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ABSTRACT

Yalue-at-Risk (VaR) is a statistical approach to measure market risk. It is widely 

used by banks, securities firms, commodity and energy merchants, and other trading 

organizations. The main focus of this research is measuring and analyzing market risk by 

modeling and simulation of Value-at-Risk for portfolios in the financial market area. The 

objectives are (1) predicting possible future loss for a financial portfolio from VaR 

measurement, and (2) identifying how the distributions of the risk factors affect the 

distribution of the portfolio. Results from (1) and (2) provide valuable information for 

portfolio optimization and risk management.

The model systems chosen for this study are multi-factor models that relate risk 

factors to the portfolio’s value. Regression analysis techniques are applied to derive 

linear and quadratic multifactor models for the assets in the portfolio. Time series 

models, such as ARIMA and state-space, are used to forecast the risk factors of the 

portfolio. The Monte Carlo simulation process is developed to comprehensively simulate 

the risk factors according to the four major distributions used to describe data in the 

financial market. These distributions are: multivariate normal, multivariate t, multivariate 

skew-normal, and multivariate skew t. The distribution of the portfolio is characterized 

by combining the multifactor models with the Monte Carlo simulation process. Based on 

the characterization of the portfolio distribution, any VaR measure of the portfolio can be 

calculated.

iii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The results of the modeling and simulation show that (1) a portfolio may not have 

the same kind of distribution as the risk factors if the relationship between the portfolio 

and the risk factors is expressed as a quadratic function; (2) the normal distribution 

underestimates risk if  the real data have a heavy tail and a high peak; and (3) 

diversification is the best strategy of investment since it reduces the VaR by combining 

assets together.

The computational approach developed in this dissertation can be used for any 

VaR measurement in any area as long as the relationship between an asset and risk 

factors can be modeled and the joint distribution of risk factors can be characterized.
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CHAPTER 1

INTRODUCTION

1.1 Background of Value-at-Risk (VaR)

Value-at-Risk (VaR) is a method of assessing risk that uses standard statistical 

techniques routinely used in other technical fields. It is one of the most important 

developments in risk management over the past 10 years. It implements a new class of 

risk measures that are specifically designed to measure and aggregate diverse risky 

positions across an entire institution using a common conceptual framework. VaR is 

generically defined as the worst expected loss for a given position or portfolio within a 

known confidence interval over a specific time horizon under normal market conditions. 

VaR provides users with a summary measure of market risk. It is truly a forward-looking 

risk measure. VaR has become the market standard for measuring, managing, and 

reporting market risk. Its influence has already spread into the domain of other types of 

financial risks, such as credit, insurance, operational, business volume, and behavioral 

risks.

The VaR revolution has been brought about by a convergence of factors [1]. 

These include (1) the pressure from regulators for better control o f financial risks; (2) the 

globalization of financial markets, which has led to exposure to more sources of risk; and

1
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(3) technological advances, which have made enterprise-wide risk management a not-so- 

distant reality.

1.1.1 Lessons from Financial Disasters

There have been a number of massive financial losses in finance history, 

including the following three famous ones.

(1) Orange County (December 1994): Orange County, California has an 

investment pool that supports various pension liabilities. The pool lost $1.7 billion 

through high-risk investments in derivatives. This loss was the largest ever recorded by a 

local government investment pool and led to the bankruptcy of the county on December 

6,1994 [2], This loss was the result of unsupervised investment activity of Robert Citron, 

the county treasurer, who was entrusted with a $7.5 billion portfolio belonging to county 

schools, cities, special districts, and the county itself. Citron’s mistake was to report his 

portfolio at cost instead of report the market value of the portfolio. Members of the board 

of supervisors claim that they did not receive critical information that would have 

indicated the risks that Citron was taking.

(2) Barings Bank (February 1995): Barings, Britain’s oldest merchant Bank lost 

$1.4 billion because a Singapore-based trader, Nick Leeson, took unauthorized futures 

and options positions linked to the Nikkei 225 and Japanese government bonds (JGBs). 

The Barings' board and management claim to have been unaware of Leeson's activities. 

The disaster has revealed an amazing lack of control at Barings, and the collapse of 

Barings served as a wakeup call for financial institutions all over the world.
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(3) Metallgesellschaft (December 1993): Metallgesellschaft AG was a German 

company that had over 20,000 employees and 10 billion US dollars in revenue. In 1993, 

the company lost over 1.4 billion dollars after speculating an increase in oil prices in the 

oil futures market. A subsequent drop in oil prices left the company buying the oil at a 

higher price than the market price. In the oil futures market, the spot price is normally 

greater than the futures price. When this occurs, the market is said to be in 

backwardation. When, however, the market shifts and futures prices are greater than the 

spot price, the market is said to be in contango. In the contango market, the spot 

decreased more than the futures prices. As long as the market stayed in contango, the 

company continued to lose money and experienced a massive cash flow crisis.

Barings, the famous investment bank, collapsed after risky derivatives trading due 

to the lack of effective control systems. The Orange County crisis in California was the 

result of poor risk measurement as well as ineffective communication of the risks 

involved to the investors. It has been widely reported in the press that the contango 

market was the key to Metallgesellschaft's downfall; however, the disaster in the oil 

markets should be seen as a reminder to the corporate community to understand the 

nature of their position in financial markets and to understand the consequences of 

market movements on their financial positions.

The main cause of these financial disasters is the lack of proper risk management. 

In virtually all cases management did not know what risks the institution was taking. The 

following quotation from the book about Barings applies as well to most of the other 

fiascoes [3]:
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What Barings showed in the clearest terms was that the real issue was not 

derivatives in general or over-the-counter derivatives in particular. The real issue was 

about the quality o f management and control required in modern financial markets.

1.1.2 Importance of Risk Management

The term “risk management” originated in the 1950s [4], It had long been used to 

describe techniques for addressing property and casualty contingencies. However, it was 

not until 1990s, after a series of financial disasters, that financial institutions came to 

realize the importance of financial risk management as a discipline.

The new “risk management” that evolved during the 1990s had a new meaning — 

the entire process of identifying, evaluating, controlling, and reviewing risks to make sure 

that the organization is exposed to only those risks that it needs to take to achieve its 

primary objectives. Risk cannot be eliminated. However, through good risk management, 

it can be (1) Transferred to another party, who is willing to take risk; (2) Reduced, by 

having good internal controls; (3) Avoided, by not entering into risky businesses; (4) 

Retained, to either avoid the cost of trying to reduce risk or anticipate higher profits by 

taking on more risk, and; (5) Shared, by following a middle path between retaining and 

transferring risk.

The benefits of risk management are [5] (1) Risk management helps to increase 

the value of the firm in the presence of bankruptcy costs, because it makes bankruptcy 

less possible. (2) The presence of informational asymmetries means that external finance 

is more costly than internal finance, and good investment opportunities can be lost. Risk 

management helps alleviate these problems by reducing the variability of the corporate
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cash flow. (3) Risk management helps investors achieve a better allocation of risks,

because financial institutions would typically have better access to capital markets.

1.1.3 Evolution of VaR

1.1.3.1 The difficulties of
traditional risk measures

Traditional risk measures came from the trading floor originally and are 

consequently designed to make sense to the trading community. They reflect the way 

different financial instruments are traded. Taken one-by-one each risk measure is easy to 

understand. Since each product group may have one or more risk measures, this 

combination leads to a large number of risk measures being required to measure all the 

market risks a trading operation is exposed to.

Imagine the risk manager reporting the exposure of the bank to the chief 

executive officer (CEO) by providing the numbers associated with perhaps a dozen key 

risk measures. The CEO may have difficulty in assessing the overall riskiness of the 

bank’s positions. He may ask, “How much money can I lose in total? Is the bank safe?” 

The risk manager armed only with traditional risk measures will have difficulty 

answering these questions.

In addition to the difficulty with aggregating risk across trading areas with 

sensitivity-based measures, it is also not possible to use traditional risk measures to 

compare the riskiness of one trading activity with another. Another significant problem 

with traditional risk measures is that they give no perception for the probability that the 

amount identified will be lost. It is left to the trader, or manager, to use his or her 

experience and judgment-something that gets more difficult for the senior management 

to understand.
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One aspect of portfolio management that is just as important to senior 

management as to traders is diversification. Diversification is the extent to which risk is 

reduced in a portfolio by the investment being spread over a number of assets, or asset 

classes. Traditional risk measures neither describe nor quantify diversification within a 

portfolio.

There are many questions that traditional sensitivity-based risk measures can not 

easily answer [6]. Here are a few: How much could I lose on a normal day-and with what 

probability? How much could I lose in extreme circumstances if the stock market 

crashes? What is my overall exposure across all products, asset classes, and currencies? 

What diversification benefits does the bank obtain as a whole from having an equities and 

an interest rate area? Which trading area is taking the most risk? Do our existing limits 

allow the bank to take more risk than we can afford? Are our trading operations making 

sufficient return when compared to the risks they are taking? Value-at-Risk will provide 

us tools to answer these questions.

1.1.3.2 The importance of VaR

VaR can potentially have a significant business impact in three areas [7]:

(1) Risk Comparability: VaR defines a common metric that can be applied 

universally across all risk positions or portfolios: the maximum possible loss within a 

known confidence level over a given holding period. It allows the relative importance of 

each position or portfolio to be directly compared and aggregated. Besides being able to 

be applied universally across all risk categories, including market, credit, operational, and 

insurance risks, this metric is also expressed in units that are meaningful at all levels of

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.
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all levels within the institution, creating a risk dialogue and culture that is otherwise 

difficult to achieve given the otherwise technical nature of the issues [1].

(2) Determinant of Capital Adequacy: VaR is calculated in currency units and is 

designed to cover most of the losses that a business risk might face. Therefore, it also has 

the intuitive interpretation as the amount of economic or equity capital that must be held 

to support that particular level of risky business activity. The philosophy that 

economically-determined VaR is the relevant measure for determining capital 

requirements for risk businesses is also being increasingly adopted by regulators and 

supervisors [7].

(3) Performance Measurement: The final important reason for calculating VaR is 

to help management to evaluate the performance of business units and strategies on a 

risk-adjusted basis. Given the interpretation of VaR as the minimum equity required to 

support a risky business, it is natural to use this measure to evaluate the relative 

performance of different businesses.

1.1.3.3 Banking regulatory initiatives
for VaR

The landmark Basel Capital Accord of 1988 provided the first step toward tighter 

risk management. The so-called Basel Accord sets minimum capital requirements that 

must be met by commercial banks to guard against credit risks. This agreement was later 

amended to incorporate market risks. In this amendment, central bankers implicitly 

recognized that risk-management models in use by major banks were far more advanced 

than anything they could propose. Banks now have the option to use their own VaR risk
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management model as the basis for required capital ratios. Thus VaR is being officially 

promoted as good risk-management practice.

1.1.3.4 A Brief history of VaR

Value-at-risk became popular with trading organizations during the 1990s. It was 

during this period that the name "Value-at-Risk" entered the financial dictionary. 

However, VaR measures had been used long before this.

An early user was Harry Markowitz. In his groundbreaking (1952) paper 

"Portfolio Selection" [8], he adopted a VaR metric of single period variance of return and 

used this to develop techniques of portfolio optimization. In the early 1980s, the United 

States Securities and Exchange Commission (SEC) adopted a crude VaR measure for use 

in assessing the capital adequacy of broker-dealer’s trading non-exempt securities. A few 

years later, Bankers Trust implemented a VaR measure for use with its risk-adjusted 

return on capital (RAROC) allocation system. During the late 1980s and early 1990s, a 

number of institutions implemented VaR measures to support capital allocation or market 

risk limits.

In the early 1990s, three events popularized value-at-risk as a practical tool for 

use on trading floors:

(1) In 1993, the Group of 30 published a groundbreaking report on derivatives 

practices. It was influential and helped shape the emerging field of financial risk 

management. It promoted the use of value-at-risk by derivatives dealers and appears to be 

the first publication to use the phrase "value-at-risk."
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(2) In 1994, J.P. Morgan launched its free RiskMetrics service. This was intended 

to promote the use of value-at-risk among the firm's institutional clients. The service 

comprised a technical document describing how to implement a VaR measure and a 

covariance matrix for several hundred key factors updated daily on the internet.

(3) In 1995, the Basel Committee on Banking Supervision implemented market 

risk capital requirements for banks. These were based upon a crude VaR measure, but the 

committee also approved, as an alternative, the use of banks' own proprietary VaR 

measures in certain circumstances.

These three initiatives came during a period of heightened concern about systemic 

risks due to the emerging—and largely unregulated—OTC derivatives market. It was also 

a period when a number of organizations—including Orange County, Barings Bank, and 

Metallgesellschaft—suffered staggering losses due to speculative trading, failed hedging 

programs or derivatives. Financial risk management was a priority for institutions, and 

Value-at-Risk was rapidly embraced as the tool of choice for quantifying market risk. It 

was implemented by financial firms, corporate treasuries, commodities merchants, and 

energy merchants.

1.2 Risk Management and VaR

1.2.1 Risk Management and Risk 
Measurement

Risk has two components: uncertainty and exposure to that uncertainty. To 

characterize the risk, we need to describe the uncertainty as well as the exposure to the 

uncertainty. The term “risk” is used in finance in two different but related ways: as the 

magnitude of (a) potential loss or (b) the standard deviation of the potential revenue of a
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trading or investment portfolio over some period of time. The quantitative relationship 

between risk as potential loss and risk as uncertainty in future revenue is a function of the 

estimated probability distribution o f future revenue.

There are many kinds of financial risks. Market risk is the risk that the value of an 

investment will decrease due to moves in market factors. Credit risk is the risk of 

financial loss suffered when a company that the bank has dealt with defaults [6]. 

Operational risk is a broad category of risk that can result from inadequate or failed 

internal processes, people and systems, or from external events [9]. This research focuses 

on market risk.

Risk management is the process of measuring, or assessing risk and then 

developing strategies to manage the risk. The objective of risk management is twofold: 

(1) to improve a bank’s financial performance and (2) to ensure an institution does not 

suffer unacceptable losses. Therefore, risk management consists of the following basic 

activities [6]: (1) Understanding the risks being taken by an institution, (2) Measuring the 

risks, (3) Controlling the risks, and (4) Communicating the risks.

Financial risks can be quantified in a four step process [10]: (1) Define the risk to 

be measured; (2) Agree on a model for that risk; (3) Specify a risk measure that is 

compatible with that model; and (4) Estimate the value of that measure implied by the 

model. For example, the process might be as follows: (1) Risk: the market risk of a 

specified portfolio; (2) Risk model: market variables are assumed to be jointly normally 

distributed with specified volatilities and correlations; (3) Risk measure: one-day 90%
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VaR; and (4) Risk estimate: being achieved with Monte Carlo simulation using 5,000 

quasi-randomly generated scenarios.

1.2.2 Risk Measurement before VaR

1.2.2.1 Scenario analysis

Scenario analysis is a process of analyzing possible future events by considering 

alternative possible outcomes (scenarios). This sort of "what if ' analysis is designed for 

better decision making since it allows more complete consideration of outcomes and their 

implications. In scenario analysis, we set out different scenarios and investigate what we 

stand to gain or loss under them. Scenario analyses can be more or less sophisticated, and 

early scenario analyses were inevitably crude given the limited computing power 

available. However, advances in computer technology have changed this. Networked 

computers and centralized databases make it easy to gather inputs. Large numbers of 

scenarios can be considered, and analyses of those scenarios can be elaborate.

Scenario analysis has several shortcomings. It only addresses risk due to the 

specific scenarios considered. Scenario analysis is highly dependent on assumptions. The 

output of scenario analysis tends to be cumbersome—multiple tables summarizing results 

in stead of a single number. Scenario analysis is not easy to carry out. A lot depends on 

our ability to identify the “right” scenarios, and there are relatively few rules to guide us 

when selecting them. Scenario analysis also tells us nothing about the likelihood of 

different scenarios, so we need to use our judgement when assessing the practical 

significance of different scenarios. Therefore, the results of scenario analyses are highly 

subjective and depend to a large extent on the skill of the analyst.
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1.2.2.2 Portfolio theory

A different approach to risk measurement is provided by portfolio theory. In 

finance, a portfolio is a collection of investments held by an institution or a private 

individual. Portfolio theory starts from the premise that investors choose between 

portfolios on the basis of their expected return and the standard deviation (or variance) of 

their return. The standard deviation of the portfolio return can be regarded as a measure 

of the portfolio’s risk. Other things being equal, an investor wants a portfolio whose 

return has a high expected return and a low standard deviation. These objectives imply 

that the investor should choose a portfolio that maximizes expected return for any given 

portfolio standard deviation. A portfolio that meets these conditions is efficient, and a 

rational investor will always choose an efficient portfolio. When faced with an 

investment decision, the investor must therefore determine the set of efficient portfolios 

and rule out the rest. Some efficient portfolios will have more risk than others, but the 

more risky ones will also have higher expected returns. Faced with the set of efficient 

portfolios, the investor chooses one particular portfolio on the basis of his or her own 

preferred trade-off between risk and expected returns. An investor who is very averse to 

risk will choose a safe portfolio with a low standard deviation and a low expected return, 

and an investor who is less risk averse will choose a riskier portfolio with a higher 

expected return.

One of the key insights o f portfolio theory is that the risk of any individual asset is 

not the standard deviation of the return to that asset but the extent to which that asset 

contributes to overall portfolio risk. The risk in a portfolio of diverse individual stocks 

will be less than the risk inherent in holding any single one of the individual stocks
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(provided the risks of the various stocks are not directly related). An asset might be very 

risky (i.e., have a high standard deviation) when considered on its own, and yet have a 

return that correlates with the returns to other assets in our portfolio in such a way that 

acquiring the new asset does not increase the overall portfolio standard deviation. The 

lower the correlation, other things being equal, the less the asset contributes to overall 

risk. If the correlation is negative, it will offset existing risks and lower the portfolio 

standard deviation.

Portfolio theory provides a broad context for understanding the interactions of 

systematic risk and reward. It has profoundly shaped how institutional portfolios are 

managed and motivated the use of passive investment management techniques. The 

mathematics of portfolio theory is used extensively in financial risk management and was 

a theoretical precursor for today's Value-at-Risk measures.

1.2.3 Basic Concepts o f VaR

To better understand VaR, let’s review the following descriptions from financial 

institutions and regulators [11]:

“Chase’s two principle risk management tools are VaR and stress testing. VaR 

measures risk in an everyday environment, while stress testing measures market risk in 

an abnormal market environment. The VaR, a dollar amount, is a forward looking 

estimate o f the potential for loss. The VaR looks forward one trading day, and is 

calculated as the loss level expected to be exceeded with a 1 in 100 chance. "—The 1998 

Chase annual report
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“ Value at risk is a measure o f a point in the distribution o f possible outcomes. It 

has two parameters: a horizon and a probability. For example, a common regulatory 

definition o f VaR is the amount o f capital that you should expect to lose no more than 

once in a hundred two-week intervals, given your current positions. At Goldman Sachs, 

we commonly focus on an amount o f capital that we should expect to lose no more than 

once per year in a given day. We think o f this not as a “worst case”, but rather as a 

regularly occurring event with which we should be comfortable.'''—A  1996 Goldman 

Sachs research report

“The VaR measure represents an estimate o f the amount by which an institution’s 

position in a risk category could decline due to general market movements during a given 

holding period.” — A joint report of the Department of the Treasury, the Federal Reserve, 

and the Federal Deposit Insurance Corporation

The following definition of VaR, considered being more precise, is from J.P. 

Morgan’s 1996 RiskMetrics Technical Document [12]: “Value at risk is a measure o f the 

maximum potential change in value o f a portfolio o f financial instruments over a pre-set 

horizon. VaR answers the question: how much can I  lose with x% probability over a 

given horizon.”

In summary, VaR is a statistical measure of the risk that estimates the maximum 

loss that may be experienced on a portfolio with a given level of confidence. It is 

typically calculated for a one day time period -  known as the holding period -  and is 

often calculated with 95% confidence. Ninety-five percent confidence means that there is 

(on average) a 95% chance of the loss on the portfolio being lower than the VaR
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calculated. Thus the typical definition of VaR becomes the maximum amount of money 

that may be lost on a portfolio in 24 hours, with 95% confidence.

VaR has three parameters: (1) The time horizon (period); i.e., the length of time 

over which we plan to hold the assets in the portfolio, also called the “holding period.” 

The typical holding period is 1 day, or 1 week. (2) The confidence level at which we plan 

to make the estimate. Popular confidence levels usually are 99% and 95%. (3) The unit of 

the currency which will be used to denominate the value at risk, for example, dollars.

VaR has been defined as the loss (stated with a specified probability) from 

adverse market movements over a fixed time horizon, assuming the portfolio is not 

managed during this time. So VaR is measured as a lower percentile of a distribution for 

theorectical profit and loss that arises from possible movements of the market risk factors 

over a fixed risk horizon. To see this, first note that the loss (or profit) for a portfolio that 

is left unmanaged over a risk horizon of h days is

A hPt =Pl+h- P t . (1.1)

In other words, AhPt is the forward-looking A-day theoretical (or ‘unrealized’) P&L, that

is, the P&L obtained by simply marking the portfolio to market today and then leaving it 

unchanged and marking it to market again at the risk horizon. We do not know exactly 

how the underlying risk factors are going to move over the next h days, but we do have 

some ideas. For example, we might expect that historical volatilities and correlations 

would remain much the same. The possibilities for movements in risk factors can be 

summarized in a multivariate distribution, and this in turn will generate a distribution of
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A hPt , as each set of possible values for the risk factors at the risk horizon are entered into

the pricing model for the portfolio, weighted by their joint probabilities.

The significance level of VaR, that is, the probability that is associated with a

VaR measurement, corresponds to the frequency with which a given level of loss is

expected to occur. Thus a 5% 1-day VaR corresponds to a loss level that one expects to 

exceed, in normal market circumstances, one day in 20. And a 1% 1-day VaR is the loss 

level that might be seen one day in 100. Now the definition of VaR above can be 

rephrased as follows: the 100a % h-day VaR is that number x such that the probability of 

losing x, or more, over the next h days equals 100 a  %. It can be written in mathematical 

terms as:

100a % h-day VaR is that number x such that Prob( A hPt < -x) = a  .

Sometimes we use the notation VaRa h to emphasize the dependency of the VaR

measurement on the two parameters a , the significance level, and h, the holding period. 

Thus,

Prob(A *P,<-V aRM ) = a  (1.2)

is a mathematical statement that is equivalent to saying that the 100 a  % h-day VaR

measurement x is the lower a  quantile of the unrealized P&L distribution, as depicted in 

Figure 1.1.
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if the shaded area is a 
then the cut-off point is

“ VaR.i,,
Prob(P̂ +h -  Pf < -  VaRaj,) = a

Figure 1.1 The P&L density and value-at-risk. [13]

We could measure value-at-risk as the standard deviation of portfolio value or the 

standard deviation of portfolio return. Essentially, any parameter of the distribution of a 

portfolio's future value can be used to measure value-at-risk.

1.2.4 Portfolio Theory and VaR

In some aspects VaR is a natural progression from earlier portfolio theory (PT). 

Yet there are also important differences between them [5]: (1) PT interprets risk in terms 

of the standard deviation of the return, while VaR approaches interpret it in terms of the 

maximum likely loss. The VaR notion of risk is easier to understand. (2) PT presupposes 

that P/L or returns are normally (or nearly normally) distributed, whereas VaR 

approaches can accommodate a very wide range of possible distributions. VaR 

approached are therefore much more flexible. (3) VaR approaches can be plausibly 

applied to a much broader range of risk problems: PT theory is limited to market risks, 

while VaR approaches can be applied much more to credit, liquidity, and other risks as 

well. (4) The variance-covariance approach to VaR has the same theoretical basis as PT -  

in fact, its theoretical basis is portfolio theory -  but the other two main approaches to
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VaR (i.e., the historical simulation and Monte Carlo simulation approaches) do not. VaR 

systems can be based on a wider range of estimation methods.

1.3 Overview of VaR Methodology 

Basically, there are two types of methods: parametric and non-parametric. 

Parametric methods will include the variance-covariance approach and some analytical 

methods. The non-parametric model includes historical simulation and the Monte Carlo 

approach. All VaR measurement approaches use a similar scheme: (1) Selection of basic 

parameters (time horizon, confidence level, time of measurement); (2) Selection of 

relevant market factors; (3) Risk mapping; and (4) VaR calculation.

For step (1) we define the relevant parameters according to our goals and 

resources. The next two steps, (2) and (3), assume some kind of model, either just a set of 

relevant factors or a completely specified pricing model. In any case the relatively small 

set of relevant parameters should be defined, and some method for portfolio valuation 

based on this set should be established. Step (4) includes the calculation itself. This step 

can be very time consuming, especially when Monte Carlo methods are used. There are 

numerous techniques for speeding the calculation. The following are the different types 

of techniques to calculate VaR.

1.3.1 Historical Simulation

Historical simulation is probably the simplest non-parametric method. There is no 

assumption of a complex structure of the market. The historical simulation methodology 

repeatedly values current holdings based on the market conditions that existed over a 

specific historical period of time. The most useful version of this approach is illustrated 

when the risk mapping procedure defines the price of the whole portfolio as a
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deterministic function of the market parameter P ( p ) . Here P  is the pricing function and 

p  is the vector of all relevant market parameters. Then today’s (day t) price isP(pt). 

The market parameters at some day j  were P j and on day j  +1 the parameter was p j+1.

Then we can model the possible changes in today’s parameters in the following ways. 

We can use the relative change, where each market parameter is multiplied by the ratio of 

the same parameter at day j  +1 and day j .  Another approach is seen when we add today’s 

value to the difference between the values at day j  +1 and day j  for each parameter. The 

multiplicative method is applicable when the volatility increases with the level of the 

parameter. This method is useful for stock indexes, exchange rates, etc. The additive 

approach assumes that the volatility is level independent. For example, for the additive 

approach we would take as a possible price tomorrow P(pt + (p j+l -  P j )). More complex

combinations of both methods can be used as well [14], for example, the modeling of 

interest rates.

Using a moving window, we calculate the profits and loss for each /z-day period. 

After ordering all the resulting data, we get the level of VaR at the 5% quantile of worst 

outcomes (assuming that we are working with a 95% confidence interval).

This approach has the advantage of being very intuitive. Unlike the parametric 

method, no assumption on the distribution of changes in market factors is required (the 

parametric method assumes normally distributed market returns) and, therefore, the 

historical simulation can better handle fat tails (kurtosis), i.e., extreme event risk, and 

asymmetric distributions (skewness), as are experienced in relatively illiquid markets 

such as emerging markets. Furthermore, the historical simulation methodology explicitly
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understands the characteristics of instruments with non-linear behavior and analyzes 

based on historic market performance. Most sell-side organizations have moved to 

historical simulation because it has the advantage that in a complex organization each 

business can perform its own VaR calculation, and the results for each historical period 

(normally daily for one to three years) can be simply summed and the aggregate risk 

(with correlations embedded based on history) determined.

A typical problem with this approach is that there is not enough data. The further 

we go into the past for data, the less relevant this information is to today’s market. This is 

not a simple trade-off. On the one hand, we would like to have more data in order to 

observe the rare events, especially the heavy loss. On the other hand, we do not want to 

build our current risk estimates on very old market data. Let’s assume that we have 

agreed to take the last five years of data for our VaR estimate. If there is a big loss on a 

particular day, then exactly five years later the big jump will not appear in the set of data 

we use. This approach will lead to a jump in our VaR estimate from one day to the next, 

which demonstrates that the results are not stable when using the historical simulation.

1.3.2 Variance-Covariance Approach

The variance-covariance approach is a parametric method, based on the 

assumption that the returns are normally distributed (the underlying market factors have a 

multivariate normal distribution). Under this assumption, it is possible to determine the 

distribution of mark-to-market portfolio profits and losses, which is also normal. 

Historical data is used to measure the major parameters: means, standard deviations, 

correlations. The overall distribution of the market parameters is constructed from this 

data. Using the risk mapping technique, the distribution of the profits and losses over the
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time horizon (typically one day) can be found. When the market value of the portfolio is 

a linear function of the underlying parameters, the distribution of the profits is normal as 

well. Therefore, the 5% quantile corresponding to VaR can be calculated at 1.65 • cr below 

the mean (2.33-cr will give the 1% level). One significant advantage of this scheme is 

that for many market parameters all of the relevant data is well known. The J. P. 

Morgan’s RiskMetrics™ is probably the best source for this type of data in many 

markets.

When VaR was first developed by the sell-side over a decade ago, the parametric 

approach was the standard because it was computationally extremely efficient. The 

efficiency results from the fact that this is an “analytic” approach, which directly 

calculates a solution, rather than the alternative approaches that determine a solution by 

iteratively simulating potential scenarios.

The strong side of this approach is that it is flexible, simple, and widely used. It 

also enables the addition of specific scenarios and enables the analysis of the sensitivity 

of the results with respect to the parameters. However, it relies heavily on the important 

assumption that all the major market parameters are normally distributed. In fact, 

historical distributions of market returns are far from being normal. Therefore when a 

significant portion of the portfolio is not linear (with options for example), this method 

can not be used directly.

1.3.3 Monte Carlo Simulation

The Monte Carlo simulation is another non-parametric method. It is probably one 

of the most popular methods among sophisticated users. It does not assume a specific 

form of the distributions. The first step is to identify the important market factors. Next,
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one should build a joint distribution of these factors based on one of the following 

historical data: data implicitly implied by observed prices or data based on specific 

economic scenarios. Finally, the simulation is performed, typically with a large number 

of scenarios. The profit and losses at the end of the period are measured for each 

scenario. As in the other methods, these numbers should be ordered. The 5% quantile of 

the worst results is the VaR estimate.

This method has several important advantages. First, it does not assume a specific 

model and can be easily adjusted to economic forecasts. The results can be improved by 

taking a larger number of simulated scenarios. Options and other non-linear instruments 

can be easily included in a portfolio. In addition, one can track path-dependence because 

the whole market process is simulated rather than the final result alone.

Another advantage of the Monte Carlo method is that it allows the use of the 

preliminary results of all of the methods mentioned above. The historical simulations can 

give a first approximation to the distribution functions. The variance covariance shows 

which connections between variables are important and which can be neglected.

In addition, one can easily perform stress testing on the Monte Carlo simulation or 

perform a more detailed analysis of a specific set of scenarios, including dynamic 

strategies, such as prepayments or partial recoveries.

One important disadvantage of a Monte Carlo simulation is it converges very

slowly. Any Monte Carlo type simulation converges to the true value as ~ = , where N  is
y/N

the total number of simulated trajectories. This result means that in order to increase the
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precision by a factor of 10 one must perform 100 times more simulations. This problem is 

the most serious disadvantage of this method.

An additional problem with Monte Carlo simulations is that one needs to know 

the joint distribution of many market parameters. When there are more than three to four 

important parameters, it is not easy to clean all the data and to build this 

multidimensional distribution, especially true in cases where the variables are strongly 

correlated.

1.3.4 VaR Related Methods

1.3.4.1 Backtesting

The Basel standard requires backtesting-a procedure in which one checks (a 

posteriori) how often the actual losses have exceeded the level predicted by VaR. As 

soon as a 99% confidence interval and the 10 day time horizon are used, there should not 

be too many cases in which the actual losses are greater than the predicted ones.

There are three zones. If during the last year (approximately 250 business days) 

there are four or less exceptions (losses that exceed the VaR level), the model is said to 

be a green zone, and it is acceptable. If there are five to nine exceptions it is in the yellow 

zone and certain actions (such as increase of the safety multiplier from 3 to 3.65) are 

recommended [15]. When there are 10 or more exceptions the whole model should be 

revised. This mechanism prevents banks from setting the VaR too low.

1.3.4.2 Expected tail loss

Another VaR metric is expected tail loss (ETL), which is sometimes also known 

as expected shortfall, conditional VaR, worst conditional expectation, and various other 

names. The ETL is the expected value of our losses, L, if we get a loss in excess of VaR:
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ETL = E[L|Z > VaR]. The VaR tells us the most we can expect to lose if a bad (i. e., tail) 

event does not occur, and the ETL tells us what we can expect to lose if  a tail event does 

occur. For example, a 90% ETL VaR metric indicates the expected loss conditional on 

that loss exceeding its own .90-quantile.

1.3.4.3 Stress testing

If VaR covers so called “normal” market behavior, then the impact of extreme 

price changes can be ascertained by using stress testing. Stress testing consisting of 

applying pre-determined price changes to the assets making up a portfolio and working 

out the value change of the portfolio as a result o f these price changes [6].

The main job of stress testing is to identify scenarios which cause the bank a 

significant loss. The job of the risk manager is then to get senior and trading management 

to think about these scenarios and to decide whether they are willing to accept the level of 

risk implied by the losses that would result from the scenarios identified given current 

market conditions.

1.3.5 An Assessment of VaR

The major advantages of VaR is that it is a risk measure that can be applied to all 

traded products, it can be used to compare the market risks of all types of activities in the 

firm, and it provides a single number that is easily understood by senior management. It 

takes into account the correlation and cross-hedging between various asset categories or 

risk factors, and it can be calculated according to a number of different methods. VaR 

may also take into account specific risks by including individual equities among risk 

factors [13]. Therefore, it is a standard risk benchmark which allows the risk being taken 

by different trading areas to be compared directly. As VaR can be used to measure the
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risk on any product, it can be combined across different trading areas to give a single 

figure for the risk being taken by all trading areas combined [6].

There are two other things that VaR can do that traditional risk measures cannot. 

The first is that VaR gives an estimate of the likelihood of a loss greater than a given 

figure occurring; i.e., VaR has a probability associated with it. The second thing is that 

VaR takes into account how price changes of different assets are related to each other. 

This analysis allows the reduction in risk through diversification (i.e. holding positions in 

a number of assets) to be measured.

However, VaR only effectively measures market risk when the market is 

behaving “normally.” This means that VaR is a measure of the day-to-day, or “business- 

as-usual” risk on the portfolio, with a given level of confidence. VaR does not deal 

adequately with the fairly frequent extreme price moves observed in the financial 

markets. Therefore, VaR must be combined with stress testing to provide a more 

comprehensive market risk measurement framework.

1.3.6 Current Applications of VaR

Currently, experience is of a revolution in risk management to become more 

quantitative in its approach to all risks. The new, more constraining, regulatory 

environment has prompted the rapid development of new methods for measuring and 

modeling financial risk. Financial institutions are setting new standards for risk control 

that require better pricing models and more stringent validation of all trading models. 

And recent changes in the rules for calculating risk capital charges have promoted the 

development of new risk systems, from data management to the internal models for 

measuring market and credit risk capital [16].
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VaR has emerged as a major tool for measuring market risk, and it is used 

internally by banks for risk management and as a regulatory tool for ensuring the 

soundness of the financial system. A large amount of research work into VaR has 

emerged, and various aspects of VaR have been extensively documented. There are two 

areas of VaR-related research that have been relatively neglected: the relationship of VaR 

to statistical theory and the financial-economic foundation of VaR. Most VaR methods 

are based on normality, however, as stated by Alan Greenspan in 1997 [17], “the biggest 

problems we now have with the whole evaluation of risk is the fat-tailed problem, which 

is really creating very large conceptual difficulties.”

1.4 The Objectives of this Dissertation 

Most of the research in financial area has been based on the assumption: risk 

factors are multivariate normal distribution. Few mentioned about multivariate 

/-distribution which describes fat-tails. In the real world, the distribution of financial data 

is usually skewed and fat-tailed. Therefore, multivariate skew-normal or multivariate 

skew /-distribution could be a better choice for the real data. This research will 

characterize risk factors by using four kinds o f distributions: multivariate normal 

distribution, multivariate skew-normal distribution, multivariate /-distribution, and 

multivariate skew /-distribution. The purpose is to get a deeper understanding of how the 

distributions of the risk factors affect the distribution of the portfolio. Based on this, the 

distribution of the portfolio can be more accurately characterized, and VaR measures can 

be more accurately calculated. In addition, by comparing the results of the simulation of
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different distributions, we can get enough information to select what distribution to use in 

practical application.

1.5 Organization of this Dissertation

This dissertation combines statistical and mathematical modeling, Monte Carlo 

simulation, time series analysis and forecasting, regression analysis and the knowledge of 

risk management and Value-at-Risk methodology to measure and analyze market risk for 

a financial portfolio (a collection of investments held by an institution or an individual), 

to predict future loss for the portfolio, and to identify how the possible changes 

(distributions) of the risk factors affect the possible change (distribution) of the portfolio. 

The results of the modeling and simulation in this research can provide valuable 

information for portfolio optimization and risk management.

There are six chapters in this dissertation. Chapter 1, the current chapter, is an 

introduction to this research covering the background and basic concepts of risk 

management and VaR measurement. Chapter 2 is a detailed description of VaR 

methodologies and related models. Chapter 3 is a discussion of time series methods used 

in VaR inference procedure. Time series models, such as ARJMA and state-space, will be 

used to forecast the risk factors o f the portfolio. Chapter 4 is a discussion of regression 

analysis techniques and VaR mapping procedure. A detailed step-by-step procedure will 

be developed to derive linear and quadratic multi-factor models for the portfolio. Chapter 

5 is a discussion of Monte Carlo simulation and VaR transformation procedure. Four 

different multivariate distributions (multivariate normal distributions, multivariate 

t-distributions, m ultivariate skew-normal distributions and m ultivariate skew
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^-distributions) will be extensively discussed and simulated. The simulation method will 

be applied to the linear and quadratic multifactor models to characterize the distribution 

of the portfolio and to calculate any VaR measures of the portfolio. Chapter 6 concludes 

the dissertation and addresses some areas for further study.

Through the whole dissertation, SAS software package is used for statistical 

analysis and modeling. All the Monte Carlo simulation processes are written in C 

language and the source codes are in the Appendix.
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CHAPTER 2

VALUE-AT-RISK METHODOLOGIES AND 

RELATED MODELS

2.1 Introduction

There are three sections in this chapter. The current section serves as an 

introduction. The second section describes three main procedures in VaR methodology: 

mapping procedure, inference procedure, and transformation procedure. The third section 

discusses the common VaR calculation models.

In economics and finance, the Value-at-Risk, or VaR, is a measure used to 

estimate how the value of an asset or of a portfolio of assets will decrease over a certain 

time period (usually over one day or 10 days) under usual conditions. VaR is based on 

the probability distribution for a portfolio's market value. It is typically used by securities 

houses or investment banks to measure the market risk or volatility risk of their asset 

portfolios, but it is actually a very general concept that has broad applications. VaR has 

three parameters: (1) time horizon: the length of time over which the assets in the 

portfolio will be held, also called holding period or forcast horizon; (2) the confidence 

level at which we plan to make the estimate and (3) base currency. The typical holding 

period is one day for a stock fund and one month for a mortgage company. For some

29
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problems, even a holding period of one year is appropriate. Popular confidence levels 

usually are 99% and 95%. Table 2.1 gives explanations for the three parameters of VaR.

Table 2.1 Three parameters of Value-at-Risk

Confidence
level Probability of loss associated with VaR measurement.

Forecast
horizon

Financial institutions (e.g., banks, hedge funds) consistently use a 1-day forecast 
horizon for VaR analysis of all market risk positions. Investment managers often 
use a 1-month forecast window, while corporations may apply quarterly or even 
annual projections of risk.

Base
currency

The base currency for calculating VaR is typically the currency of equity capital 
and reporting currency of a company. For example, Bank of America would use 
USD to calculate and report its worldwide risks, while the United Bank of 
Switzerland would use Swiss francs.

Measure time in trading days. Let 0 be the current time and a portfolio's current 

market value ° p . Its market value lP in one trading day is unknown. It is a random 

variable. The target is to ascribe to lP  a probability distribution at time 1. That is to say, 

to calculate VaR, we need to characterize the distribution of lP  at time 1 conditional on 

information available at time 0.

Suppose the portfolio has holdings coi in m assets. The assets' accumulated 

market values at time 1 are random variables, which are denoted as >Si . Then

1P = col 1Sl +co21S2 +... + <DmlSm (2.1)

A more manageable approach may be to model the portfolio’s behavior, not in 

terms of individual assets, but in terms of specific risk factors. Depending upon the
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composition of the portfolio, risk factors might include exchange rates, interest rates, 

commodity prices, spreads, and implied volatilities. These modeled risk factors are called 

key factors. Denote their values at time 1 as 1 Rt . The key factors comprise an ordered set

(or "vector”), which are called the key vector and are denoted as XR :

' first — key -  factor '

>f?2 sec ond — key -  factor

**3 ~ third -  key -  factor

v n,h -  k e y -  factor J

Generally, the number n of key factors need to model will be substantially less 

than the number m of assets held by the portfolio. That is n < m .  The advantages of 

risk-factor modeling and the criteria of risk factors selection were extensively 

discussed in [18], [19], and [20],

Selecting which key factors to model is as simple—or complex!—as choosing 

a set of market variables such that a pricing formula <pt for each asset iSi held by the 

portfolio can be expressed in terms of those variables. That is, for each asset, there 

must be a valuation function (pi such that:

lS,=V,CR)-  (2-3)

Because the value of the portfolio XP  is a linear polynomial of the asset values iRi , lP 

can be expressed in terms of the key factors:
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m  m

'P=£<>>,'s, =£*.,«>,('*) (2.4)
1=1 1=1

This formula illustrates a functional relationship that specifies the portfolio's market 

value XP in terms of the key factors'R,. Shorthand notation for the relationship is

XP = 6(XR) (2.5)

Relationship (2.5) is called a portfolio mapping. The function 6 is called the portfolio 

mapping function.

To characterize the entire distribution of XP,  we need to apply the portfolio 

mapping function 6 to the entire joint distribution of XR to obtain the entire distribution 

of XP.

Suppose a portfolio were to remain untraded from the current time 0 to some 

future time 1. The portfolio’s market value °p  at the start of the period is known. Its

market value XP at the end of the period is unknown. It is a random variable, which may 

be assigned a probability distribution conditional upon information available at time 0. 

The portfolio’s market risk might be quantified with some real-valued parameter of that 

conditional distribution.

A VaR metric is a real-valued function of (1) the distribution of XP conditional on

information available at time 0, and (2) the portfolio’s current value ° p . For example:

(1) °std(xP  )-Standard deviation of XP,  conditional on information available at time 0;

(2) °std(xZ  )-Conditional standard deviation of a portfolio’s simple return °std(xZ)',
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(2 .6)

If portfolio loss is defined as xL - ° p - P ,  then the conditional standard deviation of 'Z is 

also a VaR metric: 0std(lL)=°std(0p - lP)=°std(1P ).

Quantiles o f portfolio loss make intuitively appealing VaR metrics. An expected 

tail loss VaR metric indicates a portfolio’s expected loss conditional on that loss 

exceeding some specified quantile of loss.

To fully specify a VaR metric, we must indicate three things: (1) horizon -  the 

time period; (2) function -  the function of 0p  and the conditional distribution of lP ; (3) 

currency -  the currency in which °p  and XP  are denominated.

A VaR measure is just an operation-some set of computations-designed to 

support a VaR metric. To design a VaR measure, we generally have some financial 

model in mind. Models take many forms, embracing certain assumptions and drawing on 

fields such as portfolio theory, financial engineering, or time series analysis. Such models 

are the assumptions and logic that motivate a VaR measure. They are called VaR models. 

To use a VaR measure, we must implement it. We must get necessary inputs, code the 

measure as software, and run on computers. The result is a VaR implementation.

A risk factor is any random variable whose value will be realized during the

interval (0,1] and will affect the market value of a portfolio at time 1. A risk vector lQ is 

a random vector of risk factors.
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One particular risk factor and two risk vectors play important roles in VaR

measures. These are (1) the portfolio’s future value lP , (2) the asset vector o , and (3)

the key vector 'R . The portfolio’s future value 'P represents the market value at time 1

of the portfolio for which VaR is to be measured. Asset vector 'S  has asset values xSj as

components. These represent accumulated values of specific assets that may make up a 

portfolio. Accumulated value is denominated in the base currency employed by the VaR 

metric.

Mathematically, we define a portfolio as a pair (°p,}P),  where the constant °p is 

the portfolio’s current value, and the random variable XP is the portfolio’s future value. 

Similarly, we define an asset as a pair (°sI.,15'I.), where °si is the asset’s current value, and

1Sj is the asset’s future value.

Every VaR measure must directly characterize a conditional probability 

distribution for some vector of risk factors, such as prices, interest rates, spreads, or 

implied volatilities. Those risk factors are called key factors.

An inference procedure characterizes a conditional distribution for ' R . It is 

complete if it fully specifies a conditional distribution for XR . Otherwise it is incomplete. 

In practice, techniques of time series analysis are employed-in conjunction with financial 

theory -  to obtain a reasonable characterization.

A mapping procedure characterizes a portfolio's exposures by expressing the 

portfolio's value lP as a function of risk factors ' R , as shown in Equation (2.5).
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A transformation procedure characterizes a conditional distribution for 'P  and 

uses this characterization to value a desired VaR metric. It is complete if its 

characterization of the conditional distribution for 'P is  sufficiently general to support 

any practical VaR metric.

Figure 2.1 illustrates how VaR measures work.

2.2 Value-at-Risk Procedures

All practical VaR measures accept portfolio data and historical market data as 

inputs. They process these with a mapping procedure, inference procedure, and 

transformation procedure. Output comprises the value of a VaR metric. That value is the 

VaR measurement. According to the schematic in Figure 2.1, any practical VaR measure 

must include these three procedures.

2.2.1 Mapping Procedure

The purpose of a mapping procedure is to characterize a portfolio's exposures. It 

does so by expressing the portfolio's value as a function of applicable market variables, 

such as stock prices, exchange rates, commodity prices, or interest rates. In the context of 

VaR, the word “mapping” is reserved for functions relating specific risk vectors to one 

another.

A portfolio mapping is a mapping that defines a portfolio’s value 'P a s  a function 

of some risk vector ]R as in Equation (2.5).
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Input: 
Historical 

Market Data

Input:
Portfolio
Holdings

Inference
Procedure

Mapping
Procedure

Characterization of 
the Conditional

Distribution of */?

Portfolio
Mapping

lP = 0(lR)

Transformation
Procedure

Characterization of 
the Conditional

Distribution of 1P

Value of the 
VaR Metric

Figure 2.1 Schematic of how VaR measures work [21]
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To calculate a portfolio’s VaR, we must calculate the value of some function -  VaR

at time 1. Mathematically, there are two ways we may define the random variable ' P :

1. Directly specify a conditional distribution for XP .

2. Define XP as a function of some random vector.

The first approach is hardly feasible. Portfolios and financial markets tend to be 

complicated, so it is difficult to directly specify a conditional distribution for XP . We 

choose to define XP  using the second approach -  which leads to portfolio mapping. VaR 

measures define XP  as a function of some asset vector XS :

metric -  of °p and the conditional distribution of XP . 1P  is the portfolio’s market value

P=G)XS. (2.7)

XS is interpreted as a vector of accumulated values. To complete our definition of XP , we 

must mathematically define XS . As with lP , there are two ways to define XS  :

1. Directly specify a conditional distribution for15 .

2. Define XS  as a function of some other random vector.

According to Equation (2.1), the portfolio's value XP in terms of the asset vector XS  is

+co2xS 2 +... + comxSm. (2 .8)

The mapping for the first approach is represented schematically as

(2.9)

Rather than directly specify a joint distribution for XS , we define asset values iSj as

functions of lR as shown by Equation (2.3). Combining Equations (2.3) and (2.10), we

get Equation (2.5).
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The mapping for the second approach is represented schematically as

6

cb -  <P _*

XP< XS< 'R (2.10)

Portfolio mappings constructed in this manner-starting with asset vector o and holdings 

a , and perhaps mapping lS  to some key factors 'R -are called primary mappings. The 

mapping function cp is a vector of component function <p{, each of which values some

asset according to Equation (2.3).

From an implementation standpoint, the mapping cp corresponds to a library of

financial engineering models -  a model library. The model library that defines q> requires

various inputs in order to value assets, and these are the key factors lRj . It is desirable

that key factors be linearly independent to avoid XR having a singular covariance matrix. 

To avoid multicollinearity, it is also desirable to avoid key factors that are highly 

correlated or are in some other sense “almost” linearly dependent. It is desirable that the

dimensionality of lR not be too great.

For many VaR measures, output of the mapping procedure is a primary mapping, 

but not for all. Use of primary mappings can pose certain problems. Applying a 

transformation procedure to a complicated portfolio mapping can be computationally 

expensive. For this reason, many mapping procedures replace primary mappings with 

simpler approximations. Those approximations are called portfolio remappings.
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Formally, a remapping is an approximation of a risk vector lR with some other 

risk vector lR.  If we have a portfolio mapping XP  = 6(XR ) , the remappings may take 

three forms:

(1) A function remapping approximates lP = 0(lR)  by replacing 6 with an 

approximate mapping function 6 , so lP  = OCR) .

(2) A variable remapping approximates 'P  = 0('R) by replacing lR with 

alternative key vector lR , so 'P  = 0( 'R) .

(3) A dual remapping approximates 'P  = 0(lR) by replacing both 0 and lR , so

lP = 0 ( lR).

2.2.2 Inference Procedure

The purpose of an inference procedure is to characterize the joint probability 

distribution of the key vector lR at time 1 conditional on information available at time 0. 

It generally accepts historical market data as an input and applies techniques of time 

series analysis to characterize the joint distribution conditional on information available 

at time 0. It is not always necessary to fully specify a distribution. Only the information 

sufficient to value our chosen VaR metric is required. Some inference procedure

characterizes the conditional distribution of 1R with just a covariance matrix. An 

inference procedure is complete if it fully specifies a conditional distribution for ' R . 

Otherwise, it is incomplete.

Inference procedures take various forms. One can simply make up a distribution 

suitable for a particular case. In practice, techniques of time series analysis are employed
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-- in conjunction with financial theory—to obtain a reasonable characterization. The most 

common are those of uniformly-weighted moving averages (UWMA) and exponentially- 

weighted moving averages (EWMA). What are needed are time-series methods that can 

address conditional heteroskedasticity in high dimensions. While research is ongoing, 

such methods are not yet perfected. Even though there are many sophisticated techniques 

available to support mapping and transformation procedures, techniques for inference 

procedures are less developed. Researchers are studying ways to extend traditional 

methods of time series analysis to the needs of VaR measures, but techniques currently 

used are largely ad hoc [21]. In finance, a variety of models are used for conditionally 

heteroskedastic processes. These include autoregressive conditional heteroskedastic 

(ARCH) models, generalized ARCH (GARCH) models, regime-switching models, and 

stochastic volatility models. Chapter 3 will discuss inference procedure in detail.

2.2.3 Transformation Procedure

A transformation procedure combines the outputs from the mapping and inference 

procedures and uses them to characterize the distribution of lP, conditional on 

information available at time 0. Based on that characterization, and perhaps the 

portfolio's current value °p, the transformation procedure (or "transformation") represents 

risk with a characterization of the conditional distribution of lP. Using this conditional 

distribution, the value of the desired VaR metric can be determined.

Basically, there are four kinds of transformations:

• linear transformations,

• quadratic transformations,

• historical transformations, and
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• Monte Carlo transformations.

Linear transformations are simple and run in real time. They apply only if a 

portfolio mapping function 0 is a linear polynomial. Quadratic transformations are 

slightly more complicated but also run in real time (or near-real time). They apply only if 

a portfolio mapping function 6 is a quadratic polynomial and 'R is multivariate normal. 

Monte Carlo and historical transformations are widely applicable but tend to run slowly 

(run times of an hour or more are common). Both employ the Monte Carlo method. Both 

generate a large number of realizations xr [k] for k  and value XP  for each. The histogram 

of realizations xp [k] for XP provides a discrete approximation for the conditional 

distribution of lP. From this, any VaR metric can be calculated. Monte Carlo and 

historical transformations differ only in how they generate the realizations1 r m . Monte 

Carlo transformations generate them with pseudorandom number generators. Historical 

transformations draw them from historical market data.

Traditionally, VaR measures have been categorized according to the 

transformation procedures they employ:

(1) Linear VaR measures (other names include: parametric, variance-covariance,

closed form, or delta normal VaR measures).

(2) Quadratic VaR measures (also called delta-gamma VaR measures).

(3) Historical VaR measures.

(4) Monte Carlo VaR measures.
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2.3 Common Value-at-Risk Calculation Models

2.3.1 Linear Value-at-Risk

A portfolio is linear if its portfolio mapping function 6 is a linear polynomial. 

Using matrix notation this means

1P = 0CR)=blR + a (2.11)

where b is a row vector and a is a scalar.

Linear transformations are based upon an important result from probability theory 

related to linear polynomials of random vectors. Let 10/I and 1,0 £ be the mean vector and

covariance matrix of ]R . (The superscripts 1,0 indicate that both parameters are for time 

1, conditional on information available at time 0.) Let °E(lP) and °Std(lP) be the mean

and standard deviation of XP  conditional on information available at time 0. Then 

probability theory tells us that

°E(XP) =bl/0ju + a (2.12)

°StdCP) = S ll0'Zb' (2.13)

where a prime ' indicates transposition. Note that these formulas are general. They 

require that lP be a linear polynomial of lR ,  but they make no assumptions about the

distribution of XR . With these results, it is possible to value a variety of VaR metrics,

including standard deviation of loss

°StdCL)=0Std(0p - 1P)=0Std(lP) , (2.14)
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and standard deviation of return

However, results from Equations (2.14) and (2.15) are not sufficient to value a quantile of 

loss VaR metric on their own. Without additional information about a distribution, a 

mean and standard deviation do not determine the distribution's quantiles. A standard 

solution is to assume lP is normally distributed. Because a normal distribution is fully 

determined by its mean and standard deviation, this assumption, together with Equations 

(2.14) and (2.15), fully specifies the distribution of XP . It should be possible to value any 

VaR metric. For example, if our VaR metric is one-day 95% USD VaR, we can calculate 

VaR as

Equation (2.16) is based on the fact that the 5%-quantile of a normal distribution 

always occurs 1.645 standard deviations below its mean. See Figure 2.2 for illustration.

95 %VaR = \ .645° Std(lP) +(V'V) (2.16)

where l]0ju=°E(xP).

Figure 2.2 One-day 95% VaR [22]
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Because the computations for a linear transformation are so modest,

implementations typically run in real time. Simple linear VaR measures can even be

implemented on a spreadsheet.

2.3.2 Quadratic Value-at-Risk

A portfolio is quadratic if its portfolio mapping function 9 is a quadratic 

polynomial

1P = 9(xR)=xR'cxR + b xR + a . (2.17)

Here, c is a symmetric square matrix, b is a row vector and a is a scalar. If XR is a joint 

normal random vector with mean vector 1,0 ju and covariance matrix 1|0E . Then by a 

change of variable technique, one obtains

'R = h-UR+Ipju, (2.18)

where h = uz~x, z  is the Cholesky matrix of 1,0 S , and u is a matrix whose rows are the

orthonormal eigenvectors of z'cz. A  new expression for XP  is [21]:

xP=xk c lk + b xR + a ,  (2.19)

where c = h'~xch~x, b = (2M°ju'c + b)h~x, and d=110ju'cxl°p. +bv'0/u + a .

This change of variables achieves four conditions:

(1) XR is joint normal;

(2) the mean vector of XR is the 0 vector;

(3) the covariance matrix of XR is the identity matrix I;

(4) c is diagonal matrix.
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The fourth item means that lP can be depend upon each of the variables ’P in one of the 

four ways:

1. No dependence: cu = 0 and bi, = 0;

2. Linear dependence: cLi = 0 and bl *  0;

3. Central quadratic dependence: cii ^  0 and bt = 0; or

4. Non-central quadratic dependence: cu =£ 0 and bl, *  0.

In the last case lP  has a dependence of the form citRf +bi lRi . Completing the squares,

this becomes cf>1-(’/?,. + bi /2 cu )2.

Consequently, 'P  is a linear polynomial of independent random variables, each of 

which is either standard normal, central chi-squared with one degree of freedom, or non

central chi-squared with one degree of freedom and non-centrality parameter (bi / 2clV)2.

Since a linear polynomial of independent normal random variables is itself 

normal, all normal terms can be combined into one. A general expression for XP  is

lP =
^  m  ^

2 y kX t +/3X0 + a  (2.20)
Vi=l /

where the X k are chi-squared with one degree of freedom and non-centrality parameter

8k and X 0 is standard normal.

Quantile-based VaR metrics are more difficult to calculate. Various solutions 

have been proposed [21], four of which are listed below.
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2.3.2.1 Quantile of loss from fast 
Fourier transformation

The inversion theorem of probability theory provides the following expression for 

the probability density function ^ of a random variable in terms of its characteristic 

function 'P ,

and tan'1 denotes the inverse tangent function with output in radians.

2.3.2.2 Quantile of loss with Johnson curves

When faced with a body of statistical data, researchers often try to fit some 

standard probability distribution to the data. For this purpose, various families of

(2 .21)

which is a Fourier transformation that can be approximated with the FFT.

The characteristic function of a random variable of the form (2.20) is

(2 .22)

where

(2.24)

(2.23)

1 m
C = - ^ tan“1 (2ykw) , (2.25)

m

D = w ]"3(l + 4y l w 2 (2.26)
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probability distributions-called families of curves-have been defined. Johnson curves are 

constructed through translation of variables. A more general Johnson family of curves is 

defined with the family of translation functions comprising any of the forms

where Z ~ N(0,1) and (p is a translation function. Since translation functions are 

monotone, they are invertible. From Equation (2.30), one obtains the inverse

Because (p is monotone, (p 1 is also monotone. Monotone functions map quantiles to

quantiles, so you can calculate any quantile of lP from the corresponding quantile of Z. 

For example, the 0.05-quantile of a standard normal random variable is -1.645. 

Accordingly, the 0.005-quantile of XP  is approximately qTx (-1 .645).

2.3.2.3 Comish-Fisher expansion

The Comish-Fisher approach constructs approximation to quantiles from 

estimates of skewness and kurtosis [23].

Z = y + S  log X  ^  , ^ < x < ^ + A
+ A - x

(2 .21 )

(2.28)

(2.29)

where y,S,i; and A are parameters.

For normal distributions, given a quadratic portfolio of form (2.20),

Z = cp(xP) (2.30)

lP = <p-l(Z). (2.31)
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The cumulants of a random variable X  are conceptually similar to its moments. 

They are defined, as those values Kr such that the identity

exp
Vr=i r! J

holds for all t. Cumulants of a random variable X  can be expressed in terms of its mean 

/u = E(X)  and central moments fj.r = E[(X -  ju)r]. Expressions for the first cumulants

are

* 1  =M> (2.33)

k2 = H2, (2.34)

$ II •fc (2.35)

ka = ^ 4 - 3 (2.36)

K5 =Ms " 10MsMi- (2.37)

Supposed has mean 0 and standard deviation 1. Cornish and Fisher [24] provide 

an expansion for approximating the q-quantile, ®^ 0?) > ° f  X  based upon its cumulants. 

Using the first five cumulants, the expansion is

6 24 36
. ^ ( q ) 4 - 6 ^ ( q ) 2 +3 ^  - S O ? ( q ) 2 + 2 ..........120"1(^)4 -SSO*"1̂ 2 +17 .
I-----------------------------------------------------------------------------------------r C c ---------------------------------------------------------------------------------------------------/CifCA 1 n

120 24 3 324
(2.38)

where ®z' (q) is the q-quantile of Z ~  N(0,1). Although (2.38) applies only if A has mean 

0 and standard deviation 1, we can still use it to approximate quantiles if A  has some 

other mean // and standard deviation a . Simply define the normalized X  as
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where cr = is the standard deviation of X. Apply the Comish-Fisher expansion to 

obtain the q-quantile x* of X*. The corresponding q-quantile x ofX is then

X =  X < J  +  J U . (2.40)

2.3.2.4 The inversion theorem

The inversion theory is primarily of theoretical interest. Practically, it can be used 

for the purpose of evaluating the CDF of a linear polynomial of independent random 

variables.

To define characteristic functions, we must extend the notion of random variables 

into the complex plane. Let U\ and Uj be real random variables, and let i = V - l . Then

I f X  is a random vector with independent components X , and 7  is a linear polynomial of 

X , written as

U = UX +iU2 (2.41)

is a complex random variable. Its expectation is defined as

E(U) = E(U1) + iE(U2). (2.42)

The characteristic function of a random variable X  is defined as

x¥(w) = E(eiwX), (2.43)

where w is real and i = V - l . I fX  is continuous,

oo
(2.44)

Y = bX  + a (2.45)
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with b is a real row vector and a is a scalar, then,

^ y(w) = eaiŵ Xi (b,wy¥Xi {b2w ) - ^ Xn 0bnw). (2.46)

Characteristic functions for U{a,b) ,V (//,cr2) , and %2(v ,£2) random variables are, 

respectively,

ibw    iaw

(*) = ■■■ ; - - g— , (2.47)
zw(o -  a)

^(w ) = exp
(  2 2 A

< 7  W  

IfJW —
V Z J

(2.48)

exp[^2zw/(l -  2z'w)] 
(1 -2  iw)v

• (2.49)

Inversion theorem states that the CDF of a random variable is uniquely 

determined by its characteristic function [21]. If two random variables have the same 

characteristic function, they have the same CDF. An inversion theorem provides the CDF 

of a random variable X  in terms of its characteristic function:

-txw, 1 1 r'¥(-w)eaw-'i '(w)e-  JO(x) = -  + —  I— —  --------- —  dw. (2.50)
2 2n  - iw

2.3.3 Historical Value-at-Risk

Historical simulation is the simplest and most transparent method of calculation. 

This involves running the current portfolio across a set of historical price changes to yield 

a distribution of changes in portfolio value, and computing a percentile (the VaR). The 

benefits of this method are it is simple to implement, and the fact that it does not assume 

a normal distribution of asset’s returns. Drawbacks are the requirement for a large market 

database and the computationally intensive calculation.
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2.3.3.1 Single instrument portfolios

Historical simulation can be described in terms of five steps to perform analysis 

on a single instrument portfolio:

1. Identify the basic market factors, and obtain a formula expressing the mark-to- 

market value of the portfolio in terms of the market factors.

2. Obtain historical values of the market factors for the last N  periods.

3. Take into account the current portfolio to the changes in market rates and prices 

experienced on each of the most recent 100 business days; calculate the daily 

profits and losses that would occur if  comparable daily changes in the market 

factors are experienced, and the current portfolio is mark-to-market.

4. Order the mark-to-market profits and losses from the largest profit to the largest 

loss.

5. Select the loss which is equaled or exceeded five percent o f the time. This loss is 

the value at risk at 95% confidence level.

2.3.3.2 Multiple instrument portfolios

An extension of the above methodology to handle realistic, multiple instrument 

portfolios can be accomplished in three steps. First, market factors must be identified, and 

pricing formulas expressing the instruments’ values in terms of the market factors must 

be obtained. Second, the historical values of all the market factors must be collected. 

Third, it is crucial that the mark-to-market profits and losses on every instrument be 

computed and then summed for each period, before they are ordered from lowest loss to 

highest profit.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5 2

2.3.4 Monte Carlo Value-at-Risk

Based on the characterization of the joint distribution of XR , a Monte Carlo 

transformation procedure generates several thousand pseudorandom realizations V*1 

for1/?, and then calculates the corresponding realizations, ' p lk] = 6('r[k] ). The histogram 

of these realizations lp [k] provides a discrete approximation for the distribution of 

Based on the histogram, any reasonable VaR can be determined.

The Monte Carlo simulation methodology has a number of similarities to 

historical simulation. The main difference is that rather than carrying out the simulation 

using the observed changes in the market factors over the last N  periods to generate N  

hypothetical portfolio profits and losses, one chooses a statistical distribution that is 

believed to adequately capture or approximate the possible changes in the market factors. 

Then, a pseudo-random number generator is used to generate thousands or tens of 

thousands of hypothetical changes in the market factors. These are then used to construct 

thousands of hypothetical portfolio profits and losses on the current portfolio, and the 

distribution of possible portfolio profits or losses. Finally, the value at risk is determined 

from the distribution.

2.3.4.1 Single instrument portfolios

Similar to historical simulation, the Monte Carlo simulation can also be described 

in five steps:

1. Identify the basic market factors, and obtain a formula expressing the mark-to- 

market value of the portfolio in terms of the market factors.

2. Determine or assume a specific distribution for changes in the basic market 

factors, and estimate the parameters of that distribution. The ability to pick the
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distribution is the feature that distinguishes the Monte Carlo simulation from the 

other approaches, for in the other methods the distribution of changes in the 

market factors is specified as part of the method. The designers of the risk 

management system are free to choose any distribution that they think reasonably 

describes possible future changes in the market factors.

3. Use a pseudo-random generator to generate TV hypothetical values of changes in 

the market factors based on the selected distribution, where N  is almost certainly 

greater than 1,000 and perhaps greater than 10,000. These hypothetical market 

factors are then used to calculate N  hypothetical mark-to-market portfolio values. 

Then from each of the hypothetical portfolio values we subtract the actual mark- 

to-market portfolio value to obtain ./V hypothetical daily profits and losses.

Steps 4 and 5 are the same as in historical simulation. The mark-to-market profits 

and losses are ordered from the largest loss to the largest profit, and the value at risk is 

defined as the loss which is equaled or exceeded five percent of the time.

2.3.4.2 Multiple instrument portfolios

Just as with historical simulation, extending the methodology to handle realistic, 

multiple instrument portfolios requires only that a bit of additional work be performed in 

three steps. First, market factors must be identified, and pricing formulas expressing the 

instruments’ values in terms of the market factors must be obtained. Second, the joint 

distribution of possible changes in the values of all the market factors must be 

determined. Third, similar to historical simulation, to reflect accurately the correlations of
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market rates and prices it is necessary that the mark-to-market profits and losses on every 

instrument be computed and then summed for each period, before they are ordered from 

lowest loss to highest profit.

The magnitude of the standard error depends upon several factors, such as:

• the VaR metric

• the portfolio, and

• the sample size used in the Monte Carlo analysis.

A solution to this problem employs variance techniques, namely, control variates and

stratified sampling. Both of these techniques employ a quadratic remapping *P for 'P .  

The remapping 'P  does not replace ’P . Instead, it is used to facilitate variance reduction 

so VaR can be more easily calculated for 'P .

With the method of control variates, lP is used as a control variate for 'P . Since 

it is easy to calculate the VaR of ’P  with a quadratic transformation procedure, variance 

reduction is excellent for most portfolios and VaR metrics.

With the method of stratified sampling, 'P  is used to construct stratification. The 

methodology varies depending upon the VaR metric. For a quantile of loss VaR metric, 

realizations V [i] of 'R are stratified into two regions:

• one comprising realization V [t} such that ' p [k] = 9 ( ' r lk]) exceeds the 

VaR o f ' P ,  and

• the other comprises realizations V*] such that lp lk] = 6 ( ' r [k]) is less than 

or equal to the VaR of ‘P .
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2.4 Comparison of Value-at-Risk Methodologies 

Two tables are listed below to compare the above three VaR methodologies. 

Table 2.2 summarizes the three methodologies. Table 2.3 lists the advantages and 

disadvantages for each of them.

Table 2.2 Summary o f three VaR methodologies

Methodology Description Applications

Parametric Estimates VaR with equation that specifies parameters 
such as volatility, correlation, delta, and gamma.

Accurate for traditional assets and 
linear derivatives, but less accurate 
for nonlinear

Monte Carlo 
simulation

Estimates VaR by simulating random scenarios and 
revaluing positions in the portfolio.

Appropriate for all types of 
instruments, linear and nonlinearHistorical

simulation
Estimates VaR by reliving history; takes actual 
historical rates and revalues positions for each change 
in the market.

Table 2.3 Advantages and disadvantages of each methodology

Methodology Advantage Disadvantage

Parametric • Fast and simple calculation
• No need for extensive historical data (only volatility 
and correlation matrix are required)

• Less accurate for nonlinear portfolios, 
or for skewed distributions

Monte Carlo 
simulation

• Accurate* for all instruments
• Provides a full distribution of potential portfolio values 
(not just a specific percentile)
• Permits use of various distributional assumptions 
(normal, /-distribution, normal mixture, etc.), and 
therefore has potential to address the issue of fat tails 
(formally known as “leptokurtosis”)
• No need for extensive historical data

• Computationally intensive and time- 
consuming (involves revaluing the 
portfolio under each scenario)
• Quantifies fat-tailed risk only if market 
scenarios are generated from the 
appropriate distributions

Historical
simulation

• Accurate* for all instruments
• Provides a full distribution of potential portfolio values 
(not just a specific percentile)
• No need to make distributional assumptions (although 
parameter fitting may be performed on the resulting 
distribution)
• Faster than Monte Carlo simulation because less 
scenarios are used to current conditions,

• Requires a significant amount of daily 
rate history (note, however,
that sampling far back may be a problem 
when data is irrelevant to current 
conditions, e.g., currencies that have 
already devalued)
• Difficult to scale far into the future 
(long horizons)
• Coarse at high confidence levels (e.g., 
99% and beyond)
• Somewhat computationally intensive 
and time-consuming
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CHAPTER 3

TIME-SERIES MODELS AND 

INFERENCE PROCEDURE

In Chapter 2, we described three components of a Value-at-Risk measure: an 

inference procedure, a mapping procedure, and a transformation procedure. In this 

chapter, we will focus on the inference procedure. There are five sections of this chapter. 

The first section is an introduction to stochastic processes and time series analysis. The 

second section summarizes the five features of time series data. The third section is an 

overview about a variety of time series models. The fourth section is a description of the 

models used in this research. The last section is a discussion of results.

A model is a relationship between variables. It is a simplification of the reality. It 

is a construct to help us explain and better understand the system under study. In general 

all models have an information input, an information processor, and an output of 

expected results.

Modeling is a process to build a model [25]. “Model building forces the individual 

to think clearly about, and account for, all the important interrelationships involved in a 

problem. The reliance on intuition can be dangerous at times because of  the possibility 

that important relationships will be ignored or improperly used. In addition, it is 

important that individual relationships be tested or validated in some way or another.”

56
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In other words, modeling is more than the process of constructing a model. One needs to 

examine the system, select the important variables, find the relationships between the 

variables, build a model, solve the mathematical problems that are set up for the model, 

verify and validate the model, draw conclusions from the model, and forecast based on 

the model.

Models are of many types. A model could be a theory, a law, a hypothesis, an 

equation, or even a structured idea. A mathematical model is a model that can be 

described by a set of mathematical equations. A statistical model is a model that 

characterizes a system based upon its statistical parameters such as mean, mode, variance 

or regression coefficients. Statistical models are useful in helping identify patterns and 

underlying relationships between data sets. A time series model, a subcategory of 

statistical models, is one that postulates a relationship among a number of temporal 

sequences or time series -  a sequence of observations ordered in time.

Inference means (1) the process of deriving logical conclusions from a hypothesis 

known or assumed to be true, or (2) the act of reasoning from fact-based knowledge or 

evidence. In time series models, we assume that we know nothing about the real world 

cause-and-effect relationships that affect the variable we are trying to forecast. Instead, 

we study and analyze the past behavior of a time series in order to infer something about 

its probable future behavior. In VaR, the traditional methods of time series analysis have 

been applied and extended to inference procedures. The research in this area is still 

ongoing.

Figure 3.1, a reproduction of Figure 2.1, highlights the position of inference 

procedure.
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Figure 3.1 A reproduction of Figure 2.1 [21]
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3.1 Introduction to Stochastic Processes and 
Time-Series Analysis

3.1.1 Random Variables and Probability 
Distributions

3.1.1.1 Random variables

A random variable is itself a function of a statistical experiment in which each 

outcome has a definite probability of occurrence. The value of the random variable will 

vary from trial to trial as the experiment is repeated. For example, the outcome when a 

coin is tossed can be “heads” or “tails”. There are two types of random variable-discrete 

and continuous. A random variable has either an associated probability distribution 

(discrete random variable) or probability density function (continuous random variable).

3.1.1.2 Expected value

The expected value of a random variable X  indicates its average value and is 

symbolized by E{X) or p.

If X  is a discrete random variable with possible values xi, X2, x$, ..., xn, and p(pci) 

denotes P(X = xi), then the expected value of X  is defined by

where the elements are summed over all values of the random variable X.

If X  is a continuous random variable with probability density function f(x), then 

the expected value of X  is defined by

P = E(X) = Y , x ip{xi) (3.1)

(3.2)
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3.1.1.3 Variance and standard deviation

The variance of a random variable is a non-negative number that gives an idea of 

how widely spread the values of the random variable are likely to be; the larger the 

variance, the more scattered the observations on average. Variance is symbolized by V(X) 

or Var(X) or a 2. The variance and the standard deviation of the random variable X  are 

defined respectively as:

V(X) = cr2 = E [ X - E ( X ) f  = E ( X 2) - E ( X ) 2, (3.3)

and

STD(X) = JV (X )

where E(X) is the expected value of the random variable X.

3.1.2 Stochastic Processes

A stochastic process is an ordered collection of random variables, indexed by a set 

T. That is, for each t in the index set T, X(t) is a random variable. Mathematically, it can 

be expressed as X  = {X(t), t e J }. Given any t, the possible values o f X(t) are called the 

states of the process at t. The set of all values X(t) can ever take for all t is the state 

space, denoted by S. The set T  is usually composed of either the non-negative integers or 

the non-negative real values. In financial applications, the parameter t is often interpreted 

as time and T  is the collection of possible times. If T  is an interval of real values, the 

process X =  { X(t), t gT  } is a continuous-time process, if  T  is a sequence of integers, the 

process X  = { X(t), t e T )  is a discrete-time process and is represented by Xt in this case.

In the mathematics of probability, a stochastic process is a random function. Its 

behavior is governed by a random mechanism and its future values can only be predicted
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with a certain amount of probability. Therefore, our main interest is the probability 

distribution of X(t) in the continuous time case and Xt in the discrete time case.

3.1.3 Time Series

A time series is a sequence of observations that are ordered in time. Time series 

analysis uses statistical techniques to investigate and study the patterns of the variation of 

time series data. The goals of time series analysis are to understand the structure of the 

time series (how it depends on time, itself, and other time series variables) and to forecast 

or predict the future values of the time series. Time series analysis is critical for real- 

world risk models and can help risk models better emulate actual situations. It is widely 

used in most business applications, such as economic forecasting, sales forecasting, stock 

market analysis, and process and quality control.

Time series data, x t , for t = 1, 2 , . . . ,« ,  generally consists of both deterministic and

stochastic components. The deterministic component gives rise to trends, seasonal 

patterns, and cycles, while the stochastic component causes statistical fluctuations that 

have a short term correlation structure. The time-series method for forecast involves the 

use of deterministic models such as extrapolation techniques or the use of complex 

stochastic models for adaptive forecasting [25].

3.2 Features of Time-Series Data

There are five key features for economic and business time series data [20]: 

trends, seasonality, aberrant observation, conditional heteroskedasticity, and nonlinearity.

3.2.1 Trends

One of the dominant features of many economic and business time series is the 

trend. Trend is a long term movement in a time series. It is the underlying direction and
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rate of change in a time series. Such a trend can be upward or downward, it can be steep 

or not, and it can be exponential or approximately linear. A trend is usually predictable 

and modeled by regression methods. Here is an example of a simple regression model 

being used to quantify a trend:

y t = a  + St + et t - l , 2 , . . . , n ,  (3.5)

where a  and S  are unknown parameters and where et is an unknown residual error time

series.

The simple regression model in Equation (3.5) assumes that the trend in y t can be

represented by a linear trend t = 1,2,3, An alternative method to obtain insight into the

trend pattern is to consider the growth rate of the variable. If the raw data are denoted by 

wt , we usually model and forecast y, = log(w() . In this case, it follows that

T, ~ y ,- 1  =log(w,/w,_i)

= log[l + (w, — vv(_, )/vv/_1 ]

« (w, -  wt_x) / w,_, when (wt -  wt_x) / is small.

Hence, the first difference of y t corresponds approximately to the growth rate of wt . If a

forecast is needed for wt , it is usual to re-transform using wn+h = exp(yn+h) ,  preferably

with some correction. One of the reasons for the log-transformation is that an exponential 

trend becomes linear. However, there are recent empirical and theoretical studies 

question the validity of this automatism [26].

A trend pattern in economic data will be reflected by a significant average growth 

rate. Alternative to Equation (3.5), we can therefore consider the regression

y t - y,-i = p  + et t = 2,3,. . . ,«. (3.6)
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Notice that we have effectively removed the trend in the regression Equation (3.6) by 

differencing the data. A result of this operation is that there are now n-1 observations that 

can be used to estimate /u . When it is possible to get rid of the trend by differencing the 

data, we say that y t has a stochastic trend. If regression Equation (3.5) is more adequate, 

we say that y t has a deterministic trend.

There are several different approaches to describe a trend, and each of these has a 

different impact on forecasting. It may not be easy to make a proper choice between the 

different versions of trend descriptions.

3.2.2 Seasonality

Many time series display seasonality. By seasonality, we mean periodic 

fluctuations. For example, retail sales tend to peak for the Christmas season and then 

decline after the holidays. So time series of retail sales will typically show increasing 

sales from September through December and declining sales in January and February. 

Seasonality is quite common in economic time series. It is less common in engineering 

and scientific data. Seasonality can be detected by graphical techniques, such as the run 

sequence plot, seasonal subseries plot, multiple box plots, and the autocorrelation plot. It 

is short term and predictable and refers to those relatively small and predictable ups and 

downs that are found at regular intervals in many time series.

The following regression model [26], which is a modification of Equation (3.6), 

is used to model seasonality:

y t — y t_\ = //jD ,( <+••• + Ms^s,t et t — (3-7)
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where Dst is a seasonal dummy variable with

DJ ( =1 when t = ( T - t ) S  - s , with s = 1,2, S  (3.8)

and T = l,2, . . . ,N

Ds t = 0 otherwise.

3.2.3 Aberrant Observations

Aberrant observations are also called outliers. They are observations that are 

strikingly different from the other observations on the same variable. For time series data, 

aberrant observations can be defined as unusual and surprising values with respect to the 

rest of the time series analyzed.

3.2.4 Conditional Heteroskedasticitv

3.2.4.1 Homoskedasticitv vs. heteroskedasticitv

A univariate stochastic process X  is said to be homoskedastic if standard 

deviations of terms Xt are constant for all time t. Otherwise, it is said to be 

heteroskedastic. Heteroskedasticity can take two forms. A process is unconditionally 

heteroskedastic if unconditional standard deviation a t is not constant. It is conditionally

heteroskedastic if conditional standard deviations cr(|(_, are not constant.

Homoskedasticity means constant variance and heteroscedasticity means changing 

variance.

3.2.4.2 Models for conditional heteroskedasticitv

There are several kinds of models being used for a conditional heteroskedastic 

process.
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• Autoregressive Conditional Heteroskedasticity (ARCH) model is a model 

of dynamic heteroskedasticity where the variance of the error term, given 

past information, depends linearly on the past squared errors.

• Generalized ARCH models.

• Regime-switching models.

• Stochastic volatility models.

3.2.5 Non-Linearity

Mathematically, a pure stochastic time series model for xt is a function of an 

independent and identically distributed (iid) sequence consisting of the current and past 

shocks:

xt = f ( a „ a t_ i,...). (3.9)

Here, {a,} is a sequence of iid random variables with a well-defined distribution function. 

If /(•) is a linear function of its arguments, Equation (3.9) is a linear model. Otherwise, 

Equation (3.9) is a non-linear model. Here, non-linearity means the function is non-linear.

3.3 Time-Series Models

3.3.1 Stationarity

A common assumption in many time series techniques is that the data are 

stationary. A time series is said to be strictly stationary if  the statistical properties remain 

constant over time. A time series is said to be weakly stationary if the mean and 

covariance functions remain constant over time.

Any stochastic time series xx,x2, . . . ,xT can be regarded as having been generated 

by a set of jointly distributed random variables {Xt,t = 1,2 [14] [21]; that is to say,
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the set of data points x l ,x2, . . . ,xT represents a particular realization of the joint 

probability distribution function p(xl,x 2, . . . ,xT) . A future observation xr+l can be 

thought of as being generated by a conditional distribution function p(xT+l \xx,x2,. . . ,xT) , 

a probability distribution for xT+l given the past observationsx i,x2, . . . ,xT. A strictly 

stationary process is defined as one whose joint distribution and conditional distribution 

are constant with respect to the displacement in time.

If the series {x(} is weakly stationary, the mean of the series, jux = E(xt), must be 

stationary, so that E(xt) = E(xt+m) , for any t and m. Furthermore, the variance of the 

series, a 2 = E[(xt - jux)2\, must be stationary, so that E[{xt -  p x)2] = E[(xl+m - y q ) 2], 

and finally, for any lag k, the covariance of the series,

yk = Cov(xt,x t+k) = E[(xt - p x)(x,+k - p x)\

must be stationary, so that Cov(xt , x l+k) = Cov(xt+m, x t+k+m).

Stationarity is used as a tool in time series analysis, where the raw data are often 

transformed to become stationary. Processes are described as trend stationary if they are a 

linear combination of a stationary process and one or more processes exhibiting a trend. 

Transforming this data to leave a stationary data set for analysis is referred to as de

trending.

For practical purposes, stationarity can usually be determined from a run sequence 

plot. If the time series is not stationary, it can be transformed to stationarity with one of 

the following techniques [27]:

• Difference the data. That is, given the series Xt, we create the new series 

Yt = X t -  X t_x . The differenced data will contain one less point than the
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original data. Although you can difference the data more than once, one 

difference is usually sufficient.

• If the data contain a trend, we can fit some type of curve to the data and 

then model the residuals from that fit. Since the purpose of the fit is to 

simply remove long term trend, a simple fit, such as a straight line, is 

typically used.

• For non-constant variance, taking the logarithm or square root of the series 

may stabilize the variance. For negative data, you can add a suitable 

constant to make the entire data positive before applying the 

transformation. This constant can then be subtracted from the model to 

obtain predicted (i.e., the fitted) values and forecasts for future points.

The above techniques are intended to generate series with constant location and scale. 

Although seasonality also violates stationarity, this is usually explicitly incorporated into 

the time series model.

3.3.2 Correlation and Autocorrelation

In probability theory and statistics, correlation, also called correlation coefficient, 

indicates the strength and direction of a linear relationship between two random 

variables. In general statistical usage, correlation or co-relation refers to the departure of 

two variables from independence.

3.3.2.1 Correlation

The correlation p x Y between two random variables X  and Y with expected values 

jux and p Y and standard deviations a x and a Y is defined as:
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Cov(X,Y) E [ ( X - p x ) ( Y - p r )\
P x , y  ~  • (3.10)

CT̂CTj, <7X(7Y

Since jux = E ( X ) , cr2x -  E ( X 2) -  E 2 (X ) and likewise for F, we may also write

E(XY)~E{X)E{Y)

^  4 £ { X 2) -  E 2 ( X ) ^ E ( Y 2) - E 2(Y) '

The correlation is defined only if both standard deviations are finite and both of them are 

nonzero.

3.3.2.2 Autocorrelation

The autocorrelation p k is the correlation between the neighboring data points in

the same series (x,}. The autocorrelation with lag k  is defined as

E[(x, - p x)(xl+k - p x)\ Cov{xt ,x t+k)
Pk = /     =  = ----------------- • (3-12)

^E[(xt - ju x) ] • E[(xt+k - ju x) ] a r, ■

For a stationary process the variance at time t is the same as the variance at time t + k. 

This means, trXi = c r ^  =crx, and yk = Cov(x,,x l+k) = E[{xt - p x)(xt+k - p x)}, andp k 

can be expressed as

Pk = —  (3-13)
n

where y0 = <j 2x . For any stochastic process, p 0 equals to 1.

3.3.3 Linear Time-Series Models

3.3.3.1 Autoregressive (AR) models

In an autoregressive process of order p  the current observation x t is generated by

a weighted average of past observations going back p  periods, together with a random 

disturbance in the current period. This process is denoted as AR(/?) and is written as
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X t =  f a t - 1 +  f a t - 2  +  ■ • • +  f a t - p  + S  +  £ t , (3-14)

where S  is a constant term which relates to the mean of the stochastic process and s t is

an independently distributed random variable with zero mean.

3.3.3.2 Moving-average IMA) models

In the moving average process of order q each observation xt is generated by a

weighted average of random disturbances going back q periods. This process is denoted 

as MA(g) and is written as

where the parameters 0l ,02,. . .,0q may be positive or negative.

In the moving average model and the autoregressive model, the random

disturbances are assumed to be independently distributed across time, i.e., generated by a

white noise process. In this case, E(et) = 0, E f a )  = a ] , and E(ets t_k) = 0 for k  * 0.

3.3.3.3 Autoregressive-moving average 
(ARMAI models

In the autoregressive-moving average process of order (p, q) each observation x t

is generated by a weighted average of past observations going back p  periods, together 

with a weighted average of random disturbances going back q periods. This process is 

denoted as ARMA (p, q) and is written as

X t —p  +  £ t 0\St-\ ^ t -2  Oq̂ t-q ’ (3.15)

If the process is stationary, its mean is constant over time and is given by

M = fa + fa + --- + $PV + S
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or ju = -----------   . (3.17)
l~0i  02 $P

This gives a necessary condition for the stationarity of the process:

0, + 02 h—  + <j)p <1. (3.18)

The process ARMA (1, 1) is the simplest autoregressive-moving average process: 

xt = </)xx t_x + 8 + et -  9xs t_x. (3-19)

The variance of this process is given by

(3.20)
1-^1

The covariances yx,y2, . . . ,yk,... can be determined recursively as follows:

Yx = E[xt_ 1 (0,x,_, + £ , -  6x£t_x)] = </>xyQ -  exa]

( i - < l > A M - 0 x) 2 
l-0i

Y2 = E\xt_2(0iX(_i + £t — 0xs t_x)] = (j>xyx , (3.22)

and

Yk = fixYk-x for k >2 .

The autocorrelation function is given by

(3.23)
r 0 x + e l - ^ e ,

and

A t=0 iA -i  for k  > 2 .  (3.24)

Thus, the autocorrelation function begins at its starting value p x and then decays 

geometrically from this starting value.
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3.3.3.4 Integrated ARMA (ARIMA) models

AR, MA and ARMA models are built on stationary (constant mean and variance) 

data. Most business and economic time series are not stationary because they contain 

trends or random shifts in level. Thus they must be transformed to stationarity before 

they can be fitted to ARMA models. A nonstationary series implies that the distant past 

has as much or more weight than the recent past. Box and Jenkins suggest differencing to 

obtain stationarity. When a series is differenced, each value is replaced by its incremental 

change from the last value. The degree of differencing is the number of times the data 

transformation is executed. We continue to difference until the data are stationary. If the 

original series is growing at an increasing rate (exponential trend), the first difference (1) 

will still show a trend. A second difference (2) will be stationary.

After differencing the series x t to produce the stationary series wt , we can model

wt as a ARMA process. If wt = Adxt , where A denotes differencing and d  is the order of

differencing, and wt is an ARMA (p, q) process, then x, is an integrated autoregressive-

moving average process of order (p, d, q). This process is denoted as ARIMA (p, d. q) 

and is written as

(f>(B)Adx t = S  + 6(B)st (3.25)

with (j){B) = 1 - f a B -  </>2B 2 ------- <j>pB p (3.26)

and 0(B) = 1 -  BXB -  62B 2 ------- 6qB q . (3.27)

Here B  is the backward shift operator which imposes a one-period time lag each time it is 

applied to a variable. Thus, Bxt = x t_l , B 2x t = xt_2,.. . ,  and B nx t = x t_n. </>(B) is called
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the autoregressive operator and 0(B) is called the moving average operator. The mean of 
wt is given by

u = -----------   . (3.38)

If S  is not equal to 0, the integrated series xr will have a built-in deterministic trend.

3.3.3.5 Seasonal models

For a seasonal time series x, with periodicity s, seasonal differencing

means Asx, = x t - x t_s = (1 - B s)xt . The seasonal time series model is defined 

mathematically as [23]

( l- .B 'X l- f l)* , =(1-6>)(1-© j5s) ^ ,  (3.39)

where s is the periodicity of the series, | 0 |< 1, and | © |< 1.

3.3.4 Non-Linear Time-Series Models

3.3.4.1 Conditional heteroskedastic models

Consider the information set Ft_x, which contains all the information on the

variable xt until t -  1. The conditional mean and variance of x ,, given Ff_,, are

Ht = E(xt | Ft_x)

a]  = Var(xt | Ft_x) = E[(xt -  fJ-,)2 \
(3.40)

Assume that xt follows a stationary ARMA(p, q) model,

P  9

X, = jut + a, , n t = (/>o + Y J(!>ix ,-i ■ (3-41)
/=1 i=\

Combining Equations (3.40) and (3.41), we get

a]  = Var(xt \ FM) = Var(at \ F(_,). (3-42)
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There are two categories of conditional heteroscedastic models according to how erf is 

defined. The models in the first category use an exact function to govern the evolution of 

erf, e.g, the GARCH model. The models in the second category use a stochastic equation

to describe erf , e.g., the stochastic volatility model.

(1) ARCH Models. ARCH stands for Autoregressive Conditional Hetero

skedasticity. It is a technique in finance to model asset price volatility over time. It is 

observed in much time series data on asset prices that there are periods when the variance 

is high and periods where the variance is low. The ARCH economic model for this 

(introduced by Engle (1982) [28]) is that the variance of the series itself is an AR 

(autoregressive) time series, often a linear one. ARCH (autoregressive conditional 

heteroskedasticity) models recognize the presence of successive periods of relative 

volatility and stability. The error variance, conditional on past information, evolves over 

time as a function of past errors.

In the linear ARCH (m) model originally introduced by Engle (1982) [28], the 

time varying conditional variance is postulated to be a linear function of the past m 

squared innovations.

a, = a ts t , erf = a 0 + a xa]_x + a 2a 2_2 + • • • + a ma)_m , (3.43)

where {s t } is a sequence of iid random variables with mean zero and variance 1, a 0 > 0, 

and ai > 0  for i > 0 . In practice, et is often assumed to have the standard normal or a

standardized Student /-distribution.

According to Equation (3.43), the ARCH(l) model can be written as

a, = <7ts t , erf = a 0 + a xa^x, (3.44)
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where a 0 > 0 and a x > 0. Usually, the ARCH(l) model is carefully studied to

understand the properties of ARCH models.

(2) GARCH Models. Bollerslev (1986) [29] proposed a GARCH(/m, 5 ) 

(generalized ARCH) model as

m s

a, = 0 fix > = «o + Z  a iah  + Z ’ (3-45)
<'=1 M

where again {s t } is a sequence of iid random variables with mean zero and variance 1, 

a 0 > 0, and a x > 0 , pj  > 0, and ^™x(m s)(a . + p.) < 1.

Rearranging the GARCH(w, s) model by defining rjt = af -  erf so that 

o f = a 2t -  T]t , it follows that

m a x (j« ,s )  s

a 2, = « 0 + Z («/ + P i " Z P f l t - j» (3-46)
»=i 7=1

which defines an ARMA (Max(m, s), s) model for a 2.

Only low-order GARCH models are used in most applications, such as 

GARCH(1,1), GARCH(2,1) and GARCH(1,2). According to Equation (3.45), the 

GARCH(1,1) model can be written as

a, = <7t£t , o f  = a 0 + a xa)_x + p xa)_x. (3.47)

where 0 <ccx,/3x <1, and (ax + fix) < 1.

3.3.4.2 Regime-switching models

A stochastic process is regime-switching if  its behavior is determined by different 

models, different regimes, during different periods.
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(1) Threshold Autoregressive (TAR) Models. Consider a simple AR(p) model for 

a time series x t :

x,= ju  + faxt_x + <f)2x t_2 + • • • + (j)px,_p + as, (3.48)

where <j>i ( i = 1 , 2 are the AR coefficients, s t ~ WN{0,1) and cr > 0 is the standard

deviation of the random error et . The model parameters//, <j)i {i = 1,2, •••,/>) and a  are

independent o f the time t and remain constant. To capture non-linear dynamics, 

parameters are assumed to change according to the value of a weakly exogenous 

threshold variable z t :

x, = X t<£>U) + cr(J)et if rhx < z t < rj (3.49)

where X, =(l,x l_i ,x t_2,---,xt_p) ,  j  = 1,2,•••,£, and - o o  = r0 < rx < ••• < r*_, < rk = o o . In 

essence, the k - I  non-trivial thresholds {rx, r2, • • •, rt_,) divide the domain of the threshold 

variable zt into k  different regimes. In each different regime, the time series xt follows a 

different AR(p) model.

When the threshold variable z t = x t_d , with the delay parameter d being a positive

integer, the dynamics or regime of x t is determined by its own lagged value x t_d and the

TAR model is called a self-exciting TAR (SETAR) model.

The TAR model is simple and easy to understand, but rich enough to generate 

complex non-linear dynamics.

(2) Smooth Transition Autoregressive Models. In the TAR models, a regime 

switch is discontinuous. If the regime switch happens gradually in a smooth fashion and 

the discontinuity of the thresholds is replaced by a smooth transition function, TAR
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models can be generalized to smooth autoregressive (STAR) models. A systematic 

modeling approach of STAR models is proposed by Terasvirta [30] and a recent 

development of STAR is reviewed in [31].

(3) Markov Switching Models. For TAR, SETAR and STAR models, regimes 

determined by observable variables. In a Markov switching model, regimes are 

determined by an unobserved state or regime variable which follows a discrete Markov 

process, also called a Markov chain.

In a paper published in 1989 [32], James Hamilton developed an extremely useful 

tool for statistically modeling regime shifts in autoregressive time series models. In order 

to unstandard this model, it is useful to begin with a simple linear time-series framework 

for the growth rate of some measure of economic activity, xt .

(x, ~ p )  = p{xt_x -M ) + e, (3.50)

with et ~ N (0 ,a 2).

In this model, the growth rate of economic activity has a mean denoted by ju . Deviations 

from this mean growth rate are created by the stochastic disturbance s t . These deviations 

are serially correlated, modeled as an AR(1) time series process with parameter p .

Hamilton’s innovation was to allow the parameters of the model in Equation 

(3.50) to switch between two regimes, where the switching is governed by a state 

variable, St = {0.1}. When St = 0, the parameters of the model are different from those

when St = 1. The probability driving St is captured by the following four transition 

probabilities:
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P(St = 11 S(_, =l) = p  
P(Sl = 0 \S t_l =l) = l - p  
P (S ,= 0 \S ,_ l =0) = q 
P(Sl = l \ S l_i =0) = \ - q

(3.51)

Hamilton specified the following augmented version of Equation (3.50):

(yt -Psl) = p(y,-i -MSlJ  + £t 
e,~N(0,<r2)

Ms, ~ Mo M\$t 
M,< 0

(3.52)

where St depends on the transition probabilities in Equation (3.53). Here, when St 

switches from 0 to 1, the growth rate of the economic activity switches from ju() to 

//„ + //,. Since ju{ < 0, the model will estimate these switches at times when economic

activity switches from high growth to low growth states.

3.3.4.3 Stochastic volatility models

A stochastic volatility model models both the underlier’s value and its volatility as 

stochastic processes. The aim of a stochastic volatility model is to incorporate the 

empirical observation that volatility appears to vary, at least in part, randomly. The idea 

is to make the volatility itself a stochastic process. To ensure positiveness of the 

conditional variance, SV models use ln(<r(2) instead of o f  . An S V model is defined as

(1 - a xB ------- a mB m) ln(cr,2 ) = a 0 + vt

where s t ’s are iid N(0, 1), vt ’s are iid N (0 ,a ] ) , {et} and {vt} are independent, and a 0 

is a constant.

[33]

(3.53)
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An alternative lognormal SV model is given by

X t = <jtet , (3.54)

In a] = fd + ^(ln o]_x -  h ) + a v t , (3.55)

where X t is a continuously compounded return and et,v t are two uncorrelated iid

N(0 , 1 ) sequences.

3.3.5 State-Space Models

The state-space model represents a multivariate time series through auxiliary 

variables, some of which may not be directly observable. These auxiliary variables are 

called the state vector. The state vector summarizes all the information from the present 

and past values of the time series relevant to the prediction of future values of the series. 

The observed time series are expressed as linear combinations of the state variables plus 

error terms [34], The state variables are generally unknown. The dynamics of the state

variables, and their relationships are to be inferred from the observed time series. The

state space model is also called a Markovian representation, or a canonical representation, 

of a multivariate time series process.

The state-space form encompasses a very rich class of models. Any Gaussian 

multivariate stationary time series can be written in a state-space form, provided that the 

dimension of the predictor space is finite. In particular, any autoregressive moving 

average (ARMA) process has a state-space representation and, conversely, any 

state-space process can be expressed in an ARMA form.

State-space models are a flexible family of models which can be used for the 

modeling of many scenarios. The strongest feature of state-space models is the existence 

of a very general algorithm, kalman filter, for filtering, smoothing and predicting [35].
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The Kalman filter is a technique that can be used to recursively estimate unobservable 

quantities called state variables from an observed time series. It is used in different areas, 

such as control theory and control systems, computer graphics, and economics, because it 

is efficient and easy to implement.

The state-space model is a two-layer model [36]. The external layer expresses the

observed time series X t as a function of the state variables St plus noise. The internal

layer determines the state SM at time t + 1 in terms of the previous state St and a noise

term. Depending on the mapping function between the observed time series and the state 

variables and the mapping function between the state variables, the state-space models 

are divided into linear and non-linear categories.

3.3.5.1 Linear state-space models

The basic model can be described by a pair of equations:

SM =FtSt +V„ t = 1 ,2 ,- , (3.56)

X t =GtS,+Wt , t = 1 ,2 ,- , (3.57)

where X t e 91",t = 1,2,. . . , r  are the observations and St e 91m,t = are the

hidden internal states of the dynamic system. These internal states are in the so called

state-space, hence the name state-space model. The vector Vt is the process noise which

is assumed to be drawn from a zero mean multivariate normal distribution with 

covariance Qt , written as Vt ~ N(0, Qk). Similarly, Wt is the observed noise which is 

assumed to be a Gaussian white noise with covariance Rt , written as Wt ~ N{0, Rt) . The 

mappings Ft and Gt are the linear observation and prediction mappings. Equation
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(3.56) is called the state equation which determines the state SM at time t + 1 in terms of

the previous state St and a noise term. Equation (3.57) is called the observation equation

which expresses the n-dimensional observation X t as a linear function of an m-

dimensional state variable St plus noise.

Linear state-space models (SSMs) are used widely because they are very efficient 

and provide a good enough short-term approximation for many cases even if the true 

dynamics are nonlinear. The most famous variant of linear SSMs is the Kalman filter. It 

gives a learning algorithm for the model defined by Equations (3.56) and (3.57) assuming 

all the parameters are Gaussian and that certain independence assumptions are met.

There are three fundamental problems associated with the state-space model, 

defined by Equations (3.56) and (3.57). These are all concerned with finding best

(minimum mean square error) linear estimates of the state-vector St in terms of the 

observations { X t } and a random vector X 0 that is orthogonal to Vt and Wt for all t > 1. 

In many cases X Q will be the constant vector (1,1,... ,1)'. Estimation of St in terms of 

{Xt,t = 0 ,l,2 ,...,t-1} is defined as the prediction problem. Estimating of St in terms of 

{Xt, t = 0,1,2,..., r — 1, r} is defined as the filtering problem. Estimating of St in terms of 

{Xl, t = 0 ,1 ,2 ,..., f -1 , f, * +1,...,«} is defined as the smoothing problem. See reference

[37] for detailed formulations and proofs.

3.3.5.2 Non-linear state-space models

The nonlinear state-space model is in principle a very simple extension of the 

linear model. All that needs to be done is to replace the linear mappings Ft and Gt of
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Equations (3.56) and (3.57) with general non-linear mappings to get

SM = f ( S t) + Vt , t = 1 ,2 ,- ,  (3.58)

X ,= g ( S , )  + Wt, t = 1 , 2 , - ( 3 . 5 9 )  

where/  and g  are sufficiently smooth nonlinear mappings. One of the greatest difficulties 

with the nonlinear model is that while a linear mapping G : 91m —» 91" can be uniquely

determined by m ■ n real numbers (the elements of the corresponding matrix), there is no

way to do the same for nonlinear mappings. Representing an arbitrary nonlinear mapping 

with even moderate accuracy requires many more parameters.

3.4 Methods in this Research 

In this research, ARHVLA. and state-space models will be used to forecast the three 

risk factors for a portfolio of three stocks with three risk factors.

3.4.1 Selected Risk Factors

3.4.1.1 Candidate factors

The type and number of factors is extremely important to build a reasonable 

model. Three risk factors are selected based on a five-factor variation of the Fama and 

French model [38]. The five candidate factors are

(1) The weekly yield on 13-week T-Bills as of the beginning of the week. This is a 

proxy for the risk-free rate (RFR), which is used to capture changes in interest rates over 

the 5-year period, and the effects thereof on security values.

(2) The difference between the weekly yield on 30-year T-Bonds, as of the beginning of 

the week, and the risk-free rate from risk-factor (1). This provides a proxy for the 

Maturity Risk Premium (MRP) in security values.
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(3) The difference between the weekly value on the S&P 500 and beginning-of-the- 

week’s yield on 30-year T-Bonds (from risk-factor (2), above). This provides a proxy for 

the Market-Risk Premium (MktRP).

(4) The difference between the weekly values for the S&P 600 Small-Cap Index and the 

S&P 500 Index (which is comprised of large-cap stocks). This provides a proxy for the 

“Small-Firm” or Size Premium (SizeP).

(5) The difference between the weekly values for the Dow-Jones Industrial Average 

(DJIA) and the Nasdaq Composite Index. This is chosen as a proxy for the “Value- 

versus-Growth Premium” (VvsGP) in security values, under the assumption that DJIA 

stocks are more likely to be value stocks than growth stocks, while NASDAQ stocks are 

more likely to be growth than value stocks.

To construct the five candidate risk factor, we need historical data for the 

following six indices: (1) 13-week Treasury Bill Index (AIRX), (2) 30-year T-Bond yield 

Index (ATYX), (3) S&P 500 Index (AGSPC), (4) S&P Small Cap Index (ASML), (5) 

Down Jones Index (ADJI), and (6 ) NASDAQ Composite Index (AIXIC).

In this research, 10-year weekly data of the six indices were downloaded from 

Yahoo! Finance, starting from Jan. 2, 1996 and ending at Jan. 17, 2006.

3.4.1.2 Selected factors

After collecting the historical data and constructing the five candidate risk factors, 

the correlation matrix of the five risk factors is computed and the result is in Table 3.1.
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Table 3.1 Correlation matrix for the five candidate risk factors

R r f r R m r p R M k tR P R s i z e P  RvvsGP
R r f r 1

R m r p -0.91586 1

R M k tR P 0.137099 -0.35094 1

R s iz e P -0.30068 0.456678 -0.96329 1

R  VvsGP -  0.49502 0.2572 0.681609 -0.51768 1

According to Table 3.1, it is obvious that and Rmrp are highly correlated, and

RMklRP and RSizeP are highly correlated. In the effort to choose risk factors that are near

independent so as to avoid multicollinearity, two risk factors, Rrfr and RSizeP, are

deleted. The correlation matrix for the remaining three factors is calculated and shown in 

Table 3.2.

Table 3.2 Correlation matrix for the three risk factors

R mrp ^-Mktsp RvvsGP

R m r p  1

R-MktRP — 0.35094 1

R  VvsGP 0.2572 0.681609 1

3.4.2 Models and SAS PROCs

3.4.2.1 ARIMA in SAS

PROC ARIMA performs analysis in three distinct phases and produces separate 

output for each phase [39], Table 3.3 illustrates the three phases.
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Table 3.3 Illustration of the three phases in PROC ARIMA

Identification
Phase

Produces plots for identifying the process that underlies a time 
series

Estimation Phase Produces model parameter estimates and associated significance 
tests, goodness-of-fit statistics, and other estimation diagnostics.

Forecasting Phase Produces forecasts, standard errors, and confidence limits for the 
specific number of time periods.

3.4.2.2 STATESPACE in SAS

PROC STATESPACE analyzes and forecasts multivariate time series using the 

state space model. The STATESPACE procedure is appropriate for jointly forecasting 

several related time series that have dynamic interactions. By taking into account the 

autocorrelations among the whole set of variables, the STATESPACE procedure may 

give better forecasts than methods that model each series separately. The STATESPACE 

procedure automatically selects the best state-space model appropriate for the time series. 

Alternatively, you can specify the state-space model by giving the form of the state 

vector and the state transition and innovation matrices. The methods used by the 

STATESPACE procedure assume that the time series are jointly stationary. 

Nonstationary series must be made stationary by some preliminary transformation, 

usually by differencing.

PROC STATESPACE is based on Akaike’s method of estimating state-space 

models, which uses canonical correlations. The model is defined by the following state 

transition equation:

zM = Fzt+Get+x. (3.60)
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In addition to the state transition equation, state-space models usually include a 

measurement equation or observation equation that gives the observed values x t as a

function of the state vector z t .

x t =[lr 0 ]?,. (3.61)

Table 3.4 lists all the variables in the Equations (3.60) and (3.61) and gives explanation 

for each of them.

Table 3.4 Information on the variables in Equations (3.60) and (3.61)

an observation vector of dimension r, after differencing and subtracting the sample 

mean.

A state vector of dimension s (s > r), whose first r elements are xt and whose last s-r 

elements are conditional prediction of future x t+k{t.

F An s x s  transition matrix which determines the dynamic properties of the model.

G An s x r  transition matrix, with the identity matrix Informing the first r rows and 

columns. It is called the input matrix and determines the variance structure of the 

transition equation.

A sequence of independent normally distributed random vectors of dimension r with 

mean 0 and covariance matrix Eee. It is called the innovation vector or shock vector.

I, An r xr identity matrix.
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3.5 Results and Discussions

3.5.1 MAfl) Model for Risk Factor MRP

The PROC ARIMA is used to identify, estimate and forecast risk factor Rmrp .

First, take the first differences of the time series of Rmrp .

The output in Figure 3.2 lists the periods o f differencing. The sample ACF drops 

to 0 at lag 1, which indicates a random process. Also, the Autocorrelation Check for 

White Noise has non-significant Q-statistics. This anomaly indicates that the differenced 

series is white noise. In addition, The Autocorrelation Check for Residuals shows that 

one of the Q-statistics is significant. Thus the residuals are not white noise. It is 

concluded that first differencing is not adequate to make the time series stationary.

Second, take second differences of the time series of Rmrp .

The output in Figure 3.3 lists the periods o f differencing. The sample ACF drops 

to 0 after lag 1, which indicates an MA (1) process. The Autocorrelation Check for White 

Noise has significant Q-statistics. This indicates that the differenced series is not white 

noise. In addition, the Autocorrelation Check for Residuals shows that none of the 

Q-statistics are significant. Thus the residuals are white noise. It is concluded that an 

MA(1) model provides an adequate fit for the second differenced Rmrp time series. The 

model information is shown at the bottom of the Figure 3.3. The estimated MA(1) model 

for Rmrp is written as

(1 - B)2Rmrp, = -0.00026 + £t -  0.9525le t_x. (3.62)

Figure 3.4 displays the forecasts for the Rmrp time series. It begins at 0.8448 for the first 

future week , then they decrease each week and reach a value of 0.4414 in the tenth
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future week. Table 3.5 lists the historical values forRmrp and the corresponding 

forecasting values.

Name o f  V a r i a b l e  = MRP

P e r i o d ( s )  o f  D i f f e r e n c i n g  1
Mean o f  Morking S e r i e s  - 0 .0 0 1 3 8
S t a n d a r d  D e v i a t i o n  0 .137179
Number o f  O b s e r v a t i o n s  523
O b s e r v a t i o n C s ) e l i m i n a t e d  by d i f f e r e n c i n g  1

A u t o c o r r e 1a t  i ons

Lag Cowar i an ce C o r r e 1a t  i on -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 S t d  E r r o r

0 0 .018818 1.00000 0
1 -0 .0 0 0 8 9 8 4 - .0 4 7 7 4 . * 0 .043727
2 0 .0011569 0 .06148 * . 0 .043826
3 0 .0014566 0.07741 ** 0.043991
4 0.00061854 0 .03287 * . 0.044251
5 0.00007711 0 .00410 0 .0 4 4 2 9 7
6 0.00008359 0 .00444 0 .0 4 4 2 9 8
7 0.00008270 0 .00439 0 .0 4 4 2 9 9
S 0.00065680 0 .03490 * . 0 .044300
9 -0 .0 0 1 2 7 6 8 - .0 6 7 8 5 . * 0 .0 4 4 3 5 2

10 0.00015716 0 .00835 0 .044550
11 0.0012540 0 .06664 * . 0 .044553
12 0.0010726 0 .05700 * . 0 .044744
13 0.0010197 0 .05419 * . 0 .044882
14 -0 .0 0 0 1 9 1 6 - .0 1 0 1 8 0 .045007
15 0.0012520 0 .06653 * . 0.045011
15 0.00050837 0 .02702 * . 0 .045199
17 0 .0014166 0 .07528 ** 0 .045230
18 0.00054030 0.02871 * . 0 .045469
19 -0 .0 0 0 2 0 8 0 - .0 1 1 0 5 0 .045504
20 0.00096661 0 .05137 * . 0 .045509
21 0.00001917 0 .00102 0 .045619
22 -0 .0 0 0 0 3 2 4 - .0 0 1 7 2 0 .045619
23 0.0017022 0 .09046 ** 0 .045620
24 0.00083250 0 .04424 * . 0.045961

A u t o c o r r e 1a t  i on Check f o r Uh i t e  No i s e

To C h i - P r  >
Lag S q u a re DF Ch iSq i a  t# i ui ....

6 6 .9 5 6 0 .3259 - 0 .0 4 8 0.061 0 .0 7 7 0 .0 3 3 0 .0 0 4 0 .0 0 4
12 14.23 12 0 .2864 0 .0 0 4 0 .0 3 5 - 0 .0 6 8 0 .0 0 8 0 .0 6 7 0 .0 5 7
18 2 2 .1 8 18 0 .2242 0 .0 5 4 - 0 .0 1 0 0 .0 6 7 0 .0 2 7 0 .0 7 5 0 .0 2 9
24 29 .2 6 24 0 .2107 -0 .0 1 1 0.051 0.001 - 0 .0 0 2 0 .0 9 0 0 .0 4 4
30 3 2 .1 2 30 0.3621 0 .0 1 4 0 .0 4 4 - 0 .0 3 9 0 .0 1 5 - 0 .0 0 4 0 .0 3 4
36 4 7 .8 6 36 0 .0894 0 .0 2 3 - 0 .0 2 7 0 .0 9 0 - 0 .0 1 2 0 .0 6 7 0 .1 1 9

A u t o c o r r e 1a t  i on Check o f Res i d u a 1s

To C h i - P r  >
Lag S q u a re nc Ch iSq /V a 1 i 1 a I I a IUr i i u t o c o r r e  iuv iui

6 6 .4 8 5 0 .2626 - 0 .0 0 3 0 .0 6 5 0 .0 8 2 0 .0 3 7 0 .0 0 6 0 .0 0 5
12 14 .12 11 0 .2266 0 .0 0 6 0 .0 3 2 - 0 .0 6 6 0 .0 0 8 0 .0 7 0 0 .0 6 2
18 2 2 .7 8 17 0 .1565 0 .0 5 7 - 0 . 0 0 5 0 .0 6 8 0 .0 3 3 0 .0 7 8 0 .0 3 2
24 3 0 .2 8 23 0 .1415 - 0 .0 0 8 0 .051 0 .0 0 3 0 .0 0 2 0 .0 9 3 0 .0 4 9
30 3 3 .0 7 29 0 .2748 0 .0 1 8 0 .0 4 4 - 0 .0 3 7 0 .0 1 4 -0 .0 0 2 0 .0 3 5
36 4 9 .0 2 35 0.0581 0 .0 2 4 - 0 . 0 2 2 0 .0 8 9 - 0 .0 0 5 0.071 0 .1 2 0
42 6 2 .8 7 41 0 .0156 - 0 .0 4 9 0 .0 9 0 - 0 .0 2 0 - 0 .0 0 8 0 .0 3 7 - 0 .1 1 0

Figure 3.2 Output of ARIMA: Identifying the first differenced Rmrp time series
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Name o f  V a r i a b l e  = MRP

P e r i o d ( s )  o f  D i f f e r e n c i n g  1,1
Mean o f  Morking S e r i e s  - 0 .0 0 0 3 3
S t a n d a r d  D e v i a t i o n  0 .198666
Number o f  O b s e r v a t i o n s  522
O b s e r v a t i o n C s ) e l i m i n a t e d  by d i f f e r e n c i n g  2

f t u t o c o r r e l a t  ions

Lag C o v a r ia n c e  C o r r e l a t i o n  -1 9 8 7 6 5 4 3 2 1  0 1  2 3 4 5 6 7 8 9 1  S td  E r r o r

0 0 .039468 1.00000 ******************** 0
1 -0 .0 2 1 7 4 7 - .5 5 0 9 9 # ft # # !|I # * * # # # 0 .043769
2 0 .0017095 0.04331 * . 0 .055488
3 0.0010921 0 .02767 * . 0 .055553
4 -0 .0 0 0 2 3 3 4 - .0 0 5 9 1 0 .055579
S -0 .0 0 0 5 9 0 8 - .0 1 4 9 7 0 .055580
6 0 .00002640 0 .00067 0.055588
7 -0 .0 0 0 5 3 0 0 - .0 1 3 4 3 0.055588
8 0 .0024153 0 .06120 * . 0.055594
9 -0 .0 0 3 2 7 8 2 - .0 8 3 0 6 ** 0.055723

10 0.00033504 0 .00849 0.055960
11 0 .0012667 0 .03209 * . 0.055962
12 -0 .0 0 0 1 2 2 7 - .00311 0.055997
13 0.0010942 0 .02772 * . 0.055998
14 -0 .0 0 2 6 1 1 7 - .0 6 6 1 7 .* 0.056024
15 0.0022249 0 .05637 # . 0.056174
16 -0 .0 0 1 7 5 5 9 - .0 4 4 4 9 . # 0.056282
17 0 .0019154 0 .04853 * . 0.056349
18 -0 .0 0 0 1 3 8 4 - .0 0 3 5 1 0.056429
19 -0 .0 0 1 9 5 3 6 - .0 4 9 5 0 . * 0 .056430
20 0.0020750 0 .05257 * . 0 .056513
21 -0 .0 0 0 8 5 3 3 - .0 2 1 6 2 0 .056606
22 -0 .0 0 1 8 2 1 5 - .0 4 6 1 5 . * 0 .056622
23 0.0026411 0 .06692 *! 0 .056694

f t u t o c o r r e l a t i o n  Check f o r  M h ite  N o ise

To C h i - P r  >
Lag S q u a re DF Ch iSq

6 160 .92 6 <■0001 -0 .5 5 1
12 1 67 .28 12 <•0001 - 0 .0 1 3
18 174 .12 18 <.0001 0 .0 2 8
24 1 8 0 .8 6 24 <•0001 - 0 .0 4 9
30 186 .96 30 <•0001 -0 .0 3 1
36 2 0 7 .7 4 36 <.0001 0 .0 1 9

0 .0 4 3 0 .0 2 8

a t  i o n s - -  

- 0 . 0 0 6 - 0 .0 1 5 0.001
0 .061 - 0 .0 8 3 0 .0 0 8 0 .0 3 2 - 0 .0 0 3
0 .0 6 6 0 .0 5 6 - 0 . 0 4 4 0 .0 4 9 - 0 .0 0 4
0 .0 5 3 - 0 .0 2 2 - 0 . 0 4 6 0 .0 6 7 - 0 .0 0 7
0 .0 5 7 - 0 .0 6 7 0 .0 3 5 - 0 .0 2 6 0 .0 2 2
0 .0 8 0 0 .1 0 5 - 0 . 0 8 5 0 .0 1 3 0 .1 0 9

f t u t o c o r r e l a t i o n  Check o f  R e s i d u a l s

To
Lag

C h i -
S q u a re DF

P r  > 
Ch iSq

6 5 .7 6 5 0 .3 3 0 2 - 0 . 0 8 3
12 12.41 11 0 .3 3 3 6 - 0 .0 2 0
18 1 6 .9 5 17 0 .4 5 8 0 0 .0 3 2
24 2 2 .1 5 23 0 .5111 - 0 .0 3 2
30 2 4 .9 0 29 0 .6 8 3 3 - 0 . 0 0 3
36 3 8 .7 9 35 0 .3 0 2 8 0 .0 0 7
42 5 5 .8 8 41 0 .0 6 0 6 - 0 .0 6 9

0 .0 2 9 0 .0 4 7

a t  i o n s — 

0 .0 0 5 - 0 .0 2 4 -0 .0 2 1
0.011 - 0 .0 9 2 - 0 . 0 1 4 0 .0 4 6 0 .0 3 6
0.031 0 .0 4 9 0 .0 0 7 0 .0 6 2 0.011
0 .0 3 2 - 0 .0 1 8 - 0 .0 2 1 0 .0 7 7 0 .0 2 9
0.031 - 0 .0 5 7 - 0 .0 0 1 -0 .0 2 1 0 .0 1 7
0 .0 4 4 0 .0 7 9 - 0 . 0 2 4 0 .0 5 8 0 .1 1 2
0 .0 8 8 - 0 .0 3 3 - 0 . 0 1 7 0 .0 3 7 - 0 .1 2 2

Figure 3.3 Output of ARIMA: Identifying the second differenced Rmrp time series
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F o r e c a s t s  f o r  v a r i a b l e  MRP

Obs F o r e c a s t S td  E r r o r 95% C o n f id e n c e L i m i t s

515 0 .8 4 4 8 0 .1 3 9 4 0 .5 7 1 5 1 .1180
516 0 .8 0 9 3 0 .2020 0 .4 1 3 4 1.2051
517 0 .7 7 3 6 0 .2532 0 .2772 1 .2699
518 0 .7 3 7 6 0 .2 9 9 2 0.1511 1.3241
519 0 .7 0 1 4 0 .3423 0 .0 3 0 6 1 .3722
520 0 .6 6 5 0 0 .3834 -0 .0 8 6 5 1 .4164
521 0 .6283 0 .4 2 3 3 -0 .2 0 1 3 1 .4580
522 0 .5 9 1 4 0 .4 6 2 4 -0 .3 1 4 9 1 .4977
523 0 .5 5 4 3 0 .5 0 1 0 -0 .4 2 7 6 1 .5362
524 0 .5169 0 .5392 -0 .5 3 9 9 1.5738
525 0 .4793 0 .5 7 7 3 -0 .6521 1.6107
526 0 .4 4 1 4 0 .6 1 5 2 -0 .7 6 4 4 1 .6473

Figure 3.4 Output of ARIMA: Forecasts of Rmrp time series over 10 weeks

Table 3.5 Comparison of real and forecast values for the Rmrp time series over 10 weeks

R-mrp 0.78 0.81 0.83 0.9 0.82 0 . 6 6 0.57 0.46 0.31 0.28

R-MRP_f 0.84 0.81 0.77 0.70 0.67 0.63 0.59 0.52 0.48 0.44

3.5.2 State-Snace Model for Risk Factors 
MktRP and VvsGP

PROC STATESPACE requires that the series be stationary. The PROC ARIMA 

is used to identify time series RMktRP and RVvsGP, and the result is that the second

differenced RMktRP and RVvsGP series are stationary. This is reasonable since single 

differencing is used to de-trend linear trends and double differencing is used to de-trend 

quadratic trends. These risk factors show quadratic trends and have to be doubly 

differenced to make them stationary.
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Figure 3.5 shows descriptive statistics for each of the two risk factors: number of 

observations used for the analysis, the mean (after differencing), the standard deviation 

and the specified order of differencing.

'  MktRP.t 

\ rvvsGP,t y

s +0.02126'
( 1 - S ) 2 RVv!GP, + 0.24534

(3.63)

where B represents the backshift operator.

Number o f  O b s e r v a t io n s  522 

S ta n d a r d
Var i a b 1e  Mean E r r o r

MktRP -0 .0 2 1 2 6  4 0 .14533  Has been  d i f f e r e n c e d .
With p e r i o d ( s )  = 1,1.

UvsGP -0 .2 4 5 3 4  268 .1544  Has been  d i f f e r e n c e d .
Uith p e r i o d ( s )  = 1,1.

Figure 3.5 Descriptive statistics for RMktRP and RVvsGP

Figure 3.6 shows preliminary estimates of the state-space model: the state vector 

z t , preliminary estimate of the transition matrix F, preliminary estimate of the input

matrix G (an identity matrix), and preliminary estimate of the variance matrix Zee.

Figure 3.7 shows the final estimates of the state-space model: the state vector z t , 

the final estimate of the transition matrix F, the final estimate of the input matrix G, and 

the final estimate of the variance matrix Zee.

Figure 3.8 displays the parameter estimates, standard errors, and t-values of the F  

and G matrices.
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MktRPfT;

MktRP(T; T

S e le c te d  S ta te s p a c e  Form and P re l im in a ry  E s t im a te s  

S t a t e  V ector

D VvsGPtT; T) HktRP(T+1;T) VvsGP(T+1;T)

E s t im a te  o f  T r a n s i t io n  M atrix

0 0 1 0  
0 0 0 1

0.076303 -0 .0053  -0 .13883 0.011249
0.385688 0.060963 -1 .04448 0.134561

Input M atr ix  f o r  Innovation

1 0

0  1

-1 .07532  0.017088
-0 .77694  -0.80731

V ariance  M atrix  f o r  Innovation

743.5361 3372.236
3372.236 36995.57

Figure 3.6 Preliminary estimates o f the state-space model

S e lec ted  S ta te s p a c e  Form and F i t t e d  Model 

S t a te  Vector

) VvsGP(T; T) MktRP(T+1; T) VvsGP(T+1;T)

E stim ate  o f  T ra n s i t io n  Matrix

0 0 1 0  
0 0 0 1

0.098524 -0.00693 -0.16869 0.011998
0.353225 0.073266 -1.02562 0.117066

Input M atrix  fo r  Innovation

1 0
0  1

-1 .08607 0.018846
-0.73011 -0.80503

Variance M atrix  fo r  Innovation

840.4586 3363.17
3363.17 39514.18

Figure 3.7 Final estimates of the state-space model
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P a r a m e te r  E s t i m a t e s

Parameter Es t  imate

F ( 3 , l ) 0 . 038524
F( 3 , 2  ) - 0 . 0 0 6 9 3
F ( 3 , 3 ) - 0 . 1 6 8 6 3
F ( 3 , 4 ) 0 . 011998
F ( 4 ,1 ) 0 . 353225
F ( 4 , 2 ) 0 .073266
F ( 4 ,3 ) - 1 . 0 2 5 6 2
F ( 4 ,4  ) 0 . 117066
G(3,1 ) - 1 . 0 8 6 0 7
G( 3 , 2  ) 0 . 018846
G ( 4 , 1 ) - 0 . 73011
G ( 4 , 2 ) - 0 . 8 0 5 0 3

S ta n d a r d
E r r o r t  V alue

0 .063184 1 .56
0 .009033 - 0 .7 7
0.056791 - 2 .9 7
0 .008618 1 .39
0 .415197 0 .8 5
0 .060365 1 .21
0 .369686 - 2 .7 7
0 .057398 2 .0 4
0 .052434 -2 0 .7 1
0 .007638 2 .4 7
0.342831 - 2 .1 3
0 .050998 - 1 5 .7 9

Figure 3.8 The parameter estimates of the state-space model

According to the PROC STATESPACE result, the state vector z t is

( r \MktRP,t\t 

-  r VvsGP,t\t

Z ,~ rr M klRp,t+ l\l 

J"V vsG P ,t+\\t ,

The transition matrix F  is

" 0  0  1 0  N
0 0 0 1

F =
0.0985 -0.0069 -0.1687 0.012

^0.3532 0.0733 -1.0256 0.1171,

The input matrix for innovation is

G =

1

0

-1.0861

0

1

0.01885
0.7301 -0.8050,

(3.64)

(3.65)

(3.66)
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The estimated state-space model is written as

\
'  M k tR P ,M \t+ l

'  M ktRp,t+2\t+l

\ r  VvsGP ,l+ 2\t+ l

0
0

0

0

1

0 1

0.099 -0.007 -0 .169 0.012 
0.353 0.073 -1.026 0.117

'  M ktRP,t\t 

r VvsGP,t\t

'  M ktRP,t+l\t

\  VvsG P,t+\\t J

+

1 0  A
0  1

-1.086 0.019 
-0 .73  -0.81

\ nt+1

Var
(e ^ct+]

\ ni+1 y

840.4586 3363.17
v 3363.17 39514.18,

(3.67)

(3.68)

Figure 3.9 displays the forecasts for the RMktRP and RVvsGP time series. Table 3.6

lists the real values for RMktRP and RVvsGP and their corresponding forecast values.

S t a t e  S p ace  Model F o r c a s t s

MktRP VvsGP
Obs MktRP f  1 VvsGP f  1

500 1221 .84 1234 .39 8380 .12 8470.01
501 1225.95 1225 .23 8443 .40 8 3 8 3 .57
502 1215.29 1229 .05 8423 .67 8 4 4 8 .26
503 1200.72 1219 .03 8276 .52 8 4 4 3 .75
504 1213.73 1200 .22 8306 .30 8 2 5 6 .52
505 1237.08 1212 .57 8503 .05 8 2 7 5 .47
506 1233.36 1241.21 8481 .59 8 5 2 9 .26
507 1210.78 1238.52 8302 .75 8521 .12
508 1224.24 1212.44 8417.01 8 2 9 2 .76
509 1191.33 1224.23 8201 .96 8398 .35
510 1181.86 1193.22 8222.51 8 2 0 4 .73
511 1174.98 1179 .37 8133.01 8 1 8 4 .98
512 1193.64 1170 .98 8312 .89 8 1 0 1 .80
513 1215.29 1192 .65 8361 .33 8 3 0 2 .09
514 1229.97 1215.21 8483 .57 8 3 7 3 .02
515 1234.96 8 5 1 4 .96
516 1239.36 8 5 4 8 .97
517 1243.54 8 5 7 3 .66
518 m 1247.62 8 5 9 7 .84
519 1251.81 8 6 2 1 .62
520 1256.03 8 6 4 5 .56
521 1260.31 , 8669 .87
522 B 1264.65 m 8694 .56
523 u 1269.05 8719 .67
524 , 1273.51 8745 .20

Figure 3.9 Forecasts of RMktRP and RVvsGP time series over 10 weeks
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They begin at 1234.96 for RMktRP and 8514.96 for RVvsCP for the first future week, 

then they increase each week and reach 1273.51 for RMktRP and 8745.20 for RVvsGP in the 

tenth future week.

Table 3.6 Comparison of real and forecast values for the RMkmP and RVvsGP time series 
over 1 0  weeks

^ M k tR P R  MktRP _ f
D

VvsGP ^  VvsGP _ f

1243.58 1234.96 8539.26 8514.96
1263.59 1239.36 8668.61 8548.97
1260.36 1243.54 8604.14 8573.66
1254.63 1247.62 8521.85 8597.84
1262.67 1251.81 8623.11 8621.62
1264.11 1256.03 8633.85 8645.56
1243.74 1260.31 8512.18 8669.87
1280.88 1264.65 8653.69 8694.56
1283.08 1269.05 8642.83 8719.67
1256.96 1273.51 8419.69 8745.20
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CHAPTER 4

FACTOR MODELS, REGRESSION ANALYSIS IN 

VaR MAPPING PROCEDURE

4.1 Introduction

There are six sections of this chapter. This section is an introduction—a review of 

mapping procedure in VaR measure. The second section is a discussion about the factor 

models. The third section is an overview about regression analysis techniques. The fourth 

section is a description on the selection of the risk factors, stocks, and the data source in 

this research. The fifth section is a detailed discussion about the selection of the time 

series regression models. The last section is the discussion of results.

Figure 4.1 is a reproduction of Figure 2.1 which shows how VaR measures work 

[21]. All practical VaR measures accept portfolio data and historical market data as 

inputs. They process these with a mapping procedure, inference procedure, and 

transformation procedure. Output comprises the value of a VaR metric. That value is the 

VaR measurement. The position of mapping procedure is highlighted in Figure 4.1.

95
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Input: 
Historical 

Market Data

Input:
Portfolio
Holdings

Characterization of 
the Conditional

Distribution of 1R

Portfolio
M apping

lP = G{ %

Characterization of 
the Conditional

Distribution of 1P

Value of the 
VaR Metric

Mapping
Procedure

Inference
Procedure

Transformation
Procedure

Figure 4.1 A reproduction of Figure 2.1 [21]
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Risk has two components [21], uncertainty and exposure. An inference procedure

describes uncertainty by characterizing the joint distribution for lR . A mapping 

procedure describes exposure by specifying a portfolio mapping. A transformation 

procedure describes risk by combining exposure and uncertainty to characterize the 

distribution of lP  and then use the distribution of 'P  to summarize the value of some 

VaR metric.

The term "risk factor" was first coined by the heart researcher Dr. Thomas R. 

Dawber in a landmark scientific paper in 1961 [40], where he isolated the major factors 

associated with heart disease: high blood pressure, high cholesterol levels, and smoking.

Generally, a risk factor is defined as something that is likely to increase the 

chances that a particular event will occur. However, risk factors are not necessarily 

causal. In VaR, a risk factor is a random variable whose value will affect the value of a 

portfolio.

Let time 0 be the current time, and let time 1 be the end of the VaR horizon 

(Value-at-risk considers a portfolio's performance over a specific horizon—a trading day, 

two weeks, a month, etc. This is called the VaR horizon.). A risk factor is any random 

variable lRt whose value will be realized during the interval (0 ,1 ] and will affect the

market value of a portfolio at time 1. A risk vector lR is a random vector of risk factors. 

If a risk vector reflects a future value of some time series, its current value is represented 

as lr and historical values are represented asV ,_1r,~2 r , . . . .  Those risk factors XR{ are

called key factors. They are the components of the key vector 'R . Occasionally, we use 

asset values XS; as key factors. More often, it is convenient to use more basic financial 

variables as key factors [2 1 ].
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A mapping procedure accepts a portfolio's composition as an input. Its output is a

portfolio mapping function 9 that defines lP as a function of lR .

For each asset, there must exist a valuation function ^  such that

lS i =<pi('R). (4.1)

If the value of the portfolio ‘P is  a linear polynomial of the asset values 1Si, we can 

express lP in terms of the key factors:

m  m

iP  = £ < b, ,S, =£<»,«>,( ' i ) ,  (4.2)
/=1 1=1

where coj is the weight of asset xSt .

This is a functional relationship that specifies the portfolio's market value 1P in terms of 

the key factors {'/?,}. Combining Equations (4.1) and (4.2), we have

lP = 9(lR ),  (4.3)

which is called a portfolio mapping. The function 9 is called the portfolio mapping 

function. Schematically, the mapping can be represented as

XP< XS  (4.4)

6

and lP< XS< XR (4.5)

where a> is the portfolio’s holdings.

The portfolio mapping relates lP to lR: the mapping function 9 maps the n-

dimensional space of the key factors to the one-dimensional space of the portfolio’s

market value. Given a realization for lR , 8  gives us the corresponding value of lP . The
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mapping function G could be linear or non-linear. Specifying 6 is largely an exercise in 

financial engineering. Since 6 must value an entire portfolio, it can be complicated.

Portfolio mappings of Equations (4.4) or (4.5) are called primary mappings. 

Mathematically, a primary mapping works by valuing each asset held by the portfolio, 

multiplying the values by the portfolio's holdings in each asset, and summing. For many 

VaR measures, output of the mapping procedure is a primary mapping, but not for all. 

Since the portfolio in this research is a portfolio of three stocks and three risk factors, 

primary mapping is appropriate for this portfolio.

The purpose of a mapping procedure is to characterize a portfolio’s exposure to 

risk by expressing the portfolio’s value as a function of appropriate market variables -  

risk factors. This can be done by building multi-factor models.

A multi-factor model is a method of decomposing an asset’s return into factors 

common to all assets and an asset specific factor. Often the common factors are 

interpreted as capturing fundamental risk components, and the multi-factor model isolates 

an asset’s sensitivities to these risk factors.

Multifactor models are widely used in three ways [42]: (1) predicting future 

volatility and understanding their risk exposures, (2) optimizing portfolios, and (3) 

understanding past performance.

A multifactor model is an important tool that helps portfolio managers identify, 

quantify, and control their risk exposures [42] and makes portfolio risk and yield 

evaluations precise, quick, and reliable. The reasons are [43]

• a number of factors is taken into account during the asset yield evaluation;
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• in addition to the standard method of regression analysis, multidimensional data 

analysis is used to research how the price of every asset reacts to each factor 

change;

• assets are grouped by a similar risk factor with cluster analysis methods;

• the model takes into account the lag effect. A change in macroeconomic 

parameters may influence asset price with a time lag of days to months;

• risk factors, such as, for example, market index and macroeconomic parameters, 

are forecasted within the timeframe required for a portfolio or asset future yield 

evaluation;

• the model dynamically takes into account each factor of influence, based on its 

forecast.

In Chapter 3, we focused on inference procedure. We applied time series 

techniques, ARIMA and state-space models, to forecast the joint distribution of the three 

risk factors based on their historical data. In this chapter, we’ll focus on mapping 

procedure to build a multi-factor model for our stock portfolio in terms of three risk 

factors.

4.2 Multi-Factor Models for Market Risk 

The Bank for International Settlement (BIS) defines market risk as [44] “the risk 

o f  loss in on- and off-balance-sheet positions arising from movements in market prices.” 

The major factors contributing to market risk are equity, interest rate, foreign exchange, 

and commodity risk. In addition to market risk, the price of a financial instrument may be 

influenced by the following residual risk: spread risk, basis risk, specific risk and
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volatility risk. To determine the total price risk of a financial instrument, market risk and 

residual risk have to be aggregated.

4.2.1 Modem Portfolio Theory and VaR

Modem portfolio theory (MPT)—or portfolio theory—was introduced by Harry 

Markowitz with his paper "Portfolio Selection," which appeared in the 1952 Journal o f  

Finance. It is the philosophical opposite of traditional stock picking. Prior to Markowitz's 

work, investors focused on assessing the risks and rewards of individual stocks in 

constructing their portfolios. Standard investment advice was to identify those stocks that 

offered the best opportunities for gain with the least risk and then constmct a portfolio 

from these. Following this advice, an investor might conclude that stocks in a certain 

industry all offered good risk-reward characteristics and compile a portfolio entirely from 

these, which is against the common sense saying “Don’t put all your eggs in one basket.” 

One example is the high-tech bubble. A lot of people who invested in only high-tech 

stocks lost their fortune when the high-tech sector fell dramatically in 2001-2002. 

Markowitz formalized this intuition by detailing mathematics of diversification. He 

proposed that investors focus on selecting portfolios based on their overall risk-reward 

characteristics instead of only compiling portfolios from securities that each individually 

has attractive risk-reward characteristics. In other words, investors should select 

portfolios, not individual securities.

MPT helps us understand the market as a whole. Investments are described 

statistically in terms of their expected long-term return rate and their expected short-term 

volatility. The volatility is equated with "risk,” measuring how much worse than average 

an investment's bad years are likely to be. The goal is to identify your acceptable level of
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risk tolerance, and then to find a portfolio with the maximum expected return for that 

level of risk [45],

A portfolio is a collection of investments held by an institution or a private 

individual. Portfolio theory starts from the premise that investors choose between 

portfolios on the basis of their expected return and the standard deviation (or variance) of 

their return. The standard deviation of the portfolio return can be regarded as a measure 

of the portfolio risk,

a l  = H  + S E  WiWjpijVPj  ’ (4-6)
1=1 1=1 7=1

1*1

where a p is the portfolio variance, cr is the variance of asset i, p tj is the correlation 

coefficient of asset i and j ,  and w(. is the proportion of asset i in the portfolio. The 

portfolio return is expressed as,

Rr = t , ^ r ,  (4.7)
1=1

where Rp is the portfolio return and r( is the return of asset i.

Equations (4.6) and (4.7) show that the portfolio return is the weighted average of 

the returns of the individual assets in the portfolio, and the portfolio risk is the weighted 

sum of the variances of the individual assets and the covariance between those assets. 

One of the key insights of portfolio theory is that risk is not additive. The risk of any 

individual asset contributing to the portfolio is not the standard deviation of the asset 

return, but the extent to which that asset contributes to overall portfolio risk. The lower 

the correlation to other assets, other things being equal, the less the asset contributes to 

overall risk. If the correlation is negative, it will offset existing risks and lower the
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portfolio standard deviation. Total risk is less than the sum of its parts. This effect is 

described as diversification effect.

Portfolio optimization requires minimal risk with certain expected return. 

According to Equations (4.6) and (4.7), we can construct efficient portfolio frontier by 

varing weights of the assets in the portfolio. There may be multiple portfolios that

have the same standard deviation. Modem portfolio theory assumes that for a specified 

standard deviation, a rational investor would choose the portfolio with the greatest return. 

Similarly, there may be multiple portfolios that have the same return and modem 

portfolio theory assumes that, for a specified level of return, a rational investor would 

choose the portfolio having the lowest standard deviation. A portfolio is said to be 

efficient if there is no other portfolio having the same standard deviation with a greater 

expected return, and there is no portfolio having the same return with a lesser standard 

deviation. The efficient frontier is the collection of all efficient portfolios. Key to the 

efficient frontier is that it represents the highest level of a portfolio’s return for any given 

level of risk. Figure 4.2 below displays a typical efficient frontier chart. The horizontal 

axis represents risk (typically in the form of standard deviation of return in dollars), while 

the vertical axis represents return (typically in the form of mean return expected of the 

portfolio). The line, which is the efficient frontier itself, represents the highest level of 

expected return for any given level of risk for any possible combination of assets in this 

portfolio. The area under the curve represents every other “non-efficient” portfolio that 

can exist.
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Higher risk/ 
Higher return

£
a«cc

Lower risk/ 
lower return Higher risk/ 

lower return

Risk (a)

Figure 4.2 Efficient frontier diagram [46]

In practice, some efficient portfolios will have more risk than others, but the more 

risky ones will also have higher expected returns. Faced with the set of efficient 

portfolios, the investor chooses one particular portfolio based on his or her own preferred 

trade-off between risk and expected returns. An investor who is very averse to risk will 

choose a safe portfolio with a low standard deviation and a low expected return, and an 

investor who is less risk averse will choose a riskier portfolio with a higher expected 

return.

According to Equations (4.6) and (4.7), however, for a portfolio with N  assets, 

portfolio optimization requires estimates of N  expected returns, N  standard deviations, 

and N (N  — 1) / 2 correlations to perform mean-variance analysis. When N  is increased to 

an extremely large number, not only the data-gathering procedure becomes difficult, but 

also the construction of the correlation matrix is an overwhelming burden. This is known 

as curse of dimensionality. To overcome these difficulties, factor models are used.

Portfolio theory provides a broad context for understanding the interactions of 

systematic risk and reward. It has profoundly shaped how institutional portfolios are
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managed, and motivated the use of passive investment management techniques. The 

mathematics of portfolio theory is used extensively in financial risk management and was 

a theoretical precursor for today's value-at-risk measures.

Estimating the standard deviation 1|0crof the portfolio’s market value is analogous 

to the task of estimating the standard deviation of a portfolio’s return, a task one may be 

familiar with from portfolio theory. Except for the fact that VaR deals with market values 

instead of returns, we may adopt this familiar mathematics of portfolio theory for 

estimating VaR [46].

We use a general result from probability. Suppose X l, X 2 . . . . ,X ll are random

variables having standard deviations cri and correlations p t j . Suppose another random

variable Y is defined as a linear polynomial of the X (:

Y = b1X l +b2X 2 +--- + bnX n +a.  (4.8)

Then the standard deviation of Y is given by

cr, -  / £ ( 4 ,<t,) 2 + 2 2 > ,< 7 ,X V /)A ./ • (4'9>
V i j> ‘

Equation (4.9) is completely general. So long as 7  is a linear polynomial of the 

X i , we can use Equation (4.9). We need no other assumptions or information about the

random variables X i .
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We can apply Equation (4.9) to estimate the standard deviation 1|0cr of our 

portfolio’s market value. Suppose the portfolio has holdings coi in m assets. The assets'

accumulated market values at time 1 are random variables, which we denote xS f. Then

lP = wl 'S i +w2 iS2 + -  + wmxSm. (4.10)

Based on Equation (4.10), we can apply Equation (4.9) to obtain 1,0a . All we 

need as inputs are standard deviations and correlations for the lSr  These might be

inferred by applying methods of time series analysis to historical price data for the assets. 

In some cases, this is feasible. In others, it is not. Collecting historical price data for every 

asset held by a portfolio may be a daunting task. Besides, it also has the same problems 

of MPT as we mentioned above since it is an extension of MPT. A more manageable 

approach may be to model the portfolio’s behavior, not in terms of individual assets, but 

in terms of specific risk factors.

4.2.2 The Single-Factor Model

Portfolio theory provides a useful framework for handling multiple risks taking 

account of how those risks interact with each other. It is therefore o f obvious use to—and 

is widely used by—portfolio managers, mutual fund managers and other investors. 

However, it tends to run into estimation and data problems. The estimation of the 

expected returns and the covariance matrix becomes difficult for a large portfolio. We 

also need a sufficiently long data set to make our statistical estimation techniques 

reliable. To get around these problems, William Sharpe [47] and others in the 1960s 

suggested Capital Asset Pricing Model (CAPM)—an equilibrium model that specifies the 

relationship between risk and required rate of return for assets held in well-diversified 

portfolios based on the premise that only one factor affects risk.
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Capital Asset Pricing Model (CAPM) forms a theoretical basis for a number of 

various financial technologies for yield and risk management, used for medium and long

term investing in stocks. CAPM considers the stock yield depending on the market 

behavior as a whole. Another primitive conjecture of CAPM is that investors make 

decisions, taking into account only two factors: expected yield and risk. Though this 

model is a simplified presentation of the financial market, many large investment 

businesses use it in their activities: for example, Merrill Lynch and Value Line. The 

expected return of a specific stock is calculated as follows:

rt ~ Rf = alphat + betai x (Rm — Rf  ) + s j, (4.11)

betai =Cov(ri - R f ,Rm - R f )/Var(Rm - R f ),  (4.12)

where r{ is the expected return of stock i, Rf  is the rate of a “risk-free” investment 

(cash), Rm is the expected return of the market, betai is the sensitivity of asset i relative 

to market movement m, and alpha{ is the intercept.

The quality of the fit is given by the statistical number r-squared which measures 

the percent of a stock’s variance that is explained by the market. An r-squared of 1.0 

would mean that the model fit the data perfectly, with the line going right through every 

data point. More realistically, with real data one would get an r-squared of around .85. 

From that you would conclude that 85% of the fund's performance is explained by its risk 

exposure, as measured by beta.
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According to Equation (4.11), the expected return of an individual stock can be 

expressed as

E ( r - R f )  = alphai +betai xE (R m - R f ) • (4.13)

The risk of the stock i is

Var(rt - R f ) = betaf x Var(Rm - R f ) + Var(ei) ,  (4.14)

According to the model, the risk associated with stock i, could be broken into two 

types: systematic and non-systematic. Systematic risk is caused by the general market 

movements and economic changes influencing all the stocks. Non-systematic risk is 

associated with the specific stock i and can be reduced with creating a diversified 

portfolio from sufficiently great number of stocks, or even from a smaller number of 

stocks, negatively correlated among themselves. Therefore, non-systematic risk is also 

referred as diversifiable risk [47].

Systematic risk cannot be reduced, but influence of the market on financial assets' 

yield can be measured. CAPM uses the B (beta) parameter as a systematic risk measure. B 

describes the financial asset sensitivity to changes in market yield. Knowing asset's B 

parameter, one can quantitatively estimate the amount of risk associated with price 

changes in the entire market. The more B value, the higher the stock's price advances 

during general market growth, and vice versa. Stocks with greater positive b value drop 

lower when the entire market falls. Financial managers need a precise calculation of the 8 

parameter to select assets which match their investment strategy best. Using 8, one can 

form investment portfolios of most different types-conservative, aggressive, and balanced 

ones.
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The CAPM made portfolio theory much more practical given the data and 

computational power available. However, it is a simplified view of risk and can not 

perfectly capture the movement of the stock market [41] [44] [47] [48]. The logical 

generalization is the multi-factor models. A multi-factor takes into account other sources 

of risk that might affect the expected return.

4.2.3 Multi-Factor Models

4.2.3.1 Arbitrage pricing theory (APT)

APT assumes that a portfolio or asset yield (or expected return) can be modeled as 

a linear function of a number of systematic risk factors, where sensitivity to changes in 

each factor is represented by a factor specific beta coefficient. Such factors could be 

various macroeconomic parameters, prices of oil and other major resources, currency 

exchange rates, and so forth. APT yields a multi-factor equation:

R, -  R f  = c, + (* „ ,- R f )  + Pu Fll,+P,BFl l +... + el„ (4.15)

where t = \,2,...,T  and i = . Time-series multiple regression can be used to

quantify an asset’s tendency to move with multiple risk factors FA,FB, etc.

APT specifies neither the number of factors nor the identification of the factors. 

Therefore, to estimate and test the model, we need to determine the factors which may be 

observed and unobserved.

4.2.3.2 Fama-French three-factor model

CAPM uses a single factor, beta, to compare a portfolio with the market as a 

whole. But more generally, you can add factors to a regression model to give a better r- 

squared fit. The best known approach in this regard is the three factor model developed 

by Fama and French [49].
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Fama and French noted that, averaging over many years, big firms appeared to 

have lower returns than small firms. Therefore, they decided to include a variable that 

would account for the difference in the market equity size, namely the difference between 

the return on a portfolio of small stocks minus the return on a portfolio of big stocks. This 

variable is called Rs m , for S minus B. In addition, since there are differences between

what the market thinks a company is worth (market equity) and the amount accountants 

say that a company is worth (book equity), Fama and French also included another 

variable to represent the Book-to-Market-Equity, namely the return on a portfolio of high 

book-to-market stocks (customarily called "value" stocks), minus the return on a portfolio 

of low book-to-market stocks (called "growth" stocks ). This variable is called RHML, for 

H minus L.

The Fama-French three-factor model is an extension of CAPM by adding these 

two factors to CAPM:

R stock =  R f  +  P * ( R m ~ R f )  +  P s iZ E  *  ( R SMB )  +  P  BM *  ( R HMl )  (4-16)

According to the definitions of SMB and HML, the corresponding coefficients 

PSIZE and PBM take values on a scale of roughly 0 to 1: fiSIZE = 1 would be a small cap 

portfolio, PSIZE = 0 would be a large cap, fiBM = 1 would be a portfolio with a high 

book/price ratio, etc.

Like CAPM, the Fama and French model is used to explain the performance of 

portfolios via linear regression; only now the two extra factors give you two additional 

axes, so instead of a simple line the regression is in the fourth dimension.
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4.2.3.3 General multi-factor models

The general form of the multi-factor model is [50]

(4.17)

-  a,. + fi'R, + s it (4.18)

where Sit = return or excess return on asset i ( i = 1,2,..., n)

Rkt = k th common risk factor ( k -  1,2, ..., K)

p ki = factor loading on asset i for k th factor

s it = random error for asset i

4.2.3.4 Risk factor selection

Multi-factor models are important tools in portfolio optimization and risk 

management. Selecting risk factors is a key stage in developing any multi-factor model. It 

is important to realize that Equation (4.18) does not require any assumptions about the 

nature of the factors. Any set of factors will fit into to Equation (4.18)-of course, with 

varying success, as measured by r-squared [42].

There are two approaches to characterize risk factors. The first one is to pre

specify risk factors from market data-from fundamental factors such as size and book-to- 

market to macroeconomic factors, such as treasury interest rates and changes in industrial 

production. For the multi-factor models based on pre-specified risk factors, factor 

variables Rkt are observed but factor loadings fiki must be estimated. The second one is to

compute the factors from asset historical data using statistical methods such as Principal 

Components Analysis. For the models based on the statistical factors, both factor 

variables Rkt and factor loadings /3ki must be estimated.
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No matter which approach is chosen to select risk factors, there is a guiding 

principle: the number o f factors should be small, usually 3 to 5.

4.3 Methodology of Multi-Factor Regression

4.3.1 Overview on Regression Analysis

In statistics, regression analysis is used to model the relationship between a 

random variable Y called response variable (sometimes called the output variable or 

dependent variable) and other random variables X x, X 2,---,X  called predictors

(sometimes called the input variables, independent variables or explanatory variables). A 

regression analysis has several objectives:

• Prediction of future observations

• Determining how closely the response can be predicted by the predictors

• Assessing the relationship between the predictors

When building a regression model, if more than one independent variable is being 

considered, we call it a multiple regression analysis, if  only one independent variable is 

being considered, the analysis is a simple linear regression.

4.3.2 Simple Linear Regression

A simple regression model is a regression model with a single independent 

variable x  that has a linear relationship with a dependent variable y [51]. The model is

y  = A >  + f l ,x + s  (4.19)

where fiQ is the intercept, /?, is the slope and s  is the error term. The errors are assumed 

to have mean zero and unknown variance cr2.
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To determine the equation of the model, what we are looking for is the values of 

/?, and . The method used for that purpose is called the least squares method. Suppose

that we have n pairs of sample data (y1,x 1),(y2 ,x 2 ) ,. .. ,(yn,x n), from Equation (4.18) 

we can write the sample regression model as

= J30 + A*,- + 8f , i = 1,2,...,«. (4.20)

The least-squares estimators for fix and /?0 are obtained from the following Equation 

[49]:

K = y - h *  (4-21)

and

X  (*, -  -  y) 2  y,x, - V m  A  i=i J

 = -  — > (4-22>

. f t *

,=i n

1 "  1 "where _y = — Y V  and x  = — Y jc; are the averages of y i and x t , respectively. /?, can be 
n ~ t  n ,=1

rewritten as:

0  _ Cov(X, Y)
1 far(Jf)

Simple linear regression method can be used to estimate the coefficients of a single-factor 

model such as CAPM.
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4.3.3 Multiple Regression

Multiple regression is a regression analysis with more than one independent 

variable. It is used in multi-factor models to quantitatively measure the impact of two or 

more independent variables. The general multiple linear regression model with k  

independent variables can be written as

y  = Po + PvX\ + ^ 2X 2 + •" + PkXk + s  (4.24)

where , j  = 0,1,2,...,# are called the regression coefficients and the error term satisfies

E(s)  = 0,Var(s) = a 2 . The parameter /?. represents the expected change in the response 

y per unit change in x . when all the other independent variables xt (i * j ) are held 

constant [51].

The least squares method can be used to estimate the regression coefficients in 

Equation (4.24). Suppose there are n > k  observations, the sample regression model 

corresponding to Equation (4.24) can be written as

T; = fio + P\xi\ + Plxi2 +••■ + Pkxik + Si

k
= P o  +YaPjxij + s i> 1=1,2,...,/!. (4.25)

7=1

In matrix notation, the model given by Equation (4.25) is 

y  = X p  + s ,

where

T i 'i xn X \2  ■• •  X U

x  =

i X 2\ X 22 X 2k

y*. i X nl X n2 • • ’ X « k _
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P  =

Po
fix , and s =

s

fit n

The least-squares criterion is

n

s t f )  = Z £? = e'e = (y  -  x p ) '(y  -  X f t ) . (4.26)
1=1

The objective of multiple linear regression is to find the vector of least squares 

estimators, /?, that minimizes the sum of the squared error terms, S(fi).

provided that the inverse matrix (X 'X ) 1 exists.

The fitted regression model corresponding to the levels of the independent 

variables x' = \\,xl ,x 2 , . . . ,xk~\ is

# = = (4.28)
7=1

The vector of fitted values y t corresponding to the observed values y i is

where the « x n  matrix H  = X ( X X )  ' X'  is called the hat matrix.

The difference between the observed value y i and the corresponding fitted value

The least squares estimator of /? is [51]

P = { X X Y lX'y (4.27)

y  = X]3 = X(X'Xyl X'y = Hy (4.29)
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j>(. is called the residual e; . In matrix notation, the n residuals can be written as

e = y - y

or e = y - X $  = y - H y  = ( I - H ) y  (4.30)

where I is a identity matrix.

4.4 Data Selection

All the data can be downloaded from Yahoo ! Finance. Data are also available 

from some standard data libraries, such as COMPUSTAT.

Three risk factors are selected. They are Rmrp , RMktRP and RVvsGP. Details are in 

Chapter 3.

Three stocks are chosen to form a portfolio: 1. International Business Machines 

Corp. (IBM), 2. Microsoft Corp. (MSFT), and 3. Texas Instruments Inc. (TXN). Ten-year 

weekly prices for these stocks are collected. They are denoted as SIBM, SMSFT and STXN.

Here, the price is not an open or closed price. The price is the adjusted closed price 

because adjusted price is the price after adjustment for dividends and more importantly, 

stock split [48]. Figures (4.3-4.5) are the trend charts for these three stocks from Jan. 2, 

1996 to Jan. 17, 2006.
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Figure 4.3 IBM ( S IBM) 96-06 weekly historical prices
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Figure 4.4 MSFT ( SMSFT) 96-06 weekly historical prices
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100 n

Figure 4.5 TXN ( S TXN) 96-06 weekly historical prices

4.5 Model Building

Regression analysis is one of the most widely used techniques for analyzing 

multifactor data. The application of regression analysis in stock market is a statistical 

technique used to forecast and to analyze the factors that influence the stock market. By 

using the “multiple linear regression”, studies have been performed in obtaining the best 

regression model to do forecasting. The common types of “multiple linear regression” to 

be studied here would be estimation of the model parameters, hypothesis testing and 

confidence intervals.

Since building the risk management model needs heavy statistical computations, 

SAS, a popular and powerful statistical software, is used as the tool to develop the model 

in this research.

The following steps are needed to build the model:
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1. Build linear models by least-squares method.

2. Build quadratic models by least-squares method.

1) Build full models by least-squares method.

2) Build reduced models by stepwise procedures: (1) forward selection, (2) 

backward elimination and (3) stepwise regression.

Before building our models, some tests should be run to investigate the 

relationships between each stock and each risk factor.

4.5.1 Checking for Relationships

A scatter plot reveals relationships between two variables. Such relationships 

manifest themselves by any non-random structure in the plot. Figures 4.6 - 4.14 display 

the relationships between each stock and each risk factor.
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Figure 4.6 Scatter diagram for SIBM vs. Rmrp
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Figure 4.9 Scatter diagram for SMSFT vs. Rmrp
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Figure 4.10 Scatter diagram for SMSFT vs. RmtRP
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Figure 4.11 Scatter diagram for SMSFT vs. RVvsGP

rm
100

30

00
?0
00
SO

to

0*1

# *•*

*H* »
*  *

.% :
#Im

• p # #* * * ** *» ♦* t\  * ** ** ■. ..*** ■■
* • • v y v u  *. * %i* . V - , - /  ■*** ' » Ml* »» • f  ■ i i V  1

* » • ■ l*, * liAft » » »*
sTifjr- '■

I I I I , , 1  1 I I I i | i I > I > I l-l-f . 111, 11  j I ~l 1 I | I l I . I . I "I T'f

1 0  1 2  3  4  5

Figure 4.12 Scatter diagram for STXN vs. RM RP
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Table 4.1 summarizes our observation of trends (or correlation) from the above scatter 

plots.

Table 4.1 Summarization of the relationships between stocks and risk factors.

R -m r p R  MktRP ^  VvsGP

^  IBM
No clear tendency correlated correlated

C
MSFT

No clear tendency correlated correlated

S t x n Negative nonlinear correlated correlated correlated

4.5.2 Building Linear Models

The equation for three-factor linear regression models is

Sstock =  P o  + P mRP X ^MRP + PMktRP X RMktRP + PvvsGP X ^  VvsGP + £ (4.31)

where Rmp, RMklRP, and RVvsGP represent the risk factor MRP, MktRP and VvsGP

respectively, and PURP, PMktRP and PVmGP are the stock’s exposure to the risk factor

MRP, MktRP and VvsGP respectively.

Ten-year weekly historical data for three stocks and three risk factors are used to 

fit the regression model in Equation (4.28) by least-squares method which is described in 

Section 4.3.2. The sample regression model corresponding to Equation (4.28) for each 

stock can be written as

Sstock,i =  P o  + P mRP X R mRPJ + PMktRP X ^ MktRP,i + PvvsGP X ^VvsGP,i + S i ’ (4-32)

where i = 1,2,... ,524 represents 524 observations for each stock and each risk factor.
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To express the three-factor linear regression model, Equation (4.29), in matrix 

terms, we need to define the following matrices:

^  s tock ,\ 1  r M R P,l r M ktRP,l r VvsGP, 1

C -
stock

^ s to c k ,2 (4.33a) R = 1  r M RP, 2 r M ktRP,2 VVvsGP,2 (4.33b)

c
stock, 524 r M RP,524 TM ktRP,5 2 4  r VvsGP,524 _

'  P o  ' ’  ex '

P  =
P m r p

p (4.33c) e =
£  2

P M k tR P

_ P VvsGP _ _ S S24 _

(4.33d)

Figure 4.15 presents a portion of the computer output from SAS PROC REG for 

S IBM in our portfolio.

A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M odel 3 337983 112661 1 3 1 0 .6 2 < .0 0 0 1
E r r o r 520 4 4 6 99 8 5 .9 5 9 7 8
C o r re c te d T o ta l  523 382682

R o o t MSE 9 .2 7 1 4 5 R -S q u a re 0 .8 8 3 2
D e p e n d e n t Mean 7 8 .0 3 6 7 0 A d j R -Sq 0 .8 8 2 5
C o e f f  V a r 1 1 .8 8 0 8 8

P a ra m e te r  E s t im a te s  
m

P a ra m e te r
m

S ta n d a rd V a r  i a n ce
V a r  ia b le DF E s t  im a te E r r o r t  V a lu e  P r  > I t ! I n f l a t  io n

I n t e r c e p t 1 7 7 .9 7 9 1 0 0 .4 0 5 0 3 1 9 2 .5 2 < .0 00 1 0
MRP 1 9 .3 8 5 7 9 0 .4 6 8 6 5 2 0 .0 3 < .0 00 1 2 .4 0 0 3 2
MktRP 1 0 .1 2 9 7 7 0 .0 0 3 7 4 3 4 .6 9 < .0 00 1 4 .1 8 6 5 9
VvsGP 1 -0 .0 0 1 6 1 0 .0 0 0 6 5 7 1 9 - 2 .4 4 0 .0 1 4 9 3 .9 3 1 0 3

Figure 4.15 SAS PROC REG output for SIBM in linear model

The F value of 1310.62 is used to test the null hypothesis H 0 : fiMRP = PMktRP = PVvsgp = 0 • 

The associated p value of < 0.001 leads to the rejection of the null hypothesis and 

indicated that at least one of the coefficients is not zero. Since all three p values
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associated with three regression coefficients are less than 0.05, all three risk factors 

contribute significantly to the model. R-Square = 0.8832 means that a major portion (> 

88.32%) of the variation in SIBM is explained by variation in the independent variables of 

the model. The statistic Adj R-Sq = 0.8825 (an alternative to R-Square) is adjusted for the 

number of parameters in the model. The maximum VIF = 4.187 < 10 implies that there is 

no serious problems with multicollinearity in this model. The fitted linear model for SIBM 

is

SIBM = n .9 8  + 9.386RMRP+0A30RMktRP-0 .00 l6R VvsCP. (4.34)

A very effective way to investigate the adequacy of the fitted regression model 

and to check the underlying assumptions is to draw residual plots. Figure 4.16 is the plot 

of residuals versus predicted IBM price SIBM and Figure 4.17 is the plot of studentized 

residual (R-student) versus predicted S1BM. The figures show no specific error patterns 

exhibited by the residuals of the linear model, but it shows that larger residuals are 

associated with larger values of the response variable. Figure 4.18 shows that most of the 

points are close to a straight line but a few extreme points slightly deviate from the line. It 

may be inferred that the distribution is close to normal.
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Figure 4.16 Plot of residuals vs. predicted values SIBM in linear model
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Figure 4.17 Plot of R-student values vs. predicted SIBM in linear model
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Figure 4.18 Normal probability plot for SIBM in linear model

Figure 4.19 presents a portion of the computer output from SAS PROC REG for 

the S MSFT in our portfolio.

A n a ly s is  o f  V a r  ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F M a lue P r  > F

M odel 3 37683 12561 9 3 3 .9 9 < .0 00 1
E r r o r 520 6 9 9 3 .2 4 1 1 3 1 3 .4 4 8 5 4
C o r re c te d T o ta l 523 4 4676

R o o t MSE 3 .6 6 7 2 3 R -S q u a re 0 .8 4 3 5
D e p e n d e n t Mean 2 3 .7 7 2 2 9 A d j R -S q 0 .8 4 2 6
C o e f f  M ar 1 5 .4 2 6 4 7

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd M ar i a n ce
M ar ia b le DF E s t im a te E r r o r t  Ma1ue  P r  > ! t ! I n f l a t  io n

I n t e r c e p t 1 2 3 .7 5 6 6 2 0 .1 6 0 2 1 1 4 8 .2 9 < .0 00 1 0
MRP 1 2 .6 3 2 4 8 0 .1 8 5 3 7 1 4 .2 0 < .0 00 1 2 .4 0 0 3 2
M ktRP 1 0 .0 5 0 7 3 0 .0 0 1 4 8 3 4 .3 2 < .0 00 1 4 .1 8 6 5 9
MvsGP 1 -0 .0 0 2 2 3 0 .0 0 0 2 5 9 9 4 - 8 .5 7 < .0 00 1 3 .9 3 1 0 3

Figure 4.19 SAS PROC REG output for SMSFT in linear model
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The F value of 933.99 is used to test the null hypothesisH 0 : /3MRP = PMktRP = PVvsGP = 0.

The associated p value of < 0.0001 leads to the rejection of the null hypothesis and 

indicated that at least one of the coefficients is not zero. Since all three p values 

associated with the three regression coefficients are less than 0.0001, all three risk factors 

contribute significantly to the model. R-Square = 0.8435 means that a major portion (> 

84.35%) of the variation of SMSFT is explained by variation in the independent variables

of the model. The statistic Adj R-Sq = 0.8426 (an alternative to R-Square) is adjusted for 

the number of parameters in the model. The maximum VIF = 4.187 < 10 implies that 

there is no serious problems with multicollinearity in this model. The fitted linear model

for SMSFT is

SmPT = 23.76 + 2.632Rmrp + 0.0508RMktRP -0.00223RVvsGP. (4.35)

Figure 4.20 is the plot of residuals versus predicted MSFT price and Figure 4.21 

is the plot of the studentized residuals versus predicted MSFT price. They both show an 

outward-opening funnel pattern implying that the variance is an increasing function of 

SMSFT. Figure 4.22 shows that most of the points are close to a straight line but a few 

extreme points slightly deviate from the line. It may be inferred that the distribution is 

close to normal.
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Figure 4.20 Plot of residuals vs. predicted SMSFT in linear model
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Figure 4.21 Plot of R-student values vs. predicted S MSFT in linear model
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Figure 4.22 Normal probability plot for SMSFT in linear model

Figure 4.23 presents a portion of the computer output from SAS PROC REG for 

STXN in our portfolio.

A n a ly s is  o f  V a r ia n c e

Sun o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M odel 3 112747 37582 7 9 1 .9 2 < .0001
E r r o r 520 2 4678 4 7 .4 5 7 3 4
C o r re c te d T o ta l  523 137425

R o o t MSE 6 .8 8 8 9 3 R -S q u a re 0 .8 2 0 4
D e p e n d e n t Mean 2 6 .0 9 4 0 3 A d j R -S q 0 .8 1 9 4
C o e f f  V a r 2 6 .4 0 0 4 0

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r  i a nce
V a r  i a b 1e DF E s t  im a te E r r o r t  V a 1ue  P r  > i t ! I n f 1a t  io n

I n t e r c e p t 1 2 6 .0 5 7 9 2 0 .3 0 0 9 5 8 6 .6 2 < .0 00 1 0
MRP 1 4 .7 2 1 9 3 0 .3 4 8 2 2 1 3 .5 6 < .0 00 1 2 .4 0 0 3 2
MktRP 1 0 .1 0 5 5 0 0 .0 0 2 7 8 3 7 .9 5 < .0 00 1 4 .1 8 6 5 9
VvsGP 1 -0 .0 0 9 1 3 0 .0 0 0 4 8 8 3 1 - 1 8 .7 0 < .0 00 1 3 .9 3 1 0 3

Figure 4.23 SAS PROC REG output for STXN in linear model

The F value of 791.92 is used to test the null hypothesis H 0 : PMRP = fiMktRP = P Vvsg p  =  0  • 

The associated p value of < 0.001 leads to the rejection of the null hypothesis and
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indicated that at least one of the coefficients is not zero. Since all three p values 

associated with three regression coefficients are less than 0 .0 0 0 1 , all three risk factors 

contribute significantly to the model. R-Square = 0.8204 means that a major portion (> 

82.04%) of the variation of STXN is explained by variation in the independent variables in

the model. The statistic Adj R-Sq = 0.8426 is adjusted for the number of parameters in 

the model. The maximum VIF = 4.187 < 10 implies that there is no serious problems 

with multicollinearity in this model. The fitted linear model for S TXN is

^ txn = 26.07 + A.122Rmrp + 0.10557?^.^ — 0.009137?^^ (4.36)

Figure 4.24 is the plot o f residuals versus predicted STXN and Figure 4.25 is the

plot of R-student versus predicted STXN. They both also show an outward-opening funnel

pattern implying that the variance is an increasing function of STXN. Figure 4.26 shows

that most of the points are close to a straight line but a few extreme points slightly deviate 

from the line. It may be inferred that the distribution is close to normal.
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Figure 4.24 Plot of residuals vs. predicted STXN in linear model
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Figure 4.25 Plot of R-student values vs. predicted STXN in linear model
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Figure 4.26 Normal probability plot for S TXN in linear model

4.5.3 Building Quadratic Models

4.5.3.1 Full model with non-centered 
regressors

The fitted three-factor quadratic regression models is 

Sstock  =  A )  +  A  X  ^ M R P  +  A  X  RM ktRP Pi X  R pvsG P  +  P\\ X ^ M R P

+  ( 3 22 X  R m tR p  +  (32,2 X  R-VvsGP A  2 X  X  R  MktRP (4.37)

+  A  3 X X  RM ktRP  "*■ 0 2 3  X  RM ktRP  X  R pvsG P  +  £  '

Figures 4.27-4.29 are the SAS outputs for the three stocks using the full model, Equation 

(4.35). The outputs show that for all three models the VIFs are very large, from several 

hundreds to several thousands, which means that those models have serious 

multicollinearity problems.
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A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M ode l 9 3 4 5 1G6 3 8 3 52 5 2 5 .4 5 < .0 0 0 1
E r r o r 514 37516 7 2 .9 8 8 4 7
C o r re c te d  T o ta l 523 382682

R o o t MSE 8 .5 4 3 3 3 R -S q u a re 0 .9 0 2 0
D e p e n d e n t Mean 7 8 .0 3 6 7 0 A d j R -S q 0 .9 0 0 2
C o e f f  V a r 1 0 .9 4 7 8 4

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r  i a n c e
V a r  ia b le DF E s t  im a te E r r o r t  V a lu e P r  > i t ! I n f l a t  io n

I n t e r c e p t 1 -7 1 .7 1 4 0 0 1 3 .6 1 5 2 5 - 5 . 2 7 < .0 0 0 1 0
MRP 1 4 3 .5 6 3 7 5 5 .6 4 6 8 0 7 .7 1 < .0 0 0 1 4 1 0 .4 1 6 7 8
M ktRP 1 0 .1 5 5 5 0 0 .0 6 1 0 5 2 .5 5 0 .0 1 1 2 1 3 1 3 .0 7 7 6 2
VvsGP 1 - 0 .0 1 6 0 7 0 .0 0 9 1 0 -1  .7 7 0 .0 7 7 9 8 8 6 .9 8 3 1 8
x i l 1 - 1 .6 8 1 3 4 0 .5 5 0 7 8 - 3 . 0 5 0 .0 0 2 4 8 1 .7 0 5 4 6
x 2 2 1 -0 .0 0 0 0 5 1 3 2 0 .0 0 0 0 3 7 9 7 -1  .3 5 0 .1 7 7 1 2 2 6 8 .2 2 8 4 4
x 3 3 1 - 6 . 0 4 0 5 7 E -7 6 .1 0 2 1 16E -7 - 0 . 9 9 0 .3 2 2 7 7 1 8 .6 6 6 1 7
x l  2 1 - 0 .0 2 5 7 0 0 .0 0 8 0 2 - 3 .2 1 0 .0 0 1 4 9 2 7 .3 1 9 8 6
x l  3 1 0 .0 0 0 3 6 5 1 8 0 .0 0 1 1 7 0 .3 1 0 .7 5 4 3 1 1 7 7 .4 2 5 7 6
x 2 3 1 0 .0 0 0 0 2 0 2 9 0 .0 0 0 0 0 7 3 7 2 .7 5 0 .0 0 6 1 2 3 2 6 .5 2 9 0 5

Figure 4.27 SAS PROC REG output for S1BM in full model with non-centered regressors

A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M ode l 9 40571 4 5 0 7 .9 3 5 0 7 5 6 4 .5 3 <■0001
E r r o r 514 4 1 0 4 .4 2 7 4 4 7 .9 8 5 2 7
C o r r e c te d  T o ta l 523 4 4 6 7 6

R o o t MSE 2 .8 2 5 8 2 R -S q u a re 0 .9 0 8 1
D e p e n d e n t Mean 2 3 .7 7 2 2 9 A d j R -S q 0 .9 0 6 5
C o e f f  V a r 1 1 .8 8 7 0 4

P a ra m e te r  E s t im a te s

V a r  ia b le DF
P a ra m e te r  

E s t  im a te
S ta n d a rd

E r r o r t  V a lu e P r  > i t i
V a r  ia n c e  

I n f l a t  io n

I n t e r c e p t 1 - 6 7 .1 9 2 0 4 4 .5 0 3 4 3 - 1 4 .9 2 < .0 0 0 1 0
MRP 1 1 6 .4 1 5 0 6 1 .8 6 7 7 6 8 .7 9 < .0 0 0 1 4 1 0 .4 1 6 7 8
M ktRP 1 0 .0 3 6 4 0 0 .0 2 0 1 9 1 .8 0 0 .0 7 2 0 1 3 1 3 .0 7 7 6 2
VvsGP 1 0 .0 0 9 9 1 0 .0 0 3 0 1 3 .2 9 0 .0 0 1 1 8 8 6 .9 8 3 1 8
x i l 1 -0 .6 6 1 4 1 0 .1 8 2 1 8 - 3 . 6 3 0 .0 0 0 3 81 .7 0 5 4 6
x 2 2 1 0 .0 0 0 0 2 6 4 4 0 .0 0 0 0 1 2 5 6 2 .1 1 0 .0 3 5 7 2 2 6 8 .2 2 8 4 4
x 3 3 1 - 1 . 0 4 9 0 6 E -7 2 .0 1 8 3 5 7 E -7 - 0 . 5 2 0 .6 0 3 5 7 1 8 .6 6 6 1 7
x 1 2 1 0 .0 0 9 7 8 0 .0 0 2 6 5 3 .6 9 0 .0 0 0 3 9 2 7 .3 1 9 8 6
x l  3 1 -0 .0 0 2 7 1 0 .0 0 0 3 8 5 7 8 - 7 . 0 3 < .0 0 0 1 1 1 7 7 .4 2 5 7 6
x 2 3 1 -0 .0 0 0 0 0 6 9 6 0 .0 0 0 0 0 2 4 4 - 2 . 8 6 0 .0 0 4 5 2 3 2 6 .5 2 9 0 5

Figure 4.28 SAS PROC REG output for SMSFT in full model with non-centered 
regressors
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A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M odel 9 125212 13912 5 8 5 .5 6 < .0 0 0 1
E r r o r 514 12212 2 3 .7 5 9 4 2
C o r re c te d T o ta l  523 137425

R o o t MSE 4 .8 7 4 3 6 R -S q u a re 0 .9 1 1 1
D e p e n d e n t Mean 2 6 .0 9 4 0 3 A d j R -S q 0 .9 0 9 6
C o e f f  V a r 1 8 .6 8 0 0 0

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r  i a n c e
V a r ia b le DF E s t im a te E r r o r t  V a 1u e  P r  > ! t ! I n f l a t  io n

I n t e r c e p t 1 2 9 .2 5 2 9 3 7 .7 6 8 1 3 3 .7 7 0 .0 0 0 2 0
MRP 1 2 .8 5 5 2 4 3 .2 2 1 7 6 0 .8 9 0 .3 7 5 9 4 1 0 .4 1 6 7 8
MktRP 1 -0 .0 8 8 9 0 0 .0 3 4 8 3 - 2 . 5 5 0 .0 1 1 0 1 3 1 3 .0 7 7 6 2
VvsGP 1 0 .0 0 0 7 3 2 5 7 0 .0 0 5 1 9 0 .1 4 0 .8 8 7 8 8 8 6 .9 8 3 1 8
x l  1 1 1 .3 9 0 5 9 0 .3 1 4 2 5 4 .4 3 < .0 0 0 1 8 1 .7 0 5 4 6
x2 2 1 0 .0 0 0 2 3 1 9 3 0 .0 0 0 0 2 1 6 7 1 0 .7 1 < .0 0 0 1 2 2 6 8 .2 2 8 4 4
x3 3 1 0 .0 0 0 0 0 4 6 9 3 .4 8 1 5 3 9 E -7 1 3 .4 6 < .0 0 0 1 7 1 8 .6 6 6 1 7
x l  2 1 0 .0 1 5 3 5 0 .0 0 4 5 7 3 .3 6 0 .0 0 0 9 9 2 7 .3 1 9 8 6
x l  3 1 -0 .0 0 3 2 9 0 .0 0 0 6 6 5 4 4 - 4 . 9 4 < .0 0 0 1 1 1 7 7 .4 2 5 7 6
x 2 3 1 -0 .0 0 0 0 5 5 3 9 0 .0 0 0 0 0 4 2 0 - 1 3 .1 8 < .0 0 0 1 2 3 2 6 .5 2 9 0 5

Figure 4.29 SAS PROC REG output for STXN in full model with non-centered regressors

4.5.3.2 Full model with centered regressors

The fitting of quadratic polynomials of several independent variables with means 

not equal to zero can create difficult multicollinearity problems, as shown in Section 

4.5.3.1. Specifically, the polynomials will be highly correlated due to the mean of the 

primary independent variable. With large numbers, this problem is very serious, and if 

proper protections are not put in place, can cause wrong results. One possible solution is 

to "center" the independent variables, i.e., to subtract the mean, and then to compute the 

polynomials. The formula for the centered-regressor quadratic regression model is

Sstock ~  Po + P\ X  ^ M R P  +  Pi X RMktRP Pi X  ^  VvsGP +  P\\ X ^
12
MRP

+  P22 X RMktRp + / ? 33 X RyvsGp + Px2 X Rmrp x RaMktRP (4.38)

+  / ? 13 X Rmrp x  RmtRp + P22 x  RMktRp x  RVvsGp + £ ,
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where R Mr p  — R m r p  R m r p  > ^ m m r p  ~ ^ m m r p  RMktRP an(  ̂ V̂vsGP ^ VvsGP R v v s G p  ■

Figures 4.30-4.32 are the SAS outputs for the three stocks in the full regressor- 

centered model. The outputs show that for all three models the VIFs are improved very 

much but they are still larger than 10, which still indicates that those models have 

multicollinearity problems. To solve this problem, we seek variable selection using all 

possible regressions and stepwise regression methods.

A n a 1y s  i s  o f  M ar i a n ce

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M odel 9 34 5 16 6 38352 5 2 5 .4 5 < .0 0 0 1
E r r o r 514 3 7516 7 2 .9 8 8 4 7
C o r re c te d T o ta l  523 3 82682

R o o t MSE 8 .5 4 3 3 3 R -S q u a re 0 .9 0 2 0
D e p e n d e n t Mean 7 8 .0 3 6 7 0 A d j R -S q 0 .9 0 0 2
C o e f f  V a r 1 0 .9 4 7 8 4

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r  i a n c e
V a r  ia b le DF E s t im a te E r r o r t  V a 1ue  P r  > ! t ! I n f  1a t  io n

I n t e r c e p t 1 7 7 .8 2 8 7 1 0 .9 1 6 3 8 8 4 .9 3 < .0 0 0 1 0
MRP 1 1 1 .6 0 9 5 5 0 .7 0 2 7 1 1 6 .5 2 < .0 0 0 1 6 .3 5 5 9 2
MktRP 1 0 .1 3 8 9 7 0 .0 0 7 8 1 1 7 .7 9 < .0 0 0 1 2 1 .4 8 9 5 9
VvsGP 1 -0 .0 0 2 0 7 0 .0 0 1 3 9 -1  .4 9 0 .1 3 7 5 2 0 .6 9 0 1 1
x i l 1 -1 .6 8 1 3 4 0 .5 5 0 7 8 - 3 . 0 5 0 .0 0 2 4 6 .2 1 9 8 7
x 2 2 1 -0 .0 0 0 0 5 1 3 2 0 .0 0 0 0 3 7 9 7 -1  .3 5 0 .1 7 7 1 3 5 .6 2 9 8 5
x 3 3 1 - 6 . 0 4 0 5 7 E -7 6 .1 0 2 1 1 6 E -7 - 0 . 9 9 0 .3 2 2 7 1 1 .2 3 5 6 5
x l  2 1 -0 .0 2 5 7 0 0 .0 0 8 0 2 - 3 .2 1 0 .0 0 1 4 2 6 .5 4 7 7 1
x l  3 1 0 .0 0 0 3 6 5 1 8 0 .0 0 1 1 7 0 .3 1 0 .7 5 4 3 1 0 .8 6 9 3 3
x 2 3 1 0 .0 0 0 0 2 0 2 9 0 .0 0 0 0 0 7 3 7 2 .7 5 0 .0 0 6 1 4 7 .3 3 2 6 7

Figure 4.30 SAS PROC REG output for SIBM in full model with centered regressors
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A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M odel 3 40571 4 5 0 7 .9 3 5 0 7 5 6 4 .5 3 < .0 00 1
E r r o r 514 4 1 0 4 .4 2 7 4 4 7 .9 8 5 2 7
C o r re c te d T o ta l  523 4 4 6 76

R o o t MSE 2 .8 2 5 8 2 R -S q u a re 0 .9 0 8 1
D e p e n d e n t Mean 2 3 .7 7 2 2 9 A d j R -Sq 0 .9 0 6 5
C o e f f  V a r 1 1 .8 8 7 0 4

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r  i a n c e
M ar i a b 1e DF E s t im a te E r r o r t  V a 1ue  P r  > ! 1 1 I n f 1a t  io n

In t e r c e p t 1 2 7 .2 3 2 4 3 0 .3 0 3 1 0 8 9 .8 5 < .0 0 0 1 0
MRP 1 4 . 784G4 0 .2 3 2 4 3 2 0 .5 9 < .0 0 0 1 6 .3 5 5 9 2
MktRP 1 0 .0 6 3 1 7 0 .0 0 2 5 8 2 4 .4 5 < .0 0 0 1 2 1 .4 8 9 5 9
VvsGP 1 -0 .0 0 4 5 9 0 .0 0 0 4 5 9 5 3 - 9 . 9 8 < .0 0 0 1 2 0 .6 9 0 1 1
x i l 1 -0 .6 6 1 4 1 0 .1 8 2 1 8 - 3 . 6 3 0 .0 0 0 3 6 .2 1 9 8 7
x 2 2 1 0 .0 0 0 0 2 6 4 4 0 .0 0 0 0 1 2 5 6 2 .1 1 0 .0 3 5 7 3 5 .6 2 9 8 5
x 3 3 1 - 1 . 0 4 9 0 6 E -7 2 .0 1 8 3 5 7 E -7 - 0 . 5 2 0 .6 0 3 5 1 1 .2 3 5 6 5
x l  2 1 0 .0 0 3 7 8 0 .0 0 2 6 5 3 .6 9 0 .0 0 0 3 2 6 .5 4 7 7 1
x l  3 1 -0 .0 0 2 7 1 0 .0 0 0 3 8 5 7 8 - 7 .0 3 < .0 0 0 1 1 0 .8 6 9 3 3
x 2 3 1 -0 .0 0 0 0 0 6 9 6 0 .0 0 0 0 0 2 4 4 - 2 .8 6 0 .0 0 4 5 4 7 .3 3 2 6 7

Figure 4.31 SAS PROC REG output for SmFT in full model with centered regressors

A n a ly s is  o f  V a r ia n c e

Sum o f  Mean
S o u rce DF S q u a re s S q u a re F V a lu e P r  > F

M odel 9 125212 13912 5 8 5 .5 6 < .0001
E r r o r 514 12212 2 3 .7 5 9 4 2
C o r re c te d  T o ta l 523 137425

R o o t MSE 4 .8 7 4 3 6 R -S q u a re 0 .9 1 1 1
D e p e n d e n t Mean 2 6 .0 9 4 0 3 A d j R-Sq 0 .9 0 9 6
C o e f f  V a r 1 8 .6 8 0 0 0

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r i a nce
V a r ia b le DF E s t  im a te E r r o r t  V a lu e P r  > i t i I n f l a t  io n

In te r c e p t 1 1 8 .41 5 8 5 0 .5 2 2 8 4 3 5 .2 2 < .0 00 1 0
MRP 1 1 .3 63 5 6 0 .4 0 0 9 3 3 .4 0 0 .0 0 0 7 6 .3 5 5 9 2
MktRP 1 0 .0 4 4 9 8 0 .0 0 4 4 6 1 0 .0 9 < .0 00 1 2 1 .4 8 9 5 9
VvsGP 1 0 .0 0 1 6 8 0 .0 0 0 7 9 2 6 6 2 .1 2 0 .0 3 4 3 2 0 .69 0 1 1
x i l 1 1 .3 90 5 9 0 .3 1 4 2 5 4 .4 3 < .0 00 1 6 .2 1 9 8 7
x2 2 1 0 .0 0 0 2 3 1 9 3 0 .0 0 0 0 2 1 6 7 10 .71 <•0001 3 5 .6 2 9 8 5
x3 3 1 0 .0 0 0 0 0 4 6 9 3 .4 8 1 53 9 E -7 1 3 .4 6 < .0 00 1 1 1 .2 3 5 6 5
x1 2 1 0 .0 1 5 3 5 0 .0 0 4 5 7 3 .3 6 0 .0 0 0 9 2 6 .54 7 7 1
x13 1 -0 .0 0 3 2 9 0 .0 0 0 6 6 5 4 4 - 4 .9 4 < .0 00 1 1 0 .8 6 9 3 3
x23 1 -0 .0 0 0 0 5 5 3 9 0 .0 0 0 0 0 4 2 0 - 1 3 .1 8 < .0 00 1 4 7 .3 3 2 6 7

Figure 4.32 SAS PROC REG output for STXN in full model with centered regressors
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4.5.3.3 Best model with centered regressors

The following procedure is used for selecting the best model for our stock 

portfolio:

1. Select candidate models from stepwise, forward, backward and all possible 

regressions based on R-Square, Adj R-sq, MSE and c(p).

2. For each candidate model, run PROC REG again to check on the variation 

inflation factor (VIF).

3. Select the best model that has the least VIF value.

4. Use the model to check for normality of residuals and outliers by normal 

probability plot, R-student plot and residual plot.

The following figures show the final best model for each stock.

Figure 4.33 presents a portion of the computer output from SAS PROC REG for 

the IBM stock in the reduced quadratic model. The F value of 1163.81 is used to test the 

null hypothesis H 0 : p MRP = j3MktRP = fiMRp2 = PMRPyvsGP = 0. The associated p value of <

0.001 leads to the rejection of the null hypothesis and indicated that at least one of the 

coefficients is not zero. Since the p values associated with the four regression coefficients 

are less than 0.0001, all factors in the model are significant. In addition to the risk 

factors Rmrp and RMktRP, the quadratic term of RMktRP and the cross-product term of Rmrp 

and RVvsGP contribute significantly to the model. R-Square = 0.8997 which is better than

the linear model’s R-Square (0.8832). The statistic Adj R-Sq = 0.8989 is also higher than 

the linear model’s R-Square (0.8825). The maximum VIF = 1.88 < 10 implies that there 

is no serious problems with multicollinearity in this model.
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A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M ode l 4 34 4 29 7 8 6074 1 1 6 3 .8 1 < .0 0 0 1
E r r o r 519 3 8385 7 3 .9 5 9 2 3
C o r re c te d  T o ta l 523 38 2 68 2

R o o t MSE 8 .5 9 9 9 6 R -S q u a re 0 .8 9 9 7
D e p e n d e n t Mean 7 8 .0 3 6 7 0 A d j R -S q 0 .8 9 8 9
C o e f f  V a r 1 1 .0 2 0 4 0

V a r  ia b le DF
P a ra m e te r  

E s t  im a te

P a ra m e te r  E s t im a te s

S ta n d a rd
E r r o r  t  V a lu e P r  > i t i

V a r  i a n c e  
I n f l a t  io n

I n t e r c e p t 1 7 6 .1 1 5 6 2 0 .5 4 7 7 3 1 3 8 .9 7 < .0 0 0 1 0
MRP 1 1 0 .8 6 8 0 4 0 .3 8 4 6 4 2 8 .2 6 < .0 0 0 1 1 .8 7 9 2 6
MktRP 1 0 .1 2 8 8 0 0 .0 0 2 0 3 6 3 .3 5 < .0 0 0 1 1 .43691
x 2 2 1 0 .0 0 0 0 6 0 7 4 0 .0 0 0 0 0 7 8 5 7 .7 4 < .0 0 0 1 1 .5 0 2 0 8
x l  3 1 -0 .0 0 2 6 8 0 .0 0 0 3 9 7 9 7 - 6 . 7 3 < .0 0 0 1 1 .2 4 8 9 2

Figure 4.33 SAS PROC REG output for SIBM in best model with centered regressors

The fitted best model for SIBM is

S,BM = 76.116 + 10.8687?MftP + 0.1288RMktRP + 0.00000060747?2 -  0.00268i?w i?KvjG/3.

(4.39)

Figure 4.34 is the plot of R-Student residuals versus predicted IBM price. The pattern 

shows no specific error pattern exhibited by the residuals of the linear model, but it shows 

that larger residuals are associated with larger values of the response variable. Figure 

4.35 shows that most of the points are close to a straight line but a few extreme points 

slightly deviate from the line. It may be inferred that the distribution is close to normal.
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Figure 4.34 Plot of R-student residuals vs. predicted SIBM in best model with centered 
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Figure 4.35 Normal probability plot for SIBM in best model with centered regressors
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Figure 4.36 presents a portion of the computer output from SAS PROC REG for 

the MSFT stock in the case of the best reduced model.

A n a ly s is  o f  V a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M odel 6 4 0 4 3 4 6 7 3 9 .0 2 1 8 8 8 2 1 .3 8 < .0 00 1
E r r o r 517 4 2 4 1 .7 1 1 7 9 8 .2 0 4 4 7
C o r re c te d T o ta l  523 4 4 6 7 6

R o o t MSE 2 .8 6 4 3 4 R -S q u a re 0 .9 0 5 1
D e p e n d e n t Mean 2 3 .7 7 2 2 9 A d j R -S q 0 .9 0 4 0
C o e f f  V a r 1 2 .0 4 9 0 9

P a ra m e te r  E s t im a te s

P a ra m e te r S ta n d a rd V a r  ia n c e
V a r  i a b 1e DF E s t im a te E r r o r t  V a 1u e  P r  > I t ! I n f l a t  io n

I n t e r c e p t 1 2 7 .5 2 2 5 6 0 .2 8 7 5 6 9 5 .7 1 < .0 0 0 1 0
MRP 1 4 .9 9 7 0 1 0 .1 9 5 6 4 2 5 .5 4 < .0 0 0 1 4 .3 8 2 6 7
MktRP 1 0 .0 6 6 9 8 0 .0 0 1 5 1 4 4 .4 7 < .0 0 0 1 7 .1 0 9 9 0
VvsGP 1 -0 .0 0 5 3 1 0 .0 0 0 3 1 9 4 3 - 1 6 .6 2 < .0 0 0 1 9 .7 3 0 4 4
x i l 1 -1 .1 5 0 5 8 0 .0 9 1 6 6 - 1 2 .5 5 <■0001 1 .5 3 2 5 2
x 2 2 1 -0 .0 0 0 0 2 0 1 0 0 .0 0 0 0 0 3 5 9 - 5 . 6 0 < .0 0 0 1 2 .8 3 3 8 9
x l  3 1 -0 .0 0 1 7 3 0 .0 0 0 1 5 5 2 7 - 1 1 .1 6 < .0 0 0 1 1 .7 1 3 7 4

Figure 4.36 SAS PROC REG output for SMSFT in best model with centered regressors

The F value of 821.38 is used to test the null hypothesis

t f o  : f t  MRP  =  P MktRP =  P  VvsGP =  P M RP2 =  P M ktRP2 =  P M RP,VvsGP ~  ®  •

The associated p value of < 0.0001 leads to the rejection of the null hypothesis and 

indicated that at least one of the coefficients is not zero. Since all the p values associated 

with six regression coefficients are less than 0.0001, all three risk factors contribute 

significantly to the model. Also, the quadratic terms of Rmrp and RmtRP and the cross-

product term of Rmrp and RVvsCP contribute significantly to the model. R-Square = 0.905 

is better than the linear model’s (0.8435). The statistic Adj R-Sq = 0.904 is also larger
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than the linear model’s (0.8426). The maximum VIF = 9.73 < 10 implies that there are no 

serious problems with multicollinearity in this model.

The fitted linear model for SMSFT is

m s f t  ~ 27.523 + 4.997Rmrp + ®-Q67RMktRP 0.0053 li?pvjGp 1.151 R 2mrp

0.00002RMktRP 0.00173RmrpRVvsGP (4.40)

Figure 4.37 is the plot of R-Student residuals versus predicted MSFT price. The 

figure shows no specific error pattern exhibited by the residuals of the linear model. 

Figure 4.38 shows that most of the points are close to a straight line, but a few extreme 

points slightly deviate from the line. It may be inferred that the distribution is close to 

normal.
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Figure 4.37 Plot of R-student residuals vs. predicted SMSFT in best model with centered 
regressors
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Figure 4.38 Normal probability plot for SMSFT in best model with centered regressors

Figure 4.39 presents a portion of the computer output from SAS PROC REG for 

the TXN stock in the case of the best reduced model.

A n a ly s t s  o f  M a r ia n c e

Sum o f Mean
S o u rc e DF S q u a re s S q u a re F V a lu e P r  > F

M ode l 5 124372 2 4874 9 8 7 .1 6 < .0 0 0 1
E r r o r 518 13053 2 5 .1 9 8 0 4
C o r re c te d  T o ta l 523 137425

R o o t MSE 5 .0 1 9 7 6 R -S q u a re 0 .9 0 5 0
D e p e n d e n t Mean 2 6 .0 9 4 0 3 A d j R -S q 0 .9 0 4 1
C o e f f  W ar 1 9 .2 3 7 2 2

V a r  i a b 1e DF
P a ra m e te r

E s t im a te

P a ra m e te r  E s t im a te s

S ta n d a rd
E r r o r  t  V a lu e P r  > i t !

V a r  i a n c e  
I n f l a t  io n

I n t e r c e p t 1 1 8 .7 6 4 8 1 0 .3 9 6 8 6 4 7 .2 8 < .0 0 0 1 0
MktRP 1 0 .0 3 2 4 9 0 .0 0 2 2 8 1 4 .2 8 < .0 0 0 1 5 .2 8 5 7 7
VvsGP 1 0 .0 0 3 9 7 0 .0 0 0 4 3 1 8 3 9 .2 0 < .0 0 0 1 5 .7 8 9 9 5
x 2 2 1 0 .0 0 0 2 0 9 7 7 0 .0 0 0 0 0 9 1 0 2 3 .0 6 < .0 0 0 1 5 .9 2 4 8 4
x 3 3 1 0 .0 0 0 0 0 3 7 8 2 .7 0 1 8 9 E -7 1 3 .9 8 < .0 0 0 1 6 .3 8 0 5 8
x 2 3 1 -0 .0 0 0 0 4 6 6 4 0 .0 0 0 0 0 1 8 9 - 2 4 .7 0 < .0 0 0 1 9 .0 0 2 6 4

Figure 4.39 SAS PROC REG output for STXN in best model with centered regressors
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The F value of 987.16 is used to test the null hypothesis

H 0  • P M k tR P  P v v s G P  f t  M ktRP1 P v v s G P 2 P M ktR P ,V vsG P  ^  '

The associated p value of < 0.0001 leads to the rejection of the null hypothesis and 

indicated that at least one of the coefficients is not zero. Since all the p values associated 

with five regression coefficients are less than 0.0001, the RMktRP and RVvsGP, the quadratic

terms of RMktRP and RVvsCP and the cross-product term of RmtRP and RVvsCP contribute

significantly to the model. R-Square = 0.9050 is a large improvement on the linear 

model’s 0.8204. The statistic Adj R-Sq = 0.9041 is also much better than 0.8426 of the 

linear model. The maximum VIF = 9.00264 < 1 0  implies that there is no serious 

problems with multicollinearity in this model.

The fitted linear model fo rS ^ , is

STXN = 18.765 + 0 .0 3 2 5 R „  + 0.00397RVvsGP + 0.0002 l i ? ^

+ 0.00000378^vjG/, -  0.0046647?mtRP RVvsGP (4.41)

Figure 4.40 is the plot of R-student residuals versus predicted TXN price. It 

shows an outward -opening funnel pattern implying that the variance is an increasing 

function of STXN. Figure 4.41 shows that extreme points deviate slightly from a straight 

line which may infer that the distribution has a heavy tail, but not far from normal.
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Figure 4.41 Normal probability plot for SrXN in best model with centered regressors
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4.6 Results and Discussions

1. Regression analysis can be used to quantitatively measure the impact of multiple 

independent variables (risk factors) on a dependent variable (stock).

2. Quadratic models are better than linear models in our stock portfolio.

3. Statistical methods, such as all possible regression and stepwise regression (forward, 

backward, and stepwise) can be used to determine the set of risk factors that most 

effectively explain the stock value. The best model is selected according to criterions, 

such as R-square, Adj Sq, MSE, c(p) and VIF.

4. Graphical analysis is used to check on model adequacy.

5. The models developed in this chapter will be used in the VaR transformation 

procedure which is the content of the next chapter.
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CHAPTER 5

SIMULATIONS IN TRANSFORMATION 

PROCEDURE

5.1 Introduction

There are six sections of this chapter. The first section is an introduction -  a 

review of a transformation procedure in VaR measure. The second section is a discussion 

about the Monte Carlo method. The third section is a discussion about statistical 

multivariate distributions. The fourth section is simulation of four kinds of multivariate 

distributions using the Monte Carlo method. The fifth section is Monte Carlo 

transformation based on the three-factor models in Chapter 4. The last section is the 

results and discussions for this chapter.

As mentioned in Chapter 4, risk has two components: exposure and uncertainty.

By specifying a portfolio mapping function 9 in lP = O ^R), a mapping procedure

describes exposure. By characterizing the joint distribution for 1R , an inference 

procedure describes uncertainty. A transformation procedure combines exposure and 

uncertainty to describe the distribution of lP , according to which we can summarize the 

value of any VaR metric. Hence, the transformation procedure describes risk.

The position of transformation procedure is highlighted in Figure 5.1.

148
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Procedure

Mapping
Procedure
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Procedure

Figure 5.1 A reproduction of Figure 2.1 [21]
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The chart in Figure 5.1 shows that a transformation procedure combines the 

outputs from the mapping and inference procedures and uses them to characterize the 

distribution of XP, conditional on information available at time 0. Based on that 

characterization, and perhaps the portfolio's current value °p, the transformation 

procedure determines the value of the desired VaR metric. The result is the VaR 

measurement. The characterization of the conditional distribution of XP  may be a standard 

deviation, probability density function (pdf), characteristic function, or some other 

representation. If the characterization is sufficiently general to support any reasonable 

VaR metric, the transformation is complete. Otherwise, it is incomplete.

There are three types of transformations in VaR measures: linear transformations,

quadratic transformations, and Monte Carlo transformations. Linear and quadratic

transformations apply to linear and quadratic portfolios, respectively. Monte Carlo 

transformations apply to all portfolios.

5.1.1 Linear Transformations

Linear transformations are applicable to portfolios whose portfolio mapping 

function is a linear polynomial. Such portfolios include portfolios of equities, physical 

commodities, or futures. The market value of such portfolios depends linearly upon 

applicable key factors. Consider a portfolio (°p,xP) with a linear portfolio mapping

xP = 0(1R )= bnR + a (5.1)

where b is a vector and a is a scalar.

The mean and standard deviation of lP are given by

°E([P) = b 'x  jus + a , (5.2)
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and

0Std{xP ) = sl°VarCP) = j b ’x]0T b  , (5.3)

where 1,0 X is the covariance matrix for R at time 1 conditional on the information at time

0. On its own, a standard deviation is not sufficient to determine a quantile, so it’s an

incomplete transformation. To complete the transformation, additional assumptions have 

to be made. Usually the standard assumptions are to specify a value for °E('P) and 

assume that lP  is conditionally normal.

XP  ~ N{°E{xP),{0Std(xP))2) (5.4)

xP=°Std(xP)Z+°E(xP), Z ~ N {  0,1) (5.5)

The standard deviation of loss is

0Std(xL)=0Std(°p-xP)=0StdCP) • (5.6)

Based on Equation (5.5), it follows that any quantile of an N(ju, a 2) distribution occurs a 

distance from its mean p  that is a fixed multiple of a . Therefore, a q-quantile-of-loss 

VaR metric is calculated as

=°p -  l"£('P ) + fl>;‘ (1 -  q>°StdCP)\

=°p-°E(xP) + O '1 (q)x°Std(xP)•

If the VaR horizon is short, e.g. a day or a week, it is reasonable to assume °E(xP)=°p. In 

this case, Equation (5.7) becomes

1|0o ; ; ( ? ) = o - 1(^)0̂ ( 1JP). (5.8)
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Figure 5.2 is an example of q = 0.9.

10%
probability

1*1

portfolio expected  
value

portfolio current 
value

90%  VaR

^  ° C ( l p ) - 0 r )

1 .282  %fd(1P)

Op 0f(lp)

Figure 5.2 A graphical derivation of Equation (5.7) when q = 0.9. [46]

The 90% loss occurs at a portfolio value 1.282 standard deviations below the portfolio's 

expected value (the mean of the distribution). However, loss is calculated relative to the 

portfolio's current value as opposed to its expected value, which is why Equation (5.7) 

includes the [0E'(1P ) - 0/?]term.

5.1.2 Quadratic Transformations

Quadratic transformations are applicable to quadratic portfolios. Consider a 

portfolio (°p,'P) with quadratic portfolio mapping

where a  ~ 7Vn(1|0/},ll°X ), C is a symmetric n x n matrix, b is a vector and a is a scalar. 

1,0 X is assumed positive definite. The standard deviation of loss is

1P = 0('R)=1RC'R + b'R + a , (5.9)

0StdCL)=°StdCP) = yl°ECP2)-°ECP)2 . (5.10)
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Quantile-based VaR metrics are difficult to calculate. Various solutions have been 

proposed, such as approximate solution using Johnson’s curves [52][53], Comish-Fisher 

expansion [54][55], and Fast Fourier Transform [56], The quadratic transformations 

described in these papers differ in various respects, but they all employ the mathematics 

of quadratic polynomials of joint-normal random vectors. Their collective solution can 

reasonably be called the quadratic transformation. However, all these methods are based 

on the assumption that the key factors have a joint-normal distribution. In the real world, 

data are not normally distributed. They may be skewed and heavy-tailed. Since we are 

using four different multivariate distributions to simulate the key factors, the quadratic 

transformation is not appropriate for our research. An obvious solution to our situation is 

to apply the Monte Carlo method.

5.1.3 Monte Carlo Transformations

There are two steps in Monte Carlo transformations of VaR measures: (1) 

randomly generate realizations lr [k] based on the joint distribution of 1R characterized in 

the inference procedure; and (2) construct a histogram of realizations 1 p [k] = 9( ' r[k] ) of 

lP.

Historical transformations are identical to Monte Carlo transformations except for 

one difference. Both employ the Monte Carlo method to construct a histogram of 

realizations ' p [k] = 0(xr [k]) of XP . The difference lies in how they construct realizations 

lr [k] for XR . Monte Carlo transformations randomly generate them based upon a 

characterization of the distribution of lR.  Historical transformations employ realizations 

xr [k]constructed from historical market data for XR .
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Monte Carlo transformations are flexible. We can model either the portfolio 

mapping function 9 or the joint distribution that is assumed for lR or both. The joint 

distribution is not limited to joint-normal.

One of the major purposes o f this research is to study how changes in the 

distribution of risk factors will affect the distributions of stock prices assuming that the 

stock is exposed to those three risk factors. In other words, instead of assuming joint- 

normal distribution for risk factors and normal distribution for portfolio value, other 

distributions may be chosen according to the historical data of the risk factors. In this

case, the distribution of the portfolio value lP  could be different from normal 

distribution. Following the two steps mentioned above, Monte Carlo transformations

make it possible to model different joint distributions for lR and to investigate the impact

of the different distributions of on the distribution of 'P by comparing them with 

results under the normal assumption. This study provides more complete and valuable 

information for risk analysis and portfolio optimization.

5.2 Monte Carlo Method

5.2.1 Overview

The Monte Carlo (MC) method was originally practiced under more generic 

names such as "statistical sampling". It includes any technique of statistical sampling 

used to approximate solutions to quantitative problems. The real use o f the Monte Carlo 

method as a research tool stems from work on the atomic bomb during the Second World 

War. This work involved a direct simulation of the probabilistic problems concerned with 

random neutron diffusion in fissile material. The generally accepted birth date of the
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Monte Carlo method is 1949, when the article entitled “The Monte Carlo method” by 

Metropolis and Ulam appeared [57]. The name “Monte Carlo” comes from the city in the 

Monaco principality because of a roulette, a simple random number generator. (Monte 

Carlo is a city of Monaco, where the primary attractions are casinos containing games of 

chance, such as roulette wheels, dice, and slot machines, all of which exhibit random 

behavior.)

The Monte Carlo method is a numerical method of solving a mathematical 

problem by the simulation of random variables (random sampling) [57]. It provides 

approximate solutions to a variety of mathematical problems by performing statistical 

sampling experiments on a computer. This method applies to probabilistic problems as 

well as deterministic problems. Its efficiency relative to other numerical methods 

increases when the dimension of the problem increases [21].

Monte Carlo simulation produces results using a stochastic model, rather than an 

actual experiment with a real system under study. It is regarded as mathematical 

experimentation and best fit to modem computers [58].

There are two distinctive features of the Monte Carlo Method [57]: (1) The 

simple structure of the computation algorithm. As a rule, a program is written to carry out 

one random trial. This trial is repeated N  times, each trial being independent of the rest, 

and then the results of all trials are averaged. Therefore, the Monte Carlo method is also 

called the method of statistical trials. (2) The error of calculations is proportional

to s l D / N , where D is some constant, and N  is the number of trials. Hence, to decrease 

the error, it is necessary to increase N.
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Because of the repetition of algorithms and the large number of calculations 

involved, Monte Carlo is a method suited to calculations using a computer. The Monte 

Carlo method enables simulation of any process whose development is influenced by 

random factors. For many mathematical problems involving no chance, the method also 

enables us to artificially construct a probabilistic model (or several such models), making 

possible the solution of the problems. Thus, the Monte Carlo method is a universal 

numerical method for solving mathematical problems. It is used in everything from 

economics to nuclear physics to regulating the flow of traffic. Of course the way it is 

applied varies widely from field to field. But, strictly speaking, to call something a 

"Monte Carlo" experiment, all you need to do is use random numbers to examine some 

problem. For example, the Monte Carlo method is useful for modeling phenomena with 

significant uncertainty in inputs, such as the calculation o f risk in business.

5.2.2 Mathematical Background

5.2.2.1 Prerequisites

For a family of independent and identically distributed (iid) random variables 

X i, X 2,..., define the partial-sum process {Sn} by

n =1,2,..., (5.11)

with S0 = 0. Associated with Snis the sample mean defined by X n = S n/tt. The iid

assumption leads to such classic limit theorems as the strong law of large numbers and 

the central limit theorem. In a statistical context, laws of large numbers imply that the 

average of a random sample from a large population is likely to be close to the mean of 

the whole population [58].
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Proposition 1. (Strong Law of Large Numbers) [57] [59] For a family o f iid 

random variables X x, X 2,.. .,  suppose that the mean // = E (X j) exists. Then

r  -  r  x 1+ x 2 + -  + x n A

hm X n = lim — ------     = //
n—>qo n—>oo f t  j

= 1. (5.12)

The strong law of large numbers ensures that the sample mean X n converges to 

the population mean n  almost surely as n —> oo. Therefore, the sample mean is used as 

an estimate of the population mean for large samples.

For a family of iid random variables X x, X 2, . . .,  suppose that E ( X f  )<<x>. Then

for Sn defined by Equation (5.11) and E ( X i) = fi and Var(Xi) = a 2, we have

E(Sn) = nju, Var(Sn) = ncr2. (5.13)

Proposition 2. (Central Limit Theorem) [58][59] For a family of iid random 

variables X l, X 2,.-- with finite mean fi and finite variance cr2 >0, define

z„ = x ‘ + x > + --■ ■ * . - « ? ' „ = 1 A _  (5A4)
cr^jn

Then,

lim P{Zn < x} = O (x), x e iH , (5.15)
co

where O(x) is the cumulative distribution fiinction (CDF) of the standard normal 

distribution given by

v 2 y
d t , x e iR . (5.16)I  ’

1 v 2n

The central limit theorem shows that the distribution of Zn converges towards the 

standard normal distribution N(0,1) as n approaches oo. If we draw a random sample of
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size n {xl x2, . . . , xn) from an infinite population with mean p  and variance a 2, then the 

probability distribution of the partial sum Sn can be approximated by the normal 

distribution N(nju,Ncr2) for sufficiently large n. This property makes the normal 

distribution special in stochastic models.

5.2.2.2 The general scheme of the 
Monte Carlo method

For any random variable X  and a real-valued function h(x), the composition h(X) 

is again a random variable under a regularity condition. Also, if X I, X 2,... are iid, then 

so are the random variables h(Xx) ,h(X2),.... Hence, for a family of IID random 

variables X l, X 2,.. .,  the strong law of large numbers ensures that [59]

= 1, (5.17)

provided that the expectation E[h(X)\ exists.

Suppose that we need to calculate some unknown quantity I. Let us try to find a 

function h(X) with E[h(X)\  = I . Assume that the variance of h(X)  is Var[h(X)~\ = a 2. 

Consider N independent random variables h(X l), h(X2 ),•••, h(XN) . If X x, X 2,... are iid 

and N  is sufficiently large, then it follows from the central limit theorem that the 

distribution of the sum p N = h(X{) + h( X2) + ... + h (XN) will be approximately normal,

with E(pN) = N x  I  and Var(pN) = <t 2N  . I  can be estimated based on Equation (5.17) 

for sufficiently large N. Hence, I  is approximated by the sample mean,

/ . Z „  (5.!8)
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The confidence interval of the value I  can be calculated based on the central limit 

theorem. Consider the probability

P{\Zn - I \ < s }  = a ,  s > Q ,

For a given confidence coefficient a  . By the central limit theorem, Z n is approximately 

normally distributed with mean I  = E[h(Xy\ and variance a 2 In , where

cr2 = Var[h{X) \ . It follows that

£ Z - I  £ \
p \  r -F =  ^  ^  — t t =  f  =  a

<7/yfn o /4 n  c /V n ,

and the normalized random variable 4 n (Z n - I ) / o  is approximated by the standard 

normal variable N (0,1). Denoting the 100(1 - a  )-percentile of the standard normal 

distribution by xa , we have 4 n e/ ct = xa/2. It follows that

£ = x a
a l l  ~ j =  ’ (5.19)

and the confidence interval for the estimate I with the confidence a  is given by

Z - x  a  Z  + x  —  -n a l l  I 5 n a l l  I—
yjn V«

When the variance cr2 is unknown, cr2 is approximated by the sample variance

n -  1m

Equation (5.19) can be seen in another way. Suppose that the confidence coefficient a  as 

well as the confidence interval £ > 0 is given. Then, the problem is how many samples

r   \
are enough to guarantee the confidence level. The answer is n =

ox.a l l
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The idea behind Monte Carlo method is very easy to understand. Each expected 

value can be estimated by sampling. The expected value is a weighted sum of function 

values, where all weights are equal and the sampling points are chosen at random. Using 

statistics, one can make statements about the accuracy of the result. The uncertainty in the 

result decreases proportional to the square root of the number of points, independent of 

the complexity of the original problem.

5.2.3 Generation of Random Numbers

A random number is a realization of a random variable. A random vector is a 

realization of a multivariate random variable. Random numbers (or vectors) are called iid, 

if they are realizations of iid (multivariate) random variables. For iid random 

variablesX ], X 2,.. .,  the sample mean X n is an estimator of the population mean

(i = E ( X x).  For realizations xx,x 2,... of those random variables, the realization of X n,

i.e. (jc, + x2 h— x n) / n ,  is called an estimate of the mean. In statistics, an estimate is a 

realization of an estimator. In the case of Monte Carlo simulation, the terms “random 

numbers” and “random variables” are used interchangeably.

Suppose that a random variable X is defined by

X  = f ( Z l , Z 2, . . . ,Zn) ,

for some random variables Zl,Z 2, . . . ,Z n and a function f ( z i , z2, . . . ,zn). Let

(z\,z'2, . . . , z ln) be the ith random vector of the multivariate random variable

(Z,, Z2,..., Z n) . Realizations of X are generated by

x ‘ = / ( z , ' ,z ' , . . . ,z ') ,  * = 1,2,...
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If the random vectors (z[,z,2, . . . , z ,n) are iid, the value x ‘ are iid random numbers of X. 

According to the strong law of large number,

.x' + x 2 + — + x"E(X) = j j . -  lim
n~* co n

A random number generated from the standard uniform distribution U(0, 1) is called a 

uniform random number.

Interestingly, the Monte Carlo method does not require truly random numbers to 

be useful. Much of the most useful techniques use deterministic, pseudo-random 

sequences, making it easy to test and re-run simulations. The only quality usually 

necessary to make good simulations is for the pseudo-random sequence to appear 

"random enough" in a certain sense. What this means depends on the application, but 

typically they should pass a series of statistical tests. Testing that the numbers are 

uniformly distributed or follow another desired distribution when a large enough number 

of elements of the sequence are considered is one of the simplest and most common ones.

Computer-generated numbers aren't really random, since computers are 

deterministic. But, given a number to start with-generally called a random number seed-a 

number of mathematical operations can be performed on the seed so as to generate 

unrelated (pseudorandom) numbers. The output of random number generators is tested 

with rigorous statistical tests to ensure that the numbers are random in relation to one 

another. One should be aware of this: If you use a random number seed more than once, 

you will get identical random numbers every time. Thus, for multiple trials, different 

random number seeds must be used. Commercial programs, like Mathematica, pull a
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random number seed from somewhere within the system, perhaps the time on the clock, 

so the seed is unlikely to be the same for two different experiments.

5.2.3.1 Linear congruential method

The most widely used pseudorandom number generators are linear congruential 

generators (LCGs). A sequence of integers are generated by the recursive relation

where a, c, and m are preselected constants. There is another preselected constant, xl , 

called seed. It is the first number in the LCG output stream. The modular notation “mod” 

indicates that x n is the remainder after dividing the quantity axn_x + c by m.

The sequence {xn} is called pseudo random because they are not random. It is 

well known that xn+l = xn for some I < m , so that the same value appears periodically.

Numerical Recipes in C advocates a generator of this form with: a = 1664525, c = 

1013904223, m = 23 2  [6 6 ]. The following LCG is used in various operating systems and 

software packages, such as IMSL and MATLAB [14]:

5.2.3.2 Multiple-recursive generators

Multiple-Recursive Generators (MCGs) are generalizations of LCGs that have 

high periods but still can be implemented with single precision floating-point arithmetic.

xn = axn_x + c (modw), n = 1 ,2 , (5.20)

(5.21)

jc, =16807x„_1mod(231 -1 ) .

=  a i X n-X +  a 2 X n - 2  +  ‘ ‘ ‘ +  a k X n - k  ( m ° d « )  , (5.22)

and un = xn/m , (5.23)
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for some positive integer n, positive integers ax,a2,. . . ,ak , and seed values x 0 , xx,..., xk_x. 

Through judicious selection of the parameters, an MCG can have a period as high as 

mn -1  [14].

5.2.3.3 Inversive generators

Inversive generators are nonlinear generators which use modular inversion to 

generate pseudorandom numbers.

An integer b , 0 < b < m , is the inverse of an integer b mod m if  bb = lmodw 

for b ^  0  and b = 0  for b = 0 .

Inverse congruential generator (ICG) is defined as 

xn = axn_x + c(mod/w),

un = x n/m .

Explicit inverse congruential generator (EICG) is defined as 

xn = a(n + nQ) + c(modm), 

u„ = x j  m .n ft

5.2.4 Variance Reduction Methods

From Equation (5.19) we can see that the accuracy of Monte Carlo simulation is

given by ^  ̂  ̂ , where ^  ~ X“/2<T is the constant of the proportionality. To improve the 

accuracy of Monte Carlo estimate, we can reduce the variance a . Any methods to reduce 

the variance of an estimate are called variance reduction methods.

5.2.4.1 Importance sampling

Importance sampling (IS) is a variance reduction technique that can be used in the 

Monte Carlo method. The idea behind IS is that certain values of the input random
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variables in a simulation have more impact on the parameter being estimated than others. 

If these "important" values are emphasized by sampling more frequently, then the 

estimator variance can be reduced.

5.2.4.2 Antithetic variates

In this technique, for some unknown quantity I, we need to find two unbiased

estimators Y' and Y" which have a strong negative correlation. In this case, ^ (Y '  + Y”)

will be an unbiased estimator of /w ith  variance [60]

The variance can be reduced dramatically if  the covariance term is strongly negative.

5.2.4.3 Control variates T58]

Suppose that two estimates X  and Y are obtained by the same simulation 

experiment, and the mean /uY of Y is known while that of X  is unknown. For some 

constant a , let

Since E(Z) = E(X), Z  is an unbiased estimator for X  The variance of Z is given by

Var(Z) = Var(X) + a 2 Var(Y) + 2aCov(X, Y).

When a  = -  Cov(X, Y)/Var(Y), the variance Var(Z) is minimized and equal to

Var |  (Y ' + Y") = i  Var(Y') + ̂  Var(Y") + i  Cov(Y\ Y") . (5.24)

Z = X  + a{Y -  juY) . (5.25)

Var(Z) = Var(X) -
(Cov(X,Y)) 

Var(Y)

The random variable Y is called a control variate for the estimation of E(X).
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5.2.4.4 Stratified sampling f601

In stratified sampling, the region to be sampled is split into intervals or 

subregions, and each interval is sampled with a different sample size. The contributions 

are not added at the level of individually sampled points, but partial sums are added with 

appropriate weights. The idea of this technique is similar to the idea of importance 

sampling where more samples are taken in the parts of the region that are more important. 

The effect of reducing the variance is achieved by gathering more samples in more 

important subregions.

5.2.5 MC Simulation in Risk Management

Simulation is any analytical method meant to imitate a real-life system, especially 

when other analyses are too mathematically complex or too difficult to reproduce. In risk 

management, Monte Carlo simulation methods are used to estimate VaRs and other 

financial risk measures.

In professional risk assessments, risk combines the probability of a negative event 

occurring with how harmful that event would be. Financial risk is often defined as the 

unexpected variability or volatility of returns, and thus includes both potential worse than 

expected as well as better than expected returns. There are two major areas, market risk 

and credit risk. Different models are used for different areas. This research focuses on 

measuring market risk.

The major application of Monte Carlo simulation to risk management is 

measuring the risk in a portfolio of assets, rather than computing the price of individual 

securities. Simulation is used in estimating the profit and loss distribution of a portfolio 

and thus in computing risk measures that summarize this distribution. Particular attention
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is given to the problem of estimating the probability of large losses, which requires 

simulation of rare but significant events.

5.2.5.1 Loss probabilities and value-at-risk

In order to manage market risk, we must measure market risk, especially the risk 

of large losses. Any method for measuring market risk must address two questions in 

particular [59]:

1. What statistical model accurately yet conveniently describes the movements in 

the individual sources of risk and co-movements of multiple sources of risk affecting a 

portfolio?

2. How does the value of a portfolio change in response to changes in the 

underlying sources of risk?

The first question asks for the joint distribution of changes in risk factors -  the 

exchange rates, interest rates, stock indices, and bond indices to which a portfolio may be 

exposed. The second asks for a mapping from risk factors to portfolio values. Once the 

two questions are answered, the distribution of portfolio profit and loss is determined, 

and any risk measure that summarizes this distribution can be calculated.

The first question raises statistical issues and the second question raises 

computational issues. Addressing these two questions inevitably involves balancing the 

complexity required by the first with the tractability required by the second.

The purpose of this research is to answer these two questions.

The following notation will be used in our discussion:

S = vector of m market prices and rates;

At = risk-measurement horizon or time interval;
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AS = change in S over the interval A t ;

V(S,t) = portfolio value at time t and market prices S ;

L = loss over the interval At 

= - A V  = V ( S , t ) - V ( S  + AS,t + At)\

Fl ( x )  = P(L < x ) , the cumulative distribution ofZ.

The number m of relevant risk factors could be very large, potentially reaching 

the hundreds or thousands. In bank supervision the interval At is usually quite short, with 

regulatory agencies requiring measurement over a two-week horizon.

The portfolio’s Value-at-Risk is a percentile of its loss distribution over a fixed 

horizon A t . For example, the 99% VaR is a point xp satisfying

1 - F L(xp) = P ( L > x p) = p

with p  = 0.01. A quantile provides a simple way of summarizing information about the 

tail of a distribution, and this particular value is often interpreted as a reasonable 

worst-case loss level. As mentioned in Chapter 1, VaR might more accurately be called a 

measure of capital adequacy than simply a measure of risk since it is used primarily to 

determine if a bank has sufficient capital to sustain losses from its trading activities.

The significance of VaR lies in its focus on the tail of the loss distribution. It 

emphasizes a probabilistic view of risk. And through this probabilistic view, it draws 

attention to the co-movements of market risk factors in a portfolio-based approach to risk. 

The more fundamental issues of measuring the tail of the loss distribution, particularly at 

large loss, is to find P(L>x) for large thresholds x. Once these loss probabilities are

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



1 6 8

determined, it is a comparatively simple matter to summarize them using VaR or some 

other measures.

5.2.5.2 Calculating VaR by Monte Carlo 
Simulation

The idea behind Monte Carlo methods is to simulate repeatedly from the random 

processes governing the prices or returns of the financial instruments we are interested in. 

If we are interested in estimating a VaR, each simulation would give use a possible value 

for our portfolio at the end of the VaR horizon. If we take enough of these simulations, 

the simulated distribution of portfolio values will converge to the portfolio’s unknown 

‘true’ distribution, and we can use the simulated distribution of end-period portfolio 

values to infer the VaR [19].

The simulation is based on the following assumptions: Only the net loss over the 

horizon At is considered. The composition of the portfolio remains fixed, though the 

value of its components may change in response to the market movements AS and the 

passage of time A t . The algorithm may be described as follows:

For each of n independent replications

- generate a vector of market moves A S ;

- revalue the portfolio and compute loss V(S, t) -  V(S + AS, t + At) . 

Estimate P(L > x) using

n M

Where L{ is the loss on the ith replication.
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If AS is drawn directly from historical data (historical distribution), it is called historical 

simulation. However, if  AS is drawn from a theoretical distribution, it is called Monte 

Carlo simulation.

Quantile Estimation: Let Fln denote the empirical distribution of portfolio losses 

based on n simulated replications,

n /. i

A simple estimate of the VaR at probability p (e.g., p = 0.01) is the empirical quantile

Z , = F Z ( L - p ) ,

With the inverse of the piecewise constant function FL n defined as

F " 1 (u) = inf{x: F(x) > u}.

Applying piecewise linear interpolation to FL n before taking the inverse generally

produces more accurate quantile estimates [61].

5.2.5.3 Modeling heavy tails

As mentioned before, the normal distribution has shortcomings when used to 

model changes in market prices. In fact, the distribution of observed price changes in all 

markets displays a higher peak and heavier tails than can be captured with a normal 

distribution. This is especially true over short time horizons. High peaks and heavy tails 

are characteristic of a market with small price changes in most periods accompanied by 

occasional very large price changes [59].
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The qualitative property of having a high peak and heavy tails is often measured 

through kurtosis. The kurtosis of a random variable X with a mean fi is defined as

E [ ( X - M)4]
(£ [(X - / / ) 2])2 ’

assuming X has a finite fourth moment. The kurtosis of a normally distributed random 

variable is 3. Sometimes, distributions are compared on the basis of excess kurtosis, the 

difference between the kurtosis and 3.

Kurtosis normalizes the fourth central moment of a distribution by the square of 

its variance. If two distributions have the same variance, the one with higher kurtosis will 

usually have a higher peak and heavier tails. Such a distribution is called leptokurtosis.

Kurtosis provides some information about the tails of the distribution, but it is far 

from a complete measure of the heaviness of the tails. An extension of the normal 

distribution that provides genuinely heavy tails is the Student t distribution with density

/ , w = r((v + 1 )/2 )
r  x 2  ̂
1 + —

-(v+l)/2
00 <  X < 0 0 , (5.26)

J v 7tF ( v / 2 )

where T(-) is the gamma function. The degree of freedom v controls the heaviness of the 

tails. If X has this tv density, then

P(X  > x) ~ constant x x~v 

as x -> oo , and v  determines the number of finite moments of |X| such that E ( X r) < oo 

for all r <v  and E ( X r) = oo for all r > v , for some v e  ( 0 ,o o ) .
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A tv random variable can be represented as a ratio z j -Jy/ v in which Z has the 

standard normal distribution and Y has a chi-square distribution x l  and is independent 

of Z.

To measuring the risk in a portfolio, a multivariate t distribution with heavy-tailed 

marginals is needed to model the changes in market prices. A t density in 91m is given by 

[59]

/ v , s ( * )  =  '
T((v + m )/ 2 ) '  1 v ( , ' + m ) / 2

(v7T)m/2 r (W 2 ) | E | 1 /2

Here, Z is a symmetric, positive definite matrix, | Z | is its determinant. If v > 2, the 

distribution has covariance matrix vZ/(v- 2 ) .  In the limit as v —>co, Equation (5.27) 

becomes the density of the multivariate normal distribution A (0,Z).

If (X l, X 2, . . . ,X m) have Equation (5.27) as their joint density, then

( X „ X 2, . . . , X J = ,  (5.28)
4 r l v

where =  denotes equality in distribution, £ = (^,, ,..., ) has the distribution

N(0, Z), and Y has distribution x l  independent of £ . A multivariate t random vector is

therefore a multivariate normal vector with a randomly scaled covariance matrix. 

According to Equation (5.27), the vector X  with density f v l can be represented as

A7 ~
X  = —p = =  = A X , (5.29)

j Y / v

1 r t ' v - l :l + - x 'Z _13c 
v v  /

x e m m. (5.27)
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where AA' = Z,  Z ~ N(0 ,I ) , and A  is a multivariate t random vector with density f v l .

The components of X  are uncorrelated (their correlation matrix is the identity), but not 

independent. Dependence is introduced by the shared denominator.

The t-copula: Let Fvdenote the CDF of the univariate ^distribution. Let the

vector X  have the representation in Equation (5.28) with Shaving all diagonal entries 

equal to 1. This implies that A ; ~ tv and then that FV{X;) is uniformly distributed on the 

unit interval. Just as in the inverse transformation method, applying an inverse 

distribution F~l gives F~x{Fv{Xi)) -  the t distribution with v,. degrees of freedom. 

Applying such a transformation to each coordinate produces a vector

(X xJ 2, . . . J j  = {F^{Fv{XJ),F;;{Fv( X 2)), . . . ,F;Xm(Fv{Xm))), (5.30)

the components of which have t distributions with arbitrary parameters vl,v2, . . . ,vm. 

Since a copula is defined as a function that joins univariate distribution functions to form 

multivariate distribution functions, Equation (5.30) is called a t-copula.

5.3 Multivariate Distributions

5.3.1 Introduction

Distributions are one means of expressing uncertainty in a problem.

5.3.1.1 Parameters

A parameter is a constant that characterizes a probability distribution, such as a 

standard deviation, mean vector, or covariance matrix.

Definition 1: Let Abe a random variable. If A  is discrete, its expectation is

E( X )  = Z x 0 ( x ) ,  (5.31)
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where (j>(x) is the probability function (PF) of X. If X  is continuous,

oo

E (X )=  Jx0(x)dx , (5.32)
—oo

where (j>{x) is the probability density function (pdf) o fX

Definition 2: Suppose X  is a random variable and / i s  a function from 91 to 91. 

The f(X) is a new random variable whose probability distribution can be inferred from 

that ofX.  I fX  is discrete, the expectation off(X) is

^ ( / W ) = E / W ( x)- (5-33)
x

. If X is continuous, the expectation off(X) is

oo

E[f(X)]=  $f(x)<f>(x)dx. (5.34)
—cO

Definition 3: If n  = E(X)  is the mean or expected value of the random variable X, 

the variance of X  is

Var(X) = cr2 = E[(X -  ju)2 ], (5.35)

and the standard deviation of X is

Std(X ) = cr = JVar(X) . (5.36)

In probability theory and statistics, the variance of a random variable is a measure of its 

statistical dispersion, indicating how far from the expected value its values typically are. 

Definition 4: The skewness of a random variable X  is defined as

Skew(X) = r/x = E^ X  ~ ^  J . (5.37)
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In probability theory and statistics, skewness is a measure of the asymmetry of the 

probability distribution of a random variable. Roughly speaking, a distribution has 

positive skew (right-skewed) if the higher tail is longer and negative skew (left-skewed) 

if the lower tail is longer. Figure 5.3 illustrates two cases o f skewness. Both pdf.s have 

the same expectation and variance. The one on the left is positively skewed. The one on 

the right is negatively skewed [46].

n F

Figure 5.3 The two graphs illustrate the notion of skewness.

For a sample of N  values the sample skewness is [62]

Vw£ ( * ,  - x ) 3 
 ------------- > (5.38)

( I > , - * ) 2)3/2
i=i

where x is the sample mean.

Definition 4: The kurtosis of a random variable X is defined as

Kurt(X) = jj2 = . (5.39)
( 7

In probability theory and statistics, kurtosis is a measure of the "peakedness" of the 

probability distribution of a random variable. Higher kurtosis means more of the variance 

is due to infrequent extreme deviations, as opposed to frequent modestly-sized 

deviations. Figure 5.4 illustrates two cases of skewness. The pdf on the right has higher
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kurtosis than the pdf on the left. It is more peaked at the center, and it has fatter tails. The 

pdf on the left is platykurtic. The one on the right is leptokurtic.

F F

Figure 5.4 The two graphs illustrate the notion of kurtosis [46],

A normal random variable has a kurtosis of 3 irrespective o f its mean or standard 

deviation. If a random variable’s kurtosis is greater than 3, it is said to be leptokurtic. If 

its kurtosis is less than 3, it is said to be platykurtic. Leptokurtosis is associated with pdf.s 

that are simultaneously “peaked” and have “fat tails.” Platykurtosis is associated with 

PDFs that are simultaneously less peaked and have thinner tails.

Definition 5: The excess kurtosis of a random variable X is defined as

Kurt(X) — ij2 — E^ X ~ ^  ] -  3. (5.40)
cr

The "minus 3" at the end of this formula is often explained as a correction to make the 

kurtosis of the normal distribution equal to zero. A high kurtosis distribution has a 

sharper "peak" and fatter "tails", while a low kurtosis distribution has a more rounded 

peak with wider "shoulders".

According to Definition 5, distributions with zero kurtosis are called mesokurtic, 

such as normal distributions. A distribution with positive kurtosis is called leptokurtic. A 

distribution with negative kurtosis is called platykurtic.

Definition 6: If A  is a random variable with CDF ® , a q-quantile of X  is any 

value x such that P(X  < x) = q .
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In most VaR applications, all g-quantiles exist and are unique for q e (0,1) [21]. In 

such cases, a ^-quantile is a parameter equals to the inverse CDF evaluated at q and is 

denoted as x  = d>~' (q) .

Definition 7: For any positive integer k, the k th moment of a random variable X 

is defined as

ju'k = E ( X k). (5.43)

Its k th central moment is defined as

Mk= E [ ( X - M)k]. (5.44)

Definition 8: If X t and X j  are components of a random vector, their (k,l) joint 

moment is defined as

E [ X kX )] .  (5.45)

Their (k, I) joint central moment is defined as

£ [ (* , .- / / , . )* (* ,- /I , .) '] .  (5.46)

Definition 9: If X i and X  ■ are components of a random vector, their (1,1) joint

central moment is called covariance:

= C ov iX ^X j )  = E[(Xt - j u ^ X j - j U j ) ] . (5.47)

If i = j , £ ;; = E[{Xt - ju i)2] = a? is X t ’s variance.

Covariance is the measure of how much two variables vary together. That is to 

say, the covariance becomes more positive with each pair o f values which differ from 

their mean in the same direction, and becomes more negative with each pair of values

which differ from their mean in opposite directions. In this way, the more often they
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differ in the same direction, the more positive the covariance, and the more often they 

differ in opposite directions, the more negative the covariance.

Definition 10: If X, and X } are components of a random vector, their correlation

is defined as

C o v ( X , X .)
Corr{Xi,X j ) = PiJ = -----  ' • (5.48)

CJ^j

Correlation indicates the strength and direction of a linear relationship between two 

random variables.

5.3.1.2 Distributions

1. Uniform distribution: A random variable X defined over the interval (a, b) and 

having a constant density is said to be uniformly distributed over (a, b), denoted as 

U(a,b) . Figure 5.5 illustrates a uniform distribution. Its pdf is

<f>(x) = —-— a < x <b,
b - a

= 0 otherwise.

1
b-a

Figure 5.5 The pdf of a uniform distribution [46]
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A U(a,b) random variable’s properties are listed in Table 5.1.

Table 5.1 Properties of U(a,b)

CDF « . .  x - a  O(x) =
b — a

a <x <b

Inverse CDF O - 1  (q) = a + (b -  a)q Q < q < \

Mean a + b
ju=------

2

Standard deviation b - a

Skewness 7/, = 0

Kurtosis / Excess Kurtosis 9 / 6  n2 = -  / ij2 = —12 5  12 5

2. Normal distribution: A normal distribution function is specified by two 

parameters: a mean jj, and variance cr2, denoted as N(/u,<72). Figure 5.6 shows an 

example of normal distribution. A N{/u,o2) random variable’s properties are listed in 

Table 5.2. Its pdf is

<t> (*) =
1 rexp
7H 7

C
1 { \ x - j j . 2n

2V I & ) )
(5.49)

Its Cumulative Distribution Function (CDF) is

0 (x;//,cr) = — ]== [  
crV2  n

exp
( u - j j . ) 

2 cr2

2 A
du (5.50)
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M-

Figure 5.6 The pdf of a normal distribution [46] 

Table 5.2 Properties of N(ju,cr2)

Mean M

Standard deviation cr

Skewness 17, = 0

Kurtosis / Excess Kurtosis V2 = 3 1 Vi = 0

A linear polynomial of a normal random variable is also normal. If 

X  ~ N(ju,cr2), then bX  + a ~ N(bju + a,(bcr)2) for any scalars a, b. This means that any 

N(ju,cr2)random variable X  can be expressed as a linear polynomial of some tV(0,1) 

random variable Z:

X  = oZ + ju.

3. Chi-Squared Distribution: If Xt are k  independent, normally distributed random 

variables with means \ a n d  variances < j2 , then the random variable

. /  \ 2  
X , - H i

i=1V J

is distributed according to the chi-square distribution. This is usually written as
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%2(v ,d2). If S 2 = 0, the distribution is centrally chi-squared, denoted as x l  • Figure 5.7 

shows an example of chi-square distribution. Its pdf is

^ 2)l2 exp(-*/2)<p{x) =

=  0

2 v,2T ( v / 2 )
x > 0, 

otherwise.

(5.51)

Figure 5.7 The pdf of a chi-squared distribution [46]

A x  (v > ° )  random variable’s properties are listed in Table 5.3[14]:

Table 5.3 Properties of % )

Mean f i  = v  + S 2

Standard deviation
cj = ^2(v  + 2S2)

Skewness r!x = 2 2l2(y + 3d2)l(y + 282Y 12

Kurtosis / Excess Kurtosis t1 2 = 'S  + U { v  + 4 S 2)I(v  + 2 8 2)2 / 

t j 2 = U ( v  + 4 8 2) / ( v  + 2 8 2)2
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4. Student /-Distribution: Suppose X l, X 2, . . . ,X n are independent random

variables that are normally distributed with expected value /x and variance cr2. The 

sample mean is given by

with v  equal to n - 1 .  The distribution of / is now called the /-distribution, denoted as tv .

In probability and statistics, the /-distribution or Student's /-distribution is a 

probability distribution that arises in the problem of estimating the mean of a normally 

distributed population when the sample size is small. It is the basis of the popular 

Student's /-tests for the statistical significance of the difference between two sample 

means, and for confidence intervals for the difference between two population means.

A tvrandom variable’s properties are listed in Table 5.4 [14].

X  = ( X 1+ X 2 + -  + X n)/n ,

and the sample variance is given by

X  — u
The quantity T =  j= has the following probability density function

Sn / 4n

2 y(v+l)/2
(5.52)
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Table 5.4 Properties of tv

mean ju = 0

Standard deviation 1 va  = J ---- - for v > 2
V v - 2

skewness 77, = 0 for v > 3

Kurtosis / Excess Kurtosis 3 v - 6  . 6

Vi= . 1 h  = . v - 4  v - 4

for v > 4

5.3.2 Multivariate Normal Distribution 
(MYN) r21ir33ir631

A random vector X  = ( X l, X 2, . . . ,X n)' follows a multivariate normal distribution 

with mean p  = (/u^,/i2, . . . ,nn)' and positive definite covariance matrix 2  = [atj] if its 

probability density function (pdf) is

I M,-2) = exp (5.53)
(2/r)n/2 |Z | ,/2

where | 2 1 is the determinant of E. The multivariate normal can be written in the 

following notation: X  ~ N n (p, 2 ).

If X  ~ N n(p ,2 ), B is a constant m x n  matrix and A is an m-dimensional 

constant vector, then:

BX + A ~ N m (Bp + A, BUB' ) . (5.54)

This generalizes the analogous one-dimensional property of univariate normal 

distributions.
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If Z ~ N n (0, I n) ,  the above X  ~ N n (ju, Z) can be expressed as

X = Z 1,2Z  + ju. (5.55)

5.3.2.1 Bivariate normal distribution

Bivariate normal distribution is a multivariate normal distribution when n = 2.

Here, X  = (X x, X 2) ' , p, = (px, p 2) ' , and E =
(71 cr12
fJ12 (7 2

. The inverse matrix of Z is

Z"1 =■
1

a x2a 2(l - p 2 )

PO^ CT 2
2■ p< Jx <7 2 <7,

(5.56)

The probability density function of X  can be written as [71] [72]

(/>(xx,x2)
2naxa 2 J l  -  p ‘

rexp
2(1  - p 2)

, - co<X j ,x2 <oo (5.57)

where,

_ (*i Pi) _ 2p(xi p x )(x2 p 2) (x2 p 2) 
q — j + (5.58)

(TjC72 cr,

and p  = Corr(Xx, X 2) = cr,cr2/cr12 is the correlation coefficient between X x and X 2. 

The marginal probability fimctions are

(x, - p , ) 2

and

f ( x x) ~ r  $(.xj , x 2 )dx2 j—— exp
o x4 2 n

f ( x i ) = I $(.x\ ’ x 2 ')dxx — /—— sxp
a 242n

2(7x

( X 2 M  2 ) 
2cr,

(5.59)

(5.60)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 8 4

5.3.3 Multivariate Skew-Normal 
Distribution f64ir65ir661

5.3.3.1 Univariate skew-normal distribution

Suppose X  is a random variable having the probability density function:

(5.61)

where a  is a fixed arbitrary number, </>(x) is the standard normal density function, and 

®(<xc) is its cumulative distribution function evaluated at point a x . (f>{x) and O(ox) are 

respectively given by

The density function / (x) has some interesting properties:

1. If a  = 0, then / (x) becomes the standard normal density function <f>(x).

2. As the absolute value of a  increases, the skewness of the distribution 

increases.

3. If « ->oo ,  then / (x )  converges to the “half-normal” density or “folded” 

normal distribution.

4. If the sign of a  changes, then / (x) is reflected on the opposite side of the 

vertical axis. If a  > 0, / (x )  is positively skewed; if a  < 0, / (x )  is negatively 

skewed.

(5.62)

and

(5.63)
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Figures 5.8 and 5.9 [67] illustrate two cases of skew-normal distribution.

5k-e%"Nor'«,a l csraS t^  ^ g ra tis r  Cs-wicd cr-ca>

Figure 5.8 Skew-normal density with £ = 0; <y = 1; a  = 5

fi.S 

o.j 

>! .«§

<y,a

fi.d

<»,8 

V,Z

Figure 5.9 Skew-normal density with £ = 0; co = 1; a  = -5

d m sS ly  ruptffrlcr careded a re a )

9"1 1
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The random variable X  with density function / (x) in Equation (5.61) can be used 

to construct the general skew-normal distribution. Consider the linear transformation

Y = £ + (qX ,  (5.64) 

The random variable Y has a skew-normal distribution with parameters (£, co, a)  and is 

denoted as

Y ~ SN(%,co2,cc), (5.65) 

where co, and a  are called the location, the scale and the shape parameters. If a  = 0, 

SN(£,co2,0) becomes N(ju,cr2) with ju = ^  and <r = co.

Given that 8 = a / Vl + « 2 , the expectation o fX is

E(X) = ^ S  , (5.66)

and the variance of X  is

Var{E) = \ - - 8 2 (5.67)
T C

A  SN(^,co2 ,a)  random variable T s properties are listed in Table 5.5.
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Table 5.5 Properties o f SN(%,co2 ,a)

Mean

Standard deviation
a  =

Skewness

v
Vi =

Kurtosis / Excess Kurtosis

5.3.3.2 Multivariate skew-normal 
distribution T661

Equation (5.61) for univariate skew-normal distribution can be extended to the 

multivariate case. A k-dimensional random vector Z has a multivariate skew-normal 

distribution if its probability density function is given by

f ( z )  = 2</>k( z ; n z )®(a'z) ( ze 9 t* ) ,  (5.68)

where (j)k(z\Q.z ) is the k-dimensional normal density with zero mean and correlation 

Q z , O(-) is the N(0, 1) distribution function and a  is a k-dimensional vector.

If a  = 0, f ( z ) becomes <j>k(z;Q.z ) which is the density function forN k(0,Q.z ) . 

a  is called the shape parameter. The mean vector and the covariance matrix of Z are
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fiz =E(Z) = {2n)V25 ,  (5.69)

and

= Var(Z) = Q z -  jXzJl'z , (5.70)

where <5 = ------------   —  Q.7cc. Z  is denoted as SNt (Q.?,a).
a i Z? f/~\ \  / 2 ^ « v z. ^+ <z £2zcr)

Equation (5.68) can be extended to allow location and scale parameters. Assume Y is a k- 

dimensional random vector that satisfies the following transformation:

f  = |  + ®Z (5.71)

where = ( £ , , , . . . , %k)' and co = diag{cox,co2,...,cok)are location and scale parameters

respectively. Here, the diagonal components o f co are positive. The density function of 

Fis

f ( y )  = 2<Pk(y - l ;Q )0 (a 'c o - l( y - i ) )  (5.72)

where Q = coQ.z co is a covariance matrix . Y  has a multivariate skew-normal distribution 

and is denoted as Y  ~ SNk (£,Q , a ) .

5.3.3.3 Bivariate skew-normal distribution

Set k = 2 in Equation (5.68), the density function of Z  = (Z X,Z 2)' is

/ 2(z1,z2) = 202(z1,z2;ffl)<D(a,z, + « 2z2), (5.73)

where co is the off-diagonal element of Q z .
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5.3.4 Multivariate /-Distribution f591 f681 f691

The random vector X  = (X x, X 2, . . . , X n)' follows a multivariate /-distribution 

with mean ju = (jux,juz,...,^in)' and positive definite covariance matrix C if its 

probability density (pdf) function is

where 2 = (v -  2 )C /v . The multivariate student-t distribution can be written in the 

following notation: X  ~ tn (v, 2).

The multivariate t random vector X  can be generated by

where z is generated from An(0,Z) and s is generated from x l  ■

5.3.5 Multivariate Skew /-Distribution F70]r711

The family of skew /-distributions is an extension of the Student's t family, via the 

introduction of a shape parameter which regulates skewness; when shape = 0, the skew 

/-distribution reduces to the usual /-distribution. The skew /-distribution is related to the 

skew-normal distribution by the following transformation:

r [ ( v  +  w ) / 2 ]

(v/r)"/2r(W2)|2|1/2

-(v+u)/2
(5.74)

v

f  = |  + f ~1/2z  , (5.75)

where Zhas the multivariate skew-normal distribution, SNn(0,Q ,a ) , and V ~ j 2/ v ,

independent of Z . According to Equation (5.72), the density function of Z is

f ( ? )  = 2^„(z;Q)<D(a'/u_1z ) . (5.76)
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The density function of Y is

f ( y )  = 2tn(y;v)Ti a ' o f x( y - $ )
(  \  v  + n

Qv + vv y

M l

;v + n (5.77)

where a> = diag((ox,co2,...,con)is defined in Section 5.3.3.2,

1 r{(v + «)/2}
*" | Q | 1/2 8n y,V \Cl\xn (7rv)nl2Y(vl2)

I + Q l

v v y

~{ v +n) l l

is the density function of n-dimensional t-variate with v degrees of freedom and 

Tx(x\v + n) represents the scalar /-distribution function with t + n degrees of freedom. 

The distribution in Equation (5.63) is called multivariate skew /-distribution and is 

denoted as

Y  ~ Stn(%,Q, a, v) , (5.78)

and

E(Y) = a>n, for v > 2 ,

Var(Y)   Q -  copp'co,
v - 2

where p. = 8
K

if  v  > 1.

5.3.5.1 Univariate skew /-distribution T701

Suppose Z  is a skew-normal random variable denoted by Z  ~ SN(0,or , a ) ,

random variable Y has a skew /-distribution through the following transformation:

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



191

Y = % + V~l,2Z  (5.79)

where V ~ x l  / v  Y is denoted as Y ~ St(^, co2, a, v).

A St(%,a>2 ,a ,v)  random variable Y’s properties are listed in Table 5.6.

Table 5.6 Properties of St(%,a>2 ,a ,v )

Mean

M =
' v v '2

'1   ̂—v 
v2 ,

0), for v > 1

Standard

Deviation
I® 2

V ( e )
2

v - 2
, for v > 1

Skewness
E

CO

v { 3 - 8 2) 3v
v - 3  v - 2

+ 2
/  \ 2 /  \ 2  ”

f i  1 V
E

[ o ) J v - 2

- 3 / 2

for v > 3

Kurtosis/Excess

Kurtosis 12 =
3v

r / . y
yCOj

( v -2 ) (v - 4 )

v { 3 - 8 2) 6
-  +

V 2

v - 3 v - 2
- 3

-2

f - l
V

f-1
2 "

v - 2

- 2

- 3

5.4 Simulation of Multivariate Distributions

5.4.1 General Sampling Methods

5.4.1.1 Inverse method

Let F(x) be the distribution function of a random variable X defined on 91, and 

suppose the inverse function F~l(x) exists.

X  = F~l(U ) , U ~ U { 0,1).
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Given a sequence of iid uniform random numbers \un) and the inverse function F~' (x) , 

we can generate a sequence of iid random numbers generated from X according to the 

equation

x„=F~l{un) ,  n = 1,2,... (5.80)

This method to generate the random numbers is called the inverse transformation method 

and is useful for the case where the inverse function F~x (x) is known in closed form.

Since the standard normal distribution function O(x) cannot be represented in 

closed form, an analytical form of its inverse function is not known. Hence, when 

applying the inverse transformation method to the normal random numbers, we need 

either to employ a numerical technique to calculate Equation (5.80), or to develop an 

approximation of the inverse function O -1 (x) [72].

5.4.1.2 Conditional distribution approach [731

Suppose that X  = ( X ], . . . ,X k)' is k-dimensional random vector which can be 

expressed in a multivariate distribution function / ( x ) .  The vector x = (x ,,...,x t ) can be 

generated by the conditional distribution approach as follows:

1. Generate X x = x, from the marginal distribution of X , .

2. Generate X 2 = x2 from the conditional distribution of X 2 given X, = x ,.

3. Generate X 3 = x3 from the conditional distribution of X 2 given X x = x, and
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k. Generate X k = xk from the conditional distribution of X k given X, = xx,

X 2 = x 2, and X k_x = xk_x.

The advantage of this approach is that it reduces the problem of generating a k- 

dimensional random vector into a series of k univariate generation problem, which make 

it possible to use techniques available for the univariate case.

5.4.1.3 Transform method 1731

Distributions with intractable inverse functions can be generated with a 

transformation other than For example, the t distribution with v degree of

freedom can be generated by

tv = X xl{X2l n f 2,

where X x is standard normal, X 2 is x l  > and X x is independent of X 2. This method can 

be used to construct univariate and multivariate distributions.

5.4.1.4 Acceptance-reiection (AR) method T581

For generating samples from an arbitrary probability distribution function/(x) by 

using an instrumental distribution g(x) under the only restriction that/(x) < cg(x) where c 

> 1 is an appropriate bound on/(x)/ g(x). One uses the following approach.

1. Generate x from g(x).

2. Generate U from C/(0,1).

3. Check whether or not U <f(x) / cg(x).

If this holds, accept x as a realization of/(x); 

if not, reject the value ofx and go to step 1.

The AR method is used in cases where f(x) is difficult to sample from directly. This 

difficulty can be avoided by sampling from a distribution function g(x), which is easy to
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sample from. This method can be used to construct univariate and multivariate 

distributions.

5.4.2 Simulation of Multivariate Normal 
Distributions

5.4.2.1 Generating univariate normals

There are several algorithms available for generating univariate normal 

distributions:

1. Box-Muller Method [59][73] -  The following steps can be used to generate 

pairs of independent standard normally distributed random numbers

Z = (Z,, Z2) ~ N2 (0, I 2) , given a source of independent uniformly distributed random

numbers UX,U2 ~ U(0,1) •

a. Generate Ui, U2 ~ U (0,1);

b. Zj =yl~ 2 log(t/,) c o s ( 2 7 tU 2 ) and Z2 =^J-  2 log(£/,) sin(2nU2)

c. Repeat a and b to generate enough number of normal variates.

2. The Inverse Method (see section 5.4.1.1)[59][73] To compute < tr'(f/), we can

use Newton’s method, xn+l = xn -  —— , to find 0(x*) = U .

5.4.2.2 Simulation results for univariate normals

The inverse method is used to generate univariate normal distribution. All the 

simulation processes in this chapter are written in C language, and Microsoft Excel is 

used to do graphical analysis.

First, standard normal distribution is generated by using different sample sizes, N  

= 100, N  = 500, N  = 5000, and N  = 10000. Figure 5.10 shows the simulation results: as
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the sample size increases, the distribution looks more like a bell-shaped normal 

distribution probability function.

S tandard  Normal N = 100

30 --

25

15 f

0)O) &CM CO t T

S tan d a rd  N orm al N=500

60

50

40

30

20

10

O'
<$> £> <§> r§> <& <$> &<y & \v >■ o- o- v <V Jp

S tandard  Norm al N = 5000 Standard Normal N = 10000

Figure 5.10 Histograms of a standard normal distribution with different sample size

Second, normal distributions with different means and variances are generated by 

using the same sample size, N  = 10000. Figure 5.11 (a) shows the simulation results with 

the same variance: the cumulative distribution functions for A^(-2,4), Af(0,4), and 

N(2,4) . Figure 5.11 (b) shows the simulation results with the same mean: the cumulative 

distribution functions for N(0,0.2), N(0,0.5) , N(0,1) and N(0,5).
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.... ........... .....

---------------------------------------------- B O A  -

* m u = -2  ,'«t=4  
a m u=2,vsr=4

m u=0,\ar=4
l -----------1r .i • — 0 —---------------------------------- 1-------------

- 1 5  - 1 0  - 5  O  5  1 0  1 5

Figure 5.11 (a) Simulation of CDF of normal distributions with same variance but 
different means.

6 9 -
-0-6
67-

66

* 6
-0-4
0-3

10-10

Figure 5.11 (b) Simulation of CDF of normal distributions with same mean but different 
variances.

5.4.2.3 Generating multivariate normal 
distributions

A widely used method for drawing a random vector X  from the ^-dimensional 

multivariate normal distribution with mean vector p. and covariance matrix E (required to 

be symmetric and positive definite) works as follows:
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1. Compute the Cholesky decomposition (matrix square root) of 2, that is, find the unique 

lower triangular matrix C such that CC' = 2 .

2. Let Z = (zl , z2, . . . , zn)be  a vector whose components are n independent standard 

normal variates .

3. Let X  be p  + CZ .

Let X  = ( X l, X 2, . . . , X n)' follow an n-variate normal distribution with a mean 

vector p  = ( j U l , j U 2 , - - - , f i n ) ' , //, = E (X i) , and covariance matrix

For some non-singular matrix C, the decomposition is not unique. Here we use the 

Cholesky Decomposition method.

Proposition 3 (Cholesky Decomposition): Given the covariance matrix E = (cr(>.), the 

matrix C = (cy) can be defined as follows:

c

\
j < i ,  i = 2,3,.

/

Thus, the matrix C is a lower triangular.
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The next result suggests how to obtain random vectors distributed as N n (ju, Z) from iid 

normal random numbers.

Proposition 4: Suppose that Z  ~ N n (0,1) and that a positive definite covariance matrix 

Z is decomposed as CC' = Z . Then, we have 

Y = CZ + n  ~ N n(ju,Z).

Conversely, for Y ~ N n (//, Z ), we have 

Z = C - ' ( Y - j j )  ~ N n(0,I).

Based on Proposition 4, iid random vectors distributed as N n (ju, Z) can be generated as 

follows:

1. Generate iid normal random numbers z 1, z2,. . . , zn ~ N(0,1), and define

z = (zl , z2, . . . , z„ y .

2. Define the random vector y  = (y ,, y 2,..., y n)' by

y  = Cz + ju.

3. Repeat step 1 and 2 until enough random vectors are generated.

5.4.2.4 Simulation results forMVN

According to the simulation method discussed in Section 5.4.2.3, C program is 

written for generating multivariate normal distributions. Figures 5.12 -  5.13 are some 

examples on bivariate and trivariate normal distributions. Excel is used to do graphical 

analysis. There are multiple purposes for this demonstration:

First, verify if the method is working; second, verify if  the program (the method 

implemented in C) is correct; picture the results directly to help us better understand the 

multivariate normal distribution. For example, in Figure 5.12 (a), since there is no
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correlation between XI  and XI,  and they both have the same variance, the scatter plot 

shows a round shape which is just what we expect from the bivariate normal distribution 

function. In Figue 5.12 (b), other things stay the same, only the correlation change from 0 

to 0.5. The scatter plot becomes an elliptical shape and rotates 45° from the x-axes. If the 

correlation change to -0.5, we can expect that the scatter plot is still an elliptical shape but 

rotate 135° to reflect the negative correlated fact between XI  and X2. This rotation is 

shown in Figure 5.12 (b). If the correlation coefficient keeps the same, but the variances 

of XI anAXl  are changed to values larger than 1, the direction of the scatter plot doesn’t 

change, but the area is larger which demonstrates that the larger the standard deviation, 

the more dispersed the data is. Compare (a) and (b) in Figure 5.12, it is not difficult to get 

this conclusion.

e-i--------

■
t — ig . — I

e a
-& ■

xl ( mu = Q, war = 1)

♦ corr = 0[ *corf= Q 5|

x1 (mu = 0, ifar= 1)

(a) (b)

Figure 5.12 (a) Scatter plots of bivariate normal distributions with same sample size N=  
5000: (a) p n = 0 and (b) p l2 = 0.5.
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(a) (b)

Figure 5.12 (b) Scatter plots of bivariate normal distributions with same sample size N z 
5000: (a) p n = -0.5 and (b) p X2 -  0.5.

Figure 5.13 shows the simulation results for a trivariate normal distribution with

. Figure 5.13 (a) is the
'3  2 r (O'

variance-covariance matrix = 2 2 i and mean jux = 0

V1 1 3; ,0,

scatter plot of XI  vs. X2; figure 5.13 (b) is the scatter plot of XI  vs. X3; figure 5.13 (c) is 

the scatter plot of X I  vs. X3 ; and figure 5.13 (d) is the overlay of XI  vs CDF(X1), X I  vs. 

CDF(Z2) andXi  vs. CDFp3).
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(c) (d)

Figure 5.13 Scatter plots of trivariate normal distribution with sample size N  = 5000

The covariance matrix calculated from sampled data isS^ =
f  2.98 2 0.963n
2.003 2.013 0.962
0.963 0.962 2.975

and

the correlation matrix is p  -
f  1 0.818 0.323^
0.818 1 0.393
0.323 0.393 1
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5.4.3 Simulation of Multivariate 
Skew-Normal Distributions

Skew-normal distribution is a family of distributions including the normal, but

with an extra parameter to regulate skewness. Azzalini and Vale [64] investigate its

properties. According to the properties, we can find ways to generate random numbers

from skew-normal distribution.

5.4.3.1 Generating univariate
skew-normal distributions

Azzalini and Vale [64] listed the following properties for the univariate skew- 

normal distribution.

Proposition 1. If 7  and W are independent 7V[0,1) variates, and Z is set equal to 7 

conditionally on aY  > W , for some real a , then Z ~ SN (0,1, a ) .

For generating random numbers of Z ~ SN(0,1,&), Azzalini and Vale [64] 

suggest a more efficient way to avoid rejection of samples:

I f  (ccY>W), then Z  = Y.

Otherwise, Z = -7.

Proposition 2. If (X, 7) is a bivariate normal random vector with standardized 

marginals and correlation S , then the conditional distribution of 7  given X  > 0 is 

7  ~ SN(0,l,oc(S)).

The correlation coefficient <5 is related to the shape parameter a  by the functions

S(a) = ----- — rjr-, a(S) =  5- rT H . (5.81)
(1 + a  ) (1 - S 2)V2
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The simple way to generate random numbers Y for Y ~ 57V(0,1,«(<5)) according to 

proposition 2 is,

If ( X > 0), then Z = Y.

Otherwise, Z = -Y.

Proposition 3. I f  Y0 and Yx are independent N(0, 1) variables and 6  e (—1,1), then

Z = S \Y 0 \ + ( \ - S 2)V2Yl (5.82)

is Z  ~ SN(0,l,a(d)).

We can also generate skew-normal random numbers according to proposition 3.

5.4.3.2 Simulation results for univariate 
skew-normal distributions

Figure 5.14 shows the simulation results with different shape parameters based on 

a standard normal distribution. Figure 5.14 (a) shows that when the shape parameter a  is 

zero, the distribution becomes a standard normal distribution. Figure 5.14 also shows that 

the larger the shape parameter is, the more skewed the distribution is. When the shape 

parameter changes from a positive number to a negative numbers, the distribution 

changes from positive skewed to negative skewed.
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Figure 5.14 Histograms of the SN(0,\,a) for (a) a  = 0, (b) a  = 2 , (c) a  = 5, (d) 
a  = 20, (e) a  = -5  and (f) a  = -50 .
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5.4.3.3 Generating multivariate 
skew-normal distributions

There are two methods for generation of multivariate skew-normal distributions

[64].

(Y0} r f \ 0 N0
[ Y j

jo, ,0 *F,

1. Transformation method. Suppose Y = (Yl ,Y2,...,Yk)' is a k-dimensional normal 

random vector with standardized marginals, independent of Y0 ~ jV(0,1) ; thus

(5.83)

with T  is a k x k  correlation matrix. If (£>j,c>2,.. . ,£ t ) are in the range (-1, 1), define

Zj = Sj I Y0 | +(1 -  Sj )U2Yj for j  = 1,2, . . . , A:, (5.84)

so that Zj  ~ SN(0,1, A(Sj)), according to Equation (5.82) in Proposition 3. Z is denoted 

as S3Vt (A,'F).

2. Conditioning method. Suppose Y = (Yx,Y2,...,Yk)' is a k-dimensional normal 

random vector and 70 is a scalar random veriable, such that

r 1 J 'v
N k+A0,

S'  Q

let Z be defined as

Z < - 7 ;  Y0 >0,

Z  <— Y ; Otherwise.

HenceZ ~ SNk(X(S),XP}, where (8;.) =
S ;

(1 - 5 j f 2
and the elements of ¥  are from
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those of Q by solving the following equation:

corrW  , 7, ) = a>9 = S,Sj + yr„ (1 -  S,2 )(1 - 8]  ),/2.

5.4.3.4 Simulation results

Figures 5.15 and 5.16 display the simulation results with different shape 

parameters a  = (a l , a 2) based on a bivariate standard normal distribution, and sample 

size N=  5000.

(a) p l2 = 0, a  = (0,0)' (b) p l 2 = 0, a  = (0.707,0.707)'

(c) p l 2 = 0, a  = (1,5)' (e) p X 2 = 0, a  = (40,-40)'

Figure 5.15 Scatter plots of bivariate skew-normal distributions with various shape 
parameters, zero correlation between XI  and XI.
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(c) p 12 =0.4, a  = (1.584,-1.188)' (d) p 12 =0.4, a ( - l . 323,6.086)'

Figure 5.16 Scatter plots of bivariate skew-normal distributions with various shape 
parameters, and a correlation coefficient between XI  and X I  p x l = 0.4.

As Figures 5.15 (a) and 5.16 (a) show, if the shape parameter a  is zero, a 

bivariate skew-normal distribution becomes bivariate normal distribution. Generally, the 

patterns of the scatter plots change depending on the signs and magnitude of the shape 

parameters.
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5.4.4 Simulation of Multivariate 
/-Distributions

5.4.4.1 Generating univariate t

Let Z have a normal distribution with mean 0 and variance 1. Let V have a chi- 

square distribution with v degrees of freedom. Further suppose that Z and V are 

independent. Then the ratio

Z
Vf Tv

has a /-distribution with v degrees of freedom.

5.4.4.2 Simulation results for univariate 
/-distribution

Figure 5.17 shows the simulation results with different degrees of freedom based 

on a standard normal distribution. The sample size for this simulation is N  = 1000. The 

degrees of freedom determine the shape of the /-distribution. The smaller the degrees of 

freedom are, the higher the peak is and the fatter the tail is. The larger the degrees of 

freedom are, the closer the distribution is to the standard normal distribution. For v = <x>, 

the /-distribution converges to the normal distribution.

t  d istribu tion  (df -  5)
180
160
140
120
100
80
60
40
20
0

&P'

l l
A  J? <5> <0 A  JPO* v

(a) v = 5

t  d is trib u tio n  (df = 10)

180 -
160 -
140 -

100 1

^ r t r j i c J c i ^ N c l

(b) v = 10
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t d istribu tion  (df = 30) norm al distribution

180
160
140
120
100
80
60
40
20
0

& (o' (S' <<P 'S'
p -  >  p -  o -  O y  v  v

(c) v = 30 (d) v = co

Figure 5.17 Histograms of various /-distribution with different degrees of freedom v .

5.4.4.3 Generating multivariate /

According to Equation (5.27), the vector X  with density f vZ can be represented
as

X  = - ^ = ,  (5.85)

where AA’ = X, Z ~ N ( 0 , I ) .

5.4.4.4 Simulation results for multivariate t

Figure 5.18 shows the simulation results with degrees of freedom 10 based on 

bivariate and trivariate standard normal distributions and no correlations between the 

normal distribution variables.
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bivariate norm al N = 1000 bivariate T (df = 10) N = 1000

♦  Series 1

trivariate norm al IM = 1000 trivariate t (df = 10) N= 1000

♦  Seriesl
* Series2

(c) (d)

Figure 5.18 (a) Scatter plot of a bivariate normal distribution with zero correlations 
between the random variables, (b) Scatter plot of a bivariate /-distribution with v = 10 . 
(c) The overlay of scatter plots of a trivariate normal distribution, (d) The overlay of 
scatter plots of a trivariate /-distribution.

Figure 5.19 shows the simulation results with degrees of freedom 10 based on a 

bivariate standard normal distribution with a correlation coefficient is 0.6. The sample 

size for this simulation is N  = 1000. From those figures we can see that compared with 

normal distributions, the points in /-distributions are more spread out.
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bivariate normal corr = 0.6, N = 1000 bivariate t corr = 0.6 df =10, N = 1000

(a) (b)

Figure 5.19 (a) Scatter plot of bivariate normal distribution, p n = 0.6. (b) Scatter plot 
of bivariate /-distribution with degree of freedom v = 10.

Figure 5.20 shows the simulation results with degree of freedom v = 10 based on

a trivariate standard normal distribution and a correlation matrix E =
1 0.6 0.6

0.6 1 0.3
0.6 0.3 1

The estimated correlation matrix from the 1000 samples is

Z =
1.0087 0.6079 0.5697 
0.6079 1.0101 0.2912 
0.5697 0.2912 0.9618
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trivariate normal NM000

4 4

u1

(a)

trivariate T df = 10 N = 1000

ti

trivariate normal Ns1000 

6

-4

♦  u1 v s  US

w in js u2

u2

(b)

trivariate t df = 10 N = 1000

♦ 11 js U
*  t3  VS t1

(c ) (d)

Figure 5.20 (a) and (b) present an overlay of scatter plots of a trivariate normal 
distribution, p n = p n = 0.6 andp23 = 0.3. (c) and (d) present an overlay of scatter plots 
of a trivariate t-distribution.

5.4.5 Simulation of Multivariate Skew 
f-Distributions

5.4.5.1 Generating univariate skew t

To generate random numbers for univariate skew /-distribution, first, generate a

univariate skew normal random number Z following the method discussed in Section

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 1 3

5.4.3.1, then generate a chi-squared random number V with degrees of freedom v ,  and 

let w = z Iy/V/v  , the function w has the skew /-distribution with v degrees of freedom, 

denoted as ST(0,\ ,a ,v) . If location and scale parameters B, and co are included, 

Y = % + 6)Z and is denoted as ST(J;,co,a,v).

5.4.5.2 Simluation results

Figure 5.21 displays four different distributions together to illustrate the changes 

and differences between them.

■ ■ ■ 1

(a) normal (b) skew-normal a  = 3

120.00%350

300 100.00%

80.00%

60.00%

40.00%
100

20.00%50

40.00%

20.00%

0.00%

( c ) t v  = 10 (d)skew t a  = 3, v = 10

Figure 5.21 (a) Histogram of a normal distribution; (b) Histogram of a skew-normal 
distribution with a  = 3 based on (a); (c) Histogram of a /-distribution with v = 10 based 
on (a); (d) Histogram of skew /-distribution with a = 3 and v = 10 based on (a).
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Here the sample size is N  = 5000. The shape parameter a  is 3 for skewness and the 

degrees of freedom v is 10 to construct t related distributions.

5.4.5.3 Generating multivariate skew /

The method for generating univariate skew /-distribution random numbers can be 

extended to generate random vector from multivariate skew /-distribution. First, generate 

a k-dimensional multivariate skew normal vector Z , then generate a chi-squared random 

number V with degrees of freedom v , and let W = Z  / v V / v  , W has the multivariate 

skew /-distribution with v  degrees o f freedom, denoted as STk(0,I ,a ,v).  Take into

account of location and scale parameters, Y = J;+a>Z is denoted as STk(£,Q,a,v) .

Detail can be found in Section 5.3.5.

5.4.5.4 Simulation results

Figure 5.22 shows the simulation results of four different bivariate distributions 

based on the following correlation matrix and parameters:

, v = 5. The shape parameter calculated from S  is
'  1 0.4" '  0.6 "

Q = , s  =
^0.4 1 ,

roO1

a  = (1.6, - 1.2)'.
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(c) bivariate t (d) bivariate skew t

Figure 5.22 Four different bivariate distributions

Figure 5.23 shows the simulation results of four different trivariate distributions

based on the following correlation matrix and parameters: Q =
1 0.6 0.3

0.6 1 0.5
0.3 0.5 1

8 =
^0.6a

0.5

\0-4y

, v = 8.
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(b) trivariate skew-normal(a) trivariate normal

(c) trivariate t (d) trivariate skew t

Figure 5.23 Four different trivariate distributions

5.5 Simulations of the Three-Factor Models 
in VaR Transformation Procedure

The three risk factors are random variables to be simulated. Four different kinds 

of multivariate distributions are considered for the three risk factors: normal, t, skew- 

normal and skew t. These four scenarios are analyzed and the results are compared. For 

each scenario, linear models and quadratic models developed in chapter 4 will be used in 

the simulation. Values at Risk (VaRs) are calculated for each stock and the whole
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portfolio at different confidence levels. In the simulation, the variance-covariance matrix 

is calculated from 54 weekly historical data of the three risk factors in year 2005. The 

idea is to use the most recent data to reflect the real market.

5.5.1 Simulation of Three-Factor 
Linear Models

The fitted linear models for IBM, MSFT and TXN are, respectively,

SIBM = 77.98 + 93S6Rmrp + 0.130i?MMP -  0 .0016^vsG/, , (5.86)

S m s f t  = 23-76 + 2.632R m r p  + 0.0508R M k tR P  -  0.00223i?KvsG/, (5.87)

and

STXN = 26.07 + A.122Rmrp + 0 . 1 0 5 5 ^  -  0 .0 0 9 1 3 /^  (5.88)

5.5.1.1 Multivariate normal distribution

The one-year variance-covariance matrix of the three risk factors is

E =
/ 0.3226 -14.4215 10.117 N
-14.4215 1193.473 3039.45

10.112 3039.45 27267.48

The sampling size is N  = 5000 for each risk factor. In this simulation, the three risk 

factors are assumed to have a multivariate normal distribution with variance-covariance 

matrix £ . The simulation results are shown in the Figure 5.24.

The simulation results are shown in the Figure 5.24: (a), (b) and (c) are the 

distributions of Rmrp , RMktRP, and RVvsGP generated from the variance-covariance matrix 

E based on a multivariate normal distribution assumption, (d), (f), (g) are the distributions 

of SIBM , SmFT, and STXN calculated according to the linear models in Equations (5.86), 

(5.87) and (5.88).
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( e ) 5 MSFT ( f ) s.TXN

Figure 5.24 The distributions (from simulation) of the three risk factors and three stocks
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Figure 5.24 (d), (f), and (g) show that SIBM, SMSFT, and STXN are all normally

distributed. This is as expected since Rmrp , RMktRP, and RVvsGP are multivariate normal

and the models apply linear transformations from the three risk factors to each of the 

three stocks.

Table 5.7 displays the input and estimated parameters for the risk factors 

R = (RMRP’RMktRP’RwsGP)• As a comparison, Table 5.8 lists the means of SIBM, SMSFT, 

and STXN calculated from simulation, denoted as ju, and the means of SIBM , SMSFT, and 

STXN calculated from 2005 one-year weekly historical data, denoted as f i .

Table 5.7 Risk factor information in MVN

Input parameters Estimated results from simulation

Variance-
covariance

matrix
E =

" 0.3226 -14.4215 10.117 " 
-14.4215 1193.473 3039.45 
 ̂ 10.112 3039.45 27267.48,

i  =
" 0.3205 -14.1716 10.472 " 
-14.1716 1175,447 3004.544 
 ̂ 10.472 3004.544 27021.58,

Mean fi =

'<*
0 M =

r 0.0058 " 
-0.7938 

4.8734,

Skewness 
(a  = 0)

7i =

"0"*
0

A
7, =

"-0.0231"
-0.0677

^-0.0435,

Kurtosis 
(v  = 0) 72 =

"3"
3

,3,
72 =

"2.888"
2.926

,3-043,
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Table 5.8 Means of three stocks from simulation ( ju) and from historical data (/j )

S IBM
c

MSFT
eumv

ft (N, linear) 77.98 23.74 26.06
ju (1 year) 83.26 25.76 28.9

Table 5.9 lists all the VaRs in terms of profit/loss (P/L) at different confidence 

levels for each stock individually and for the portfolio with three stocks.

Table 5.9 VaR P/L per share (multivariate normal distribution, linear model)

VaR (P/L) at (1 -« )% 75% 90% 95% 97.5% 99%

^ I B M -2.34 -4.44 -5.7 -6.79 -8.18

f 77.98^ ^  MSFT -0.60 -1.14 -1.47 -1.75 -2.10

M n  = 23.74 ASTXn -0.87 -1.66 -2.13 -2.53 -3.05
v26.06J

Portfolio
-1.20

(-1.27)
-2.20

(-2.41)
-3.00

(-3.10)
-3.50

(-3.67)
-4.20

(-4.44)

IBM -7.62 -9.72 -10.98 -12.07 -13.46
83.26 ^ MSFT -2.62 -3.16 -3.49 -3.77 -4.12

M l  y  = 25.76 A S t w -3.62 -4.5 -4.97 -5.37 -5.89
I  28-9 ,

ASPortfolio
-4.55

(-4.62)
-5.50

(-5.79)
-6.40

(-6.48)
-6.96

(-7.07)
-7.65

(-7.82)

For simplicity, we assumed that the weight of each stock in the portfolio is the 

same. So the portfolio value P = nSIBM + nSMSFT + nSTXN. Here n is the number of shares 

for each stock. The price per share in the portfolio is calculated according to

P = nS[BM + nSMSFT + nSTXN .
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S P o rtfo lio  ~  P ! ^ > n  — ~ ( S , b m  +  ^ M S F T  +  $ T X n )  • (5.89)

and

ASPortfolio =  ^  ( A S IBM  "*■ ASmsft + AStxn ). (5.90)

Table 5.9 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs here are the profit or loss per share. The VaRs of 

each stock are calculated by constructing histograms based on Monte Carlo simulation 

results. The VaRs of the portfolio are calculated by constructing P/L histograms

according to Equation (5.90). The calculations results shown in Table 5.9 are based on

the sample mean jUN and the mean of one-year historical data, denoted as juiy.

Diversification works as this: For example, at 90% confidence level and based on juN,

SWm will lose no more than $4.44 per share, SMSFT will lose no more than $1.14 per

share, and S TXN will lose no more than $1.66 per share. Totally, if  add them together and

divide by 3, the portfolio maximum loss per share is supposed to be $2.41 at 90% 

confidence level. From simulation, for a portfolio of the three stocks, the maximum loss 

per share is $2.20 at 90% confidence level.

Figure 5.25 graphically describes in another way the relationships between the 

probabilities a  and the VaRs of the four cases. It is seen from Figure 5.25 that there is 

5% probability that the portfolio will lose more than $3.00 per share.
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Figure 5.25 Probability a  vs. P/L referred to juN for multivariate normal, linear model

5.5.1.2 Multivariate ^-distribution

From now on, the sample mean JuN will be used as a reference to compare VaRs

from different distributions. In this simulation, the three risk factors are assumed to be 

multivariate ^-distributions based on the multivariate normal distribution with variance- 

covariance matrix E in Section 5.5.1.1. The new parameter added in this simulation is 

the degree of freedom v . The distribution of the three risk factors changes from N 3 (0, £) 

to t3(0 ,E ,v ). The mean vector is zero since the centered risk factors are used in deriving

the three-factor model.

The simulation results are shown in Figure 5.26: (a), (b) and (c) are the

distributions of Rmrp, RMktRP, and RVvsGP generated from (0,1,5). (d), (f), (g) are the

distributions of SIBM, SMSFT, and S TXN calculated according to the linear models in

Equations (5.86), (5.87) and (5.88).
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Figure 5.26 The distributions of the three risk factors and three stocks when R is a 
multivariate /-distribution (MVT)
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From the Figure 5.26 (d), (f), and (g) we can see that S IBM, SMSFT, and STXN still 

follow t-distributions. This is because R mrp, R MktRP, and R VvsCP are a multivariate t- 

distribution and the transformation is linear from R =  (R mrp , R MktRP, R Vvsc,p ) to SIBM, 

Smsft and STXN, respectively.

Table 5.10 displays the input and estimated parameters for the risk 

factors i? =  (R mrp , R MktRP, R VvsGP)  • As a comparison, Table 5.11 lists the means of SIBM ,

Smsft > and STXN calculated from the f-distribution samples, denoted as jut , and the means 

estimated in multivariate normal (MVN) case juN.

Table 5.10 Risk factor information in multivariate t-distribution

Input parameters Estimated results from samples

Variance-
covariance

matrix
£  =

'  0.3226 -14.4215 10.117 " 
-14.4215 1193.473 3039.45 
 ̂ 10.112 3039.45 27267.48,

± =
' 0.3205 -14.1716 10.472 " 
-14.1716 1175,447 3004.544 

v 10.472 3004.544 27021.58,

Mean M =

S' 
"N

o 
o 

o fi =

< 0.0049 " 
-0.8883

l-5.1755\  /

Skewness 
(a  = 0)

V\ =

"0^
0

,0;

=

" 0.0790 
-0.1396 

^-0.0358

\

1

Kurtosis 
O '= 5) Ri =

"6"
6

,6,
Vi =

"5.593"
6.140

,6-845,

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



225

Table 5.11 Means of three stocks in two cases

S IBM Smsft
cTXN

jut (t, linear) 77.92 23.74 26.04

juN (N, linear) 77.98 23.74 26.06

Table 5.12 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs here are the profit or loss per share. The VaRs of 

each stock are calculated by constructing histograms based on Monte Carlo simulation 

results on MVT of the risk factors and the linear factor models. The VaRs of the portfolio 

are calculated by constructing P/L histograms according to Equation (5.90). The

calculations results shown in Table 5.12 are based on the sample meanp.t , and fiN of 

MVN. Diversification effects are shown by comparing the two numbers listed for 

ASPortfolio '■ number in the parenthesis is the sum of ASIBM , ASmsft , and ASTXN. The

number without the parenthesis is the value of ASPortfolio by constructing P/L histogram 

using Monte Carlo simulation results of S IBM, SMSFT and STXN.

Figure 5.27 graphically describes in another way the relationships between 

probabilities a  and the VaRs of the four cases. For example, there is 5% possibility that 

the portfolio will lose more than $4.70 per share. Compare with Figure 5.25, the 

possibility to lose $4.70 per share is almost zero. If the real data has t distribution, the 

analysis based on normal distribution assumption could underestimate the risk (real loss).
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Table 5.12 VaR P/L per share (multivariate ^-distribution, linear model)

VaR (P/L) at (1 -- a ) % 75% 90% 95% 97.5% 99%

^77.92"
23.74

v26-04,

^ I B M -3.60 -6.83 -8.76 -10.44 -12.57

^ M S F T -1.07 -2.03 -2.60 -3.10 -3.73

ASTxn -1.93 -3.67 -4.71 -5.61 -6.76

Portfolio
-1.50

(-2 .20)
-3.27

(-4.17)
-4.67

(-5.36)
-6.17
(6.38)

-9.09
(-7.69)

^ I B M -3.66 -6.89 -8.82 -10.50 -12.63

A
^77.98"
23.74
26.06

MSFT -1.07 -2.03 -2.60 -3.10 -3.73
M n  =

A S Txn -1.95 -3.69 -4.73 -5.63 -6.78
\  y

Portfolio
-1.60

(-2.23)
-3.50

(-4.20)
-4.70

(-5.38)
-6.30

(-6.41)
-9.11

(-7.71)

5 00% 10 00% 15 00% 20 00% 25 00% 30 00%0 .00%

Portfolio 
»- IBM 

MSFT 
TXN

-10

-12

-14

Figure 5.27 Probability a  vs. P/L referred to juN for a multivariate t, linear model
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5.5.1.3 Multivariate skew-normal distribution

In this simulation, the three risk factors are assumed to have a multivariate skew- 

normal (MVSN) distribution based on the multivariate normal distribution with variance- 

covariance matrix E in Section 5.5.1.1. The new parameter added in this simulation is

the shape parameter a  . The distribution of the three risk factors changes from N 3 (0, Z)

to t3(0 ,Z ,a), where a  = (2,2,2)'. As discussed before, the larger the shape parameter,

the more skewed the distribution becomes. The mean vector is zero since the centered 

risk factors are used in deriving the three-factor model.

The simulation results are shown in Figure 5.28: (a), (b) and (c) are the

distributions of Rmrp, RMkmP, and RVvsGP generated from t3(0 ,Z ,a ) . Here a  = (2,2,2)'. 

(d), (f), (g) are the distributions of S /BM, SMSFT, and S TXN calculated according to the 

linear models in Equations (5.30), (5.31) and (5.32). From Figure 5.28 (d), (f), and (g) we 

can see that SIBM, SMSFT, and STXN are still skew-normal distributions, which further

confirms that linear transformation doesn’t change the type of the distribution.

Table 5.13 displays the input and estimated parameters for the risk

factors/? = (RMRP’RmtRP’Rvvsgp)- As a comparison, Table 5.14 lists the means of S!BM , 

SMSFT, and STXN calculated from the skew-normal distribution samples, denoted as jusn, 

and the means estimated in MVN case juN .
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Figure 5.28 The distributions of the three risk factors and three stocks when R is 
multivariate /-distribution (MVT)
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Table 5.13 Risk factor information in multivariate skew-normal distribution (MVSN)

Input parameters Estimated results from samples

Variance-
covariance

matrix
2 =

'  0.3226 -14.4215 10.117 " 
-14.4215 1193.473 3039.45 
 ̂ 10.112 3039.45 27267.48y

2 =

" 0.3205 -14.1716 10.472 
-14.1716 1175,447 3004.544 
 ̂ 10.472 3004.544 27021.58;

Mean fi =

" 0.4053 " 
24.6537 

J  17.8404,
M =

r 0.4025 " 
23.9712 

V114.1011,

Skew 

a  =

me:

2

,2,

5S
=

"0.453741"
0.453741

^0.453741,
V\ =

"0.508583^
0.464333

^0.462669,

Kurtosis h  =

"3.304975"
3.304975

^3.304975,
l i  =

"3.362526"
3.322886

.3.313236\ y

Table 5.14 Means of three stocks in two cases

S IBM Smsft
c

TXN

jusn{sn, linear) 84.68 25.78 29.46

juN (N, linear) 77.98 23.74 26.06

Table 5.15 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs of each stock are calculated by constructing 

histograms based on Monte Carlo simulation results on MVSN of the risk factors and the 

linear factor models. The VaRs of the portfolio are calculated by constructing P/L 

histograms according to Equation (5.34). The calculations results shown in Table 5.15

are based on the sample mean fisn , and juN of MVN. Diversification effects are shown
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by comparing the two numbers listed for AS Portfolio: the number in the parenthesis is the 

sum of &SIBM , AS MSFT , and AS TXN. The number without the parenthesis is the value of 

ASportfolio by constructing P/L histogram using Monte Carlo simulation results of S [BM, 

S m s f t  STXN •

Table 5.15 VaR P/L per share (MVSN distribution, linear model)

VaR (P/L) at (1 -- a)% 75% 90% 95% 97.5% 99%

"84.68

25.78
,29.46;

AS ibm -3.61 -6.86 -8.80 -10.48 -12.62

A AS MSFT -1.08 -2.05 -2.63 -3.13 -3.77
/Ln

ASTxn -1.79 -3.40 -4.36 -5.19 -6.25

AS Portfolio
-2.40

(-2.16)
-3.5

(-4.10)
-4.0

(-5.26)
-4.4

(-6.27)
-4.87

(-7.55)

AS ibm 3.09 -0.16 -2.10 -3.78 -5.92

'77.98^ 
23.74 

^26.06;

AS MSFT 0.96 -0.01 -0.59 -1.09 -1.73

Mn
a s txn 1.61 0.00 -0.96 -1.79 -2.85

AS p0rfon0 1.70
(1.89)

0.70
(-0.06)

0.00
(-1.22)

-0.35
(-2 .22)

-0.80
(-3.50)

Figure 5.29 graphically describes the relationships between probabilities a  and 

the VaRs of the four cases in another way. For example, in Figure 5.29 there is 5% 

possibility that the portfolio will lose more than $4.70 per share. Here for the same 5% 

possibility the portfolio will lose $0.0 per share. Different distributions give totally 

different VaR information.
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Figure 5.29 Probability a  vs. P/L referred to juN for multivariate SN, linear model

5.5.1.4 Multivariate skew ^-distribution

In this simulation, the three risk factors are assumed to be multivariate skew-t 

(MVST) distribution based on the multivariate normal distribution with variance- 

covariance matrix £  in Section 5.5.1.1. The new parameter added in this simulation is 

the shape parameter a  and the degrees of freedom v . The distribution of the three risk 

factors changes from N3(0,Z) to ST(6,£,<5,v), where a  = (2,2,2)'and v = 2. As

discussed before, the larger the shape parameter, the more skewed the distribution 

becomes. The smaller the degrees of freedom, the higher peaked and heavier tailed the 

distribution is. The mean vector is zero since the centered risk factors are used in deriving 

the three-factor model.

The simulation results are shown in Figure 5.30: (a), (b) and (c) are the

distributions o f  Rmrp, RMktRP , and RVvsCP generated from SN3 (0,1., a , v) . Here
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a  = (2,2,2)' andv = 2 . (d), (f), (g) are the distributions o f SIBM , SMSFT, and STXN 

calculated according to the linear models in Equations (5.30), (5.31) and (5.32). From the 

Figure 5.30 (d), (f), and (g) we can see that SIBM, S MSFT, and STXN are still skew t-

distributions since linear transformation doesn’t change the type of the distribution.

Table 5.16 displays the input and estimated parameters for the risk

factors R = (RMRP’RMktRP’RvvsGp)- As a comparison, Table 5.17 lists the means of S IBM,

SmFT, and STXN calculated from the skew ^-distribution samples, denoted as just, and the

means estimated in MVN case juN.

Table 5.18 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs of each stock are calculated by constructing 

histograms based on Monte Carlo simulation results on MVST of the risk factors and the 

linear factor models. The VaRs of the portfolio are calculated by constructing P/L 

histograms according to Equation (5.34). The calculations results shown in Table 5.18

are based on the sample mean just , and juN of MVN. Diversification effects are shown by 

comparing the two numbers listed for AS Portfolio: the number in the parenthesis is the sum 

of ASlBM, ASmsft , and ASTXN. The number without the parenthesis is the value of 

ASportfolio by constructing P/L histogram using Monte Carlo simulation results of SIBM,

SMSFT S TXN .
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Figure 5.30 The distributions o f the three risk factors and three stocks when R is 
multivariate skew t-distribution (MVST)
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Table 5.16 Risk factors information for MVST

input parameters Estimated results from samples

Variance-
covariance

matrix
2 =

" 0.3226 -14.4215 10.117 " 
-14.4215 1193.473 3039.45 

v 10.112 3039.45 27267.48;
i  =

" 0.3205 -14.1716 10.472 
-14.1716 1175,447 3004.544 
 ̂ 10.472 3004.544 27021.58;

mean h  =

"0.482137"
29.32324
140.1613V >

h  =

"0.472764"
29.2074
134.1451\ /

Skewness 
a  = 2 7i =

rl .790046" 
1.790046 

^1.790046,
7, =

rl .668538" 
1.783777 

V1.273095,

Kurtosis 
v = 5 h  =

"13.52727"
13.52727

J3.52727,

IItN

"12.71914"
14.59714

J0.77981,

Table 5.17 Means of three stocks in two cases

$IBM Smsft T̂XN

p.st (st, linear) 85.99 26.19 30.16

fiN (N, linear) 77.98 23.74 26.06
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Table 5.18 VaR P/L per share (MVST distribution, linear model)

VaR (P/L) at (1 -- oi)% 75% 90% 95% 97.5% 99%

r85.99'
26.19

^30.16,

^ I B M -4.94 -9.38 -12.03 -14.34 -17.27

M,t =
^ MSFT -1.53 -2.90 -3.73 -4.44 -5.35

&STxn -2.72 -5.17 -6.63 -7.90 -9.51

Portfolio
-3.00

(-3.06)
-4.27

(-5.82)
-5.0

(-7.46)
-5.5

(-8.89)
-6.00

(-10.71)

^ I B M 3.07 -1.37 -4.02 -6.33 -9.26

A
'77.98^
23.74
26.06

^ M S F T 0.92 -0.45 -1.28 -1.99 -2.90

Mn =
&STxn 1.39 -1.07 -2.53 -3.80 -5.41

Portfolio
1.80

(1.79)
0.70

(-0.96)
0.00

(-2.61)
-0.70

(-4.04)
-1.40

(-5.86)

Figure 5.31 graphically describes the relationships between probabilities a  and 

the VaRs of the four cases. For MVSN, the portfolio diversification effect is very 

obvious. The VaRs of ASPortfolio are much smaller than those of any individual stocks.

Figure 5.32 compares the VaRs of the portfolio in four different distributions: 

MVN, MVT, MVSN and MVST. Since every elements of the shape parameter a  is 2 > 

0, the MVSN and MVST are both positively skewed, the left-side tail in these two cases 

is short, the VaRs are smaller compared with MVN case. MVT has fat and long tail, the 

VaRs of MVT is much larger than MVN, just as it should be. If the shape parameter 

becomes negative, it is reasonable to infer that the VaRs for negative MVSN or MVST 

will become larger.
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Figure 5.31 Probability a  vs. P/L referred to p.N for MVST, linear model
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A
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Figure 5.32 Probability a  vs. P/L for AS Portfolio comparison of four distributions for 
linear model

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 3 7

5.5.2 Simulation on Three-Factor 
Quadratic Models

The simulation techniques are the same as in Section 5.5.1, and the method of 

analysis is also the same as in analyzing the linear models. In this section, the simulation 

results will be displayed and only short descriptions will be given.

The fitted quadratic model for IBM is

S[BM = 76.116 + \0.86SRmrp + 0 .1 2 8 8 7 ?^  + 0.00000060747?2mop -  0.002687?M/u,7?rvsGP .

(5.34)

The fitted quadratic model for MSFT stock is

S m s f t  = 27.523+ 4.9977?**, + 0 .0 6 7 7 ? ^  -  0.0053 \RVvsGP -1.1517?^,

-0.000027l 2MktRP -  0.00173RmrpRVvsGP (5.35)

The fitted quadratic model for TXN stock is

STXN = 18.765 + 0.0325RMktRP + 0.003977?,^  + 0 .000217?^

+ 0.000003787?*ViG/) -  0.0046647?„7?,viGP (5.36)

5.5.2.1 Multivariate normal distribution

The simulation results are shown in Figure 5.33: (a), (b) and (c) are the

distributions of Rmrp, RMktRP, and RVvsGP generated from 7V3(0,S). (d), (f), (g) are the

distributions of SIBM, SMSFT, and S TXN calculated according to the quadratic models in

Equations (5.34) - (5.36).
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Figure 5.33 The distributions of the three risk factors and three stocks when R is 
multivariate normal distribution (MVN) in quadratic models
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From Figure 5.33 we can see the generated distributions for SMSfT in (e) and S TXN 

in (f) are not normal any more. In fact, they are skewed in opposite directions, even 

though the distribution of Rmrp , RMktRP, and RVvsGP is MVN. Since the linear

transformation terms of the quadratic models don’t change the dependent variable’s 

distribution. The change of distribution is caused by the squared terms and cross-product 

terms. Table 5.19 summarizes the new finding.

Table 5.19 Analysis of the causes of skewness for SIBM , SMSFT and S TXN

^  IBM

R 2 MktRP R  MRP R vvsG P
Skewness effect is canceled out.

+ -

S m s f t

R 2 MRP R 2 MktRP ^ M R P ^ V v s G P
Negatively skewed

- - -

c
TXN

R 2 VvsCP R 2 MktRP ^ M k tR P ^ V v s G P
Positively skewed

+ + -

The risk factors information is the same as in MVN linear models. As a 

comparison, Table 5.20 lists the means of S!BM, SMSFT, and STXN calculated from the

simulation of MVN quadratic model, denoted as fi 2, and the means estimated in MVN

linear model fiN, The means of SIBM and SMSFT don’t change much from the means in 

linear models. However, the mean of S TXN changes a lot to a smaller number.
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S IBM S msft c°™v

juN2 (N, quadratic) 76.12 27.17 19.07

Mn (N, linear) 77.98 23.74 26.06

Table 5.21 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs of each stock are calculated by constructing 

histograms based on Monte Carlo simulation results on MVN of the risk factors and the 

quadratic factor models. The VaRs of the portfolio are calculated by constructing P/L 

histograms according to Equation (5.34). The calculations results shown in the table 5.21

are based on the sample mean Jlsl , and juN of MVN diversification effects are shown by 

comparing the two numbers listed for AS Portfblio: the number in the parenthesis is the sum 

of AS1bm , A.SMSFT, and ASTXN. The number without the parenthesis is the value of 

AS portfolio by constructing P/L histogram using Monte Carlo simulation results of SIBM, 

Smsft and ‘S'raw •

Figure 5.34 graphically describes the relationships between probabilities a  and 

the VaRs of the four cases. The VaRs of SPortfolio is smaller than those of SIBM and STXN, 

which shows the benefit of diversification.
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Table 5.21 VaR P/L per share (MVN distribution, quadratic model)

VaR (P/L) at (1 -- a )% 75% 90% 95% 97.5% 99%

'76.12^
27.17

,19.07,

A S IB M -2.85 -5.42 -6.95 -8.28 -9.97

K * =
A S M S F T -1.00 -1.90 -2.43 -2.90 -3.49

l x l , TXN -1.07 -2.03 -2.60 -3.10 -3.73

Portfolio
-1.29

(-1.64)
-2.62

(-3.12)
-3.51

(-3.99)
-4.33

(-4.76)
-5.29

(-5.73)

A S IB M -4.71 -7.28 -8.81 -10.14 -11.83

r77.98" 
23.74 
26.06

A S M S F T 2.43 1.53 1.00 0.53 -0.06
M n  ~

A S  TXN -8.06 -9.02 -9.59 -10.09 -10.72

a ?
^  Portfolio

-3.10
(-3.45)

-4.43
(-4.93)

-5.32
(-5.80)

-6.20
(-6.57)

-7.10
(-7.54)

5.00% 10.00% 15.00% 20 00% 25.00%Q.0p% I0%

Portfolio 
» IBM 

MSFT 
TXN

-10 -

Figure 5.34 Probability a  vs. P/L referred to fiN for MVN, quadratic model
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5.5.2.2 Multivariate ^-distribution

The simulation results are shown in Figure 5.35: (a), (b) and (c) are the

distributions of Rmrp, RMktRP, and RVvsCP generated from f3(0,Z ,v), where v = 5. (d), 

(f), (g) are the distributions of SIBM, SMSFT, and STXN calculated according to the 

quadratic models in Equations (5.34) - (5.36).

As we expect, the generated distributions for SMSFT (in Figure 5.35(e)) and S TXN 

(in Figure 5.35(f)) are skewed in opposite directions, even though the distribution of 

Rmrp, RMktRP, and RVvsGP is MVT. The reason is the same as analyzed in Section 5.5.2.1 

MVN case.

The risk factors information is the same as in MVT linear models. As a 

comparison, Table 5.22 lists the means of SIBM, SMSFT, and STXN calculated from the

simulation of MVT quadratic model, denoted as and the means estimated in MVN

linear model juN. The means of SIBM doesn’t change much from the means in MVN 

linear models. However, the mean of SMSFT moves to a higher value and the mean of 

STXN changes to a smaller number, as noted in MVN quadratic model.

Table 5.22 Means of SIBM, SMSFT, and S TXN in two cases

^  IBM ^  MSFT T̂XN
jut2 (t, quadratic) 76.14 26.91 19.32

juN (N, linear) 77.98 23.74 26.06
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Figure 5.35 The distributions of the three risk factors and three stocks when R is 
multivariate t-distribution (MVT) in quadratic models
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Table 5.23 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs of each stock are calculated by constructing 

histograms based on Monte Carlo simulation results on MVT of the risk factors and the 

quadratic factor models. The VaRs of the portfolio are calculated by constructing P/L 

histograms according to Equation (5.34). The calculations results shown in Table 5.23

are based on the sample mean ju[2 and juN o f MVN in linear model. Diversification

effects are shown by comparing the two numbers listed for ASPortfglio: the number in the

parenthesis is the sum of ASIBM, AS MSFT , and ASTXN. The number without the parenthesis

is the value of ASPortfolio by constructing P/L histogram using Monte Carlo simulation

results of SIBM, SMSFT and STXN.

Table 5.23 VaR P/L per share (MVT distribution, quadratic model)

VaR (P/L) at (1 -- a ) % 75% 90% 95% 97.5% 99%

^76.14"
26.91

,19 .32 ,

ASIBM -4.17 -7.93 -10.17 -12.12 -14.60

h  =
ASmsft -1.84 -3.49 -4.48 -5.34 -6.43

SSTXN -1.93 -3.67 -4.71 -5.61 -6.76

ASPortfolio
-1.57

(-2.65)
-3.27

(-5.03)
-4.67

(-6.45)
-6.33

(-7.69)
-8.67

(-9.26)

AS/BM -6.01 -9.77 -12.01 -13.96 -16.44

A "77.98^
23.74
26.06

SS MSPT 1.33 -0.32 -1.31 -2.17 -3.26

Mn = ASTXN -8.67 -10.21 -11.45 -12.35 -13.50
\ /

AS porrj'0!io
-3.41

(-4.45)
-5.46

(-6.77)
-6.83

(-8.26)
-8.21

(-9.48)
-10.30

(-11.07)
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Figure 5.36 graphically describes the relationships between probabilities a  and 

the VaRs of the four cases. The VaRs of SPortfolio is smaller than those of S IBM and S TXN, 

which shows the benefit of diversification.
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Figure 5.36 Probability a  vs. P/L referred to juN for MVT, quadratic model

5.5.2.3 Multivariate skew-normal 
distribution

The simulation results are shown in Figure 5.37: (a), (b) and (c) are the 

distributions of Rmrp , RMktSP, and RVvsGP generated from SN3 (0, 2, a ) , where 

a  = (2,2,2)'. (d), (f), (g) are the distributions of SIBM, SMSFT, and STXN calculated 

according to the quadratic models in Equations (5.34) - (5.36).
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Figure 5.37 The distributions of the three risk factors and three stocks when R is 
multivariate skew-normal distribution (MVSN) in quadratic models
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Comparing the simulation results of MVSN in linear models, it is interesting to 

observe in Figure 5.37 that the skewness of SIBM doesn’t change, the distribution of 

SMSFT becomes less skewed, and the distribution of STXN becomes more skewed. These

phenomena can also be explained by the signs o f the squared-terms and cross-product 

terms in quadratic models.

The risk factors information is the same as in MVSN linear models. As a 

comparison, Table 5.24 lists the means of S IBM, SMSFT, and STXN calculated from the

simulation of MVT quadratic model, denoted as jusnl, and the means estimated in MVN

linear model juN. The means of SIBM and SMSFT move up from the means in MVN linear 

models. The mean of STXN is still a smaller number than the mean in MVN linear model.

Table 5.24 Means of three stocks in two cases

S IBM $ MSFT
c

Ms„2 (sn, quadratic) 83.45 30.07 20.34

juN (N, linear) 77.98 23.74 26.06

Table 5.25 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs of each stock are calculated by constructing 

histograms based on Monte Carlo simulation results on MVSN of the risk factors and the 

quadratic factor models. The VaRs of the portfolio are calculated by constructing P/L 

histograms according to Equation (5.34). The calculations results shown in Table 5.25

are based on the sample mean ^ , and juN of MVN in linear model. Diversification

effects are shown by comparing the two numbers listed for ASPortfolio: the number in the
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parenthesis is the sum of AS IBM, ASMSFT , and ASTXN. The number without the parenthesis 

is the value of ASPor(fi)tto by constructing P/L histogram using Monte Carlo simulation 

results of S , SMSpj and .

Table 5.25 VaR P/L per share (MVSN distribution, quadratic model)

VaR (P/L) at (1 -a )% 75% 90% 95% 97.5% 99%

"83.45"
30.07

,20-34,

^ I B M -3.90 -7.41 -9.52 -11.34 -13.65

M  2 =r  sn

^ M S F T -1.20 -2.28 -2.92 -3.48 -4.20

ASTxn -1.09 -2.07 -2.65 -3.16 -3.80

Portfolio
-2.23

(-2.06)
-3.20

(-3.92)
-3.93

(-5.03)
-4.33

(-5.99)
-4.77

(-7.22)

^ 5 IBM 1.57 -1.94 -4.05 -5.87 -8.18

"77.98"
23.74
26.06

^  MSFT 5.13 4.05 3.41 2.85 2.13

Mn
A S Txn -6.81 -7.79 -8.37 -8.88 -9.52

\ /
Portfolio

3.80
(-0.04)

-1.20 
(-1.89)

-1.80
(-3.00)

-2.37
(-3.97)

-2.70
(-5.19)

Figure 5.38 graphically describes the relationships between probabilities a  and 

the VaRs of the four cases. The VaRs of SPortfglio is smaller than those of SIBM and S TXN, 

which shows the benefit of diversification.
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Figure 5.38 Probability a  vs. P/L referred to juN for MVSN, quadratic model

5.5.2.4 Multivariate skew t-distribution

The simulation results are shown in Figure 5.39: (a), (b) and (c) are the

distributions of Rmrp, RmtRP, and RVvsGP generated from ST3(0 ,E ,« ,v ), where

a  = (2,2,2)' and v = 5 . Figure 5.39 (d), (f), (g) are the distributions of SIBU , SMSFT, and

STXN calculated according to the quadratic models in Equations (5.34) ~ (5.36).

Similar to the case in MVSN , the distribution of SIBM doesn’t change. However,

the distribution of SMSFT becomes less skewed and less peaked and the distribution of

STXN becomes more skewed and more peaked. These phenomena can also be explained

by the signs o f the squared-terms and cross-product terms in quadratic models.
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Figure 5.39 The distributions of the three risk factors and three stocks when R is 
multivariate skew t-distribution (MVST) in quadratic models
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The risk factors information is the same as in MVST linear models. As a 

comparison, Table 5.26 lists the means of SIBM, SMSFT, and STXN calculated from the

simulation of MVST quadratic model, denoted as jus(2, and the means estimated in MVN

linear model ]uN . Similar to the case in MVSN, the means of SIBM and SMSFT move up 

from the means in MVN linear models. The mean of STXN is still a smaller number than 

the mean in MVN linear model.

Table 5.26 Means of three stocks in two cases

S  IBM S  MSFT
c

p . (st, quadratic) 84.86 30.36 20.83
j j .  (N, linear) 77.98 23.74 26.06

Table 5.27 compares VaRs of the portfolio and the VaRs of individual stock at 

certain confidence levels. The VaRs of each stock are calculated by constructing 

histograms based on Monte Carlo simulation results on MVST of the risk factors and the 

quadratic factor models. The VaRs of the portfolio are calculated by constructing P/L 

histograms according to Equation (5.34). The calculations results shown in Table 5.27

are based on the sample mean jus(2 and juN of MVN in linear model. Diversification

effects are shown by comparing the two numbers listed for ASPortfolio: the number in the

parenthesis is the sum of ASIBM , ASMSFT, and ASTXN. The number without the parenthesis

is the value of ASPorlfolio by constructing P/L histogram using Monte Carlo simulation

results of , S MSFT and STXN.
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Table 5.27 VaR P/L per share (MVST distribution, quadratic model)

VaR (P/L) at (1 --a)% 75% 90% 95% 97.5% 99%

"84.86^
30.36

v20.83y

^ IBM -5.33 -10.13 -13.00 -15.49 -18.65

K  =
^ M S F T -1.62 -3.09 -3.96 -4.72 -5.68

A S TXN -1.80 -3.42 -4.38 -5.22 -6.29

Portfolio
-3.00

(-2.92)
-4.00

(-5.55)
-4.83

(-7.11)
-5.33

(-8.48)
-5.67

(-10.21)

^ I B M 1.75 -3.05 -5.92 -8.41 -11.57

r 77.98^ MSFT 5.00 3.53 2.66 1.90 0.94

= 23.74 &STxn -7.03 -8.86 -9.61 -10.45 -11.52

^26.06J
Portfolio

-0.20
(-0.09)

-1.30
(-2.79)

-1.95
(-4.29)

-2.50
(-5.65)

-3.00
(-7.38)

Portfolio
-3.33

(-1.31)
-4.67

(-6.43)
-5.33

(-8.00)
-6.00

(-9.36)
-6.67

(-11.06)

Figure 5.40 graphically describes the relationships between probabilities a  and 

the VaRs of the four cases. The VaRs of S Portfolio is smaller than those of SIBM and STXN

when a  is less than 17%, which shows the benefit of diversification.

Figure 5.41 compares the VaRs of the portfolio in four different distributions for 

quadratic models: MVN, MVT, MVSN and MVST. Since the shaper parameter is 

positive, even after taking into account the negative impact of squared-terms and cross- 

product terms, SIBM, SMSFT and STXN are still positively skewed in MVSN and MVST

case. Therefore, the VaRs of the portfolio in MVSN and MVST cases are smaller than 

those in MVN. The VaRs of MVT is larger than MVN because of the left heavy tail.
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Figure 5.40 Probability a  vs. P/L referred to juN for MVST, quadratic model
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Figure 5.41 Comparison of portfolio VaRs in four distributions for quadratic model
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5.6 Discussion

In this chapter, extensive study and simulation has been done on the linear and 

quadratic three-factor models with four most important multivariate distributions used to 

describe financial risk factors. One interesting finding is that linear models keep the 

distribution unchanged. However, the quadratic models may change the distribution 

depending on the signs o f the coefficients of squared terms and cross-product terms. The 

VaRs of a portfolio with several stocks could be smaller than the VaRs of some 

individual stock. This difference is the result of diversification. Normal distributions may 

underestimate the risk and are not good for extreme case simulation since most of the 

financial data are peaked, skewed, and heavy-tailed. However, skewness makes the 

situation more complicated, one may overestimate or underestimate the risk. The most 

important thing is to find out what distribution is appropriate for the financial data being 

researched.
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CHAPTER 6

SUMMARY AND FUTURE STUDY

6.1 Summary and Contributions

Value at Risk (VaR) is a very important risk measure in risk management. Recent 

years have witnessed an explosive growth and extension of application of VaR in various 

research areas. Since market risk is the central risk faced by financial institutions, this 

dissertation focuses on quantifying market risk of an equity portfolio by using VaR 

methodology.

Since the distribution of the portfolio depends on the possibilities of the risk 

factors’ movements, which can be described as multivariate distributions, it is very 

interesting to know how the distribution of the risk factors affects the distribution of the 

portfolio. For this reason, four different multivariate distributions are used to model the 

possible movements of the three risk factors.

In this research, three risk factors are identified by literature review. Chapter 4 

gives a detailed discussion on this. Regression analysis techniques are used to find first- 

order and second-order models which relate an asset’s value to the three common risk 

factors. All the risk factors are treated as random variables and simulated by Monte Carlo 

method according to four possible distributions: multivariate normal distribution, 

multivariate Z-distribution, multivariate skew-normal distribution and multivariate skew t-
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distribution. Through simulation, the change of the assets’ value is forecasted as a 

distribution that is determined by the factor models and the distribution of the risk 

factors. Based on the asset’s distribution, VaRs are calculated for individual assets and 

for the whole portfolio. This modeling approach can be used for any VaR measurement 

in any area as long as the relationship between an asset and risk factors can be found and 

the joint distribution of risk factors can be characterized.

The main contributions of this research are:

1. Extensively simulated a total of four multivariate distributions of the risk

factors R . These four distributions are most often used distributions to describe financial 

market data. Most of the studies in the literature use normal distributions for simplicity. 

Few studies use ^-distribution, the skew-normal, or skew t. In this dissertation, all four 

distributions are studied, and the simulation results are compared.

2. Developed linear (first-order) model and quadratic (second-order) model to 

describe the relationship of an individual asset to the three common risk factors by using 

regression analysis techniques.

3. Characterized the distribution of portfolio value changes by using both the first-

order model and the second-order models',. = f ( R )  to approximate the portfolio

3
function P  = ^  coiSi according to different multivariate distributions used to model

;=i

changes in the risk factors R .
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The simulation results in this dissertation shows:

1. Linear transformation doesn not change the characteristics of distribution. In 

other words, if the three risk factors are multivariate normal distributed, then the 

distribution of the portfolio is still normal.

2. Quadratic transformation may change the characteristics of the distribution 

depending on the signs of the coefficients of its second-order terms.

3. The VaR measues of a portfolio with several stocks could be smaller than those 

of the individual stocks. This is due to the effect of diversification.

4. Normal distributions may underestimate risk and are not good for most 

practical applications since most of the financial data are peaked, skewed and heavy

tailed.

5. Skewness makes the situation more complicated. One may overestimate or 

underestimate the risk based on the distribution.

These results underline the importance of determining the proper distribution for 

the financial data under consideration in order to predict risk accurately.

6.2 Future Study

This research explored a way through simulation to integrate computer science, 

mathematics, statistics, and financial risk management to calculate VaRs, the market risk 

of a stock portfolio. This approach helps to design simulations in quantifying market risks 

in various scenarios according to the distributions of the real data, and to improve the 

understanding of the VaR results. However, there is still much room for improvement. 

Future studies may involve the following:
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1. Instead of using historical data to construct the variance-covariance matrix of 

risk factors as input to characterize the future change of the risk factors, AREMA and 

state-space models can be used to forecast risk factors. Chapter 3 gives a detailed 

discussion. In this manner, the joint distribution of the risk factors in the future is 

determined by time series forecasting techniques, instead of generating from the 

historical variance-covariance matrix.

2. Construct a more diversified portfolio by choosing stocks from different 

industry in order to reduce further the VaRs of a portfolio.

3. Similar to constructing efficient frontier (EF) in modem portfolio theory 

(MPT), an EF (as described in Section 4.2.1) can also be constructed for a portfolio in 

terms of the value of the portfolio and the standard deviation of the portfolio by varying 

the weights of each asset in the portfolio.

4. The present simulation technique can be improved by using copula (as 

described in Section 5.2.5.3), which makes it possible to simulate multivariate t- 

distribution with different degrees of freedom for each element of the random vector. 

This will be also useful in the simulation of multivariate t related distribution.

5. Based on VaR measurement, another important financial risk measure-expected 

tail loss (ETL) or expected shortfall (ES)-can be calculated as ES = E[L \ L > VaK\. 

Here, L means loss. There is a short description about ES in Chapter 1.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



APPENDIX 

SOURCE CODES
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/*
Monte Carlo Simulation on Multivariate Distribution
Four multivariate distributions are simulated by using Monte Carlo simulation 
method. They are

1. Multivariate Normal Distribution
2. Multivariate ^-Distribution
3. Multivariate Skew-Normal Distribution
4. Multivariate Skew t-Distribution

"nrutil.h" and "nrutil.c" from «Num erical Recipes in C »  are used for 
vector and matrix implementation.

*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "nrutil.h"
#include "nrutil.c"
#defme TRUE 1
#define FALSE 0
#defme PI 3.141592653589793

struct t_bc {double a, b, h;} be;

double func_standard_normal(float x);
void trapz_int(double *ss, double a, double b, int n);
void dvec_uniform( int n, int *seed, double r [ ] );
void func(double x, double *y_derivative);
void gen_normal_vector(double **z, int dimension, int size);
void gen_skewnormal_vector(double **z, double **u, int dimension, int size);
void choldc(float **a, int n, float p[]);
void LU_decom(double **L, int s);
int Matrixlnversionl(double** A, int n, double** Alnverse); 
void shape_vector(double **Omega_inv, double *Delta, int n); 
void gen_chi_sqr_ran(double *v, int size, int df); 
double AChiSq(double p, int n); 
double ChiSq(double x, int n);
void gen_uni_chi_sqr(double *v, double *r, int size, int df); 
void gen_uni_normal_vector(double *z, double *r, int size); 
void LU_decom_4T(double **L, int s);

void main()
{

int i, j, k, size, dimension, n, s, df, yes; 
int seed = 123456789, seed_in;
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double mu, var, **z, **u, **L, *sn, **SN, **v, *vv, *tt, *st, **ST, x, **r, **zz, 
*ul, *u0, *Z, **T, *t; 
float delta, alpha;

/* Univariate T Distribution */

printf(" Please enter how many skew t random variables in your simulation.\n");
scanf("%d", &dimension);
printf("\n");

n -  2 * dimension + 1;

printf(" Please enter how many pseudorandom numbers you would like to 
generate for each t random variable.W'); 
scanf("%d", &size); 
printf("\n");

r = (double **) dmatrix(l, n, 1, size);

for (i = 1; i <=n; i++)
{

seed_in = seed;
dvec_uniform(size, &seed, r[i]);

}

if (dimension = 1 )
{

zz = (double **) dmatrix(l, dimension + 1 ,1 , size); 
for (i = 1; i <= dimension + 1; i++)

gen_uni_normal_vector(zz[i], r[i], size);

// alpha = delta * zz[l] + sqrt(l - delta ** 2) * zz[2] 
printf(" Please enter the shape parameter for the SN.\n"); 
scanf("%f', &alpha);

delta = alpha / sqrt(l + alpha * alpha); 
uO = (double *) dvector(l, size); 
u l = (double *) dvector(l, size);

// Normal with correlation delta 
for (i = 1; i <= size; i++) 

uO[i] = zz[l][i];

for (i = 1; i <= size; i++)
ul [i] = delta * zz[l][i] + sqrt(l - delta * delta) * zz[2][i];
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// Skew Normal 
Z = (double *) dvector(l, size);

for (i = 1; i <= size; i++)
{

if (uO[i] >= 0.0)
Z[i] =ul[i];

else
Z[i] = (-1-0) * ul[i];

}

printf(" Please enter the degree of freedom for the chi-square random
variable.\n");
scanf("%d", &df);

w  = (double *) dvector(l, size);

gen_uni_chi_sqr(w, r[3], size, df); // chi-squared random numbers

st = (double *) dvector(l, size); 
t = (double *) dvector(l, size);

/* T distribution */ 
for (i = 1; i <= size; i++)

t[i] = ul [i] / sqrt(w[i] / df);

/* Skew T distribution */ 
for (i = 1; i <= size; i++)

st[i] = Z[i] / sqrt(w[i] / df);

free_dvector(w, 1, size); 
free_dvector(st, 1, size); 
free_dvector(Z, 1, size); 
free_dvector(uO, 1, size); 
free_dvector(ul, 1, size); 
ffee_dvector(t, 1, size); 
ffee_dmatrix(zz, 1, dimension+1,1, size);

}
else
{

z = (double **) dmatrix(l, dimension + 1 ,1 , size); 
for (i = 1; i <= dimension + 1; i++)

gen_uni_normal_vector(z[i], r[i], size);
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L = (double **)dmatrix(l, dimension + 1 ,1 , dimension + 1); 

LU_decom_4T(L, dimension +1);

//Multivariate Standard Normal Distribution with above variance- 
covariance matrix

u = (double **) dmatrix(l, dimension + 1 ,1 , size);

for (i = 1; i <= dimension + 1; i++) 
for (j = 1; j <= size; j++) 

u[i][j] = 0.0;

// Normal with var-covar matrix 
for (j = 1; j <= size; j++)
{

for (i = 1; i <= dimension + 1; i++)
{

for (k = 1; k <= dimension + 1; k++) 
u[i][j] += L[i][k] * z[k][j];

}
}

//Skew Normal
zz = (double **) dmatrix(l, dimension, 1, size);

for (i = 1; i <= size; i++)
{

if(u[l][i] >=0.0)
{

for ri = 1; j <= dimension; i++) 
zzU)[i] = u[j+l][i];

}
else
{

for (j = 1; j <= dimension; j++)
zzD][i] = (-1-0) * u[j+l][i];

}
}

printf(" Please enter the degree of freedom for the chi-square random
variables.\n");
scanf("%d", &df);

v = (double **) dmatrix(l, dimension, 1, size);
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for (i = 1; i <= dimension; i++)
gen_uni_chi_sqr(v[i], r[i+dimension+l], size, df);

111
T = (double **) dmatrix(l, dimension, 1, size);

for (i = 1; i <= dimension; i++)
{

for (j = 1; j <= size; j++)
T[i][j] = u[i+l][j] / sqrt(v[i][j] / df);

}

//Skew T
ST = (double **) dmatrix(l, dimension, 1, size);

for (i = 1; i <= dimension; i++)
{

for (j = 1; j <= size; j++)
ST[i][j] = zz[i][j] / sqrt(v[i][j] / df;

}
ffee_dmatrix(zz, 1, dimension, 1, size); 
free_dmatrix(v, 1, dimension, 1, size); 
ffee_dmatrix(u, 1, dimension + 1 ,1 , size); 
ffee_dmatrix(ST, 1, dimension, 1, size); 
ffee_dmatrix(T, 1, dimension, 1, size); 
free_dmatrix(r, 1, dimension *2  + 1,1, size);

}
}

void gen_normal_vector(double **z, int dimension, int size)
{

/* r - random number, z - indep. std normal, u - std normal with corr matrix */
double **r, y_derivative;
int i, j, seedin, n;
int seed = 123456789;
double s, epsilon, error, x, xb, y;

r = (double **) dmatrix(l, dimension, 1, size);

for (i = 1; i <= dimension; i++)
{

seed in  = seed;
dvec_uniform(size, &seed, r[i]);

}
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epsilon = 0.00001;

for (i = 1; i <= dimension; i++)
{

for O' = 1; j <= size; j++)
{

x = 0.0; /* initial guess for x */
xb = x; 

n = 0;
error = l.OelO; 

while (error > epsilon)
{

n = n + 1;
func(x, &y_derivative);
/* lower_limit = -10, # of intervals = n, upper_limit = x */ 
trapz_int(&s, -10, x, 800); 
y = s - r[i][j];
x = x - y / y_derivative; /* finds new x */

error = fabs(x - xb); 
xb = x; 

if  (n > 50)
{

x = x + 1.0; 
n = 0;

}

}
/* Normal Distribution with expection 0 and variance 1 */

z[i][j] = x;
}

}
ffee_dmatrix(r, 1, dimension, 1, size);

}

void gen_uni_normal_vector(double *z, double *r, int size)
{

double y_derivative; /* r - random number, z - indep. std normal */ 
int i, j, n;
double s, epsilon, error, x, xb, y;

epsilon = 0.00001;

for (i = 1; i <= size; i++)
{
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x = 0.0; /* initial guess for x */
xb = x; 
n = 0;
error = l.OelO; 
while (error > epsilon)
{

n = n +  1;
func(x, &y_derivative);
/* lower_limit = -10, # of intervals = n, upper limit = x */ 
trapz_int(&s, -10, x, 800); 
y = s - r[i];
x = x - y / y_derivative; /* finds new x */ 
error = fabs(x - xb); 
xb = x;

if (n > 50)
{

x -  x + 1.0; 
n = 0;

}
}

/* Normal Distribution with expection 0 and variance 1 */ 
z[i] = x;

}
}

void gen_skewnormal_vector(double **z, double **u, int dimension, int size)
{

int ij;
double alpha, delta; 
alpha = 10.0;
delta = alpha / sqrt (1 + alpha * alpha); 
for (i = 1; i <= dimension; i++)
{

for (j -  1; j <= size; j++)
{

u[i][j] = delta * z[i][j] + sqrt(l - delta * delta) * z[i+l][j];

if(z[i][j]>=0.0)
u[i][j]= z[i][j];

else
u[i]D] = (-1-0) * z[i][j];

}

}
}
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void trapz_int(double *ss, double a, double b, int n) /* Trapezoidal rule */
{

int i;
double sum, w, x; 
sum = 0;

bc.a = a; 
bc.b = b;
bc.h = (bc.b - bc.a) / n;

for (i = 0; i < - n; i++)
{

x = bc.a + i * bc.h; 
w = 2;
i f ( i  — 0 || i =  n) 

w = 1;
sum = sum + w * func standard normal (x);

}
*ss = sum * bc.h / 2; 
return;

}

double func_standard_normal(float x)
{

double func v;

/* f(x) is a pdf for standard normal distribution.*/ 
func_v = exp((-0.5) * pow( x, 2)) /(sqrt(2 * PI)); 
return (func_v);

}

/*
This routine implements the recursion

seed = 16807 * seed mod (2**31 - 1 )  
unif = seed / (2**31 - 1 )

*/
void dvec_uniform( int n, int *seed, double r [ ] )
{

int i; 
intk;

for ( i = 1; i <= n; i++)
{

k = *seed/ 127773;
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*seed = 16807 * ( *seed - k * 127773 ) - k * 2836;

if ( *seed < 0 )
*seed = *seed + 2147483647;

r[i] = ( double ) ( *seed) * 4.656612875E-10;
}

}

/* This function computes y and yderivative */ 
void func(double x, double *y_derivative)
{

*y_derivative = exp((-0.5) * pow( x, 2)) /(sqrt(2 * 3.1415926));
}

/* Given a positive-definite symmetric matrix a[l..n][l..n], this routine constructs 
its Cholesky decomposition, A = L * L(T). On input, only the upper triangle of a 
need be given; it is not modified. The Cholesky factor L is returned in the lower 
triangle of a, except for its diagonal elements which are returned in p[l..n] */

void choldc(float **a, int n, float p[])
{

int i, j, k; 
float sum;

for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

for (sum = am m , k = i -1 ; k >= 1; k—) 
sum -= a[i][k] * a[j][k];

i f ( i — j)
{

if (sum <= 0.0)
nrerror ("cholesky decomposition failed"); 

p[i] = sqrt(sum);
}
else

a[j][i] = sum/p[i];
}

}
}

void LU_decom(double **L, int s)
{
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float **a, *p; 
int i, j, t;
double *delta, **omega, **omega_inv, del, alp, E X, Var_X, SKEW;

a = (float **)matrix(l, s, 1, s); 
p = (float *)vector(l,s);

printf("Please enter the variance-covariance matrix:\n");

for (i = 1; i <= (s -1 ) + 1; i++)
{

for (j = 1; j <= (s - 1) + 1; j++) 
scanf(" % f', &a[i][j]);

}

if (s —  2) // Univariate 
{

del = a[l][2]; // del is the correlation coeffient 
alp = del / sqrt(l - del * del);

printf(" For univariate SN, delta = %6.4f, the shape parameter alpha = 
%6.4f.\n", del, alp);

E_X = sqrt(2 / PI) * del;
Var X = 1 - 2 * del * del / PI;
SKEW -  ((4 - PI) / 2) * pow (E_X, 3) / pow (Var_X, 1.5);

}
else if (s > 2) // multivariate 
{

delta = (double *)dvector(l, s -1);
omega = (double **)dmatrix(l, s -1 ,1 , s -1);

for (j = 1; j < = (s- l);j++)
{

delta[j] = a[l][j+l];
}

for (i = 1; i <= (s -1); i++)
{

for O' = 1; j < = (s-  l);j++)
{

omega[i][j] = a[i+l][j+l];
}

}
om egainv = (double **)dmatrix(l, s -1 , 1, s -1); 
t = Matrixlnversionl (omega, s -1 , omega_inv);
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shape_vector(omega_inv, delta, s - 1);
}

choldc(a, s, p);

for (i = 1; i <= (s -1 ) + 1; i++)
{

for (j = 1; j < = ( s - 1)+ 1; j++)
L[i]ffl = a[i];

}

for (i = 1; i <= s; i++)
L[i][i]=p[i];

free_matrix(a, 1, s, 1, s); 
free_vector(p, 1, s);

if (s > 2)
{

ffee_dmatrix(omega, l , s - l , l , s - l ) ;  
free_dmatrix(omega_inv, 1, s - 1, 1, s -1);

}

void LU_decom_4T(double **L, int s)
{

float **a, *p; 
int i, j, t;

a = (float **)matrix(l, s, 1, s); 
p = (float *)vector(l,s);

printf("Please enter the variance-covariance matrix :\n");

for (i = 1; i <= (s -1) + 1; i++)
{

for (j = 1; j < = ( s - 1)+ l;j++) 
scanf(" % f', &a[i][j]);

}

choldc(a, s, p);

for (i = 1; i <= (s -1) + 1; i++)
{

for (j = 1; j < = ( s - 1) + l ; j++) 
L[i]Q] = a[i]|j];
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}

for (i = 1; i <= s; i++)
L[i][i]=p[i];

ffee_matrix(a, 1, s, 1, s); 
ffee_vector(p, 1, s);

}

//Matrix Inversion Routine
int Matrixlnversionl (double** A, int n, double** Alnverse)
{

// A = input matrix (n x n)
// n = dimension of A
// Alnverse = inverted matrix (n x n)
// This function inverts a matrix based on the Gauss Jordan method.
// The function returns 1 on success, 0 on failure, 
int i, j, iPass, imx, icol, irow; 
double det, temp, pivot, factor;
//float* ac = (float*)calloc(n*n, sizeof(float)); 
double **ac;

ac = (double **)dmatrix(l, n, 1, n); 

det = 1;

for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

AInverse[i][j] = 0; 
ac[i][j]=A[i][j];

}
AInverse[i][i] = 1;

}

// The current pivot row is iPass.
// For each pass, first find the maximum element in the pivot column, 
for (iPass = 1; iPass <= n; iPass++)
{

imx = iPass;
for (irow = iPass; irow <= n; irow++)
{

if  (fabs(A[irow] [iPass]) > fabs(A[imx] [iPass])) imx = irow;
}
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// Interchange the elements of row iPass and row imx in both A and 
Alnverse.

if  (imx != iPass)
{

for (icol = 1; icol <= n; icol++)
{

temp = AInverse[iPass][icol];
AInverse[iPass][icol] = AInverse[imx][icol]; 
AInverse[imx][icol] = temp;

if (icol >= iPass)
{

temp = A[iPass][icol];
A[iPass][icol] = A[imx][icol];
A[imx][icol] =temp;

}
}

}

// The current pivot is now A[iPass][iPass].
// The determinant is the product of the pivot elements, 
pivot = A[iPass] [iPass]; 
det = det * pivot; 
if  (det =  0)
{

ffee_dmatrix(ac, 1, n, 1, n); 
return 0;

}

for (icol = 1; icol <= n; icol++)
{

// Normalize the pivot row by dividing by the pivot element. 
AInverse[iPass][icol] = AInverse[iPass][icol] / pivot; 
if  (icol >= iPass) A[iPass][icol] = A[iPass][icol] / pivot;

}

for (irow = 1; irow <= n; irow++)
// Add a multiple of the pivot row to each row. The multiple factor 
// is chosen so that the element of A on the pivot column is 0.
{

if (irow != iPass) factor = A[irow][iPass]; 
for (icol = 1; icol <= n; icol++)
{

if  (irow != iPass)
{
Alnverse [irow] [icol] -= factor * AInverse[iPass][icol];
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A[irow][icol] -= factor * A[iPass][icol]; 
}

}
}

}

ffee_dmatrix(ac, 1, n, 1, n); 
return 1;

}

void shape_vector(double **Omega_inv, double *Delta, int n)
{

double *alpha, *templ_v, *temp2_v, temp; 
int i, j;

alpha = (double *)dvector(l, n); 
templ_v = (double *)dvector(l, n); 
temp2_v = (double *)dvector(l, n);

for (i = 1; i <= n; i++)
{

templ_v[i] = 0.0; 
temp2_v[i] = 0.0;

}
temp = 0.0;
for (i = 1; i <= n; i++)
{

for (j — 1; j <= n; j++)
templ_v[i] += Omega_inv[i][j] * Delta[j];

}

for (j = 1; j <=n;j++)
{

for (i = 1; i <= n; i++)
temp2_v[j] += Delta[i] * Omega_inv[i][j];

}

for (i = 1; i <= n; i++)
{

temp += temp2_v[i] * Delta[i];
}

for (i = 1; i <= n; i++)
{

alpha[i] = templ_v[i] / sqrt(l - temp);
}
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free_dvector(alpha, 1, n); 
free_dvector(templ_v, l ,n);  
free_dvector(temp2_v, 1, n);

}

void gen_chi_sqr_ran(double *v, int size, int df)
{

double *r; /* r - random number */
int i, seed_in;
int seed = 123456789;

for (i = 1; i <= size; i++)
v[i] = AChiSq(l - r[i], df);

}

void gen_uni_chi_sqr(double *v, double *r, int size, int df) 
{

int i;

for (i = 1; i < -  size; i++)
v[i] = AChiSq(l - r[i], df);

}

double ChiSq(double x, int n)
{

double p, t; 
int k, a;

p = exp(-0.5*x);

if((n% 2)=l)
p = p * sqrt(2 * x / PI) ;

k = n;

while(k >= 2)
{

p = p * x / k; 
k = k-2;

}

t = p; 
a = n;

while(t > le-15 * p)
{
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a = a + 2; 
t = t * x /a;
P = P+t;

}
return 1-p;

}

double AChiSq(double p, int n)
{

double v, dv, x;

v = 0.5; 
dv = 0.5; 
x = 0.0;

while(dv > le-10)
{

x = l / v - 1; 
dv = dv / 2; 
if(ChiSq(x,n) > p) 

v = v - dv;
else

v = v + dv;
}

return x;
}
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