Understanding standing

Christopher Storey
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations
Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation

Storey, Christopher, "" (2007). Dissertation. 545.
https:/ /digitalcommons.latech.edu/dissertations/545

UNDERSTANDING STANDING

by
Christopher Storey, BS MS

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree
 Doctor of Philosophy

College of Engineering and Science
Louisiana Tech University

Copyright 2007 by
Storey, Christopher

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

> UMİ

UMI Microform 3259725
Copyright 2007 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

We hereby recommend that the dissertation prepared under our supervision by Christopher Michael Storey entitled Understanding Standing
\qquad
\qquad
be accepted in partial fulfillment of the requirements for the Degree of Doctorate of Philosophy in Biomedical Engineering

Advisory Committee

Abstract

Research Objectives: Psychophysical acceleration threshold is a tool for detecting deficits in dynamic postural control. Our lab has shown differences in the acceleration threshold among young adults, elderly adults, and elderly adults with diabetes.

Electromyography, Semmes-Weinstein monofilaments, and hearing tests investigate the underlying physiological mechanisms for the detriments in postural control. Due to perisway perturbations, the motion of a person's sway affects the signal to noise ratio for perturbed stance. Since increases in sway range accompany postural instabilities, sway entrainment will allow us to investigate changes in acceleration threshold at different points in sway. The center of pressure, observed for entrainment, only changes due to rotations about joints, specifically the ankle. The current method to model rotation about the ankle is a single orthogonal joint, and therefore inaccurate.

Methods: The SLIP-FALLS-STEPm Platform has lead to the ability to accurately measure and observe interactions in the range of postural sway. The combination of the platform with other testing modalities such as camera tracking systems, force mats, and accelerometers will allow for a comprehensive testing scheme. The new scheme can be combined with the induced sway produced by a sub-threshold sinusoidal entrainment process. The nonorthogonal modelling is programmed in Matlab ${ }^{\circledR}$.

Results: For constant displacements, anterior accelerations thresholds via twoalternate forced choice (2AFC) showed differences in postural stability in mature,

diabetic individuals with peripheral neuropathy (DPN) and those who are neurally intact (DNI) compared to healthy mature adults (HMA), which corresponded with previous results of lateral perturbations. Both DNI and DPN had significantly higher thresholds for acceleration via 2AFC than HMA at 1 and 4 mm displacements ($\mathrm{p}<0.01$ and $\mathrm{p}<0.05$) and Semmes-Weinstein monofilaments. For psychophysical amplitude threshold detection, we used our modified Single-Interval-Adjustment-Matrix to obtain amplitude thresholds for subthreshold frequency entrainment.

Conclusion: The anterior acceleration thresholds show that peripheral neuropathy is not the sole cause for postural instability with diabetes. The ability to control the motion of sway will allow us to describe acceleration threshold throughout the range of sway. With a realistic ankle model, we will be able to better simulate postural dynamics.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction is for his personal use and that subsequent reproduction will not occur without written approval of the author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at any time, any or all portions of this Dissertation.

DEDICATION

I would like to dedicate this work
To my Family, and Noor
who supported me throughout.

TABLE OF CONTENTS

ABSTRACT iii
DEDICATION vi
LIST OF TABLES xiii
LIST OF FIGURES xiv
ACKNOWLEDGMENTS xvii
CHAPTER 1: INTRODUCTION/LITERATURE REVIEW 1
1.1 Balance 1
1.2 Posture Studies 2
1.3 Studying Standing 3
1.4 Diabetes 3
1.4.1 Peripheral Neuropathy 3
1.4.2 Balance 5
1.4.3 Hearing 5
1.5 Quantitative Analysis 6
1.6 Sway Metrics 7
1.7 System Modulation 8
1.8 Threshold Detection 9
1.9 Induced Sway 10
1.10 Posture Model 11
CHAPTER 2: METHODS AND MATERIALS 14
2.1 SLIP-FALLS-STEPm 14
2.1.1 Original SLIP-FALLS- STEPm System 14
2.1.2 Platform. 16
2.1.3 Controller 16
2.1.4 Computer-Controller Integration 17
2.2 Data Collection 17
2.2.1 Calculations for 17
2.2.2 Subject Questionnaire 22
2.2.3 Foot Sensory Test 22
2.2.4 Peripheral Neuropathy Test 23
2.2.5 Analysis. 23
2.3 Specifications for a New Lab 24
2.4 New Lab Solution 25
2.5 Ankle Model 33
2.5.1 Software 33
2.5.2 System representation 33
CHAPTER 3: DIABETIC POSTURAL CONTROL 35
3.1 Hypotheses. 35
3.1.1 Acceleration Threshold Hypotheses 35
3.1.2 Quiet Standing Metrics Hypotheses 35
3.1.3 Physiological Measure Hypotheses 36
3.1.4 Self-reported Health Measures Hypotheses. 37
3.2 Subjects 37
3.3 Screening 37
3.4 Procedures 39
3.5 Results 40
3.5.1 Subjects 40
3.5.2 Peak Acceleration Thresholds. 41
3.5.3 Quiet Standing Metrics 44
3.5.4 Health Surveys 46
3.5.5 Foot Sensitivity 47
3.5.6 Lower Limb Electrophysiology 49
3.6 Summary 51
CHAPTER 4: HEARING LOSS AND TYPE-2 DIABETES 52
4.1 Hypotheses 52
4.2 Subjects 52
4.3 Screening 53
4.4 Procedures 53
4.5 Results 55
4.5.1 Acceleration Thresholds 55
4.5.2 Hearing Loss 56
4.5.2.1 DMA versus HMA 56
4.5.2.2 Sex Related Differences 57
4.6 Summary 58
CHAPTER 5: MODIFIED SINGLE-INTERVAL-ADJUSTMENT-MATRIX 59
5.1 Hypotheses. 59
5.2 Advantage over 2AFC with mPEST 59
5.3 Integration with mPEST 60
5.4 Monte Carlo Simulations 62
5.4.1 Random Choice 62
5.4.2 Simulated Human Response 63
5.5 Summary 64
CHAPTER 6: SUBTHRESHOLD SINUSOIDAL ENTRAINMENT 65
6.1 Subjects 65
6.2 Screening. 65
6.3 Test Protocol 66
6.4 Verification 69
6.5 Analysis and Results 70
6.5.1 Natural Frequencies 70
6.5.2 Frequency Lock in 72
6.5.3 Physiological Measures 74
6.6 Summary 75
CHAPTER 7: ANKLE MODEL 76
7.1 Mathematics 77
7.1.1 Definitions. 77
7.1.2 System Description 78
7.1.3 Kinematics of the Multi-Linked System 79
7.1.4 Yaw, Pitch, and Roll of Limbs 82
7.2 Identity Verification 85
7.3 Orthogonal Verification 86
7.4 Nonorthogonal Verification 88
7.5 Ankle Simulation 91
7.6 Summary 92
CHAPTER 8: DISCUSSION 93
8.1 Diabetic Postural Control 93
8.2 Hearing Loss and Diabetes 96
8.3 Modified SIAM 97
8.4 Sinusoidal Entrainment 98
8.5 Ankle Model 99
8.6 Conclusion 101
8.7 Future Work 102
APPENDIX A: IRB INFORMED CONSENT VA 104
APPENDIX B: IRB INFORMED CONSENT CLARKSON UNIVERSITY 110
APPENDIX C: INITIAL QUESTIONNAIRE 114
APPENDIX D: START-UP PROTOCOL 2-AFC 120
APPENDIX E: START-UP PROTOCOL SINUSOIDAL ENTRAINMENT 127
APPENDIX F: VA RECRUITING FLYER 133
APPENDIX G: CLARKSON RECRUITING FLYER 135
APPENDIX H: MINI MENTAL STATE EXAM 137
APPENDIX I: BERG SCALE 140
APPENDIX J: RAND WITH DEPRESSION SCREENER TEST 142
APPENDIX K: RAND WITH DEPRESSION SCREENER SCORER 150
APPENDIX L: BATCH MATLAB ${ }^{\circledR}$ CODE 152
APPENDIX M: ENGINEERING UNIT CONVERSION BATCH MATLAB ${ }^{(8)}$ CODE 164
APPENDIX N: ENGINEERING UNIT CONVERSION ON-THE-FLY CODE 189
APPENDIX O: MSIAM SIMULATION MATLAB ${ }^{\circledR}$ CODE 243
APPENDIX P: ANKLE MODEL MATLAB ${ }^{\circledR}$ CODE 265
APPENDIX Q: INTERMEDIATE ANKLE MODEL CALCULATION DATA 308
APPENDIX R: SUBMITTED IEEE ROBOTICS PAPER 320
APPENDIX S: SUBMITTED JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT PAPER 330
APPENDIX T: ACCEPTED IEEE ENGINEERING IN MEDICINE AND BIOLOGY CONFERENCE 2006 PAPER 357
APPENDIX U: ACCEPTED AMERICAN SOCIETY FOR ENGINEERING EDUCATION ST. LAWRENCE REGION CONFERENCE STUDENT PAPER 362
APPENDIX V: ACCEPTED AUDIOLOGY NOW! 2006 POSTER 370
APPENDIX W: ACCEPTED NEUROSCIENCE 2005 POSTER 372
APPENDIX X: LOUISIANA TECH UNIVERSITY IRB AND INFORMED CONSENT 374
REFERENCES 387

LIST OF TABLES

Table 3.1. Subject Information 41
Table 3.2. Detection Thresholds 43
Table 3.3. Rail Conditions 44
Table 3.4. Quiet Standing Metrics 45
Table 3.5. Health Surveys 47
Table 3.6. Semmes Weinstein Monofilament Test 49
Table 3.7. Electrophysiology Results 50
Table 5.1. SIAM Matrix for Study 60
Table 5.2. Percentages of Subjects Reaching Threshold by Random Choice 63
Table 6.1. Subject Information and Natural Frequencies 71
Table 6.2. Peak Entrainment Frequencies 74
Table 6.3. Physiological Entrainment Percentages 75
Table 7.1. Offsets and Rotations of a Simple System with Nonorthogonal Revolute hinges 86
Table 7.2. Root Mean Square Difference of Calculation and Measurements (cm) 88
Table 7.3. Rotations and offsets of crab limb joints 90
Table 7.4. RMS of differences in crab limb position (cm) 91
Table 7.5. Offset of the human ankle joint 91

LIST OF FIGURES

Figure 1.1. The α and β offset axes and d offset position. .. 12
Figure 2.1. The original SLIP-FALLS-STEPm lab consists of a sliding platform (SLIP), hardware and software routines (FALLS) for collecting neurophysiological, biomechanical (Position, Acceleration, Centers-ofPressure), EMG and psychophysical data, and equipment and software to simultaneously measure position markers, and foot pressure distributions (STEPm). The SLIP is controlled by a single board Programmable Multi-Axis Controller (PMAC ${ }^{\circledR}$) that receives commands from the FALLS computer (Dell DHM ${ }^{\circledR}$). This computer also relays pre-recording instructions to the subject via a SoundBlaster ${ }^{\circledR}$ card and headphones. A Tekscan HRMat ${ }^{\circledR}$ measures foot pressure distribution with an array of 87 by 96 sensels ($4 \mathrm{per} \mathrm{cm}^{2}$). A separate computer controls the HRMat ${ }^{\circledR}$. Its data collection starts with an external RS232 trigger. Motion capture of the location of retroreflective markers is achieved by a single digital camera Peak-Motus system, along with a back-up analog camcorder. The Peak-Motus ${ }^{\circledR}$ computer is triggered also by the FALLS computer with an additional sync signal generated at the start of a platform move. A single 4-hr test session generates over 2 GB of data, all of which has to be processed offline after the completion of the experiment. (Figure from ASEE St. Lawrence Section Conference Student Paper[158])

15
Figure 2.2. New equipment set up. A dual core, multi-processor Gateway ${ }^{\circledR}$ serverrunning Windows XP^{\circledR}, Labview ${ }^{\circledR} 8.0$ and Matlab ${ }^{\circledR} 2006 \mathrm{~b}$ is the newFALLS computer. The Magma ${ }^{\circledR}$ PCI bus extender attached to it via aSCSI connection allows the use of vender cards with the older PCI busstructure. The graphics card in the computer supports up to foursimultaneous monitors. Three hot-swappable 200GB drives areconfigured as a RAID 5 set, to provide for data collection redundancy.The A/D card is expanded to 32 channels, with 16 now coming viacable from a 16 -channel Delsys ${ }^{\circledR}$ EMG amplifier. The Tekscan HRMat ${ }^{\circledR}$ controller PCI card no longer resides in a separate machine, sothat data can now be better time-synchronized. The motion capturesystem is upgraded to a four-camera system, each at four MPixel at250 Hz , along with faster CPU. If desired, an analog video record ofthe test can be acquired. The output of the new system is such that nopost-processing is required before correlative analyses can be carriedout. [Figure from ASEE St. Lawrence Section Conference StudentPaper[158]]31
Figure 3.1. The left-slanting lines refer a 1 mm move. The cross-hatched lines refer to a 4 mm move. The right-slanting lines refer to a 16 mm move. Error bars provide the standard error. DPN and DNI show pronounced decreased acuity in detecting small anterior perturbations as compared to HMA at 1 and 4 mm movements. Values are the arithmetic means. 42
Figure 4.1. Acceleration thresholds for those with hearing tests 55
Figure 4.2. Hearing loss DMA vs. HMA 56
Figure 4.3. Hearing loss PN vs. NI vs. HMA 57
Figure 4.4. Hearing loss sex-related differences. 58
Figure 6.1. Iterating amplitude towards threshold via mSIAM for subject M27009STF 67
Figure 6.2. Position of platform during a sinusoidal perturbation for a "stimulus" trial. A "non-stimulus" trial would contain only the baseline sinusoid. 68
Figure 6.3. Power spectral density of platform position move signal 70
Figure 6.4. Power-law Relationship of Frequency and Amplitude 72
Figure 6.5. Lock-in Power Spectral Density of APCoP 73Figure 7.1. Displays positions of a two joint system going through a series ofclosed loop rotations defined in Table 7.1, which verifies the algorithmwith the identity matrix.80
Figure 7.2. Verification measurement setup 87
Figure 7.3. Crab leg measurement setup 89
Figure 7.4. Position one of crab leg three. 89
Figure 7.5. The ankle model in the second position of our simulation to show both a slight plantarflexion and supination. 92

ACKNOWLEDGMENTS

The support for this project was provided by a State of Louisiana Board of Regents Fellowship, Merit Review grants from VA Rehabilitation R\&D Service Grants \#E91-355AP, \#E2143PC, \#E01-2097R, and a Senior Rehabilitation Research Career Scientist Award to Dr. Charles Robinson. The SLIP-FALLS-STEPm study team consisted of students at the University of Pittsburgh and Louisiana Tech University, and staff at the Shreveport, Louisiana, VA Medical Center, who helped with the collection of these data, and whose PhD dissertations and MS theses addressed different aspects of these experiments. The team members in alphabetical order are Venketesh Balasubramanian, Vikram Darbhe, Shruti Deshmuhk, Dr. Larry Faulkner, Scott Morstatt, Senthilnathan Nakappan, Kristopher K. O’Neal, Gloria Patrick, and Dr. Samantha J. Richerson. Also, I would like to thank Dr. Anne Hollister, Dr. Norman Witriol, Dr. Dale Anderson, and Dr. William Buford, Jr. for their assistance on nonorthogonal modeling. Finally, I would like to thank Dr. Charles Robinson for his guidance and mentoring.

CHAPTER 1

INTRODUCTION/LITERATURE REVIEW

1.1 Balance

The ability to stand up is often taken for granted since most people do not consciously have to control their posture. The scientific and clinical significance of postural and balance studies lie in the complexity underlying a second-nature human ability. While most people have no conscious intervention when trying to stand upright, others consciously have to maintain an upright posture. This decrease in mobility can affect personal lives and well-being. By better understanding the nature of postural control, one can devise methods of rehabilitation that will allow people greater control and stability and improve their daily lives.

Some innate mechanism must exist to keep humans standing or else everyone would fall down. Postural and balance studies have long presented many different ways to measure posture, but many are concerned with why and how people fall due to the large perturbation imparted on the subject.[1-6] Richerson has determined that humans detect perturbations as small as 0.1 mm or 60 arc-seconds of ankle movement.[7-9] Thus, small perturbations allow us to study aspects of standing rather than falling by analyzing dynamic postural control within the range of sway.[10, 11]

In studying posture, one must look at the differences in populations. Prieto et al. showed that as people age their posture becomes more unsteady.[12, 13] Many, including researchers in our lab, have shown that neuropathy secondary to diabetes, increases postural instability as compared to those of similar age.[14-16] The objective is to show that differences in postural control exist in mature diabetic individuals with and without peripheral neuropathy as compared to healthy mature adults. We have shown that people with diabetes have increased high-frequency hearing loss as compared to healthy mature adults.[17] Based on the outcomes of these analyses, I have created new tools for new tests and analyses of postural control that can be implemented to better describe our quasi-static postural control.

1.2 Posture Studies

Posture and balance are studied in static or dynamic conditions. Static conditions tend to observe differences between populations of age or pathology by observing a subject's sway during quiet standing.[18,19] Dynamic conditions are created by imparting a sensory input or force onto the body that changes the naturally occurring sway.[2, 16] Dynamic conditions study recovery from induced falls and sway.[2, 16] Many types of movement protocols have been used to perturb the subject such as a tilt platform, translating platform (on order of cm), and force exerted on a belt about the subject's waist.[2-6, 16, 20-26] These methods, while providing insight into one's ability to prevent falls, obtain little information on how we are able to remain standing.

1.3 Studying Standing

New technology has allowed the development of a low-vibration translating platform that is accurate for displacement on the range of $10^{-5} \mathrm{~m} .[10,11,27,28]$ When perturbations are within the range of sway, the signal-to-noise ratio becomes a factor that can lead to misses and false positives. External cues for movement must be removed-so no harness is used (only for subjects who have no tendency for falls), and the subject is blindfolded with headphones playing white noise. Studies have shown that less than 1 N of force on the body can alter postural sway by increasing stability in a subject with decreased postural control.[29-34] The decrease in sway due to light touch has been attributed to the touch providing a reference point and the completion of a kinematic chain.[34] Vision is especially important to subjects with vestibular loss. With eyes closed, those with vestibular deficits show a greatly increased instability in postural sway.[23, 35] Eyes open and eyes closed studies have also showed significant differences in age-matched elderly subjects.[12]

1.4 Diabetes

1.4.1 Peripheral Neuropathy

Diabetes is becoming an epidemic in our aging society. Those as young as 45 years old who meet certain risk factors should be tested.[36] Thomas et al. found that over 20% of the aging British population were at least glucose-intolerant, with 5% of both men and women having undiagnosed diabetes.[37] Diabetes carries with it not only decreased metabolic function but also an increased risk for other problems such as vascular and neuropathic conditions.

Allen et al. showed that diabetes was associated with an increased risk of dementia and declining cognitive performance.[38] Studies have shown that the increased occurrence of vascular disease in those with diabetes increases the cognitive deficits seen.[39, 40] Animal models suggest that hyperglycemia causes decreased synaptic plasticity in the hippocampus and concludes a direct effect of insulin on the brain.[41]

The effects of diabetes on the nervous system are not limited to the central nervous system but also can be observed on the periphery. Due to the increased risk of falls, several methods for early detection and diagnosis of peripheral neuropathy have been developed.[42-49] Due to decreased sensory information which can cause ulceration, common clinical standards for diagnosis focus on cutaneous sensory disturbances.[48] Nerve conduction studies also correlate with the presence of diabetic foot ulceration.[50] Diagnosis provides awareness to people of their disability to try decrease risk of falls and injury.[51]

The cause of the neuropathic conditions in people with diabetes is not fully understood. Hill et al. found that the perineural cell basement membrane of the sural nerve is thickened as compared to controls and those with peripheral vascular disease, which is normally found to be present in diabetic individuals with peripheral neuropathy, especially in smaller fasciculi.[52] Ishii supports that decreases in insulin-like growth factor, which is involved in axonal and nerve development, limit the ability of nerves to regenerate after damage caused by diabetes, and has been shown to be an effective treatment for neuropathy in diabetic rats.[53] Stewart et al. have shown that autoimmune and chronic inflammation cause demyelination that causes a treatable via
steroids polyneuropathy in people with diabetes.[54] Diabetes has also been shown to cause small fiber neuropathy, which can cause pain but result in normal electrophysiology exams.[55]

Genetic advancements have allowed for the research of the preceding possible causes in diabetic rat animals. The morphology of sciatic rat nerve graphs change to and from neuropathy when going to diabetic rat from control and control to diabetic rat, respectively.[56]

1.4.2 Balance

Peripheral neuropathy affects balance in several ways. Andersen et al. showed that muscle weakness in the lower leg was directly related to neuropathy, but not nephropathy or retinopathy.[57] Horak et al. found that severity of peripheral neuropathy increased the sensitivity gain in the vestibular system, which could make people with diabetes and peripheral neuropathy adapted to be more reliant on their vestibular system for postural control.[58] Simmons et al. found that those with only a cutaneous sensory deficit in the feet showed decreased postural control, while those with diabetes did not.[14] Dickstein et al. showed improvements in postural control through both light and heavy touch to the fingers in diabetic individuals with peripheral neuropathy.[30, 31] All these facets of posture and balance make it difficult to isolate a single control system.

1.4.3 Hearing

Hearing loss occurs through two normal pathways, conductive and sensorineural. Conductive hearing loss can be caused by cerumen build-up or eardrum damage. Diabetes has been associated, however, with sensorineural hearing loss. Wackym et al. suggest that the sensorineural damage seen in diabetes is caused by a thickening of the
vasculature around the endolymph causing a cytotoxic environment.[59] Duck et al. also support that the vasculature plays a role in sensorineural hearing loss since they showed diabetic individuals with hypertension had more hearing loss than normotensive diabetic indivduals.[60] Diabetic individuals have been found to have an increased risk of sudden sensorineural hearing loss, and the risked increases with age, hypertension, and hyperlipidemia.[61,62] The progression of diabetes as measured by the serum creatinine and not hemoglobin A1c has also been shown to correlate with sensorineural hearing loss.[63] Frisna et al. shows the systemic effect of diabetes on sensorineural hearing loss by supporting vascular, cellular, and metabolic complications and alterations.[64] Several studies have found that hearing loss in those with diabetes is for high frequencies.[60,64,65] Although there is a higher prevalence of hearing loss in diabetic individuals, Fowler et al. state that the evidence is inconclusive on diabetes as the cause due to confounding factors such as noise exposure and hypertension.[66]

1.5 Quantitative Analysis

Specific pathologies such as cerebellar ataxia, Parkinson's disease, and vestibular loss allow the observer to compare the contributions of individual systems to posture and balance by allowing the investigator exclude those components from postural control analysis.[21, 23, 35, 67-69] To accurately measure center of mass, the current method uses three-dimensional imaging via camera systems. These systems have high data acquisition times, but new methods utilizing accelerometers and genetic algorithms show promise with the ability to estimate the center of mass with lower error rates.[70, 71] Instead of measuring the center-of-mass, the easier correlate is the center-of-pressure, which is the projection of the center of mass onto the surface on which the base of
support lies.[72] Center-of-pressure analyses have shown as a reliable method to help distinguish postural control deficiencies.[12, 13, 16, 29-31, 73-81] By quantifying postural control, we are able to statistically differentiate variations in the population and focus on what needs to be corrected in those with deficits.

1.6 Sway Metrics

Metrics have been derived from different models and estimates to account for certain descriptions of sway. The center-of-pressure time-series, both the medial-lateral (MLCoP) and anterior-posterior (APCoP) directions, are used to determine a third timeseries, the resultant distance (RDCoP). Based on the three time-series, four categories of postural sway metrics are used to compare different groups. The mean velocity and RMS sway are considered the standard for postural steadiness, both of which fall into the category for time-domain-distance metrics.[12] The mean velocity is calculated by dividing the total length of the center- of-pressure (CoP) path by the total time allotted, and was shown to be higher in elderly adults.[12] The RMS sway will emphasize larges changes in the sway profile, which can indicate instability, and are also higher in elderly adults.[12] Other time-domain-distance metrics, range and mean distance, were larger for elderly adults as opposed to young adults.[12] Time-domain area metrics estimate the area covered by the CoP path using a 95% confidence circle or ellipse, which was larger in older individuals.[12] In addition, the directly calculated sway area was shown to be significantly larger in older individuals.[12] Although these metrics provide important feedback on postural stability, they lack ability to describe postural sway in the frequency domain.

To account for the frequency domain in postural sway, two methods of quantification---time-domain-hybrid and frequency-domain measures---are used. The time-domain-hybrid measures frequencies based on the time-domain-distance measures. One, the mean frequency, allows information on the frequency of the CoP if it had travelled around in a circle or crossed zero.[12] A unit-less measurement of how well a curve fills its space, fractal dimensions, can be model from the 95% confidence circle or ellipse, which the ellipse is better suited for dual force platforms for measurements of a single foot.[12] Both fractal dimensions and mean frequency differed between elderly and young adults.[12] Frequency domain metrics describe the power spectral density of sway. The three ways to describe the power spectral density is the total power, the 50% power frequency, or the centroidal frequency, which shows the frequency at which the power is concentrated. These last two metrics allow the frequency domain to be correlated with action of posture in the time domain.[12] The final frequency-domain metric, frequency dispersion was not found to be different between young and elder adults as the other three were.[12]

1.7 System Modulation

Postural control is maintained through a complex of neurological systems. Inputs for the control of posture include tactile, proprioception, kinesthesis, vestibular, and visual sensory modalities. Tactile sensors have acuity for both pressure and vibration. Therefore, low-vibration translation platforms were developed.[11] Proprioception provides orientation information of the limbs to the central nervous system; and Keshner et al. have shown that without visual input, the ankle method of balance is preferred. The knowledge of the limb and muscle movement and orientation help the central nervous
system to predict movement to maintain an upright posture.[82-87] Andersson et al. have shown that the removal of proprioceptive feedback increases sway velocity, but also those with vestibular problems do not report an increased instability.[18] The vestibular system acts to increase a reaction to a large sway but still shows correct detection of movement and similar reaction time.[23] Borel et al. showed that both vestibular and visual input combine for head orientation and posture alignment since deviation of posture and head occurred for both unilateral vestibular loss in darkness and with visual context to the hindered side and opposite side, respectively.[35] When testing thresholds in postural sway, our group has found that the amount of force generated is less than that perceivable by the vestibular system.[88] Visual cues provided motion direction feedback to the system that can be used to induce sway in a subject.

1.8 Threshold Detection

The uniqueness of our lab is our ability to study the psychophysics of balance. Its past studies have used a modified parameter estimation by sequential testing (PEST) in a two-alternate forced choice protocol.[7, 89] The study of psychophysics relates a stimulus level to the proportion of correct detections.[90] Alternate forced choice protocols have problems with bias that are not seen in yes/no tests.[91] Yes/no 1-up-1down staircase methods can quickly come to threshold, but the statistical power is low.[90, 92] Kaernbach developed the Single-Interval-Adjustment-Matrix (SIAM) based on a probability matrix to vary stepping.[93] His focus was to improve efficiencies in the tests rather than in the stepping protocol. SIAM is based on yes/no choice for a single interval. Therefore, SIAM cuts testing time by almost 50% by removing second interval. SIAM provides lower error than alternate forced choice in fewer trials.[93] SIAM will
provide us a better method for determining threshold than alternate forced choice by reducing error and reducing the testing time. The reduced testing time provides us with the most benefit since it reduces fatigue during testing.

1.9 Induced Sway

Due to the chaotic motion of postural sway, one must have knowledge of the subject's position in postural sway for better control of the study.[94] Fransson et al. showed that sway could be induced through both vibratory stimulation of the legs and galvanic vestibular stimulation, but both caused disequilibrium in the subjects to different levels of noticeable sway.[95] De Nunzio et al. has shown that sway can be predictably controlled when eyes are opened and closed via an oscillating platform even with continuous vibratory input to leg neck and trunk muscle groups.[96] Therefore, it is concluded that the predictable nature of the oscillation is more important than the proprioceptive feedback, which was also confirmed by Nardone et al.[16]

By inducing sway, one can more accurately control the experiment when inducing changes with signals. A new area with great possibilities especially for the realm of small perturbations will allow for predictive modelling of control inputs to maintain posture via external cues. Most studies have been shown to occur with oscillating visual stimuli, which can cause an observable peak in the power spectrum that is controlled by the frequency of the oscillation.[74, 97-100] Our lab has devised a way to entrain sway via a subthreshold sinusoidally translating platform.

1.10 Posture Model

To assess quantitatively the modulation of postural control by difference sensory inputs or processing centers, mathematical models are created. The standard model for postural sway estimations is the inverted pendulum. The model usually consists of only a single joint (ankle) to simplify the model. The mathematical models provide the amount of torque required to keep the system stable by maintaining the center of mass inside the base of support.[70, 71, 101-106]

There has been a recent increase of interest in the simulation of arthropod or human limbs in robot design.[107-120] These multilinked robotic limbs use orthogonal mechanisms, usually revolute joints for their mechanisms.[121] The kinematics and kinetics of the limb segments are calculated with the Denavit-Hartenberg (DH) representation, a simplified system that uses only four of six joint parameters for motion, that has worked well for planar and orthogonal mechanisms for over fifty years by reducing matrix size and the number of matrix multiplications.[122]

Arthropod and human limbs are multilinked systems with revolute joints that are not orthogonal to each other or to the limb segments.[123-146] Such revolute joints, known as arbitrary revolute joints, produce three-dimensional spatial motion with only one degree of freedom, thus the revolute joints reduce the limb's number of degrees of freedom and control complexity. A vector (d) and two angles of offset, the twist (α) and cant (β) angles shown in Figure 1.1, define the location and orientation of arbitrary revolute joints. The resulting limb movements are in different planes at each revolute. The simplification of these linkages with the DH representation produces several problems[124] If the twist and cant angles are not 0° or 90°, the reference frames are
projected outside of the limb segments by DH representation. If the mechanisms are nearly parallel to one of the coordinate axes, DH incurs large azimuth errors.[124]

Figure 1.1. The α and β offset axes and d offset position.

We propose a representation based on computer graphics techniques for rotation about an arbitrary axis that is suitable for analysis and display of kinematic chains connected by nonorthogonal and/or orthogonal revolute joints and is optimized to reduce computational cost over traditional methods.[147-150] These three-dimensional techniques have been used successfully in human limb simulations; (Buford et al. 2005 has expanded them to the whole human body).[151-155] As with the DH system, a limb is modeled as a hierarchical kinematic chain from the ground (support) to the end effector. Each child link moves with its parent. In this system, the revolute joint to be rotated is translated to the origin; the twist (alpha) and cant (beta) angles are de-rotated, and the arbitrary axis is aligned with the global z-axis. The dependent points for this joint are then rotated through a specified joint actuation angle about the revolute; the twist and cant angles are re-rotated, and the revolute and dependent points are then translated back
into position. Thus, the method is more robust than either DH or multibody because it includes all six joint parameters, calculates both position and orientation of each link relative to the joints between them, and permits the origin of each revolute to lie within the joint itself. Modern computer capabilities allow this more robust method to be used easily on personal computers.

Our proposed system places the limb segment and joint reference frames within the segments or joints to facilitate the measurement, design, modeling, simulation, and control of these natural systems. Many design engineers prefer to compute and measure the motion of reference frames for each limb segment or revolute relative to the body and global reference frames with calculated values of x, y, and z displacements and yaw, pitch, and roll rotations.[156, 157] Our method facilitates this computation with outputs of x, y, and z displacements with yaw, pitch, and roll rotations if desired by the user. The parameters that determine the limb and joint orientation and motion are stated explicitly to facilitate accurate measurement in animal limbs. We simulated models of the human ankle calculated from Inman's data and crab leg base measurements from Koti's thesis.[137-139]

CHAPTER 2

METHODS AND MATERIALS

2.1 SLIP-FALLS-STEPm

2.1.1 Original SLIP-FALLS- STEPm

System

A wealth of multi-dimensional data can now be collected during biomechanical studies of human motion and postural reactions to perturbation with the SLIP-FALLSSTEPm system. These include biomechanical measures like AP and ML Centers-ofPressure, weight on platform versus weight supported by harness, horizontal ground reaction forces, head and foot accelerations in multiple dimensions, distributions of pressures under the foot, and joint and limb trajectories as measured by motion-capture marker systems. Multi-channel EMG data and psychophysical responses collected simultaneously add richness to any control model built. The SLIP-FALLS-STEPm lab has developed a low vibration translating platform to study the psychophysics of balance.[10, 11] The original setup (Figure 2.1) combined a translation force-plate with a pressure mat.

Figure 2.1. The original SLIP-FALLS-STEPm lab consists of a sliding platform (SLIP), hardware and software routines (FALLS) for collecting neurophysiological, biomechanical (Position, Acceleration, Centers-of-Pressure), EMG and psychophysical data, and equipment and software to simultaneously measure position markers, and foot pressure distributions (STEPm). The SLIP is controlled by a single board Programmable Multi-Axis Controller (PMAC^{\oplus}) that receives commands from the FALLS computer (Dell DHM^{\circledR}). This computer also relays pre-recording instructions to the subject via a SoundBlaster ${ }^{\text {® }}$ card and headphones. A Tekscan HRMat ${ }^{\oplus}$ measures foot pressure distribution with an array of 87 by 96 sensels ($4 \mathrm{per} \mathrm{cm}^{2}$). A separate computer controls the HRMat ${ }^{\circledR}$. Its data collection starts with an external RS232 trigger. Motion capture of the location of retro-reflective markers is achieved by a single digital camera Peak-Motus system, along with a back-up analog camcorder. The Peak-Motus ${ }^{\otimes}$ computer is triggered also by the FALLS computer with an additional sync signal generated at the start of a platform move. A single 4-hr test session generates over 2 GB of data, all of which has to be processed offline after the completion of the experiment. (Figure from ASEE St. Lawrence Section Conference Student Paper[158])

This setup provides redundancy, and has allowed the verification of the pressure mat and force plate CoP measures. The development has allowed for testing of acceleration thresholds at displacements as low as 0.1mm.[8] By combining the platform
test with other simple tests for reaction time to sound or touch, the reaction time of recognition of platform translation was higher and required a much larger perturbation than threshold to decrease reaction time.[159]

2.1.2 Platform

The platform consists of four linear air bearings on two rails, as constructed by Danaher Motion ${ }^{\circledR}$ (Westover, MA, USA). This arrangement allows near zero friction for platform movement. An optical encoder (Heidenhain ${ }^{(8)}$ - Schaumberg, IL, USA) for position provides 20000 counts per mm. A single plate bridges the four air bearings on which reside each of the four Lebow ${ }^{\circledR}$ (Columbus, OH, USA) 200 lb . load cells. Atop the load cells lies an aluminum plate ($60.96 \mathrm{~cm} \times 53.34 \mathrm{~cm}$) on which the subject stands. The air bearing receives the air supply from an Atlas Copco (Stockholm, Sweden) SF 4 $\mathrm{FF}^{(8)}$ oil-free air compressor with integrated dryer. The air compressor cycles from 80 psi to 120 psi with an attached 30 -gallon air storage tank. Due to the pulsatile nature of the airflow, another 3-gallon tank is placed close to the platform. A minimum of 3.8 scfm and 80 psi is required for the air bearings.

2.1.3 Controller

The platform is controlled by a Dover (Westover, MA, USA) DMM 2004^{\circledR} controller that uses a sinusoidally commutated Glentek ${ }^{\circledR}$ (El Segundo, CA, USA) amplifier to control platform movement via an electromagnetic linear motor (Trilogy ${ }^{\circledR}$, Webster, TX, USA). The controller has a cutoff switch in case of loss of air pressure (below 80 psi) to the bearings to prevent damage if pressure drops. In addition, limits, and home location are programmed into the controller to kill the motor when limits are exceeded and to find the initial position.

2.1.4 Computer-Controller Integration

The controller is provided commands via a PC RS- 232 serial port. Labview ${ }^{\circledR} 6$ (National Instruments, Austin, TX, USA) was the software under which the experiment protocol was developed. Through Labview ${ }^{(8)}$, commands are sent via RS-232 to the Dover for control of the platform. Labview ${ }^{\circledR}$ also sends out commands to the user via a sound card that is connected to an audio mixer. The audio mixer merged the Labview ${ }^{\circledR}$ commands with bell tones and white noise, which is sent wirelessly to headphones and speakers. The bell tones provide feedback to the user that the button press registered. The white noise masks all external sounds cues to the movement. Labview ${ }^{(8)}$ controls a National Instruments ${ }^{\circledR}$ (Austin, TX, USA) PCI 6034E multifunction data acquisition card. Data are collected for 16 channels at 1 kHz . The data are stored in plain text file comma delimited files as raw values. The data are backed-up via CD-R. All data are transferred to a USB ${ }^{\circledR}$ hard drive for offline processing in Matlab ${ }^{\circledR}$. Data is converted via Matlab ${ }^{\circledR}$ batch programs to engineering units and are stored in Excel ${ }^{(1)}$ spreadsheets for further analysis.

2.2 Data Collection

2.2.1 Calculations for
 Quiet Standing Metrics

All calculations were performed in Matlab ${ }^{\circledR}$ using self-written programs. Eq. 1 calculated the peak imparted kinetic energy (p).

$$
\begin{equation*}
p=\frac{m \cdot a \cdot d}{2} \tag{1}
\end{equation*}
$$

Where m is the subject's mass, a is the peak acceleration threshold, and d is the platform displacement, the peak imparted kinetic energy accounts for each individual's
mass in relation to each individual's peak acceleration threshold. The peak energy occurs at the peak of velocity that is at half the displacement due to the way the controller smooths the perturbation. Due to the symmetric curve of the acceleration the average acceleration equals half the peak acceleration. Therefore, we obtain the peak velocity by multiplying half the acceleration with the displacement.

Prior to each threshold detection session, twenty seconds of quiet standing data were recorded to assess an individual's natural sway. These quiet standing periods yielded three quiet standing observation periods per individual. Sway parameters are calculated from the four load cells of the force-plate by Eqs. 2 and 3.

$$
\begin{align*}
& A P C o P=\frac{209.55\left(l_{3}+l_{4}-l_{1}-l_{2}\right)}{w} \tag{2}\\
& M L C o P=\frac{174.625\left(l_{3}+l_{2}-l_{1}-l_{4}\right)}{w} \tag{3}
\end{align*}
$$

Where 209.55 and 174.625 are the distances in millimetres between pairs of load cells in the anterior-posterior and medial-lateral directions, respectively

The anterior-posterior center of pressure (APCoP) and medial-lateral center of pressure (MLCoP) time-series profiles were derived from the load cell (l) data[11], with the convention that forward and rightward were the positive directions with w being the sum of all four load cells. The load cells were numbered counter-clockwise from the back left of the platform. All MLCoP metrics are calculated the same as APCoP as follows with the MLCoP substituting for the APCoP. The time series with the means subtracted out were filtered using a 10 Hz type 2 Chebyshev low-pass filter. From these time-series, the resultant distance (RD) is calculated to provide a time series of the vector
distance combining each APCoP and MLCoP pair (Eq. 4), where N is the total number of samples in the time-series.

$$
\begin{equation*}
R D(n)=\sqrt{A P C o P(n)^{2}+M L C o P(n)^{2}} ; n=1, \ldots, N \tag{4}
\end{equation*}
$$

Based on these time-series (TS), we calculated metrics suggested by Prieto et al. who had shown differences in aged and young adult groups as mentioned in the introduction.[12] They are broken up into four categories: time-domain distance, timedomain area, time-domain hybrid, and frequency domain measures. From the timedomain distance metrics, mean (MDIST) were calculated (Eq. 5) for RD, APCoP, and MLCoP[12], along with the standard deviation (Eqs. 6-7) and range (Eq. 8) of each time series. Root mean square distance (RDIST) for the AP (s_{AP}) and ML (s_{ML}) directions is the standard deviation of each respective time series.

$$
\begin{align*}
& M D I S T=1 / N \sum T S(n) \tag{5}\\
& R D I S T=\sqrt{1 / N \sum T S(n)^{2}} \tag{6}\\
& s_{R D}=\sqrt{R D I S T^{2}-M D I S T^{2}} \tag{7}\\
& \text { range }=\max -\min \tag{8}
\end{align*}
$$

The total excursion (TOTEX), a summation of the changes in distance per unit of time, was calculated for APCoP, MLCoP, and the vector distance (Eqs. 9-10) change of both.[12]

$$
\begin{align*}
\text { TOTEX } & =\sum_{n=1}^{N-1}\left[\begin{array}{l}
(A P C o P(n+1)-A P C o P(n))^{2} \\
+(M L C o P(n+1)-M L C o P(n))^{2}
\end{array}\right]^{1 / 2} \tag{9}\\
\text { TOTEX }_{a p} & =\sum_{n=1}^{N-1}|A P C o P(n+1)-A P C o P(n)| \tag{10}
\end{align*}
$$

The mean velocity (MVELO) is calculated from the TOTEX, TOTEX ${ }_{\text {ap }}$, and TOTEX $_{\mathrm{ml}} \cdot[12]$ MVELO (Eq. 11) provides the average velocity for the entire time (T) of the quiet standing period.

$$
\begin{equation*}
M V E L O=T O T E X / T \tag{11}
\end{equation*}
$$

The two time-domain area measures that are calculated are the 95% confidence circular area (AREA-CC) and 95\% confidence elliptical area (AREA-CE) with 95\% confidence level coming from the z and F statistic (Eqs. 12-13) for 95% confidence (z .05 $=1.645 ; \mathrm{F}_{.05[2, \infty]}=3.00$) respectively.[12] The covariance $\left(\mathrm{s}_{\mathrm{APML}}\right)$ is required for the AREA-CE calculation (Eqs. 13-14).

$$
\begin{align*}
& A R E A-C C=\pi\left(M D I S T+z_{.05} s_{R D}\right) \tag{12}\\
& A R E A-C E=2 \pi F_{.05[2, \infty]} \sqrt{s_{A P}^{2} s_{M L}^{2}-s_{A P M L}^{2}} \tag{13}\\
& s_{A P M L}=1 / N \sum A P C o P(n) M L C o P(n) \tag{14}
\end{align*}
$$

The hybrid measures include sway area (Eq. 15 estimates area enclosed by COP path per unit of time), mean frequency [both rotational (Eq. 16) and in the respective APCoP (Eq. 17) and MLCoP planes], and fractal dimension (FD) (Eqs. 18-20 based on TOTEX (FD-PD), AREA-CC (FD-CC), AREA-CE (FD-CE)).[12]

$$
\begin{align*}
& \text { swayarea }=1 / 2 T \sum_{n=1}^{N-1} \mid-A P C o P(n+1) M L \operatorname{CoP}(n) \tag{15}\\
& M F R E Q=\frac{M V E L O}{2 \pi M D I S T} \tag{16}\\
& M F R E Q_{A P}=\frac{M V E L O_{A P}}{4 \sqrt{2} M D I S T_{A P}} \tag{17}
\end{align*}
$$

Eq. 15 uses the planar diameter (d) for fractal dimension calculation, which is the difference of the range of RD. To calculate the 95% confidence interval of FD-CC and FD-CE, d is replaced with $d_{\mathrm{FD}-\mathrm{CC}}$ and $d_{\mathrm{FD}-\mathrm{CE}}$ (Eqs. 19-20).

$$
\begin{align*}
& F D=\frac{\log (N)}{\log (N d / T O T E X)} \tag{18}\\
& d_{F D-C C}=2\left(M D I S T+z_{.05} s_{R D}\right) \tag{19}\\
& d_{F D-C E}=\sqrt{8 F_{.05[2, \infty]} \sqrt{s_{A P}^{2} s_{M L}^{2}-s_{A P M L}^{2}}} \tag{20}
\end{align*}
$$

For the frequency domain, the total power, 50% power frequency (median power frequency), 95% power frequency (95% percentile power frequency), centroidal frequency, and frequency dispersion were calculated using discrete Fourier transform and not the sinusoidal multi-taper estimate.[12] The frequency domain metrics were calculated for all three time-series. The metrics were based on the spectral moment, μ_{k} (Eq. 21). Only frequencies from 0.15 to 5 Hz were analysed so i and j provide these limits while Δf is the frequency increment for the power spectrum.

$$
\begin{equation*}
\mu_{k}=\sum_{m=i}^{j}(m \Delta f)^{k} G(m) \tag{21}
\end{equation*}
$$

Eq. 22 incorporates μ_{k} to calculate the total power of the spectrum (POWER).
Eqs. 23 and 24 calculate the lowest frequency (index u and v respectively) of which the sum contains 50% and 95% respectively of the total power.

$$
\begin{align*}
& P O W E R=\mu_{0} \tag{22}\\
& 50 P F R E Q=\sum_{m=i}^{u} G(m) \geq 0.50 \mu_{0} \tag{23}
\end{align*}
$$

$$
\begin{equation*}
95 P F R E Q=\sum_{m=i}^{v} G(m) \geq 0.95 \mu_{0} \tag{24}
\end{equation*}
$$

The centroidal frequency (CFREQ) is the frequency in which the spectral mass is concentrated (Eq. 25), while the frequency dispersion (FREQD) is a measure of the variability of the spectrum (Eq. 26).

$$
\begin{align*}
& C F R E Q=\sqrt{\mu_{2} / \mu_{0}} \tag{25}\\
& F R E Q D=\sqrt{1-\mu_{1}^{2} / \mu_{0} \mu_{2}} \tag{26}
\end{align*}
$$

2.2.2 Subject Questionnaire

All subjects were given the RAND 36-item (with Depression Screener) health survey, a modified version of the short form 36-item (SF-36) health survey, which has shown correlations of poor health scores with individuals who had diabetes.[160-164] The RAND evaluates a person's self-reported physical and mental health in relation to his ore her quality of life. Jenkins et al. and Lyons et al. verified the validity and reliability of SF-36 health survey in an elderly population.[165, 166] Lower scores were correlated with elderly who have a fall risk.[167] Post-test scoring was performed automatically within an Excel ${ }^{\circledR}$ spreadsheet.

2.2.3 Foot Sensory Test

Semmes-Weinstein Monofilaments (SWM) were used to assess sensory thresholds on the sole of the foot by exerting a constant force based on buckling strength of the monofilament pressed to the foot. SWM is a standard measure for assessing risk of diabetic foot ulceration, and cutaneous sensory peripheral neuropathy.[43, 47, 48, 168, 169] The monofilaments are marked with a log of the force exerted in grams by the
monofilament. These threshold measurements were taken on the plantar surface at the great toe, metatarsal at the first and fourth digit, and heel. The procedure required that two out of three touches be detected for a given monofilament to be at threshold at a location. For simplicity, with eyes closed, subjects were asked to respond when they felt the probe. For the SWM test, a discrepancy in sample size exists across the test sites because we did not begin taking measurements at the heel and fourth metatarsal until after a number of subjects had been recruited.

2.2.4 Peripheral Neuropathy Test

Surface lower-limb nerve conduction tests, performed by Overton Brooks VA Medical Center Neurology Service by a technician supervised by a neurologist, determined the presence of peripheral neuropathy. Nerve conduction velocities were measured for the peroneal, tibial, and sural nerves bilaterally. In 15 subjects (4 DNI, 5 DPN, and 6 HMA), no sural nerve conduction velocity could be obtained. Inferences cannot be made from the inability to find sural nerve CVs via surface electrodes as sural nerve studies often require the use of needle electrodes.[170-173] M-wave and F-wave latency tests were performed on the peroneal and tibial nerves.

2.2.5 Analysis

Electrophysiological and subject screening results were analyzed in SPSS ${ }^{\circledR}$ via an ANOVA with Games-Howell post-hoc correction to compensate for the unequal group sizes and variances. Quiet standing metrics also used a post-hoc Games-Howell after ANOVA with repeated measures. Statistics on Mini-Mental Exam, Berg Balance Scale, RAND, acceleration thresholds, and SWM were performed in SPSS ${ }^{\circledR}$ with KruskalWallis one-way ANOVA. The Kruskal-Wallis one-way ANOVA allowed us to account
for the subjects who did not reach threshold but went to the maximum allowed acceleration of the test for acceleration thresholds. The Kruskal-Wallis was performed pair-wise on groups as a post-hoc test. For SWM tests, geometric means are reported instead of the log values because of the power law nature of tactile perception.[174, 175]

2.3 Specifications for a New Lab

With a move to another university, we have had the chance to set up a second SLIP-FALLS-STEPm research lab for fundamental studies, while maintaining the original lab in a clinical setting within the VA research service. A series of specifications for the new lab, which I designed a new lab from, were presented[158] and listed below:

1. The essential elements of the user interface needed to remain the same as seen from the clinical environment.
2. The command and control aspects of the platform had to be functionally equivalent to previous implementations, and the previous code had to be reused when possible.
3. The operator should be provided a user-friendly interface with which to monitor the progress and output of all these processes in real-time during a testing sequence.
4. The number of channels of data collected by the FALLS protocol must be increased to allow for additional sensor and EMG inputs.
a. The EMG channels were to be increased from the original four to a user-selectable between four and sixteen. The amount of support the safety harness provides to the subject should also be collected and calculated.
5. The researchers should upgrade to more sensitive sensors where needed.
6. The motion analysis system should be upgraded from a single camera, 2-D system to a multi-camera, 3-D system.
7. The FALLS data should be immediately stored in engineering units rather than in raw voltages that required post-possessing. EMG potentials should be converted on-line and stored as RMS time-series data with a further conversion to a percentage of that seen under maximal contraction if possible.

2.4 New Lab Solution

As our current setup was incapable of performing the required computations without long processing times causing testing delays, we focused on what was needed to meet these objectives. We needed a system that would remain under the Windows $\mathrm{XP}^{\text {® }}$ operating system to maintain current software and equipment drivers. This requirement satisfied the first through third specifications. The remaining specifications required additional new or replacement equipment.

We developed a new multithreaded testing program in Labview ${ }^{\circledR}$ that allowed for same input methods as in previous versions. Via Labview ${ }^{\circledR}$ notifiers, processed data can be sent to the display terminal for viewing by tester. The software worked on the control and command system as previous testing protocols did. This equipment also satisfied the first three specifications for new lab setup.

To meet the fourth specification we had to upgrade our National Instruments ${ }^{(®)}$ $\left(\mathrm{NI}^{\circledR}\right)$ multifunction data acquisition card (NI PCI $\left.6034 \mathrm{E}^{\circledR}\right)$ with 16 analog inputs to a card supporting 32 analog inputs (NI PCIe $6259 \mathrm{M}^{\circledR}$). We also freed up additional analog
input by rerouting the subject response (bell) to the digital inputs instead of counting peaks of analog input. To provide signal conditioning and signal access, we used an NI SC-2345 ${ }^{\circledR}$ signal conditioner box for 16 channels and NI BNC 2090^{\circledR} terminal box for the other 16 channels and digital input and output. Originally, all signals were conditioned by separate external Daytronics ${ }^{\circledR}$ signal conditioning modules with numeric displays. Now, a National Instruments ${ }^{(8)}$ SC-2345 system is used that enables us to do individual two-stage signal conditioning on each line if needed (e.g., strain gage Wheatstone bridge, followed by low pass filtering). The LabVIEW ${ }^{\circledR} \mathrm{mx}$ driver software takes care of gain and offset calibration so that data is already in calibrated engineering units (i.e., mm), rather than in raw voltages. This automated scaling and unit conversion occurring at data collection decreases the need for post-processing and partially addresses our design criteria six.

The NI BNC 2090^{\circledR} has a dual functionality of allowing us access to EMG signals so they can be inputted into the Peak Motion ${ }^{\circledR}$ capture system. To acquire these signals in the Peak ${ }^{\circledR}$ system and to meet the fifth specification, the motion capture hardware had to be upgraded. Since the purchase of our previous system, Peak-Motus ${ }^{\circledR}$ was acquired by VICON ${ }^{\circledR}$. This allowed us to upgrade to VICON's ${ }^{\circledR}$ superior cameras and hardware, while maintaining same user interface with updated Peak software. The new 16 -channel Delsys Bagnoli ${ }^{\circledR}$ EMG amplifier has a 50 -pin output connector that interfaces directly to a NI BNC-2090 ${ }^{\circledR}$ breakout box that handles 16 analog input channels, but that also allows us access to these signals, as well as providing the DIO outputs and inputs from the data acquisition card. The EMG system had a gain of 1000 that saturated at $\pm 5 \mathrm{~V}$. With the upgraded EMG system, we can acquire inputs from eight bilateral muscle groups on the
body via single or double differential electrodes. For the new testing setup, EMGs were acquired with the single differential electrodes for the gastrocnemius, tibialis anterior, and sternocleidomastoid muscles. To separate soleus activity from the gastrocnemius, a double differential electrode was used over the upper portion of the Achilles tendon. All EMGs were acquired bilaterally. These changes could allow EMGs to be monitored not only in the muscle groups about the ankle, but also the thigh, trunk, and neck muscles, which are now recorded.

We maintained the same hardware for our Tekscan HR Mat ${ }^{\circledR}$. The Tekscan HR Mat^{\circledR} provides high-resolution foot pressure data. The pressure mat consists of 87 x 96 sensels ($25 \mathrm{~mm}^{2}$ each), which collect data at 50 Hz . The pressure mat confirms our own CoP calculation and has the ability to determine it in relation to regions of the foot. We are also able to determine the CoP , and its metrics, for each foot.

Using the DIO via NI BNC- 2090^{\circledR} provided a much better method of recognizing a subject's response than analog input with peak detectors. It was setup so a subject could press one of two buttons on the Visonic ${ }^{\circledR}$ two-button wireless remote (WT-102 ${ }^{\circledR}$) to make responses based on platform movement. The WT-102 ${ }^{\circledR}$ signals the WR-300 $2 \mathbf{B}^{\circledR}$ receiver, which provides separate outputs for each button. Both outputs are inputted into separate digital inputs and a custom bell circuit to provide audio acknowledgement of button press to subject and tester.

The DIO on the BNC-2090 ${ }^{\circledR}$ is the output for all synchronization signals. The Labview ${ }^{\circledR}$ controls the values for the three synchronizing signals: Tekscan ${ }^{\circledR}$ Start, Peak Start, and Peak Sync. Tekscan ${ }^{\circledR}$ Start signals the Tekscan I-Scan ${ }^{\circledR}$ software to begin recording when it goes high and to stop recording when it goes low. Peak ${ }^{\circledR}$ Start signals
the Peak-Motus ${ }^{\circledR}$ software to begin recording for a predetermined amount of time with a high pulse. Peak Sync signals the Peak-Motus ${ }^{\circledR}$ software, which synchronizes when the platform perturbation occurred with a high pulse.

The NI SC-2345 ${ }^{\circledR}$ signal-conditioning unit provided analog data input for all nonEMG channels. Custom circuitry was developed on SC-FT- $01{ }^{\circledR}$ feedthrough- breadboard modules to provide necessary gain and null offsets to both the head and platform accelerometers. The circuitry provided a gain of 10 to the accelerometer output to provide $\pm 1 \mathrm{~g}$ range of acquirable data to the saturation of $\mathrm{NI}^{(\otimes}$ data acquisition card $(\pm 10$ V). The Endevco ${ }^{\circledR} 7290-\mathrm{A}$ was chosen as the accelerometer due to its $\pm 2 \mathrm{~g}$ range and 0.0005 g resolution. It is 10 times as sensitive as the original platform and head accelerometers. Three Endevco ${ }^{\circledR} 7290$-A accelerometers were secured to a precisely milled steel cube to provide a single tri-axial accelerometer for the head. The accelerometers circuitry provided an output of one mV per $\mathrm{mm} / \mathrm{s}^{2}$. The gravitational acceleration was subtracted out for the vertical z -axis. The system maintained the original four load cells of the original force plate. We also still collect the position and motor current (shear force) from the Dover ${ }^{(8)}$ controller.

For the final specification, the data had to be converted on the fly to engineering units without causing any testing delays. A computer was needed that could process parallel threads and not only use pre-emptive multitasking. New compact multiprocessor server technologies were our focus for a new FALLS computer. We decided to purchase a Gateway ${ }^{\circledR}$ E-9515-R series server to meet the fourth specification.

Traditionally, computers multitasking in a network environment required a serverstyle operating system. Due to such a small consumer base, there were few hardware
drivers available, which have left a mark on those who had endeavored to use its power in the past. With the advent of Windows XP^{\circledR} to the general consumer, which is based off Microsoft's original server platform, the possibility of a user-friendly server platform became available. Windows $\mathrm{XP}^{\text {® }}$ was chosen due to its widespread use and familiarity. Yet, Windows XP^{\circledR} is not supported for server systems that it can handle since companies make more money off the licensing fees of their server operating systems.

Windows XP^{\circledR} has both great hardware and software support, but it is difficult to purchase with a server from major computer manufacturers, because they want people to purchase one of their newly branded server operating systems, which keeps with the old tradition of having poor hardware and support for the everyday user and researcher. These server operating systems are expensive, which comes at the cost of paying per user license that allows for a true multi-user environment. Although this provides a limitation to the consumer, a multi-user environment would be a seldom-used feature in the lab environment. Since companies want the consumer to pay hundreds to thousands of dollars more for official server operating systems, they place limits on the software so it can only use a certain amount of the computer's resources.

Windows XP^{\circledR} has a limit of two physical processors, but thanks to new technologies in the central processing unit (CPU), the limitation has become less stifling. Our new server-class machine is composed of two Intel Xeon 2.8 GHz Dual-Core Processors ${ }^{\text {® }}$ (Figure 2.2). Each core also contains hyper-threading technology that is similar to dual-core, but they share resources. The sharing of different resources is what differentiates hyper-threading and multi-core technologies from a full multiprocessor system. All cores on a multi-core processor share the same bus to peripherals and
memory but have separate registers and cache. Hyper-threading not only shares the same resources as their respective cores but also shares the respective core's registers and caches. Therefore, the software limitation imposed on us is met since we only have two physical processors. That limitation is downplayed since we have eight logical processors on which programs run.

To take advantage of extra processors, software today is multithreaded, which translates into breaking up the program into smaller operations that can run independently and asynchronously. New multithreaded programs are able to push the processing envelope by distributing the workload across all the logical CPUs. For our SLIP-FALLSSTEPm platform, we use Labview ${ }^{\circledR 8}$ to run our experiment, record data, process data, and synch with other research systems. Labview ${ }^{\left({ }^{(1)}\right.}$ provides a nice graphical programming interface so novice programmers can use it. It also allows for the flexibility in advanced programming for creating threaded applications, with communication streams between each, and for communicating with third party software.

The majority of our data analysis is performed in the Matlab ${ }^{\circledR}$ package. With Labview ${ }^{\circledR} 8.0$, you have an easy way to script object code for communication and processing in Matlab ${ }^{(\infty)}$. Given that we integrated and threaded our data acquisition and analysis, we have virtually eliminated offline processing time. In addition, Matlab ${ }^{\circledR}$ can take advantage of Intel's Extended Memory 64-bit Technology ${ }^{\circledR}$ (EM64T). The EM64T ${ }^{\circledR}$ permits us to run Matlab ${ }^{\circledR}$ 64-bit on our server, which also requires a 64 -bit operating system (Windows XP 64-bit ${ }^{\circledR}$). With 64-bit software, the EM64T ${ }^{\circledR}$ allows one to address over 4GB of memory, which will dramatically decrease the processing time by removing
hard drive reads and writes due to virtual memory usage. In addition, the EM64T ${ }^{\text {® }}$
provides 64 bits of precision for accurate calculations.

Figure 2.2. New equipment set up. A dual core, multi-processor Gateway ${ }^{\mathbb{B}}$ server running Windows XP^{\circledR}, Labview ${ }^{\circledR} 8.0$ and Matlab ${ }^{\circledR} 2006 \mathrm{~b}$ is the new FALLS computer. The Magma ${ }^{\circledR}$ PCI bus extender attached to it via a SCSI connection allows the use of vender cards with the older PCI bus structure. The graphics card in the computer supports up to four simultaneous monitors. Three hot-swappable 200 GB drives are configured as a RAID 5 set, to provide for data collection redundancy. The A/D card is expanded to 32 channels, with 16 now coming via cable from a 16 -channel Delsys ${ }^{\circledR}$ EMG amplifier. The Tekscan HR Mat ${ }^{\circledR}$ controller PCI card no longer resides in a separate machine, so that data can now be better time-synchronized. The motion capture system is upgraded to a four-camera system, each at four MPixel at 250 Hz , along with faster CPU. If desired, an analog video record of the test can be acquired. The output of the new system is such that no post-processing is required before correlative analyses can be carried out. [Figure from ASEE St. Lawrence Section Conference Student Paper[158]]

The new server provided the processing abilities to run Tekscan I-Scan ${ }^{\circledR}$ and our experimental protocol in Labview ${ }^{\circledR}$ simultaneously. Some older cards (audio and Tekscan ${ }^{\circledR} \mathrm{PCI}$ cards) are set up for the old 5 V protocol that was removed in the latest revision (3.0) to the PCI/PCX standard. We installed a rack-mounted PCI bus extension system by Magma ${ }^{\circledR}$, which allowed up to four 5 V PCI devices to share a single 3.0 PCI slot in the server and be backward-compatible. The bus extension worked well with the audio card (used for subject commands) and Tekscan ${ }^{\circledR}$ card (used for foot-pressure data acquisition) allowing us to incorporate both in our server configuration.

The small physical size of our server (form factor 2 U of a rack enclosure) cuts down the volume of the equipment need for the testing system, which is aided by having low-profile PCI ports. We used low-profile PCI slots for a serial port (RS232) expansion card and SCSI $320 \mathrm{Mb} / \mathrm{sec}$ hot swappable RAID 5. The extra serial ports allowed us to control multiple pieces experimental hardware (Dover DMM 2004 ${ }^{\circledR}$ and Tekscan HR $\left.\mathrm{Mat}^{\mathbb{B}}\right)$, simultaneously. Using RAID 5 for disk storage gives great data protection with only minimal loss of space as opposed to mirroring the hard drives. By striping the data across the hard drives with a parity bit (RAID 5), it enables the user to rebuild a hard drive's data completely for high data security if one crashes. In addition, the speed of the hard-drive is increased by a factor greater than three, which cuts down on drive access time during file storage after processing.

Server hardware was not designed for any flashy graphics cards, and there is no set high-speed graphic bus to use. However, the server has the new PCIe standard that many high-powered video cards currently use today. For our test monitoring, we chose the workstation class video card by NVIDIA ${ }^{\circledR}$ because it gives us the ability to monitor
all test parameters simultaneously given its ability to run up to four digital monitors. Also on the PCIe bus, we have our National Instruments ${ }^{\circledR}$ data acquisition card.

The Vicon-Peak ${ }^{\circledR}$ system is a three-dimensional marker based camera system. The digital input and output (DIO) ports of the National Instruments ${ }^{\circledR}$ DIO allow for triggering and synchronizing the video capture data to test events. Synchronizing is needed since there is a delay before the cameras began recording. Synchronizing also allows the three-dimensional motion capture data to be aligned with the other data acquired by the server.

2.5Ankle Model

2.5.1 Software

Analysis routines were written in Matlab ${ }^{\circledR}$ to have access of the matrix mathematics functions. The program was object-oriented to allow for ease and robustness of expansion.[176] The software provided text (Excel ${ }^{\circledR}$ Spreadsheet), jpg (picture), and avi (video) output representing motion.

2.5.2 System representation

The simplest system has two segments and a single revolute joint. The reference frame for the first link is placed at the origin of a Cartesian coordinate system. The displacement vector $\left(\mathbf{d}_{1}\right)$, the x, y, and z coordinates, represent the distance from the first segment's reference frame to the center of the first revolute. The limb local coordinates may be placed anywhere, including a location along the revolute axis. The α_{1} and β_{1} angles are the twist and cant angles of offset from the preceding segment's reference frame that are needed to align the revolute axis of motion with the z-axis of the preceding limb. In relation to the second limb, the α_{2}, β_{2}, and \mathbf{d}_{2} are the variables defined that are
needed to rotate the axis of rotation to align with z-axis of the next segment and to find the distance from the joint center to the following segment's center. Setting subsequent displacement vectors to zero simulates saddle (2-orthogonal revolute joints) and ball and socket joints (3-othogonal revolute joints).

CHAPTER 3

DIABETIC POSTURAL CONTROL

Our objective was to show that detriments to postural control exist prior to the development of peripheral neuropathy in Type-2 diabetes with no fall history. This study tested diabetic mature adults with peripheral neuropathy (DPN: $\mathrm{n}=17$, nerve conduction velocity $<40 \mathrm{~m} / \mathrm{s}$) and without peripheral neuropathy (DNI: $\mathrm{n}=11$) and healthy mature adults (HMA: $\mathrm{n}=34$), all aged 50 to 74 years. No nerve conduction or latency differences existed between HMA and DNI. All underwent static and quasi-static postural assessments, with the latter assessed by short anterior platform perturbations.

3.1 Hypotheses

3.1.1 Acceleration Threshold
 Hypotheses

- Diabetic mature adults with peripheral neuropathy would have higher acceleration thresholds than those who are neurally intact and healthy mature adults.

3.1.2 Quiet Standing Metrics Hypotheses

- Diabetic mature adults with peripheral neuropathy would have higher mean distance of sway than those who are neurally intact and healthy mature adults
- Diabetic mature adults with peripheral neuropathy would have higher root mean square distance of sway than those who are neurally intact and healthy mature adults.
- Diabetic mature adults with peripheral neuropathy would have higher range of sway than those who are neurally intact and healthy mature adults.
- Diabetic mature adults with peripheral neuropathy would have higher area of sway than those who are neurally intact and healthy mature adults.
- Diabetic mature adults with peripheral neuropathy would have larger 95% confidence circle and ellipse of sway than those who are neurally intact and healthy mature adults.
- Diabetic mature adults with peripheral neuropathy would have higher fractal dimensions of sway than those who are neurally intact and healthy mature adults.
- Diabetic mature adults with peripheral neuropathy would have different frequency components of sway than those who are neurally intact and healthy mature adults.

3.1.3 Physiological Measure

Hypotheses

- Diabetic mature adults with peripheral neuropathy would have lower nerve conduction velocities than those who are neurally intact and healthy mature adults.
- Diabetic mature adults with peripheral neuropathy would have higher SemmesWeinstein monofilament thresholds than those who are neurally intact and healthy mature adults.

3.1.4 Self-reported Health Measures Hypotheses

- Diabetic mature adults with peripheral neuropathy would have poorer selfreported health scores than those who are neurally intact and healthy mature adults.

3.2 Subjects

Our subjects were well-controlled diabetic mature adults with peripheral neuropathy (DPN: 4 female and 13 male) and without peripheral neuropathy (DNI: 4 female and 7 male) and healthy mature adults (HMA: 14 female and 20 male). To enable a precise comparison, only subjects who completed our entire electrophysiological and acceleration threshold test protocol were used for this analysis. Their primary care physician had previously diagnosed each DPN or DNI with Type-2 diabetes. Subject recruiting took place via flyer advertising at the Overton Brooks VA hospital in Shreveport, Louisiana, and in the local area. Individuals from 50 to 75 years of age, inclusive, were labeled as mature adults. Our test protocol was approved by the IRBs of the Shreveport VAMC and Louisiana Tech University.

3.3 Screening

A medical history questionnaire was given to each potential subject. Individuals were not tested further if they had a medical history of cardiovascular and/or respiratory disease, neurological problems such as cerebrovascular disease, stroke, head or spine injury, vestibular ailments and dizziness, memory and concentration deficits, muscle activity deficits, or non-healing skin ulcers. Orthopaedic problems such as lower back pain or spasms, arthritis or joint disease, and deformations of joints or bones led to
exclusion of individuals from the study. Those with past or current drug or alcohol dependence were also excluded.

All consented subjects were screened with the Berg Balance Scale and Sharpened Romberg Test to assure that they were able to operate independently from assistance, and their vision was tested (Snellen Eye Chart). In addition, the subjects were tested with the Mini-Mental State Exam to insure that they were mentally competent to follow instructions during the experiment. Patellar and Achilles' reflexes were tested to confirm that they were present and normal. The DPN and DNI groups had hemoglobin A1c values below 9%., with no group differences seen in values or in number of subjects with values >7.0 (4 DPN, 2 DNI).

A temporary classification of Healthy Mature Adult (HMA) was made for all consenting subjects who reported no history of diabetes or neurological impairment. Perturbation testing on all of our subjects commenced before, during, or after the nerve conduction tests were carried out, as the scheduling of the nerve conduction velocity tests by the Neurology Service were on a fill-in basis between clinical tests. Once the nerve conduction velocity results were in, a final classification into an HMA group could be made. Of the 46 individuals without a history of diabetes that went through our protocol, 34 were classed as HMA and are studied here. The remaining twelve were positive for peripheral neuropathy during the nerve conduction velocity testing. These individuals were excluded from this analysis since we did not know the cause or the extent of the neuropathy, as Nardone et al. showed that different types of peripheral neuropathy affect postural stability to different degrees, and we could not rule out diabetes, given the epidemic prevalence of undiagnosed diabetes in mature adults.[16, 36, 37]

3.4 Procedures

The preceding tests provide physiological backgrounds on individuals for our posture test protocol. The 2-Alternate Forced Choice acceleration thresholds to forward perturbations of constant displacement were carried out on the SLIP-FALLS-STEPm platform while subjects were blindfolded.[11] The acceleration was varied based on a modified version of the parameter estimation by sequential testing (mPEST) method.[92, 177] During the first ten trials, two consecutive correct responses (1-up-2-down method) were required to decrease acceleration, whereas only three (1-up-3-down method) were needed afterwards, which increased the statistical power behind the threshold.[177] The 1-up-2-down and 1-up-3-down methods provided 70.7% and 79.4% correct responses, respectively, to attain a reliable psychophysical threshold.[90]

Threshold was said to be reached when increments became less than 2% of the original increment value unless the subject completed all 30 trials where we required 79% correct at a specific acceleration to be taken as threshold.[90] Air bearings insure that the ultra-low vibration, frictionless platform provides no movement cues and allows for the test of movements within the range of sway. The subjected is presented via wireless headphones pre-recorded commands with white masking noise of "Ready," "One," "Two," and "Decide." During the four second decision period, the subject must decide in which period he or she perceived the perturbation to have occurred, by a single (Interval 1) or double (interval 2) bell press. The subject needed to accrue a correct detection percentage of 79% for an acceleration to be considered threshold. The platform moves in a 100% smoothed s-curve, which allows for symmetrical acceleration and deceleration of which the peaks are used as the measurement for threshold. [8, 11]

3.5 Results

We hypothesized the peripheral neuropathy secondary to Type-2 diabetes would cause a decreased ability to detect subtle platform perturbations. We found instead that the ability to detect platform perturbations is diminished in well-controlled diabetic mature adults with peripheral neuropathy (DPN) and without peripheral neuropathy (DNI), both as compared to healthy mature adults (HMA), suggesting that the presence of diabetes itself was a major factor in an increased detection threshold.

3.5.1 Subjects

There was no significant difference in age, height (h), or body mass index (BMI) (Eq. 27) between DNIs, DPNs, and HMAs.

$$
\begin{equation*}
B M I=\frac{m}{h^{2}} \tag{27}
\end{equation*}
$$

While mass (m) was not significantly different between HMA and DNI or DNI and DPN, it was significantly different ($\mathrm{p}<0.05$) between HMA (83.2 kg) and DPN (98.3 kg), as shown in Table 3.1.

Table 3.1. Subject Information.

	HMA ($\mathrm{n}=34$)			DNI ($\mathrm{n}=11$)			DPN ($\mathrm{n}=17$)		
	Mean		\% CI	Mean		\% CI	Mean		\% CI
Age (yrs)	57.4	\pm	2.16	59.1	\pm	5.31	60.9	\pm	2.72
Height (m)	1.68	\pm	0.03	1.69	\pm	0.06	1.74	\pm	0.05
Mass (kg)	$83.2{ }^{*}$	\pm	5.6	97.8	\pm	17.12	98.3	\pm	9.28
Body Mass Index (kg/m ${ }^{2}$)	29.5	\pm	1.71	33.7	\pm	4.22	32.7	\pm	3.18

* HMA vs. DPN p<0.05.

3.5.2 Peak Acceleration Thresholds

A difference exists in DNI and DPN acceleration threshold values for all move displacements (Figure 3.1). Both DNI and DPN had significantly higher thresholds than HMA at 1 mm ($\mathrm{p}<0.01$) and 4 mm ($\mathrm{p}<0.01$ and $\mathrm{p}<0.05$, respectively) displacements (Table 3.2). A strong trend was also noted for significantly increased threshold of DNI over HMA ($p=0.054$).

Figure 3.1. The left-slanting lines refer a 1 mm move. The cross-hatched lines refer to a 4 mm move. The right-slanting lines refer to a 16 mm move. Error bars provide the standard error. DPN and DNI show pronounced decreased acuity in detecting small anterior perturbations as compared to HMA at 1 and 4 mm movements. Values are the arithmetic means.

Table 3.2. Detection Thresholds.

	HMA ($\mathrm{n}=34$)		DNI ($\mathrm{n}=11$)		DPN ($\mathrm{n}=17$)	
	gMean	aMean	gMean	aMean	gMean	aMean
Acceleration	$\mathrm{mm} / \mathrm{s}^{2}$					
1 mm	$78.4{ }^{*+}$	97.7	158.2	177.4	143.4	157.9
4 mm	$34.1{ }^{\text {+7 }}$	46.5	59.4	75.6	54.8	70.4
16 mm	$16.4{ }^{\text {§ }}$	22.5	32.0	48.0	23.4	34.1
Peak Kinetic Energy	mJ					
1 mm	$3.20{ }^{\text {* }}$	4.14	7.48	8.58	6.94	7.85
4 mm	$1.39^{\text {+7 }}$	2.05	2.81	3.85	2.65	3.51
16 mm	$0.67{ }^{\text {fil }}$	0.95	1.51	2.44	1.13	1.71

* HMA vs. DPN $\mathrm{p}<0.01{ }^{\dagger}$ HMA vs. DNI $\mathrm{p}<0.01{ }^{\ddagger}$ HMA vs. DPN $\mathrm{p}<0.05$
${ }^{\text {§ }}$ HMA vs. DNI $p<0.05{ }^{\|}$HMA vs. DPN $p=0.058{ }^{\S}$ HMA vs. DNI $p=0.054$. The gMean is the geometric mean of the SWM due to their log nature. The arithmetic means, aMean, are including solely for comparison.

Using the calculated peak energy imparted on the subject, we gain significantly higher peak energies ($\mathbf{p}<0.05$) for DNI over HMA for all displacements. While significantly higher imparted peak energies were seen in DPN over HMA for 1 mm ($\mathrm{p}<0.01$) and $4 \mathrm{~mm}(\mathrm{p}<0.05)$ displacements, only a strong trend was noted for the 16 mm displacement. Due to safety constraints of our system, we set a maximal peak acceleration value at $200 \mathrm{~mm} / \mathrm{s}^{2}$ for 1 mm moves and $100 \mathrm{~mm} / \mathrm{s}^{2}$ for 4 mm and 16 mm moves. A number of subjects reached these values (rail condition). Analysis of the negative power-law relationship $[7,15,174,175,178]$ between acceleration and displacement values provided reason to raise the maximum peak acceleration test values
to 256,181 , and $128 \mathrm{~mm} / \mathrm{s}^{2}$ (or $2^{8}, 2^{7.5}$, and $2^{7} \mathrm{~mm} / \mathrm{s}^{2}$) respectively for $1 \mathrm{~mm}, 4 \mathrm{~mm}$, and 16 mm perturbations. HMA subjects reaching the rail ($11 \%, 3 \%$, and 0%) were fewer than both DPN $(41 \%, 18 \%$, and $6 \%)$ and DNI $(63 \%, 36 \%$, and $18 \%)$ at $1 \mathrm{~mm}, 4 \mathrm{~mm}$ and 16 mm displacement respectively as seen in Table 3.3.

Table 3.3. Rail Conditions.

	1 mm	4 mm	16 mm
HMA	$4(11 \%)$	$3(9 \%)$	$0(0 \%)$
	$2 @ 200 \mathrm{~mm} / \mathrm{s}^{2}$	$1 @ 100 \mathrm{~mm} / \mathrm{s}^{2}$	0
	$2 @ 256 \mathrm{~mm} / \mathrm{s}^{2}$	$2 @ 181 \mathrm{~mm} / \mathrm{s}^{2}$	0
DNI	$7(63 \%)$	$4(36 \%)$	$2(18 \%)$
	$2 @ 200 \mathrm{~mm} / \mathrm{s}^{2}$	$4 @ 100 \mathrm{~mm} / \mathrm{s}^{2}$	$2 @ 100 \mathrm{~mm} / \mathrm{s}^{2}$
	$2 @ 200 \mathrm{~mm} / \mathrm{s}^{2}$		
DPN	$7(41 \%)$	$3(18 \%)$	$1(6 \%)$
	$2 @ 200 \mathrm{~mm} / \mathrm{s}^{2}$	$3 @ 100 \mathrm{~mm} / \mathrm{s}^{2}$	$1 @ 100 \mathrm{~mm} / \mathrm{s}^{2}$
	$2 @ 200 \mathrm{~mm} / \mathrm{s}^{2}$		

3.5.3 Quiet Standing Metrics

In the anterior-posterior time-series, significant ($\mathrm{p}<0.05$) differences were seen in range, standard deviation, and RMS distance for HMA versus DPN (Table 3.4). The total power for anterior-posterior was significantly increased ($\mathrm{p}<0.01$) for the DPN versus HMA. Trends in HMA versus DPN groups were seen with increased mean resultant distance, mean anterior-posterior distance, RMS distance, anterior-posterior total excursion, and anterior-posterior mean velocity. No differences were seen between DNI
and either DPN or HMA groups. In addition, no differences were seen between any
group for fractal dimensions, sway area, and frequency components except total power.

Table 3.4. Quiet Standing Metrics.

	HMA ($\mathrm{n}=34$)			DNI ($\mathrm{n}=11$)			DPN ($\mathrm{n}=17$)		
	Mean	95\% CI		Mean	95\% CI		Mean	95\% CI	
Stddev RD	2.5	\pm	0.6	3.2	\pm	3.1	3.1	\pm	1.0
Stddev AP	$4.0{ }^{*}$	\pm	0.7	4.7	\pm	2.6	5.0	\pm	1.4
Stddev ML	2.7	\pm	0.9	3.6	\pm	5.2	3.5	\pm	1.6
Range-RD	13.1	\pm	3.4	16.4	\pm	17.2	15.5	\pm	5.7
Range-AP	$19.2{ }^{*}$	\pm	3.5	23.4	\pm	13.4	24.6	\pm	7.6
Range-ML	14.7	\pm	5.6	17.7	\pm	25.5	17.1	\pm	8.2
Mean Dist RD	$4.2{ }^{\dagger}$	\pm	0.9	5.3	\pm	4.5	5.3	\pm	1.8
Mean Distance-AP	$3.2{ }^{\dagger}$	\pm	0.6	3.8	\pm	2.1	3.9	\pm	1.1
Mean Distance-ML	2.1	\pm	0.6	2.8	\pm	3.7	2.7	\pm	1.3
RMS Distance-RD	$4.9{ }^{\dagger}$	\pm	1.1	6.2	\pm	5.5	6.2	\pm	2.0
RMS Distance-AP	$4.0{ }^{*}$	\pm	0.7	4.7	\pm	2.6	5.0	\pm	1.4
RMS Distance-ML	2.7	\pm	0.9	3.6	\pm	5.2	3.5	\pm	1.6
Total Excursion-RD	230.2	\pm	64.0	288.0	\pm	189.1	295.6	\pm	121.1
Total Excursion-AP	$178.3{ }^{\dagger}$	\pm	47.0	221.7	\pm	100.4	235.0	\pm	97.7
Total Excursion-ML	111.1	\pm	40.3	134.7	\pm	149.9	132.1	\pm	60.4
Mean Velocity-RD	11.5	\pm	3.2	14.4	\pm	9.5	14.8	\pm	6.1
Mean Velocity-AP	$8.9{ }^{\dagger}$	\pm	2.4	11.1	\pm	5.0	11.7	\pm	4.9
Mean Velocity-ML	5.6	\pm	2.0	6.7	\pm	7.5	6.6	\pm	3.0
Mean Frequency-RD	0.5	\pm	0.1	0.5	\pm	0.1	0.5	\pm	0.1
Mean Frequency-AP	0.5	\pm	0.1	0.6	\pm	0.1	0.5	\pm	0.2
Mean Frequency-ML	0.5	\pm	0.1	0.5	\pm	0.2	0.5	\pm	0.1
95\% Conf. Area Circle	269.5	\pm	138.0	571.1	\pm	1370.9	395.8	\pm	259.2
Sway Area	17.8	\pm	9.5	34.6	\pm	81.3	26.3	\pm	18.3
95\% Conf. Area Ellipse	225.3	\pm	117.4	437.2	\pm	1036.8	339.8	\pm	240.9
Fractal Dimension Circle	1.4	\pm	0.0	1.4	\pm	0.1	1.4	\pm	0.1
Fractal Dimension Ellipse	1.4	\pm	0.0	1.4	\pm	0.0	1.4	\pm	0.1
Total Power-RD	42400	\pm	26235	94362	\pm	234490	60375	\pm	36617
Total Power-AP	67467^{\ddagger}	\pm	26878	122807	\pm	184208	121177	\pm	59236
Total Power-ML	50774	\pm	58018	183355	\pm	696399	60522	\pm	61366
Median Frequency-RD	0.3	\pm	0.1	0.4	\pm	0.1	0.4	\pm	0.2
Median Frequency-AP	0.2	\pm	0.1	0.3	\pm	0.1	0.3	\pm	0.1
Median Frequency-ML	0.2	\pm	0.1	0.2	\pm	0.1	0.2	\pm	0.1
95\% peak frequency-RD	1.6	\pm	0.4	1.8	\pm	0.4	1.7	\pm	0.5
95\% peak frequency-AP	1.4	\pm	0.4	1.4	\pm	0.4	1.3	\pm	0.3
95\% peak frequency-ML	1.2	\pm	0.3	1.3	\pm	0.4	1.3	\pm	0.4
Centroid Frequency-RD	1.0	\pm	0.1	1.1	\pm	0.2	1.1	\pm	0.2
Centroid Frequency-AP	0.9	\pm	0.1	0.9	\pm	0.2	0.9	\pm	0.1
Centroid Frequency-ML	0.9	\pm	0.1	0.9	\pm	0.2	0.9	\pm	0.2
Frequency Disp-RD	0.6	\pm	0.04	0.6	\pm	0.08	0.6	\pm	0.05
Frequency Disp-AP	0.6	\pm	0.04	0.6	\pm	0.07	0.6	\pm	0.05
Frequency Disp-ML	0.7	\pm	0.04	0.7	\pm	0.08	0.7	\pm	0.04

* HMA vs. DPN p $<0.05,{ }^{\dagger}$ HMA vs. DPN $\mathrm{p}<0.1,{ }^{\ddagger}$ HMA vs. DPN $\mathrm{p}<0.01$ All metrics based on mm.

Frequency metrics are in Hz . Mean Velocity is in mm / s. Area metrics are in mm^{2}.

3.5.4 Health Surveys

The mean scores on all health survey results (except for the RAND emotional well-being) score were better for HMA than for DNI and DPN, but not all mean differences were significant (Table 3.5). Although the scores on the Berg Balance Scale were within an acceptable range for DNI and DPN (they showed no risk of falls and could operate independently), these latter scores were still significantly lower than those of HMA. The only significant group difference gained from the RAND survey was in general health. Both DPN and DNI showed significant decreased feelings of general health ($\mathbf{p}<0.05$ and $p<0.01$, respectively). Strong trends were observed in RAND measures of pain and physical health [pain in HMA vs. DPN ($\mathrm{p}=0.06$) and in HMA vs. DNI ($p=0.051$); physical health in HMA vs. DPN $(p=0.06)]$. No significance was seen between diabetic subjects with or without lower limb peripheral neuropathy.

Table 3.5. Health Surveys.

	HMA			DNI			DPN		
	n	Mean	Rank	n	Mean	Rank	n	Mean	Rank
Mini-Mental Exam	34	29.6	34.91	11	29.0	26.32	17	29.3	28.03
BERG	34	$56.0{ }^{\text {** }}$	34.00	11	55.5	23.18	16	55.7	30.00
RAND	Modified SF-36 with depression screener								
Physical Function	32	84.0	32.72	11	78.5	26.86	16	75.9	26.72
Physical Health	32	85.2^{\ddagger}	33.56	11	73.8	27.09	16	67.6	24.88
Emotional Health	32	84.4	31.48	11	78.4	28.55	16	78.0	28.03
Emotional Well-Being	32	76.4	30.69	11	77.6	27.82	16	75.9	30.13
Energy/ Fatigue	32	67.3	32.42	11	63.3	30.00	16	56.6	25.16
Social Function	32	87.1	33.25	11	82.2	26.77	16	80.2	25.72
Pain	32	83.4	34.77	11	69.8	23.23	16	70.6	25.13
General Health	32	$76.9^{\text {* }}$	36.47	11	58.5	20.91	16	63.0	23.31
$\begin{aligned} & \text { HMA vs. DPN } p<0.05 \\ & p=0.051 \end{aligned}$		vs. DN	I p<0.0		MA vs.	DPN $\mathrm{p}=$.06	HM	vs. DN

3.5.5 Foot Sensitivity

SWM testing displayed several significant differences in the geometric mean among the groups (Table 3.6). Bilateral significant differences provide a more significant measure of tactile sensory acuity. The first and fourth metatarsals had significantly different bilateral thresholds between HMA and DPN. The significance at the first metatarsal is higher ($\mathrm{p}<0.01$) than at the fourth metatarsal ($\mathrm{p}<0.05$). SWM of HMA had geometric means of thresholds less than 0.77 g for both first and fourth metatarsal
bilaterally, while DPN had thresholds greater than 1.49 g . None of the geometric means is above the threshold for developing diabetic ulcers (>10.0g) for HMA, DNI, or DPN; however, two DNI and five DPN subjects did have thresholds at risk for developing ulcers, while no HMA did. Thresholds of the fourth metatarsal differed bilaterally, significant and trend, respectively, for the left $(\mathrm{p}<0.05)$ and right $(\mathrm{p}=0.062)$ feet, between HMA and DNI. DPN had a significantly higher ($\mathrm{p}<0.05$) SWM threshold at the left heel versus HMA, but none was seen in the right heel. DNI had a significant bilateral decrease in thresholds versus HMA at the heel. There was not a significant difference seen at the 0.05 level for any measures between DNI and DPN. No differences were seen in the right great toe and only for DPN versus HMA for the left great toe.

Table 3.6. Semmes-Weinstein Monofilament Test.

	HMA			DNI			DPN		
	n	gMean	aMean	n	gMean	aMean	n	gMean	aMean
Left Great Toe	34	$0.45{ }^{*}$	0.99	11	0.59	0.81	17	1.72	3.18
Left $1^{\text {st }}$ MT	34	0.44^{\dagger}	0.79	11	0.74	2.11	17	2.10	7.74
Left 4 ${ }^{\text {th }}$ MT	20	$0.59{ }^{\text {*/ }}$	0.96	8	2.15	4.02	11	1.64	3.24
Left Heel	21	$1.91{ }^{* / 1}$	3.34	8	9.94	41.11	12	8.41	21.55
Right Great Toe	34	0.44	0.78	11	0.78	1.02	17	1.32	2.59
Right ${ }^{\text {st }}$ MT	34	$0.51{ }^{\dagger}$	0.76	11	0.70	1.16	17	1.49	3.91
Right ${ }^{\text {th }}$ MT	20	$0.77^{* 8}$	1.15	8	1.20	2.02	11	2.75	11.20
Right Heel	21	2.30	3.08	8	6.33	7.75	12	5.45	14.74

HMA vs. DPN $\mathrm{p}<0.05^{\dagger} \mathrm{HMA}$ vs. DPN $\mathrm{p}<0.01^{\dagger}$ DNI vs. DPN $\mathrm{p}=0.07$
${ }^{\natural}$ HMA vs. DNI $\mathrm{p}<0.05{ }^{\|}$HMA vs. DNI $\mathrm{p}<0.01{ }^{\S} \mathrm{HMA}$ vs. DNI $\mathrm{p}=0.062$. The gMean is the geometric mean of the thresholds due to their power law perceptual relationship between displacement and acceleration threshold. All units are in grams. The arithmetic means, aMean, are including solely for comparison. MT is Metatarsal.

3.5.6 Lower Limb Electrophysiology

Both DNI and HMA have higher ($\mathrm{p}<0.01$) nerve conduction velocities than DPN
bilaterally for the peroneal, tibial, and sural nerves (Table 3.7). No difference was observed in nerve conduction velocities between HMA and DNI. No bilateral difference was observed for the M-wave latency test. The weaker significance in the tibial M-wave latency test can be attributed to the increased variance as seen in Table 3.7 by the 95% confidence interval, which for both DPN and DNI was greater than double the 95% confidence interval of HMA. Between HMA and DPN, bilateral significance ($\mathrm{p}<0.01$ for all except left peroneal $\mathrm{p}<0.05$) was seen for both peroneal and tibial nerves in the

F-wave latency test. Significant lower ($\mathbf{p}<0.05$) latencies were seen in DPN versus DNI for all F -wave latencies except that of the left peroneal.

Table 3.7. Electrophysiology Results.

	HMA				DNI				DPN			
	n	Mean		\% CI	n	Mean		\% CI	N	Mean		\% CI
Conduction Velocity (m/s)												
L. Peroneal	34	46.9^{*}	\pm	1.31	11	$45.4{ }^{\dagger}$	\pm	1.86	17	40.5	\pm	1.89
L. Tibial	34	45.8*	\pm	1.30	11	46.4^{\dagger}	\pm	1.88	17	39.6	\pm	1.92
L. Sural	28	45.1*	\pm	1.30	7	$44.7{ }^{+}$	\pm	3.36	12	39.3	\pm	2.72
R. Peroneal	34	46.9^{*}	\pm	1.28	11	46.1^{\dagger}	\pm	2.18	17	40.3	\pm	2.03
R. Tibial	34	45.6*	\pm	1.71	11	45.9^{\dagger}	\pm	2.41	16	40.5	\pm	2.37
R. Sural	28	$44.9{ }^{\text {* }}$	\pm	1.39	7	46.0^{\dagger}	\pm	2.62	12	38.9	\pm	2.26
Conduction Latency (ms) for M-wave and F-wave tests												
M. L. Peron.	34	4.5	\pm	0.37	11	4.5	\pm	0.44	16	5.1	\pm	0.48
M. L. Tibial	33	$4.3{ }^{\ddagger}$	\pm	0.41	11	4.7	\pm	1.21	16	5.8	\pm	1.09
M. R. Peron.	33	$4.7{ }^{*}$	\pm	0.34	11	$4.6{ }^{\dagger}$	\pm	0.27	15	5.8	\pm	0.51
M. R. Tibial	33	4.5	\pm	0.52	11	5.4	\pm	1.12	15	5.5	\pm	1.09
F. L. Peron.	33	$50.1{ }^{\text { }}$	\pm	1.78	11	51.9	\pm	3.00	16	56.9	\pm	4.22
F. L. Tibial	33	51.9*	\pm	1.86	11	$55.3^{\text {a }}$	\pm	2.65	16	60.9	\pm	3.14
F. R. Peron.	33	49.8*	\pm	2.62	11	51.0	\pm	3.10	15	57.2	\pm	4.03
F. R. Tibial	31	53.1*	\pm	1.56	11	53.5	\pm	3.87	15	60.8	\pm	4.10

* HMA vs. DPN $\mathrm{p}<0.01{ }^{\dagger}$ DNI vs. DPN $\mathrm{p}<0.01^{\ddagger} \mathrm{HMA}$ vs. DPN $\mathrm{p}<0.05$
${ }^{4}$ DNI vs. DPN $\mathrm{p}<0.05$.

3.6 Summary

The DMAs with and without peripheral neuropathy show increased threshold for the detection of movement, which is believed increase their risk of falls since they would be less likely to detect an initiation of a fall, and disproved our acceleration threshold hypothesis. However, only DPN displayed significantly different quiet standing metrics compared to HMA, which leads to nerve conduction as a possible cause of the instability. Quiet standing metrics hypotheses one through three were found to be true for APCoP distance metrics. The fourth and fifth quiet standing metric hypotheses for sway area and 95% confidence interval of ellipse and circle were proven false. The sixth quiet standing hypothesis on frequency was found to only be true for APCoP power. For physiological measures, DPN's nerve conduction velocities were significantly different from both DNI and HMA, which supported the first physiological hypothesis. The lack of difference for Semmes-Weinstein monofilament thresholds between DPN and DNI give rise those cutaneous sensory deficits either precede peripheral neuropathy or has a separate cause, which proves the second physiological hypothesis wrong. The self-reported health measure hypothesis was wrong because both DPN and DNI reported poorer general health than HMA.

CHAPTER 4

HEARING LOSS AND TYPE-2 DIABETES

4.1 Hypotheses

- Diabetic mature adults would have a higher level of hearing loss than agematched controls.

4.2 Subjects

Our subjects were a subset of our previous population. They were diabetic mature adults (DMA: 6 female and 18 male) with peripheral neuropathy (PN) and without peripheral neuropathy (NI) and healthy mature adults (HMA: 13 female and 14 male). To enable a precise comparison, only subjects who completed our entire electrophysiological, audiological, and acceleration threshold test protocol were used for this analysis. Their primary care physician had previously diagnosed each DMA with Type-2 diabetes. Subject recruiting took place via flyer advertising at the Overton Brooks VA hospital in Shreveport, Louisiana, and in the local area. Individuals from 50 to 75 years of age, inclusive, were labeled as mature adults. Our test protocol was approved by the IRBs of the Shreveport VAMC and Louisiana Tech University.

4.3 Screening

A medical history questionnaire was given to each potential subject. Individuals were not tested further if they had a medical history of cardiovascular and/or respiratory disease, neurological problems such as cerebrovascular disease, stroke, head or spine injury, vestibular ailments and dizziness, memory and concentration deficits, muscle activity deficits, or non-healing skin ulcers. Orthopaedic problems such as lower back pain or spasms, arthritis or joint disease, and deformations of joints or bones led to exclusion of individuals from the study. Those with past or current drug or alcohol dependence were also excluded.

All consented subjects were screened with the Berg Balance Scale and Sharpened Romberg Test to assure that they were able to operate independently from assistance, and vision was tested (Snellen Eye Chart). In addition, the subjects were tested with the Mini-Mental State Exam to insure that they were mentally competent to follow instructions during the experiment. Patellar and Achilles' reflexes were tested to confirm that they were present and normal. DMA had hemoglobin A1c values below 9\%. (Six DMA had values >7.0).

4.4 Procedures

The preceding tests provide physiological backgrounds on individuals for our posture test protocol. The 2-Alternate Forced Choice acceleration thresholds to forward perturbations of constant displacement were carried out on the SLIP-FALLS-STEPm platform while blindfolded.[11] The acceleration was varied based on a modified version of the parameter estimation by sequential testing (mPEST) method.[92, 177] During the first 10 trials, two consecutive correct responses (1-up-2-down method) were required to
decrease acceleration, whereas only three (1-up-3-down method) were needed afterwards which increased the statistical power behind the threshold.[177] The 1-up-2-down and 1-up-3-down methods provided 70.7% and 79.4% correct responses, respectively, to attain.[90] Threshold was said to be reached when increment became less that 2% of the original increment value unless the subject completed all 30 trials where we required 79% correct at a specific acceleration to be taken as threshold.[90] Air bearings insure that the ultra-low vibration, frictionless platform provides no movement cues and allows for the test of movements within the range of sway. The subjected is presented via wireless headphones pre-recorded commands with white masking noise of "Ready," "One," "Two," and "Decide." During the four second decision period, the subject must decide in which period he or she perceived the perturbation to have occurred, by a single (Interval 1) or double (interval 2) bell press. The subject needed to accrue a correct detection percentage of 79% for an acceleration to be considered threshold. The platform moves in a 100% smoothed s-curve, which allows for symmetrical acceleration and deceleration of which the peaks are used as the measurement for threshold. [8, 11]

Air-conduction hearing exams were conducted at $1,2,4$, and 8 kHz and measured in decibels of hearing loss (dBHL). Audiology exams were given by certified audiologists at Overton Brooks VA Medical Center using large cushion headphones to reduce crossover and ambient noise. All subjects who had confounding factors for hearing loss such as cerumen build up and close proximity to gun or cannon blast were excluded from analysis.

4.5.1 Acceleration Thresholds

As was the case also for our previous analysis, DMA with PN did not differ from those who were NI in acceleration thresholds (Figure 4.1). DMA displayed a significantly decreased ability to detect forward perturbations at 1 and 4 mm than HMA ($\mathrm{p}<0.003$ and $\mathrm{p}<0.002$).

Peripheral Neuropathy versus Neurally Intact Individuals

Figure 4.1. Acceleration thresholds for those with hearing tests.

4.5.2 Hearing Loss

4.5.2.1 DMA versus HMA

DMA showed significantly more hearing loss than HMA at 4 and 8 kHz bilaterally ($\mathbf{p}<0.027$ and $\mathrm{p}<0.007$ respectively). No significant difference was found at 1 kHz and 2 kHz (Figure 4.2).

Hearing Loss

Figure 4.2. Hearing loss DMA vs. HMA.

Hearing Loss in DMA at 4 and 8 kHz is greater than HMA for both PN and NI, but 4 kHz Hearing Loss is less in NI than in PN (Figure 4.3).

Figure 4.3. Hearing loss PN vs. NI vs. HMA.

4.5.2.2 Sex Related Differences

Male DMA have significantly more hearing loss than other groups at 4 and 8 kHz except on the left ear at 4 kHz versus male HMA (Figure 4.4). No difference is seen between women DMA and HMA, but this lack may be attributed to their low sample size.

Figure 4.4. Hearing loss sex-related differences.

4.6 Summary

These findings provide evidence that detriments to the nervous system are widespread in diabetes and are not localized as in the case of lower-limb peripheral neuropathy. Our data show increased hearing loss in DMA, specifically in males. Based on our evidence, diabetes affects the hearing system, but we cannot conclusively state which part (cranial nerve VIII, hair cells, or sound transduction) is affected. The sensorineural hearing loss leads to the conclusion that similar damage could occur to the vestibular system that can affect balance.

CHAPTER 5

MODIFIED SINGLE-INTERVAL ADJUSTMENT MATRIX

5.1 Hypotheses

- The modified single-interval adjustment matrix (mSIAM) method will reject false positives in thresholds better than the two-alternate forced choice (2AFC) with modified parameter estimation by sequential testing (mPEST) by reaching threshold randomly fewer times within the 30 trial limit.
- The mSIAM method will settle on threshold in fewer trials than 2AFC with mPEST.

5.2 Advantage over 2AFC with mPEST

Our previous acceleration threshold test required a stimulus perturbation that took a maximum of six seconds to complete its motion. Therefore, we could afford to use twoalternate forced choice protocol, which gave us a total trial time of 19 seconds. For our new entrainment study, we needed to determine amplitude thresholds at different frequencies while allowing enough time for the sway to be locked in during a sinusoidal perturbation. We can compare previous studies of the linear relationship of acceleration, a, and displacement with the amplitude, A, and frequency, $\omega(\mathrm{rad} / \mathrm{s})$ and $f(\mathrm{~Hz})$ of the sinusoidal platform movement (Eq. 28).

$$
\begin{equation*}
a=A \omega^{2}=A(2 \pi f)^{2} \tag{28}
\end{equation*}
$$

5.3 Integration with mPEST

Although SIAM had a staircase method integrated into it, the increment is set to constant, which does not allow us to increase the resolution as we get closer to the threshold. The mPEST increased or decreased the resolution of the search depending on the distance the algorithm predicted it was away from the actual threshold. In the previous experiments with 2AFC with mPEST, they used a 1-up/2-down or 1-up/3methodology. With every reversal (change from up to down or vice versa), the increment was halved. Consecutive ups and downs were doubled.

To integrate mPEST, some difficulties had to be overcome. The mSIAM method is a single interval yes/no method, which means sometimes there will be no stimulus presentation as opposed to the forced choice of the 2AFC method. In addition, there is an increment after every trial, except correct rejections. Since the system must always change, a simple 1-up-2-down system could be used.

The $\mathrm{p}=0.50$ SIAM (Table 5.1) was chosen since it is the best estimate for threshold.[93] Table 5.1 has values in parenthesis that are multipliers of the increment to determine the amplitude of the next stimulus.

Table 5.1. SIAM Matrix for Study.

	Movement	No Movement
Detect	Hit (-1)	False Alarm (2)
No Detect	Miss (1)	Correct Rejection (0)

The correct rejection and false alarm multipliers handled the no stimulus trials. Therefore, if there were a correct rejection then the stimulus amplitude would not change, but if there were a false alarm, the subject would be penalized for guessing by increasing the stimulus by twice the increment.

Since a true 1-up-2-down method could not be used, we used a semi-1-up-2-down method. Thus, every consecutive miss or false alarm caused the increment to double (1up). The increment value would be halved for every reversal. Reversals were defined as every miss or false alarm followed by a hit, and two consecutive hits followed by a hit or miss (2-down). To allow the method to reach the threshold more quickly, the increment is doubled every time a hit is preceded by two consecutive hits. Another problem arises due to the amplitude change after every trial. A situation can occur when a subject enters a hit-miss-hit-miss occurrence where the amplitude is alternating above and below the threshold. To counteract, the fourth consecutive hit-miss alternating occurrence causes the threshold to be halved, which increases the resolution for defining threshold nearer to the actual threshold. In addition, we could have negative perturbations or perturbations of zero. Therefore, we had to implement a schema to set the increment and the amplitude to half of the amplitude of the previous trial. Although this implementation alleviated our problem, it does allow threshold criteria to be met prematurely. Thus, the halving of the increment value could cause it to shrink to 2% or 5% of its initial value, causing the signal that threshold had been found in simulations. This signal should not happen in our sinusoidal threshold tests with human subjects since the subject could not have a threshold of $20 \mu \mathrm{~m}$ or $50 \mu \mathrm{~m}$ (our initial increment is 1 mm).

5.4 Monte Carlo Simulations

Monte Carlo simulations were run on both the previously used mPEST method and our new mSIAM method. Simulations were run for 10,000 subjects and 1000 trials per subject. Two methods for simulation were used. The first method assumed a uniform distribution of button presses and platform perturbations. The second method used a simulated human response. Both methods were run until the 2% and 5% criteria were met or until it finished the 1000 trials.

5.4.1 Random Choice

The random choice method simulated a subject pressing the button at random to signal he or she felt a move. This methodology determines the power of an algorithm by showing the ability to reject false positives, since correct guesses could lead to a premature threshold value.

The random choice simulations showed more power for mSIAM with less randomly reached threshold within 30 trials as opposed to the mPEST method (Table 5.2). Thirty trials were chosen since we use a maximum of 30 trials for our threshold testing. For the 2% and 5% rules in mSIAM, less than 2% reached threshold randomly, which is lower than both the 2% and 5% rules of mPEST. Therefore, we can conclude that the mSIAM provides better rejection of false positives than mPEST.

Table 5.2. Percentages of Subjects Reaching Threshold by Random Choice.

	2%			5%
Trials	mPEST	mSIAM	mPEST	mSIAM
5	1.53%	0.00%	1.70%	0.00%
10	2.09%	0.11%	2.78%	0.04%
15	2.30%	0.28%	3.16%	0.52%
20	2.40%	0.53%	3.37%	1.11%
25	2.53%	0.69%	3.56%	1.68%
30	2.64%	0.90%	3.62%	1.95%

5.4.2 Simulated Human Response

The simulated human response (SHR) method simulated a subject pressing the button with probability depending on the stimuli's relationship to the subject's threshold. This methodology determines the ability of an algorithm to converge to a threshold. SHR worked by providing miss and false alarm trial a second chance to get a hit. The probability (Eq. 29) was compared to a randomly generated number. If a random number was lower than the probability, the subject's answer would be changed to a hit.

$$
\begin{equation*}
\text { probability }=\frac{\text { amplitude } \cdot 3}{\text { threshold }} \tag{29}
\end{equation*}
$$

The SHR simulations showed higher convergence to a threshold with mPEST within 30 trials as apposed to the mSIAM method (Table 5.3). Thirty trials were chosen since we use a maximum of 30 trials for our threshold testing. All simulated subjects converged to a threshold within the 1000 trials. The mPEST method had higher convergence percentages within each rule, but the 5% rule percentage at 30 trials for
mSIAM (58.08\%) was higher than that of the 2% rule of mPEST (48.01%). Therefore, we decided to use the 5% rule for mSIAM since it gave us a higher convergence over the 2% rule, and mSIAM had a higher false positive rejection.

Table 5.3. Percentages of Subjects Reaching Threshold by SHR.

	2%			5%	
Trials	mPEST	mSIAM	mPEST	mSIAM	
5	6.96	0.11	13.56	1.14	
10	17.96	2.76	35.20	12.03	
15	26.64	9.51	47.05	26.02	
20	34.96	17.99	58.47	38.67	
25	42.15	27.00	67.36	49.61	
30	48.01	35.59	74.45	58.08	

5.5 Summary

The mSIAM method provided us an improved method to estimate threshold. It cut down on overall testing time, which reduces subject fatigue. The methodology improved our threshold estimation by better rejecting false positives, since we had fewer thresholds reached via random button pushing, and allowed for a faster convergence to the threshold.

CHAPTER 6

SUBTHRESHOLD SINUSOIDAL ENTRAINMENT

6.1 Subjects

This study consisted of eight new subjects who were 21 to 29 years of age. All subjects were required to wear a harness per IRB approval at Clarkson University. Subjects were recruited via advertising at Clarkson University in Potsdam, NY, and the surrounding area. Only subjects who completed all trials were included for this analysis.

6.2 Screening

A medical history questionnaire was given to each potential subject. Individuals were not tested further if they had a medical history of cardiovascular and/or respiratory disease; neurological problems such as cerebrovascular disease, stroke, head or spine injury; vestibular ailments and dizziness; memory and concentration deficits; muscle activity deficits; or non-healing skin ulcers. Orthopaedic problems such as lower back pain or spasms, arthritis or joint disease, and deformations of joints or bones led to exclusion of individuals from the study. Those with past or current drug or alcohol dependence were also excluded.

All consenting subjects were screened with the Berg Balance Scale and Sharpened Romberg Test to assure that they were able to operate independently from
assistance, and correctable vision was required. In addition, the subjects were tested with the Mini-Mental State Exam to insure that they were mentally competent to follow instructions during the experiment. Patellar and Achilles' reflexes were tested to confirm that they were present and normal.

6.3 Test Protocol

All subjects were tested via an experimental protocol that first finds a subject's threshold to a sinusoidal perturbation and then entrains sway subthreshold. First, 60 seconds of quiet standing were recorded. The data from the 60 second quiet standing period was used to calculate the top two peak power frequencies (natural frequencies) of anterior-posterior center-of-pressure (APCoP) sway. The top two had to be within 30 dB of the maximum peak. If not, than 0.4 Hz was used as the second natural frequency, which was arbitrarily chosen. This procedure was performed to insure that the secondary peak was due to a frequency power outside the power of the noise level. The upper level limit was 1 Hz due to the high acceleration values at low amplitudes at larger frequencies. The lower level was limited to 0.15 Hz because we obtain so few cycles that the data is unreliable.

Each subject is tested to determine threshold of amplitude of sinusoidal motion at four different frequencies. The first two, 0.5 Hz and 0.75 Hz , (constant frequencies) were chosen since preliminary data suggested these frequencies, a low (0.5 Hz) and a high $(0.75 \mathrm{~Hz})$, were around the ideal sway frequencies; but this information could not be found to be conclusive since we only had 20 seconds of quiet standing in previous studies, and therefore the data could not be reliable enough to publish. The order of the constant frequencies was randomly chosen to factor out learning. Next, the amplitude
threshold is found for each of the natural frequencies. This test is performed to determine whether if entrainment does not occur at the constant frequencies then would it at the natural frequencies. The two natural frequencies are also randomly ordered. Each threshold set of trials is preceded by 10 seconds of quiet standing to provide a baseline average to subtract from the threshold trials. The amplitude for each frequency was varied using the mSIAM algorithm for threshold detection (Figure 6.1).

Amplitude Threshold via mSIAM for M27Y009STF at $0.34 \mathbf{H z}$

Figure 6.1. Iterating amplitude towards threshold via mSIAM for subject M27009STF.

At the start of each trial, a baseline sinusoid was begun. Its purpose was to avoid any abrupt jerks at the beginning of the stimulus interval to follow. This amplitude was chosen to be well below threshold. The acceleration was set at $5 \mathrm{~mm} / \mathrm{s}^{2}$ and the amplitude was calculated from Eq. 28 (e.g., at 0.5 Hz , the sinusoidal amplitude $\mathrm{A} \approx 0.5$
$\mathrm{mm})$. The baseline sinusoid was followed four seconds later by the full amplitude sinusoidal perturbation for those trials in which a move was to occur (Figure 6.2).

Platform Position

Figure 6.2. Position of platform during a sinusoidal perturbation for a "stimulus" trial. A "non-stimulus" trial would contain only the baseline sinusoid.

The ratio of perturbation to non-perturbation trials was set at 2:1. Trials were randomly sorted. The threshold detection algorithm went for a maximum of 30 trials if subject did not meet the 5% stopping criteria. If a subject went through all 30 trials, then the threshold was estimated by using the lowest amplitude that had 79% hits.

After all four amplitude thresholds were obtained, the subject proceeded to the entrainment protocol. The subject received five seconds of quiet standing followed by 120 seconds of sinusoidal motion at 80% of the threshold for each frequency. Power
spectral density was performed applying a fast Fourier transform to the APCoP lock-in data to evaluate a subject's sway entrainment.

6.4 Verification

Because APCoP was calculated from the load cells, confirmation was needed to show that the resulting APCoP was due to a subject's sway and not the shear force of the plate from the inertia of the weights. Sixty-five kilograms of steel plates (bar bell weights) were placed on a 10 cm rod affixed to the center of the platform, and the APCoP was calculated. The resultant APCoP deviated no more than 0.5 mm , which was substantially smaller than the subject's APCoP sway (6 to 8 mm).

In addition, to show that the peak frequency spectrum detection function worked and that the platform was moving at the correct frequency, the system was set up to calculate the peak frequency of the platform position instead of the APCoP. The spectral density showed that the tabulation was correct but also verified the frequency precision of the platform sine wave (Figure 6.3).

Figure 6.3. Power spectral density of platform position move signal.

6.5 Analysis and Results

6.5.1 Natural Frequencies

By determining the amplitude threshold for separate frequencies, we were able to explore the relationship of frequency and amplitude threshold. Table 6.1 provides the details of our subjects and the determined natural sway frequencies. The thresholds for the different natural frequencies will assist in better defining the curve for the relationship between frequency and amplitude.

Table 6.1. Subject Information and Natural Frequencies.

Subject Information				Natural Frequencies	
SUBJECT ID	AGE	RACE	GENDER	Nat_Freq_1	Nat_Freq_2
F24Y001STF	24	INDIAN	F	0.37	0.40
M24Y002STF	24	INDIAN	M	1.13	0.92
M24Y003STF	24	ASIAN	M	0.31	0.60
F26Y004STF	26	ASIAN	F	0.40	0.43
M20Y006STF	20	CAUCASIAN	M	0.79	0.92
M20Y007STF	20	CAUCASIAN	M	0.98	0.92
M29Y008STF	29	ASIAN	M	0.89	0.40
M27Y009STF	27	INDIAN	M	0.34	0.98
M24Y011STF	24	INDIAN	M	0.67	0.43

A power-law relationship may exist between the amplitude threshold and perturbation frequency (Figure 6.4). With increased sample size, we will have more duplicated natural frequencies between subjects, which will better define the curve of the power-law relationship between perturbation amplitude and frequency.

Since our lab previously had found a negative power-law relationship between peak acceleration detection threshold and a linear perturbation distance with the 2AFC tests, we also plotted acceleration at thresholds versus amplitude thresholds (Figure 6.4)

Figure 6.4. Power-law Relationship of Frequency and Amplitude.

6.5.2 Frequency Lock in

To analyze the frequency lock-in, we allowed a 5% error. Therefore, a subject was considered frequency locked if the difference between the predicted and observed sway frequency was within 5% of the predicted frequency (Eq. 30).

$$
\begin{equation*}
\frac{\left|f_{\text {Observed }}-f_{\text {predicted }}\right|}{f_{\text {predicted }}} \leq 0.05 \tag{30}
\end{equation*}
$$

Where $f_{\text {observed }}$ is the peak frequency of the entrainment test, and $f_{\text {predicted }}$ is the frequency of the platform sinusoid for entrainment.

Figure 6.5 shows the entrainment of anterior-posterior center of pressure for asingle subject. The next highest peak is about 55 dB below the lock-in peak. This peak shows a good signal to noise ratio for the subject's lock-in frequency.

Figure 6.5. Lock-in Power Spectral Density of APCoP.

The 5% error rule accommodated the problem so that we could mathematically determine frequency lock. The peak frequencies of the entrainment section (Table 6.2) were found to be entrained for 89% of the subjects at each frequency group. One subject (M24Y002STF) did not show frequency lock at $0.5 \mathrm{~Hz}, 0.75 \mathrm{~Hz}$, or his first natural frequency $(1.13 \mathrm{~Hz})$. The lack of lock for the first natural frequency may be due to its high frequency. The only other subject (M20Y006STF) not to achieve frequency lock was also at a high natural frequency (0.92). The entrainment trial was within 1.5 dB of power from qualifying as entrained.

Table 6.2. Peak Entrainment Frequencies.

	Peak Entrainment Frequencies			
SUBJECT ID	0.5 Hz	0.75 Hz	Nat_Freq_1	Nat_Freq_2
F24Y001STF	0.50354	0.74768	0.36621	0.39673
M24Y002STF	0.36621^{*}	0.41199^{*}	0.47302^{*}	0.91553
M24Y003STF	0.50354	0.74768	0.30518	0.59509
F26Y004STF	0.50354	0.74768	0.39673	0.42725
M20Y006STF	0.50354	0.74768	0.79346	0.53406^{*}
M20Y007STF	0.50354	0.74768	0.97656	0.91553
M29Y008STF	0.50354	0.74768	0.88501	0.39673
M27Y009STF	0.50354	0.74768	0.33569	0.97656
M24Y011STF	0.50354	0.74768	0.67139	0.42725

* Did not achieve frequency lock.

6.5.3 Physiological Measures

To investigate the system controlling the lock-in of frequency, power spectra were performed on the physiological time-series measures. The first physiological measures are those from the three-axis head accelerometer, which can describe the input to the vestibular system. In addition, EMGs allowed us to look at the motor output. The soleus, gastrocnemius, and tibialis anterior EMGs provided information for muscles actuating the ankle joint. The sternocleidomastoid muscle is believed to provide information on vestibular out due to its efferents from the auditory-vestibular nerve.[179] Lock-in was observed in a maximum of 50% for physiological measures (Table 6.3).

Table 6.3. Physiological Entrainment Percentages.

Measurement	0.5 Hz		0.75 Hz		Nat. Freq. 1		Nat. Freq. 2	
	Peak 1	Peak 2						
Head Accel X	0.00	0.00	0.25	0.00	0.13	0.13	0.00	0.00
Head Accel Y	0.13	0.00	0.25	0.13	0.50	0.00	0.00	0.25
Head Accel Z	0.00	0.25	0.25	0.13	0.25	0.13	0.00	0.13
EMGs								
RTA	0.13	0.00	0.13	0.25	0.00	0.13	0.00	0.13
LTA	0.00	0.13	0.00	0.00	0.00	0.25	0.13	0.00
RGS	0.25	0.13	0.25	0.00	0.38	0.00	0.25	0.00
LGS	0.25	0.13	0.25	0.00	0.25	0.13	0.13	0.00
RSCM	0.00	0.00	0.25	0.00	0.00	0.00	0.00	0.25
LSCM	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rsoleus	0.33	0.17	0.17	0.00	0.33	0.17	0.17	0.00
Lsoleus	0.33	0.00	0.17	0.17	0.33	0.17	0.33	0.00

Although the physiological entrainments were considerably lower than the APCOP entrainment, higher peak entrainments were observed at subjects' highest peak natural frequency.

6.6 Summary

More subjects will allow us to better define the relationship between frequency and amplitude threshold. With increased sample size, it might be possible to characterize subjects who cannot entrain or frequencies with decreased entrainment efficiencies.

CHAPTER 7

Abstract

ANKLE MODEL

In parallel with a new method to study postural control, this dissertation also now presents a new method to characterize movement about the joints of the body, as a precursor to later using this new technique to model postural and balance control.

Arthropod and human limbs are multilinked systems in which the revolute joints are not orthogonal to the limb segments or to each other. The Denavit-Hartenberg (DH) representation is the traditional model used for orthogonal systems such as industrial robots. When applied to systems with non-orthogonal linkages, the DH representation projects the reference frames outside of the limb segments and presents other computational difficulties. A new method to represent kinematics of multilinked lowerpair mechanisms is proposed. Three-dimensional computer graphics techniques act on arrays of points describing bodies that move about arbitrary revolute joints. This computational model has been adapted to represent multilinked systems such as animal limbs to calculate both position (X,Y,Z) and orientation (yaw, pitch, and roll) of individual limb segments and joints for measurement comparisons. The linkage parameters are explicitly stated. This method allows a simplified representation for the kinematics of human and animal limbs by maintaining reference frames within the limb segments. It reduces errors such as the arc sine errors associated with Euler calculations

and the azimuth errors seen with the DH representation. A common computational system is provided for simulation, design, measurement and animation.

7.1 Mathematics

7.1.1 Definitions

A vertices matrix ([$\left.\mathrm{V}_{\mathrm{n}}\right]$, (Eq. 31)) is defined by the joint number to be rotated, n; therefore, all limbs distal to it (limbs $[n+1: d])$ are operated on or accessed in the matrix. The subscript d is equal to the number of the most distal limb. Each limb requires 12 columns of the matrix (expandable for more vertices). The first eight columns are the limb vertices. The ninth column is the limb center, and the $10^{\text {th }}, 11^{\text {th }}$, and $12^{\text {th }}$ columns are the local x, y, and z-unit vectors of the local coordinate system relative to global Cartesian coordinate system. The $13^{\text {th }}$ column contains the position of the distal revolute joint of each respective limb, ($j p$).

$$
\left[\begin{array}{cccccc}
x_{1,1} & x_{1,2} & \ldots & x_{n+1,1} & \ldots & x_{d, 13} \tag{31}\\
y_{1,1} & y_{1,2} & \ldots & y_{n+1,1} & \ldots & y_{d, 13} \\
z_{1,1} & z_{1,2} & \ldots & z_{n+1,1} & \ldots & z_{d, 13} \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

A translation matrix ([$\left.\mathrm{T}_{\mathrm{n}, \mathrm{r}}\right]$, (Eq. 32)) is defined by n (same as above) and r, such that the offset as "from proximal" $(f p)$ or "to distal" $(t d)$ is defined in reference to the joint in relation to the limb.

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & \Delta x \tag{32}\\
0 & 1 & 0 & \Delta y \\
0 & 0 & 1 & \Delta z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Rotation matrices $\left(\left[\mathrm{R}_{\mathrm{n}, a, \mathrm{r}}\right]\right)$ are defined by n, a, and r, where a is the axis of rotation. Eqs. 33-35 show the rotation matrices for rotating about the x, y, and z-axes,
respectively. Roll (α) is defined by the rotation about the x-axis. Yaw (β) provides the rotation about the y-axis. Pitch (θ) describes the rotation about the z-axis.

$$
\begin{align*}
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\alpha) & -\sin (\alpha) & 0 \\
0 & \sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \tag{33}\\
& {\left[\begin{array}{cccc}
\cos (\beta) & 0 & \sin (\beta) & 0 \\
0 & 1 & 0 & 0 \\
-\sin (\beta) & 0 & \cos (\beta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \tag{34}\\
& {\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \tag{35}
\end{align*}
$$

A joint rotation matrix [[Rev] (Eq. 36)] defines the amount of rotation about the arbitrary axis of the revolute joint. The α and β angles of offset are calculated from the z axis to allow for the rotation of the joint to be about the z-axis as in Eq. 35. A single rotation matrix ([RM (row, column)]) is used to define the orientation of a limb in space through a single rotation once the yaw, pitch, and roll have been tabulated.

$$
\left[\begin{array}{cccc}
c(\beta) c(\theta) & s(\theta) & c(\theta) s(\beta) & 0 \tag{36}\\
c(\alpha) s(\theta) c(\beta)+s(\alpha) s(\beta) & c(\alpha) c(\theta) & c(\alpha) s(\beta) s(\theta)+s(\alpha) c(\beta) & 0 \\
c(\beta) s(\theta) s(\alpha)+s(\beta) c(\alpha) & c(\theta) s(\alpha) & -s(\alpha) s(\beta) s(\theta)+c(\theta) c(\beta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

In Eq. 36, c refers to cosine and s to sine.

7.1.2 System Description

A relative object-oriented design utilizing limb, joint, and system objects facilitates the setup of the model using global positions and angles. The global origin and axis are designated at the local origin of the most proximal limb segment. The limb is modeled as a cuboid defined by length, width, and height for simplicity, but any shape
with any number of vertices can be used. The local reference frame for each limb segment is located arbitrarily at the segment's geometric center. The joint is defined in relation to the proximal and distal limbs. Due to the sequential operation in traversing the limb, the program progresses arbitrarily proximal to distal. The displacement offset for each joint is the $x_{f p}, y_{f p}$, and $z_{f p}$ offset from the geometric center of the proximal limb. These define its position in space in relation to proximal limb. Next, the $\alpha_{f p}$ (x-axis), $\beta_{f p}$ (y-axis), and $\theta_{f p}$ (z-axis) are defined as the offset orientations from the local axis of the proximal limb. Then a similar set of offset orientations ($\alpha_{t d}, \beta_{t d}$, and $\theta_{t d}$) are defined to allow the rotation of the revolute joint to align it with the z-axis of the distal limb. Finally, the offset is defined from the center of the revolute joint to the geometric center of the distal limb, $x_{t d}, y_{t d}$, and $z_{t d}$. No range limitation is enabled to allow axis positions or orientations that are considered out of the range of natural joint motion as in fractures or dislocations.

7.1.3 Kinematics of the
 Multi-Linked System

A multi-linked system assembled to the specifications of an initial state and followed by a series of rotations is shown in Figure 7.1.

Figure 7.1. Displays positions of a two joint system going through a series of closed loop rotations defined in Table 7.1, which verifies the algorithm with the identity matrix.

The local coordinate systems are set at the origin for all limbs. Therefore, the limbs are moved to their positions and orientations in space via the matrix multiplications shown in the pseudocode below:

1. $\quad\left[\mathrm{V}_{l}\right]=\left[\mathrm{T}_{l, f p}\right]\left[\mathrm{R}_{l, x, f p}\right]\left[\mathrm{R}_{l, y, f p}\right]\left[\mathrm{R}_{l, z, f p}\right]\left[\mathrm{R}_{l, z, t d}\right]\left[\mathrm{R}_{l, y, t d}\right]\left[\mathrm{R}_{l, x, t d}\right]\left[\mathrm{T}_{l, t d}\right]\left[\mathrm{V}_{I}\right]$
2. $\quad\left[\mathrm{V}_{2}\right]=\left[\mathrm{T}_{2, f p}\right]\left[\mathrm{R}_{2, x, f p}\right]\left[\mathrm{R}_{2, y, f p}\right]\left[\mathrm{R}_{2, z, f p}\right]\left[\mathrm{R}_{2, z, t d}\right]\left[\mathrm{R}_{2, y, t d}\right]\left[\mathrm{R}_{2, x, t d}\right]\left[\mathrm{T}_{2, t d}\right]\left[\mathrm{V}_{2}\right]$
3.
4.
5.

To rotate the distal limbs around a respective joint (n), the joint axis is translated to the global origin, and the axis of rotation is aligned with the z-axis. The convention for
local z-axis rotations has been designated as the rotation for each arbitrary joint. All other axes are held constant at the initial specification.

Once the system is built, it can be optimized from the pure computer graphics framework. By using the position $(j p)$ of the revolute joint stored in the vertex matrix, we can use one translation to bring the joint to the origin. This optimization creates a reduction in translational matrix multiplications by a factor of $2(\mathrm{n}-1)$ if n is the number of the joint to be rotated. In addition, the optimization provides less overhead as the number of vertices to be operated is reduced by $\mathrm{c} \cdot \mathrm{n}$ where c is the number of vertices per limb and n is the number of the joint to be rotated. The optimization is detailed in the pseudocode below:

1. $\left[\mathrm{V}_{n}\right]=\left[\mathrm{T}_{n, j p}\right]^{-1}\left[\mathrm{~V}_{n}\right]$
2. $\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{1, \mathrm{y}, \mathrm{fp}}\right]^{-1}\left[\mathrm{R}_{l, x, f p}\right]^{-1}\left[\mathrm{~V}_{n}\right]$
a. If the joint is the joint of rotation, jump to step nine.
3. $\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{1, x, t d}\right]^{-1}\left[\mathrm{R}_{l, y, t d}\right]^{-1}\left[\mathrm{R}_{l, z, t d}\right]^{-1}\left[\mathrm{R}_{l, z, f p}\right]^{-1}\left[\mathrm{~V}_{n}\right]$
4. $\quad\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{2, y, \mathrm{fp}}\right]^{-1}\left[\mathrm{R}_{2, x, f \mathrm{p}}\right]^{-1}\left[\mathrm{~V}_{n}\right]$
a. If the joint is the joint of rotation, jump to step nine.
5. $\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{2, x, t d}\right]^{-1}\left[\mathrm{R}_{2, y, t d}\right]^{-1}\left[\mathrm{R}_{2, z, t d}\right]^{-1}\left[\mathrm{R}_{2, z, f p}\right]^{-1}\left[\mathrm{~V}_{n}\right]$
6.
7.
8.
9. $\quad\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{n, x, f p}\right]\left[\mathrm{R}_{n, y, f p}\right][\mathrm{Rev}]\left[\mathrm{V}_{n}\right]$.

After joint is rotated, the system is returned to its proper global coordinates as follows:

1. $\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{n, x f p}\right]\left[\mathrm{R}_{n, y, f p}\right]\left[\mathrm{R}_{n, z f p}\right]\left[\mathrm{R}_{n, z, t d}\right]\left[\mathrm{R}_{n, y, t d}\right]\left[\mathrm{R}_{n, x, t d}\right]\left[\mathrm{V}_{n}\right]$
2.
3.
4.
5. $\quad\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{2, x, f f}\right]\left[\mathrm{R}_{2, y, f p}\right]\left[\mathrm{R}_{2, z f p}\right]\left[\mathrm{R}_{2, z, d]}\right]\left[\mathrm{R}_{2, y, d d}\right]\left[\mathrm{R}_{2, x, i d}\right]\left[\mathrm{V}_{n}\right]$
6. $\quad\left[\mathrm{V}_{n}\right]=\left[\mathrm{R}_{l, x, f p}\right]\left[\mathrm{R}_{l, y, y p}\right]\left[\mathrm{R}_{l, z f p}\right]\left[\mathrm{R}_{l, z, t d}\right]\left[\mathrm{R}_{l, y, d d}\right]\left[\mathrm{R}_{l, x, t d}\right]\left[\mathrm{V}_{n}\right]$
7. $\left[\mathrm{V}_{n}\right]=\left[\mathrm{T}_{n, j p}\right]\left[\mathrm{V}_{n}\right]$

7.1.4 Yaw, Pitch, and Roll of Limbs

The rotation about an arbitrary revolute joint in a multilinked system allows joint motion to include displacements in all three dimensions and rotations about all three coordinate axes. In mechanisms with orthogonal revolute joints, three revolute joints would be required to achieve the same rotations. Changes in link yaw, pitch, and roll Euler angles occur from rotation about a single revolute joint. Therefore, the new yaw, pitch, and roll are calculated after proximal joints are rotated. To avoid errors in back calculation of the orientation via position coordinates in real data, the yaw, pitch, and roll are calculated via the rotation sequence through multiplication of only the rotation matrices. The sequence necessary for rotation using Euler angles required that the orientations be calculated in the order roll, pitch, and yaw as in (Eq. 36). The calculation of yaw, pitch, and roll is tabulated both ways so that each method could verify the other. The method of back calculation is accomplished by first translating the limb back to the global origin of the coordinates system by using the limb center as the offset for the translation matrix in (Eq. 37).

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & x_{a, 9} \tag{37}\\
0 & 1 & 0 & y_{a, 9} \\
0 & 0 & 1 & z_{a, 9} \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Roll (α) is calculated by projecting the local y-axis unit vector $\left(x_{-} u y, y_{-} u y, z_{-} u y\right)$ onto the $y z$-plane (Eq. 38) and calculating the angle of rotation (α) between u ' and the global y-axis (Eq. 39).

$$
\begin{align*}
& u^{\prime}=\left[0, y_{-} u y, z_{-} u y\right] \tag{38}\\
& \alpha=-\frac{\cos ^{-1}\left(u^{\prime} \cdot[0,1,0]\right)}{\left|u^{\prime}\right|} \times \frac{z-u y}{\left|z_{-} u y\right|} \tag{39}
\end{align*}
$$

The arc cosine function only returns values between zero and π radians so it is multiplied by a factor that is -1 or 1 depending on $z_{-} u y$ in respect to the $x y$-plane. A similar respective factor is multiplied to determine angle direction for yaw and pitch. The computer animation standard rotations used designate positive angles as counterclockwise rotations [147]. For α, a positive angle requires a clockwise rotation to align u, with the global y-axis. Therefore, the calculated α is inverted. The remaining calculations of pitch (θ) and yaw (β) follow the standard convention of positive angles for counter-clockwise rotations. Using a, an x-axis rotation matrix is used to rotate the limb so that the local y-axis vector lies in the $x y$-plane.

Since u " already lies within the $x y$-plane but was calculated with the absolute value of u^{\prime} (Eq. 40), the pitch (θ) must be calculated from the angle of rotation between u " and the global y-axis (Eq. 41).

$$
\begin{align*}
& u^{\prime \prime}=\left[x_{-} u y, 0,\left|u^{\prime}\right|\right] \tag{40}\\
& \theta=\frac{\cos ^{-1}\left(u^{\prime \prime} \cdot[0,1,0]\right)}{\left|u^{\prime \prime}\right|} \times \frac{x_{-} u y}{\left|x _u y\right|} \tag{41}
\end{align*}
$$

Yaw (β) requires the use of a separate local axis since the local y-axis unit vector is aligned with the global y-axis. The local x-axis unit vector $\left(x_{-} u x, y_{-} u x, z_{-} u x\right)$ is projected onto the $x z$-plane (Eq. 42) so that the angle between the x-axis vector ($x _u x$) and the global x-axis is calculated as the yaw of the limb (Eq. 43).

$$
\begin{align*}
& u^{\prime \prime \prime}=\left[x_{-} u x, 0, z_{-} u x\right] \tag{42}\\
& \beta=\frac{\cos ^{-1}\left(u^{\prime \prime \prime} \cdot[1,0,0]\right)}{\left|u^{\prime \prime \prime}\right|} \times \frac{z_{-} u x}{\left|z_{-} u x\right|} \tag{43}
\end{align*}
$$

Utilizing the calculated yaw, pitch, and roll, one is able to move and orient the limb without resorting to sequential steps as in Eq. 44.

$$
\begin{equation*}
\left[\mathrm{V}_{\mathrm{n}}\right]=[T]\left[R_{\alpha}\right]\left[R_{\theta}\right]\left[R_{\beta}\right]\left[V_{n}\right] \tag{44}
\end{equation*}
$$

The inability to make small, precise measurements for the position of limbs introduces the possibility for the researcher to make large errors when back calculating the yaw, pitch, and roll for a limb, especially at the asymptotes. So in addition to back calculating the yaw, pitch, and roll from the limb's position relative to global axis, the researcher calculates the yaw, pitch, and roll solely with the inputted rotation matrices. The rotation matrices are ordered as they would be for the multiplication to build a limb as previously shown in pseudocode above, but no translations are used. The rotation matrix of Eq. 31 is then obtained. By using an ordered sequence of rotation matrix multiplications, the researcher uses the pseudocode to back-calculate yaw, pitch, and roll from the values in the rotation matrix as follows:

1. $\quad\left[\mathrm{RM}_{1}\right]=\left[\mathrm{R}_{1, x, \mathrm{fp}}\right]\left[\mathrm{R}_{1, y, \mathrm{fp}}\right]\left[\mathrm{R}_{1, z, \mathrm{fp}}\right]\left[\mathrm{R}_{1, z, \mathrm{td}]}\right]\left[\mathrm{R}_{1, y, \mathrm{td}}\right]\left[\mathrm{R}_{1, x, \mathrm{td}}\right]$
2. $\quad\left[\mathrm{RM}_{2}\right]=\left[\mathrm{R}_{2, x, \mathrm{fp}}\right]\left[\mathrm{R}_{2, y, \mathrm{fp}}\right]\left[\mathrm{R}_{2, z, \mathrm{ff}]}\right]\left[\mathrm{R}_{2, z, \mathrm{td}}\right]\left[\mathrm{R}_{2, y, \mathrm{td}}\right]\left[\mathrm{R}_{2, x, \mathrm{td}}\right]$
3.
4.
5.
6. $\left[\mathrm{RM}_{\mathrm{n}}\right]=\left[\mathrm{R}_{\mathrm{n}, x, \mathrm{fp}}\right]\left[\mathrm{R}_{\mathrm{n}, \mathrm{y}, \mathrm{fp}}\right]\left[\mathrm{R}_{\mathrm{n}, \mathrm{z}, \mathrm{fp}}\right]\left[\mathrm{R}_{\mathrm{n}, \mathrm{z}, \mathrm{dd}}\right]\left[\mathrm{R}_{\mathrm{n}, \mathrm{y}, \mathrm{dd}}\right]\left[\mathrm{R}_{\mathrm{n}, x, \mathrm{td}}\right]$

Pitch (Eq. 45) is calculated first, since Eq. 36 has one unknown. Because the arcsine function's range is $[-\pi / 2, \pi / 2]$, roll is rotated first; this rotation guarantees that the pitch will always be less than $\pi / 2$ via the order to calculate Euler's yaw, pitch, and role.

$$
\begin{equation*}
\theta=\sin ^{-1}(R M(1,2)) \tag{45}
\end{equation*}
$$

Roll (Eq. 41) as in Eq. 34 is negated to provide the correct rotation direction. The z component of the y and x unit vectors is the same for roll and yaw in Eqs. 43 and 47.

$$
\begin{align*}
& \alpha=-\cos ^{-1}\left(\frac{R M(2,2)}{\cos (\theta)}\right)\left(\frac{z-u y}{\left|z_{-} u y\right|}\right) \tag{46}\\
& \beta=\cos ^{-1}\left(\frac{R M(1,1)}{\cos (\theta)}\right)\left(\frac{z_{-} u x}{\left|z _u x\right|}\right) \tag{47}
\end{align*}
$$

This method allows one to track the yaw, pitch, and roll of the limbs without the need for position data (except to track the sign for yaw and roll).

7.2 Identity Verification

To verify our methods we rotated to an end position and then back to an initial home position with different rotations on the way back to the home position. Our final vertices matrix equaled the initial one thus verifying our method, since a closed loop rotation is the identity matrix. Table 7.1 shows the sequence of rotations and initial offsets that are illustrated in Figure 7.1. Figure 7.1 shows a simple system of only two arbitrary revolute joints; however, it is given as an example as it is simple to expand to a matrix of vertices representing detailed objects. The yaw, pitch, and roll are calculated
both through rotations and by back-calculation from the end position of each limb for both joints with rotations from -180° to 180° in 1° increments. The angles were found to be equal.

Table 7.1. Offsets and Rotations of a Simple System with Nonorthogonal Revolute hinges.

7.3 Orthogonal Verification

To compare our methodology to real physical data, a mechanical linkage system (restricted to orthogonal axes) using joints with adjustable twist, cant, and joint angles has been devised and fabricated. Measurements were made with respect to the right-hand Cartesian coordinate system using a grid on drafting paper and a ruler for the vertical z axis. The drafting paper was taped to a flat tabletop, and one end of the multi-linked system was secured to the tabletop (Figure 7.2).

Figure 7.2. Verification measurement setup.

The system was offset since it was above the tabletop. Adding 2.313 to the x values and 1.375 to the z values adjusted the calculations. An offset was used since the our method takes the global zero to be at the center of the most proximal limb, while the test apparatus begins at the end of the most proximal limb, whose center is located at 1.375 inches on the positive z-axis. After measurements and adjustments were finalized, the data were converted to centimeters. The differences were calculated between the confirmation values and the modified calculated values. Error was calculated as the Root Mean Square (RMS) of the difference between the measured and calculated coordinates. Table 7.2 shows a maximum 6 mm error, which is within the experimental error of the measurement method used.

Table 7.2. Root Mean Square Difference of Calculation and Measurements (cm).

RMS	0	1	2	3	4
Segment \#1	0.34	0.51	0.60	0.33	0.07
Joint \#1	0.18	0.17	0.36	0.36	0.17
Segment \#2	0.30	0.25	0.41	0.41	0.25
Joint \#2	0.20	0.58	0.58	0.58	0.48
Segment \#3	0.17	0.36	0.36	0.36	0.36

7.4 Nonorthogonal Verification

Measurements were also performed on snow crab legs (Chionoecetes opilio) to verify rotations for nonorthogonal biological revolute crab joints as seen in Table 7.3.[139] Two different crab legs were used, and measurements were performed on each crab leg in two different positions. The measurements were made using methods of the orthogonal section above (Figure 7.3). One of the positions of the crab legs is shown in Figure 7.4; the results are given in Table 7.3.

Figure 7.3. Crab leg measurement setup.

Figure 7.4. Position one of crab leg three.

Table 7.3. Rotations and offsets of crab limb joints.

Crab 1	Joint	α_{fp}	β_{fp}	θ_{fp}	α_{td}	β_{td}	θ_{td}
Pos 2	1	-5°	90°	90°	5°	-90°	0°
	2	-35°	90°	0°	35°	-90°	0°
	3	-5°	90°	-90°	5°	-90°	0°
Crab 3	Joint	α_{fp}	β_{fp}	θ_{fp}	α_{td}	β_{td}	θ_{td}
Pos 1	1	-5°	90°	90°	5°	-90°	0°
	2	-40°	90°	0°	35°	-90°	0°
	3	-3°	90°	-90°	5°	-90°	0°

The methods used to make the measurements were similar to those of the orthogonal axes measurements. The level of accuracy in the measurements was determined by comparing the vector lengths of the limbs compared to the measured length of the limb (accuracy within 0.3 cm required, which allows for $\pm 1.5 \mathrm{~mm}$ error for each axis coordinate). Measurements meeting this requirement attained comparable results (Table 7.4) with our simulation shown in Figure 7.4. Since the measurements were carried out similar to the orthogonal linkage measurements with measurements taken in centimeters instead of inches, the errors were the same. All the nonorthogonal measurements that met the required accuracy had RMS error less than six mm.

Table 7.4. RMS of differences in crab limb position (cm).

RMS	B	C	D	E
Crab 1 Pos 2	0.0	0.2	0.6	0.6
Crab 3 Pos 1	0.0	0.2	0.2	0.4

7.5 Ankle Simulation

A model of the human ankle was developed based on three segments with two arbitrary revolute joints (Table 7.5). The segments are the calcaneus, talus, and mortise (comprised of the tibia, fibula and ligaments). The talocrural joint (upper ankle joint) and the subtalar joint (lower ankle joint) are arbitrary revolute joints.[137, 138, 145] Isman and Inman measured the locations of the axes in the bones relative to each other (Table 7.5). [137, 138] A computer animation of the ankle joints was made as seen in Figure 7.5.

Table 7.5. Offset of the human ankle joint.

Joint	α_{fp}	β_{fp}	θ_{fp}	α_{td}	β_{td}	θ_{td}
talocrural	-20°	-16°	0°	20°	16°	0°
subtalar	-41°	-67°	0°	41°	67°	0°

Figure 7.5. The ankle model in the second position of our simulation to show both a slight plantarflexion and supination.

7.6 Summary

Animal limb mechanisms are three-dimensional kinematic chains with nonorthogonal revolute joints. We proposed a more complete method (intermediate calculations are in Tables Q.1-Q.11) for the representation and analysis of the movements of these and other three dimensional linkages. Our SEA (Storey et al.) representation is similar to that used in computer animation and provides a common and clear language for designers, modelers, animators and biologists.

CHAPTER 8

DISCUSSION

8.1 Diabetic Postural Control

The comprehensive study allowed us to look at alterations in both static and dynamic posture caused by Type-2 diabetes in mature adults. Lower limb peripheral neuropathy, prevalent among those with Type-2 diabetes, has been assumed the cause of the increased likelihood of falls and instability.[51, 180] Our study was able to compare perception acceleration thresholds of perturbations and static postural metrics in people who have diabetes with and without lower limb peripheral neuropathy. We found that both DPN and DNI have significantly increased acceleration threshold as compared to HMA while only DPN and significantly different static postural metrics as compared to HMA. The only factor we could not control for was mass, with DPN having significantly higher mass than HMA. Although no direct link between mass and postural instability has been seen, BMI and neuropathy has been correlated, especially in diabetic individuals.[181, 182] Although links were observed, our subjects were not controlled for physical fitness or body fat percentage.

The acceleration threshold tests showed a distinct decrease in the ability to sense forward platform movement in both DPN and DNI as compared to HMA. Our electrophysiology examinations could not account for the decrease, since HMA and DNI
did not significantly differ in nerve conduction velocities; yet DNI had significantly increased detection thresholds at both 1 mm and 4 mm displacements. The SWM examination did not reveal any significant differences between DPN and DNI but did show a bilateral significant difference in the heel and a significant difference with a trend on the left and right fourth metatarsal, respectively, between DNI and HMA. The high SWM thresholds provide a cause for decreased sensitivity of DNI to motion, since the DNI have higher mean thresholds than the DPN; and the geometric mean of the SWM threshold at both heels was higher in the DNI than the DPN, but was not significant. More DPN (5) than DNI (2) had SWM greater than 10.0 g , but none had any history of ulceration or vascular problems. DPN subjects had significantly higher SWM threshold at the big toe, first and fourth metatarsal, and heel than HMA on the left foot, while only at the first and fourth metatarsal on the right foot. We did not collect any data on subject handedness or footedness so we cannot correlate that with any certain side deficits.

To prevent ulceration, people must shift their body weight away from pressured tissue.[183] Therefore, if subjects have foot-preference for stance the chronic increase in pressure in the preferred foot could cause damage to nerves and vasculature, which could be exacerbated by diabetes. Our quiet standing period was 20 seconds in length, which is shorter than the time required to force the subject to shift his or her weight several times to alleviate pressure in the feet.[184] The decreased sensation at the heel could provide a reason why both DNI and DPN scored significantly lower than HMA on the Berg Scale. The DPN and DNI self-reported in the RAND poorer general health and had trends with more pain and poorer physical health, which could be attributed to the increased SWM thresholds of both DPN and DNI groups.

Simmons et al. studied diabetic individuals both with and without cutaneous sensory deficit versus controls.[14, 168] Our data confirms their findings that DPN who had significantly different SWM thresholds from HMA, also had significantly larger anterior-posterior sway lengths than our control (HMA) for quiet standing analysis.[14] This difference could be associated with motor nerve neuropathy, which is deficient in its ability to activate muscle efficiently to balance a person, or with sensory nerve neuropathy since the control systems inputs are delayed. The evidence of the involvement of spindle fibers provides reason, since longer sway deviations would be expected with length-sensitive sensory loss. Our data also show that our DNI subjects who also had significantly different SWM thresholds from HMA did not significantly differ from HMA for any quiet standing posture metric. The only significant difference between DPN and HMA was found on the great toe of the left foot. Tanaka et al. has shown that increased pressure on the great toe is shown with increased age, which leads to its increased role in posture, balance, and gait. Although the big toe seems to have an increasing role in balance with increasing age, it does not appear to be significantly affected by diabetes. The other higher pressure centers of the foot (metatarsal and heel) provide more evidence that pressure damage may be the result of cutaneous sensory loss with diabetes.

Lafond et al. also studied quiet standing in diabetic individuals with sensory neuropathy versus healthy elderly. Their data and ours confirmed the increased anteriorposterior sway, but our data did not indicate different medial-lateral sway between groups that was seen in their groups.[77] Richerson et al. has shown an age-related decline in medial to lateral direction.[9] Since subjects of Lafond et al. were on average 10 years
older than ours, age could be the reason for the difference seen. Nardone et al. studied both dynamic and static postural stability in subjects with polyneuropathy diagnosed by nerve conduction testing. They proposed that the increase in sway could be attributed to the loss of group II spindle fibers instead of group Ia motor fibers.[16] Improper functioning of spindle fibers has decreased efficacy of muscle stretch receptors, which could lead to postural instability.[22, 185, 186] Our HMA and DPN subjects had similar nerve conduction velocities as Nardone, et al.; and our DPN group corresponds with Nardone et al. by the increased sway over HMA, especially in anterior-posterior plane.[16] Simoneau et al. found that sensory neuropathy found by SWM threshold was more sensitive to quiet standing postural instability, where our data provides that the decreased nerve conduction velocities of the DPN group cause their significant postural instability.[187] The metric that Simoneau et al. used to quantify stability was total excursion, for which we found a trend only in the anterior-posterior direction.[187] No studies to date have compared diabetic individuals grouped by peripheral neuropathy depending on nerve conduction velocities, SWM thresholds, or both. That information is needed to control for the different types of neuropathy seen.

8.2 Hearing Loss and Diabetes

Studies have shown deficits in the visual-vestibular interactions and suggests degeneration of the sensorineural components of the vestibular system due to microangiopathy and cellular changes from hyperglycemia.[64, 188, 189] Our study is in agreement with Duck et al. with the finding of increased hearing loss at 4 kHz and 8 kHz , but their study found substantially more hearing loss in those who were hypertensive. However, because the hypertensive data were not available to us, we cannot conclude
that hypertension also had effects on our subjects' balance.[60] Contrary to our study, Weng et al. found no difference in high frequency audiology in men and women.[61] Vaughan et al. provide support to our findings in that only their high frequency hearing loss was significantly higher in diabetic veterans (27 of their 692 subjects were women).[65] Frisina, et al. observed only low frequency hearing loss. The impossible task of controlling for previous noise exposure especially in veteran populations makes it difficult to confirm findings.

8.3 Modified SIAM

The mSIAM method allowed us to improve our threshold estimation over our mPEST method by reducing our threshold detection algorithm from two intervals to one interval. By integrating PEST into SIAM, we were able to then achieve efficiency of the 2AFC with our mPEST threshold detection scheme. This choice changes the psychophysics that we examine from a two-period differentiation protocol to detection of a perturbation from background noise. We therefore set a constant peak acceleration for the background noise for all trials. This condition also helped to alleviate large acceleration peaks observed at the onset of a sine wave from stationary platform. The mSIAM with 5% rule provides us with better rejection of false positives and higher convergence to threshold than the 2% rule of mPEST, which was the current rule for acceleration threshold tests. This method will allow us to now find amplitude thresholds for different frequencies, with presentation of multiple cycles of less than 1 Hz .

8.4 Sinusoidal Entrainment

Our sinusoidal entrainment method will allow us to improve how we study dynamic peri-sway postural control. Our methods have achieved higher levels of entrainment than those using visual stimulation.[190] De Nunzio et al. used 60 mm translations, and they were able to show the importance of proprioception for entrainment by removing the sensation with vibratory stimulation.[96] Therefore, proprioception may be more important for control of quiet stance than visual stimulation. The frequencies used by De Nunzio et al. were low (0.1 Hz and 0.25 Hz), and they only recorded 60 seconds of quiet standing data.[96] We recorded two minutes and looked at $0.5 \mathrm{~Hz}, 0.75$ Hz and the two peak natural frequencies. Their low entrainments could also be due to the low frequencies they investigated. Although we cannot account for the entrainment via an analysis of EMGs and head accelerometers, the new three-dimensional (3d) motion capture system will allow us to focus on the subject's strategy (ankle or hip) during entrainment to allow us to focus EMG studies to the appropriate muscle group involved in entrainment. They also conclude that their moves may be too large, and that anticipatory reaction to regular oscillation via higher brain functions cannot be ruled out as cause for entrainment.[96] Corna et al. (60 mm peak-to-peak) show that the body under oscillations is not a rigid inverted pendulum and that the different segments respond differently.[191] This study shows the need for nonorthogonal biomimetic modeling of posture for an oscillating subject under entrainment. This study also confirms our findings that the head did not entrain readily as the APCoP did. The head was stabilized separately from the body, although it cannot be determined if it was via vestibular mean or higher predictive processing due to the predictability of the regularly
oscillating platform. The head stabilization mechanism under entrainment could be investigated in those with vestibular loss.

8.5 Ankle Model

The DH representation has been used to measure the movements of animal joints with a six revolute orthogonal mechanisms $[192,193]$ and represents the mechanics of arthropod limbs with their arbitrary revolute joints.[129, 140] Albright et al. described the difficulties encountered using DH for linkages with arbitrary axes and suggested a more flexible method, which used directional cosines.[124] Buford et al. used computer graphics techniques and arbitrary revolute joints for computer simulation of human hand joints' motions.[151, 154, 155]

Our proposed model is a more complete method for multilinked systems than the DH representation or the Albright method, but it also requires more computational power for motion simulation. These computations, whose complexity presented difficulties in past years, are now feasible because of the increases in desktop computing capabilities. Programming in Matlab ${ }^{\circledR}$, a common software program, allows for flexibility in a variety of settings. Outputs for motion of limb segments can be in yaw, pitch, roll, x, y, and z values; a representation commonly used by engineers. The method is threedimensional and has the same computational approach used in computer graphics and CAD software, thereby providing a common language to modeler, designers, engineers, and biologists. The technique involves translating and rotating the limb joint mechanism to align with a reference coordinate axis, rotating the joint revolute, and then de-rotating the mechanism and de-translating it back to its correct position. There is no order dependence for joint rotations. This approach reduces the azimuth errors and keeps the
limb or joint reference frames within the limb segments. The parameters describing each limb segment and revolute are clearly defined, simplifying the limb's mechanical description and kinematic modeling. The errors between the measured data and our technique are within the experimental errors of our measurement process. Thus, it is reasonable to assume that our methods of calculating the positions of the limbs are correct for orthogonal and non-orthogonal rotations. The identity matrix that is attained from the closed loop rotation also validates the methodology.

The method can also be used to compute limb dynamics and control. Giurintano et al. used sophisticated non-linear optimization to resolve static thumb joint forces using a five arbitrary revolute manipulator.[152] The solutions of static and dynamic forces in a non-orthogonal system are much more difficult than in the more common orthogonal robot designs.[121] A design advantage of our method is that the resultant forces are three-dimensional and can project out of the plane of the limb segments. Solutions for the dynamics of non-orthogonal systems are also more complicated than for orthogonal systems.

In addition to centripetal forces, Coriolis forces-a fictitious force deduced from inertia-become real factors for each moving linkage and may project out of the plane of the limb segments or the limb itself. These forces can be additive and are of great use to the evolved efficiency of the moving crab or human. They are probably an important factor in the evolutionary design of limbs and their joints. Robotic designs exploiting such forces could improve robot efficacy including more rapid motion, improved efficiency of motion, increased dynamic torque, and increased (or decreased) impact forces.

A better representation of the forward kinematics of animal limbs should assist in the understanding of limb motion, in designing limbs and joints, and in finding better solutions for inverse kinematics. Lupichuk developed a method for finding the position and orientation of an arbitrary revolute from three-dimensional data ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{yaw}$, pitch, and roll) with application to the elbow.[142] The method was accurate and precise, but it was limited to joints with only one degree of freedom, a relatively long limb segment, and an arc of motion of at least 60 degrees. Moore et al. used configuration space analysis of human wrist three-dimensional data to determine the number of degrees of freedom in the joint and to determine the paths of motion within the space, which showed only one degree of freedom.[143] Our model uses single degree of freedom joints and is not limited by linkage size or rotation.

This method will allow for improved postural modeling with entrainment since ankle or hip strategy can be investigated with three-dimensional imaging. This method will allow us to simulate and model how the bones of the ankle rotate to provide to the overall APCoP entrainment. Currently this method is limited to simulating only position and orientation. The amount of work required to provide inverse kinematics and kinetics is substantial. Currently this model could be used to calibrate an orthosis that measures the ankle joints rotations.

8.6 Conclusion

Diabetes as an epidemic will continue to affect our aging society. Clinicians can now be made aware that detriments to postural sway exist in the absence of peripheral neuropathy since our dynamic postural analysis methods show differences that are not detected by the current static methods in the absence of peripheral neuropathy as
determined by nerve conduction studies. Furthermore, the sensorineural hearing loss observed in our diabetic subjects provided evidence that similar deficits exists within the vestibular system. With our new sinusoidal entrainment method, our lab will be able to characterize sway depending on subjects sway status to provide us with a better understanding perturbation threshold by investigating the dependence on postural motion of acceleration thresholds. With future studies investigating ankle and hip strategies for entrainment, model will by able to mimic the nonorthogonal properties of joints through our nonorthogonal multilinked system. While the observed increase in acceleration thresholds of diabetic individuals shows the power of this method in detecting changes in the postural system, the proposed entrainment method will allow us to better control for a subject's sway for acceleration threshold detection.

8.7 Future Work

Further studies focusing on diabetic individuals with cutaneous sensory neuropathy, individuals with lower limb neuropathy, and those with both will help better define the cause for instability in diabetic individuals. In addition, further studies on individuals with peripheral neuropathy but who are confirmed to not have diabetes or be glucose-intolerant will better define peripheral neuropathy's and Type-2 diabetes' contributions to postural instability. The asymmetric profiles of some of the SWM thresholds provide evidence to investigate handedness, footedness, and foot preference for quiet stance. In addition, recruiting equal numbers of male and female subjects would be paramount in differentiating sex-related differences especially in hearing loss. With future studies between groups, we can look at differences in amplitude and frequency thresholds to perturbations between diabetic individuals, elderly adults, and young adults.

The sinusoidal entrainment will also allow us to study perturbation thresholds during different points in the sway between groups. Future research will improve our measurement of joint motion and the analysis and design of joint and limb kinematic mechanisms.

APPENDIX A

IRB INFORMED CONSENT VA

4 Department of Veterans A ffairs

VA RESEARCH CONSENT FORM PROTOCOL HOO-022

Subject Name: \qquad Date: \qquad
Title of Study: Threshold Detection of Postural Control in Diabetic Neuropathy and Aging
Principal Investigator:C. J. Robinson DSc. PE; A. M. Hollister. MD VAMC: Shreveport

We are asking you to volunteer to take part in a research study at the Shreveport Veterans Affairs Medical Center (VAMC) and Lauisiama State University Medical Center (LSUMC). It is important that you read and understand the information on this form.

DEFINITION OF CONSENT FORM

This Consent Form gives detailed information about the research study which you will be able to discuss with your doctor. It is not meant to frighten or alarm you; it is an effort to make you better informed in order for you to make a decision as to whether or not you wish to participate. This process is known as "informed consent."

PURPOSE OF STUDY AND SELECTION OF SUBIECTS

Slips and falts, and even the fear of falling, can represent a major medical and functional barrier to living independently. A fall is normally prevented by the detection of abnormal notion and by strategies used to correct or compensate for imbalances. Therefore, to react to a potential slip or fall, one nust be able to detect motion changes that may lead to slips or falls.

You are invited to participate in a research study related to standing balance and postural control. Researchers at the Overton Brooks VAMC and Lousiana State University Medical Center hope to learn how much the senses of the limbs (touch sense, joint angle sense, muscle tension sense) contribute to stability. Such knowledge may well lead to better evaluation and training methods in order to prevent slips and falls. You were selected as a possible participant in this study because you are an average healthy adult and your senses are intact. Your responses will be used as verification of results previously attained. You should be between 18 years or older to participate in this study. Before proceeding further, we need your permission to ask you if you have had certain illnesses or neurological problems which might confound our study results, and hence, make you not a caudidate for this particular research study. Your answers will remain confidental.

May we ask you some questions about your medical history, and verify them from the information in your medical chart (f available within the VA)?

Yes or No: \qquad Initials: \qquad

\qquad

A Department of Veterans Affairs
 VA RESEARCH CONSENT FORM
 PROTOCOL \# H00-022 (Continuation Page 2)

Subject Name:
 Date:
 \qquad

Title of Study: Threshold Detection of Postural Control in Diabetic Neuropathy and Aging
Principal Investigator:C. J. Robinson, DSc, PE: A. M. Hollister, MD VAMC: Shreveport

ourstions

Persons with severe cardiac or cardiopulmonary involvement, chromic lower back spasms or pain, central neurological deficits, history of non-healing skin ulcers or peripheral vascular occlusive disease, current arug or alcohol dependence, or orthopaedic defonmines (such as kyphosis, arthritic changes or amputation) must be excluded from this study. Those with a history of repeated falls, previous joint injury, or a bone or articular cartilage disease must also be excluded. (Any information obtained during this stady and identifed with you as a subject will remain confidential and will be disclosed only with your permission.)

You do not have now, or have ever had, any of the problems just listed. Yes or No: \qquad Initials: \qquad
If you answered "Yes," thank you for your time and effort in volunteering to participate, but we camot use you in this paticular study. Please fill ont the personal information on the last page before you go. If you answored "No," then you are a likely candidate for our study, which we will now explain to you.

PROCEDURES

If you are an older adut or a person with changes in the nerves in your limbs, you may have had a change in how you sense changes in the standing environment. If you are in good health, have no physical or neurological problens, you will serve in a group that we call "control." We will compare these two groups to better understand how the nervous sysiem assists in maintaining postural stability and dyamic balance.

If you decide to participate in this research study you will be asked to answer a brief medical history questionnaire. This may be done over the phone or in the laboratory. All subjects will be evaluated for sensory and motor function, lower limb strengeti and joint rage-of-motion, and any possible lower limb asymmetries.
The main test will have you standing with bare fee on a platform that will be stationary for approximately 30 seconds then moving forward during randomized time intervals. You will be informed when a possible move may occur and you will be asked to state whether he device is moving. In these tests the platfom will move your whole body. You will be weanng a blindfold that will restrict your vision and headphone to reduce outside noise; so that you ntay only receive motion inputs from your sensory system or balance system. For all tests you will be wearing surface muscle activity sensors on your legs. If you go through all tests, we estimate that their completion will take less than four hours. We may stop testing if you becone dizzy, or nauseous: You can stop the test at ayy time that you wish, without reprisal.

[^0]
4 Department of
 Veterans Affains
 VA RESEARCH CONSENT FORM
 PROTOCOL. \# HO-022 (Continuation Pape 3)

Sub	Date:
Principal InvestigatortC. J Rabinom, DSe, PE, A. M. Hollisere. MD	VAMC, Shrevepo

DISCOMFORTE ANDRISKS

All motions of the platfora will be near your nutural sway change of positiont. Because of this, you nay nof always be able to fed the device nowe. Als becase the mevenents will we so slyht, there is very
 or Dinafoded, and you are wearing the beadphones to bock sut extermal nowes, you nay fel a slight
 sonect you position before a potential fatl event can sectar.

For all west, all foint motions will be small and finty slow However there is a possibily hat your anke

 ask you tell waw and wat particizate in thu stady.

Shee we use property isolated electreal amplifiers, there shatd be no risk of shock fom on measurement of mescle aetivity. The musele activity sencors will be held to your ckia with a small piece of douthe

 gear within a fow hons.

BENEFITS

 Bedge that wil help ohers. We will review your own results will you boto yon have, and signifitant werall finding develoged as a resiliof thas sudy will be provided to ywa the conchuion of the atudy.

RESEABCHRESNLTS

Information and reserch reals will we mod to farther the fied of posture and balane contol and to
 whil possbly be used for wholafy papers, presentuthos, and fisture grat apheations.
Amy infornation obnined durize this stuy and idenified withyou wa a shbect will remain confidential
 at medange, you will nos be identified by man, by recognizawle ghotograph, or by ney oher meank without your specific consene. Your medical reconds will be maintained according to this medical̉ center"s

 Biformation will be releasod, all or whom mast mantain wenfidentiality.

Subject:s Initials

........ 14 (nae

4 Degarment of Veterans Affairs
 VARESEARCH CONSENT FORM PROTOCOL. HOO-022 (Continumion Page 4)

Subject Name: __ Date:

\qquad

Paticipation in this propect will noteffect your mat clinical tretment here at he VA You ase aware

SPECLAL INFORMATION

You will be paid 25.00 by chock for etch session in which you participate A session nay hast top to 4 hours. Fayment will be hrough the Oneaton Hooks VAMC in Shreveport, LA.

2. Yous can ochase to participate now or you can whdraw hom the shady at any time atte giving your consent.
 noe will it pegolice your fiture relation with the VAMC or LSLDC.
4. There will be no costs to you for any of the treatment or testing done as pant of this reseach stidy
5. In case of adverse (had) effects of physical infury resulting from this shaty, elugive veterans are entithed to nedien care and treatuent. Compensation may or may not be payable in the event of physual isury arising fom this stady wher applicable fedemel law. Turther intornation about congensation and wedeal treatment may he obtuined from the medial administantion serviee at hiss.
 on a hamenianaan legts.
 Instutional Revew Bkerd at (318-675-5409 ar twe Chef of Stati, Oneton Brows VA Medial Center at (318-424-6089.
8. If yonate a petich of the VAMC. acop of this comen form wil he glaed an your medical recod.

Q Department of Veterans Affairs

VA RESEARCH CONSENT FORM
PROTVCOL H Hev-022 (Conthmation Page 5)

Subject Name: \qquad Date: \qquad

RESEARCH SUBJECTS' RIGHTS: I have read of have had read to me all of the above.

 chsices of treatment wailhble to me.

I undersiand that I do nut have to take part hin the stody, and wy refusal to partidpate will involve no penalty ar loss of rights te which I am centifled. I nay withiraw hom tha stady at ang time whout penalty or loss at Wi ar ather benefls to whidi I am entitled.

In case here are medical probens or çestions, I have been told I can call Dr. Chanter Robinson at
 ather houre If any medical poblemsocelin in connetion with thes study the VA wil provile erneqgeney cate.
 understand what the stualy as aboat and how and why it is being done.

I will weeive signed copy of this consan fan.

Subjacts Synature
Date

Benature of Winess
Withex (pint)
sumature of inveatigut

APPENDIX B

IRB INFORMED CONSENT CLARKSON UNIVERSITY

INFORVED CONSENT RORM

Obicative

 we migh later raduce the risk of fallite or blippius.

Methods.

 do the text oullned betow.

We wil gue you some intul serxange lesk to detemme whether you met the study critaria for proceding firthe We wil tes how well you can pay atention be detal since our novement texts ace subte We will alo

We will measure how well and how fary you swase snall traches to the hotom of your foot or was hove well and how fast you sense fomes of various pithes, gnd how far your big toes, ankles, kneas and hipe move colled your

 cumference and ycur wostoncumferonce, and you noy rfuse for tis to do that without sulferng any reprisas. We wil do two standard balante tests to see how well wou balance on both legs, on one leg with one fort befund the
 situry position You wil do these testo standing un a he hoo or rising fon achair Abl of these tets will ake abw to mintes, and may be given in between oher tests

 ing wh bare feet on a platiom that will be stationsy for about 20 seconds before 1 is moved. You will be tod

 you can detaot weh slding

In these tests the platorn will move yow whole body. You will be weanixa bixdiold that will restrict your

As pat of ou testing we wan to hid ont how the verious parts of the body react to the phetrem novement To Ge this, we whe stach small welective maxker dot to selexted places on your skin (ecnerally between 10 man 20
 phets. We the determine the loostion of the matkers asing special cancras Ony the focaton of the molkes collected You camou be dentifed 0 some cases we wil ask a participant to allow ws to ndeatape the testixg and

 our testswith and wothout the hamess.

What to expect

 expermoed technician sa the Primeipal Imestyater.

 and houflol you wear will ohsare your identy

 dowle-sided adrestre tane.
 testing begim yenty rock you back and forth. The notwon will be mperceptible to you, but if you becone dray at

 and a chair to temt on We will wat wht you ake rested ned reaty to continue before we proced.

Your inital screening and inital lestang on the platoren will toke up to thours You may be aked opartoipate In one sh wo more 4 how tuat ections.

There wit be no cos to you for my of fre tethy done syat of his reseach shaty Youcan end be reserch session any time if you tce uncom fortabe for any rasom.

Risks

 homs We nay stop testing it you become dizy of nauseous. for cam stop the test at any tive that yor winh..

All motions of the piatiom will be near your natural way datage of position Decause of his you may not always be able to fel the device mowe. Also because the movencwis will be so sight, there wery litic ehater of your follixy

 as know inwediatly ff that is the casis.
 t test, a mewher of the taboratory staf wall be standing behind ar beside you at all imes when you are bindfolded: We or she is locatod there to worect your position beforea potownd fat eyent san ccour.
 nawral sway pattens. The movenent will be desymed with a gom 1 (or them not to be whe to sense this motenent
 expertencing dzaness Agan let us kow it havoccuat 0 you

The vish to yca from our special cameras are very small se the markers ara Illumated with lighthat it beyont the caracty of the ey to see (ealled intrated light).

Shoe we use propery isolated electricalampliters, there should be wo risk of swed from our measarenert of

 disappear within x ew hours

Benelity

Taking part in his stady may not personally help you but your participation mey lead to knowledge that will help others. We will review your own tesults with you before you leave, and significant overall findings develeqped as a recult of this study will be provided to you the conclusion of the sudy.

Obligatiens.

Participation is voluntay. Refusal to participate or deciding to discontinue participation at any time will involve no panaly of los of benefits to which you are otherwise entiled.

Confidentialite.

Intomation and reskarch restite will be used to further the field of posture and balance control and to bereft the evaluation and therapy processes related to posture and balance. Therefore the research results will possibly be used for scholarly papers, presentations, and fubure gramt applications. Any information obsained during this study and identilied with you as a sobiect will remain confidential and canoot be disclosed without your witten permission. If sesutts of this study are reported in medical lournals or at medings, you will not be identitied by name, by recogrizable photograph, or by any other means without your specilic consent In all testing you will be dentified only by a spocial unique idenifying code and not your name. The form luking you name th that coda is kept in a locked fila babine By siguing this fom you ate giving permission for nas to make your name, ID code, and test results available
 under conditions of confidentiality.

Sublecty Replate.

If you have any questions conceming your rights as a subjea or if you wish to repon any injuries or mistreatment, please contact Dr. Leste Russek, Chair of the Human Subjeets tnstutuional Review Boad, Clarkson

Informed Consent.

Hease sign here to indieate you received and understom a verbal and writen explanatom of the procedures and objectives of the study, and had all questions anwered to your satisfaction. I certify that I am 18 years of de of older.

> Styned Deta
> Signed Date
> Principal Inrestigator or spproved delenete

APPENDIX C

INITIAL QUESTIONNAIRE

Initial Contact Questionnaire Front Page

The above mformation, and provided medical history is true to the bext of my knvvledge.
\qquad Date(monddyy): \qquad
\qquad

Initial Screen Questionnaire Medical History

Date: \qquad
Subect Cous:
Gender Age Age Contact \% $\%$ Kl IC2 16
Subject weipht as meatured by the waghing seale \qquad
Does the subect have any history of (Ched it Yes:
Cadiac Problems: Tachybradycardia:
Cardiac Aruybumas: \qquad
Meat Lum Disease \qquad Shortess of Breath: \qquad
Other: \qquad
Newologe Problens: Strole/TIA \qquad .

Priphoral Nene lujury: \qquad
Hotinuy: \qquad Spinal lxury: \qquad
Advanced Diabetas: \qquad Vision Lass: \qquad
Mearing Loss / Ear Infechons: \qquad Low of Balance: \qquad
Menory/Conecntration Deficits: \qquad Sensory Lnos: \qquad
Muscle Tone Abnomalities. \qquad Coordination Deficils: \qquad
Oher \qquad
Guhopaedic Problems: Arthitits Join Discase: \qquad Ostecporoits: \qquad
Lower Back PainSpasms: \qquad Spinal Stenosix: \qquad
Fractares: \qquad -Specify: \qquad
Qher: \qquad
Acolol Lse/ wect
Nons
3 Druks
314 Drinks - 14 Drink

Recore Gannated fems within last 12 hours: \qquad
Medication/ Drug ISc, Pan Mehcation: \qquad Depressants: \qquad Aritimepressants: \qquad
Pychoactive: \qquad Ohter \qquad
\qquad

Protocolis for "Sinuwidal Entramment kudy of Positurat Control"

Initial Sensory-Motor Screen

Dute: \qquad
SubectCode:
Gender Age Age Contact \quad " Fl IC2 IC3
Reflex Testng ($+=$ normal $*=$ abnormal, $0=$ absen)

Mellar Rehes:	Reht:	Left:
Achiles Reflex:	Rgh:	Left:

Rad hewsprint -
\qquad Rend \qquad point Lont 620 fec . \qquad
TSes Eytarses / Comats: \qquad
Visual melda: Rygh: La \qquad丵: \qquad Down. \qquad

Balance: \qquad Recovery trom Loss al Balance: \qquad
Time to Loss of Dalanec (seconds): \qquad
Precession Trst: (Subiect hops on one foo should remain facing torward)
Right Poot \qquad
Len Foot: \qquad

Tacile / Somato Sonsory lests with Stoelting Monoflaments to Foot Sole (mm diameter):

\qquad

Initial Therapeutic Screen

Date: \qquad
Subect Code:

$$
\text { Cender Age Age Contarl } \quad \text { \# }
$$

Sit to Stand: \qquad Standing cyes Cosed. \qquad Ambutition: \qquad

Shoulder:
 \qquad
 Elbow:

\qquad Hip: \qquad Kneer \qquad勾青e: \qquad
Limb / Body Segnent Lengti (man):

Lengthof Fwot:
Hocr bo Latemal Mallocolus:
Woor wateral Epicondyle of the Femar:
Thow to Greater Trochanter:
Fiom to Lateral Aspect of Haneral Hexd
Fsor to Tap of Lead (Total Heght:
Lat Agpoct Muncral Ecod to Lat Epicondyte of the Mumerus:

Las. Aspeen Humeral Hear to Tre Digithe

Rught \qquad \%ent \qquad
Rght: \qquad Left: \qquad
Rght: \qquad Left: \qquad
Right: \qquad Left: \qquad
Right: \qquad keff: \qquad
Dusal Asmet \qquad

Kight \qquad Let \qquad
Raght \qquad Left \qquad
\qquad

Time Sheet for Testing

Date: \qquad

Subect arriva:
End introluction of subect to platiom and poopla: \qquad
Shat mifomedoonent \qquad
Bud infomed consent: \qquad
 \qquad
Exd Medical questenname: \qquad
Swathouke up electrodes: \qquad
Buthoeking up electrodes
Star PMo , Cof oblbrate routhe
Bnd EMG COR catbrate rulime:
\qquad

Sem H2 Smosoda practice \qquad
Fid Mr Sinumidulumatice \qquad
Stant \qquad 12 Sinuscidat warded: \qquad
Fnd MEBuoldareonted: \qquad
Sart TeStowoidat recorded: \qquad
Ent He Sinusuital wecordes

Star sensary and oher eraluation page 3s: \qquad

 \qquad
End Hiz Sinuwodal recorded:
Sht LI Simusoidal recoded \qquad
End Te Sinwodd racoded:
Shat Me Simusoubl Look mrecorded:
Lise Oder of Look m:
Ind If Smasomal heck inveorded:
\qquad
\qquad
Stan Anhrepomotic measures (page 4). \qquad
Bna kehroponetric meakues \qquad
\qquad

Sar Mini-mental cealuation test. \qquad
\qquad
End Min-mental cxaturen est \qquad
Stan denet \qquad
Bna sumpry of \qquad

Twestigator nitils \qquad

APPENDIX D

START-UP PROTOCOL 2-AFC

Start-Up Protocol
 Prior to Subject Arrival

On Entry to the Lab:

1. Check the following ON switches:

Lab Lights: \qquad Daytronic Signal Conditioners: \qquad Gould Signal Conditioners: \qquad
SLIP Computer: \qquad Delsys EMG Box: \qquad Headphone Transmitter: \qquad Mixer: \qquad
Speakers: \qquad Doorbell: \qquad
2. Check Air Compressor:

Open Compressor and $2^{\text {nd }}$ Tank Water Valves: \qquad Close Compressor and $2^{\text {nd }}$ Tank Water Valves: \qquad
Turn on Compressor, Check for Leaks and Dry air Conditioners: \qquad

3. Check the following CONNECTIONS:

SLIP computer Serial A to A/B Box (Switch to SLIP): \qquad
SLIP computer AT-MIO to Connector Box (Analog and Digital): \qquad
SLIP computer Sound-Blaster to Mixer: \qquad SLIP computer to Laser Printer: \qquad
Power to Accelerometer: \qquad Accelerometer \mathbf{X} to Gould \#3: \qquad
Accelerometer \mathbf{Y} to Gould \#6: \qquad
Accelerometer \mathbf{Z} to Gould \#5: \qquad Gould \#3 Monitor Out to Connector Block: \qquad
Gould \#5 Monitor Out to Connector Block: \qquad Gould \#6 Monitor Out to Connector Block: \qquad AB, CD EMG Sensors and ground to Belt Box:__Belt Box to EMG Box Channels 1, 2, 3, 4: \qquad
Radio Shack Doorbell Alarm to Connector Block: \qquad Radio Shack Doorbell Alarm to Mixer: \qquad
White Noise Generator (Radio) to Mixer: \qquad Mixer to Headphone Transmitter: \qquad
4. Have on Hand the following fresh BATTERIES:

Radio Shack Doorbell Receiver (3-AA): \qquad Radio Shack Doorbell Transmitter (1-9volt): \qquad

5. Find the following "loose" ITEMS and place on Platform:

Radio Shack Doorbell Transmitter: \qquad Blindfold: \qquad
Prepare Electrodes with One side of the adhesion pads: \qquad
Form Completed by: \qquad Date/Time: \qquad

Start-Up Protocol Prior to Subject Arrival

Test Equipment by:

1. Turn on Air to Platform and turn on DMM-2100:

Air pressure @ platform >70 psi: \qquad DMM-2100 w/o reset light: \qquad Platform floats: \qquad

2. Open Continuous Acquire Buffered Chart.VI (Examples\Analogin
) Read

 Channels:Channels 0:3, CoP: \qquad Each channel lesser voltage as weight over each vertical force sensor increases.

Channels 4 and 5, Position of Platform: \qquad Voltage increases as platform moves toward bookshelf. Acceleration: \qquad Voltage is initially positive with towards the door movement.

Channels: 8:11, EMG: \qquad Open EMGtest.VI, check each channel against Biceps.

Channels: 12,13,14,15, Head Accel: \qquad Voltage $=+/-5 \mathrm{~V}$ with gravity., Doorbell switch:
\qquad "rings" and gives approximately 4 volts spike.

3. Turn on Headset and Open Get_Sound.VI

Headphones / Mixer: \qquad
In headphones able to hear continuous "white noise", overlaid by wave file (*.wav), and/or doorbell: \qquad
4. Turn off: EMG box, Headphones, and Doorbell receiver.
5. Open " 5 RANDOMS.VI" to determine the order of testing
__1_1 mm Forward Smooth: \qquad
_1_2 mm Forward Smooth:
_1_4 mm Forward Smooth: \qquad
__1_8 mm Forward Smooth: \qquad
-_1_16 mm Forward Smooth: \qquad
6. Run VDA Initialize and Home.VI

7. Open the Following VI's.

5Jog.VI, *FC Learning7f.VI, *EMG_CoP Calibrate.VI*, *Reaction VDA5.VI*
Forced Choice VDA 7f.VI, and *Latencies VDA7f.vi Forced Choice VDA 7f.VI, and *Latencies VDA7f.vi

Form Completed by: \qquad Date/Time: \qquad

Testing Protocol When Subject Arrives

Subject Code:

$$
\overline{\text { Gender }} \overline{\text { Age }} \overline{\text { Age }} \overline{\text { Alpha }} \overline{\text { Alpha }}
$$

Date: \qquad

1. Introduce Investigator: \qquad
2. Show Platform and run " 5 jog.VI" which shows length of jogs and approximate speed ($25 \mathrm{~mm} / \mathrm{s} 2$): \qquad
"This is the test platform that you will be standing on. It will be making very small moves (run VI) and you will have to determine when the move occurred." But before you step on the platform I need you to read and sign the informed consent document and take some clinical measurements."
3. Give subjects IRB approved consent form. Subjects must initial and sign form as appropriate:
4. Determine and record Subject "ID" and have them fill out Medical History form if not already completed: \qquad
5. Give the mini-mental evaluation form from Linda Ferguson (OT).
6. Based on the schedule take the subject over for Nerve conduction study at Dept. of Neurology (for elderly subjects only) or perform the perturbation study in RNL.
7. Have subject remove shoes and socks, and Perform Clinical assessment according to form/ protocol: \qquad
8. Perform Therapeutic/Anthropometrical measures: \qquad
9. Turn on Doorbell receiver, have them test transmitter, explain forced choice protocol: \qquad "With this doorbell transmitter, you will be able to tell me when you feel the platform move." "For (this) (the first test), you will be asked to step on the platform, place the headphones over your ears, and cover your eyes with the blindfold. From your headphones you will be hearing a constant 'masking white noise', and four verbal cues: 'Ready', 'One', 'Two', and 'Decide'. Each will be two seconds apart. If you think that the platform moved between the words 'One' and 'Two', press the button once; if between the words 'Two' and 'Decide', press the button twice. All decisions should be made as quickly as possible, but no later than two seconds after the word 'Decide'. Go ahead and try the button with your left hand to make sure you are comfortable with it. It may take several pushes to get the second doorbell chime."
10. Place EMG sensors on bilateral Tib. Anterior and Solius muscles, $A=\mathrm{R}$. TA, $B=\mathrm{R}$ S., $C=\mathrm{L}$. TA, $D=$ L. S.: \qquad
[^1]
Testing Protocol When Subject Arrives

Subject Code:

$$
\overline{\text { Gender }} \overline{\text { Age }} \overline{\text { Age }} \overline{\text { Alpha }} \overline{\text { Alpha }}
$$

Date: \qquad
11. Run "EMG_CoP Calibrate.VI" and cue subject to movements:

Wait for platform calibration, "Step up onto the platform and stand with even weight on both your feet." Record 20 seconds static eyes open. "Now stand on your toes." Record toes. "Now on your heels." Record heels. "OK, relax on both feet again" Record static. "You can now step off the platform, watch that you don't tangle the EMG lines."
12. Run FC Learning.VI for 10 trials at appropriate displacement (guaranteed detect) under FC protocol.
First 4 trials with eyes open for subject psychological safety, last 6 trials under eyes closed condition for learning under testing conditions. This VI can be repeated up to 3 times for learning purposes.
"I'd like you to try to feel the platform move a few times. After you decide when the platform moved, you will hear a response 'one' or 'two' stating when the platform actually moved. Do the first 4 trials with your eyes open, then close your eyes."
13. Explain forced choice protocol again and run "Forced Choice VDA.VI" for 1 condition: Note: First 20 seconds of test ask subject to stand still.
14. Allow subject 5 -minute rests while checking summary file(s) for lowest detected acceleration, for the forced choice tests, write these thresholds below:
$\ldots \quad 1 \mathrm{~mm}$ Forward Smooth: \qquad
2 mm Forward Smooth: 4 mm Forward Smooth: \qquad 8 mm Forward Smooth: 16 mm Forward Smooth: \qquad
15.Explain "Latency" test protocols:
"For these last sets of tests, I've chosen an acceleration level that you have previously detected. So while you're standing on the platform with the headphones and blindfold on, I want you to press the detect button as soon as you feel the platform move. However, to make sure you're not pressing the button at random, I'm going to have a few trials when after the word "Ready", there will be no movement."
17. Repeat steps $12-15$ for other two displacements, then have subject rest $10-15$ minutes.
18. Explain all portions of "Reaction time" tests, then repeat prior to testing each portion. Open "Reaction.VI" and run as stated, then allow 5-10 minute rest.
"To test your overall reaction time, I'm going to run 3 sets of tests. For the first test, I'm going to have you step on the platform, wear the headphones and blindfold. After the word "Ready", the platform will move within three seconds. I('11) want you to press the door bell button as soon as you feel the platform move."

Run platform portion of test.

Testing Protocol When Subject Arrives

Subject Code:
Date: \qquad

$$
\overline{\text { Gender Age }} \overline{\text { Age }} \overline{\text { Alpha }} \overline{\text { Alpha }}
$$

18 continued:

Have subject sit in chair. "For the second reaction time test, I ('ll) want you press the door bell button as soon as you feel me touch you on your big toe with this force sensor." (Five trials)

Run toe-touch with press detect reaction portion of test.
"Finally, for the third reaction time test, I‘1l want you to press the force sensor as fast as you can, after you hear the doorbell." (Five trials)

Run sound with press detect reaction portion of test.
19. De-brief subjects: \qquad
20. Reschedule subjects for additional test time if needed: \qquad
Day/Date: \qquad
Time: \qquad
Alternate Day/Date: \qquad
Time: \qquad
21. Have Subject fill out payment slip to be kept as a receipt: \qquad

To:	Overton Brooks VA Medical Center
510 East Stoner Avenue, Shreveport, LA 71101.	
	Phone: (318) 424-6080, Fax: (318) 429-5733.
	Attn.: Ms. Linda Ritmo - Executive Director.

Re: Subject Reimbursement
Date: \qquad
Please reimburse (subject) \qquad , (Soc. Sec. \#) \qquad

For the amount of: \qquad dollars, for participation in the research protocol titled "Postural Control in Diabetes, Peripheral Neuropathy, and Aging", Charles J. Robinson, principal investigator. Rehabilitative Neuroscience Lab, Overton Brooks VA Medical Center, LA. (318) 424-6080.

The mailing address is as follows: (street, number and apartment): \qquad
(City, State and Zip):
(Subject Signature): \qquad (Investigator Signature): \qquad Date:

Within the next three weeks you should be receiving a check from the Overton Brooks VAMC. If you do not receive a check, please notify Charles J. Robinson or Samantha Richerson, at: (318) 424-6080, or E-mail at: sricherson@ieee.org. Please leave your name and method(s) by which you can be contacted.

To: \quad Overton Brooks VA Medical Center
510 East Stoner Avenue, Shreveport, LA 71101.
Phone: (318) 424-6080, Fax: (318) 429-5733.
Attn.: Ms. Linda Ritmo - Executive Director.
Re: Subject Reimbursement Date: \qquad
Please reimburse (subject) \qquad , (Soc. Sec. \#) \qquad

For the amount of: \qquad dollars, for participation in the research protocol titled Postural Control in Diabetes, Peripheral Neuropathy, and Aging", Charles J. Robinson, principal investigator. Rehabilitative Neuroscience Lab, overton Brooks VA Medical Center, LA. (318) 424-6080.

The mailing address is as follows: (street, number and apartment): \qquad
(City, State and Zip) \qquad
(Subject Signature): \qquad (Investigator Signature): \qquad

Date: \qquad
Within the next three weeks you should be receiving a check from the Overton Brooks VAMC. If you do not receive a check, please notify Charles J. Robinson or Samantha Richerson, at: (318) 424-6080, or E-mail at: sricherson@ieee.org. Please leave your name and method(s) by which you can be contacted.

APPENDIX E

START-UP PROTOCOL SINUSOIDAL ENTRAINMENT

Start－Up Protocol Prior to Subject Arrival

On Entry to the Lab：

1．Check the following On swithes：
\qquad Tablyha
b．MXNTI
4Path Syne Box
t SLIP Cmputer x Whonton Selys RWAC Rex
\qquad

泉
有

求
j．Texk Computar \＆Noniter
Wamar HCH Lus Kxtenxion

2 Check Ar Compreser：
？：

b． \qquad

s．

3．Have on Hand the following fresh BATTEAES：
a．： \square

nVisome Two butken T momitter
b．
Bunafold
s．

Test Equipment by：

1．Tumon Doker PaC WhMona4：
䊀 \qquad

b． \qquad

d \qquad
Wanualy Verity Pantom M Mloring

2 Run Con Acputrabh volmade

Bate： \qquad Bug
Thestuancr Intiab \qquad

	sigmat	Reswonse
	Lead Cell 1	Signal shonth decrotse whel lood
	Lord Gell	
	Tuad cell 3	
	Load Cell 4	
	14n Wenciv OHm Load Cels	
	Postion	
	Whear Towe （4）tor Suremt	Form twwards wall on phatorm shouid dackense syam
	Putiom kcenlowamemer	Signal should morexse acelevetion towards the watl． Mectredi no to disholeg wood
	Hesd X－atis Accelerometr	
	Head Y Ywis Aecelmameter	Whould herease with moverevt un Mectim
	Lead 2 －txis Acoleromater	
	Mublat	
	Mbu fyeltcs	
	EnGtertss	
	Euc Lght sot	
	GMGLetatch	
	EMG Light 3oleus	Bub Electrodes with tummin obxerve sfenal response
	cumbet Solees	予th Elxotrctes with humb io boscrye symal respoqse

3. \qquad Pen Cel Sound2．v

4 \qquad Distble Sercen suets
5.

6. \qquad
 a．
b．

Logw wo Redr Computer
c a \qquad

4 miser is
\qquad 5ct sughcet wat mod trix 1 納 mbibet homer 3．कetlime b 17 kec
8. \qquad
＊open nevy inal．
4 Bubuctemplate
iut femwe back righ rellector from wascon
yr Thec calimaton midege and properly alen
\％Click（ribentin capture ask cloar data
yi Recora So sed of calbation data
1 Che Tonts sdect momood then whur $24 F \mathrm{C}$ I Clsck next 130 tmes
多：Thek Twols goto Bank Prowol a．Select clam talas

Dates \qquad Imesteract hutals \qquad

1崔 Sedech al motrals
U Selsce Detection 2 AK
if. Soleat Trecute
\& Remove Calbraon Triage
5. Keplace bad reht retaciar

1. The all stuic neftecors
2. \qquad Ten $8 \operatorname{Tog} 2 . \mathrm{vm}^{3}$

5 Oper Detect Sme v. \mathbf{x}
4. Enter nuthmation
a. \quad 解
c. Aber Creation of Telsem Folder

4 Gote Opmons
i. Seleciacquintom parameters
4. - Tnnde trugerix

1. Chiok trigernas nud insore botion se ta exterval

2 cick ON sen Mmes to kecorto 3250
3 Se periat wa04
4 Trequancy howla be 2512 (fmese)
5. Ensure extenal porthyne is COMI
e
r.

- Ooto Cutoss in 1 mow
- Kelectacquistion parmaters
i 1 Tuble A Sk
1 Click ABR

2. Click Brwwe
a. Gato edata subectequbect Itral Teksen
b. Ware shoul be fomutod as followisy
c. [Subject [tiad] Group] 6x
d. If you do not have the" ". (undercore) on the end prozram will chas
c. Ser number of Mowies to 150
3. Set starting Mowie number to 1
a. Goro Tools in -wan

- Seless Calionte

1. Do the before hanes and BMes
2. Enter Suyeve moss moto bos
3. Have subjec step onto platorm

4 Click start to conbrate
5. Sare to same foller as above with sand mane comention
h. Click the Recoul Buton wa Lecan

1. Allow calibrition
2. Periom NMC COPCallbate
3. Bertarn 60 Sec quet Nisnding
\& Eer Tireshold tral
if Beform sidM
4. Fer Sue Lockntrin
I. Change lime to 12 xoces

\qquad Page 3

Tnvestigatcr Iniala \qquad

Testing Protocol When Subject Arrives

1. \qquad Introduce Irvestigitar
2. \qquad

This is the test platform that you will be standing on. It will be making vety small moves (run VI) and you will have to determine when the move occurwed." Dut before you step on the platform I need you to read and sign the informed consent document mad take some clinical measaroments."
3. \qquad

4. \qquad

s. \qquad

6 \qquad Have subject remoreshoes wh socks, and ferfom Clinical assexsment actorditg to form protocol.
7. \qquad Perform Teksan Calibetion
8. \qquad Tum on Doorbell fexcied have then test trarsmitter, explain forced choice protocol:
"With this doorbell transmitter, you will be able to indicate if you felt the platorm move."
"For this test, you will be asked to step on the platorm. place the headphones over your ears, and cover your eyes with the blindfold,"

Wrom your headphones you will be hearing a constant 'masking white noise", and two verlal cuese "Ready* and "Decide". Lach will be ten seconds apart".
"If you hink that the phtform noved between the words "Ready' and 'Decide", press the button onee, but do not peess the button if you did not feel the platfom nove*
"All decisions showld be made no later than two seconds after the word 'Decide', Go ahead and try the button to make sure you are comfortable with it."
9. Tavesulact put an Ramase trecheres
 stamodendomaxto mox muses:

 of the legu:
a. SS and Sch are rundown and up directy from the box.

Tite: \qquad

Invertigater Intalato \qquad
\qquad

4 will be collecting EXIC Aata to determine how your museles react th the slight movements the platform will be making, to help me determine if this is part of what helps YOL to decide if the phatom has moved. After I'm done phacig these sensors. Itl usk you to do some movements to help me calibrate them."
 lamess.

11. \qquad Tabhan Leamivy S A

12. \qquad Esplain SLA protosol again and contine with test for condict:

Note first 60 seconds of test ask subject to stand stil Then 10 secs for cach triat
13. \qquad
 the forced chowe terts write these the holds below:

Mwement $07 \% H z$	Ampllude Trestold \qquad nख	Crder
05 Hz	mas	
$\ldots \mathrm{Hz}$	- mm	\cdots
\cdots	- mm	

14. \qquad De-brief subect

15 \qquad Reschodule subects for additional ter tme f necded

Dwhere: \qquad Whernate Dry Date; \qquad
Time: \qquad Time
\qquad Trable Computers Berensivers (Peak and SLIF cempuer
17. Cbse lemwiew

19. \qquad Bum DAM A to DV
One fo Folly And Ore te be keptin Lab
Subject Code:
Genter Age Aye Contrat
Drate: \qquad Prges
7nestightor hitials: \qquad

APPENDIX F

VA RECRUITING FLYER

Subjects Needed

Investigators:

Charles Robinson, DSc, PE, Anne Hollister, MD, and Samantha Richerson, B.S.
Overton Brooks VA Medical Center, Shreveport, LA and Louisiana Tech University, Ruston, LA.

ADULTS AGED 50-80, WITH OR

WITHOUT DIABETES, ARE BEING

RECRUITED FOR A STUDY IN HUMAN

MOVEMENT DETECTION

We are looking for individuals who are healthy or who have diabetes. All subjects must not have a history of acute heart or lung problems, back spasms, pain or other spinal problems, central neurological deficits, stroke or head trauma, or other problems that might preclude a person from standing blindfolded for 10 to 15 minute increments over a two-hour period. A neurological screening will be performed, and a psychological test also administered. Individual research results will be retained by the researchers and are not made part of the subject's clinical record.

Maximum time commitment: 4 hours (Usually 3-4 hours.)
Location: Overton Brooks VAMC, Shreveport,LA.
Compensation: $\$ 25$ each session (up to 4 hours)
If you are interested in participating, or for further information, Contact: Samantha Richerson
Or Charles Robinson, DSc., PE
Phone: (318) 424-6080 or Email: sricherson@ieee.org

APPENDIX G

CLARKSON RECRUITING FLYER

Clarkson
 UNIVERSTTY

CENTER FOR REHABILITATION
 ENGINEERING, SCIENCE \& TECHNOLOGY INVITES INDIVIDUALS FROM AGES 18 TO 75 YEARS OLD, TO PARTICIPATE IN A STUDY OF HUMAN BALANCE

This study will generally require a minimum of 4 hours to complete. Participants may be asked to complete 1 to 3 sets of these 4 -hour protocols, generally on different days.

A minimum amount of physical effort will be required for this study, as participants will be standing in place and answering questions. We are unable at this time to offer any compensation to participants.

FOR DETAILED INFORMATION PLEASE CONTACT POLLY TIERNAN 315.268.6528 MONDAY THRU FRIDAY 8-4:30

We must exclude you from this study if you have a current or past history of severe heart, circulation or breathing prob-lems; chronic lower back spasms or pain; deformities of the spine, bones or joints (such as abnormal spinal curvature, arthritic changes); brain strokes, spinal cord injury or other damage to the nervous system; history or presence of foot ulcers; current drug or alcohol dependence; or repeated falls; or if you are taking prescription medication that causes or prevents dizziness.

Clarkson IRB Approval \# 06-24

APPENDIX H

MINI-MENTAL STATE EXAM

Mini-Mental State Examination (MMSE)

Subject: \qquad Dexe: \qquad

Abstract

Actimby

ORXENTATON - One point or each answer

REGISTRATION - score 1,2 p polnts according to haw many are tepuated.

Score

Neme three abegte : Give the patuent orasecond te sity each.

ATEENTION AND CALCULATION - one point for each correct subtraction

Ask the paxient hat bin from 100 and count bacowark by 7 .

RECALL - one point for each correct answer

Astre nome ca nane the wre obsce from beve.

LANGUAGE

 ponct

CLOSE YOUR EYES

APPENDIX I

BERG SCALE

BERG	Patient Name:
BALANCE	Rater Name:
SCALE	Date:

Balance Item Score ($0-4$)

1. Sitting unsupported
2. Change of position: sitting to standing
3. Chamge of position" standing to sifting
4. Trasters
5. Standing unsupported
6. Standing with eyes clowed
7. Standing wifh feet together
8. Tanden standing
9. Stauding on one leg
10. Turning trank (feet fixed)
11. Retrieving objects from noor
12. Turning 360 degrees
13. Stool stepping
14. Reaching forward while standing

TOTAL (0-56): \qquad

Interpretation

$0-20$, wheeldhair bound
$21-40$, walking with assistance
41-56, independent

References

Beng L, Wood-Daphinee S, Williams II, Maki. B: Measuring balanee in the elderly: Valdation of an instrument Can. J. Pub Heath, July/August suppleaent 2:S7-11, 1992.

Berg K. Wood-Dauphine S Willams $\mathrm{M}_{\text {, Gaytan }}$ D. Measuring bolance in the elderly Preliminary development of an instrument.
Physiotherapy Canada, 41304311,1989

APPENDIX J

RAND WITH DEPRESSION SCREENER TEST

Medical Outcomes Study; 3-Item Short Form Survey Insfrument
RAND 36-Item Health Survey 1.0 Ouestionnaire Items

1. In general, would you say. your health is:		subject: Date:
Excellent	1	
Very good	2	
Good	3	
Fair	4	
Poor	5	
2. Compared to one year ago, how would your rate your health in general now?		
Much better now than one year ago.		1
Somewhat better now than one year ago		2
About the same		3
Somewhat worse now than one year ago		4
Much worse now than one year ago		5

The following tems are about activities you might do during a typical day. Does your health now limit you in these activitics? If so, how much?
(Circle One Number on Cach Line)

	Yes, Limited a Lot	Yes, Lirnited a Little	No, Not limited at All
3. Vigorous activities, such as running, lifting heavy objects, participating in strenuous sports $[1]$ $[2]$ 4. Moderate activities, such as moving a table, pushing a vacuum cleaner, bowifing, or playing golf $[1]$ $[2]$ 5. Lifting or carrying groceries	$[1]$	$[2]$	$[3]$
6. Climbing several flights of stairs	$[1]$	$[2]$	$[3]$
7. Climbing one flight of stairs	$[1]$	$[2]$	$[3]$
8. Bending, kneeling, or stooping	$[1]$	$[2]$	$[3]$
9. Walking more than a mile	$[1]$	$[2]$	$[3]$
10. Walking several blocks	$[1]$	$[2]$	$[3]$
11. Walking one block	$[1]$	$[2]$	$[3]$
12. Bathing or dressing yourself	$[1]$	$[2]$	$[3]$

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of your physical health?
(Circle One Number on Each Line)

13. Cut down the amount of time you spent on work or other activities	1	2
14. Accomplished less than you would like	No	
15. Were limited in the kind of work or other activities	1	2

During the past 4 weeks, have you had any of the following problems with your work or other regular daily activities as a result of any emotional problems (such as feeling depressed or anxious)?
(Circle One Number on Each Line)

17. Cut down the amount of time you spent on work or other	Yes	No				
1activities			$	$		2
:---	:---:					
18. Accomplished less than you would like	1					
19. Didn't do work or other activities as carefully as usual	2					

20. During the past 4 weeks, to what extent has your physical health or emotional problems interfered with your normal social activities with family, friends, neighbors, or groups?

(Circle One Number)

Not at all 1
Slighty 2
Moderately 3
Qutte a bit 4
Extremely 5
21. How much bodily pain have you had during the past 4 weeks?

(Circle One Number)

None 1
Very mild 2
Mild 3
Moderate 4
Severe 5
Very severe 6
22. During the past 4 weeks, how much did pain interfere with your normal work (including both work outside the home and housework)?
(Circle One Number)
Not at all 1
A little bit 2
Moderately 3
Quite a bit 4
Extremely 5

These questions are about how you feel and how things have been with you during the past 4 weeks. For each question, please give the one answer that comes closest to the way you have been feeling.

How much of the time during the past 4 weeks . . .
(Circle One Number on Each Line)

	All of the Time	Most of the Time	A Good Bit of the Time	Some of the Time	A Little of the Time	None of the Time
23. Did you feel full of pep?	1	2	3	4	5	6
24. Have you been a very nervous person?	1	2	3	4	5	6
25. Have you felt so down in the dumps that nothing could cheer you up?	1	2	3	4	5	6
26. Have you felt calm and peaceful?	1	2	3	4	5	6
27. Did you have a lot of energy?	1	2	3	4	5	6
28. Have you felt downhearted and blue?	1	2	3	4	5	6
29. Did you feel worn out?	1	2	3	4	5	6
30. Have you been a happy person?	1	2	3	4	5	6
31. Did you feel tired?	1	2	3	4	5	6

32. During the past 4 weeks, how much of the time has your physical health or emotional problems interfered with your social activities (like visiting with friends, relatives, etc.)?

(Circle One Number)

All of the time 1
Most of the time 2
Sorne of the time 3
A little of the time 4
None of the time 5
How TRUE or FALSE is each of the following statements for you.
(Circle One Number on Each Line)

	Definitly Truc	Mostly True	Don't Know	Mostly False	Definitely False
33. I seem to get sick a little easier than other people	1	2	3	4	5
34. I am as healthy as anybody I know	1	2	3	4	5
35. I expect my health to get worse	1	2	3	4	5
36. My health is excellent	1	2	3	4	5

Patient Questionnaire

1. Have you ever had 2 years or more in your ite when you fell depressed or sad most days, even it you fell on somelimes? (Cirle one)

Yer \quad No (Skin to Cuestion 2)
4. Did any period like that ever last 2 years without an intermption of 2 full months when you felt ox?

Yes No(Skip to Question 2)
b. Did any of those long penods of feeling sad or depresser contitue into the last 12 months?

Yes No
2. In the last 12 months, have you had 2 weeks or longer when ... (Cicle one answer on eaden line)
a, neary very day you fell sad. empty or depressed for most of the day?

Yes 鲜
b. You lost interest in most things like work, hoblies, and other hings you usually enjoyed?

Yes No
3. In the last month did you have a period of 1 week or more when ... (Circle one answer on each fine)
a. nearly every day you felt sad, empty or depressed for most of the day?
Yes No
W. you lost interest in most thengs like work hobbies; and other mings yon usually enioyed?

Yes No

APPENDIX K

RAND WITH DEPRESSION

SCREENER SCORER

Subjec: \qquad
RAMD Testscore Contersion.

ANL	Lest coore
1	
2	
3	
4	

Bad Answer Pad Answer: $\frac{\text { Ead Answer }}{\text { Gad Answer }}$ Ead Answer Ead Answer Bad Answer Gad Answe Bad Answer Bad Answer Bad Answe Becharswet Bad Answer Bad Answer Bac Bad Answer Bad Arswer Ead Answer Ead Answe Bad Answe Bac Answer Bac Answer Bad Answer Bad Answer

Scale	Grabe
Physical Funtioning	HDIVA
Linted due ta Phystal health	WDIVA
Linited due to Emotional healh	HDY/0
Energyfatgue	\%DIVO!
Emational Well-being	HDIVIS
Social Functunitg	HDV/O
Paim	WDVIO
Ceneral Healh	WDIVO

Depression	Presen
Cysthymia	No
Mapor Deression	No
SymptomsPreseri	No

APPENDIX L

BATCH MATLAB ${ }^{\circledR}$ CODE

```
% Main Script main_script.m
clc
clear all
clear classes
```

\%****Define Home Directory Where batch files are located****
\%**** Format should be [DRIVE]:IFILE_PATH
\%**** include trailing slash
addpath '[DRIVE]:IFILE_PATH'
HOME DIR= '[DRIVE]:IFILE_PATH';
\%***
if strcmp(HOME_DIR,'[DRIVE]:IFILE_PATH') error(['HOME_DIR must be set']);
end
\% ProcessID gives each run a unique folder store run specifc Data into
\% Format is 'yyyymmdd\#\#' Four Digit Year, Month, Day, Number of the Run for \% that day

```
%****MUST SET
ProcessID = 'yyyymmdd##';
%**********************
```

if strcmp(ProcessID,'yyyymmdd\#\#')
error(['ProcessID must be set']);
end
\% Check to insure that same Process ID is not Repeated
PROCESS_FOLDER=[HOME_DIR,'Process_',ProcessID,'']'];
[status,message,messageid] = mkdir(PROCESS_FOLDER);
if $\sim \operatorname{strcmp}$ (message,")
error(['Process_',ProcessID,' ',message]);
end
\%**** Location of Subjects text File*****
SUBJECTS_FILE = [HOME_DIR,'subjects.txt'];
\%***** MUST CHANGE FOR NUMBER OF SUBJECTS TO RUN***
NUMBER_OF_SUBJECTS = 99; \%99; in current list;
$\% * ~$
\% Read in from file subjects.txt
[subjs,diab] =textread(SUBJECTS_FILE,'\%s \%c',NUMBER_OF_SUBJECTS);
if length(subjs)~=NUMBER_OF_SUBJECTS

```
    error(['NUMBER_OF_SUBJECTS too high']);
end
% Save Copy of subjects.txt with Results for Process
copyfile(SUBJECTS_FILE,[PROCESS_FOLDER,'subjects.txt']);
%****Define Main Directory Where files are located****
%**** Format should be [DRIVE]:IFILE_PATH\ ****
%**** include trailing slash
MAIN_DIR= '[DRIVE]:\FILE_PATH\';
%*****************************************************
if strcmp(MAIN_DIR,'[DRIVE]:IFILE_PATH\')
    error(['MAIN_DIR must be set']);
end
% Put all File name in Lowercase
subjs = lower(subjs);
% Intialize Counters
e=1;
g=1;
% Initialize Waitbar to Show Process Status
wbar=waitbar(0,'Processing QS Data...');
for i=1:length(subjs)
    % Update Waitbar
    waitbar(i/NUMBER_OF_SUBJECTS,wbar,['Processing QS Data.....
',char(subjs(i)),' : ',num2str(i),'/',num2str(NUMBER_OF_SUBJECTS)])
    set(wbar,'WindowStyle','modal')
    % Initialize goodarr for times
    goodarr(g,1)=subjs(i);
    goodarr(g,2)={'0'};
    goodarr(g,3)={'0'};
    goodarr(g,4)={'0'};
    goodarr(g,5)={'0'};
    goodarr(g,6)={'0'};
    goodarr(g,7)={'0'};
    goodarr(g,8)={'0'};
    goodarr(g,9)={'0'};
    % Beginning of Data Processing
    % Checks to insure sunject run data folder exist before
    % attempting to run.
```

\% Upon completion, it writes status spreadsheets on the data \% processed and processing time \% Will Process trials that start with [blank],r,b,c,d,e,f \% Makes Periodic Saves in case of Crash

```
A = exist([MAIN_DIR,char(subjs(i)),'l',char(subjs(i)),''],'dir');
if (A~=0)
    tic
    main_tr(char(subjs(i)),diab(i),MAIN_DIR,");
    t=toc;
    disp(['Trial A for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
    goodarr(g,2)=num2cell(t);
end
R = exist([MAIN_DIR,char(subjs(i)),''',char(subjs(i)),'rl'],'dir');
if (R~=0)
    tic
    main_tr(char(subjs(i)),diab(i),[MAIN_DIR],'r');
    t=toc;
    disp(['Trial R for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
    goodarr(g,3)=num2cell(t);
```

end
B = exist([MAIN_DIR,char(subjs(i)),'l',char(subjs(i)),'b'],'dir');
if ($\mathrm{B} \sim=0$)
tic
main_tr(char(subjs(i)),diab(i),[MAIN_DIR],'b');
$\mathrm{t}=$ toc;
disp(['Trial B for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
goodarr($\mathrm{g}, 4$)=num2cell(t);
end
C = exist([MAIN_DIR,char(subjs(i)),'I',char(subjs(i)),'cl'],'dir');
if (C~=0)
tic
main_tr(char(subjs(i)),diab(i),[MAIN_DIR],'c');

```
    t=toc;
    disp(['Trial C for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
    goodarr(g,5)=num2cell(t);
end
D = exist([MAIN_DIR,char(subjs(i)),'l',char(subjs(i)),'d\'],'dir');
if (D~=0)
    tic
    main_tr(char(subjs(i)),diab(i),[MAIN_DIR],'d');
    t=toc;
    disp(['Trial D for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
    goodarr(g,6)=num2cell(t);
end
E = exist([MAIN_DIR,char(subjs(i)),'\',char(subjs(i)),'el'],'dir');
if (E~=0)
    tic
    main_tr(char(subjs(i)),diab(i),[MAIN_DIR],'e');
    t=toc;
    disp(['Trial E for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
    goodarr(g,7)=num2cell(t);
end
F = exist([MAIN_DIR,char(subjs(i)),''',char(subjs(i)),'\\],'dir');
if (F~=0)
    tic
    main_tr(char(subjs(i)),diab(i),[MAIN_DIR],'f');
    t=toc;
    disp(['Trial F for ',char(subjs(i)),' finished in ',num2str(t),' secs.'])
    goodarr(g,8)=num2cell(t);
end
errarr(e,1)=subjs(i);
errarr(e,2)=num2cell(i);
errarr(e,3)=num2cell(A);
```

```
    errarr(e,4)=num2cell(R);
    errarr(e,5)=num2cell(B);
    errarr(e,6)=num2cell(C);
    errarr(e,7)=num2cell(D);
    errarr(e,8)=num2cell(E);
    errarr(e,9)=num2cell(F);
    e=e+1;
    g=g+1;
    cd(PROCESS_FOLDER);
    save(['periodic_save_',num2str(i)]);
end
close(wbar);
cd(PROCESS_FOLDER);
err_head={'Subject' 'Run Number' 'A' 'R' 'B' 'C' 'D' 'E' 'F'};
xlswrite('SUBJECT_ERR.xls',err_head,'Sheet1','A1:I1');
xlswrite('SUBJECT_ERR.xls',errarr,'Sheet1',['A2:I',num2str(e)]);
good_head={'Subject'' A'' R'' B'' C'' D'' E'' F'};
xlswrite('SUBJECT_GOOD.xls',good_head,'Sheet1','A1:H1');
xlswrite('SUBJECT_GOOD.xls',goodarr,'Sheet1',['A2:H',num2str(g)]);
cd(HOME_DIR);
clear all
clear classes
function main_tr(subject,rawid,MAIN_DIR,trial)
%Defines Where files to be processed are located
% Files To be processed must be copied to this folder
% All zip Files must be unzipped
% This file has been customized for acceleration trials
```

global Loc_ToBeProcessed Loc_Processed
global SAMPLING_RATE DAT_DATA_SIZE SMOOTH_FILTER
SAMPLING_RATE $=0.001$;
DAT_DATA_SIZE = 30000;
Loc_ToBeProcessed = [MAIN_DIR,subject,'I',subject,trial,'l'];
\% Load Filter From File
load SMOOTH_FILTER
\%****Define where postprocessed files will be stored****

```
%**** Format should be [DRIVE]:IFILE_PATH\ ****
%**** include trailing slash
Loc_Processed = '[DRIVE]:IFILE_PATH\';
%*******************************************************
if strcmp(Loc_Processed,'[DRIVE]:\FILE_PATHI')
    error(['Loc_Processed must be set']);
end
%****Define File name for xls spreadsheet for***********
%**** process of subject. DO NOT PUT .xls ****
SUBJECT_PROCESS_SUMMARY = 'FILE_NAME';
%**
if strcmp(SUBJECT_PROCESS_SUMMARY,'FILE_NAME')
    error(['SUBJECT_PROCESS_SUMMARY must be set']);
else
    ERR_CHK =
exist([MAIN_DIR,subject,'\',SUBJECT_PROCESS_SUMMARY,'.xIs'],'file')
    if ERR_CHK~=0
        error(['Sorry the File: ', SUBJECT_PROCESS_SUMMARY,'.xls already
exist. Please Change SUBJECT_PROCESS_SUMMARY.']);
    end
end
%****Define where postprocessed files will be stored*
%**** Below describes how to choose which files you want ****
%**** to process, which are followed by the ending of ****
%**** those files.
%**** Enter 1 for Processing Trial Run Files "##" ****
%**** Enter 2 for Processing Quiet Standing Files "_sta" ****
%**** Enter 3 for Processing Summary Files "_sum" ****
%**** Enter }11\mathrm{ for Processing QS Metrics Files "_QS" ****
%**** Enter }12\mathrm{ for Processing EMG Calibration Data "emcp" ****
%**** Enter }13\mathrm{ for Processing EMG Norm Data "_EMG_COP" ****
FILE_TYPE_SW = 0;
%****************************************************************
switch FILE_TYPE_SW
    case 0
        error(['FILE_TYPE must be set']);
    case 1
        FILE_TYPE='01.xls';
    case 2
        FILE_TYPE='_sta.xIs';
    case 3
```

FILE_TYPE='_sum.xls';
$\%$ ***
\%****
$\%^{* * * *}$ By Seperating these it provides room for expansion **** $\%$ for types of files where there are more than **** \%**** one for a specific test run. ****
\%****
\%*
case 11
FILE_TYPE='_QS.xls';
case 12
FILE_TYPE='emcp.xls';
case 13
FILE_TYPE='norm_EMG_COP.mat';
otherwise error('Incorrect Setting for FILE_TYPE');
end
\% Intialize ERR_CHK
ERR_CHK=zeros(1,5)
cd(Loc_Processed);
CHCK = exist([MAIN_DIR,subject,'"',subject, trial,'''],'dir');
if (CHCK~=0)
if FILE_TYPE_SW > 10
ERR_CHK(1) =
exist([MAIN_DIR,subject,'l',subject,trial,''l',subject,trial,FILE_TYPE],'file'); if (ERR_CHK (1)~=0)
\%****MUST INSERT YOUR DATA PROCESSING FUNCTION HERE****
$\%{ }^{* ~}$
else
disp(['Error: ',ERR_FILENAME,' File not found for ',subject,trial]) end
else

> if (trial=='r')
\% 1 mm Calc

```
    ERR_CHK(1) =
exist([MAIN_DIR,subject,'\',subject,trial,"'',subject,trial,rawid,'1as0rf',FILE_TYPE],'
file');
```

```
    if (ERR_CHK(1)~=0)
```

 if (ERR_CHK(1)~=0)
 %****MUST INSERT YOUR DATA PROCESSING FUNCTION
 %****MUST INSERT YOUR DATA PROCESSING FUNCTION
 HERE****
HERE****
%**
%**
else
else
disp(['Error: }1\mathrm{ mm ',ERR_FILENAME,' File not found for ',subject,trial])
disp(['Error: }1\mathrm{ mm ',ERR_FILENAME,' File not found for ',subject,trial])
end
end
% 2mm
% 2mm
ERR_CHK(2) =
ERR_CHK(2) =
exist([MAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1as1rf',FILE_TYPE],'
exist([MAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1as1rf',FILE_TYPE],'
file');
file');
if (ERR_CHK(2)~=0)
%****MUST INSERT YOUR DATA PROCESSING FUNCTION
HERE****
%**
else
disp(['Error: 2 mm ',ERR_FILENAME,' File not found for ',subject,trial])
end
% 4mm
ERR_CHK(3) =
exist([MAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1as2rf',FILE_TYPE],'
file');
if (ERR_CHK(3)~=0)
%****MUST INSERT YOUR DATA PROCESSING FUNCTION
HERE****
O

```
```

 else
 disp(['Error: 4 mm ',ERR_FILENAME,' File not found for ',subject,trial])
 end
 % 8mm
 ERR_CHK(4) =
 exist([IMAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1as3rf',FILE_TYPE],'
file');
if (ERR_CHK(4)~=0)
%****MUST INSERT YOUR DATA PROCESSING FUNCTION
HERE****
%**
else
disp(['Error: 8 mm ',ERR_FILENAME,' File not found for ',subject,trial])
end
else
% 1 mm Calc
ERR_CHK(1) =
exist([IMAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1asOff',FILE_TYPE],'
file');
if (ERR_CHK(1)~=0)
%****MUST INSERT YOUR DATA PROCESSING FUNCTION
HERE****
%**
else
disp(['Error: }1\mathrm{ mm ',ERR_FILENAME,' File not found for ',subject,trial])
end
% 4mm

```
```

 ERR_CHK(3) =
 exist([MAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1as2ff',FILE_TYPE],'
file');

```
```

 if (ERR_CHK(3)~=0)
    ```
    if (ERR_CHK(3)~=0)
        %****MUST INSERT YOUR DATA PROCESSING FUNCTION
        %****MUST INSERT YOUR DATA PROCESSING FUNCTION
HERE****
HERE****
        %******************************************************
        else
        disp(['Error: 4 mm ',ERR_FILENAME,' File not found for ',subject,trial])
        end
    % 16mm
    ERR_CHK(5) =
exist([MAIN_DIR,subject,'\',subject,trial,'\',subject,trial,rawid,'1as4ff',FILE_TYPE],'
file');
    if (ERR_CHK(5)~=0)
        %****MUST INSERT YOUR DATA PROCESSING FUNCTION
HERE****
                %******************************************************
        else
        disp(['Error: 16 mm ',ERR_FILENAME,' File not found for ',subject,trial])
        end
    end
end
switch trial
    case "
        trial_num=1;
    case 'r'
        trial_num=2;
    case 'b'
        trial_num=3;
    case 'c'
        trial_num=4;
    case 'd'
```

```
            trial_num=5;
    case 'e'
        trial_num=6;
    case 'f'
    trial_num=7;
    end
cd([MAIN_DIR,subject,'\']);
err_head={'Subject' 'Trial' '1 mm' '2 mm' '4 mm' '8 mm' '16 mm'};
xlswrite([SUBJECT_PROCESS_SUMMARY,'.xls'],err_head,'Sheet1','A1:G1');
xlswrite([SUBJECT_PROCESS_SUMMARY,'.xls'],{subject
trial},'Sheet1',['A',num2str(trial_num+1),':B',num2str(trial_num+1)]);
xlswrite([SUBJECT_PROCESS_SUMMARY,'.xIs'],ERR_CHK,'Sheet1',['C',num2s
tr(trial_num+1),':G',num2str(trial_num+1)]);
else
    disp 'sorry folder existed no work done'
end
```


APPENDIX M

ENGINEERING UNIT CONVERSION
 BATCH MATLAB ${ }^{\circledR}$ CODE

```
function datchanger(subject,rawid,pert,trial)
%Processes EMG COP Calibrate
global Loc_ToBeProcessed Loc_Processed Accel_CF Shear_CF Load_Cell_CF
global DAT_DATA_SIZE SMOOTH_FILTER SAMPLING_RATE
norm_EMG_COP
```

 filenameplate = [Loc_ToBeProcessed,subject,trial,rawid,'.dat'];
 FILEPLATEID = fopen(filenameplate,'rt');
 if (FILEPLATEID ~= -1)
clear cop msmoothdata temp convdata dat
fclose(FILEPLATEID);
\% Initializations
$\operatorname{cop}\left(1: D A T _D A T A _S I Z E, 1: 16\right)=0$;
msmoothdata(1:DAT_DATA_SIZE,1:16)=0;
minitavg $=0$;
temp $=0$;
convdata(1:DAT_DATA_SIZE,1:16) $=0$;
dat $=0$;
\% Data Extraction from raw plate data
cop =dlmread(filenameplate,'It',[0 029999 15]);
\% Zero Baseline
for $\mathrm{i}=5: 16$
minitavg(i) = initavg(cop,i);
msmoothdata(1:DAT_DATA_SIZE, $i)=\operatorname{cop}\left(1: D A T _D A T A _S I Z E, i\right)-m i n i t a v g(i) ;$
end
\% Conversions
convdata(:,1:4) $=\operatorname{cop}(:, 1: 4)$.* Load_Cell_CF; $\quad \%$ Load Cells
convdata(:,5) = msmoothdata(:,5) .* pert.*1.25; \% Position
convdata(: $; 6$) = msmoothdata(:,6) * Accel_CF; $\%$
Acceleration
convdata(:,7) = msmoothdata(:,7) * Shear_CF; \%
Shear
convdata(:,8) = msmoothdata(:,8); \% Touch
convdata(:,9:12) $=\operatorname{abs}(m s m o o t h d a t a(:, 9: 12)) ;$ \%
EMGs
convdata(:,13:15) = msmoothdata(:,13:15) * Accel_CF; $\%$
Head Accel X,Y,Z
convdata(:,16) = msmoothdata(:,16) /
max(msmoothdata(1:DAT_DATA_SIZE,16)); \% Bell

```
\% Smoothing done after conversions to prevent roughening of data smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
\% Make Output Array
\% Add milliseconds to first column
dat(1:DAT_DATA_SIZE,1) = (1:DAT_DATA_SIZE)';
\% Add Position
dat(1:DAT_DATA_SIZE,2) \(=\) smdat(1:DAT_DATA_SIZE,5);
\% Add differentiated velocity
temp(2:DAT_DATA_SIZE,7) \(=(\) smdat(2:DAT_DATA_SIZE,5)-smdat(1:DAT_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth velocity
minitavg(7) = initavg(temp,7);
temp(2:DAT_DATA_SIZE,7) = temp(2:DAT_DATA_SIZE,7)-minitavg(7);
dat(2:DAT_DATA_SIZE,3) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.ff.den,temp(2:DAT_DATA_SI ZE,7));
\% Add differentiated Acceleration
temp(3:DAT_DATA_SIZE,8) \(=\left(\operatorname{dat}\left(3: D A T \_D A T A \_S I Z E, 3\right)-\right.\) dat(2:DAT_DATA_SIZE-1,3))./SAMPLING_RATE;
\% Smooth Acceleration
minitavg \((8)=\) initavg \((\) temp, 8\()\);
temp(3:DAT_DATA_SIZE,8) = temp(3:DAT_DATA_SIZE,8)-minitavg(8);
\(\operatorname{dat}\left(3: D A T \_\bar{D} A T A \_\bar{S} I Z E, 4\right)=\)
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:DAT_DATA_SI ZE,8));
\% Add Acceleration
dat(1:DAT_DATA_SIZE,5) = smdat(1:DAT_DATA_SIZE,6);
\% Add Differentiated Jerk
```

```
temp(2:DAT_DATA_SIZE,5) = (dat(2:DAT_DATA_SIZE,5)-dat(1:DAT_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth Differentiated Jerk
minitavg(5) = initavg(temp,5);
temp(2:DAT_DATA_SIZE,5) \(=\) temp(2:DAT_DATA_SIZE,5)-minitavg(5);
\(\operatorname{dat}\left(2: D A T \_D A T A \_S I Z E, 6\right)=\)
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:DAT_DATA_SI ZE,5));
```

\% Shear
dat(1:DAT_DATA_SIZE,7) $=\operatorname{smdat}\left(1: D A T _D A T A _S I Z E, 7\right) ;$
\% Touch
dat(1:DAT_DATA_SIZE,8) $=$ smdat(1:DAT_DATA_SIZE,8);
\% Add APCOP
\% Add APCOP Velocity
\% Add MLCOP
\% Add MLCOP Velocity
filenamecal $=$ [Loc_ToBeProcessed,subject,trial,rawid];
fpcal = calmod(filenamecal);
[temp(:,13),temp(:,15)] = apmlcop(smdat(:,1),smdat(:,2),smdat(:,3),smdat(:,4),fpcal);
for $i=13: 2: 15$
minitavg(i) $=$ initavg(temp,i);
temp(1:DAT_DATA_SIZE,i) = temp(1:DAT_DATA_SIZE,i)-minitavg(i);
dat(1:DAT_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:DAT_DATA_SI ZE, i));
end
temp(2:DAT_DATA_SIZE,14) = (dat(2:DAT_DATA_SIZE,9)-dat(1:DAT_DATA_SIZE-1,9))./SAMPLING_RATTE;
temp(2:DAT_DATA_SIZE,16) = (dat(2:DAT_DATA_SIZE,11)-dat(1:DAT_DATA_SIZE-1,11))./SAMPLING_RATE;
for $i=14: 2: 16$
minitavg(i) = initavg(temp,i);
temp(2:DAT_DATA_SIZE,i) = temp(2:DAT_DATA_SIZE,i)-minitavg(i);
dat(2:DAT_DATA_SIZE,i-4) = filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:DAT_DATA_SI ZE, i);
end
\% ADD RMS EMG RTA
\% ADD RMS EMG RGS
\% ADD RMS EMG LTA
\% ADD RMS EMG LGS
$\operatorname{dat}(:, 13: 16)=\operatorname{smdat}(:, 9: 12)$;
\% Head Accel X
\% Head Accel Y
\% Head Accel Z
for $i=21: 23$
dat(1:DAT_DATA_SIZE,i-4) = smdat(1:DAT_DATA_SIZE,i-8);
end
\% Bell
dat(1:DAT_DATA_SIZE,20) = smdat(1:DAT_DATA_SIZE,16);
\% Create Normalization Array
for $i=13: 16$
norm_EMG_COP(1,i-12) $=$ mean(dat(2000:5000,i));
norm_EMG_COP(2,i-12) $=$ mean(dat(11000:14000,i));
norm_EMG_COP(3,i-12) $=$ mean(dat(16000:19000,i));
norm_EMG_COP(4,i-12) $=$ mean(dat(25000:28000,i));
end
for $i=9: 2: 11$
norm_EMG_COP(1,i-4-(i-9)./2) = mean(dat(2000:5000,i));
norm_EMG_COP(2,i-4-(i-9)./2) $=\operatorname{mean}(\operatorname{dat}(11000: 14000, \mathrm{i})$);
norm_EMG_COP(3,i-4-(i-9)./2) $=$ mean(dat(16000:19000,i));
norm_EMG_COP(4,i-4-(i-9)./2) $=$ mean(dat(25000:28000,i));
end
\% Add Headings

| $\%$ | 1 | 2 | 3 | 4 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A = \{'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
'Shear' 'Touch' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'RTA'
'RGS' 'LTA' 'LGS' 'Head Accel X' 'Head Accel Y' 'Head Accel Z' 'Bell'\};
$\begin{array}{llllllllllll}\% & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$
$18 \quad 19 \quad 20$

```
    % Writes File
    cd([Loc_Processed,subject,'\',subject,trial,'\']);
% save([subject,r,rawid]);
    xlswrite([subject,trial,rawid],A,'Sheet1','A1:T1');
    xlswrite([subject,trial,rawid],dat,'Sheet1','A2:T30001');
else
    cd([Loc_Processed,subject,'\',subject,trial,'\']);
    save('error_dat','filenameplate');
end
clear dat smdat convdata msmoothdata temp cop A minitavg subject trial rawid
function filechanger(subject,rawid,pert,trial)
%Processes Threshold trials
global Loc_ToBeProcessed Loc_Processed Accel_CF Shear_CF
global SMOOTH_FILTER SAMPLING_RATE norm_EMG_COP
testnum = 1;
```

$\%{ }^{* *}$
$\% * ~$
\% Special Case
switch pert
case 1
rawid_move=0;
case 2
rawid_move=1;
case 4
rawid_move=2;
case 8
rawid_move=3;
case 16
rawid_move=4;
end
if (strcmp(subject,'m72z137'))
if (strcmp(trial,"))
wrawid=['n1as',num2str(rawid_move),'fr'];
rawid=['c1as',num2str(rawid_move),'ff'];
else
wrawid=rawid;
end
else
wrawid=rawid;
end

```
% End
```

\% Must Change wrawid back to rawid to remove

```
%****************************************
filenamesum = [Loc_ToBeProcessed,subject,trial,rawid,'.sum'];
file_sum_id = fopen(filenamesum,'rt');
if file_sum_id==-1
    filenamesum = [Loc_ToBeProcessed,upper(subject),trial,rawid,'.sum'];
    file_sum_id = fopen(filenamesum,'rt');
    if file_sum_id ==-1
        error(['No such Sum File: ',filenamesum]);
    end
end
fsumh=cell(2,1);
fsumh(1,1)=cellstr(fgetl(file_sum_id));
fsumh(2,1)=cellstr(fgetl(file_sum_id));
fgetl(file_sum_id);
```

fsuml=\{'File \#' 'Step Crit.?' 'Detect?' 'Accel.' 'Vel.' '\%S-Curve' 'Displ.' 'Shear Max.'
'I-Time'...
'Filename' 'Date and Time' 'Detection and Jog' 'Movement Period'\};
fclose(file_sum_id);
fsumd=cell(30,13);
fsumc=cell(1,1);
avg_h =\{'Trial' 'APCOP' 'APCOPV' 'MLCOP' 'MLCOPV' 'Position' 'Acceleration' ...
'Shear' 'Touch' 'RTA' 'RGS' 'LTA' 'LGS' 'Head Accel X' 'Head Accel Y' ...
'Head Accel Z' 'Bell' 'Diff velocity' 'Diff Accel' 'Diff jerk'\};
sta_avg(1:19)=0;
sta_avg=stachanger(subject, rawid, pert,trial);
xlswrite([subject,trial,wrawid,'_sum'],avg_h,'AVG','A1');
xlswrite([ssubject,trial,wrawid,'_sum'],\{'QS'\},'AVG','A2');
xlswrite([subject,trial,wrawid,'_sum'],sta_avg,'AVG','B2');
h = waitbar(0,['Subject: ',subject,trial,' Processing move ',num2str(pert),'mm Move
Data...']);

```
if (testnum < 10)
    filenameplate = [Loc_ToBeProcessed,subject,trial,rawid,'
',num2str(testnum),.'raw'];
else
    filenameplate =
[Loc_ToBeProcessed,subject,trial,rawid,num2str(testnum),'.raw'];
end
FILEPLATEID = fopen(filenameplate,'rt');
while (FILEPLATEID ~= -1)
    clear cop msmoothdata temp convdata dat
    fsumd(testnum,10)=cellstr(fgetl(FILEPLATEID));
    fgetl(FILEPLATEID);
    fsumd(testnum,11)=cellstr(fgetl(FILEPLATEID));
    fsumd(testnum,12)=cellstr(fgetl(FILEPLATEID));
    fsumd(testnum,13)=cellstr(fgetl(FILEPLATEID));
    fclose(FILEPLATEID);
    waitbar (testnum/30,h);
    % Intialization
    minitavg(1:19)=0;
    % Data Extraction from raw plate data
    cop =dlmread(filenameplate,'\t',7,0);
    [RAW_DATA_SIZE,COLs]=size(cop);
    % Zero Baseline
    for i = 5:COLs
        minitavg(i) = initavg(cop,i);
        msmoothdata(1:RAW_DATA_SIZE,i)=cop(1:RAW_DATA_SIZE,i)-
minitavg(i);
    end
    % Conversions
    convdata(:,1:4) = cop(:,1:4); % Load Cells
    convdata(:,5) = msmoothdata(:,5) .* pert.*1.25; % Position
    convdata(:,6) = msmoothdata(:,6) . Accel_CF; %
Acceleration
    convdata(:,7) = msmoothdata(:,7) .* Shear_CF; %
Shear
    convdata(:,8) = msmoothdata(:,8); % Touch
```

convdata(:,9:12) $=\operatorname{abs}($ msmoothdata(:,9:12) $) ; \quad \%$ EMGs
convdata(:,13:15) = msmoothdata(:,13:15) .* Accel_CF; \%
Head Accel X,Y,Z
convdata(:,16) = msmoothdata(:,16) ./
max(msmoothdata(1:RAW_DATA_SIZE,16)); $\%$ Bell
\% Smoothing done after conversions to prevent roughening of data
smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
\% Make Output Array
\% Add milliseconds to first column
$\operatorname{dat}\left(1: R A W _D A T A _S I Z E, 1\right)=\left(1: R A W _D A T A _S I Z E\right)$ ';
\% Add Position
$\operatorname{dat}\left(1: R A W _D A T A _S I Z E, 2\right)=\operatorname{smdat}\left(1: R A W _D A T A _S I Z E, 5\right) ;$
\% Add differentiated velocity
temp(2:RAW_DATA_SIZE,7) $=($ smdat(2:RAW_DATA_SIZE,5)-smdat(1:RAW_DATA_SIZE-1,5))./SAMPLING_RATTE;
\% Smooth velocity
minitavg(17) = initavg(temp,7);
temp(2:RAW_DATA_SIZE,7) $=$ temp(2:RAW_DATA_SIZE,7)-minitavg(7);
dat(2:RAW_DATA_SIZE,3) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:RAW_DATA_SI ZE,7));
\% Add differentiated Acceleration
temp(3:RAW_DATA_SIZE,8) $=(\operatorname{dat}(3:$ RAW_DATA_SIZE,3)-
dat(2:RAW_DATA_SIZE-1,3))./SAMPLING_RATE;
\% Smooth Acceleration
minitavg (18) = initavg(temp,8);
temp(3:RAW_DATA_SIZE,8) $=$ temp(3:RAW_DATA_SIZE,8)-minitavg(8);
dat(3:RAW_DATA_SIZE,4) = filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:RAW_DATA_SI ZE,8));

```
\% Add Acceleration
dat(1:RAW_DATA_SIZE,5) = smdat(1:RAW_DATA_SIZE,6);
```

temp(2:RAW_DATA_SIZE,5) $=($ dat(2:RAW_DATA_SIZE,5)-dat(1:RAW_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth Acceleration
minitavg(19) = initavg(temp,5);
temp(2:RAW_DATA_SIZE,5) $=$ temp(2:RAW_DATA_SIZE,5)-minitavg(5);
dat(2:RAW_DATA_SIZE,6) = filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:RAW_DATA_SI ZE,5));

```
% Shear
dat(1:RAW_DATA_SIZE,7) = smdat(1:RAW_DATA_SIZE,7);
    % Touch
dat(1:RAW_DATA_SIZE,8) = smdat(1:RAW_DATA_SIZE,8);
% Add APCOP
% Add APCOP Velocity
% Add MLCOP
% Add MLCOP Velocity
filenamecal = [Loc_ToBeProcessed,subject,trial,rawid,'1'];
fpcal = calmod(filenamecal);
    [temp(:,13),temp(:,15),dat(:,20)] =
apmlcop(smdat(:,1),smdat(:,2),smdat(:,3),smdat(:,4),fpcal);
    for i=13:2:15
        minitavg(i-12) = initavg(temp,i);
        temp(1:RAW_DATA SIZE,i) = temp(1:RAW_DATA_SIZE,i)-sta_avg(i-12);
        dat(1:RAW_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:RAW_DATA_SI
ZE,i);
    end
    temp(2:RAW_DATA_SIZE,14) = (dat(2:RAW_DATA_SIZE,9)-
dat(1:RAW_DATA_SIZE-1,9))./SAMPLING_RATE;
```

temp(2:RAW_DATA_SIZE,16) $=\left(\operatorname{dat}\left(2: R A W _D A T A _S I Z E, 11\right)-\right.$ dat(1:RAW_DATA_SIZE-1,11))./SAMPLING_RATE;

```
for i= 14:2:16
    minitavg(i-12) = initavg(temp,i);
    temp(2:RAW_DATA_SIZE,i) = temp(2:RAW_DATA_SIZE,i)-sta_avg(i-12);
    dat(2:RAW_DATA_SIZE,i-4) =
filffilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:RAW_DATA_SI
ZE,i);
    end
    % ADD RMS EMG RTA
    % ADD RMS EMG RGS
    % ADD RMS EMG LTA
    % ADD RMS EMG LGS
    dat(:,13)=smdat(:,9)./norm_EMG_COP(3,1);
    dat(:,14)=smdat(:,10)./norm_EMG_COP(2,3);
    dat(:,15)=smdat(:,11)//norm_EMG_COP(3,3);
    dat(:,16)=smdat(:,12)./norm_EMG_COP(2,4);
    % Head Accel X
    % Head Accel Y
    % Head Accel Z
    for i = 21:23
    dat(1:RAW_DATA_SIZE,i-4) = smdat(1:RAW_DATA_SIZE,i-8);
end
    % Bell
    dat(1:RAW_DATA_SIZE,21) = smdat(1:RAW_DATA_SIZE,16);
    % Add Headings
    % 1 2 3 4 4 5 6
A = {'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
    'Shear' 'Touch' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'RTA' 'RGS'
'LTA' 'LGS' 'Head Accel X' 'Head Accel Y' 'Head Accel Z' 'Mass' 'Bell'};
    % % 7 % % 9 10
18}19\quad20\quad2
% Writes File
cd([Loc_Processed,subject,'l',subject,trial,'\']);
if (testnum<10)
    % save([subject,r,rawid,'0',num2str(testnum)]);
```

xlswrite([subject,trial,wrawid,'0',num2str(testnum)],A,'Sheet1','A1:T1');

```
xlswrite([subject,trial,wrawid,'0',num2str(testnum)],dat,'Sheet1',['A2:T',num2str(R
AW_DATA_SIZE+1)]);
    else
        % save([subject,r,rawid,num2str(testnum)]);
        xlswrite([subject,trial,wrawid,num2str(testnum)],A,'Sheet1','A1:T1');
xlswrite([subject,trial,wrawid,num2str(testnum)],dat,'Sheet1',['A2:T',num2str(RAW
_DATA_SIZE+1)]);
    end
    xlswrite([subject,trial,wrawid,'_sum'],testnum,'AVG',['A',num2str(testnum+2)]);
    xlswrite([subject,trial,wrawid,'_sum'],minitavg,'AVG',['B',num2str(testnum+2)]);
    testnum = testnum + 1;
    if (testnum <10)
        filenameplate = [Loc_ToBeProcessed,subject,trial,rawid,'
',num2str(testnum),'.raw'];
    else
        filenameplate =
strcat(Loc_ToBeProcessed,subject,trial,rawid,num2str(testnum),'.raw');
    end
    FILEPLATEID = fopen(filenameplate,'rt');
```

end
\% fclose(FileIDsum);
close(h);
cd([Loc_Processed,subject,'"', subject,trial,'\']);
save([subject,trial, wrawid,' ',num2str(testnum)],'filenameplate');
if testnum<5
save(['error_trial_subject',trial],'filenameplate');
end
fsumd(1:testnum-1,1:9)=num2cell(dlmread(filenamesum,'1t',[4 0 testnum+2 8]));
file_sum_id = fopen(filenamesum,'rt');
for(i=1:testnum+4)
fsumct=fgetl(file_sum_id);
end
if (fsumct~=-1)
fsumc=cellstr(fsumct);
xlswrite([subject,trial,wrawid,'_sum'],fsumc,'Sheet1','A35');
end
xlswrite([subject,trial,wrawid,'_sum'],fsumh,'Sheet1','A1:A2');
xlswrite([subject,trial,wrawid,'_sum'],fsuml,'Sheet1','A4:M4');

```
[r_fsumd,c_fsumd]=size(fsumd);
xlswrite([subject,trial,wrawid,'_sum'],fsumd,'Sheet1',['A5:M',num2str(r_fsumd+4)])
% Clear workspace
clear dat smdat temp convdata msmoothdata cop minitavg subject rawid pert trial
testnum fsumd fsumct fsumc fsumh fsuml A
function minitavg = stachanger(subject,rawid,pert,trial)
%Processes Quiet Standing
global Loc_ToBeProcessed Loc_Processed Accel_CF Shear_CF Load_Cell_CF
global SMOOTH_FILTER SAMPLING_RATE norm_EMG_COP
```

$\% * ~$
$\%$ ************************************
\% Special Case
switch pert
case 1
rawid_move=0;
case 2
rawid_move=1;
case 4
rawid_move=2;
case 8
rawid_move=3;
case 16
rawid_move=4;
end
if (strcmp(subject,'m72z137'))
if (trial==")
wrawid=['n1as',num2str(rawid_move),'ff'];
else
wrawid=rawid;
end
else
wrawid=rawid;
end
\% End
\% Must Change wrawid back to rawid to remove

```
%****************************************
    filenameplate = [Loc_ToBeProcessed,subject,trial,rawid,'.sta'];
    FILEPLATEID = fopen(filenameplate,'rt');
if (FILEPLATEID ~= -1)
    clear cop msmoothdata temp convdata dat
    fclose(FILEPLATEID);
    % Data Extraction from raw plate data
    cop =dlmread(filenameplate,'lt',2,0);
    [STA_DATA_SIZE,q]=size(cop);
    minitavg(1:q+3)=0;
        % Zero Baseline
    for i=5:16
        minitavg(i) = initavg(cop,i);
        msmoothdata(1:STA_DATA_SIZE,i)=cop(1:STA_DATA_SIZE,i)-minitavg(i);
    end
    % Conversions
    convdata(:,1:4) = cop(:,1:4) .* Load_Cell_CF; % Load Cells
    convdata(:,5) = msmoothdata(:,5) .* pert.*1.25; % Position
    convdata(:,6) = msmoothdata(:,6) * Accel_CF; %
Acceleration
    convdata(:,7) = msmoothdata(:,7) * Shear_CF; %
Shear
    convdata(:,8) = msmoothdata(:,8); % Touch
    convdata(:,9:12) = abs(msmoothdata(:,9:12)); %
EMGs
    convdata(:,13:15) = msmoothdata(:,13:15) * Accel_CF; %
Head Accel X,Y,Z
    convdata(:,16) = msmoothdata(:,16) /
max(msmoothdata(1:STA_DATA_SIZE,16)); % Bell
\% Smoothing done after conversions to prevent roughening of data
    smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
    % Make Output Array
```

\% Add milliseconds to first column
$\operatorname{dat}\left(1: S T A _D A T A _S I Z E, 1\right)=\left(1: S T A _D A T A _S I Z E\right)$ ';
\% Add Position
$\operatorname{dat}\left(1: S T A _D A T A _S I Z E, 2\right)=s m d a t\left(1: S T A _D A T A _S I Z E, 5\right) ;$
\% Add differentiated velocity
temp(2:STA_DATA_SIZE,7) $=($ smdat(2:STA_DATA_SIZE,5)-smdat(1:STA_DATA_SIZ̄E-1,5))./SAMPLING_RATE;
\% Smooth velocity
minitavg(17) = initavg(temp,7);
temp(2:STA_DATA_SIZE,7) = temp(2:STA_DATA_SIZE,7)-minitavg(17);
dat(2:STA_DATA_SIZE,3) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:STA DATA_SI ZE,7));
\% Add differentiated Acceleration
temp(3:STA_DATA_SIZE,8) $=\left(\operatorname{dat}\left(3: S T A _D A T A _S I Z E, 3\right)-\right.$ dat(2:STA_DATA_SIZE-1,3))./SAMPLING_RATE;
\% Smooth Acceleration
minitavg(18) = initavg(temp,8);
temp(3:STA_DATA_SIZE, 8) $=$ temp(3:STA_DATA_SIZE,8)-minitavg(18);
dat(3:STA_DATA_SIZE,4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:STA_DATA_SI ZE,8));
\% Add Acceleration
dat(1:STA_DATA_SIZE,5) = smdat(1:STA_DATA_SIZE,6);
\% Add Differentiated Jerk
temp(2:STA_DATA_SIZE,5) = (dat(2:STA_DATA_SIZE,5)-
dat(1:STA_DATA SIZE-1,5))./SAMPLING_RATE;
\% Smooth Differentiated Jerk
minitavg(19) = initavg(temp,5);
temp(2:STA_DATA_SIZE,5) $=$ temp(2:STA_DATA_SIZE,5)-minitavg(19);
dat(2:STA_DATA_SIZE,6) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:STA_DATA_SI ZE,5));

```
    % Shear
dat(1:STA_DATA_SIZE,7) = smdat(1:STA_DATA_SIZE,7);
    % Touch
dat(1:STA_DATA_SIZE,8) = smdat(1:STA_DATA_SIZE,8);
    % Add APCOP
    % Add APCOP Velocity
    % Add MLCOP
    % Add MLCOP Velocity
```

filenamecal $=$ [Loc_ToBeProcessed,subject,trial,rawid,'1'];
fpcal = calmod(filenamecal);
[temp(:,13),temp(:,15)] =
apmlcop(smdat(:,1),smdat(:,2),smdat(:,3),smdat(:,4),fpcal);
for $i=13: 2: 15$
minitavg(i-12) = mean(temp(:,i));
temp(1:STA_DATA_SIZE,i) $=$ temp(1:STA_DATA_SIZE,i)-minitavg(i-12);
dat(1:STA_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:STA_DATA_SI
ZE, i);;
end
temp(2:STA_DATA_SIZE,14) = (dat(2:STA_DATA_SIZE,9)-
dat(1:STA_DATA_SIZE-1,9))./SAMPLING_RATE;
temp(2:STA_DATA_SIZE,16) $=\left(\operatorname{dat}\left(2: S T A _D A T A _S I Z E, 11\right)-\right.$
dat(1:STA_DATA_SIZE-1,11))./SAMPLING_RATE;
for $i=14: 2: 16$
minitavg(i-12) = mean(temp(:,i));
temp(2:STA_DATA_SIZE,i) = temp(2:STA_DATA_SIZE,i)-minitavg(i-12);
dat(2:STA_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:STA_DATA_SI
ZE, i));
end
\% ADD RMS EMG RTA
\% ADD RMS EMG RGS
\% ADD RMS EMG LTA
\% ADD RMS EMG LGS

```
    dat(:,13:16)=smdat(:,9:12);
        % Head Accel X
        % Head Accel Y
        % Head Accel Z
    for i = 21:23
    dat(1:STA_DATA_SIZE,i-4) = smdat(1:STA_DATA_SIZE,i-8);
    end
    % Bell
    dat(1:STA_DATA_SIZE,20) = smdat(1:STA_DATA_SIZE,16);
    % Add Headings
    % 1 2 3 3 4
    A = {'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
            'Shear' 'Touch' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'RTA'
'RGS' 'LTA' 'LGS' 'Head Accel X' 'Head Accel Y' 'Head Accel Z' 'Bell'};
\begin{tabular}{llllllllllll}
\(\%\) & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17
\end{tabular}
18}1
    % Writes File
    cd([Loc_Processed,subject,'\',subject,trial,'\']);
% save([subject,r,wrawid]);
    xlswrite([subject,trial,wrawid,'_sta'],A,'Sheet1','A1:T1');
    xlswrite([subject,trial,wrawid,'_sta'],dat,'Sheet1','A2:T20001');
else
    cd([Loc_Processed,subject,'\',subject,trial,'l']);
    save(['error_sta',trial],'filenameplate');
end
clear dat smdat convdata msmoothdata temp cop A trial wrawid subject
% Calculates the initial average
% By averaging first 180 Data points
function a = initavg(d,i)
    % d is array
    % i is column of data (type)
    a = mean(d(200:3600,i));
function [APCOP,MLCOP,mass] = apmlcop(11,I2,I3,I4,fpcal)
%calculating Ap-COP and MI-COP
    FP1=11-fpcal(1);
    FP2=l2-fpcal(2);
    FP3=13-fpcal(3);
    FP4=|4-fpcal(4);
```

```
%Calculate AP and ML COP
wght = FP3+FP4+FP1+FP2; %in volts
% 209.55 mm 174.625 mm
APCOP=209.55*(FP3+FP4-FP1-FP2)./wght;
MLCOP=174.625*(FP3+FP2-FP1-FP4)./wght;
% Conversion factor is linear
% (Sum of fpcal [Volts])/13.95 kg(mass of plate)
cnvfact=-39.92;
mass=wght.*cnvfact; % wght is in Volts
    % cnvfact is -39.92KG/N
%Get cal values
function f= calmod(str)
    calstr=[str '.cal'];
    fid=fopen(calstr);
    CAL= fscanf(fid, '%f',[16 inf]);
    CAL=CAL';
    fclose(fid);
    %calculates the calibration
    mcal=mean(CAL(.10*length(CAL):.90*length(CAL),:));
    %Plate Weight is substracted from the calibration values
    f=mcal(:,1:4);%+.25*.347; %platewt 13.95kg = .347V
    clear mcal;
function QSmetrics(subject,rawid,move,row,trial)
global Loc_ToBeProcessed Loc_Processed
APCOP =
xlsread([Loc_ToBeProcessed,subject,trial,rawid,'_sta.xls'],'Sheet1','I2:I20001');
MLCOP =
xlsread([Loc_ToBeProcessed,subject,trial,rawid,'_sta.xls'],'Sheet1','K2:K20001');
%calculate resultant distance
rd=sqrt(APCOP.^2+MLCOP.^2);
mdist=sum(rd)/(length(rd));
mdistap=sum(abs(APCOP))/(length(APCOP));
mdistml=sum(abs(MLCOP))/(length(MLCOP));
\%calculate rms distance from mean cop
```

```
rdist=sqrt((sum(rd..*rd))/(length(rd)));
rdistap=sqrt((sum(APCOP.*APCOP))/(length(APCOP)));
rdistml=sqrt((sum(MLCOP.*MLCOP))/(length(MLCOP)));
%calculation of total excursion
m=length(APCOP)-1;
totex=sum(sqrt(((APCOP(2:m+1)-APCOP(1:m)).^2)+((MLCOP(2:m+1)-
MLCOP(1:m)).^2)));
totexap=sum(abs(APCOP(2:m+1)-APCOP(1:m)));
totexml=sum(abs(MLCOP(2:m+1)-MLCOP(1:m)));
%calculate mean velocity
mvelo=totex/(length(APCOP)/1000);
mveloap=totexap/(length(APCOP)/1000);
mveloml=totexml/(length(APCOP)/1000);
%calculate mean, standard deviation and range of COP's
meanrd=mean(rd);
rng=range(rd);
meanap=mean(APCOP);
meanml=mean(MLCOP);
stddevrd=std(rd);
stddevap=std(APCOP);
stddevml=std(MLCOP);
rngap=range(APCOP);
rngml=range(MLCOP);
%calculate the 95% confedence circle area
areacc=pi*(mdist+1.645*(sqrt(rdist^2-mdist^2)))}\mp@subsup{)}{}{\wedge}2
%calculate the 95% confidence ellipse area
stddevapml=(sum(APCOP.*MLCOP))/(length(APCOP));
areace=2*pi*3*(sqrt(stddevap^2*stddevml^2-stddevapml^2));
%calculate the sway area
n=length(APCOP)-1;
areasway=sum(abs((APCOP(2:n+1).*MLCOP(1:n))-
(MLCOP(2:n+1).*APCOP(1:n))))/(2*length(APCOP)/1000);
%calculate mean frequency
mfreq=mvelo/(2*pi*mdist);
mfreqml=mveloml/(4*sqrt(2)*mdistml);
mfreqap=mveloap/(4*sqrt(2)*mdistap);
%calculate fractal dimension based on 95% Confidence Circle
dcc=2*(mdist+(1.645*(sqrt(rdist^2-mdist^2))));
FD_cc=log10(length(APCOP))/log10((length(APCOP)*dcc)/totex);
```

```
%calculate fractal dimension based on 95% Confidence Ellipse
dce=sqrt(8*3*sqrt(stddevap^2*stddevml^2-stddevapml^2));
FD_ce=log10(length(APCOP))/log10((length(APCOP)*dce)/totex);
% Frequency domain calculations using Multitaper method
% Calculates total power for each
i=7;
while length(APCOP)>2^i
    i=i+1;
end
nff=2^i;
m=n/2;
fs=1000;
fc=fs/2;
f = fc *[0:m]/m;
df=f(2);
LPS=6; % for 0.15 Hz cutoff for analysis
HPS=164; %for 5Hz cutoff for Analysis
% [G,w]=pmtm(rd,4.5,nfft,fs);
% [Gap,w]=pmtm(APCOP,4.5,nfft,fs);
% [Gml,w]=pmtm(MLCOP,4.5,nff,fs);
MLCOPF=fft(MLCOP,n);
Gml=MLCOPF.*conj(MLCOPF) / n;
APCOPF=fft(APCOP,n);
Gap=APCOPF.*conj(APCOPF)/n;
rdF=fft(rd,n);
G=rdF.*conj(rdF) / n;
power=sum(G(LPS:HPS));
powerap=sum(Gap(LPS:HPS));
powerml=sum(Gml(LPS:HPS));
% powerap=sum(APCOP.^2);
% powerml=sum(MLCOP.^2);
%calculates 50% power for each
pfreq50=f(2)*find(cumsum(G(LPS:HPS))>=power*0.5,1,'first');
pfreq50ap=f(2)*find(cumsum(Gap(LPS:HPS))>=powerap*0.5,1''first');
pfreq50ml=f(2)*find(cumsum(Gml(LPS:HPS))>=powerml*0.5,1,'first');
%calculates 95% power for each
pfreq95=f(2)*find(cumsum(G(LPS:HPS))>=power*0.95,1,'first');
pfreq95ap=f(2)*find(cumsum(Gap(LPS:HPS))>=powerap*0.95,1,'first');
pfreq95ml=f(2)*find(cumsum(Gml(LPS:HPS))>=powerml*0.95,1,'first');
%Calculates centroidal frequency
```

cfreq=(sum((((LPS:HPS)*df).^2). ${ }^{\star}$ G(LPS:HPS)')/power). ${ }^{\wedge} 0.5$;
cfreqap $=\left(\right.$ sum $\left(\left((\right.\right.$ LPS:HPS $\left.\left.) .{ }^{*} d f\right) .{ }^{\wedge} 2\right) .{ }^{*}$ Gap(LPS:HPS) $) /$ /powerap). ${ }^{\wedge} 0.5$;
cfreqml $=\left(\right.$ sum $\left(\left(\left(\text { LPS:HPS). }{ }^{\left.* d f) .{ }^{\wedge} 2\right) .{ }^{*} G m l(L P S: H P S)}\right)^{\prime}\right) /\right.$ powerml). ${ }^{\wedge} 0.5 ;$
\%calculates frequency dispersion
freqd=(1-
sum(((LPS:HPS). $\left.\left.{ }^{*} d f\right) .{ }^{*} G(L P S: H P S)^{\prime}\right) \wedge 2 /\left(\right.$ power*sum(((LPS:HPS). $\left.\left.{ }^{*} d f\right) .{ }^{\wedge} 2\right) .{ }^{*} G($ LPS :HPS $\left.)^{\prime}\right)$) ${ }^{\wedge} 0.5$;
freqdap $=(1-$
sum(((LPS:HPS)..df).*Gap(LPS:HPS)')^2/(powerap*sum((((LPS:HPS).*df).^2). ${ }^{*} G$ ap(LPS:HPS)')) $)^{\wedge} 0.5$;
freqdml=(1-
sum(((LPS:HPS). $\left.{ }^{*} d f\right) .{ }^{*}$ Gml(LPS:HPS) $\left.)^{\prime}\right)^{\wedge} 2 /\left(\right.$ powerml ${ }^{*}$ sum((((LPS:HPS). $\left.\left.{ }^{*} d f\right) .{ }^{\wedge} 2\right) .{ }^{*} G$ ml(LPS:HPS)')) $)^{\wedge} 0.5$;

| \% | 2 | 3 | 4 | | 6 | 7 | 8 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | | | | | | | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| 26 | 27 | 28 | 29 | 30 | 313 | | 33 | 34 | 35 | 36 | |
| 37 | 38 | 39 | 40 | 41 | 42 | | 43 | 4 | 5 | | |

output $=\{$ move meanrd meanap meanml stddevrd stddevap stddevml rng rngap rngml mdist mdistap mdistml rdist rdistap rdistml totex totexap totexml mvelo mveloap mveloml mfreq mfreqap mfreqml areacc areasway areace FD_cc FD_ce power powerap powerml pfreq50 pfreq50ap pfreq50ml pfreq95 pfreq95ap pfreq 95 ml cfreq cfreqap cfreqml freqd freqdap freqdml\}; cd(Loc_Processed);
if row==2
H = \{'Move' 'meanrd' 'meanap' 'meanml' 'stddevrd' 'stddevap' 'stddevml' 'rng' 'rngap' 'rngml' 'mdist' 'mdistap' 'mdistml' 'rdist' 'rdistap' 'rdistml' 'totex' 'totexap' 'totexml' 'mvelo' 'mveloap' 'mveloml' 'mfreq' 'mfreqap' 'mfreqml' 'areacc' 'areasway' 'areace' 'FD_cc' 'FD_ce' 'power' 'powerap' 'powerml' 'pfreq50' 'pfreq50ap' 'pfreq50ml' 'pfreq95' 'pfreq95ap' 'pfreq95ml' 'cfreq' 'cfreqap' 'cfreqml' 'freqd' 'freqdap' 'freqdml'\};
xlswrite([subject,trial,'_QS.xls'],H,'Sheet1','A1:AS1');
end
xlswrite([subject,trial,'_QS.xls'],output,'Sheet1',['A',row,':AS',row]);
function QSmetrics_Analysis(subject,row_read,trial)
global Loc_ToBeProcessed Loc_Processed row_write
[qsmetrics, move_size] =
xlsread([Loc_ToBeProcessed,subject,trial,'_QS.xls'],'Sheet1',['A2:AS',num2str(ro w_read+1)]);

```
if strcmp(trial,")
    trial={'a'};
end
qsmetricsf(1,length(move_size)*length(qsmetrics)) = 0;
cd(Loc_Processed);
```

```
\(\mathrm{H}=\{ \} ;\)
Hf = \{'Subject'\};
for (i=1:length(move_size))
```

\% Write Header for QS_Analysis Spreadsheet
H = \{['meanrd_',char(move_size(i))]...
['meanap_',char(move_size(i))]...
['meanml_',char(move_size(i))]...
['stddevrd_',char(move_size(i))]..
['stddevap_',char(move_size(i))]...
['stddevml_',char(move_size(i))].
['rng_',char(move_size(i))]...
['rngap_',char(move_size(i))]...
['rngml_',char(move_size(i))]...
['mdist_',char(move_size(i))]...
['mdistap_',char(move_size(i))]...
['mdistml_',char(move_size(i))]...
['rdist_',char(move_size(i))]...
['rdistap_',char(move_size(i))]...
['rdistml_',char(move_size(i))]...
['totex_',char(move_size(i))]...
['totexap_',char(move_size(i))]...
['totexml_',char(move_size(i))]...
['mvelo_',char(move_size(i))]...
['mveloap_',char(move_size(i))]...
['mveloml_',char(move_size(i))]...
['mfreq_',char(move_size(i))]...
['mfreqap_',char(move_size(i))]...
['mfreqml_',char(move_size(i))]...
['areacc_',char(move_size(i))]...
['areasway_',char(move_size(i))]...
['areace_',char(move_size(i))]...
['FD_cc_', char(move_size(i))]...
['FD_ce_',char(move_size(i))]...
['power',char(move_size(i))]...
['powerap_',char(move_size(i))]...
['powerml_',char(move_size(i))]...
['pfreq50_',char(move_size(i))]...

```
    ['pfreq50ap_',char(move_size(i))]...
    ['pfreq50ml_',char(move_size(i))]...
    ['pfreq95_',char(move_size(i))]...
    ['pfreq95ap_',char(move_size(i))]...
    ['pfreq95ml_',char(move_size(i))]...
    ['cfreq_',char(move_size(i))]...
    ['cfreqap_',char(move_size(i))]...
    ['cfreqml_',char(move_size(i))]...
    ['freqd_',char(move_size(i))]...
    ['freqdap_',char(move_size(i))]...
    ['freqdml_',char(move_size(i))]];
Hf=[Hf H];
qsmetricsf(1,1+(i-
1)*length(qsmetrics):i*length(qsmetrics))=qsmetrics(i,1:length(qsmetrics));
    end
if row_write==2
    xlswrite(['QS_Analysis_',char(trial),'.xls'],Hf,'Sheet1','A1');
end
xlswrite(['QS_Analysis_',char(trial),'.xls'],cellstr(subject),'Sheet1',['A',num2str(row
_write)];;
xlswrite(['QS_Analysis_',char(trial),'.xls'],qsmetricsf,'Sheet1',['B',num2str(row_writ
e)];
function QSmetrics_Analysis_Sum(subject,row_read,trial)
global Loc_ToBeProcessed Loc_Processed row_write
qsmetrics(1:3,1:25)=0;
[qsmetrics, move_size] =
xlsread([Loc_ToBeProcessed,subject,trial,'_QS.xls'],'Sheet1',['A2:AS',num2str(ro
w_read+1)]);
if strcmp(trial,")
    trial={'a'};
end
qsmetricsf_sum = sum(qsmetrics);
qsmetricsf_mean = mean(qsmetrics);
cd(Loc_Processed);
if row_write==2
    H={};
    Hf = {'Subject'};
```

```
% Write Header for QS_Analysis Spreadsheet
H = {['meanrd']..
    ['meanap']...
    ['meanml'].
    ['stddevrd']..
    ['stddevap']..
    ['stddevml'...
    ['rng']...
    ['rngap']...
    ['rngml']...
    ['mdist']...
    ['mdistap']...
    ['mdistml'].
    ['rdist']..
    ['rdistap']..
    ['rdistml']..
    ['totex']..
    ['totexap']..
    ['totexml']..
    ['mvelo']...
    ['mveloap']...
    ['mveloml']...
    ['mfreq']...
    ['mfreqap']...
    ['mfreqml']...
    ['areacc']...
    ['areasway']..
    ['areace']..
    ['FD_cc']...
    ['FD_ce']..
    ['power']...
    ['powerap']..
    ['powerml']..
    ['pfreq50']..
    ['pfreq50ap']...
    ['pfreq50ml']..
    ['pfreq95']..
    ['pfreq95ap']..
    ['pfreq95ml']..
    ['cfreq']...
    ['cfreqap']..
    ['cfreqmi']...
    ['freqd']...
    ['freqdap']...
    ['freqdml'];
Hf=[Hf H];
```

```
    xlswrite(['QS_Analysis_sum_',char(trial),'.xls'],Hf,'Sheet1','A1');
    xlswrite(['QS_Analysis_mean_',char(trial),'.xls'],Hf,'Sheet1','A1');
end
xlswrite(['QS_Analysis_sum_',char(trial),'.xls'],cellstr(subject),'Sheet1',['A',num2st
r(row_write)]);
xlswrite(['QS_Analysis_sum_',char(trial),'.xls'],qsmetricsf_sum,'Sheet1',['B',num2s
tr(row_write)]);
```

xlswrite(['QS_Analysis_mean_',char(trial),'.xls'],cellstr(subject),'Sheet1',['A',num2 str(row_write)]);
xlswrite(['QS_Analysis_mean_',char(trial),'.xls'],qsmetricsf_mean,'Sheet1',['B',nu m2str(row_write)]);

APPENDIX N

ENGINEERING UNIT CONVERSION
 ON-THE-FLY MATLAB ${ }^{\circledR}$ CODE

```
function [norm_EMG_COP,dat] =
datchanger(subject,rawid,pert,trial,cop,cal,TEKSCAN_SAMP)
Loc Processed = 'E:\datal';
Accel_CF =1;
Shear_CF =-110;
load('SMOOTH_FILTER.mat');
load('Notch60Hz.mat');
SAMPLING_RATE = 0.001;
[DAT_DATA_SIZE,COLs]=size(cop);
% Initializations
msmoothdata=zeros(DAT_DATA_SIZE,COLs);
minitavg =0;
temp =zeros(DAT_DATA_SIZE,16);
convdata=zeros(DAT_DATA_SIZE,COLs);
dat =zeros(DAT_DATA_SIZE,COLs+5);
% Tekscan File Directory
% TEKSCAN_DIR =
% Data Extraction from raw plate data
% tekscanfsx =
tekscan_processor(TEKSCAN_DIR,[subject,'_',trial,'_',rawid],filenum,1);
% Zero Baseline
for i= 5:COLs
    minitavg(i) = initavg(cop,i);
    msmoothdata(1:DAT_DATA_SIZE,i)=cop(1:DAT_DATA_SIZE,i)-minitavg(i);
end
%msmoothdata=filtfilt(Notch60Hz.tf.num,Notch60Hz.tf.den,msmoothdata);
% Conversions
% Load Cells
convdata(:,1:4) = cop(:,1:4);
% Position
convdata(:,5) = msmoothdata(:,5) .* pert;
% Acceleration
convdata(:,6) = msmoothdata(:,6) .* Accel_CF;
% Shear
convdata(:,7) = msmoothdata(:,7) .* Shear_CF;
% Touch
convdata(:,8) = msmoothdata(:,8);
% Head Accel X,Y,Z
```

```
convdata(:,9:11) = msmoothdata(:,9:11) .* Accel_CF;
```

\% EMGs
\% Always keep EMGs at End so can easily expand the number
convdata(:,12:COLs) = abs(msmoothdata(:,12:COLs));
\% Smoothing done after conversions to prevent roughening of data
smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
\% Make Output Array
\% Add milliseconds to first column
dat(1:DAT_DATA_SIZE,1) = (1:DAT_DATA_SIZE)';
\% Add Position
dat(1:DAT_DATA_SIZE,2) = smdat(1:DAT_DATA_SIZE,5);
\% Add differentiated velocity
temp(2:DAT_DATA_SIZE,7) $=($ smdat(2:DAT_DATA_SIZE,5)-
smdat(1:DAT_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth velocity
minitavg(7) = initavg(temp,7);
temp(2:DAT_DATA_SIZE,7) = temp(2:DAT_DATA_SIZE,7)-minitavg(7);
dat(2:DAT_DATA_SIZE,3) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:DAT_DATA_SI
ZE,7));
\% Add differentiated Acceleration
temp(3:DAT_DATA_SIZE,8) $=\left(\operatorname{dat}\left(3: D A T _D A T A _S I Z E, 3\right)-\right.$
dat(2:DAT_DATA_SIZE-1,3))./SAMPLING_RATE;
\% Smooth Acceleration
minitavg $(8)=$ initavg $($ temp, 8$)$;
temp(3:DAT_DATA_SIZE,8) = temp(3:DAT_DATA_SIZE,8)-minitavg(8);
dat(3:DAT_DATA_-SIZE,4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:DAT_DATA_SI
ZE,8));
\% Add Acceleration

```
dat(1:DAT_DATA_SIZE,5) = smdat(1:DAT_DATA_SIZE,6);
```

\% Add Differentiated Jerk
temp(2:DAT_DATA_SIZE,5) $=\left(\operatorname{dat}\left(2: D A T _D A T A _S I Z E, 5\right)-\right.$
$\operatorname{dat}\left(1: D A T _\overline{D A T A}\right.$ SIZE-1,5))./SAMPLING_RATE;
\% Smooth Differentiated Jerk
minitavg(5) = initavg(temp,5);
temp(2:DAT_DATA_SIZE,5) = temp(2:DAT_DATA_SIZE,5)-minitavg(5);
dat(2:DAT_DATA_SIZE,6) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:DAT_DATA_SI
ZE,5));
\% Shear
dat(1:DAT_DATA_SIZE,7) = smdat(1:DAT_DATA_SIZE,7);
\% Touch
dat(1:DAT_DATA_SIZE,8) $=$ smdat(1:DAT_DATA_SIZE,8);
\% Add APCOP
\% Add APCOP Velocity
\% Add MLCOP
\% Add MLCOP Velocity
\% 'Calculating COPs'
fpcal = calmod(cal);
[temp(:,13),temp(:,15), dat(:,9)] =
apmlcop(smdat(: $: 1$),smdat($(, 2)$,smdat($(, 3)$, smdat $(:, 4)$, fpcal $)$;
\% 'APCOP \& MLCOP'
for $i=13: 2: 15$
minitavg(i) $=$ initavg(temp, i; ;
temp(1:DAT_DATA_SIZE,i) = temp(1:DAT_DATA_SIZE,i)-minitavg(i);
$\operatorname{dat}\left(1: D A T _\right.$DATA SIZE, $\left.\mathrm{i}-3\right)=$
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:DAT_DATA_SI
ZE,i));
end
temp(2:DAT_DATA_SIZE,14) $=($ dat(2:DAT_DATA_SIZE,10)-
dat(1:DAT_DATA_SIZE-1,10))./SAMPLING_RATE;
temp(2:DAT_DATA_SIZE,16) $=\left(\operatorname{dat}\left(2:\right.\right.$ DAT_DATA_SIZE, 12 $\left.^{2}\right)-$
dat(1:DAT_DATA_SIZE-1,12))./SAMPLING_RATE;

```
for i= 14:2:16
    minitavg(i) = initavg(temp,i);
    temp(2:DAT_DATA_SIZE,i) = temp(2:DAT_DATA_SIZE,i)-minitavg(i);
    dat(2:DAT_DATA_SIZE,i-3) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:DAT_DATA_SI
ZE,i));
end
% Head Accel X
% Head Accel Y
% Head Accel Z
for i = 14:16
    dat(1:DAT_DATA_SIZE,i) = smdat(1:DAT_DATA_SIZE,i-5);
end
% ADD RMS EMG RTA
% ADD RMS EMG RGS
% ADD RMS EMG LTA
% ADD RMS EMG LGS
dat(:,17:COLs+5)=smdat(:,12:COLs);
```

\% Create Normalization Array
\% EMGs
for $i=17: 20$
norm_EMG_COP $(1, i-16)=\operatorname{mean}(\operatorname{dat}(2000: 5000, i)) ;$
norm_EMG_COP(2,i-16) $=$ mean(dat(11000:14000,i));
norm_EMG_COP(3,i-16) $=$ mean(dat(16000:19000,i));
norm_EMG_COP(4,i-16) = mean(dat(25000:28000,i));
end
\% COP
for $i=10: 2: 12$
norm_EMG_COP(1,i-5-(i-10)./2) = mean(dat(2000:5000,i));
norm_EMG_COP(2,i-5-(i-10)./2) $=$ mean(dat(11000:14000,i));
norm_EMG_COP(3,i-5-(i-10)./2) = mean(dat(16000:19000,i));
norm_EMG_COP(4,i-5-(i-10)./2) $=$ mean(dat(25000:28000,i));
end
$\mathrm{A}=\mathrm{cell}(1, \mathrm{COLs}+5)$;
\% Add Headings

| $\%$ | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A(1,1:20) $=\{$ 'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
'Shear' 'Touch' 'MASS' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'Head
Accel X' 'Head Accel Y' 'Head Accel Z' 'RTA' 'LTA' 'RGS' 'LGS'\};

| $\%$ | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 17 | 18 | 19 | 20 | | | | | | | |

if COLs > 15
for $i=16: C O L s$
\% Follows convention that Even number are on the right side if $\bmod (i, 2)==0$
leftright='R';
else
leftright='L';
end
if $i==16$
t_head='RSCM';
elseif $\mathrm{i}==17$
t_head='LSCM';
elseif $i==18$
t_head='R Soleus';
elseif $i==19$
t_head='L Soleus';
else
t_head=['EMG', leftright, num2str(i-11)];
end
$\mathrm{A}(1,20+\mathrm{i}-15)=$ cellstr(t_head);
end
end
xlspread=cell(DAT_DATA_SIZE+1,COLs+5);
xlspread(1,1:COLs+5)=A(1,1:COLs+5);
xlspread(2:DAT_DATA_SIZE+1,1:COLs+5)=num2cell(dat);
\% Writes File
mkdir([Loc_Processed,subject,''l',subject,',','trial,'\ENGRUNITSI']) cd([Loc_Processed,subject,'\',subject,',',trial,'\ENGRUNITS'']);
xlswrite([subject,'_',trial,'_',rawid],xlspread,'Sheet1','A1');

```
%*
%*****Tekscan .fsx processing Weight Even
tekdir=[Loc_Processed,subject,'\',subject,'_',trial,'\Tekscan\'];
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_,'trial,'_',strrep(rawid,'_emcp',"),num
2str(1,'%04d')],1);
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
```

```
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot'};
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN_SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,'_',rial,'_',rawid],tekspread,'TekscanEW1','A1');
%*********************************
%********************************
%*****Tekscan .fsx processing on Toes
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_',trial,'_',strrep(rawid,'_emcp',"),num
2str(2,'%04d')],1);
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot'};
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN_SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,'_',trial,'_',rawid],tekspread,'TekscanToes','A1');
%********************************
%********************************
%*****Tekscan .fsx processing on Heels
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_,'trial,'_',strrep(rawid,'_emcp',"),num
2str(3,'%04d')],1);
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot'};
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN_SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,'_',trial,'_',rawid],tekspread,'TekscanHeels','A1');
%********************************
%********************************
%*****Tekscan .fsx processing Weisht Even Again
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_',trial,'_',strrep(rawid,'_emcp',"),num
2str(4,'%04d')],1);
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
```

```
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot'};
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN_SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,'_,'trial,'_,rawid],tekspread,'TekscanEW2','A1');
%********************************
%****************************************
%****Tekscan Sum File
teksum=cell(5,2);
teksum(1,:)={'Filename' 'Description'};
teksum(2,:)={[subject,'_',trial,'_',strrep(rawid,'_emcp',"),num2str(1,'%04d')] 'EMG
COP: Weight even on both Feet'};
teksum(3,:)={[subject,'_,,trial,'_',strrep(rawid,'_emcp',"),num2str(2,'%04d')] 'EMG
COP: On Toes'};
teksum(4,:)={[subject,'_',trial,'_',strrep(rawid,'_emcp',"),num2str(3,'%04d')] 'EMG
COP: On Heels'};
teksum(5,:)={[subject,'_',trial,'_',strrep(rawid,'_emcp',"),num2str(4,'%04d')] 'EMG
COP: Weight even on both Feet'};
cd(tekdir);
xlswrite([subject,'_',trial,'_',strrep(rawid,'_emcp',"),'_tekscan_sum'],teksum,'Sheet
1','A1');
%****************************************
clear Loc_Processed smdat convdata msmoothdata leftright t_head temp cop A clear Accel_CF Shear_CF Load_Cell_CF DAT_DATA_SIZE SMOOTH_FILTER
clear SAMPLING_RATE minitavg subject trial rawid xlspread
function [dat] =
filechanger(subject,rawid,pert,trial,trialnum,cop,cal,norm_EMG_COP,sta_avg,fre
q,noise_amp,sumd,sinusoid_setup,TEKSCAN_SAMP,PEAK_NUM)
Loc_Processed = 'E:\datal';
Accel_CF = 1;
Shear_CF =-110;
load('SMOOTH_FILTER.mat');
SAMPLING_RATE = 0.001; %Sampling Period
```

[RAW_DATA_SIZE,COLs]=size(cop);
\% Initializations
msmoothdata=zeros(RAW_DATA_SIZE,COLs);
minitavg=zeros(1,COLs+3);
temp =zeros(RAW_DATA_SIZE,COLs);
convdata=zeros(RĀW_DATA_SIZE,COLs);
dat =zeros(RAW_DATA_SIZE,COLs+5);
\%*
\% Header Setup
filenamesum=[Loc_Processed,subject,'1',subject,',',trial,'1ENGRUNITSI',subject,'_
',trial,'_',rawid,'_F',freq,'_sum'];
if trialnum $==1$
avg_h=cell(2,COLs+4);
avg_h(1,1:16) $=\{$ 'Trial' 'APCOP' 'APCOPV' 'MLCOP' 'MLCOPV' 'Position'
'Acceleration' ...
'Shear' 'Touch' 'Head Accel X' 'Head Accel Y' 'Head Accel Z' 'RTA'
'LTA' 'RGS' 'LGS'\};
if COLs > 15 for $\mathrm{i}=16$: COLs
\% Follows convention that Even number are on the right side if $\bmod (\mathrm{i}, 2)==0$
leftright='R';
else
leftright='L';
end
if $i==16$
t_head='RSCM';
elseif $\mathrm{i}==17$
t_head='LSCM';
elseif $i==18$
t_head='R Soleus';
elseif $i==19$
t_head='L Soleus';
else
t_head=['EMG', leftright, num2str(i-11)];
end
$\operatorname{avg}_{\mathrm{L}} \mathrm{h}(1, \mathrm{i}+1)=\left\{\mathrm{t}_{-}\right.$head $\} ;$ end
end
avg_h(1,COLs+2:COLs+4) = \{'Diff velocity' 'Diff Accel' 'Diff jerk'\};
avg_h(2,1)=\{'QS'\};
avg_h(2,2:COLs+4)=num2cell(sta_avg);
fsumh=cell $(3,10)$;
fsumh(1,1:6)=\{filenamesum ' ' 'Front' ' ' 'Sample Frequency = 1000 Hz'
['Sinusoidal Setup String: ',sinusoid_setup]\};
dtstr=datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM');
fsumh(1,2)=\{dtstr\};
fsumh (1,4)=num2cell(noise_amp);
fsumh (3,1:10)=\{'Trial \#' 'Detection Code' 'Increment' 'Amplitude' 'Peak
Acceleration' 'Reversals' 'Consecutive Reversals' 'Detection' 'Tekscan Filename'
'Peak Filename'\};
xlswrite(filenamesum,fsumh,'Sheet1','A1');
xlswrite(filenamesum,avg_h,'AVG','A1');

```
end
%%*******************************************
% Zero Baseline
% 5 to 15
for i= 5:COLs
    minitavg(i) = initavg(cop,i);
    msmoothdata(1:RAW_DATA_SIZE,i)=cop(1:RAW_DATA_SIZE,i)-sta_avg(i);
end
% Conversions
% Load Cells
convdata(:,1:4) = cop(:,1:4);
% Position
convdata(:,5) = msmoothdata(:,5) . * pert;
% Acceleration
convdata(:,6) = msmoothdata(:,6) .* Accel_CF;
% Shear
convdata(:,7) = msmoothdata(:,7) .* Shear_CF;
% Touch
convdata(:,8) = msmoothdata(:,8);
% Head Accel X,Y,Z
convdata(:,9:11) = msmoothdata(:,9:11) .* Accel_CF;
% EMGs
% ALways keep EMGs at End so can easily expand the number
convdata(:,12:COLs) = abs(msmoothdata(:,12:COLs));
\% Smoothing done after conversions to prevent roughening of data
smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
% Make Output Array
% Add milliseconds to first column
dat(1:RAW_DATA_SIZE,1) = (1:RAW_DATA_SIZE)';
% Add Position
dat(1:RAW_DATA_SIZE,2) = smdat(1:RAW_DATA_SIZE,5);
% Add differentiated velocity
```

```
temp(2:RAW_DATA_SIZE,7) = (smdat(2:RAW_DATA_SIZE,5)-
smdat(1:RAW_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth velocity
minitavg \((\) COLs +1\()=\) initavg \((\) temp, 7 );
temp(2:RAW_DATA_SIZE,7) \(=\) temp(2:RAW_DATA_SIZE,7)-sta_avg(7); dat(2:RAW_DATA_SIZE,3) = filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:RAW_DATA_SI ZE,7));
```


\% Add differentiated Acceleration

```
temp(3:RAW_DATA_SIZE,8) = (dat(3:RAW_DATA_SIZE,3)-
dat(2:RAW_DATA_SIZE-1,3))./SAMPLING_RATE;
% Smooth Acceleration
minitavg(COLs+2) = initavg(temp,8);
temp(3:RAW_DATA_SIZE,8) = temp(3:RAW_DATA_SIZE,8)-sta_avg(8);
dat(3:RAW_DATA_SIZE,4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:RAW_DATA_SI
ZE,8));
```

\% Add Acceleration
dat(1:RAW_DATA_SIZE,5) = smdat(1:RAW_DATA_SIZE,6);
temp(2:RAW_DATA_SIZE,5) $=($ dat(2:RAW_DATA_SIZE,5) -
dat(1:RAW_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth Jerk
minitavg $($ COLs +3) $=$ initavg $($ temp,5);
temp(2:RAW_DATA_SIZE,5) = temp(2:RAW_DATA_SIZE,5)-sta_avg(5);
dat(2:RAW_DATA_SIZE,6) =
filtfilt(SMOŌTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:RAW_DATA_SI
ZE,5));
\% Shear
dat(1:RAW_DATA_SIZE,7) = smdat(1:RAW_DATA_SIZE,7);
\% Touch
dat(1:RAW_DATA_SIZE,8) = smdat(1:RAW_DATA_SIZE,8);
\% Add APCOP
\% Add APCOP Velocity
\% Add MLCOP
\% Add MLCOP Velocity
\% 'Calculating COPs'
fpcal = calmod(cal);
[temp(:,13),temp(:,15),dat(:,9)] = apmlcop(smdat(:,1),smdat(:,2),smdat(:,3),smdat(:,4),fpcal);
\% 'APCOP \& MLCOP'
for $i=13: 2: 15$
minitavg(i-12) = initavg(temp,i);
temp(1:RAW_DATA_SIZE,i) = temp(1:RAW_DATA_SIZE,i)-sta_avg(i-12);
$\operatorname{dat}\left(1: R A W _\right.$DATA_SIZE,i-3) $=$
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:RAW_DATA_SI ZE,i));
end
temp(2:RAW_DATA_SIZE,14) $=\left(\operatorname{dat}\left(2: R A W _D A T A _S I Z E, 10\right)-\right.$
dat(1:RAW_DATA_SIZE-1,10))./SAMPLING_RATE;
temp(2:RAW_DATA_SIZE,16) $=(\operatorname{dat}(2:$ RAW_DATA_SIZE,12)-dat(1:RAW_DATA_SIZE-1,12))./SAMPLING_RATE;
for $i=14: 2: 16$
minitavg(i-12) = initavg(temp,i);
temp(2:RAW_DATA_SIZE,i) = temp(2:RAW_DATA_SIZE,i)-sta_avg(i-12);
$\operatorname{dat}(2:$ RAW_DATA_SIZE, $i-3)=$
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:RAW_DATA_SI
ZE,));
end
\% Head Accel X
\% Head Accel Y
\% Head Accel Z
for $i=14: 16$
dat(1:RAW_DATA_SIZE,i) = smdat(1:RAW_DATA_SIZE,i-5);
end
\% ADD RMS EMG RTA
\% ADD RMS EMG RGS
\% ADD RMS EMG LTA
\% ADD RMS EMG LGS
dat(: $: 17)=$ smdat $(:, 12) . / n o r m=E M G _C O P(3,1)$;
dat(:,18)=smdat(:,13)./norm_EMG_COP(2,3);
dat(: $: 19$)=smdat(:,14)./norm_EMG_COP(3,3);

```
dat(:;20)=smdat(:,15)./norm_EMG_COP(2,4);
dat(:,21:COLs+5)=smdat(:,16:COLs);
A=cell(1,COLs+5);
% Add Headings
% 1 2 3 4 4 5 6
A(1,1:20) = {'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
    'Shear' 'Touch' 'MASS' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'Head
Accel X' 'Head Accel Y' 'Head Accel Z' 'RTA' 'LTA' 'RGS' 'LGS'};
% 
17}1018\quad19\quad2
if COLs > 15
    for i=16:COLs
        % Follows convention that Even number are on the right side
        if mod(i,2) == 0
            leftright='R';
        else
            leftright='L';
        end
        if i==16
            t_head='RSCM';
        elseif i==17
            t_head='LSCM';
        elseif i==18
            t_head='R Soleus';
        elseif i==19
            t_head='L Soleus';
        else
            t_head=['EMG', leftright, num2str(i-11)];
        end
        A(1,20+i-15)={t_head};
    end
end
% Builds Cell Array for Spread Sheet
xlspread=cell(RAW_DATA_SIZE+1,COLs+5);
xlspread(1,1:COLs+5)=A(1,1:COLs+5);
xlspread(2:RAW_DATA_SIZE+1,1:COLs+5)=num2cell(dat);
% Writes File
cd([Loc_Processed,subject,'\',subject,'_',trial,'\ENGRUNITS\']);
if (trialnum<10)
```

```
xlswrite([subject,'_,'trial,'_,rawid,'_F',freq,'_0',num2str(trialnum)],xlspread,'Sheet1'
,'A1');
else
xlswrite([subject,'_,'trial,'_,,rawid,'_F',freq,'_,,num2str(trialnum)],xlspread,'Sheet1','
A1');
end
%*
%****Sum File Writer
% Add Trial Information
fsumd=cell(1,10);
fsumd(1,1)=num2cell(trialnum);
fsumd(1,2:7)=num2cell(sumd(1:6));
switch sumd(1)
    case 0
    fsumd(1,8)={'HIT'};
    case 1
        fsumd(1,8)={'MISS'};
    case 2
    fsumd(1,8)={'FALSE ALARM'};
    case 3
    fsumd(1,8)={'CORRECT REJECTION'};
    case -1
    error('Bad Detection')
end
fsumd(1,9)={[subject,'','trial,'_',rawid,num2str(sumd(7),'%04d')]};
fsumd(1,10)={[subject,'_',trial,'_',rawid,num2str(PEAK_NUM,'%04d')]};
xlswrite(filenamesum,fsumd,'Sheet1',['A',num2str(trialnum+3)]);
avgd=cell(1,COLs+4);
avgd(1,1)=num2cell(trialnum);
avgd(1,2:COLs+4)=num2cell(minitavg);
xlswrite(filenamesum,avgd,'AVG',['A',num2str(trialnum+2)]);
%*
%********************************
%*****Tekscan .fsx processing
tekdir=[Loc_Processed,subject,'\',subject,'_',trial,'\Tekscan\'];
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_,'trial,'_',rawid,num2str(sumd(7),'%0
4d')],1);
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
```

```
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot'};
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,'_',trial,'_,rawid,'_F',freq,'_',num2str(trialnum,'%02d')],tekspread,'
Tekscan','A1');
%*********************************
%
%****Tekscan Sum File
teksum=cell(1,2);
teksum(1,:)={[subject,',',trial,'_',rawid,num2str(sumd(7),'%04d')] ['Threshold Trial
', num2str(trialnum),' at ', freq, ' Frequency']};
cd(tekdir);
xlswrite([subject,'_',trial,'_',rawid,'_tekscan_sum'],teksum,'Sheet1',['A',num2str(su
md(7)+1)]);
%****************************************
% Clear workspace
clear smdat temp convdata tekdat leftright t_head msmoothdata cop sta_avg
subject rawid pert trial trialnum fsumd fsumct fsumc fsumh fsuml A xlspread
function dat =
lockchanger(subject,rawid,pert,trial,cop,cal,norm_EMG_COP,Freq,sumd,trialnum
,TEKSCAN_SAMP,PEAK_NUM)
% Setup so all EMGs are the last columns
Loc_Processed = 'E:\datal';
Accel_CF =1;
Shear_CF =-110;
load('SMOOTH_FILTER.mat');
SAMPLING_RATE = 0.001;
[LOCK_DATA_SIZE,COLs]=size(cop);
% Initializations
msmoothdata=zeros(LOCK_DATA_SIZE,COLs);
minitavg =zeros(1,COLs+3);
temp =zeros(LOCK_DATA SIZE,16);
convdata=zeros(LOCK_DATTA_SIZE,COLs);
dat =zeros(LOCK_DATA_SIZE,COLs+5);
\%****Sum File Writer
\% Header Setup
```

if trialnum == 1
avg_h=cell(1,COLs+4);
avg_h(1,1:16) =\{'Trial' 'APCOP' 'APCOPV' 'MLCOP' 'MLCOPV' 'Position'
'Acceleration' ...
'Shear' 'Touch' 'Head Accel X' 'Head Accel Y' 'Head Accel Z' 'RTA'
'LTA' 'RGS' 'LGS'\};
if COLs > 15
for $i=16$:COLs
\% Follows convention that Even number are on the right side
if $\bmod (i, 2)==0$
leftright='R';
else
leftright='L';
end
if $\mathrm{i}==16$
t_head='RSCM';
elseif $i==17$
t_head='LSCM';
elseif $i==18$
t_head='R Soleus';
elseif $i==19$
t_head='L Soleus';
else
t_head=['EMG', leftright, num2str(i-11)];
end
avg_h(1,i+1)=\{t_head\};
end
end
avg_h(1,COLs+2:COLs+4) = \{'Diff velocity' 'Diff Accel' 'Diff jerk'\};
fsumh=cell(3,6);
fsumh(1,1:5)=\{filenamesum ' ' 'Front' 'No Noise at Start' 'Sample Frequency =
1000 Hz'\};
dtstr=datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM');
fsumh(1,2)=\{dtstr\};
fsumh(3,1:6)=\{'Trial \#' Freq 'Amplitude' 'Peak Acceleration' 'Tekscan Filename'
'PEAK File Number'\};
xlswrite(filenamesum,fsumh,'Sheet1','A1');
xlswrite(filenamesum,avg_h,'AVG','A1');
end
$\%$ \%***********************************
\% Zero Baseline
for $\mathrm{i}=5$:COLs

```
    minitavg(i) = mean(cop(200:4200,i));
    msmoothdata(1:LOCK_DATA_SIZE,i)=cop(1:LOCK_DATA_SIZE,i)-
minitavg(i);
end
% Conversions
    % Load Cells
convdata(:,1:4) = cop(:,1:4);
% Position
convdata(:,5) = msmoothdata(:,5) .* pert;
% Acceleration
convdata(:,6) = msmoothdata(:,6) .* Accel_CF;
% Shear
convdata(:,7) = msmoothdata(:,7) .* Shear_CF;
% Touch
convdata(:,8) = msmoothdata(:,8);
% Head Accel X,Y,Z
convdata(:,9:11) = msmoothdata(:,9:11) .* Accel_CF;
% EMGs
% ALways keep EMGs at End so can easily expand the number
convdata(:,12:COLs) = abs(msmoothdata(:,12:COLs));
% Smoothing done after conversions to prevent roughening of data
disp('Smoothing')
smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
% Make Output Array
% Add milliseconds to first column
dat(1:LOCK_DATA_SIZE,1) = (1:LOCK_DATA_SIZE)';
% Add Position
dat(1:LOCK_DATA_SIZE,2) = smdat(1:LOCK_DATA_SIZE,5);
% Add differentiated velocity
temp(2:LOCK_DATA_SIZE,7) = (smdat(2:LOCK_DATA_SIZE,5)-
smdat(1:LOCK_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth velocity
minitavg(COLs+1) = initavg(temp,7);
```

temp(2:LOCK_DATA_SIZE,7) $=$ temp(2:LOCK_DATA_SIZE,7)minitavg(COLs+1);
dat(2:LOCK_DATA_SIZE,3) = filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:LOCK_DATA_ SIZE,7));
\% Add differentiated Acceleration

```
temp(3:LOCK_DATA_SIZE,8) = (dat(3:LOCK_DATA_SIZE,3)-
dat(2:LOCK_DATA_SIZE-1,3))./SAMPLING_RATE;
% Smooth Acceleration
minitavg(COLs+2) = initavg(temp,8);
temp(3:LOCK_DATA_SIZE,8) = temp(3:LOCK_DATA_SIZE,8)-
minitavg(COLs+2);
dat(3:LOCK_DATA_SIZE,4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:LOCK_DATA_
SIZE,8));
disp('Accelerating')
% Add Acceleration
dat(1:LOCK_DATA_SIZE,5) = smdat(1:LOCK_DATA_SIZE,6);
% Add Differentiated Jerk
```

temp(2:LOCK_DATA_SIZE,5) $=(\operatorname{dat}(2:$ LOCK_DATA_SIZE,5)-
dat(1:LOCK_DATA_SIZE-1,5))./SAMPLING_RATE;
\% Smooth Differentiated Jerk
minitavg $($ COLs +3) $=$ initavg $($ temp,5);
temp(2:LOCK_DATA_SIZE,5) $=$ temp(2:LOCK_DATA_SIZE,5)-
minitavg(COLs+3);
dat(2:LOCK_DATA_SIZE,6) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:LOCK_DATA_
SIZE,5));
\% Shear
dat(1:LOCK_DATA_SIZE,7) $=\operatorname{smdat}\left(1: L O C K _D A T A _S I Z E, 7\right) ;$
\% Touch
dat(1:LOCK_DATA_SIZE,8) $=$ smdat(1:LOCK_DATA_SIZE,8);
\% Add APCOP
\% Add APCOP Velocity
\% Add MLCOP
\% Add MLCOP Velocity

```
% 'Calculating COPs'
fpcal = calmod(cal);
[temp(:,13),temp(:,15),dat(:,9)] =
apmlcop(smdat(:,1),smdat(:,2),smdat(:,3),smdat(:,4),fpcal);
% 'APCOP & MLCOP'
for i=13:2:15
    minitavg(i-12) = mean(temp(:,i));
    temp(1:LOCK_DATA_SIZE,i) = temp(1:LOCK_DATA_SIZE,i)-minitavg(i-12);
    dat(1:LOCK_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:LOCK_DATA_
SIZE,i));
end
temp(2:LOCK_DATA_SIZE,14) = (dat(2:LOCK_DATA_SIZE,9)-
dat(1:LOCK_DATA_SIZE-1,9))./SAMPLING_RATE;
temp(2:LOCK_DATA_SIZE,16) = (dat(2:LOCK_DATA_SIZE,11)-
dat(1:LOCK_DATA_SIZE-1,11))./SAMPLING_RATE;
for i= 14:2:16
    minitavg(i-12) = mean(temp(:,i));
    temp(2:LOCK_DATA_SIZE,i) = temp(2:LOCK_DATA_SIZE,i)-minitavg(i-12);
    dat(2:LOCK_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:LOCK_DATA_
SIZE,i);;
end
% Head Accel X
% Head Accel Y
% Head Accel Z
for i = 14:16
    dat(1:LOCK_DATA_SIZE,i) = smdat(1:LOCK_DATA_SIZE,i-5);
end
% ADD RMS EMG RTA
% ADD RMS EMG RGS
% ADD RMS EMG LTA
% ADD RMS EMG LGS
dat(:,17)=smdat(:,12)./norm_EMG_COP(3,1);
dat(:,18)=smdat(:,13)./norm_EMG_COP(2,3);
dat(:,19)=smdat(:,14)./norm_EMG_COP(3,3);
```

```
dat(:,20)=smdat(:,15)./norm_EMG_COP(2,4);
dat(:,21:COLs+5)=smdat(:,16:COLs);
A=cell(1,COLs+5);
% Add Headings
% 1 2 3 4 5 6
A(1,1:20) = {'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
    'Shear' 'Touch' 'MASS' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'Head
Accel X' 'Head Accel Y' 'Head Accel Z' 'RTA' 'LTA' 'RGS' 'LGS'};
% 
17}1818\quad19\quad2
if COLs > 15
    for i=16:COLs
        % Follows convention that Even number are on the right side
        if mod(i,2) == 0
            leftright='R';
        else
            leftright='L';
        end
        if i==16
            t_head='RSCM';
        elseif i==17
            t_head='LSCM';
        elseif i==18
            t_head='R Soleus';
        elseif j==19
            t_head='L Soleus';
        else
            t_head=['EMG', leftright, num2str(i-11)];
        end
        A(1,20+i-15)={t_head};
    end
end
cd([Loc_Processed,subject,\','subject,'_',trial,'\ENGRUNITS\']);
save([subject,'_,,trial,'_',rawid,'_',Freq,'_sta'],'dat');
for i=1:(LOCK_DATA_SIZE-5000)/60000+1
    if i == 1
        xlspread=cell(5000+1,COLs+5);
        xlspread(1,1:COLs+5)=A(1,1:COLs+5);
        xlspread(2:5000+1,1:COLs+5)=num2cell(dat(1:5000,:));
```

```
    else
        xlspread=cell(60000+1,COLs+5);
        xlspread(1,1:COLs+5)=A(1,1:COLs+5);
        xlspread(2:60000+1,1:COLs+5)=num2cell(dat(5001+60000*(i-
2):65000+60000*(i-2),:));
    end
    % Writes File
xlswrite([subject,'_',trial,'_',rawid,'_',Freq,'_sta'],xlspread,['Sheet',num2str(i)],'A1');
    clear xlspread
end
%*
%****Sum File Writer
% Add Trial Information
fsumd=cell(1,6);
fsumd(1,1)=num2cell(trialnum);
fsumd(1,2)={Freq};
fsumd(1,3:4)=num2cell(sumd(1:2));
fsumd(1,5)={[subject,'_',trial,'_',strrep(rawid,'_lock',"),num2str(sumd(3),'%04d')]};
fsumd(1,6)={[subject,'_',trial,'_',strrep(rawid,'_lock',"),num2str(PEAK_NUM,'%04d'
)]};
xlswrite(filenamesum,fsumd,'Sheet1',['A',num2str(trialnum+3)]);
avgd=cell(1,COLs+4);
avgd(1,1)=num2cell(trialnum);
avgd(1,2:COLs+4)=num2cell(minitavg);
xlswrite(filenamesum,avgd,'AVG',['A',num2str(trialnum+1)]);
%********************************
%********************************
%*****Tekscan .fsx processing
tekdir=[Loc_Processed,subject,'\',subject,'_','trial,'TTekscan\'];
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_',trial,'_',strrep(rawid,'_lock',"),num2s
tr(sumd(3),'%04d')],1);
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot';;
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN_SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,',',trial,'_',rawid,'_',Freq,'_sta'],tekspread,'Tekscan','A1');
%*
```

```
%
%****Tekscan Sum File
teksum=cell(1,2);
teksum(1,:)={[subject,'_,'trial,'_',strrep(rawid,'_lock',"),num2str(sumd(3),'%04d')]
['Threshold Trial ', num2str(trialnum),' at ', Freq, ' Frequency']};
cd(tekdir);
xlswrite([subject,'_,'trial,'_',strrep(rawid,'_lock',"),'_tekscan_sum'],teksum,'Sheet1',
['A',num2str(sumd(3)+1)]);
%***************************************
clear smdat convdata msmoothdata temp cop A trial subject rawid clear Loc_Processed Accel_CF Shear_CF LOCK_DATA_SIZE clear SMOOTH_FILTER SAMMPLING_RATE i leftright t_head
function [minitavg,dat] =
stachanger(subject,rawid,pert,trial,cop,cal,norm_EMG_COP,Freq,teknum,TEKS CAN_SAMP)
Loc_Processed = 'E:Idatal';
Accel_CF =1;
Shear_CF =-110;
load('SMOOTH_FILTER.mat');
SAMPLING_RATE \(=0.001\);
[STA_DATA_SIZE,COLs]=size(cop);
\% Initializations
msmoothdata=zeros(STA_DATA_SIZE,COLs);
minitavg =zeros(1,1:18);
temp =zeros(STA_DATA_SIZE,16);
convdata=zeros(STA_DATA_SIZE,COLs);
dat =zeros(STA_DATA_SIZE,COLs+5);
\% Zero Baseline
for \(i=5\) :COLs
minitavg(i) \(=\) mean \((\operatorname{cop}(:, i))\);
msmoothdata(1:STA_DATA_SIZE,i)=cop(1:STA_DATA_SIZE,i)-minitavg(i);
end
\% Conversions
\% Load Cells
convdata(:,1:4) = cop(:,1:4);
\% Position
convdata(:,5) = msmoothdata(:,5) .* pert;
\% Acceleration
convdata(:,6) = msmoothdata(:,6) .* Accel_CF;
```

```
% Shear
convdata(:,7) = msmoothdata(:,7) .* Shear_CF;
% Touch
convdata(:,8) = msmoothdata(:,8);
% Head Accel X,Y,Z
convdata(:,9:11) = msmoothdata(:,9:11) .* Accel_CF;
```

\% EMGs
\% ALways keep EMGs at End so can easily expand the number
convdata(:,12:COLs) = abs(msmoothdata(:,12:COLs));
\% Smoothing done after conversions to prevent roughening of data
smdat=filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,convdata);
\% Make Output Array
\% Add milliseconds to first column
dat(1:STA_DATA_SIZE,1) $=\left(1: S T A _D A T A _S I Z E\right) ' ;$
\% Add Position
$\operatorname{dat}\left(1: S T A _D A T A _S I Z E, 2\right)=\operatorname{smdat}\left(1: S T A _D A T A _S I Z E, 5\right) ;$
\% Add differentiated velocity
temp(2:STA_DATA_SIZE,7) $=($ smdat(2:STA_DATA_SIZE,5)-
smdat(1:STA__DATA__SIZE-1,5))./SAMPLING_RATE;
\% Smooth velocity
minitavg $($ COLs +1$)=$ initavg $($ temp, 7$)$;
temp(2:STA_DATA_SIZE,7) $=$ temp(2:STA_DATA_SIZE,7)-minitavg(COLs+1);
$\operatorname{dat}\left(2: S T A _D A T A _\overline{S I Z E}, 3\right)=$
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:STA_DATA_SI
ZE,7));
\% Add differentiated Acceleration
temp(3:STA_DATA_SIZE,8) $=$ (dat(3:STA_DATA_SIZE,3)-
dat(2:STA_DATA_SIZE-1,3))./SAMPLING_RATE;
\% Smooth Acceleration
minitavg (COLs+2) $=$ initavg $($ temp,8);
temp(3:STA_DATA_SIZE,8) = temp(3:STA_DATA_SIZE,8)-minitavg(COLs+2);

```
dat(3:STA_DATA_SIZE,4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(3:STA_DATA_SI
ZE,8));
% Add Acceleration
dat(1:STA_DATA_SIZE,5) = smdat(1:STA_DATA_SIZE,6);
% Add Differentiated Jerk
temp(2:STA_DATA_SIZE,5) = (dat(2:STA_DATA_SIZE,5)-
dat(1:STA_DATA_SIZE-1,5))./SAMPLING_RATE;
% Smooth Differentiated Jerk
minitavg(COLs+3) = initavg(temp,5);
temp(2:STA_DATA_SIZE,5) = temp(2:STA_DATA_SIZE,5)-minitavg(COLs+3);
dat(2:STA_DATA_SIZE,6) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:STA_DATA_SI
ZE,5));
% Shear
dat(1:STA_DATA_SIZE,7) = smdat(1:STA_DATA_SIZE,7);
% Touch
dat(1:STA_DATA_SIZE,8) = smdat(1:STA_DATA_SIZE,8);
% Add APCOP
% Add APCOP Velocity
% Add MLCOP
% Add MLCOP Velocity
% 'Calculating COPs'
fpcal = calmod(cal);
[temp(:,13),temp(:,15),dat(:,9)] =
apmlcop(smdat(:,1),smdat(:,2),smdat(:,3),smdat(:,4),fpcal);
% 'APCOP & MLCOP'
for i=13:2:15
    minitavg(i-12) = mean(temp(:,i));
    temp(1:STA_DATA_SIZE,i) = temp(1:STA_DATA_SIZE,i)-minitavg(i-12);
    dat(1:STA_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(1:STA_DATA_SI
ZE,i));
end
```

```
temp(2:STA_DATA_SIZE,14) = (dat(2:STA_DATA_SIZE,9)-
dat(1:STA_DATA_SIZE-1,9))./SAMPLING_RATE;
temp(2:STA_DATA_SIZE,16) = (dat(2:STA_DATA_SIZE,11)-
dat(1:STA_DATA_SIZE-1,11))./SAMPLING_RATE;
for i= 14:2:16
    minitavg(i-12) = mean(temp(:,i));
    temp(2:STA_DATA_SIZE,i) = temp(2:STA_DATA SIZE,i)-minitavg(i-12);
    dat(2:STA_DATA_SIZE,i-4) =
filtfilt(SMOOTH_FILTER.tf.num,SMOOTH_FILTER.tf.den,temp(2:STA_DATA_SI
ZE,i);;
end
% Head Accel X
% Head Accel Y
% Head Accel Z
for i = 14:16
    dat(1:STA_DATA_SIZE,i) = smdat(1:STA_DATA_SIZE,i-5);
end
% ADD RMS EMG RTA
% ADD RMS EMG RGS
% ADD RMS EMG LTA
% ADD RMS EMG LGS
dat(:,17)=smdat(:,12)./norm_EMG_COP(3,1);
dat(:,18)=smdat(:,13)./norm_EMG_COP(2,3);
dat(:,19)=smdat(:,14)./norm_EMG_COP(3,3);
dat(:,20)=smdat(:,15)./norm_EMG_COP(2,4);
dat(:,21:COLs+5)=smdat(:,16:COLs);
A=cell(1,COLs+5);
% Add Headings
\begin{tabular}{lllllll}
\(\%\) & 1 & 2 & 3 & 5
\end{tabular}
A(1,1:20) = {'Time' 'Position' 'Diff velocity' 'Diff Accel' 'Accel' 'Diff jerk'...
    'Shear' 'Touch' 'MASS' 'APCOP' 'APCOP Vel' 'MLCOP' 'MLCOP Vel' 'Head
Accel X' 'Head Accel Y' 'Head Accel Z' 'RTA' 'LTA' 'RGS' 'LGS'};
\begin{tabular}{lllllllllll}
\(\%\) & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16
\end{tabular}
17}1018\quad19\quad2
if COLs > 15
    for i=16:COLs
```

```
    % Follows convention that Even number are on the right side
    if mod(i,2) == 0
        leftright='R';
        else
        leftright='L';
        end
        if i==16
        t_head='RSCM';
        elseif i==17
        t_head='LSCM';
        elseif i==18
            t_head='R Soleus';
        elseif i==19
        t_head='L Soleus';
        else
            t_head=['EMG', leftright, num2str(i-11)];
        end
        A(1,20+i-15)={t_head};
    end
end
xlspread=cell(STA_DATA_SIZE+1,COLs+5);
xlspread(1,1:COLs+5)=A(1,1:COLs+5);
xlspread(2:STA_DATA_SIZE+1,1:COLs+5)=num2cell(dat);
```

```
% Writes File
```

% Writes File
cd([Loc_Processed,subject,'\',subject,'_,'trial,'\ENGRUNITS\']);
cd([Loc_Processed,subject,'\',subject,'_,'trial,'\ENGRUNITS\']);
xlswrite([subject,'_,',trial,'_',rawid,'_',Freq,'_sta'],xlspread,'Sheet1','A1');
xlswrite([subject,'_,',trial,'_',rawid,'_',Freq,'_sta'],xlspread,'Sheet1','A1');
%
%
%*****Tekscan .fsx processing
%*****Tekscan .fsx processing
tekdir=[Loc_Processed,subject,'\',subject,'_',trial,'ITekscanl'];
tekdir=[Loc_Processed,subject,'\',subject,'_',trial,'ITekscanl'];
[tekdat, feetcop,
[tekdat, feetcop,
pweight]=tekmat_processor([tekdir,subject,'_',trial,'_',strrep(rawid,'_QS',"),num2st
pweight]=tekmat_processor([tekdir,subject,'_',trial,'_',strrep(rawid,'_QS',"),num2st
r(teknum,'%04d')],1);
r(teknum,'%04d')],1);
tekdat=[tekdat feetcop pweight];
tekdat=[tekdat feetcop pweight];
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
tekspread=cell(size(tekdat,1)+1,size(tekdat,2)+1);
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
tekspread(1,:)={'Time' 'APCOP' 'MLCOP' 'RAPCOP' 'RMLCOP' 'LAPCOP'
'LMLCOP' '% Right Foot' '% Left Foot'};
'LMLCOP' '% Right Foot' '% Left Foot'};
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
tekspread(2:size(tekdat,1)+1,1)=num2cell(1/TEKSCAN_SAMP:1/TEKSCAN_SA
MP:size(tekdat,1)/TEKSCAN_SAMP);
MP:size(tekdat,1)/TEKSCAN_SAMP);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
tekspread(2:size(tekdat,1)+1,2:size(tekdat,2)+1)=num2cell(tekdat);
xlswrite([subject,'_',trial,'_',rawid,'_',Freq, '_sta'],tekspread,'Tekscan','A1');
xlswrite([subject,'_',trial,'_',rawid,'_',Freq, '_sta'],tekspread,'Tekscan','A1');
%********************************
%********************************
%**
%**
%****Tekscan Sum File

```
%****Tekscan Sum File
```

teksum=cell(1,2);
teksum(1,:)=\{[subject,'_','trial,'_',strep(rawid,'_QS',"),num2str(teknum,'\%04d')]
['QS Trial for ', Freq, ' Frequency'];;
cd(tekdir);
xlswrite([subject,'_','trial,',',strrep(rawid,'_QS',"),'_tekscan_sum'],teksum,'Sheet1',['A',num2str(teknum+1)]);
$\%^{* ~}$
clear smdat convdata msmoothdata temp cop A trial subject rawid clear Loc_Processed Accel_CF Shear_CF STA_DATA_SIZE clear SMOOTH_FILTER SAMPLING_RATE xlspread t_head leftright
function [APCOP,MLCOP,mass] = apmlcop(11,l2,I3,14,fpcal)
\%calculating Ap-COP and MI-COP
FP1=|1-fpcal(1);
FP2=|2-fpcal(2);
FP3=13-fpcal(3);
FP4=|4-fpcal(4);
\%Calculate AP and ML COP wght $=$ FP3 + FP4 + FP1 + FP2; $\%$ in volts
\% 209.55 mm 174.625 mm
APCOP=209.55*(FP3+FP4-FP1-FP2)./wght;
\% To the left is Positive MLCOP=174.625*(FP1+FP4-FP3-FP2)./wght;
\% Conversion factor is linear
$\% \quad$ (Sum of fpcal [Volts])/13.95 kg(mass of plate)
\% COnverted in Labview
\%cnvfact=-39.92;
mass=wght; \% wght is in Volts
\% cnvfact is $-39.92 \mathrm{KG} / \mathrm{V}$
\%Get cal values
function $f=$ calmod(CAL)
\%calculates the calibration mcal=mean(CAL(.10*length(CAL):.90*length(CAL),:)); \%Plate Weight is substracted from the calibration values $\mathrm{f}=\mathrm{mcal}(1: 4) ; \%+.25 * .347 ; \%$ platewt $13.95 \mathrm{~kg}=.347 \mathrm{~V}$

```
clear mcal;
% Calculates the initial average
% By averaging first 180 Data points
function a = initavg(d,i)
    % d is array
    % i is column of data (type)
    a = mean(d(200:3600,i));
function peak_Freq = peak_freq_det(subject,rawid,trial,dat,peak_num)
% Beginning of sway_frequency code
Loc_Processed = 'E:Idatal';
freq_spec = figure;
STA_DATA_SIZE = size(dat,1);
i=1;
while 2^i < STA_DATA_SIZE
n=2^;
i=i+1;
end
Upper_Freq_Limit=1;
Lower_Freq_Limit=.1;
m=n/2;
fs=1000;
fc=fs/2;
f= fc * (0:m)/m;
i=1;
while f(i) < Lower_Freq_Limit
    Hzp10=i;
    i=i+1;
end
while f(i) < Upper_Freq_Limit
    Hz2p5=i;
    i=i+1;
end
tot_pow=sum(dat(1:STA_DATA_SIZE,10).^2);
APCOPF=fft(dat(1:STA_DATA_SIZE,10),n);
PAPCOPF=APCOPF.*conj(APCOPF)/n;
```

PAPCOPF=20.*log10(PAPCOPF/max(PAPCOPF(Hzp10:Hz2p5)));
$\operatorname{PAPCOPF}(m+2: n)=[] ;$
$\operatorname{PAPCOPF}(2: m+1)=2 * \operatorname{PAPCOPF}(2: m+1)$;
plot(f(Hzp10:Hz2p5),PAPCOPF(Hzp10:Hz2p5),'Marker','o')
thresh $=-30 ; \%$ Threshold for detection of peaks
\% Summary (sum total and number) of all detected, to calculate average mxtot=0;
$n n=0$;
peak_Freq = [];
peak_a = [];
peak_b = [];
for $\mathrm{i}=1$:peak_num
$m x=\max (\operatorname{PAPCOPF}(\mathrm{Hzp} 10: \mathrm{Hz} 2 \mathrm{p} 5)) ;$ \% find max value of entire array
if $m x>$ thresh
\% find max position
[c]=find(PAPCOPF(Hzp10:Hz2p5)==mx);
$\mathrm{c}=\mathrm{c}(1)$;
\%Update summary info mxtot=mxtot+f(c+Hzp10-1);
$n n=n n+1$;
peak_Freq = [peak_Freq; f(c+Hzp10-1)];
temp_a $=[f(c+H z p 10-1) ; m x] ;$
peak_a = [peak_a temp_a];
temp_b $=[f(\mathrm{c}+\mathrm{Hzp} 10-1) \mathrm{mx}] ;$
peak_b $=[$ peak_b temp_b];
L_OK = 1;
R_OK = 1 ;
L_x = c+Hzp10-1;
R_x = c+Hzp10;

PAPCOPF(c+Hzp10-1)=thresh;

old_l=mx;
if $\mathrm{c}+\mathrm{Hzp} 10-1<=\mathrm{Hzp} 10$ L_OK=0;
end
old_r=mx;
if $\mathrm{c}+\mathrm{Hzp} 10-1>=\mathrm{Hz} 2 \mathrm{p} 5$
R_OK=0;
end
while L_OK if PAPCOPF $\left(L _x\right)<=$ old_I
old_I =PAPCOPF(L_x);
$\operatorname{PAPCOPF}\left(\mathrm{L} _x\right)=$ thresh;
L_x=L_x-1;
else
L_OK =0;
end
if $L _x<=H z p 10$
L_OK =0;
end
end
while R_OK
if $\operatorname{PAP} \bar{C} C O P F\left(R _x\right)<=$ old_r
old_r =PAPCOPF(R_x);
$\operatorname{PAP} \operatorname{COPF}(\mathrm{R} \quad \mathrm{x})=$ thresh;
R_x=R_x+1;
else
R_OK =0;
end
if $R _x>=H z 2 p 5$
R_OK =0;
end
end
\% Mark peak with asterick
text('position',[(f(Hz2p5)*c/Hz2p5+f(3)) mx],'fontsize',24,'string','*')
\% else
\% $\quad \mathrm{OK}=0$; \%no peak above threshold end
end

```
if ~isempty(peak_a)
    %label line with the value
    text('position',[.11 0],'string',...
        ['Threshold=' num2str(thresh,2)],..
        'verticalalignment','top')
    text('position',[.11-20],'string',...
        ['Total Power=' num2str(tot_pow,'%-8.2e\n')],...
        'verticalalignment','top')
    title([subject,rawid,' QS Frequency Power'])
    xlabel ('Frequency (Hz)')
    ylabel ('Power (dB)')
    set(gca,'XScale','log')
    str_arr_f = cell(size(peak_a,2)+1,1);
    str_arr_f(1)=cellstr('Frequency (Hz)');
    str_arr_f(2:size(peak_a,2)+1) = cellstr(num2str(peak_a(1,:)'));
    text(0.3981,peak_a(2,1),str_arr_f,'verticalalignment','top')
    str_arr_p = cell(size(peak_a,2)+1,1);
    str_arr_p(1)=cellstr('Power (dB)');
    str_arr_p(2:size(peak_a,2)+1) = cellstr(num2str(peak_a(2,:)'));
    text(0.6918,peak_a(2,1),str_arr_p,'verticalalignment','top')
    axis([Lower_Freq_Limit Upper_Freq_Limit -100 0])
    drawnow
    cd([Loc_Processed,subject,'\',subject,'_',trial,'\ENGRUNITS\']);
    saveas(freq_spec,[subject,'_,'trial,',',rawid,'_freq_spec_dB.jpg']);
    saveas(freq_spec,[subject,'_,'trial,'_',rawid,'_freq_spec_dB.emf']);
    hgsave(freq_spec,[subject,',',trial,'_',rawid,'_freq_spec_dB']);
    xlspread=cell(2,2+2*peak_num);
    xlspread(1,1:4)={'Total Power' 'Threshold' 'freq' 'peak'};
    xlspread(2,1:(2+length(peak_b)))=num2cell([tot_pow thresh peak_b]);
    xlswrite([subject,'_',trial,'_',rawid,'_freq_spec_dB.xls'],xlspread,'Sheet1','A1');
else
    xlspread=cell(2,3);
    xlspread(1,:)={'Threshold' 'Max Peak' 'Total Power'};
    xlspread(2,:)=num2cell([thresh max(PAPCOPF(Hzp10:Hz2p5)) tot_pow]);
    xlswrite([subject,'_',trial,'_',rawid,'_freq_spec_dB.xls'],xlspread,'Sheet1','A1');
end
close(freq_spec)
while length(peak_Freq) < peak_num
    peak_Freq = [peak_Freq;-1];
```

end
clear header pert thresh PAPCOPF APCOP APCOPF peak_a peak_b dat subject trial rawid tot_pow str_arr_p str_arr_f f
function QSmetrics(subject,rawid,trial,move,row,dat)
Loc_Processed = 'E:Idatal';
APCOP = dat(:,10);
MLCOP = dat(:,12);
\%calculate resultant distance
rd=sqrt(APCOP.^2+MLCOP.^2);
mdist=sum(rd)/(length(rd));
mdistap=sum(abs(APCOP))/(length(APCOP));
mdistml=sum(abs(MLCOP))/(length(MLCOP));
\%calculate rms distance from mean cop
rdist=sqrt((sum(rd. ${ }^{*}$ rd))/(length(rd)));
rdistap=sqrt((sum(APCOP.*APCOP))/(length(APCOP)));
rdistml=sqrt((sum(MLCOP.*MLCOP))/(length(MLCOP)));
\%calculation of total excursion
$\mathrm{m}=$ length(APCOP)-1;
totex=sum(sqrt(((APCOP(2:m+1)-APCOP(1:m)).^2)+((MLCOP(2:m+1)$\left.\left.\operatorname{MLCOP}(1: m)) .^{\wedge} 2\right)\right)$);
totexap $=\operatorname{sum}(\operatorname{abs}(\operatorname{APCOP}(2: m+1)-\operatorname{APCOP}(1: m)))$;
totexml=sum(abs(MLCOP(2:m+1)-MLCOP(1:m)));
\%calculate mean velocity
mvelo=totex/(length(APCOP)/1000);
mveloap=totexap/(length(APCOP)/1000);
mveloml=totexml/(length(APCOP)/1000);
\%calculate mean, standard deviation and range of COP's
meanrd=mean(rd);
rng=range(rd);
meanap=mean(APCOP);
meanml=mean(MLCOP);
stddevrd=std(rd);
stddevap=std(APCOP);
stddevml=std(MLCOP);
rngap=range(APCOP);
rngml=range(MLCOP);

```
%calculate the 95% confedence circle area
areacc=pi*(mdist+1.645*(sqrt(rdist^2-mdist^2)))}\mp@subsup{}{}{\wedge}2
%calculate the 95% confidence ellipse area
stddevapml=(sum(APCOP.*MLCOP))/(length(APCOP));
areace=2*pi*3*(sqrt(stddevap^2*stddevml^2-stddevapml^2));
%calculate the sway area
n=length(APCOP)-1;
areasway=sum(abs((APCOP(2:n+1).*MLCOP(1:n))-
(MLCOP(2:n+1).*APCOP(1:n)))/(2*length(APCOP)/1000);
%calculate mean frequency
mfreq=mvelo/(2*pi*mdist);
mfreqml=mveloml/(4*sqrt(2)*mdistml);
mfreqap=mveloap/(4*sqrt(2)*mdistap);
%calculate fractal dimension based on 95% Confidence Circle
dcc=2*(mdist+(1.645*(sqrt(rdist^2-mdist^2))));
FD_cc=log10(length(APCOP))/log10((length(APCOP)*dcc)/totex);
%calculate fractal dimension based on 95% Confidence Ellipse
dce=sqrt(8*3*sqrt(stddevap^2*stddevml^2-stddevapml^2));
FD_ce=log10(length(APCOP))/log10((length(APCOP)*dce)/totex);
% Frequency domain calculations using Multitaper method
% Calculates total power for each
i=7;
while length(APCOP)>2^i
    i=i+1;
end
nff=2^i;
m=n/2;
fs=1000;
fc=fs/2;
f= fc *[0:m]/m;
df=f(2);
LPS=6; % for 0.15 Hz cutoff for analysis
HPS=164; %for 5Hz cutoff for Analysis
% [G,w]=pmtm(rd,4.5,nfft,fs);
% [Gap,w]=pmtm(APCOP,4.5,nfft,fs);
% [Gml,w]=pmtm(MLCOP,4.5,nfft,fs);
MLCOPF=fft(MLCOP,n);
Gml=MLCOPF.*conj(MLCOPF) / n;
```

```
APCOPF=fft(APCOP,n);
Gap=APCOPF.*conj(APCOPF) / n;
rdF=fft(rd,n);
G=rdF.*conj(rdF) / n;
power=sum(G(LPS:HPS));
powerap=sum(Gap(LPS:HPS));
powerml=sum(Gml(LPS:HPS));
% powerap=sum(APCOP.^2);
% powerml=sum(MLCOP.^2);
%calculates 50% power for each
pfreq50=f(2)*find(cumsum(G(LPS:HPS))>=power*0.5,1,'first');
pfreq50ap=f(2)*find(cumsum(Gap(LPS:HPS))>=powerap*0.5,1,'first');
pfreq50ml=f(2)*find(cumsum(Gml(LPS:HPS))>=powerml*0.5,1,'first');
%calculates 95% power for each
pfreq95=f(2)*find(cumsum(G(LPS:HPS))>=power*0.95,1,'first');
pfreq95ap=f(2)*find(cumsum(Gap(LPS:HPS))>=powerap*0.95,1,'first');
pfreq95ml=f(2)*find(cumsum(Gml(LPS:HPS))>=powerml*0.95,1,'first');
%Calculates centroidal frequency
cfreq=(sum((((LPS:HPS)*df).^2).*G(LPS:HPS)')/power).^0.5;
cfreqap=(sum((((LPS:HPS).*df).^2).*Gap(LPS:HPS)')/powerap).^0.5;
cfreqml=(sum((((LPS:HPS).*df).^2).*Gml(LPS:HPS)')/powerml).^0.5;
%calculates frequency dispersion
freqd=(1-
sum(((LPS:HPS).*df).*G(LPS:HPS)')^2/(power*sum((((LPS:HPS).*df).^2).*G(LPS
:HPS(')))}\mp@subsup{}{}{\wedge}0.5
freqdap=(1-
sum(((LPS:HPS).*df).*Gap(LPS:HPS)')^2/(powerap*sum((((LPS:HPS).*df).^2).*G
ap(LPS:HPS)'))}\mp@subsup{)}{}{\wedge}0.5
freqdml=(1-
sum(((LPS:HPS).*df).*Gml(LPS:HPS)')^2/(powerml*sum((((LPS:HPS).*df).^2).*G
ml(LPS:HPS)'))}\mp@subsup{)}{}{\wedge}0.5
\begin{tabular}{llcccccccccccc}
\(\%\) & 1 & 2 & 3 & 4 & & 5 & 6 & 7 & 8 & & & \\
\(\%\) & & & & & & & 9 & 10 & 11 & 12 & 13 \\
14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & \\
37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & & &
\end{tabular}
output \(=\{\) move meanrd meanap meanml stddevrd stddevap stddevml rng rngap rngml mdist mdistap mdistml rdist rdistap rdistml totex totexap totexml mvelo mveloap mveloml mfreq mfreqap mfreqml areacc areasway areace FD_cc FD_ce power powerap powerml pfreq50 pfreq50ap pfreq50ml pfreq95 pfreq95ap pfreq 95 ml cfreq cfreqap cfreqml freqd freqdap freqdml\}; cd([Loc_Processed,subject,'\',subject,',',trial,'"ENGRUNITSI']);
```

```
if row==2
    H = {'Move' 'meanrd' 'meanap' 'meanml' 'stddevrd' 'stddevap' 'stddevml' 'rng'
'rngap' 'rngml' 'mdist' 'mdistap' 'mdistml' 'rdist' 'rdistap' 'rdistml' 'totex' 'totexap'
'totexml' 'mvelo' 'mveloap' 'mveloml' 'mfreq' 'mfreqap' 'mfreqml' 'areacc'
'areasway' 'areace' 'FD_cc' 'FD_ce' 'power' 'powerap' 'powerml' 'pfreq50'
'pfreq50ap' 'pfreq50ml' 'pfreq95' 'pfreq95ap' 'pfreq95ml' 'cfreq' 'cfreqap' 'cfreqml'
'freqd' 'freqdap' 'freqdml'};
    xlswrite([subject,'_,,trial,'_',rawid,'_metrics.xls'],H,'Sheet1','A1:AS1');
end
xlswrite([subject,'_',trial,'_',rawid,'_metrics.xls'],output,'Sheet1',['A',row,':AS',row]);
clear
function [dat, feetcop, pweight]=tekmat_processor(filename,calflag)
X_ML=1;
Y_AP=2;
calflag=calflag*0;
%Note: this loadfsx2 is modified from the original to store data in 3d
% array
[ m_data, m_Rows, m_Cols, m_frame] = loadfsx2( [filename,'.fsx'], calflag);
% Saves Raw Data
rm_data=m_data;
%***********************************************************
% Remove Saturated frames and interpolate
if isempty(find(m_data>254,1))
    badr=[];
else
    badr=find(histc(floor((find(m_data>254)-
1)./(m_Rows*m_Cols))+1,0.5:size(m_data,3)+0.5));
end
if ~isempty(badr)
    i=0;
    % Eliminates Bad Frames at beginning
    if badr(1) == 1
        i=i+1;
        j=0;
        while badr(i+j)+1 == badr(i+j+1)
            j=j+1;
        end
        for c=i:i+j
            m_data(:,:,c)=m_data(:,:,i+j+1);
```

```
        end
        i=i+j;
    end
    % Eliminates bad frames at end
    if badr(length(badr)) == size(m_data,3)
        j=length(badr);
        while badr(j)-1 == badr(j-1)
            j=j-1;
    end
    for c=length(badr):-1:j
            m_data(:,:,badr(c))=m_data(:,:,badr(j)-1);
    end
    badr=badr(1:j-1);
    end
    while i < length(badr)
        i=i+1;
        % Eliminates other bad frames
    j=0;
    flg_badc=1;
    while i+j<length(badr) && flg_badc
        if badr(i+j)+1 == badr(i+j+1)
            flg_badc=1;
            j=j+1;
        else
            flg_badc=0;
        end
    end
    for c=i:i+j
        m_data(:,:,badr(c))=(m_data(:,,,badr(i)-1)*(i+j-
c+1)+m_data(:,:,badr(i+j)+1)*(c-i+1))./(j+2);
    end
        i=i+j;
    end
end
%********************************************************
%********************************************************
% Eliminate stray cells
%
\(\%|17|-11|\quad 3 \quad| 19|25|\)
\begin{tabular}{|c|c|c|}
\hline -16|_10| & 2 & 18| \(24 \mid\) \\
\hline
\end{tabular}
%| | |
```


\%
\% The above map of tekmat display number that correspond to if statements \% below. Therefor the corresponding code checks that section of the map \% for stray sensels \%
for $\mathrm{k}=1$:size (m_data,3)
if ~isempty(find(m_data(:,.,k)<255 \& m_data(:,,.,k)>0,1))
[r,c,v]=find(m_data(:,.,k)<255 \& m_data(:,.,k)>0); sr=sortrows([r c v],1);
hsr=histc(sr(:, 1), 0.5 :m_Rows+.5); hsc=histc(sr(:,2), 0.5 :m_Cols +.5); rhsr=find(hsr<5 \& hsr>0); rhsc=find(hsc<5 \& hsc>0); dr=[rhsr;rhsc]; for $m=1$:length(dr)
if $m>$ length(rhsr)
rdr=find(sr(:,2)==dr(m));
else
rdr=find(sr(:,1)==dr(m));
end
for $\mathrm{n}=1$:length(rdr)
$\mathrm{i}=\mathrm{sr}(\mathrm{rdr}(\mathrm{n}), 1)$;
$\mathrm{j}=\operatorname{sr}(\mathrm{rdr}(\mathrm{n}), 2)$;
\% for $\mathrm{i}=1$:m_Rows
\%
$\% \quad$ for $j=1: m$ Cols
\% 1
if $\mathrm{i}>2 \& \& \mathrm{i}<\mathrm{m}$ _Rows-1 \& \& $\mathrm{j}>2$ \& j < m_Cols-1

$$
A=m \text { data }(i-2, j-2, k)==0 \& \& m_{-} \operatorname{data}(i-2, j-1, k)==0 \& \& m^{2} \text { data }(i-
$$

$2, j, k)==0 \quad \& \& m_{2}$ data $(i-2, j+1, k)==0 \& \& m_{2}$ data $(i-2, j+2, k)==0$;

$$
B=m_{1} \operatorname{data}(i-1, j-2, k)==0 \& \& m_{-} \operatorname{data}(i-1, j-1, k)==0 \& \& m_{2} \text { data }(i-
$$

$1, \mathrm{j}, \mathrm{k})==0 \quad \& \& \mathrm{~m}_{\text {_data }}(\mathrm{i}-1, \mathrm{j}+1, \mathrm{k})==0$ \&\& $\mathrm{m}_{\text {_data }}(\mathrm{i}-1, \mathrm{j}+2, \mathrm{k})==0$; $C=m_{1}$ data $(i, j,-2, k)==0 \& \& m_{1} \operatorname{data}(i, j-1, k)==0 \& \& m_{2} \operatorname{data}(i, j, k) \sim=0$
$\& \& m _d a t a(i, j+1, k)==0 \& \& m _d a t a(i, j+2, k)==0$;

```
    D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
m_data(i+1,j,k)==0 && m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E = m_data(i+2,j-2,k)==0 && m_data(i+2,j-1,k)==0 &&
m_data(i+2,j,k)==0 && m_data(i+2,j+1,k)==0 && m_data(i+2,j+2,k)==0;
    % 2
    elseif i > 1 && i < m_Rows-1 && j > 2 && j < m_Cols-1
    A = 1;
    B = m_data(i-1,j-2,k)==0 && m_data(i-1,j-1,k)==0 && m_data(i-
1,j,k)==0 && m_data(i-1,j+1,k)==0 && m_data(i-1,j+2,k)==0;
    C = m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0
&& m_data(i,j+1,k)==0 && m_data(i,j+2,k)==0;
    D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
m_data(i+1,j,k)==0 && m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E=m_data(i+2,j-2,k)==0 && m_data(i+2,j-1,k)==0 &&
m_data(i+2,j,k)==0 && m_data(i+2,j+1,k)==0 && m_data(i+2,j+2,k)==0;
            %3
    elseif i == 1 && i < m_Rows-1 && j > 2 && j < m_Cols-1
    A = 1;
    B=1;
    C = m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0
&& m_data(i,j+1,k)==0 && m_data(i,j+2,k)==0;
    D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
m_data(i+1,j,k)==0 && m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E = m_data(i+2,j-2,k)==0 && m_data(i+2,j-1,k)==0 &&
m_data(i+2,j,k)==0 && m_data(i+2,j+1,k)==0 && m_data(i+2,j+2,k)==0;
    %4
    elseif i>2 && i < m_Rows && j> 2 && j < m_Cols-1
    A = m_data(i-2,j-2,k)==0 && m_data(i-2,j-1,k)==0 && m_data(i-
2,j,k)==0 && m_data(i-2,j+1,k)==0 && m_data(i-2,j+2,k)==0;
    B = m_data(i-1,j-2,k)==0 && m_data(i-1,j-1,k)==0 && m_data(i-
    1,j,k)==0 && m_data(i-1,j+1,k)==0 && m_data(i-1,j+2,k)==0;
    C=m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0
    && m_data(i,j+1,k)==0 && m_data(i,j+2,k)==0;
    D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
    m_data(i+1,j,k)==0 && m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
        E=1;
        %5
    elseif i> 2 && i == m_Rows && j > 2 && j < m_Cols-1
        A = m_data(i-2,j-2,k)==0 && m_data(i-2,j-1,k)==0 && m_data(i-
    2,j,k)==0 && m_data(i-2,j+1,k)==0 && m_data(i-2,j+2,k)==0;
            B=m_data(i-1,j-2,k)==0 && m_data(i-1,j-1,k)==0 && m_data(i-
    1,j,k)==0 && m_data(i-1,j+1,k)==0 && m_data(i-1,j+2,k)==0;
        C=m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0
    && m_data(i,j+1,k)==0 && m_data(i,j+2,k)==0;
        D = 1;
    E = 1;
```

```
\%6
    elseif i > 2 && i < m_Rows-1 && j > 1 && j < m_Cols-1
    A = m_data(i-2,j-1,k)==0 && m_data(i-2,j,k)==0 && m_data(i-
2,j+1,k)==0 && m_data(i-2,j+2,k)==0;
    B=m_data(i-1,j-1,k)==0 && m_data(i-1,j,k)==0 && m_data(i-
1,j+1,k)==0 && m_data(i-1,j+2,k)==0;
    C = m_data(i,j-1,k)==0 && m_data(i,j,k)~=0 && m_data(i,j+1,k)==0
&& m_data(i,j+2,k)==0;
    D = m_data(i+1,j-1,k)==0 && m_data(i+1,j,k)==0 &&
m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E = m_data(i+2,j-1,k)==0 && m_data(i+2,j,k)==0 &&
m_data(i+2,j+1,k)==0 && m_data(i+2,j+2,k)==0;
\%7
elseif \(\mathrm{i}>2\) \&\& \(\mathrm{i}<\mathrm{m}\) _Rows-1 \&\& j == 1 \&\& j < m_Cols-1
\(A=m \_d a t a(i-2, j, \bar{k})==0 \& \& \quad m \quad \operatorname{data}(i-2, j+1, k)==0 \quad \& \& \quad m \quad\) data \((i-\) \(2, j+2, k)==0 ;\)
\(B=m \_d a t a(i-1, j, k)==0 \& \& m \_d a t a(i-1, j+1, k)==0 \quad \& \& m \_d a t a(i-\) \(1, j+2, k)==0 ;\)
C = m_data( \(1, j, k) \sim=0 \& \& \quad m \quad\) data \((i, j+1, k)==0 \& \& m \_d a t a(i, j+2, k)==0 ;\)
\(\mathrm{D}=\mathrm{m}\) _data \((\mathrm{i}+1, \mathrm{j}, \mathrm{k})==0 \& \& \mathrm{~m}\) _data \((\mathrm{i}+1, \mathrm{j}+1, \mathrm{k})==0 \quad \& \&\)
m_data \((i+1, j+2, k)==0\);
\(E=m \_d a t a(i+2, j, k)==0 \& \& m \_d a t a(i+2, j+1, k)==0 \& \&\)
m_data( \(i+2, j+2, k)==0\);
\%8
elseif \(\mathrm{i}>2\) \&\& \(\mathrm{i}<\mathrm{m}\) _Rows-1 \&\& \(\mathrm{j}>2 \& \& \mathrm{j}<\mathrm{m}\) Cols
\(\mathrm{A}=\mathrm{m}\) _data \((\mathrm{i}-2, \mathrm{j}-\overline{2}, \mathrm{k})==0 \quad \& \& \mathrm{~m}\) _data \((\mathrm{i}-2, \mathrm{j}-1, \overline{\mathrm{k}})==0 \quad \& \& \mathrm{~m}\) _data( \((\mathrm{i}-\) \(2, j, k)==0 \quad \& \& m \_d a t a(i-2, j+1, k)==0\);
\(B=m \_d a t a(i-1, j-2, k)==0 \quad \& \& m \_d a t a(i-1, j-1, k)==0 \quad \& \& m \_d a t a(i-\) \(1, j, k)==0 \quad \& \& m_{-}\)data \((i-1, j+1, k)==0 ;\)
\(\mathrm{C}=\mathrm{m}\) _data \((\mathrm{i}, \mathrm{j}-2, \mathrm{k})==0\) \&\& m_data( \(\mathrm{i}, \mathrm{j}-1, \mathrm{k})==0 \quad \& \& \mathrm{~m}_{\mathbf{d}}\) data( \((\mathrm{i}, \mathrm{j}, \mathrm{k}) \sim=0\) \&\& m_data( \((\mathrm{i}, \mathrm{j}+1, \mathrm{k})==0\);
\(D=m \_d a t a(i+1, j-2, k)==0 \quad \& \& m \_d a t a(i+1, j-1, k)==0 \quad \& \&\)
m_data \((i+1, j, k)==0 \quad \& \& \quad m \quad\) data \((i+1, j+1, k)==0 ;\)
\(E=m \_d a t a(i+2, j-2, k)==0 \quad \& \& m \_d a t a(i+2, j-1, k)==0 \quad \& \&\)
m_data \((i+2, j, k)==0 \& \& \quad m \quad\) data \((i+2, j+1, k)==0\);
\%9
elseif \(\mathrm{i}>2\) \&\& \(\mathrm{i}<\mathrm{m}\) _Rows-1 \&\& \(\mathrm{j}>2\) \&\& \(\mathrm{j}==\mathrm{m}\) _Cols
\(A=m \_d a t a(i-2, j-2, k)==0 \& \& m_{2}\) data \((i-2, j-1, k)==0 \quad \& \& m_{-} d a t a(i-\) \(2, j, k)==0 ;\)
\(B=m_{2}\) data \((i-1, j-2, k)==0 \& \& m_{2} d a t a(i-1, j-1, k)==0 \& \& m_{-}\)data \((i-\) \(1, j, k)==0 ;\)
\(C=m \_d a t a(i, j-2, k)==0 \& \& m \_d a t a(i, j-1, k)==0 \& \& m \_d a t a(i, j, k) \sim=0 ;\)
```

```
    D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
    m_data(i+1,j,k)==0;
    E = m_data(i+2,j-2,k)==0 && m_data(i+2,j-1,k)==0 &&
    m_data(i+2,j,k)==0;
    %10
    elseif i> 1 && i < m_Rows-1 && j > 1 && j < m_Cols-1
    A = 1;
    B = m_data(i-1,j-1,k)==0 && m_data(i-1,j,k)==0 && m_data(i-
1,j+1,k)==0 &&m_data(i-1,j+2,k)==0;
    C = m_data(i,j-1,k)==0 && m_data(i,j,k)~=0 && m_data(i,j+1,k)==0
&& m_data(i,j+2,k)==0;
    D = m_data(i+1,j-1,k)==0 && m_data(i+1,j,k)==0 &&
    m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E=m_data(i+2,j-1,k)==0 && m_data(i+2,j,k)==0 &&
    m_data(i+2,j+1,k)==0 && m_data(i+2,j+2,k)==0;
    %11
    elseif i== 1&& i < m_Rows-1 && j > 1 && j < m_Cols-1
    A =1;
    B=1;
    C = m_data(i,j-1,k)==0 && m_data(i,j,k)~=0 && m_data(i,j+1,k)==0
    &&m_data(i,j+2,k)==0;
                            D = m_data(i+1,j-1,k)==0 && m_data(i+1,j,k)==0 &&
m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E = m_data(i+2,j-1,k)==0 && m_data(i+2,j,k)==0 &&
m_data(i+2,j+1,k)==0 && m_data(i+2,j+2,k)==0;
    %12
    elseif i > 2 && i < m_Rows && j > 1 && j < m_Cols-1
    A = m_data(i-2,j-1,k)==0 && m_data(i-2,j,k)==0 && m_data(i-
2,j+1,k)==0 && m_data(i-2,j+2,k)==0;
    B = m_data(i-1,j-1,k)==0 && m_data(i-1,j,k)==0 && m_data(i-
1,j+1,k)==0 && m_data(i-1,j+2,k)==0;
    C=m_data(i,j-1,k)==0 && m_data(i,j,k)~=0 && m_data(i,j+1,k)==0
    && m_data(i,j+2,k)==0;
    D = m_data(i+1,j-1,k)==0 && m_data(i+1,j,k)==0 &&
    m_data(i+1,j+1,k)==0 && m_data(i+1,j+2,k)==0;
    E = 1;
    %13
    elseif i> 2 && i == m_Rows && j > 1 && j < m_Cols-1
    A=m_data(i-2,j-1,k)==0 && m_data(i-2,j,k)==0 && m_data(i-
2,j+1,k)==0 && m_data(i-2,j+2,k)==0;
    B=m_data(i-1,j-1,k)==0 && m_data(i-1,j,k)==0 && m_data(i-
1,j+1,k)==0 && m_data(i-1,j+2,k)==0;
```

$\mathrm{C}=\mathrm{m} _$data $(\mathrm{i}, \mathrm{j}-1, \mathrm{k})==0 \& \& \mathrm{~m} _$data $(\mathrm{i}, \mathrm{j}, \mathrm{k}) \sim=0 \& \& \mathrm{~m}$ _data $(\mathrm{i}, \mathrm{j}+1, \mathrm{k})==0$ \& \& m_data $(i, j+2, k)==0$;

D = 1;
$E=1 ;$
\%14
elseif $\mathrm{i}>2 \& \& \mathrm{i}==\mathrm{m}_{\text {_Rows }} \& \& \mathrm{j}==1 \& \& \mathrm{j}<\mathrm{m}$ _Cols-1
$A=m _d a t a(i-2, j, k)==0 \& \& m_{2} d a t a(i-2, j+1, k)==0 \& \& \quad m_{1}$ data $(i-$ $2, j+2, k)==0 ;$
$B=m _d a t a(i-1, j, k)==0 \& \& \quad m \quad$ data $(i-1, j+1, k)==0 \& \& m_{1}$ data $(i-$
$1, j+2, k)==0 ;$
$C=m _d a t a(i, j, k) \sim=0 \& \& m _d a t a(i, j+1, k)==0 \& \& m _d a t a(i, j+2, k)==0 ;$
$\mathrm{D}=1$;
$\mathrm{E}=1$;
\%15
elseif $\mathrm{i}>2 \& \& \mathrm{i}<\mathrm{m}_{1}$ Rows $\& \& \mathrm{j}==1 \& \& \mathrm{j}<\mathrm{m}$ _Cols-1
$A=m _d a t a(i-2, j, \bar{k})==0$ \&\& $m _d a t a(i-2, j+1, k)==0$ \& \& m_data $(i-$
$2, j+2, k)==0$;
$B=m _d a t a(i-1, j, k)==0 \& \& m_{-}$data $(i-1, j+1, k)==0 \& \& m_{-}$data $(i-$
$1, j+2, k)==0$;
$C=m _d a t a(i, j, k) \sim=0 \& \& m _d a t a(i, j+1, k)==0 \& \& m _d a t a(i, j+2, k)==0 ;$
$D=m _d a t a(i+1, j, k)==0 \& \& m _d a t a(i+1, j+1, k)==0 \& \&$ m_data $(i+1, j+2, k)==0$;
$\mathrm{E}=1$;
\%16
elseif $\mathrm{i}>1$ \& $\mathrm{i}<\mathrm{m}$ _Rows-1 \&\& $\mathrm{j}==1 \& \& \mathrm{j}<\mathrm{m}$ _Cols-1
$A=1$;
$B=m _d a t a(i-1, j, k)==0 \& \& m _d a t a(i-1, j+1, k)==0 \& \& m _d a t a(i-$
$1, j+2, k)==0 ;$
C $=\mathrm{m}$ _data($\mathrm{i}, \mathrm{j}, \mathrm{k}) \sim=0$ \& \& m_data $(\mathrm{i}, \mathrm{j}+1, \mathrm{k})==0$ \& $\& \mathrm{~m}$ data $(\mathrm{i}, \mathrm{j}+2, \mathrm{k})==0$;
$\mathrm{D}=\mathrm{m} _$data $(\mathrm{i}+1, \mathrm{j}, \mathrm{k})==0 \& \& \mathrm{~m}$ _data $(\mathrm{i}+1, \mathrm{j}+1, \mathrm{k})==0$ \&\&
$m_{\text {_data }}(\mathrm{i}+1, \mathrm{j}+2, \mathrm{k})==0$;
$E=m _d a t a(i+2, j, k)==0 \& \& m_{2} d a t a(i+2, j+1, k)==0 \& \&$
$m_{\text {_data }}(i+2, j+2, k)=0$;
\%17
elseif $\mathrm{i}==1 \& \& \mathrm{i}<\mathrm{m}$ _Rows-1 \&\& $\mathrm{j}==1 \& \& \mathrm{j}<\mathrm{m}$ _Cols-1
$\mathrm{A}=1$;
$B=1$;
$C=m _d a t a(i, j, k) \sim=0 \& \& m _d a t a(i, j+1, k)==0 \& \& \quad m _d a t a(i, j+2, k)==0$;
$\mathrm{D}=\mathrm{m}_{1}$ data($(\mathrm{i}+1, \mathrm{j}, \mathrm{k}) \sim=0$ \& \& m_data $(\mathrm{i}+1, \mathrm{j}+1, \mathrm{k})==0$ \&\&
m_data $(i+1, j+2, k)==0$;
$E=m _d a t a(i+2, j, k)==0 \quad \& \& m _d a t a(i+2, j+1, k)==0 \& \&$
$m_{\text {_data }}(i+2, j+2, k)=0$;

```
\%18
elseif \(\mathrm{i}>1 \& \& \mathrm{i}\) < m_Rows-1 \&\& \(\mathrm{j}>2\) \&\& j < m_Cols
A =1;
\(B=m_{2}\) data \((i-1, j-2, k)==0 \quad \& \& m_{1}\) data \((i-1, j-1, k)==0 \& \& \quad m \_d a t a(i-\) \(1, j, k)==0 \quad \& \& m \_d a t a(i-1, j+1, k)==0 ;\)
```



```
\(\& \& m_{2}\) data \((\mathrm{i}, \mathrm{j}+1, \mathrm{k})==0\);
\(\mathrm{D}=\mathrm{m}\) _data \((\mathrm{i}+1, \mathrm{j}-2, \mathrm{k})==0\) \&\& m_data \((\mathrm{i}+1, \mathrm{j}-1, \mathrm{k})==0 \quad \& \&\)
m_data \((i+1, j, k)==0 \& \& \quad m \quad\) data \((i+1, j+1, k)==0 ;\)
\(E=m \_\)data \((i+2, j-2, k)==0 \quad \& \& m \quad\) data \((i+2, j-1, k)==0 \quad \& \&\)
\(m_{2}\) data \((i+2, j, k)==0 \& \& \quad m_{2}\) data \((i+2, j+1, k)==0\);
\%19
elseif \(\mathrm{i}==1 \& \& \mathrm{i}<\mathrm{m}_{\text {_Rows }}-1 \& \& \mathrm{j}>2 \& \& \mathrm{j}<\mathrm{m}\) _Cols
\(A=1\);
\(B=1\);
\(C=m \_d a t a(i, j-2, k)==0 \quad \& \& m \_d a t a(i, j-1, k)==0 \quad \& \& m \_d a t a(i, j, k) \sim=0\) \&\& m_data \((\mathrm{i}, \mathrm{j}+1, \mathrm{k})==0\);
\(\mathrm{D}=\mathrm{m}\) _data \((\mathrm{i}+1, \mathrm{j}-2, \mathrm{k})==0 \quad \& \& \mathrm{~m}_{2}\) data \((\mathrm{i}+1, \mathrm{j}-1, \mathrm{k})==0 \quad \& \&\)
m_data \((\mathrm{i}+1, \mathrm{j}, \mathrm{k})==0 \& \& \mathrm{~m}\) _data \((\mathrm{i}+1, \mathrm{j}+1, \mathrm{k})==0\);
\(E=m \_d a t a(i+2, j-2, k)==0 \quad \& \& m \_d a t a(i+2, j-1, k)==0 \quad \& \&\)
\(m_{\text {_data }}(\mathrm{i}+2, \mathrm{j}, \mathrm{k})==0 \& \& \mathrm{~m}\) _data \((\mathrm{i}+2, \mathrm{j}+1, \mathrm{k})==0\);
\%20
elseif \(\mathrm{i}>2 \& \& \mathrm{i}<\mathrm{m}\) Rows \(\& \& \mathrm{j}>2\) \& \(\mathrm{j}<\mathrm{m}\) Cols
\(A=m\) data \((i-2, j-2, k)==0 \quad \& \& m_{2}\) data \((i-2, j-1, k)==0 \quad \& \& m_{2}\) data( \((i-\) \(2, j, k)==0 \quad \& \& m_{2}\) data \((i-2, j+1, k)==0\);
\(B=m \_d a t a(i-1, j-2, k)==0 \quad \& \& m \_d a t a(i-1, j-1, k)==0 \quad \& \& m \_d a t a(i-\)
\(1, j, k)==0 \quad \& \& m_{2}\) data \((i-1, j+1, k)==0\);
\(C=m\) data \((i, j-2, k)==0 \quad \& \& m \_d a t a(i, j-1, k)==0 \quad \& \& m \_d a t a(i, j, k) \sim=0\)
\&\& m_data( \((\mathrm{i}, \mathrm{j}+1, \mathrm{k})==0\);
\(\mathrm{D}=\mathrm{m} \_\)data \((\mathrm{i}+1, \mathrm{j}-2, \mathrm{k})==0 \quad \& \& \mathrm{~m}_{2}\) data( \((\mathrm{i}+1, \mathrm{j}-1, \mathrm{k})==0 \quad \& \&\)
m_data \((\mathrm{i}+1, \mathrm{j}, \mathrm{k})==0\) \& \(\&\) m_data \((\mathrm{i}+1, \mathrm{j}+1, \mathrm{k})==\mathbf{0}\);
\(E=1\);
\%21
elseif \(\mathrm{i}>2\) \&\& \(\mathrm{i}==\mathrm{m}\) _Rows \(\& \& \mathrm{j}>2\) \& \(\mathrm{j} \mathrm{j}<\mathrm{m}\) _Cols
\(A=m \_d a t a(i-2, j-2, k)==0 \quad \& \& m \_d a t a(i-2, j-1, k)==0 \quad \& \& m \_d a t a(i-\)
\(2, j, k)==0 \quad \& \& m_{-}\)data \((i-2, j+1, k)==0\);
\(B=m\) data \((i-1, j-2, k)==0 \& \& \quad m \quad \operatorname{data}(i-1, j-1, k)==0 \quad \& \& \quad m \quad\) data \((i-\)
\(1, j, k)==0 \& \& m \_\operatorname{data}(i-1, j+1, k)==0 ;\)
\(\mathrm{C}=\mathrm{m}\) _data \((\mathrm{i}, \mathrm{j}-2, \mathrm{k})==0 \quad \& \& \mathrm{~m}_{\mathbf{d}}\) data \((\mathrm{i}, \mathrm{j}-1, \mathrm{k})==0 \quad \& \& \mathrm{~m}_{\mathbf{\prime}}\) data \((\mathrm{i}, \mathrm{j}, \mathrm{k}) \sim=0\) \&\& m_data( \((i, j+1, k)==0\);
D = 1;
\(\mathrm{E}=1\);
```

```
            %22
    elseif i > 2 && i < m_Rows && j > 2 && j == m_Cols
    A = m_data(i-2,j-2,k)==0 && m_data(i-2,j-1,k)==0 && m_data(i-
2,j,k)==0;
    B=m_data(i-1,j-2,k)==0 && m_data(i-1,j-1,k)==0 && m_data(i-
1,j,k)==0;
        C = m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0;
        D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
m_data(i+1,j,k)==0;
        E = 1;
        %23
    elseif i > 2 && i == m_Rows && j > 2 && j == m_Cols
    A = m_data(i-2,j-2,k)==0 && m_data(i-2,j-1,k)==0 && m_data(i-
2,j,k)==0;
    B = m_data(i-1,j-2,k)==0 && m_data(i-1,j-1,k)==0 && m_data(i-
1,j,k)==0;
        C = m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0;
        D = 1;
        E=1;
        %24
    elseif i > 1 && i < m_Rows-1 && j > 2 && j == m_Cols
        A = 1;
        B= m_data(i-1,j-2,k)==0 && m_data(i-1,j-1,k)==0 && m_data(i-
1,j,k)==0;
        C=m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0;
    D = m_data(i+1,j-2,k)==0 &&_m_data(i+1,j-1,k)==0 \overline{&}&
m_data(i+1,j,k)==0;
    E=m_data(i+2,j-2,k)==0 && m_data(i+2,j-1,k)==0 &&
m_data(i+2,j,k)==0;
    %25
    elseif i== 1 && i < m_Rows-1 && j > 2 && j == m_Cols
    A =1;
    B = 1;
    C = m_data(i,j-2,k)==0 && m_data(i,j-1,k)==0 && m_data(i,j,k)~=0;
    D = m_data(i+1,j-2,k)==0 && m_data(i+1,j-1,k)==0 &&
m_data(i+1,j,k)==0;
    E=m_data(i+2,j-2,k)==0 && m_data(i+2,j-1,k)==0 &&
m_data(i+2,j,k)==0;
\%Default for Error SHould never get here elseif 1
```

```
            error(['Bad Program: i = ',num2str(i), 'j = ', num2str(j), ' k = ',
num2str(k)])
            end
            if A && B && C && D && E
                m_data(i,j,k)=0;
            end
            end
        end
    end
end
%***********************************************************
%***********************************************************
% Vectorized Calculation of APCOP and MLCOP
FRAMEs=1:m_frame;
COLs=1:m_Cols;
ROWs=1:m_Rows;
rower(1:m_frame)=1;
COLs_3d=COLs'*rower;
ROWs_3d=ROWs'*rower;
MLCOP=sum(squeeze(sum(m_data(:,,,FRAMEs),X_ML)).*(COLs_3d),1)./sum(sq
ueeze(sum(m_data(:,,,FRAMEs),X_ML)),1);
APCOP=sum(squeeze(sum(m_data(:,,,FRAMEs),Y_AP)).*(ROWs_3d),1)./sum(s
queeze(sum(m_data(:,,;FRAMEs),Y_AP)),1);
dat=[APCOP; MLCOP]';
dat=dat.*5.08; % Conversion to mm
%************************************************************
%*****************************************************
% Foot Analysis
% Seperate Feet
right_side_left_foot=zeros(size(m_data,3),1);
left_side_left_foot=zeros(size(m_data,3),1);
front_side_left_foot=zeros(size(m_data,3),1);
back_side_left_foot=zeros(size(m_data,3),1);
right_side_right_foot=zeros(size(m_data,3),1);
```

```
left_side_right_foot=zeros(size(m_data,3),1);
front_side_right_foot=zeros(size(m_data,3),1);
back_side_right_foot=zeros(size(m_data,3),1);
for k=1:size(m_data,3)
    if ~isempty(find(m_data(:,,,k),1))
        [r,c,v]=find(m_data(:,,,k));
        feet_division=(max(c)-min(c))/2+min(c);
        c=sort(c);
    end
    if exist('feet_division','var')==1
        if ~isempty(find(c>feet_division,1))
                xr=find(c>feet_division,1,'first');
                right_side_left_foot(k)=c(xr);
            end
        if ~isempty(find(c>feet_division,1))
        xr=find(c>feet_division,1,'last');
        left_side_left_foot(k)=c(xr);
        end
        if ~isempty(find(c<feet_division,1))
            xr=find(c<feet_division,1,'first');
            right_side_right_foot(k)=c(xr);
        end
            if ~isempty(find(c<feet_division,1))
            xr=find(c<feet_division,1,'last');
        left_side_right_foot(k)=c(xr);
    end
    end
    leftfoot=imcrop(m_data(:,:,k),[right_side_left_foot(k) 1 left_side_left_foot(k)-
right_side_left_foot(\overline{k}) m_Rows]);
    rightfoot=imcrop(m_data(:,:,k),[right_side_right_foot(k)1
left_side_right_foot(k)-right_side_right_foot(k) m_-Rows]);
    if ~isempty(find(leftfoot,1))
    [r,c,v]=find(leftfoot);
    r=sort(r);
    if ~isempty(find(r,1,'first'))
        xr=find(r,1,'first');
        back_side_left_foot(k)=r(xr);
    end
```

```
            if ~isempty(find(r,1,'last'))
                xr=find(r,1,'last');
            front_side_left_foot(k)=r(xr);
        end
    end
    if ~isempty(find(rightfoot,1))
        [r,c,v]=find(rightfoot);
        r=sort(r);
    if ~isempty(find(r,1,'first'))
        xr=find(r,1,'first');
        back_side_right_foot(k)=r(xr);
    end
    if ~isempty(find(r,1,'last'))
        xr=find(r,1,'last');
        front_side_right_foot(k)=r(xr);
        end
    end
end
left_foot_row_size=max(front_side_left_foot)-min(back_side_left_foot)+1;
if left foot_row_size > m_Rows
    left_foot_row_size=m_Rows;
end
left_foot_col_size=max(left_side_left_foot)-min(right_side_left_foot)+1;
if left_foot_col_size > m_Cols
    left_foot_col_size=m_Cols;
end
right_foot_row_size=max(front_side_right_foot)-min(back_side_right_foot)+1;
if right_foot_row_size > m_Rows
    right_foot_row_size=m_Rows;
end
right_foot_col_size=max(left_side_right_foot)-min(right_side_right_foot)+1;
if right_foot_col_size > m_Cols
    right_foot_col_size=m_Cols;
end
lefffoot=zeros(left_foot_row_size,left_foot_col_size,m_frame);
rightfoot=zeros(right_foot_row_size,right_foot_col_size,m_frame);
for k=1:size(m_data,3)
```

```
    if min(right_side_left_foot)==0 && min(back_side_left_foot)==0
        leftfoot(:,,,k)=imcrop(m_data(:,:,k),[min(right_side_left_foot)+1
min(back_side_left_foot)+1 max(left_side_left_foot)-min(right_side_left_foot)
max(front_side_left_foot)-min(back_side_left_foot)]);
    elseif min(back_side_left_foot)==0
        leftfoot(:,:,k)=imcrop(m_data(:,,,k),[min(right_side_left_foot)
min(back_side_left_foot)+1 max(left_side_left_foot)-min(right_side_left_foot)
max(front_side_left_foot)-min(back_side_left_foot)]);
    elseif min(right_side_left_foot)==0
        leftfoot(:,,;k)=imcrop(m_data(:,:,k),[min(right_side_left_foot)+1
min(back_side_left_foot) max(left_side_left_foot)-min(right_side_left_foot)
max(front_side_left_foot)-min(back_side_left_foot)]);
    else
        leftfoot(:,:,k)=imcrop(m_data(:,,,k),[min(right_side_left_foot)
min(back_side_left_foot) max(left_side_left_foot)-min(right_side_left_foot)
max(front_side_left_foot)-min(back_side_left_foot)]);
    end
    if min(right_side_right_foot)==0 && min(back_side_right_foot)==0
        rightfoot(:,:,k)=imcrop(m_data(:,:,k),[min(right_side_right_foot)+1
min(back_side_right_foot)+1 max(left_side_right_foot)-min(right_side_right_foot)
max(front_side_right_foot)-min(back_side_right_foot)]);
    elseif min(back_side_right_foot)==0
        rightfoot(:,:,k)=imcrop(m_data(:,,,k),[min(right_side_right_foot)
min(back_side_right_foot)+1 max(left_side_right_foot)-min(right_side_right_foot)
max(front_side_right_foot)-min(back_side_right_foot)]);
    elseif min(right_side_right_foot)==0
        rightfoot(:,,,k)=imcrop(m_data(:,:,k),[min(right_side_right_foot)+1
min(back_side_right_foot) max(left_side_right_foot)-min(right_side_right_foot)
max(front_side_right_foot)-min(back_side_right_foot)]);
    else
        rightfoot(:,,,k)=imcrop(m_data(:,,,k),[min(right_side_right_foot)
min(back_side_right_foot) max(left_side_right_foot)-min(right_side_right_foot)
max(front_side_right_foot)-min(back_side_right_foot)]);
    end
end
if size(leftfoot,1)==1 || size(leftfoot,2)==1
    leftfoot=zeros(10,10,size(leftfoot,3));
end
if size(rightfoot,1)==1 || size(rightfoot,2)==1
    rightfoot=zeros(10,10,size(rightfoot,3));
end
```


\%***

\% Vectorized Calculation of APCOP and MLCOP for Each Foot rower(1:m_frame)=1;

R_COLs=1:size(rightfoot,2);
R_ROWs=1:size(rightfoot,1);
R_COLs_3d=R_COLs'*rower;
R_ROWs_3d=R_ROWs'*rower;
L_COLs=1:size(leftfoot,2);
L_ROWs=1:size(leftfoot,1);
L_COLs_3d=L_COLs'*rower;
L_ROWs_3d=L_ROWs'*rower;
LMLCOP=sum(squeeze(sum(leftfoot,X_ML)).*(L_COLs_3d),1)./sum(squeeze(su m(leftfoot,X_ML)),1);
LAPCOP=sum(squeeze(sum(leftfoot,Y_AP)).*(L_ROWs_3d),1)./sum(squeeze(su m(leftfoot, $\mathrm{Y} _$AP)),1);

RMLCOP=sum(squeeze(sum(rightfoot,X_ML)).*(R_COLs_3d),1)./sum(squeeze(s um(rightfoot,X_ML)),1);
RAPCOP=sum(squeeze(sum(rightfoot, Y _AP)).*(R_ROWs_3d),1)./sum(squeeze(sum(rightfoot, Y _AP)),1);
feetcop=[RAPCOP; RMLCOP; LAPCOP; LMLCOP]';
feetcop=feetcop. ${ }^{* 5.08 ; ~ \% ~ C o n v e r s i o n ~ t o ~ m m ~}$
$\%^{* ~}$
\%***
\% Subject Weight Feet Distrubution
\% Total Weights
totalweight=squeeze(sum(sum(m_data, 1),2));
leftweight=squeeze(sum(sum(leftfoot,1),2));
rightweight=squeeze(sum(sum(rightfoot,1),2));
\% Percentages between feet
pleftweight=leftweight./totalweight;
prightweight=rightweight./totalweight; pweight=[prightweight pleftweight];
save(filename,'APCOP', 'MLCOP', 'm_data', 'rm_data', 'm_Rows', 'm_Cols', 'leftfoot', 'rightfoot', 'm_frame', 'filename', 'RAPCOP', 'RMLCOP', 'LAPCOP', 'LMLCOP', 'totalweight', 'leftweight', 'rightweight', 'pleftweight', 'prightweight');
clear X _ML Y_AP filename m _data m _Rows m Cols m frame smdat sm_data $i j$ clear calflag FRAMEs COLs ROWs rower COLs_3d ROWs_3d APCOP MLCOP rm_data
clear RMLCOP RAPCOP LAPCOP LMLCOP totalweight leftweight rightweight clear pleftweight prightweight R_COLs R_ROWs L_COLs L_ROWs R_COLs_3d clear R_ROWs_3d L_COLs_3d L_ROWs_3d leftfoot rightfoot feet_division clear right_side_right_foot front_side_right_foot back_side_right_foot clear left_side_right_foot right_side_left_foot front_side_left_foot clear back_side_left_foot left_side_left_foot rcvaBCDEmnsr hsr clear hsc dr xr badr rhsr rhsc k
function [m_data, m_Rows, $m_{\text {_Cols, }} m_{\text {_frame, }} m_{\text {_RowSpacing, }}$ m_ColSpacing] $=$ loadfsx2(filename, calflag)
\% load fsx, faster
\% mov = loadfsx2(filename, calflag)
$\%$ calflag $=0$ for loading of raw values
$\%$ calflag = 1 for loading calibrated values

```
if ( exist('calflag','var') == 0)
    calflag = 1;
end
```

FALSE = 0 ;
TRUE = 1 ;
MOVIE_END_OF_FRAME $=255$;
NORMAL_HEADER_END_MARK = 186 ;
HISPEED_HEADER_END_MARK = 187;
\% wait for file to be written
$\mathrm{iji}=0$;
while exist(filename,'file')==0 \&\& iji < 100
iji=iji+1;
pause(0.1)
end
fid = fopen(filename, 'r');
if (fid $==-1$)
error(['File ' filename ' not found']);
end

```
bd = fread( fid, Inf);
```

bdi $=1$;
fclose(fid);

```
head = ";
```

b = 0;
while ($\mathrm{b} \sim=$ NORMAL_HEADER_END_MARK \&\& b ~=
HISPEED_HEADER_END_MARK)
b=bd(bdi) ; bdi=bdi+1;
\%disp([num2str(b)]);
head = [head sprintf('\%c', b)] ;
end
\%head
\%disp('End of header found');
$\% b=b d(b d i)$;
bdi=bdi+1 ;


```
    %disp(['Loading raw - ignoring calibration']);
    scale = 1.0;
    exponent = 1;
else
    if(~isempty(m_CAL_FPI_1) && ~isempty(m_CAL_RPI_1))
            exponent =1 ;
            scale = m_CAL_FPI_1/(m_CAL_RPI_1 *m_SenselArea);
    end
    if(~isempty(m_ScaleFactor) && ~isempty(m_Exponent))
        scale = m_ScaleFactor ;
        exponent =m_Exponent;
    end
end
if isempty(m_Framelnfo)
    m_Framelnfo = 0;
end
m_data=zeros( m_Rows, m_Cols, m_FramesFromHeader);
%disp(['Frames to load: ' num2str(m_FramesFromHeader)]);
%disp('Loading... ');
pause(0.0001);
for f=0:m_FramesFromHeader-1
    %disp([' Frame: ' num2str(f)]);
    PreviousEndOfFrame = FALSE;
    IsFramelnfo = FALSE ;
    cont = TRUE ;
    while ( cont == TRUE)
        low = bd(bdi) ; bdi=bdi+1 ;
        if ( low ~= MOVIE_END_OF_FRAME)
            PreviousEndOfFrame = FALSE ;
            hi = bd(bdi) ; bdi=bdi+1 ;
            loc = hi * 256 + low ;
            if (loc > (m_Cols * m_Rows))
                hi
                    loc
                    low
                    cont
                    f
                    m_Cols
                    m_Rows
```

```
            return;
            %error('Bad Location Data: 1');
    else
        t_elements = bd(bdi);
        bdi=bdi+1;
        if ( f>=3000)
            %disp(['t_elements = ' num2str(t_elements)]);
            %pause
        end
            for i=loc:(loc+t_elements-1)
            r= floor(i/m_Cols) ;
            c=i - r*m_Cols ;
            if ( f>=3000)
                %disp(['i = ' num2str(i)]);
                %disp(['Row = ' num2str(r) ' Col = ' num2str(c)]);
            end
            sensel = bd(bdi);
            bdi=bdi+1;
            sensel = scale * (sensel^}\mp@subsup{}{}{\wedge}\mathrm{ exponent) ;
            if ( f>=3000)
                %disp(['first']);
                    m_Rows;
                    f*m_Rows + r + 1;
                    c+1;
                    size( m_data);
                    sensel;
            end
            m_data(r + 1, c+1,f+1) = sensel ;
        end % for i
    end % else
    % end if low != end of frame
else
    if (PreviousEndOfFrame == FALSE)
        PreviousEndOfFrame = TRUE ;
        hi = bd(bdi) ; bdi=bdi+1 ;
        if (hi ~= MOVIE_END_OF_FRAME)
            PreviousEndOfFrame = FALSE ;
            loc = hi * 256 + low;
            if( loc > (m_Cols * m_Rows))
            hi
            loc
            Iow
```

```
            cont
            f
            m_Cols
            m Rows
            return;
            %error('Bad Location Data: 2');
            else
            t_elements = bd(bdi) ; bdi=bdi+1 ;
            for i=loc:(loc+t_elements-1)
                        r= floor(i/m_Cols);
                        c=i-r*m_Cols;
                        sensel = bd(bdi) ; bdi=bdi+1 ;
                        sensel = scale * (sensel^exponent);
                        m_data( r + 1, c+1,f+1)= sensel ;
            end % for i
            end % else
            elseif (m_Framelnfo == 1 && IsFrameInfo == FALSE) %Skip frame info
if any
            low = bd(bdi); bdi=bdi+1 ;
            hi = bd(bdi) ; bdi=bdi+1 ;
            IsFramelnfo = TRUE;
            while (low ~= MOVIE_END_OF_FRAME || hi ~=
MOVIE_END_OF_FRAME) && bdi <= length(bd)
            low = bd(bdi) ; bdi=bdi+1 ;
            hi = bd(bdi) ; bdi=bdi+1 ;
            end
            if low ~= MOVIE_END_OF_FRAME && hi ~=
MOVIE_END_OF_FRAME
                    error('Bad frame info')
                    end
            end % /** end if hi != MOVIE_END_OF_FRAME **/
            end % /** PreviousEndOfFrame == FALSE **/
    end % /** end else **/
    cont = FALSE ;
    if ( low ~= MOVIE_END_OF_FRAME || PreviousEndOfFrame ~= TRUE)
        cont = TRUE ;
    end
    end % while( low ~= MOVIE_END_OF_FRAME | PreviousEndOfFrame ~=
TRUE);
end % end % for f
%disp([ 'Done ... ' num2str(m_FramesFromHeader) ' frames loaded']);
```

```
return;
% Modified By Chris Storey
% $Header: G:/CORE/LOGFILES/MATLAB/loadfsx2.m_v 1.1 Sep 20 2000
16:44:18 FCHEN $
%
% $Log: G:/CORE/LOGFILES/MATLAB/loadfsx2.m_v $
%
% Rev 1.1 Sep 20 2000 16:44:18 FCHEN
% Modified to read the movies with frameinfo and multi-tile
% calibration info. Use the first tile cal info as the whole.
%
% Rev 1.0 Sep 19 2000 15:16:14 FCHEN
% Initial revision.
function 
if ( length(i)>0)
                                start = i + length(s1(1,:)) + 1;
                                j = start ;
    c = line(j);
    while(~isspace(c))
    j = j + 1;
        c= line(j);
    end
    str = line(start:(j));
else
str = ";
end
    return;
% $Header: G:/CORE/LOGFILES/MATLAB/exstr.m_v 1.1 Sep 20 2000
16:15:08 FCHEN $
%
% $Log: G:/CORE/LOGFILES/MATLAB/exstr.m_v $
%
% Rev 1.1 Sep 20 2000 16:15:08 FCHEN
% Fixed the bug of extracting extra 2 chars.
%
% Rev 1.0 Sep 19 2000 15:16:20 FCHEN% Initial revision.
```


APPENDIX O

mSIAM SIMULATION MATLAB ${ }^{\circledR}$ CODE

$\%$ function montecarlo(n, s)
$\mathrm{n}=1000$;
$s=10000$;
\% Monte Carlo Simulation in Matlab
$\% \mathrm{n}$ is number of trials
$\% \mathrm{~s}$ is number of subjects
\% --- Generate vectors of random inputs
$\% \mathrm{x} \sim$ Uniform distribution of integers 0-3
$x=\operatorname{rem}\left(\operatorname{round}\left(\operatorname{rand}(n, s)^{*} 4\right), 4\right)$;
\% Initial Increment
incr = 1;
\% Initial Amplitude
Amp $=4$;
\% Hit change setting
hit $=-1$;
\% Miss change setting
miss $=1$;
\% False Alarm change setting
fls_alm = 2;
\% Correct Rejection change setting
cor_rej $=0$;
\% Minimum number of hits before 80% rule goes into effect
hit_total $=5$;
\% --- Run the simulation
\% Note the use of element-wise multiplication
[Amps,stoprules] = t2IFCmPESTh(x,incr,n,s, Amp);
\% --- Create a histogram of the results (50 bins)
edges $=(0: 5: 1000)$;
histc023 = figure;
histc02v=histc(stoprules(1:s,1),edges);
bar(edges,histc02v)
axis([0 10000 500])
title('mPEST 2\% Rule')
\% hist02h3y1n2r3 = figure;
\% hist(stoprulesh3y1n2r3(1:s,1),edges)
\% axis([0 5000 1500])

```
histc05 = figure;
histc05v=histc(stoprules(1:s,2),edges);
bar(edges,histc05v)
axis([0 10000500\(]\) )
title('mPEST 5\% Rule')
\% hist05h3y1n2r3 = figure;
\% hist(stoprulesh3y1n2r3(1:s,2),edges)
\% axis([0 5000 1500])
\% hist80h = figure;
\% histc(stoprulesh(1:s,3),edges)
\% --- Calculate summary statistics
\% y_mean = mean(y)
\(\% y_{-}\)std \(=\operatorname{std}(\mathrm{y})\)
\% y_median = median(y)
mean02 \(=\) mean(stoprules(1:s,1))
mean05 = mean(stoprules(1:s,2))
mean02A \(=\) mean(stoprules(1:s,3))
mean05A \(=\) mean(stoprules(1:s,4))
\% mean80h = mean(stoprulesh(1:s,3))
std02 \(=\operatorname{std}(\) stoprules(1:s,1))
std05 = std(stoprules(1:s,2))
std02A \(=\operatorname{std}(\) stoprules(1:s,3))
std05A \(=\operatorname{std}(\) stoprules(1:s,4))
\% std80h = std(stoprulesh(1:s,3))
```

```
% d_efficiency = (norm(sum(d))./30)
save('mPEST')
function [Amps,stoprules] = mSIAM_Implemented(x,incr,n,s, Amp,hit, miss,
fls_alm,cor_rej)
% 0 => HIT
% 1 => MISS
% 2 => FALSE ALARM
% 3 => CORRECT REJECTION
% x contains the uniformaly random detections
% incr contains inital increment
% n contains number of trials
% s contains number of subjects
% Amp contains Intial Amplitude
% hit contains Hit change setting
% miss contains Miss change setting
% fls_alm = False Alarm Change setting
% cor_rej = Correct Rejection Change Setting
% stoprules=zeros(s,3); % Include 80% rule
stoprules=zeros(s,2);
Amps=zeros(n,s);
h1=waitbar(0,['Monte Carlo Simulation of mSIAM_Implemented ',num2str(s),'
subjects']);
tt=0;
ttot=0;
for i=1:s
    ttot=ttot+tt;
    tic
    waitbar(i/s,h1,{['Monte Carlo Simulation of mSIAM shr_Implemented
',num2str(s),' subjects.'] ['Estimated time remaining: ',num2str(ttot/i*(s-
i)/60,'%6.2f')]};
    j=1;
    % Flag that stops while loop
    flg=0;
    % Flag that indicates when 2% rule met
    flg02 = 0;
```

```
    % Flag that indicates when 5% rule met
    flg05 = 0;
    % Counts the number of Reversals
    rvrsl = 0;
    crvrsl = 0;
    newincr = incr;
    newAmp = Amp;
    y(1,i)=newAmp;
    h2=waitbar(0,['Monte Carlo Simulation of subject: ',num2str(i)]);
    while (j<=n && flg==0)
    oldAmp=newAmp;
        if j>1
            waitbar(j/n,h2,{['Monte Carlo Simulation of subject: ',num2str(i),' Trial:
',num2str(j),] ['2% Flag: ',num2str(flg02), ' 5% Flag: ',num2str(flg05), ' Average
Stop: ', num2str(mean(stoprules(1:i-1,1)))]});
    end
    if }x(j,i)~=
        if j >1
        none_3_indx = 1;
        last_none_3 = 3;
        while last_none_3 == 3
            if x(j-none_3_indx,i) ~= 3
                    last_none_3 = x(j-none_3_indx,i);
            end
            none_3_indx = none_3_indx + 1;
            if j-none_3_indx == 0 && last_none_3 == 3
                    last_none_3 = -1;
            end
        end
        end
        if j > 2 && j > none_3_indx
        nlast_none_3 = 3;
        while nlast_none_3 == 3
            if x(j-none_3_indx,i) ~=3
                nlast_none_3 = x(j-none_3_indx,i);
            end
            none_3_indx = none_3_indx + 1;
            if j-none_3_indx == 0 && nlast_none_3 == 3
                nlast_none_3 = -1;
            end
```

```
        end
    end
%**************Current HIT
    if j>2 && x(j,i) == 0
        switch last_none_3
            case 0
                if rvrsl >=2
                switch nlast_none_3
                        case 0
                        if hit_jump == 1
                            newincr=newincr*2;
                                end
                            case 1
                                newincr=newincr/2;
                        rvrsl = rvrsl+1;
                                crvrsl= crvrsl+1;
                        case 2
                                    newincr=newincr/2;
                                    rvrsl = rvrsl+1;
                                    crvrsl= crvrsl+1;
                                    case -1
                                    otherwise
                                    error(['Bad Program: 0 : ',num2str(last_none_3)])
                end
            else
                newincr=newincr*2;
                    end
            case 1
            if rvrsl < 2
                rvrsl = rvrsl+1;
                crvrsl= crvrsl+1;
                    end
            case 2
                        if rvrsl < 2
                            rvrsl = rvrsl+1;
                                    crvrsl= crvrsl+1;
                    end
            case -1
            otherwise
                    error(['Bad Program: 0: ',num2str(last_none_3)])
            end
    end
%***********END of Current HIT
```

```
if j>2 && x(j,i)==1
    switch last_none_3
        case 0
            if rvrsl >=2
                    if hit_jump
                    newincr=newincr/2;
                    end
            else
                if nlast_none_3 == 0
                    newincr=newincr/2;
                    end
                end
                rvrsl = rvrsl+1;
                crvrsl= crvrsl+1;
        case 1
            newincr=newincr*2;
        case 2
            newincr=newincr*2;
        case -1
        otherwise
            error(['Bad Program: 1 : ',num2str(last_none_3)])
    end
end
if j>2 && x(j,i)==2
    switch last_none_3
        case 0
        if rvrsl >=2
            if hit_jump
                newincr=newincr/2;
            end
        else
            if nlast_none_3 == 0
            newincr=newincr/2;
            end
        end
        rvrsl = rvrsl+1;
        crvrsl= crvrsl+1;
        case 1
        newincr=newincr*2;
        case 2
        newincr=newincr*2;
        case -1
        otherwise
```

```
            error(['Bad Program: 1 : ',num2str(last_none_3)])
        end
    end
end
if crvrsl >=4
    newincr=newincr/2;
    crvrsl=0;
end
switch x(j,i)
    case 0
        if j>1
            if last_none_3 == 0
            if rvrsl >=2
                if nlast_none_3 == 0
                        if newAmp+newincr*hit < 0
                                    newincr=newAmp/2;
                            end
                        newAmp=newAmp+newincr*hit;
                        hit_jump=1;
                        else
                        if newAmp+newincr*hit < 0
                                    newincr=newAmp/2;
                            end
                            newAmp=newAmp+newincr*hit;
                                end
            else
                                if newAmp+newincr*hit < 0
                        newincr=newAmp/2;
                        end
                        newAmp=newAmp+newincr*hit;
                        end
            else
                        if newAmp+newincr*hit < 0
                    newincr=newAmp/2;
                    end
                    newAmp=newAmp+newincr*hit;
            end
        else
            if newAmp+newincr*hit < 0
                    newincr=newAmp/2;
            end
            newAmp=newAmp+newincr*hit;
        end
    case 1
        newAmp=newAmp+newincr*miss;
        hit_jump=0;
```

```
    case 2
        newAmp=newAmp+newincr*fls_alm;
        hit_jump=0;
    case 3
        newAmp=newAmp+newincr*cor_rej;
    otherwise
        error('Bad Program')
    end
    if newAmp <=0
        newAmp=oldAmp/2;
        newincr=oldAmp/2;
    end
    y(j+1,i)=newAmp;
    plot(y(:,i));
    drawnow;
    if j==30
        disp('Hi');
    end
% fork= 1:j+1
% if y(k,i)==newAmp
% total=total+1;
% if x(k,i)==0
                                    hits=hits+1;
                                end
end
            end
            if total > hit_total
                if hits/total > 0.8
                stoprules(i,3)=j;
                flghits=1;
                    end
            end
            if flghits && flg02 && flg05
                flg = 1;
                end
if (newincr/incr < . }02\mathrm{ && flg02==0)
    stoprules(i,1)=j;
    stoprules(i,3)=newAmp;
    flg02=1;
end
if (newincr/incr < . }05\mathrm{ && flg05==0)
    stoprules(i,2)=j;
    stoprules(i,4)=newAmp;
    flg05=1;
end
if flg02 && flg05
```

```
            flg=1;
        end
        j=j+1;
    end
    if j>n
        if flg02 ~=1
            stoprules(i,1)=j;
            stoprules(i,3)=newAmp;
        end
        if flg05 ~=1
            stoprules(i,2)=j;
            stoprules(i,4)=newAmp;
        end
    end
    close(h2);
    tt=toc;
end
close(h1);
function [Amps,stoprules] = mSIAM_shr_Implemented(x,incr,n,s, Amp,hit, miss,
fls_alm,cor_rej)
% 0 => HIT
% 1 => MISS
% 2 => FALSE ALARM
% 3 => CORRECT REJECTION
% x contains the uniformaly random detections
% incr contains inital increment
% n contains number of trials
% s contains number of subjects
% Amp contains Intial Amplitude
% hit contains Hit change setting
% miss contains Miss change setting
% fls_alm = False Alarm Change setting
% cor_rej = Correct Rejection Change Setting
% stoprules=zeros(s,3); % Include 80% rule
stoprules=zeros(s,2);
Amps=zeros(n,s);
% Simulated Subjects Threshold
thresh=3;
```

```
h1=waitbar(0,['Monte Carlo Simulation of mSIAM_shr_Implemented ',num2str(s),'
subjects']);
tt=0;
ttot=0;
for i=1:s
    ttot=ttot+tt;
    tic
    waitbar(i/s,h1,{['Monte Carlo Simulation of mSIAM_shr_Implemented
',num2str(s),' subjects.'] ['Estimated time remaining: ',num2str(ttot/i*(s-
i)/60,'%6.2f')]});
    j=1;
    % Flag that stops while loop
    flg=0;
    % Flag that indicates when 2% rule met
    flg02 = 0;
    % Flag that indicates when 5% rule met
    flg05 = 0;
    % Counts the number of Reversals
    rvrsl = 0;
    crvrsl = 0;
    newincr = incr;
    newAmp = Amp;
    h2=waitbar(0,['Monte Carlo Simulation of subject: ',num2str(i)]);
    while (j<=n && flg==0)
        oldAmp=newAmp;
        if j>1
            waitbar(j/n,h2,{['Monte Carlo Simulation of subject: ',num2str(i),' Trial:
',num2str(j),] ['2% Flag: ',num2str(flg02), ' 5% Flag: ',num2str(flg05), ' Average
Stop: ', num2str(mean(stoprules(1:i-1,1)))]});
    end
%***************************************
%*** Simulated Human Response CODE
    if }x(j,i)==
        prob = newAmp*3/thresh;
        if rand < prob
                        x(j,i)=0;
            end
        end
%***************************************
    if }x(j,i)~=
        if j>1
            none_3_indx = 1;
            last_none_3 = 3;
```

```
    while last_none_3 == 3
        if x(j-none_3_indx,i) ~= 3
            last_none_3 = x(j-none_3_indx,i);
        end
        none_3_indx = none_3_indx + 1;
        if j-none_3_indx == 0 && last_none_3 == 3
            last_none_3 = -1;
        end
        end
    end
    if j > 2 && j > none_3_indx
        nlast_none_3 = 3;
        while nlast_none_3 == 3
            if x(j-none_3_indx,i) ~=3
                nlast_none_3 = x(j-none_3_indx,i);
            end
            none_3_indx = none_3_indx + 1;
            if j-none_3_indx == 0 && nlast_none_3 == 3
            nlast_none_3 = -1;
            end
        end
    end
%**************}\mathrm{ Current HIT
    if j>2 && x (j,i) == 0
        switch last_none_3
            case 0
            if rvrsl >=2
                switch nlast_none_3
                    case 0
                        if hit_jump == 1
                        newincr=newincr*2;
                        end
                case 1
                        newincr=newincr/2;
                        rvrsl = rvrsl+1;
                        crvrsl= crvrsl+1;
                case 2
                        newincr=newincr/2;
                        rvrsl = rvrsl+1;
                        crvrsl= crvrsl+1;
                case -1
```

```
                                    otherwise
                                    error(['Bad Program: 0 : ',num2str(last_none_3)])
                end
            else
                                newincr=newincr*2;
            end
            case 1
            if rvrsl < 2
                rvrsl = rvrsl+1;
                crvrsl= crvrsl+1;
            end
            case 2
            if rvrsl < 2
                rvrsl = rvrsl+1;
                    crvrsl= crvrsl+1;
                    end
            case -1
            otherwise
            error(['Bad Program: 0 : ',num2str(last_none_3)])
        end
    end
%***********END of Current HIT
```

 if \(\mathrm{j}>2 \& \& x(\mathrm{j}, \mathrm{i})==1\)
 switch last_none_3
 case 0
 if rvrsl \(>=2\)
 if hit_jump
 newincr=newincr/2;
 end
 else
 if nlast_none_3 == 0
 newincr=newincr/2;
 end
 end
 rvrsl = rvrsl+1;
 crvrsl= crvrsl +1 ;
 case 1
newincr=newincr*2;
case 2
newincr=newincr*2;
case -1
otherwise

```
            error(['Bad Program: 1: ',num2str(last_none_3)])
        end
    end
    if j>2 && x (j,i)==2
        switch last_none_3
            case 0
                if rvrsl >=2
                    if hit_jump
                        newincr=newincr/2;
                end
            else
                    if nlast_none_3 == 0
                    newincr=newincr/2;
                    end
                        end
                rvrsl = rvrsl+1;
                crvrsl= crvrsl+1;
            case 1
                newincr=newincr*2;
            case 2
                        newincr=newincr*2;
            case -1
            otherwise
            error(['Bad Program: 1 : ',num2str(last_none_3)])
        end
    end
end
if crvrsl >= 4
    newincr=newincr/2;
    crvrsi=0;
end
switch x(j,i)
    case 0
        if j>1
            if last_none_3 == 0
                if rvrsl >=2
                    if nlast_none_3 == 0
                    if newAmp+newincr*hit < 0
                    newincr=newAmp/2;
                    end
                    newAmp=newAmp+newincr*hit;
                    hit_jump=1;
                    else
                                    if newAmp+newincr*hit < 0
```

```
            newincr=newAmp/2;
                        end
                        newAmp=newAmp+newincr*hit;
                    end
            else
                        if newAmp+newincr*hit < 0
                        newincr=newAmp/2;
                        end
                    newAmp=newAmp+newincr*hit;
                    end
            else
                    if newAmp+newincr*hit < 0
                    newincr=newAmp/2;
                    end
                    newAmp=newAmp+newincr*hit;
            end
        else
            if newAmp+newincr*hit < 0
                    newincr=newAmp/2;
            end
            newAmp=newAmp+newincr*hit;
        end
    case }
        newAmp=newAmp+newincr*miss;
        hit jump=0;
    case 2
        newAmp=newAmp+newincr*fls_alm;
        hit_ump=0;
    case 3
        newAmp=newAmp+newincr*cor_rej;
    otherwise
    error('Bad Program')
end
if newAmp <=0
    newAmp=oldAmp/2;
    newincr=oldAmp/2;
end
% fork=1:j+1
% if y(k,i)==newAmp
% total=total+1;
% if }x(k,i)==
% hits=hits+1
% end
% end
% end
% if total > hit_total
```

```
                        if hits/total > 0.8
                        stoprules(i,3)=j;
                        flghits=1;
            end
        end
        if flghits && flg02 && flg05
        flg = 1;
            end
            if (newincr/incr < .02 && flg02==0)
                stoprules(i,1)=j;
                stoprules(i,3)=newAmp;
            flg02=1;
        end
        if (newincr/incr < . }05\mathrm{ && flg05==0)
        stoprules(i,2)=j;
        stoprules(i,4)=newAmp;
        flg05=1;
        end
        if flg02 && flg05
        flg=1;
        end
    j=j+1;
    end
    if j>n
        if flg02 ~=1
            stoprules(i,1)=j;
            stoprules(i,3)=newAmp;
            end
            if flg05 ~=1
            stoprules(i,2)=j;
            stoprules(i,4)=newAmp;
        end
    end
    close(h2);
    tt=toc;
end
close(h1);
function [Amps,stoprules] = t2IFCmPESTh(x,incr,n,s, Amp)
% 0-Detect First Period
% 1-Detect Second Period
% 2-Non-detect First Period
% 3-Non-detect Second Period
% stoprules=zeros(s,3); % Include 80% rule
stoprules=zeros(s,2);
```

Amps=zeros(n, s);
h1 =waitbar(0,['Monte Carlo Simulation of 2IFC with mPEST for',num2str(s),' subjects']);

```
for \(i=1: s\)
    waitbar(i/s,h1);
    \(\mathrm{j}=1\);
    flg=0;
    flghits \(=0\);
    flgcor = 0;
    flg02 \(=0\);
    flg05 = 0;
    newincr = incr;
    newAmp = Amp;
    h2=waitbar(0,['Monte Carlo Simulation of subject: ',num2str(i)]);
    while ( \(j<=n \& \& f l g==0\) )
        waitbar(j/n,h2, [['Monte Carlo Simulation of subject: ',num2str(i),' Trial:
',num2str(j),] ['0.02\% Flag: ',num2str(flg02), ' 0.05\% Flag: ',num2str(flg05), '
0.80\% Flag: ',num2str(flghits)]\});
```

if $\mathrm{j}==1$
if $x(j, i)<2$
newAmp $=$ newAmp + newincr;
end
end
if $\mathrm{j}>1 \& \& \mathrm{j}<=10$
if $x(j, i)>1$
if $x(j-1, i)>1$
if flgcor $==1$
newincr $=$ newincr*2;
elseif flgcor == 0
newincr $=$ newincr/2;
end
flgcor = 1 ;
if (newAmp - newincr) < 0
newincr $=$ newAmp/2;
end
newAmp $=$ newAmp - newincr;
end
else
if flgcor == 0
newincr $=$ newincr*2;
end
newAmp = newAmp + newincr;
flgcor = 0;
end

```
end
if j> 10
    if }x(j,i)>
        if }x(j-1,i)>
            if }x(j-2,i)>
                if flgcor == 1
                                newincr = newincr*2;
                                elseif flgcor == 0
                                newincr = newincr/2;
                                end
                                flgcor = 1;
                                if (newAmp - newincr) < 0
                                newincr = newAmp/2;
                                end
                                newAmp = newAmp - newincr;
            end
        end
    else
        if flgcor == 0
            newincr = newincr*2;
        end
        newAmp = newAmp + newincr;
        flgcor = 0;
    end
end
% for k= 1:j+1
% if y(k,i)==newAmp
% total=total+1;
                                if }x(k,i)==
                                hits=hits+1;
                                end
    end
            end
            if total > hit_total
            if hits/total > 0.8
                                stoprules(i,3)=j;
                                flghits=1;
                            end
            end
            if flghits && flg02 && flg05
            flg=1;
            end
if (newincr/incr < . 02 && flg02==0)
    stoprules(i,1)=j;
    stoprules(i,3)=newAmp;
```

```
            flg02=1;
        end
        if (newincr/incr < . }05&& flg05==0
            stoprules(i,2)=j;
            stoprules(i,4)=newAmp;
            flg05=1;
        end
        if flg02 && flg05
            flg = 1;
        end
        j=j+1;
    end
    if j>n
        if flg02 ~=1
            stoprules(i,1)=j;
            stoprules(i,3)=newAmp
    end
    if flg05 ~=1
        stoprules(i,2)=j;
        stoprules(i,4)=newAmp;
    end
    end
    close(h2);
end
close(h1);
function [Amps,stoprules] = t2IFCmPESTh_shr(x,incr,n,s, Amp)
% 2-Detect First Period
% 3-Detect Second Period
% 0-Non-detect First Period
% 1 - Non-detect Second Period
% stoprules=zeros(s,3); % Include 80% rule
stoprules=zeros(s,2);
Amps=zeros(n,s);
thresh = 3;
h1=waitbar(0,['Monte Carlo Simulation of 2IFC with mPEST for',num2str(s),'
subjects']);
for i=1:s
    waitbar(i/s,h1);
    j=1;
    flg=0;
    flgcor = -1;
    flg02 = 0;
```

```
flg05 = 0;
newincr = incr;
newAmp = Amp;
h2=waitbar(0,['Monte Carlo Simulation of subject: ',num2str(i)]);
while (j<=n && flg==0)
    waitbar(j/n,h2,{['Monte Carlo Simulation of subject: ',num2str(i),' Trial:
',num2str(j),] ['0.02% Flag: ',num2str(flg02), ' 0.05% Flag: ',num2str(flg05), '
Average Stop: ', num2str(mean(stoprules(1:i-1,1)))]});
```

```
%***************************************
%*** Simulated Human Response CODE
    if }x(j,i)<
        prob = newAmp*3/thresh;
        if rand < prob
            if }x(j,i)==
                x(j,i)=2;
                    end
                    if }x(j,i)==
                        x(j,i)=3;
                    end
        end
        end
%************
        if }x(j,i)<
            newAmp = newAmp + newincr;
        end
        end
        if j>1 && j<=10
        if }x(j,i)>
            if }x(j-1,i)>
                if flgcor == 1
                    newincr = newincr*2;
                    elseif flgcor == 0
                        newincr = newincr/2;
                    end
                    flgcor = 1;
                    if (newAmp - newincr) < 0
                        newincr = newAmp/2;
                    end
                    newAmp = newAmp - newincr;
                end
            else
                if flgcor == 0
                    newincr = newincr*2;
                end
```

```
        newAmp = newAmp + newincr;
        flgcor = 0;
    end
end
if j> 10
    if }x(j,i)>
        if }x(j-1,i)>
            if }x(j-2,i)>
                if flgcor == 1
                newincr = newincr*2;
                    elseif flgcor == 0
                        newincr = newincr/2;
                end
                flgcor = 1;
                if (newAmp - newincr) < 0
                                newincr = newAmp/2;
                    end
                    newAmp = newAmp - newincr;
            end
        end
    else
        if flgcor == 0
            newincr = newincr*2;
        end
        newAmp = newAmp + newincr;
        flgcor = 0;
    end
end
% for k= 1:j+1
% if y(k,i)==newAmp
% total=total+1;
% if x(k,i)==0
%
                    hits=hits+1;
            end
            end
    end
    if total > hit_total
    if hits/total > 0.8
                    stoprules(i,3)=j;
                    flghits=1;
            end
        end
        if flghits && flg02 && flg05
        flg = 1;
        end
```

```
    if (newincr/incr < . 02 && flg02==0)
        stoprules(i,1)=j;
        stoprules(i,3)=newAmp;
        flg02=1;
    end
    if (newincr/incr < . }05&& flg05==0
        stoprules(i,2)=j;
        stoprules(i,4)=newAmp;
        flg05=1;
    end
    if flg02 && flg05
        flg = 1;
    end
    j=j+1;
    end
    if j>n
        if flg02 ~=1
        stoprules(i,1)=j;
        stoprules(i,3)=newAmp;
    end
    if flg05 ~=1
        stoprules(i,2)=j;
        stoprules(i,4)=newAmp;
    end
    end
    close(h2);
end
close(h1);
```


APPENDIX P

ANKLE MODEL MATLAB ${ }^{\circledR}$ CODE

\% main_Ankle.m
clear all
clear classes
global DEBUG_F Project_Folder Picture_Folder BW_flg Color_fig Grayscale_flg File_Folder sim_name
Picture_Folder='Ankle_Pictures_Grayscalel';
File_Folder='E:ICurrent Projects\ASMEl';
Project_Folder ='E:ICurrent Projects\Multi-Linked Systems'; addpath Project_Folder
DEBUG_F = 0;
sim_name='Ankle';
Grayscale_flg=1;
Color_flg=0;
$B W _f l g=0$;
flnm='Ankle_2006082301';
dspfig=0;
\% Setup Limbs by length, width and height
\% Along repective axis as follows:
\% \quad x y \quad z
tibia=limb([474 20 39]);
talus=limb([20 25 39]);
calcaneus=limb([50 80 30]);
\% $11=\operatorname{limb}([4743920]) ;$
\% I2=limb([25 39 20]);
\% l3=limb([13 32 80]);
\% I4=limb([29 48 19]);
\% Setup joints by x, y, z translations from prox limb
\% Setup joints by psi(x), phi(y) rotations from prox limb
\% Setup final rotation about the revolute joint theta(z)
\% Setup joints by x, y, z translations to dist limb
\% Setup joints by psi(x), phi(y) rotations to dist limb
\% Setup final rotation about the revolute joint theta(z)
\%j=joint(x, y, z,psi,phi,Theta,x,y,z,psi,phi,theta); talocrural=joint(237,0,0,-16,-20,0,10,0,0,16,20,0);
subtalar=joint(10,0,0,-67,-41,0,25,0,5,67,41,0);
\% j3=joint(7.5,0,-17,-80,0,0,18,-26,-20,-10,0,0);
rfoot=ml_sys(tibia,talocrural,talus,subtalar,calcaneus);

```
write_limb_joint_info(rfoot,flnm);
% Rotate To position 0
disp('Position ')
rfoot=build_v3(rfoot,0);
write_vertices_rotation(rfoot,0,0,0,flnm,3);
% Rotate To position 1
disp('Position 1')
rfoot=rotate_v4(rfoot,15,2,0);
write_vertices_rotation(rfoot,1,15,2,flnm,3);
% Rotate To position 2
disp('Position 2')
rfoot=rotate_v4(rfoot,-20,1,0);
write_vertices_rotation(rfoot,2,-20,1,flnm,3);
% Rotate To position 3
disp('Position 3')
rfoot=rotate_v4(rfoot,5,1,0);
write_vertices_rotation(rfoot,3,5,1,flnm,3);
% Rotate To position }
disp('Position 4')
rfoot=rotate_v4(rfoot,-20,2,0);
write_vertices_rotation(rfoot,4,-20,2,flnm,3);
% Rotate To position 5
disp('Position 5')
rfoot=rotate_v4(rfoot,10,1,0);
write_vertices_rotation(rfoot,5,10,1,flnm,3);
% Rotate To position }
disp('Position 6')
rfoot=rotate_v4(rfoot,-10,2,0);
write_vertices_rotation(rfoot,6,-10,2,flnm,3);
% Rotate To position }
disp('Position 7')
rfoot=rotate_v4(rfoot,15,2,0);
write_vertices_rotation(rfoot,7,15,2,flnm,3);
% Rotate To position }
disp('Position 8')
rfoot=rotate_v4(rfoot,5,1,0);
```

```
write_vertices_rotation(rfoot,8,5,1,flnm,3);
rfoot=rotate_movie(rfoot,'rotate_30_both_ankle',30,2,-30,1);
% % %
% % % rfoot=rotate_movie(rfoot,'rotate_30_back',30,1,-30,3);
rfoot=rotate_movie(rfoot,'rotate_30_back__ankle',-30,2,30,1);
%compare yaw pitch and role for all rotations
clc
clear all
clear classes
global DEBUG_F Project_Folder
Project_Folder ='E:\Current Projects\Multi-Linked Systems';
addpath Project_Folder
DEBUG_F = 0;
% Setup Limbs by length, width and height
% Along repective axis as follows:
% x y z
|1=limb([100 40 40]);
I2=limb([80 30 30]);
I3=limb([60 20 20]);
14=limb([30 10 10]);
% I1=limb([474 39 20]);
% I2=limb([25 39 20]);
% I3=limb([13 32 80]);
% I4=limb([29 48 19]);
% Setup joints by x,y,z translations from prox limb
% Setup joints by psi(x), phi(y) rotations from prox limb
% Setup final rotation about the revolute joint theta(z)
% Setup joints by x,y,z translations to dist limb
% Setup joints by psi(x), phi(y) rotations to dist limb
% Setup final rotation about the revolute joint theta(z)
%j=joint(x, y, z,psi,phi,Theta,x,y,z,psi,phi,theta);
j1=joint(237,0,-10,-15,-35,0,12.5,0,10,15,35,0);
j2=joint(12.5,0,0,0,0,0,7.5,0,0,0,0,0);
j3=joint(7.5,0,-17,-80,0,0,18,-26,-20,-10,0,0);
ml=ml_sys(l1,j1,I2,j2,l3,j3,l4);
```

```
m2 = ml_sys(ml);
ml=build_v3(ml,0);
% Creating a second multi linked system variable to run rotate without
% translations on
% compare_ml_2(ml,m2,1);
% compare_ml_2(ml,m2,2);
% compare_ml_2(ml,m2,3);
% compare_ml_2(ml,m2,4);
% ml=build(ml);
%
% ml=rotate(ml,-30,1);
%
% ml=rotate_v4(ml,30,1,0);
% compare_ml_2(ml,m2,1);
% compare_ml_2(ml,m2,2);
% compare_ml_2(ml,m2,3);
% compare_ml_2(ml,m2,4);
%
% ml=rotate_v4(ml,30,3,0);
%
% compare_ml_2(ml,m2,1);
% compare_ml_2(ml,m2,2);
% compare_ml_2(ml,m2,3);
% compare_ml_2(ml,m2,4);
% ml = rotate(ml,-30,3);
h1=waitbar(0/1,'Checking Rotations');
lim_d=180;
for }\overline{\textrm{i}}=-\operatorname{lim}\textrm{d}:1:\operatorname{lim}
    waitbar((i+lim_-d+1)/(2*lim_d+1),h1,['Checking Rotations: ',num2str(i),'
degrees.'])
    ml=rotate_v4(ml,i,1,0);
    h2=waitbar(0/1,'Checking Rotations');
    for j = -lim_d:1:lim_d
        waitbar((j+lim_d+1)/(2*lim_d+1),h2,['Checking Rotations: ',num2str(j),'
degrees.'])
        ml=rotate_v4(ml,j,3,0);
        for c=2:4
            f_flag = compare_ml_2(ml,m2,c);
            if f_flag == 0
```

```
            error(['At Joint 1: ',num2str(i),' degrees and Joint 3: ',num2str(j),'
degrees. ',.
                    'There was an error in limb: ',num2str(c)])
            end
        end
        ml=rotate_v4(ml,-j,3,0);
    end
    close(h2)
    ml=rotate_v4(ml,-i,3,0);
end
close(h1)
```

\% A second different script that translates to origin but does not
\% store data
\% Run rotate_notrans
\% Translate back to original using previously stored translation
\% matrix
\%
\% ml=rotate(ml,30,3,-30,1);
\%
\% \% Find Bug with order
\%
\% ml=rotate($\mathrm{ml}, 30,1,-30,3$);
$\% \mathrm{ml}=$ rotate_movie(ml,'rotate_30_both',30,3,-30,1);
\%
\%ml=rotate_movie(ml,'rotate_30_back',30,1,-30,3);
$\%$ ml=rotate_movie(ml ,'rotate_30_back',-30,3,30,1);
function ML = build_v3(ML,displayf)
\% builds multi-linked system.
\% ML = build(v) creates a ml_sys object from the vector v,
\% containing: Contains
\%
global DEBUG_F
if DEBUG_F
disp('Entering Build_v3');
end

```
rotations = eye(4);
for count=1:ML.limb_num-1
    % Calc Yaw pitch and roll from Rotations
    center = get(get(ML.limbs(count), 'center'), 'vert_array');
    z_dc_y = get(get(ML.limbs(count),'y_unit'),'z')-center(3);
    z_dc_x = get(get(ML.limbs(count),'x_unit'),'z')-center(3);
    pitch = asin(rotations(1,2));
    yaw = -acos(rotations(1,1)/cos(asin(rotations(1,2))))*(z_dc_x/abs(z_dc_x));
    roll = -acos(rotations(2,2)/cos(asin(rotations(1,2))))*(z_dc_y/abs(z_dc_y));
    ML.limbs(count)=set(ML.limbs(count),'yaw',yaw,'pitch',pitch,'roll',roll);
    rotations=rotations*...
    (get(ML.joints(count),'x_axis_rotate_from_prox')* ..
    (get(ML.joints(count),'y_axis_rotate_from_prox')* ...
    (get(ML.joints(count),'z_axis_rotate_from_prox')* ...
    (get(ML.joints(count),'z_axis_rotate_to_dist')* ...
    (get(ML.joints(count),'y_axis_rotate_to_dist')* ...
    (get(ML.joints(count),'x_axis_rotate_to_dist')))))));
\% Limbs are translated and rotated from initial position
    ML.limb_vertices(1:4,(count)* ...
    ML.Points_per_Limb+1:ML.limb_num*ML.Points_per_Limb) = ...
    get(ML.joints(count),'Translate_from_prox')* ...
    (get(ML.joints(count),'x_axis_rotate_from_prox')* ...
    (get(ML.joints(count),'y_axis_rotate_from_prox')* ...
    (get(ML.joints(count),'z_axis_rotate_from_prox')* ...
    (get(ML.joints(count),'z_axis_rotate_to_dist')* ...
    (get(ML.joints(count),'y_axis_rotate_to_dist')* ...
    (get(ML.joints(count),'x_axis_rotate_to_dist')* ...
    (get(ML.joints(count),'Translate_to_dist')* ...
    ML.limb_vertices(1:4,(count)*ML.Points_per_Limb+1 ...
    :ML.limb_num*ML.Points_per_Limb)))))\));
ML=find_rpy_dc(ML,count);
end
ML=find_rpy_dc(ML,ML.limb_num);
center = get(get(ML.limbs(count), 'center'), 'vert_array');
```

```
z_dc_y = get(get(ML.limbs(count),'y_unit'),'z')-center(3);
z_dc_x = get(get(ML.limbs(count),'x_unit'),'z')-center(3);
pitch = asin(rotations(1,2));
yaw = -acos(rotations(1,1)/cos(asin(rotations(1,2))))*(z_dc_x/abs(z_dc_x));
roll = -acos(rotations(2,2)/\operatorname{cos(asin(rotations(1,2))))*(z_dc_y/abs(z_dc_y));}
ML.limbs(ML.limb_num)=set(ML.limbs(ML.limb_num),'yaw',yaw,'pitch',pitch,'roll',r
oll);
ML=set(ML,'limb_vertices',ML.limb_vertices);
if displayf==1
    display_ml(ML,1);
end
if DEBUG_F
    disp('Leaving Build_v3');
end
function f_flag = compare_ml_2 (m1, m2, limb_num)
global DEBUG_F
% Constructs the translation matrix to take the rotate_notrans limb
% center to the origin.
Translate_Origin = eye(4);
Translate_Origin(1:4,4) = get(get(m1.limbs(limb_num),'center'),'vert_array');
\% Translate the limb's center to the origin
limb_array2= get(m2.limbs(limb_num),'vertex_array_v');
limb_array3=limb_array2;
% disp('Back Calculated yaw pitch and roll')
bc_yaw = get(m1.limbs(limb_num),'bc_yaw');
bc_pitch = get(m1.limbs(limb_num),'bc_pitch');
bc_roll = get(m1.limbs(limb_num),'bc_roll');
y_axis_rotate = [...
    cos(bc_yaw),0,sin(bc_yaw),0; ...
    0,1,0,0; ...
    -sin(bc_yaw),0,cos(bc_yaw),0;0,0,0,1];
```

```
z_axis_rotate = [ ...
    cos(bc_pitch),-sin(bc_pitch),0,0; ...
    sin(bc_pitch),cos(bc_pitch),0,0; ...
    0,0,1,0;0,0,0,1];
x_axis_rotate = [1,0,0,0; ..
    0,cos(bc_roll),-sin(bc_roll),0; ...
    0,sin(bc_roll),cos(bc_roll),0;0,0,0,1];
limb_array2 =
    Translate_Origin * ...
    (inv(x_axis_rotate) *...
    (inv(z_axis_rotate) *...
    (inv(y_axis_rotate)* ...
    limb_array2)));
limb_array1 = get_limb_array(m1,limb_num);
test_1 = round(limb_array1*1000) == round(limb_array2*1000);
% disp('Rotation Yaw pitch and roll')
yaw = get(m1.limbs(limb_num),'yaw');
pitch = get(m1.limbs(limb_num),'pitch');
roll = get(m1.limbs(limb_num),'roll');
y_axis_rotate = [ ...
    cos(yaw),0,sin(yaw),0; ...
    0,1,0,0; ...
    -sin(yaw),0,cos(yaw),0;0,0,0,1];
z_axis_rotate = [ ...
    cos(pitch),-sin(pitch),0,0; ...
    sin(pitch),}\operatorname{cos}(pitch),0,0;
    0,0,1,0;0,0,0,1];
x_axis_rotate = [1,0,0,0; ..
    0,cos(roll),-sin(roll),0; ...
    0,sin(roll),cos(roll),0;0,0,0,1];
limb_array3 =
    Translate_Origin * ...
    (inv(x_axis_rotate) * ...
    (inv(z_axis_rotate) *...
    (inv(y_axis_rotate) * ...
    limb_array3)));
```

```
test_2 = round(limb_array1*1000) == round(limb_array3*1000);
test_3 = round(limb_array2*1000) == round(limb_array3*1000);
% if test_2 == test_1
if test_2
    f_flag=1;
else
        disp('boo')
        bc_yaw
        bc_pitch
        bc_roll
        limb_array2
        test_1
        limb_array1
        test_2
        limb_array3
        yaw
        pitch
        roll
        f_flag=0;
        test_3
end
function display_ml(ML,flg,rot)
% display multi-linked system.
%
%
global sim_name DEBUG_F
% Position of Vertices of Distal Limb with respect to the joint
if (flg == 1)
    figure
end
for count=1:ML.limb_num
    sim_horz((count-1)*8+1:(count-1)* ...
        8+8,1:3) = ...
        get(ML.limbs(count), ...
        'vertex_array_h');
        sim_face((count-1)*6+1:(count-1)*6+6,1:4) = get(ML.limbs(count), ...
            'faces')+8*(count-1);
end
```

```
% Color
patch('Vertices',sim_horz,'Faces',sim_face,...
    'FaceVertexCData',hsv(ML.limb_num*6),'FaceColor','flat')
% h=axes('CameraPosition',[350 125 70]);
% %set(h,'YDir','rev');
% set(h,'NextPlot','replace');
switch sim_name
    case 'Ankle'
        % Ankle
        axis([120 320-100 100-100 100 0 1])
        % Back of Ankle
        view(21+rot,44+rot);
        % Front of ANkle
        %view(-148+rot,-43+rot);
        % view(-128+rot,-50+rot);
    case 'Crab'
        % Crab axis
        axis([-5 15-5 15-5 15 0 1])
        % axis([-300 300-300 300-300 300 0 1])
        % Crab Leg
        view(-55+rot,-31+rot);
        %view(150+rot,-23+rot);
    otherwise
        error('Bad sim_name');
end
xlabel('X')
ylabel('Y')
zlabel('Z')
drawnow
function display_save_ml(ML,flg,rot,flnm,pos)
% display multi-linked system.
%
%
global DEBUG_F Project_Folder Picture_Folder BW_flg Color_flg Grayscale_flg
File_Folder sim_name
% Position of Vertices of Distal Limb with respect to the joint
if (flg == 1 || flg == 2)
    h1=figure;
end
```

```
for count=1:ML.limb_num
sim_horz((count-1)*8+1:(count-1)* ...
    8+8,1:3) = ...
    get(ML.limbs(count), ...
    'vertex_array_h');
sim_face((count-1)*6+1:(count-1)*6+6,1:4) = get(ML.limbs(count), ...
    'faces')+8*(count-1);
end
% h=axes('CameraPosition',[350 125 70]);
%set(h,'YDir','rev');
% set(h,'NextPlot','replace');
% axis([-10 10 -10 10-10 10 0 1])
% axis([-17 17 -17 17-17 17 0 1])
if Color_flg
    % Color
    patch('Vertices',sim_horz,'Faces',sim_face,...
    'FaceVertexCData',hsv(ML.limb_num*6),'FaceColor','flat')
end
% Black and White
if BW_flg
    patch('Vertices',sim_horz,'Faces',sim_face,...
    'FaceVertexCData',white(ML.limb_num*6),'FaceColor','flat')
end
% Gray Scale
if Grayscale_flg
    patch('Vertices',sim_horz,'Faces',sim_face,...
    'FaceVertexCData',gray(ML.limb_num*6),'FaceColor','flat')
end
switch sim_name
    case 'Ankle'
        % Ankle
        axis([120 320-100 100-100 100 0 1])
        % Back of Ankle
        view(21+rot,44+rot);
        % Front of ANkle
```

```
    %view(-148+rot,-43+rot);
    % view(-128+rot,-50+rot);
    case 'Crab'
    % Crab axis
    axis([-5 15-5 15-5 15 0 1])
    % axis([-300 300-300 300-300 300 0 1])
    % Crab Leg
    view(-55+rot,-31+rot);
    %view(127+rot,-23+rot);
    otherwise
    error('Bad sim_name');
end
```

xlabel('X')
ylabel('Y')
zlabel('Z')
drawnow
if (flg == 3 || flg == 2)
saveas(gcf,[File_Folder,Picture_Folder,flnm,'_Pos_',num2str(pos),'.emf']);
saveas(gcf,[File_Folder,Picture_Folder,flnm,'_Pos_',num2str(pos),'.jpg']);
saveas(gcf,[File_Folder,Picture_Folder,flnm,'_Pos_',num2str(pos),'.tif]);
if $\mathrm{flg}==3$
close(gcf)
end
end
function ML = display_vert(ML)
\% builds multi-linked system.
\% ML = build(v) creates a ml_sys object from the vector v,
\% containing: Contains
\%
global DEBUG_F
for count=1:ML.limb_num

```
disp(['Limb: ',num2str(count)])
list_vertices(ML.limbs(count))
end
function display_vert_conf(ML,pos)
% writes multi-linked system.
% display_vert_conf(ML,pos) writes limb coord to file
%
global DEBUG_F
```

header= \{'Position' 'End Segment 1' ' ' ' ' 'Joint \#1' ' ' ' ' 'Segment \#2 Center' ' ' ' '
'Joint \#2' ' ' ' ' 'Segment \#3 Center' ' ' ' ' ' ' ' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y'
'z'\};
sprdsht = cell(1,16);
sprdsht(1,1)= cellstr(num2str(pos));
sprdsht(1,2:4)=num2cell(get(get(ML.limbs(10),'x face'),'horz_array'));
sprdsht(1,5:7)=num2cell(get(get(ML.limbs(8),'x_face'),'horz_array'));
sprdsht(1,8:10)=num2cell(get(get(ML.limbs(7),'center'),'horz_array'));
sprdsht(1,11:13)=num2cell(get(get(ML.limbs(5),'x_face'),'horz_array'));
sprdsht(1,14:16)=num2cell(get(get(ML.limbs(4),'center'),'horz_array'));

```
xlswrite('E:ICurrent Projects\ASME\BioKinWorkbook2006.xls',header,'Conf
1','A1');
xlswrite('E:ICurrent Projects\ASME\BioKinWorkbook2006.xls',sprdsht,'Conf
1',['A',num2str(3+pos)]);
```

function ML = find_rpy_dc(ML, limb_num)
global DEBUG_F
outpt = get(ML.limbs(limb_num), 'center');
center = get(outpt, 'vert_array');
global DEBUG_F
if DEBUG_F
disp('Entering find_rpy_dc');
end

```
% Constructs the translation matrix to take the rotate_notrans limb
% center to the origin.
Translate_Origin = eye(4);
Translate_Origin(1:4,4) = center;
% Translate the limb's center to the origin
limb_vertices = get(ML.limbs(limb_num),'vertex_array_v');
limb_vertices = inv(Translate_Origin) * limb_vertices;
```

```
if DEBUG_F
```

if DEBUG_F
disp('find_rpy_dc');
disp('find_rpy_dc');
limb_vertices
limb_vertices
end
end
%***
% Main yaw, Pitch and roll Find
% must be done in order:
% roll, pitch, and yaw
% axis_vector=limb_vertices(1:3,11);
%
% x_dc_o = axis_vector(1)/norm(axis_vector)
% y_dc_o = axis_vector(2)/norm(axis_vector)
% z_dc_o = axis_vector(3)/norm(axis_vector)
x_dc = get(get(ML.limbs(limb_num),'y_unit'),'x')-center(1);
y_dc = get(get(ML.limbs(limb_num),'y_unit'),'y')-center(2);
z_dc = get(get(ML.limbs(limb_num),'y_unit'),'z')-center(3);
u_prime_mag = norm([y_dc,z_dc]);
% Negative sign added so that a clockwise rotation occurs for positve
% angle instead of counterclockwise
roll = -acos(dot([0,y_dc,z_dc],[0,1,0])/norm([0,y_dc,z_dc]))*(z_dc/abs(z_dc));
x_axis_rotate = [1,0,0,0; ..
0,cos(roll),-sin(roll),0; ...
0,\operatorname{sin}(\mathrm{ roll),cos(roll),0;0,0,0,1];}
limb_vertices = ...
(x_axis_rotate * ...
limb_vertices);
if DEBUG_F == 1
disp('find_rpy_dc: X-axis rotation: Align y_unit with xy plane')

```
limb_vertices
end
```

pitch =
acos(dot([x_dc,u_prime_mag,0],[0,1,0])/norm([x_dc,u_prime_mag,0]))*(x_dc/abs(
x_dc));
z_axis_rotate = [..
cos(pitch),-sin(pitch),0,0; ...
sin(pitch),\operatorname{cos(pitch),0,0; ...}
0,0,1,0;0,0,0,1];
limb_vertices =
(z_axis_rotate * ..
limb_vertices);
if DEBUG_F == 1
disp('find_rpy_dc: Z-axis rotation: Align y_unit with Y axis and x_unit with xz
plane')
limb_vertices
end
% axis_vector=limb_vertices(1:3,10);
%
% x_dc = axis_vector(1)/norm(axis_vector);
% y_dc = axis_vector(2)/norm(axis_vector);
% z_dc = axis_vector(3)/norm(axis_vector);
x_dc = limb_vertices(1,13);
% y_dc = limb_vertices(2,13);
z_dc = limb_vertices(3,13);
yaw = acos(dot([x_dc,0,z_dc],[1,0,0])/norm([x_dc,0,z_dc]))*(z_dc/abs(z_dc));
y_axis_rotate = [..
cos(yaw),0,\operatorname{sin}(yaw),0; ...
0,1,0,0; ...
-sin(yaw),0,cos(yaw),0;0,0,0,1];
limb_vertices = ...
(y_axis_rotate * ..
limb_vertices);
if DEBUG_F == 1
disp('find_rpy_dc: Y-axis rotation: Align x_unit with X axis')

```
```

 limb_vertices
    ```
end
ML.limbs(limb_num)=set(ML.limbs(limb_num),'bc_yaw',yaw,'bc_pitch',pitch,'bc_r
oll',roll);
if DEBUG_F
    disp('Leaving find_rpy_dc');
end
function outpt = get(Var_ML_sys, data_req)
\%ML_sys get function.
\% Returns variable depending on request.
\%
global DEBUG_F
switch data_req
    case 'limb_vertices'
        outpt = Var_ML_sys.limb_vertices;
    otherwise
        error([data_req,' Is not a valid asset property'])
end
function outpt = get_limb_array(Var_ML_sys, limb_num)
\% Retrieves the vertex_array_v of the desired limb and outputs it.
global DEBUG_F
outpt = get(Var_ML_sys.limbs(limb_num),'vertex_array_v');
function list_vertices(ML)
\% list all variables and values
global DEBUG_F
disp('Vertices: ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) )')
disp(['L.topface_ul: ',list_xyz(L.topface_ul)])
disp(['L.topface_ur: ',list_xyz(L.topface_ur)])
disp(['L.topface_bl: ',list_xyz(L.topface_bl)])
disp(['L.topface_br: ',list_xyz(L.topface_br)])
disp(['L.bottomface_ul: ',list_xyz(L.bottomface_ul)])
disp(['L.bottomface_ub: ',list_xyz(L.bottomface_ur)])
disp(['L.bottomface_bl: ',list_xyz(L.bottomface_bl)])
disp(['L.bottomface_br: ',list_xyz(L.bottomface_br)])
disp('Center')
disp(['L.center: ',list_xyz(L.center)])
disp('Center of Faces on positive axis')
disp(['L.x_face: ',list_xyz(L.x_face)])
```

disp(['L.y_face: ',list_xyz(L.y_face)])
disp(['L.z_face: ',list_xyz(L.z_face)])
function ML = ml_sys(varargin)
%ml_sys class constructor.
% \overline{ML = ml_sys(v) creates a ml_sys object from the vector v,}
% containing: Contains ml_sys
%
global DEBUG_F
if nargin == 0
ML.c = [];
ML = class(ML,'ml_sys');
else
if isa(varargin{1},'ml_sys')
ML = varargin{1};
else
ML.Points_per_Limb = 16;
Var_Updates = varargin;
ML.limbs(1) = Var_Updates{1};
ML.joints(1) = Var_Updates{2};
ML.limbs(2) = Var_Updates{3};
Var_Updates = Var_Updates(4:end);
ML.limbs(1) = set(ML.limbs(1),'dist_joint',get(ML.joints(1),'dist_joint'));
ind = 2;
while length(Var_Updates) >=2
ML.joints(ind) = Var_Updates{1};
ML.limbs(ind) =
set(ML.limbs(ind),'dist_joint',get(ML.joints(ind),'dist_joint'));
ind=ind+1;
ML.limbs(ind) = Var_Updates{2};
Var_Updates = Var_Updates(3:end);
end
ML.limb_num = ind;
for count=1:ind
ML.limb_vertices(1:4,1+(ML.Points_per_Limb*(count-1)): ...
ML.Points_per_Limb+(ML.Points_per_Limb*(count-1)))= ...
get(ML.limbs(count),'vertex_array_v');
end

```
```

 ML = class(ML,'ml_sys');
 end
 end
function write_vertices_rotation(ML,pos,rot,jnt,flnm,flg)
% writes multi-linked system.
% display_vert_conf(ML,pos) writes limb coord to file
%
global DEBUG_F File_Folder
h_h=cell(3+ML.limb_num,16);
header_11= {'Position:' num2str(pos) 'Rotation: ' num2str(rot) 'Joint: '
num2str(jnt)};
header_l2= {'Segment' 'Center' '' '' 'X vector' '' ' ' 'Y Vector' ' ' ' ' 'Z vector' ' ' ''
'Orientation' ' ' ' ''Distal Joint'};
header_l3= {' ' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y' 'z' 'Yaw' 'Pitch' 'Roll' 'x' 'y' 'z'};
h_h(1,1:6) = header_l1;
h_h(2,1:17) = header_l2;
h_h(3,1:19) = header_I3;
for i=1:ML.limb_num
h_h(i+3,1)= cellstr(num2str(i));
h_h(i+3,2:4)=num2cell(get(get(ML.limbs(i),'center'),'horz_array'));
h_h(i+3,5:7)=num2cell(get(get(ML.limbs(i),'x_face'),'horz_array'));
h_h(i+3,8:10)=num2cell(get(get(ML.limbs(i),'y_face'),'horz_array'));
h_h(i+3,11:13)=num2cell(get(get(ML.limbs(i),'z_face'),'horz_array'));
h_h(i+3,17:19)=num2cell(get(get(ML.limbs(i),'dist_joint'),'horz_array'));
h_h(i+3,14)=num2cell(get(ML.limbs(i),'yaw')*180/pi);
h_h(i+3,15)=num2cell(get(ML.limbs(i),'pitch')*180/pi);
h_h(i+3,16)=num2cell(get(ML.limbs(i),'roll')*180/pi);
end
xlswrite([File_Folder,flnm,'.xls'],h_h,['Pos', num2str(pos)],'A1');
if (flg >=1 \&\& flg <=3)
display_save_ml(ML,flg,0,flnm,pos);
end

```
```

function Var_ML_sys = rotate_movie_EMBC(Var_ML_sys,name)
%Joint Rotator movie maker about the revolu Joint.
% J = rotate(Var_ML_sys,degrees) Rotates distal limb
% containing: Contains degrees
%
global DEBUG_F Project_Folder
folder = 'E:\Current Projects\Multi-Linked Systems\movies\';
movie = avifile([folder,name,'.avi']);
fig=figure;
set(fig,'DoubleBuffer','on');
incr=1/4;
for i=0:incr:90
for j=1:Var_ML_sys.limb_num-1
switch j
case 1
degrees=incr;
case 2
if i<30
degrees=-incr;
elseif i<45
degrees=0;
elseif i<70
degrees=incr;
else
degrees=0;
end
case 3
if i<10
degrees=0;
elseif i<30
degrees=-incr;
elseif i<60
degrees=0;
else
degrees=incr;
end
otherwise
error('Error: rotate movie_EMBC.m - No Such Joint');
end
joint=j;
if degrees>0

```
```

 for k=incr:incr:degrees
 Var_ML_sys = rotate_v4(Var_ML_sys, incr, joint,0);
 display_ml(Var_ML_sys,0,0);
 drawnow
 f = getframe(gca);
 movie = addframe(movie,f);
 cla
 end
 end
 if degrees<0
 for k=-incr:-incr:degrees
 Var_ML_sys = rotate_v4(Var_ML_sys, -incr,joint,0);
 display_ml(Var_ML_sys,0,0);
 drawnow
 f = getframe(gca);
 movie = addframe(movie,f);
 cla
 end
 end
 end
 end
for rep=1:3
for i=1:2
if i==1
degrees=75;
else
degrees=-75;
end
joint=3;
if degrees>0
for k=incr:incr:degrees
Var_ML_sys = rotate_v4(Var_ML_sys, incr, joint,0);
display_ml(Var_ML_sys,0,0);
drawnow
f = getframe(gca);
movie = addframe(movie,f);
cla
end
end
if degrees<0
for k=-incr:-incr:degrees
Var_ML_sys = rotate_v4(Var_ML_sys, -incr,joint,0);
display_ml(Var_ML_sys,0,0);

```
```

 drawnow
 f = getframe(gca);
 movie = addframe(movie,f);
 cla
 end
 end
 end
 end
movie = close(movie);
close
function Var_ML_sys = rotate_v4(Var_ML_sys,varargin)
%Joint Rotator about the revolute Joint.
% J = rotate(Var_ML_sys,degrees,joint) Rotates distal limb
% containing: Contains degrees,joint
%
global DEBUG_F
if DEBUG_F
disp('Entering rotate_v4');
end
Var_Updates = varargin;
while length(Var_Updates) >=2
axis_position = eye(4);
displayf=Var_Updates{length(Var_Updates)};
theta=Var_Updates{1}*pi/180;
joint=Var_Updates{2};
Var_Updates = Var_Updates(3:end);
rev_rotate = [...
cos(theta),-\operatorname{sin}(theta), 0,0;···
sin(theta),\operatorname{cos}(theta),0,0; ...
0,0,1,0;0,0,0,1];
axis_position(1,4) =
Var_ML_sys.limb_vertices(1,(joint)*Var_ML_sys.Points_per_Limb);
axis_position(2,4) =
Var_ML_sys.limb_vertices(2,(joint)*Var_ML_sys.Points_per_Limb);
axis_position(3,4) =
Var_ML_sys.limb_vertices(3,(joint)*Var_ML_sys.Points_per_Limb);

```

Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ... :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb) = ... (inv(axis_position)*..
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ...
:Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb));
for count=1:joint
\% Translate to Joint
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ... :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb) = ...
(inv(get(V) \(\overline{\operatorname{Var}}\) _ML_sys.joints(count), 'y_axis_rotate_from_prox'))* ...
(inv(get(Var_ML_sys.joints(count),'x_axis_rotate_from_prox'))* ...
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ... :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb)));
if count==joint
\% Rotates around Arbitrary Axis then Translates back to Proximal
Member
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ... :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb) = ...
(get(Var_ML_sys.joints(joint),'x_axis_rotate_from_prox')* ...
(get(Var_ML_sys.joints(joint),'y_axis_rotate_from_prox')* ...
(rev_rotate* ...
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1
:Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb))));
\% Sets the new Rotation about the Z-axis into Joint Specs
theta=get(Var_ML_sys.joints(joint),'R_theta_from_prox')+theta;
rev_rotate \(=[\)...
cos(theta),-sin(theta), 0,\(0 ; \ldots\)
\(\sin (\) theta \(), \cos (\) theta \(), 0,0 ; \ldots\)
0,0,1,0;0,0,0,1];
Var_ML_sys.joints(joint)=set(Var_ML_sys.joints(joint), ...
'z_axis_rotate_from_prox',rev_rotate,'R_theta_from_prox',theta);
else
\% Continues Propagation to Joint to be rotated
```

 Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ...
 :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb) = ...
 (inv(get(Var_ML_sys.joints(count),'x_axis_rotate_to_dist'))* ...
 (inv(get(Var_ML_sys.joints(count),'y_axis_rotate_to_dist'))* ...
 (inv(get(Var_ML_sys.joints(count),'z_axis_rotate_to_dist'))* ...
 (inv(get(Var_ML_sys.joints(count),'z_axis_rotate_from_prox'))
 Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1
 :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb)))));
 end
 end
for count=joint-1:-1:1
% Translate back from Rotated Joint
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ...
:\overline{Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb) = ..}
(get(Var_ML_sys.joints(count),'x_axis_rotate_from_prox')* ...
(get(Var_ML_sys.joints(count),'y_axis_rotate_from_prox')* ...
(get(Var_ML_sys.joints(count),'z_axis_rotate_from_prox')* ...
(get(Var_ML_sys.joints(count),'z_axis_rotate_to_dist')* ...
(get(Var_ML_sys.joints(count),'y_axis_rotate_to_dist')* ...
(get(Var_ML_sys.joints(count),'x_axis_rotate_to_dist')* ...
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ...
:Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb))))})\mathrm{));
end
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ... :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb) = ... (axis_position* ...
Var_ML_sys.limb_vertices(1:4,(joint)*Var_ML_sys.Points_per_Limb+1 ... :Var_ML_sys.limb_num*Var_ML_sys.Points_per_Limb));
Var_ML_sys=set(Var_ML_sys,'limb_vertices',Var_ML_sys.limb_vertices);
if displayf==1
display_ml(Var_ML_sys,1,0);
end
rotations = eye(4);
Translate_Origin = eye(4);
for count=1:Var_ML_sys.limb_num

```

Var_ML_sys=find_rpy_dc(Var_ML_sys,count);
center = get(get(Var_ML_sys.limbs(count), 'center'), 'vert_array');
limb_vertices = get(Var_ML_sys.limbs(count),'vertex_array_v');
Translate_Origin = eye(4);
Translate_Origin \((1: 4,4)=\) center;
limb_vertices \(=\operatorname{inv}(\) Translate_Origin \() ~ * ~ l i m b \_v e r t i c e s ; ~ ; ~\)
if DEBUG_F
disp('Entering Rotate_v4: ypr section');
limb_vertices
end
z_dc_y = get(get(Var_ML_sys.limbs(count),'y_unit'),'z')-center(3); z_dc_x = get(get(Var_ML_sys.limbs(count),'x_unit'),'z')-center(3);
pitch \(=\operatorname{asin}(\) rotations \((1,2)\) );
roll \(=-\operatorname{acos}(\) rotations(2,2)/cos(asin(rotations(1,2))))*(z_dc_y/abs(z_dc_y));
x_axis_rotate \(=[1,0,0,0 ; \ldots\)
\(0, \cos\) (roll),-sin(roll), \(0 ; \ldots\)
\(0, \sin (\) roll \(), \cos (\) roll \(), 0 ; 0,0,0,1] ;\)
limb_vertices = ...
(x_axis_rotate * ...
limb_vertices);
if DEBUG_F
disp('Rotate_v4: X-axis rotation: Align y_unit with xy plane')
limb_vertices
end
z_axis_rotate \(=[\)...
\(\cos\) (pitch),-sin(pitch) \(, 0,0 ; \ldots\)
\(\sin\) (pitch), \(\cos\) (pitch), 0,\(0 ; \ldots\)
0,0,1,0;0,0,0,1];
limb_vertices = ...
(z_axis_rotate * ...
limb_vertices);
if DEBUG_F disp('Rotate_v4: Z-axis rotation: Align y_unit with \(Y\) axis and \(x\) _unit with xz plane')
limb_vertices
end
```

 x_dc_x = limb_vertices(1,13);
 % y_dc_x = limb_vertices(2,13);
 z_dc_x = limb_vertices(3,13);
 yaw = acos(rotations(1,1)/cos(asin(rotations(1,2))))*(z_dc_x/abs(z_dc_x));
 if DEBUG_F
 disp('Rotate_v4: Y-axis rotation: Align x_unit with X axis')
 y_axis_rotate = [...
 cos(yaw),0,sin(yaw),0; ...
 0,1,0,0; ..
 -sin(yaw),0,cos(yaw),0;0,0,0,1];
 limb_vertices = ...
 (y_axis_rotate * ...
 limb_vertices)
 end

```

Var_ML_sys.limbs(count)=set(Var_ML_sys.limbs(count),'yaw',yaw,'pitch',pitch,'ro II',roll);
if count<Var_ML_sys.limb_num
rotations=rotations*...
(get(Var_ML_sys.joints(count),'x_axis_rotate_from_prox')* ... (get(Var_ML_sys.joints(count),'y_axis_rotate_from_prox')* ... (get(Var_ML_sys.joints(count),'z_axis_rotate_from_prox')* ... (get(Var_ML_sys.joints(count),'z_axis_rotate_to_dist')* ... (get(Var_ML_sys.joints(count),'y_axis_rotate_to_dist')* ... (get(Var_ML_sys.joints(count),'x_axis_rotate_to_dist')))) )));
end
end
end
```

if DEBUG_F
disp('leaving rotate_v4');
end

```
function Var_ML_sys = set(Var_ML_sys, varargin)
\%ML_sys set function.
\% Sets Variable depending on request.
\%
```

global DEBUG_F
Var_Updates = varargin;
while length(Var_Updates) >=2
data_type = Var_Updates{1};
data_in = Var_Updates{2};
Var_Updates = Var_Updates(3:end);
switch data_type
case 'limb_vertices'
for count=1:Var_ML_sys.limb_num;
Var_ML_sys.limbs(count) = set(Var_ML_sys.limbs(count), ...
'vertex_array_v', ...
data_in(1:3,1+(count-1)*Var_ML_sys.Points_per_Limb: ..
Var_ML_sys.Points_per_Limb+(count-1)* ...
Var_ML_sys.Points_per_Limb));
end
otherwise
error([data_type,' Is not a valid asset property'])
end
end
function outpt = set_limb_array(Var_ML_sys, limb_num,vert_arr_v)
% Retrieves the vertex_array_v of the desired limb and outputs it.
global DEBUG_F
set(Var_ML_sys.limbs(limb_num),'vertex_array_v',vert_arr_v);
outpt=Var_ML_sys;
function write_limb_joint_info(ML,flnm)
% builds multi-linked system.
% ML = build(v) creates a ml_sys object from the vector v,
% containing: Contains
%
global DEBUG_F Project_Folder File_Folder

```
header_I= \{'Limb Number' 'Length' 'Width' 'Height'\};
header \(j=\{\) 'Joint Number' 'x from prox' 'y from prox' 'z from prox' 'psi from prox' 'phi from prox' 'theta from prox' 'x to dist' 'y to dist' 'z to dist' 'psi to dist' 'phi to dist' 'theta to dist'\};
sprdsht_I = cell(1+ML.limb_num,4);
sprdsht_j = cell(ML.limb_num,13);
```

sprdsht_l(1,1:4)=header_l;
sprdsht j(1,1:13)=header_j;
sprdsht l(2,1)= cellstr(num2str(1));
sprdsht_l(2,2)=num2cell(get(ML.limbs(1),'length'));
sprdsht_l(2,3)=num2cell(get(ML.limbs(1),'width'));
sprdsht_l(2,4)=num2cell(get(ML.limbs(1),'height'));
for i= 2:ML.limb_num
sprdsht_l(i+1,1)= cellstr(num2str(i));
sprdsht j(i,1)= cellstr(num2str(i-1));
sprdsht_l(i+1,2)=num2cell(get(ML.limbs(i),'length'));
sprdsht_l(i+1,3)=num2cell(get(ML.limbs(i),'width'));
sprdsht_l(i+1,4)=num2cell(get(ML.limbs(i),'height'));
sprdsht j(i,2)=num2cell(get(ML.joints(i-1),'Tx_from_prox'));
sprdsht_j(i,3)=num2cell(get(ML.joints(i-1),'Ty_from_prox'));
sprdsht_j(i,4)=num2cell(get(ML.joints(i-1),'Tz_from_prox'));
sprdsht_j(i,5)=num2cell(get(ML.joints(i-1),'R_psi_from_prox')*180/pi);
sprdsht_j(i,6)=num2cell(get(ML.joints(i-1),'R_phi_from_prox')*180/pi);
sprdsht_(i,7)=num2cell(get(ML.joints(i-1),'R_theta_from_prox')*180/pi);
sprdsht_j(i,8)=num2cell(get(ML.joints(i-1),'Tx_to_dist'));
sprdsht_(i,9)=num2cell(get(ML.joints(i-1),'Ty_to_dist'));
sprdsht_j(i,10)=num2cell(get(ML.joints(i-1),'Tz_to_dist'));
sprdsht_j(i,11)=num2cell(get(ML.joints(i-1),'R_psi_to_dist')*180/pi);
sprdsht j(i,12)=num2cell(get(ML.joints(i-1),'R_phi_to_dist')*180/pi);
sprdsht_j(i,13)=num2cell(get(ML.joints(i-1),'R_theta_to_dist')*180/pi);

```
end
xlswrite([File_Folder,finm,'.xls'],sprdsht_I,'Limbs','A1'); xlswrite([File_Folder,flnm,'.xls'],sprdsht_,',Joints','A1');
\% xlswrite('E:ICurrent Projects\ASME\BioKinWorkbook2006.xls',header,'Conf 1','A1');
\% xlswrite('E:\Current Projects\ASME\BioKinWorkbook2006.xls',sprdsht,'Conf 1',['A',num2str(3+pos)]);
```

function write_vertices_rotation(ML,pos,rot,jnt,flnm,flg)
% writes multi-linked system.
% display_vert_conf(ML,pos) writes limb coord to file
%
global DEBUG_F File_Folder
h_h=cell(3+ML.limb_num,16);
header_11= {'Position:' num2str(pos) 'Rotation: ' num2str(rot) 'Joint: '
num2str(jnt)};
header_L2={'Segment' 'Center' '''''X vector' '' ' ' 'Y Vector' '' '''Z V vector' ''''
'Orientation' ' ' ' ' 'Distal Joint'};
header_l3= {' ' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y' 'z' 'x' 'y' 'z' 'Yaw' 'Pitch' 'Roll' 'x' 'y' 'z'};
h_h(1,1:6) = header_l1;
h_h(2,1:17) = header_l2;
h_h(3,1:19) = header_I3;
for i=1:ML.limb_num
h_h(i+3,1)= cellstr(num2str(i));
h_h(i+3,2:4)=num2cell(get(get(ML.limbs(i),'center'),'horz_array'));
h_h(i+3,5:7)=num2cell(get(get(ML.limbs(i),'x_face'),'horz_array'));
h_h(i+3,8:10)=num2cell(get(get(ML.limbs(i),'y_face'),'horz_array'));
h_h(i+3,11:13)=num2cell(get(get(ML.limbs(i),'z_face'),'horz_array'));
h_h(i+3,17:19)=num2cell(get(get(ML.limbs(i),'dist_joint'),'horz_array'));
h_h(i+3,14)=num2cell(get(ML.limbs(i),'yaw')*180/pi);
h_h(i+3,15)=num2cell(get(ML.limbs(i),'pitch')*180/pi);
h_h(i+3,16)=num2cell(get(ML.limbs(i),'roll')*180/pi);
end
xlswrite([File_Folder,flnm,'.xls'],h_h,['Pos', num2str(pos)],'A1');
if (flg>=1 \&\& flg <=3)
display_save_ml(ML,flg,0,flnm,pos);
end
function outpt = get(Var_limb, data_req)
%limb get function.
% Returns variable depending on request.
%
global DEBUG_F
switch data_req

```
```

case 'length'
outpt = Var_limb.length;
case 'width'
outpt = Var_limb.width;
case 'height'
outpt = Var_limb.height;
case 'global_pos'
outpt = Var_limb.global_pos;
case 'topface_ul'
outpt = Var_limb.topface_ul;
case 'topface_ur'
outpt = Var_limb.topface_ur;
case 'topface_bl'
outpt = Var_limb.topface_bl;
case 'topface_br'
outpt = Var_limb.topface_br;
case 'bottomface_ul'
outpt = Var_limb.bottomface_ul;
case 'bottomface_ur'
outpt = Var_limb.bottomface_ur;
case 'bottomface_bl'
outpt = Var_limb.bottomface_bl;
case 'bottomface_br'
outpt = Var_limb.bottomface_br;
case 'center'
outpt = Var_limb.center;
case 'x_face'
outpt = Var_limb.x_face;
case 'y_face'
outpt = Var_limb.y_face;
case 'z_face'
outpt = Var_limb.z_face;
case 'x_unit'
outpt = Var_limb.x_unit;
case 'y_unit'
outpt = Var_limb.y_unit;
case 'z_unit'
outpt = Var_limb.z_unit;
case 'dist_joint'
outpt = Var_limb.dist_joint;
case 'yaw'
outpt = Var_limb.yaw;
case 'pitch'
outpt = Var_limb.pitch;
case 'roll'
outpt = Var_limb.roll;

```
```

 case 'bc_yaw'
 outpt = Var_limb.bc_yaw;
 case 'bc_pitch'
 outpt = Var_limb.bc_pitch;
 case 'bc_roll'
 outpt = Var_limb.bc_roll;
 %
case 'rect'
% outpt = Var_limb.rect;
case 'vertex_array_h'
outpt = [get(Var_limb.topface_ul,'horz_array'); ...
get(Var_limb.topface_ur,'horz_array'); ...
get(Var_limb.topface_bl,'horz_array'); ...
get(Var_limb.topface_br,'horz_array'); ...
get(Var_limb.bottomface_ul,'horz_array'); ...
get(Var_limb.bottomface_ur,'horz_array'); ...
get(Var_limb.bottomface_bl,'horz_array'); ...
get(Var_limb.bottomface_br,'horz_array')];
case 'vertex_array_v'
outpt = [get(Var_limb.topface_ul,'vert_array') ...
get(Var_limb.topface_ur,'vert_array') ...
get(Var_limb.topface_bl,'vert_array') ...
get(Var_limb.topface_br,'vert_array') ...
get(Var_limb.bottomface_ul,'vert_array') ...
get(Var_limb.bottomface_ur,'vert_array') ...
get(Var_limb.bottomface_bl,'vert_array') ...
get(Var_limb.bottomface_br,'vert_array') ...
get(Var_limb.center,'vert_array') ...
get(Var_limb.x_face,'vert_array') ...
get(Var_limb.y_face,'vert_array') ...
get(Var_limb.z_face,'vert_array') ...
get(Var_limb.x_unit,'vert_array') ...
get(Var_limb.y_unit,'vert_array') ...
get(Var_limb.z_unit,'vert_array') ...
get(Var_limb.dist_joint,'vert_array')];
case 'faces'
outpt = Var_limb.faces;
otherwise
error([data_req,' Is not a valid asset property'])
end
function L = limb(v)
%LIMB class constructor.
% L = LIMB(v) creates a Limb object from the vector v,
% containing: Contains dimensions (length, width, and height).
%

```

\section*{\% Calulations Inherited:}
\% Center of Mass will be true center assumer constant density \% Yaw, Pitch, and Roll

\section*{global DEBUG_F}
if nargin \(==0\)
L.c = [];

L = class(L,'limb');
elseif isa(v,'limb')
\(L=v\);
else
L.length \(=\mathrm{v}(1)\);
L. width = v(2);
L.height \(=\mathrm{v}(3)\);
L.global_pos = coord([000 000 );
L.faces=[1,2,4,3;5,6,8,7;1,3,7,5;2,4,8,6;1,2,6,5;3,4,8,7];

\section*{\%}

Defines Coordinates of corners
\%
\% \%face\%_\%corner_description\% = coord([x y z]);
L.topface_ul = coord([-L.length/2 L.width/2 L.height/2]);
L.topface_ur = coord([L.length/2 L.width/2 L.height/2]);
L.topface_bl = coord([-L.length/2 -L.width/2 L.height/2]);
L.topface_br = coord([L.length/2 -L.width/2 L.height/2]);
L.bottomface_ul = coord([-L.length/2 L.width/2 -L.height/2]);
L.bottomface_ur = coord([L.length/2 L.width/2 -L.height/2]);
L.bottomface_bl = coord([-L.length/2 -L.width/2 -L.height/2]);
L.bottomface_br = coord([L.length/2 -L.width/2 -L.height/2]);
\%
Defines rectangle by corners
\% L.rect=[L.topface_ul L.topface_ur L.topface_bl L.topface_br ...
\% L.bottomface_ul L.bottomface_ur L.bottomface_bl L.bottomface_br];
L.yaw = 0;
L.pitch = 0;
L.roll \(=0\);
L.bc_yaw = 0;
L.bc_pitch = 0;
L.bc_roll = 0;
```

 L.center = coord([0 0 0]);
 L.dist_joint = coord([0000]);
 L.x_face = coord([000]);
 L.y_face = coord([00 0]);
 L.z_face = coord([0 O 0]);
 L.x_face =
 set(L.x_face,'vert_array',(get(L.topface_ur,'vert_array')+get(L.bottomface_br,'vert
_array'))./2);
L.y_face =
set(L.y_face,'vert_array',(get(L.topface_ul,'vert_array')+get(L.bottomface_ur,'vert
_array'))./2);
L.z_face =
set(L.z_face,'vert_array',(get(L.topface_ul,'vert_array')+get(L.topface_br,'vert_arr
ay'))./2);
L.x_unit = coord([1 0 0]);
L.y_unit = coord([[010}
L.z_unit = coord([000 1]);
L = class(L,'limb');
end
function list(a)
% list all variables and values
global DEBUG_F
disp(['length = ',num2str(a.length)])
disp(['width = ',num2str(a.width)])
disp(['height = ',num2str(a.height)])
function list_vertices(L)
% list all variables and values
global DEBUG_F
disp('Vertices: (x, y, z)')
disp(['L.topface_ul: ',list_xyz(L.topface_ul)])
disp(['L.topface_ur: ',list_xyz(L.topface_ur)])
disp(['L.topface_bl: ',list_xyz(L.topface_bl)])
disp(['L.topface_br: ',list_xyz(L.topface_br)])
disp(['L.bottomface_ul: ',list_xyz(L.bottomface_ul)])
disp(['L.bottomface_ub: ',list_xyz(L.bottomface_ur)])

```
```

disp(['L.bottomface_bl: ',list_xyz(L.bottomface_bl)])
disp(['L.bottomface_br: ',list_xyz(L.bottomface_br)])
disp('Center')
disp(['L.center: ',list xyz(L.center)])
disp('Face center on postive axis')
disp(['L.x_face: ',list_xyz(L.x_face)])
disp(['L.y_face: ',list_xyz(L.y_face)])
disp(['L.z_face: ',list_xyz(L.z_face)])
function Var_limb = set(Var_limb, varargin)
%limb set function.
% Set variable depending on request.

```
global DEBUG_F
Var_Updates = varargin;
while length(Var_Updates) >=2
    data_type = Var_Updates \(\{1\}\);
    data_in = Var_Updates\{2\};
    Var_Updates = Var_Updates(3:end);
    switch data_type
        case 'length'
        error([data_type ,' cannot be set'])
case 'width'
        error([data_type ,' cannot be set'])
        case 'height'
        error([data_type ,' cannot be set'])
        case 'global_pos'
        Var_limb.global_pos = data_in;
        case 'global_pos_v'
        Var_limb.global_pos =
                set(Var_limb.global_pos,'vert_array',data_in);
        case 'topface_ul'
        error([data_type ,' cannot be set'])
        case 'topface_ur'
        error([data_type ,' cannot be set'])
        case 'topface_bl'
        error([data_type ,' cannot be set'])
        case 'topface_br'
        error([data_type ,' cannot be set'])
        case 'bottomface_ul'
        error([data_type ,' cannot be set'])
        case 'bottomface_ur'
        error([data_type ,' cannot be set'])
        case 'bottomface_bl'
        error([data_type ,' cannot be set'])
```

 case 'bottomface_br'
 error([data_type ,' cannot be set'])
 case 'center'
 error([data_type ,' cannot be set'])
 case 'x_face'
 error([data_type ,' cannot be set'])
 case 'y_face'
 error([data_type ,' cannot be set'])
 case 'z_face'
 error([data_type ,' cannot be set'])
 case 'dist_joint'
 Var_limb.dist_joint = set(Var_limb.dist_joint,'vert_array',data_in(1:3,1));
 case 'yaw'
 Var_limb.yaw=data_in;
 case 'pitch'
 Var_limb.pitch=data_in;
 case 'roll'
 Var_limb.roll=data_in;
 case 'bc_yaw'
 Var_limb.bc_yaw=data_in;
 case 'bc_pitch'
 Var_limb.bc_pitch=data_in;
 case 'bc roll'
 Var_limb.bc_roll=data_In;
 % case 'rect'
% error([data_type ,' cannot be set'])
case 'vertex_array_v'
Var_limb.topface_ul =
set(Var_iimb.topface_ul,'vert_array',data_in(1:3,1));
Var_limb.topface_ur =
set(Var_limb.topface_ur,'vert_array',data_in(1:3,2));
Var_limb.topface_bl =
set(Var_limb._topface_bl,'vert_array',data_in(1:3,3));
Var_iimb.topface_br =
set(Var_iimb.topface_br,'vert_array',data_in(1:3,4));
Var_limb.bottomface_ul =
set(Var_limb.bottomface_ul,'vert_array',data_in(1:3,5));
Var_limb.bottomface_ur =
set(Var_limb.bottomface_ur,'vert_array',data_in(1:3,6));
Var_limb.bottomface_bl =
set(Var_iimb.bottomface_bl,'vert_array',data_in(1:3,7));
Var_limb.bottomface_br =
set(Var_limb.bottomface_br,'vert_array',data_in(1:3,8));
Var_limb.center = set(Var_limb.center,'vert_array',data_ln(1:3,9));
Var_limb.x_face = set(Var_limb.x_face,'vert_array',data_in(1:3,10));

```
```

 Var_limb.y_face = set(Var_limb.y_face,'vert_array',data_in(1:3,11));
 Var_limb.z_face = set(Var_limb.z_face,'vert_array',data_in(1:3,12));
 Var_limb.x_unit = set(Var_limb.x_face,'vert_array',data_in(1:3,13));
 Var_limb.y_unit = set(Var_limb.y_face,'vert_array',data_in(1:3,14));
 Var_limb.z_unit = set(Var_limb.z_face,'vert_array',data_in(1:3,15));
 Var_limb.dist_joint = set(Var_limb.dist_joint,'vert_array',data_in(1:3,16));
 otherwise
 error([data_type,' Is not a valid asset property'])
 end
 end
function outpt = get(Var_Joint, data_req)
%COORD get function.
% Returns Variable depending on request.
%
global DEBUG_F
switch data_req
case 'Tx_from_prox'
outpt = Var_Joint.Tx_from_prox;
case 'Ty_from_prox'
outpt = Var_Joint.Ty_from_prox;
case 'Tz_from_prox'
outpt = Var_Joint.Tz_from_prox;
case 'R_psi_from_prox'
outpt = Var_Joint.R_psi_from_prox;
case 'R_phi_from_prox'
outpt = Var_Joint.R_phi_from_prox;
case 'R_theta_from_prox'
outpt = Var_Joint.R_theta_from_prox;
case 'Tx_to_dist'
outpt = Var_Joint.Tx_to_dist;
case 'Ty_to_dist'
outpt = Var_Joint.Ty_to_dist;
case 'Tz_to_dist'
outpt = Var_Joint.Tz_to_dist;
case 'R_psi_to_dist'
outpt = Var_Joint.R_psi_to_dist;
case 'R_phi_to_dist'
outpt = Var_Joint.R_phi_to_dist;

```
```

 case 'R_theta_to_dist'
 outpt = Var_Joint.R_theta_to_dist;
 case 'Translate_from_prox'
 outpt = Var_Joint.Translate_from_prox;
 case 'x_axis_rotate_from_prox'
 outpt = Var_Joint.x_axis_rotate_from_prox;
 case 'y_axis_rotate_from_prox'
 outpt = Var_Joint.y_axis_rotate_from_prox;
 case 'z_axis_rotate_from_prox'
 outpt = Var_Joint.z_axis_rotate_from_prox;
 case 'Translate_to_dist'
 outpt = Var_Joint.Translate_to_dist;
 case 'x_axis_rotate_to_dist'
 outpt = Var_Joint.x_axis_rotate_to_dist;
 case 'y_axis_rotate_to_dist'
 outpt = Var_Joint.y__axis_rotate_to_dist;
 case 'z_axis_rotate_to_dist'
 outpt = Var_Joint.z_axis_rotate_to_dist;
 case 'dist_joint'
 outpt = [Var_Joint.Tx_from_prox; Var_Joint.Ty_from_prox;
 Var_Joint.Tz_from_prox];
otherwise
error([data_req,' Is not a valid asset property'])
end
function j = joint(varargin)
%joint class constructor.
% j = joint(v) creates a joint object from the vector v,
% containing:
% Offset from center of both limbs Tx, Ty, Tz
% Offset in radians for rotation of both limbs
% R_phi, R_psi,
% ***ALL above is constant***
% R_theta just one since the same for both
%
global DEBUG_F
switch nargin
case 0
j.j = [];
j = class(j,'joint');

```
```

case 1
if isa(v,'joint')
j = varargin{1};
else
error ('Not a Joint Object')
end
case 12
j.Tx_from_prox = varargin{1};
j.Ty_from_prox = varargin{2};
j.Tz_from_prox = varargin{3};
j.Translate_from_prox = [1,0,0,j.Tx_from_prox; ...
0,1,0,j.Ty_from_prox;0,0,1,j.Tz__from_prox;0,0,0,1];
j.R_psi_from_prox = varargin{4}*pi/180;
j.x_axis_rotate_from_prox = [1,0,0,0; ...
0,cos(j.R_psi_from_prox),-sin(j.R_psi_from_prox),0; ...
0,sin(j.R_psi_from_prox),cos(j.R_psi_from_prox),0;0,0,0,1];
j.R_phi_from_prox = varargin{5}*pi/180;
j.y_axis_rotate_from_prox = [...
cos(j.R_phi_from_prox),0,sin(j.R_phi_from_prox),0; ...
0,1,0,0; ...
-sin(j.R_phi_from_prox),0,cos(j.R_phi_from_prox),0;0,0,0,1];
j.R_theta_from_prox = varargin{6}}\mp@subsup{}{}{*}\textrm{pi}/180
j.z_axis_rotate_from_prox = [...
cos(j.R_theta_from_prox),-sin(j.R_theta_from_prox),0,0; ...
sin(j.R_theta_from_prox),cos(j.R_theta_from_prox),0,0; ...
0,0,1,0;0,0,0,1];
j.Tx_to_dist = varargin{7};
j.Ty_to_dist = varargin{8};
j.Tz_to_dist = varargin{9};
j.Translate_to_dist = [1,0,0,j.Tx_to_dist; ...
0,1,0,j.Ty_to_dist;0,0,1,j.Tz_to_dist;0,0,0,1];
j.R_psi_to_dist = varargin{10}*pi/180;
j.x_axis_rotate_to_dist = [1,0,0,0; ...
0,\operatorname{cos(j.R_psi_to_dist),-sin(j.R_psi_to_dist),0; ...}⿻土一~
0,\operatorname{sin}(j.R_psi_to_dist),cos(j.R_psi_to_dist),0;0,0,0,1];
j.R_phi_to_dist = varargin{11}*pi/180;

```
```

 j.y_axis_rotate_to_dist = [...
 cos(j.R_phi_to_dist),0,sin(j.R_phi_to_dist),0; ...
 0,1,0,0; ..
 -sin(j.R_phi_to_dist),0,cos(j.R_phi_to_dist),0;0,0,0,1];
 j.R_theta_to_dist = varargin{12}*pi/180;
 j.z_axis_rotate_to_dist = [...
 cos(j.R_theta_to_dist),-sin(j.R_theta_to_dist),0,0; ...
    ```

```

 0,0,1,0;0,0,0,1];
 j = class(j,'joint');
 otherwise
 error ('Incorrect Number of Inputers for Joint Class')
 end
function list(j)
% list all variables and values
global DEBUG_F
disp(sprintf('\n'))
disp(['Tx_from_prox = ',num2str(j.Tx_from_prox)])
disp(['Ty_from_prox = ',num2str(j.Ty_from_prox)])
disp(['Tz_from_prox = ',num2str(j.Tz_from_prox)])
disp(sprintf('\n'))
disp(['R_psi_from_prox = ',num2str(j.R_psi_from_prox)])
disp(['R_phi_from_prox = ',num2str(j.R_phi_from_prox)])
disp(['R_theta_from_prox = ',num2str(j.R_theta_from_prox)])
disp(sprintf('\n'))
disp(['Tx_to_dist = ',num2str(j.Tx_to_dist)])
disp(['Ty_to_dist = ',num2str(j.Ty_to_dist)])
disp(['Tz_to_dist = ',num2str(j.Tz_to_dist)])
disp(sprintf('\n'))
disp(['R_psi_to_dist = ',num2str(j.R_psi_to_dist)])
disp(['R_phi_to_dist = ',num2str(j.R_phi_to_dist)])
disp(['R_theta_to_dist = ',num2str(j.R_theta_to_dist)])

```
disp(sprintf('ln'))
```

function Var_Joint = set(Var_Joint, varargin)

```
\%COORD set function.
\% Sets Variable depending on request.
\%
global DEBUG_F
Var_Updates = varargin;
while length(Var_Updates) \(>=2\)
    data_type = Var_Updates\{1\};
    data_in = Var_Updates\{2\};
    Var_Updates = Var_Updates(3:end);
    switch data_type
        case 'Tx_from_prox'
            Var_Joint.Tx_from_prox = data_in;
        case 'Ty_from_prox'
    Var_Joint.Ty_from_prox = data_in;
    case 'Tz_from_prox'
    Var_Joint.Tz_from_prox = data_in;
    case 'R_psi_from_prox'
    Var_Joint.R_psi_from_prox = data_in;
    case 'R_phi_from_prox'
    Var_Joint.R_phi_from_prox = data_in;
    case 'R_theta_from_prox'
    Var_Joint.R_theta_from_prox = data_in;
    case 'Tx_to_dist'
    Var_Joint.Tx_to_dist = data_in;
    case 'Ty_to_dist'
    Var_Joint.Ty_to_dist = data_in;
    case 'Tz_to_dist'
    Var_Joint.Tz_to_dist = data_in;
    case 'R_psi_to_dist'
    Var_Joint.R_psi_to_dist = data_in;
    case 'R_phi_to_dist'
    Var_Joint.R_phi_to_dist = data_in;
    case 'R_theta_to_dist'
    Var_Joint.R_theta_to_dist = data_in;
    case 'Translate_from_prox'
    Var_Joint.Translate_from_prox = data_in;
    case 'x_axis_rotate_from_prox'
```

 Var_Joint.x_axis_rotate_from_prox = data_in;
 case 'y_axis_rotate_from_prox'
 Var_Joint.y_axis_rotate_from_prox = data_in;
 case 'z_axis_rotate_from_prox'
 Var_Joint.z_axis_rotate_from_prox = data_in;
 case 'Translate_to_dist'
 Var_Joint.Translate_to_dist = data_in;
 case 'x_axis_rotate_to_dist'
 Var_Joint.x_axis_rotate_to_dist = data_in;
 case 'y_axis_rotate_to_dist'
 Var_Joint.y_axis_rotate_to_dist = data_in;
 case 'z_axis_rotate_to_dist'
 Var_Joint.z_axis_rotate_to_dist = data_in;
 otherwise
 error([data_type,' Is not a valid asset property'])
 end
 end
function C = coord(v)
%COORD class constructor.
% C = COORD(v) creates a COORD object from the vector v,
% containing: Contains coordinate in the form (x,y, and z).
%
global DEBUG_F
if nargin == 0
C.c = [];
C = class(C,'coord');
elseif isa(v,'coord')
C = v;
else
C. }x=v(1)
C.y = v(2);
C.z = v(3);
C = class(C,'coord');
end
function outpt = get(Var_Coord, data_req)
%COORD get function.
% Returns x, y, or z depending on request.
%

```
```

global DEBUG_F
switch data_req
case 'x'
outpt = Var_Coord.x;
case 'y'
outpt = Var_Coord.y;
case 'z'
outpt = Var_Coord.z;
case 'vert_array'
outpt = [Var_Coord.x;Var_Coord.y;Var_Coord.z;1];
case 'horz_array'
outpt = [Var_Coord.x,Var_Coord.y,Var_Coord.z];
otherwise
error([data_req,' Is not a valid asset property'])
end
function list(a)
% list all variables and values
global DEBUG_F
disp(['x = ',num2str(a.x)])
disp(['y = ',num2str(a.y)])
disp(['z = ',num2str(a.z)])
function outpt = list_xyz(a)
% list all variables and values
global DEBUG_F
outpt = ['(',num2str(a.x),', ',num2str(a.y),', ',num2str(a.z),')'];
function Var_Coord = set(Var_Coord, varargin)
%COORD set function.
% Returns x, y, or z depending on request.
%
global DEBUG_F
Var_Updates = varargin;
while length(Var_Updates) >=2
data_type = Var_Updates{1};
data_in = Var_Updates{2};
Var_Updates = Var_Updates(3:end);

```
```

 switch data_type
 case 'x'
 Var_Coord.x = data_in;
 case 'y'
 Var_Coord.y = data_in;
 case 'z'
 Var_Coord.z = data_in;
 case 'horz_array'
 Var_Coord.x = data_in(1);
 Var_Coord.y = data_in(2);
 Var_Coord.z = data_in(3);
 case 'vert_array'
 Var_Coord.x = data_in(1);
 Var_Coord.y = data_in(2);
 Var_Coord.z = data_in(3);
 otherwise
 error([data_type,' Is not a valid asset property'])
 end
 end

```

\section*{APPENDIX Q}

\section*{INTERMEDIATE ANKLE MODE CALCULATION DATA}

Table Q.1. Calculated Linked system.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Position & & 0 & 1 & 2 & 3 & 4 \\
\hline Segment \#1 & x & 35.73 & 3.81 & 5.88 & 5.88 & 10.01 \\
\hline & y & 4.13 & 27.79 & 27.79 & 20.65 & -20.65 \\
\hline & z & 0.00 & 0.00 & 2.07 & 9.21 & 9.21 \\
\hline Joint \#1 & x & 28.59 & 3.81 & 5.88 & 5.88 & 10.01 \\
\hline & y & 4.13 & 20.65 & 20.65 & 20.65 & -20.65 \\
\hline & z & 0.00 & 0.00 & 2.07 & 2.07 & 2.07 \\
\hline Segment \#2 & x & 21.60 & 3.81 & 5.88 & 5.88 & 10.01 \\
\hline & y & 4.13 & 13.66 & 13.66 & 13.66 & -13.66 \\
\hline & z & 0.00 & 0.00 & 2.07 & 2.07 & 2.07 \\
\hline Joint \#2 & x & 16.68 & 5.88 & 5.88 & 5.88 & 10.01 \\
\hline & y & 2.07 & 8.74 & 8.74 & 8.74 & -8.74 \\
\hline & z & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Segment \#3 & x & 13.34 & 7.94 & 7.94 & 7.94 & 7.94 \\
\hline & y & 0.00 & 5.40 & 5.40 & 5.40 & -5.40 \\
\hline & z & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}

All lengths in cm

Table Q.2. Calculations with offsets.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Position & & 0 & 1 & 2 & 3 & 4 \\
\hline Segment \#1 & x & 41.61 & 9.69 & 11.75 & 11.75 & 15.88 \\
\hline & y & 4.13 & 27.79 & 27.79 & 20.65 & -20.65 \\
\hline & z & 3.49 & 3.49 & 5.56 & 12.70 & 12.70 \\
\hline Joint \#1 & x & 34.46 & 9.69 & 11.75 & 11.75 & 15.88 \\
\hline & y & 4.13 & 20.65 & 20.65 & 20.65 & -20.65 \\
\hline & z & 3.49 & 3.49 & 5.56 & 5.56 & 5.56 \\
\hline Segment \#2 & x & 27.47 & 9.69 & 11.75 & 11.75 & 15.88 \\
\hline & y & 4.13 & 13.66 & 13.66 & 13.66 & -13.66 \\
\hline & z & 3.49 & 3.49 & 5.56 & 5.56 & 5.56 \\
\hline Joint \#2 & x & 22.55 & 11.75 & 11.75 & 11.75 & 15.88 \\
\hline & y & 2.07 & 8.74 & 8.74 & 8.74 & -8.74 \\
\hline & z & 3.49 & 3.49 & 3.49 & 3.49 & 3.49 \\
\hline Segment \#3 & x & 19.22 & 13.82 & 13.82 & 13.82 & 13.82 \\
\hline & y & 0.00 & 5.40 & 5.40 & 5.40 & -5.40 \\
\hline & Z & 3.49 & 3.49 & 3.49 & 3.49 & 3.49 \\
\hline
\end{tabular}

All lengths in cm

Table Q. 3 Measurement and Calculation Differences.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Difference} & 0 & 1 & 2 & 3 & 4 \\
\hline \multirow[t]{2}{*}{Segment \#1} & x & -0.33 & 0.16 & -0.32 & -0.32 & -0.01 \\
\hline & y & -0.07 & -0.49 & -0.49 & -0.07 & 0.07 \\
\hline & Z & 0.00 & 0.00 & 0.16 & 0.00 & 0.00 \\
\hline \multirow[t]{2}{*}{Joint \#1} & x & -0.17 & 0.16 & -0.32 & -0.32 & -0.01 \\
\hline & y & -0.07 & -0.07 & -0.07 & -0.07 & 0.07 \\
\hline & z & 0.00 & 0.00 & 0.16 & 0.16 & 0.16 \\
\hline \multirow[t]{2}{*}{Segment \#2} & X & -0.29 & 0.16 & -0.32 & -0.32 & -0.01 \\
\hline & y & -0.07 & -0.20 & -0.20 & -0.20 & 0.20 \\
\hline & z & 0.00 & 0.00 & 0.16 & 0.16 & 0.16 \\
\hline \multirow[t]{2}{*}{Joint \#2} & x & -0.20 & -0.32 & -0.32 & -0.32 & -0.01 \\
\hline & y & -0.03 & -0.48 & -0.48 & -0.48 & 0.48 \\
\hline & z & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline \multirow[t]{2}{*}{Segment \#3} & x & -0.17 & 0.15 & 0.15 & 0.15 & 0.15 \\
\hline & y & 0.00 & -0.32 & -0.32 & -0.32 & 0.32 \\
\hline & z & -0.33 & 0.16 & -0.32 & -0.32 & -0.01 \\
\hline
\end{tabular}

All differences in cm

Table Q.4. Measured Linked System.
\begin{tabular}{|lllllll|}
\hline Confirmation Measured Values & & 0 & 1 & 2 & 3 & 4 \\
\hline Segment \#1 & x & 41.28 & 9.84 & 11.43 & 11.43 & 15.88 \\
\hline & y & 4.06 & 27.31 & 27.31 & 20.57 & -20.57 \\
\hline & z & 3.49 & 3.49 & 5.72 & 12.70 & 12.70 \\
\hline & x & 34.29 & 9.84 & 11.43 & 11.43 & 15.88 \\
\hline & y & 4.06 & 20.57 & 20.57 & 20.57 & -20.57 \\
\hline & z & 3.49 & 3.49 & 5.72 & 5.72 & 5.72 \\
\hline Segment \#2 \#1 & x & 27.18 & 9.84 & 11.43 & 11.43 & 15.88 \\
\hline & y & 4.06 & 13.46 & 13.46 & 13.46 & -13.46 \\
\hline & z & 3.49 & 3.49 & 5.72 & 5.72 & 5.72 \\
\hline & x & 22.35 & 11.43 & 11.43 & 11.43 & 15.88 \\
\hline Joint \#2 & y & 2.03 & 8.26 & 8.26 & 8.26 & -8.26 \\
\hline & z & 3.49 & 3.49 & 3.49 & 3.49 & 3.49 \\
\hline Segment \#3 & x & 19.05 & 13.97 & 13.97 & 13.97 & 13.97 \\
\hline & y & 0.00 & 5.08 & 5.08 & 5.08 & -5.08 \\
\hline & z & 3.49 & 3.49 & 3.49 & 3.49 & 3.49 \\
\hline & & & & & & \\
\hline
\end{tabular}

Table Q.5. Crab Position Measurements.
\begin{tabular}{|lllll|}
\hline Crab 1 & & & & \\
\hline Pos 2 & Point & \(\mathrm{X}(\mathrm{cm})\) & \(\mathrm{Y}(\mathrm{cm})\) & \(\mathrm{Z}(\mathrm{cm})\) \\
\hline & A & 11.3 & 16.5 & 24.3 \\
\hline & B & 0.0 & 16.5 & 24.3 \\
\hline & C & 0.0 & 16.5 & 28.3 \\
\hline & D & 0.0 & 16.5 & 35.0 \\
\hline & E & 3.4 & 16.5 & 35.0 \\
\hline Crab 3 & & & & \\
\hline Pos 1 & Point & X (cm) & Y (cm) & Z (cm) \\
\hline & A & 12.3 & 12.2 & 26.0 \\
\hline & B & 0.0 & 12.2 & 26.0 \\
\hline & C & 0.0 & 12.2 & 29.3 \\
\hline & D & 0.0 & 12.2 & 36.5 \\
\hline & E & 3.8 & 12.2 & 36.5 \\
\hline & & & & \\
\hline
\end{tabular}

Table Q.6. Differences in vector and measured length.
\begin{tabular}{|llllll|}
\hline & Vector & & Measured & Difference \\
\hline Crab 1 & Pos 1 & Pos 2 & & Pos 1 & Pos 2 \\
\hline AB & 11.3 & 11.3 & 11.3 & 0.0 & 0.0 \\
\hline BC & 3.9 & 4.0 & 3.9 & 0.0 & -0.1 \\
\hline CD & 6.8 & 6.7 & 7.0 & 0.2 & 0.3 \\
\hline DE & 3.8 & 3.4 & 3.4 & -0.4 & 0.0 \\
\hline Crab 3 & Pos 1 & Pos 2 & & Pos 1 & Pos 2 \\
\hline AB & 12.3 & 12.3 & 12.3 & 0.0 & 0.0 \\
\hline BC & 3.3 & 3.3 & 3.5 & 0.2 & 0.2 \\
\hline CD & 7.2 & 7.2 & 7.1 & -0.1 & -0.1 \\
\hline DE & 3.8 & 4.7 & 3.5 & -0.3 & -1.2 \\
\hline
\end{tabular}

Table Q.7. Calculated Crab Limb Positions.
\begin{tabular}{|lllll|}
\hline Crab 1 & & & & \\
\hline Pos 2 & Point & X (cm) & Y (cm) & Z (cm) \\
\hline & B & 5.7 & 0.0 & 0.0 \\
\hline & C & 5.7 & 0.3 & 3.9 \\
\hline & D & 5.7 & 0.9 & 10.9 \\
\hline & E & 9.1 & 0.9 & 10.9 \\
\hline Crab 3 & & & & \\
\hline Pos 1 & Point & X (cm) & Y (cm) & Z (cm) \\
\hline & B & 6.2 & 0.0 & 0.0 \\
\hline & C & 6.2 & 0.3 & 3.5 \\
\hline & D & 6.1 & -0.4 & 10.6 \\
\hline & E & 9.7 & 0.5 & 10.6 \\
\hline
\end{tabular}

Table Q.8. Calculated Crab Limb Position with Offsets.
\begin{tabular}{|lllll|}
\hline Crab 1 & & & & \\
\hline Pos 2 & Point & \(\mathrm{X}(\mathrm{cm})\) & \(\mathrm{Y}(\mathrm{cm})\) & \(\mathrm{Z}(\mathrm{cm})\) \\
\hline & B & 0.0 & 16.5 & 24.3 \\
\hline & C & 0.0 & 16.8 & 28.2 \\
\hline & D & 0.1 & 17.4 & 35.2 \\
\hline & E & 3.5 & 17.4 & 35.2 \\
\hline Crab 3 & & & & \\
\hline Pos 1 & Point & \(\mathrm{X} \mathrm{(cm)}\) & \(\mathrm{Y}(\mathrm{cm})\) & \(\mathrm{Z}(\mathrm{cm})\) \\
\hline & B & 0.0 & 12.2 & 26.0 \\
\hline & C & 0.0 & 12.5 & 29.5 \\
\hline & D & 0.0 & 11.8 & 36.6 \\
\hline & E & 3.5 & 12.7 & 36.6 \\
\hline & & & \\
\hline
\end{tabular}

Table Q.9. Differences between Calculated and Measured Crab Limb Position.
\begin{tabular}{|l|l|l|l|l|}
\hline Crab 1 & & & & \\
\hline Pos 2 & Point & \(X(\mathrm{~cm})\) & \(Y(\mathrm{~cm})\) & \(Z(\mathrm{~cm})\) \\
\hline & B & 0.0 & 0.0 & 0.0 \\
\hline & C & 0.0 & 0.3 & -0.1 \\
\hline & D & 0.1 & 0.9 & 0.2 \\
\hline & E & 0.1 & 0.9 & 0.2 \\
\hline Crab 3 & & & & \\
\hline Pos 1 & Point & \(X(\mathrm{~cm})\) & \(Y(\mathrm{~cm})\) & \(Z(\mathrm{~cm})\) \\
\hline & B & 0.0 & 0.0 & 0.0 \\
\hline & C & 0.0 & 0.3 & 0.2 \\
\hline & D & 0.0 & -0.4 & 0.1 \\
\hline & E & -0.3 & 0.5 & 0.1 \\
\hline
\end{tabular}

Table Q.10. Local Reference Frame Vector Coordinates for Ankle Model.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|l|}{Center (mm)} & \multicolumn{3}{|r|}{X Vector (mm)} & \multicolumn{3}{|r|}{Y Vector (mm)} & \multicolumn{4}{|c|}{Z Vector (mm)} \\
\hline Pos & Limb & x & y & z & X & y & Z & X & y & Z & x & y & Z \\
\hline 0 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 247.0 & 0.0 & 0.0 & 257.0 & 0.0 & 0.0 & 247.0 & 12.5 & 0.0 & 247.0 & 0.0 & 19.5 \\
\hline & calcaneus & 282.0 & 0.0 & 5.0 & 307.0 & 0.0 & 5.0 & 282.0 & 40.0 & 5.0 & 282.0 & 0.0 & 20.0 \\
\hline 1 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 247.0 & 0.0 & 0.0 & 257.0 & 0.0 & 0.0 & 247.0 & 12.5 & 0.0 & 247.0 & 0.0 & 19.5 \\
\hline & calcaneus & 282.4 & 2.4 & 0.2 & 306.9 & 3.9 & -4.5 & 278.7 & 41.7 & -6.3 & 285.0 & 5.1 & 14.7 \\
\hline 2 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 246.5 & -3.1 & 0.7 & 255.9 & -6.3 & 1.4 & 250.3 & 8.7 & 2.3 & 244.4 & -5.1 & 20.0 \\
\hline & calcaneus & 280.7 & -12.0 & 3.7 & 304.8 & -17.8 & 1.0 & 289.8 & 26.9 & 2.1 & 282.4 & -11.8 & 18.6 \\
\hline 3 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 246.7 & -2.4 & 0.6 & 256.4 & -4.7 & 1.1 & 249.6 & 9.7 & 1.8 & 245.2 & -3.9 & 19.9 \\
\hline & calcaneus & 281.6 & -8.4 & 3.0 & 306.0 & -12.4 & -0.1 & 287.6 & 31.0 & 0.1 & 283.6 & -7.7 & 17.8 \\
\hline 4 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 246.7 & -2.4 & 0.6 & 256.4 & -4.7 & 1.1 & 249.6 & 9.7 & 1.8 & 245.2 & -3.9 & 19.9 \\
\hline & calcaneus & 279.6 & -12.0 & 8.9 & 303.5 & -18.7 & 11.7 & 289.5 & 26.2 & 15.1 & 277.3 & -13.8 & 23.6 \\
\hline 5 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 247.0 & -0.8 & 0.2 & 256.9 & -1.6 & 0.4 & 247.9 & 11.7 & 0.6 & 246.5 & -1.4 & 19.7 \\
\hline & calcaneus & 281.3 & -4.7 & 7.4 & 306.0 & -7.4 & 9.4 & 285.3 & 35.0 & 11.0 & 279.9 & -5.9 & 22.3 \\
\hline 6 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 247.0 & -0.8 & 0.2 & 256.9 & -1.6 & 0.4 & 247.9 & 11.7 & 0.6 & 246.5 & -1.4 & 19.7 \\
\hline & calcaneus & 280.0 & -6.8 & 10.0 & 304.1 & -11.2 & 14.8 & 285.3 & 31.9 & 18.3 & 276.7 & -9.4 & 24.4 \\
\hline 7 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 247.0 & -0.8 & 0.2 & 256.9 & -1.6 & 0.4 & 247.9 & 11.7 & 0.6 & 246.5 & -1.4 & 19.7 \\
\hline & calcaneus & 281.7 & -3.7 & 6.0 & 306.6 & -5.7 & 6.5 & 284.9 & 36.2 & 7.2 & 281.4 & -4.1 & 20.9 \\
\hline 8 & tibia & 0.0 & 0.0 & 0.0 & 237.0 & 0.0 & 0.0 & 0.0 & 10.0 & 0.0 & 0.0 & 0.0 & 19.5 \\
\hline & talus & 247.0 & 0.0 & 0.0 & 257.0 & 0.0 & 0.0 & 247.0 & 12.5 & 0.0 & 247.0 & 0.0 & 19.5 \\
\hline & calcaneus & 282.0 & 0.0 & 5.0 & 307.0 & 0.0 & 5.0 & 282.0 & 40.0 & 5.0 & 282.0 & 0.0 & 20.0 \\
\hline
\end{tabular}

Table Q.11. Limb Orientations in Ankle Model.
\begin{tabular}{|l|l|l|l|l|}
\hline Pos & Limb & Yaw & Pitch & Roll \\
\hline 0 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & calcaneus & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline 1 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & calcaneus & \(-10.0^{\circ}\) & \(-5.3^{\circ}\) & \(9.4^{\circ}\) \\
\hline 2 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(6.5^{\circ}\) & \(17.7^{\circ}\) & \(-7.9^{\circ}\) \\
\hline & calcaneus & \(-6.7^{\circ}\) & \(13.2^{\circ}\) & \(2.3^{\circ}\) \\
\hline 3 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(4.6^{\circ}\) & \(13.3^{\circ}\) & \(-5.7^{\circ}\) \\
\hline & calcaneus & \(-7.8^{\circ}\) & \(8.6^{\circ}\) & \(4.2^{\circ}\) \\
\hline 4 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(4.6^{\circ}\) & \(13.3^{\circ}\) & \(-5.7^{\circ}\) \\
\hline & calcaneus & \(8.9^{\circ}\) & \(14.4^{\circ}\) & \(-9.2^{\circ}\) \\
\hline 5 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(1.4^{\circ}\) & \(4.5^{\circ}\) & \(-1.8^{\circ}\) \\
\hline & calcaneus & \(5.1^{\circ}\) & \(5.8^{\circ}\) & \(-5.1^{\circ}\) \\
\hline 6 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(1.4^{\circ}\) & \(4.5^{\circ}\) & \(-1.8^{\circ}\) \\
\hline & calcaneus & \(12.9^{\circ}\) & \(7.7^{\circ}\) & \(-12.1^{\circ}\) \\
\hline 7 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(1.4^{\circ}\) & \(4.5^{\circ}\) & \(-1.8^{\circ}\) \\
\hline & calcaneus & \(1.4^{\circ}\) & \(4.5^{\circ}\) & \(-1.8^{\circ}\) \\
\hline 8 & tibia & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & talus & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline & calcaneus & \(0.0^{\circ}\) & \(0.0^{\circ}\) & \(0.0^{\circ}\) \\
\hline
\end{tabular}

\section*{APPENDIX R}

\section*{SUBMITTED IEEE ROBOTICS PAPER}

\title{
A representation for multilinked systems with arbitrary revolute joints in human and arthropod limbs
}

\author{
Cluistopher M Storey, Student Membar, IEEE, Anne M. Hollister, Associote Membor, HERE, Charles 3. Rebinson, Fellow, IEEE, Noman M. Witriol, Date O. Anderson
}

\begin{abstract}
Abyract-Arthroped and human timos are mulithaked systenas in whicie the revolute joints are not ofthogetnal to the
 regrewatiation is the tradtional model uxed for orthogonal systeras such ms indestrial robots, When applled to systemz with non-orthegenal linkages, the Dil represertation profects the referace framer outsite of the tomb segnamts and presents ofler computational bfficuliew A mev method to represtal khevatic of mithilitikell lower-pair nechaniswiss is propozed. Thice Hachatowal conduter paphites tochiques act artays of points describisg bodes that mowe about arbitrary revolute joints. This computationat mokel has been adapted to represent mutilinnef sytems such as animal holes to calcalate both poxition ( \(X, X, Z\) ) and oricration (ww, pitch mend roll) of Individual limb seguents aud jobvts for measurement comparispos. The linkige parameters are expllcilly wathe. This method allew is amplifed reprewnation for the kinematicg of
 the himin segments it refluces errors such as the are sine arrors aswecked with Eular calculatons and the atiowih crrors seen Whth the DII representation A common computationd syem is Provided for simulaion, devgn, neacurenen awi animaiton:
\end{abstract}
 Robotics BHonetrics

\section*{1. ImmoDuctaon}

THere has been a recent increase in inverest in the simulaton of arthropod or human limbs robotessign


 hitpobesexplaresesersfe, provided by he zutbers This inchades two
 sumal limbe This material is 24 kte in size

 \(213-8854\) c-mill cowequiectarg).


C B. Robsitsom is with the Center for Rehatulitatien Eagivecring: sciance

 crobinacolgtecene)




[1-14]. These multinked rototic limbs use orthougat mechanisms, tsually revolute joins tor thei wechanisms [15]. The kinematics and kinetics of the liab segments ate calculatod with the Denavi Hartenterg (DH) representation, a simpilited system that uses only four of six iont parametets for motion, that has worked well for planar and orthoyonal nechanisms for over lifty years by reducing matrix size and the number of matrix multiplications [16]

Anthopod and human limbs are multilinked systems with reroluto joints that ate not orthogonal to each other or to the limb segments [1740], Such revolute joints, Krowis as arbitraty revolute joints, produce three-dintensional suatiol motion with only one degree of freedon, thes the revolute joints reduce the limb's number of degrese of fredon and control complexity. A vector (d) and two angles of offect the twist ( 0 ) and cant ( 3 ) atele shown in Fis. I, define the lseation and orientation of arbitrary revolute joints The resulting limb movements ate in different planes at each revolute. The simplitieation of these linkages with the DH repretentaion produces several problems 1181 I the twis and cant angles are not 0 or 90 , the reference frames are propeded ousinde of the linth segnents by DH remiescritation. If the mechanisms are nearly parallel to one of the coordinate axes, DH incurs large zeimuth erross [18].


We propose a reperentation based on computer graphics techniques for rotation about an arbituary axis that is suifabte
for sumbesis and display of kinematio shans commeted by nowhogonal andor onhegmal revolute joint and is optimize to whace corypuatinnal cowtover traditional nethods \((4,44)\) These thre-dimensome techmque have leen used accesstuly in human hob smulations, Ruffrd et

 heravelient knowatic chain from the gruwal grypory to the end eflector Sach chle link moves with it garent In the
 onyt the twst (abhe) and cant (ben) myles are derotated
 dependent point fr bus join ate then roluded through speched join actuation angle about the revolde the twist
 pointan then waslated back into paxition Thus the method s more prous than ether DH or multbody because it

 abe permit the wigin of ech reolute io lie with the jowt twell Modem centputer cargablues allow the more robust nethod to the wed easly a perworal compuras.
OH proped sysien phaes the lux segnen und jom refrence frames within the sepuens or gonte to freltate the measurement desyn modeling, simathion, na contral of These natiral Syems Mary desker engheers gefer to womple and weatere the motionof relfrence frames for wath limb segnent of revolute relutive to the body and global
 displacment and yay, pich, mod roll rohtions [ 50,51 ] Cur methed factitate this with outedes of \(x, y\) yand \(z\) displacenents with yaw pitch and roll roxamen I d dexped by the user, The parazeter that detemine the limb ind bint crientation ad motion are stated esplictiy to havilitate sccuate measurement in animal limbs We sinvolated models of the human ande calkuluted trom fruan's deta and on data akem fron crablag \(\{1-33\) )

\section*{11. AEwoxk}
A. Sofware

Analyst tontmes were witter in Malla \({ }^{*}\) whaveateest of the matry mothemater fundthns The program was obectwhented toallow for case and monsthess of equarsion [S2] The seftwar pronided text mexd Spredsheev. pa (picure) nal avi पideo verpar represening motion.

\section*{D. Syten mprexandiom}

The simpiest ssten has wo segments and a single revalue joint The nfernce farme for the fret frol wo placed at the prigin of a Catasisn coordinatesystom The deplacenem veoor \((t)\) ) he \(x y\) and a condinates represent the dintance from the frist segment scererres frasme to the center of the fist revolute The limb loct contlinates may be pheced anywhere meluing a locaton along the revolate asis The a and \(\mathrm{h}_{\mathrm{a}}\) angles are the wist ard can angles of of fret from the prevoding segment s reference frame that are netided to allym the tevohte axis of motion with the zaxiz of he preceding linty Inrelation to the xecond hub, the sig \(\beta_{2}\) and \(d_{2}\) are the
watiables dofined that are needed io rokte the axt of rotation anage with 4 -axis of the next segment and wif find the
 centar satuy subscuim dimplacement vedos wato
 soke foint ( 3 -quog onal revolue joins).

\section*{III. Demturnok}

 ate operted on at accessed in the natix. The subsctip al is cqual to the number of the most distal lime Each liwb
 wetices). The frst enfly column are the lantwartoes The nuth columen is the limb center, and the \(10^{6}, ~\) I 1 end 12 and colunns are the fecalx y and mint vectors of he lowal courbinate symem relatwe to global Catheson coorditate sytem The lis \({ }^{\text {th }}\) oplumn contains the postion of the distat



 "to distat" (hd is defined in referone to the joitian retaibn to the limb.
\(\left|\begin{array}{cccc}1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta \\ 0 & 0 & 0 & 1\end{array}\right|\)

 matrices for rolating abou the \(x\), y, ind \(z\) vaxes respectively. Roll \(\alpha\) ) is defmed by the ratation abouthexams. Yaw (i) Revides ber rotation about the \(y\)-nxis. Pitat (O) describer the xomation about the zaxis.
\(\left.\begin{array}{|cccc}1 & 0 & 0 & 0 \\ 6 & \cos (\alpha) & -\sin (\alpha) & 0 \\ 0 & \sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 0 & 1 \\ \cos (\theta) & 0 & \sin (\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin (\theta) & 0 & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1 \\ \cos (\theta) & \cdots \sin (\theta) & 0 & 0 \\ \sin (\theta) & \cos (\theta) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\)

A joint rotation matrix (They) delines the antount of rotion about the abbitary axis of the tavestute wint Tha
 for the rotation of the give to be about the \(\tau\) axiss in ( \(S\) ) A


the otientatom of a firob in space through a single rotation once the yow, pteh, and roll have been tabulated.


In Equation (6), c reters to cosine and sto sine.

\section*{A. Swstem Description}

A relative obbectriented destg utiang limbo joint, and system objects faciltates the setup of the model using goblobal positions and angles. The globat origim and axis are designated at the loeal ongin of the mosi proximat limb segment. The limb is modeled as a cubod defned by length. whth, and heigh for simplicty. bui any shane with any number of vertices can be used. The local reference frame for cach timb segment is located abitranly a the segment \(\$\) gemetric center. The joint is defmed in relation to the proximal and distal limbs. Bue to the sequental operation in traversing the limb, the progmam progesses arbitarily proximal to distal. The displacement offect for ceth goint is the \(x_{p s} y_{p}\) and \(z_{0}\) ofset from the semetric center of the proxmal limb. These define its prosition in space in retation to proximal limb. Next, the \(\alpha_{g}(x-a x i s), \beta_{s}\left(y\right.\)-axis), and \(a_{f}\) ( 2 -axis) are dethed as the offet orientations from the local axis of the proximal limb. Then a simitar set of ofsem or mentations ( \(\alpha_{6}\) \(\rho_{\text {se }}\) and \(\theta_{i d}\) are defined to allow the totation of the revolute joint to align it with the z-axis of the distal limb. F Wally, the offet is dethed frow the center of the revolute join to the geomeinic center of the distal limb, \(x_{d,} y_{s}\) and \(z_{\text {sid }}\). No range limitation is conabled to alow axis positions or orientations that are considered out of the range of nakural goint motion as in fractures ar dislocations
IV. KINEMATHG OF THE MLITHANED Systam

A multi-linker system assented to the specifications of an inital state and followed by serfes of rotations is shown in Vig. 2. The local cordimate systems are set at the origin for at limbs. Therefore, the limbs are moved to the positions and orientations in space va the matrix multiplications shown in the pseadoogle below
 \(\left[T_{i, s}\right\rfloor[\mathrm{V} \rho]\) 2. \(\left.\left[\mathrm{V}_{2}\right]=\left[\mathrm{T}_{2 y}\right]\left[\mathrm{R}_{2, n}\right]\left[\mathrm{R}_{2, y}\right]\left[\mathrm{R}_{2, y}\right]\left[\mathrm{R}_{2, n}\right]\left[\mathrm{R}_{2, k}\right] \mathrm{R}_{2 \times k}\right]\) \(\left[\begin{array}{l}\mathrm{T}\end{array}\right][\mathrm{V}]\) 4
 \(\left[T_{n: t d}\right]\left[V_{n}\right]\)
To rotate the distal timbs arount a respective doin (o) , hex joint axis is ranslated to the global origin and the axis of rotation is aligned with the \(=\) axis. The consention for local " \(^{-}\) axis rotations las becn desiguted as the rotation for cach arbitay gont. Al oher axes are held comstant at the indial spectication.
Once the system is laile, it can be optimized fram the pue computer graphics framework. Dy using the position \((j)\) ) of the revolute joift stored in the verex matrix, we can wse one framblion to bring the joint to the origin. This ontmation credtes a reduction in tanstational matrix muthplications by a factor of 2 (n-1) if \(n\) is the tumber of the join to be rotated. In addition, the optinization provides less overhead as the number of vertices to be operated is reduced by e\%o where e is the number of vertices per limb and \(n\) is the number cef the joint to the rotaled. The optimization is cetaled in the pseudrocode below


G. If the wint is the yoin of robatron funp to step aine






ghobl coodinater as bllows:


\(\left[V_{]}-T_{m} \mid V_{0}\right.\)

The rohation about an abitrary revolute joint in an mentinined sywan atows foin motion winclude
 free corrdinate aves. In mechanisms with orhogonal walut joins, thec revolute joints would be required w acheve he same rotatons Changes in link yav pitel and woll tule angles accur trom rotalion about single revolute piat Therefor the new yax, pich, and roll are calculted ather poximal pints are rowed To aveld erorsin beck celculation of the enientation vid postion coordrates im real data the yow pteh sud reth are chealited ya the sotion sequence throughultaplection of only the mothon matrics. The sequence nectesxry for rotation usug fuler angles recuired the the crientations be calculatel in the order rof. pich and yave as m. 9 . The calculation of yw, pith, and toll is tabluted boh ways se that egch method could yerif the other The nethod of wack salculation be accamplishad by Grst tanklatuge the limb back to the globalorgin of the coorlinates sytun by wing the limb center as the offec far the transibuco matix in 0 )
\(\left|\begin{array}{cccc}1 & 0 & 0 & x_{i} \\ 0 & 1 & 0 & 1 \\ 0 & y & 1 & 2 \\ 1 & 1 & 1 & 1\end{array}\right|\)

 alcuating be angle of rotation (a between y mo the globel 4-axis (1)
\[
\begin{align*}
& x^{\prime}=[0, y, y y, z, ~ y]  \tag{101}\\
& a=\frac{\cos ^{-1}(4 \cdot 10,1,0)_{\mathrm{X}}}{\frac{z}{m}} \frac{\pi y}{m \quad 4} \tag{2}
\end{align*}
\]

The are cosime finction only returs values between zero and r talians so it is ratiplied by afetor bat \(\mathrm{z}-\mathrm{-}\) - 1 .
dependug on 2 win respect to the xyplane A similat respective factor is mutintied to detrmine angle frection hor


(2) For a, wositwe angle requites a ciodk whe rofation to.
 inverted. The remaning calexations of pich (on and yaw (h) follow the standard onvention of positive angles for counter

 phate.
 with the absolute value of t" (13), whe pith (t) tuar be calcutaded from the angle of rotaton betwen en "and the gotslyaxis (14)

\(\theta=\frac{\cos ^{-1}\left(u^{4} \times 10_{2}, 9\right)}{n^{n}} \frac{x, 4 y}{x-4}\)
Yaw (b) requires the we of a sepprate bedi wis since the hocal yax unt vectar ty altexed with the ghial yatis. The
 \(x\)-phene (t) 30 that the angle brween the watis wetcr
 limb (8)
\[
\begin{align*}
& 3^{34}=\{x-2 x, 0 x-m x\} \tag{17}
\end{align*}
\]

Whizine the calculated yow pith and rofy one as able to mow and onten the limb withou resorting to sequental stan管部 19 )
\(\left[\mathrm{N}_{n}\right]=\left[T\left[\mathrm{R}_{5}\right] \mathrm{R}_{0} \mid\left[\mathrm{R}_{]}\right] \mathrm{Q}_{n}\right]\)
Indility to mate small, precise measurenents for the porition of limbs introducts the possibily for large ervors when tack calculating the yaw pith, ond rol of a limb, especilly at the asymothes, So in addtwon to back calculaing the yaw, sitch axd toll from the tmo's poatien mative to global axis, the yaw pitet, and whllare calculeted solely with the inputed rowtion matrices. The rotation matrices are ordered as they would be for the mulaghiextion to build a limb as prycurly hown in petuchoode above bu no transations are usd. The rotion maris of 6 is then ofaind Dy usigy Win ondered sequence of rotaion watn nulthitelions, the preutocode is yiven ho back calculate yaw, pteh, and roll from the vilut m the rotation matrix e wollow:


 Pitch ts calculated first since to hav we unknown Bectase

 the cries to cribulate Enice's yaw pich sul role.
\[
\begin{equation*}
\theta=\sin ^{-1}(P M(1,2)) \tag{20}
\end{equation*}
\]

Roll as in（12）is negated to provide the corfect rotation direction．The z component of the \(y\) and \(x\) unit vectors is the sante for roll and yaw in（14）and（18）．
\[
\begin{equation*}
\alpha=-\cos ^{-1}\left(\frac{R M(2,2)}{\cos (\theta)}\right) *\left(\frac{z_{-} m y}{\left|z_{-} w\right|}\right) \tag{21}
\end{equation*}
\]
\[
3=\cos ^{-i /}\left(\frac{M M(1,1)}{\cos (\theta)}\right) \cdot\left(\frac{z_{-} u x}{z_{-} u x}\right)
\]

This method allows one to track the yaw，pith，and roll of the linbs without the need for position data（except to track the sign for yaw and roll）．

\section*{V1．Restats}

To verify our nethods we rotated to an cod position and then back to an initial home position witt different rotations on the way back to the home position．Oar final vertices matrix equaled the initial one thus verifying our methed，since aclosed loop rotation is the itentity raatrix．Table I shows the sequence of totations and intiat offsets that ane illustrated in Fig． 2 ．Fivare 2 shows a simple sysen of only two arbitray revolute joints；however it is given as an example as it is simple to expand to a matrix of vertices representing detailed oblects．The yaw，pich and roll are calculated boh through rotations and by back－calculation from dee end position of each lina for both jomets with rotations from \(180^{\circ}\) to \(180^{\circ}\) in \(1^{\circ}\) indereents．The angles were foud to be cqual．
Tanal

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Joint & \(4_{60}\) & \(f_{6}\) & \(\theta_{\text {for }}\) & \(a_{0}\) & \(\mathrm{Bta}^{\text {a }}\) & \(\theta_{\text {ds }}\) \\
\hline 1 & \(5{ }^{\circ}\) & \(10^{\circ}\) & 9 & \(\underline{5}\) & －14 & \(10^{\circ}\) \\
\hline 2 & 15 & \(20^{\circ}\) & 19 & －159 & －219 & 0 \\
\hline Position & \multicolumn{3}{|l|}{Rotated Joint} & \multicolumn{3}{|c|}{Pegrees} \\
\hline 0 & \multicolumn{3}{|c|}{None} & & & \\
\hline 1 & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{\(45^{\circ}\)} \\
\hline 2 & \multicolumn{3}{|c|}{2} & \multicolumn{3}{|c|}{\(30^{19}\)} \\
\hline 3 & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{\(\underline{-30}\)} \\
\hline 4 & \multicolumn{3}{|c|}{1} & \multicolumn{3}{|c|}{－209} \\
\hline \＄ & & 2 & & & －319 & \\
\hline
\end{tabular}

\section*{A．Orhogonal Rofations}

To compare our methedology to wal physeal data，a mechanical linkge systen（restricted to of hogonal awes） using joints with adjustable twist，cant，and joim angles has been devised and Cabricated．Measurements were made with respect to righthand Cartesian coordinate systen using a grid on drating paper and a ruler for the vertical zaxis．The drafting paper was taped to a fat tabletop，and one end of the multi－linked system was secured to the tabletop．The system was offet since it was above the tabletop．Adeing 2.313 to the \(x\) values and 1.375 to the \(z\) walue adiusted the calculations． An offeet was used since the our melhod takes the giobal cero to be at the ceater of the most proximal limb，while the test
apparatus begins at the end of the most proximal limb，whose conter is located at 1.375 incles on the positive - －axis．Aher measurements ad adjustments were fualized，the data were conserted to centimeters．The differences were calculated between the confrmation values and the modified calculated values．Error was calculated as the Room Mean Square（RMS） of the difference between the measured and calculated coordinates．Table 2 shows a maximum 6 mmerror，which is within the experimental eror of the measurement method used．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\begin{tabular}{l}
置被数 2 \\
 \\

\end{tabular}} \\
\hline RMS & 0 & I & 2 & 3 & 4 \\
\hline Segment II & 034 & 0.51 & 0.60 & 0.33 & 007 \\
\hline Joim 41 & 0.18 & 0.17 & 0.36 & 0.36 & 0.17 \\
\hline Segment 42 & 0.30 & 0.25 & 0.41 & 0.41 & 0.25 \\
\hline Joint 12 & 0.20 & 0.58 & 0.58 & 0.58 & 0.48 \\
\hline Segment 3 & 0.17 & 036 & 0.36 & 0.36 & 0.36 \\
\hline
\end{tabular}

\section*{B．Nohorthagond Rototons}

Measurements were also performed on snow crab legs （Chomeceres opho）to verify rotaions for nonorthogonal biological revolute crab joints as seen in Table 3 ［33］．Two differen crab legs were used and measurenents were performed on cach erab leg in two different positions．The measurements were made asing methods of the arthogonal section above．One of the positions of the Crab legs is slown in Fig． 3 ：the resutts are given in Table 3 ．


Tavis
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{} \\
\hline Pos 2 & 1 & －5 & \(90^{\circ}\) & \(90^{\circ}\) & \(5^{\circ}\) & －990 & \(10^{\circ}\) \\
\hline & 2 & \(-35^{\circ}\) & \(9{ }^{1 /}\) & \(0^{\circ}\) & \(35^{\circ}\) & ． 910 & \(0{ }^{\circ}\) \\
\hline & 3 & －5 & \(99^{\circ}\) & \(-910\) & \(5^{\circ}\) & －910 & \(0^{\circ}\) \\
\hline Crab 3 & Joint & \(\theta_{6}\) & An & 90. & \(\alpha_{\text {ni }}\) & Pud & 04 \\
\hline Pos 1 & 1 & －5 & \(99^{\circ}\) & \(99^{\circ}\) & \(5{ }^{\circ}\) & －910 & \(0^{\circ}\) \\
\hline & 2 & －410 & 99 & \(0^{\circ}\) & \(35^{\circ}\) & \(-90^{\circ}\) & 0 \\
\hline & 3 & \(-3^{\circ}\) & 94 & －99 & 5 & －919 & 0 \\
\hline
\end{tabular}

The methods used to nake the measurenents were similar to those of the orhogonal axes treasurements．The level of
gccuracy in the meazurncuens was determinex by compariag the vector leng the of the limbe compared to the thenarad luget or he limb (accuracy whin 0.3 cm cequad, which
 Meaturments meeting this requicment attaned comparable resulte (Thble 4) with our gimintion chown in Fus. 2. Sinect the monaturcments were carned out similar to the orthogenal linkage mearumenents with meazarements twken in centimetery insteal of inches, the mrory were the same. All the momorthogomil measarements that met the regered necuracy


TABEA
\begin{tabular}{|c|c|c|c|c|}
\hline RMS & B & C & D & 理 \\
\hline Crabl 1 Pos 2 & 0.0 & 0.2 & 0.6 & 9.6 \\
\hline Crab 3 Pos 1 & 0.0 & 02 & 0.2 & 0.4 \\
\hline
\end{tabular}

\section*{} MEASIRENENTS

A model of the homan ankle wars developed based on three segments with two arbitrary revolute joints (Table 5). The gegments are the calconcus, talus, arit mortse (comprised of
 ankle joint) and the subtalar joint (lower anke jont) are abitray revolute jains [31, 32, 39]. Tsman and mumal meremed the locations of the axes in the bones refative to each other (Tables) \([31,32]\). A computer animation of the ankle joints' whe made as seer in Fig 4.


Fig, 4. The nukle model hat second praition of our siftenation to chow

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{\begin{tabular}{l}
Tames \\

\end{tabular}} \\
\hline Woint & \(\alpha_{6}\) & Afo & \(\theta 8\) & \(\boldsymbol{a}_{\text {4 }}\) & \(\beta_{15}\) & \(4^{4}\) \\
\hline Galocrmers & \(-20^{\circ}\) & \(\cdots 16\) & \(0^{2}\) & \(29^{\circ}\) & \(16^{\circ}\) & \(0^{\circ}\) \\
\hline subtalar & -41 & -67 & \(0^{\circ}\) & \(41^{\circ}\) & \(67^{\circ}\) & 4 \\
\hline
\end{tabular}

VIL. Drscussion
The DH representation hos beent isst to mextane the movements of asimal jounts with a six nevolute orthogotal nochansm \([53,54]\) and represents the mechanies of the
 34]. Abright, et al disenibed the diffenthes encomitered using Di to linkages mitherbitary axes and sughested a whore dexible method, which ntilized lirectional cosines [18]. Buford, at al, used compater graphics techniques and abbitary revolute jointa for complas simulation of hamat Larat joints" motions \([45,48,49]\).
Gar inoposed motle ta more omplete method for maltilinked syeterus tian the DH representation or Albrights method, but nequares more campatationat power for motion sinulation. "hese computations, whose complexity presented diffeulties in past ywars, are now feasible becmuse of the moreses in deshop computigy chabinties. Progmomang in \(M\) ata \(b^{\text {e }}\), a common soflware program, allows for lexibility In a wanety of sethings, Outputs for motion of limb segments can be in yaw, pitch, roli, \(x, y\), ard \(z\) values, a representation. conmonly used by engineen. The mathod is threcdimensional and has had same computational appoach used in compater graphics and CAD sofware, thereby providite a common language to nodeler, desipners, enginecrs, and biologisels. The techuque nvolves Iranshang and rofating the Imb jout mechanisn to align with a reference coordinate axis, retahing the four revolute, wnd then the mechavism is derotated and te-transtated back to its correct pesition. There is no order dependence for join rotatione This approach neduces the aximetherrors and keeps the hmb or joint reference Tranes within the limbsegments. The parameters describing each limbs segment and revolate are chanly defineck, simphiyng the limbe medruical descnption and kinemaho modeling, The crore between the messured data and our reohique are within the experimentul ermoss of cur mesamenent pocess. Thus, it is reasonable to assume that our muthods of caletating the positions of the limbs are correct for orthogotal and nou-orthogonal rotations. The identity matrix that is attaned from the clased loop rotation also validates the methodology. Our method can be gencralized to represent hinages win any lower pair mechanism.
The method cars also be used to conpute limb dynamics and control. Gumintano, et al, nsed soghasticated nominturar optimization to resolve static thambjoint forces asing a fiwe arbiray rwolute mandeator [46]. The solutions of statie and dynamic forces in an-orthogonal system ate much more difficult than in the mone common orthogonal robot designe. A design advantige of our mothon ty that the restlant forces ure thee dimensional and can project out of the pate of the limb ceqments. Sationt for the dymmer of non-orthogotal systems atre also more complicated that ios orthogonal systeme. An culition to centripetal fonces, Coriolis fores become real foctory for wh movitg linkage and may projet ont of the plane of the limb semment or the kub itget. These forces can be adtitive and are of great use to the mowing crob or haman. They are probably an importata fatotor in the eolutionaty desion of limbs and their joints. Pobotic desigse exploitio sioch forew cond improve robot efficacy including more rapid motion, inpwowed effiesengy of twotion. inereased dymanic torpue, and incrensed (or decreaked) impact forees.
A better fequesentation of the forward linmatiss of inmal linbs should asige in the understanding of limb notion, in



 goblowion to the elbow 16 ］．The method was very ncurate




 detemme the phths of movton whtm khe spec，whet showed

 af youst and hmbltumatio neahamenti

SX Coweluycy

 mote complate method for the vepresenthton and andyris of

 in compther anmatomand porides at corsmon an clear：


\section*{K NWKevamammas}
 whs mekghadheln withely paper

\section*{}


 Cowfance m 1092 pa 49803
 contmious fice and gatis for quakmped robots on
 की 21 ， 166
 ＊Om－dixctrnat quatryed walkug raits and



4ो TGuag D Pom，and Wargoter Soll stabluzed byed whkng wder control of anvel reflexpe
 Pwcechings of The 2005 ITEF Rev Joterathond Conferate on， \(265,19.3266\)－3274



 \(333^{3} 32\)
61 W，L－quan C Dong bing，Les M Sne－xtm，क力

 HEET Btwnatanal Conbemes 20 ，pa 2017 ． 2021.


 Focive，20h An whal momatonat comorwoc of He 2044 ，荲 4649 4652







 wat 35，we 120 ， 130,2005 ．










 24.259
 Weyclogntent of a bipect wall has whot
 motrons in frelugeat Robors wht gytems．

 \＄66．



 170.



 S67－37．
 ofd Comtratew rork Nom What and Son⿳ 1989 ． pp． 3.72.
 notation for bwar puiv methanextug hased on
 22 pp， \(215-22 \mathrm{~L}, 19 \mathrm{~s}\) ．









 \(3 \mathrm{~m} 104,190\)

 Akdensisthe Vertagesandung von \(C\) F Where 1854 , 3 3 421
 Dowiz Brunhweeg Verlag Triedrich Vewegund some 1806
121 F Fix "Hodluch dey Anhemme und Mectunik der Gelende unter berussichmwater bewegenden


 usects and sputes from thenatic perspective in Robutics and antwition, Preerangs of ihe 10 os WHE Diawatronal Conferece on 108 K , po. 984 . 986
 and posteriar stablly w the haxed meer, "in tom? Arbroplasty of the hiner Frecedings of the KNee Sowey \(1085-108,198\).
 Gurntino and A thouk "The Aves of Rotation or
 FDil 10 WP 434-60,1992.
126] A Holister wd D I Thumbno, "Thumb
 Therapt rel 8 pp 106441005
1271 A Holliser D \(/\) Gummano, W L Bulord L M. Myere and A Wovick "The Axes of Rotation of the Thumb internhalangeal and Metacarpophalaygal
 1995
[28] A M Follzter Ge Gellinn, and R L. Waters The Redaronshy of the Interosedus Menbrane to the ikcis of Ronation of the foream." Chin arthop hetut Rer wol 398 pa 37276,1994
129 A M Holister and D. Gituntano Hew Honts
 Brand Holliser A SI, Ed Chucago Mosby loge
TOD A M Holister \& Stara, A K Singh W W Sultwa, and A G Lupichut Bre Axes of Rotation of be Five, Cho Othop Relathes vol 294 pp 2502681993
[31] VT Inwan The gonds of the ond Ratunote: Willams \& Whane 1976
 studies of the hannan foas and manke" Bulletive of Frowhutick Werach ipe 97-129, 1049
131 N Kot Desten of a brammetic mangulator with nonothogenal toint Axes, "vol. Agster Ruston LA Lownata Teln Thivery y 20 t
13] AT Kxase and Y Durr Tyctue eficeneng of insect antanaa with two hinge gints." Biol Gyem. 701, 8t, m, \(6 \mathrm{~m}, 3 \mathrm{my}\)
151 IT London "Rnematico of We Ebow, 7 Whe


135 A G Ltwichuk "Detcmining the axis of rotation Trom 3 - motion datas in College of tugheevng vol Maxers Long Beach Callorma Sote

[3] A Mowe C F Small JT Eryan \& E EIE D
 Teltuqu for Deseribuy Whas kin Molow



 Biolugy Sowety, Procediugs of the tose Atwat
 1985 pe 710,711 .
[P] A K Singh R D Starkwetrer A M Dobtster s Jatank and A. Luphehk w mematice of the
 p1. \(430.446,1902\)
\(140 \mid\) W. Weber and FE Weker in Mecisant Uer
 Verlasg 1836 p 75.77
(41) D. Peam and M. P. Raker, in Conputar growhere

 Skourats Dr Computer Oraphes Mex Yot Mocraw Tinl, \(190 \mathrm{pp}, 101-30\)
[43] D. F Rogersand R A Rumshaw, Tecmutus gy compuder grapheds. New York Spinger-Vethes 1887.
[44] C. M Storey, A M Hollster, C Pobnem, N. Wient D. O. Anderson, I C Londen, and W I. Bulod "A Syeter for Mewsmenentud Culibatem


 2006 .
[45] W. L Butori, A Mollister, mal. ML Myexs * A Modelimg wad Simulation System for the Hanas Hand. JChin Eng wol. 15. pa 445451.1900.
[46] D. I Curintano A M Hollster W. L Butod, L L. Thomyron and L. M Myers "A vitual membe motel of the thambs. Med Gug Phes, vol. 17, pp \(207.302,1955\)
147 D E. Thmason and D. Ciurintano "A Winemato Modelof the frew Taxtons of the Hand \(J\)

[48] W.L Bulark Jr and D. E. Thompotit M Aystem for Thre Dinensional Interactive Simulion of Hand Elomechanics " TEEE Tronsations on

[49] W. L. Butord Ir and C. R. Andesstat, Delimtion of the kinenatio plan for the hanam museunskeletal
 SEEE Diemational Conference on 20 ES PD 1246 . 1251

 19 Y WEE Mernationat Cowserome on 100 Ie 8691 .
 moth calbextims, in Robotcs ond hatomation. Prowedracs of the tors mere meronana: Comerwan 198 , pe 93293
[5] D. L. Kunz An ohectoneneduprowhto multhody syetems aralysis." Comperters and Finchere vol 65, pp 2092 271,1998
[s] GL Knadland L Cutkowsk, Whan models,
 Bromed Eng, wh 105 w \(35-62,197 \mathrm{~g}\)
154 C. L Wtaxell A S Hall, wad M Niberg, " Aeasurement of iota motion between two body
 vol \(5 \mathrm{~m}, 8 \mathrm{k} 10 \mathrm{~s}, 1 \mathrm{~m} \mathrm{~F}\)

\section*{APPENDIX S}

\section*{SUBMITTED JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT PAPER}

Balance and Diabetes in Mature Adults

> SLIPrALLS Stwy Temm \({ }^{\text {al } "}\) "Lousiana Tech Unversity, Deparment of Bromedical Engineentus
> \({ }^{4}\) Clatson Universily. Conter for Rehabiltation Enginecring Science and Technology Dept. of Mysical Mod \& Remab, Upstate Med Unw. Sytuetse, NY
> Syracuse, NY, Reseateh Service VA Medeal Center
> Lonsimastate Uniersify Healh Sciences Cener, Department of Othopadic Surgery
\begin{tabular}{|c|c|c|}
\hline Corresponding Author: & Chnistopher M. Storey & Clarson University- Cldest \\
\hline & Cell: 504-782-3280 & 8 Clarkon ate. \\
\hline & Tax. 315-268-6654 & Box 5730 CAMP 225 \\
\hline & storeytmedhotmail.com & Potsdam, NY 13699 \\
\hline
\end{tabular}
* The SLIP-FALLS STEPm stuty team consisted of students at the Unversity of Pittsburghand Lonisina Tech University, and stafl at the Shrevepont, Lotssiana, VA Medeal Center, who helped with the collection of these data, and whow PhD dissertations and MS theses addressed different aspects of these experments. The tew members in aphutehcal order are Venketesh
 Scot Morstat, Senthimahan Rakapan, Kristopher K. ONsal, Glonia Patrick and Samanta I. Relerson.

\begin{abstract}
Abhrevhations: Diabetic mature adult with Peripteral Netropathy (IPPN), Diabetic mature adut who is Neurally Intact (DND), Healthy Mature Adult (HMA), Sliding Linear Investigative Platorm For Assersing Lower Limb Subility wih Simultancous Tracking EMO and Presure measurement (SLIP-FALLS-STEPM). Semme-Weinstein monoflaments (SWM), Shot Form 36 item heald survey (SF-36), Nerve condution velocitiss (NCV), total excursion (TOTEX), resultant distance (RD), \(95 \%\) confidence circular area (AREA-CC), \(95 \%\) conidence ediptical area (ABPA-CE)

Tundug. State of Lonisiana Bard of Regents Fellowship; Merit Rewiew grants fom VA
 Rehabilitation Reseaveh Career Scentist Award to Dr. Charles Robinson.
\end{abstract}

\begin{abstract}
Our objective was to show that detriments to postural control exist prior to the developnent of peripherai neuropathy in type 2 diabetes with wo lal history. This study tested tiabete mature aduts with peripleat newopathy (DPN: n 17, neme conduction velocity \(\leqslant 40\) ms) and withou peripheral ncuropathy (DNI am11) and healty mature adults (HMA no34): all aged 50 to 74 years. No nerve conduction or hatency dfferences existed between HMA and DN. All midervent static and quasi-statie postura assessments, with the latter assesed by short anteror platom perturbations. DPN's anterior-posterior center-of-pressure stato menics difered from NMAss. Both dibetic groups had higher theesholds for acelcration than HMA al 1 and 4 mm anterior pertubations. Both had higher plantar touch hresholds tha diu HMA

Since both had markedy higher thresholds to detect short perturbations, we conclude that
\end{abstract}
peripheral neuropathy in diabetie modidual is not solely the cause of decreased postural control.

\section*{Introduction}

Postral mostabity and diabetes ate leading nek factore for falls, when are a commona source of morbity md motality in those over 63 years old (1,2). Rders who fall fequenty have an unsteay gait 3 ) or por posumil control (4). Falk lead to a far of falling in the elderty, whel merenses the likelhood that one becomes homebound or bed-bound, thes resulting in a poore quality of life (5). Dinbetic ndividuab cad also decelop subty impated cogntion, bwe lower reaction times to pertirbations, mid have a higher neidence of talle that Ther age mathed cohorts (4, 6-9). Peple with dibete who have lower momperipheral netropathy show incrased posturt instability over dabetic subjects without penpherat netropathy (10), and have nereased lekelhood of fallo (1).
 and has shown decreasod shabiliy im (10 12-15). Pricto, ct al., has shown that significan diterences exists ta a lage aray of posture metrics between yonng adults and the cidery (12). Lafond. et al has shown that signitican instabilites sxise between diabetic individuats without history of hals and their eldeny colorts (14). We wat to show that same instabilites can be seen though a large army of quet standing metrics. Also we fell that our test that charaterives the response to small mansion platommmovement would be a more sencitixe method tor testing dyname postural instabilites than methods that me wast-ptils at the bip large pertutations, and ilfs ( 1624 . Thus we developed aseries of test protecols that ase the Siding Linear Investigative Pafom for Assessing Lower Limb Stability with Synchronzed Trweking EMG and Yeesme measuremen (SLD-HACS-STEPm (23-29). Ou nowel platfom and its test protocols focus on quandifug differences between groups in their dility to deteet small movenents ( 1 mm ) These small movenents that are whin the mornal way ratge provide the
mechanism to study how humans stand, apposed to how humans preven fals to discover defoencies in postural comtrol that conld lead to m nereased likelhood of talls.

2y studying tabetic ndividuat boh whit and withour bowe limh peripheral neuropathy, who have no history of fals in efther grow, we have are able to study weople who are at high risk for fall but have not becone symptomatic. The ain of our sudy was to nvestigate whether large finer lower limb nemopathy secondary to dabedes was the sole couse of noreased postural instability.

\section*{Research Design and Methods:}

Gubect
Our subjects were well-controlled diabetie mature adutis with peripheral neuropainy (DPN: 4 fomale and 13 male) and whou perpheral netropathy (DN: 4 female and 7 male). Healthy mature adults (IMA. 14 female and 20 mate), all who had normal lower-limb peripheral nerwe conduction tests, volunteered for the convol group. To enable a precise comparison, only subjects who completed otr entive electrophysiogical and acceleration threshold test potocol were used for this paper. Their primary care physician had previonsy dagnosed ach DPN or DNI with vpe 2 dabetes. Subject reeruting took phace via tyar adverting at the Overton Brooks VA hospital in Sheveport. Lousimu, and in the local area. Individuats from 50 to 75 yats on age, inclusive, tven labeded mature aduts. Our test provocol was aprowed by the IRBs of the Slireveport VAC and Lousiana Teeh Umeeraity.

Scocwing
A medical history guestionnare was given to caoh potential subject. Individuals were not funter lested if hey had a medical history of carliovascular and or respixhtory tiseake,
neurological problems such as cerebrovascular disease, stroke, head or spine injuy, vestitular ailnents and dizziness, memory and concentation deficits, musele activity deffits, or nonheating skin ulcers. Onthopacdic problems sueh as lower back pain or spasms, athritis or foint disease and deformations of joints or bones led to exclusion of individuals from the stady. These with past or curreut drug or alcohol dependence were also excluded.

All consented subjects were screened with the Berg Balance scale and Sharpened Ronberg Test to assure that they were able to operate indeqendently from assistance, and vision Was tested (Snellen Eye Chart correctable vision required). In addition, the subjects were tested with the Min-Mental Slate Exam to ansure that they were mentally competent to follow instructions dung the experment. Patellar and Achilles' reflexes were tested to conlim that they were present and nomal. The DPN and DNI gromps had hemoglobin Ale values below \(9 \%\)., with no group differences seen in values or in number of subjects with values \(\$ 704 \mathrm{DPN}\) 2 DNI). A temporary classification of Healthy Mature Adult (HMA) was made for all consented subjects who reported no history of diabetes or neurological impaiment. Perturbation testing on all of our subjects commenced before, during or after the nerve conduction fests were carried out, as the scheduling of the NCV wests by the Neurology Service were on a fil in basis between clinical tests. Once the NCV results were in a final classification into an HMA group could be made. Of the 46 individuals withou a history of diabetes that went through our protocol, 34 were classed as HMA, and are studied here. The remaining twelve were positive for peripheral neurpathy during the NCV tesing. These individuals were excluded from this malysis since we did not know the cause or the entent of the neuropathy, as Nardone, et al. showed that different types of peripheral neuropathy affect postural stabiliy te differat degrees.
and we cond not rule sut diabetes, given the epidemic prevalened of undagnosed diabetes in matare adatts (21, 30,31).

\section*{Testing Prouedruas}

The preceding tests prowie physiologieal backgrotinds on individuals for our posture test prowocl. The 2-Alemate Fonced Choice acceleration hresholds to forward perturiations of constam diaplacement were curied out on the SLIP-I ALLS-STE Bm platom while bindfoded (25). At beange instre that he utinfow vibation, fictionless platom provides no movenent oues and allows for the test of movements within the range of sway. The subjected is presented via wireless hedphones prercorded commands with white masking noise of "peady* "One", "Two", und "Decide". During the for seeond decision period, the subjact must th whol period they perceved the perturbation to have oceurred, by a single (interva L) or doube (interval 2) bell press. The subjec needed to accrue a cormet detcction percenage of \(79 \%\) for an aceleration to be considered threhold. The platorm moves a a \(100 \%\) smoothed sedme, which alows for symmetrich acelention mot deceleration of which the peaks are used as the meattrement or theshold ( 25,26 ). The peak imparted knetic energy (PKE) was calctuted by Le 1 , where m it the subjects mass. PGT is the pak sechation theshold, and PD is the platom dixplacenent. The peak imparted Kinetic anergy accounts for indvidnals' mass in relation to etch individual's peak acceleration threxhold.
\[
\begin{equation*}
M H E=\frac{m^{*} B U T^{*} P D}{2} \tag{I}
\end{equation*}
\]

Prior to ach threshold detection session twenty seconds of quet standing data were recorded to assess an individuat's matmal way. This yocded three quet standing observations periods per indwidual. Sway parameten are calculated from the four
load cells of the fore-ptate. The anteromposterior center of pressme (APCoP) and medat lateral center of pressure (MLCoP) time-senes ponfes were derived from the load cell dath (25), with the convention that forwad \(\mathbf{i n d}\) nhtward were the positive directions. The time seres Were 鲑hord wing 10 Az type 2 Chebyshev low-pass filter, and the means subtracted out Trom these thesseries, zother is caleunted - the resulan distance (RD) - to provides time sencs of the vector distawe combining cach APCo and MLCol pair. Dased on these timeseries, we calcolated metrics suggested by Proto, ot al, who had shown diferences in aged and Young alult grops (12). They are boken up into four categones time donatin distanee, time domain area, tme-tomain hybrid, and frequeney domain neasures. from the timedoman distance metric, now and RMS distances ware catcuated for RD, \(\mathrm{ACoP}_{4}\) and MCOP (12) along with the standard deviation and range of each time senes. The total excursion (TOTEX) a summation of the changes in distance was calculated for APCoP MLCoP. and the vacor distance change of both (12). The mean velocty is caloulat from the TOTEX, TOTEX and TOTEX (12). The wotmedonain area measures that are edeulated are the \(95 \%\) contidence circular area (AREA-CC) and 959 confidence elliptical area (AREA-CE) with \(95 \%\) confidence level coming from the \(z\) and \(F\) statiste respectwely (12). The Hybrd measure melude sway area (estimates arda cnclosed by COP path per unit of time), mon frequency both rotitonal and in ve respecive APCoP and MLCoP planes), and fratal dimension (based on TOTEX, AEEACC, IREA-CE) (12). For the frequency doman, the total powers \(50 \%\) power frequency (mednan \(^{5}\) power frequency) \(95 \%\) power frequency ( \(95 \%\) percentile power frequency), centroidal frequency, and frequency dispersion were ealculated using discrete fourter transform mod not the sinusoidal muti-taper estmate (12).

All subject were given the RAND 36-item (with Depression Screener) hoalth survey, a modifec version of the shor form \(36-1\) em (SF 36 ) heath survey, which was shown comenations
 petron's s setfreponted ploysical and mental health on theif guality of lie. Jenkins, et ate, and
 (37, 38) Lower scores were correlated with eldeny who have a fall risk (3). Post-test soniog was performed antomatically within en Excel spreadshect.

Senmes-Weinsten Monoflaments (SWM) were tused to assess senson threshold on the sole of the foot by exerting a constant lore based on bucking strength of the monofilanent presed to the foot. The monofilaments are numed with a log of the foree exerted in grans by the monofilamen. These theshold measurenents were taken on the plantar suface at the great 1oe, motatrsal the fims and fourth digit and heel. The procedure requred that wo out of three tonches be deteeted for a given monoflamen to be at treshold a a beation. For simpletey, with eyes closed. subjets were asked to respond when they folt the probe. For the SW T test a diserepancy in sample size exists across the test stes because we didnot begin tating measurements at the heel and fourth metatasal unit after a mamber of subjects had been Feruited

Sufface lower-imb nerve conduction ests, perfomed by Overton Brooks A Medied Conter Neurology Service by a techician supervised by neurologist, detemined the presence of periphoral neuropathy. NCY were measwed for the peronon, thial, and sumberves bilateally. In fiften subjects ( \(4 \mathrm{DNL}, 5 \mathrm{DH}\), and 6 HMA ) no sural nerwe conduction velociyy could be obtained. Inferences smmot be made from the inabitity to frad sural nerve CVs via suruce electrodes as sural werve studies often require the nse of meede clectrodes (3942) W-
wave and F-wave htency tests were perfomed on the peroneal and thial nerves. Market adiological differences were noted betweon those with diabeses and the HMA group (43). This analyis will be presented later due to space limitations here. Anolys

Llecrophysiological and subpec screening results were analyed in \(S P S\) via an ANOV A wilh Gumeshowell posthoc corcetion to compensate for the meane goup stess and wantues. Ouict standing metncs also used a post-hoo Games-Howell after A yOV \(A\) with repeated measures. Staistics on Mim-Mental Exam, Berg Beance Scale, RAND, aceetration廿uresholds, whd SWM wer perforned in SPSS with Kriska-Wallis one-way ANOVA. The Knckal-Walls one-way ANOV A allowed us to acown for the subiects who did not reach theshold but went to the maximum allowed aceleration of the test for acceleration threstolds. The Gruskal Wallis was performed pair-wise on grouss as a post-hoc test. For SWM tests, geometric mean are reported instand of the log values becatse of the power law nature of tactile perception (44, 45).

\section*{Results}

We bypothesked the penphera neuropathy secondary to type 2 diabetes woutd cause decreased abity to detect platfom perturbations. We found instead that the abilfy to detect platorm perurbations is diminished matabetio mature aduts wh peripheral netropathy (DPB) and without peripheral neuropathy (OND, both as compared to healthy mature aduts (MMA). stegesting that the prosence of dibetes itself was myor hetor in an increased detection threshold.

Subects

There was no sigumean difference mage, heifht, or body mas index between DNis. DPNs, and HMAs. White mass was no signifeanty different between RMA ad DNI or DNI
 shown in Table 1.
[Insert Table 1 Near Mere]
Tnsen Hgure 1 Near Herel

Peak Accelermon Thewholis

A difference exists in DNI and DPD accelervion threshold values for all mova dipplacements (Figure D: Both ONI and DPN had significamiy higher the sholds than MMA a 4 \(\operatorname{mm}(p<001) \operatorname{and} 4 \mathrm{~mm}(p<001\) and po05, respectively) displucenents (table 2). \(A\) strong tend was also noted for signicanty mereased threshold of DNI over \(4 M A(p-0.054)\).
[Insent Table 2 Near Here]
Using the calcatated peak energy mparted on the subicet, we gain signfieanty higher peak energies ( p 0.05 ) or DNI over MMA for all dsplacenents. Whie significanty higher impated peak cnergies were seen in DPN over HMA for 1 mm ( \(p<0.01\) ) and 4 mm ( 00.05 ) Gisplaeenents, only atrong trend was noted for the 16 mom displacement. Due to safety constraint of our system, We set a maximal peak acceleraion value at \(200 \mathrm{~mm} / \mathrm{s}^{\frac{2}{2}}\) for 1 mm mover and 100 mms \({ }^{2}\) for 4 mon and 16 mm moves. A mumber of subjects reached these values (rat condtion), Amasis of the negative power law rehtionship (29.44-47) between accelcration and displaecment values provided reason to raise the maximum pak acceleraton test values \(10256 \mathrm{mms}{ }^{2}\), 181 mmis, ad \(128 \mathrm{~mm} \mathrm{~s}^{2}\) respectively for \(1 \mathrm{~mm}, 4 \mathrm{~mm}_{\text {, an }} 16 \mathrm{~mm}\) perturbitions. WMA subjects reaching the rall \((11 \%, 3 \%\) and \(0 \%\) ) were fower than both DPN
(41\%, \(18 \%\) and \(6 \%\) and DNT \((63 \%, 36 \%\), and \(18 \%\) ) at I mm, 4 mm and 16 mm displacenefn respectively as seen in Table 3 .

Thsent Table 3 Near Here

\section*{Qun Sumdng Wemes}

In the antenor-postenor time-serics, signticant ( \(p<0,05\) ) diferences were sen in range, standard deviation, and RDE distance for WMA yersus DPN (Table 4). The total power for nterior-postarior was siguficanty mereased \((\mathrm{p}<0.01)\) for ha DDN versus MMA Tends in HMA versus DPN groups were seen with increased nean resitant distance mean anteriorposterior Gistance, RMS distance, anterior-posterior total excirson, and anterior pesterior nean welocity No differences were seen between DNI and enther DPN or HMA groups.
[nsert Table 4 Near Here]

\section*{Healh Surveys}

The mean scores on all heall survey results (except for the CADD emotional well being) scone vere beter for HM4 than for DMI and DPN, but not atl mean diferences were significat (Table 5) Athough the scores on the Derg Baluce Scale were within an acceptable ange for DNI and DPN (they showed no risk of hals and conld opente independenty), these later scores were still significanty lower than those or HMA. The only signficant group diference gamed from the RAND survey was in general health. Doth DPN and DNI showed signitieat decreased feelings of genaral healh ( p 0.05 tna p 0.01 , respectively). Strong trends were observed in RAND measures of pain and physod hodth [Pan m MMA vs. DPV (p-0.06) and in HMA ws. DN \((p=0.051)\), physical healh in MMA w. DPN ( \(p=0.06\) ]. No signficanee was secn betwect dabefc subjects with or withon lower limb peripheral nouropathy,
[nsen Table 5 Near Here]

\section*{Foot Sensithey}

Semmes-Wentsin Mowoflaments (SWM) testing displayed several significant differencer in the gemetric mean among the groups (Table 6). Biateral significant tiferenees provide a more significan measture of tante sensory acuity. The first and fourth metatarsat had

 geometric means of thresholds less than 0.77 g for bof firs and fourth metatarsal bintertly, Whie DPM had tresholds greater than 149 g . None of the geometric means is above the
 two DNT and fve DPN subjects did have thresholds at risk for developing ulecs while no ung did. Thesholds of the fouth metatatsal differed blaterally, sgnifcan and trend respectively for the lef ( \(p\) 0.05) and right ( \(p-0.062\) ) feet, between HMA and DNL DPN had a signtioanty higher ( p 005 ) SWM threshold at the lef heal tersus 1 LMA , but none was seen in the reht hect. DN had a significan bilateral decrease in thesholds versus HMA a the heel.

Insen Tabe 6 Near Herel

\section*{Souer Imb Ltectrophywlogy.}

Both DM ma HMA mave higher ( \(\rho 0.01\) NCVs than DPN bilateraly for the peroneal. fibal, and surainerves Table 7). No diference was observed in NCVs beween DMA and DNI. No bilateral difference was observed for the M-wave lateney test. The weaker significance in the Tibal M-wave latency test can be attibuted to the inereared variance as seen in Table 7 by the 939 confidence merval which for both DPY and DNI was geater than touble the 959 confidence interal of HMA. Detween HMA and DPN bilateral significance (po0. 01 for all excep lef peroneal p 0.05) was sen for both peroneal and tibial nerves in the f-wate hatey
 cxcept len peroneal.
[Insert Table 7 Near Here]

\section*{Discussion}

The comprehensive sudy allowed us to look at attertions in both static and dynmic posture caused by Type-2 diabetes in mature aduts. Lower fimb peripheral meuropathy prevalent among those with Type-2 datetes, has been asswned the chuse of he incrased HLe hhood of falls and instabilty (2,11). Our study was able to compare perception tmexholds of movement and shate postural metrics in people who have dinhetes with and withent loves limb peripheral newropathy.

The aceleration threshold tests showed a disinct decrease in the ability to sense forward platiom movencen in bot DPN and DNT as compared to HMA, Our electrophysiology axmmations could not accomnt for the decrease, simee HMA and DNI did now signifeamly diffr in VCV yet DNL had signifently increased detecton twesholds at both 1 ann and 4 mm displacements. The SWM examimation did not reveal any significant diferences beiveen DPN and DNL, but did show a biateral significan difference in the heel and a sigmifican diference whth a rend on the lef and right fourh nextarsal respectively between DNL and HMA. These physiologica differences provide a cause for deceased sensitivity of DNI to motion, since the DWI have higher mean thesholds than be DPN, and the geonetric mean of SWM both heels was higher in he DNI tham he DPN. More DDN (5) than DNI (2) had SWM grater than enge, but none had ay mistory of ulceration or vaccular problems. The decreased sensatom at the hee provides a reason why both DNI and DPN sconed significanty lower than HMA on the Berg scale. The DPN and DNT self reported in the RAND poorer genexal healh, and also had erends
at more pait and poorer physical heath, which could be atributed to the nerased swat thresholdes of both DPN and DNI groups.

Simmons, et al., studied diabetic individuats both with and without cutaneons sensory deffet vesus controls. Our daticonfrms tha DPN who had significanty diferent SWM Hresholds from tML also had signfionty lager antenor-posterior sway longths than om: control (IMA) for quet standing analysis (15). Our date also shows that our DNT subjects who also had signifeanty differen SWM thresholds did not signifeartly difer fron HMA for any quet standitg posture metrec Lafond, at, also studied quiet standing diabohes individuas wit sensory netropathy versus healhy eldeny. His data and our contimed the increased anerior-posterior sway, but our data did not observe different nedixh lateral sway between groups (14). Nardone, et al, shuded both dynamie and statie posturat sability in wobeets wion polynemopaty diagnosed by nerve conduction testing. They proposed that the increase in sway cout he atributed to the loss of group II spinde fibers instera of group la motor fiben (2 ) mproper functoning of spindle hibers has decreased cffcacy of muscle streth recepters, which cond lead to postural instabiliy, Our HMA and DPN subject had similar NCY scores as Nardone et al, and our DPN group corresponds with Nardone, ef al., by he nocrased sway over
 netropathy found by SWM threshold was more sensitive to quie standing posturai instabity. where ou data provides that the decreased NCV of the DPN group cunse their siguticant postural instabilty ( 10 ). The metric that Simoneau, et at, Hed to quantify stability was total excursion, which we foud a rend in the mentor-postertor direction only (10).

\section*{Conclusion}

The DMAs with and whou peripheral netronathy show inowased threshold for the detection of movement, which is beteved to mencase their risk of fall since they would be less likely to detect on mitition of a fol However, only DPV display signifcantly differen quiet shanding metres compared to MMA , wheh lead to nerve conduction as a cause to the instublity Further studies focusing on diabetic mdividuats with cutaneous sensory neuropatyy. with lover himb neuropathy, and those whit both will help better define the cause for mability in dabete ndividuals. In additon, further studies on individoats with peripheral nemopathy. but who are confirmed to not have dabetes or be glucose-intolemnt will better defme peripheral nemopatiy's and type 2 dabetes contibition to postural matability.

\section*{Acknowledgements}

Support provided by a Stite of Lonisiana Board of Regent Fellowship. Mcrit Eeview
 a Senior Rehabiltation Researen Career Scientist Award to Dr. Charles Robinson.

\section*{References}



 1996.344):44-54.
4. Gord SR, Clark RD, Wewster W, Postum stablyty and asccinted physiological factorx in



 Nexmocicnces \(2000_{2} 25(11) .342-349\).
 Medicme 1999,162) 03112.

 2004,49011 1. 69 -175.
 procesing in Type 2 liahetes Dinhefic Medicine \(2001,18(10\) ) 813 - 810.
 diabetic sensury neurupathy. Dabetes Care 1994;17(12)1411.1421.
11. Pewell MW, Camegie DA, Burke T. Reversal of dabetic peripheral nearopathy with phetotherapy
 \(200635(1) 11-16\).
 steadiness: Allerences between healthy young and elderly atwls. Bemedical Eugitexing, IEEE Tranxactions on 1996;43(9):556066.
 Nearopahy durimg Threshold Level Accelcration Perturbation. In The Tist Lat Enterwational Conference wa Whotoptal and Medical Pbysics 2005 March \(27-30\), 2005 p. 77.93.
14. Latomd D, Corvivau H, Prince F, Postural Control Mechmisms During Quiet Standing In Matents Wih Dubete Susery Wewropathy. Dabetes Care 2004;27(4)173-17\%
15. Simons RW, Rechardson C, Ponos R Posiural stabily of dibethe patients wif and withou

16. Tai Y © , Rogers MW, Ratnon J, Cain TD, Manke TA. Static versus dwamic predictions of protective stopping following waisi-pull perturbations in young and odder adulf. Journal of Biomechaics \(199031(12) 4111111 \%\)
17. Fidene PE, Rogers MW. A closed loop stepper wotor waist-pull system for nducing protective stepping it humans Dournal of thonectanics \(1098,31(4) 377\), 381 .
38. Sehute BW, Ahton- Mher A, Aesonder NR Conpensatury stoping in respense to wats puls ia batancenupared mod unimpaired wouen. Gat \& Posture 2005;22(3):198.209.
19. Mik M I , Dohnson ME, Martink KM, Rogers MV. Age-tependent differences in laterat batance recovery through grotective stepping. Clincal Blomechanten 2005;206,6077616.
20. Rogers MW, Hedman 10, ohmson ME, Martinez KM, Mile M-L. Triggering of protextive nteppixg for the contron of lumam balance: age and contextusl dependence. Cognitive Brain Rescarch 2003+162) 102 . 198.
21. Nardone A, Grase M, Scheppat M. Balance control in perpheral nearopatiy: Are patents cqually unstable wnder static and dywane conditions? Gait \& Posture \(2006,23(3) 36437\).
22. Nardone A, Grasso M, anantola S, Corna S, Schicppat M. Postural coordination in eldery yoberecs standisg on a periofically noving platforin. Archives of Physical Mediciue and Rehabilitation \(2000 ; 81(9) 12171223\).
13. Nardone A, Tarantola , Mixco G, Pisuno T, Schenone A, Scheppai M, Loss of largedameter spindic afferent hibres is nol detrinental to the conrof of body sway during upright stance evidence from neuropathy, Experimental Mrain Reswach \(2000,35(2)\) 1s 62 .
24. Nardone A, Shoto R, Grisso M, Schicppail M Infuence of agigg on leg muscle rellex responses to stence perturbation Archives of Physical Medicine and Rehabitiatien 1995; 76(2):158-165



26. Richerson SJ, Fulkner DW, Robhnon C, Redferi MS, Purbeker MC Accelerathon fhreshofd detection during khort anterior and postevior perturbations on a translating platorm. Cait \& Posture \(200,18(2) 119\).

to short anterier pestaral disturbances. Medical Engineering \& Btysies 2004;2607):581-6.
 and non-dabelies. Biomedical lagineering Onine 2005 40 ):12.
 psychophysical acceleration detection threshodds Dournal of Neuroengineering and Rethatilitation \(200603(1) 2\).
30. Simmons D, Thompson CT, Lngelgan ML, Controling the dabetes epldcuic; how shoude we seren for uadiagnosed dhabetes and dysglycaemia? In. Diabetic Mediche: Dhackrell Pubilishing Limited; 2008 p 207212.
31. Thomas MC, Waker MK, Enherson IR, Thomsom \(A G_{2}\) Lawlor DA, Wrahim S, et al Trevalence of undiagnosed Type A 2 diabetes and impaired fasting glucose in oder \(B\) ritish men and women. Di Diabetie Medicine: Blackwell Publishing Limited, 200 g . p 789.793.


 Hetechig depussive disoriers. Medical Care 1988;268).755.89.



 \(1493+313) 247+3\).

 Cure 19995 \(2(1) 4066\)

 38.














Hearing Lass Rehted to Type-2 Diahotes. Ine Kudielogy Now Mimeapolis, Mk; 2 mb .




 Tech Haversidy; 200S.
 Transations, Rusion, La Louisina Tech Cwiversity, \(2003_{*}\)

Table
Subject Intormation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{HMA (n-34)} & \multicolumn{3}{|l|}{DNI ( \(\mathrm{n}^{-11}\) )} & \multicolumn{3}{|l|}{DPN ( \(n=17\) )} \\
\hline & Mean & & Cl & Mean & & \(\stackrel{\mathrm{Cl}}{ }\) & Mean & & \%C1 \\
\hline Age (yrs) & 57.4 & \(\pm\) & 2.16 & 59.1 & * & 5.31 & 60.9 & * & 2.72 \\
\hline Heghe (m) & 1.68 & 4 & 003 & 1.69 & \(\pm\) & 0.06 & 1.74 & * & 0.05 \\
\hline Mass (kg) & 812 & 4 & 5.6 & 97.8 & \(\pm\) & 17.12 & 98.3 & \(\pm\) & 9.28 \\
\hline Body Mass Indes & 20.5 & \(\pm\) & 171 & 33.7 & \(\pm\) & 4.22 & 32.7 & \(\pm\) & 3.18 \\
\hline
\end{tabular}

Table
Detectim Theewotdx
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{HMA (n-34)} & \multicolumn{2}{|l|}{DNL (n\#11)} & \multicolumn{2}{|l|}{DPN (n-17)} \\
\hline & gMcan & amean & gMean & avean & g-an & aMean \\
\hline Secoleration & \multicolumn{6}{|l|}{\(n \mathrm{~mm} \mathrm{~s}^{2}\)} \\
\hline 1 mm & \(78.4{ }^{\text {a }}\) & 977 & 158.2 & 177.4 & 143.4 & 1579 \\
\hline 4 mm & \(34.1{ }^{\text {a }}\) & 46.5 & 59.4 & 75.6 & 54.8 & 70.4 \\
\hline 16 mm & 164 & 22.5 & 32.0 & 48.0 & 23.4 & 34.1 \\
\hline Peak Kinetic Fnergy & \multicolumn{6}{|l|}{m} \\
\hline 1 num & \[
3.20^{5}
\] & 4.14 & 7.48 & 8.58 & 694 & 7.85 \\
\hline 4 mm & \(139^{\text {² }}\) & 2.05 & 281 & 3.85 & 2.65 & 351 \\
\hline 16 nm & \(0.67{ }^{6}\) & 0.95 & 1.51 & 2.44 & 1.13 & 1.71 \\
\hline Tus we Dme pan! & Whas D8 & prown &  & W MMM & V\|lpa & \#3, 矢 \\
\hline
\end{tabular}

Table 3
Rail Cunditions
\begin{tabular}{|c|c|c|c|}
\hline & 1 mm & 4 nm & 16 mm \\
\hline HMA & 4(11\%) & \(30 \%\) & 0 (0\% 0 ) \\
\hline & \(20200 \mathrm{~mm} / \mathrm{s}^{2}\) & \(1(9) 100 \mathrm{~mm} / \mathrm{s}^{2}\) & 0 \\
\hline & \(2 \mathrm{ct} 256 \mathrm{mm/s}^{2}\) & 2 (c) \(181 \mathrm{mms}^{2}\) & 0 \\
\hline DNI & 7 (63\%) & 4 (36\%) & 2 (18\%) \\
\hline & \(2.9200 \mathrm{mos} / \mathrm{s}^{3}\) & \(46100 \mathrm{mms}{ }^{3}\) & \(26100 \mathrm{~mm} / \mathrm{s}^{2}\) \\
\hline & \(2(6) 200 \mathrm{mms}{ }^{2}\) & & \\
\hline DPN & 7 (41\%) & 3 (18\%) & 1 (6\%) \\
\hline & \(29200 \mathrm{~mm} / \mathrm{s}^{2}\) & \(3\left(100 \mathrm{mms}{ }^{2}\right.\) & 1 (a) \(100 \mathrm{mms}{ }^{2}\) \\
\hline & \(20200 \mathrm{~mm} / \mathrm{s}^{2}\) & & \\
\hline
\end{tabular}

Tande
Ouik Standin Motris
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{A（1， 34} & \multicolumn{3}{|l|}{DY／（nx11} & \multicolumn{3}{|l|}{DTY（\％）\({ }^{\text {a }}\)} \\
\hline & Mean & \multicolumn{2}{|l|}{9980．4} & Abaty & \multicolumn{2}{|l|}{95901} & Measa & \multicolumn{2}{|l|}{981} \\
\hline  & 25 & \(\pm\) & 06 & 3.2 & \(\pm\) & 31 & 3.3 & W & 19 \\
\hline Standerd Devation \(n\) D & 44 & 6 & 07 & 47 & E & 2.6 & 50 & \(\pm\) & 14 \\
\hline Swancard Levtation．पL． & 27 & 4 & 0.9 & 36 & ¢ & 5.2 & 35 & ¢ & 16 \\
\hline Mament & 131 & \(\pm\) & 34 & 164 & \(\pm\) & 172 & 155 & 4 & 5.3 \\
\hline 12mus－4P & 19＊＊ & ＊ & 3.5 & 2 4 4 & 4 & 134 & 346 & i & 76 \\
\hline lange－M6 & 147 & \(\pm\) & 5.6 & 177 & ＊ & 25.5 & 17.1 & \(\pm\) & 8.2 \\
\hline Veam Mranneeta & 42 & ＊ & 09 & 53 & \(\pm\) & 45 & 43 & ＊ & 18 \\
\hline Meam Uswates） & \(32 \%\) & \(\pm\) & 06 & 38 & \(\pm\) & 2.1 & 3.4 & 4 & 1.1 \\
\hline Dean DismectMA． & \(2]\) & 4 & 0.6 & 28 & \(\pm\) & 3.7 & 23 & ta & 13 \\
\hline RMSDMtamern & 49 & \(\pm\) & 1.1 & 62 & ＊ & 55 & 62 & 4 & 29 \\
\hline MYS Distactap & 46 & ＊ & 07 & 43 & \(\pm\) & 26 & 50 & \(\pm\) & 14 \\
\hline RUS Diskmeer M， & 27 & ＊ & 19 & 36 & \(\pm\) & 52 & 35 & ＊ & 16 \\
\hline Toun lxearsion－RU & 2312 & 4 & 640 & 2880 & 4 & 1891 & 2946 & \(\pm\) & 121．1 \\
\hline  & 1783 & \(\pm\) & 470 & 2217 & z & 1004 & 2350 & 3 & 977 \\
\hline Tonal Fxcursicutul． & 111.1 & ＊ & 403 & 1347 & 4 & 1499 & 1321 & \％ & 604 \\
\hline Mxan Yelocty CD & 115 & ¢ & 3. & 14.4 & \(=\) & 95 & 148 & ＊ & 81 \\
\hline Mean Velocty \(\mathrm{Ca}^{8}\) & 89 & 3 & 24 & 11.1 & z & 39 & 11.7 & 4. & 43 \\
\hline Stean VeloctyM1． & 36 & s & 26 & ¢ 7 & x & 73 & 66 & W & 36 \\
\hline Mean Srcareny 140 & 0.5 & ＊ & 11 & 05 & \(\geq\) & 01 & 05 & 2 & 41 \\
\hline Uran lreyuency 4 \％ & 05 & \％ & 0.1 & 0.6 & \(\pm\) & 0.3 & 05 & 2 & 02 \\
\hline Mexn lrexuency M ／ & 0.5 & \(\pm\) & 0.1 & 03 & 4 & 0.2 & 0.3 & 2 & 6．1 \\
\hline 959．Cunduence Arx Cirche & 2693 & \％ & 130 & 5711 & ＋ & 13704 & 395 \％ & ＊ & 29．2 \\
\hline Swyy Area & 178 & \(\pm\) & 95 & 346 & \＄ & 813 & 363 & \(\pm\) & 183 \\
\hline  & 23 & 4 & 174 & 412 & \(\pm\) & 11868 & 3395 & \(\pm\) & 34419 \\
\hline Tractal Dimurusing Circle & 1.4 & ＊ & 00 & 14 & \(\stackrel{+}{*}\) & 0.1 & 1.4 & 3 & Q1 \\
\hline Tractal Wimenwon Sllyse & 1.4 & \(\star\) & 90 & 1.4 & \(\pm\) & 60 & 14 & 4 & 0.1 \\
\hline TothPower M\％ & 424001 & \(\pm\) & 26235 & 9486 & 4 & 2344903 & 60375.5 & \(\pm\) & 366170 \\
\hline Thal Prewest & 674945 & ＊ & 208765 & 12297\％ & \(\pm\) & 1847088 & 12179 & \(\pm\) & 59736. \\
\hline Tatal Pownetur． & 907345 & \(\pm\) & 540188 & \(1 \times 355\) & ＊ & 696991 & 65226 & ＜ & 613667 \\
\hline Meolin＋requener RO & 03. & \％ & 0.1 & 04 & 2 & 0.1 & 04 & 家 & 2 \\
\hline Aedian ratgumey 4 P & 12 & \(\leqslant\) & 01 & 03 & \＄ & 01 & 03 & 4 & 01 \\
\hline  & 6.2 & ＊ & 01 & 02 & d． & 01 & 02 & \(\pm\) & 0.1 \\
\hline  & 16 & 过 & 04 & 18 & \(\pm\) & 64 & 1.7 & \(t\) & 95 \\
\hline 54\％pedk lequency P P & 14 & 4 & 0.4 & 14 & ＋ & 01 & 13 & \(\geqslant\) & 03 \\
\hline  & 12 & む & 0.3 & 13 & w & 0.4 & 13 & t & 0.4 \\
\hline Cenroid Tregueney－3D & 1.4 & \(\cdots\) & Q． 1 & 1.1 & 4 & 02 & 1.1 & \(\pm\) & 02 \\
\hline Esnirod Treguancy－A & 149 & \(\leq\) & O， & 0.9 & \(\pm\) & 0.2 & 09 & \(\dot{*}\) & 01 \\
\hline Centrod Sregueney + ／L． & 49 & \(\pm\) & 01 & 0.9 & \(\pm\) & 02 & 19,9 & \(\pm\) & 62 \\
\hline Treguency Dinerien－12 & 68 & \％ & 00 & 06 & － & 0. & 0.5 & \(\bigcirc\) & 0.0 \\
\hline Frequency Misprswn MI & 06 & 4 & 00 & 06 & \(\pm\) & C． & 06 & \(t\) & 01 \\
\hline Frepuency Tspersion－Mt． & 0.7 & ＊ & 0.4 & 07 & t & O1 & 07 & B & 09 \\
\hline
\end{tabular}



Tables
Health Surveys
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{TMA} & \multicolumn{3}{|l|}{DNI} & \multicolumn{3}{|l|}{DPN} \\
\hline & 1 & Mean & Rank & \(n\) & Mean & Rank & \(n\) & Mean & Rank \\
\hline Mini-Mental Exam & 34 & 29.6 & 3491 & 11 & 29.0 & 26.32 & 17 & 29.3 & 28.03 \\
\hline DERG & 34 & 560 & 34,00 & 11 & 55.5 & 23.18 & 16 & 55.7 & 30.00 \\
\hline RANI & \multicolumn{9}{|l|}{Modified ST-36 will depression sereener} \\
\hline Plysical Lunction & 32 & 84.0 & 3272 & 11 & 78.5 & \(26 \times 86\) & 16 & 759 & 26.72 \\
\hline Bysseal Health & 32 & 352 & 33.56 & 11 & 73.8 & 27.09 & 16 & 67.6 & 24.88 \\
\hline Emotional Health & 32 & 84.4 & 31.48 & 11 & 78.4 & 28.55 & 16 & 78.0 & 28.03 \\
\hline Emotional Well-Deing & 32 & 76.4 & 30.69 & 11 & 77.6 & 27.82 & 16 & 759 & 30.13 \\
\hline Lnergy Fatigue & 32 & 673 & 32.42 & 11 & 63.3 & 30.00 & 16 & 56.6 & 25.16 \\
\hline Socat Tunction & 32 & 87.1 & 3325 & 11 & 82.2 & 26.77 & 16 & 80.2 & 25.72 \\
\hline Pain & 32 & 83.44 & 34.77 & 11 & 69.8 & 23.23 & 16 & 70.6 & 25.13 \\
\hline General Mealln & 32 & 76.9 & 36.47 & 11 & 58.5 & 20.91 & 16 & 63.0 & 23.31 \\
\hline
\end{tabular}

Tame 6
Smume Wowncin Monohtament Test
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|l|}{MMA} & \multicolumn{3}{|l|}{DNI} & \multicolumn{3}{|l|}{DPN} \\
\hline & n & 8Mean & aMean &  & gMean & Nean & n & gMcam & aMean \\
\hline Len Great Toe & 34 & 0.45 & 0.99 & 11 & 0.59 & 0.81 & 17 & 1.72 & 3.18 \\
\hline Leff 1/ Metatarsal & 34 & 0.44 & 0.79 & 11 & 0.74 & 2.11 & 17 & 210 & 7.74 \\
\hline Len 4 Mentarsal & 20 & \(0.59 \%\) & 096 & 8 & 2.15 & 4.02 & 11 & 1.64 & 324 \\
\hline Lef Hect & 21 & 1.91 & 334 & 8 & 9.94 & 41.11 & 12 & 8.41 & 2. 53 \\
\hline Meht Grat Toe & 34 & 0.44 & 078 & 11 & 0.78 & 102 & 17 & 1.32 & 258 \\
\hline Right \(1^{3 /}\) Metatarsal & 34 & 0.51 & 0.76 & 11 & 0.70 & 1.16 & 17 & 1.49 & 3.91 \\
\hline Reght 4 Metatarsa & 20 & \(0.77^{\text {pr }}\) & 1.15 & 8 & 120 & 2.02 & 11 & 2.75 & 11.20 \\
\hline Right Hex & 21 & \(2.30{ }^{\text {\% }}\) & 308 & 8 & 633 & 775 & 12 & 5,45 & 14.74 \\
\hline \multicolumn{10}{|l|}{\begin{tabular}{l}
MMA D DNP \\
 \\

\end{tabular}} \\
\hline
\end{tabular}

Table 7
Hechrophyswolog Results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{MMA} & \multicolumn{4}{|l|}{DNI} & \multicolumn{4}{|l|}{DPN} \\
\hline & n & Mean & & \%C1 & n & Nean & & 6 Cl & a & Nean & & 8 Cl \\
\hline Conduction Yelocity & \multicolumn{12}{|l|}{n/s} \\
\hline L. Peroneal & 34 & 46.9 & \(\pm\) & 131 & 11 & 45.4 & 2 & 1.86 & 17 & 40.5 & W & 1.89 \\
\hline L. Tbial & 34 & 45.8 & 4 & 130 & 11 & 46.4 & \(\pm\) & 1.88 & 17 & 39.6 & \(\pm\) & 192 \\
\hline 1. Stiral & 28 & 43.1 \({ }^{\text {² }}\) & \(\pm\) & 130 & 7 & 44.7 & \(\pm\) & 336 & 12 & 39.3 & \(\pm\) & 272 \\
\hline I. Proneal & 34 & 46.9 & * & 128 & 11 & \(46.1{ }^{17}\) & 4 & 2.8 & 17 & 40.3 & 4. & 203 \\
\hline E. Tbua & 34 & 45.6 & 4 & 1.71 & 11 & 459 & \(\pm\) & 2.41 & 16 & 40.5 & \(\pm\) & 237 \\
\hline R Sural & 28 & 449 & \(\pm\) & 139 & 7 & 46.0 & + & 2.62 & 12 & 389 & + & 2.26 \\
\hline Conduction Latency & \multicolumn{12}{|l|}{Ms} \\
\hline M-waye L. Peroneal & 34 & 4.5 & 4 & 0.37 & 11 & 45 & 3 & 0.44 & 16 & 5.1 & * & 0.48 \\
\hline M-weve L. Tbial & 33 & 43 & \(\pm\) & 0.41 & 11 & 4.7 & 2 & 1.21 & 16 & 5.8 & + & 1.69 \\
\hline W-wave R. Peroneal & 33 & 4.7 & : & 0.34 & 11 & 46 & \% & 0.27 & 15 & 5.8 & ¢ & 0.51 \\
\hline M-wave R. Tibial & 33 & 4.5 & 4 & 0.52 & 11 & \$, 4 & \(\pm\) & 1.22 & 15 & 5.5 & + & 1.69 \\
\hline F-wave L. Meroneal & 33 & 50.1 & \(\cdots\) & 1.78 & 11 & 51.9 & 4 & 300 & 16 & 569 & \% & 4.22 \\
\hline E-wave la Thial & 33 & 519 & \(\pm\) & 1.86 & 11 & 55.31 & 3 & 2.65 & 16 & 60.9 & \(\pm\) & 3.4 \\
\hline F-wave R Peroneal & 33 & 49.8 & \(\pm\) & 2.62 & 11 & 51.0 & \(\pm\) & 3.10 & 15 & 57.2 & \(\pm 1\) & 4.03 \\
\hline -wave R Tlial & 31 & 53.1 & \(\pm\) & 1.56 & 11 & 53,5 & ct & 387 & 15 & 60.8 & \(\pm 1\) & 410 \\
\hline
\end{tabular}



Higure 1: The feft-slanting lines refer a imm move. The cross-lutched lines refer to a 4 man move. The rightslanting lines refer to a 16 mm move. Error bars provide the standard error. DBN and DNI show promeunced decreased actity in detecting small anterior perturbations as compared fo IMA at and 4 mon movenents. Values ave the arithmetic neans.

\section*{APPENDIX T}

\title{
ACCEPTED IEEE ENGINEERING IN \\ MEDICINE AND BIOLOGY 2006 CONFERENCE PAPER
}

\title{
A system for measurement and calibration of nonorthogonal joints and limbs in humans
}

\author{


}

\begin{abstract}

 to wat oflet. The sandat nathod tor nowements of










\end{abstract}

\section*{1. Wacmotex}

1 \(/\) any matamicol syabms are compose w migid ITegnenis linkeal by simple binematic mechnmiany

 machuna control The chment standurd for caloulationg the posimon and orimution for the telerence wimes of thess
 Remresentator (I) The TL Rexesentaion masumes The links between linhes but ta simplifes mom He dehnes

 Links [1] Tha Du is a matively sixyde systam hat works well when the mechemuxas mre orthogntal the
 the linkx that do not bave to he withm link or lamb []].
Humans and minals heve revolut jomb that ne not uswally








 crobinstry recerys











 bints ane smow a whitary revome fombe ma can be
 snd the devrexs of rotation (pith - A) about the revoluta







 gerneralacdequations

\section*{}

\section*{1. Seflware}






The simplest syam consised of wesemments and a


 He hrex wanem"s refermee lrame the thenter of the Inst









 raction sa Trad the dsthace from the joint center te the totommat
 of the mentution of limbs nothtwa to the jober

\section*{}

A vertces matrix (TV I Sa, (1) was defred by the bont

perated wor secesed mon matre The whaript dis equal to the norber of the most distal liab Rach limb requira 12 colums of the matrix (expandable formare rettices The frste cigh colums were the linb vertices The nith colunn whe the limb centes, and the \(10^{\text {ti }}\). \(1^{\text {d }}\), and \(12^{*}\) colums were the local k , send \(\%\) yetore mot unt wectaty of the lomi condinate systen retative io global Cartexim condmbete sytum.

 proxinal (tp) or "to dista/" (td) wh lowb.
\(\left|\begin{array}{cccc}1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & i & A \\ 0 & 0 & 0 & 1\end{array}\right|\)
Rotaton matrice (Reol were defined by \%, and a Whin was he was of rotuton Lequivns (346) how the whathn matices for rotatrig aboat the xy and raxd
 कnsis Taw (o) provided the rotation aboul yaxis tich (f) gescribed the rotation beout the zexis.


A pent rotatomarx ( \(R\) ev ) detine the buven of rotation about the arbitray axis of the revolute joint. The yf ard a angles of onter are salculated from the twis to allow for the defne rotation of he jomt to be atout he 2udx as in Ey. 67. A mingle rotation matrix (RM (row, columa) was used to detme the mientatom of a limb in space through a single notation cuce the wow witch , no roll was tablated.



\section*{D. Sutem Deschption}

To ease the dillicuty in xeting ap the nodel wing glokal

and 0 ) were measared to rotate the ravolute 10 in to dig whe the waxis of the fistal linat Finallys the ollse was meanared from the center of the rewhote joint ta he gronatrie center of the distal limb, watieh provided \(x_{s}\) jos and s. No ruxe fmitation was errabled watlow
 mange of natural join motion on in fractures or digometons.

 whects The ulowa orgin ond axis were destunted to be the lacal oryin and axim of the nost moximan lint of the system. The lith was modeled a a cubsid, which can uasily he chaxed to any shape to ary shaped by wheng andor removing vertices. The cubord way used to simplify the pagrain and was defined by lengh, with, and height The
 center. The jom was a sighle axis revolute jomt The demeq of the rex olut jomt was be beat crigin and alyned with the aroxs. The joine was detimed in relation to the proxins: and owsalluak Due to the sequatial cheration in travering the limb, the program was kesigted ehbtranty in a pockmal to distal method The measure nate for each


 measurat me offamitriensition from the Foal axis of the
 and a) were measurel to rowte he revolute ront to argh

A mult-linke sysinn was asombied to the spationtom of min intial state. The local corrinute syteas were se at the onim of all limbs therefere, the lints were noved to their appropiate positions axd onentations in space va a sequence of matix moltuplications as shown below

\(\left.\left[\mathrm{R}_{2,3}\right] \mathrm{T}_{\mathrm{E}}\right]\left[\mathrm{N}_{1}\right.\)
 \(\left[R_{2_{2} \times f}\right]\left[\prod_{2,2}\right]\left[V_{2}\right]\)
5.


1. Rommixy anolit Sement lomT

The lad. of onthogonalisy buwed the jorntaxe and the global coordinite system presents a problem wiht jom Bation To rotate the distal livis arcumd a respective font
 of rotation was dignel with the waxis. The anask he been dexgmater as the as the only axis of motucat or all limbs. Allolver axe were held constant antid secticutions as Shownin the following sequence:

a. fifint bout of rotation jump to step egegt.


4. If jom is joit of rotation,

```

s
7

```


```

proper global coordinates as follows

```

```

 Mmg|Tm|\V
 2.

3

```





 syaten of limbe alowed disal himbers to hove change in then
 Therofrex the new yaw yich mad roll wad calculated after whisal jonte have been rotates, but to arod erons in bel calculaten of the oftenturn wh position coordinues in realdata the you pten and roll ware collalated on the fy with rotations throtyh multyplication of orly the matron watrice Due to the sequence neressany for cotation asing Buler angles, the onentatons were calculate in the arder
 coordmates w the Buter mgle multiphication siquence for rexations can ake place in the order of yaus pith, and roll. The sarie oder was usd to calculate in (o). The calculation of yaw pich and roll was tabulated both ways so mat ench metrod would enty the othes. The netrod of bok
oldolation was accompliched by frst tronslating the lina buek to the glowal wigin of the coordinates system by wing the limb center as the cfleet for the trenslation matre (?)
\(\left[\begin{array}{cccc}1 & 0 & 0 & x_{k} \\ 0 & 1 & 0 & y_{c} \\ 0 & 0 & 1 & z_{y} \\ 1 & 1 & 0 & 1\end{array}\right]\)
The limb manber (a) describes the limh to be transhated and later rotated Onee the limb was at the brigin the low atis recton were convented bo thet respotive unt vector. concinutes for the yaxis \((9)\) - 14
\[
\begin{align*}
& y_{m} d s=\frac{y_{3}}{\sqrt{x_{x}^{2}+y_{x y}^{2}+z_{y y}^{2}}}  \tag{9}\\
& z_{-} d c=\frac{\sqrt{4}}{\sqrt{x_{y}+y_{k y}^{4}+y_{m, n}^{3}}} \tag{19}
\end{align*}
\]

 Wation (w) betwen ti and he globals axis ( 12 ).
\(u^{2}=0, y_{m} d c_{0, w}, d^{2}\)
\(y=-\frac{\cos ^{-3}\left(u^{2}[\theta, b)\right.}{h^{2}} \times \frac{2-d}{|w-d|}\)
The arc cosine function anly returned value bewen zoso

 respect to thexy-plane A similar nespectve betor was. multipled to deternine angle direction for yat and pitch.
 the nuthodology besymate positive anyles as cotuter-
 dockwes notion to dign w with the glebal yaxis. Therfore, the enlculated was mexted. The wammug. calculatons of pich (0) wad yw (c) followed the standard cowenton of postrive andes ate bo counterdechate

 plawe

Shoe um aready led within the xyplane, but it was calculated with the thoutute whe of (B) Pich (of was calculated trom the angle of rotation between In and the blobily-axis (14):


Yaw (y) required the nse of a senarate local exis since the
 The local x-wise unit weotor was calculated holy s and z coordmates; (15) and (10) to propet onto the stplane ( 7 ) and the ange between the \(x\) acis vector and the ghbal \(x\) axs provide sue with the yaty of the hath (IS),




Whilizy the colculated yaws pitch, and roll, one ss able to


The hak of whily to make small masumenents for the position of limbs intoduces the possibity for lage cross: when beck calculating the yow, pich, ma roll fer s limb.
 chleuthing the yav, puth, and roll trom the hmb postion

by only using the inputced rwation ratrices. The notaion matrices were oxdered as they would for multiplication fon building of limb ats previowly shown, but no translations are used A rutaion matrix in (G) is obtained and by using an ordered sequence of rotation matrix multiplications eguations are given to back calculate yaw, pitch, and roll from the values in the ratation matris as follows:


\(4 . \cdots\)

The pitch was calculated first, since it is in the equation from the (6) that has one unkown The are-sine function has a range [ \(\pi / 2\), , \(/ 2\) ] bat since the order of yaw, pitch and roll, roll was rolaled first this guarantees that the pitch witl always be less than \(90^{\circ}\).
\[
\begin{equation*}
\theta=\sin ^{-1}(R M(0,2)) \tag{0}
\end{equation*}
\]

Rollas in (12) was negated to prowide the correct rolation direction. The \(a d o\) vector value was the same for roll and yaw as calculated in (10) and ( 16 ) respectively. Since the are cosine's range was [0, a], the 2 de vector whlue was used to detemine the stgand the direction of the rotation.
\(\psi=-\cos ^{-4}\left(\frac{\operatorname{rM}(22)}{\cos (\theta)}\right) \cdot\left(\frac{z-d \theta}{z_{-} d \theta}\right)\)
\(v=\cos ^{-1}\left(\frac{r a(1,1)}{\cos (\theta)}\right),\left(\frac{z-d c}{(x-d c \mid}\right)\)
This method allows one to track the yow, pitch, and roll of the limbs without tha need for perition data (except to track the sign for yaw and roll).

\section*{A. Reswlts}

To verify cur methods we rotated to position and then back to inital position with different rotations on the way back to the home position. Our final vertices matrix equaled the inital to verify our method since a closed loop rotation is an identity matrix. Table 1 shows the sequence of petations and the initial offets that are illustrated in fige . . Fig. 1 is the display of a simple system of coly wo arbitray revolute joints since it the points were rotated as a matrix of verices, which makes at simple to expand to detalled objects. The yaw, pitch, and mill was calsulated both through rotations and by back calculation from position in both join with rotations firm \(-180^{\circ}\) to \(180^{\circ}\) in \(1^{\prime}\) increments and were found equal when eompared.
11. A model por calmentonof ankle awgle MEASUREMENTS
A model of the andle was developed based on thee segments with two arbitrary revolute joints. The segments are the calcancus, talus, and motise (comprised of the leg bones and liganents). The arbitrayy revolute joints consist of the talocrual joint and the subtalar joint [4], [5]. This allows as to view the ankle bones a they rotate naturally instead of
about he assumed single orthogonal axis of most models [6. This will help to increase the acentey of meaturemos of ankle rotation. The determination of goint moments and reaction fonces nake it possible for mere realistic and natural ankle prostheses.

\section*{VI. Conclusidm}

This computational apprach provides ealculations for the pxaition and crientation cf timbs and revolute joints throughou the system"s motion. The methou faciltates modeling of kinetics and kinematics of pont in humanand animal himb and further fore analysis. The abilly to calibrate accurately mall rotations of nonothogonal joints improves the measuremert of orientation of timbs. The methodology allows for measurements and catoulations of joints withou the need for any mutually orthogonal axes that could lie rutside the body of rotation.

\section*{REWFRENCE}




 Hewtce Ralk pp tes an








 whtions delland in Trata 1.

Tsketis

\begin{tabular}{|c|c|c|c|c|c|}
\hline Nomt offsets & 9\% \({ }^{1 / 6}\) & & A & & 4 \\
\hline \(t\) & \(10^{*} 5^{\circ}\) & \(9{ }^{\text {c }}\) & .10* & - \({ }^{\text {\% }}\) & 0 \\
\hline 2 & \(20^{\circ} 1{ }^{\text {cti }}\) & \(0{ }^{\circ}\) & 20\% -1 & 虏 & 0 \\
\hline \multicolumn{3}{|l|}{Pasition Hotated Jolmt} & \multicolumn{3}{|l|}{Degrees} \\
\hline 0 & \multicolumn{2}{|l|}{Phang} & & & \\
\hline 1 & \(\stackrel{1}{*}\) & & \multicolumn{3}{|c|}{\(45^{\circ}\)} \\
\hline 2 & 2 & & \multicolumn{3}{|c|}{\(30^{\circ}\)} \\
\hline 3 & \(\pm\) & & \multicolumn{3}{|c|}{\(-25^{\circ}\)} \\
\hline 4 & \(\uparrow\) & & \multicolumn{3}{|c|}{420} \\
\hline 5 & 2 & & \multicolumn{3}{|c|}{\(30^{\circ}\)} \\
\hline
\end{tabular}

\section*{APPENDIX U}

\section*{ACCEPTED AMERICAN SOCIETY FOR ENGINEERING EDUCATION \\ ST. LAWRENCE REGION CONFERENCE STUDENT PAPER}

\title{
Using Server Architecture and Multi-Threaded Processors and Software to Time-Lock Multiple Data Streams in Time-Critical Physiological Experiments
}

\author{
Chistopher M. Storcy \({ }^{12}\) and Charles I. Robinson \({ }^{3-\frac{1}{4}}\) \\ Center for Rehabiltation, Zngineoring, Science and Technology, Clatson Cniversity Potgtam, NY Dept, of Wioctigineering Louisiana Tech Luit Rusion, LA Dept of Mlectrical and Computer Enginecring, Clathson Diversity, Potsiam, NY/Research Service, Symewse VA Medical Center, Syracuse, NY.
}

\begin{abstract}
To fere our subte clues in the data that we collect, tre need highly sable and rehable instromentation, and a way to link disparate data streans together In a typical laboratory suon as ours, collecting a variety of physiological data in time-synced hashon has in the past requited a number of desk top computers, each one handing a different aspect of data collection Thes wath of tate required us to do laborious off-line file conversion and syndironizing of three main data strems Since new techmologies such as byper-breading and duab-core techoologies have brought enomous power to deskiop systems, we optea to use a server-style systen to be able to multitask in a netwok enviomment but stil mamtain Windows XP as the operating system. The server platorm provides us in mean necessary to combine our various data collection schemes into a single unit, and for on-line dala calbration and converston, while still allowing us an easy transition from our prevous hardware anc software.
\end{abstract}

\section*{Introduction}

A wealth of mult-dimensional data cam now be collected during biomechanical struties of human motion and postural reactions to perturbaton These inelude bomechanieal measures ike AP and ML Centers-of-Pressure (COP) weght ou platorm verstes weight supported by hamess. horizontal gwond reaction forces, head and bot acelarations in miltiple dimenstons, distributions of pressures under he foot, and joint and limbt trajectorics as measured by motioncapture manker systems. Malt-ohannel EMG data and psyohophysical responses collected simultaneously ad richness to any control model buit.
Colleetigg of the data in time-syneed fashon in the past has requed using a mumber of computers, cach one handing a different aspect of data collection, where one computerserves as the master and tiggers the other slave computers to begin data collection Yer many of the vendors of propiety data collection interface (like a pressure mat or a motion capture system) supply there own proprictary software to act as a master, with olher fata slaved in. For largeseale observations, the feature results in a number of datasets collected over the same eped, bef does not necessarily ereate datasets that are timesymononized with one another. Using eath device as a master, with data from other devices imponted into eado setwpts data collection, the already large size of the data hor a single experiment rapidy grows due to the storage of dmpleate data in multiple systems However, the datasets are not triy duplicate, as enoh was processed a dfferen way, with possible varhtions in amplitude ad hoise and certainty offets th timing.
Parallel proessing requres sysims capable of ruming thread simultaneovsy. Whic parallel processing required multiprocessorsystems, new technologies such as hyper-theading and dualcore technologies how brought this power to many desktop and laptop sytens. These
techoologies provide the ability to increase multiprocessor systems exponentially, which is the basis of many new sexcer platioms on the market.

Tme-series Data
Like most researeh laborstotes, our lab user computers to control our exparments, collect datas analyze the results, and write wp any resmhan manuscripts. Our sudies myestigate the psychow plysics af balanee and posturat control.
All peoplesway: We make very shon pertubations of platomn on which a subjects stands that are generally of a lengli less than that a person's sway, as measured at the foot and ankle, and hence should be and are near the ability of a subjeet to detect them. Using psychophysical technigues, we mpply pex-theshold pertubations so toratwely find the detection limit, and atempt to itgire on what plysiological or biomechanical wariables) was (were) wed by the stbiects in makng a corret detection, or led them to a fale detection. Details of our experimental set-zp and procedure have been described adequately elsevhere. Mere we note that our Shiding Patfom For Assessing Lower Limb Stability wih Synoed Tracking EMO and Pressure neasuremen (SLD-NALSS-STETm) ik a vibration-free translating platom that ndes m air beanngs 1 I. Our ypieat protoco has a subject picking in which of wo 4 intervals that the perturbation occurect. with data collection occuring in thiny \(15 s\) windows. This protecol is repeated 2 to 4 times.
To ferret our subte ches in the data that we collect, we need highly stable wd reliable instruxentation, and a woy to link disparate dats streans together. During the buidd-up yean in om lab, we gew the sperment by uding hardwute ad assten. For instance, we stancd with a single compurer for experimental contrel and data collection. We added anofier data collection computer when the introduced the measurement of the distribution of presstue under the foot from an HR TelMat We alse later added a motion caphure systen that tsed fetromeflective marken to trace the movement of the joints and other body refcence point that contd be catsed by the perturbation. This system akso had its own computer. We use digitat out signats from the controling conputer to trigger data collection routines in he other two computers. Fig. I detats the setup and the outputs,
In the pas, this wealh of data required us to do laborious of-line hile conversion and synchronzing of the three main data streans. We wished that all of this comversion eould ocetr simultaneously during data collection but the comphters in our original implementation facked the processing power to process data efficienty without testing delays. The outhated technology could not take advamage of multithreading to paralle process.

\section*{Specifications for a New Lab}

With a move to another wiversity, we have had the chance to set up a second SLIP-FALLSSTEPm research lab for findamental studes, while maintaing the original lab in a clumeal setting within the VA resateh service Based on \(\$ 10\) yrs experience with the wiginet SLIPFALLS lab, we set down a series of specificalions for the new lab:
1. The escental elenents of the user internee needed to remain the same as sen from the climeal envirommen.
2. The command and control aspects of the platfom had to be fimetionally equivalent to previons implementations, and prethous code bad to be reused when possible.
3. The operator should be provided auser-friendly intedhee with which to momitor the progress and output of all thes precesses in red-time dmring a testing sequence.
4. The number of chamels of data collected by the FALS protacel must be incteased to allow for additional sensor and EMC inputs. The LaCr chanels were to be moreased from the onginal four to a user-selectable between fou and sixteen. The anoun of suppont the safety hamess provides to the subject stould also be collected and calculated.
5. The motion analysis system should be tpgraded from a single camera, 2 D system to a nulu-camera, \(3-1\) system.
6. The E AL S data should be mmediately stored in engineering units, rather than m raw voltages inat required post-possessing. CMC potentias should be converted on-line anad
stored as RMS time-series data, with a further conversion to a percentage of that seen under maximal contraction if possible.


Figure 1: The original SLIP-FALLS-STEPm lab consists of a sliding platform (SLIP), hardware and software routines (FALLS) for collecting neurophysiological, biomechanical (Position, Acceleration, Centers-ol-Pressure), EMG and psychophysical clata, and equipment and software to simal taneously measure position markers, atd foot pressure chs stributions (SIEPM). The SLIP is (Dell DHM). This computer also relays pre-recording instructions to the subiect via a SoundBl aster card and headphones. A Tekscan HRMat (TekMat) measures foot pressure distribution with an array of 87 by 96 sensels ( 4 per \(\mathrm{cm}^{2}\) ). A separate computer controls the TekMat. Its data collects starts with an external RS232 trigger. Motion captare af the ocation of retro-reflective markers is achi eved by a single digital camera Peak-Motus system, along with a back-up analog camcorder, The peak computer is triggered also by the FALLS computer with an additional sync signal generated at the start of a platform move A single \(4-\mathrm{hr}\) test session generates over 2 GB of data, all of whi ch has to be processed offline after the completion of the experiment.

\section*{Solution}

As our current setup was incapable of performing the required computations without testing delays, we focused on what was needed to meet these objectives. We needed a system that would remain under the Windows XP operating system to maintain current software and equipment drivers, which satisfied the first through third specifications. The remaining specifications require additional new or replacement equipment.
To meet the third specification we had to upgrade our multifiunction data acquisition card (NI PCI 6034 E ) from a 16 analog inputs to 32 analog inputs (NI PCIe 6259 M ). We also achieved additional input be routing subject response (bell) to the digital inputs instead of counting peaks of analog input. To provide signal conditioning and signal access we used NI SC-2345 and NI BNC 2090 for I/O. The NI BNC has a dual functionality of allowing us access to EMG signals so they can be inputted into Peak Motion capture system. To acquire these signal in the Peak system and to meet the fifth specification the hardware had to be upgraded. Since the purchase of our previous system Peak-Motus was acquired by VICON, which allowed us to upgrade to VICON's superior cameras and hardware while maintaining same user interface with updated Peak software.

For the final specfication, the data had to be converted on the fly to engineering mits without causing ay hesting delays. A computer was needed that could parallel process theads. and not only utitze precmptive multhasking. New compat mult-processor server technologies wefe our focus for anew EALLS conyuter. We decided to purchase a Gateway E-9515-1 series server to meet the fourth spechic.

\section*{Implementation}

Tradtionally for computers to be able to multuask m a network envionment requied aserves syle operaing system. Due to such a small congumer base there was very poor harduare support, which has let a mark on those who bad endeavored to uthze is power in the past. Wh the advent of Windows \(X P\) to the genetal consumer, which " based of Microsofts original sereer plationm, the abiliy for user-Irendly server platorm was lumohed. Windows XP was chosen due to ils widespread use and fimilianty. Yea it remamed stymied by is everyday use on desktops that it cotld hande comptiers that ane more powerful and effickent.
Windows XP has both great hardware and software smport, but if you try to parchase it with a server hom mator compter nanufatures, they will fura you down, or le you purchese separately whin no support. They wan you to purchase one of then newly branded server operating systens, which keep with the old tradition of having poor hardwane and support for the evaryday wer and rescarcher. These server operating systens ate expensive, which cones at the cost of paying per user hicense that allows for trae multiuser environment. Although thas provides a limitation to the consumer, a miti-aser envionnent would be a seldom-ased feature in the tab environment. Since companies want the consumer to pay hantreds to thousands of dollars nore for offola server operating systems, they place limits on the software so it can only nes a certain amount of the computer s resources.
Whadows XP has a linit of two physical processors, but thanks to new techonlogies in tie. central processing mit (CPU), the limitaion has become less stifing. On new server class machine in Fig 2 is composed of two Ind Xcon 2.8 GMz Dua-Cofe Processors Exch eofe also comans hyperthreding technology hat is similat to dual-core but siares rescurecs. Therefores the software limitation mposed on us is met since we only have two physial processors. That limitation is surpased by the fact that we have eght logical processors on which prograns run.
To tuke advantage of extra processors sofware today is mulithreaded, which translates imo breaning up the program into smaller operations that can run independently ind asynetronousty. New munthreaded programs are able to push the processing envelope by disributiog the workload acros all the logical CPLs. For our SLIP-TALLS-STEPM platorm, we me Lat VIS W 10 nu our experiment, record data, process chat, and synch with ofher research systems. LabVIEW provides a nice graphical progranning mertace so novice programmers can use it. 重 also allows Tor the lexibiltyin advaneed programing lor creating threaded applications, with comnunicatoon streams between each, and for conmmicating with thurd party software.
The mafority of our data malysis is pertomed in the Matlab package. With LabVIEV \& Et yot have an casy to seript object to communcate and pooess data in Matlab. Given that we integated ant threaded our data negusiton and analysis, we have vitually elminated omine processing time In addition, Malab can take advanage of litel's Extended Menory 64 bit Techology (EM64T). The EMb4T permis us to ram Matab 64-bit on our server, which also requires a 64 -bit operating system (Windows XP 64-bit. With 64-bit soltware, the LVe4T allows one to adress over 4 GB of memory to which will dramatieally decease the proeessing time by removing hard drive reads and wnies due wo virtual nemory wage. In additon the RMC4 povides 64 his of precision for acenate cafcuatons. Nonetheless, we still have not reached the potentiat of our server, Therefore, we decided to num simultaneonsly the data acquisiton hardware and software for Teksean foot-pressure mat in the server.


Figure 2: New equipment set up. A catal core, multi-processor Gateway server nunning Windows XP, LabVIEW 8.0 and MatLab 2006 b is the new FALLS computer. The Magma PCI bus extender attached to it via a SC'SI connection allows the use of vender cards with the older PCT bus structure. The graphics card in the computer supports up to four simultaneous monitors; Three hotswappable 200 GB drives are configured as a RAID 5 set, to provide for data collection redundancy. The A/D card is expanded to 32 channels, with 16 now coming via cable from a 16 channel Delsys EMG amplifier. The Tekscan HR Mat controll er PCI card no longer resides in a separate machine, so that data can now be better time- synced The motion capture sysiem is upgraded to 4-camera syster, eat

This addition brought us our first limitation on our server. The latest revision (3.0) to the \(\mathrm{PCI} / \mathrm{PCX}\) standard no longer contains a 5 V connection. Some older cards (audio and Tekscan PCI cards) are set up for the old 5 V protocol, which required us to develop a work-around. We installed a rack-mounted PCl bus extension system by Magma, which allowed up to 4 PCl devices to share a single PCI slot in the server and be backward-compatible PCI slots. The bus extension worked well with the audio card (used for subject commands) and Tekscan card (used for foot-pressure data acquisition) allowing us to incorporate both in our server configuration.
The small physical size of our server (form factor 2 U of a rack enclosure) cuts down the volume of the equipment need for the testing system, which is aided by having low-profile PCI ports. We used low-profile PCI slots for a serial port (RS232) expansion card and SCSI \(320 \mathrm{Mb} / \mathrm{sec}\) hot swappable RAID 5. The extra serial ports allowed us to control multiple pieces experimental hardware (Dover DMM 2004 and Tekscan HR Mat) simultaneously. Using RAID 5 for disk storage gives great data protection with orly minimal loss of space as opposed to mirroring the
hatd dive. By striping the data neross the bard drives with a parity bit, it enables the wser ta rebuld a hard drive's data completely if one crasher for high data security.
Server harduare wa not designed for my flashy graphes catds, and the is no set lugh-speed gruphe bus to use. However, the server has the new Pcle standard that nany bigh-powered video carde cimently use today For our west monitoning, we chose the workstation dass viceo card by NVIDIA because it gives is the ability to monitor all test pataneters simultaneonsly since it has the abiliy to run up to four digita monitors. Also on he PCle bue we have our Natonal Lnstruments data acquisition card. It is wired to two cxternal hubs that allow for signal condttoning and data line stcess. These modnes allow for symhronizing to both intemat (Teksoan) and oxtemal (Vicon+ Hexk) softwat for total integration of data collection.
The Toon-leak syten is a three-dinensional marker based camera system. The digitat impu and ouput (DIO) ports of he National Tnstruments DIO allow for trigering and syehroniving the video mpture date to test events. Syeing is nected simoe then would be a delay befon the cameras began wecording. Syning also allows the three -timensional motion capture data to be aligned with the other data acquired by the server.
We have improved upon the data acgusition parameters of the originat setup. Origimaly all sig nats were conditioned by separate extemal Daytronics signat conditioning modules with numere displays. Now a Natonal histroments SCC system is wed that cnibles te to do individual twesage sighal conditionitg on cathlme if needed (e.g. strait gage conditioning, followed by low pass hitaring) We have used theit SC breadboard modutes on some signals to build our owa atcuitry to remove large DC offet voltages in some of our acelerometer signals. The LabVIEW driver sofiware that comes with the SCC takes care of gan and offer calbraion so that data sent from the sCC already incalibrated aginecring units (ie., mm), rather han in raw mambers. This automated scaling and unit conversion occurring at data collection decreases the need for post-processing and pathally addresses our design criteria 6 . Whth the SCC, we upgaded out dan acquition card from 16 analog mputs 1032 , with the SCC taking the lower 16 channels, and EMG mpus the upper 16 The new 16 chanel Delsys Bugnoli EMG amplifier has a 50 -pit ouput connector that intertaces directly to a NI BNC breakout box (BNC2090) that handles the
 ouputs. With the upgraded EMG system, we can acquire inputs from cight bitateral muscle groups on the body. Changes will he able to be monitored not only in the mnscle groups about the adde as done now, but also the thigh, tunk, mid neck muscles.
Our acelerometers ( 3 on the head and 1 on the platom) now have a peat-to-peak onptit of 20 ms'. The signal condtioning provides a gain to alow for ImV per noms output. We maintain the onginal four load cells of the onginal force plate. We also still collect the position atif motor curren (stiear force) from the Dover controller. Another clange that we have implemented as the using the DIO for our subject achnowledgmen signal The DIO provides much better method of recognizing a subject's response thananalog impu with peak detectors. More ofline processing is alletated with the advent of global virtual chanels in the LabVLEW soltware.

\section*{Discussion}

Why dit we choose a server over a deskop PC or workstaton? Fist, what whally detines a serter? Is it the operatingsystem that it rins, Wat has "server" in the tits? Is it the number of processors? instead, is it simply any thing that is overly large and bulky or sleck and stylisis that cannot be referred to as a deskiop or laptop? Even people who are experience computers ermge at the word server due to the lack of support in that envirommen. Trom our standpont, a server is a computer hat maximizes the processing power per cubic inch of space it occupies, white not being singled for soltary use, and "serving" severat people and purposes at once to onload the burden from desktop machines;
The servers compuct size and rack mountable design make it convenient to house and organize cables ou-ol-sight. Therefore, there is less clutter in the lat workpace and less confision of
cquipuent and function. The low pronle PCI sundard oud PCI bus expansions also allow for the server to nawimige the space itocapics whout cratig anflow probtem that could leat to system fature.
We needed a computer that would not be outdated be new software in the near future. The extendable menory and hard drive system will provide inareased capacity for years to cone: The EMO4T allows us to adap to the new trend toward 64-bit computing. The EMG 4 pemits u* to perform tasks that wonld nomally reguire time on supercomputers and prowides the
 anatysis and simulations. The bot-swappable hand drive ensures low down tine, but allows for amost plus and play expansion for up to she hard drives. This will enstre that we have plenty of capacity for subyec dita from froure tests.
However, the main is we we had with the server was it cost. The price is reasonable geven that it replaces tho wortstation PC. The raek-mountable setty has allowed us to streambine our eletronics in the lab and cot down on the cluter and confusion caused by the we of several PCs for testing, ha adition, the new experinent protocol could not num without significan deday when implemented on a 2.4 GHz desktop PC. Theretore, even though om server cost around 3 limes the price of a high-end PC, the benefis out weighed cost due to higher productivity of the ab.

\section*{Conclusion}

The technologies exist to create a single system, which is capable of eplacing multiple conventional PCs in curent lab sctups. The server patiom provides the means necessary to combine Hese technologies into a single unit By incorporating a server system into om experimental setup, ou lab is able to spend more time analyang usabe data, witing and developing new ideas for research, which allows for a more productive research enviromen.

Reference




\section*{Dographeal Information}





\section*{APPENDIX V}

\section*{ACCEPTED AUDIOLOGY NOW! 2006 POSTER}

\section*{High Frequency Hearing Loss Related to Type-2 Diabetes}




\section*{APPENDIX W}

\section*{ACCEPTED NEUROSCIENCE 2005 POSTER}

\section*{A POSSIBLE DETECTION MECHANISM (TA EMG) FOR A 16 MM UNIAXIAL FORUARD PERTURBATION IN DIABETICS AND ELDERLY ADULTS}



\section*{APPENDIX X}

\section*{LOUISIANA TECH UNIVERSITY IRB AND INFORMED CONSENT}

\section*{HUMAN USE COMMLTLEE REVIEW APPROVAL FORM}
\begin{tabular}{|c|c|}
\hline TO: & Dr. Mary Livingston and Dr. Les Guice \\
\hline FROM: & Barbara Talbot, University Research \\
\hline SUBIECT: & HUMAN USE COMMITTEE REVIEW \\
\hline DATE: & 11/14/05 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The following Human Use Research proposal has been submitted for an \\

\end{tabular}} \\
\hline Number: & HUC-073 \\
\hline PI: & Dr, Charles Robinson \\
\hline Iitle: & "Psychophysics of Postural Perturbations in Young and Old" \\
\hline
\end{tabular}

Please initial this transmittal letter and return it to me when you approve as is, or recommend changes to this proposal.

> Changes Recommended by Dr. Mary Livingston
> Approved by Dr. Mary M. Livingston
> Approved by Dr. Les Guice
\begin{tabular}{|c|c|}
\hline Initial & Date \\
\hline & \(11 / 14 / 05\) \\
\hline\(M M C\) & \(11 / 14 / 03\) \\
\hline\(\sigma / 4\) & \(1444 / 05\) \\
\hline
\end{tabular}

Comments:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)


Quota status: \(602.48 \mathrm{MB} / 2048,00 \mathrm{MS}(29.42 \%)\)
Inbox: Re: Fwy: HUC-073 - Charles J. Robinson (4 of 7945) R⿴囗

Delete | Reply \| Reply to At| Forward| Redirect | View Thread \| Blacklist | Whitelist | Message Source | Save as \| Print| Report as Spam

Date: Sat, 12 Nov 2005 08:45:42-0500 [1w1205 07:95:42 CST]
From: Charlie Robinson robinsonbciakson.edu>
To: Try McConathy stmm@latech edt>, Charlie Robinson crobinson@ctarkson educ
Cc: "Mary M. Livingston" marym@latech.edu>, Beth Free -bfree@latechedux, Les Guile <guiceelatech edo>
Subject: Re: Pw: HUC-073-Charles \(\downarrow\), Robinson
Headers: Show All Header
Dear Dr. Terry and Dr. Livingston,
Thank you for your guidance in this manner,
I hereby request an extension of protocol HOC 073 through March 31, 2006.
Accrual on this protocol has stopped, and no more subjects will be entered into it.
All of the basic protocol remains the nearly the same, except that the subject population
should be increased to reflect the number studied. Thus a request is made to change
the
proposed accrual number to 40 healthy young adults, 60 healthy mature adults 50 yrs or
older, and 50 diabetic adults over 50 . Note that their is a corresponding vA TRE-approved
protocol in whin has been updated yearly to reflect all changes.
We wish the protocol to reflect the fact that we have added a TekMat foot pressure sensor
and a vico motion capture system to our data collection routine. These wear done with no
additional risk to the subject, an the basic perturbation sequence remained exactly the
same throughout our entire study. No adverse effects to our protocol were seen in any of
the 150 individuals tested.
Fox a progress report, this project has been very successful: Four peer-reviewed papers,
16 or mote conf. abstracts, 1 pho dissertation, 4 Ms thesis and i project completed, with
another 1 Pho, and 4 thesis that will be forthcoming from resh students. One of the come.
papers won a student prize.
Charlie R.

At 11:03 AM - 0600 11/11/05, Terry McConathy mote:
[Hide Quoted Text]
Charlie:

```

Below is Dx. Luvingeton's assessment.
Flease proceed with a reguest for extenbion. Aleo, if you are, ag you state,
uring the
Gata in blunded studies, you whll nees to have ma extension to cover thoae stadies
as
well. We need to keep our doemmentation womurate macomerent.
Dr. Luvingmton ís alwaye able to expedste thege requests, so I Eoregee no delay in
procepeing thig thesis while the approval da obtained. Dr. Livingston indicates
that
thos car be accomplished by email.
Thank you.
Terry M. Moconzthy
Executive Vice President
Dean of the Graduatze Schook
Louisiana Tech University
Box 7923
Ruston, fiA 71272
Tel 310-257-2924
Fax 314-257-4487
--.-- Oxiginat Megmage -m=-. Fromz MMary Margaret Livknggton" emarymlaLamech.edur
To: "Terry Moconathy" ctmmalutech.edus
ce: cguicempatech.edu?
\&ent: Fxiday. Novenber 11, 2005 1.0:51 AM
Subject: Re: huC-073 - Charles d. Bobinson
Terry,
\# concur with als you have said.
i) Off site work does need approval, 2) Given the variabilituy in trBs, Tecm has
as. you
know adopted the generel policy of indegendent appzoval.
3) The remearcher does meed to get an extension after a yoar. It can be done by
menc
g% emmih mince thare tuk buen no change in the gtudy, We have performed expedised
approvals on such butensions thet involve no changes in the protorol and no
mmanticipeted problems. This could be performed by me, Dr Gusee or you as you do
mmanticipated problems. This could be performect by me, Dr Gusee or you as you
he is gone, or Dr guice's delegate. I, like chax lie Robmnom, kart matakenky
thought
that once data was obilected mad being analyzea no extwnsion was necessary. At
the

```

```

 ther
 Cumb-edugacor tratwhecowg. The folks from otre gata mhat the suudias have to be
 vemrgievea syen if data is just Deing andyyzga. Gqere is 4akaliy no problem with
 extending beyond a year iz things have not dhanged and axe going well I readly
    ```

```

 wil
 Dbagrve the कxpiration dates. Thanks for your help, and fox meeping me informed.
 Maxy
 Muoting Terry McConathy atmm⿴latech, eau>:
Charlie:
It has been our practice that if a Tech stwdent is doing reseaxch that reguirem
IRB
approval, even if it is concuceed off-bite, Tech IRB approval must be obtadned.
Tev゙ry M. Mmeonathy

```
```

Executive Vice Eresident
benn of the Gradvere smbool
wulemana Tech University
50% 7923
Ruston, I.A 71272
Tel 318-257-2934
Fax 328~257m4487
-mon- Originel Messege mm** From; "Charlie Robinson" crobinsongelarkson, edu*
Te: "Terg"y Mcconathy" cemmklatech.eduy; "mary N. Livingston"
<marymlematech.edus;
"Beth Free" <bfreedlatech.edu>; "Leg Guice" sguicealatech.edus; "Vikram Arum
Darbhe"
cvadoaselatech.edu>
Co: "Charlie Robinsom" \&roninememelazkson.edus
Serat: Fxiday, November 11, 2005 10:20 AM
Subject: Re: HUC-073 - Charleg J. Fobinson
At a:31 AM n0500 11/H1/05, Texry Neconachy wrote:
Mary Margaret.

```

```

 mesis
    ```

```

 Hobinacor
    ```

```

approvial is
guanted rom me Year from the date shown above. Drojecwe shonta be henewed
anmumlly," The Fuc zoproval hap expived.
IG this fut 073 approval atinl valid for this stucent's thegig? or do we
need a
whthen extenaton co oover in?
I wonld appreciate zr anewer as boon as poEeible. Thace gument ib tryjrg
to
gxeduany raxt week
Tinarks,
Temy
Tery M. लिकmmeny
Exacotive vice sutsident
Bean of tha machate sebool
Guiekena meon mavensty
Box 7.as
R1a=0m, G4 712%2
Te: 3\4-257-2924
Ezx 318.-257-4487
Terry,
Thank you for your efforts with respect to vikram.
The thesis data collected at Tech was all done within the 1 year time farme eovered
by the TRE approval from Tech. NO DATA WAS COREBCPE AT TBCH after fhat date because of zone controller problems. The student is simply analyang that data as a
part of his thesis (which does not requiwe The aporoval). He DID Non participate in
carrying out thoge experiments
All other data in \#\#s thesis was colleoted at the vA undex a Va-approved aRB in my

```

``` way told.
```

```
that this was macoeptable. That vA TRB has be oontimually ame anmually
swiewec.
wth reguired yearly progress reports. If you need a copy of that approval
for the
time frme in which the studmente data was collected {#yo5). I oam provide it
to
You. I terminated the VA aata coliection protocol on sept. 30, 2005, and made
a
final. progress: report. The data is still Deing amalyzed in a mlirded Eashion,
and
wil! be the mubject of additional studenta' theses. These later theses showld
not be
subject to navimp a current IRE approval frome Tech, since the data is
blinced.
Temin MRE ghovid recogntine comity with the VA IRE.
Charlie R.
-
**
Charles J. Robinson, D.SE., P.E. Fellow IEEE, FelLow ATMBEs, U.N.G.S.C.O.
Academician
Directox; Center Eor Rehabilitation Rngineeming, Sokence anc Technology
(CREST)
Hemman Li. Shumman Chaur Erotessor, Department of Electrical and Computer
Engineering
Offlee CAMP 22%; Clarkson University Box 5730; Potsdam, NY 13699-5%30
CREST office: CAMP 225; phone: 315-268-6528/6651 Fak: 315-268-4494
Cell thone 315-244-6241
Offiges houre 12:30 to 5:30 EM; Mor-Fri
```



```
Senior Rehabilitation Research Careez gcientigt
DUPY STATION: VA Potsdam Satellite Rehabilitation R&D menter
3nd Floor, Clarkson Hall, Potedam, NY 13676
Fhone: 315-425-vVVV; Fax 315-425-wwww
Officeg hours 7 AM to 22 Doon; Mon-Fsi
HONE AFErIIATION: Syxacuse YA Medical Center, Reseaxch Service 151
Rm D40g; 800 Irvine Ave., Syracuse, NY 33210
Phone 315-425-4400 (X53606)
Adjumet professor, orthopaedic Surgery Dept, LsU Healta Science center,
Shreveport.
LA
Adjumet Profegaoz, Louisiana Tech University, Fuston, b, (Phome:
318-257-4562)
Founding, but Fast Editor, TETE Tramsactions on Rehabilitatyon Rugineering
#***
Heryice is the remt we pay for being. It is the very purpose of life
and not sonething that you do in your spare time."
Marion Wright Edelman
Mar*** Writmman m
This msmsage wos scme umung lme, Che Ineermet Messaging Erocram.
```

 Report as Spam
Mark as: Move | Copy This message to 要㱍

Back to Inbox

## HUMAN USE COMMITTEE REVIEW APPKOVAL FORM

TO: Dr. Mary M. Livingston
FROM: Stephanie Herrmann
SUBJECT: HUMAN USE COMMITTEE REVIEW
DATE: 5/5/2004
The following Human Use Research proposal has been submitted for an EXPEDITED REVIEW:

Number: HUC-073
PI: Charles J. Robinson
Title: Psychophysics of Postural Perturbations in Young and Old

Please initial this transmittal letter and return it to me when you approve as is, or recommend changes to this proposal.

$\qquad$
$\qquad$
$\qquad$
$\qquad$

## MEMORANDUM

TO:
Charles Robinson
FROM: Stephanie Hemmann, University Research
SUBJECT: HUMAN USE COMMITTEE REVIEW
DATE: March 20, 2004

In order to facilitate your project, an EXPEDITED REVIEW has been done for your proposed study entitled:
"Psychophysics of Postural Perturbations in Young and Old" Proposal \# IUC-0673

The proposed study procedures were found to provide reasonable and adequate safeguards against possible risks involving human subjects. The information to be collected may be personal in nature or implication. Therefore, diligent care needs to be taken to protect the privacy of the participants and to assure that the data are kept confidential. Further, the subjects must be informed that their participation is voluntary.
Since your reviewed project appears to do no damage to the participants, the Human Use Committee grants approval of the involvement of human subjects as outlined.
This approval is granted for one year from the date shown above. Projects should be renewed annually, Projects involving NHI funds require annual education training to be documented. For more information regarding this, contact the Office of University Research.

You are requested to maintain written records of your procedures, data collected, and subjects involved. These records will need to be available upon request during the conduct of the study and retained by the university for three years atter the conclusion of the study.

If you have any questions, please contact Mary Livingston at 257-2202 or Stephane Hermanio at 257-5075.

## Note to Researcher:

Reviewer recommends providing a list of drugs and medications that would qualify and disqualify a candidate on the consent form.



## MEMORANDDM

TO:	Dr. James Grema
FROM:	Stephanie Hermanm, Univerity Research
SUBIECT:	HUMAN USE COMMITTEE REVIEW
DATE:	May 12, 2004

The following Fuman Uise Research Proposal has been subnitted for mi BPaDITED REview:

Number:	SUC-073
M1:	Charlen J Robluson
Titer	Feychophysiew of Postural Pertarbttions ha Young mal Oid

Due to the physical nuture of this study, Dr. Livingaton has asked that you neview it. Atter your neview this stady, please sign this memo and return it to me with either your approval "解 is," or your recommendetions for changes.



The atmeled Information is a copy only. You may discard and oaly return thin approval
 herrmannainechooslabech.edr. This may alse be returned by maill in the enclowed exvelope. Call 287 -5073 whth any questions.


## LOUISIANA TECH



UNIVERSITY


## MEMORANDUM

TO:
Institutional Review Board University Research Office

FROM:
Charles J. Robinson
Cybers
SUBJECT: Fuman Use Committee Review (Expedited Review Request)
Date: May 3, 2004

Attached is the Hunan Subject's Consent Form submitted under the Study Titde: Psychophysics of Postural Perturbations in Young and Old. It was originally submited in February of 2003 and approved; however, the form expired February 2004. Therefore, we are resubmitting the form (without changes) to the Institutional Review Board, and request expedited approval, as we are ready to resume testing.

We will change the start and stop dates on page 3, when notified of the new dates. Thank you for your assistance.


Center for Biomedical Engineerng and Rehabutation Science (Cybers) - Colege of Enginebing and Science
71 SOUTH VIENNA - RUSTON LOUISIANA 71270 • TELEHONE (31B)257-4562 - FAX (318)255-4175 EMAL CYBERS@COES LATECH EDU * WEB WWWCYBERS LATECH.EDU

## STUDY TITLE: Psychophysics of Postural Perturbations in Young and Old

## DEEINTTION OF CONSENT FORM

We are asking you to volunteer for a research study conducted at Louisiana Tech University, It is impor tant that you read and understand the information on this form. This Consent Form gives detailed information about this research study. It is not meant to frighten or alarm you; rather it is an effort to make you better informed in order for you to make a decision as to whether or not you wish to participate. This process is known as "Informed Consent."

## PURPOSE OF STUDY/PROJECT AND SELECTION OF SUBJECTS

Slips and falls, and even fear of falling, can represent a mayor medical and functional barrier to living independently. To react to a potental slip or fall, yon must be able to detect motion changes that may lead to slips or falls, and be able to fine-tme the control of the muscles used to mantain balance.

You are invited to participate in a research study related to standing balance and postural control. Researchers at Louisiana Tech University hope to leam how much the senses of the limbs (touch sense, joint angle sense, muscle tension serse) contribute to the stability of your posture. With such knowledge, we might later be able to evaluate the potential to fall or slip, and to develop training methods that might reduce the risk of falling or slipping. You were selected as a possible participant in this study because your senses are intact and your responses will be used as reference. You should be 18 years old or older to participate in this strudy. Before proceeding further, we need to ask you if you have had certain illnesses or neurological problems, since some of these conditions might confuse our study results, and hence, make you not a candidate for this particular research study Your answers will remain confidential.

May we ask you some questions about your medical history?
YES or NO: Initials:
$\qquad$
We must exclude you from this study if you have a current of past history of severe heart, circulation or breathing problems; diabetes, chronic lower back spasms or pain; deformities of the spine, bones and joints (such as abnormal spinal curvature, arthric changes or amputation); brain strokes, spinal cord injury or other damage to the nervous system; non-healing skin alcers; current drug or alcohol dependence; or repeated falls; or if you are taking prescription medication that catuses or prevents dizainess. (Any information obtained during this study and identified with you as a subject will remain confidential and disclosed only with your permission.) Do you heve now, or have you had, any of the problems just listed?

YES or NO: Initials: $\qquad$
Would you have problems or fears with beiag blindfolded for 15 to 20 minutes or so at a time? YES or NO: Initials: $\qquad$
If you answered "Yes" to ehther question, thank you for your time and effort in volunteering to participate, but we carnot use you in this particular study. Please fill out the personal information on the last page before you go. If you answered "No", then you are a lixely candidate for our stady, which we will now explain to you.

PROCEDURE TO BE USED
If you are an adult in good health and have no physical or neurological problems, you probably do well in sensing changes in balance, and hence will serve in a "control" group. If you decide to participate in this research study we will ask you by phone or in our lab to answer a brief medical questionnaire that helps us
determine in which group you will be placed. In the lab, we will give you a short test called the Mini-Mental test that measures how well you remember things and can follow instructions. The questionnaire and test will require approximately 20 minutes.
When you balance, you might be using your sense of foot pressure and/ or of muscle effort (as signaled by your leg nerves); your vision; or the balance sense organ (called the vestibular system), or any combination. It is important to our study to be able to separate out these effects, so we do the tests outlined below. We will measure how well and how fast you sense small touches to the bottom of your foot and toes; how well and how fast you sense tones of various pitches; and how far your big toes, ankles, knees and hips move (called your range-of-motion) and the strength of the muscles of these joints. We will note any differences in leg length. We will see how well you balance on both legs, on one leg, and with one foot behind the other with your eyes open, and with your eyes closed. You will do this test standing on a tile floor and on a large, thin piece of foam nubber. These tests will take about 40 minates, but will be given in-between our tests.
While it is important for us to monderstand via all of these tests how your aervous system is functioning, we also reinforce to you now that you are a volunteer. As such, you can just tell ws that you do not want to do one or more of these tests, or to stop a test (or quit altogether) in the midde of a test (or any time) if you do not want to continue. It is your right as a volunteer, and our duty to allow you to do what you feel is best for you. All of these preliminary tests could take upwards of three or four hours to complete.
Testing vour ability to detect small movements: All humans sway. It is a natural, every second, occurrence. What we do is to add a small sliditg movement (a fraction of an inch) to the plate on which you are standing. The movement might be leff/right/forward or backward. The main test will have you standing with bare feet on a platform that will be stationary for about 20 seconds before it is moved. You will be told when a possible move may occur and you will be asked to decide and signal al what time the device was moving. In these tests, the platform will move your whole body. You will be weaning a blindfold that will restrict your vision and headphones to reduce outside noise, so that you may only receive motion inputs from your sensory system or balance system. For all tests you will be wearing adhesive muscle activity sensors on your legs. If you conplete all these platfom tests, we estimate that the completion of this part will take less than 4 hours. We will stop testing if you become dizzy or nauseous. You also can stop the test at any time that you wish, without reprisal.

## MEASURES TO INSURE PROTECTION OF YOUR CONFIDENTIALITY AND ANONYMITY

Infomation and research results will be used to further the field of posture and balance control and to benefit the evaluation and therapy processes related to posture and balance. Therefore the research results will possibly be used for scholarly papers, presentations, and future grant applications. Any information obtained during this study and identified with you as a subject will remain confidential and cannot be disclosed without your written permission. If results of this stady are reported in medical journals or at meetings, you will not be identified by name, by recognizable photograph, or by any other means without your specific consent. Your records will be maintained according to this University's requirements. By signing this form you are giving permission for us to make records available to the Louisiana Tech University Institutional Board for Human Research to which information will be released, all of whom must maintain confidentiality.

## RISKS

All motions of the platfom will be near your natural sway change of position. Because of this, you may not always be able ro feet the device mowe.Aleo because the movementwill be so slight, there is very little chance of your falling. During the times where the platform is moving and while your eyes are closed or blindfolded, and you are wearing the headphones to block out external noises, you may teel a slight loss of balance, dizziness or nausea. A member of the laboratory staff will be standing behind or beside you al all times when you are blindfolded. He or she is located there to correct your position betore a potential fall event can occur. Since we
use properly isolated electrical amplifiers, there should be no risk of shock from our measurement of muscle activity. The musele activity sensors will be held to your skin with a small piece of double-sided tape. The gel that helps conduct your muscle activity in the sensors may have a salt base. You may experience some redress from the tape or the conduction gel. This is common and the redness should disappear within a few hours.

## ALTERNATIVES:

You are not required to take part in this study-your participation is eatirely voluntary.

## NON-PARTICIPATION OR WITHDRAWAL:

Your decision whether or not to participate in this study will not involve any penalty or loss of rights nor will it prejudice your future relationship with this institution. If you decide to participate, you are free to discontinue participation at any time without penalty or loss of benefits to which you are entitled.

## BENEFITS/COMPENSATION:

Taking part in this study may not personally belp you, but your participation may lead to knowledge that will help others. We will review your own results with you before you leave, and significant overall findings developed as a result of this stady will be provided to you at the conclusion of the study. There will be no cost to you for any of the testing done as part of this research stady.

CONTACT INFORMATION:

1. If you have questions about your rights as a research participant, you may contact the Chairman of the Institutional Review Board, Dr. Les Guice, at (318) 259-29-26 or Dr. Mary Livingston at 257-4315.
2. If you have questions about this study or problems arising from this study, you should call Dr, Charles Robinson at (318) 424-6080 during the day, and Dr. Robinson at (318) 513-9122 after hours.
3. You will receive a signed copy of this consent form.

## AFIRMATION FROM SUBJECT:

I.
attest with my signature that I have read the preceding description of the study, "Postural Control Response to Small Accelerations", and understand its purposes and methods.

1 understand that my participation in this research is strictly voluntary and my participation or refusal to participate in this study will not affect my relationship with Louisiana Tech University in any way. Further, I understand that I may withdraw at any time or refuse to answer any questions without penalty.

Upon completion of the study, I understand that the results will be freely available to me upon request.
I understand that the results of my survey will be anonymous and confidential, accessible only to the principal investigators, myself, or a legally appointed representative.

Ihave not been requested to waive nor do I waive any of my rights related to participating in this study.
$\overline{\text { Siguature of Participant or Guardian }}$

Signature of Person Administering the Informed Consent

Siguature of Withess

Siguature of the Principal Investigator

Date
Date

Date

This form has been approved by the Louisiana Tech University Institutional Review Board on and expires on $\qquad$ ".

## REFERENCES

[1] B.-1. Cho, D. Scarpace, and N. B. Alexander, "Tests of Stepping as Indicators of Mobility, Balance, and Fall Risk in Balance-Impaired Older Adults," Journal of the American Geriatrics Society vol. 52, pp. 1168-1173, 2004.
[2] Y.-C. Pai, M. W. Rogers, J. Patton, T. D. Cain, and T. A. Hanke, "Static versus dynamic predictions of protective stepping following waist-pull perturbations in young and older adults," Journal of Biomechanics, vol. 31, pp. 1111-1118, 1998.
[3] P. E. Pidcoe and M. W. Rogers, "A closed-loop stepper motor waist-pull system for inducing protective stepping in humans," Journal of Biomechanics, vol. 31, pp. 377-381, 1998.
[4] B. W. Schulz, J. A. Ashton-Miller, and N. B. Alexander, "Compensatory stepping in response to waist pulls in balance-impaired and unimpaired women," Gait \& Posture, vol. 22, pp. 198-209, 2005.
[5] M.-L. Mille, M. E. Johnson, K. M. Martinez, and M. W. Rogers, "Age-dependent differences in lateral balance recovery through protective stepping," Clinical Biomechanics, vol. 20, pp. 607-616, 2005.
[6] M. W. Rogers, L. D. Hedman, M. E. Johnson, K. M. Martinez, and M.-L. Mille, "Triggering of protective stepping for the control of human balance: age and contextual dependence," Cognitive Brain Research, vol. 16, pp. 192-198, 2003.
[7] S. Richerson, S. Morstatt, K. O'Neal, G. Patrick, and C. Robinson, "Effect of lateral perturbations on psychophysical acceleration detection thresholds," Journal of Neuroengineering and Rehabilitation, vol. 3, p. 2, 2006.
[8] S. J. Richerson, L. W. Faulkner, C. J. Robinson, M. S. Redfern, and M. C. Purucker, "Acceleration threshold detection during short anterior and posterior perturbations on a translating platform," Gait \& Posture, vol. 18, pp. 11-19, October 2003.
[9] S. J. Richerson, C. J. Robinson, and T. Ehsan, "Lateral acceleration threshold detection in young adults and healthy elderly," in [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002, pp. 2461-2462.
[10] C. J. Robinson, L. W. Faulkner, P. J. Sparto, and M. C. Purucker, "Innovative methods to study postural stability and fall initiation," in Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, 1998, pp. 2264-2269.
[11] C. J. Robinson, M. C. Purucker, and L. W. Faulkner, "Design, control, and characterization of a sliding linear investigative platform for analyzing lower limb stability (SLIP-FALLS)," Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], vol. 6, pp. 334-350, 1998.
[12] T. E. Prieto, J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and B. M. Myklebust, "Measures of postural steadiness: differences between healthy young and elderly adults," Biomedical Engineering, IEEE Transactions on, vol. 43, pp. 956-966, 1996.
[13] T. E. Prieto, J. B. Myklebust, and B. M. Myklebust, "Characterization and modeling of postural steadiness in the elderly: a review," Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], vol. 1, pp. 26-34, 1993.
[14] R. W. Simmons, C. Richardson, and R. Pozos, "Postural stability of diabetic patients with and without cutaneous sensory deficit in the foot," Diabetes Research \& Clinical Practice, vol. 36, pp. 153-160, June 1997.
[15] S. Richerson, "Effects of Diabetes and Aging on Posture and Acceleration Thresholds during Lateral Translations," in Biomedical Engineering. vol. PhD Ruston, LA: Louisiana Tech University, 2003.
[16] A. Nardone, M. Grasso, and M. Schieppati, "Balance control in peripheral neuropathy: Are patients equally unstable under static and dynamic conditions?," Gait \& Posture, vol. 23, pp. 364-373, 2006.
[17] C. M. Storey, C. J. Robinson, A. Hollister, T. D. Magee, D. E. Redman, V. A. Darbhe, S. Nakappan, and G. Patrick, "High Frequency Hearing Loss Related to Type-2 Diabetes," in Audiology Now! Minneapolis, MN, 2006.
[18] G. Andersson, K. Persson, L. Melin, and H. C. Larsen, "Actual and Perceived Postural Sway During Balance Specific and Non-specific Proprioceptive Stimulation," Acta Oto-Laryngologica, vol. 118, pp. 461-465, 1998.
[19] P. Corbeil, M. Simoneau, D. Rancourt, A. Tremblay, and N. Teasdale, "Increased risk for falling associated with obesity: mathematical modeling of postural control," Neural Systems and Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Rehabilitation Engineering], vol. 9, pp. 126-136, 2001.
[20] A. Nardone, M. Grasso, J. Tarantola, S. Corna, and M. Schieppati, "Postural coordination in elderly subjects standing on a periodically moving platform," Archives of Physical Medicine and Rehabilitation, vol. 81, pp. 1217-1223, 2000.
[21] A. Nardone, R. Siliotto, M. Grasso, and M. Schieppati, "Influence of aging on leg muscle reflex responses to stance perturbation," Archives of Physical Medicine and Rehabilitation, vol. 76, pp. 158-165, 1995.
[22] A. Nardone, J. Tarantola, G. Miscio, F. Pisano, A. Schenone, and M. Schieppati, "Loss of large-diameter spindle afferent fibres is not detrimental to the control of body sway during upright stance: evidence from neuropathy," Experimental Brain Research, vol. 135, pp. 155-162, November 2000.
[23] J. H. J. Allum, M. G. Carpenter, and F. Honegger, "Directional aspects of balance corrections in man," Engineering in Medicine and Biology Magazine, IEEE, vol. 22, pp. 37-47, 2003.
[24] K. R. Csavina, J. He, and A. Santello, "Postural control of balance under slow platform perturbations," in [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint, 2002, pp. 2459-2460.
[25] K. R. Csavina, J. He, and M. Santello, "Postural response to slow perturbations: a preliminary study of young vs. elderly subjects," in Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, 2003, pp. 1774-1776.
[26] J. He and C.-X. Tian, "Adaptive postural control for a repeated perturbation," in Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, 1996, pp. 2215-2216.
[27] M. C. Purucker and C. J. Robinson, "Characterization of a sliding linear investigative platform for analyzing lower-limb stability (SLIP-FALLS)," in Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, 1996, pp. 2289-2290.
[28] M. C. Purucker and C. J. Robinson, "Design of a sliding linear investigative platform for analyzing lower-limb stability (SLIP-FALLS)," in Biomedical Engineering Conference, 1996., Proceedings of the 1996 Fifteenth Southern, 1996, pp. 89-92.
[29] R. L. James, R. Ely, and D. Paul, "Stabilization of posture by precision touch of the index finger with rigid and flexible filaments," Experimental Brain Research, vol. 139, pp. 454-464, 2001.
[30] R. Dickstein, R. J. Peterka, and F. B. Horak, "Effects of light fingertip touch on postural responses in subjects with diabetic neuropathy," Journal of Neurology, Neurosurgery \& Psychiatry, vol. 74, pp. 620-626, 2003.
[31] R. Dickstein, C. L. Shupert, and F. B. Horak, "Fingertip touch improves postural stability in patients with peripheral neuropathy," Gait \& Posture, vol. 14, pp. 238247, 2001.
[32] S. B. Bortolami, P. DiZio, E. Rabin, and J. R. Lackner, "Analysis of human postural responses to recoverable falls," Experimental Brain Research, vol. 151, pp. 387-404, 2003.
[33] H. B. Wasling, U. Norrsell, K. Göthner, and H. Olausson, "Tactile directional sensitivity and postural control," Experimental Brain Research, vol. 166, pp. 147156, 2005.
[34] V. Krishnamoorthy, H. Slijper, and M. L. Latash, "Effects of different types of light touch on postural sway," Experimental Brain Research, vol. 147, pp. 71-79, November 2002.
[35] L. Borel, F. Harlay, J. Magnan, and M. Lacour, "How changes in vestibular and visual reference frames combine to modify body orientation in space," Neuroreport, vol. 12, pp. 3137-3141, October 2001.
[36] D. Simmons, C. F. Thompson, and M. M. Engelgau, "Controlling the diabetes epidemic: how should we screen for undiagnosed diabetes and dysglycaemia?," in Diabetic Medicine. vol. 22: Blackwell Publishing Limited, 2005, pp. 207-212.
[37] M. C. Thomas, M. K. Walker, J. R. Emberson, A. G. Thomson, D. A. Lawlor, S. Ebrahim, and P. H. Whincup, "Prevalence of undiagnosed TypeÂ 2 diabetes and impaired fasting glucose in older B ritish men and women," in Diabetic Medicine. vol. 22: Blackwell Publishing Limited, 2005, pp. 789-793.
[38] K. V. Allen, B. M. Frier, and M. W. J. Strachan, "The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations," European Journal of Pharmacology, vol. 490, pp. 169-175, 2004.
[39] R. Cosway, M. W. J. Strachan, A. Dougall, B. M. Frier, and I. J. Deary, "Cognitive function and information processing in Type-2 diabetes," Diabetic Medicine, vol. 18, pp. 803-810, 2001.
[40] R. Stewart and D. Liolitsa, "Type 2 diabetes mellitus, cognitive impairment and dementia," Diabetic Medicine, vol. 16, pp. 93-112, 1999.
[41] W. H. Gispen and G.-J. Biessels, "Cognition and synaptic plasticity in diabetes mellitus," Trends in Neurosciences, vol. 23, pp. 542-549, 2000.
[42] B. A. Perkins and V. Bril, "Diabetic neuropathy: a review emphasizing diagnostic methods," Clinical Neurophysiology, vol. 114, pp. 1167-1175, July 2003.
[43] B. A. Perkins and V. Bril, "Diagnosis and management of diabetic neuropathy," Current Diabetes Reports, vol. 2, pp. 495-500, Dec 2002.
[44] V. Bril and B. A. Perkins, "Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy," Diabetes Care, vol. 25, pp. 2048-2052, November 2002.
[45] V. Bril and B. A. Perkins, "Comparison of vibration perception thresholds obtained with the Neurothesiometer and the CASE IV and relationship to nerve conduction studies," Diabetic Medicine, vol. 19, pp. 661-666, August 2002.
[46] B. A. Perkins, M. Ngo, and V. Bril, "Symmetry of nerve conduction studies in different stages of diabetic polyneuropathy," Muscle \& Nerve, vol. 25, pp. 212217, February 2002.
[47] D. Olaleye, B. A. Perkins, and V. Bril, "Evaluation of three screening tests and a risk assessment model for diagnosing peripheral neuropathy in the diabetes clinic," Diabetes Research \& Clinical Practice, vol. 54, pp. 115-128, November 2001.
[48] B. A. Perkins, D. Olaleye, B. Zinman, and V. Bril, "Simple screening tests for peripheral neuropathy in the diabetes clinic," Diabetes Care, vol. 24, pp. 250-256, February 2001.
[49] M. Tan and U. Tan, "Early diagnosis of diabetic neuropathy using double-shock stimulation of peripheral nerves," Clinical Neurophysiology, vol. 114, pp. 14191422, 2003.
[50] M. E. Kiziltan, G. Benbir, and M. A. Akalin, "Is diabetic dermopathy a sign for severe neuropathy in patients with diabetes mellitus? Nerve conduction studies and symptom analysis," Clinical Neurophysiology, vol. 117, pp. 1862-1869, 2006.
[51] A. V. Schwartz, T. A. Hillier, D. E. Sellmeyer, H. E. Resnick, E. Gregg, K. E. Ensrud, P. J. Schreiner, K. L. Margolis, J. A. Cauley, M. C. Nevitt, D. M. Black, and S. R. Cummings, "Older Women With Diabetes Have a Higher Risk of Falls: A prospective study," Diabetes Care, vol. 25, pp. 1749-1754, October 2002.
[52] R. E. Hill and P. E. WIlliams, "Perineural cell basement membrane thickening and myelinated nerve fibre loss in diabetic and nondiabetic peripheral nerve," Journal of the Neurological Sciences, vol. 217, pp. 157-163, 2004.
[53] D. N. Ishii, "Implication of insulin-like growth factors in the pathogenesis of diabetic neuropathy," Brain Research Reviews, vol. 20, pp. 47-67, 1995.
[54] J. D. Stewart, R. McKelvey, L. Durcan, S. Carpenter, and G. Karpati, "Chronic inflammatory demyelinating polyneuropathy (CIDP) in diabetics," Journal of the Neurological Sciences, vol. 142, pp. 59-64, 1996.
[55] E. Hoitsma, J. P. H. Reulen, M. de Baets, M. Drent, F. Spaans, and C. G. Faber, "Small fiber neuropathy: a common and important clinical disorder," Journal of the Neurological Sciences, vol. Accepted for publication available at online journal, 2004.
[56] L. Eckersley, A. D. Ansselin, and D. R. Tomlinson, "Effects of experimental diabetes on axonal and Schwann cell changes in sciatic nerve isografts," Molecular Brain Research, vol. 92, pp. 128-137, 2001.
[57] H. Andersen, S. Nielsen, C. E. Mogensen, and J. Jakobsen, "Muscle Strength in Type 2 Diabetes," Diabetes, vol. 53, pp. 1543-1548, June 1, 20042004.
[58] F. B. Horak and F. Hlavacka, "Somatosensory Loss Increases Vestibulospinal Sensitivity," Journal of Neurophysiology, vol. 86, pp. 575-585, August 1, 2001 2001.
[59] P. A. Wackym and F. H. Linthicum, Jr., "Diabetes mellitus and hearing loss: clinical and histopathologic relationships," American Journal of Otology, vol. 7, pp. 176-82, May 1986.
[60] S. W. Duck, J. Prazma, P. S. Bennett, and H. C. Pillsbury, "Interaction between hypertension and diabetes mellitus in the pathogenesis of sensorineural hearing loss," Laryngoscope, vol. 107, pp. 1596-1605, December 1997.
[61] S.-F. Weng, Y.-S. Chen, C.-J. Hsu, and F.-Y. Tseng, "Clinical Features of Sudden Sensorineural Hearing Loss in Diabetic Patients," Laryngoscope, vol. 115, pp. 1676-1680, 2005.
[62] S.-F. Weng, Y.-S. Chen, T.-C. Liu, C.-J. Hsu, and F.-Y. Tseng, "Prognostic Factors of Sudden Sensorineural Hearing Loss in Diabetic Patients." vol. 27, 2004, pp. 2560-2561.
[63] V. Kakarlapudi, R. Sawyer, and H. Staecker, "The Effect of Diabetes on Sensorineural Hearing Loss," Otology \& Neurotology, vol. 24, pp. 382-386, 2003.
[64] S. T. Frisina, F. Mapes, S. Kim, D. R. Frisina, and R. D. Frisina, "Characterization of hearing loss in aged type II diabetics," Hearing Research, vol. 211, pp. 103-113, 2006.
[65] N. Vaughan, K. James, D. McDermott, S. Griest, and S. Fausti, "A 5-Year Prospective Study of Diabetes and Hearing Loss in a Veteran Population," Otology \& Neurotology, vol. 27, pp. 37-43, 2006.
[66] P. D. Fowler and N. S. Jones, "REVIEW Diabetes and hearing loss," Clinical Otolaryngology \& Allied Sciences, vol. 24, pp. 3-8, 1999.
[67] D. H. Romero and G. E. Stelmach, "Changes in postural control with aging and Parkinson's disease," Engineering in Medicine and Biology Magazine, IEEE, vol. 22, pp. 27-31, 2003.
[68] D. E. Krebs, C. A. McGibbon, and D. Goldvasser, "Analysis of postural perturbation responses," Neural Systems and Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Rehabilitation Engineering], vol. 9, pp. 76-80, 2001.
[69] M. Schieppati, E. Tacchini, A. Nardone, J. Tarantola, and S. Corna, "Subjective perception of body sway," Journal of Neurology, Neurosurgery \& Psychiatry, vol. 66, pp. 313-322, March 1999.
[70] A. L. Betker, Z. Moussavi, and T. Szturm, "Center of mass function approximation," in Engineering in Medicine and Biology Society, 2004. EMBC 2004. Conference Proceedings. 26th Annual International Conference of the, 2004, pp. 687-690.
[71] A. L. Betker, Z. M. K. Moussavi, and T. Szturm, "Center of mass approximation and prediction as a function of body acceleration," Biomedical Engineering, IEEE Transactions on, vol. 53, pp. 686-693, 2006.
[72] B. J. Benda, P. O. Riley, and D. E. Krebs, "Biomechanical relationship between center of gravity and center of pressure during standing," Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], vol. 2, pp. 3-10, 1994.
[73] S. Bonnet, P. Couturier, F. Favre-Reguillon, and R. Guillemaud, "Evaluation of postural stability by means of a single inertial sensor," in Engineering in Medicine and Biology Society, 2004. EMBC 2004. Conference Proceedings. 26th Annual International Conference of the, 2004, pp. 2275-2278.
[74] E. A. Keshner, R. V. Kenyon, and Y. Dhaher, "Postural research and rehabilitation in an immersive virtual environment," in Engineering in Medicine and Biology Society, 2004. EMBC 2004. Conference Proceedings. 26th Annual International Conference of the, 2004, pp. 4862-4865.
[75] V. Krishnamoorthy, M. L. Latash, J. P. Scholz, and V. M. Zatsiorsky, "Muscle synergies during shifts of the center of pressure by standing persons. [erratum appears in Exp Brain Res. 2004 Mar;155(1):134]," Experimental Brain Research, vol. 152, pp. 281-292, October 2003.
[76] V. Krishnamoorthy, M. L. Latash, J. P. Scholz, and V. M. Zatsiorsky, "Muscle modes during shifts of the center of pressure by standing persons: effect of instability and additional support," Experimental Brain Research, vol. 157, pp. 18-31, July 2004.
[77] D. Lafond, H. Corriveau, and F. Prince, "Postural Control Mechanisms During Quiet Standing in Patients With Diabetic Sensory Neuropathy," Diabetes Care, vol. 27, pp. 173-178, January 2004.
[78] P. Loughlin and M. Redfern, "Analysis and modeling of human postural control," Engineering in Medicine and Biology Magazine, IEEE, vol. 22, p. 18, 2003.
[79] P. Loughlin, T. Schumann, M. Redfern, J. Furman, L. Chaparro, and A. ElJaroudi, "Time-frequency analysis of postural sway," in Signals, Systems and Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on, 1994, pp. 378-382.
[80] T. E. Prieto, J. B. Myklebust, and B. M. Myklebust, "Postural steadiness and ankle joint compliance in the elderly," Engineering in Medicine and Biology Magazine, IEEE, vol. 11, pp. 25-27, 1992.
[81] J. Jeka, K. Oie, G. Schoner, T. Dijkstra, and E. Henson, "Position and Velocity Coupling of Postural Sway to Somatosensory Drive," J Neurophysiol, vol. 79, pp. 1661-1674, April 1998.
[82] I. D. Loram, S. M. Kelly, and M. Lakie, "Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?," Journal of Physiology, vol. 532, pp. 879-891, May 2001.
[83] I. D. Loram and M. Lakie, "Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability," Journal of Physiology, vol. 545, pp. 1041-1053, December 2002.
[84] I. D. Loram and M. Lakie, "Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements," Journal of Physiology, vol. 540, pp. 1111-1124, May 2002.
[85] I. D. Loram, C. N. Maganaris, and M. Lakie, "Paradoxical muscle movement in human standing," Journal of Physiology, vol. 556, pp. 683-689, May 2004.
[86] I. D. Loram, C. N. Maganaris, and M. Lakie, "Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius.[see comment]," Journal of Physiology, vol. 564, pp. 295-311, April 2005.
[87] I. D. Loram, C. N. Maganaris, and M. Lakie, "Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced?[see comment]," Journal of Physiology, vol. 564, pp. 281293, April 2005.
[88] S. J. Richerson, C. J. Robinson, and N. Witriol, "Head Reactions to Platform Movement During Postural Control Tests," in Proceedings of the RESNA 2001 Annual Conference: The AT Odyssey Continues, 2001, pp. 236-238.
[89] L. W. Faulkner and C. J. Robinson, "Detecting thresholds and interactions among displacement, acceleration, and velocity, for young adults on a horizontally translated platform," in Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, 1998, pp. 2382-2385.
[90] B. Kollmeier, R. H. Gilkey, and U. K. Sieben, "Adaptive staircase techniques in psychoacoustics: a comparison of human data and a mathematical model," Journal of the Acoustical Society of America, vol. 83, pp. 1852-1862, May 1988.
[91] S. A. Klein, "Measuring, estimating, and understanding the psychometric function: A commentary," Perception \& Psychophysics, vol. 63, pp. 1421-1455, 2001.
[92] M. M. Taylor and C. D. Creelman, "PEST: Efficient Estimates on Probability Functions," The Journal of the Acoustical Society of America, vol. 41, pp. 782787, 1967.
[93] C. Kaernbach, "A single-interval adjustment-matrix (SIAM) procedure for unbiased adaptive testing," Journal of the Acoustical Society of America, vol. 88, pp. 2645-2655, December 1990.
[94] A. Murata and H. Iwase, "Chaotic analysis of body sway," in Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, 1998, pp. 1557-1560.
[95] P. A. Fransson, A. Hafstrom, M. Karlberg, M. Magnusson, A. Tjader, and R. Johansson, "Postural control adaptation during galvanic vestibular and vibratory proprioceptive stimulation," Biomedical Engineering, IEEE Transactions on, vol. 50, pp. 1310-1319, 2003.
[96] A. M. De Nunzio, A. Nardone, and M. Schieppati, "Head stabilization on a continuously oscillating platform: the effect of a proprioceptive disturbance on the balancing strategy," Experimental Brain Research, vol. 165, pp. 261-272, August 2005.
[97] E. A. Keshner and R. V. Kenyon, "The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses," Journal of Vestibular Research, vol. 10, pp. 207-219, 2000.
[98] E. A. Keshner and R. V. Kenyon, "Using immersive technology for postural research and rehabilitation," Assistive Technology, vol. 16, pp. 54-62, 2004.
[99] P. J. Sparto, J. M. Furman, S. L. Whitney, L. F. Hodges, and M. S. Redfern, "Vestibular rehabilitation using a wide field of view virtual environment," in Engineering in Medicine and Biology Society, 2004. EMBC 2004. Conference Proceedings. 26th Annual International Conference of the, 2004, pp. 4836-4839.
[100] P. J. Sparto, J. G. Jasko, and P. J. Loughlin, "Detecting postural responses to sinusoidal sensory inputs: a statistical approach," Neural Systems and Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Rehabilitation Engineering7, vol. 12, pp. 360-366, 2004.
[101] M. Ferdjallah, G. F. Harris, P. A. Smith, S. Hassani, P. Johnson, and K. Reiners, "Postural stability assessment and orthotics," in Pediatric Gait, 2000. A new Millennium in Clinical Care and Motion Analysis Technology, 2000, pp. 69-77.
[102] P. D. Frazier and M. F. Chouikha, "A novel control model for elucidating human postural balance," in Intelligent Control and Automation, 2004. WCICA 2004. Fifth World Congress on, 2004, pp. 2369-2375.
[103] R. Johansson, P. A. Fransson, and M. Magnusson, "Identification of adaptation in human postural control using GARCH models," in Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, 2001, pp. 7-12.
[104] M. Maltenfort, T. Hamm, and H. Jiping, "A sensory feedback control model of neuromuscular systems," in [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint, 1999, p. 531.
[105] R. Johansson and M. Magnusson, "Identification of human postural dynamics," in Control and Applications, 1989. Proceedings. ICCON '89. IEEE International Conference on, 1989, pp. 875-880.
[106] R. Johansson, M. Magnusson, and M. Akesson, "Identification of human postural dynamics," Biomedical Engineering, IEEE Transactions on, vol. 35, pp. 858-869, 1988.
[107] A. Banos, M. A. Jimenez, and P. Gonzalez de Santos, "Dynamic simulation of a four-legged gait," in Systems, Man and Cybernetics, IEEE International Conference on 1992, pp. 498-503.
[108] J. Estremera and P. Gonzalez de Santos, "Generating continuous free crab gaits for quadruped robots on irregular terrain," Robotics, IEEE Transactions on, vol. 21, pp. 1067-1076, 2005.
[109] Z. Fuhai, W. Weiguo, L. Yuedong, and R. Bingyin, "Omni-directional quadruped walking gaits and simulation for a gorilla robot," in Intelligent Robots and Systems, Proceedings of the 2005 IEEE/RSJ International Conference on, 2005, pp. 1121-1126.
[110] T. Geng, B. Porr, and F. Worgotter, "Self-stabilized biped walking under control of a novel reflexive network," in Intelligent Robots and Systems, Proceedings of the 2005 IEEE/RSJ International Conference on, 2005, pp. 3269-3274.
[111] C. Hwang and K. Sasaki, "Evaluation of robotic fingers based on kinematic analysis," in Intelligent Robots and Systems, Proceedings of the 2003 IEEE/RSJ International Conference on, 2003, pp. 3318-3324.
[112] W. Li-quan, C. Dong-liang, S. Lei, M. Qing-xin, and Z. Ling, "The research on bionic crab-liked robot prototype," in Mechatronics and Automation, 2005 IEEE International Conference, 2005, pp. 2017-2021.
[113] Y. Matsuoka and P. Afshar, "Neuromuscular strategies for dynamic finger movements: a robotic approach," in Engineering in Medicine and Biology Society, 26th Annual International Conference of the, 2004, pp. 4649-4652.
[114] S. Peng, C. P. Lam, and G. R. Cole, "A biologically inspired four legged walking robot," in Robotics and Automation, Proceedings of the 2003 IEEE International Conference on, 2003, pp. 2024-2030.
[115] A. Schneider, H. Cruse, and J. Schmitz, "A biologically inspired active compliant joint using local positive velocity feedback (LPVF)," Systems, Man and Cybernetics, Part B, IEEE Transactions on, vol. 35, pp. 1120-1130, 2005.
[116] W. Weiguo, L. Yuedong, Z. Fuhai, and R. Bingyin, "Design, simulation and walking experiments for a humanoid and gorilla robot with multiple locomotion modes," in Intelligent Robots and Systems, Proceedings of the 2005 IEEE/RSJ International Conference on, 2005, pp. 1157-1162.
[117] J. Yamaguchi and A. Takanishi, "Design of biped walking robots having antagonistic driven joints using nonlinear spring mechanism," in Intelligent Robots and Systems, Proceedings of the 1997 IEEE/RSJ International Conference on, 1997, pp. 251-259.
[118] J. Yamaguchi, A. Takanishi, and I. Kato, "Development of a biped walking robot compensating for three-axis moment by trunk motion," in Intelligent Robots and Systems, Proceedings of the 1993 IEEE/RSJ International Conference on, Yokohama, Japan, 1993, pp. 561-566.
[119] J. Yang and K. J., "A strategy of optimal fault tolerant gait for the hexapod robot in crab walking," in Robotics and Automation, Proceedings of the 1998 IEEE International Conference on, 1998, pp. 1695-1700.
[120] A. Torige, M. Noguchi, and N. Ishizawa, "Centipede type multi-legged walking robot," in Intelligent Robots and Systems, Proceedings of the 1993 IEEE/RSJ International Conference on, 1993, pp. 567-571.
[121] M. W. Spong and M. Vidyasagar, in Robot Dynamics and Control New York: John Wiley and Sons, 1989, pp. 32-72.
[122] J. Denavit and R. S. Hartenberg, "A kinematic notation for lower-pair mechanisms based on matrices," ASME Journal of Applied Mechanics, vol. 22, pp. 215-221, 1955.
[123] J. Agee, A. Hollister, and F. King, "The Longitudinal Axes of Rotation of the Metacarpophalangeal Joint of the Finger," J Hand Surg, vol. 11, p. 767, 1986.
[124] S. L. Albright, E. F. Fichter, and B. L. Fichter, "Kinematic Model for Arthropod Legs and Other Manipulators," Journal of Mechanical Design, Transaction of ASME, vol. 116, pp. 22-27, 1994.
[125] S. G. Elias, M. A. R. Freeman, and E. I. Gokcay, "A correlative study of the geometry and anatomy of the distal femur," Clin Orthop Relat Res, vol. 260, pp. 98-103, 1990.
[126] A. Fick, "Die Gelenke mit sattelformigen Flachen," in Zeitschrift fur Rationelle Medicin Heidelberg: Akademische Verlagshandlung von C. F. Winter, 1854, pp. 314-321.
[127] A. Fick, "Lehrbuck der Physik," in Medicinische Physik Brunchweig: Verlag Friedrich Vieweg und Sohn, 1866.
[128] R. Fick, "Handbuch der Anatomie und Mechanik der Gelenke unter Berucksichtigung der bewegenden Muskeln," in Specielle Gelenk und Muskelmechanik. vol. 2 Jena: Verlag von Gustav Fisher, 1908.
[129] E. F. Fitcher and B. L. Fichter, "A survey of legs of insects and spiders from a kinematic perspective," in Robotics and Automation, Proceedings of the 1988 IEEE International Conference on, 1988, pp. 984-986.
[130] M. Freeman, "Knee Flexion: The cruciate ligaments and posterior stability in the flexed knee," in Total Arthroplasty of the Knee, Proceedings of the Knee Society 1985-1986, 1986.
[131] A. Hollister, W. L. Buford, L. M. Myers, D. J. Giurintano, and A. Novick, "The Axes of Rotation of the Thumb Carpometacarpal Joint," Journal of Orthopaedic Research, vol. 10, pp. 454-460, 1992.
[132] A. Hollister and D. J. Giurintano, "Thumb Movements, Motions, and Moments," Journal of Hand Therapy, vol. 8, pp. 106-114, 1995.
[133] A. Hollister, D. J. Giurintano, W. L. Buford, L. M. Myers, and A. Novick, "The Axes of Rotation of the Thumb Interphalangeal and Metacarpophalangeal Joints," Clinical Orthopaedics and Related Research, vol. 320, pp. 188-193, 1995.
[134] A. M. Hollister, H. Gellman, and R. L. Waters, "The Relationship of the Interosseus Membrane to the Axis of Rotation of the Forearm," Clinical Orthopaedics and Related Research, vol. 298, pp. 272-276, 1994.
[135] A. M. Hollister and D. G. Giruintano, "How Joints Move," in Clinical Mechanics of the Hand, P. W. Brand, Hollister, A. M., Ed. Chicago Mosby 1999.
[136] A. M. Hollister, S. Jatana, A. K. Singh, W. W. Sullivan, and A. G. Lupichuk, "The Axes of Rotation of the Knee," Clinical Orthopaedics and Related Research, vol. 290, pp. 259-268, 1993.
[137] V. T. Inman, The joints of the ankle. Baltimore: Williams \& Wilkins, 1976.
[138] R. E. Isman and V. T. Inman, "Anthropometric studies of the human foot and ankle," Bulletin of Prosthetics Research, pp. 97-129, 1969.
[139] N. Koti, "Design of a biomimetic manipulator with nonorthogonal Joint Axes," in Mechanical Engineering. vol. Masters Ruston, LA: Louisiana Tech University, 2005.
[140] A. F. Krause and V. Dürr, "Tactile efficiency of insect antennae with two hinge joints," Biological Cybernetics, vol. 91, pp. 168-181, 2004.
[141] J. T. London, "Kinematics of the Elbow," The Journal of Bone and Joint Surgery, vol. 63, pp. 529-535, 1981.
[142] A. G. Lupichuk, "Determining the axis of rotation from 3-D motion data," in College of Engineering. vol. Masters Long Beach: California State University, 1995.
[143] J. A. Moore, C. F. Small, J. T. Bryant, R. E. Ellis, D. R. Pichora, and A. M. Hollister, "A Kinematic Technique for Describing Wrist Joint Motion: Analysis of Configuration Space Plots," Proceedings of the Institution of Mechanical Engineers, vol. 207, pp. 211-218, 1993.
[144] V. Moyer, E. Fichter, and B. Fichter, "Analyzing dynamics of arthropod walking," in Medicine and Biology Society, Proceedings of the 1988 Annual International Conference of the IEEE Engineering in, 1988, pp. 710-711.
[145] A. K. Singh, K. D. Starkweather, A. M. Hollister, S. Jatana, and A. G. Lupichuk, "Kinematics of the ankle: a hinge axis model," Foot and Ankle, vol. 13, pp. 439446, 1992.
[146] W. Weber and E. Weber, in Mechanik der Menschlichen Gehwerkzeuge Berlin: Springer Verlag, 1836, pp. 75-97.
[147] D. Hearn and M. P. Baker, in Computer graphics C version: Prentice Hall, 1997, pp. 408-423.
[148] D. F. Rogers and J. A. Adams, in Mathematical Elements for Computer Graphics New York: McGraw-Hill, 1990, pp. 101-130.
[149] D. F. Rogers and R. A. Earnshaw, Techniques for computer graphics. New York: Springer-Verlag, 1987.
[150] C. M. Storey, A. M. Hollister, C. Robinson, N. Witriol, D. O. Anderson, J. C. London, and W. L. Buford, "A System for Measurement and Calibration of Nonorthogonal Joints and Limbs in Humans," in in Proceedings of the 28th Annual International Conference IEEE EMBS, New York, NY, USA, 2006.
[151] W. L. Buford, A. M. Hollister, and L. M. Myers, "A Modeling and Simulation System for the Human Hand," Journal of Clinical Engineering, vol. 15, pp. 445451, 1990.
[152] D. J. Giurintano, A. M. Hollister, W. L. Buford, D. E. Thompson, and L. M. Myers, "A virtual five-link model of the thumb," Medical Engineering \& Physics, vol. 17, pp. 297-303, 1995.
[153] D. E. Thompson and D. J. Giurintano, "A Kinematic Model of the Flexor Tendons of the Hand," Journal of Biomechanics vol. 22, pp. 327-334, 1989.
[154] W. L. Buford, Jr. and D. E. Thompson, "A System for Three-Dimensional Interactive Simulation of Hand Biomechanics," IEEE Transactions on Biomedical Engineering, vol. 34, pp. 444-453, 1987.
[155] W. L. Buford, Jr. and C. R. Andersen, "Definition of the kinematic plant for the human musculoskeletal system," in Systems, Man and Cybernetics, 2005 IEEE International Conference on, 2005, pp. 1246-1251.
[156] E. D. Pohl and H. Lipkin, "Kinematics of complex joint angles in robotics," in Robotics and Automation, 1990 IEEE International Conference on, 1990, pp. 8691.
[157] J. Ziegert and P. Datseris, "Basic considerations for robot calibration," in Robotics and Automation, Proceedings of the 1988 IEEE International Conference on, 1988, pp. 932-938.
[158] C. M. Storey and C. J. Robinson, "Using Server Architecture and Multi-Threaded Processors and Software to Time-Lock Multiple Data Streams in Time-Critical Physiological Experiments.," in ASEE St. Lawrence Section Conference: Interdiscplinary Innovation and Imagination in Engineering Education Cornell University, Ithaca, NY, 2006.
[159] S. J. Richerson, S. G. Morstatt, R. D. Vanya, A. M. Hollister, and C. J. Robinson, "Factors affecting reaction times to short anterior postural disturbances," Medical Engineering \& Physics, vol. 26, pp. 581-586, September 2004.
$[160]$ R. D. Hays, C. D. Sherbourne, and R. M. Mazel, "The RAND 36-Item Health Survey 1.0.[see comment]," Health Economics, vol. 2, pp. 217-227, October 1993.
[161] M. A. Burnam, K. B. Wells, B. Leake, and J. Landsverk, "Development of a brief screening instrument for detecting depressive disorders," Medical Care, vol. 26, pp. 775-789, August 1988.
[162] J. E. Ware, Jr. and C. D. Sherbourne, "The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection," Medical Care, vol. 30, pp. 473-483, June 1992.
[163] C. A. McHorney, J. E. Ware, Jr., and A. E. Raczek, "The MOS 36-Item ShortForm Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs," Medical Care, vol. 31, pp. 247263, March 1993.
[164] C. A. McHorney, J. E. Ware, Jr., J. F. Lu, and C. D. Sherbourne, "The MOS 36item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups," Medical Care, vol. 32, pp. 40-66, January 1994.
[165] C. Jenkinson, L. Wright, and A. Coulter, "Criterion validity and reliability of the SF-36 in a population sample," Quality of Life Research, vol. 3, pp. 7-12, February 1994.
[166] R. A. Lyons, I. M. Perry, and B. N. C. Littlepage, "Evidence for the Validity of the Short-form 36 Questionnaire (SF-36) in an Elderly Population," Age \& Ageing, vol. 23, pp. 182-184, May 1994.
[167] M. Suzuki, N. Ohyama, K. Yamada, and M. Kanamori, "The relationship between fear of falling, activities of daily living and quality of life among elderly individuals," Nursing and Health Sciences, vol. 4, pp. 155-161, 2002.
[168] R. W. Simmons, C. Richardson, and K. Deutsch, "Limited joint mobility of the ankle in diabetic patients with cutaneous sensory deficit," Diabetes Research \& Clinical Practice, vol. 37, pp. 137-143, August 1997.
[169] S. Kumar, D. J. Fernando, A. Veves, E. A. Knowles, M. J. Young, and A. J. Boulton, "Semmes-Weinstein monofilaments: a simple, effective and inexpensive screening device for identifying diabetic patients at risk of foot ulceration," Diabetes Research \& Clinical Practice, vol. 13, pp. 63-67, August 1991.
[170] W. Strobl, F. Reisecker, P. Koltringer, and F. Leblhuber, "A comparative study of the sensory conduction velocity of the sural nerve using surface and needle electrodes," EEG-EMG Zeitschrift fur Elektroenzephalographie Elektromyographie und Verwandte Gebiete, vol. 23, pp. 135-139, September 1992.
[171] I. W. Husstedt, K. H. Grotemeyer, and H. P. Schlake, "The effect of the lead electrodes on the conduction velocity of the sural nerve," EEG-EMG Zeitschrift fur Elektroenzephalographie Elektromyographie und Verwandte Gebiete, vol. 22, pp. 152-156, September 1991.
[172] T. Ewert, H. Hielscher, K. H. Grotemeyer, and M. Hermanns, "Sural nerve neurography using surface and needle electrodes in polyneuropathies. Comparative study," EEG-EMG Zeitschrift fur Elektroenzephalographie Elektromyographie und Verwandte Gebiete, vol. 16, pp. 114-119, June 1985.
[173] B. Neundorfer, D. Kompf, and J. Dedden, "Sural neurography: comparative study in stimulation with surface and needle electrodes," EEG-EMG Zeitschrift fur Elektroenzephalographie Elektromyographie und Verwandte Gebiete, vol. 14, pp. 39-42, March 1983.
[174] D. H. McBurney and V. B. Collings, Introduction to Sensation / Perception, 2nd edition ed. Englewood Cliffs, NJ: Prentice-Hall Inc, 1984.
[175] C. H. Webb and D. H. McBurney, "Salivary Habituation: Quantitative Similarities to Sensory Adaptation," The American Journal of Psychology, vol. 84, pp. 501512, 1971.
[176] D. L. Kunz, "An object oriented approach to multibody systems analysis," Computers and Structures, vol. 69, pp. 209-217, 1998.
[177] M. R. Leek, "Adaptive procedures in psychophysical research," Perception \& Psychophysics, vol. 63, pp. 1279-1292, 2001.
[178] S. Deshmukh, "Physiological Correlates of Anterior Platform Perturbations," in Biomedical Engineering. vol. Masters Ruston, LA: Louisiana Tech University, 2005.
[179] E. A. Keshner, "Modulating active stiffness affects head stabilizing strategies in young and elderly adults during trunk rotations in the vertical plane," Gait \& Posture, vol. 11, pp. 1-11, February 2000.
[180] M. W. Powell, D. H. Carnegie, and T. J. Burke, "Reversal of diabetic peripheral neuropathy with phototherapy (MIRE) decreases falls and the fear of falling and improves activities of daily living in seniors," Age \& Ageing, vol. 35, pp. 11-16, 2006.
[181] J. A. Levine, L. M. Lanningham-Foster, S. K. McCrady, A. C. Krizan, L. R. Olson, P. H. Kane, M. D. Jensen, and M. M. Clark, "Interindividual Variation in Posture Allocation: Possible Role in Human Obesity," Science, vol. 307, pp. 584586, January 2005.
[182] J. K. Richardson, "Factors Associated With Falls in Older Patients With Diffuse Polyneuropathy," Journal of the American Geriatrics Society, vol. 50, pp. 17671773, 2002.
[183] A. Thoroddsen, "Pressure sore prevalence: a national survey," Journal of Clinical Nursing, vol. 8, pp. 170-179, 1999.
[184] D. Gould, T. James, A. Tarpey, D. Kelly, D. Pattison, and C. Fox, "Intervention studies to reduce the prevalence and incidence of pressure sores: a literature review," Journal of Clinical Nursing, vol. 9, pp. 163-177, 2000.
[185] A. Nardone and M. Schieppati, "Group II spindle fibres and afferent control of stance. Clues from diabetic neuropathy," Clinical Neurophysiology, vol. 115, pp. 779-789, 2004.
[186] M. Bove, A. Nardone, and M. Schieppati, "Effects of leg muscle tendon vibration on group Ia and group II reflex responses to stance perturbation in humans," Journal of Physiology, vol. 550, pp. 617-630, July 2003.
[187] G. G. Simoneau, J. S. Ulbrecht, J. A. Derr, M. B. Becker, and P. R. Cavanagh, "Postural instability in patients with diabetic sensory neuropathy," Diabetes Care, vol. 17, pp. 1411-1421, December 1994.
[188] C. L. Darlington, J. Erasmus, M. Nicholson, J. King, and P. F. Smith, "Comparison of visual--vestibular interaction in insulin-dependent and non-insulin-dependent diabetes mellitus," Neuroreport, vol. 11, pp. 487-490, February 2000.
[189] M. Nicholson, J. King, P. F. Smith, and C. L. Darlington, "Vestibulo-ocular, optokinetic and postural function in diabetes mellitus," Neuroreport, vol. 13, pp. 153-157, January 2002.
[190] P. J. Loughlin and M. S. Redfern, "Spectral characteristics of visually induced postural sway in healthy elderly and healthy young subjects," Neural Systems and Rehabilitation Engineering, IEEE Transactions on [see also IEEE Trans. on Rehabilitation Engineering], vol. 9, pp. 24-30, 2001.
[191] S. Corna, J. Tarantola, A. Nardone, A. Giordano, and M. Schieppati, "Standing on a continuously moving platform: is body inertia counteracted or exploited?," Experimental Brain Research, vol. 124, pp. 331-341, 1999.
[192] G. L. Kinzell and L. J. Gutkowski, "Joint models, degrees of freedom, and anatomical measurement," Journal of Biomechanical Engineering, vol. 105, pp. 55-62, 1979.
[193] G. L. Kinzell, A. S. Hall, and B. M. Hillberry, "Measurement of total motion between two body segments - 1 Analytical development," Journal of Biomechanics, vol. 5, pp. 93-105, 1972.


[^0]:    VAFORM
    J.4.N I96n $10-1086$

[^1]:    "I will be collecting EMG data to determine how your muscles react to the slight movements the platform will be making, to help me determine if this is part of what helps YOU to decide if the platform has moved. After I'm done placing these sensors, I'll ask you to do some movements to help me calibrate them."

