
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2007

Code-level modeling of the Hodgkin -Huxley
neuron model using an open source version of
SPICE
Anthony Stuart Carver
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Biomedical Engineering and Bioengineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Carver, Anthony Stuart, "" (2007). Dissertation. 523.
https://digitalcommons.latech.edu/dissertations/523

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.latech.edu%2Fdissertations%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/523?utm_source=digitalcommons.latech.edu%2Fdissertations%2F523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

Code-Level Modeling of the Hodgkin-Huxley
Neuron Model Using an Open

Source Version of SPICE

By

Anthony Stuart Carver, BS, MS

A Dissertation Presented in Partial Fulfillment
o f the Requirements for the Degree

Doctor o f Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

May 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3268115

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3268115

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

____________ April 18, 2007__________
Date

We hereby recommend that the dissertation prepared under our supervision

by_______________________________ Anthony S. Carver__________________________________

entitled Code-Level Modeling of the Hodgkin-Huxley Neuron Model Using an O pen S ource________

Version of SPIC E__

be accepted in partial fulfillment of the requirements for the Degree of

_________________________________ PhD - Engineering________________ ____________________________

Recommendationconcurred in:

Director of Graduate Studies

k-i / (/CL,
Dean of the College

ition ResearchIpervisor

Rea<njf©epartment

Engineering and S cience
Department

Advisory Committee

Approved:

""Ŝ rfu b\\YW.ig ro^ ..
V Dean of the Graduate School

GS Form 13
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

There have been numerous studies presented in the literature demonstrating proof

o f principle neural-electronic circuitry. Some o f these studies involve simulations o f

neural detection using synthetic electronic circuitry, while others involve simulations o f

neural excitation using external electronics. A common feature o f these studies is the

simplicity o f the overall circuit topology. Some of these studies implement the circuit

equations in conventional numerical ordinary differential equation solvers. This process

involves the algebraic manipulation o f the circuit equations which is a tedious process for

all but the simplest circuit topologies. As the overall complexity o f the network topology

increases, the numerical solver approach quickly becomes intractable necessitating an

alternate implementation strategy. SPICE implementations o f the Hodgkin-Huxley

neuron model have sought to remedy this problem. There have been multiple studies

associated with implementing the Hodgkin-Huxley model in the open source circuit

simulator, SPICE. In this dissertation, a novel implementation o f a portable SPICE

device model developed using the Hodgkin-Huxley active membrane model is

implemented using the code-level modeling functionality o f an open source version o f

SPICE. The model is validated by comparison with standard Hodgkin-Huxley model

simulations including gating variable dynamics simulations, accommodation, anode-

break excitation, and others. A further validation study is carried out demonstrating two

blocking phenomenon described in the literature. The device model fully parameterizes

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the Hodgkin-Huxley membrane model to include temperature, internal and external

concentrations used in the Nemst equations, and other user specified parameter values.

This parameterization allows for making changes to the underlying neuron model rapidly

and with minimal implementation complexity.

The novelty and robustness o f the modeling approach described herein is based on

the ease o f implementation. A wide variety o f active membranes can be simulated using

this code model approach. These biologically realistic components can be integrated

with artificial electronic components allowing for the simulation o f hybrid neural-

electronic circuitry under the SPICE simulation platform. These types o f hybrid circuit

simulations are not currently achievable using other neural simulators such as NEURON

or GENESIS. While this implementation uses the Hodgkin-Huxley neuron model with

its known limitations, the process o f developing the device model can be used to

implement any neuron model which can be described mathematically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Date 04/20/2007

GS Form 14
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT.. iii

TABLE OF CONTENTS..vi

LIST OF TABLES...ix

LIST OF FIGURES..x

ACKNOWLEDGMENTS... xiii

CHAPTER 1 INTRODUCTION...1

CHAPTER 2 CELLULAR SPECIFICS... 6

2.1 Intracellular and Extracellular Makeup.. 6
2.2 Cellular Membrane...8
2.3 Cellular Functionality.. 9

2.3.1 Osmotic Balance..10
2.3.2 Diffusion Potentials...10
2.3.3 Equilibrium Potential - Nemst Equation.. 11
2.3.4 Space Charge Neutrality..12
2.3.5 Donnan Equilibrium...13
2.3.6 Goldman Equation...14

CHAPTER 3 THE ACTION POTENTIAL... 15

3.1 Properties of the Action Potential...16
3.2 Resting Phase... 17
3.3 Depolarizing Phase... 18
3.4 Repolarization Phase...19
3.5 Undershoot Phase..20
3.6 Refractory Period..21
3.7 Propagation...21

CHAPTER 4 HODGKIN-HUXLEY MODEL...23

4.1 History... 24
4.2 Mathematical Description.. 25
4.3 Specifics of Electrical Excitability in the Hodgkin-Huxley Model....................29

4.3.1 m, h, & n values.. 29
4.3.2 Repetitive Activity...30
4.3.3 Accommodation...30
4.3.4 Anode-Break Excitation.. 31
4.3.5 Subthreshold Oscillations... 32

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

4.3.6 Effect of Temperature...32

CHAPTER 5 THE SPICE CIRCUIT SIMULATOR...34

5.1 Origins of SPICE.. 35
5.2 XSPICE..36
5.3 NGSPICE.. 37
5.4 SPICE OPUS.. 38

CHAPTER 6 CODE MODEL SUBSYSTEM..40

6.1 Interface Specification File...40
6.1.1 Name Table... 41

6.1.1.1 C Function Name... 41
6.1.1.2 SPICE Model Name... 41
6.1.1.3 Description... 42

6.1.2 Port Table...42
6.1.2.1 Port Name.. 42
6.1.2.2 Description... 42
6.1.2.3 Direction.. 43
6.1.2.4 Default Type.. 43
6.1.2.5 Allowed Types... 43
6.1.2.6 Vector... 44
6.1.2.7 Vector Bounds... 44
6.1.2.8 Null Allowed.. 44

6.1.3 Parameter Table.. 45
6.1.3.1 Parameter Name... 45
6.1.3.2 Description... 45
6.1.3.3 Data Type... 45
6.1.3.4 Null Allowed.. 46
6.1.3.5 Default Value... 46

6.1.4 Static Variable Table...46
6.1.4.1 Name.. 47
6.1.4.2 Description... 47
6.1.4.3 Data Type... 47

6.2 Model Definition File...47
6.2.1 Accessor Macros...48

6.2.1.1 Circuit Data.. 48
6.2.1.1.1 “ARGS” .. 49
6.2.1.1.2 “INIT” ..49
6.2.1.1.3 “T(n)” ...49
6.2.1.1.4 “TEMPERATURE” .. 49

6.2.1.2 Parameter Data, Input, and Output Data, and Static Variable............... 51
6.2.1.2.1 PARAM(parameter_ name).. 51
6.2.1.2.2 INPUT(port name)... 51
6.2.1.2.3 OUTPUT(port name)... 52
6.2.1.2.4 STATIC VAR(stativ var name)...52

6.3 Device Model Creation and Setup in SPICE... 52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

6.3.1 NGSPICE Device Model Creation...53
6.3.2 SPICE OPUS Device Model Creation..54

CHAPTER 7 DEVICE MODEL DESCRIPTION..56

7.1 Interface Specification File..56
7.1.1 “ifspec.ifs” File -..Section 1...57
7.1.2 “ifspec.ifs” File -..Section 2 ...58
7.1.3 “ifspec.ifs” File -..Section 3 ... 58
7.1.4 “ifspec.ifs” File -..Section 4 ... 59
7.1.5 “ifspec.ifs” File -..Section 5 ...61

7.2 Model Definition F ile ..63
7.2.1 “cfunc.mod” File - Section 1 ... 64
7.2.2 “cfunc.mod” File - Section 2 ... 64
7.2.3 “cfunc.mod” File - Section 3 ... 66
7.2.4 “cfunc.mod” File - Section 4 ...67
7.2.5 “cfunc.mod” File - Section 5 ...68
7.2.6 “cfunc.mod” File - Section 6 ... 70
7.2.7 “cfunc.mod” File - Section 7 ...72

7.3 Device Parameterization..74
7.3.1 Temperature...75
7.3.2 Hodgkin-Huxley Parameters... 76
7.3.3 Other System Parameters.. 76

7.4 Compartmental Modeling..77
7.5 Example Netlist Files...78

7.5.1 Single Neuron..79
7.5.2 Ten Compartment Axon... 80

CHAPTER 8 DEVICE MODEL VALIDATION...83

8.1 Comparison to Standard Hodgkin-Huxley Values.. 83
8.1.1 m, h, & n Value Validation... 84
8.1.2 Repetitive Activity Validation.. 84
8.1.3 Refractory Period Validation.. 86
8.1.4 Anode-Break Excitation V alidation..90
8.1.5 Accommodation Validation.. 91
8.1.6 Subthreshold Oscillations Validation...93
8.1.7 Temperature Effects Validation.. 94

8.2 Comparison to Different Blocking Phenomena..96
8.2.1 Temperature Block Between 22°C and 23°C Validation.............................. 96
8.2.2 DC Conduction Block Comparison..97

CHAPTER 9 CONCLUSION..100

APPENDIX A IFSPEC.IFS SOURCE CODE.. 102

APPENDIX B CFUNC.MOD SOURCE CODE...107

APPENDIX C GRAPHS USED FOR VALIDATION FROM WEISS [18]................115

Bibliography...118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 2.1. Ionic concentrations for ICF and ECF [20]... 7

Table 4.1. Numerical parameters used in the Hodgkin-Huxley model............................29

Table 6.1. Available port types and directions associated with port type within the
XSPICE Code Model Toolkit..43

Table 6.2. Accessor Macros used within the XSPICE Code Model Toolkit...................50

Table 7.1. List of the Hodgkin Huxley and other associated variables, code model
parameter names, default values and units...74

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 2.1. An example of a lipid bilayer cell membrane. The hydrophobic ends
are oriented toward each other leaving the hydrophilic ends pointing
outward and inward forming a two molecule thick cell membrane................8

Figure 2.2. Sodium (m/h) and potassium (n) gated ion channels.......................................9

Figure 3.1. Illustration representing the resting phase before action potential
initiation...18

Figure 3.2. Illustration representing the depolarization phase during action potential
generation.. 19

Figure 3.3. Illustration representing the repolarization phase during action
potential generation...20

Figure 3.4. Illustration representing the undershoot phase during action potential
generation..21

Figure 4.1. The Hodgkin-Huxley equivalent circuit diagram depicting a patch of a
neuronal cell membrane in terms of ionic conductances (G), current
densities (I), ionic potentials (E) and membrane capacitance s (Cm)............26

Figure 5.1. Graphical Representation of XSPICE Code Model toolkit
implementation in SPICE... 37

Figure 5.2. Screenshot NGSPICE user interface and its graphical output...................... 38

Figure 5.3. Screenshot SPICE OPUS user interface and its graphical output.................39

Figure 7.1. Section one of device model “ifspec.ifs” file...57

Figure 7.2. Section two of device model “ifspec.ifs” file.. 58

Figure 7.3. Section three of device model “ifspec.ifs” file.. 59

Figure 7.4. Section one of device model “ifspec.ifs” file...60

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.5. Section five of device model “ifspec.ifs” file...62

Figure 7.6. Section one of device model “cfunc.mod” file... 64

Figure 7.7. Section two of device model “cfunc.mod” file... 65

Figure 7.8. Section three of device model “cfunc.mod” file.. 66

Figure 7.9. Section four of device model “cfunc.mod” file... 68

Figure 7.10. Section five of device model “cfunc.mod” file... 69

Figure 7.11. Section six of device model “cfunc.mod” file... 70

Figure 7.12. Section seven of device model “cfunc.mod” file.. 73

Figure 7.13. The Hodgkin-Huxley equivalent circuit diagram depicting a patch of a
neuronal cell membrane in terms of ionic conductances (G), current
densities (I), ionic potentials (E) and membrane capacitance s (Cm)...........78

Figure 7.14. Example netlist for a InA injected current into a single neuron.................. 79

Figure 7.15. Output of the single neuron action potential simulation utilizing the
code from figure 7.14..80

Figure 7.16. Example netlist for a 50 nA injected current into an axon made up of
10 Hodgkin-Huxley modeled neurons..81

Figure 7.17. Output of the 10-compartment axon simulation showing propagation
of the initial action potential utilizing the code from figure. 7.16................82

Figure 8.1. Device model results for m, h, and n computed using a 0.5 msec current
stimulus of 10 nA and the standard Hodgkin-Huxley parameters from
table 4.1... 85

Figure 8.2. Hodgkin-Huxley repetitive activity comparison netlist................................. 86

Figure 8.3. Actual device model results showing action potential repetitive activity
using different current injections over a 40 ms time period—
comparison with Weiss, page 232, figure 4.60 (graph provided in
appendix C)... 87

Figure 8.4. Hodgkin-Huxley refractory period comparison netlist—for each time
value simulated, the appropriate current input line should be
uncommented.. 88

with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8.5. Hodgkin-Huxley repetitive activity comparison netlist. 88

Figure 8.6. A 15 nA/cm2 current is injected into a neuron at t=0 in all three graphs.
The left-most graph shows a second current injection of 90 nA/ cm2 at 4
ms after the first current injection with no action potential generation.
The center graph shows a second current injection of 90 nA/ cm2 at 5 ms
after the first current injection with an action potential of reduced
amplitude is generated. The right-most graph shows a second current
injection of 90 nA/ cm2 at 11 ms after the first current injection with a
full action potential generated.. 89

Figure 8.7. Device model results for the Basic refractory period simulation completed
using the netlist in figure 8.5.. 89

Figure 8.8. Hodgkin-Huxley anode-break comparison netlist...90

Figure 8.9. Anode-break device model results—comparison with Weiss, page 230,
figure 4.59 (graph provided in appendix C)...91

Figure 8.10. Hodgkin-Huxley repetitive activity comparison netlist................................ 92

Figure 8.11. Accommodation device model results—comparison with Weiss, page
228, figure 4.56 (graph provided in appendix C).. 93

Figure 8.12. Subthreshold oscillations comparison netlist.. 94

Figure 8.13. Subthreshold oscillations device model results—comparison with Weiss,
page 233, figure 4.61.. 94

Figure 8.14. Device model results showing the effect of temperature on the Hodgkin-
Huxley model—comparison with Weiss, page 242, figure 4.68.................. 95

Figure 8.15. Device model results showing the thermal block between 22°C and 23°C. 96

Figure 8.16. Illustration of the 21 compartment axon and sites used during the dc
conduction block...98

Figure 8.17. A conduction block implemented in a 50 mm axon with a diameter of 10
pm divided into 21 compartments. A blocking current of 250 nA is
initiated at compartment #10 at 10 ms and continued for 80 ms causing a
propagated pulse, known as a “make” pulse, seen at the test and monitor
site. A 50 nA test pulse is fired at compartment #1 at 40 ms. No pulse is
generated at the monitor site at compartment #21 from the test pulse due
to the direct current block initiated at the blocking site................................ 98

Figure 8.18. Netlist used to simulate the 21 compartment dc conduction block.............. 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to acknowledge the people who have provided me with support,

encouragement, and the opportunity to complete this work. First, I would like to say a

HUGE thank you to my wife, Teri, for her continued support throughout the years not

only in this endeavor, but life in general. Her unconditional love and support is the

greatest gift I could ever receive. Without you walking beside me daily, this

accomplishment, and life as a whole, is far less meaningful. For my kids, Ashlee and

Logan, I hope I didn’t take too much time away from you. I can not thank you guys

enough for your support and understanding. You are my motivation to succeed! To my

Mom and Dad, Faye and Noble Carver, I could not ask for better parents. Your support

and encouragement have helped me stay focused and motivated. To all my extended

family that has continuously supported me, thank you. To my advisor, Dr. Robert Szlavik,

I am so thankful for our chance meeting in the electronic circuits course. It is through

your guidance and mentoring that this work was possible. To my research partner, Frank

Jenkins, it has been an honor working with you in the Lab. You have been a tremendous

help, and I doubt I will ever find someone to rival your ability to put away the Chinese

food! Finally, to Air Force Major Don Copsey, you are the best “used car salesman” I

have ever known! If not for you, this opportunity would never have happened. This is all,

your fault! ©

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

There have been several studies presented in the literature that demonstrate proof

o f principle neural-electronic circuitry [1-5]. Some o f these studies include simulations o f

neural detection using synthetic electronic circuitry [2; 5]. Additional studies include

simulations o f neural excitation using external electronics [1;3], The simplicity o f the

overall circuit topology is a common feature o f the simulations presented in the above

literature. The approach adopted, in at least some of these studies, involves

implementation o f the circuit equations in conventional numerical ordinary differential

equation solvers [2;3;6]. Algebraic manipulation o f the circuit equations involves

rewriting these equations in a form whereby the first derivatives o f each of the

differential equations is isolated on one side o f the equation. This manipulation o f the

circuit equations can be a tedious process for all but the simplest circuit topologies. As

the overall complexity o f the network topology becomes more involved and as the

number o f nodes in the system increases, the conventional numerical solver approach

rapidly becomes intractable necessitating an alternate implementation strategy. It is quite

likely that the difficulty associated with implementation o f more involved network

simulations has been a principal limiting factor in advancements in the state o f the art o f

neural-electronic circuit integration.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

There have been various SPICE neuron models presented in the literature [7;8].

These models are based on the Hodgkin-Huxley active membrane model [9-13]. Models

developed in SPICE basically fall into one o f two categories. The first category involves

modifying the source o f the actual SPICE code. One such SPICE model implemented

using Hodgkin-Huxley dynamics was documented in the literature by Bove et al [7]. The

model was implemented by altering the source code of the actual SPICE 2G software.

This approach was termed a “built in” model. The built in process required the addition

o f five new subroutines and the modification o f four existing SPICE2G subroutines.

Unlike previous work, this approach directly implemented the Hodgkin-Huxley

equations. However, the dynamics o f the Hodgkin-Huxley model were modified ad hoc

into the SPICE source code. This process did not allow for updates as new versions of

SPICE were released. Also, no parameterization o f any Hodgkin-Huxley variables was

documented in the literature. This fact made the software less user friendly requiring

changes to the source code as well as recompilation in order to make changes to the

simulation values.

There was a second issue with the “built in” model. It exhibited a resting

membrane potential inconsistent with physiological observations. The model used a

biologically unrealistic value for the resting membrane potential o f 0 mV, whereas

realistic resting membrane potentials exist in the -60 to -70 mV range.

The second category o f SPICE models involves using passive devices within

SPICE (resistors, capacitors, etc) as well as active, nonlinear polynomial sources to

develop the equivalent circuit model for the Hodgkin-Huxley Model. The earlier models

had two issues concerning their utility. The earlier models exhibited the resting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

membrane potential inconsistent with physiological observations [8; 14]. In the latest

study of this type o f model, a modified version o f a previous SPICE based neuron model

was detailed which incorporates the non-linear exponential functions that describe the

gating variable rate constants’ dependence on the transmembrane potential [8;15]. This

model also demonstrated more physiologically relevant electrical behavior o f the

simulated neuron by demonstrating membrane potential variations and levels that are

consistent with the expected physiological behavior o f electrically active cell membranes.

While this study improved on the previous models, the process was complicated due to

the use o f a SPICE subcircuit to implement the m, h, and n gating variables (gating

variables are discussed in chapter 2). This subcircuit added approximately 40 lines o f

SPICE code in the netlist file. This model also had no parameterization associated with

the temperature or other Hodgkin-Huxley variables.

The objective o f this study was to create a platform portable, fully parameterized

device model based on the full Hodgkin-Huxley equations. This parameterization not

only includes the actual Hodgkin-Huxley model parameters but the variables o f the

Nemst equations as well as temperature and cell dimensions for the cylindrical nerve cell

modeled. The final objective o f the study was to implement the model in a way which

allowed for compartmental axon simulations by tying multiple neurons in sequence to

build more complicated axonal structures.

In this study, the Hodgkin-Huxley model was specifically chosen with an

understanding o f its shortfalls. The Hodgkin-Huxley model is implemented using the

code model approach introduced by Cox and colleagues [16]. While the Hodgkin-

Huxley model was the model-of-choice for this implementation, it is important to note

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

any mathematical neuron model could be chosen and implemented using the code-model

approach in this dissertation. This approach allows for model variables to be

programmed into the user created device model, and allows for simulations using

different parameters over multiple simulation runs without having to recompile the

source code. Temperature dependence is tied to the SPICE .option variable “temp”

which is set within the SPICE circuit file. This flexible approach is demonstrated in this

study in the context o f two groups o f validation simulations. The first demonstration

involves simulating multiple phenomenon associated with the Hodgkin-Huxley model.

These simulations are then compared to documented values found in the literature to

validate the models ability to reproduce known data. The second demonstration involves

simulating two types o f thermal blocking o f action potentials described in the literature.

The first blocking simulation shows the basic thermal block as first defined

experimentally by Hodgkin and Katz and described for the Hodgkin-Huxley equations in

Weiss [17;18]. This simulation shows the thermal blocking phenomenon that exists

between 22-23°C. Second, we demonstrate our device models ability to simulate the

direct current axonal conduction block reported by Bhadra [19].

This dissertation is broken up into eight chapters including the introduction.

Chapter two discusses the cellular specifics necessary to understand the action potential

and the Hodgkin-Huxley model. Chapter three describes the action potential itself, and

introduces key characteristics o f the action potential. Once the necessary background is

reviewed, the Hodgkin-Huxley model is introduced. First, a brief history o f the Noble

Prize winning papers written by Hodgkin and Huxley is given followed by the

mathematical description o f the actual model. Chapter four also defines key aspects o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

the model used for validation later on. Chapter five gives a history o f the SPICE circuit

simulator and the different versions used in this dissertation. Chapter six provides an in-

depth introduction to the XSPICE Code Model Toolkit which provides the functionality

to build the new device model. Chapter seven documents the files used to create the

actual device model. Chapter seven also lays out the parameterization o f the Hodgkin-

Huxley model and the associate Nemst equations. Finally, Chapter eight provides a

thorough validation o f the device model by comparing the graphical results o f device

model simulations to graphical values found in the literature. Actual graphs from Weiss

are provided in appendix C for comparison by the reader [18].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

CELLULAR SPECIFICS

Before any discussion o f the action potential or the Hodgkin-Huxley model can

begin, the environment in and around the cell, as well as the makeup of the cellular

membrane must be explained. How the cell maintains its osmotic and ionic balance are

important details in describing the potentials involved in the resting and active states.

The Nemst potential describes the potential associated with a single ion. The Donnan

equilibrium describes the concentration conditions for equilibrium of two ions when two

ions are at equilibrium across a cell membrane, while the Goldman equation describes the

membrane potential with regards to multiple ions and their relative permeabilities.

2.1 Intracellular and Extracellular Makeup

Any study o f how nerve cells produce action potentials requires a discussion

concerning the makeup o f both extracellular and intracellular fluids around and in those

cells outside and inside o f the cell. The human body’s weight is made up of

approximately 75% water. This water is distributed at roughly 55% inside cells and 45%

outside cells [20]. The water outside cells constitutes the extracellular fluid or ECF;

while, the water inside cells constitutes the intracellular fluid or ICF. Different organic

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and inorganic materials are found in both the ECF and ICF in varying concentrations.

While other materials are present in both the ECF and ICF, the main materials of

importance for this discussion are listed in table 2.1 [20], A group of anions made up of

proteins, amino acids and inorganic ions are listed together as X' in order to show

equilibrium between the ECF and ICF.

Table 2.1. Ionic concentrations for ICF and ECF [20].

ICF Concentration ECF Concentration

(mM) (mM)

Na+ 12 120

K+ 125 5

cr 5 125

X 108 0

The ECF has a high concentration o f positive sodium ions as well as negative

chloride ions. There is also a small concentration o f positive potassium ions which will

play a role in action potential generation discussed later. The ICF has the opposite

makeup o f the ECF. In the ICF, high concentrations o f positive potassium ions are

present, but the concentrations o f positive sodium and negative chloride ions are

relatively low. These concentrations are fundamental to the action potential generation

and the waveform created during the firing o f nerve cells.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

2.2 Cellular Membrane

Understanding the cellular membrane and how it functions is imperative to

understanding the action potential and how it is generated. A cell’s membrane is

composed o f to two layers o f lipids and collectively is referred to as a lipid bilayer.

These lipid molecules are phospholipids which have a polar hydrophilic end and a

nonpolar hydrophobic end. These molecules form a bilayer in which the hydrophilic

ends are oriented outward and the hydrophobic ends are oriented towards each other as

shown in Figure 2.1.

Figure 2.1. An example o f a lipid bilayer cell membrane. The hydrophobic ends are
oriented toward each other leaving the hydrophilic ends pointing outward and inward
forming a two molecule thick cell membrane.

The lipid bilayer is not the only component o f the cellular membrane. Dispersed

among the bilayer structure are several functional molecules that lend into the

functionality o f the cellular membrane which are fundamental in the generation o f the

action potential. One such type o f molecule are the channels made o f proteins running

through the entire membrane that form aqueous pores through the membrane [20]. These

voltage gated channels act as passage ways for ions and other molecules. The channels

can be general in nature allowing multiple ions and molecules through, or they can be

very selective allowing only specific ionic species to pass through. The state o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

channel is determined by whether the channel is “open” or “closed”. These channels

have gating particles associated with binding sites which determine the state o f the

channel. In the case o f binding site channels, the presence o f a neurotransmitter

molecule, such as acetylcholine, open the channel when present at the binding site [20].

For the Hodgkin-Huxley model, there are two channels o f interest shown in figure

2.2. The sodium channel is a double gated channel consisting of the fast acting “m” gate

and the slow acting “h” gate, while the potassium channel has a single slow acting “n”

gate. These gates open and close based on the dynamics o f the environment during

action potential cycle. Specifics on how this affects action potential generation will be

covered in Chapter 3.

Sodium Potassium

Figure 2.2. Sodium (m/h) and potassium (n) gated ion channels.

2.3 Cellular Functionality

The action potential in animal nerve cells is a complicated phenomenon requiring

several conceptual pieces to explain the cellular environment such as osmotic balance;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

multiple permeable ions o f different size; active transport o f certain ions; and the balance

maintained between concentration and electrical gradients. The following sections

discuss the specifics which allow neuronal cells to produce an action potential.

2.3.1 Osmotic Balance

The cellular membrane is a key component in maintaining osmotic balance

between the ICF and ECF. To understand this idea, definitions for osmolarity and

osmosis are needed. Osmolarity describes the amount o f dissolved substances within a

solution. For example, 1 mole o f a substance dissolved into a liter o f solution would

result in an osmolarity o f 1 osmolar (1 Osm). Osmosis can be defined as the movement

o f water down its concentration gradient [20]. Osmotic balance occurs when the

concentration o f solute on one side o f a permeable divider are equal to the concentrations

on the other side o f the divided container. An example o f osmotic balance could include

the same container from above with a container separated by a permeable divider being

filled with solutions o f different osmolarity o f the same dissolved particle. The side with

a higher osmolarity will contain a larger amount o f dissolved particles, and because o f

this, it will contain a smaller amount o f water. The water from the lower osmolar

solution will also diffuse down its concentration gradient into the compartment with the

higher osmolar solution. This process will continue until both sides o f the container

contain solutions o f equal osmolarity.

2.3.2 Diffusion Potentials

The above discussion on osmotic balance is not the only factor determining where

cell equilibrium will be reached. Diffusion potentials also are important in the cell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reaching its equilibrium state. In section 2.3, the particles dissolved in the solution were

non-charged particles. In real cells, the particles dissolved in solution, mainly sodium,

chloride, and potassium are charged. These particles, also called ions, are either

positively charged ions called cations, or negatively charged ions called anions [20]. A

diffusion potential is present when two or more ions are moving down their concentration

gradient as discussed in the last paragraph. The diffusion potential will be created due to

the different sizes o f the ions in question. A good example o f a situation which results in

a diffusion potential is given in Matthews [20]. It involves two containers separated by a

membrane permeable to both sodium (Na+) and chloride (Cf). One side o f the container

is filled with an aqueous 10% NaCl solution, while the other side is filled with a 50%

NaCl aqueous solution. Na+ is a larger ion which moves down the concentration gradient

slower than the smaller Cl'. Because Cl' moves faster down the concentration gradient,

the concentration o f Cl' on the less concentrated side will increase faster than the

concentration o f Na+ creating a negative charge in that compartment. As the less

concentrated compartment becomes more negative, the negative charge begins to repel

the negative Cl' ions slowing its diffusion. The negative charge also begins to speed the

larger Na+ ion. The diffusion potential will increase to the point where the slowing o f the

Cl' ion counter acts the smaller size o f the C f ion, and the diffusion rates o f both Na+ and

Cl' become the same. This diffusion potential at equilibrium for a particular ion is known

as the ion’s equilibrium or Nemst potential.

2.3.3 Equilibrium Potential - Nernst Equation

In section 2.3.2, both ions are able to diffuse across the barrier dividing the two

compartments. With this situation, equilibrium is eventually reached where the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

concentrations o f each ion are equal in each compartment and there is no potential

between the compartments. If, however, the membrane is made permeable to only one o f

the ions, equilibrium can only be reached when the repulsive force o f the electrical

potential in one compartment due to the ionic movement negates the diffusion between

the compartments. The value o f this electrical potential across the barrier can be

calculated from the Nemst equation.

R T
V =¥ Ion log

c Ion

c‘\ Ion

2.1

V[on is the Nemst potential for the specific ion; R is the molar gas constant; T is absolute

temperature and F is Faraday’s constant. The variables C°Ion and C\on are the extracellular

and intracellular ionic concentrations respectively [18]. It is important to note that the

Nemst equation only applies to one ion at a time, and the ion must be a permeable ion

[20].

2.3.4 Space Charge Neutrality

The variables C°lon and C'Ion in the Nemst equation are the initial concentrations o f

the ion in question which are assumed to be static. The initial concentrations are used

based on the idea o f space charge neutrality. Also known as the principle o f electrical

neutrality, space charge neutrality refers to the approximation that under biological

conditions, the concentration o f cations and anions within a compartment must be equal

[20]. This approximation allows for the fact that while the different ions move between

compartments to create the diffusion potentials and ultimately the settling at the Nemst

equilibrium potential, the number o f ions required to affect the transmembrane potentials

found in biology is miniscule compared to the total amount of ions in the intracellular and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

extracellular fluids. Therefore, there is no affect on the concentration gradients o f ions

associated with the diffusion potentials.

2.3.5 Donnan Equilibrium

While the Nemst equation gives the equilibrium potential across a permeable

barrier for a specific ion, the Donnan equilibrium gives the conditions necessary for

equilibrium in a system where two ions are permeable [20]. The Donnan equilibrium

arises when two compartments separated by a permeable membrane contains two ions

capable o f moving across the membrane. If equilibrium is to be reached, the electrical

potential and concentration gradients between the two compartments must balance. This

implies that the Nemst potentials for both ions would be equal. Setting the Nemst

equations for each ion equal gives

V =r Ionl
RT

log
(r ° ^

W o n l

cV W o » l J
= VIon2 =

R T
log W o n 2

c‘\ /on 2 y

Simplifying the above equation and moving the negative valence minus sign inside the

parentheses o f the log term yeilds

(r ° >
Ion

c\ Ionl

c
c°V /on 2 y

or,

[cL][Cd=[cL,][cL,;].
This relationship states that in order for equilibrium to be reached between two ions

separated by a permeable divider, the product o f the two ions concentration on one side

must equal the concentration of the two ions on the other side o f the divider [20].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

2.3.6 Goldman Equation

The Nemst equation defines the equilibrium potential for a single ion. The Donnan

equilibrium equation considers two ions and what must occur for the two ions to reach

equilibrium between two compartments separated by a permeable membrane. The

Goldman Equation,

describes the situation where multiple ions with different Nemst equilibrium potentials,

ionic concentrations, and ionic permeabilities are present [20]. A simplified version of

the Goldman equation is

This version evaluates RT/F at room temperature, converts from In to log, and expresses

the results in millivolts. As an approximation, the Chloride term can be dropped. This

approximation is possible because o f chloride’s insignificant contribution to the resting

potential o f a cell, which is true for most nerve cells. The equation also expresses the

relative permeability o f sodium in relation to the permeability o f potassium [20]. Using

the common value for b o f 0.02, which is a 50 times greater permeability o f potassium

compared to sodium, it can be seen why the resting potential o f a typical cell (-72 mV) is

closer to the Nemst potential o f potassium (-80 mV) than the Nemst potential o f sodium

(+58 mV) [20].

E RTAp*[K'l+P«.[N°' l+Pa{crY
" F (^ [*T+p*[iw >*] ,+pa [c r] J ’

Em - 58m E log

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

THE ACTION POTENTIAL

The membrane potential o f a cell is defined by the voltage difference across the cell

membrane [20]. Electrically excitable cells are those cells which produce a change o f

membrane potential when a current o f sufficient magnitude is passed through its cellular

membrane. Once the current o f sufficient magnitude is passed through the membrane, an

electrical chain reaction occurs producing what is known as an action potential [18]. The

cellular resting potential is defined by a dynamic equilibrium between the intracellular

and extracellular environment o f the cell where the net currents flowing across the cell

membrane is equal to zero [21]. The value o f the resting membrane potential is negative

due to the convention that the outside o f the cell is taken as the reference point and the

intracellular potential is negative compared to the outside o f the cell. Common resting

potentials include values ranging from -30mV to -90mV [21]. There are six basic

characteristics o f the action potential that lead to the different cellular and ionic changes

throughout the life o f a single action potential cycle. The action potential is divided into

four basic parts each having substantially different segments. These segments are the

resting phase, depolarization phase, repolarization phase, and the undershoot phase.

Another characteristic that the action potential exhibits involves the refractory period at

the end o f the action potential. During this time interval, the nerve cell is incapable o f

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

firing another action potential. Finally, it is the propagation o f the action potential down

multiple nerve cells grouped together in nerve trunks that allows efferent and afferent

signals to propagate to and from the central nervous system.

3.1 Properties of the Action Potential

Specific properties o f the action potential lead to its ability to produce the

membrane potential necessary to carry signals throughout the neuronal structure. These

properties can be broken down into six specific action potential characteristics [20].

These characteristics are:

1. Action potentials begin with a depolarization of the membrane potential. A

depolarization event happens when the inside o f the nerve cell becomes less

negative than the outside. This event normally happens due to external stimuli (i.e.

stretching o f a muscle or the activation o f a neighboring nerve cell).

2. The threshold level for the nerve cell must be reached before the action

potential will fire. There is a certain level o f depolarization required to elicit an

action potential. Anything less than this threshold will not cause an action potential

to develop. For a typical neuron with a resting potential around -70 mV, a 10-20

mV depolarization is required to reach the threshold and start the action potential

process.

3. Action potentials are all-or-nothing. Once a neuron reaches the threshold

required to start the action potential process, it will run to completion.

4. Action potentials exhibit “perfect reproductiveness”. The action potential,

once started, propagates throughout the neuronal chain it is attached to without

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

losing “signal quality”. That is, the signals amplitude remains the same for the

duration o f propagation that was initiated by the initial firing.

5. The membrane potential reverses sign at the peak of the action potential.

The action potential overshoots zero becoming positive at its peak. After this, the

inside o f the cell repolarizes towards the normal negative resting potential. This

repolarization causes an undershoot o f the resting potential as the ionic

concentrations move back to the resting state.

6. Neuronal cells cannot fire again until a set time called the refractory period

has elapsed. This refractory period ensures that once an action potential has

traversed a section o f neurons, no signal can traverse that section in the reverse

direction for a period o f time. However, if a stimulus is initiated in the middle o f

an electrically long cell, an action potential will be generated in both directions

away from the initiation site.

Most neuronal cell refractory periods lasts approximately 1 msec which limits the

number o f action potentials to around 1000 per second. These six properties lead to the

description o f the action potential broken down into four distinct periods o f action

potential development. These phases are the resting, depolarization, repolarization, and

refractory phases.

3.2 Resting Phase

The first phase in the action potential process is the resting phase. This phase is the

steady state for the nerve cell. Under normal conditions, with no outside stimulus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directed at the cell, the resting potential for a cell is defined somewhere between the

Nemst potential for sodium (+58 mV) and the Nemst potential for potassium (-80 mV),

which for a typical cell is around -72 mV. Potassium’s increased permeability compared

to sodium drives the resting potential closer to its value verses the value for sodium.

During the resting phase, the fast acting “m” gate is closed; the slow acting “h” gate is

open, and the slow acting “n” gate is closed. This phase is illustrated in Figure 3.1.

Figure 3.1. Illustration representing the resting phase before action potential initiation.

It is during the depolarizing phase that the properties discussed in 3.1 begin to

manifest themselves. The first property, “cell depolarization”, initiates the depolarization

phase. In order for an action potential to start, a net depolarization in side the cell must

occur. Under resting conditions, the “m” gate in the sodium channel and the “n” gate in

the potassium channel are closed, maintaining the resting potential. The threshold

property is necessary for the action potential to start. This level o f depolarization starts a

Outside

Inside

3.3 Depolarizing Phase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

chain o f events which leads to the “all or nothing” nature of the action potential discussed

in property number three. It is the depolarization o f the cell membrane which opens the

fast “m” sodium gate, allowing sodium ions into the cell. This process continues to

depolarize the cell further, leading to the peak o f the action potential; however, at the

same time the “m” gate opens, the slow acting “h” gate begins to close, and the slower

acting potassium “n” gate begins to open [20]. Figure 3.2 illustrates the state o f the

sodium and potassium gates during the depolarization phase.

Na+
Outside

Inside

Figure 3.2. Illustration representing the depolarization phase during action potential
generation.

3.4 Repolarization Phase

The transition between the depolarization and repolarization phase is associated

with the fifth property o f an action potential. Around 1-2 milliseconds after the “m”

gates open, the “h” gates finally close stopping the influx o f sodium ions into the cell.

Around this time, the potassium “n” gate opens allowing for the efflux o f potassium ions

which begins to repolarize the nerve cell [20], The “n” gate will remain open until the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

membrane potential returns to the resting potential. Figure 3.3 illustrates the state o f the

sodium and potassium gates during the repolarization phase.

Outside

Inside

Figure 3.3. Illustration representing the repolarization phase during action potential
generation.

3.5 Undershoot Phase

At the end o f the repolarization phase, the sodium “h” gates have closed allowing

the sodium level in the cell to normalize back to its resting value. However, the

potassium “n” gates are still open allowing for potassium ions to leave the cell. These

events hyperpolarize the inside o f the cell making it more negative than its resting

potential. This phase is know as the undershoot phase. Figure 3.4 illustrates the state o f

the sodium and potassium gates during the undershoot phase.

K+

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Outside

Inside

Figure 3.4. Illustration representing the undershoot phase during action potential
generation.

3.6 Refractory Period

The sixth property o f action potentials is associated with the cells refractory period.

Once the slow acting “h” sodium gates close, a subsequent action potential in the same

cell is prohibited due to the inability o f sodium ions to enter the cell and begin the

depolarization phase again. The time it takes the sodium “h” gates to reopen and

therefore allow a new action potential to begin is known as the refractory period after the

current action potential has ended [21].

3.7 Propagation

In order for communication between the brain and other parts o f the body, the nerve

fibers o f the afferent and efferent pathways must be able to pass action potentials along

long distances. The action potential in a nerve fiber can be described as a self

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

propagating wave [20]. Once the 10-20 mV depolarization o f the initial nerve cell in a

nerve fiber occurs, the depolarization o f that cell affects the surrounding cells in the nerve

fiber. The threshold required for the subsequent nerve cells within a nerve fiber to begin

an action potential is reached due to the previous cells depolarization allowing the action

potential to propagate the length o f the nerve fiber. Action potentials only propagate in

one direction from one nerve cell to another through a nerve fiber due to the refractory

period o f a cell after it has fired and began the depolarization o f the next nerve cell in the

chain. This propagation from nerve cell to nerve cell down a nerve fiber describes the

fourth property o f action potentials, “perfect reproductiveness”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

HODGKIN-HUXLEY MODEL

Hodgkin and Huxley’s measurement and subsequent model formulation for the

action potential in the giant axon o f the Loligo squid was ground breaking work. They

received the Nobel Prize in 1963 for their work in both systematically measuring the

action potential characteristics in the squid as well as developing the mathematical theory

for their model [9-13]. Hodgkin-Huxley theory explains the relationship, within a patch

o f axonal membrane, between ionic currents (sodium, potassium and leakage), capacitive

currents, and the membrane current density. The model defines the relationship between

the Nemst potential for the sodium and potassium ions and the ionic conductances, with

respect to time and membrane potential scaled to the particular gating values for the

individual ionic conductances. These gating values are determined using the rate

constant equations fit by Hodgkin and Huxley to analytical expressions that are

dependent on the membrane potential. After the theory was developed, it was confirmed

that certain known aspects o f the action potential are consistent with the theoretical

predictions from the model. Repetitive activity, accommodation, anode-break

excitations, subthreshold oscillations, and the effect o f temperature on the action potential

are described theoretically by the Hodgkin-Huxley model.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

4.1 History

The Hodgkin-Huxley model is the culmination of the work of A.L Hodgkin and

A.F. Huxley in the early 1950s. Hodgkin and Huxley wrote five papers documenting the

experiments used to discern the characteristics and mechanisms o f ion movement in

nerve cells during action potential generation. All five papers were published in the

Journal o f Physiology. Hodgkin and Huxley were awarded the Nobel Prize in Physiology

or Medicine 1963, "for their discoveries concerning the ionic mechanisms involved in

excitation and inhibition in the peripheral and central portions o f the nerve cell

membrane". The first paper, “Measurement o f Current-Voltage Relations in the

Membrane o f the Giant Axon o f Loligo”, describes the steady state conditions for the

cellular membrane and the techniques to be used in the subsequent papers for their

analysis [13]. The second paper, “Currents Carried by Sodium and Potassium Ions

Through the Membrane of the Giant Axon o f Loligo”, described the measured changes in

the action potential using different sodium concentrations, and how the total ionic current

was distributed into sodium and potassium currents [11]. The third paper, “The

Components o f Membrane Conductance in the Giant Axon o f Loligo”, investigated the

effect o f sudden potential changes on the action potential [12]. The fourth paper, “The

Dual Effect o f Membrane Potential on Sodium Conductance in the Giant Axon o f

Loligo”, deals with the ‘inactivation’ process as sodium permeability is returned to

normal during the transition between the depolarization and repolarization phases during

an action potential [10]. Finally, the fifth and final paper in the series, “A Quantitative

Description o f Membrane Current and Its Application to Conduction and Excitation in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Nerve”, reviews the first four papers, and then describes the mathematical model

developed based on the research [9].

4.2 Mathematical Description

Hodgkin-Huxley theory explains the relationship, within a patch o f axonal

membrane, between ionic currents (sodium, potassium and leakage), capacitive currents

and the membrane current density [9-13]. This relationship is defined by (4.1).

J m = J Afa "I” ̂ ^ Z 4.1

where Jm, Jc, Jna, Jk and JL are the membrane, capacitance, sodium, potassium and

leakage current densities. The equation can be rewritten using Ohm’s Law and the

constitutive law for the membrane capacitance as:

j = C « dt +gAK.-rt)+gMl(rH-rM')+gL(vm-vL) 4.2

where Cm is the transmembrane capacitance; gNa, gx and gL are the conductances for

sodium, potassium and leakage through the membrane; VNa, VK and VL are the sodium,

potassium, and leakage equilibrium potentials. The sodium and potassium potentials are

defined by the Nemst equilibrium equations:

Na
R T \^ J log

(C'® ^
^ N a

C'V Na y

VK =
RT \ (r o \

log
/

W
C

4.3

VIon is the Nemst potential for the specific ion; R is the molar gas constant; T is absolute

temperature and F is Faraday’s constant. The variables Cfon and C‘Ion are the extracellular

and intracellular ionic concentrations respectively. The leakage equilibrium is a constant,

-49.0E-3 mV. The model equates a neuron with an equivalent circuit model (Figure 4.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Inside

rNa

m

Outside

Figure 4.1. The Hodgkin-Huxley equivalent circuit diagram depicting a patch of a
neuronal cell membrane in terms o f ionic conductances (G), current densities (I), ionic
potentials (E) and membrane capacitance s (Cm).

The cell membrane modeled by this circuit is dependant upon the ionic currents due to

sodium and potassium. All other currents are categorized as “leakage” or II. Nemst

equilibrium potentials for sodium and potassium are Vne and Vk respectively, and the

constant leakage potential is shown as VL. Finally, the conductances for sodium,

potassium and leakage with respect to time and membrane voltage are gNa, gx and gL.

These sodium and potassium conductances are defined in 4.4.

g Na{Vm,t) = ~gNam \V m,t)KVm,t) g K(Vm,t) = ~gKn \ V m,t) 4.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

where g Na and g k are maximal sodium and potassium conductances and m, h, and n are

variables that describe the m, h and n gating dynamics. The leakage conductance is a

The a and /? parameters in the above equations are the rate constants which define the

rate at which particles move from the inside o f the cell membrane to the outside. These

equations define the net rate o f change in m, h and n by relating the gating particles that

are moving between the inside to outside o f the cell membrane to the gating particles that

are moving between the outside to the inside o f the cell membrane [20], Hodgkin and

Huxley fit the rate constants to analytical expressions dependent on the membrane

potential [9]. There are numerous versions o f these equations in the literature, and the

equations actually used in the project can be found in Weiss [18]. The rate constant

equations are

9 •constant 0.3E-3 S/cm . The corresponding rate equations for the gating variables have

the form

, -0.1(K .+35)
m e-01(Km+35) _ j m

= 4e-(r»+60)/18

A =
l

i + e - 0A(V' ^ 0)

-0 M (V m+50)
e -0.1(K„+50) Pn = O.125e_00125(r"+60)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

The m, h, and n differential equations can also be developed in terms o f a time constant

(rx) and a final value (xM). The individual equations for each gate using time constants

and the final values are

dm _ m QO- m dh _ h x - h dn nx - n
dt r dt r. dt r„m n n

The time constants are defined in terms o f the rate constants described above. The three

time constant equations are

1 1 1
- ■

a + B a + B a + /?m r m m * m m / m

The final values used are also defined using the rate constants. The three final value

equations are

a m , a h a „
/w = ----- !L— h — n

a m+Pm " « * + A "

These equations along with the numerical parameters found in table 4.1 make up the

generalized Hodgkin-Huxley model for a patch o f axonal membrane [18].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Table 4.1. Numerical parameters used in the Hodgkin-Huxley model.

Element Value Units

Membrane capacitance per unit area Cm 1.0e-6 F/cm2

Intracellular sodium ion concentration c‘'- 'N a 50.0E-3 mol/L

Extracellular sodium ion concentration c°'- 'N a 491.0E-3 mol/L

Intracellular potassium ion concentration c 400.0E-3 mol/L

Extracellular potassium ion concentration c°'- 'k 20.11E-3 mol/L

Maximum sodium conductance per unit area S Na 120.0E-3 S/cm2

Maximum potassium conductance per unit area SK 36.0E-3 S/cm2

Leakage conductance per unit area Sl 0.3E-3 S/cm2

Leakage potential vL -49.0E-3 mV

4.3 Specifics of Electrical Excitability in the Hodgkin-Huxley Model

In order to validate the code model developed for this project, it is necessary to

discuss some specifics o f the Hodgkin-Huxley model. The details o f the model will be

developed here, while the comparison and validation will occur in section 9.

4.3.1 m, h, & n values

The first detail involves the actual values o f the gating variables, m, h, and n at rest

as well as throughout the generation o f an action potential. As discussed in section 3,

these gating variables tie to the m, h, and n gates which react to depolarization o f the

cellular membrane at the initiation o f an action potential. The “m” sodium activation

gate reacts quickly, opening once a depolarization o f 10-20 mV occurs. The “h”

activation gate begins to close upon depolarization; however, it closes more slowly

compared to the “m” gate activity. The “h” gate remains closed until the refractory

period has passed Finally, the potassium “n” gate begins to open once sufficient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

depolarization has occurred to start the action potential, but like the sodium “h” gate, it is

also slow to react. It remains open past the point o f repolarization to the resting potential

o f the cellular membrane. This phenomenon is illustrated on page 202, figure 4.32 in

Weiss [18] and will be used as a reference during the validation o f the code model in

section 8.

4.3.2 Repetitive Activity

Studies have shown that a suprathreshold current applied to a nerve cell over time

will cause multiple action potentials [22]. When currents slightly above the cells

threshold are used, only a single action potential is created. When higher continuous

current amplitudes are applied, multiple action potentials are seen with the latter action

potentials maximum amplitude being less than the initial action potential. Ultimately,

subsequent action potentials are blocked demonstrating a property called a depolarization

block. This effect is caused by the continuous current’s ability to decrease h and increase

n over time. These changes affect the sodium and potassium conductances which in turn

reduces the action potential amplitude ultimately resulting in the block. This affect is

called repetitive activity, and the Hodgkin-Huxley model exhibits the basics o f this

phenomenon. An illustration for different stimulus amplitudes can be found on page 232,

figure 4.60 in Weiss [18], and will be used as a reference during the validation o f the

code model in section 8.

4.3.3 Accommodation

If a current stimulus is applied to a nerve cell below the threshold value for that

cell, and then slowly increased over time, no action potential is generated even though the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

threshold value for the cell is subsequently exceeded. Known as accommodation, this

phenomenon has been studied since the mid nineteenth century [23]. Later studies using

the space clamped squid axon apply ramped currents of differing slopes [22;24], These

studies found slope values below which no action potential was generated despite the

threshold value o f current being exceeded under normal step conditions. The Hodgkin-

Huxley model does not exhibit accommodation at the standard parameters o f the model;

however, if the maximum sodium conductance (&Na) is lowered to 80.0E-3 S/cm2, the

Hodgkin-Huxley model does exhibit the accommodation phenomenon [18]. The

accommodation effect is shown on page 228, figure 4.56 in Weiss [18], and will be used

as a reference during the validation o f the code model in section 8.

4.3.4 Anode-Break Excitation

Another phenomenon present in nerve cells happens when a hyperpolarizing

current is passed into a nerve cell for a period o f time long enough for the membrane

potential and all gating variables to stabilize at their steady-state values. When the

current is subsequently removed from the cell, an action potential is generated. This is

known as a anode-break excitation, and it occurs due to the increase in h and the decrease

in n which affects the potassium conductance. This lowers the threshold necessary for

initiating an action potential. This new threshold is achieved when the hyperpolarized

current is removed, and the cell is repolarized to its normal resting potential [18]. The

calculated anode-break excitation phenomenon is shown on page 230, figure 4.59 [18],

and will be used as a reference during the validation o f the code model in section 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

4.3.5 Subthreshold Oscillations

When a continuous pulse o f a relatively small subthreshold current is passed into a

nerve cell, the membrane potential exhibits highly damped oscillations [9;25], This

effect happens for both positive and negative currents. Subthreshold oscillations are seen

in the Hodgkin-Huxley model. The calculated subthreshold oscillations phenomenon is

shown on page 233, Figure 4.61of Weiss [18], and will be used as a reference during the

validation o f the code model in section 8.

4.3.6 Effect of Temperature

There have been many papers written in the literature regarding the effects o f

temperature on the firing o f an action potential in a neuron. Hodgkin and Huxley

documented temperature dependence in 1952 [26]. This work was the culmination o f

various experiments completed on the squid giant axon which defined the Hodgkin-

Huxley model that this dissertation research is based on. However, in this paper, the only

temperature affect was the scaling o f the rate equations (m, h, and n) by a Qio factor.

Huxley followed this work with a paper in 1959 [27] which adds the temperature effects

on conductances shown in the Nemst equilibrium potentials to the a and /? scaling effects.

Since these papers, there have been numerous papers published on the effects o f

temperature on myelinated and nonmyelinated neurons [28-32], These papers provide

documentation for a variety o f Qio values used.

As mentioned, temperature dependence in the Hodgkin-Huxley model is

incorporated in two ways [9]. The temperature dependence is included within the Nemst

equilibrium potential equations seen in equation 2.1. The Nemst potential o f the ions

involved is proportional to absolute temperature. Temperature also has an impact on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

Hodgkin-Huxley model through the rate constants. The m, h, and n differential equations

are scaled by a constant temperature factor, Kt [18]. This leads to the following

equations based on the time constant and final values.

dm
dt

r \m _ - m

V m /
K.

dh
dt \ T h J

K.
dn
dt

r \ - n

\ J
K, 4.6

where Kt is the temperature coefficient (Q io) value raised to the power representing the

increase in the rate constant for every 10°C change in the temperature at which the

kinetics were measured as per (4.7).

(Tc- 6.3)
K T = Q l0 10 4.7

The Tc value is the measured temperature. A Q \ q value o f 3 is documented for the squid

giant axon [9].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

THE SPICE CIRCUIT SIMULATOR

With the birth o f integrated circuits in 1961, a new problem in the electronic

industry was encountered. Unlike the board-level designs before them, integrated circuits

are unable to be breadboarded before the manufacturing process begins. Because o f the

high costs o f the photolithography process used to manufacture integrated circuits, a new

tool needed to be developed to test designs in order to ensure the design acted as intended

once manufactured in mass. The SPICE (Simulation Program with Integrated Circuits

Emphasis) simulation program was created for this purpose in 1975. Today, simulating

an integrated circuit with SPICE is the industry-standard way to verify circuit operation

before beginning the manufacturing process.

SPICE in its many forms utilizes a text file called a “netlist” also known as a

“deck” that is run by the simulator. This netlist file or deck describes the circuit elements

(transistors, resistors, capacitors, etc.) and their connections. These elements and

connections are then translated into equations to be solved. These nonlinear differential

equations are then solved using implicit integration methods, Newton's method and

sparse matrix techniques.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

5.1 Origins of SPICE

SPICE was created in 1972 by Larry Nagel and Donald Pederson at the

Electronics Research Laboratory o f the University o f California, Berkeley. The first two

versions were coded in Fortran which ran on mainframe computers. Later versions have

been coded in C; however, the circuit description files or netlists still use a Fortran-like

syntax.

SPICE was largely a derivative o f the CANCER simulation program created by

Nagel and Rohrer in 1971 [33]. CANCER was an acronym for "Computer Analysis o f

Nonlinear Circuits, Excluding Radiation". The name was chosen due to the requirement

placed on many circuit simulators developed during the 1960s by United States

Department o f Defense contracts. These contracts required simulators built for the

government to provide the ability to evaluate a circuit’s radiation hardness.

Initial versions o f SPICE used nodal analysis. Because o f this approach, ideal

voltage sources and inductors could not be included in the circuit. Since then, a modified

nodal analysis technique utilizing different algorithms to translate all circuit analysis

problems into a single problem or multiple simpler problems is used. This technique

allows for the problem to be solved by solving a linear simultaneous equation (i.e. non

linear circuits are solved using a Newton-Raphson algorithm, which linearizes non-linear

elements in a circuit). Transient analysis is performed using the trapezoid or Gear

integration algorithm.

Free versions o f SPICE are available for most computing platforms. Versions

such as XSPICE, NGSPICE, TCLSPICE, and SpiceOpus Light provide free simulators

that are readily available for use in the academic environment. Two o f these versions,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

NGSPICE (both the Windows and Linux versions) and SpiceOpus, were used extensively

for this project. O f fundamental importance to this work is the functionality developed

by the XSPICE implementation which allows the development o f code models.

5.2 XSPICE

XSPICE is an enhanced SPICE simulation engine, developed by Georgia Tech

Research Institute for the United States Air Force as part o f the Automatic Test

Equipment Software Support Environment (ATESSE), version 2.0. XSPICE was

designed to assist engineers with the development o f software for the control o f

Automatic Test Equipment (ATE). It significantly added to the functionality o f SPICE

by including a number o f abstract simulation models as well as mixed analog/digital

circuit simulation. For the work described in this dissertation, the most important

functional addition made by XSPICE is its code model tool kit. This toolkit provides

users the ability to design and program arbitrarily complex functions instead o f requiring

users to only use the slower, more traditional macro-modeling approach [16]. The code

model toolkit allows the user to write, compile and link newly created “electronic”

models with the existing SPICE simulator. Since XSPICE’s development, both free and

commercial versions o f SPICE have incorporated the code modeling capability developed

by XSPICE. Figure 5.1 describes how the existing model library, and the user defined

models, interacts with the SPICE software core.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

SPICE 3F
Core

XSPICE
Code Model

ToolkitCode Model
Library

User Defined
Code Models

Figure 5.1. Graphical Representation o f XSPICE Code Model toolkit implementation in
SPICE.

5.3 NGSPICE

Development began on NGSPICE in 1999 by a small group o f internet users

based on SPICE 3F5 and it is licensed under the standard BSD license. Versions are

available for both LINUX and Windows platforms. The Windows version requires a

Linux emulator, and runs much like the Linux version. The simulator includes an

interpreted programming language called Nutmeg, which allows interactive Spice

sessions. XSPICE functionality is included with full support o f the code model toolkit.

Documentation and software downloads can be found at

http://ngspice.sourceforge.net/index.html [34], A screenshot o f the LINUX emulator,

NGSPICE user interface, and its output using its graphing capability is shown in figure

5.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://ngspice.sourceforge.net/index.html

38

5.4 SPICE OPUS

First released in 1999, SpiceOpus is a circuit simulator with optimization utilities.

It is based on the original Berkeley source code and is available for the Windows and

Linux operating systems. Unlike the Windows version of NGSPICE, SpiceOpus is a

resident application in the Windows environment, and does not need a Linux emulator to

run. XSPICE functionality is included with full support of the code model toolkit. The

simulator includes an interpreted programming language called Nutmeg, which allows

Anthony<?CARVERl
$ ngspice
An thony'JCARVEE1
S dir
Current ng-spice-rework-17
ng-spice-revork_CVS.tar
AnthonySCARVERl
S cd Currant
A n th onyU C A R V E R l
$ ngspice

Got 1 devices.
Added device: neuron2
Got 0 udns.
»* ngspice-17 : Circuit level simulation prograt
•* The U. C. Berkeley CAD Group
*« Copyright 1985-1994. Regents of the Universi-
•• Please submit bug-reports to: ngspice-bugsW:
•• Creation Date: Tue Jan 3 15:46:05 CST 2006
ngspice 1 -> source test3.cir
Circuit: Neuron Test File
ngspice 2 -> run
Doing analysis at TEKP ■ 279.450000 and THOM • 1
Varning: Source i has no DC value, transient til
Initial Transient Solution

Node

al#branchw0_0

Voltage

No. of Data Rows : 20019
ngspice 3 - > plot v(l)
ngspice 4 ->

t r a n l : N e u r o n T e s t File

Figure 5.2. Screenshot NGSPICE user interface and its graphical output.

interactive Spice sessions. A screenshot o f the SPICE OPUS user interface and its output

using its graphing capability is shown in Figure 5.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Fife EdS Centro! Window Help
* m \

analog.cm, version 1 .0 , Jun 22 2006
Analog system -level sim ulation lib ra i
Author: S iinshelf, Inc.
Copyright: 2000
Found 18 CH d ev ic e (s | and 0 UDN|s).
S u ccessfu lly loaded 18 CH device(s) s

Uelcome to Program: SpiceOpus (c) , vi
Date b u ilt : Jan 5 2006

Based on:
SPICE 3f4 (patched to 3fS) by

E lectron ics Research Laboratory
C ollege o f Engineering
U niversity o f C aliforn ia , Berkele

XSPICE by
Georgia Tech Research In stitu te

U niversity o f Ljubljana, Slovenia
Faculty o f E le c tr ic a l Engineering
Group For Computer Aided C ircuit Desi
h ttp : / / f id e s . f e . u n i-1j . s i/sp ic e /

SpiceOpus (c) 1 -> cd \msys\ 1.0Miome\
current d irectory: c : ’\msys\1.0\homeU
SpiceOpus (c| 2 -> source te s t3 .c ir
C ircu it: Neuron Test F ile

SpiceOpus (c) 3 -> run
SpiceOpus (c| 4 -> p lo t v (1)
SpiceOpus (c) 5 ->

y, Im ag
-Msl

0.04

0.02

- 0.02

- 0.04

0.02

Press <space> to identity nearest curve,
x-y grid displaying real v s default.
Cursor: x =1.946000675000000e-002 y =-8.293909170/34667e-002

T

Figure 5.3. Screenshot SPICE OPUS user interface and its graphical output.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://fides.fe.uni-1j.s

CHAPTER 6

CODE MODEL SUBSYSTEM

The code model system developed in XSPICE and implemented into many

current day circuit simulators gives a user the ability to define arbitrarily complex

systems without having to exclusively use the predefined set o f discrete components

within the SPICE simulator. The code model functionality is utilized, on the user end, by

creating and editing the InterFace Specification (IFS) file and the MOdel Definition

(MOD) file for each model [35]. These files work together to define the data structures

used within the model to transfer data to and from the main SPICE simulator as well as

the detailed model system characteristics.

6.1 Interface Specification File

The InterFace Specification file (IFS) is a text file containing naming information

for the code model. It also defines the input and output ports used in simulation runs as

well as any expected parameters and variables used to pass data between the code model

and main SPICE simulation environment. The IFS file is broken down into 4 sections

based on these four areas. The sections are named NAME TABLE, PORT_TABLE,

PARAMETER TABLE, and STATIC VAR TABLE respectively and are described

below.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

6.1.1 Name Table

The name table section o f the IFS file contains three sections. The first section

defines the C function name used in the “cfunc.mod” file. Section two defines the actual

name used in the .model statement within the SPICE simulation file also known as a

“deck” in reference to the punch cards used to run SPICE programs in its early days o f

use. Finally, section three provides a description o f the model being developed. The

Name Table section is started by the “N am eT able:” entry followed by the individual

sections table names.

6.1.1.1 C Function Name

The C Function name section defines the name o f the code model and must be a

valid C identifier. The table entry is started by the “C F unctionN am e:” entry followed

by the actual name. This name also must correspond with the function within the Model

Definition file. If the two names are different, an error will result in the linking step of

the code model compiling and linking procedure at the end o f the code model

development.

6.1.1.2 SPICE Model Name

The SPICE Model Name section defines the name used in the actual SPICE

simulation deck with the “.model” line. This name can be any name the user wishes as

long as it is a valid SPICE identifier, and is not restricted to the C function name. The

table entry is started by the “SPICE Model Name:” entry followed by any valid SPICE

name.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

6.1.1.3 Description

The third section o f the name table in the IFS file provides the user a way of

commenting the general purpose o f the code model. The table entry is started by the

“Description:” entry followed by any C string literal.

6.1.2 Port Table

XSPICE uses ports to pass data between the code model and the SPICE

simulation deck. These ports can be input, output, or a combination o f in/out ports as

defined by the user. The Port Table defines these ports and is broken into eight sections.

This table defines input and output ports as needed by the code model. The eight sections

o f the Port Table are Port Name, Description, Direction, Default Type, Allowed Types,

Vector, Vector Bounds, and Null Allowed. The Port Table section is started by the

“PortT able:” entry followed by the individual sections table names.

6.1.2.1 Port Name

The Port Name table entry names the ports to be used in the code model. The

name must be a valid SPICE identifier and is started by the “Port Name:” entry followed

by the valid port name.

6.1.2.2 Description

The Description table entry gives the user the ability to provide a brief description

o f each port used in the code model. The description section is started by the

“Description:” entry followed by any C string literal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

6.1.2.3 Direction

The Direction table entry specifies which direction data flows through the port

used in the code model. Valid port directions include two one-way options, “in” and

“out” and the bidirectional option “inout”. The direction section is started by the

“Direction:” entry followed by one o f the three options above.

6.1.2.4 Default Type

The Default Type table entry specifies the default type o f port used in the code

model. Table 6.1 lists the allowed port types. The Default Type section is started by the

“Default Type:” entry followed by one o f the allowed port types.

Table 6.1. Available port types and directions associated with port type within the
XSPICE Code Model Toolkit.

Default Port Types
Type Description Direction

D Digital in or out

G Conductance (VCCS) inout

Gd Differential Conductance (VCCS) inout

H Resistance (CCVS) inout

Hd Differential Resistance (CCVS) inout

I Current in or out

Id Differential Current in or out

V Voltage in or out

Vd Differential Voltage in or out

<identifier> User Defined Type in or out

6.1.2.5 Allowed Types

While ports have an associated default port type, other port types can be used as

specified in the Allowed Types section. The allowed types must be an allowed type from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

table 4.1. The Allowed Type section is started by the “Allowed_Types:” entry followed

by a single allowed port type in square brackets (e.g. “[v]”) or a comma or space

separated list in square brackets (e.g. “[v, i, id]”).

6.1.2.6 Vector

The Vector table entry allows the user to assign a vector for input or output based

on the port type. The Vector section is started by the “Vector:” entry followed by the

Boolean value “YES” or “TRUE” if the port is a vector or “NO” or “FALSE” if the port

is not a vector. If a port is defined as a vector, it must have a valid vector bounds table

entry. Otherwise, the vector bounds entry can be omitted using a “-” value in the vector

bounds entry.

6.1.2.7 Vector Bounds

If a “YES” or “TRUE” value is given in the Vector table entry, an associated

Vector Bounds entry must follow. This entry in the Vector Bounds field sets the size o f

the vector to be used. Both an upper and lower bound is given for the vector size. The

Vector Bounds section is started by the “Vector_Bounds:” entry followed by a space or

comma separated list in square brackets defining the lower and upper bounds o f the

vector (e.g. “[1 10]” or “[4, 20]”).

6.1.2.8 Null Allowed

Should the user require a port remain disconnected from the circuit being

simulated, the Null Allowed entry allows for this circumstance. The Null Allowed

section is started by the “Null Allowed:” entry followed by the “YES” or ‘TRU E” entry

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

if a null is allowed or a “NO” or “FALSE” entry if the port must be connected which

would generate an error at runtime if the port was not connected.

6.1.3 Parameter T able

XSPICE incorporates the ability to parameterize the code model allowing for

changes to system variables between simulations without having to recompile and link

the code model to the SPICE system. These parameters are defined in the Parameter

Table and its five sections: Parameter Name, Description, Data Type, Null Allowed, and

Default Value. The Parameter Table section is started by the “Parameter Table:” entry

followed by the individual section table names.

6.1.3.1 Parameter Name

The Parameter Name section defines the individual parameter names used by the

code model. The table entry is started by the “Parameter Name:” entry followed by the

actual name. The name must be a valid SPICE identifier used on the “.model” card in the

simulation file.

6.1.3.2 Description

The Description table entry gives the user the ability to provide a brief description

o f each parameter used in the code model. The description section is started by the

“Description:” entry followed by any C string literal.

6.1.3.3 Data Type

As in all programming languages, the XSPICE Code Model Toolkit requires

parameters be defined by type. Available data types include Boolean, int, real, string,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

and complex. The Data Type section is started by the “Data Type:” entry followed by

the valid parameter data type.

6.1.3.4 Null Allowed

The Null Allowed section o f the Parameter Table allows a user to either require or

not require a starting value for the given parameter at run time on the “.model” line. If

the Null Allowed entry is set to “TRUE” or “YES”, a value is not required, and the

default value is used (see Default Value section below). If the Null Allowed value is set

to “FALSE” or “NO”, an error is generated if no value is specified in the “.model” line in

the SPICE deck. The Null Allow section is started by the “Null Allowed:” entry

followed by the valid Boolean entry.

6.1.3.5 Default Value

If the Null Allowed section is set to “TRUE” or “YES”, the Default Value section

of the Parameter Table defines the default value to be used by the SPICE simulator if no

value is given on the “.model” line. The Default Value section is started by the

“Default Value:” entry followed by the actual default parameter value. The default value

must be o f the same data type as the Data Type defined above.

6.1.4 Static Variable Table

XSPICE provides the ability to pass variables between successive iterations o f the

code model in the simulation environment. This is accomplished with the use o f static

variables (variables that are not cleared after a single iteration on the code model). These

static variables are defined in the Static Variable Table and its three sections: Name,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Description, and Data Type. The Parameter Table section is started by the

“S ta ticV arT ab le :” entry followed by the individual section table names.

6.1.4.1 Name

The Name section defines the individual static variable names used by the code

model. The table entry is started by the “Static_Var_Name:” entry followed by the actual

name. The name must be a valid C identifier used on the “.model” card in the simulation

file.

6.1.4.2 Description

The Description table entry gives the user the ability to provide a brief description

o f each static variable used in the code model. The description section is started by the

“Description:” entry followed by any C string literal.

6.1.4.3 Data Type

As in all programming languages, the XSPICE Code Model Toolkit requires static

variables be defined by type. Available data types include Boolean, int, real, string,

pointer, and complex. The Data Type section is started by the “Data_Type:” entry

followed by the valid static variable data type.

6.2 Model Definition File

The second file needed to create a XSPICE code model is the MOdel Definition

file or MOD file. The MOD file is given the standard name “cfunc.mod” for all code

models. This file contains the C programming language source code which implements

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

the functionality o f the code model within the SPICE simulation environment. By using

the previously mentioned parameters and static variables, the code model is able to work

over multiple iterations o f itself within the SPICE simulation environment. However,

this data handling requires the use o f special accessor macros to work on specific input,

output, and simulator specific variables and parameters.

6.2.1 Accessor Macros

Accessor Macros provide the MOD file a capability o f working with or

“accessing” parameters and static variables defined in the IFS file. The accessor macros

are broken into several distinct types to include Circuit Data, Parameter Data, Input Data,

Output Data, and Static Variable macros. These accessor macros are accessible within

the MOD file. Table 6.2 lists the complete set o f accessor macros available in XSPICE

[35]. The remainder o f this section is devoted to the accessor macros used in this code

model implementation.

6.2.1.1 Circuit Data

The circuit data group o f accessor macros provides the code model programmer

with information concerning the state o f and conditions within the code model throughout

multiple iterations o f the code model during the simulation run. The specific circuit data

accessor macros used in this code model implementation included ARGS, EMIT, T(n),

and TEMPERATURE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

6.2.1.1.1 “ARGS”

ARGS is the macro passed in the argument list o f the C function within the MOD

file. It provides a means o f referencing each model to the rest o f the macro values. It is

the only argument allowed in the argument list, and it is required.

6.2.1.1.2 “INIT”

INIT is basically a binary test to find out whether or not the code model has been

called before its current instance. INIT is set to “ 1” if this is the first call to the code

model instance, and it is set to “0” if it is not.

6.2.1.1.3 “T(n)”

T(n) is a double (C numeric data type) vector giving the code model programmer

insight into the timing during a transient analysis. The vector contains the current time at

T(0), and the last accepted timepoint at T(l). This also gives the programmer a way o f

knowing the current timestep by subtracting T (l) from T(0).

6.2.1.1.4 “TEMPERATURE”

TEMPERATURE is a double (C numeric data type) holding the value o f the

temperature for the current simulation run. This temperature is set for the SPICE

simulation run in the SPICE deck using the tem p-”value” and tnom=”value” in the

.options line. This allows the code model programmer the ability to integrate the

simulation temperature easily with the code model functionality where temperature

dependence is required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Table 6.2. Accessor Macros used within the XSPICE Code Model Toolkit.

Accessor Macros Used in the XSPICE Code M odel Toolkit
Name Type Args Description

ARGS Mif Private t <none> Standard argument to all code model functions

CALL TYPE enum <none> Type of model evaluation call: ANALOG or EVENT

INIT Boolean <none> Is this the first call to the code model

ANALYSIS enum <none> Type of analysis: DC, AC, TRANSIENT

FIRST TIMEPOINT int <none>
Integer that takes the value of 1 or 0 on whether this is the
first call to the code modes instance or not, respectively

TIME Double <none> Current analysis time (same as T(0)>

T(n) int index
Current and previous analysis times (T(0) = TIME = current
analysis time, T(l) = previous analysis time)

RAD FREQ double <none> Current analysis frequency in radians per second

TEMPERATURE double <none> Current analysis temperature

PARAM Context Dependent namefil Value o f the parameter

PARAM SIZE int name Size of parameter vector

PARAM NULL Boolean t namefil Was the parameter not included on the SOICE .model card?

PORT SIZE int name Size of port vector

PORT NULL Mif Boolean t name Has this port been specified as unconnected?

LOAD double name[il The digital load value placed on a port by this model

TOTAL LOAD double namefil
The total o f all loads on the node attached to this event-
driven port

INPUT double or void * namefil Value o f analog input port

INPUT STATE enum namefil State of a digital input: ZERO, ONE, or UNKNOWN

INPUT STRENGTH enum namefil
Strength on digital input: STRONG, RESISTIVE,
HI IMPEDENCE, or UNDETERMINED

OUTPUT double or void * namefil Value of analog output port

OUTPUT CHANGED Boolean t namefil
Has a new value been assigned to this event-driven output
by the model

OUTPUT DELAY double namefil Delay in seconds for an event-driven output

OUTPUT STATE enum namefil State of a digital output: ZERO, ONE, or UNKNOWN

OUTPUT STRENGTH enum namefil
Strength on digital output: STRONG, RESISTIVE,
HI IMPEDENCE, or UNDETERMINED

PARTIAL double ym.xrn Partial derivative of output y with respect to input x

AC GAIN Complex t y[i],x[il AC gain of output y with respect to input x

STATIC VAR Context Dependent name Value of static variable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

6.2.1.2 Parameter Data, Input, and Output Data,
and Static Variable

While the circuit data group has accessor macros which allow the programmer to

monitor conditions within the code model during the simulation, it is the parameter data,

input and output data, and the static variable accessor macros that truly make the code

model function. These accessor macros allow the code model programmer to set

parameters within the IFS file, pass data between the code model instance and the SPICE

simulation environment, as well as maintain variables between multiple iterations o f code

model itself.

6.2.1.2.1 PARAM(parameter_ name)

The PARAM accessor macro allows the code model programmer to access the

parameters set in the IFS file mentioned earlier. These parameters can pass default

values into the simulation allowing the programmer to set and change initial conditions

without having to recompile and link the code model. The following example loads the

parameter “v resf ’ defined in the IFS file into the C variable “V oltagerest”.

VoItage_rest = PARAM(v_rest);

6.2.1.2.2 INPUT (port_name)

The INPUT accessor macro provides a path for the code model programmer to

access any input ports defined in the IFS file. This allows input from the SPICE circuit

simulation to be acted on by the code model’s functionality. The following example

saves data from the input port “a” into the C variable “I_in”.

I_in = INPUT(a);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

6.2.1.2.3 OUTPUT(port_name)

The OUTPUT accessor macro provides a path for the code model programmer to

send data back to the SPICE simulation from the code model via any output ports defined

in the IFS file. This allows output from the code model to be acted on by the SPICE

circuit simulation. The following example saves data from the OUTPUT port “b” into

the C variable “I_in”.

OUTPUT(b) = Vm;

6.2.1.2.4 STATIC V A R (stativvarnam e)

The STATIC VAR accessor macro allows the code model programmer to access

the static variables set in the IFS file mentioned earlier. These static variables act as

nonvolatile memory to save data through out the many iterations o f the code model

during a SPICE simulation. The following example allocates static memory as required

by the C programming language. The example then loads the static variable

“previousm ” defined in the IFS file and possibly used in the previous iteration of the

code model into the C variable “previous_m”.

STATIC_VAR(previous_m) = (double *) malloc(sizeof(double));

previous_m = STATIC_VAR(previous_m);

6.3 Device Model Creation and Setup in SPICE

Both NGSPICE and SPICE OPUS are well documented on creating the device

models and building them once created. Procedures for both applications are similar with

the main difference being an additional step required by SPICE OPUS at the end o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

process. Since SPICE OPUS is a Windows application, it requires, as a final step,

compilation o f all files into a multithreaded dynamically linked library (.dll) file.

6.3.1 NGSPICE Device Model Creation

NGSPICE was developed in 1999 by a small group of internet users based on

SPICE 3F5 and it is licensed under the standard BSD license. Versions used for this

dissertation include both LINUX and Windows versions. The Windows version requires

a Linux emulator, and runs much like the Linux version.

The procedures needed to create, compile and link the newly developed device

model can be broken down into three main steps. Step 1 involves setting up the directory

structure required for the device model. The code model tool kit present in XSPICE

requires the user to place the device model files in the “ng-spice\src\icm” folder. The

remainder o f the steps will be described as completed for the neuron device model.

Should problems arise, reviewing the files and folders used by other device models

present in the inventory is a helpful option. A new folder was created for each individual

device model. In the case o f the device model for this dissertation, the folder “neuron”

was created. Inside the neuron folder, an icm neuron folder was created. This folder

will hold the “ifspec.ifs” and “cfunc.mod” files used to define the data structures and

device model functionality as described in Paras. 6.1 and 6.2. In the “neuron” folder, a

new file was created called modpath.lst which contains a list o f user devices. In this case,

“icm neuron” is the only entry. The next step was to edit the

“src/xspice/icm/makedefs.in” and alter the CMDIRS line to include the “neuron”

directory. The last step was to run the command “make” in the “src\xspice\icm”

directory. This runs the “make” file which contains the information for compiling and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

linking needed to connect the device model to the SPICE engine. Once completed, the

device model could be found in “src/xspice/icm/neuron/neuron.cm”. Further, more

detailed information, can be found on the NGSPICE website and inside the “src\xspice”

folder under the “README” file [34],

6.3.2 SPICE OPUS Device Model Creation

First released in 1999, SpiceOpus is a circuit simulator with optimization utilities.

It is based on the original Berkeley source code and is available for the Windows and

Linux operating systems. Unlike the Windows version o f NGSPICE, SPICE OPUS is a

resident application in the Windows environment, and does not need a Linux emulator to

run. XSPICE functionality is included with full support o f the code model toolkit.

The procedures needed to create, compile and link the newly developed device

model in SPICE OPUS is very similar to the steps used for NGSPICE. One main

difference between the two versions is everything compiled must be compiled for use in a

multithread dll library. The first step is to create one directory for each device model.

All files created will be placed into this directory. Next, the “ifspec.ifs” and “cfiinc.mod”

files are created. Next, compile the “ifspec.ifs” file by using the cmpp utility with the

command “cmpp -ifs”. This results in a “ifspec.c file”. Now, compile the cfunc.mod file

using the cmpp utility with the command “cmpp -m od”. This results in a “cfunc.c” file.

The next step is to compile both .c files using a C compiler. It is important to note that the

files must be compiled as a multithreaded .dll program. The include files for compilation

are in the xsource/include directory in the SPICE OPUS tree. Now there are two “ .obj”

files that will be linked later with other “.obj” files to produce the dll (.cm) library. To

build the library, list all CM directories in the “cmpath.lst” file. Next, compile the “.1st”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

files using the command “cmpp -1st”. This step will create two files: “cmextem.h”,

“cminfo.c”. The “dlinfo.h” file must now be edited to enter the information about the

“.cm” library. The next step is to compile the “dlmain.c” with multithreaded dll options

set. By defining the macro CM_WINDOWS, you specify that this is a Windows compile.

Finally, link together all CM “.obj” files with the “dlmain.obj” file to obtain a

multithreaded .dll., and change the files extension to “.cm”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

DEVICE MODEL DESCRIPTION

As detailed in chapter seven, the XSPICE code model toolkit requires two files to

define the device model created by the user. The two files required are the “ifspec.ifs”

and “cfunc.mod” files. The “ifspec.ifs” file defines the data structures used to pass data

to, from, and within the device model during a given simulation run, as well as defining

parameters for use with the device model. The “cfunc.mod” file defines the behavior o f

the device model using the C programming language. The actual files for the device

model detailed in this dissertation are broken into sections in 7.1 and 7.2 o f this chapter.

This is done to discuss the contents o f the files as well as document the specifics o f the

files and how they define the functionality o f the Hodgkin-Huxley based device model.

Only pertinent areas will be covered in the description.

7.1 Interface Specification File

The “ifspec.ifs” file is broken into five sections for the source code description.

Section 1 is the basic file information. Section 2 contains the C language include and

variable declarations used in the device model. Section 3 is the beginning o f the first call

to the device model by SPICE. It loads the parameters set in the .model line o f the netlist

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

file if present. Any parameter not set in the “.model” line will be loaded with the default

value set in the ifspec.ifs file or calculated as required. Section 4 allocates static memory

locations for the static variables defined in the “ifspec.ifs” file. Section 5 sets the initial

conditions o f the device model and the static variables associated with the device model.

Section 6 loads the static variable values for the model values from the last time step as

well as calculates the current values o f the alpha and beta values for the current time step.

Finally, section 7 calculates the equations o f the Hodgkin-Huxley model culminating in

the membrane potential for the current time step.

7.1.1 “ifspec.ifs” File - Section 1

Figure 7.1 is section one o f the “ifspec.ifs” file. It is the basic descriptive element

o f the file common to all programs. This section details information concerning program

name, author, and modifications made to the original file, as well as a summary o f the

files purpose.

Section 1
/ *= =
Program Name - "ifspec.ifs"
AUTHOR
Anthony S. Carver, Louisiana Tech, Coliege o f Engineering and Sciences
MODIFICATIONS
None
SUMMARY

This file contains the interface specification file for the
Neuron code model.

= = == = = = =: = = = = = =: = = = = = = = = == = = = = = = = = m = = = = = = = = = = = = = = = = = = */

Figure 7.1. Section one of device model “ifspec.ifs” file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

7.1.2 “ifspec.ifs” File - Section 2

Figure 7.2 is section 2 o f the “ifspec.ifs” file. It is the Name Table section

described in 6.1.1. The name table contains three entries. The first entry defines the C

function name used in the “cfunc.mod” file; in this case, the function name is “neuron”.

Entry two defines the actual name used in the .model statement within the SPICE

simulation file also known as a “deck” in reference to the punch cards used to run SPICE

programs in its early days o f use. Again, for this device model, the name used in the

“.model” line o f the netlist file is “neuron”. Finally, entry three provides a description o f

the model being developed.

Section 2

NAME_TABLE:

C_Function_Name: neuron
Spice_Model_Name: neuron
Description: "Hodgkin-Huxley Code Model"

Figure 7.2. Section two o f device model “ifspec.ifs” file.

7.1.3 “ifspec.ifs” File - Section 3

Figure 7.3 is section 3 o f the “ifspec.ifs” file. It details the port connection used

by the device model to transfer data to and from the SPICE simulation. The Port Table is

described in 6.1.2. The port for the device model developed is named “a” and is an input

and output port allowing the device model to send and receive data through the single

port. The port’s default type is “h” which is defined in table 6.1 as a resistance (Current

Controlled Voltage Source) port. The port has no other allowed port type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Section 3

PORT_TABLE:

Port_Name: a
Description: "Neuron Input/O utput port"
Direction: inout
Default_Type: h /^C urrent Controlled Voltage Source*/
Allowed_Types: [h]
Vector: no
Vector_Bounds: -

Null_Allowed: no

Figure 7.3. Section three o f device model “ifspec.ifs” file.

7.1.4 “ifspec.ifs” File - Section 4

Figure 7.4 is section 4 o f the “ifspec.ifs” file. It is the Parameter Table. The

Parameter Table is detailed in 6.1.3. This section defines the parameters used in the

“.model” line o f the netlist file and sets the default values used if the parameter is not set

in the “.model” line. One item to note is the value o f v_rest equaling 0. This is done to

allow the device to look for a value, and if the value is anything other than zero, that

value is used. If the resting potential is not set in the “.model” line, the zero value is

passed to the device model as the default. Within the “cfunc.mod” file, if the value

passed is zero, the device model calculates the resting potential based on the other initial

conditions passed to the model. The Description line provides the information

concerning the 14 different parameters defined in this section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Section 4

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Nu!l_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAMETER_TABLE:
Parameter_Name:
Description:

Data_Type:
Default_Vaiue:
Limits:
Vector:
Vector_Bounds:
Null Allowed:

v_rest
"Resting voltage"
real
0

no

yes

ci_na
"Na intracell cone"
real
50.0E-3

no

yes

ci_k
"K intracell cone"
real
400.0E-3

no

yes

max_gna
"Max Sodium Conductance"

real
120.0E-3

no

yes

Figure 7.4. Section one o f device model “ifspec.ifs” file.

cap
"Capacitance Value"
real
1.0E-6

no

yes

co_na
"Na intracell cone"
real
491.0E-3

no

yes

co_k
"K extracell cone"
real
20.11E-3

no

yes

max_gk
"Max Potassium
Conductance"
real
36.0E-3

no

yes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

PARAMETER_TABLE:
Parameter_Name: gJ v_l
Description: "Leakage conductance" "Leakage voltage"
Data_Type: real real
Default_Value: 0.3E-3 -49.0E-3
Limits: - -
Vector: no no
Vector_Bounds: - -

Null_AI lowed: yes yes

PARAMETER_TABLE:
Parameter_Name: cell_radius ce llje n g th
Description: "neuron radius-meters" "neuron length-

meters"
Data_Type: real real
Default_Value: 1 1
Limits: - -
Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:
Para mete r_Na me: qlO compartment_number
Description: "temperature factor" "1 = single

compartment, 2 =
more than 1"

Data_Type: real int
Default_Value: 3 1
Limits: - -
Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

Figure 7.4. Continued.

7.1.5 “ifspec.ifs” File - Section 5

Figure 7.5 is section 5 o f the “ifspec.ifs” file It is the Static Variable section

described in 6.1.4. The Static Variable table defines the static variables, defined as

pointers, which will persist through the multiple passes through the model during the

entire SPICE simulation. These variables contain the previous values used to calculate

the m, h, n, and current potential values using the Euler method o f numerical integration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Section 5

ST ATIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_voltage
pointer
"iteration holding previous voltage value"

ST ATIC_VA R_TA BLE:
Static_Var_Name:
Data_Type:
Description:

previous_m
pointer
"iteration holding previous m value"

ST A TIC_VA R_TABLE:
Static_Var_Name:
Data_Type:
Description:

previous_h
pointer
"iteration holding previous h value"

STA TIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_n
pointer
"iteration holding previous n value"

ST ATIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_current
pointer
"iteration holding previous current value"

STA TIC_V AR_TABLE:
Static_Var_l\lame:
Data_Type:
Description:

previous_voltage_temp
pointer
"iteration holding variable for lim iting"

ST ATIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_m_temp
pointer
"iteration holding previous m value"

ST A TIC _V A R _T ABLE:
Static_Va r_Name:
Data_Type:
Description:

STA TIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_h_temp
pointer
"iteration holding previous h value"

previous_n_temp
pointer
"iteration holding previous n value"

Figure 7.5. Section five o f device model “ifspec.ifs” file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

ST ATIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_current_temp
pointer
"iteration holding previous current value"

STA TIC_V AR_TABLE:
Static_Var_Name:
Data_Type:
Description:

lastT
pointer
"iteration holding previous T(0)"

ST ATIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

lastCurrent
pointer
l i Holds input current between iterations"

Figure 7.5. Continued.

7.2 Model Definition File

The “cfimc.mod” file is broken into seven sections for the source code

description. Section 1 is the basic file information. Section 2 contains the include and

variable declarations used in the device model. Section 3 is the beginning o f the first call

to the device model by SPICE. This section is responsible for loading the parameters set

in the .model line o f the netlist file, if present. Any parameter not in the .model line will

be loaded with the default value set in the ifspec.ifs file or calculated as required. Section

4 allocates static memory locations for the static variables defined in the ifspec.ifs file.

Section 5 sets the initial conditions o f the device model and the static variables associated

with the device model. Section 6 loads the static variable values for the model values

from the last time step as well as calculates the a and /? values for the current time step.

Finally, section 7 calculates the equations o f the Hodgkin-Huxley model culminating in

the membrane potential for the current time step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

7.2.1 “cfunc.mod” File - Section 1

Figure 7.6 is section 1 of the “cfunc.mod” file. It is the basic descriptive elements

of the file common to all programs. This section details information concerning program

name, author, and modifications made to the original file, as well as a summary of what

the files purpose is.

Section 1
/ ; k = = = = = = = = : = = = = = = : = = =: = = = = = = = = = = = =; = = = = = = = = = = = = = = =: = = = = = = =

CFUNC.mod

AUTHOR
Anthony S. Carver, Louisiana Tech, College of Engineering and Sciences

MODIFICATIONS
None

SUMMARY
This file contains the model-specific routines used to
functionally describe the Neuron code model.

=============:========:===============:==:=============*/

Figure 7.6. Section one of device model “cfunc.mod” file.

7.2.2 “cfunc.mod” File - Section 2

Figure 7.7 is section 2 of the “cfunc.mod” file. It defines the pointers used for the

static variables read in from the “ifspec.ifs” file as well as the model variables used for

the Hodgkin-Huxley model calculations. This section also defines the constants used for

device model calculations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

Section 2

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

*previous_voltage, //% Pointers
*previous_m, //% used
*previous_h, //% for
*previous_n, //% static
*previous_voltage_temp, //% variables
*previous_m_temp, //% II
*previous_h_temp, //% 11
*previous_n_temp, //% 11
*lastT, //% 11
*lastCurrent; //% 11
v_rest, //% Membrane Resting Potential
Cap, //% Membrane Capacitance
E Na, //% Sodium Potential
E_K, //% Potassium Potential
gNa, //% Sodium Conductance
gK, //% Potassium Conductance
v_neuron, //% Input voltage
R = 8.314, //% Reiberg constant (joules/(mole*kelvin)).
F = 9.648E4, //% Faraday's constant (coulombs/mole).
Z = 1, //% Sodium and potassium ionic valence.
b = 0.02, //% Relative permeability of Na to K
MO, //% Resting M
HO, //% Resting H
NO, //% Rest N
V_r, //% Membrane Resting Potential
delta_T, //% Timestep
gNamax, //% Maximum Na conductance (S/cmA2)
gKmax, //% Max K conductance (S/cmA2)
cm, //% Active region capacitance (F/cmA2)
coNa, //% Extracellular Na concentration (mol/L)
ciNa, //% Intracellular Na concentration (mol/L)
coK, //% Extracellular k concentration (mol/L)
ciK, //% Intracellular K concentration (mol/L)
VNa, //% Na Nernst Potential
VK, //% K Nernst Potential
ah, am, an, //% m, h, & n Alphas
bh, bm, bn, //% m, h, 8i n Betas
up, down, //% Used for zero denom case error checking
tauM, tauH, tauN, //% Time Constants
infM, infH, infN, //% Final m, h, &n values
IK, //% Potassium Current
INa, //% Sodium Current
I_memb, //% Membrane current
m, h, n, //% M, H, and N values

Figure 7.7. Section two of device model “cfunc.mod” file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Vm,
gL,
vi,
Ileak,
Q10,
compart_num,
abstemp,
V Jn ,
I_in,
Atotal,
V_m,
L,
aj,
pi = 3.141592654;

Figure 7.7. Continued.

7.2.3 “cfunc.mod” File - Section 3

Figure 7.8 is section 3 o f “cfunc.mod” file. It is the beginning o f the first call to

the device model by SPICE. It loads the parameters set in the “.model” line o f the netlist

file, if present. Any parameter not set in the “.model” line will be loaded with the default

value set in the “ifspec.ifs” file or calculated, as required. Section three also calculates

the area used to scale the values in the Hodgkin-Huxley model. Finally, section three

calculates the resting potential if zero is passed from the “ifspec.ifs” file.

Section 3

/ * * * * Neuron Code Model ROUTINE * * * /

in t neuron(ARGS) / * structure holding parms, inputs, outputs, etc. * /

{
I J n = (IN PU T(a)*le6);

if (INIT==TRUE) { / * First pass...allocate storage for previous value... * /

Figure 7.8. Section three o f device model “cfunc.mod” file.
/ * Pull in parameters from ifspec.ifs * /

/ /% Membrane Potential
/ /% Leakage Conductance
//% Leakage Potential
/ /% Leakage Current
/ /% Temperature scaling factor - Q10
//% 1-single compartment 2 for more than one
//% Current Absolute Temperature
//% Voltage In
//% Current In
//% Membrane Total Area
//% Membrane Voltage
//% Neuron Cell length
//% Neuron Cell radius

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

abstemp = 273.15 + TEMPERATURE;
aj = PARAM(cell_radius);
L = PARAM(cellJength);
compart_num = PARAM(compartment_number);

if (compart_num = = 1){ / * Surface area o f one cylinder, including ends * /

Atotal = ((2 *p i*a j*L *pow (100 ,2))+ (2 *p i*pow (a j,2)*pow (100 ,2)));
>
else{

Atotal = (2 *p i*a j*L *pow (100 ,2)); / * Surface Area of cylinder for
multiple com partm ent*/

>
cm = (PARAM (cap)*le6)*Atotal;
gNamax = (PARAM (m ax_gna)*le3)*Atotal;
gKmax = (PARAM (m ax_gk)*le3)*A total;
ciNa = (PARAM(ci_na)*le3);
coNa = (PARAM(co_na)*le3);
ciK = (PARAM (ci_k)*le3);
coK = (PARAM(co_k)*le3);
VI = (PARAM (v_l)*le3);
g f = (PARAM (g_l)*le3)*Atotal;
V_r = PARAM(v_rest);
Q10 = PARAM(qlO);
if (V_r = = 0){ / * calculate resting potential if not defined in ifspec.ifs * /

V_r = (((R *abstem p)/(Z*F))*log((coK + b*col\la)/(ciK +
b*ciNa)))*1.0E3;

>

Figure 7.8. Continued.

7.2.4 “cfunc.mod” File - Section 4

Figure 7.9 is section 4 o f the “cfunc.mod” file. It allocates static memory

locations o f the appropriate size for the static variables defined in the “ifspec.ifs” file. It

then ties the static locations to the pointer defined in section 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Section 4

/ * Allocate storage for static variables * /

STATIC_VAR(previous_voltage) = (double *) malloc(sizeof(double));
previous_voltage = STATIC_VAR(previous_voltage);

STATIC_VAR(previous_m) = (double *) malloc(sizeof(double));
previous_m = STATIC_VAR(previous_m);

STATIC_VAR(previous_h) = (double *) malloc(sizeof(double));
previous_h = STATIC_VAR(previous_h);

STATIC_VAR(previous_n) = (double *) malloc(sizeof(double));
previous_n = STATIC_VAR(previous_n);

STATIC_VAR(previous_voltage_temp) = (double *) malloc(sizeof(double));
previous_voltage_temp = STATIC_VAR(previous_voltage_temp);

STATIC_VAR(previous_m_temp) = (double *) malloc(sizeof(double));
previous_m_temp = STATIC_VAR(previous_m_temp);

STATIC_VAR(previous_h_temp) = (double *) malloc(sizeof(double));
previous_h_temp = STATIC_VAR(previous_h_temp);

STATIC_VAR(previous_n_temp) = (double *) malloc(sizeof(double));
previous_n_temp = STATIC_VAR(previous_n_temp);

STATIC_VAR(lastT) = (double *) malloc(sizeof(double));
lastT = STATIC_VAR(lastT);

STATIC_VAR(lastCurrent) = (double *) malloc(sizeof(double));
lastCurrent = STATIC_VAR(lastCurrent);

Figure 7.9. Section four o f device model “cfunc.mod” file.

7.2.5 “cfunc.mod” File - Section 5

Figure 7.10 is section 5 o f the “cfunc.mod” file. It sets the initial conditions for

the sodium and potassium Nernst potentials as well as the a and P rate constants based

on the resting potential. Code is included to handle the zero denominator possibility.

Section 5 also sets the final value time constants and initializes the static variables used to

store previous values during the simulation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Section 5

/ * Set Nernst Potentials, VNa, and VK based on ionic concentrations * /

VNa = (((R *abstem p)/(Z*F))*log(coN a/c iN a))*le3 ;
VK = (((R *abstem p)/(Z *F))*log (coK /c iK))*le3 ;

/ * Set M, N and H initial conditions... * /

ah = 0 .07*exp(-0 .05*(V _r+60));
bh = l/(l+ e x p (-0 .1 * (V _ r+ 3 0))) ;

/ * * * Handle indeterminate cases when denominator = 0 * * * /

if (v_ r == -3 5){
up = V_r + 1.0E-4;
down = V_r - 1.0E-4;
am = (-0 .1 *(u p + 3 5)/(e xp (-0 .1 *(u p + 3 5))- l) + -0 .1 *(dow n+35)/

(e xp (-0 .1 *(d o w n + 3 5))-l))/2 ;
>
else {

am = -0 .1 *(V _ r+ 3 5)/(e xp (-0 .1 *(V _ r+ 3 5 » -l) ;
>

bm = 4 .0*exp(-(V _r+60)/18);

if (v_r = = - 5 0) {
up = V_r + 1.0E-4;
down - V_r - 1.0E-4;
an = (-0 .0 1 *(u p + 5 0)/(e xp (-0 .1 *(u p + 5 0))- l) + -0 .01*(dow n+50)/

(exp (-0 .1^ (dow n+ 50))-l))/2 ;
>
else {

an = -0 .0 1 *(V _ r+ 5 0)/(exp (-0 .1 *(V _ r+ 50))-l);
>

bn = 0.125*exp(-0.0125:(:(V_r+60));

MO = am /(am +bm); / * Final Value Time Constants * /
HO = ah/(ah+bh);
NO = an/(an+bn);

Figure 7.10. Section five o f device model “cfunc.mod” file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

/ * Set previous_voltage value to zero... * /

*previous_voltage = V_r;
*previous_m = MO;
*previous_h = HO;
*previous_n = NO;
*lastT = 0;
*lastCurrent = 0;
Vm = V_r;
>
else { / * if INIT != true...not firs t pass * /

if (T (0)= = 0 .0){
*previous_voltage = V_r;
*previous_m = MO;
*previous_h = HO;
*previous_n = NO;
*lastT = 0;
Vm = V_r;
*lastCurrent = 0;

>

Figure 7.10. Continued.

7.2.6 “cfunc.mod” File - Section 6

Figure 7.11 is section 6 o f the “cfunc.mod” file. It loads the static variable values

for the model values from the last time step as well as calculates the current values o f the

a and (3 values for the current time step.

Section 6

else { / * ifT (0) != 0.0 * /
previous_voltage = STATIC_VAR(previous_voltage);
previous_m = STATIC_VAR(previous_m);
previous_h = STATIC_VAR(previous_h);
previous_n = STATIC_VAR(previous_n);
previous_voltage_temp =

STATIC_VAR(previous_voltage_temp);
previous_m_temp = STATIC_VAR(previous_m_temp);
previous_h_temp = STATIC_VAR(previous_h_temp);
previous_n_temp = STATIC_VAR(previous_n_temp);

Figure 7.11. Section six o f device model “cfunc.mod” file.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

lastT = STATIC_VAR(lastT);
lastCurrent = STATIC_VAR(lastCurrent);
if (T (l) != * las tT){

*previous_voltage = *previous_voltage_temp;
*previous_m = *previous_m_temp;
*previous_h = *previous_h_temp;
*previous_n = *previous_n_temp;

*lastT = T (l) ;

*lastCurrent = I_ in / Atotal;
>

else{
>
delta_T = T(0)-T(1);

ah = 0 .07*exp(-0.05*(*previous_vo ltage+60));
bh = l/(l+ e xp (-0 .1 *(*p rev io us_vo ltag e+ 30)));

/ * * * Handle indeterminate cases when denominator = 0 * * * /

if (*previous_voltage = = -3 5){
up = *previous_voltage + 1.0E-4;
down = *previous_voltage - 1.0E-4;
am = (-0 .1 *(u p + 3 5)/(e xp (-0 .1 *(u p + 3 5))- l) +

-0. l*(dow n+ 35)/(exp (-0 . l* (d o w n + 3 5))-
D)/2;

>
else {

am = -0.1*(*previous_voltage+35)/
(exp(0 .1 *(*prev ious_vo ltage+35))-l);

>
bm = 4 .0*exp(-(*previous_voltage+60)/18);

if (*previous_voltage = = -5 0){
up = *previous_voltage + 1.0E-4;
down = *previous_voltage - 1.0E-4;
an = (-0 .0 1 *(u p + 5 0)/(e xp (-0 .1 *(u p + 5 0))- l) +

-0 .01*(dow n+50)/(exp(-0 .1*(dow n+50))-
D)/2;

>
else {

an = -0 .01*(*previous_vo ltage+50)/
(exp(-0 .1*(*p rev ious_vo ltage+50))-l);

>
j * * * * * * * * * * * * * * * * * * * * * * * * * * i t : * * * * * * * * * * * j

bn = 0.125*exp(-0.0125*(*previous_voltage+60));

Figure 7.11. Continued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

7.2.7 “cfunc.mod” File - Section 7

Figure 7.12 is section 7 o f the “cfunc.mod” file. It calculates the equations for the

time constants and final m, h, and n value. It then solves the m, h, and n gating equations

using the Euler method for numerical integration. This technique is valid given the very

short time steps used in the SPICE netlist file. Once the gating constants are found, the

sodium and potassium conductances are found, and then used to calculate the ionic

currents based on Nernst potentials, conductances, cell capacitance values, and the

previous membrane potential value. These currents are added to determine the total

membrane current. The membrane current is then used to calculate the new membrane

potential. Finally, the current values are stored into the static variables for use in the next

iteration o f the device model, and the membrane potential is output onto the output port

Section 7

/ * Calculate time constants * /

tauM = l/(a m + b m);
tauH = l/(a h + b h);
tauN = l/(a n + b n);

/ * Calculate final M, H, & N values * /

infM = am /(am +bm);
infH = ah/(ah+bh);
infN = an/(an+bn);

/ * Solving m, h, & n by the Euler method * /

m = *previous_m + ((((infM - *previous_m)/tauM) * delta_T)
* pow(Q10,((TEMPERATURE-6.3)/10))* le 3);

h = *previous_h + ((((in fH - *previous_h)/tauH) * delta_T)
* pow(Q10,((TEMPERATURE-6.3)/10))* le 3);

n = *previous_n + ((((in fN - *previous_n)/tauN) * delta_T)
* pow(Q10,((TEMPERATURE-6.3)/10))* le 3);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Figure 7.12. Section seven of device model “cfunc.mod” file.
/ * Calculating conductances using m, h, and n values calculated above * /

gNa = (gN am ax*m *m *m *h);
gK = (gK m ax*n*n *n *n);

/ * Calculating ionic currents based in conductances, Nernst potentials, previous
voltages and cell capacitance values * /

IK = ((VK - *previous_voltage)*gK)/cm ;
INa = ((VNa - *previous_voltage)*gNa)/cm ;

Ileak = ((VI - *previous_voltage)*gl_)/cm ;

/ * Calculating membrane current based on ionic currents * /

I_memb = IK + INa + Ileak + (*lastCurrent);

/ * Calculating new membrane voltage based on previous voltage and current
voltage for the current timestep using the Euler method * /

Vm = *previous_voltage + (I_m em b*de lta_T*le3);

/ * Store values for next iteration * /
*previous_voltage_temp = Vm;
*previous_m_temp = m;
*previous_h_temp = h;
*previous_n_temp = n;

>
>

Output to Port

OUTPUT(a) = V m * le -3 ;

return 0;

}

Figure 7.12. Continued.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

7.3 Device Parameterization

There are many variables utilized within the Hodgkin-Huxley model. These

variables include the Parameterization of the different variable values within the

Hodgkin-Huxley model (equations 4.2 and 4.4); the internal and external concentrations

of sodium and potassium and temperature values in the Nernst equations (equation 4.3);

the temperature and temperature coefficient, Qio value used in the rate constants to

incorporate temperature effects in the model; as well as the cylindrical cell radius and

length. Programming these variables into the source code of the model would not allow

for making changes in the middle of the simulation run. Because the variables use

default values set in the “ifspec.ifs” file embedded in the device model at compile time or

user set values defined in the “.model” line of the netlist simulation file, less setup time is

required to run multiple simulations using different values for different variables. Table

7.1 summarizes the parameters that can be changed between simulations as well as their

Table 7.1. List of the HodgkinHuxley and other associated variables, code model
parameter names, default values and units

Variables Parameter Name Default Value Units
Resting Potential v rest * calculated mV
Membrane capacitance per unit area cap 1.0e-6 F/cm2
Intracellular sodium ion concentration ci na 50.0E-3 mol/L
Extracellular sodium ion concentration co na 491.0E-3 mol/L
Intracellular potassium ion concentration ci k 400.0E-3 mol/L
Extracellular potassium ion concentration co k 20.1 IE-3 mol/L
Maximum sodium conductance per unit area max gna 120.0E-3 S/cm2
Maximum potassium conductance per unit area max gk 36.0E-3 S/cm2
Leakage conductance per unit area g j 0.3E-3 S/cm2
Leakage potential v 1 -49.0E-3 mV
Sodium Nernst equilibrium potentials v na * calculated mV
Potassium Nernst equilibrium potentials v k * calculated mV
Cell radius cell radius 10.0E-6 m
Cell length cell length 40.0E-6 m
Temperature coefficient qlO 3 N/A

* calculated if no value specified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

default values. By configuring the parameter table section in the “ifspec.ifs” file of the

code model to contain the variables of the Hodgkin-Huxley model, the values of the

variables can be changed in the .model line of the circuit file. An example of the .model

line used to specify parameter values is illustrated below:

.model neuron neuron (v_rest=-60 ql0=2 cell_radius=10e-6 cell_length=40e-6 cap=le-6)

The manner in which the parameters are specified is completely analogous to

conventional nonlinear device model parameter specifications in SPICE. All values from

table 7.1 may be specified by the user as in the above example for v rest, qlO, etc.

Again, default values are used if no value is specified in the .model line.

Another functional capability of this device model, which may not specifically

fall under the heading of parameterization, but fits into this section due to the flexibility it

provides, involves its ability to represent multiple neurons and neuron structures by using

a compartmental modeling approach. This capability is described in 7.4.

7.3.1 Temperature

How temperature affects the Hodgkin-Huxley model was discussed in 4.3.6.

These affects are parameterized using the “TEMPERATURE” circuit data accessor

macro explained in section 6.2.1.1.4. The temperature variables in equations 4.3 and 4.7

are tied to the SPICE simulation temperature set in the “.option” line of the netlist file

used for the simulation run. Examples of the “.option” line setting the simulation

temperature can be found in 7.4. The single neuron netlist file in 7.4.1 sets the simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

temperature to 6.3°c. This value is defined in section #3 of the “cfunc.mod” source code

described in section 7.1.2.3.

7.3.2 Hodgkin-Huxley Parameters

Like the temperature variable, the main Hodgkin-Huxley model variables are

parameterized. The parameters defined in the device model include the Nernst equation

variables used to define the sodium and potassium potentials, the leakage conductance

and equilibrium potentials, the maximum sodium and potassium conductances, and the

membrane capacitance. These variables have default values set in the “ifspec.ifs” file as

defined in table 7.1. In the case of the Nernst potentials, the value is calculated by the

device model if the user does not specify a value. The user can set the values of these

parameters by using the “.model” line in the netlist simulation file. The example netlist

shown in 7.5.1 sets the maximum sodium conductance (maxgna) at 80e-3 S/cm2.

7.3.3 Other System Parameters

The remainder of the parameterized variables pertain to the modeled neuron and

the initial resting membrane potential. The area of the cell modeled is defined as a

cylinder. Therefore, the cell radius and length are required to calculate that area. Finally,

the resting membrane potential can be set by the user in the netlist “.model” line. If it is

not set in the “.model” line, it is calculated in the device model as shown in section 3 of

the “cfunc.mod” source code described in section 7.1.2.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

7.4 Compartmental Modeling

The Compartmental modeling approach to propagating action potentials may not

specifically fall under the heading o f parameterization. However, the approach provides

great utility and flexibility for the user as a system parameter allowing the ability to

represent multiple neurons and neuron structures, and is therefore, included in this

chapter.

One way to describe the conduction velocity o f an action potential along an axon o f

a given diameter is by using the Core Conductor Equation [36]. This equation relates the

coupling o f voltage and current along a cylindrical cell by:

d2V
= 2 na{r0+ri)J m 7.1

where a is the radius o f the axon; r0 is the resistance per unit length o f the outer

conductor; r* is the resistance per unit length o f the inner conductor; and Jm is the

membrane current density. Substituting equation 4.2 into 7.1 yields:

-z— r = c . ■ + g , (V. - Vt) + g„. (V. - VK.) + gL (V. - VL) 7.2
oz ot

While solving this equation analytically is possible for some situations, in the case o f

solving voltage-dependent propagating action potential solutions, the analytical approach

using the above equations must be replaced with the compartmental approach described

in the literature [8;14;37;38].

The compartmental approach is based upon the ability to divide a continuous

system o f neurons into sufficiently small compartments, and then, make the assumption

each compartment is isopotential and uniform in their size, shape, and electrical

properties. This assumption makes it possible to model a nerve axon based on multiple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

compartments, each based on the dynamics o f the Hodgkin-Huxley model. The

compartmental method reduces the non-linear partial differential equation shown in

equation 7.2 to the set o f ordinary differential equations where each equation represents

one compartment o f the axon o f length “Ax” [39]. Each compartment is connected in

series by resistors acting as the axoplasm resistance (Rj). Figure 7.13 shows the “j th”

element o f an axon with the previous and next isopotential cell, delineated by the dotted

lines, connected through the axonal resistances. Section 7.5.2 describes a 10-neuron axon

using the compartmental model described above.

j-1 j j + 1

Rj/2

vW
R /2

AA/V
Ri/2

w v

>c,
I NaK ■NaK■NaK

Figure 7.13. The Hodgkin-Huxley equivalent circuit diagram depicting a patch o f a
neuronal cell membrane in terms o f ionic conductances (G), current densities (I), ionic
potentials (E) and membrane capacitance s (Cm).

7.5 Example Netlist Files

In order to show the utility o f the parameterized device model within a SPICE

simulation, two example netlists are included for reference in the parameterization

discussion. The first netlist is a simulation o f a single neuron, while the second example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

netlist utilizes the compartmental approach discussed in 7.3 to connect 10 neurons

together to form one axon.

7.5.1 Single Neuron

The netlist showed in figure 7.14 uses the neuron device model to simulate an

injected current o f InA into a single neuron. The netlist utilizes the parameterization o f

the device model by setting the resting membrane potential, temperature coefficient, cell

radius, cell length, and maximum sodium conductance parameters in the “.model” line as

well as the temperature parameters in the “ .options” line. All other model parameters are

either set in the “ifspec.ifs” file or calculated within the model itself. The output shown

in figure 7.15 is a screen capture o f the SPICE OPUS plot created by the SPICE

simulation using the “plot v (l)” command for the output o f the netlist showed in figure

7.14.

N e u r o n T e s t F i l e
1 0 1 p u l s e (0 l e - 9 5 e - 3 0 0 5 e - 3 2 0 e - 3)
a l 1 n e u r o n
. m o d e l n e u r o n n e u r o n (v _ r e s t = - 6 1 q l 0 = 3 c e l l _ r a d i u s = 1 0 e - 6

c e l l _ l e n g t h = 8 0 E - 0 6 m a x _ g n a = 1 1 5 e - 3)
. o p t i o n s t e m p = 6 . 3 t n o m = 6 . 3
. t r a n l e - 6 2 0 e - 3
. E N D

Figure 7.14. Example netlist for a InA injected current into a single neuron.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

Figure 7.15. Output o f the single neuron action potential simulation utilizing the code
from figure 7.14.

7.5.2 Ten Compartment Axon

The netlist showed in figure 7.16 uses the neuron device model to simulate an

injected current o f 50nA into an axon made up o f 10 neurons using the compartmental

modeling approach. Each device model is separated by a resistor acting as the

intracellular resistance. The netlist utilizes the parameterization o f the device model by

setting the resting membrane potential, temperature coefficient, cell radius, cell length,

and compartment number in the “.model” line as well as the temperature parameters in

the “.options” line. All other model parameters are either set in the “ifspec.ifs” file or

calculated within the model itself. The output shown in figure 7.17 is a screen capture of

the SPICE OPUS plot created by the SPICE simulation using the “plot v (l) v(2) v(3) v(4)

v(5) v(6) v(7) v(8) v(9) v(10)” command for the output of the netlist showed in figure

7.16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

N e u r o n T e s t F i l e
1 0 1 p u l s e (0 5 0 e - 9 5 e - 3 0 0 l e - 3 2 5 e - 3)
a l 1 n e u r o n
r l 1 2 1 1 . 3 E + 0 6
a 2 2 n e u r o n
r 2 2 3 1 1 . 3 E + 0 6
a 3 3 n e u r o n
r 3 3 4 1 1 . 3 E + 0 6
a 4 4 n e u r o n
r 4 4 5 1 1 . 3 E + 0 6
a 5 5 n e u r o n
r 5 5 6 1 1 . 3 E + 0 S
a 6 6 n e u r o n
r 6 6 7 1 1 . 3 E + 0 6
a 7 7 n e u r o n
r 7 7 8 1 1 . 3 E + 0 6
a 8 8 n e u r o n
r 8 8 9 1 1 . 3 E + 0 6
a 9 9 n e u r o n
r 9 9 1 0 1 1 . 3 E + 0 6
a l O 1 0 n e u r o n
r l O 1 0 1 1 1 1 . 3 E + 0 6
. m o d e l n e u r o n n e u r o n (v _ r e s t = - 6 0 q l 0 = 3 c e l l _ r a d i u s = 5 e - 6

c e l l _ l e n g t h = 2 . 5 E - 0 3 c o m p a r t m e n t _ n u m b e r = 2)
. o p t i o n s t e m p = 6 . 3 t n o m = 6 . 3
. t r a n l e - 6 2 5 e - 3
. E N D

Figure 7.16. Example netlist for a 50 nA injected current into an axon made up o f 10
Hodgkin-Huxley modeled neurons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Figure 7.17. Output o f the 10-compartment axon simulation showing propagation o f the
initial action potential utilizing the code from figure. 7.16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 8

DEVICE MODEL VALIDATION

In order to validate the device model associated with this dissertation, multiple

simulations were compared to existing results in the literature. Major aspects o f the

Hodgkin-Huxley model were first chosen as points o f interest for validation. These

validation points are detailed in 4.3.1-4.3.5. Once the basic validation o f the Hodgkin-

Huxley was complete, the validation was shifted to temperature as detailed in 4.3.6.

Finally, two types o f temperature blocks are compared to the device model results for the

same phenomena. The validation was completed using both SPICE OPUS and

NGSPICE implementations o f the device model which demonstrates the portability o f the

device model within SPICE simulation software containing the XSPICE Code Model

toolkit.

8.1 Comparison to Standard Hodgkin-Huxley Values

The first area o f validation for the device model created for this dissertation

involves the major aspects o f the Hodgkin-Huxley model discussed in sections 4.3.1-

4.3.6 to include m, h, and n values, repetitive activity, accommodation, anode-break

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

excitation, subthreshold oscillations, and the affects o f temperature on action potential

generation.

8.1.1 m, h, & n Value Validation

The first model aspect used for validation involves the actual values o f the gating

variables, m, h, and n at rest as well as throughout the generation o f an action potential.

As discussed in section 3, these gating variables are tied to the m, h, and n gates which

react to depolarization o f the cellular membrane at the initiation o f an action potential.

The “m” sodium activation gate reacts quickly, opening once a depolarization o f 10-20

mV occurs. The “h” activation gate begins to close upon depolarization; however, it

closes more slowly compared to the “m” gate activity. The “h” gate remains closed until

the refractory period has passed Finally, the potassium “n” gate begins to open once

sufficient depolarization has occurred to start the action potential, but like the sodium “h”

gate, it is also slow to react. The n gate remains open past the point o f repolarization to

the resting potential o f the cellular membrane. This phenomenon is illustrated on page

202, figure 4.32 in Weiss [18]. Figure 8.1 shows the device models results for the m, h,

and n gates throughout the action potential generation process.

8.1.2 Repetitive Activity Validation

As discussed in section 4.3.2, studies have shown that a suprathreshold current

applied to a nerve cell over time will cause multiple action potentials [22]. When

currents slightly above the cell’s threshold are used, only a single action potential is

created. This is simulated in panel A, figure 8.3. When higher continuous current

amplitudes are applied, multiple action potentials are seen with the latter action

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

potentials’ maximum amplitude being less than the initial action potential. This is

simulated in panels B-E in figure 8.3. Ultimately, action potentials caused by higher

currents are blocked demonstrating a property called a depolarization block. This is

simulated in panel F o f figure 8.3. This effect is caused by the continuous current’s

ability to decrease h and increase n over time. These changes affect the sodium and

potassium conductances which in turn reduces the action potential amplitude ultimately

m,h,n Values

c
■C

0.4 -E

0.2 -

100 2 4 6 8

Time (ms)

Figure 8.1. Device model results for m, h, and n computed using a 0.5 msec current
stimulus o f 10 nA and the standard Hodgkin-Huxley parameters from table 4.1.

resulting in the block. This affect is called repetitive activity, and the Hodgkin-Huxley

model exhibits the basics o f this phenomenon. An illustration for different stimulus

amplitudes can be found on page 232, figure 4.60 in Weiss (included in appendix C) [18].

Figure 8.2 shows the SPICE netlist used to simulate the device model results seen in

figure 8.3 using the identical suprathreshold currents used in Weiss.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

8.1.3 Refractory Period Validation

As discussed in section 3.6, the sixth property o f action potentials is associated with the

cells refractory period. Once the slow acting “h” sodium gates close, a subsequent action

potential in the same cell is prohibited due to the inability o f sodium ions to enter the cell

and begin the depolarization phase again. The time it takes the sodium “h” gates to

reopen and therefore allow a new action potential to begin is known as the refractory

period after the current action potential has ended [21]. Two related examples are

provided for the validation o f this portion o f the device model. Figure 8.4 shows the

SPICE netlist used for the related simulation. Figure 8.6 shows the actual SPICE OPUS

graphs o f the refractoriness noted in the original Hodgkin-Huxley work [9].

R e p e t i t i v e A c t i v i t y N e u r o n T e s t F i l e
1 0 1 p u l s e (0 5 e - 6 0 0 0 4 0 e - 3 5 0 e - 3)
a l 1 n e u r o n
. m o d e l n e u r o n n e u r o n (v _ r e s t = - 6 1 q l 0 = 3 c o m p a r t m e n t _ n u m b e r = 0)
. o p t i o n s t e m p = 6 . 3 t n o m = 6 . 3
. t r a n l e - 6 5 0 e - 3
. E N D

Figure 8.2. Hodgkin-Huxley repetitive activity comparison netlist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.060.06
A

0.040.04

0.02 0.02

0.00 0.00

- 0.02 - 0.02

-0.04 -0.04

-0.06 -0.06

- 0.1 -0.08
0.00 0.01 0.02 0.03 0.04 0.05 0.040.00 0.01 0.02 0.03 0.05

0.06 0.06
J = 10nA/cm-

0.04 0.04

0.02g 0.02 -

S 0 00 '
> -0'02

-0.04

0.00

- 0.02

-0.04

-0.06-0.06 ■
-0.08-0.08

0.03 0.040.00 0.01 0.02 0.050.01 0.02 0.03 0.040.00 0.05

0.06 0.06
C

0.04 ■ 0.04

0.020.02 -

0.00 - 0.00

- 0.02 ■ - 0.02

-0.04 - -0.04

-0.06 -0.06

-0.08 -0.08
0.020.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.03 0.04 0.05

Time (s)

Figure 8.3. Actual device model results showing action potential repetitive activity using
different current injections over a 40 ms time period—comparison with Weiss, page 232,
figure 4.60 (graph provided in appendix C).

A 15 nA/cm2 current is injected into a neuron at t=0 in all three graphs. The left-most

graph in figure 8.6 shows a second current injection o f 90 nA/ cm2 at 4 ms after the first

current injection with no action potential generation. The center graph in figure 8.6

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

shows a second current injection o f 90 nAJ cm2 at 5 ms after the first current injection

with a resultant action potential o f reduced amplitude. The right-most graph in figure 8.6

shows a second current injection o f 90 nAJ cm2 at 11 ms after the first current injection

with a full action potential generated. Figure 8.5 shows the netlist file used to simulate

the related, basic simulation seen in figure 8.7. The simulation contains three current

injections o f equal magnitude injected at 10 ms intervals. The first and third action

potential fires, but due to refractoriness, the second injection does not fire.

H o d g k i n - H u x l e y R e f r a c t o r i n e s s N e u r o n T e s t F i l e
I I 0 1 p u l s e (0 1 5 e - 9 O e - 3 0 0 l e - 3 2 5 e - 3)
* 1 2 0 1 p u l s e (0 9 0 e - 9 4 e - 3 0 0 l e - 3 2 5 e - 3)
* 1 2 0 1 p u l s e (0 9 0 e - 9 5 e - 3 0 0 l e - 3 2 5 e - 3)
* 1 2 0 1 p u l s e (0 9 0 e - 9 l l e - 3 0 0 l e - 3 2 5 e - 3)
a l 1 n e u r o n 2
. m o d e l n e u r o n 2 n e u r o n 2 (v _ r e s t = - 6 0 q l 0 = 3 c e l l _ r a d i u s = 5 e - 6
c e l l _ l e n g t h = 2 . 5 E - 0 3)
. o p t i o n s t e m p = 9 t n o m = 9
. t r a n l e - 6 2 5 e - 3
. E N D

Figure 8.4. Hodgkin-Huxley refractory period comparison netlist— for each time value
simulated, the appropriate current input line should be uncommented.

B a s i c R e f r a c t o r y P e r i o d N e u r o n T e s t F i l e

I I 0 1 p u l s e (0 1 5 e - 9 1 0 e - 3 0 0 l e - 3 1 0 e - 3)
a l 1 n e u r o n
. m o d e l n e u r o n n e u r o n (v _ r e s t = - 6 0 q l 0 = 3 c e l l _ r a d i u s = 5 e - 6

c e l l _ l e n g t h = 2 . 5 E - 0 3)
. o p t i o n s t e m p = 6 . 3 t n o m = 6 . 3
• t r a n l e - 6 4 0 e - 3

• E N D

Figure 8.5. Hodgkin-Huxley repetitive activity comparison netlist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Figure 8.6. A 15 nA/cm2 current is injected into a neuron at t=0 in all three graphs. The
left-most graph shows a second current injection o f 90 nAJ cm2 at 4 ms after the first
current injection with no action potential generation. The center graph shows a second
current injection o f 90 nAJ cm2 at 5 ms after the first current injection with an action
potential o f reduced amplitude is generated. The right-most graph shows a second
current injection o f 90 nAJ cm2 at 11 ms after the first current injection with a full action
potential generated.

0.06 -t Refractory Period

0.04 -

0.02 -

0.00 ->

> e -0 .0 2 -

-0.04 -

-0.06 -

-0.08
30 40200 10

Time (ms)

Figure 8.7. Device model results for the Basic refractory period simulation completed
using the netlist in figure 8.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

8.1.4 Anode-Break Excitation Validation

As discussed in section 4.3.4, another phenomenon present in nerve cells occurs

when a hyperpolarizing current is passed into a nerve cell for a period o f time long

enough for the membrane potential and all gating variables to stabilize at their steady-

state values. When the current is subsequently removed from the cell, an action potential

is generated. This is known as an anode-break excitation, and it occurs due to the

increase in h and the decrease in n which affects the potassium conductance. This lowers

the threshold necessary for initiating an action potential. This new threshold is achieved

when the hyperpolarized current is removed, and the cell is repolarized to its normal

resting potential [18]. The calculated anode-break excitation phenomenon is shown in

Weiss on page 230, figure 4.59 (included in appendix C) [18]. Figure 8.8 shows the

netlist file used to simulate device model’s results shown in figure 8.9 using the same

values given in Weiss. Temperature was set to 18.5°C and the maximum sodium

conductance was set to 160 mS/cm2.

A n o d e - B r e a k N e u r o n T e s t F i l e

1 0 1 p u l s e (0 - 9 e - 9 O e - 3 0 0 1 5 e - 3 3 0 e - 3)
a l 1 n e u r o n
. m o d e l n e u r o n n e u r o n (v _ r e s t = - 6 0 q l 0 = 3 c e l l _ r a d i u s = 5 e - 6

c e l l _ l e n g t h = 2 . 5 E - 0 3 m a x _ g n a = 1 6 0 e - 3)
. o p t i o n s t e m p = 1 8 . 5 t n o m = 1 8 . 5
. t r a n l e - 6 3 0 e - 3
• E N D

Figure 8.8. Hodgkin-Huxley anode-break comparison netlist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

Anode-Break Excitation
0.04 n

0.02 -

0.00 -

- 0.02 -

> E -0.04 -

-0.06 -

-0.08 -

- 0.10
150 10 205 25 30

Time (ms)

Figure 8.9. Anode-break device model results— comparison with Weiss, page 230, figure
4.59 (graph provided in appendix C).

8.1.5 Accommodation Validation

As discussed in section 4.3.3, if a current stimulus is applied to a nerve cell below

the threshold value for that cell, and then slowly increased over time, no action potential

is generated even though the threshold value for the cell is subsequently exceeded.

Known as accommodation, this phenomenon has been studied since the mid nineteenth

century [23]. Later studies using the space clamped squid axon apply ramped currents o f

differing slopes [22;24], These studies found slope values below which no action

potential was generated despite the threshold value o f current being exceeded under

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

normal step conditions. The Hodgkin-Huxley model does not exhibit accommodation at

the standard parameters o f the model; however, if the maximum sodium conductance

(g Na) is lowered to 80.0E-3 S/cm2, the Hodgkin-Huxley model does exhibit the

accommodation phenomenon [18]. The accommodation effect is shown on page 228,

figure 4.56 in Weiss (included in appendix C) [18]. Figure 8.10 shows the netlist file

used to simulate the device model’s results shown in figure 8.11 using the different g Na

value o f 80.0E-3 S/cm2.

A c c o m m o d a t i o n N e u r o n T e s t F i l e
1 0 1 p u l s e (0 8 0 0 e - 6 0 2 0 0 0 e - 3 0 2 0 0 0 e - 3 2 0 0 0 e - 3)
a l 1 n e u r o n
. m o d e l n e u r o n n e u r o n (v _ r e s t = - 6 1 q l 0 = 3 c o m p a r t m e n t _ n u m b e r = 0

m a x _ g n a = 8 O e - 3)
. o p t i o n s t e m p = 1 8 . 5 t n o m = 1 8 . 5
. t r a n l e - 6 2 0 0 0 e - 3
. E N D

Figure 8.10. Hodgkin-Huxley repetitive activity comparison netlist.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

-0.01 Accommodation

- 0.02

-0.03

-0.04

-0.05

-0.06

-0.07
1.0 1.5 2.00.0 0.5

Time (s)

Figure 8.11. Accommodation device model results— comparison with Weiss, page 228,
figure 4.56 (graph provided in appendix C).

8.1.6 Subthreshold Oscillations Validation

When a continuous pulse o f a relatively small subthreshold current is passed into a

nerve cell, the membrane potential exhibits highly damped oscillations [9;25]. This

effect happens for both positive and negative currents. Subthreshold oscillations are seen

in the Hodgkin-Huxley model. The calculated subthreshold oscillations phenomenon is

shown on page 233, figure 4.61 o f Weiss [18]. Figure 8.12 shows the netlist file used to

simulate the device model’s subthreshold oscillation results shown in figure 8.13.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

S u b t h r e s h o l d O s c i l l a t i o n s N e u r o n T e s t P i l e
1 0 1 p u l s e (0 - 1 . 4 9 e - 6 l e - 3 0 0 1 5 e - 3 2 5 e - 3)
a l 1 n e u r o n 2
. m o d e l n e u r o n 2 n e u r o n 2 (v _ r e s t = - 6 0 . 8 q l 0 = 3 c o m p a r t m e n t _ n u m b e r = 0)
. o p t i o n s t e m p = 1 8 . 5 t n o m = 1 8 . 5
• t r a n l e - 6 2 5 e - 3
. E N D

Figure 8.12. Subthreshold oscillations comparison netlist.

Subthreshold Oscillations

£ 0.5 ■

? nn OJ 0 .0 -
>

-0.5 -£
>

- 2.0
150 5 10 20 25

Time (ms)

Figure 8.13. Subthreshold oscillations device model results—comparison with Weiss,
page 233, figure 4.61.

8.1.7 Temperature Effects Validation

As discussed in section 4.3.6, temperature dependence in the Hodgkin-Huxley model is

included in two ways [9], The temperature dependence is included within the Nemst

equilibrium potential equations seen in equation 2.1. The Nemst potential o f the ions

involved is proportional to absolute temperature. Temperature also has an impact on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Hodgkin-Huxley model through the rate constants. The m, h, and n differential equations

are scaled by a constant temperature factor, Kt [18]. Equation 4.6 includes the

temperature factor in the m, h, and n equations. The affect o f temperature on the

Hodgkin-Huxley modeled action potential is shown on page 242, figure 4.68 in Weiss

[18]. Figure 8.14 shows the device model’s results using the same temperatures used in

Weiss. As the simulation temperature is increased, the action potential rate is increased.

This increase continues from 0°C up until 22°C. At this point the temperature affects the

action potential to the point o f blocking the action potential from firing at all.

Temperature Dependence

- o ° c
5°C
10°C
15°C

— 20°C
— 22°C
— 23°C
— 25°C

30°C

r -------

0 2 4 6 8 10

Time (ms)

Figure 8.14. Device model results showing the effect o f temperature on the Hodgkin-
Huxley model— comparison with Weiss, page 242, figure 4.68.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Comparison to Different Blocking Phenomena

The last two phenomenon used to validate the device model for this dissertation

include two action potential blocking phenomenon. The first is the temperature block

demonstrated in Weiss [18]. The second block used to validate the device model

involves a direct current block reported by Bhadra [19].

8.2.1 Temperature Block Between 22°C and 23°C Validation

To compare the thermal block reported in Weiss, a pair o f simulations were

implemented with a stimulus current density o f 20 nm/cm and the default Hodgkin-

Huxley parameter values. As discussed in Weiss, thermal block occurs in the Hodgkin-

Huxley model between 22-23°C [18]. Using our model, Figure 8.15 shows the action

potential fires at 22°C, but no action potential occurs at 23°C.

Temperature Block
40

20 -

>
E
<0
c
©On_©c2

X I
E©2

-20 -

-40 -

-60 -

-80
102 4 6 8 120

Time (ms)

Figure 8.15. Device model results showing the thermal block between 22°C and 23°C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

8.2.2 DC Conduction Block Comparison

There are numerous studies presented in the literature that demonstrate the ability

o f an injected electrical current to block the conduction o f action potentials. These

studies have used different waveforms (i.e. direct current, high frequency biphasic and

sinusoidal current sources) to perform the conduction block [15;19;40;41]. A DC

conduction block was chosen to validate the neuron device model [19]. In the study, a

conduction block was implemented using a 50 mm axon with a diameter o f 10 fim

divided into 21 compartments. A blocking current o f 250 nA was initiated in

compartment #10 at time = 10msec and maintained for 80 msec. At time = 40msec, a 50

nA test pulse was initiated at compartment #1. Compartment #21 was monitored for

propagation o f the action potential from the test pulse. The block completely stopped the

test pulse from passing compartment #10. Figure 8.16 illustrates the simulation setup.

The netlist used to compare the direct current study is shown in Figure 8.18. Figure 8.17

shows the results for the simulation run using the device model. The blocking current

initiated at compartment #10 at 10 ms and continued for 80 ms. The propagated pulse

from the block initiation, referred to as the “make” pulse is recorded at the test pulse and

monitor sites. The stimulus pulse is fired at compartment #1 at 40 ms. No pulse is

generated at the monitor site at compartment #21 from the test pulse due to the direct

current block initiated at the blocking site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Compartment #
1 2 3 9 10 11 19 20 21

TTTrtTTlfrTTTTi
t t t

Test DC Monitor
Pulse Block Site
Site Site

Figure 8.16. Illustration o f the 21 compartment axon and sites used during the dc
conduction block.

DC Block Results
80 Make Make Pulse Test

\ Propogated Pulse
Compartment # 1 - Test Pulse Site
Compartment # 10 - Block Site
Compartment # 21 - Monitor Site60 -

> 40 -
E

J 20 -
c0)
oQ.
CD
Cto

XI
E
<D
2

-20 -

-40 - Blocked
AP

-60

-80
1000 20 40 60 80

Time (ms)

Figure 8.17. A conduction block implemented in a 50 mm axon with a diameter o f 10
fim divided into 21 compartments. A blocking current o f 250 nA is initiated at
compartment #10 at 10 ms and continued for 80 ms causing a propagated pulse, known as
a “make” pulse, seen at the test and monitor site. A 50 nA test pulse is fired at
compartment #1 at 40 ms. No pulse is generated at the monitor site at compartment #21
from the test pulse due to the direct current block initiated at the blocking site.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N e u r o n T e s t F i l e
**
* T e s t P u l s e
I T e s t 0 1 p u l s e (0 5 0 e - 9 4 0 e - 3 0 0 l e - 3 1 0 0 e - 3)
**
* B l o c k I n p u t p u l s e
I B l o c k 0 1 0 p u l s e (0 2 5 0 e - 9 1 0 e - 3 0 0 8 0 e - 3 1 0 0 e - 3)

a l 1 n e u r o n
r l 1 2 1 1 . 3 E + 0 6
a 2 2 n e u r o n
r 2 2 3 1 1 . 3 E + 0 6
a 3 3 n e u r o n
r 3 3 4 1 1 . 3 E + 0 6
a 4 4 n e u r o n
r 4 4 5 1 1 . 3 E + 0 6
a 5 5 n e u r o n
r 5 5 6 1 1 . 3 E + 0 6
a. 6 6 n e u r o n
r 6 6 7 1 1 . 3 E + 0 6
a 7 7 n e u r o n
r 7 7 8 1 1 . 3 E + 0 6
a 8 8 n e u r o n
r 8 8 9 1 1 . 3 E + 0 6
a 9 9 n e u r o n
r 9 9 1 0 1 1 . 3 E + 0 6
a l O 1 0 n e u r o n
r l O 1 0 1 1 1 1 . 3 E + 0 6
a l l 1 1 n e u r o n
r l l 1 1 1 2 1 1 . 3 E + 0 6
a l 2 1 2 n e u r o n
r l 2 1 2 1 3 1 1 . 3 E + 0 6
a l 3 1 3 n e u r o n
r l 3 1 3 1 4 1 1 . 3 E + 0 6
a l 4 1 4 n e u r o n
r l 4 1 4 1 5 1 1 . 3 E + 0 6
a l 5 1 5 n e u r o n
r l 5 1 5 1 6 1 1 . 3 E + 0 6
a l 6 1 6 n e u r o n
r l 6 1 6 1 7 1 1 . 3 E + 0 6
a l 7 1 7 n e u r o n
r l 7 1 7 1 8 1 1 . 3 E + 0 6
a l 8 1 8 n e u r o n
r l 8 1 8 1 9 1 1 . 3 E + 0 6
a l 9 1 9 n e u r o n
r l 9 1 9 2 0 1 1 . 3 E + 0 6
a 2 0 2 0 n e u r o n
r 2 0 2 0 2 1 1 1 . 3 E + 0 6
a 2 1 2 1 n e u r o n
r 2 1 2 1 2 2 1 1 . 3 E + 0 6
. m o d e l n e u r o n 2 n e u r o n (v _ r e s t = - 6 0 q l 0 = 3 c e l l _ r a d i u s = 5 e - 6

c e l l _ l e n g t h = 2 . 5 E - 0 3 c o m p a r t m e n t _ n u m b e r = 2)
. o p t i o n s t e m p = 6 . 3 t n o m = 6 . 3
. t r a n l e - 6 1 0 0 e - 3
. E N D

Figure 8.18. Netlist used to simulate the 21 compartment dc conduction block.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 9

CONCLUSION

We have presented a novel and improved active membrane device model in

SPICE. While some implementations made use o f equivalent circuit models to

implement the Hodgkin-Huxley system o f equations, this model is similar to a technique

developed earlier which altered the source code o f an early version o f the University o f

Berkley’s SPICE2G to implement the differential equations in the Hodgkin-Huxley

model [7]. The improvement associated with our approach involves implementing the

device model using a standard feature o f most versions o f SPICE. This device model is

implemented using the Code-model Toolkit first created in the XSPICE version o f

SPICE. This toolkit allows for adding new models to existing versions o f SPICE without

changing the source code. The above approach incorporates within the SPICE code

model the flexibility o f changing parameters within the SPICE cir” files at runtime

instead o f hard coding the parameters into the source code. Once created, the SPICE

cfunc.mod and ifspec.ifs files can be easily installed on any computer running a version

o f SPICE which implements the XSPICE functionality (e.g. NGSPICE, TCLSPICE, and

SPICE OPUS).

The functionality o f this device model was exhibited by demonstrating the ability

o f the model to reproduce documented results for a select group o f characteristics found

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

in the Hodgkin-Huxley model. Also, two blocking phenomenon were simulated using

the device model and compared with simulations and data from the literature. The first

block was the natural thermal block found between 22°C and 23 °C as shown in Weiss

[18]. The last comparison used to validate the device model was the direct current block

documented by Bhadra [19]. Both simulations were implemented using the same device

model. Parameter values were altered by way o f a simple alteration to the SPICE netlist

file.

The novelty and robustness o f the modeling approach described herein is based on

the ease o f implementation. A wide variety o f active membranes can be simulated using

this code model approach. These biologically realistic components can be integrated

with artificial electronic components allowing for the simulation o f hybrid neural-

electronic circuitry under the SPICE simulation platform. These types o f hybrid circuit

simulations are not currently achievable using other neural simulators such as NEURON

or GENESIS.

The logical next step for this research would be to use the device model to

simulate possible integration schemes between nerve cells and electronic components;

however, this work is more o f an example o f what the code model toolkit functionality

can do than an end-all-be-all for neuronal modeling. Further research implementing

other biological processes which may be integrated with artificial electronic components

is wide open given the flexibility o f the code model functionality.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

IFSPEC.IFS SOURCE CODE

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

/ * == = = = = = = = = = = = = = = = = = = = = = = = =: = = = = = ====:==:= = = = = = = = = = =

Program Name - "ifspec.ifs"

AUTHOR
Anthony S. Carver, Louisiana Tech, College of Engineering and Sciences

MODIFICATIONS
None

SUMMARY
This file contains the interface specification file for the
Neuron code model.

= ======z=== == = = = = = m = = = = = = = = = = = ====== = = = = = = = = = = = y

NAME_TABLE:

C_Function_Name:
Spice_Model_Name:
Description:

neuron
neuron
"Hodgkin-Huxley Code Model"

PORT_TABLE:

Port_Name: a
Description: "Neuron Input/O utput port"
Direction: inout
Default_Type: h /^C urrent Controlled Voltage Source*/
Allowed_Types: [h]
Vector: no
Vector_Bounds:
Null_Allowed: no

PARAMETER_TABLE:
Parameter_Name: v_rest cap
Description: "Resting voltage" "Capacitance Value'
Data_Type: real real
Default_Value: 0 1.0E-6
Limits: - -
Vector: no no
Vector_Bounds: - -

Null_Allowed: yes yes

PARAMETER_TABLE:
Parameter_Name: ci_na co_na
Description: "Na intracell cone" "Na intracell cone"
Data_Type: real real
Default_Value: 50.0E-3 491.0E-3
Limits: - -
Vector: no no
Vector_Bounds: - -
Null_Allowed: yes yes

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

PARAMETER_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAM ETE R_TABLE:
Parameter_Name:
Description:
Conductance"
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAM ETE R_TABLE:
Parameter_Name:
Description:
Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAM ETER_TABLE:
Parameter_Name:
Description:

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:
Null_Allowed:

PARAM ETE R_TABLE:
Parameter_Name:
Description:

Data_Type:
Default_Value:
Limits:
Vector:
Vector_Bounds:

ci_k
"K intracell cone"
real
400.0E-3

no

yes

co_k
"K extracell cone"
real
20.11E-3

no

yes

max_gna max_gk
"Max Sodium Conductance" "Max Potassium

real real
120.0E-3 36.0E-3

no no

yes yes

g J
"Leakage conductance"
real

0.3E-3

no

yes

v j
"Leakage voltage"
real
-49.0E-3

no

yes

cell_radius ce llje n g th
"neuron radius-meters" "neuron length-

meters"
real real
1 1

no no

yes yes

qlO
"temperature factor"

real
3

no

compartment_number
"1 = single
compartment, 2 =
more than 1"
int
1

no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Null Allowed: yes yes

STA TIC_V AR_TABLE:
Static_Var_Name:
Data_Type:
Description:

STA TIC_V AR_TABLE:
Static_Var_Name:
Data_Type:
Description:

ST A TIC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

ST A T IC _V A R _T ABLE:
Sta ti c_Va r_N a m e :
Data_Type:
Description:

STATIC_V A R_TA BLE:
Static_Var_Name:
Data_Type:
Description:

STATIC _V A R_TABLE:
Static_Var_Name:
Data_Type:
Description:

STA TIC_V A R_TABLE:
Static_Va r_Na me:
Data_Type:
Description:

STA TIC_V AR_TABLE:
Static_Var_Name:
Data_Type:
Description:

ST A T IC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

ST A T IC _V A R _T ABLE:
Static_Var_Name:
Data_Type:
Description:

previous_voltage
pointer
"iteration holding previous voltage value"

previous_m
pointer
"iteration holding previous m value"

previous_h
pointer
"iteration holding previous h value"

previous_n
pointer
"iteration holding previous n value"

previous_current
pointer
"iteration holding previous current value"

previous_voltage_temp
pointer
"iteration holding variable for lim iting"

previous_m_temp
pointer
"iteration holding previous m value"

previous_h_temp
pointer
"iteration holding previous h value"

previous_n_temp
pointer
"iteration holding previous n value"

previous_current_temp
pointer
"iteration holding previous current value"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

ST ATIC_VAR_TABLE:
Static_Var_Name:
Data_Type:
Description:

STA TIC_V AR_TABLE:
Static_Va r_Na m e:
Data_Type:
Description:

lastT
pointer
"iteration holding previous T(0)"

lastCurrent
pointer
"Holds input current between iterations"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B

CFUNC.MOD SOURCE CODE

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

/ * = = = = = = = = = = = = = = = = = =s= = = = =! = = = = = = = = = = = = = = =5 = = = = = =

CFUNC.mod

AUTHOR
Anthony S. Carver, Louisiana Tech, College of Engineering and Sciences

MODIFICATIONS
None

SUMMARY
This file contains the model-specific routines used to
functionally describe the Neuron code model.

: * /

#include <m ath.h>
#include <std io.h>
#include <std lib .h>
Double

double

*previous_voltage, / /% Pointers
*previous_m, //% used
*previous_h, / /% for
*previous_n, / /% static
*previous_voltage_temp, / /% variables
*previous_m_temp, / /% II
* p re v i o u s_h__te m p, / /% II
*previous_n_temp, 11% II
*lastT, / /% 11
*lastCurrent; / /% II
v_rest, / /% Membrane Resting Potential
Cap, / /% Membrane Capacitance
E Na, / /% Sodium Potential
E_K, / /% Potassium Potential
gNa, / /% Sodium Conductance
gK, / /% Potassium Conductance
v_neuron, / /% Input voltage
R = 8.314, / /% Reiberg gas constant

/ /% (joules/(m ole*kelvin)).
F = 9.648E4, / /% Faraday's constant (coulombs/mole).
Z = 1, / /% Sodium and potassium ionic valence.
b = 0.02, / /% Relative permeability of Na to K
MO, / /% Resting M
HO, / /% Resting H
NO, / /% Rest N
V_r, / /% Membrane Resting Potential
delta_T, / /% Timestep
gNamax, / /% Maximum Na conductance (S /cm ^Z)
gKmax, / /% Max K conductance (S /cm ^Z)
cm, //% Active region capacitance (F /cm ^2)
coNa, / /% Extracellular Na concentration (mol/L)
ciNa, / /% Intracellu lar Na concentration (mol/L)
coK, / /% Extracellular k concentration (mol/L)
ciK, / /% Intracellu lar K concentration (mol/L)

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

VNa, / /% Na Nemst Potential
VK, / /% K Nernst Potential
ah, am, an, / /% m, h, & n Alphas
bh, bm, bn, / /% m, h, & n Betas
up, down, / /% Used for zero denom case error checking
tauM, tauH, tauN, / /% Time Constants
infM, infH, infN, / /% Final m, h, &n values
IK, / /% Potassium Current
INa, / /% Sodium Current
I_memb, / /% Membrane current
m, h, n, / /% M, H, and N values
Vm, //% Membrane Potential
gU //% Leakage Conductance
VI, / /% Leakage Potential
Ileak, / /% Leakage Current
Q10, / /% Temperature scaling factor - Q10
compart_num, / /% Equals 1-single compartment

//% — 2 for more than one
abstemp, / /% Current Absolute Temperature
V Jn , / /% Voltage In
IJ n , / /% Current In
Atotal, / /% Membrane Total Area
V m, / /% Membrane Voltage
L, / /% Neuron Cell length
aj, / /% Neuron Cell radius
pi = 3.141592654;

/ * * * * Neuron Code Model ROUTINE * * * /

in t neuron(ARGS) / * structure holding parms, inputs, outputs, etc. * /

{
I J n = (IN PUT(a)*le6);

if (INIT==TRUE) { / * First pass...allocate storage for previous value... * /

/ * Pull in parameters from ifspec.ifs * /

abstemp = 273.15 + TEMPERATURE;
aj = PARAM(cell_radius);
L = PARAM(cellJength);
compart_num = PARAM(compartment_number);

if (compart_num = = 1){ / * Surface area of one cylinder, including ends * /

Atotal = ((2 *p i*a j*L *pow (100 ,2))+ (2 *p i*pow (a j,2)*pow (100 ,2)));
}
else{

Atotal = (2 *p i*a j*L *pow (100 ,2)); / * Surface Area o f cylinder for
multiple com partm ent*/

>
cm = (PARAM (cap)*le6)*Atotal;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

gNamax = (PARAM (m ax_gna)*le3)*Atotal;
gKmax = (PARAM (m ax_gk)*le3)*Atotal;
ciNa = (PARAM(ci_na)*le3);
coNa = (PARAM(co_na)*le3);
ciK = (PARAM (ci_k)*le3);
coK = (PARAM (co _ k)* le 3);
VI = (PARAM (v _ l)* le 3);
gL = (PARAM (g_l)*le3)*Atotal;
V_r = PARAM (v_rest);
Q10 = PARAM(qlO);
if (V_r == 0){ / * calculate resting potential if not defined in ifspec.ifs * /

V_r = (((R *abstem p)/(Z*F))*log((coK + b*coNa)/(ciK +
b*cil\la)))*1.0E3;

}
/ * Allocate storage for static variables * /

STATIC_VAR(previous_voltage) = (double *) malloc(sizeof(double));
previous_voltage = STATIC_VAR(previous_voltage);

STATIC_VAR(previous_m) = (double *) malloc(sizeof(double));
previous_m = STATIC_VAR(previous_m);

STATIC_VAR(previous_h) = (double *) malloc(sizeof(double));
previous_h = STATIC_VAR(previous_h);

STATIC_VAR(previous_n) = (double *) malloc(sizeof(double));
previous_n = STATIC_VAR(previous_n);

STATIC_VAR(previous_voltage_temp) = (double *) malloc(sizeof(double));
previous_voltage_temp = STATIC_VAR(previous_voltage_temp);

STATIC_VAR(previous_m_temp) = (double *) malloc(sizeof(double));
previous_m_temp = STATIC_VAR(previous_m_temp);

STATIC_VAR(previous_h_temp) = (double *) malioc(sizeof(double));
previous_h_temp = STATIC_VAR(previous_h_temp);

STATIC_VAR(previous_n_temp) = (double *) malloc(sizeof(double));
previous_n_temp - STATIC_VAR(previous_n_temp);

STATIC_VAR(lastT) = (double *) malloc(sizeof(double));
lastT = STATIC_VAR(lastT);

STATIC_VAR(lastCurrent) = (double *) malloc(sizeof(double));
lastCurrent = STATIC_VAR(lastCurrent);

/ * Set Nernst Potentials, VNa, and VK based on ionic concentrations * /

VNa = (((R *abstem p)/(Z*F))*log(coN a/c iN a))*le3 ;
VK = (((R *abstem p)/(Z *F))*log (coK /c iK))* le3 ;

/ * Set M, N and H initial conditions... * /

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

ah = 0 .07*exp(-0 .05*(V _r+60));
bh = l/(l+ e x p (-0 .1 * (V _ r+ 3 0))) ;

/ * * * Handle indeterminate cases when denominator = 0 * * * /

if (V_r == -3 5){
up = V_r + 1.0E-4;
down = V_r - 1.0E-4;
am = (-0 .1 *(u p + 3 5)/(e xp (-0 .1 *(u p + 3 5))- l) + -0 .1 *(dow n+35)/

(e xp (-0 .1 *(d o w n + 3 5))-l))/2 ;
>
else {

am = -0 .1 *(V _ r+ 3 5)/(e xp (-0 .1 *(V _ r+ 3 5))-l);
}

bm = 4 .0*exp(-(V _r+60)/18);

if (V_r == -5 0){
up = V_r + 1.0E-4;
down = V_r - 1.0E-4;
an = (-0 .0 1 *(u p + 5 0)/(e xp (-0 .1 *(u p + 5 0))- l) + -0 .01*(dow n+50)/

(e xp (-0 .1 *(d o w n + 5 0))-l))/2 ;
>
else {

an = -0 .0 1 *(V _ r+ 5 0)/(e xp (-0 .1 *(V _ r+ 5 0))-l);
>

bn = 0 .125*exp(-0 .0125*(V _r+60));

MO = am /(am +bm); / * Final Value Time Constants * /
HO = ah/(ah+bh);
NO = an/(an+bn);

/ * Set previous_voltage value to zero... * /

*previous_voltage = V_r;
*previous_m = MO;
*previous_h = HO;
*previous_n = NO;
*lastT = 0;
*lastCurrent = 0;
Vm = V_r;
>
else { f * if IN IT != true...not firs t pass * /

if (T(0)= = 0 .0){
*previous_voltage = V_r;
:(:previous_m = MO;
*previous_h = HO;
*previous_n = NO;
*lastT = 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

Vm = V_r;
*lastCurrent = 0;

/ * ifT(O) != 0.0 * /
previous_voltage = STATIC_VAR(previous_voltage);
previous_m = STATIC_VAR(previous_m);
previous_h = STATIC_VAR(previous_h);
previous_n = STATIC_VAR(previous_n);
previous_voltage_temp =

STATIC_VAR(previous_voltage_temp);
previous_m_temp = STATIC_VAR(previous_m_temp);
previous_h_temp = STATIC_VAR(previous_h_temp);
previous_n_temp = STATIC_VAR(previous_n_temp);
lastT = STATIC_VAR(lastT);
lastCurrent = STATIC_VAR(lastCurrent);
if (T (l) != * las tT){

*previous_voltage = *previous_voltage_temp;
*previous_m = *previous_m_temp;
*previous_h = *previous_h_temp;
*previous_n = *previous_n_temp;

*lastT = T (l) ;

*lastCurrent = I_ in/A tota l;
}

else{
>
delta_T = T(0)-T(1);

ah = 0.07*exp(-0 .05*(*previous_vo ltage+60));
bh = l/(l+ e xp (-0 .1 *(*p re v io u s_ vo lta g e + 3 0)));

/ * * * Handle indeterminate cases when denominator = 0 * * * /

if (*previous_voltage = = -3 5){
up = *previous_voltage + 1.0E-4;
down = *previous_voltage - 1.0E-4;
am = (-0 .1 *(u p + 3 5)/(e x p (-0 .1 *(u p + 3 5))- l) +

-0 .1 *(dow n+35)/(exp (-0 .1*(dow n+35))-
l)) /2 ;

>
else {

am = -0 .1*(*previous_vo ltage+35)/
(exp(0 .1 *(*p rev ious_vo ltage+35))-l);

>
bm = 4.0*exp(-(*previous_vo ltage+60)/18);

if (*previous_voltage = = -5 0){
up = *previous_voltage + 1.0E-4;
down = *previous_voltage - 1.0E-4;
an = (-0 .01 :t:(u p + 5 0)/(e xp (-0 .1 *(u p + 5 0))- l) +

>

else {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

-0 .01*(dow n+50)/(exp(-0 .1*(dow n+50))-
i)) /2;

>
else {

an = -0 .01*(*previous_vo ltage+50)/
(exp (-0 .1*(*p rev ious_vo ltage+50))-l);

*

bn = 0.125*exp(-0.0125*(*previous_voltage+60));

/ * Calculate time constants * /

tauM = l/(a m + b m);
tauH = l/(a h + b h);
tauN = l/(a n + b n);

/ * Calculate final M, H, & N values * /

infM = am /(am +bm);
infH = ah/(ah+bh);
infN = an/(an+bn);

/ * Solving m, h, & n by the Euler method * /

m = *previous_m + ((((infM - *previous_m)/tauM) * delta_T)
* pow(Q10,((TEMPERATURE-6.3)/10))* le 3);

h = *previous_h + ((((in fH - *previous_h)/tauH) * delta_T)
* pow(Q10,((TEMPERATURE-6.3)/10))* le 3);

n = *previous_n + ((((infN - *previous_n)/tauN) * delta_T)
* pow(Q10,((TEMPERATURE-6.3)/10))* le 3);

/ * Calculating conductances using m, h, and n values calculated above * /

gNa = (gN am ax*m *m *m *h);
gK = (gK m ax*n*n *n *n);

/ * Calculating ionic currents based in conductances, Nernst potentials, previous
voltages and cell capacitance values * /

IK = ((VK - *previous_voltage)*gK)/cm ;
INa = ((VNa - *previous_voltage)*gNa)/cm ;

Ileak = ((VI - *previous_voltage)*gL)/cm ;

/ * Calculating membrane current based on ionic currents * /

I_memb = IK + INa + Ileak + (*lastCurrent);

/ * Calculating new membrane voltage based on previous voltage and current
voltage fo r the current timestep using the Euler method * /

Vm = *previous_voltage + (I_m em b*de lta_T*le3);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ * Store values for next iteration * /
*previous_voltage_temp = Vm;
*previous_m_temp = m;
*previous_h_temp = h;
*previous_n_temp = n;

>
}

^ * * * * * * * * * * * * * * * * * Output to Port * * * * * * * * * * * * * * * * /

OUTPUT(a) = V m * le -3 ;

return 0;

>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

APPENDIX C

GRAPHS USED FOR VALIDATION

FROM WEISS [18]

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(A
ta)

40 -

- 4 0 - - 4 0 -

- 8 0 •801

J = 10 ii A /cm 240 - 40 -

40 - 40 -

80 - 8 01
1

J = 200 A /cm 240 -

40 - 40 -

- 8 0 - 8 0
0 10 20 30 40 50 0 10 20 30 40 50

T im e (ms)

Repetitive Activity,
Weiss, Page 232, Figure 4.60

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40-.

2 0 -

Calc.ulated

- 2 0 -

60

- 8 0 -

-1 0 0
10 15 20 25 300 5

Tim e (ms)

Anode-Break Excitation
Weiss, Page 230, Figure 4.59

Time (s)

Accommodation
Weiss, Page 228, Figure 4.56

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Fromherz, P. and Stett, A., "Silicon-Neuron Junction: Capacitive Stimulation o f
an Individual Neuron on a Silicon Chip," Physical Review Letters., vol. 75, no.
8, pp. 1670-1673, Aug.1995.

[2] Szlavik, R. B., "Strategies for improving neural signal detection using a neural-
electronic interface," IEEE Trans.Neural Syst.Rehabil.Eng, vol. 11, no. 1, pp. 1-
8, Mar.2003.

[3] Szlavik, R. B. and Jenkins, F. Varying the time delay o f an action potential
elicited with a neuralelectronic stimulator. Preceedings o f the IEEE-EMBS
Conference . 2004. San Fransico.

[4] Vassanelli, S. and Fromherz, P., "Neurons from rat brain coupled to transistors,"
Applied Physics A, vol. 65 pp. 85-88, 1997.

[5] Weis, R. and Fromherz, P., "Frequency dependent signal transfer in neuron
transistors," PhysicalReview E, vol. 55, no. 1, pp. 877-889, Jan.1997.

[6] Szlavik, R. B. The impact o f variations in membrane capacitance on the
detected neural-electronic sighal. Preceedings o f the IEEE-EMBS Conference.
2002.

[7] Bove, M., Massobrio, G., Martinoia, S., and Grattarola, M., "Realistic
simulations o f neurons by means o f an ad hoc modified version o f SPICE,"
Biol.Cybern., vol. 71, no. 2, pp. 137-145, 1994.

[8] Bunow, B., Segev, I., and Fleshman, J. W., "Modeling the electrical behavior o f
anatomically complex neurons using a network analysis program: excitable
membrane," Biol.Cybern., vol. 53, no. 1, pp. 41-56,1985.

[9] Hodgkin, A. L. and Huxley, A. F., "A quantitative description o f membrane
current and its application to conduction and excitation in nerve," J.Physiol, vol.
117, no. 4, pp. 500-544, Aug. 1952.

[10] Hodgkin, A. L. and Huxley, A. F., "The dual effect o f membrane potential on
sodium conductance in the giant axon o f Loligo," J.Physiol, vol. 116, no. 4, pp.
497-506, Apr. 1952.

[11] Hodgkin, A. L. and Huxley, A. F., "Currents carried by sodium and potassium
ions through the membrane o f the giant axon o f Loligo," J.Physiol, vol. 116, no.
4, pp. 449-472, Apr. 1952.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

[12] Hodgkin, A. L. and Huxley, A. F., "The components o f membrane conductance
in the giant axon o f Loligo," J.Physiol, vol. 116, no. 4, pp. 473-496, Apr. 1952.

[13] Hodgkin, A. L., Huxley, A. F., and KATZ, B., "Measurement o f current-voltage
relations in the membrane o f the giant axon o f Loligo," J.Physiol, vol. 116, no.
4, pp. 424-448, Apr. 1952.

[14] Segev, I., Fleshman, J. W., Miller, J. P., and Bunow, B., "Modeling the
electrical behavior o f anatomically complex neurons using a network analysis
program: passive membrane," Biol.Cybern., vol. 53, no. 1, pp. 27-40, 1985.

[15] Szlavik, R. B., Bhuiyan, A., Carver, A., and Jenkins, F., "Neural-electronic
inhibition simulated with a neuron model implemented in spice," IEEE
Trans.Neural Syst.Rehabil.Eng, 2006.

[16] Cox III, F. L., Kuhn, W. B., Murray, J. P., and Tynor, S. D., "Code-level
modeling in XSPICE.," Proceedings o f the IEEE International Symposium on
Circuits and Systems, 1992 (ISCAS ’92), vol. 2 pp. 871-874, 1992.

[17] Hodgkin, A. L. and KATZ, B., "The effect o f temperature on the electrical
activity o f the giant axon o f the squid," J.Physiol, vol. 109, no. 1-2, pp. 240-
249, Aug. 1949.

[18] Weiss, T. F., Cellular biophysics Cambridge, Mass: MIT Press, 1996.

[19] Bhadra, N. and Kilgore, K. L., "Direct current electrical conduction block of
peripheral nerve," IEEE Trans.Neural Syst.Rehabil.Eng, vol. 12, no. 3, pp. 313-
324, Sept.2004.

[20] Matthews, G. G., Cellular physiology o f nerve and muscle, 2nd ed. Boston:
Blackwell Scientific Publications, 1991.

[21] Koch, C., Biophysics o f computation information processing in single neurons
New York: Oxford University Press, 1999.

[22] HAGIWARA, S. and OOMURA, Y., "The critical depolarization for the spike
in the squid giant axon," Jpn. J.Physiol, vol. 8, no. 3, pp. 234-245, Sept.1958.

[23] Katz, B., Electric Excitation o f Nerve London: Oxford University Press, 1939.

[24] Guttman, R. and Barnhill, R., "Temperature dependence o f accommodation and
excitation in space-clamped axons," J.Gen.Physiol, vol. 51, no. 6, pp. 759-769,
Junel968.

[25] Mauro, A., Conti, F., Dodge, F., and Schor, R., "Subthreshold behavior and
phenomenological impedance o f the squid giant axon," J.Gen.Physiol, vol. 55,
no. 4, pp. 497-523, Apr. 1970.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

[26] Hodgkin, A. L. and Huxley, A. F., "A quantitative description of membrane
current and its application to conduction and excitation in nerve," J.Physiol, vol.
117, no. 4, pp. 500-544, Aug. 1952.

[27] Huxley, A. F., "Ion movements during nerve activity," Ann.N. Y.Acad.Sci., vol.
81 pp. 221-246, Aug.1959.

[28] Berg-Johnsen, J. and Langmoen, I. A., "Temperature sensitivity o f thin
unmyelinated fibers in rat hippocampal cortex," Brain Res., vol. 576, no. 2, pp.
319-321, Apr.1992.

[29] Chapman, R. A., "Dependence on temperature o f the conduction velocity o f the
action potential o f the squid giant axon," Nature, vol. 213, no. 81, pp. 1143-
1144, Mar. 1967.

[30] Jonas, P., "Temperature dependence o f gating current in myelinated nerve
fibers," J.Membr.Biol., vol. 112, no. 3, pp. 277-289, Dec.1989.

[31] Kukita, F. and Yamagishi, S., "Excitation of squid giant axons below 0 degree
C," Biophys.J., vol. 35, no. 1, pp. 243-247, Julyl981.

[32] Rosenthal, J. J. and Bezanilla, F., "Seasonal variation in conduction velocity of
action potentials in squid giant axons," Biol.Bull., vol. 199, no. 2, pp. 135-143,
Oct.2000.

[33] Nagel, L. and Rohrer, R., "Computer Analysis o f Nonlinear Circuits Excluding
Radiation (CANCER)," IEEE Journal o f Solid-State Circuits, vol. SC-6 pp.
166-182, 1971.

[34] NGSPICE - Mixed Mode - Mixed Level Circuit Simulator. Website . 2006.

[35] Cox III, F. L., Kuhn, W. B., Li, H. W., Murray, J. P., Tynor, S. D., and Willis,
M. J. XSPICE Software User's Manual. 1-124.1992. Computer Science and
Information Technology Laboratory, Georgia Tech Research Institute.

[36] Weiss, T. F., Cellular biophysics Cambridge, Mass: MIT Press, 1996.

[37] Rail, W., "Theoretical analysis o f dendritic tree for input-output relation," in
Reiss, R. F. (ed.) Neural theory and modeling Stanford, CA: Stanford
University Press, 1964, pp. 73-97.

[38] Segev, I., Fleshman, J. W., and Burke, R., "Compartmental models o f complex
neurons," in Koch, C. and Segev, I. (eds.) Methods in neuronal modeling. From
synapses to network Cambridge, MA: (Bradford Book) MIT Press, 1989, pp.
63-96.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

[39] Cooley, J. W. and Dodge, F. A., Jr., "Digital computer solutions for excitation
and propagation o f the nerve impulse," Biophys.J., vol. 6, no. 5, pp. 583-599,
Sept. 1966.

[40] Tai, C., de Groat, W. C., and Roppolo, J. R., "Simulation o f nerve block by
high-frequency sinusoidal electrical current based on the Hodgkin-Huxley
model," IEEE Trans.Neural Syst.Rehabil.Eng, vol. 13, no. 3, pp. 415-422,
Sept.2005.

[41] Tai, C., de Groat, W. C., and Roppolo, J. R., "Simulation analysis o f conduction
block in unmyelinated axons induced by high-frequency biphasic electrical
currents," IEEE Trans.Biomed.Eng, vol. 52, no. 7, pp. 1323-1332, July2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2007

	Code-level modeling of the Hodgkin -Huxley neuron model using an open source version of SPICE
	Anthony Stuart Carver
	Recommended Citation

	tmp.1563310305.pdf.VA1WX

