361002 3' similar to contains
Alu repetitive element;, mRNA sequence, (from

Genbank)
Melanoma U06452 at MLANA Differentiation antigen melan-A

Melanoma W39687_s_at
EST: zc21e08.rl Soares senescent fibroblasts NbHSF

Homo sapiens cDNA clone 322982 5', mRNA
sequence, (from Genbank)

Melanoma X84707 mal at MIA gene
Melanoma U58516 at Breast epithelial antigen BA46 mRNA
Melanoma Y07759 at Myosin heavy chain 12
Melanoma X96381 mal at Erm gene, exon 2,3,4,5 (and joined CDS)

Melanoma RC_AA417588_at
EST: zv04fl0.sl Soares NhHMPu SI Homo sapiens

cDNA clone 752683 3', mRNA sequence, (from
Genbank)

Ovary L02321 at GSTM5 Glutathione S-transferase M5
Ovary M74093 at Gl/S-SPECIFIC CYCLIN E

Ovary M64936_at Retinoic acid-inducible endogenous retroviral DNA

Ovary L00389 f at Cytochrome P-450 4 gene
Ovary U78793 at Folate receptor alpha (hFR) mRNA, partial cds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

Distinction
Gene name
(Feature)

Description

Ovary RC_AA304344_f_at

EST: EST17092 Aorta endothelial cells, TNF alpha-
treated Homo sapiens cDNA 3' end similar to EST

containing Alu repeat, mRNA sequence, (from
Genbank)

Ovary Ml 1973 cdsl at Gamma-B-crystallin gene (gamma 1-2)
Ovary HG3987-HT4257 at Cpg-Enriched Dna, Clone E06

Ovary RCAAl 90676_at
EST: zp89g09.sl Stratagene HeLa cell s3 937216

Homo sapiens cDNA clone 627424 3', mRNA
sequence, (from Genbank)

Pancreas X51698_s_at SPASMOLYTIC POLYPEPTIDE PRECURSOR

Pancreas J00268 s at INS Insulin

Pancreas J05412_at REGIA Regenerating islet-derived 1 alpha
(pancreatic stone protein, pancreatic thread protein)

Pancreas X52003_at TFF1 Trefoil factor 1 (breast cancer, estrogen-
inducible sequence expressed in)

Pancreas Z48314 s at MUC5B Mucin 5, subtype B, tracheobronchial

Pancreas U31449_at Intestinal and liver tetraspan membrane protein (il-
TMP) mRNA

Pancreas M84424 at CATHEPSIN E PRECURSOR

Pancreas AA372630_s_at Homo sapiens GW112 protein (GW112) mRNA,
complete cds

Pancreas RC_AA26235 l_f_at
EST: zr44g03.sl Soares NhHMPu SI Homo sapiens

cDNA clone 666292 3', mRNA sequence, (from
Genbank)

Pancreas AB006781 s at Galectin-4
Pancreas L08010 at Regenerating protein I beta
Pancreas M22612 f at PRSS1 Protease, serine, 1 (trypsin 1)
Pancreas M16653 at Pancreatic elastase IIB mRNA

Prostate U22178_s_at MSMB Beta-microseminoprotein (prostate secreted)

Prostate M24902 at ACPP Acid phosphatase, prostate
Prostate AB002351 at Human mRNA for KLAA0353 gene, partial cds

Prostate RC_AA487879_at
EST: abl2a04.sl Stratagene lung (#937210) Homo
sapiens cDNA clone 840558 3', mRNA sequence,

(from Genbank)

Prostate U02082_at Guanine nucleotide regulatory protein (timl) mRNA

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

Distinction Gene name
(Feature)

Description

Prostate U79272 at Clone 23720 mRNA sequence
Prostate RC AA478300 at CD39-like 2
Prostate RC AA281770 at Seven in absentia (Drosophila) homolog 1
Prostate L40401 at (clone zap 12 8) mRNA, 3' end of cds

Prostate L40401_at-2 Homo sapiens (clone zap 12 8) mRNA, 3' end of cds

Prostate RC_AA136471 at
EST: zl01e08.sl Soares pregnant uterus NbHPU
Homo sapiens cDNA clone 491078 3', mRNA

sequence, (from Genbank)
Prostate U01833 at Nucleotide-binding protein mRNA

Prostate M18533_at DMD Dystrophin (muscular dystrophy, Duchenne
and Becker types)

Prostate M l4200 mal at Diazepam binding inhibitor (DBI) mRNA
Prostate U52100 at XMPmRNA

Mesothelioma AFFX-M27830_M_at-2 Human 28S ribosomal RNA gene, complete cds.
(from Genbank)

Mesothelioma AFFX-M27830 M at AFFX-M27830_M_at (endogenous control)
Mesothelioma XI6662 at ANX8 Annexin VIII

Mesothelioma RCAA419609_at
EST: zv04b06.sl Soares NhHMPu SI Homo sapiens

cDNA clone 752627 3', mRNA sequence, (from
Genbank)

Mesothelioma RC_AA406218_at
EST: zu65e08.sl Soares testis NHT Homo sapiens

cDNA clone 742886 3', mRNA sequence, (from
Genbank)

Mesothelioma RC_AA195660_at
EST: zr33fl0.sl Soares NhHMPu SI Homo sapiens

cDNA clone 665227 3', mRNA sequence, (from
Genbank)

Mesothelioma M62895 s at Annexin II (lipocortin II) pseudogene 2

Mesothelioma RCAA291644_at

EST: zt37al l.sl Soares ovary tumor NbHOT Homo
sapiens cDNA clone 724508 3' similar to contains
Alu repetitive element;contains element MER25

repetitive element;, mRNA sequence, (from
Genbank)

Mesothelioma M14058 at C1R Complement component Clr

Mesothelioma AA115572_s_at

EST: zl05dl l.rl Soares pregnant uterus NbHPU
Homo sapiens cDNA clone 491445 5' similar to
TR:G895845 G895845 PUTATIVE P64 CLCP
PROTEIN.mRNA sequence, (from Genbank)

Mesothelioma X56667 at CALB2 Calbindin 2, (29kD, calretinin)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

Distinction
Gene name
(Feature)

Description

Mesothelioma M38591_at S100A10 SI00 calcium-binding protein A10 (annexin
II ligand, calpactin I, light polypeptide (pi 1))

Mesothelioma X12876 s at KRT18 Keratin 18

Renal T80685_at EST: yd23a06.rl Homo sapiens cDNA clone 109042
5'. (from Genbank)

Renal X13100_s_at MYH3 Myosin, heavy polypeptide 3, skeletal muscle,
embryonic

Renal M61853_at CYP2C18 Cytochrome P450, subfamily IIC
(mephenytoin 4-hydroxylase), polypeptide 18

Renal X92814 at Rat HREV 107-like protein
Renal M64082 at FMOl Flavin-containing monooxygenase 1
Renal M31994 at ALDH1 Aldehyde dehydrogenase 1, soluble
Renal U14588 at Paxillin mRNA

Renal RC_AA434245_r_at
EST: zw24g05.sl Soares ovary tumor NbHOT Homo

sapiens cDNA clone 770264 3', mRNA sequence,
(from Genbank)

Renal J03810_at SLC2A2 Solute carrier family 2 (facilitated glucose
transporter), member 2

In Table 8, the “distinction” represents the tumor class for which the markers

are high (and low for other classes). Feature is the gene accession number, and

description is the gene name and annotation. The OVA markers are sorted on the basis

of the signal to noise ratio phenotype, which show genes correlated with one particular

class versus all other classes. Thus, the markers are the genes that are differentially

expressed by a single class, individually, or as groups. The statistical significance of the

OVA markers is computed by the permutation test on 10%, 5%, and 1% levels of

significance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS

The healthcare burden and suffering due to chronic diseases such as cancer would

be significantly reduced by design and refinement of computational interpretation of

micro-molecular data collected by bioinformaticians. The unprecedented advances in

high performance computing have novel opportunities for rapid, precise, and accurate

analysis of this data for enhanced knowledge discovery, Consequently, biology and

medicine are moving from bench-based to computer-based science as models replace

some experiments and complement others. This paradigm shift is leading biology to

become an increasingly data-rich discipline, further swelling the data growth. Elucidation

of molecular mechanisms in living cells is one of the major challenges in biology today.

One of the most important goals of molecular biology is the study of how genes regulate

each other. A recent breakthrough in methodology for experimental molecular biology is

microarray technology, which has become an important tool for monitoring and

analyzing gene expression profiles of thousands of genes simultaneously. The small size

and high density of the microarray, as well as its compatibility with fluorescent labeling,

is rapidly leading to its widespread use in the area of molecular genetics. Microrrays have

already produced huge amounts of valuable genetic data. However, the analysis and

handling of these data has become one of the major bottlenecks in the utilization of the

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

technology. The rate of collection of these data has far surpassed our ability to analyze

the data for novel, non-trivial, and important knowledge. High-performance computing

platform has emerged as a leading technology that can handle data-intensive knowledge

discovery applications, such as gene expression data analysis, by rapid, accurate, and

practicable means.

In this dissertation, we have presented a novel-computing paradigm for the

distributed and concurrent analysis of gene expression data for enhanced biological

discovery. The framework comprises of methodologies data treatment for preprocessing,

partitioning for distributed processing, localized concurrent knowledge discovery,

knowledge integration, and post analysis and interpretation. We draw some key

conclusions from this research, including but not limited to the following.

- The gene expression data is a very high dimensional entity and our experiment

proved that running the association rule mining algorithm, FP-Growth on the

original dataset, did not reveal results because the size of the frequent gene-sets

generated exceeded the file size limit, even when the experiment was performed

on an IBM p5-575 supercomputer with a memory bandwidth of 16Gbytes/chip.

Even though the frequent pattern tree (FP-tree) stores the information about

frequent patterns in a highly compact data structure, which is substantially smaller

than the original database, it failed to discover patterns from the gene expression

dataset.

- Our technique of data preprocessing using normalization and windowed

thresholding of data enhanced the quality of pattern discovery while reducing its

dimensionality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

- By parallelizing FP-Growth, we were able to find frequent gene-sets on the

partitioned dataset using efficient shared-memory computation. Our proposed

knowledge integration algorithm, genesetmining, updated the large gene-sets

discovered on various processor nodes.

- Our elaborative experimental results demonstrate the robustness and precise

nature of the algorithms under several distinctive experimental parametric

controls.

- The number of relevant genes discovered depends on several factors as outlined

below.

o The increase in partition size in overlap partitioning leads to the reduction

in number of genes discovered,

o For a partition of fixed size, an increase in overlap between consecutive

partitions leads to increase in number of relevant genes discovered,

o While increasing the overlap between partitions, the transitional changes

in the number if genes discovered tend to lead to a local minima. At that

point, an introduction of redundancy in the data does not necessarily

change the number of discovered relevant genes.

- The class-level performance of relevant genes differs for different partition sizes,

degree of overlap and support percentage. This difference is important as it

provides parametric controls to researchers to choose the levels of thresholding to

get optimal results for the classes of the disease that they are interested in.

- It was also observed that accuracy for certain classes was significantly boosted for

a controlled value of partition size, degree of overlap and support values. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

observation is significant, as it provides a level of flexibility to users who

sometimes used tailored microarray chips for analysis of a specific condition or

condition of a tissue (disease).

- Adaptive partitioning of data for distributed processing proved itself to be an

improved technique for data partitioning.

- The intra-cluster distance parameterized by threshold lambda is introduced to

create the level of redundancy in discovering overlapping clusters using K-means

clustering algorithm. The choice of lambda provides a flexibility to tune the intra

cluster similarity (and consequently inter-cluster dissimilarity) that is desired by

the user.

- It is also concluded that accuracy for certain classes is enhanced by a selected

value of lambda. Generally, an increasing value of lambda leads to increase in the

discovery of relevant genes.

While the challenge of elucidation of molecular markers for diseases such as

cancer is far from resolved, this dissertation proposes a unique computational framework

for knowledge discovery from a gene expression database with significant high-

dimensionality. Our contribution is to propose unique methods of data partitioning and

running FP-Growth in parallel on the partitioned datasets and to develop computational

routines for distributed knowledge discovery and integration, specifically for cancer

genomics applications.

Future work in this area can include bi-clustering (2-way clustering) of expression

data in shared memory environment for co-discovery of functional dependencies. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

framework could also be tailored for other normalization methods and microarray

experimental designs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] M.N Cantor and Y.A. Lussier. Putting data integration into practice: using
biomedical terminologies to add structure to existing data sources, Proc AMIA Symp.,
pp.125-129, 2003.

[2] R. Metcalfe. The internet after the Fad, Remarks of Dr. Robert Metcalfe at the
University of Virginia. May 30, 1996, Available at
http://www.americanhistory.si.edU/csr/comphist/montic/metcalfe.htm#me7, Accessed
September 17, 2001.

[3] B. Athey. Future needs for bioinformatics, computational biology, bioengineering,
and biomedical imaging requiring next generation supercomputing, Presentation at
Workshop on Biomedical Computing HPCS Needs, January 13, 2003-
http://www.fas.org.

[4] D.E. Krane and M.L. Raymer. Fundamental concepts o f bioinformatics, Pearson
Publishing, pp 2-3, 2002.

[5] CHI cancer genomics, Commercial developments and identification of new molecular
targets for therapy report, 2003, Available at
http://www.advancesreports.com/all reports/2003 31 cancer genomics. Accessed July
2004.

[6] U. Fayyad, G. Piatetsky-Shapiro, P.Smyth and R. Uthurusamy. Advances in
knowledge discovery and data mining, MIT Press, Cambridge, MA, 1996.

[7] G. Piatetsky-Shapiro and W.J. Frawley. Knowledge discovery in databases,
AAAI/MIT Press, 1991.

[8] A. Silberschatz, M. Stonebraker, and J. D. Ullman. Database research: Achievements
and opportunities into the 21st century, In Report of an NSF Workshop on the Future of
Database Systems Research, May 1995.

[9] http://www.thearling.com/text/wp9501/wp9501 .htm. Accessed September 2005.

[10] J. Han and M. Kamber. Data Mining: Concepts and Techniques, pp.30-33, Morgan
Kaufmann, 2001.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.americanhistory.si.edU/csr/comphist/montic/metcalfe.htm%23me7
http://www.fas.org
http://www.advancesreports.com/all
http://www.thearling.com/text/wp9501/wp9501

123

[11] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules, In
proceedings of the 20th VLDB Conference, Santiago, Chile, 1994.

[12] K. Hwang Kai, F.A. Briggs. Computer architecture and parallel processing, Tata
McGraw Hill, pp. 32-34, 1984.

[13] R. Duncan. A survey o f parallel computer architectures, IEEE Computer, 23(2):
pp. 5-16, February 16, 1990.

[14] HPC Info, A website maintained by EPCC and sponsored by the UK DTI,
http://www.encc.ed.ac.uk/HPCinfoA Accessed November 18, 2005.

[15] R. Das, Uysal M., J. Saltz and Y. S. Hwang. Communication optimizations for
irregular scientic computations on distributed memory architectures, Journal of Parallel
and Distributed Computing 22, pp. 462-479, 3 September 1994.

[16] P.S. Pachero. Parallel programming with MPI, pp. 24-25, 1997.

[17] R. Stevens, UNIX network programming, Interprocess communication, pp. 30-32
2000.

[18] M. J. Zaki, C. Ho and R. Agrawal. Scalable parallel classification for data mining
on shared memory multiprocessors, In Proceedings of IEEE International Conference on
Data Engineering, 1999.

[19] P. Beckman and D. Gannon. Tulip: A portable run-time system for object-parallel
systems, 10th International Parallel Processing Symposium (IPPS ’96), pp. 532,1996.

[20] I. Foster. Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering, Addison-Wesley Publishing Co, 1995.

[21] http://www.OpenMP.org. OpenMP: Simple, portable, scalable SMPprogramming,
OpenMP Architecture Review Board, 1999, http://www.openmp.org/, Accessed January
8, 2006.

[22] http://www.emplics.com/web en/development/pvm.php. Accessed February 24,
2006.

[23] P. M. Dickens and W. Gropp. An evaluation o f a user-level data transfer mechanism
fo r high-performance networks, Proceedings of 11th IEEE International Symposium on
High Performance Distributed Computing , (HPDC’02), pp.255-264, 2002.

[24] P. Sethi, C. Leangsuksun. A novel computational framework for fast distributed
computing and knowledge integration for microarray gene expression data analysis,
AINA, 20th International Conference on Advanced Information Networking and
Applications - Volume 2 (AINA'06), pp. 613-617, 2006.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.encc.ed.ac.uk/HPCinfoA
http://www.OpenMP.org
http://www.openmp.org/
http://www.emplics.com/web

124

[25] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation, In
Proceedings of the 2000 ACM SIGMOD, International Conference on Management of
Data, Dallas, Texas, USA, May 2000.

[26] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. H. Yeang, M. Angelo, C.
Ladd, M. Reich, E. Latulippe, J. P. Mesirov et al. (2001). Multiclass cancer diagnosis
using tumor gene expression signatures, Proceedings. National Academy of Sciences
USA 98, pp. 15149-15154, 1998

[27] E. Eisenberg and E. Y. Levanon. Human housekeeping genes are compact, Trends in
Genetics, 19: pp. 362-365, 2003.

[28] M.A. Beaumont and B. Rannala. The revolution in genetics, Nature Reviews
Genetics 5: pp. 251-261, 2004.

[29] J. B. MacQueen. Some methods for classification and Analysis o f Multivariate
Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, University of California Press, 1: pp. 281-297, 1967.

[30] I.S. Dhillon and D.S. Modha. A data-clustering algorithm on distributed memory
multiprocessors, Large-Scale Parallel KDD Systems, ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1999.

[31] W. Gropp, E.Lusk and A. Skjellum. Using MPT. Portable Parallel Programming
with the Message Passing Interface, The MIT Press, Cambridge, MA 1996.

[32] M. Snir, M., S.W. Otto, S. Huss-Lederman, D.W. Walker and J. Dongarra. MPT The
Complete Reference, Volume 1 - The MPI-1 Core, 2nd edition, The MIT Press, 1998.

[33] S.T. Xu and J. Zhang. An improved parallel algorithm for web document clustering,
The MIT Press, Cambridge, 2002.

[34] C. Borgelt. An implementation o f the FP-growth algorithm, Workshop Open Source
Data Mining Software (OSDM'05, Chicago, IL), 1-5. ACM Press, New York, NY, USA
2005.

[35] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong. Maintenance o f discovered
association rules in large databases: An incremental updating technique, In Proc.
ICDE’96, New Orleans, Louisiana, pp. 106-114, February 1996.

[36] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm fo r the
incremental updation o f association rules, In Proc. of the 3rd Int’l Conf. on Knowledge
Discovery and Data Mining, August 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

[371 C.I. Ezeife, and S. Yue. Minins Incremental Association Rules with Generalized FP-
tVitree, Proceedings of the 15 Canadian Conference on Artificial Intelligence, AI, ,

Calgary, Canada, published in Lecture Notes in Computer Science (LNCS) by Springer
Verlag, pp. 147-160, May 2002.

[38] Y. Long, Efficient and flexible update o f association rules in growing databases,
Master of Science thesis. Louisiana Tech University, May 2004.

[39] N. F. Ayan, A. U. Tansel and E. Arkun. An efficient algorithm to update large
itemsets with early pruning, In Proc. of the fifth KDD’99, pages 287-291, San Diego,
CA, August 1999.

[40] A. Guttman. R-tree: a dynamic index structure for spatial searching, in Proc. ACM
SIGMOD Int. Conf. Management of Data, Boston, MA, pp. 47— 54,1984.

[41] C. Faloutsos and I. Kamel. Beyond uniformity and independence: Analysis ofR-trees
using the concept o f fractal dimension, POD, pp. 4-13, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2006

	A novel computational framework for fast, distributed computing and knowledge integration for microarray gene expression data analysis
	Prerna Sethi
	Recommended Citation

	tmp.1563381269.pdf.WaqPa

