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ABSTRACT

Stochastic models were developed that provide important measures related to 

retail mortgages and credit cards for the management o f a bank. Based on Markov theory, 

two models were developed that predict mortgage portfolio size and expected duration of 

stay in each o f the states, which are defined according to the criteria o f Basel Accord II 

and the Federal Reserve Bank. Also, to facilitate comparisons among different types of 

credit products and different time periods, a model was developed to generate a health 

index for a retail mortgage. This model could be easily extended, using multivariate 

regression or multivariate time series techniques, to analyze the interaction between a 

mortgage and local macroeconomic factors. Furthermore, the models in this dissertation 

address decision making on the part o f the management o f a bank concerning business 

strategy such as collection policies and loan officer compensation policies. Extending the 

basic assumption o f the Markov property to a higher-order Markov model and a 

multivariate Markov model, this work also analyzed the correlation between the payment 

pattern for retail mortgages and credit cards. To complete this correlation analysis, a 

comparison among 3 models (higher-order, multivariate, and a higher-order multivariate 

Markov model (HMMM)) has also been provided. Finally, an interaction analysis 

between the payment behavior o f a retail mortgage and local macroeconomic variables 

has been performed using an Interactive Hidden Markov Model (IHMM). For IHMM and 

HMMM models, the number o f unknown parameters increases exponentially with the

iii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



iv

increase o f the order o f the models. Hence, to deal with this situation, a linear 

programming algorithm has been used to obtain solutions for the HMMM and IHMM.

The models provided in this study are o f practical importance to the bank 

management. Not only do they give quantitative measures about loan stand-alone 

characteristics, but also they provide cross-section comparisons among different credit 

products and multi-period loan performance tracking as well. These models, used to 

analyze retail mortgages and credit cards, could be easily applied to other credit products 

issued by a commercial bank.

The data used in this study have been obtained from an Ohio local commercial 

bank. It includes monthly paid 20-year retail mortgages and personal credit cards. A 

contract has also been signed to guarantee that the data would be used only for academic 

research.
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CHAPTER 1

INTRODUCTION

In this chapter, we present an overview of the models, based on Markov chain 

theory, used for analyzing the transition probability between defined states. These models 

are classified into two categories: models for consumer credit analysis and models for 

loan analysis. Models in both categories assume that the transition process is between 

defined finite states. The finite states o f the Markov chain have four absorbing states, 

namely the collection o f bad debt, prepayment, default, and bankruptcy. Aided by the 

dynamic programming technique, these models can either maximize outcome (benefits) 

or minimize the cost, including the collection cost and actual losses.

1.1 Literature Review

There are many quantitative methods in credit asset management. White (1993) 

surveyed some models employed in the banking industry. The models include 

discriminant analysis, decision tree, expert system for static decision, dynamic 

programming, linear programming, and Markov chains for dynamic decision models. 

Which model is best depends on the situation and the purpose o f the analysis.

However, in the analysis of credit risk and selection of optimal policy, the standard 

approach is to use stochastic models based on Markov transition matrices, aided by

1
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2

dynamic programming. As summarized by White (1993), Markov decision models have 

been mainly used in 18 areas, including (1) Finance and Investment, (2) Insurance, and (3) 

Credit Analysis. O f the 98 papers discussed by White, 9 papers relate to finance and 

investment, 2 to insurance, and 2 to credit analysis. This survey is by no means 

comprehensive, but it reveals the fact that Markov chains have been used extensively to 

analyze real world data.

1.2 Markov Models

General concepts o f Markov processes are presented in Ross (1996). Let 7it j be 

the steady state probability or limiting probability o f being in state i and adapting 

policy j  , n i . = lim P. \ X n = i, j )  , where X n,n = 1,2,3...n is defined as the states o f a
n—> oo '

Markov chain. Then, the expected benefit is given as

£ 5 > , [ * ( / J ) - C ( f J ) ]  (1.1)
i J

where, R ( i , j ) ,C ( i , j ) are defined as the reward function and cost function for being in 

state i and adopting policy j , respectively. Also, dynamic programming could be used to 

find an optimal policy j  to maximize the expected benefit. To this end, one may 

maximize

i j

Subj ect to nitJ > 0 , and E  E  71 a = 1 ■ (1-2)
i j
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Consumer credit analysis is used to analyze account receivable, as triggered by 

credit sales. The model, based on the transition probability between different states, is 

primarily used by a company to adjust its credit sale and collection policy. Absorbing 

states could be reached either by collection or bad debt, both o f which lead to a decline in 

the portfolio size.

On the other hand, by defining a past-due period as a different transient state, and 

default as an absorbing state, Markov models are used to analyze the characteristics o f a 

loan portfolio, namely the estimated duration before an individual default, prediction of 

economic portfolio balance, and health index. The primary purpose o f  this research is to 

develop this type o f model for banks and other commercial lending institutes in order to 

analyze the nature o f their products.

1.2.1 Markov Models for Consumer Credit Analysis

Cyert, Davison, and Thompson (1962) developed a finite stationary Markov chain 

model to predict uncollectible amounts (receivables) in each o f the past due category. 

This classic model is referred to as CDT model. The states o f the chain (Sj, 

j  = 0,1,2,...,J )  were defined as normal payment, past due, and bad-debt states. The

probability/?. o f a dollar in state/ at time t transiting to state j  at time t + 1 is given as

P, (1.3)
IX
m=0
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where Btj is the amount in state j  at time t+1 which came from state i in the previous

period. St -  S0Q‘ is the vector whose j  th component is the amount outstanding for the j  th 

past due category at the beginning of the t th period for t - 1,2,...,. Here, Q is a sub

matrix, in the transition probability matrix Ptj
I  O

R Q
, which includes transition

probabilities among the set o f transient states.

Criticizing the appropriateness o f the stationary Markov chain model by Cyert et al. 

(1962), and Frydman et al. (1968) applied a mover-stayer Model as an alternative. They 

defined the j  step transition matrix o f this model as P(0, j )  = SI  + ( /  — S ) M J , where 

M  = {mik} is a transition probability matrix for “movers” from i to k  , and S = 

diag (5,,s2,..,sw) represents the probability o f “stayers” in state i . The maximum 

likelihood estimator for mik is given as mjk = (nu - J n ^ l in ]  - J n {) , where ni is the number

o f observations that stay continuously in state i during the period. They concluded that the 

mover-stayer model is better for empirical analysis than the stationary Markov chain 

model

The model o f Cyert, Davison, and Thompson (1962) was also challenged by 

Corcoran (1978). He claimed that the representiveness o f the transition probability could 

be affected by the fact o f “dominancy o f large accounts” . Therefore, he suggested 

grouping the accounts according to their size, and then a transition matrix for each group 

was provided by an exponentially smoothed matrix: -  0.87) + (1 -  0.8)^7 l , where / f  is

an exponentially smoothed matrix for month j  and T. is the transition matrix for month j .
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Kuelen and Corcoran (1981) published their study on the CDT model and claimed 

that there was a flaw in the model because it failed to consider the partial payments for 

accounts due. By using the “total balance method”, CDT understated the collection, and 

thus overestimated bad debts. A simple remedy, other than model structure modification, 

was to treat a partially paid amount and remainder balance separately. As a result, an 

exact agreement with total receipts and aging could be achieved.

1.2.2 Markov Models for Loan Analysis

According to Thompson (1965), one o f two important related tests for a bank’s 

credit asset from the lender’s point o f view is the possibility o f the loan getting into 

trouble, which means the probability o f being in a past-due or even charged-off state. 

Another test is the extent o f loss in the case o f being in trouble. This could mean two 

things: (1) the recovery from collateral in the case o f being charged off, or (2) the ability 

for an individual to bring himself back on track. Also, in the same paper, Thompson 

provided evidence supporting his claim that the business cycle and the macroeconomic 

situation are probably the most significant factors affecting change in bank credit.

Liebman (1972) built a Markov decision model for selecting optimal credit 

control policies based on transition probabilities and the costs to correspond to customers 

belonging to each of the categories. The basic idea o f his model is to select a credit 

strategy dikm such that the total discounted expected cost in the next period and all 

succeeding periods is as follows:

^  " ^  1 ^  ikm ^ ik m  ^  j  (n ^ \k m , j  In ̂ ikm  J  In ’ 0  • ̂ )
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where, Pikm /ln is the Markov transition probability defined as the probability o f an

account moving from age class i , charge volume class k  and previous experience class m , 

to age class j , charge volume class/and previous experience class n . cikmjlm is the cost

matrix, 7ijkm is the steady state probability. A linear program was used to optimize and

solve the optimal credit policies dikm.

Rai, Kirkham, and Clarke (1979), by assuming that new customers behave in a 

way similar to existing customers, implemented a Markov Model:

y(f) = X  _  ̂  Py + i , j  = 1,2,..,r;t = 1,2,..,T (1.5)

where y (/)is  the observed liability shares o f deposit-taking institutes at time t ,  p i} is the 

Markov transition probability from state i to state j , andw(f) is a disturbance term to 

analyze the growth rates o f Canadian deposit-taking institutes because o f the implication 

o f the Bank Act in 1967. The authors showed that the model was appropriate whenever 

growth was dominated by macro economic factors and technical innovations.

Howard and Matheson (1972) implemented a Markov model which could be 

useful in forming optimum buying and selling strategies for a commodity market. They 

justified the model by incorporating a risk-sensitivity function. A positive or negative risk 

coefficient was assigned to the function based on whether the bank management is risk 

aversive or risk preferring, respectively. The exponential function representing the overall 

risk preference is given by: u(v) = -(sgn y)e~yv, where y  is the risk aversion coefficient,
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and sgny denotes the sign o f / . Then, the following iterative scheme was provided to 

reach the maximum benefits through optimal policy:

where, Py is the Markov transition probability.

By taking economic factors into account, Richard (1983) used a finite Markov

state (x,_y) at time t , where x is the condition o f the firm, and y  is the condition o f the 

overall economy. He assumed that the changes in state are governed by a stationary 

transition function. For instance, if  the state is_y(/ — 1) at tim e t- 1 ,  then it will be y(t) at

time t with probability 7t[y{t)y{t - 1)] . However, to calculate Vk , he used dynamic 

programming because direct computation could be very time-consuming.

Jarrow et al. (1997) applied a continuous and a discrete time Markov chains to 

describe the default behavior o f zero-coupon bonds within a time interval rjt{Q<t < t).  

Furthermore, the default state was defined as an absorbing state. Again, the purpose was 

to price the bond based on analysis o f credit risk spread. Similar approaches have been 

adopted by Liebman (1972) and Zipkin (1993). Lieberman used a Markov chain to model 

decision-making for credit card application approval. The states o f the chain were 

n +1 paid-up states and one default state. The model assumed that the amount o f dollars 

moved from one state to another follows a Markov chain process. On the other hand,

y ( — ln l+ — ln[-(sgn /)« ,])
(1.6)

Choose policy k  to maximize V\k =
1

y

chain model to analyze a firm’s market value if  the firm follows an optimal policy in
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Zipkin adopted a simpler model o f interest rate, based on a discrete-time, finite-state 

Markov chain, to evaluate mortgage-backed securities. Glennon and Nigro (2005) used 

the survival analysis approach to measure the default risk o f a small business. They 

adopted the Cox Proportionally Hazard model. By using a discrete-time hazard procedure, 

they found that the default risk peaked in the second year after initiation, increased during 

the medium-maturity season, and declined thereafter.

Numerous efforts have been undertaken to analyze the relationship between credit 

asset quality and the macroeconomic situation. Lee (1995) built an ARMA model:

Vy(L)yM = Oy(L)eM.y,Vm{L)mM = 9m{L)eMm, (1.7)

under the assumptions that y t and mt have univariate stationary, invertible finite-order

ARMA representation. The model was used to analyze the linkage between time-varying 

risk premia in the term structure and macroeconomic state variables. He concluded that 

uncertainties, related to output and the money supply, are important source o f time- 

varying risk premia in the nominal term structure o f interest rate.

Esbitt (1986) provided empirical evidence that a bank’s portfolio quality has close 

relationship with the macroeconomic situation. Examples include the state-chartered 

banks’ failure and Great Depression in Chicago between 1930 and 1932.

A promising model to link macroeconomic variables to a microeconomic variable 

is to use the Markov chain representation. It is also called the State Space representation, 

which is based on the idea that the future o f a system is independent o f its past (Wei 

1990).
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The estimation of a state space model’s parameters is difficult. Cooper and Wood 

(1981) used Maximum Likelihood to estimate the parameters. Outliers in the series could 

make the problem even more complicated. As pointed out by Balke and Fomby (1994), 

there are 3 possible outlier patterns: (1) Outliers associated with business cycles, (2) 

outliers clustered together, both over time and across series, and (3) a dichotomy between 

outlier behaviors o f real versus nominal series.

The ETS package in SAS® provides a method to check and remove outliers and to 

estimate the parameters o f the state space model (SAS Online Doc 2005 version (2005)).

1.3 Extensions o f Markov Chains Models 

The basic property o f a Markov chain, namely 

Pr(^„+i = x \ X n = xn,...,Xx = X 0 = x0) = Pr(A„+1 = x \ X n = x n),  (1.8)

where X 0, X 1,. .. ,Xn is a sequence o f random variables, has been extended to 

accommodate many new applications. Among them are traffic analysis in the network, 

speech recognition, DNA sequences analysis, engineering designs, and inventory 

management. Also, new theories extending the basic Markov assumption have been 

developed in the past 50 years, such as High-order Markov chains, Multivariate Markov 

chains, and Hidden Markov chains. These important developments are introduced in the 

following subsections.

1.3.1 Higher-order Markov chains

Higher-order Markov chains assume that not only the immediate past random 

variable but also the past A: variables, or kth order, have significant effects on the current
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one. That is, ?T{Xn+l= x \ X H= x H,. . .,Xl = x l, X 0 =x0) *  Pr(W„+1 = x  | X n = x j  . It is 

difficult to solve the problem directly because the number o f parameters to estimate 

increases exponentially with the order o f the model.

Wang (1992) showed that it needs 7 parameters to completely specify the 

transition probabilities o f a second-order two state Markov chain:

Pr(WJ+1 = 11 = 0 ,X i - 0 )  = a x,

Pr(W;+1 = 11X t_x - l , X i =0) = a 2, 
p«jrw=o|*H=<ur,=i) = A.
Pr(Wi+1= 0 |W w =l,W (.= l  ) = fi2,

Pr(W2 = 0 | X l =\) = z,

Pr(W, = l)  = r

Generally, one can verify that an k-th  order sequence with S  states will have 

(S -1 ) ■ S k parameters. Thus, industrial application o f higher-order Markov chains has 

been hampered by this problem. Raftery (1985), however, proposed a higher-order 

Markov chain model with only one parameter for each extra lag. By assuming

k
that ̂  A,( = l;Ai > 1 ,i = 1 , 2 , his model is expressed as

1=1

k

P\-X, — j 0 I X t_i = y,,...,X t_k = j k]=  ^ LL
(1.10)

- 1
i= l

Letting X t -  (x,(l),...x,(m)y, xt{ j ) ~  1, if  X t = j  and equal to 0 otherwise, and 

X t = (xl(\),...xt(m))t, where the random variablext( j )  is a function o f past values and
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could be represented as.P[Xt -  j 0 \ X t_x = j [, .. . ,Xl_k = j k], then the model in matrix form 

is given as

o . i i )
(=1

To estimate the parameters, Raftery (1985) applied the maximum log-likelihood 

technique

m k

L = Z  /t loS ( Z o ) ’where nb 4 = -*(**) • He applied this
(„ ,.-4 = i j =i I

method to a 4th order model in analyzing the wind power in a wind turbine design 

problem. By comparing model results for different orders, he concluded that the 4th order 

was the best model as it gave the smallest Bayesian information criterion (BIC) value, 

where BIC -  -2L  + k  log n .

Another Higher-order model was proposed by Ching and Ng (2006).

k

Assuming k.,i = 1,2...,k  are non-negative and ^ / L ; = l ,  Ching and Ng generalized
1=1

Raftery’s model by allowing the transition intensity matrix Qto  vary with different lags. 

Written in matrix form, Ching and Ng’s model could be expressed as

X (n +k +l)  (L!2)
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if  we let Q  = 2 2 = ••• = 2*, Ching and Ng’s model in (1.12) reduces to Raftery’s model in

(1.11). They used linear programming method to estimate the parameters which could be 

done in Microsoft Excel® with the built SolverQ function:

MinA { X w x - x  }, (1.13)
i=l

k

Subject to ̂  A.; = l/l, > 0
1=1

where M is a vector norm, and I e (1,2,...,0 0} .Their model could be used to solve the

well-known Neysbody’s problem in management science.

1.3.2 Multivariate Markov Chains

Multivariate Markov chains are useful in correlation analyses related to data 

sequences and for predicting the future outcome o f a random variable based on the 

identified correlations.

Ching and Ng (2003) applied a Multivariate Markov chain model to a multi

product demand estimation problem. Their model is expressed as

k = 1

AJk> l , l < j , k < 2 , (1.14)

In this model, the parameter Xjk gives the direction and magnitude o f the

correlation in the model outcome. Vjk is the transition intensity matrix from the states in
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the jth  sequence to the states in the kth sequence, and X kn is the observed state 

probability distribution o f the kth sequence at time n.

Siu and Fung (2005) used a Multivariate Markov chain model to analyze credit 

rating. In matrix form, their model is given as

f
H + l ' V 1 V 2 . ■ ( K ]

* - +l =
^ 2+l = a21v 21 ^ 2f 22 . . a2sv 2s * 2 (1.15)

A , A r 1 xsr 2 ■ a : ,

where Vjk is the transition intensities defined as in Ching and N g’s model. Also, they 

proved that if  the intensity matrix V is irreducible, the model in (1.15) could be expressed

s

as 'YjA-jkVjkX n - X n+{. Letting Qjk denote the prior transition matrix, the parameters Ajk
k = 1

may be estimated based on the following expression:

m
f  M m ,{M ax,{ \ (Z XQ , + W , ,) * 1 - * ' ] » )

-I _ (1.16)
L Subject to £ ( A ;  + 1%) = 1,1‘, > 0.AJ > 0

*=1

It is possible to combine a multivariate Markov chain with a higher-order Markov 

chain. As used by Ching and Ng (2004), the model considers the correlation between 

sequences as well as the time lags within a single data sequence.
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1.3.3 Hidden Markov Chains

Although higher-order Markov Models might provide more accurate results (in

S SJ7 _  Q  \ 2

the sense that they can generally produce Chi-square statistics, x 2 = 5 ] — ! 1— >
t t  Ei

where E. is the calculated stationary probability distribution and Ot is the observed

probability distribution; Ching and Ng (2006), they fail to take into consideration 

underlying forces that may determine observed transition processes in real-world 

problems. Examples include speech recognition, stock market analysis, and network 

traffic analysis. All these problems could be solved by Hidden Markov Models, or HMM. 

A standard HMM has the following elements: (1) N  , the number o f hidden 

states, H  = {11^112,...,HN} , (2) / ,  the number o f observable states, S = {Sv S2,...,Sl} ,

(3) A , the transition probability distribution within hidden states, A = {a^}, =

P (H jl n | H it=n_\),\ < i , j < N  , (4) B , the emission probabilities matrix, B = {bjk\ , 

where bJk= P(S/t\H J) , l < j < N , l < k < l  , and (5) n  , the initial state 

distribution, n  = { n ^ n i = ), 1 <i< N. Thus, an HMM is completely specified by:

A = (A,B, n) . As pointed out by MacDonald and Zucchini (1997), HMM could be used 

to answer the following three classic problems:

Problem  (1): Given an observation sequence S  -  {S\,S2,...,S,} and a model A = (A,B,Tl) , 

how do we efficiently com pute# = {bjk},
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Problem (2): Given an observation sequence S  = and a model A = (A ,B,Tl) ,

how do we choose the corresponding state sequence A = {a^} which best explains the 

observations,

Problem (3): How do we adjust the model parameters A = (A, B, n )  to maximize P(S  / A ) .

Many algorithms are used to efficiently solve these problems, including forward 

algorithm, backward algorithm, EM algorithm, and a heuristic linear programming 

method for higher-order HMM proposed by Ching and Ng (2006). For the sake o f 

conciseness, we present only the method by Ching and Ng, which is applied to the retail 

mortgage model in Chapter 6.

Replacing X  by H  in Eq. (1.13) one has

M in^i U  = l, 2 , (1.17)

k

Subject to 'Y_t A,- - 1  A,- -  0
i=i

where the A /s  are the expected parameters, H i is the estimated stationary probability 

distribution, and Vj is the higher-order transition matrix defined as A at the beginning o f 

this subsection.

Comparisons between the EM algorithm and the linear programming method for 

different orders are presented in Tables 1.1 and 1.2.
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Table 1.1 Comparison by the number o f iterations.

First-Order Second-Order Third-Order

Linear Programming 1381 1378 1381

EM Algorithm 1377 1375 1377

Table 1.2 Comparison by computation time in seconds.

First-Order Second-Order Third-Order

Linear Programming 1.16 1.98 5.05

EM Algorithm 4.02 12.88 40.15

It is seen from these tables that although there is not much difference between 

linear programming and the EM algorithm with regard to the number o f iterations, the 

linear programming method is better than the EM algorithm regarding computation time, 

especially for a higher order. In chapter 6, the linear programming method will be applied 

to retail mortgage data provided by an Ohio local commercial bank.
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CHAPTER 2

A MARKOV CHAIN MODEL FOR RETAIL MORTGAGE 

LOANS AND CREDIT ASSETS

In this chapter, a continuous time and a discrete time Markov chains are developed 

for modeling the duration o f retail loans in prepayment, past due, and default states. The 

default state is defined as charge-off on the loan due to bankruptcy, death, or other causes. 

As such, it uses the economic status o f the loan, rather than the accounting assets status. 

Prepayment and past due states describe the payment status o f a loan. A bank could use 

this model to approximate its contingent assets status based on the probability and 

duration o f being in non-default states. Therefore, the bank can gain a picture o f its credit 

assets quality. On the other hand, the book amount o f a bank’s credit portfolio on its 

financial statement seldom reflects its real economic status due to the nature o f book 

keeping, which only provides a static snap-shot o f a bank’s operation result. Furthermore, 

the book amount fails to give the management a true picture o f the portfolio pool, which 

is a function o f its contraction and is based on past due rate, default rate, and prepayment 

rate. To remedy this situation, a stochastic model based on a Markov Chain is used to 

analyze contraction and extension, which gives a true economic picture o f a bank’s credit 

portfolio and, thus in turn, facilitates the pricing o f the bank’s securities.

17
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2.1 Model

In the Markov chain model, let S'. be a state o f past due, corresponding to the days 

of past due. The loan normally requires monthly payment. If a loan is 30 days past due, 

denote it by S ,. State S2 refers to 60 days past due. According to the Basel accord II, 

Basel Committee on Banking Supervision (1997), the definition o f default is more than 

90 days past due, which is represented by S3. However, there have been cases where the 

obligations on a loan, which have already been more than 90 days past due, has been paid 

off. As a result, the definition o f default is modified to be the state o f default that is 

triggered by a permanent force, such as death or an application of chapter 7 or chapter 13 

bankruptcy protections. Let/?(.be the default state contributed by these permanent events

X . —Y.
and let S_t be the state o f a prepaid period defined as S_j = — —L, where X i is the actual

payment at month i and Yi is the scheduled payment at m onth/. One can see that state

S_j is defined as the extra payment over the scheduled payment, which measures how

many future monthly payments have been made as a current onetime payment. It is not a 

precise measurement method, compared with the tools introduced by other papers in the 

literature, but it fits best in the context o f this model. Definitions for classifying the states 

o f Markov chain are given in Table 2.1.
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Table 2.1 Definitions o f the different states o f the Markov chain.

Past Due and Prepayment States 

Sj, j  = -3,--2,-1,0,1,2,3

Default States Rk 

Rk,k  = 1,2,3,4

S-3 Prepaid More than 91 days Sold by Bank

S-2 Prepaid 61 days -  90 days r 2 Foreclosure

S-i Prepaid 31 days -  60 days *3 Refuse to pay

So No more than 30 days past due *4 All others

s. 31 days -  60 days past due

S2 61 days -  90 days past due

S3 More than 91 days past due

The salient feature o f this model is the evaluation of loan assets behavior over time, 

which is more informative than the traditional accounting financial reports.

First, we define the time interval to be(0,t),t <<x>. The transitions within the S- 

states are defined by (Chiang, 1980):

VyAt= Pr {an individual in stated,.at tim er will be in stateSj at tim er + A /}, where 

i * j \ i , j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ;/ * j
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juikAt -  Pr {an individual in state<S’; at tim er will be in state Rk at tim er + A t }, where, 

i = -3 , -2 ,-1 ,0 ,1 ,2 ,3  and k  refers to the default states, k  = 1,2,3,4.

Furthermore, we assume that future transitions of an individual are independent of 

past transitions. In other word, the intensities vtj and juik are assumed to be independent o f

time r  . For 0 < r  < t . Thus, we are concerned here with a time homogenous Markov 

chain.

If an individual stays in its original state, its intensity is defined as

4
vu = ~(vy = ~3,-2 ,-1 ,0 ,1 ,2 ,3 ,A: = 1,2,3,4 . By this definition, it is

<5=1

obvious that

1 + vuAt -  Pr {an individual in stateS]at tim er will be in stateSt at tim et + At }. Within

any single time interval, { r  + A t}, V is the prepayment and past due intensity matrix, 

while U is the default intensity matrix:

The matrix o f transition intensities between the S-states (prepayment and past due 

states) is given by the V matrix in Figure 2.1. Also, the U matrix in Figure 2.1 represents 

the transition intensities from the S-states to the default states:
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S-3 S - 2 S - i S o S i S i ^3

S - 3 V-3,-3 V-3,-2 V-3,-l V-3,0 v-3,l 0 0

S - 2 V-2,-3 V-2,-2 V-2,-l V-2,0 V-2,l 0 0

S - i V-l,-3 V-l,-2 V-1.0 v-u 0 0

II V0,-3 V0,-2 v o , - i V0,0 V0,l 0 0

$ V 3 Vl,-2 Vf-1 V1.0 vu *12 0

V2,-3 V 2 V2,-l *2,0 *2,1 V2,2 *2,3

*3 _V3,-3 V3,-2 V3,-l V3,0 V3,l V3,2 V3,3

R l r 2 R , R 4

£-3 M - i , l M -3 ,1 M -  3,3 M -  3,4

M -2 ,l M -2 ,2 M -  2,3 M -  2,4

S - i M - i ,i M -l,2 M - 1,3 M - I A

II M o,l M o ,2 M o,3 M o,4

S i M i,i M l, 2 M l,3 M i, 4

S 2 M i,i M l ,2 M l ,3 M i, 4

s 3 _ f h A M i ,2 M i ,3 M i, 4

Figure 2.1 Transition intensities within the S-states and default state (U matrix).

Because that R k is an absorbing state, there is no transition from an R to an S-state.

Also, for a past due state, transition lies only between neighboring states. This result is 

obvious since within one month, a loan with no past due payment cannot have a two- 

month due payment. On the other hand, because a prepayment can neither be deductible 

from nor replaceable by the next payment, a prepayment state can jump to any other 

prepayment state. At the same time, any past due state, St,i > 0 , can transfer to SI,i < 0 

through prepayment.
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2.1.1 A Continuous Markov Model

Let Py(r,t) = Pr {an individual in state Si at time r  will be in state S f at 

time t }, /, j  = -3 , -2 ,-1 ,0 ,1 ,2 ,3  . By definition, we have

(2 .1)

By substituting Eq. (2.1) in Eq. (2.2) and rearranging, we have

P,(r,t  + A t) -P u(r,t) „
—--------- ------ ------- = Py O’. t)Vjj (t)At + ̂ P iy O’. t)vyJ (0

A /  y *■ j

P/j(r,t + At) — PH(T,t) ^
=• I™. n  =A->0 A t

•J -  PzXT,t) = £ P t ( T , t ) v rJ( t ) ; iJ  = - 3 - 2 - 1 , 0 , 1 2 , 3  (2-3)
O t y*  j

Equation (2.3) the Kolmogorov Forward Differential Equation, and its solution is 

given (Chiang, 1980) as

3 A' ( n )
4 ( 0 ,0  = X  3 e* , i , j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (2.4)

,=' 3 n ( A “ Pm)
m=-3
m*l

Here, Ay' is the characteristic matrix o f V ,  the transpose o f the intensity matrix V , 

defined by
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(2.5)

where p t = Eigenvalue of the intensity matrix V .

For an individual in St at time 0, let etj(t)  = the expected duration o f stay 

in Sj during the interval (0 ,t) , j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  . In terms o f our process, 

evaluates the expected duration o f the loan before default occurs. This expected 

duration, <?y (t) , can be expressed (Chiang, 1980) as

2.1.2 A Discrete Time Markov Chain Approach

Expression (2.7), which represents the expected duration o f stay in S -, could be

difficult to evaluate because o f its relative complexity. Equivalent estimates could be 

reached by alternative methods suggested by Kemeny and Snell (1983).

We use the estimated number o f times that the process remains in the non-absorbing 

state once this state is entered, including the entering step, to approximate etj ( r ) . If the

expected number o f times the process stays in the non-absorbing state S , , which is

defined as a non-default state, is nj , then the approximate duration o f stay in Si is ni x 30,

(2 .6)
0

7= - 3 M
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where 30 days are the step size of the transition probability matrix. As such, the expected

3

total number o f days the process is in the non-default states is ^  n: x 30. To facilitate the
i~-3

computation, we define V as the overall transition matrix, including prepayment, past due, 

and default states. The One-step transition probabilities matrix is given in Figure 2.2.

Rl r 2 r 3 *4 S 3 S 2 s., S0 S, S2 S 3

Rl 1 0 0 0 0 0 0 0 0 0 0

*2 0 1 0 0 0 0 0 0 0 0 0

R, 0 0 1 0 0 0 0 0 0 0 0

*4 0 0 0 1 0 0 0 0 0 0 0

S 3 M-3,1 M-3,2 M-3,3 M- 3,4 V-3,-3 V-3,-2 V-3,-l V-3,0 v-3,l 0 0

v= s_2 M-2,l M-2,2 M- 2,3 M-2,4 V-2,-3 V-2,-2 V-2.-l V-2,0 V-2,l 0 0

s _ , M-i,i M-1,2 M-1,3 M-l,4 V-l,-3 V-l,-2 v-l.-l V-1,0 v-l,l 0 0

So Mu Mo,2 Mo,3 Mo,4 V0-3 V0,-2 V0,-l V0,0 V0,l 0 0

S, M,i Mia Ml,3 Ml,4 Vl.-3 Vl,-2 V l V1,0 vu Vl,2 0

s 2 M2,1 M2,2 M2,3 Ml,4 V2,-3 V2,-2 V2,- l V2,0 V2,l V2,2 V2,3

s 3 _Mu M3,2 M3,3 M3,4 V3,-3 V3,-2 V3,-l V3,0 V3,l v3,2 V3,3

Figure 2.2 One-step transition probabilities.

Flere, v.. refers to the probability o f transition from A to S j , juik refers to the

probability o f transition from Sj to Rk. Furthermore, because Rk is an absorbing state, the

transition matrix for these states is an Identity matrix and /uki -  0. In the V matrix, there

are 7 transient states in which each state could be reached from any other state (including 

its own), and 4 ergodic states each o f which can be reached from any transient state. Once 

an ergodic state is entered the process remains in that state and cannot exit. The V matrix 

could be rearranged into block matrices as shown in Figure 2.3:
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V =
■/ O
R Q

(2 .8)

r 2 *3 *4 5-3 5-2 5 , 50 5, 52 53

'1 0 0 O' '0 0 0 0 0 0 0

r , 0 1 0 0 0 0 0 0 0 0 0
-̂ 4x4

2
0 0 1 0

> 04X7
z

0 0 0 0 0 0 0

*4 _0 0 0 1 ^4 _0 0 0 0 0 0 0

R i *3 *4 5-3 5_2 5 , 50 5i 52 53

5-3 >-3.1 A-3,2 A-3,3 A-3,4 5-3 "V-3,-3 V-3,-2 V-3,-l *-3,0 V-3,l 0 0

5-2 A-2,1 A-2,2 A-2,3 A-2,4 5-2 V-2,-3 V-2,-2 V-2,-l V-2,0 V-2,l 0 0

5-, A-U A-1,2 A-1,3 A-1,4 5 , V-l,-3 V-l.-2 V-,,-1 V-l,0 V-l,l 0 0

7̂x4 = 5Q A.i A ,2 A),3 A ,4 ’ 07x7 = 50 V0,-3 V0,-2 V0.-l *0,0 V0,1 0 0

5, A.i A,2 A,3 A,4 5, Vl,-3 Vl,-2 V i V1.0 Vl,l V1.2 0

52 A,. A ,2 A2.3 A ,4 52 *2,-3 V2,-2 V2,-l *2,0 V2,l *2,2 V2,3

53 _A,i A3,2 A,3 A,4 _ 53 _V3.-3 V3,-2 V3,-l V3,0 V3,l V3,2 V3,3

Figure 2.3 One-step transition probability matrix and its block matrices.

Thus, several interesting results could be reached. First, the expected number and 

variance o f the time the process stays in a non-absorbing state 5,.,«,, before leaving St are 

given by:

E (ni) = NC,

Var(n,.) = (27V - / ) « ,  -  sq{n,)
(2.9)

where,

N  = ( I - Q )  1, /  is an7 x 7 identity matrix.
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sg(n,.) = [ 2 2 2 2 2 2 n,3 n_2 n_x n0 nx n2

£ = [ 1 1 1 1 1 1 1 ] '

In fact ,E i (n - )> the expected number o f steps needed to transit from state /to  state j , is

equal to N~.

Let f  1, if  i = j

d.. = \

^ 0, if  / j

(2 .10)

Thus, it is seen that

Ei(nj ) = dij+ Y dPikEk(nj)
seT

Ei(nj ) = I  + Q-Ei(nj ) 

Ei(n.) = ( I - Q y ' = N

(2 .11)

where s e T . By summing over / from-3 ,-2 ,-1 ,0 ,1 ,2 ,3 , one obtains the total expected 

number o f steps the process is in a non-absorbing state ^  before going to a default 

state Rk . Then, the expected total days o f stay in the non-default states should be:

30 (2 .12)
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2.1.3 A Markov Model for Economic Assets Analysis

In any time interval, the size o f a portfolio is a function of contraction and extension. 

For the purpose of this study, contraction refers to any process that causes a reduction in 

credit assets. On the other hand, extension is defined as any process that causes an 

increase in portfolio size.

To use the Markov Chain theory, one must define the states and the transition 

matrix. A bank loan normally requires monthly payment. If a loan is 30 days past due, 

denote it by 5,. Sate s2 refers to 60 days past due. According to the Basel II (1992), the

definition o f default is more than 90 days past due, which is s3. However, there are cases

where a loan, which has been more than 90 days past due, is eventually paid off. To 

adjust for this situation, the definition o f default is modified to represent the state o f 

default that is triggered by a permanent force such as an application o f bankruptcy 

protections, most o f which are Chapters 7 and 13 for retail credit products. This definition 

is in accord with the purpose o f this model which is to evaluate the economic (instead of 

accounting) status o f a bank’s credit assets. Let./?* be the i-th default or prepayment 

state. A default state reduces the portfolio value to zero. On the other hand, prepayment 

reduces the value by the amount o f prepayment. From the definitions o f states, it is clear 

that the past due states are transitional while the default or prepayment states are 

absorbing.
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Table 2.2 States o f the Markov chain.

Past Due and Prepayment States 

S j , j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3

Default States Rk 

£*,* = !,2,3,4

5-3 Prepaid More than 91 days Sold by Bank

S-2 Prepaid 61 days -  90 days r 2 All others

5-. Prepaid 31 days -  60 days * 3
Prepayment more than 50% of the 

remaining loan

So No more than 30 days past due *4 Prepayment less than 50% o f the 

remaining loan

s, 31 days -  60 days past due

S2 61 days -  90 days past due

S3 More than 91 days past due

What makes a prepayment state absorbing is the fact that a prepayment cannot be 

deducted from the next scheduled payment. For normal operation, one expects the bank’s 

credit assets to be in state S0. The following three reasons validate the classification of

prepayment as an absorbing state:

1. The prepaid loan amount (extra payment besides the scheduled normal payment)
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cannot serve as a buffer for future payment.

2. The prepaid loan amount can not be refunded by the bank.

3. The prepaid loan amount reduces the overall portfolio size.

Please note that, at any point o f time, the state of no more than 30 days past 

due, S0, refers to a health state, and we expect most o f a bank’s credit assets to stay in this 

state for normal operations.

The purpose o f this Markov model is to analyze the portfolio value for a bank 

within a time interval (0,t) on an economic basis. This fact implies the evaluation o f the 

value after taking potential risks into account, instead of the accounting amount based on 

the bank’s financial statement. The model can provide a true snap-shot at any given 

time £ within a time interval (0,f) for the management, and thus fundamental information 

for investors in a trading period interval (0,t) . The model has the following assumptions:

1. A transition an individual might make in the future is independent o f those made 

in the past.

2. Individuals do not have equal probability o f default, which depends on the 

specific debt structure, liquidity requirement, and risk taking ability.

3. The bank is under normal operation where the rate o f approval o f loan 

applications is assumed to follow a Poisson process.

For eachr,0  < r  <t, a change in the population size o f each state S] during a single

time interval (r, t  + At) occurs based on the following probabilities:
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A A t  = Probability that state S/ (i -  -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ) increases by 1 during a single time 

interval (x,x + At) . It is assumed that X (the intensity o f the Poisson process) is 

independent of time.

vij(x)At = Pr {one individual will move from state A,, to state Sj during the time 

interval (x, x + At), i, j  = -3 , - 2 ,- 1 ,0 ,1,2,3 } 

juik(x)At = Pr {an individual will move from a past due state to a prepayment or 

default state Rt during (x, x + At), i = -3 , -2 ,- 1 ,0 ,1,2,3,  k  =  1,2,3,4 }

The intensity vy that an individual stays in its original state in the time interval (r, x + A t) ,

4
is defined as vu = -(v~ + ̂  ujk ) , i *  j ,  i, j  =  -3 , -2 , - 1 ,0 ,1 ,2,3, k  =  1,2,3,4 . By this

<?=i

definition, it is obvious that 1 + vuAt -  Pr {an individual in state St at time x will be 

stated,.at tim ex + At }. Within any single time interval, { x + At }, V is the past due 

intensity matrix, while U is the default and prepayment intensity matrix as shown in 

Figure 2.4:

S_3 S 2 S , So S, s2 S3

S-3 ’V-3,-3 V-3.-2 V-3,-l V-3,0 V-3.1 0 0

£-2 V-2,-3 V-2,-2 V-2,-l V-2,0 V̂2.1 0 0

V-l,-3 V-l,-2 V-l.-l V-l,0 V_u 0 0
V0,-3 V0,-2 vo.-i V0,0 vo,i 0 0

S, Vl,-3 Vl.-2 V l Vl,0 vl l vi,2 0
V2,--3 V2,-2 V2,-l V2,0 V2,l V2,2 v2,3

S3 -V3.-3 V3,-2 V3,-l V3,0 V3,l V3,2 V3,3

Figure 2.4 Past due intensity matrix and default and prepayment intensity matrix.
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*1 r 2 r 3 *4

5-3 V-3,1 M-3,1 M- 3,3 M-3,4
5-2 M-2,l M-2,2 M-2,3 M—2,4
5., M-n M-l,l M-1,3 M-1,4

So /Vl Vo,2 Mo, 3 Mo,4

5, M,i V 1,2 Mi,3 Ml,4
s 2 /Vi V2,2 Mi,3 Ml,4
S3 _Mi,i Mi,2 M2,3 Mi,4

Figure 2.4 Continued.

Due to the fact that the R states are absorbing, there is no transition from U to V or 

among the R-states in U.

It is obvious that an increase in a portfolio’s size within a small time interval 

{r , r  + A t } could be regarded as the result o f only the migration process. As a result, the 

portfolio size at any given tim et can be expressed as

X (t)  = Y(t) + Z(t)  (2.13)

% ( 0 ' % ( t ) ' ^ - 3  (O '

* 2 ( 0
J { t ) =

Y J t )
, m =

Z-2(0

J i V , , z 3( 0 ,

where X;(t),i  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  is defined as the portfolio size in each of the 

states, s_3, s _2, , s Q, j j , s 2, s 3 at time t . Yt { t ) ,  i  =  — 3,—2 ,—1,0,1,2,3 refers to the portfolio 

size in state i at time t that survived from the original portfolio in state i at time zero, 

i -  (/_3 ,/_2,/_,,i0,iv i2,i3) and Z(.(t),i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  stands for the portfolio size in
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state i at time t as a result o f immigration during the interval (0 ,r) . One can argue that 

K(/) is affected both by contraction and extension, whileZt(t) , a pure incremental factor, 

is merely an extension process.

The extension process is composed of:

1. Immigration or increase in the portfolio size because o f approved new 

applications for a particular loan offered by a bank.

2. Birth or increase in the value o f the original portfolio at time 0 because o f the 

passage o f time.

For simplicity, however, we will consider only immigration in this study. That is, 

we consider approval o f a new loan as the only factor that plays a role in the extension 

process. On the other hand, the contraction process is triggered by three factors:

1. Prepayment, or the additional payment for a loan besides the schedule 

payment, reduces the portfolio size prematurely.

2. Default, causing the elimination o f the default loan amount from the portfolio, 

is considered as another contraction force.

3. Transition, an individual moving from an original state to another state.

Thus, letting mi be the portfolio size at state i , i -  -3 , -2 , -1,0,1,2,3 , at any

tim er,0  < r  < t the expected portfolio value is given by

E[Xj (t)} = Y m ip ij(0,t) + qj { t) , i , j  = -2> ,-2-\,  0,1,2,3 (2.14)
i= - 3

and, the variance is given by
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^ • ( O ]  = Z ^ ( 0 , O [ l - ^ ( 0 , O ]  + ̂ (Ow',y' = -3 ,-2 ,- l ,0 ,l ,2 ,3  (2.15)
i=- 3

where, P y ( 0 , t ) is the probability o f being in state j  at time t given that the process was in 

state i at time zero.

PiA °*0 = I ” ^ J!̂ — eP,\ U j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (2.16)

m= - 3  m*l

and is obtained from the solution to the Kolmogorov Forward Differential Equation:

7T Pij (T»■0 = Z Pir (T'’ (0 . *»7 = “ 3, -2 , -1,0,1,2,3 (2.17)

Also,q At) is the expected portfolio size in state5, at tim e t, and is given by

m=-3mW
3 3 /4' tO  1Z Z 4  3 * ( ^  -  1)A j  = -3, -2 ,-1 ,0 ,1 ,2 ,3

(2 .18)

i=-3 /=-3
m=-3m*l

Here, X{ is the immigration rate to state S( and Atj' is the ijth element o f the characteristic 

matrix o f V ' ,  the transpose o f the intensity matrix V , defined by
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Ay' = ( p l - V ) ,  (2.19)

where p, = eigenvalue o f the intensity matrix V .

2.1.4 Limiting Probabilities

Let V be the transition probability matrix within a single time interval ( t ,  t  + At) , and 

V” be the transition probability after n time periods. Furthermore, let y = lim v". ,
J rt->co '

where Vy is the ith row and jth  column component o f matrix V (Figure 2.4). Then,

X j  = S  X iv ij»J  = -3. -2’ -  ° » 2
>=-3 (2.20)

Here, Xj is the percentage o f individuals in state j .

If  we let / ( 0  be the penalty function for being in the past due state i , then the total 

expected proceedings from customers being past due during the period 1, 2 , . . . . , iV is given 

as

L /  = S / ( ' U  (2-21)

2.2 Application

Data were provided by a local bank in Ohio, operating in Ohio, Michigan, Kentucky, 

and Indiana. By using its monthly paid retail mortgage loan for 16 consecutive months, 

from April 2005 to September 2006, one can apply the discrete finite Markov chain
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model and the continuous time model. Also, the continuous version o f the Markov chain 

model will be used as a decision-making tool for optimizing bank loan officer 

compensation and for determining the sensitivity of a loan health index to macro- 

economic factors such as GDP, interest rate, unemployment, and consumer price index.

2.2.1 Discrete Time Model

The intensity matrix v , can be divided to 4 sub-matrices. These are an identity 

m atrix/4x4, a zero matrix 0 4x7, a RlyA matrix which refers to the transitions from transient

to ergodic states, and the Q7x7 matrix which denotes transitions within the transient states.

By the definition o f an absorbing state, it is seen that the intensity sub-matrix within the 

absorbing states is an identity matrix because once entered into an absorbing state, the 

loan will stay there for an infinite period o f time. By the same reasoning, the zero 

matrix 0 4x7 refers to the fact that there is no transition from any absorbing state to any 

transient state.

On the other hand, elements o f the transient Qlyl matrix and the ergodic matrix R7x4 

are given as

16 16 

Z ^ >  Z r*
Q / = l i T l  = ~3,-2,-l,0,l,2,3;&  = 1,2,3,4, (2.22)

Z Z ̂  ZZr*
(=1 j =-3 (=1 k=\

For example, the intensities between period 1 and period 2 are given by Figure 2.5
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10 3 4 3 0 0 ^0 0 0 0

1 9 8 1 0 0 0 0 0 0 0

1 1 51 21 1 0 0 3 0 0 0

3 9 32 722 12 0 0
rl := 0 0 0 0

0 1 2 6 8 2 0 0 12 0 15

0 0 0 1 0 1 0 0 0 1 10

0 0 0 1 0 0 3 , , 0 4 1 0

Figure 2.5 Two consecutive month transition matrices.

The numbers in the matrices represent the number o f transitions from state i to 

state j  [qijx) ,  i , j  = -  3 ,-2 ,-1 ,0 ,1 ,2 ,3  , or from state/to  state k  (a;*,), k  = 1,2,3,4 between 

period 1 and period 2. The Discrete transition probability matrices are given in Figure 2.6.

Q:=

60.575949 0.09962 0.164557 0.132911 0 0 0 '

0.036496 0.61365 0.156277 0.182482 0.000562 0 0

0.027559 0.034121 0.677428 0.239895 0.001452 0 0

0.004084 0.009734 0.049125 0.89205 0.010912 0 0

0.009094 0.008955 0.01403 0.207812 0.206307 0.055224 0

0 0.003157 0.023684 0.034737 0.085263 0.174737 0.318421

0 0 0.002105 0.0632 0.09526 0.151053 0.293157/

^0.019452 0 0 0 N
0.010451 0 0 0

0.010937 0 0 0

0.029017 0 0 0

0.132985 0.152321 0 0.209015

0 0.090526 0.145632 0.122053

 ̂ 0 0.105206 0.150526 0.130526,

I :=

(1 0 0 0̂1 
0 1 0  0 

0 0 1 0  

1,0 0 0 1J

0 :=

6 0 0 0 0 0 0  0^1 

0 0 0 0 0 0 0
0 0 0 0 0 0 0

60 0 0 0 0 0 0J

Figure 2.6 Discrete transition probability matrices.
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Then, according to Kemeny and Snell (1983), the overall intensity matrix V , 

composed o fRlx4, Qlxl, I4x4, 0 4xl is given in Figure 2.7:

4 5 2 5 , So s, s2

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0

S-3
0 0 0 1 0 0 0 0 0 0 0

0.019452 0 0 0 0.575949 0.09962 0.164557 0.132911 0 0 0

II 0.010451 0 0 0 0.036496 0.61365 0.156277 0.182482 0 0 0
5 , 0.010937 0 0 0 0.027559 0.034121 0.677428 0.239895 0.001452 0 0
S„ 0.002917 0 0 0 0.004084 0.009734 0.049125 0.892050 0.010912 0 0

0.132985 0.152321 0 0.209011 0.009094 0.008955 0.01403 0.207812 0.206307 0.055224 0
0 0.090526 0.145632 0.12205: 0 0.031579 0.023684 0.034737 0.085263 0.174737 0.318421

0 0.010526 0.010526 0.13052/ 0 0 0.002105 0.063200 0.095260 0.151053 0.293157

Figure 2.7 Discrete transition probability matrix V.

Thus, by the above reasoning, the expected number o f steps required to transition 

from transient state/,; = -3 ,-2 ,-1 ,1 ,2 ,3  to absorbing state k, k - 1,2,3,4 is given by E :

E = (I-Q)-l-t = N-Z

'29.38866' ' 1'

30.16227 1
29.24377 1
27.42631 1
10.12164 1
6.99529 1
6.81304 1

(2.23)

In this case, one can see that it takes 29.38866 or approximately 30 steps for a loan 

initially in state -3 to leave the transient states for any absorbing state. In other words, 

since the step is 1 month, a loan more than 3 months prepaid (state 3) could become sold
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or defaulted in approximately 30 months or 2.5 years, while a loan with 3 months past 

due could reach the same destiny in approximately half a year.

Also, let bik be the probability that the process transits from transient state i , 

i = -3, -2 , -1,0,1,2,3 to absorbing state k ,k  = 1,2,3,4 :

{b..} = B = ( I - Q r l R = N R

0.72337
0.72953
0.71614
0.72809
0.39812
0.1545
0.1539

0.04473
0.04692
0.04673
0.04968
0.22249
0.22566
0.23163

0.00429
0.0045
0.00448
0.00476
0.02133
0.28605
0.2774

0.06121
0.0642
0.06395
0.06798
0.30446
0.2984
0.29573

(2.24)

An element o f B , bik represents the probability o f transiting from transient state i to 

absorbing sta ted . For example, b32 = 0.23163means that the probability o f transiting 

from the 3-month past due state to the absorbing state ( foreclosure) is 0.23.163.

2.2.2 Continuous Time Model

For a continuous-time Markov chain, an element v7 o f the transition matrix V , is

given by the following equation:

vy = - P y  (Cijt, t) |(=0, i * j ,  i = -3 , -2 ,-1 ,0 ,1 ,2 ,3 , t = 1,2,3,... 16, (2.25)

where P (cjit, t) stands for the 5th-order polynomial used to fit the observed transitiony'v ijt

probabilities from the data over time. ciJt, i , j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  ,t - 1,2,3,...16 The

polynomials are approximated by the Lagrange numerical method. For instance, using
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MATLAB 7.0 Release 14, the transition intensity matrix for the transient state is shown 

in Figure 2.8:

V

0.4736B 0.15789 0.21056 0.15789 0 0 0

0.05000 0.45000 0.40000 0.05000 0.05000 0 0

0.01149 0.01149 0.47126 0.47126 0.03448 0 0

0.00383 0.00511 0.04092 0.47126 0.034483 0 0

0 0.03333 0.23333 0.53333 0.20000 0 0

0 0.14285 0 0.14285 0 0.28571 0.42857

 ̂ 0 0 0 S 0 1 0 0 /

Figure 2.8 Transition matrix for the transient states in the interval (0, 5).

The computations are done automatically through an access database. Similarly, 

the transition intensity matrix from transient to absorbing states in the interval (0 ,8 ) is 

given in Figure 2.9:

rik 8 '

0

0.00241

0

0

0 0

0.00124 0

0 0 0

0.33333 0 0

0.01454 0.00123 0

0 0 0

yO.00145 0 0

0

0

0

0

0 /

Figure 2.9 Transition intensities in the interval (0, 8 ).

The diagonal elements o f the intensity matrix V  and U are given by

vii =  ~ i v ij + s  u i k )»* *  j > i> j  = ~3’ ~2’ “  1’ 0,1,2,3, k  = 1 , 2 ,3,4
£=i

(2.26)
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where uik = — Pik(rikl,t) \t=0,i = -3 , -2 ,- l ,0 , l ,2 ,3 , t  = 1,2,3,...16. Thus, we obtained the 
dt

following V ,U  transition intensity matrices as presented in Figure 2.10:

V :=

( - 0.9919  0.3455 0.1592  0.2192  0.1207  0.0553 0

0.3687 - 0.9191 0.1314  0.164  0.158  0.0745 0

0.183 0.2799  - 0.9913 0.3933 0.0875  0.0215 0

0.1611 0.2785 0.3265 - 0.9962  0.1141 0.0909 0

0  0.0244  0.1212  0.2513 - 1.0263 0.2986 0.1849

0  0.0128  0.0556  0.0526  0.3008  - 0.9604  0.3426

0 0  0.0012  0.0904  0.1416  0.3512 - 0.9231

/

U :=

0  0  0.0460  0.046

0  0.0225 0  0

0  0  0 0.0261

0.0126  0.0125 0 0

0  0.0245 0.1214  0

0 0.1745 0.0215  0

0  0.1842  0.1545  0

Figure 2.10 Intensity Matrices V and U.

Hence, one can estimate, from equation (2.7), the transition probability matrix 

Py (0 ,1) and the expected duration of stay in state j  (given that the process started in

state i ) during the interval (0,1), (1), i, j  -  -3 , -2 ,-1 ,1 ,2 ,3  are given in Figure 2.11:

^0.08248 0.10673 0.08789 0.11175 0.08431 0.07858 0.05141^

0.0858 0.11103 0.09146 0.1163 0.08779 0.08186 0.05359

0.09 0.11643 0.09583 0.12181 0.09181 0.08549 0.05586

0.08746 0.11318 0.0932 0.1185 0.0894 0.08332 0.05451

0.06219 0.0806 0.0667 0.08496 0.06462 0.06073 0.04014

0.05046 0.06547 0.05438 0.06937 0.05309 0.0502 0.03342

v 0.04165 0.05407 0.04496 0.05738 0.044 0.04168 0.02781,

Figure 2.11 Transition probability matrix and expected durations o f stay in state j 

(starting in state i) in the interval (0 ,1 ).
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e..(l) := >J

0.08683 0.11234 0.09247 0.11755 0.08862 0.08253 0.05394^

0.09031 0.11685 0.09622 0.12233 0.09228 0.086 0.05625

0.09476 0.12257 0.10082 0.12814 0.09648 0.08975 0.05857

0.09207 0.11912 0.09805 0.12464 0.09396 0.08751 0.05719

0.06531 0.08467 0.07012 0.08935 0.06805 0.06403 0.04238

0.0529 0.06868 0.05715 0.07294 0.05598 0.05308 0.03545

v 0.04364 0.05669 0.04724 0.06033 0.04641 0.04411 0.02955)

Figure 2.11 Continued.

For instance, P_2 (0,1) = 0.09146 represents the probability that a loan in the 2-

month prepaid state will transit to the 1 -month prepaid state during the time interval (0 , 1) .

On the other hand, e_2 (1) = 0.09622 represents the mean time of stay in the 1-month

prepaid state (given that the loan started in the 2 -month prepaid state at t = 0 ) in the time 

interval (0 , 1) .

2.2.3 Economic Assets

In this subsection, we will use the model to approximate the stochastic retail 

mortgages portfolio size o f the Ohio bank. Let X (t) be the total stochastic retail mortgage 

portfolio size at tim e t. Its expected value can be expressed as

E[X(t)]= Y , E [ X j { t ) \ j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  ,
j =-3

(2.27)

where E [X  .(t)], the expected portfolio size belonging to state j , is given in Equation

(2.14). The following set of equations were used in applying the algorithm provided by 

MathCAD.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



where is the retail mortgage portfolio size belonging to state /in  thousands o f dollars at 

time 0 or April 2005. Using the bank database, we estimated the M  -  {/«,.} vector as 

shown in Figure 2.12, in thousands o f dollars:

s.3 s.2 s, s0 s, s2 s3

M  = (52.69 629.07 7341.75 68428.91 292.79 267.11 62.3l)r

Figure 2.12 Retail mortgage distributions in thousand o f dollars at time 0 

Table 2.3 provides the criteria used to select data in different states.

Table 2.3 States in the Database.

States Prepayment Indicator Past Due Days

S-3 >3 = 0

= 3 = 0

S , = 2 = 0

So - 1 > 0 ,< 30
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Table 2.3 Continued.

S, < 1 >31, <60

S2 < 1 >61,<90

S, < 1 >91

The definition o f immigration rate is given by the following method. For 

simplicity, we assume that the immigration intensity or increment rate is homogeneous 

over time (4 , (0  = 4,. ). Let f x be the polynomial function for 4, from the one step

immigration dollar amount at tim e t, /,. Thus by taking the first-order derivative o f the 

function f x , evaluated at time t = 0 , we obtain the immigration intensity

df, (4, )K \,o,t = 1,2,...,16 ,/ = -3 ,-2 ,-1 ,0 ,1 ,2 ,3

=

dt
L 0  

r  1  \

t ,6
(2.29)

V ^ , 3  J

*2-1

V  ' ^ ' 7  3  /V 2 ’3 J

4,

where 4 ,, is the retail mortgage immigration rate between period t and period t - 1 in state / .

The following vector in equation (2.30) gives the estimates o f the immigration rates 

between period l and period 2  in thousands o f dollars:

4 , =2 = (5 .21 47.08 98.77 547.49 2.14 0 0)r (2.30)
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It is seen that l (=2 2 and Xt 2 3 are zeros because in two consecutive months the

booked loans could not be 2 or more than 2 months past due. Thus, the immigration rates 

obtained from Equation (2.30) are given by the following figure.

T,=2 = ( 3 .0 4  2 4 .1 2  1 5 9 .4 2  8 7 6 .4 5  1 .1 7  0 0 ) T (2.31)

Using the same approach as in subsection 2.2.2, we estimated the transition 

intensity matrices, V and U as shown in Figure 2.13:

V  :=

^ -0 .8519  0.1707 0.1547 0.1387 0.0578 0.0553 0

0.2879 -0.8391 0.1045 0.1278 0.1974 0.0874 0

0.2781 0.2678 -0.9503 0.3578 0.0565 0.0178 0

0.1378 0.2978 0.2457 -0 .9674 0.1584 0.1002 0

0 0.0178 0.1578 0.3047 -0 .9912  0.2784 0.1748

0 0.0147 0.0479 0.0614 0.2947 -0.7843 0.1978

0 0 0.0078 0.1047 0.1687 0.3314 -0 .9047;

U :=

0 0 0.0613 0.0784^

0 0.0378 0 0

0 0 0 0.0578

0.0784 0.0087 0 0

0 0.0144 0.0947 0

0 0.1547 0.0687 0

0 0.1574 0.1178 0

Figure 2.13 Transition Intensity Matrices for Stochastic Assets.

Letting InTran(0,t) be the portfolio assets distribution from internal transition 

and ExTran(0,t) be the assets from immigration or new booked source, we have the 

following results as shown in Figure 2.14 (From Equation (2.29) and the V matrix in 

Figure (2.12)) when / = 1 :
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s 3 s _2 s, s0 s, s2 s3

InTran(0,t) = (1.03 25.50 217.81 1829.75 9.27 5.96 0 .4 l)r

s_3 s_2 S., s0 s, s2 s3

ExTran(0,t) = (0.09 2.78 29.74 20.14 1.65 0 0)r 

Figure 2.14 Internal assets and immigrated assets distributions over states.

As one month is the usual measure period o f banks, by letting t = 30 , we can 

estimate Amgnthly, the stochastic assets o f the monthly paid retail mortgage assets, by the 

following equation:

Monthly =y^ j [ I n T ra tij(0,30) + E x T ra n i (0,30)] ^  ^

= $64,323.9

2.3 Conclusion

The above models, discrete and continuous, confirmed the expected retail 

mortgage loan’s behavior. Furthermore, these models provided useful information to 

quantify the risks encountered by the banking management. By using these models, the 

management can obtain a clear picture o f its retail loans. For example, from (2.13), we 

know approximately how long the loan could take to enter each absorbing state. Thus, a 

corresponding rescue action would be deployed to encounter each situation.

More specifically, flexibility o f  the continuous model will allow the bank 

management to analyze its loans characteristics in any reasonable interval. The following 

matrices are obtained by lettingt = 30 in Figure 2.15:

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 6

P(0,30) :=

f  0.0045 0.00583 0.00481 0.00612 0.00463

0.00469 0.00607 0.00501 0.00637 0.00482

0.00491 0.00636 0.00524 0.00667 0.00505

0.00478 0.00618 0.0051 0.00649 0.00491

0.00343 0.00444 0.00366 0.00466 0.00352

0.0028 0.00362 0.00299 0.0038 0.00288

v 0.00232 0.003 0.00247 0.00315 0.00238

0.00433

0.00451

0.00472

0.00459

0.00329

0.00269

0.00223

0.00284^

0.00296

0.0031

0.00301

0.00216

0.00177

0.001467

e(30) :=

6 0.86326 1.11748 0.92138 

0.89831 1.16289 0.95891 

0.9412 1.21831 1.00435 

0.91537 1.18494 0.97701 

0.65497 0.84828 0.70048 

0.53398 0.69183 0.57194 

I 0.44146 0.57203 0.47307

1.172

1.21978

1.27745

1.24275

0.8915

0.72822

0.60242

0.88602

0.92228

0.96545

0.9395

0.67567

0.55297

0.45772

0.82757

0.86156

0.90148

0.87752

0.63271

0.5188

0.42969

0.54278^

0.56519

0.59105

0.57554

0.41629

0.34214

0.28358;

Figure 2.15 Transition probability (0,30).

The value for P 3_3(0,30) means that the probability o f staying in a 3-month 

prepaid state for 30 days is 0.0045, which could be explained as the probability that a 

loan will continue to be paid 3-month ahead is 0.0045. Also, e_3_3(30) = 0.86326 tells us

that, during the interval (0,30), staying in 3-month prepaid state is only 0.86326 unit of 

time. Furthermore, one can see that a small value for Pt j {0 ,0  is usually accompanied by 

a small value fore,. .(t) , which is what one expects based on banking experience.

As can be seen, there is a large difference between the retail mortgage’s book 

amount on the bank’s financial statement and the estimated stochastic amount which take 

into consideration the prepayment, past due, and default after one month. The latter is 

often o f most interest to the outside investors because this is the real assets amounts that
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could be used to buffer the liability due to the customer’s deposit. In most cases, it could 

be used to evaluate the bank’s operation efficiency as well as its bankruptcy potential.

Nevertheless, the discrete time and the continuous time Markov models are by no 

mean the only tools that could be deployed by bank management. In fact, the above 

models used only the occurrence frequencies o f each state and did not consider the loan 

assets which, in a sense, are more important for risk management in the banking industry. 

In the next chapter, we provide a method to index a retail mortgage’s health status and 

link it to the local macro-economic situation.
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CHAPTER 3

ANALYSIS OF MORTGAGE LOANS STATUS INDEX

This chapter provides an indexing procedure for a mortgage loan by means o f a 

finite Markov chain approach, which converts the loan health abstract idea into a 

workable number system. This method could be easily extended to other banking 

products as well. In the model section, a theoretical Stated-Space time series model is 

presented to analyze and to predict the loan health index4s sensitivity to local macro- 

economic factors, such as GDP, inflation, unemployment, interest rate, and personal 

disposable income. A multivariate regression method is used to analyze the local 

macroeconomic factors’ effects on the health index. The management o f a bank could use 

these procedures to adjust its loan approval policies based on current characteristics and 

future prediction o f the portfolio.

3.1 Model

A bank’s portfolio pool, say 20 years o f mortgage loans, is composed o f distinct 

individuals, who behave independently. Some o f the individual loans, having been 

prepaid, past due, or charged off at the beginning o f the measuring period, will transfer to 

a different state or stay in their respective states. Once a loan being charged off, the 

balance is removed and it could never go back to the bank books. The model is based on

48
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the idea that it will measure the expected duration of stay in each state and the probability 

o f the process going back to the normal payment state.

Table 3.1 Definitions o f the different states o f the Markov chain.

Past Due and Prepayment States 

Ss;i = -  3 ,- 2 , - 1 , 0 , 1 , 2 ,3

Default States Rk 

Rk,k  = 1,2,3,4

S 3 Prepaid More than 91 days Sold by Bank

s _ 2 Prepaid 61 days -  90 days r 2 Foreclosure

S-t Prepaid 31 days -  60 days r 3 Refuse to pay

So No more than 30 days past due *4 All others reasons

s , 31 days -  60 days past due

S2 61 days -  90 days past due

S3 More than 91 days past due

Health states, St,i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (Table 3.1), are defined as follows:

S_3, S_2,S_t are prepayment states, while »S,,S 2,S2 are past due states. S,,, the only health

state, refers to the normal payment. From the bank’s point of view, although prepayment 

is not as adverse as past due, it is still undesirable. Behaviors o f prepayment, in spite of
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the fact that they can insure early payback of the principle, reduce the total interests the 

bank could possibly earn on the outstanding loan balance at the beginning of the period.

X —Y
The different prepayment states are determined by the formula, S_t = — L, where X i is

the actual payment at month i , and Yt is the expected payment at month / . It is seen that 

a S_i state is defined as the extra payment. On the other hand, once a loan has been 

charged off, it would be eliminated from the bank’s portfolio pool and transferred to a 

third collection company. As a result, the charge-off states are defined asRk, k  = 1,2,3,4,

k  referring to different causes o f charge-offs.

3.1.1 Loan Health Index Model

L e t//b e t the index of a portfolio, which at time t has S r j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  

health states and Rk, k  = 1,2,3,4 charged-off or absorbing states. Here, H is given as

H  — 3 0 +  £ _ 2 ^ _ 2 , 0  "h  0  "h  ^ 0 ^ 0 , 0  "h  ^ 1 ^ 1 ,0  " f  ^ 2 ^ 2 , 0  ^ 3 ^ 3 , 0  ( ^ - l )

where, prefers to the expected duration o f stay in state j , j - ~ 3 ,- 2 , - 1, 0 , 1, 2 ,3 , 0JO is 

an intensity function j  = -3 , -2 , -1,0,1,2,3 measuring the transitions to the normal state, 

S0. The expected duration of stay in a specific state is based on the Markov transition 

intensity matrix as shown in Figure 3.1:
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S-3 S - 2 S 0 5, S 2 S i

S—3 V-3,-3 V-l,-2 V-3,-. V-3,0 V-3,1 0 0

V-2,-3 V-2,-2 V-2,-l V-2,0 V-u 0 0

V-l,-3 V-l.-2 V-l,-l V-1.0 V- 0 0

c<?ii V0,-3 V0,-2 V i V0,0 VC,i o 0

$ Vl,-3 Vl.-2 Vl,-1 Vl,0 v, i vi. I 0

S 2 V2,-3 V2,-2 V2.-l V2,0 V2,1 V2,2 V2,3
S 3 _ V3,-3 V3,-2 V> V3,0 V3,1 Vl,2 V3,3

r 2 r 3 R *

S - 3 M -l,l M -l,2 M - 3,3 M ~ i,\

S - 2 M -2,l M - 2,2 M -  2,3 M-2,4

S . , M -n M -l,2 M -1,3 M -1,4

ii Mo,l M o , 2 Mo,i Mo,4

S , M l,I M l, 2 Ml, 3 M l,4

S 2 M l,I M 2,2 M l,l M l,4

M l,I M l ,2 M i,i M l,4

Figure 3.1 Transition intensities transient states and absorbing states.

The transitions within the S-states are defined as (Chiang, 1980):

v<yAt=  Pr {an individual in state 5 )at tim e r will be state S - at tim e r + Af }, where 

i *  j;  i, j  = -3 , -2 ,-1 ,0 ,1 ,2 ,3 ,

jUikAt = Pr {an individual in state St at tim er will be stateRk at time r  + A/ }, where, 

k  = -3, -2 ,-1 ,0 ,1 ,2 ,3  and k  refers to the default or absorbing states, k - 1,2,3,4.

Furthermore, we assume that future transitions o f an individual are independent of 

past transitions. In other words, the intensities vtj and juik are assumed to be independent of
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time r . For 0 < r  < t . Thus, we are concerned here with a time homogenous Markov 

chain.

If  an individual stays in its original state, its intensity is defined by

4
V.. =  -(v.. + £  uJk), i * j ,  i, j  = -3 , -2 ,-1 ,0 ,1 ,2 ,3 , £ = 1,2,3,4 . By this definition, it is

<5=1

obviously that

1 + v.At = Pr {an individual in state St at time r  will remain in state St at time r  + At }.

Within any single time interval, {v + A t }, V is the prepayment and past due intensity 

matrix.

Thus, the expected duration o f stay in state j  is given by

*j = Z  Z  , 71'A* (Pl) (eP,t - 1) .h j  = -3 ,-2 ,-1 , 0 , 1, 2 ,3 (3.2 )

%

where, n . 's , i  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 are the proportion o f individuals (in the limit) in the 

portfolio pool who are initially in St, i -  -3 , -2 , -1,0 ,1 ,2 ,3 . Let c; be the number o f loans in 

state/at the initial starting date. Thus n i , the steady state probability distribution of loans 

at tim e t, is estimated as

* > = - £ - , 1  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ,(= 1 ,2 ,...,16  (3.3)

2> .
/ = - 3
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Furthermore, Ai}' is the characteristic matrix o f V ', the transpose o f the intensity matrix V ,

defined by

Ay' = ( p i  - V ' ) ,  (3.4)

where p l = Eigenvalue of the intensity matrix V .

On the other hand, it is obvious that6i0measures an individual’s ability to recover

from the semi-health prepayment and past due state S j , j  = —3, —2,—1,1,2,3, /  * 0 to a pure

health state, S0. Thus, a Maximum Likelihood Estimate [Chiang (1975)] o f 0i O is given as

N

0 , 0 = ^ ------- , i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (3.5)

r=i

where, «/0 r is the number o f transitions from Si9i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  to S0 by the rth

N
individual. As such, ^ « f0r is the total number o f transitions made by all A  individuals in

r=l

N
the portfolio. By the same reasoning, ^ t i r is the total length o f time that all individuals

r - \

in the portfolio stay in Sn i -  -3 ,-2 ,-1 ,0 ,1 ,2 ,3 . Therefore, the portfolio health index is

given as
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N

H  = X X — i----------------- f —
'=“3/=~3 Y I ( P i ~ P j ) P i ' E t i,r

i, 7  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 , (3.6)

y=-3
j* i

r=1

3.1.2 State-Space Prediction Model

The macroeconomic environment is long believed to play a central role in the 

analysis o f loan payment behaviors and the index alone cannot provide adequate 

information unless it has linkage to some benchmarks.

The health index discussed above will provide banking management a snap-shot o f 

its portfolio quality. To predict the future health index under different economic 

conditions, we need a time series state-space mode to analyze the sensitivity o f the health 

index to local macroeconomic factors.

The state space model represents a multivariate time series through auxiliary 

variables, some o f which may not be directly observable (SAS Online Doc, 2005). These 

auxiliary variables constitute the state vector. The state vector summarizes all the 

information from the present and past values o f the time series relevant to the prediction 

o f future values o f the series. The observed time series is expressed as a linear 

combination of the state variables. The state space model is also called a Markovian 

representation, or a canonical representation, o f a multivariate time series process. The 

state space approach to modeling a multivariate stationary time series is summarized in 

(Wei, 1990).
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The state space form encompasses a very rich class o f models. Any Gaussian 

multivariate stationary time series can be written in a state space form, provided that the 

dimension o f the predictor space is finite (Box and Jenkins, 1994). In particular, any 

autoregressive moving average (ARMA) process has a state space representation and, 

conversely, any state space process can be expressed in an ARMA form (Wei, 1990).

Let X t be the r x l vector o f observed variables, after differencing (if differencing is 

specified) and subtracting the sample mean. Let H t be the state vector o f dimension s, r, 

where the first r components o f H t consist o f X t . Let X t+k]t be the conditional expectation 

(or prediction) o f X l+k based on the information available at time t. Then, the last s - r 

elements o f H t consist o f elements o f X t+kl, where k > 0 is specified or determined 

automatically by the procedure (SAS Online Doc, 2005).

Various forms o f the state space model are in use. The form o f the state space 

model used by the STATESPACE procedure is based on Wei (1990). The model is 

defined by the following state transition equation:

H m = F x H, + GeM (3.7)

In the state transition equation, the s x s coefficient matrix F is called the transition 

matrix. It determines the dynamic properties o f the model. The s xr coefficient matrix G 

is called the input matrix. It determines the variance structure o f the transition equation. 

For model identification, the first r rows and columns o f G are set to an r x r identity 

matrix (SAS Online Doc, 2005). The input vector et is a sequence of independent
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normally distributed random vectors o f dimension r with mean 0  and covariance matrix. 

The random error et is sometimes called the innovation vector or shock vector (SAS 

Online Doc, 2005).

3.1.3 Multivariate Regression Model

Although it is optimal to use the state space model to link the retail mortgages’ 

health index to local macroeconomic factors, the stated space model produces accurate 

estimates o f the parameters when more than 40 consecutive periods o f data are available. 

Thus, a multivariate regression model would be an alternative because o f its less strict 

requirement. We assume that the relation between retail mortgages’ health and local 

macroeconomic factors is linear. This assumption seems realistic as most nonlinear 

models could be simply transferred to linear ones by taking the log transform. Thus, the 

model is given as

H  = b0+ bxIr + b2Un + b3In + bADpi, (3.8)

where, H ,  the health index, is the dependent variable. The 4 independent variables 

include Ir ,interest rate, Un ,unemployment, In , inflation, and Dpi disposable person 

income. The SAS software was used to fit the model to the data.

3.2 Application

The data o f 18 periods o f retail mortgage loans, provided by the Ohio local bank 

mentioned in chapter 2, were used in the regression model given in equation (3.6) to 

estimate the health index o f the loans. Then, because there are no sufficient data to utilize 

efficiently the stated space procedure, or Markovian representation, we used the SAS
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multivariate regression procedure to analyze the relationship between the macroeconomic 

factors and the retail mortgages health index o f this bank. The SAS output for the 

regression model results are presented in subsection 3.2.2.

3.2.1 Chiang’s Health Index Model

For practical reasons, further modification must be made to deal with the data 

series structure. The numerator o f equation (3.5) is actually the expected number of 

transitions from state i to state 0  for all individuals.

where 0\Q is the intensity function at period t , Nt is the total number o f retail mortgages at 

periodt , N t = ^  N s t . Thus, Nt represents all individuals in the transient states. Also,
S, = - 3

Pi 0N t is the total number of transitions made by all individual loans, where, p i 0 is the 

transition probability from 51,. to S0 , and S0 is the column vector of the transition 

matrix { R j} with

3 0NtS,
(3.9)

(3.10)

m=-3
m *l

In equation (3.9), <5,. is defined as
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• 1 , if  an individual is in state St 

vO, otherwise

We use 30A,J(.to approximate the total length of time that all individuals in the 

portfolio stay inS,.,/ = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 . As a result,3 0 / ^  gives the expected length of 

time for all individuals staying in state S',, during the two month period between check 

points. The following table gives N t , the total number o f retail mortgages in transient 

states at tim e t.

Table 3.2 Number o f retail mortgages in transient state at tim e t.

timet 1 2 3 4 5 6 7 8

917 875 836 821 805 786 742 741

timet 9 1 0 1 1 1 2 13 14 15 16

680 6 6 8 641 634 598 563 521 517

Also, the transition probabilities and expected duration with t = 1, calculated by 

equation (3.10) and (3.2), respectively, are given in Figure 3.2:
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0.08248 0.10673 0.08789 0.11175 0.08431 0.07858 0.0514 T
0.0858 0.11103 0.09146 0.1163 0.08779 0.08186 0.05359

0.09 0.11643 0.09583 0.12181 0.09181 0.08549 0.05586

0.08746 0.11318 0.0932 0.1185 0.0894 0.08332 0.05451

0.06219 0.0806 0.0667 0.08496 0.06462 0.06073 0.04014

0.05046 0.06547 0.05438 0.06937 0.05309 0.0502 0.03342

0.04165 0.05407 0.04496 0.05738 0.044 0.04168 0.02781/

0.65951 0.8416 0.72246 0.88976 0.70713 0.64828 0.4288 T
0.68767 0.87756 0.75341 0.9279 0.73757 0.6763 0.44743

0.72122 0.92029 0.78987 0.97272 0.77282 0.7083 0.46834

0.7006 0.89404 0.76747 0.9452 0.75119 0.68867 0.45552

0.49428 0.6311 0.5426 0.6686 0.53282 0.48972 0.32494

0.40626 0.5189 0.44659 0.55049 0.43949 0.40463 0.26903

0.3362 0.42946 0.36974 0.45581 0.36412 0.33541 0.22316;

Figure 3.2 Transition probability matrix and expected duration of stay.

As an example, the intensity function, 0_3O, in equation (3.1) for the health index

at timet = 1 , is estimated as

_ P-3ftN]
"3’° ~ 30N,S_3

30x20 
= 0.1708

Table (3.3) presents estimates o f the intensity functions, 0's 0 (i= -3, -2, -1 ,0 , 1,2, 

3) and expected duration o f stay in a transient state, ei , fort = 1, based on the calculation 

from Excel’s function:
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Table 3.3 Estimates o f the intensity functions.

State S- 3 S-2 S. So s, s2 s3

Pi,o 0.11175 0.1163 0.1218 0.1185 0.0849 0.0693 0.0573

N A 2 0 19 75 778 19 2 4

0-3,0 0.1708 0.1871 0.0496 0.0047 0.1366 1.0591 0.4379

ei 4.89753 5.10785 5.35356 5.20269 3.68406 3.0354 2.5139

Here, et — ^  eu, from e(l) in Figure 3.2 and p lQ is the element o f transition
/=~3

probability matrix given in Figure 3.2 at row S^3 and column Sq. From the data in Table

(3.3), the health index in equation (3.1) is estimated to be 6.9009. By the same method, 

we calculated the health indexes from period 1 to period 16 which are given in Table

(3.4).

Table 3.4 Health indices from period 1 to period 16.

tim et 1 2 3 4 5 6 7 8

N t 6.9009 6.5848 7.6233 7.2478 7.0647 6.4571 6.6478 6.2145

tim et 9 1 0 1 1 1 2 13 14 15 16

N, 6.1784 6.0658 5.4783 5.9847 5.8473 5.8741 5.6478 5.3421
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3.2.2 Multivariate regression model

The purpose o f the multivariate regression model is to find the relationship 

between the retail mortgage payment behaviors indicated by the loans’ health indexes and 

the local macroeconomic factors. Although regression might not be the optimal method, 

it is perhaps best to use under the circumstance where the data set is too small for the 

state space analysis. The local macroeconomic data extracted by econmagic.com, the 

commercial economic database is given in Table (3.5).

Table 3.5 Local macroeconomic variables.

Un, Irt In, Dp,

2005 04 5.90 5.86 5.74 4.93

2005 05 5.60 5.72 4.62 4.78

2005 06 6 . 1 0 5.58 5.62 4.63

2005 07 5.80 5.70 7.69 4.48

2005 08 5.50 5.82 6.98 4.30

2005 09 5.60 5.77 5.71 4.20

2005 10 5.30 6.07 3.06 3.90

2005 11 5.60 6.33 7.56 3.80

2005 12 5.50 6.27 6.05 4.30

2006 0 1 6 . 1 0 6.15 8.18 3.30

2006 03 5.30 6.32 4.30 3.20

2006 04 5.40 6.51 7.45 2.70

2006 05 4.90 6.60 5.51 2.50

2006 06 5.20 6 . 6 8 2.40 2.50

2006 07 5.80 6.76 5.47 2.50
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Thus, using the SAS regression procedure, we have the following multivariate 

regression model, representing the relation between a retail mortgage loan health index 

and local macroeconomic factors. Figure 3.3 gives the SAS output for the multivariate 

regression model

H  = 17.49997 -  0.41195 x Un -1.51859 x Ir + 0.02949 x ln  + 0.08064 x Dpi (3.12)

The SAS System 22:52 Tuesday, Feb 2, 2007 1 

The REG Procedure 

Model: MODEL 1 

Dependent Variable: h 

Number o f Observations Read 16

Number of Observations Used 16

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 4 5.22384 1.30596 12.27 0.0005

Error 1 1 1.17096 0.10645

Corrected Total 15 6.39479

Root MSE 0.32627 R-Square 0.8169

Dependent Mean 6.32246 Adj R-Sq 0.7503

CoeffVar 5.16046

Figure 3.3 SAS output for the multivariate regression model.
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Parameter Estimates

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 17.49997 4.61002 3.80 0.0030

un 1 -0.41195 0.30259 -1.36 0.2006

ir 1 -1.51859 0.54755 -2.77 0.0181

in 1 0.02949 0.05867 0.50 0.6251

dp 1 0.08064 0.23900 0.34 0.7422

Figure 3.3 Continued.

The most important indications o f model performance as a whole are the P-value of 

the F test for the model andR 2Adj, or adjusted R-square, which are 0.0005 and 75.03%, 

respectively. Because the critical value is a  = 0.05 and the P-value for the F test is far 

smaller than 0.05, the model is highly significant as a whole. Also, R 2Adj = 75.03% means

that 75.03% of the total variation of the dependent variable, which is the loan health 

index, could be explained by the model. The parameter estimates, however, are not 

significant except for the independent variable ir (p = 0.0181).

3.3 Conclusion

The models presented in this chapter include a health index model and a multivariate 

regression model. The former provide a stochastic measurement for the loan payment 

behavior and the latter could be used to analyze and predict the behavior under different 

macroeconomic environments. Also, the sign o f the parameters given in equation (3.11)
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confirm the empirical evidence o f the macroeconomic effects on the loans payment 

behavior, which is summarized in the following table:

Table 3.6 Macroeconomic effects on the loans payment behavior.

Unemployment Interest Rate Inflation Disposable

Income

Health Index Negative Negative Positive Positive

Although effects o f unemployment and Disposable income require little 

explanation, the rising o f interest rate requires more mortgage payment because o f the 

increasing financial charges if  the mortgage rate is not fixed (use market rate as a 

reference). The direct effect o f inflation is to decrease the money value and increase the 

real estate value. Thus, using less worthy money to pay off more worthy property might 

be a good idea under the circumstance.
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CHAPTER 4

A MARKOV CHAIN DECISION MODEL WITH 

REGARD TO LOAN OFFICER COMPENSATION 

AND LOAN COLLECTION

In this chapter, two Markov decision models would be used to estimate the 

appropriate compensation for loan officers and optimal credit collection policies. The 

appropriate compensation for an individual loan officer should be based on a 

sophisticated balance between benefits and costs for the bank that he or she is 

representing. Benefits refer to the investment returns from the different Markov states in 

the portfolio, such as past due, prepayment, and default.. Costs include the collection 

costs for the portfolio, associating with each Markov state, and compensations for the 

loan officer.

The effect o f credit risk asset management calls for the use o f dynamic stochastic 

techniques for optimizing decision making. In this chapter, a stochastic transition model 

is presented to analyze the balance between the recovered credit assets from a variety of 

collection policies and the collection cost associated with each policy. Thus, a Markov 

decision model is used to identify the optimal policy package to maximize benefits for 

the bank. A policy package is defined as a series o f actions to be taken corresponding to

65
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each of the past due and default states. Without loss o f generality, it is assumed there is 

no delay o f customers’ reaction on reception of a collection notice from the bank and the 

prepayment is generally in the best interest o f the bank inspite of interest losses because 

o f prepayment.

One purpose o f this study is to analyze the duration o f the loan system in an "up" 

or "down" state where “up” or “down” refers to the bank’s stochastic portfolio value 

being larger or smaller than the bank’s liability balance, which is the customers deposit in 

the bank. For predicting the rate o f the loan system breakdown, other stochastic models 

are used to estimate the portfolio value and the liability balance, respectively. These 

models are useful to approximate the bank’s ability to take risk and to avoid bankruptcy 

due to over-issuing of loans.

4.1 The Models

In this section, we present two Markov decision models to analyze the optimal loan 

officer compensation policies and optimal credit collection policies. In the former model, 

we need to maintain a sensitive balance between the benefits o f stochastic credit asset 

contributed by each o f the loan officers and the bonus plan or compensation policies to 

motivate the loan officers. Generally speaking, with more aggressive compensation 

policies for loan officers, one expects more credit assets that could earn more interest for 

the bank. However, the purpose for the optimal credit collection model is to choose a 

feasible policy package such that the positive difference between the benefits from the 

collected credit assets and the cost o f the collection policy is maximal. In subsection 4.1.1 

we present the model for optimal loan officer compensation while the optimal loan
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collection policy is introduced in subsection 4.1.2. Finally, the model to analyze the 

duration o f the loan system ups and downs is given in subsection 4.1.3

4.1.1 A Dynamic Model for Loan Officer Compensation

We use continuous time Markov chain theory to build a stochastic model in order 

to estimate the portfolio values belonging to each o f the states, prepayment, past due, and 

default. Combined with the cost estimate model, including the collection cost and 

compensation cost, the dynamic model is used to find the optimal policy so that 

maximum profits could be achieved. The validity o f the model depends on the following 

assumptions:

1. The investment return rate is independent from state to state.

2. The relationship between the performance o f a loan officer and his compensation could 

be represented by a linear regression function, namely R(r) = a + br . This assumption 

was confirmed by Magnan and St-Onge (1997)

3. The portfolio asset under analysis is associated with only one loan officer. Thus, the 

flexibility o f the model presented in this paper would let the bank’s management to 

specify the optimal compensation policy for each officer. As a result, the compensation 

policy could be optimized and benefits could be achieved for the bank as a whole.

4. The collection cost is associated only with assets in past due states. Due to the fact that 

the defaulted asset would be transferred to a third independent party for collection, the 

costs for collecting defaulted assets would not therefore be encountered by the bank 

which issues the portfolio.
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4.1.1.1 Benefits Associated with Each State

Following the state definition given in Table 2.2, the expected portfolio size in 

stateSj at tim er, and is given as

^ ( 0  = Z  C4-1)
/=-3

Here, is the immigration rate to state St and P  ( r ,/) is  the probability o f being in state

S.  at time t given that the process was in state Sj at time t. The solution o f

jP. (t, t) depends on Atj',  the ijth element o f the characteristic matrix o f V ',  the transpose

o f the intensity matrix V , defined as

4 '  = ( p / - F ’) ,  (4.2)

where p t = eigenvalue o f the intensity matrix V , which is given as

S* S* ^ 0 3 ^ 2 3̂

S* V-3,-3 V-3,-2 V-3,-l V-3.0 V-3,l 0 0  '

S-2 V-2,-3 V-2,-2 V-2.-l V-2,0 V-2,l 0 0

s_, V-l,-3 V-l,-2 V-1,0 v_M 0 0

ofII V0,-3 V0,-2 V i V0,0 Vo,i 0 0

$ Vl,-3 Vl,-2 vl.-l V VU VU 0

s 2 V2,-3 V2,-2 V2,-l V2,0 V2,l V2,2 V2,3

S, _ V3,-3 V3,-2 V3.-l V3,0 V3,l V3,2 V3-3_

The intensity v.(. that an individual stays in its original state in the time interval

4
( r , r  + At) ,  is defined as: vl7 = -(v (>. + ^ ujk), i * j , i ,  j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ,k  = 1,2,3,4 . By
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this definition, it is obvious that 1 + v;iAt = Pr {an individual in stateS:at tin ier will be 

state S at time t + A t }. The transition probability in the time interval (0, t ) , is given as

/>.(0,1) =  £  i '4 ';<A> =  - 3 , - 2 ,- 1 ,0 ,1 ,2 ,3  (4 .3)

- 3 n ( A - A j
m = - 3  
m*l

Thus, equation (4.1) becomes

? j(0  = i  fV -P /r .O r f r
i = - 3

<4 -4 >

'=-3 r i ( A - P j
i=-3

m=- 3 m*l
3 3= Z Z 4  3v4&(A) (e ^  -  iy ,  j  = - 3 , - 2 , - 1 , 0 , 1 , 2 ,3

i=-3 /=-3 n ( A - A m)
m -~3
m*l

Let r . be the investment return rate from the portfolio asset belonging to state S} . 

Hence, the total expected investment benefits can be expressed as

R = Y dE ( X f l ) = Y i E ( X J)E(rl )
( 4 5 )

6 6

= Z 0  E  biP‘j ) + 9 J  (01>*'» j  = 0,1.2,3,4,5 , 6
7=0  i=0

where T f , the portfolio a sse t, is given in equation (2.13), and bt is the loan balance in 

state i.
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4.1.1.2 Cost Associated with Each State

6

The expected portfolio value for each state 5. is E[X .(t)\ = I hPn (0 , 0  + qj(t),
i=0

i , j  = 0,1,2,3,4,5 , 6  . Suppose that the bank has a collection policy for each o f the states, 

C(cj) .  Thus, the total expected collection cost will be

£[C[X(t)]] = £ [ Z /0 C ( c y)]
‘ (4.6)

= Cj  [X! b i P i j  (°’ ̂  + Q j  6 j  = ° ’ l > 2’3’ 4’ 5’ 6
1=0

4.1.1.3 Optimal Compensation Policy

Let Xj , j  = 0,1,2,3,4,5 , 6  be the additional portfolio asset because o f the 

implementation o f the loan officer compensation policy, k , presented as a percentage o f 

the extra portfolio asset the loan officer brings to the bank. If  e~" is the discount factor, 

w here/is the discount rate, then the estimated benefits from implementing policy A:, is 

given as

e~‘E ( Y , R ' )  = f iE ( R ' ) = ' £ E l ( X J +xJ)rJl = f l E « X l +xl ))E(rJ)
7=0 7=0 7=0 7=0 ^

= e~“ J ]  r j X ^  itpy (0 , t) + q} (/)]
/=0 1=0

By including the compensation policy as cost in the total cost in equation (4.6), 

we have the discount total cost equation, including compensation and collection costs, 

which can be expresses as
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e-itE [ C [ X m  = e-i'E[XJ(t)C(cj )]

« (4-8)
=  e * i c j  [X  h P i j  (°»o + <lj (01 + x j k )  > i> 7 = o, 1,2,3,4 ,5,6

i=0

Here, xyk is the compensation cost to the bank. As a result, the dynamic equations for 

obtaining an optimal compensation policy is given as

Maximize:

f { k )  =  e u { £  VjXj [ £  (0, t) + q j  (0] -  Cj  [J] i{p y (0, t) +  q. (*)] +  X j k }  (4.9)
j =0 1=0 1=0

Subject to: p y(0,t) > 0 ;

I 2 > ?(o ,o = o
i J

4.1.2 Loan Collection Policy

The purpose for building this model is to find the optimal loan collection policy 

package. The package includes letters, emails, phone calls, corresponding to each of the 

state. In practice, there is no collection method for the prepayment state. Also, for 

completeness, the collection method for the normal state is included. In practice, this 

could be defined as sending a statement letter, which is normal operation for banks. The 

model is given as:

Bt=Q= £ e u[R ( t ) -e -uC(t)]dt

=> E(BI=0) = E(  J[ e u[R(t) - e “C{t)]dt} (4.10)

= >  E(Bt=0) = J [ °  e~uE[R(t)]dt-  J [ °  E[C(t)]dt
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where Bt=0 (&) is the benefits function of policy package & at time t = 0 , R ( k )  is the 

recovered credit asset, C(k ) is the cost function for each policy package, and e ,x is the 

continuous discount factor.

4.1.2.1 Effective Recovered Economic Assets

The estimation o f portfolio value is given again by equation (4.4) as

<7/0 = Z  i 4  3A>j(Pl) - V i ’j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (4.11)
f l  (Pi ~ P m)

i=-3 /=- 3
m=-3
m*l

For simplicity, we assume that a transition to a lower state is due to the 

implementation of a collection policy. Thus, an auxiliary function/(v) is defined as

1 , if  i< j , which means the collection policy is effective

7 (0 =  - (4.12)

0 , if/ > j , which means the collection policy is not effective

Thus, we have the following derivation:

£  X(t)d t  = J[ X(t)I(t)dt

=> E[ £  X(t)dt]  = E[ J[ X(t)I(t)dt]

£[ £  X(r)r*] = E[X(t)]E[I(t)]dt

=.£[fx(()*]= f
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i

_ E[f *(/)*]
I ET VYA1,* _  i _________ / ioT

'^%(i<j)
i

| r £[X (0 ]<*

(4.13)

Discounting the above equation by the compound discount factor, e~", where / is 

the discreet interest rate available from the market, we have the present value o f the 

portfolio from the effective collection policy:

where could be reached by a limiting method provided by Ross (2002).
/

Ross (2002) provided a very useful model to predict the long run probabilities in 

each of the states. Let V  be the reduced-form transition probability matrix within a single 

time interval ( t , t  + At) , and V’n be the transition probability after n  time periods. 

Furthermore, assume r  = lim v '", where v'. is the ith row and j th  column component of

J [  E[R(t)]dt
(4.14)

matrix V  defined in Figure 4.1,
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So s, s 2 S3 s 4 s 5 s 6

So ’vo.o 0 0 0 0 0 0
S, Ko vu 0 0 0 0 0
S2 V2,0 V2.1 V2,2 0 0 0 0

r = s i V3.0 V3,l V3,2 V3,3 0 0 0
s 4 V4,0 V4,I V4,2 V4,3 V4,4 0 0
S5 V5.0 V5,l 5̂,2 V5,3 V5,4 v5,5 0
S6_V6,0 V6,l V6,2 V6,3 V6,4 V6,5 < 6

In which,

Figure 4.1 Reduced-Form Transition matrix.

viJki , i>  j  which means the collection policy is effective

<j = <

0 , i < j  which means the collection policy is not effective

Then,

X j  = Y  X K j  ’ J  = - 3’ ~ 2 ’ ° » 2
i'=-3

5 > y- = W  = -3 ,-2 ,- l ,0 ,l ,2 ,3

is the percentage o f the individuals in state j , where

f  X - 3  ~  X - 3 V -3 ,-3  X - 2 V -2 ,-3  X - l V - l - 3  XoV0 -3 X l V l,-3  X 2V 2,-3 X 3V 3,-3

Z -2 = ^-3V-3,-2 + X-2̂ -2.-2 + X-X-,,-2 + XoV0,-2 + X,\-2 + X2V2,-2 + X 3V 3,-2

X 2 =  X - 3 V -3,2 +  X - 2 V -2,2 + X - l ^ - 1 , 2  + X o V 0,2 +  X l \ 2 + ^2V2,2 + *3V3,2

^ X - 3 + X - 2 + X - l + X o + X 1 + X 2 + X 3 = 1
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4.1.2.2 Total Cost

By the same reasoning, we have the expected economic portfolio value for each

6

state S j , E[Xj  (f)] = 7 (0 , t) + qf (t), i, j  = 0 , 1 , 2 ,3 ,4 ,5 ,6 , and suppose that the bank has
i=0

a collection policy for each of the state, C(cj) . Thus, the total expected collection cost is 

given by the following equation:

E [ C [ X m  = E[Xj (t)C(cJ)]
6 (4.18)

= Cjkj []T i.p.. (0 , t) + qj ( t) \ , i , j  = 0 , 1 , 2 ,3 ,4,5 , 6

i=0

where C(cj ) = cjk j is the cost increments factor from the implementation o f collection 

policy k j .

4.1.2.3 Dynamic Decision Making

Let Xj , j  = 0,1,2,3,4,5 , 6  be the portfolio asset due to the implementation o f the 

loan officer compensation policy, k , presented as a percentage o f the extra portfolio asset 

the loan officer brings to the bank. If e~“ is the discount factor, where i is the discrete 

discount rate, then the estimated cost from the implementation of policy, k , is given as

e ^ E l Q X m - e ^ E i X j i O d C j ) ]
6 (4.19)

= e " {Cjkj [ £  i.p& (0 , t) + qj (/)]}, i, ./' = 0 , 1, 2 ,3 ,4,5 , 6
1=0

As a result, the dynamic approach for obtaining an optimal compensation policy is 

given as
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?  E[R(t)\dt 6

Maximize: Bl=0 = e lt {—=  Cjkj i,pg (0, t) + q. (*)]} (4.20)
2- j X( i < j )  '=0

i

Subject to: pif (0 ,0  > 0, and £  ]T p g(0 ,0  = 0
i j

4.1.2.4 Proceedings from the Past Due State

The approach by Ross (2002) could also be used to estimate the proceedings for 

past due. Let V be the transition probability matrix within a single time interval ( t , t  +  A 0 ,

and V" be the transition probability after n time periods. Furthermore, we assume

th a t / .  = limv".., where v(7 is the ithrow and j th  column component o f the full matrix V .
* oo ■* '

Then,

2

Xj=YjXivij’j = l’2’2
'■=-3 (4.21)

£ * y = W  = l,2,3
j

is the percentage o f individuals in state 5 .,  where

r  X l = X l \ 2+ % 2 V2,2 +

i  X 2 = Xi \ 2  + X 2v 2 ,2 + X 3v3,2 (4.22)
^  X-3 + X-2 + X-! + Xo + Xl + X 2 + X 3 =1

If  we let f t be the penalty amount for being in past due state i , then the total 

expected proceedings from customers being past due during the period 1,2,...., N  is given 

by
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£ / = ! . &  <4-23>
i,N  i=-3

4.1.3 Analysis of Loan System Status

The idea here is based on the fact that the bank’s economic assets provide a 

warranty for its liability, which means, in the long run, the assets have to be more than 

liability to guarantee its insolvency. Thus, if  we use the random variables X(t)  and 

D(t) to describe the bank’s economic assets and liability, respectively, the expected 

system status, S(t) = X(t)  -  D(t) , should be positive over a long period, although it might 

be negative from time to time. In reality, the liability o f a bank is generally represented 

by the deposits from customers, and the economic assets could be considered as its loan 

portfolio economic value. By economic, one means the actual value to the bank, 

considering its potential risk, other than the numbers on the books.

We will use a continuous time Markov chain model to estimate the economic 

portfolio value, X ( t ) ,  where t = 0,1,2,..,7\ As such, the deposit process is represented by 

a compound Poisson process, D(t),t = 0 , 1 , 2 in which we assume that the arrival o f a 

customer follows the Poisson distribution. Also, the deposit or withdrawal amount of 

each customer follows an exponential distribution. Finally, a Markov model is used to 

estimate the expected rate o f the whole loan system as well as the expected duration that 

the system stays in an “up” state.

4.1.3.1 Portfolio Value

We will use the estimation o f economic portfolio is given by equation (4.4) with 

exactly the definition:
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« j (0  = X  X 4  3^ V(A) (e "  -1)7, j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (4.24)
,,=" 3 ' =~3 r i ( A - p * )

m=-3
m*l

4.1.3.2 Compound Poisson Model

Ross (2002) and Cummins (1991) provided a method to compute the expectations 

by conditioning. We can use this technique to find the expected daily net changes o f 

deposit balance. For simplicity o f the model, we consider all transactions are either 

deposits or withdrawals, no matter how the transaction is fulfilled, whether by wire, 

direct transfer, or branch operation. Thus, the expected month-end deposit pool balance is 

given by:

E[D(x)] = E [ f j y i] - E [ f j y j ], i  = \ ,2 ,3 , . . . ,nJ  = W , . . , n .  (4.25)
i=i j =i

where y. refers to a deposit transaction, y. is a withdraw transaction, and n is the number 

of daily transactions. Also, by assumption, n follows a Poisson distribution and y t or y t 

an exponential distribution. Using the conditional approach, we have

E[D(x)\ = E[E[D(x)] | N(t)  = n]

= £ [£ [ £  y,] | JV(<) = «]] -  £ [ £ [ £  JT | N{l) = if]]
1=1 j= i

/=i y=i
= E[nE[yi]]-E[nE[yj]]

= AtE[y,]-AtE[yi]

(4.26)
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The result follows from the fact that y i , and y i are independent o f N(t) = n and 

N{t) = n .

4.1.3.3 Loan System Status

After S(t) = X ( t ) - D ( t )  is determined for each o f the bank’s products, namely 

Credit Card, Mortgages, Line o f Credit, etc., one can define the Markov states as follows 

in Table 4.1:

Table 4.1 Different states o f the Markov chain.

S .., i,y = -3 ,-2 ,-1 ,0 ,1 ,2 ,3

A

Accepted

states

S-3 E[x(i)]-E[d(i)]>3S

S-2 2S<E[x(i )]-E[d(i )]<3S

S., 5<E[x( i ) ] -E[d( i )]<2S

So -S< E[x(J)] -E[d( i )]<S

Ac

Unaccepted

states

Sx - 5  < E[x(Q] -  E[d(i)] < -2 5

S2 - 2 8  < E[x(i)] -  E[d(i)] < -3 8

S3 E[x(i )] -E[d(i )]<-38
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Let the process be in stated ,., if  S(t), t -  0,1,2,.., T  is within the interval

[z'c>,( /+ 1 )£ ], where  —  ,i = 0,1,2, ...,T . By assumption, X(t)  and D(t) are
(xi + d ) /  2

Markovian. Thus, each state o f S(t),t = 0,1,2,..,7 could be represented by a continuous

time Markov chain.

From Table (4.1), it is obvious that the S_3 , S_2 , S . , , S0 states, in which the

economic portfolio provides liability insurance with regard to bank deposits, they may be

defined as the accepted states. On the other hand, S ,, S2, S3 refer to the unaccepted states

because they do not provide such insurance or protection.

The matrix o f transition intensities, given by the V matrix in Fig 4.2, is regular or

ergodic since the system is a closed set o f communicative states.

S-3 s 2 S-: S0 S, S2 S3

S-3 V-3,-3 V-3,-2 V-3,-l V-3,0 V-3,l V-3,2 V-33_
S- 2 V-2,-3 V-2,-2 V-2,-l V.0 V-2,l V-2,2 V-2,3

S-, V-l,-3 V-i,_2 V-,,-1 v-i.o V-M V-.,2 V-l,3
So V0,-3 V0,-2 V0,-l V0,0 vo.i V0,2 V0,3

S, Vl,-3 Vl,-2 V i V1.0 V Vl,2 V
S2 V2.-3 V2,-2 v2,-l V2,0 V2,l V2,2 V2,3

S3 _V3.-3 V3,-2 V l V3.0 V3.1 V3.2 V .

Figure 4.2 Transition intensities within the S-states (V matrix).

For the time interval (0, t), t <oo, the transitions intensities among the states are 

defined as follows:
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VyAt = Pr {an individual in state St at time r  will be state at time r  +At }, where

1 + v(7 At = Pr {an individual in state St at time r  will be state A, at time t  + A t }.

Furthermore, we assume that future transitions of an individual are independent of 

past transitions. In other word, the intensities vy are assumed to be independent o f time.

Thus, we are concerned here with a time homogenous Markov chain.

4.1.3.4 Transition Probabilities

Let Py(r,t) = Pr {an individual in state Si at time r  will be state Sj at 

tim et} ,/, j  = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  .Considering three points,r < t < t  + A t , by definition we 

have

i * j; i, j  = -3 , -2 ,-1 ,0 ,1 ,2 ,3 ,

Py(t,t + At) = vrj(t)At 

Pjj(t,t + At) = \ + vjj(t)At
(4.27)

PiJ(T,t + At) = Py(T,t)Pjj(t, t  + At) + Y j Pir(T, t)Prj (t, t + At) (4.28)

By substituting Eq. (3) into Eq. (4) and rearranging the equation we have:

=> lim
A->0

(4.29)
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This is called the Kolmogorov Forward Differential Equation, and its solution is 

given by (Chiang, 1980):

Here, Ai}' is the characteristic matrix o f F ' , the transpose o f the intensity matrix V , 

defined by

where p, = Eigenvalue of the intensity matrix V .

4.1.3.5 Expected duration of Stay in a State

For an individual in state 5,. at time 0, lete;/(/)=  the expected duration o f stay 

in Sj during the interval = -3 ,-2 ,-1 ,0 ,1 ,2 ,3  . In terms o f our process,

e ^ t )  evaluates the expected duration o f the loan before default occurs. This expected 

duration, e(/( t ) , is given by (Chiang, 1980).

m=lm*l

A j ' = i p i  ~V ' ) , (4.31)

(4.32)
0

Or ^ ( 0 ,0  = j ?  3 Aij(P,) (e*  -1  ) , i , j  -  -3 ,-2 ,-1 ,0 ,1 ,2 ,3  (4.33)

l=̂ t \ { P , - P j ) P i
h -3 
j * ‘

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8 3

4.1.3.6 Probabilities in the Limit

Ross (2002) provided a very useful set o f equations to predict the long run 

probabilities in each o f the states. Let V be the transition probability matrix within a 

single time interval (r, r  + A t), and V b e  the transition probability after n time, periods. 

Furthermore, assume that = lim v",, where vy is the ith row and j th  column component

o f matrix V . Then,

2

X j  = Y j  W i i  ’ j  =  _3’ ~2’-1 ’ ° ’ l > 2’ 3
(4.34)

I > , = W  = -3 ,-2 ,- l ,0 ,l ,2 ,3

is the percentage o f the individuals in state j , where

< (4.35)

Xl ~ X-3V-3,2 Z-2V-2,2 X- \V~\,2 XoV0,2 Z]V1,2 X2V2,2 XiV3,2

'Z-3+X-2+X-1 +Xo+ X l+ X 2+X3 = 1

Thus,

Breakdown Rate =
1

(4.36)

and
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^-HeA

Proportion o f Up Time = -= — ------------------  (4.37)
2-lieA‘%' !____ 2-1 ieA

■!' !■ A % i P i j ;c: -! % iP i j

4.2 Conclusion

The above models are useful in that they provide the management in a bank 

practical tools for analyzing a loan status for each single portfolio or financial service. 

Also, these models help considerably in decision making and can be easily integrated into 

management software packages for the banking industry. Future availability o f data will 

help in demonstrating the applicability o f these models.
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CHAPTER 5

A HIGHER-ORDER MULTIVARIATE MARKOV 

CHAIN MODEL FOR RETAIL MORTGAGES 

AND CREDIT CARDS

This chapter presents a high-order multivariate Markov chain model to analyze the 

correlation between retail mortgage loans and consumer credit cards (other than 

commercial cards). This model provides a quantitatively theoretical evidence for the 

empirical phenomenon concerning the historically high correlation between those two 

retail financial products. Also, conclusions about the correlation will be presented after 

the model is tested by real data provided by the Ohio local bank.

5.1 The Model

Multivariate Markov chain models have been successfully used in representing the 

behavior o f multiple data sequences generated by the same source. Years o f operation 

experience convinced the bank management o f the importance o f the correlation between 

retailed mortgage loans and personal credit cards, both of them are usually offered by a 

local bank to the same group o f consumers in the area. In most cases, credit cards are 

used to purchase daily supplies, such as food and consumer goods. Thus, with the

85
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fluctuation o f the macro-economic and employment situations, the question becomes: 

what is more important, house or food?

To answer this question, we need to have information not only about the direction 

o f the correlation, but also about its magnitude. The high-order multivariate Markov 

chain model introduced by Ching and NG (2006) could be a good candidate to analyze 

and quantify the correlation that has been long observed by the credit risk management 

personals in banking.

5.1.1 Multivariate Markov Chain

Multivariate Markov chain models have many applications in multi-product 

demand estimation, credit rating, DNA sequence, and genetic networks. In this chapter, 

we will use the model proposed by Ching and Ng (2006).

a=1

< Xa/3 > 1,1 < a,  j8< 2, (5.1)

In this model, the parameter Xafi that gives the direction and magnitude o f the 

correlation is the model outcome. We define a,  ft  - 1,2 as the data sets for retail 

mortgage loans and personal credit cards, respectively. Fn+] = (F “ , F ^  )T refers to the 

probability distribution vector in each o f the states. We follow the definition o f state in 

chapter two. That is, S  e  {Sn Rk),i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ,/; = 1,2 ,3,4 (please refer to Table

2.1 for detailed definition o f the states). S o ,F “ = ( F “ ,F “ „ )r , i - ~ 3 ,-2 ,-1 ,0 ,1 ,2 ,3 ;n+1 n+l,Sj m+1, nk
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k  = 1 , 2 ,3,4 at time t = n + 1  is the probability distribution vector for the retail mortgage, 

while F p is that for personal credit cards at time t = n +1. V(li> is defined as the intensity of»+l

transition between states o f retail mortgage and personal credit cards. The matrix form of 

model (5.1) is given as

F ^  =
(  p an+1

/

F pV «+!/ V

L J aa K,nVap' \ (F “'a/3

i nj Pa hPfy pp j F p .\  n /
, V ij =

p  q V

Ri] Q]
(5.2)

or , F n+i=WFn,W  = K J aa KPvaP

where, F ’̂  ={Fn l s  ,FmtA)T, i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ,k  = \ ,2,3,4, j  = a , P  , while I ’ , O’ ,

R ‘j , QiJ are given in Figure 5.1:

7x4

r 2 i?3 * 4

'1 0 0 o' * 1

r 2 0 1 0 0 i ? ,
-

0 0 1 0 ’ 4X7 “ 3̂
K 0 0 0 1 * 4

* 2 *3 * 4

S.3 77-3,1 77-3,2 77-3,3 773i4 " S-i

s , /7-2,i M-2,2 772,3 772,4 S-2

S-i 77u 77],2 77],3 77],4 S-«
=  s 0 74),i 74),2 74),3 74),4 IIr-.Xr-

b
l

s , M,i 74,2 74,3 74,4 S,
s 2 77,1 74i,2 74,3 77,4
S3 _ 773,i 74,2 77,3 77,4 S3

S- 3 S-2 S-, SQ s , s 2 S3

' 0 0 0 0 0 0 o'
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

S —3 S-2 s _ , So S ] s 2 S3

V-3 ,- 3 V-3 ,- 2 V- 3 , - l V-3 ,0 v -3 ,l
0 0  '

V- 2 ,- 3 V-2 ,~ 2 V- 2 , - l V- 2 ,0 f - 2 ,1 0 0

V- l , - 3 V- l , - 2 v-l,-l V-1,0 v - u
0 0

V0 ,-3 V0 ,-2 V0,-1 V0,0 V0,1
0 0

V l,-3 Vl ,- 2 vl,-l V1,0 v u v .,2 0

V2 ,-3 V2 ,-2 V2 ,- l V2,0 V2,l V2,2 v 2,3

_ V3 ,-3 V3 ,-2 V3 ,- l V3,0 V3,l V3,2 V3 ,3_

i , j  = a , p

Figure 5.1 Transition intensity matrices between retail mortgages and credit cards.
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/ ' /4x4 , 0 ' \ yl are the transitions within transient states and transitions from transient to 

absorbing states, respectively. By the definition of an absorbing state, I \ /A, O"4/1 are a 

4 x 4  identity matrix and a4x  7 zero matrix, respectively.

Furthermore, letting clk,J , i , j  = a ,  f t  be the transition probability between state/in  

data set/and state H n  dataset j , the elements o f /?y7x4 an d g y 7x7 are calculated from the 

following equations:

( c ij
- 3 , - 3 c  0• - 3 ,4 v  •.. V - J '

c  i] =Ik

c 0 •^  4 , - 3 • • c ij4 , - 3

V ij =y  Ik (5.3)

- 3 , - 3

r  *4 > if
Z  Cm,n

V ‘J =
m,n

n~S_-

\

n=S_

0 , Otherwise

Based on the assumptions that Vij =
I ij Oij 
RiJ Qj

is irreducible and Xap > 1, Ching

and Ng (2006) proved that there is a unique stationary vector F  =
F p \ r  y

, such

‘ k
tha tF  = WF, and £  | F j \t, j  = a , p .  Thus, (5.4) could also be written as:
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f
F  =

X Vaa X v apa a  a[3

X V pa X v pp\ A p a Y  A p p ¥  )

F ,

or

where,

Y uXapVapF p = F a ^  2^XapVaPF p - F a = 0
a = 1

y a a  _

y«P

y P a

Vv pp =

a=1

” ->.-3“  •
V-3,4

v , ”  •-  v* . “ ,

v  “ “-3,-3

V “ “  •4,-3 . .  V “ “ *4,-3 J

a a
-3,-3 . v . r )-J,4

V “ “  •4,-3 . v  “ “V4,-3 )

V - 3 , - 3 “ “  • • •  V - 3 ,4

a a
4 , - 3 V 4 , - 3

(5.4)

According to Ching and Ng (2006), by letting if/ =
a=1

be the

vector norm for measuring the difference in (5.4), wherei// is defined as m ax{y/^ ,^}by 

Burden and Faires (2001), the parameters of the above model could be solved by linear 

programming:
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MinA{M ax{f4AapVaPF /3- F a}} (5.5)
J  a=1

P
subject to ^  Xaji = 1 and Xap > = 1 , 2

a=l

In the next subsection, we will introduce a high-order Markov chain, which, under 

a normal macroeconomic environment, could produce more accurate results for analyzing 

loans payment behavior.

5.1.2 High-Order Markov Chain

In analysis o f real-world problems like retail mortgage loans and credit cards 

payments, the behaviors o f the payments are supposed to be affected by the prevailed 

macro-economic factors like local interest rates and employment. On the other hand, past 

payment pattern could also play a role in the current and future payment. When these are 

indeed the case, a high-order Markov chain model might give a more accurate description 

o f the real payment behavior and offer better prediction. Ching and Ng (2004) proved 

that a second-order Markov chain model predicted a product’s sale demand with 83% 

accuracy while a first-order version provided only 74% accuracy with the same data set.

Unfortunately, an kth order Markov chain withm states will have (m - \)mk model

parameters, and the number o f parameters (the transition probabilities) will increase 

exponentially with the increase order of the model. Raftery (1985) introduced a higher- 

order Markov chain model with only one additional parameter for each extra lag. By 

assuming Q = [q^] is a stationary transition matrix which means it doesn’t change with 

different lags, his model could be written as:
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P (X -  = j a IX 1- 1' = >„.... , * < - * > ( 5 - 6 )
/ ' =  1

where, ]jT A. = 1,0 < l (v/o/. < 1. It could be also presented in matrix form as
k

I
i '= l  i = l

p (n+k+1) =  ^ ^ v p ( „+k+l- i )  =  j  ^  ^

1=1 1=1

where, P(n+k+i) =(P^n+k+l))T ,i = \,2,..,m  is the probability distribution of states at 

tim en + k + \ ,  Si = {i e  l,2,..,m} . Ching and Ng (2006) generalized Raftery’s model in 

(5 .7 ) by allowing the transition matrix V = [vy] to vary in different lags, that is, 

V. y , i it j . Thus, the model reduces to

k
p (n + k + 1) _  y  X V iP ( ''+k+l i) . ( 5 - 8 )

i ' = l

It is seen that if  Vx = V2 = ... = Vk , Ching and Ng’s model in (5.8) is reduced to 

Raftery’s model in (5.7). Also, Ching and Ng (2002) proved that if  Vk is irreducible

and Xk > 0 such that 0 < Xk < 1 and ^  A. = 1 , then p (n+*+1) = (P ^ +k+1))T,i  = 1,2,..,m is a
i=i

stationary distribution, that is

lim /><”+i+,) = lim
n— n—>cc i=l

P  = Y W i P  (5-9)
/=1

= * ( / - £ « ) P = 0
1=1
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where /  is a m x m  identity matrix, andm is the number o f transition states. One can also 

show tha tlr P  = \ , \T = (1 ... l)lxm. Given the probability distribution matrix P and the 

transition intensity matrix V which could be observed from the data sequence and 

calculated by the scheme in (5.3), respectively, we can solve A(.,z = l,2,..,m  by this linear

system. However, a better way to solve this linear system is use the algorithmic proposed 

by Ching and Ng (2006). They used a linear programming technique, similar to the one in 

(5.6), defined as

I
Minx{ (5.10)

subject to = \X t > 0

where ||[]| is a vector norm, and / e  (1,2, oo} . For simplicity, we choose I = 1. Thus, an 

equivalent linear programming technique proposed by Ching and Ng (2006) is as follows:

m

Minx ̂  Wj, subject to
1=1

(5.11)

'  w, '
w2

> X  ~[VxX V2X. . I W

'  W1 ^

y^k ,

'  V
w2

> X  +[V,X V2X. . K

^wmj \^k j
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In the application section, due to the seasonal fluctuation, we will use a fourth order 

Markov chain in the hope that it will result in a better representation of the loan behavior.

5.1.3 High-Order Multivariate Markov Chain

By assuming that the state probability distribution o f the j - th  sequence at 

time t = r + 1  depends on the state probability distribution of all sequences at times 

t = r, r - 1,..., r -  n +1, Ching and Ng (2006) proposed a higher-order multivariate Markov 

chain model:

k= 1 A=1

Xhj k > 0 , \ < j , k < s , \ < h < n  (5.12)

k=\ A=1

where V*  is the h ■ th intensity transition matrix indicating the h ■ th intensity transition 

from states in the j - th  sequence at time t = r -  h + \to  states in the k  ■ th sequence at time 

t = r + 1. In fact, each Vhjk is a m x m  matrix represented by

V-3,-3 • • V-3,4

V4,-3 • ' V4,4 ;

y *  =

Equation (5.11) could also be written in matrix form:

jk

(5.13)

p a  _  p a a p a  +  p a p p P

= B'iaFra + B'spFrp
(5.14)
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0 / 0 0

/7 0 tx 7 n 4

(  2a y aa’PPA'nr* an* a' a a , p p V  4

I
0

a a ,B f 3 1 2 - r / a a , p p  3
3 a a  , p p  2 A

11 yaa,PP \  
'aa,ppr 1

00 0

0

/

I

0

0

0 /7mx7M

where Fr(j) = ( F ^ , F r(̂ , . . . ,F ^ l+l)T, j  - 1 ,2 , ...,s , and V“ , V‘J is specified by equation

(5.12). In our case, s e {a ,p}  . The model introduced in equation (5.14) is too 

complicated to be solved by linear programming. We will use the direct algorithm in 

MathCAD® to solve this model in matrix form.

In this section, we will use the multivariate higher-order model introduced in the 

previous section to analyze the correlation between retail mortgage loans and credit cards. 

Also, performance comparison of the three models to predict the probability distribution 

in the next period, namely, a multivariate model by equation (5.5), a higher-order model 

by equation (5.11), and a multivariate higher-order model by equation (5.14) would be 

provided for the conclusion in the next section.

An Ohio local bank provided us with 18 months o f consecutive data sequences on 

retail mortgage loans and credit cards, from April 2005 to September 2006. Based on the

5.2 Application
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results, a report will be issued to the bank management. We will deal with each o f the 

models separately followed by a summary o f a model’s performance according to its 

prediction ability.

5.2.1 Multivariate Model for Correlation and Prediction

One o f the results that the bank wishes to know is the direction and the magnitude 

o f the correlation between retail mortgage and credit card because, normally, these 

services are taken by the same group o f people in a local area. Macroeconomic factors 

could be common drivers that have effects on payment patterns and behaviors o f both 

retail mortgage and credit card. The following are the notations we will be using 

throughout this chapter for all three models. We will use a ,/?  for retail mortgage and 

credit cards dataset, respectively. Following the definition in Table 2.1 o f chapter 2, for 

each o f the dataset, there are 7 + 4 states, 7 for transient states and 4 for absorbing states 

which are represented by i,k  e {S,,Rk} i -  -3 , - 2 , - 1 ,0,1,2,3;k  - 1 ,2 ,3 ,4 . Different lags or 

orders will be referred to as j  e  {1,2,3,4} . For example, when j = 4, the transition

intensity matrix: V 'f  =

r  r / \ aP 
V-3,-3 K V_34

M O M

V V 4 , - 3  L  V 4 , - 3

is referring to 4-month lagged transition

from retail mortgage states to credit cards states. Thus, the multivariate Markov model 

proposed by Ching and Ng (2006) is given as by equation (5.4),

or F  - F  , which could also be written as

iX / j v < x p F P = p a  => ~ p a = °a-1 a=1
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The sign and values o f the parameters X = {Xaa ,Xap ,XP“ ,XPP) provide the 

direction and the magnitude o f the correlation. Also, given the probability distribution at 

time t , the model can predict the distribution at time t + 1 . For simplicity, we 

choose / = 1 in the vector n o rm ||| . Thus, the linear programming in equation (5.5) 

becomes

- F ‘ ) (5.15)
a = 1

p
subject to ^  Xap = 1 and Xafj > 0 ,a , f t  = 1 , 2

a=1

We will provide methods, direct solution o f (5.4) and linear programming 

solution o f equation (5.15), for solving the parameter X = {Xaa, Xap, Xpa, Xpp} by the 

MinerrQ method o f MathCAD and the Solver() function of Microsoft Excel, respectively. 

The models are built based on the datasets 1 - 1 5  periods, and data o f the last period or 

period 16 is used to check and compare model performances.

The followings are examples o f transition intensities calculated by equation (5.3)

* 3 * 3 X . 5-, 5-3 5-, S o 5, 5 2 5 ,
1 0 0 0 0 0 0 0 0 0 0

* 3 0 1 0 0 0 0 0 0 0 0 0

* 3 0 0 1 0 0 0 0 0 0 0 0

R4 0 0 0 1 0 0 0 0 0 0 0

5-3 0 0 0 0 0 0 0 0 0 0 0

5-3 0 0 0 0 0 0 0 0 0 0 0

5-, 0 0 0 0 0 0 0 0 .0014 0 .0005 0 0 .0 0 1 2

S o 0 .0 2 1 4 0 0 .0 0 1 2 0 0 0 0 .0 0 1 4 0 .9514 0 .0345 0 0 . 0 0 1 1

5, 0 .0 1 0 4 0 . 0 0 1 4 0 .0021 0 .0045 0 0 .0005 0 .0021 0 .0285 0 .0014 0 .9 1 2 4 0 .0 0 2 4

S i 0 .0 1 2 4 0 .0 0 7 2 0 .0 0 1 7 0 .1 0 4 0 0 0 0 0 .0012 0 .0041 0 .0741 0 .0 0 7 6

S 3 0 .0001 0 .0 0 1 7 0 .0065 0 .0032 0 0 .0 0 1 2 0 0 .0034 0 0 .0 0 1 8 0 .0 0 1 5

Figure 5.2(A) Transition intensity matrix within credit cards.
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R \ R", R" 3 s r , sA 2 S'. s ' , s ' : s ' ,
R \ '0.5901 0 0.1478 0.0471 0.1214 0.0124 0.0110 0 0.0014 0.0011 0.0001
R“2 0.0012 0.4748 0.1478 0.0014 0.0142 0.0301 0.0018 0.0031 0.0784 0.0145 0.0984
R°, 0.0651 0.1245 0.5684 0.0145 0.0321 0.0245 0.0781 0.0214 0.0321 0.0141 0.0148

0.0914 0 0.1024 0.4512 0.1224 0.0001 0 0 0 0.2147 0.1473

s*„ 0 0.2541 0 0.0142 0.3871 0.1748 0.1201 0.2415 0.0012 0.1457 0.0007

= 0.0012 0 0.0014 0.0661 0.0547 0.4517 0 0.1454 0.0047 0.0018 0.0009

S“-, 0.0019 0 0 0.0008 0.1233 0.4154 0.2315 0.0594 0.0124 0.0142 0.0005

s% 0.0001 0 0.0014 0 0.0025 0.2345 0.7841 0.1484 0.0978 0.0014 0.0078

s a, 0.1025 0 0 0.0874 0.0019 0.0009 0.1269 0.1487 0.3412 0.0002 0.4816
0.0021 0.1721 0.2365 0 0.0065 0.1471 0 0.1475 0.3874 0.2314 0.1673

M 2 
S ’ ,

0 0.6748 0.0002 0 0.1781 0.0014 0.0014 0.0987 0.1114 0.1387 0.1991

Figure 5.2(B) Transition intensity matrix between retail mortgages and credit cards.

Figure 5.2(A) and Figure 5.2(A) are examples o f transition intensities matrice 

given by equation (5.3).

Please note that the transition intensities in Vap between states Rk, k = 1,2,3,4 and

between St,i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 are no longer necessarily 1 and 0 because the charge-off

in a retail mortgage loan does not always transit to the charge-off of credit cards and vice 

verse. Also, we can find that the prepayment in credit card is not as significant as the 

retail mortgage which has also been confirmed by many empirical analyses. The 

calculation o f its elements is given as

15

I
vi/  ,/ = - 3 , - 2 , - l , - , l ,2 ,3 , i* y ,*  = l,2 ,3 ,4 ,*e  {a,/3} (5.15)

3 (=1 i
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wherecijtis the occurrence frequency counts o f the transition between states at tim et.

Furthermore, the probability distribution vectors in each o f the states are given in Figure 

5.3:

(  F aS]

F =  F p\ l /

Fa = (0.0131 0.0286 0.1025 0.7523 0.0246 0.0321 0.0125 0.0098 0.0078 0.0115 0.0051)7 
7^,= (0.0000 0.0000 0.0001 0.7958 0.0212 0.0565 0.0814 0.0165 0.0158 0.0107 0.0014)r

Figure 5.3 Probability distribution vectors.

Thus, the model in (5.4) solved by the MinerrQ method o f MathCAD is given as 

Fn“ , = 0.2955V aaFna + 0.7045VaPFnp (5.16)

-<

^ Ff+l = 0 .6 0 7 7 F ^ F “ + 0 .3 9 2 3 F ^ F /

where, 2  = {Xaa , l aP ̂  ,XPP} = {0.2955,0.7045,0.6077,0 .3 9 2 3 }n n J^2 a/? =1
P

From the elements o f the vector \  it is seen that there is a relatively strong 

positive correlation between retail mortgage and credit cards payment. Also, the 

correlation is not symmetric ( Xap = 0.7045 *  0.6077 = XafS ). This result could be

explained by the payment sequence for each month’s bills, or the inelasticity o f the 

mortgage payments. On the other hand, the function o f credit cards could be easily 

replaced by cash or other payment method. As a result, credit cards payment seems more 

contingent on the payment o f the mortgages.
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5.2.2 Higher-Order Model for Prediction

In this subsection, we will apply a t'h -order Markov chains m odel, t = 4 , to predict 

the probability distribution between states defined in Table 2.1. Data for this model are 

provided by the same Ohio local bank mentioned at the beginning of this application 

section. The parameters in model (5.8) provide information about the correlation between 

states o f different lags. This correlation will reveal which lag has most influence over 

current states. That is, by taking past several transitions into consideration, we hope the 

model will offer better predictions.

k k
According to model (5.8), or P (n+i+1) = ^ T ,T P (',+i+1" ),£ 2 , .  =1 , V = (V ) ,

i=i f=i

t = 1, 2 ,3,4 are the transition matrices from time n - 1 to n where n is referring to the 

current time. Please note that when / = 1, the model is just a regular first-order Markov 

chain.

Equation (5.3) gives us a method to calculate the intensity 

matrix V = (V '),t = 1,2,3,4, the elements o f which represent the transition between states

at timen — t to states at timen . The following is an example o f intensity matrix o fV 2, or 

the transition between states at two-month ago to state at the current month.

The transition intensity matrix between two-month-lags is given in Figure 5.4:
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r °2 «° 3 «° 4 S ” -3 ■ S °-2 5°-, S ° o r , S ° 2 S°,

1 0. 0 0 0 0 0 0 0 0 0
R \ 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

S \  3
0.0114 0 0 0 0.0145 0.2354 0 0.6874 0 0 0

S 2 -2
0 0 0.0142 0.0024 0 0 0.4571 0.1023 0.0100 0 0
0 0 0 0 0.0001 0.0089 0.2001 0.4517 0.0045 0.0002 0

0.0001 0 0.0541 0 0.0003 0.0313 0.0065 0.7942 0.0504 0.0314 0.0055

s \ 0.0894 0 0 0 0 0 0 0.1247 0.4872 0.1245 0.4011

s \ 0.1021 0.1721 0 0 0 0 0 0.1148 0.3247 0.1055 0.5478

r .2 0.1011 0 0.0048 0 0 0 0 0 0.0033 0.1387 0.7245
3

Figure 5.4 Transition intensity matrix between two-month-lags.

Please note that if  n is the number o f available monthly data, we 

n — 1
have Mod{------ ) o f transition matrices between time n - 1 and time n . We took the

average over the corresponding elements to reach the matrix in Figure 5.4.

By the same token, we used only 15 time periods to build the model, and data in 

the last period were used to test the performance in subsection 5.2.4. The probability 

distribution vector was estimated to give in Figure 5.5:

F = (0.0131 0.0286 0.1025 0.7523 0.0246 0.0321 0.0125 0.0098 0.0078 0.0115 0.0051)r 

Figure 5.5 Probability distribution vector.

We can see that the F  = Fa in Figure 5.3. Thus, by the linear programming of 

(5.11), one has the following scheme given in Figure 5.6:

F 'F = (0.0002,0.0124,0.1554,0.0147,0.7146,0.0078,0.0065,0.0512,0.0547,0.0101,0.0187)r 

V2F  =  (0.0131,0.0026,0.1025,0.7523,0.0146,0.0100,0.0072,0.0148,0.0083,0.0128,0.0056)7'
V2F  = (0.0125,0.0457,0.1712,0.0145,0.0897,0.4571,0.2578,0.0547,0.0345,0.0777,0.1463)r 
V4F  =  (0.0784,0.0124,0.1574,0.1244,0.1278,0.4587,0.2144,0.2874,0.0013,0.0784,0.0659)7
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Figure 5.6 Linear programming schemes.

Min^ , ^  (wi + w2 + w3+w 4 + w5+ w 6 + w7)

Subject to:

w, > 0 .0 1 3 1 - 0.00022, -0 .0 1 3  12, -0 .0 1 2 5 2 , -  0.07842,
(  w 2 > 0.0286 -0 .01242 , -0 .0 0 2 6  2 2 -  0.04572, -  0.01242, 

w, > 0.1025 -  0.15542, -  0.102522 -  0.171223 -  0.15742, 
w, > 0.7523 -  0.01472, -  0.75232, -  0.014523 -  0.12442, 
w5 > 0 .0 2 4 6 -0 .7 1 4 6 2 , -0 .0 1 4 6 2 , -  0.08972, -  0.12782, 
w6 > 0 .0 3 2 1 - 0.00782, -0 .0 1 0 0 2 , -  0.45712, -0 .4 5  872, 
w7 > 0 .0125-0 .00652 , -0 .0 0 7 2 2 , -0 .2 5 7 8 2 , -0 .2 1 4 4 2 , 
w8 > 0.0098 -  0.05122, -  0.01482, -  0.05472, -  0.28742, 
w9 > 0.0078 -0 .0 5 4 7 2 , -0 .0 0 8 3 2 , -0 .0 3 4 5 2 ,-0 .0 0 1 3 2 , 
w, 0 > 0 .0115-0 .01012 , -0 .0 1 2 8 2 , -0 .0 7 7 7 2 ,-0 .0 7 8 4 2 , 
w,, > 0 .0051-0 .01872 , -0 .0 0 5 6 2 , -0 .1 4 6 3 2 ,-0 .0 6 5 9 2 , 
w, > -0.0131 + 0.00022, +0.01312, +0.01252, + 0.07842,

J w 2 > -0 .0286 + 0.01242, + 0.00262, + 0.045723 + 0.01242,
\  w , > - 0 . 1 0 2 5  + 0 . 1 5 5 4 2 ,  + 0 . 1 0 2 5 2 ,  +  0 . 1 7 1 2 2 ,  +  0 . 1 5 7 4 2 ,

w ,  > - 0 . 7 5 2 3  + 0 . 0 1 4 7 2 ,  +  0 . 7 5 2 3 2 ,  +  0 . 0 1 4 5 2 ,  + 0 . 1 2 4 4 2 ,

w 5 > - 0 . 0 2 4 6  + 0 . 7 1 4 6 2 ,  +  0 . 0 1 4 6 2 ,  + 0 . 0 8 9 7 2 ,  + 0 . 1 2 7 8 2 ,

w 6 > - 0 . 0 3 2 1  + 0 . 0 0 7 8 2 ,  + 0 . 0 1 0 0 2 ,  +  0 . 4 5 7 1 2 ,  + 0 . 4 5 8 7 2 ,  

w 7 > - 0 . 0 1 2 5  + 0 . 0 0 6 5 2 ,  + 0 . 0 0 7 2 2 ,  + 0 . 2 5 7 8 2 ,  + 0 . 2 1 4 4 2 ,  

w 8 > - 0 . 0 0 9 8  + 0 . 0 5 1 2 2 ,  +  0 . 0 1 4 8 2 ,  +  0 . 0 5 4 7 2 ,  +  0 . 2 8 7 4 2 ,

Wg > -0 .0078 + 0.05472, + 0.00832, + 0.03452, + 0.00132,
w10 > -0 .0115 + 0.01012, + 0.01282, +0.07772, + 0.07842, 
w,, > -0.0051 + 0.01872, + 0.00562, + 0.14632, + 0.06592, 
w1, w 2, w }, w 4, w 5, w 6, w 7, w s , w 9, w l0, w ll > 0 ,
2 , + 2 , + 2 , + 2 , = 1, 2 ,, 2 , ,  2 , ,  2 , 2; 0

F ig u r e  5 .6  C o n tin u e d .

Applying the above scheme to the Excel SolverQ, the parameters and the higher- 

order Markov chain model are given as
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A = (Al,A2,Ai ,A4) = (0.6387,0.2356,0.1023,0.0234),£4 . = 1 (5.18)

F" =0.6387F,F " '1 +0.2356F2F"~2 +0.1023F3F"~3 +0.0234F4F"~4,

where V*,t = 1,2,3,4 is given in Figure 5.4, and F" ' is the probability distribution 

observed at time la g ;. It is seen that the correlation decreases as the number o f time lags 

increases.

5.2.3 Higher-Order Multivariate Model for Correlation and Prediction

Before the model is applied, one needs to clarify the transition intensities. Consider 

two data sequences, retail mortgages a t. t = 1,2,...,16 and credit cards f5n t = 1,2, ...,16. The 

transition patterns are given in Figure 5.7:

t: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cc. c t , , CC-,, ct-x, gCa , etc, cth, ct-,, Gtn, ctq, ot, 0 , or,, ,  cc, 9, cc,, , cc,, 5 cc, * ? ex.'1 y ^ 2  9 3 9 4 9 5 9 6 ’ 7 9 8 9 9 9 ^ 1 0 9 119 12 9 139 149 15 9 16

\ /

Figure 5.7 A high-order multivariate transition example.

(1) Multivariate transition: Vaf>, Vpa ►

(2) Higher-Order transition: Vt, t = 1,2,3,4 >

(3) Higher-Order Multivariate transition: Fra/5, V fat = 1,2,3,4 ►
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a , , f5t e {Si,Rk},i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ,k  = 1,2,3,4, t = 1,2 ,3,4

The model is built based on (1) in 5.2.1, based on (2) in 5.2.2. In this subsection, 

the model will analyze the correlation and predict the next period probability distribution 

based on (3). Again, the data, provided by that Ohio local bank, will be used up to the 

first 15 period, and the last one will be used to compare and test the model in the next 

subsection.

Based on the example demonstrated in Figure 5.6, we define the transition intensity 

with t - 1 , 2 ,3,4 time lags between states in retail mortgages a  and credit cards (3 as

yap ̂  ypat = ^ 2 ,3 ,4 . We let Vtaa, Vfpt = 1,2,3,4 be the higher-order transition within retail

mortgages and credit cards, respectively. As a result, there is a total of

4 x 4  = 16 transition intensity matrices. Here, in Figure 5.8, we present V“p , the transition

from retail mortgages states to credit cards states with time lags equal to 3.

A r2 a R 4 S _ 3 A * A , So s , s 2 s 3

R, 0 0. 0.0014 0 0 0 0 0.0124 0.4514 0.0014 0.4012

A . 0 0.1922 0 0.1475 0 0 0.0001 0 0.0045 0.0145 0.6214

a 0 0 0.7812 0 0 0 0 0.0004 0.0056 0.0014 0.1024

A 0.5214 0 0.0001 0 0 0.0001 0 0.0047 0.0789 0.1247 0.1245

S-3 0.0002 0 0 0 0.0111 0.0042 0.0072 0.0105 0.0078 0 0

S-2 0 0 0 0.0034 0.0169 0.1254 0.2487 0.2347 0.0149 0.0021 0

A , 0 0 0.0002 0.0005 0 0.0231 0.3645 0.1247 0.0524 0.0007 0

So 0.0005 0 0.0457 0 0.0087 0.0987 0.1032 0.9045 0.0124 0.0241 0.0001

S, 0.0547 0 0 0.0002 0 0 0.0087 0.0657 0.3578 0.1187 0.3454

0.2014 0.0009 0 0.0065 0 0 0 0.0032 0.1008 0.0008 0.6111

5, 0.1024 0 0.0007 0.1125 0 0 0 0 0.0148 0 0.5487

Figure 5.8 V“p is the higher—order inter transition intensity matrix.
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The construction o f the above matrix follows equation (5.3). Also, we note that 

there are no absorbing states in V“p ,a  ^  f3,t = 1,2,3,4 . This phenomenon has been 

explained in subsection 5.2.1.

The model in (5.14) is too difficult to solve by linear programming. We will apply 

the MathCAD’s MinerrQ method to solve this problem. Due to the MathCAD’s 

maximum limit o f the elements a matrix could have, we need to decompose the model in

(5.14) to smaller systems of linear equations:

F. = X'aavrF ? + x iv2““ f » + x ir r p ? + K«vr F°
+ KfiVfFf  + 2 + KpVfF* 

p P  -  r 1 V pp F a + A 2 V ppF a + A 3 V ppF a +  A 4 V ppF a (5-19)r \ A‘PPY 1 r \ ^  A‘PPY 2 2 ^  A,ppYl 3 ^ /lppY 4 4

+ 21 V p<xP p +  A 2 V PaF p + A 3 V paF p +  A 4 V P<XF P^ APaY 1 M  ^ A'PaY 1 ^ 2  ^ A,p<xY ?, r 3 ^ AjpaY 4 M

where V e(V raa,V,a/3,V /a,KPP),t = 1, 2 , 3 , 4 , ^ ^ ^  = 1  are the 1 1  by 1 1  transition
a , /3  (=1

matrices given by Figure 5.7, and Fta,p,t - 1,2,3,4 are the 4 consecutive observed 

probability distribution vector o f retail mortgages and credit cards.

From the MathCAD analysis, we obtained the following equations:

2  __  /  d 1 ^  2  1 3  >1 4  yl * > l 2  > J3  > l 4  y) 1 yl 2  >1 3  >1 4  2  1 2  2  >) 3 >1 4  ^
A  “  I  a a  ’ aa ’ A a a  ’ A a a  > Aap ’ J Aap ’ A a/? ’ A y9/? ’ A y3/? > A y?/? »App > A # r  » A ^ «  » A jSo >A /?a /

= (0.1278,0.0914,0.0311,0.0154,0.3209,0.2365,0.1398,0.0371,
0.2355,0.1165,0.0977,0.0211,0.0098,0.3871,0.0403,0.0920)r
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F “ +1 = 0.1278F““F “ + 0.0914F2““F2“ + 0.0311F3““.F3" + 0.0154F4““F4“

+ O.llW VfFf,  + 0.2365V f F £  + 0.1398V?F*t + 0.037W fF f ,  ^  20)

F*+I = 0 .2 3 5 5 ^ ^ “ + 0.1165 V2PP F “, + 0.0977 V f F “, + 0.021

+ 0m 9W f°F fJ + 0.3871F/“F2f, +0.0403F/aF3̂  + 0.0920F/aF/,

Here, =1. As we can see from the parameters, the correlations within
a , p  t~\

Mortgages are less significant than those within credit cards, while the correlations 

between retails and cards are not symmetric as confirmed by the first-order multivariate 

model in subsection 5.2.1. The performance of this model is compared with the other two 

models in the previous subsections.

5.2.4 Summary of Model Performance

For the multivariate model, the data set observed in periods 1-15 (Figure 5.3) was 

used. For the higher-order model, the dataset with 4 consecutive months observations 

(Figure 5.5) was required. For the higher-order multivariate model, the dataset is more 

complicated and could be represented in Figure 5.9:

F  -
r f a \

F p
p a  _  /  p a  p a  p a  p a

p P  ~ ( p p  p p p P  p p y
1 t  y 1  l , ! ’ 1  2 , t 9 3 , t 9 4 , t J

Figure 5.9 Observed probability distributions for model (3). 

Criteria used for measuring the prediction error was the normalized error:
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E s , =
E S ,,  16 E S,

S, ,16
>Er =

y f  - f
k=1

(5.21)

k=I

i = -3,--2,'-1,0,1,2,3, k = 1,2,3,4

where and ER are the normalized error for transient state St and absorbing states Rk,

respectively. Fs 16 is the observed probability distribution of transient states at period 16,

while Fs is the predicted probability distribution for the same states. FRkA6 and FRk follow

the same notation rules. For predictions of transient states, the normalized errors are 

calculated individually, while the normalized error for absorbing states are measured as a 

whole because the different types o f charge-off sometime are actually at the arbitration of 

the bank management. Equation (5.21) gives the percentage o f errors in the observed 

dataset. Small normalized errors are expected for good model prediction performances. 

Comparisons o f percent prediction errors among the three models are presented in Table 

5.1.

Table 5.1 Comparisons o f percent prediction errors among the three models.

S - 3 £ . 2 s . , So S2 S3
4

I * .
k=1

Model (1) 23.11% 35.47% 22.70% 12.55% 16.32% 20.02% 27.21% 38.09%

Model (2) 22.98% 36.98% 21.77% 10.37% 17.87% 19.68% 26.97% 47.51%

M odel (3) 24.57% 33.98% 14.78% 9.54% 15.87% 16.40% 29.41% 50.87%
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Also, the Data in Table 5.1 are presented in Figure 5.10.

Model Comparison- -  * — M odel ( 11

M odel i2 i

— •  —  M odel <o)
40% •

20%

10%

0%
S ta te s

Sum |RIS-1S-3 S-2

Figure 5.10 Model comparison.

Generally speaking, model (3) is more accurate in the normal state, S0, and is

better than the other two models in most other cases. Not surprisingly, the best model to 

predict the absorbing states is simply the higher-order model. This result could be due to 

the fact that the charge-off decisions for retail mortgages have been made independently 

o f the decisions for credit cards. This result is crucial information for the credit asset 

management. In other word, the bank management failed to take this correlation 

information into account when they made the charge-off decisions. By charge-off 

decisions, we means the bank took one the approaches, mentioned in Table 2.1, to charge 

the assets off from the system. Also, although model (2) is not necessarily better than 

model ( 1 ), there is still a conceivable difference in the prediction performance based on 

this dataset.
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5.3 Conclusion

The tested models in section 5.2 offer bank management quantitative methods to 

analyze and predict its loans’ behavior, which is required by the Federal Reserve Bank. 

This result could help bank management in making strategic decisions. Furthermore, the 

measurement o f correlation offered by a higher-order Markov chains model offers a 

simple and reliable method to analyze data for small-to-medium size local commercial 

banks, which, in most case, do not have adequate resources for implementing 

comprehensive large computation systems. In the next chapter, models based on hidden 

theory of Markov chains will be used to analyze unobservable forces behind observable 

behavior.
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CHAPTER 6

A HIGHER-ORDER INTERACTIVE HIDDEN 

MARKOV CHAIN MODEL FOR 

RETAIL MORTGAGE

This chapter is concerned with Hidden Markov Models or HMM. HMM is very 

useful in decoding the unobservable forces affecting the retail mortgages loans by 

analyzing the observable state transition behaviors o f the loans. Also, a fourth-order 

HMM, solved by the Heuristic Method introduced by Ching and Ng (2006), is presented 

based on the assumption that the past several periods o f payment behavior have an effect 

on current behavior. Finally, an Interactive Hidden Markov Model (IMMM) is also 

presented in order to capture the interaction between the observable states, loan transition 

behavior, and unobservable underlying local macro-economic factors.

6.1 Models

Following MacDonald and Zucchini (1997), a standard HMM has the following 

elements: (1) N , the number o f hidden states,// = {HX,H 2,...,HN} , (2 )5 , the number of

observable states, O = {ol,o2,...,os } ,S  e ( S t,Rk),i = -  3 , - 2 ,- 1 , 0 ,1,2,3,k = 1,2,3,4, ( 3 ) ^ ,

the transition probability matrix within the hidden states, A = {aij},aij-

109
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(4) B , the emission probabilities matrix, B = {bS]i} , 

where bS]j = P(Os \ H j ) , \ < j <  N ,S  e (Si,Rk),i = -3 ,-2 , -1,0,1,2,3,k  = 1,2,3,4 , (5) n  , 

the initial state distribution,n = {/rf},/rf = P(Os). Thus, an HMM could be completely 

specified by A = (A ,B ,Y l) .

The ultimate purpose o f the HMM is to better understand and predict the transition 

probabilities between the observable states by analyzing the underlying forces that have 

influence on the observable behavior. Generally speaking, what people are really 

interested in are the observable states. However, to better simulate or estimate the true 

pattern o f the state transition under different prevailing underlying situations, underlying 

forces must be taken into account in the model. Empirically speaking, as more 

information is built into the model, more accurate results could be expected, which is the 

general idea o f the higher-order HMM. From the linear programming scheme proposed 

by Raftery and Travare (1994), which was extended by Ching and Ng (2006) by allowing 

for non-stationary transition intensity ( Qt,i = 1 ,2 ,...,T ) overtime, one can avoid the

problem of having to estimate too many parameters in a higher-order Markov model. In 

addition, the higher-order model could be further improved by assuming that the 

observable states could also have influences on the unobservable or hidden states. As a 

result, an HMM will allow for the interaction between these two types o f states and might 

produce even more accurate prediction results.

6.1.1 Hidden Markov Model (HMM)

In most cases, the observable phenomenon is veiled by invisible forces which 

sometimes make physical sense. In this case, these hidden forces are crucial to
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understanding the perceivable pattern. In this subsection, a simple Hidden Markov Model 

is introduced to track and predict the transition probabilities o f payment states in retail 

mortgage loans by taking local macroeconomic situations into consideration. The macro- 

economic environment is the main factor influencing business development. In chapter 3, 

we also showed that macroeconomic factors affect the retail mortgage health index. It is 

desirable to have a measurement which could track hidden macroeconomic transition 

processes that have a close relationship with the financial industry. One good candidate is 

the state space model concerning the business industry industrial production index by Liu

(2005). The model is given as:

y  = 0.4096y ,  + 0.0835/r „ -0 .6 2 5 SUn ,-0.0619In ,-0.0236Dp ,  , ,
t  J t - 2  t - 2 t - 2  t - 2 t - 2  (b.l)

-0.987529/r _  {+0.26377/^ _  (+0.002143£fy _  ]

where, y t is the industrial production index at time t, Irt is interest rate, Unt is 

unemployment, Int is inflation, and Dpt is disposable personal income at time lags. We 

define an economic environment to be positive if  the industrial production index is at 

least 100 at that period and negative otherwise. Thus, we have 2 hidden states. From time 

to time, the hidden state transits from good to bad or from bad to good. Without loss of 

generality, we assume that the probability o f the industrial production index being 

positive is a  , and the probability o f it being negative is 1 -  a  . Also, we follow the 

definition o f observable retail mortgage states. That is, S' e (S;,Rk),i -  -3 ,-2 ,-1 ,0 ,1 ,2 ,3 , 

k  = 1,2,3,4 (Table 2.1). By the definition o f hidden states, we can observe the steady 

state probability distribution (under different hidden states), OiS,i = 1 , 2 , 

S e (S,, Rk), i = -3 , -2 , -1,0,1,2,3, which are defined as
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Osn, if  observed under a positive economic environment

(6.2)

Os 12, if  observed under a negative economic environment

A new way for estimating o f parameter a  has been introduced by Ching and Ng

(2006). Following their method, we need to define a probability distribution at steady 

state. Unfortunately, in this dynamic economic environment, there is no such thing as a 

steady state. The way we can bypass this dilemma is as follows: Let X s be

where, 0''s is the S  element o f the observed probability distribution at the intersection of

two hidden states. Thus, the steady probability distribution is approximated by averaging 

all the observed distributions over the intersections, where n is the number o f intersections 

in the available time series o f data. Thus, to estimate a  in the hidden Markov chain, we 

use Eq (6.4) as suggested by Ching and Ng (2006). Eq (6.4) minimizes the sum of 

squared deviations between Ps a n d  X s .

the S-th  element o f the steady probability distribution

vector X ,  S  e (5),Rk),i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 ,k  = 1 ,2,3,4, we have

n

n

Min0ia<i{yf } — { Ps ^ s  2}

5  e ( S l,,Rk),i = -3, -2 ,-1 ,0 ,1 ,2 ,3 , k  = 1,2,3,4
(6.4)
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Ps is given by the following matrix manipulation. Let P  be so defined such that

P = (6.5)
0 3 x 1 3

where, H 2xli =
a a

1 - a  ... 1 - a
, and PUx2 — (Ojj, ^s\i), jx2 • Qs|i’*

x 2x11

S  e (Sj,Rk),i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 , A: = 1,2,3,4 are defined in Equation (6.2). Thus,

P 2 =
0 H 2xn 

A'U2 0  _

0 H 2x „

v C 2 0 y

r ^ x „ x c 2 o

0  P1U2X H 2,U
(6 .6)

x 13x13

Therefore, Ps , the probability distribution taking hidden states into consideration with

a  known, is defined as

P S  ~  P l 1x2 X  ^ 2 x 1 1  X  ^1 lx l  ’ (6.7)

Where \ lxll = (l,l,...,l)r .

Based on the assumption that Ps is a stationary probability distribution, we can

build a Markov prediction model to approximate the probability distribution in the next 

period under the consideration o f a hidden process. The model is given as:

M i nA {(// } = { A V ^ - P ' J (6 .8)

\  subject to xl > 0

I  5  e (Sf, Rk), i = -3 , -2 ,-1 ,0 ,1 ,2 ,3, k  = 1,2,3,4
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where Vs is the transition intensities given in equation 6.3 in chapter 6 . Once we find the 

parameterX,  we can use the observable probability distribution observed at tim e t - 1  to 

predict that at tim et. The model in equation (6 .8 ), listed here only for the completeness 

o f the theory, uses a similar idea o f equation (6.3) and, therefore, would not be tested in 

the application section. A higher-order Markov prediction model for hidden processes 

will be presented in the next subsection.

6.1.2 Heuristic Method for the Higher-Order HMM (HHMM)

Given observed states, a higher-order HMM is believed able to solve the following 

three problems: ( 1 ) the prediction of the probability distribution o f observed 

states P ( 0 1 A), A = (A ,B ,F l) , (2) the optimal hidden states that best explain the observed 

behaviors, (3) the model parameters, A = (A, B,T1) . In the real economic world, we 

seldom have the capability to choose underlying factors affecting the observable behavior 

o f a process. Thus, problem (2) is irrelevant to our case. To solve problems (1) and (3) by 

conventional methods require tedious recursive algorithms. As is the case for the forward 

algorithm for problem (1), and for the EM algorithm for problem (3). Detailed discussion 

o f the forward and EM algorithms could be found in MacDonald and Zucchini (1997).

In this subsection, we will present the Heuristic method proposed by Ching and 

Ng (2006) for a fourth-order HMM based on the assumption that the emission 

probabilities matrix, B -  {bS J} , where bjk -  P(Sk \ H j) ,\  < j  < N , \  < k < i could be

observed, which is generally the case. Let {ht} e  H ,i  = 1,2 be the stationary probability

distribution for the hidden states, and {vit} e  Vt,t = l,2 ,3 ,4 ,i = 1,2 be the transition
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intensities between the hidden states with different time lags. An equation for estimating 

in a fourth-order hidden Markov model is given as

Min. { },i = 1,2,£ = 1,2,3,4, (6.9)

K
subject to ̂  Xt = \ylt > 0

/=i

For practical reasons, we choose / = 1 in the vector norm || ||; . Thus, the more 

applicable version o f equation (6.9) that could be solved by the Excel SolveQ function is

Minx V  wz, subj ect to
r  m

<

V.

'  K '
w2

> H -  [V,H V2H .. 1 VkH]
x 2

y wi j

' V
y^k ,

r v
w2

> H  + [V\H v 2h .. \VkH]
a2

y w>J y^k j

(6.10)

Here, H i , the hidden stationary probability distribution, needs to be approximated since 

it cannot be observed directly. Ching and Ng (2006) proposed a method to 

calculate H i from the observed probability distribution, 0 S i :

Os -B H , , 1  =  l,2,oo,/ = 1,2 

5  e  (Si, Rk), i = -3 , -2 , - 1 ,0,1,2,3, k  = 1,2,3,4
(6 .11)
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where B is the emission probability matrix, B = \bSi}, bS[i = P(Ss \ H t),i = 1,2 , and Os is

the observed probability distribution. For the accuracy of the model, we choose / = 2 and 

equation (6 .1 1 ) given in matrix form become

Min\\{os}lUi — {^.Jiixa {*f } 2xi | |2 . * = 2  (6 .1 2 )

5  € (Si, Rk), i = -3 , -2 ,-1 ,0 ,1 ,2 ,3 , k  = 1,2,3,4

Also, in need of estimation are the transition intensities among the hidden 

states, {v,., f e  = 1,2,3,4, / = 1,2. As pointed by Ching and Ng (2006), H i , the hidden 

stationary probability distribution estimated by equation (6 .1 2 ) could be used to estimate

the first-order transition intensity matrix for hidden states, H 2x] =
\^2 j

K h2 

L  V

Thus, as the transition intensity matrix is assumed to be stationary, the second, third, and 

fourth order could be estimated by the following procedures:

V  = v x V

V ^ ^ x ^ x V , ,  (6.13)

V , = V x x V x x V , x V x,

As such, the above estimation provides us a stable method to approximate 

different orders o f transition intensities.

The following is a summary o f the above steps for a higher-order HMM. Step 1: 

Use equation (6.12) to find the stationary probability distribution for the hidden states, 

where bS:i is the emission transition from hidden states to observed states given by
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bS]i- P ( S i k \H i) , i - \ , 2  . Step 2: find the transition intensities for various orders by

equation (6.13). Step 3: Use equation (6.12) to estimate model

parameters/L,/' = !,2,3,4 for a fourth-order HMM.

6.1.3 An Interactive Higher-Order Hidden Markov Model (IHHMM)

The interactive HMM is different from the regular HMM in the sense that hidden 

states o f an interactive HMM are affected by previous hidden states and by observable 

states. In case o f retail mortgage analysis, not only local macro-economic factors can 

affect the mortgage payments, but the payment behavior also determine the collection 

policy deployed by the banks such as high mortgage rate to cover the foreseeable credit 

risks of the unusual payment patterns, which, in turn, affect the local businesses in many 

ways. Therefore, an interactive higher-order HMM seems to be a good candidate for 

capturing the mechanism in this system. LetOs. ; be the observed probability distributions

under different hidden states such that:

f  Os l , if  observed under a positive economic environment

(6.14)OSJ=<

K Os 2, if observed under a negative economic environment

We define a s S  e (Sp Rk),i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 , A: = 1,2,3,4 to be the probability

with which the hidden state is positive, given the observable states in S  . Thus, the 

transition matrix is given as
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P =
0 0  \

2x11

A  1 x 2 o J
’  4 1 x 2  { a i , s  }

(6.15)
/ 1 3 x 1 3

where, A =
a,

, l - « i  -  l ~ a n

2,3, A: = 1,2,3,4. Thus,

, 0 °\,\ -  °1,11

V ° 2 , l  " •  ° 2 , 1 1  J

. S e ( S n Rk),i = -  3 ,-2,-1,0,1,

'  0 o 2 x „ n

X

'  0 ^ 2 x 1 1  X  A  1 x 2
0 >

A
V  1 1 x 2 0 J

A
V  1 1 x 2 0 J I  0 A \  1 x 2  X  ^ 2 x 1 1  > 1 3 x 1 3

(6.16)

Therefore, A , the probability distribution under hidden states, is defined as

A  ~  A  1 x 2  X  ^ 2 x 1 1  ^ 1  l x l  ’
(6.17)

where lun = (l,l ,...,l)r .

To estimate the parameters a s , we need the steady one-step transition probability 

matrix which could be approximated by / j lxll = {As lnxip^ e (-S',, A )  A = -3 ,-2 ,-1 ,

0,1,2,3, k  = 1,2,3,4. Letting cik,i = -3 ,-2 ,-1 ,0 ,1 ,2 ,4 , k  = 1,2,3,4 be the transition 

frequency between state z and state k, the calculation o f p s is given as

f

C - 3 - 3

\
• C - 3 , 4

A -
P - 3 , - 3  •

A
•• P-3A

Ctt =

1 U
J

C 4 - 3  ,

h  =

1 1 x 1 1 S’ ■u 
..

.
'i "  A , - 3 ,

(6.18)
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0, Otherwise

We define the Frobenius norm as j|̂  = • Thus, the
7=1 i=l

parameters a s could be approximated by minimizing the Frobenius norm given as

Min,, Ps-Ps (6.19)

Therefore, the above minimizing algorithm could also be expressed as

( 1 ) o , : M i n a, a ^  { ( p _3,-3 - P . 3, . 3 )  +  - +  ( P _3,4 “ P - 3 ,4 ) > ;

( 2)o c2 • T ^ ^ o < « 2<i { ( f i - 2 , - 3  ~ P - 2 ,-3 )  +  ••• +  ( p ~ 2,4 — P - 2,4)  } ’ (6 .20)

( l l ) « n  ■ M < < a „ < M P 4 , - i  -  A . - a )2 + -  +  ( £ 4 ,4  ~ P a a ) 2 } ’

The equation to estimate Xt in a fourth order hidden Markov model is given as

M i n , { I v / . - ' .
y=i

(6 .21)

ft.

subject to ̂  A, = 1/L( > 0 ,

where A ,  the hidden stationary probability distribution, is given by equation (6.17).

Finally, the transition intensities among hidden states could be estimated by exactly the
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same idea o f equation (6.13). The only difference is the fact that the transition intensities 

are 11x11 matrices to capture the effects between observed processes and hidden 

processes. Thus, from Ching and Ng (2006), the higher-order interactive transition

intensities can be calculated as follows: Let \p s} e Ps , S  e  (Si,Rk),i = -3,

-2 ,-1 ,0 ,1 ,2 ,3 ,*  = 1,2,3,4:

/  *
P-3 P-2 A

P a

P-2 P-3 P a
*

P a '• P-2

P-2 P-3 A
V2 =V1xVl,

F3 = ^ x F lX ^ ,

K  = Vi xVl xVl xVi ,

The whole algorithm for an Interactive Higher-Order HMM can be as follows:

Step 1: Use equation (6.20) to find the stationary probability distribution for hidden states, 

where bs{i is the emission transition from hidden states to observed states given by:

K  = p (Si,k I H i l  1=1,2,5 6 (5,-,Rk),i = - 3 ,-2 ,-1 ,0,1,2,3, k  = 1,2,3,4 . Step 2: determine 

the transition intensities by equation (6.22). Step 3: Use equation (6.21) to estimate 

model parametersXt,i = 1,2,3,4 for a fourth-order HMM.

6.2 Application o f HMMs

A bank, providing the retail mortgage services, never operates in a vacuum 

environment because the transitions o f mortgages payment behaviors and its credit asset 

quality are affected by many macroeconomic factors. In a general case, the transition
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pattern of the mortgage payment behavior varies under different macro-economic 

environments which, in turn, are presented by a group of indices or factors. HMMs, 

however, could provide a way to unveil more accurate transition processes and therefore 

provides a probability distribution for mortgage payment states closer to the real 

prevailing macro-economic situation.

In this section, 18 consecutive months o f monthly paid retail mortgage data, 

provided by an Ohio local bank, will be analyzed by the hidden Markov model in section 

6.1. That is, a basic first-order HMM given in equation (6.8), a higher-order HMM solved 

by the Heuristic method given in equation (6.10), and finally, an interactive HMM in 

equation (6.20).

6.2.1 HMM for Unobservable Factors in Retail Mortgages

In this subsection, a basic HMM is used to analyze and predict the probability 

distribution among states considering the effects o f underlying macro-economic factors. 

Due to the lack o f an industrial production index in the local Ohio area where the bank 

data were obtained, we estimated the index from Equation (6.1) by using macro- 

economic data for Ohio from February 2005 to September 2006. The macro-economic 

data for Ohio from Feb 2005 to Sep 2006 are presented in Table 6.1.

Table 6.1 Macro-economic data and Index for Ohio.

Index from
Year Month Un Ir In Dp Eq.[(6.1)]

2005 02 5.78 5.93 3.52 5.23

2005 03 5.80 5.87 4.20 5.08

2005 04 5.90 5.86 5.74 4.93 11.48
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Table 6.1 Continued.

2005 05 5.60 5.72 4.62 4.78 12.26

2005 06 6.10 5.58 5.62 4.63 14.47

2005 07 5.80 5.70 7.69 4.48 10.51

2005 08 5.50 5.82 6.98 4.30 14.88

2005 09 5.60 5.77 5.71 4.20 11.93

2005 10 5.30 6.07 3.06 3.90 12.13

2005 11 5.60 6.33 7.56 3.80 13.54

2005 12 5.50 6.27 6.05 4.30 16.30

2006 01 6.10 6.15 8.18 3.30 14.48

2006 02 6.10 6.25 0.61 3.50 13.57

2006 03 5.30 6.32 4.30 3.20 16.23

2006 04 5.40 6.51 7.45 2.70 15.17

2006 05 4.90 6.60 5.51 2.50 13.07

2006 06 5.20 6.68 2.40 2.50 14.18

2006 07 5.80 6.76 5.47 2.50 16.64

2006 08 5.40 6.52 2.99 2.10 13.94

2006 09 5.00 6.40 5.74 2.10 15.10

Here, Ir is interest rate, Un is unemployment, In is inflation, Dp is disposable personal

income at different times. For the purpose o f this analysis, we refer to the industrial 

production index from the model in equation (6.1) as the macro-economic situation in 

Ohio. The hidden Markov index sequence is presented in Figure (6.1). The average index 

from Table (6.1) is 14.023. If we let a year takes a value of 1 or 0 depending on whether
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the index for that year is larger or smaller than 14.023, respectively, we obtain the hidden 

transition sequence in Table (6.2).

bidden Markov Data Sequence
17

16

15

14

13

12

tl

10
17 «13 14 15 169 10 11 126 7 81 3 4 52

Figure 6.1 Hidden Markov Data Sequence.

Table 6.2 Hidden transition sequence.

t: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

H t -.o, o, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0

From the data sequence in Table (6.2), one can estimate the emission probability 

matrix, B = {bS j \ . We define the steady state probability distribution for the positive

hidden states ( l ’s in Table 6.2) a s :0 S)1 = —----- ,7  = 3,5,9,10,12,13,15,16. Similarly, the
8
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■ °sZ«
steady state probability distribution for negative (0’s) hidden states as: Osl = —----- ,

t - 1,2,4, 6,7,8,11,14,17 . From MathCAD, we obtained the probability distribution as 

shown in Figure 6.2:

Osl =(0.0052 0.0094 0.0578 0.9452 0.0547 0.0412 0.0224 0.0001 0.0378 0.0028 0.0014)r

=(0.0021 0.0023 0.0098 0.7380 0.0531 0.1078 0.0009 0.0300 0.0424 0.0015 0.0021)7'

Xs = (0.0038 0.0087 0.0187 0.8012 0.0947 0.0094 0.0145 0.0300 0.0147 0.0024 0.0019)7

Figure 6.2 Steady state probability distributions.

f a  ... a  ^
where X s is given by equation (6.3). We let H 2xll =

1 - a  ... 1 - a 2x 11

and /v 2 = (oj,, Of2) , 0 TS i, / = 1,2, a  is the probability o f the hidden state being

positive and \ - a  the probability o f being negative. Thus, the parameter a  , could be 

calculated by equation (6.4) or the following algorithm by letting/ = 2:

r M i n J ^ ( P s - X s f }

L subject to 0 < a  < 1

where Ps is given by: Ps =(0.0073a+0.0Q21 0.0117a+0.0Q23 ... 0.0(B5a+0.0Q2l)

(6.23)

T 

1x11

By the Excel SolverQ function, we estimate a  to be 0.9143, which means that 

91.43% of the time between Apr 2005 to Sep 2006 the macro-economic environment 

would stay in a positive state. As a result, the estimated probability distribution affected 

by the hidden macro-economic factors is given as
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Ps =(0.0045 0.0083 0.0520 0.8010 0.0455 0.0284 0.0204 0.00248 0.0031 0.0021 0.00 l l ) ^

In the next subsection, we will apply a Higher-order HMM to test the retail 

mortgage data. Figure 6.3 presents the Excel SolverQ function interface for solving the 

above model:

Solvei Parameters

Set Target Cell: i M J M I  H - l

Equal To: Q  Max ®  Min O  Value of: |0 _

By Changing Ceils:

;$A$15

Subject to  th e  C onstrain ts:

i  i  $A$15 < =  1 
!$A$15 > =  0 
$N$3 =  1

L.....

Add

ChangeL - -
R eset A

Figure 6.3 Excel SolverQ interface.

6.2.2 A Higher-Order HMM

In this section, we will use a higher-order HMM to track and predict the hidden 

transition process. Following the procedures specified at the end o f subsection 6.1.2, we 

first need to approximate the steady state hidden probability distribution by equation 

(6.12) or a more practical version that could be solved directly by the Excel SolverQ. For 

the solution using excel, we modified equation (6.12) to give
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Mi„„ £ > , > « -  (*s, } ,« (A,}M )M, i = 1,2
s

2

subject to 0 < ht < 1, ̂  = 1 (6.24)
«=i

e (Sj,Rk),i = -3 ,-2 ,-1 ,0 ,1 ,2 ,3 , A: = 1,2,3,4

where {6V|;} e  BS[i, the emission probabilities, are actually the probability distribution

vectors under hidden states 1 and 2, respectively, which are given as in Figure 6.4:

= (0.0052 0.0094 0.0578 0.9452 0.0547 0.0412 0.0224 0.0001 0.0378 0.0028 0.0014)'

bsv_ =(0.0021 0.0023 0.0098 0.7380 0.0531 0.1078 0.0009 0.0300 0.0424 0.0015 0.002l)r

Os =(0.0038 0.0087 0.0187 0.8012 0.0947 0.0094 0.0145 0.0300 0.0147 0.0024 0.0019)7,

Figure 6.4 Input variables for Equation (6.12).

The Excel SolverQ gives us H  = = {0.4033,0.5967} with the following

report in Figure 6.5:

0 le  £dit Jfiew Insert Format loo ls Qata Window Help Adobe PDF

■ , , • .6 . a  »

A B C  D I E |
M ic io so ft E x c e l 11.0 A n s w e r  R e p o r t  
W o rk s h e e t:  [ l in e a t  p r o g ra m m in g .x ls ]S h e e t3  
R e p o r t  C re a te d :  1 10 2007 8:05:05  PM

1-|
2 f
3
4
5 !
6 -Target Cell (Min)
7

i j . j

C ell N a m e  O rig in a l V a lu e  F in a l V a lu e
$C$9 T arget 0 .0081699l"5 0.008169915

10 1
11 iA d ju s ta b le  C e lls
12 i C ell N a m e  O rig in a l  V a lu e  F in a l V a lu e

$A$1
$A$2

13)
14 I
15 5
16 j
17 'C o n stra in ts

0  0.403296633
0  0.596704367

S at Target Cell ip o r t l '!  J  

Equal To: © M a x  © M ia
b y  C hang ing  Cells:

:$A$1:$A$2

bubtect to the constraints:

a
O i«lue of: ! 0

.

;$a$ i <« i 
: !$a$ i > - o

i$A$2 <= 1 
: j$A$2 > = 0  

i $  A$3= 1

1 8 1 C e ll N a m e  C ell V a lu e  F o rm u la  S ta tu s
19 1
20 |

21 !
2 2 :

I  24 I

^ ►( 8 .2.2 / 9 ,2,'1\  An s w e r  R e p o r t  1 /  5 h e e t3  J
I  Point

$A$3
$A$1
$A$1
$A$2
$A$2

1.000001 JA$3=1 
0 .403296633 $A$1<=1 
0 .403296633 $A$1>=0 

‘ 07596704367 $A$2<=1 
0 .596704367 $A$2>=0

Not Binding 0
Not Binding 0 .596703367 
Not Binding 0 .403296633 
Not Binding 0 .403295633 
Not Binding 0 .596704367

i<i

aww .I

C f e J i
[ Close" 1

LaesaLJ

Figure 6.5 Excel Solver Q report.
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As the above figure indicates, each part of the report is corresponding to each 

parameters input controls in the Solver () function interface. In the next step, we will 

approximate the transition intensities for different orders by equation (6.13). Please note

= > v , =
V 2

that the first-order transition intensity matrix is given by: H Zxl 

Thus, the transition intensities for four orders are estimated from MathCAD to give

< 0.4033 0.5967" r 0.5187 0.4813"
Vy = V 2 =1 ^0.5967 0.4033, I o 00 0.5187,

"0.5007 0.4993" "0.4964 0.5036"
K  = K  =3 v0.4993 0.5007, 4 ^0.5036 0.4964j

(6.25)

The method to estimate the parameters , i = 1,2,3,4 for the higher-order HMM 

is given by equation (6.10). The linear programming scheme is as follows:

H  = (0.4033 0.5967)7 

^  = (0.5187 0.4813)r 

V2H = (0.4964 0.5036)7 

V3H = (0.5007 0.4993)r 

VaH = (0.4999 0.500 l)r

f  M in^ , ^  (W. + w2 + w3 + w4)

Subject to:

w, > 0 .4 0 3 3  -  0 . 5 1 8 7 2 ,  -  0 . 4 9 6 4 2 ,  -  0 . 5 0 0 7 2 3 -  0 . 4 9 9 9 2 4 
J  w2 > 0 . 5 9 6 7  -  0 . 4 8 1 3 2 ,  -  0 . 5 0 3 6 2 ,  -  0 . 4 9 9 3 2 ,  -  0 . 5 0 0 1 2 ,  

w, > - 0 . 4 0 3 3  + 0 . 5 1 8 7 2 ,  + 0 . 4 9 6 4 2 ,  + 0 . 5 0 0 7 2 ,  + 0 . 4 9 9 9 2 ,  

w2 > - 0 . 5 9 6 7  + 0 .4 8 1 3 2 ,  + 0 . 5 0 3 6 2 ,  + 0 . 4 9 9 3 2 ,  + 0 . 5 0 0 1 2 ,

W j , w2 , w3, w4 >  0 ,

^  +  ^ 3  +  ^ 4  =  1 ,  >^[ ■> ^ 2  s ^ 3  » ^ " 4  — ^
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Applying the above scheme to the Excel SolverQ, the parameters for the higher- 

order Markov chain model are given b y 2  = (0.1876 0.8125 0 0 ). As a result, the 

HHMM is given as

H m  = 0.1876V fi, + 0.8125F277m (6.26)

equation (6.26) implies that the probability distribution o f the hidden states at t = n +1 are 

dependent on only those at t = n and att = n - 1 .

6.2.3 Interactive Effects Analysis for Retail Mortgages

The observable probability distributions, O t , under both positive and negative 

states, are given as

/0.0052 0.0094 0.0578 0.9452 0.0547 0.0412 0.0224 0.0001 0.0378 0.0028 0.0014'j ^ 2 7 )
0.0021 0.0023 0.0098 0.7380 0.0531 0.1078 0.0009 0.0300 0.0424 0.0015 0.0021V

Therefore, Ps , the probability distribution under hidden states, is given by equation (6.17)

as Ps -  AUx2 x 0 2xnl llxl, lM1 (1,1,—, 1) where A

given as

r \ Tf a, ... ccn '

1 - a ,  ... 1 - a „
. Thus, R  is
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1+0.003la; 1+0.007 la; 1+0.048a, l+0.2072a; 1+0.0016a; 1-0.0666a; l+0.0215a; l-0.0299a; 1-0.0046(2; 1+0.00130, 1-0.0007O,
1+0.003 la. 1+0.007la; 1+0.048a; 1+0.2072a, l+0.0016a; 1-0.0666a; l+0.0215c^ 1-0.0299a, 1-0.0046a, l+0.0013a, l-0.0007a;
1+0.003 la, l+0.0071a, 1+0.048a, 1+0.2072^ 1+0.0016a, 1-0.0666a, l+0.0215a, 1-0.Q299O, 1-0.0046a; l+0.0013a, 1-0.0007a,
1+0.003 la4 l+0.0071a4 l+0.048a4 l+0.2072a4 l+0.0016a4 1-0.0666a4 l+0.0215a4 l-0.0299a4 l-0.0046a4 l+0.0013a4 l-0.0007a„
1+0.003la; l+0.0071a; 1+0.0480; 1+0.2072a, 1+0.0016^ 1—0.0666(2̂ l+O.G215a; 1-0.0299(2, 1-0.0046a; 1+0.0013a 1-0.0007a;
1+0.003 la6 1+0.007la; 1+0.048a; 1+0.2072a, l+0.0016a6 l-0.0666a6 1+0.0215(2̂ l-0.0299a6 1-0.0046a; l+0.0013a; l-0.0007a6
1+0.003la, 1+0.0071a, 1+0.048a, 1+0.2072a, 1+0.0016a, 1-0.0666a, 1+0.0215O, 1-0.Q299O, 1-0.0046a, 1+0.0013a; 1-0.0007a,
1+0.003 la; l+0.0071a; 1+0.048O; 1+0.20720, l+0.0016a; 1—0.0666a; l+0.Q215â 1-0.0299a; 1-0.0046a; 1+0.0013a; 1-0.0007O,
1+0.003la, 1+0.0071a, 1+0.048O, 1+0.2072a; l+0.0016a, 1-0.0666a; 1+0.0215a, 1-0.0299a; 1-0.0046a; i+o.ooi3a> 1-0.0007a;
1+0.003la;0 1+0.007la;0 l+0.048a,0 l+0.2072a;o l+0.0016a,o l-0.0666a;o l+0.Q215a;o l-0.Q299a;0 l-0.0046a;0 l+0.0013a;0 l-O.0007a,o
1+0.003la;, 1+0.0071a;, 1+0.048a;, 1+0.2072O;, l+0.0016a;, l-0.0666a;, l+0.Q215a;, 1—0.0299a;, 1-0.0046(2;, l+0.0013ai| 1-0.0007a;,

Also, the observed one-step transition intensity matrix, calculated from equation (6.18) is

A R4 S-3 S-2 S., S0 s, S3

1 0. 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0
= 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0
0.0195 0 0 0 0.5759 0.0996 0.1646 0.1329 0 0 0
0.0105 0 0 0 0.0365 0.6137 0.1563 0.1825 0.0005 0 0

S-, 0.0101 0 0 0 0.02756 0.0341 0.6774 0.2399 0.0015 0 0
0.02901 0 0 0 0.0041 0.0097 0.0491 0.8920 0.0109 0 0

s, 0.0133 0.1523 0 0.2090 0.0091 0.0089 0.0140 0.2078 0.2063 0.0552 0
0 0.0905 0.1456 0.1221 0 0.0031 0.0237 0.0347 0.0853 0.1747 0.3184
0 0.1053 0.1505 0.1305 0 0 0.0021 0.0632 0.0952 0.1510 0.2931

By the Frobenius norm defined in equation (6.19), the 11 linear programming 

schemes are given as

Minâ {{\ + 0.003 la,  - 1)2 + (1 + 0.0071 a , ) 2 +(1 + 0.2072 a , ) 2 + ... + (1 -  0 .0007a ,)2}

"1 subject to : 0 < a , <1
{(1 + 0.003 l a 2)2 + (l + 0.0071a2 - l ) 2 + (1 + 0.2072a2)2 + ... +(1 -  0 .0007«2)2} 

subject to : 0 < a 2 <1

Minau{(l + 0 .003l a n )2 + (1 + 0.0071au -0 .1 0 5 3 )2 + (l + 0 .2072atl -0 .1 5 0 5 )2

{  + ... + (1 -  0 .0007au -  2931)2}
subject to : 0 < a u <1
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Letting Ps = l llxll -  {j9s,}llxn to count f°r the overflow of each element, the probability 

distribution under the hidden states is given as

A = {as } = (0.0001 0.0001 0.0001 0.0001 0.0047 0.0004 0.0001 0.0008 0.0002 0.0008 0.000

r 2 *3 *4 5 , s .2 S , So s t S3

1 0. 0 0 0 0 0 0 0 0 0
r 2 0 1 0 0 0 0 0 0 0 0 0

*3 0 0 1 0 0 0 0 0 0 0 0

*4 0 0 0 1 0 0 0 0 0 0 0

■S-J 0.0385 0 0 0 0.8202 0.1899 0.3019 0.2479 0 0 0

h  = S_2 0.0208 0 0 0 0.0717 0.8508 0.2881 0.3316 0.0011 0 0

S-I 0.0218 0 0 0 0.0544 0.0671 0.8959 0.4222 0.0029 0 0

So 0.0572 0 0 0 0.0081 0.0195 0.0958 0.9883 0.0217 0 0

s, 0.2483 0.2814 0 0.3743 0.0181 0.0179 0.0279 0.3724 0.3701 0.1074 0

s 2 0 0.1728 0.2700 0.2289 0 0.0064 0.0468 0.0682 0.1633 0.3189 0.5355

S3 0 0.1993 0.2784 0.2440 0 0 0.0042 0.1224 0.1814 0.2793 0.5004

The above matrix is the transition intensities between observable states with the 

assumption o f an interaction between the local macro-economic situation and retail 

mortgage payments. Because elements o f the probability vector, A = {as }, are small, we

can conclude that retail mortgage payment behaviors o f a single local bank have little to 

do with the local macroeconomic factors.

6.3 Conclusion

The models presented in section 6.2 are used to further analyze the relationship 

between local macro-economic factors and the payment pattern for a local bank’s retail 

mortgages. From the analysis using MathCAD and the Excel SolverQ, we conclude the 

following:
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(1) Based on a first-order HMM, the probability o f stay in a positive macro-economic 

state is 0.9143 For definition o f a positive macro-economic state, please refer to Table 

(6 .2).

(2) For the period from April 2005 to September 2006, the estimated steady state 

probability distribution o f the hidden macro-economic states is given as:

f V "0.4033"

U J ^0.5967,

(3) The effect o f the macro-economic states on retail mortgage loans is strong as 

indicated by the relatively large differences between corresponding 

observation Os , and Os 2 in rows 1 and 2 o f the Os matrix in equation (6.27).
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CHAPTER 7

SUMMARY AND FUTURE STUDY

7.1 Summary and Contributions

In this chapter, we present a summary o f the models that have been applied to the 

banking data which include retail mortgages, credit cards, and local macroeconomic 

variables. The data have been provided by an Ohio local commercial bank under the 

condition that the data are strictly for academic usage only. The Table 7.1 summarizes the 

models that have been used in this study:

Table 7.1 Summary of the models Used in this Study.

Chapter Models

Chapter 2

1. Discrete and Continuous Time Markov model for expected loan duration

2. Stochastic portfolio estimation model

3. A limiting probability model for expected proceedings from past due 

customers.

Chapter 3

1. A continuous Time Markov model for a loan Status

2. A multivariate regression model for analyzing the relation

132
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Table 7.1 Continued

Chapter 4

1. A Markov decision model for a loan officer optimal compensation plan

2. A Markov decision model for optimal credit collection policies.

3. A Markov Model for Analyzing the Loan System Status

Chapter 5

1. A multivariate Markov model for analyzing the correlation between retail 

mortgages and credit cards.

2. A higher-order Markov model for retail mortgages

3. A higher-order multivariate Markov model

Chapter 6

1. A Hidden Markov model for retail mortgages

2. A Heuristic Method for the Higher-Order Hidden Markov Model

3. An Interactive Higher-Order Hidden Markov Model

The models presented in chapters 2 and chapters 3 are o f practical importance 

with regard to credit risk management in a commercial bank. The models provide an 

estimate o f the retail mortgage expected duration before the loan is charged off. 2. Also, 

the models in chapter 3 could be used by the management of the bank to track the loan’s 

dynamic status over time. Furthermore, the multivariate regression model introduced in 

the same chapter presents a practical tool to estimate the retail mortgage in the presence 

o f related macroeconomic data.
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On the other hand, the two Markov decision models in chapter 4 are o f interest to 

a bank’s financial department as they could be used to design operation policies for daily 

decisions. A loan officer optimal compensation plan and optimal credit collection policies 

are two o f the most important decisions the head o f the financial department and the bank 

management have to make. These models provide bank officials with applicable tools in 

this regard. Also, the loan system status model is useful for estimating a retail mortgage 

portfolio. Combined with the health index model presented in chapter 3, this model could 

be used by the bank management as a tool for assessing financial performance.

Three stochastic models are compared with regard to percent prediction error. A 

higher-order multivariate Markov chain model is shown to be the best model for 

predicting the internal state, So- Figure 7.1 provides the model comparisons for the 

different states as defined in Table 2.1.

Model Comparison
60%

■ M odel < 1)

M odel (2)50%

O M odel (3)

o
t5

o»o
20%

CL

10%

Stateso%
S3 Sum (R)S2S-2 S-l SOS-3

Figure 7.1 Comparisons o f percent prediction errors among the three models.
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Note that the lower the value in Figure (7.2), the better the model, since the value is 

the prediction error in percent.

A heuristic method has been used in chapter 6 to provide an estimate o f the 

parameters o f the interactive higher-order hidden Markov model, or IHHMM. This 

method is, in turn, applied to the solverQ function, integrated in Excel®. The Figure 7.2 

gives the detailed procedure to work with the Excel solverQ function:

( k.
Efe Edit $ ew  Insert Format Iools Data Window Help Adobe PDF

J  11 ' ■ ' « * **
%___  _  _ _

GAi B C ! D i E
1 M icrosoft E x ce l 11.0 A n sw e r  R e p o r t
2 W o rk sh e e t:  { lin ea t p ro g ra m m in g .x ls ]S h e e t3
3 R e p o rt C re a te d :  1/10/2007 8:05:05 PM
4
5
G T a rg e t Cell (Min)

7 C ell N am e  Ori.riinwl V aluo  I-inal V a lu e

Equal To: 0TMax ® M iq  O  Value of:
n a r l t a g  C

$A$1:$A$20.008169915 0.008169915$C$9 Target

Subject t a  th e  C onstrain t arx&m.,™
11 iA d ju s ta b le  C e lls  ___________________ _________
12 j V .iln e  F in a l V a lu e

13
14
15
16

$A$2 <= 1
tA»2 > -  0D 0 .4 0 3 2 9 6 6

0 0.596704

17  ^ C o n stra in ts

•^CeTf N am e Cell V a lu e  F o rm u la S ta tu s  S la ck

5AJ3 1.000001 $A$3=1 Not Binding 0

5A51 0.403296633 $A$1<=1 Not Binding 0.596703367
$A$1 0.403296633 $A$1>=0 Not Binding^ 0.403296633
$A$2 0.596704367 JA$2<=1 Not Binding 0.403295633
$A$2 0.596704367 $A$2>=0 Not Binding 0.596704367

19
20 f
21 *
2 2 *

I 23  I
I 24

| t ? C< ► m \  8 ,2 ,2  /  9 .2 .1  \ A nsw er R e p o r t  l /  S h ee t3  /  

I Point

l<i
.m :

Figure 7.2 Excel Solver Q report.

Important conclusions drawn from the models are presented in chapter 6. These 

models are useful to a financial department in a bank for studying the effects o f 

macroeconomic variables on retail mortgages. As a result, reports generated by these 

models would be o f interest to the bank’s management as well.
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7.2 Future Study

The models presented in this study are by no mean comprehensive. The 

assumption of a discrete state process could be relaxed to give rise to a diffusion process. 

Also, besides modeling the credit risk from a bank’s management point o f view, this 

research approach could be readily applied in investment. Thus, more sophisticated 

models utilizing Stochastic Differential Equations or Value at Risk methodology could be 

applied in this regard.
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