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ABSTRACT

Heat transport through micro thin films plays a very important role in
microtechnology applications. Many microelectronic devices have metal thin films as
their key components. Microscale heat transfer is also important for the thermal
processing of materials, including laser micromachining, laser patterning, laser synthesis
and laser surface hardening. Hence, studying the thermal behavior of thin films is
essential for predicting the performance of a microelectronic device or for obtaining the
desired microstructure. Recently, it has become very popular to use ultrashort-pulsed
lasers in thermal processing, which lasers have pulse durations of the order of
subpicoseconds to femtoseconds, and these kinds of lasers can limit the undesirable
spread of the thermal process zone in the heated sample. However, ultrashort-pulsed
lasers can induce ultrafast damage, which occurs after the heating pulse is over.
Therefore, in order to apply ultrashort-pulsed lasers successfully, one must study the
thermal deformation to prevent the thermal damage.

In the previous research, the parabolic two-step micro heat transport equations
have been widely applied in microscale heat transfer. However, when the laser pulse
duration is much shorter than the electron-lattice thermal relaxation time for the
activation of ballistic behavior in the electron gas, the parabolic two-step model may lose

accuracy, as pointed out the in the literature.
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It has not been seen in the literature employing the hyperbolic two-step model for
studying thermal deformation in a micro thin film exposed to ultrashort-pulsed lasers,
which is important for enhancing our understanding of micro heat transfer in a micro thin
film exposed to ultrashort-pulsed lasers. Hence, the purpose of this dissertation is to
employ the hyperbolic two-step model with temperature-dependent thermal properties for
obtaining temperature distribution in a thin film induced by ultrashort-pulsed lasers and
to couple with the dynamic equations of motions in order to study thermal deformation in
the thin film. To this end, we first develop an implicit finite difference scheme for solving
the hyperbolic two-step model with temperature-dependent thermal properties. The
scheme is shown to satisfy a discrete analogus of an energy estimate. We then apply it to
studying thermal deformations in two-dimensional (2D) thin films exposed to ultrashort-
pulsed lasers. In this method, staggered grids are designed, and the coupling effect
between lattice temperature and strain rate, as well as the hot electron blast effect in
momentum transfer, are considered. As such, this obtained method allows us to avoid
non-physical oscillations in the solution.

To demonstrate the applicability of the method, we test three physical cases, (1)
1D double-layered thin film with perfectly contacted interface irradiated by ultrashort-
pulsed lasers, (2) 2D single-layered thin film irradiated by ultrashort-pulsed lasers, and (3)
2D double-layered thin film with perfectly contacted interface irradiated by ultrashort-
pulsed lasers. Results show that the method is promising and there are some differences
between the hyperbolic two-step model and the parabolic model. Particularly, one may

see the differences regarding the change in electron temperature (A7, /(AT,),., ) and the

displacement (u ) in x direction.

v
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NOMENCLATURE

4, electron-blast coefficient, J/(m*K?)
C, electron heat capcity, J/(m’K)
C, lattice heat capcity, J/(m*K)
E phonon/electron energy, J
G electron-lattice coupling factor, W/ (m’K)
J laser fluence, J/m®
K bulk modulus, Pa
k, thermal conductivity, W/(mK)
L, length of micro thin film in x direction, pm
L, length of micro thin film in y direction, s
N, number of grid points in x direction
N, number of grid points in y direction
S volumetric heat source, W/m?
g, electron heat flux, W/m?
q, lattice heat flux, W/m?
q, electron heat flux in x direction, W/m’
q’ electron heat flux in y direction, W/m’
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q;

q;

X,y

n

Greek Symbols
At

Ax

—t

lattice heat flux in xdirection, W/m’

lattice heat flux in ydirection, W/m?

surface reflectivity
absolute temperature, K

electron temperature, K
lattice temperature, K

heat source, W/m?
laser pulse duration, s

displacement in the x direction , m

displacement in the y direction, m

velocity component in the x direction, m/s
velocity component in the y direction, m/s
rectangular coordinates

unit outward normal vector on the boundary

time increment, s
rectangular grid size, m
rectangular grid size, m
optical penetration depth, m

thermal expansion coefficient

finite difference operator
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0 finite difference operator

o, finite difference operator

A, finte difference operator

A, finite difference operator

A, finite difference operator

A, finite difference operator

T, electron relaxation time, ps

T, lattice relaxation time, ps

£, normal strain in the x direction

&, normal strain in the y direction

£y shear strain

A electron-blast coefficient, J/(m*K?)

A Lame’s constant, Pa

u Lame’s constant, Pa

p density, kg/m®

o penetration depth nm

o Stefan-Boltzmann’s constant

O normal stress in the X direction

% normal stress in the V' direction

o, shear stress in the xy direction
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Subscripts and Superscripts

0 initial value at ¢ =0
e electron
i grid index in the x direction
J grid index in the y direction
/ lattice
n time level
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CHAPTER 1

INTRODUCTION

1.1 General Overview

Heat transport through micro thin films plays a very important role in
microtechnology applications [Joseph 1989] [Joshi 1993]. Many microelectronic devices
have metal thin films as their key components. In order to enhance the switching speed of
the device, we have to reduce the device size to microscale. Meanwhile, size reduction
increases the rate of heat generation, which causes a high thermal load on the
microelectronic devices. Microscale heat transfer is also important for the thermal
processing of materials [Qiu 1992, 1993], including laser micromachining, laser
patterning, laser synthesis, and laser surface hardening.

Recently, it has been very popular to use ultrashort-pulsed lasers in thermal
processing, which are ultrafast lasers with pulse durations of the order of subpicoseconds
to femtoseconds. They have been widely applied in structural monitoring of thin metal
films [Opsal 1991], laser micromachining [Knapp 1990], and patterning [Elliot 1989],
structural tailoring of microfilms [Grigoropoulos 1994], and laser synthesis and
processing in thin-film deposition [Narayan 1991]. The non-contact nature of

femtosecond lasers has made them an ideal candidate for precise thermal processing of
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functional nanophase materials, and this kind of lasers can limit the undesirable spread of
the thermal process zone in the the heated sample [Tzou 2002].

For an ultrashort-pulsed laser, the heating involves high-rate heat flow from
electrons to lattices in the picosecond domains. Depending on the temperature, electrons
have a heat capacity two to three order of magnitude smaller than that of lattices. When
heated by photons (lasers), the laser energy is primarily absorbed by the free electrons
that are confirmed within film depth during the excitation. Electrons first shoot up to
several hundreds or thousands of degrees within a few picoseconds without disturbing the
metal lattices. A major portion of the thermal energy diffuses to the electrons in the
deeper region of the target. Because the pulse duration is so short, the laser is tumed off
before thermal equilibrium between the electrons and lattices is reached. In this time
interval, the heat flux is essentially limited to the region within the electron thermal
diffusion length. This stage is termed non-equilibrium heating due to the large difference
of temperatures in electrons and lattices [Chen 2001]. The lattice temperature then
increases as a result of lattice-electron coupling, resulting in a new thermal property
termed lattice-electron coupling factor.

In order to apply high-energy ultrashort-pulsed lasers in real life, we need three
main factors [Tzou 2002]: (1) well characterized pulse width, intensity and experimental
techniques; (2) reliable microscale heat transfer models, and (3) prevention of thermal
damage which is also the most important task in real applications. Here, ultrafast damage
induced by sub-picosecond pulses is intrinsically different from that induced by long-
pulse or continuous lasers. For the latter, laser damage is caused by the elevated

temperatures resulting from the continuous pumping of photon energy into the processed
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sample. The “damage threshold” termed in heating by long-pulse lasers, therefore, is
often referred to as the laser intensity that drives the heated spot to the melting
temperature. Thermal damage induced by ultrashort-pulsed lasers in the picosecond
domain, on the other hand, occurs after the heating pulse is over [Wang 2007]. Under a
sufficiently high intensity of heating, in fact, experimental results have shown that the
ultrafast damage involves shattering of a thin material layer (from the heated surface)
without a clear signature of thermal damage by excessive temperatures [Tzou 2002,
Wang 2007]. Rather than the melting damage developed at high temperature, obviously,
there exists a new driving force that brings about such ultrafast damage; probably in only
a few picoseconds after heating is applied [Tzou 2002]. Therefore, preventing thermal
damage is our motivation to study the thermal deformation induced by ultrashort-pulsed

lasers.

1.2 Research Objectives

The objective of this dissertation is to develop a new numerical method for
studying thermal deformation in two-dimensional single-layered and double-layered
micro thin films exposed to ultrashort-pulsed lasers in which the numerical method is
obtained based on the dynamic equations of motion and hyperbolic two-step heat
transport equations. To achieve this objective, a series of steps will be taken as follows:

Step 1: Introduce velocity components into the model and re-write the dynamic

equations of motion.

Step 2: Construct a staggered grid.
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Step 3: Develop a fourth-order compact finite difference scheme for evaluating
stress derivatives and share stress derivatives in the dynamic equations of motion. As
such, the third-order derivatives of stresses and shear stresses are disappeared and hence

non-physical oscillations in the solutions are eliminated.

Step 4: Develop a finite difference scheme for obtaining temperatures in a 1D
double-layered micro thin film heated by ultrashort-pulsed lasers, where the interfaces are

perfectly contacted. This scheme is based on the hyperbolic two-step model.
Step 5: Analyze the convergence of the finite difference scheme for 1D situation.

Step 6: Develop a finite difference scheme for obtaining temperatures, stress,
strain, and displacement distributions in a 2D single-layered micro thin film based on the

hyperbolic two-step model.

Step 7: Develop a finite difference scheme for obtaining temperatures, stress,
strain and displacement distributions in a 2D double-layered micro thin film with

perfectly contacted interface based on the hyperbolic two-step model.

Step 8: Test the method by numerical examples.

1.3 Organization of the Dissertation

In Chapter 1, a general review of the main idea of our work is given, and the
objective of this dissertation is proposed. Chapter 2 provides some background for this

research. Heat transfer at micro scale, the dual-phase-lagging behavior, and the parabolic
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two-step model for 1D and 2D double-layered micro thin films, as well as a review of
previous works, will be reviewed in this chapter.

Chapter 3 gives the mathematical models for 1D double-layered micro thin film.
We will consider a 1D micro thin film irradiated by ultrashort pulsed lasers, set up the
governing equations, and obtain its energe estimate. Meanwhile, we will develop the
finite difference scheme and then show that it satisfies a discrete analogus of the energy
estimate.

In Chapter 4, we will set up the governing equations for 2D single-layered and
double-layered thin films, respectively. In Chapter 5, a finite difference scheme will be
developd for both single-layered and double-layered micro thin film for 2D cases.

In Chapter 6, we will design the numerical algorithms for obtaining the
temperature, displacement, stress and strain distributions and give the numerical results
based on the developed numerical methods in a micro thin film exposed to an ultrashort
pulsed laser. Three cases will be focused on, which will be a 1D double-layered micro
thin film with perfectly contacted interface, 2D single-layered micro thin film, and 2D
double-layered micro thin film with perfectly contacted interface. Various mesh sizes will
be chosen to test the convergence of the method. Also, the electron temperature, the
lattice temperature, the displacements, and the stresses will be calculated and discussed.
Lastly, in Chapter 7, we give the conclusions of our work and suggest future research

work.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

2.1 Microscale Heat Transfer Model

At the micro scale, the process of heat transfer is determined by phonon-electron
interaction in metallic films and by phonon scattering in dielectric films, conductors and
semiconductors. The classical theories established at the macro scale, such as heat
conduction subjected to Fourier’s law, are not expected to be informative enough at the
microscale because they describe macroscopic behavior aggregated over many grains.
They break down further as the temporal domain becomes extremely small, say, on the
order of picoseconds or femtoseconds. A typical case occurs in the ultrafast laser heating
in the thermal processing of materials. In this instance, the quasi-equilibrium assumption
established in Fourier’s law does not hold along with other macroscopic behaviors [Kaba
2004, 2005].

In this part of the dissertation, we give a brief review of the microscopic two-step
model (phonon-electron interaction model), which emphasizes the special behavior
depicted by the model that might reveal possible lagging behavior. Many articles exist

about this two-step model, according to which, we can gain an overall understanding of
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the development of the model. The following sections are based on Tzou’s book [Tzou

1996].

2.1.1 Microscale Heat Conduction

Regardless of the type of the conducting medium, heat transport requires
sufficient collisions among energy carriers. In metals, electrons and phonons are the main
energy carriers. In dielectric crystals, insulators, and semiconductors on the other hand,
phonons are the primary energy carriers. The phonon gas can be considered as a group of
“mass particles” that characterize the energy state of a metal lattice. For a metal lattice
vibrating at a frequency v at a certain temperature 7', the energy state of the metal lattice,

and hence the energy state of the phonon is

E=hv, 2.1

with A being the Planck constant. The lattice frequency is of the order of tens of
terahertz (10" /s ) at room temperature. We can imagine that the lattice frequency

increases with the temperature of the metal lattice. Energy transport from one lattice
to the other one can thus be thought of as the consequence of a series of phonon

collisions in time history, as illustrated in Figure 2.1.

phonon 2

&
Phonon 1
at ¢

phonon 1 at time ¢

Figure 2.1 Energy transport through phonon collision [Tzou 1996].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bearing energy Av at timet,, phonon 1 collides with phonon 2 at ¢, and with
phonon 3 at timet,. In the process of each successive collision, energy is transferred from

phonon 1 to phonons 2 and 3, which causes a successive change of vibrating frequency of
phonon 1. To illustrate the phenomenon, the mean free path (d, in space) is defined as
the algebraic mean of the distances traveled by phonon 1 between the two successive

collisions with phonons 2 and 3:

_d, +d, +d,
——

d (2.2)

The mean free time 7 can be defined similarly as the algebraic mean of the times

traveled by phonon 1 between the two successive collisions with phonons 2 and 3:

z_:(1'2—rl)+(1'33—‘52)+(t“73)=(t_371). (2.3)

We use two collisions for phonon 1 in this example. To have a meaningful statistical
ensemble space of course, a “sufficient” number of collisions must be collected to
determine the mean free path and the mean free time.

In the macroscopic models, we assume the physical domain for heat transport is
so large that it allows hundreds of thousands of phonon collisions before an observation
or description is made for the process of heat transport. Since phonon collision requires a
finite amount of time to occur, hundreds of thousands of those collisions would require a
sufficiently long time for the process of heat transfer to occur. Therefore, it is clear that
the macroscopic models not only require a sufficiently large physical domain for

conducting heat (much larger than the mean free path), but also a sufficiently long time
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for heat conduction to take place (much longer than the mean free time). It should be
pointed out that the sufficiently long time for the stabilization of energy transport by
phonons should not be confused with the time required for the steady state to be reached.
The sufficiently long time required in phonon collisions is to provide a statistically
meaningful concept in regards to the mean free path and the mean free time. The heat
transport phenomenon can still be time dependent after phonon transport becomes
stabilized. In a phenomenological sense, the mean free time as illustrated in Figure 2.2 is
parallel to the characteristic time describing the relaxation behavior in the fast-transient
process. For metals, the mean free time, or relaxation time is of the order of picoseconds.
In dielectrics crystals and insulators, the relaxation time is longer, roughly of the order of
nanoseconds to picoseconds. As a rough estimate, any response time being shorter than
one nanosecond should be closely investigated. The fast-transient effect, such as wave
behavior in heat conduction, may activate and introduce unexpected effects in heat
transport. Such a threshold value of nanoseconds, however, depends on the combined
effects of geometric configuration (of the specimen) and thermal loading imposed upon
the system. It may vary by one order of magnitude if the system involves an abrupt
change of geometric curvatures (specifically around a crack or notch tips), or is subject to

discontinuous thermal loading (irradiation of a short pulse laser, for instance).
The mean free path for electrons is the order of tens of nanometers (10 m) at

room temperature, which is a strong function of temperature. It may increase to the order
of millimeters in the liquid helium temperature range, roughly 4 K. The mean free path in
phonon collision or phonon scattering (from the boundaries of the grains) is much longer.

Take a type Ila diamond film as an example; its mean free path is of the order of tenths of
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a micron (107 m) at room temperature. We can roughly estimate that a physical device
with a characteristic dimension in submicrons deserves special attention. The micro
structural interaction effect, such as phonon-electron or phonon scattering, may enhance
heat transfer in short times dramatically. Enhancement of the heat transfer enlarges the
thermal processing zone and promotes the temperature level, which may cause early

burnout of micro devices without proper prevention.

a thin film
i=d
‘_____._—
t=7
phonon 2

phonon 1 att

Figure 2.2 Phonon interactions in a film of the same order of magnitude as the
mean free path, illustrating the challenge of the microscale effect in space to the
concept of temperature gradient [Tzou 1996].
Given that the physical dimensions, under consideration at the micro scale, are of
the same order of magnitude as the mean free path, the response time is of the same order
of magnitude as the mean free time, and the quantities derived from the concept of

aggregation at the macro scale need to be reexamined for their meaning in a microscopic

environment. The temperature gradient, which has been simply derived in macro scale
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heat transfer, may lose its physical meaning for a thin film of thickness, the same order of

magnitude as the mean free path. As illustrated in Figure 2.2, it is proper that we can still
divide the temperature difference, 7, —7;, by the film thickness / (=d, the mean free

path of phonon interaction or scattering) to obtain a “gradient like” quantity, but the
temperature gradient obtained in this fashion loses its usual physical meaning for the
reason that there is no sufficient energy carriers between the two surfaces of the film and,
as a result, the temperature field is discontinuous across the film thickness. The concept
of temperature gradient fails, and the usual way to define the heat flux vector according
to Fourier’s law turns out to be doubtful. Thus, deciding the concept of both the
temperature gradient and the heat flux vector is the first-line challenge that the microscale
effect in space has raised against traditional theories in macroscale heat transfer.

A similar situation happens to the response time for the temperature. The typical
response time in the thin film ié of the same order of magnitude as the mean free time, as
a result of phonons traveling in the threshold of the mean free path. If the response time
of primary concern (for temperature or heat flux vector) is of the same order of
magnitude as the mean free time (relaxation time), the individual effects of phonon
interaction and phonon scattering must be considered in the short time transient of heat
transport. This is the second challenge rasied by the microscale effect in time against
conventional theories in macroscale heat transfer. From Figure 2.2, it is clear that the
microscale effect in space interferes with the microscale effects in time. They cannot be
separated and must be contained simultaneously in the framework seeking to develop a
theory of heat transfer at the microscale, which is obvious by considering the finite speed

of phonon transport in short time. Phonons propagate at the speed of sound, on average,
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which is of the order of 10* to 10° m/s at room temperature, depending on the type of

solid medium. A response time of the order of picoseconds (107> s5) thus implies a
traveling distance (the penetration depth of heat by phonon transport) of the order of
submicrons (10 ® t010”7 m). Such a penetration depth is on the microscopic level,

requiring a simultaneouse consideration of the microscale effect in space.

2.1.2 Two-Step Model

In Figure 2.1 and Figure 2.2, by replacing phonons with phonons or electrons, it
becomes the description for the phonon-electron interaction for heat transfer in metals.
For those electron gases with much smaller heat capacity than that of the metal lattice, the
heating system involves excitation of the electron gas and heating of the metal lattice
through phonon-electron interaction in short times. In microscale, the phonon-electron
interaction model was proposed to describe this two-step process for energy transport.
The first version of the two step model (phonon-electron interaction model) was proposed
by Kaganov et al. [Kaganov 1957] and Anisimov ef al. [Anisimov 1974], but they did not
give any rigorous proof. This model was only considered as a phenomenological model
until Qiu and Tien [Qiu 1993] set the model on a quantum mechanical and statistical
basis. They derived the generalized hyperbolic constitutive equations for heat transfer
through the electron gas from the Boltzmann transport equation in the absence of an
electrical current during short-time heating. The hyperbolic two-step model can perfectly
reduce to the parabolic two-step model proposed by Kaganov et al. [Kaganov 1957] and
Anisimov et al. [Anisimov 1974] by setting the relaxation time of the electron gas

calculated at the Fermi surface to be zero.
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The two-step model depicts heating of the electron gas and the metal lattice by a

two-step process for metals. The equations can be written as:

Step1: C, aaT; =V-(KVT,)-G(T,-T), 2.4)
Step2:  C, %% =G(T.-T), (2.5)

where C denotes the volumetric heat capacity, K the thermal conductivity of electron
gas, and subscripts e and / represent the electron and metal lattice, respectively.
Equation (2.4) is the mathematical representation for the first step heating of the electron
gas, and Equation (2.5) is for the second step heating of the metal lattice. Here, we do not
consider the effect of heat conduction through the metal lattice. According to Equation
(2.4), the extremely supplied phonons, such as those from an intensified laser, first
increase the temperature of the electron gas. At this step, diffusion is assumed to provide
a parabolic nature for heat transport through the electron gas. The second step is shown
mathematically by Equation (2.5), which is the hot electron gas heating the metal lattice
by phonon-electron interaction. The energy exchange between phonons and electrons is

illustrated by the phonon-electron coupling factor G [Kaganov 1957]:

2 2
G= %% forT, >> T, | (2.6)
Te e

where m, is the electron mass, n, the number density of electrons per unit volume, and

v, the speed of sound,

1
(o2 2 2
v. =——(67°n ) 3T,, 2.7
s 2 l( a) D ( )
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with the quantity s being Planck’s constant, k& being the Boltzmann constant, n, being
the atomic number density per unit volume, and 7}, representing the Debye temperature.
The electron temperature (7,,) is much higher than the lattice temperature (7;) in the early
time response. The condition 7, >>7, in Equation (2.6) for the applicability of G is thus

valid in the fast-transient process of electron-phonon dynamics. Within the limits of
Wiedemann-Frenz’s law, which states that for metals at moderate temperatures
(7,>048T,), the ratio of the thermal conductivity to the electrical conductivity is

proportional to the temperature, and the constant of proportionality is independent of

particular metal, the electron thermal conductivity can be expressed as [Kaganov 1957]

m*nk’c,T,
k,=——"""=%, (2.8)
3m,
therefore
n*nk’z,T,
m,=—"—=° (2.9)
3k,
Substituting Equation (2.9) into Equation (2.6) for the electron mass yields
4 k 2
G T (Vk)” (2.10)
180

This coupling factor is dependent upon the thermal conductivity (K) and the number

density (n,) of the electron gas. The coupling factor does not show a strong dependence

on temperature and is not affected by relaxation time [Tzou 1996].

In order to estimate the value of G, the number density (7,) of the electron gas is

a key quantity. Qiu and Tien assumed one free electron per atom for noble metals and

employed the s-band approximation for the valence electrons in transition metals [Qiu
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1992]. Thus, the value for the number density of the electron gas is chosen as a fraction
of the valence electrons. The phonon-electron coupling factor is calculated, and
experimentally measured values are listed in Table 2.1 for comparison.

Mathematically, Equation (2.4) and Equation (2.5) are two equations with two

unknowns, which are the electron-gas temperature (7, ) and the metal-lattice temperature
(T}). We can solve them in a coupled manner, or we can combine them to a single energy

equation depicting heat thansport through phonon-electron interaction in microscale. On
the other hand, the combined energy equation can also be generated from the phase lag
concept in the temporal response. This coincidence supports the dual-phase-lag model

that we will discuss in the next section.

Table 2.1 Phonon-electron coupling factor G, for some noble and transition metals

[Qiu 1992]

Metal Calculated, x 10 W/m3K Measured, x 1016 W/m3K
Cu 14 4.8 4 0.7 [Brorson 1990]

10 [Elsayed-Ali 1987]

Ag 3.1 2.8 [Groeneveld 1990]
Au 2.6 2.8 £+ 0.5 [Brorson 1990]

Cr 45 (n_/n, = 0.5) 42 + 5 [Brorson 1990}

w 27 (n,/n, = 1.0) 26 % 3 [Brorson 1990]
\Y 648 (n,/n, = 2.0) 523 4+ 37 [Brorson 1990]
Nb 138 (n, /n, = 2.0) 387 + 36 [Brorson 1990]
Pb 62 12.4+ 1.4 [Brorson 1990]
Ti 202 (n,/n, = 1.0) 185 + 16 [Brorson 1990]
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2.1.3 Dual-Phase-Lagging Model

Generally speaking, the lagging response depicts the heat flux vector and the
temperature gradient taking place at various times in the heat transfer process. Two
situations exist. If the temperature gradient goes before the heat flux, then the
temperature gradient is the reason with the heat flux as its result, whereas if the
temperature gradient follows the heat flux, the heat flux is the cause, and the temperature
gradient becomes the effect.

No such precedence concept is present in the established theory of diffusion because
in the traditional theory, it is assumed that the temperature gradient and the heat flux
vector happen at the same instant of time. Fourier’s law of heat conduction,

q(7,ty=—kAT(7,1), (2.11)
where 7 is the position vector of the material volume and ¢ the physical time. No time
difference between the heat flux vector and the temperature gradient exists; therefore, it
causes an infinite speed of heat transmission.

Tzou established the base of the theory for the lagging response in heat transfer
conduction [Tzou 1996]. In Tzou’s work, a new type of energy equation was established,
which includes the traditional theories of diffusion with macroscopic space and time,
thermal waves with macroscopic space but microscopic time, and phonon-electron
interaction model with microscopic space and time in the same system. Since this model
utilizes the two-phase lags to describe the transient process, it is named the dual-phase-
lag model. Based on the dual-phase-lag model, it is easy to depict the essential
conversion from diffusion to the phonon-electron interaction. Similar to Fourier’s law,

Tzou wrote the constitutive equation as [Tzou 1989a, b, 1990a, b, and 1992]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

g7t +7)=—kAT(F,1), (2.12)
with 7 as the time delay, named the relaxation time in the wave theory of heat

conduction. Applying the first-order expression of z in Equation (2.12) regarding toz,

Equation (2.12) changes to
e oq . -
q(r,t)+r5(r,t)=—kAT(r,t). (2.13)

This is the CV wave model derived by Cattaneo [Cattaneo 1958] and Vermnotte [Vemotte
1958, 1961], successfully getting rid of the contradiction of infinite speed of heat
propagation in Fourier’s law. The relationship between the relaxation time and the

thermal wave speed is [Chester 1963]
T=—>r, (2.14)

where a is the thermal diffusivity and C denotes the thermal wave speed. We can
clearly see that as C goes to infinity, 7 goes to zero, then the CV wave model,
Equations (2.12) and (2.13), reduces to the Fourier’s law, Equation (2.11). This wave
model is one of the main research areas in heat transfer conduction. There are also some
detailed reviews by Joseph and Preziosi [Joseph 1989, 1990], Tzou [Tzou 1992} and

Ozisik and Tzou [Ozisik 1994].

2.2 Previous Work

Based on the theoretical foundation in the previous section, we first review some
detailed parabolic models related with our research in this section. Then we roughly take

a glance at those previous research works.
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2.2.1 One-Dimensional Parabolic Two-Step Model

The energy equations describing the continuous energe flow from hot electrons to
lattices during non-equilibrium heating can be written as [Anisimov 1974, Qiu 1992,

1993, and 1994]:

CT) 22 =V k(T T)VT]- G, ~T)+S. @.15)
¢, 2L=G(r. -1y, (2.16)

T, ccp
where C,(T,)= AT, , k,(T,,T,) =k, (-Ti) . In the classical theory of diffusion, T, =T,

!
thermal equilibrium between the electrons and lattices is reached. Thus, Equations (2.15)
and (2.16) can be reduced to the classical heat conduction equation.

In 2004, Dai developed a nonlinear finite difference scheme for solving the
parabolic two-step model with temperature dependent thermal properties in a one-
dimentsional double-layered thin film heated by ultrashot-pulsed lasers [Dai 2004]. The
method was applied to investigating the heat transfer in a gold layer on a chromium layer
with perfectly contacted interface, where the double-layered thin film with thickness L

of the order 0.1 um is subjected to a subpicosecond-pulse irradiation. Based on Equations

(2.15) and (2.16), the governing equations for the double-layered thin film are [Dai 2004]

T a—axU‘i"’) —) =GO @ ")+ S, 217
or™
CI(M) alt — G(m)(Te(m) _ TI(M)) , (2.18)
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(m)

T L
where C™ = AT, k™ =k, Te(”” , OSxS—Z— hen m =1, and ESxSLWhen m=2.
1

~

The heat source for both layers is chosen to be

1-R| =
t5}e 1), (2.19)

14

S™ (x,t) = 0.94J[

where I(¢)is the light intensity of the laser beam. The interfacial equations are assumed

to be
k0 L2 @ L7 o _ro L (2.20)
¢ ox . ¢’ 2
The initial and boundary conditions are assumed to be
T/ (x,0) = T (x,0) = T, (= 300K), (2:21)

aTe(])(O,t) _ aT,(l)(O,t) o aTe(Z)(O,t) _ 6]‘1(2) (O,t) _

0. (2.22)
Ox Ox Ox Ox

Such boundary conditions arise from the fact that there are no heat losses from the film

surfaces in the short time response [Tzou 1996].

2.2.2 Two-Dimensional Parabolic Two-Step Model

In 2006, Dai and his colleagues [Wang 2006a] developed a finite difference method
for studying thermal deformation in a single-layered thin film exposed to ultrashort-
pulsed lasers based on the parabolic two-step heat transport equations. The governing
equations for studying thermal deformation in the thin film can be expressed as:

(1) Dynamic equations of motion [Tzou 2002, Chen 2002a, Brorson 1987]

o’u 8o, 0o, oT,
=—+ +2AT —=, 2.23
P or? ox ¢ ox ( )
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2 oo oo
pazvz 24— 4 2AT, o (2.24)
ot Ox Oy oy
whére
o, = Me, +8,)+2ue, -(3A+2ma, (T, ~T,), (2.25)
o,=Me, +&,)+2ue, —(BA+2w)a, (T, -T;), (2.26)
o, = HE,, 2.27)
gx=%,gy=@,exy=%+@, (2.28)
Ox oy oy ox
2
/1=K—3-,u. (2.29)

(2) Energy equations [Tzou 2002, Chen 2002a, Qiu 1992]

o7, _o ], o or,
C.(T,) Pl [ke(Te,Tz) ax]+®,|:kg(Te,T1) ay]

Ox
6T, -T)+0, (2:30)
€, = G, 1)~ A+ 2, 2 (e, +5,), 231)

where the heat source is given by

2 2
- t—2
0=0947 "R exp —i—[-y—) -2.77[ ”] . (2.32)

t 2%s X Y t »

Here’ Ce(Te) = Ae]:: ’ke(]-;,];) = ko(%

!

]. Equations (2.30) and (2.31) are referred to as

parabolic two-step heat transport equations. The boundary conditions are assumed to be

o,=0,0,=0,at x=0,L,, (2.33)

0'y=0,0'Xy=0,aty=O,Ly, (2.34)
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o, £ =0 gz—zO. (2.35)
on on

The initial conditions are assumed to be
I,=T,=T,,u=v=0,u,=v,=0,att=0. (2.36)
They further presented a finite difference method for studying thermal
deformation in a double-layered thin film with perfectly contacted interface exposed to
ultrashort-pulsed lasers [Wang 2006b]. The governing equations are written as follows:

(1) Dynamic equations of motion [Brorson 1987, Chen 2002a, Tzou 2002]

2 (m) m o™ (m)

m 9 : _00.7 %% ppmpem ST (2.37)
ot ox Ay Ox
2..(m) ao'('") 60'(”') (m)

m 0 vz =—2 4L AT e o, : (2.38)
ot ox Oy Gy

where

O.JEM) /1('")(8('") + g('n)) + 2‘u(m) (m) (32‘(M) +2/l(m))a(m)(7}(m) _To) , (2.39)
o™ = /{(M)(g(rrt) +g(m))+ 2,U(m) (m) (31("1) +2,U(m))a7(-m)(]}("l) _To) , (2'40)

y

(m) (m) (m) (m)
em = Ou m _ OV my _ Ou ov

x axsgy _ay’g’”_ayJ'ax (2.41)
Here, m = 1, 2, denotes layer 1 and 2, respectively.
(2) Energy equations [Chen 2002a, Qiu 1992, Tzou 2002]
(C.T. )™ aj;m —(%[(ke( Ty 2k a:)} %[(ke( Ty 2 a;m]
_ G"")(Te"") _ Tz('")) +0, (2.42)
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T(m)
cm o ét =G" (T -1y - BA™ +24™)a™ g(gy") +e™),  (2.43)

where the heat source is given by

2 2
_ -2t
0=0947 "R exp —-x——(lj —2.77( ”J . (2.44)
t

»%s X, ¥ t »

The boundary conditions are

o’ =0,0)=0,at x=0,and 6 =0,60 =0,at x=L_, (2.45)
o =0,00)=0,at y=0,and 0’ =0,09 =0,at y=L,, (2.46)
aT™ ar™
e =0,—L—=0. (2.47)
on on

The initial conditions are assumed to be
m) _ m) __ (m) _ m) _ (m) _ m) _ _
T =T =T,, u"™ =v™ =0, u™ =v" =0,at 1 =0. (2.48)

The interfactial conditions are assumed to be, atx =L, /2,

u® =@ O =@ (2.49)

Gil) - 0';52), Gg) — Gg), (2.50)

10 -1, k0 2L LT 251)
Ox ox

Numerical results show that the method allows avoiding non-physical oscillations in

the solution.

2.2.3 Other Work

As shown in the previous section, the parabolic two-step micro heat transport
equations have been widely applied in analysis of microscale heat transfer. However,

when the laser pulse duration is much shorter than the electron-lattice thermal relaxation
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time that is the characteristic time for the activation of ballistic behavior in the electron
gas, the parabolic two-step model may lose accuracy [Qiu 1993] [Tzou 1995b]. As Qiu
and Tien point out [Qiu 1994], the relaxation time increases dramatically, as the

temperature decreases, from 0.04 ps at room temperature to about 10 ps at 10 K. They

developed the hyperbolic two-step heat transport equations based on the macroscopic
averages of the electric and heat currents carried by electrons in the momentum space
[Qiu 1993]. The generalized hyperbolic two-step model can be written as follows [Chen

2001] [Qiu 1994] [Chen 2003]:

oT. -

C, 8te =-V.4,-G(T,-T))+S, (2.52)
£ %o o kvr, (2.53)

ot

oT,

C,a—t’=—V-c7,+G(Te—-T,), (2.54)

P
7,91 G =~k VT, (2.55)

ot

. ) . 3k, . .
Here, 7, =—————— is the electron relaxation time, and 7, =—— is the lattice
AeT’e + BIT'I Clvs

relaxation time. It can be seen that ifz7,, 7, and k,are zero, the hyperbolic two-step

model will reduce to the parabolic two-step model.

Many articles try to provide the numerical methods for solving Equations (2.52)
to (2.55) [Tzou 1995a-d, 2001] [Ozisik 1994] [Chiffell 1994] [Wang 2000, 2001] [Antaki
1998] [Tang 1999] [Lin 1997] [Dai 1999, 2000, 2001a, b].

Chen et al. [Chen 2001, 2003] employed finite-difference and finite-element

methods to solve the hyperbolic two-step model for investigation of thermal response in a
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single-layered metal thin film caused by pulse laser heating. Al-Nimr and his colleagues
[Al-Nimr 1999, 2000, 2003] [Al-Odat 2002] [Naji 2003] studied the thermal behavior of
thin metal films in the hyperbolic two-step model with constant thermal properties.

From a recent report, using the temperature-dependent conductivity instead of
constant conductivity can gain better agreement between temperature predictions and
corresponding measurements for short-pulse laser heating [Antaki 2002]. Tzou and Chiu
studied the temperature-dependent thermal lagging [Tzou 2001], developing an explicit
finite difference algorithm to perform the nonlinear analysis.

Wang and his colleagues [Wang 2000, 2001] gave methods of measuring the
phase-lags of the heat flux and the temperature gradient and obtained analytical solutions
for 1D, 2D and 3D heat conduction domains under essentially arbitrary initial and
boundary conditions. They provided solution system for both mixed and Cauchy
problems of dual-phase-lagging (DPL) heat conduction equations. The DPL heat
conduction equation is well-posed in a finite 1D region under Dirichlet, Neumann or
Robin boundary conditions [Wang 2000]. Under linear boundary conditions, two solution
systems exist. For a finite region of dimension n(n >2) under Dirichlet, Neumann or
Robin boundary conditions, the DPL heat conduction equation has a unique solution,
which is stable regarding to the initial conditions [Wang 2001].

In order to solve the transient heat conduction problems in finite rigid slabs
irradiated by short-pulse lasers, Tang and Araki [Tang 1999] developed a generalized
macroscopic model with the solution derived from Green’s function method and finite

integral transform technique.
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Many works about heat transfer models with ultrashort-pulsed lasers are
published; however, only a few mathematical models have been derived to study the
deformation caused by ultrashort-pulsed lasers [Tzou 2002, Chen 2002a, b, Chen 2003].
Tzou [Tzou 2002] developed a one-dimensional model in a double-layered thin film and
solved it using the differential-difference approach. Chen and his co-workers considered
a two-dimensional axisymmetric cylindrical thin film and applied an explicit finite
difference method. They added an artificial viscosity term to eliminate numerical
oscillations.

As mentioned above, the parabolic two-step model may lose accuracy when the
laser pulse duration is much shorter than the electron-lattice thermal relaxation time.
Therefore, it is needed to employ a hyperbolic two-step model for studying thermal
deformation in thin films exposed to ultrashort-pulse lasers, which is also the motivation

of our research.
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CHAPTER 3

ONE-DIMENSIONAL MATHEMATICAL MODEL AND

FINITE DIFFERENCE SCHEME

3.1 Governing Equations

3.1.1 Problem Description

Hyperbolic two-step micro heat transport equations have attracted attention in
thermal analysis of thin metal films exposed to ultrashort-pulsed lasers. Exploration of
temperature-dependent thermal properties is absolutely necessary to advance our
fundamental understanding of microscale heat transport. In this chapter, we consider the
case where the heat transport is a one-dimensional micro thin film with perfectly
contacted two layers. By obtaining an energy estimate, we develop a finite difference
scheme, which has a discrete analogue of the energy estimate, to solve the hyperbolic
two-step model with temperature-dependent thermal properties in the thin film exposed
to ultrashort-pulsed lasers.

It should be pointed out that double (or multi)-layered thin films are widely used

in engineering applications since a single metal layer cannot satisfy all mechanical,

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

thermal and electronic requirements. For example, chromium can be used to act as a heat

sink which significantly reduces the temperature rise in the top gold layer.

3.1.2 Governing Equations

Consider a double-layered metal thin film exposed to ultrashort-pulsed lasers, as

shown in Figure 3.1.

Gold Layer Chromium Layer

[ aser (m=1) (m=2)

X

0 >

|
|
|

vy

[.=0.05 um )
2L=0.1 um

Figure 3.1 A 1D double-layered micro thin film.

Based on Equations (2.52)-(2.55), the hyperbolic two-step heat transport
equations in the one-dimensional double-layered micro thin film can be expressed as

follows:

aT(M) aq('n)

c™ -G(T™ -T"™)+ 8™, 3.1
e at ax (e ! ) ( )
6q o7, (m)
(M) e 4 (m) _ k(fn) , 32
Ty Ve B (3.2)
” aT(M) a (m) o .
€ e = Ty G - T), (3.3)
oqi™ or'™
(M) et YN + (m) _ k('n) , 3.4
ot @ Ox (34)
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T(m)

where C™ = AT™ | k™ =k, Te(m) , 0<x<L when m=1, and L <x<2L when
!

(m)

e

m =2. For simplicity, we assume thatz!™,z{™, k™ and G are positive constants.

We assume that the interface is perfectly thermal contact, and hence, the interfacial
conditions are, atx = L,
¢ =¢®, 1" =12, (3.52)
ql(l) — ql(2) ’Tl(l) — TI(Z) . (3.5b)

The initial and boundary conditions are

T (x,0) =T (x,0)=T,,q"” (x,0) = ¢ (x,0) = 0, (3.6)
g0, =¢P(2L,1H=0, (3.7a)
9,°(0,0)=q?(2L,1)=0. (3.7b)

3.1.3 Energy Estimate

In this section, we seek an energy estimate for the above problem. Assume that

k™ and the solutions of Equations (3.1)-(3.7) are smooth, and 7™ > T, and T, >T,,.

For this purpose, we first introduce the L” - norm:

e

»
p =( ﬂuw’]”dx] 1< p<+o, (3.8)
Jim)

where I is the interval [0,L] when m =1 and [L,2L] when m =2 , respectively.
Multiplying Equation (3.1) by T and Equation (3.3) by 7,"”, integrating them over I ™,

and then summing the results overm , we obtain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

3 [| 4y 2 LT | coogm L7 |y
or o

2 og™ dat™ 2
_ Z J‘_ q. T 4 4 7™ _Z IG""’ (T —T™)? dx
ax ax m=1 y(m)

+> [STax . (3.9)

Using the integration by parts and then applying the interfacial conditions, Equations

(3.52) and (3.5b), the boundary conditions, and Equations (3.7a) and (3.7b), we can

obtain
_zz: j'aqe T("”dx Te(l)qil) ](L) _Te(z)qéﬂl +Z Iqé"’)ﬂdx
m=1 y(m) Ox m=1 y(m)
=T"(0,0g"0,6)-T"(L,0)q" (L,¢)
+T,2(L,0q2 (L,t) -T2 2L,1)g? (2L, 1)
m aT m)
+Z J‘ q( yYre
m=1 l(m)
2 aT(M)
=Y (g e g (3.10)
m=} I(M) ax
and

—Z J‘ 6q, T(m)dx - T,“)(O,t)q,(')((),t)—T,“)(L,t)q,(l) (L,t)

m=1 y(m)

+ TI(Z) (La t)ql(Z) (L’t) - ]-;(2) (2L,t)ql(2) (2L9 t)

+z qu) 6T”‘

m=1 y(m)
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(m)
ij o 00" 4. 3.11)

Further, we have

i j ATy 6Tm ——dx= Z fam == a(T (M))

,(m)

=ZZ:§ j‘3A<'">(T<'">) dx

m=| m

; J (3.12)
and

2 (m) 2 (m)y2
z Cl(m)]-;(m) oT; dx = z 1 IC(m) oAL™) dx
m=} p(m) at m=1 2 m at

=ZE IECI( (T dx

m

S d (1 o mym)?
=ZE(EC} )HT,( ) Lz). (3.13)

-9

By Young’s inequality with ¢ (i.e., ab < ga” +(gp) ? q~'b? ,i + 1 =1, [Evans 1998]),
P q

one may obtain, by choosing ¢ = %Aﬁ"') ,p=3,and g = % ,

1

_[S(’")T‘”"dx< A I(T(M)) dx + ( A("’)3) 2~ I(S('”))de

Jim 3 m 3 ’m
1L ——|s (3.14)
3 31/A‘"'

Substituting Equations (3.10)-(3.14) into Equation (3.9) gives
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_ZI (m)adex Z g\
=1

m=1 jim)

+ 22: J.G(M)(Te(m _ TI(M))Z dx

m=1 Jm

(3.15)

SAbel

Integrating Equation (3.15) with respect to ¢ over the time interval[0,¢], we can obtain

S 2lzereo)
) ;(% | 2)

-3 ] Jo T3 | i 2

m=1 y(m) g m=1 y(m) g

>[4

m=1

ZZ:( A("')”

+ i J' IG(M) (Te('n) _TI(M))Z dsdx

m=1 y(m) g
2 ¢ 1 3
< - 2 ds. (3.16)
; 6[ 3 A7 JE
or'™
We now claim that the term — Z I Iq(m) ae dsdx is nonnegative in Equation (3.16).
m=1 y(m) g X
g™
In fact, multiplying Equation (3.2) with 4 ( > We obtain
1 a(Q£M))2 1 (m)N2 1 aTe(M) (m)
—2— at + ‘[(m) (qe ) = T(m) ke ax qe ¢ (3'17)

e
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Solving Equation (3.17) for (¢\™)* gives, for anys >0,
0< (g (x1)" = (g (x%,1)* —(g." (x,0))*

2

2t 25 ) (m OT
- ’Z'im) exp(_ T;,,,) )(;'-exp(‘[ém) )ke

Ox

q"ds . (3.18)

(m)
If there exists a £, >0 such that Ia; q{"ds >0, then we have, by the Mean-Value
»
0

Theorem for integral (since k™ is smooth),

t
f m aTm m m T(M) m
[exp( )k (™ A g™ ds = exp(—= (f) k(&) j g™ ds
0 e X
>0, (3.19)

where 0 < & <¢,. This implies

(m)

i 2 2, " 25 o OT™
(@7 (%,14))" = = exp(——%) [exp(=g)k™ —=—q M ds
z-e 2-e 0 Te

Ox

<0, (3.20)

which is a contradiction with Equation (3.18). Therefore, we can conclude that

m)
j m 9 ——¢ _ds <0and hence

4

_22: j Iq(m) dsdx>0 (3.21)

m=1 y(m) g

6T
We now simplify the term — I Iq("') e dsdx in Equation (3.16). By Equation (3.4),

™0

we obtain

J‘ I m 0 dsdx- I I (m aq(; dsdx+k( ) J. I(q,"")) dsdx

k('n)
7m0 7fm o 7m0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

o (m)
—2k‘”‘) J.I @ )ddx+

7m0

= | j(q,‘”“) dsdx

7m0

k,

"~ o, ) . (3.22)

Z 2 k"”) (“q,

As such, Equation (3.16) can be simplified as follows

! ! Srett
e e 3 1 I 2 ]
=3 L ) L2k

-35 L am ol + 3 e Sl ol
2t 1 Z
s;ojg ds+zj \[__| i%ds. (3.23)
Introducing
F@t)= Z[ AT, = c<'"’||T<'">(t)/Lz 2k — "q("') ] (3.24)
and
0() = Z W s i (3.25)
Equation (3.23) can be further simplified to
F(t)- F(0) < ]F(s)ds + ]Q(s)ds . (3.26)

By Gronwall’s lemma (i.e., if ¢(t) =2 0and y(¢) =0 are continuous functions such that

t
oK +L-[t//(s)¢(s)ds holds ont, <t <t , where K and L are positive constants,

to

then ¢(¢) < K exp(L .[!//(s)ds) ont, <t <t , [Atkinson 2005]), we can get for0<¢ <z,

1
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F@)< ]1 -F(s)ds + F(0) + ]Q(s)ds
< ]1 -F(s)ds + F(0)+ ]Q(s)ds

t
<e'{F(0)+ jQ(s)ds}, (3.27)
0
and thus we can get the following theorem.

THEOREM 1. Assume that k™, the solutions of Equations (3.1)-(3.7) are

smooth, and T > T, and T, > T,. Then the solution of Equations (3.1)-(3.7) satisfies

an energy estimate as follows

o

ol -3

- k('n) "q’
se 3G o], e of, + Sl
m=1

3
%, ds}
2

2
bt

)
2 TI (m) 2
+ qlm (Oj 2

L2

e el e
7" )|
03\[/1(”' \ 2 dS+ q k™ Ms}, (3.28)

for0<t<t¢,.
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3.2 Finite Difference Scheme

3.2.1 Notations

We denote (T, (T™)", (¢™)}, and (g;™)" as the numerical approximation
of (T")(jAx,nAt), (T ) jAx,nAt), (¢ ) jAx,nAt) and (g™ )(jAx,nAt), respectively,
where Ax and At are the x directional spatial and temporal mesh sizes, respectively, and

1< j < N sothat (N +1)Ax = L. We further introduce the inner products and /” - norms

for mesh functions u j and v; as follows

(u,v)= Axiujvj R (3.29)
,v), = Axiujvj , (3.30)
el =(AxZ'u}.’p);, (3.31)
and
> = (A% Ju 1. (3.32)

The first-order forward and backward finite difference operators are defined as follows

u.,—u;

quj =‘J—Ax—'1—, (333)
Uu.—u.,

V;uj :#. (334)
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3.2.2 Finite Difference Scheme

We now develop a finite difference scheme, satisfying a discrete analogue of

Equation (3.28). To this end, we design a staggered grid, as shown in Figure 3.2.

Gold Layer Chromium Layer
j=1 J=N 1=1 ji=N
———» . - . :i *—>» 0—*—0—»’
j=1 1=N+1
=1 j=N+1

® Locations of electron temperature and lattice temperature

—» Locations of heat flux

Figure 3.2 A staggered grid for 1D double-layered thin film.

Based on the continuous energy estimate Equation (3.28), we develop a finite

difference scheme for solving Equations (3.1)-(3.7) as

3

m n+ 3 m n m n+ m n
0T i Y N OO VAR O
’ Ty +(T™Y) ! 2
3 At( N RS X Ve ¥
2
_gw| T, @ @,
2 2
et
+(S<'">)j 2 j=1.,N, (3.35)
(@) -=@™y; 1 nes Ty + Ty
T(m) e J 2 J +— (m) n:l-l + (m) n - k(m) 2 'V— e J € J ,
e At 2[(qe )] (qe )]] ( e )j—% x 2
J=2,..,N, (3.36)
cm @) =T —G™ @) @7y (@) (@)
! At 2 2
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v (g™ + (g™’

— Vi » J=1.,N, (3.37)
2
@™ = @™ 1 T +(T™);
(m) (m)\n+l (m)yy\ny _ (m)
T ]At j"‘E[(Ql )i+ (g, ==k -V : > L,
Jj=2,..,N, (3.38)

wherem =1,2, and

l l(Te(m));H +(Te(m));[ l |(Te(rn))n+l +(Te(”'));—l

nes a
®O L= ameaey| ey eay, | O
The interfacial equations are discretized as follows:

@) v =@, (3.402)
@) = @)1 (3.40b)
Ty = (@), (3.40¢)
Ty =@My, (3.40d)

for any time level n, while the initial and boundary conditions are
(T, =(T™); =T,,a™); =(@™); =0, (3:41a)
@) =@ =0, (3.41b)
@)y =@y =0, (3.41c)

for any time level n.

3.2.3 Energy Estimate

The truncation error for Equations (3.35)-(3.41) is O(Ax* + A*). In order to get

an energy estimate which is an analogue to Equation (3.28), we multiply Equation (3.35)
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T(rn) n+l + T(M) n T(m) n+l + T(m) n
by Ax( <)) 5 &"); and Equation (3.37) by Ax(’ )) > )]

; make a

summation of j overl < j < N and m over 1 and 2, then add the results together. The

result is

(T(m) )n+1

“Joy];
ey ]

(m)\n+ (m) (m)\n+ (m)xn 2
+MZG‘”’Z[(T I (@M (T ),-]

131 (,,,)[
At

1 2 1 m m)\n+1 |2
| (0N

2

L& @M ™)) @)+ @)

m=1 j=1 2 2
L& @ @) @@,
szzV > J . J ;
m=1 j=1
2 T(m) n+l (m)
+Z[ sy, &) 2+(T )J (3.42)
m=1

Applying the summation by parts and then using Equation (3.36), Equations (3.40a)-
(3.40d) and Equations (3.41a)-(3.41c), we can simplify the first term on the right-hand-

side (RHS) of Euqation (3.42) as follows

1 1
(qg’n));:l +(q§'n));+1 .(Te('n))::] +(T(M)),+1

2 N
First T =—-Ax
irst Term ;; e 5

2 & (@) + @) @) (@),
D ey 2

2 N+l (q;'n))"fl +(qe'n)) (T(rn))n+1 +(T('"))

B3 Ty 2
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2, g (q;"’)"*‘ +(q;">)". @)+ (@),

5% L

m=1 j=2

NZ (q;"’)”*‘ +(q;")>3’~ g T+ @y
* 2

j=2

Z (@) +(q§'"’>1 TR+ @),
2

Z (@) + (qe”")Tm I H T
2

(m)n+1 (m)\n (m)\n+1 (m)\n
(q.”);" +(q."); o T™)7 +(T™)]

=A’Cii o i —

m=] j=2

@) =@™; 1

m)\n+ m)\n (m) ¢ i J — (m) "_+I (m) n

A L (gM) +(gM); e Ar +5(@™)" +(e.™))
O» |
m=1 j=2 2Ax (m) n+—
(,™) 1§
o

1
m=1 j=2 n+
2At-(k;"'>)j_§

2

2 & [(g.”)" + (@)

g i (3.43)
TR 4™
ur
Similarly, we can simplify the second term on the RHS of Equation (3.42) as
2 N m) (m)\n+l (m) n 2
Second Term = —szz [(q. ) ) - ((q. )1) ]
m=1 j=2 2At ~k1('")
L & (@) ~ (@)
- szz (m) —. (3.44)
m=1 j=2 . kl

Besides, by Young’s inequality with £, we have
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i[w(m) (T“"’)"*‘;(T""))J

m=]

[(s%“i(ﬂ"”)"]

|

1
[(s(m) )"*5,(1;""’)"“] s

3
1 2 1 3 2 n+ 2
S— A n+l (m) 2
2,,,2; (m) (5™ 2
3
2 (m) *% ?
Z (m) ( ) 3
e 12
1< 1 3 3
S"‘ _ n+ n
7354 )
2, 2 nes :
+ R E (3.45)
mat 3. AL 2

Substituting Equations (3.43)-(3.45) into Equation (3.42) gives

__]‘_21 (m)l: (m) n+13 n3:|
23 Ay, ,3

nll?
2

m n+ m n 2
Tm )™ 4 (T ’),.]

1 2 1 m m)yn+1||?
G ey,

|

(m)yn+1 (m)
+AxZG(m)Zl:T )i @) ( -

2 N (m (m) yn+1y2 (m)\ny2
e RS o

e 28 (k)

2 N (m) n‘+1 + (m) n 2
+szz[(qe )_] (qe1 )]]
m=} j=2 4 . (k(m) )n+_

"2 2
-1 1
2 173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

2 N L(m) (m)yn+ly2 (m)yny2 2 N (m)\n+l (m)
O 33l (0t M 010 D 8 i Ui

m=1 j=2 2At . kl(m) m=1 j= 4 M kI(M)
1411 e 3
< 2 n+ n
2 ]
3
2 2 . 2
+ ﬁ S(m)) 2 (346)
m=13 Ae 12

Since the third, fifth, and seventh terms on the left-hand-side (LHS) of Equation (3.46)

are all nonnegative, we just eliminate them from Equation (3.46) and simplify it as

follows
LR R LA B SER LR R

. ((q("'))'f”)"'—((q‘"")'f)2 . 'i((qf"")'f”)z—((qz('"’)"-)z]
+ Ax ‘rém) e 1e J Jj » J
2% 2-(k™)"2 Ry 2T

2

n+l 3

3

wl |2

CRONE B (3.47)
”

3 2 2
- P oleary —=—
Ly a3 2
(m)\n+1y\2
(m) ((qe ) )
mwchear; 2(k(m))n+_

2

Since the term Ax is positive, it can be dropped from the LHS of

. 2 (g™))?
Equation (3.47). The term — Ax E rim — I
powr e 2(k(m))n+-

2

may be moved to the RHS and then

bounded by using the Cauchy-Schwarz inequality to obtain
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2 N (m)yn (m)
MZZ¢”@EL) UW s KCARAN I (3.48)
' 2k el
m=1 j=2 (k, )j-g (k(m)) 2

Now we denote

~ 21
ﬂm=25e
m=1

Il3 Zl
3+;2 )

2 (m)
I lgy [
— kl(M)

12

(3.49)
and
2
; 2 - 2 || (g™
(‘WZH u@»'m+ze @) G50
1 m=1 (k:'n)) 2 y
then Equation (3.47) can be further simplified as
~ At~ ~
(l—?)F(n+1) S(l+?)F(n)+AtQ(n+1), (3.51)
Here, from Equation (3.51), we have
~ 1+ ﬁ Ar ~
< _
F(n)< Ar 2 F (n-D+ A7 Qo(n)
1-— 1-—
2 2
1+ 80 &
< 2|2 Fuogys —0(n-1)|+——=0(n)

At At

1-—|1-— 1-— 1-—
2 2 2 2

<.
1+ % N
<
< A7 F(0)

1-=

2
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n-1
Af 1+é2E 1+% 1+£ _
1
S vl Rl val i Bvel IS vl B 12340
-2 =2 -2 P
2 2 2 2
1+£
1— 2
AtY At
LI At == ~
=T | FO+r—5 Ay [max (k)
1- = 1-= 1+
2 2|, |72
1M
. 2 -
1 Azt ~ 1+% ~
=l 7ar | PO =3, | |maxQ)
-2 -2
2 2
1+%t~ _ 2 _
< F(O)+— 1. )
A { ()+c+1€2&’§Q( )] (3.52)
2

By applying the inequalities (1+¢&)" <e™ fore >0, and (1-¢)” <e**when0<e<—,
we obtain for sufficiently small Az,

CAt

Fny<e 2 -e™ [ﬁ(O) +max Q(k)]
< esnzm [1?(0) +max Q(k)].

(3.53)
Therefore, we get the following theorem.

THEOREM 2. When Ar is sufficiently small, the solutions of the scheme
Equations (3.1)-(3.7) satisfies
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Z C(m)N(T(m))

2 k(m) ”( 4

(m)

27
Zkl(m) ql

m=1 "

Z A(m)”

3 2
5 B Tém (;m))k—l
N(qé D A e L (3.54)
(my" 2
&™) 2|,

~

1
Sm 2

+ max
0<k<n Z )

]2

3y4™

1
for any nwith0 < nAt <t,. Here, we assume (k{™);? to bek{™.

Equation (3.54) can be considered as a discrete analogue of Equation (3.28).
3.2.4 Algorithm

Since the finite difference scheme (see Equations (3.35)-(3.41)) is nonlinear, it

must be solved by an iterative method. Here, we develop an iterative method as follows:

o [(]‘8‘”'));‘.“‘"’]2 (T (T +[(Te(m))'}]2 .(];(m));uun) — (™Y
¢ 3 m)\n+l(i m)\n At
5[(]:3( ))j 1()+(];( ))j_]

V (q m))n+l(t+1) + (q(m))
* 2

(Te('n));{ﬂ(iﬂ) +(Te(’")); (Tl(rn));ﬂ(i) _l_(Tl(m))rf

1
_Gm . — > L1+(8™), 2, (3.55)

( m))n+l(1+1) (q(m))n. 1 )
(m) de e J (m) \ n+1(i+1) (m)y\n
+ — d + !
A 2[(qe )} (qe )j]

1 (m) \ n+1(i+1) (m)

n+—(i) T + T

=) 7V €., . ey (3.56)
2
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(]vl(m));+1(i+l) _(Twl(m));l _ G(m) (Te(m));+1(i+l) +(Te(m)); ~ (]wl(m));+l(i+l) +(T;(m));
At 2 2

(m)
CI

v (g™ + (™))

- , 3.57
) 5 (3.57)
m (q(m))n.+1(i+1) _(q(M))n' 1 m) \ n+1(i+ m)\n
o S L@ + (@)
T(m) n_+1(i+1) + T(m) n
sy, ST @ (3.58)
2
wherem =1,2 and
) m)\n+1(i (m)\n (m)\ n+1(i) (m)\n
(k(m)),”%(x) _1 OI(TE( ))jl.)+(]1e )j W1 Ol(Te )j—lv (T ) . (3.59)
e j_E 2 i(]—;(m))p}ﬂ(x) +(T,(m)); 2 |(T1(m));t:(l) +(TI(M));—1
Here, jis1< j < Nin(3.56) and (3.58) and 2 < j < N'in (3.55) and (3.57).
The interfacial equations are discretized as follows:
@Yo + @ g+ () (5.608)
2 2 ’
@ + G _ @)+ @R (3600
2 2 ’
Ty + TP _ (T2 + T2y (3.600)
2 2 ’
(T;(l))n}v +(TI(1))nN+1(i+1) _ (TI(Z))ln +(TI(2));1+1(1'+1) (360d)

2 2
for any time leveln, i = 0,1,2,..., and (7™ )" = (7", and (T,")""'* =(T,")".
The initial and boundary conditions are

(T8 = (T™)" = T, (= 300K), (3.61a)

@™ =(g™); =0, (3.61b)
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4.°) =g ha =0, (3.61c)

@) =(a;")yn =0, (3.61d)
for any time level n.
Hence, the algorithm for computing 7™, ¢ , T, ,q{™ ,m =1,2, can be written
as follows:

Step 1: Solve for(¢{™)"“*" from Equation (3.56), and substitute it into Equation

n+l(z+1)

(3.55) to obtain an equation with only one unknown variable (7,™)"

Step 2: Set a tridiagonal linear system for (7,")""'“*? from the obtained equation
in Step 1 with the interfacial condition Equation (3.60a), (3.60c), and

boundary condition Equation (3.61c), and then solve for (7,™)""“*" . Once

(Ty5D s calculated, (g{™)7"'™" is then obtained from Equation

(3.56).

Step 3: Check if max’(Te(’”));'.”("*” —~ 164D is then saved

1<j<N

as (T)™*! and (g™ )" ag(¢g™)"*'. The calculation goes to Step 4. If
e j qe j qe j g p
no, (T(m))n+l(l+l) IS thel‘l SaVCd as (T(m))n+l(l) and (q(m) n+1(l+1) as (q(m))n+l(l)

The calculation then goes back to Step 2.

Step 4: Solve for (¢g,™)"“*? from Equation (3.58), and substitute it into Equation

(3.57) to obtain an equation which has only one unknown

variable (7, )7V
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(m) \ n+1(i+1)
(T1m );H— i+

Step 5: Develop a tridiagonal linear system for from the obtained

equation in Step 4 with the interfacial condition Equations (3.60b), (3.60d),

and the boundary condition Equation (3.61d), and then solve
for (7,™)3"¢Y . Once (7,™)7""V is calculated, (g,”)7""*" is then
obtained from Equation (3.58).

Step 6: Check if{gg%l(n(m);“(iﬂ) _ (TI(M))'}

<. If yes, (T/)7"*Y is then saved

as(T™)7" and (g;™);"" as(g,™)7". The calculation goes to Step 1,

n+1(i+1)

i is then saved

and move on to the next time step. If no, (7;")
as (T™)7"'? and (¢;™);""" as (¢/™)}"”. The calculation then goes

back to Step 5.

Step 7: Repeat the calculation until the required time steps have been reached.
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CHAPTER 4

TWO-DIMENSIONAL MATHEMATICAL MODELS
AND
FINITE DIFFERENCE SCHEMES

4.1 Single-Layered Case

4.1.1 Problem Description

In this chapter, we consider a two-dimensional micro thin film exposed to
ultrashort-pulsed lasers. We will employ the hyperbolic two-step model and the finite
difference scheme developed in the previous chapter coupled with dynamic equations of
motion to study thermal deformation in a two-dimensional single-layered thin film.

The two-dimensional single-layered thin film in rectangular coordinates, which is

exposed to ultrashort-pulsed lasers, is shown as in Figure 4.1.

48
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| 1-1 | | o
00 e

1tom »

Figure 4.1 A 2D single-layered micro thin film.

The goveming equations for studying thermal deformation in this two-
dimensional single-layered micro thin film are expressed as follows:

(1) Dynamic equations of motion [Tzou 2002, Chen 2002, Brorson 1987, Wang 2006a]

2 oo
pa?=66x+ LTIV (4.1)
ot Ox Oy ox
2 oo oo T
pazv= Y 4 y+2ATeae, (4.2)
ot Ox Oy oy
where
o, = Me, +£,)+ 25, ~(3A+2ma, (T, - T,), 43)
o, =, +&,)+2pus, —(3A+2uw)a, (T, -T,), 4.4)
O, = HE,,, (4.5)
ex:%,gy:a—u,exy:%+@, (4.6)
ox oy oy Ox
2
A=K '5”' 4.7)

(2) Energy equations [Chen 2001, Qiu 1994, Chen 2003]:
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oT, oq. 0oq’
cZe=_He _He G _T)+5, 4.8)
ot ox oy
z'e aqe + : _ke aTe ’ (4'9)
ot Oox
y
s Ry (4.10)
ot oy
oT, __dq; g 9
— =————+G({T,-T)-0CA+2w)a,T,—(c, +¢,), 4.11
Iat ax a-y (e I) ( /1) TOat(x y) ( )
o9 . . o7,
=Ly gf =—k,—L, 4.12
e T T Ty (*-12)
y
A (4.13)
ot Oy
Equations (4.8)-(4.13) are called as hyperbolic two-step heat transport equations.
The boundary conditions are assumed to be
o, =0,0'xy =0,at x=0,L,, (4.14a)
c,=0,0,=0,at y=0,L, (4.14b)
T
9 <=0, (4.152)
on
6_7:, =0. (4.15b)
on
The initial conditions are assumed to be
T =T,=T,,u=v=0,u,=v,=0,atr=0. (4.16)

4.1.2 Notations

To avoid the nonphysical oscillations in the numerical solutions, we employ the

idea in [Wang 2006a, Wang 2007] and introduce two velocity components v, and v, in
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the dynamic equations of motion, and hence, the Eqations (4.1)-(4.6) are rewritten as

follows:

v, =—,V, =—, 4.17)

pt=x Lo AT (4.18)

pL2 o (T 7% (4.19)

O¢, v agy_avz agxyzavz %_

—F = = , +—, (4.20)

o ox ot ox ot ox Oy
o, =Ae, +¢&)+2ue, —(GA+2p)a (T, -T,), (4.21)
o,=Ae, +&,)+2ue, —(BA+2p)a (T, -T,), (4.22)
o, =HE,,. 4.23)

We denote (v,)", and (v,)" | as numerical approximations of v, ((i +%)Ax, JAy,nAt)
l+5,] i, —

2
1 ) ..
and v, (iAx,(j +5)Ay’ nAt) , respectively, where At,Ax and Ay are time increment and

spatial step sizes, respectively. Similar notations are used here for other variables. We

also introduce some finite difference operators, A_, , S

x ?

6,,V,,V;, V, and V;as

follows:

-t iJ ij °

n _..n n n _ _.n n
5Xu,.,j =u", —-u", ,5yui,]. u" u" .,
i+ i, ij+= iLj—=
2/ 3 77 /75

n n n n

s Upj ~ U V.ou" = Ujj Uiy

o Ax >R Ax ’
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4.1.3 Finite Difference Scheme

We first set up a staggered grid as shown in Figure 4.2.

v 4
Gold Film
Mt N O Denote o,.0,.¢5,.5,.1,.T,
>< Denote Ty
— Denote 4.%.4,-9/
i & S &, S /}:\ T Denote v.v,.49).4;
3
> 4 > I
i . \ )
1 s -4
i-1 1 i+l N, N, +1

Figure 4.2 A staggered grid for 2D single-layered thin film.

In Figure 4.2, v, , q; and ¢ are placed at (x,,,,y;), v,,q, and g
at(x;,¥;,/2)» €, and o, are placed at(x,,,,y;,,,) and¢,,¢,,0,,0,, T, and T,
areat (x;,y,)with 1<i<N +1andl<j<N +1.

The staggered-grid method is used in computational fluid dynamics to prevent the

solution from oscillations [Patanka 1980]. For example, if v, and ¢, in Equation (4.20)

are placed at the same location, employing a central finite difference scheme may

produce a velocity component v, , a wave solution, implying oscillation.
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We develop a finite difference method for solving Equations (4.18)-(4.20). For
this puspose, we discretize these equations using a backward finite difference scheme as

follows:

1 ne
) +A—y5y(0'xy) 1]

1 L
i+—, i+,
3 J 2 J

n+l

1 n+
p_A—-t (vl) I

1
1 = 5x (O-x )
At i+?j Ax

1
+A—38.(TH™ 4.24
Ax x( e /.1 . ( )

i+=,
2 J

1 1 1
—A_ (W) =—68(c )", +—6 ()" G, j+1/2)""
P ~( 2).',,4% A «( xy),j% A y( y)i’j%( J )

i

1
+A-8,T)",, @25)
Ay l,j+5
1 A_ (e )" = 1s ), (4.26)
At x/i,j Ax x LJ
LA ey =Ls @y 4.27)
Ar v i TA Sy i '
iA (e —Lb' v,)™ +——1-—5 )" (4.28)
At -y i+%,j+% Ax 2 i+%,j+% Ay ¥ i+%,j+%, )

and Equations (4.21)-(4.23) are discretized as:
(0017 =Ae)] +(&,)11+2u(e)]} - GA+2wa, (1)}, - T,],  (4.29)

(o)) =AU(e)i] +(&,)i} 1+ 2u(e )i} - BA+2p)a, (1)}, -T,],  (4.30)

’j
(o )" 1 =uE)" . (4.31)
543 s

Then we discretize the Equations (4.8)-(4.13) as follows:

A @,
€3

“ sy @]

x y

3
v {(q:)?;‘ +(q:):,}_V

B (a5 +(a)i;
; 2

2
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Y +(T)". (T +(T)", sl
—G[( eJi 2( iy )i 2( ’)"J}S,ﬁ, (4.32)
=g @)+ (g nd ) +(T,);
r (qg )1,_] (qe )1,] +(qe)1,1 (qe )1,] :—(k 2 -V ( e)l,j ( e)t,j , (4'33)
e el 1 . X
At 2 1—5’1 2
(g2 )" g (g?)" . arl Y™ +(T)".
r (qe ),’] (qe ),J +(qe );,_, (qe )l,j =—(k) 9 V ( e)t,j ( e)l,] , (4.34)
e e/, .1 y
At 2 ij-— 2

c )5 = (@)}, _ v |9 )iy +@)i |
! - x y
At 2

V{@Dﬁ+wng}
2

_Grm$+axh}mﬁ+mmq
2 2

A_ ()5 +A_ (g, )

»J L]

~GBA+2p)a,T, -

, 4.35
" (4.35)
x\n+ x\n x\n+ x\n n+t n
- (4,)77 —(@));; + @D7 +)i, =k, -V, ()i + @i, , (4.36)
At 2
n+ n n+ n n+l n
. (qu)i,le_ (a/);, N @)} ;‘(qu)i,j K, ,Vy[(TI)iJ ;(T’)"’f], 4.37)
!

Here, i =2,...,N, and j = 2,..., N, in Equations (4.32)~(4.37).

We can obtain the displacements, # and v, by the Euler backward scheme of

Equation (4.17) as:

1

—A " =), (4.38)
At HE'] :+5,]
1 n+l1 n+l
EA_,VHl ; = (Vz )i j+l . (439)
2’ Y2
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The boundary conditions, Equations (4.14a), (4.14b), (4.15a), and (4.15b), are discretized

as follows:

@7 =0,(0 )80, =0,1< <N, +1, (4.40a)
(¢,)", ,=0,0,) |, =0,1<j<N, (4.40b)

l+5,1+5 N"+E’j+5
(©,)11=0,(0,)yu =0,1<i<N_+1, (4.41a)
(6,)", ,=0,(0,)", ,=0,1<i<N, (4.41b)

t+5,1+3 ;+5,Ny+5
(Te):',j = (‘Te);,j’(Te)']’VXH,j = (T'ey[zlx,jal < J < Ny +1, (4.423)
()5 =T (T)iw, =Ty, ,1SIS N, +1, (4.42b)
)1 =@)s s T,y =Ty, ;1S F SN, +1, (4.42¢)
T = (@) (T =(T))in, 1 SIS N, +1, (4.42d)

for any time level » . The initial conditions, Equation (4.16), are discretized as

u’, =0,v"  =0,1<i<SN,,1<j<N, (4.432)
1+—5,j i,j+E

(v,)i%‘j =0,(v2)zj+% =0,1<i<N_,1Sj<N,, (4.43b)

(T);, =(@);; =T,,1Si<N,+1,1S jS N +1, (4.43¢)

(€,);;=(¢,);;=0,1<iSN_+1,1<jSN +1, (4.43d)

(0,);;=(0,);; =0,1<i<N, +1,1<j< N +1, (4.43¢)

(0,) ' 1=(,)", ;=0,1<i<N_,1<j<N,. (4.431)
el SLyRs
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4.1.4 Algorithm

For the finite difference scheme developed in the previous section, we can see that

the truncation error of Equations (4.24) and (4.25) is O(At+Ax’> +Ay?), and the

truncation error of Equations (4.32)-(4.37) is O(At* + Ax* + Ay*). We should notice that

Equations (4.24) and (4.25) are nonlinear since they contain nonlinear terms &,(7,))"™,
l+5,_]

andd, (7)™, . Similarly, Equations (4.32)-(4.37) are also nonlinear. Therefore, we have
i,j+

2
to solve the above scheme iteratively. The following algorithm is an iterative method for

solving the finite difference scheme at time leveln +1 developed in the previous section.

Step 1: Guess(g,)"", (6‘y)"+1 and (gxy)"+1 using their values at previous time step.

Solve (¢)™,(g2)™", (g7)™" and (¢))™"' from Equations (4.33), (4.34),
(4.36) and (4.37), respectively, and substitute them into Equations (4.32)

and (4.35). Then solve for (7.)""' and (7;)"" iteratively based on the
e ]

n+l

and(g,,)"" .

n+l

guessed(s,)""', (g,)
Step 2: Solve Equations (4.29)-(4.31) for (c,)"™',(0,)™" and(o,))"".
Step 3: Solve Equations (4.24) and (4.25) for (v;)*" and (v,)™"'.
Step 4: Update(£,)™",(¢,)™" and (g,,)™" by using Equations (4.26)-(4.28).

Given the required accuracy, repeat the above steps until a convergent

solution is obtained based on the following criteria

n+l(new) (gx)n+1(old) <¢g ,

maxl(gx )

maxi(gy )i _ (g, )n+1(old)l <e,
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max\(e )n+1(new) (gxy)nﬂ(old)l <g.

Step 5: Solve Equations (4.38) and (4.39) foru™"' andv"".

4.2 Double-Lavered Case

4.2.1 Problem Description

In this section, we consider a two-dimensional double-layered micro thin film
exposed to ultrashort pulsed lasers, which has a perfectly thermal contact interface, as

shown in Figure 4.3.

Ultrashort-pulsed Laser

T e
T
72 AF-

1iom >
A 2 . . A
x Chromium Film /

Figure 4.3 A 2D double-layered thin film.

The governing equations for studying thermal deformation in the two-dimensional
double-layered micro thin film can be expressed as:

(1) Dynamic equations of motion [Tzou 2002, Chen 2002a, Brorson 1987, Wang 2006b]

2. (m) (m) ao.(m) T(m)

(m 0 uz _ aO'X + xy 2A(m)T(m) 9 , (444)
ot ox oy Ox
2. (m) ao_(m) 60.(”‘) (m)

(m) o'v _ xy + y 2A(M)T(”') aT , (445)
ot Ox Oy oy
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where

o™ = A (™ + £ M)+ 2u ™™ —BA™ 124" )a (T ~T,),  (4.46)

O.(rn) /{('n)(g('n) + S(m))+ 2/.1(”') (m) (3/1("1) + Zﬂ(m))a('n)(T,(m) _To) , (4.47)

y

ol =umeln, (4.48)

'™ Bym o™ gy
em (m) em — + _

x PO g, = 5 o . (4.49)
Here,m = 1,2, standing for layer 1 and 2, respectively.
(2) Energy equations [Chen 2001, Qiu 1994, Chen 2003]:
(m) x(m) y(m)
cm aget _ __aqaex aqay — G ~T ™)+ 5™ (4.50)
x(m) (m)
(m) qe x(m) (m) a]':z
——+ =—k;" —5—, 4.51
€ at qe e & ( )
y(m (m)
po0 207 v e O (4.52)
ot Oy
Cl(m) ag;m) _ aqalx(m) aq,v(m) N G("')(Te("') i Tl(’”))
X
- GBA™ +24")a{MT, %(8}("’ + a;"’)) , (4.53)
ogr or™
Fm A + x(m) _ k('n) , 4.54
i o q, P ( )
aqy( m) aT(M)
m A1 gy o _pom Z50 4.55
(7 o1 q; o ( )

T("I)
Here,C'™ = A" . T k'™ = k(" = T . Equations (4.50)-(4.55) are ofter referred to as

)

hyperbolic two-step heat transport equations.
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The boundary conditions are assumed to be

o =0,00=0,at x=0, and 0¥ =0,6% =0,at x=1L_, (4.56a)

(2)
y

o =0,0)=0,at y=0, and c¥ =0,02 =0, at y=L,, (4.56b)

or'™
—=0, (4.57a)
on
(m)
aT’# =0. (4.57b)
on
The initial conditions are assumed to be
T =T =T,,u™ =v™ =0,u™ =v{"™ =0, att =0, (4.58)

wherem =1,2.

The interfacial equations are assumed to be, atx =L, /2,

u® =u® vy =y (4.59a)
M _ (2 ) _ ()
o, =0,,0, =0, , (4.59b)
oM 7@ x) _ x(2) O _ @) x1) _ x(2)
T:: _Te 4. =4, ’T; _TI 4y =4 (459C)

4.2.2 Notations

For the double-layered case, we follow the idea in [Wang 2006b, Wang 2007] and

introduce two velocity components v{™ andv{™ into the model to prevent the solution

from oscillations. The dynamic equations of motion, Equations (4.44)-(4.49), are

rewritten as follows:

au(’") m av(m)
a o

(m _

14

, (4.60)
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(m) (m) (m) (m) (m) (m) (m)
a“;x — avl ag}’ - avz agxy — avz + avl

s 5 , (4.61)
a o a oy o ox
(m) (m) o (m) 2\ (m)
o " _00:7 | 90, g 0TI (4.62)
ot Ox Oy Ox
(m) 60.(”1) ao.(m) 2\ (m)
(m) av2 = xy + y +A(m) a(Te ) , (463)
o o oy ay

oM =" (™ + ey +2u™e - BA™ + 24y (T - T,),  (4.64)
oM = A" (M + My +2uMe™ - BA™ + 24" (T -T,),  (4.65)
o) =umel. (4.66)

Here, we use (v\)", and(»{”)" , to denote the numerical approximations of
i+—,j ij+=
2 2

v ((i +1/ 2)Ax, jAy,nAt) and vi™ (iAx, (j +1/2)Ay,nAt), respectively. Similar notations
are used for other variables. Furthermore, we also provide some finite difference

operators,A_,,6,,6,,V,,V;, V and V;as follows:

n ___.n n-1
A_u;; ij "HWijo
n __.n P n ___.n n
ou;; =u’, U, 0 u;; uij+_ u 1
2 2" ’ 2
n n n n
. Upj — Ui n Wi Uiy
xut J > xut J >
Ax Ax
n n n n
. Uiju —Ui; . Ui Tl g
yoiLj > T yTLj
Ay Ay
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4.2.3 Finite Difference Scheme

We first set up a staggered grid as shown in Figure 4.4, where v™

2

x{(m)

g;™ and ¢, are laid at (x,,,,,,y;), and v\, g2 and ¢} are laid at(x,y,,,) -

(m)

xy x ’ x

g™ and ¢ are placed at(x,,,,,¥;.,) > and £, &, 0™, 0™, T/ and T, are
placed as(x;,y;) . Here, i and j are indices withl <i< N, +1,1< j< N, +1 andm=12.

Y 4

N, +1
t N o O penote 6,.0,.¢,.¢,.7,.T,
>< Denote Ty-&,
—* Denote %.¥,.4,.4;
s T Denote v.v,.9. .4
j
j-1
! i N, N, +1 Cx
1 1 N, N, +1

Figure 4.4 A staggered grid for 2D double-layered thin film.

Now, we develop a finite difference method to solve the governing equations
discussed in section 4.2.1. For this purpose, we first discretize Equations (4.61)-(4.66)

using an implicit finite difference scheme as

1 m)\nt+ 1 m)\n+

AL &M =8 M) (4.67a)
1 A (m)yn+l __ 1 S (m)\n+1 4.67b
At (8,755 —A_y y (25 (4.67b)
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1 m
—A_(g2)

n+ 1 m)\n+ 1 m)\n+
At PR A +Xy‘5y(Vf SR (4.67c)

L1 o1
i+—, j+— i+—, j+ i+—, j+—
2 / 2 2 J 2 2 J 2

1 1
o La oyt —Ls ey

1
+_§ (O_)(rm))nﬂ
A g Ax wed Ay T

t+l )
X

1
AT 8 (TH™) (4.68)
L

1 1 1
(m) —A v(m) n+l -5 O'(m) n+1 +—0 O_(m) n+l
P At —x( 2 )i,j+] Ax x( xy )i,j+% Ay y( y )i,j%

m 1 m n+
+ A )__5y((];2 )( )). .1 . (4.69)
Ay s

(@) = A" UEM) + (&) 1+ 21 (6™
_ (3/1(m) + 2/1('"))61;’")[(7}('"))7,;1 _ To]’ (4.70)

(G;M)):;l — /1("')[(5,(('"))?;] + (glim))z;l ] + 2/1('") (g;m))'r{;l
_ (3;{(m) + 2[1("') )a;M)[(TI(M))Z;l _ To] , (4.71)
(O'J(r;n))',ﬁll 1= IU(M) ) (gz(t;n))'.wll 1 (4.72)

l+5,j+5 l+*2-,1+5

We then discretize Equations (4.50)-(4.55) as

A(m)ynt | mysn |3 x(m)\n+ x(m)\n m)\n+ m)\n
m i(I;( ))i,jl —|(Te( ))i,j v (qe( ))i,jl +(qe( ))i,j _v (qey( ))i,jI +(qéV( ))i,j
NGRS 2 y 2
2
R G R sl Wik B
2 2
il
+(S™), 2, (4.73)

( x(m))fH:I ( X(m))fl ) l

(m) ge L ae i, x(m)\n+l x(m)\n

T + — A o .
e ft 2 [(qe )1,] (qe )1’1]
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")) + T,

1
= —(k:,n))tl 12 Y%

, 4.74
I—E,j u 2 ( )
@5 - @™ 1
(m) e 5] e 1,7 y(m)\n+l y(m)\n
T +— S+ .
e Y 5 g™ +(g.™)i ;]

net (T + (@),
_ (m) e i, e i,
=—(k, )i,jf—l- -V, J - J

2

, (4.75)

(m) yn+l (m) (m) yn+l (m) (m)yn+l (m)
TV -GN, o @O @™ @ @
x

C(M)
! At 2 y 2
+ G(m)[(Te(M)):'I,;] + (Te(’n));l,j _ (T;(M)):;l + (I'I(’n)):j ]
2 2
GA +24")aT,y et (e
- — [(51(: ))i,jl +(3§ ))i,jl
At
— (&)}~ (&)1 (4.76)
@) = (@™, 1
(m) L, 122 x(m)\n+l x(m)\n
7, jAt +5[(‘]1 )i +(q; )i,j]
= _k(m) .V (I}(M))Z;] + (T’(M))Zj (4 77)
! x 2 s .
@) = (@™ 1
(m) I, i,] (m) \ n+1 (m)\n
) ]At +5[(qu )i,j +(q/ )i,j]
o T @),
= _kl( ) .Vy ! J ! iy 4.78)

2

where, in Equations (4.73) and (4.76),2<i<N_,2<j<N andm=12; in Equations
(4.74) and (4.77),1<i< N, and2<j< N, when m=1land1<i<N, -land2<j<N,
whenm =2; and in Equations (4.75) and (4.78), 2<i< N, andl1<j< N, whenm=1

and 1<i< N, -1andl<j<N whenm=2.Here,
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(m)\n+l (m)\n (m)\n+l (m)
(k(m)) 1 — (”’)I(T )i,jl +(Te )i,j l "‘)|(T )—]1] +(T )1 l]|
i 20 @M@ 2 @Y @
and
(k(m)) (m)’(T(m))nH + (T(m)) l (m)l(]-ve(m))::;ll + (T(m))t ' I
> @y cay| T2 @™y @
It should be pointed out that the above scheme, Equations (4.76)-(4.78) without
m 49 MY
the term — (A" +2pu " )ay [ + (™) —(e™);; = (&™)1,1, is obtained

At

based on an energy estimate and is shown to be unconditionally stable in Chapter 3.

Finally, we can obtain the displacements #™ and v\ by the Euler backward

scheme for Equation (4.60) as follows:

A _,( (m))n+1 . ( ](m))n+1 ) , (4793)
1 m)\n+ m)\n+

—A_,(v( )). _'1 = )). .' . (4.79b)
At l,j+‘2‘ 1,_1+5

The boundary conditions, Equations (4.56a), (4.56b), (4.57a) and (4.57b), are

discretized as

() =0,(6P) i =0, =0,6) i, =0, (4.802)
@) =0,(6)i% 0 =0,(09)i =0,(6)i% 1 =0, (4.80b)
(T(l))n-H _ (T(l))n+1 (Te(z)):;&l’j - (Te(Z))’I:Jt],j’ (4.81a)
T =@V (TP o = @) (4.81b)
@) = (@Y PV = TP (4.822)
Ty =@ @2 o =T (4.82b)
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for any time level n. Here, in Equations (4.80a), (4.812) and (4.822),1< j< N +1 and

in Equations (4.80b), (4.81b) and (4.82b), 1<i <N, +1.

First, based on Equation (4.59a), we can write the interfactial conditions for

(m) (m) m (2)

velocity components v andv{™ as vV = O =y

andv,’ =v,” on the interface. Thus, we

assume that

O = O] (483
CRIEICO i (4835)

Second, we can discretize Equation (4.59b) using Equations (4.64)-(4.66) as

follows:

(A,(I) + 2#(1) )(gil))ni-l + l(l) (8;1))n+l — (32‘(1) + Zﬂ(l) )a;l) [(T;(l))twl _ To]

N +1,j N +1,j N +l,j

= (A + 24P Y @) + AP ) - GAD 424 )aPTP) -], (4.842)

1,j 1,j
1 1 1 2 2 1
O E VL = P ED), (4.84b)
where (gil))nﬂ , (8i2) )n+l (8},1) )n+1 (8;,2) )n+l (&ﬁ?)"ﬂ and (g)((}zl))nfl can be obtained by

N +1,j 1,j ° N, +1,j° 1Lj 2 N +1,j Lj

Equations (4.67a)-(4.67¢) as follows:

(v(l))n+1 o (v(l))n+1 )
()it =t 2L M Ay (gD (4.852)
x 2 Ax x .
(v(Z))nﬂ _(v(Z))n+.l
(e == A+ (), (4.85b)
2, Ax 3
(vél))';vﬂn "'(vél))’;vﬂl -1 Dn
(Yl = Eh ST AL+ (E )y (4.86a)
Ay :
(v(Z))n—f-.l _ (v(Z) )n+1_
(ePyrt = 22 T - LA+ (D)L ) (4.86b)
y
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Oy, = 2—;[@1‘“);111,,“ R R (CU SR Yo
+(E5 s | (4.872)
(@) = ;[(vf”);';-:l SO+ AL CRIVEICON

+(EST s (4.87b)
wherel< j< N +1.

Third, Equation (4.59¢) can be discretized as

TV, =@, (4.882)
Ty =T (4.88b)
(@) =@, (4.88¢)
(@)t =@, (4.88d)

for any time level n and1< j< N +1.

For the initial conditions, Equation (4.58), we can approximate it as

(u(m))?+l j -0, (V(M))(-)j =0, (4.89a)
> i+

¢, =0,04")° , =0, (4.850)
> ijty

(];(m))?’j _ (I;(M)):'),j =T,, (4.89¢)

wherelSiSNx+1,1$jSNy+1 and m=12.
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4.2.4 Algorithm

In the finite difference scheme shown in the previous section, the truncation error
of Equations (4.67)-(4.69) is O(At + Ax* + Ay?) and the truncation error of Equations
(4.73)-(4.78) is O(At* + Ax* + Ay*). We should notice that Equations (4.67) and (4.69)
are nonlinear since they contain nonlinear terms &, (7))}, and&,(T,))[",,,, - Similarly,
Equations (4.73)-(4.78) are also nonlinear. Therefore, we have to solve the scheme

iteratively. The following algorithm is an iterative method for solving the finite

difference scheme at time leveln +1 developed in the previous section.
Step 1: Guess (f:i""’)"“ ,(e{™)™" and (¢5”)""" using their values at previous time
step. Obtain (¢:)™', (¢2™)™" , (¢7™)™" and (¢;"™)™' based on
Equations (4.74), (4.75), (4.77), (4.78) and the interfacial conditions (4.88),

and substitute into Equation (4.73) and (4.76) to obtain (7)™ and
Ty .

Step 2: Solve Equations (4.70)-(4.72) for (c{™)™",(c{™)"" and(c”)™" .

Step 3: Solve Equations (4.68) and (4.69) for (v{™)™" and (v{™)"".

Step 4: Update (£)™", (£{™)"™" and (£{”)™" by using Equations (4.67a)-

(4.67¢). Given the required accuracy, repeat the above steps until a

convergent solution isobtained based on the following criteria:

max‘(gim))nﬂ(new) _ (gim))nﬂ(old)! <eg, (4.90a)
maxl(g;m))nﬂ(new) _ (6')(,”‘) )n+1(old)~ <g , (490b)
max'(gi;n))nﬂ(new) _ (gi;n) )n+1(old)’ <¢g. (4.900)
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Step 5: Solve Equations (4.79a) and (4.79b) for ()" and (v*")™"'.
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CHAPTERSS

NUMERICAL EXAMPLES

5.1 One-Dimensional Double-Layered Case

In this chapter, we will consider three cases in order to test our scheme.

5.1.1 Example Description

To demonstrate the applicability of the numerical scheme mentioned in section
3.2, we investigate the temperature rise in a one-dimensional double-layered thin film,

namely a gold layer on a chromium layer, where each layer is 0.05 ton in thickness as

shown in Figure 5.1.
Gold Laver Chromium Layer
(m=1) (m=2)

% | i X

- 4 -
0 | -

L =0.05 um ,
2L =0.1 um

Figure 5.1 Configuration of a 1D double-layered thin film.

The heat source was chosen to be

69
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Ly

2
- — t—-2t
5™ (xry = 0945 LR |exp| - ZHL=ZD 5 4 175 11 (5.1)
15 |°F s

14
wherem =1,2,L =0.05um ¢, =0.1ps,6 =153nm ,R =0.93 andJ=13.4J/m2 .

The initial temperature T, for 7, and 7, is chosen to be 300K .

The thermal properties for gold and chromium used in this analysis are shown in

Table 5.1. Due to the lack of information on 7, andz, for chromium, we use various

values of 7, and 7, for chromium based on the analysis in [Tzou 1996].

Table 5.1 Thermal properties of gold and chromium [Chen 2003, Tzou 1996]

Parameters Gold (m=1) Chromium (m = 2)
ko(J/mmKps) | 3.15x107" 9.4x10™
C,(J/mm*K) 2.5%107 33x107
G(J/mm’*Kps) 2.6x107° 42x10°°
A (J/mm’K?) 7.0x107 1.933x1077

7,(ps) 0.04
7,(ps) 0.8

5.1.2 Results and Analysis

Figure 5.2 shows the change in temperature (A7, /(AT,),..) on the surface of the
gold layer with the fluence of J =13.4J/m? , where 7, for chromium is chosen to be

0.00136 ps and 7, for chromium to be 0.0136 ps, 0.0272 ps and 0.0544 ps , respectively.
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Results are obtained with a mesh of 200 points for each layer and a time increment, Az, of

0.005 ps . The maximum electron temperature is 759.1 K. We also make a comparison

between our result and that of the parabolic two-step model, which is calculated using the
Crank-Nicholson method. It is clear that there is no significant difference among the

solutions with various values of 7, for chromium. However, there is a slight difference
between the parabolic model and our hyperbolic model, which indicates the effect ofz,

andr,.

1 — — - Parabolic Model
+,-0.00136ps, 1,~0.0136ps

<,=0.00136ps, 1,~0.0272ps

° +,-0.00136ps, 7,-0.0544ps

t (ps)

Figure 5.2 Normalized electron temperatures at the front surface of a
100 nm gold and chromium thin film with 7, = 0.00136 ps and three difference

values of 7, for chromium.

Furthermore, we obtain similar results for the case when 7, for chromium is
changed to be 0.0068 ps and 7, for chromium to be 0.068 ps, 0.136 ps and 0.272 ps,

respectively, as shown in Figure 5.3, and for the other case when 7, for chromium is
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chosen to be 0.0136 ps and 7, for chromium to be 0.136 ps, 0.272 ps and 0.544 ps,

respectively, which is shown in Figure 5.4.

15 — — - Parsbolic Model
,-0.0068ps. 1,-0.068ps

a .20.0068ps. 7,-0.136ps

° +,-0.0068ps, 1,-0.272ps

0.9+

‘max

ATe/ATe

t (ps)

Figure 5.3 Normalized electron temperatures at the front surface of a
100 nm gold and chromium thin film with 7, = 0.0068 ps and three difference

values of 7, for chromium.

ir — — - Parabolic Model
©,-0.0136ps, 7,~0.136ps
s ©,=0.0136ps, 1,=0.272ps
0.9 ° .-0.0136ps, 7,=0.544ps

e/ max

3

AT /(AT)

t (ps)

Figure 5.4 Normalized electron temperatures at the front surface of a
100 nm gold and chromium thin film with 7, = 0.0136 ps and three difference

values of 7, for chromium.
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In order to check the effect of grid size, we plot the change in temperature

(AT, /(AT,),..) on the surface of the gold layer utilizing three different meshes of 100,

200, and 400 for each layer, as shown in Figure 5.5. From it, we can conclude that grid

size has no significant effect on the solution. Therefore, our method is grid independent.

Ax=0.5nm
Ax =0.25am
Ax=0.125 am

0 4 1
t (ps)

Figure 5.5 Normalized electron temperatures at the front surface of a
100 nm gold and chromium thin film with 7, =0.00136ps and 7, =0.0136ps

for chromium and three different meshes.

Figures 5.6 and 5.7 provide the electron temperature profiles and lattice

temperature profiles along the x-axis for time t = 0.2, 0.3, and 1.2 ps, respectively.
Results are obtained using a time increment of 0.005 ps and a mesh of 200 points for

each layer.
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a Parabolic Model
700 - Hyperbotic Model

650

600 [

400 |

350

300

i i 1
0 2.5E-05 5E-05 7.5E-05 0.0001

X (mm)

Figure 5.6 Calculated electron temperature profiles for a 100 nm gold and
chromium thin film with 7, = 0.0068 psand 7, = 0.136 ps for chromium.

314

a Parabolic Model
Hyperbolic Model

300

298

1 1 1
0 2.5E-05 5E-05 7.5E-05 0.0001
X (mm)

Figure 5.7 Calculated lattice temperature profiles for a 100 nm gold and
chromium thin film with 7, =0.0068 psand 7, = 0.136 ps for chromium.
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5.2 Two-Dimensional Single-Layered Case

5.2.1 Example Description

In this example, we want to test the applicability of the finite different scheme
developed in section 4.1, Equations (4.24)-(4.43). For this purpose, we investigate the
temperature rise and deformation in a two-dimensional single-layered micro thin film

with the dimensions 0.1zm (thickness) x 1um (length), as shown in Figure 5.8. The heat

source 1s given by

2 2
_ -2t
S(x, y,t) = 0.94J lt R exp| - X - (lj - 2.77( r ) , (5.2)

»Xs X Y, t »

whereJ =500J/m* ,R=0.93,¢, =0.1x107"%s,x, =15.3x10°mand y, =1.0x10"m.

Ultrashort-pulsed Laser

% e
VW ZIn

Figure 5.8 Configuration of a 2D single-layered thin film.
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In order to test the convergence of the scheme, we choose three different meshes
of 80x40,160x80,300x150. The time increment is 0.005 ps. The initial temperature

T, is chosen to be 300 K.

The thermophysical properties for gold are listed in Table 5.2 [Tzou 2002, Chen

2002a, Kaye 1973].

Table 5.2 Thermophysical properties of gold [Tzou 2002, Chen 2002a, Kaye 1973]

Properties Unit Value
P kg /m® 19300
A J/m*K? 70
K Pa 217x10°
U Pa 27x10°
ar K™ 14.2x107°
A, J/m*K? 70
C, J/m*K 2.5x10°
G W/mK 2.6x10'
z, ps 0.04
7, ps 0.8

ky(k;) W/mK 315
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5.2.2 Results and Analysis

Figure 5.9 shows the change in electron temperature (AT, /(AT,),, ) atx=0
and y =0 versus time for various meshes ( 80x40, 160x80 and 300x150 ). The
maximum temperature rise of7,, which 1s(AT)),, , is about 3943 K, which is close to

that obtained by Qiu and Tien [Qiu 1994]. Meanwhile, by comparing our results with that
of the parabolic model [Wang 2006a] in Figure 5.9, we can see a slight difference

between the parabolic model and our hyperbolic model, which indicates the effect of
relaxation time 7, andr, . Figure 5.10 shows the displacement (#) at x=0 and y=0

versus time for various meshes (80x 40, 160 x80 and 300x150). Both figures show that

the solutions are convergent as the mesh is getting better.

e
09k
E LG
o L oaS,
C afuy
047:" \ “w‘ig.é-gﬁgggces_g
e 2358928
g o o’ \.,:_:noaggggggg“”
;: o6k \Q:a\aﬁgggz
- C ]
e 0.5
= e
-1 r
04E
- 3 Pardrolic Gnd S0x40
- 2 Parsbolic God 16030
0.3 “ Prosbakic Geid W1 %0
» Hypabolic Grid 8040
- o e = Hvparbelic Gesd i60x80
el — + — - — Hypeabolx Ged 306x150
0.1
:Allxlhtll'(ll)iil’(
G'[,‘ 0.5 i £5 2

t(ps)

Figure 5.9 Change in electron temperature at x =0 and y = 0 versus time for various

meshes (80x 40, 160 x 80 and 300 x150 ) comparing with parabolic model [Wang
2006a].
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Figure 5.10 Displacement (# ) atx =0 and y = 0 versus time for various meshes
(80x 40, 160x 80 and 300 x150) with parabolic model [Wang 2006a].

Figure 5.11 is obtained using a mesh of 160 x 80 and A7 = 0.005ps . In Figure 5.11,
we compare the normal stress (o, ) at y = O0um and ¢ =10ps obtained by our hyperbolic

two-step model, the parabolic model [Wang 2006a}, and Chen et al.’s method [Chen
2002a]. The figure shows that the present method and the method based on the parabolic

two-step model avoid non-physical oscillations in the solution.
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Figure 5.11 Comparison of the hyperbolic model, parabolic model {Wang 2006a] and
Chen et al.’s method in [Chen 2002a] with regard to the normal stress (o, )

aty=0um att =10ps.

Figure 5.12 and 5.13 are the contour plots showing respectively electron

temperature and lattice temperature profiles at different times (a) 1 =0.25ps , (b)
t=05ps,(c) t=1ps,(d) t =10ps, and (e) ¢t = 20 ps . From Figure 5.12, we can see that
the electron temperature rises to its maximum at the beginning and then decreases to a

uniform distribution at ¢ = 20 ps while the lattice temperature rises gradually with time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Vipm)

X{pm)

(@)

0.9
938
0.7

0.6

v(pm)
N

03|
02k
01F
U:‘ L1 I ST W
0 408 o1
X (pun)

(©)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T, 4K)
JO34 55

936.914

0 0.05 ol

2265.48
220722
214897
209071
2032.45
1974.19

¥(pm)

v(pm}

4.9

Q.03

X {pum)

(b)

0.1

0.0%
X (yumn)

(d

T, {K)

302361
295036
28771

2803 84
273058
265733

| 2584.07

25181
243758
23643

2291484
221778
214452
207127

199804

T, (K)

508,943
503.068
497,192
491316
485.441
479565
473.69

467.314
461.938
456.063
450,187
444311
438436
432.56

426.683

80



VL0538
388548
386.038
383827

y(pm)

Q (05 01
X {(um)

(e)

Figure 5.12 Contour plots of electron temperature distributions at (a)z = 0.25ps,
(b)t=0.5ps,(c)t=1ps,(d)t=10ps, and (e)¢ = 20ps .
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Figure 5.13 Contour plots of lattice temperature distributions at (a)¢ = 0.25ps ,
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Figure 5.14 and Figure 5.15 are the contour plots of displacement u (thickness

direction) and displacement v (length direction) profiles at different times (a) ¢ =1ps, (b)

t=5ps,(c) t;lOps,(d) t=15ps,and (e) t =20ps.
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Figure 5.14 Contour plots of displacement (« ) distributions at (a)t =1ps, (b)¢ =5ps,

(c)t=10ps,(d)t =15ps, and (e)t =20ps .
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Figure 5.15 Contour plots of displacement (v) distributions at (a)¢ = 1ps, (b)t =5ps,
(c)t=10ps,(d)t =15ps, and (e)t =20ps .

Figure 5.16 and Figure 5.17 are the contour plots of normal stress o, (thickness
direction) and normal stress o, (length direction) profiles at different times (a) ¢ =1ps,

(b)t=5ps,(c) t=10ps,(d) t=15ps,and (e) t =20ps.
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Based on the analysis of displacement and stress waves, we can conclude the
significance of the hot-electron-blast effect on the ultrafast deformation mainly along the
thickness direction. Furthermore, the proposed methodology allows us to avoid non-

physical oscillations of the solution.

5.3 Two-Dimensional Double-Lavered Case

5.3.1 Example Description

In order to test the applicability of the numerical scheme developed in section 4.2,
Equations (4.67)-(4.82), we consider the temperature rise and deformation in a two-
dimensional double-layered thin film, which is a gold layer padding on a chromium layer

with the dimensions 0.05 um (thickness)x 1 um (length) for each layer, as shown in Figure

5.18. Here, we assume that the interface of the two layers is perfectly contacted.

Ultrashort-pulsed Laser

| ] e
-
7 // e

1 om

0

e

Figure 5.18 Configuration of a 2D double-layered micro thin film.
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The electron thermal conductivity (k,(7,,7,)™ ) is chosen to be [Chen 2002a,

Qiu 1992 and Tzou 2002]

k(LT )™ =k s (53)
T,
The heat source is given by
1-R ? t-2t ?
S(x,y,¢) = 0.94] — = exp -i—(l) ~2.77 21, (5.4)
t s X Y t »

where R =0.93,7, =0.1x107"%s,x, =15.3x10” mand y, =1.0x10™m.

The thermophysical properties for gold and chromium are listed in Table 5.3

[Touloukian 1970a, b, Chen 2003, Tzou 1996].

Table 5.3 Thermophysical properties of gold and chromium [Touloukian 1970a, b,
Chen 2003, Tzou 1996]

Properties Unit Gold Chromium
P kg/m’ 19300 7190
A J/m’K? 70 193.3
A Pa 199.0x10° 83.3x10°
H Pa 27x10° 115.0x10°
ar K™ 142x107 49x107°
4, J/m’K? 70 193.3
C, J/m*K 2.5%10° 3.3x10°
G WimK 2.6x10' 42x10'
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T, ps 0.04 0.0068
T, ps 0.8 0.136
ko(k)) W/mK 315 94

In this example, we choose three different meshes of 80 x 40, 160 x 80 and

200x 100 to test the convergence of the scheme. The time increment is 0.005 ps. The

initial temperature 7}, is set to be 300 K. In order to study the hot-electron blast force,
we use three different values of laser influences J =500.J/m?, 1000J/m* and

2000J/m* .

5.3.2 Results and Analysis

Figure 5.19 shows the change in electron temperature (AT, /(AT,),,, ) atx=0
and y = 0 versus time for various meshes (80x40, 160x 80 and 200x 100) with laser

influence J = 500J/m® . The maximum temperature rise of T, , which is(AT,),.. , is

about 3930 K, which is close to that obtained by Qiu and Tien [Qiu 1994]. Meanwhile,
by comparing our results with that of the parabolic model [Wang 2006b] in Figure 5.19,
we can see a slight difference between the parabolic model and our hyperbolic model,
which indicates the effect of relaxation time r, and z,. Figure 5.20 shows the
displacement (u) at x =0 and y =0 versus time for various meshes (80x40, 160x 80

and 200x 100). Both figures show that the mesh size has no significant effect on the

solution, implying the solution is convergent.
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Figure 5.21 and Figure 5.22 show respectively the comparison of electron
temperature (7,) and lattice temperature (7,) versus x at y = Oum with three different
laser fluences (J = 500J/m? , 1000J/m?* and 2000.J/m? ) at various times (a)
t=025ps,(b) t=0.5ps,(c) t=1ps,(d) t =10ps, and (¢) ¢ = 20ps . It can be seen that
the electron temperature reaches its maximum at the beginning and then decreases,

whereas the lattice temperature increases gradually with time. Furthermore, the heat is

transferred from the gold layer to the chromium layer.
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Figure 5.23 and Figure 5.24 show the comparison of displacement u (thickness

direction) and v (length direction) along x at y = Oum with three different laser fluences
(J =500J/m?, 1000J/m? and2000J/m?* ) at various times (a) ¢t =5ps, (b) t =10ps,

() t=15ps,and (d) t =20ps .
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Figure 5.25 and Figure 5.26 show the comparison of normal stress o (thickness
direction) and o, (length direction) along x at y =0Oum with three different laser

fluences (J =500J/m* , 1000J/m?* and 2000J/m? ) at various times (a)¢=5ps, (b)

t=10ps,(c) t=15ps,and (d) t =20ps.
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Figure 5.26 Comparison of normal stress (o) aty = Owmat (a)z =5ps, (b)t =10ps,

(c)t =15ps, and (d)¢ = 20 ps withJ =500J/m? , 1000.J/m?* and 2000.J/m* .

Figure 5.27 and Figure 5.28 show the contour plots of electron temperature (7))

profile and lattice temperature (T,) profile with the laser fluence of J =1000J/m?* at

various times (a) t =0.25ps, (b) t =0.5ps, (c) t =1ps and (d) ¢ =10ps , respectively.
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Figure 5.27 Contour plots of electron temperature ( 7, ) profiles with J =1000J / m’
at(a)t=0.25ps,(b)t=0.5ps,(c)t=1ps and (d)t =10ps .
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Figure 5.28 Contour plots of lattice temperature ( 7;) profiles with J =1000J, / m’ at
(@)t =0.25ps, (b)t =0.5ps,(c)t =1ps and (d)t =10ps .
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Figures 5.29-5.32 show the contour plots of displacement u (thickness direction)

profile, displacement v (length direction) profile, normal stress o, (thickness direction)
profile and o, (length direction) profile with the laser fluence of J =1000J/ m® at
various times (a) t=1ps, (b) t=5ps, (c) t=10ps, and (d) ¢ =20ps, respectively.
Again, it can be seen that the heat is transferred from the gold layer to the chromium

layer. It can be seen from Figure 5.29 and Figure 5.30 (especially, t =10ps andt =20ps)

that the film is expanding because of the displacement changes from negative to positive

along the x and y directions, respectively.
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Figure 5.29 Contour plots of displacement u profile withJ =1000J / m® at(a)t=1ps,
(b)t=5ps,(c)t=10ps, and (d)t =20ps.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



&, (GPa)
~1.0691

-0 1382
-02072
-5.2763
-0.3434
04145
-0.4838
95526
«0.8217
-0 GHB
-1 7599
-0.8289
-0 KO8
-0 9671

-1.0362

v {um)

[ 0.03 0t
X (um)

(@)

3, (GPa)
03180
02297
0.1413
0.0531

-0.0352

~0.123%

-021i8

~0.3001

-0.3885

-0.4768

~0.5651

06534

-0.741%

-0 8300

-0.9183

¥ (pun)

L 0.03 ol
X (pum)

©

Figure 5.31 Contour plots of normal stress ¢, profiles withJ =1000J/m?* at

v (um)

¥ (um)

4.9

08

0.7

0.05
X (pum)

(b)

0.1

G, (P
01579
0272

-0 1035

-0.2342

1) 3649

04956

~0.6263

-0.TSTH

~0.8%77

-1.a184

-1.1492

-1.279%

-1 4106

-1 2413

-1 6720

0.05
x{um)

(d)

o1

G, (GPa)
2.08%0
19378
1.7%67
1.6355
1.4844
1.3332
1.1820
10309
08797
07286
0.577%
Q.4262
02751
01239

(0272

(@)t=1ps,(b)t=5ps,(c)t =10ps,and (d)¢ = 20ps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108



109

o, (GPa) =, (GPa)
] o084 04273
~0.1369 ©.0040
£.2053 01193
-4.2737 (2426
£.3422 £0.3639
414106 - 4592
£.4791 46125
05478 -0.7358
-3.6159 -0.8591
46544 £0.08243
- £.7528 - -1.1087
= 48212 El -1.2290
= 58897 = -1.3323
i - 9581 bod ~LA756
-1.0265 -1 5989
[y 0.05 [V
X (pum)
(a) (b)

!
G, (GPa) 6, (GFPa)
D. 4436 1.4947
09 43421 1.3646
2387 1.2344
, ¢.1382 1.1043
0.8 0.0317 69743
A.0717 0.8441
07 -0.1752 0.7140
-0.2736 0.5838
-.3821 0.4337
0.6 04856 0.3236
—_ -0.5890 — 0.193%
) -0.6925 = 0.0634
3 05 <0.7960 = ~0.0668
- 0.8994 g ,1969
-L.0(29 b 03230

04

(o 55N Pt
0 0.08 01 0 0.05 01
X (um) X (1um)

(©) (@

Figure 5.32 Contour plots of normal stress ¢, profiles withJ =1000J / m* at
@t =1ps,(b)t=5ps,(c)t=10ps, and (d)t =20ps .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

CONCLUSION AND FUTURE WORK

It was pointed out in the literature that the hyperbolic two-step model is more
accurate than the parabolic model when the laser pulse duration is much shorter than the
electron-lattice thermal relaxation time. However, it has not been seen in the literature
employing the hyperbolic two-step model for studying thermal deformation in a micro
thin film exposed to ultrashort-pulsed lasers, which is important for enhancing our
understanding of micro heat transfer in a micro thin film exposed to ultrashort-pulsed
lasers.

In this dissertation, we develop a finite difference scheme for solving the
generalized hyperbolic two-step model with temperature-dependent thermal properties in
a one-dimensional double-layered thin film exposed to ultrashort-pulsed lasers. The
scheme is obtained based on an energy estimate for the hyperbolic two-step system. We
then apply the finite difference scheme to studying thermal deformation in two-
dimensional single-layered and double-layered thin films exposed to ultrashort-pulsed
lasers, by coupling with the dynamic equations of motions. The method accounts for the
coupling effect between lattice temperature and strain rate, as well as for the hot-eletron-

blast effect in momentum transfer. In order to avoid non-physical oscillations in the
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solution, we replace the displacement components in the dynamic equations of motion
with the velocity components and design staggered grids.

To test applicability of the scheme, we consider three cases including a one-
dimensional thin film of a gold layer on a chromium layer with perfectly contacted
interface, a two-dimensional thin film of gold and a two-dimensional thin film of a gold
layer on a chromium layer with perfectly contacted interface. Numerical results show that
the method allows avoidance of non-physical oscillations in the solution and there are
some differences between the hyperbolic two-step model and the parabolic model.
Particularly, one may see the differences regarding the change in electron temperature
(AT, /(AT,),., ) (see Figures 5.9 and 5.19) and the displacement () in x direction (see
Figures 5.10 and 5.20).

The future research may focus on a two-dimensional double-layered micro thin
film with nonlinear interfacial conditions, which means the interface is imperfectly
contacted and a three-dimensional double-layered micro thin film, where the model and

computation may be much more complicated.
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APPENDIX A

SOURCE CODE FOR 1D
DOUBLE-LAYERED CASE

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C This is the program for solving nonlinear two-
step equations

DIMENSION s5a(0:802,0:3),5b(0:802,0:3)

DIMENSION sm(0:802,0:3),5p(0:802,0:3)
DIMENSION TEM(1000),tke(0:802,0:3)
DIMENSION

5d(0:802),5€(0:802),sf(0:802)

DIMENSION S(0:802),RHS(0:802)
DIMENSION beta(0:802),v(0:802)
DIMENSION

TE(0:802,0:3),TL(0:802,0:3)
DIMENSION qe(0:802,0:3),q1(0:802,0:3)
DIMENSION
tk0(0:3),C1(0:3),G(0:3),Ae(0:3)
DIMENSION taue(0:3),taul(0:3)

C Type
double precision sa,sb,sm,sp,TEM,sd,se
double precision sf,S, RHS,beta,v,TE,TL
double precision ge,ql,tk0,CL,G,Ae,dx,dt
double precision SJ,tp,delta,R taue,taul
double precision ss,temp1,temp2,temp3,max
C Data
integer flag
tk0(1)=3.15D-13
tk0(2)=9.4D-14
Ci(1)=2.5D-3
Cl(2)=3.3D-3
G(1)=2.6D-5
G(2)=4.2D-4
Ae(1)=7.0D-8
Ae(2)=1.933D-7
timestep=1200
dx=1.250D-7
dt=5.0D-3
N=400
T0=300.0
SJ=50.00D-5
tp=0.1
delta=1.53D-5
R=0.93
taue(1)=0.04
taul(1)=0.8
taue(2)=6.8D-3
taul(2)=0.136
$5=0.94*SJ*(1.0-R)/(tp*delta)
max=0.0

C Initial condition

do i=1,2*N
do j=0,2
TL(i,j)=T0
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TE(i,j)=T0
qe(i,))=0
ql(i,j)=0
sa(i,j)=0
sb(1,j)=0
sm(i,))=0
sp(i,j)=0
tke(i,))=0
enddo
enddo

do nt=0,timestep

c print * nt
C Heat Source
do j=1,2*N
c S(G)=ss*exp(-j*dx/delta
¢ $ -2.77*((nt+0.5)*dt-2.0*tp)*
¢ $ ((nt+0.5)*dt-2.0*tp)/(tp*tp))
temp1=((nt+0.5)*dt-2.0*tp)/tp
S(j)=ss*exp(-j*dx/delta)*
$ exp(-2.77*templ**2)
enddo

C Gold
flag=1
do while(flag.eq.1)
do m=1,2
doj=1,N
if(m.eq.1) then

temp 1=abs((TE(j, 1)+ TE(,0))/(TL(j,1)+TL(,0)))
temp2=abs((TE(j-1,1)+TE(j-1,0))/(TL(-
1,1)+TL(j-1,0)))
else
templ=abs((TE(j+N-1,1+TE(j+N-1,0))
& /(TL(j+N-1,1)+TL(+N-1,0)))
temp2=abs((TE(j+N-2,1)+TE(j+N-2,0))
& /(TL(G+N-2,1)+TL(j+N-2,0)))
end if
tke(j,m) =0.5*tkO(m)*(temp1-+temp2)
c tke(j)=tk0;
end do
end do
do m=1,2
doj=2,N
temp 1=2*taue(m)+dt
temp2=2*taue(m)-dt
sb(j,m)=-(tke(j,m)/temp1)*(dt/dx)
if(m.eq.1) then
temp3=sb(j,m)*(TE(j,0)-TE(-1,0))
sa(j,m)=qe(j,0)*temp2/temp 1 +temp3
else
temp3=sb(j,m)*
& (TE(j+N-1,0)-TE(j+N-2,0))
sa(j,m)=qe(j+N-1,0)*temp2/temp1
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& +temp3
end if
end do
end do

dom=1,2
doj=1,N
if(m.eq.1) then
temp1=TE(j,1)**2+TE(j.0)**2
§ +TEQ,1)*TE(|,0)
temp2=TE(j,0)+TE(j,1)
sp(j,m)=G(1)*dx*(TE(j,0)-TL(j,2)
$ -TL(,0))-2*dx*S(j)
else
temp1=TE(j+N-1,1)**2+TE(j+N-1,0)**2
$ +TE(j+N-1,1)*TE(j+N-1,0)
temp2=TE(j+N-1,0)-TE(j+N-1,1)
sp(j,m)=G(m)*dx*(TE(j+N-1,0)-TL(j+N-
1,2)
$ -TL(G+N-1,0))-2*dx*S(j+N-1)
end if
sm(j,m)=-
4.0*(dx/dt)* Ae(m)*temp1/(3.0*temp2)

end do
end do

do j=1,2*N-1
if(j.eq.1) then
sd(j)=0
se(j)=sm(1,1)-G(1)*dx+sb(2,1)
sf(j)=sb(2,1)
RHS(j)=sa(2,1)+sp(1,1)+qe(2,0)+sm(1,1)
*TE(1,0)

else if(j.eq.2*N-1) then
sd(j)=sb(N,2)
se(j)=sm(N,2)-G(2)*dx+sb(N,2);
sf(j)=0
RHS(j)=-sa(N,2)+sp(N,2)-qe(2*N-1,0)

$ +sm(N,2)*TE(2*N-1,0)
else if(j.eq.N) then
sd(j)=sb(N,1)
se(j)=sm(N, 1)+sm(1,2)+sb(N,1)

$ -G(1)*dx+sb(2,2)-G(2)*dx
sf(j)=sb(2,2)
RHS(j)=(sm(N, 1)+sm(1,2))*TE(N,0)-

sa(N,1)
$ -qe(N,0)+sp(N,1)+sa(2,2)+qe(N+1,0)+sp(1,2)
else if(j.LT.N) then

sd(j)=sb(j,1)
se(j)=sm(j,1)-G(1)*dx+sb(j+1,1)+sb(j,1)
sf(j)=sb(j+1,1)
RHS(j)=sa(j+1,1)-sa(j,1)+sp(j,1)+

$ qe(+1,0)-qe(§,0)+sm(j,1)*TE(,0)

else
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L=j-N+1
sd(3)=sb(L,2)
se(j)=sm(L,2)-
G(2)*dx+sb(L+1,2)+sb(L,2)
sf(j)=sb(L+1,2)
RHS(j)=sa(L+1,2)-sa(L,2)+sp(L,2)+
$ qe(j+1,0)-qe(j,0)+sm(L,2)*TE(j,0)
end if
end do
beta(0)=0.0;
v(0)=0.0;
do j=1,2*N-1
beta(j)=sf(j)/(se(j)-sd(j)*beta(j-1))
V()FRHS()+sd()*v(-1))
$ /(se(j)-sd(j)*beta(j-1))
end do
TE(2*N,2)=0
flag=0

do m=1,2*N-1

J=2*N-m

TE(j,2)=beta(G*TE(+1,2)+v(j)
if(abs(TE(j,2)-TE(j,1)).gt.0.000001) then
flag=1

end if

end do

€CCCCCCCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCeeeeeee
do j=1,2*N
if(j.eq.1) then
qe(j,2)=0.0
else if(j.eq.2*N) then
qe(§,2)=0.0
else if(j.LE.N) then
qe(j,2)=sa(j,1)+sb(j,1)*(TE(j,2)-TE(-1,2))
else
L=j-N+1
ge(j,2)=sa(L,2)+sb(L,2)*(TE(j,2)-TE(-1,2))
end if
end do
CCCCECCCCCECCLCCCCCCCCCCCCECCCCCCCCCCCeCeeeeee

if(nt.eq.0) then
print *,qe(220,2)
end if

do m=1,2

do j=2,N

temp1=2*taul(m)*dx-+dt*dx
temp2=2*taul(m)*dx-dt*dx
sb(j,m)=-tkO(m)*dt/temp1
if (m.eq.1) then
temp3=sb(j,m)*(TL(j,0)-TL(j-1,0))
sa(j,m)=ql(j,0)*temp2/temp1+temp3
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else
temp3=sb(j,m)*(TL(j+N-1,0)-TL(+N-
2,0))

sa(j,m)=ql(j+N-1,0)*temp2/temp1+temp3

end if
end do
end do
do m=1,2
do j=1,N
if (m.eq.1) then

sp(j,m)=-G(m)*dx*(TE(j,0)+TE(j,2)-TL(j,0))

else
sp(j,m)=-G(m)*dx*(TE(j+N-1,0)+ TE(j+N-
1,2)
$ -TL(j+N-1,0))
end if

sm(j,m)=-2.0*dx*Cl(m)/dt;
end do

end do

do j=1,2*N-1

if(j.eq.1) then

sd(j)=0
se(j)=sm(1,1)-G(1)*dx+sb(2,1)
sf(j)=sb(2,1)

RHS(j)=sa(2,1)+sp(1,1)+ql(2,0)+sm(1,1)

*TL(1,0)
else if(j.eq.2*N-1) then
sd(j)=sb(N,2)
se(j)=sm(N,2)-G(2)*dx+sb(N,2);
sf(j)=0
RHS(j)=-sa(N,2)+sp(N,2)-ql(2*N-1,0)
$ +sm(N,2)*TL(2*N-1,0)
else if(j.eq.N) then
sd(j)=sb(N,1)
se(j)=sm(N,1)+sm(1,2)+sb(N,1)
$ -G(1)*dx+sb(2,2)-G(2)*dx
sf(j)=sb(2,2)
RHS(j)=(sm(N,1)+sm(1,2))*TL(N,0)-
sa(N,1)

$ -qI(N,0)+sp(N, 1 )+sa(2,2)+ql(N+1,0}+sp(1,2)

else if(j.LT.N) then
sd(j)=sb(j,1)

se(j)=sm(j,1)-G(1y*dx+sb(j+1,1)+sb(j,1)

sf(j)=sb(j+1,1) »
RHS(j)=sa(j+1,1)-sa(j,1)+sp(j, 1)+
$ ql(+1,0)-q1(j,0)+sm(j,1)*TL(j,0)
else
L=j-N+1
sd(j)=sb(L,2)
se(j)=sm(L,2)-
G(2)*dx+sb(L+1,2)+sb(L,2)
sf(j)=sb(L+1,2)
RHS(j)=sa(L+1,2)-sa(L,2)+sp(L,2)+
$ ql(G+1,0)-q1(j,0)+sm(L,2)*TL(j,0)
end if
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end do

beta(0)=0.0;
v(0)=0.0;
do j=1,2*N-1
beta(j)=sf(j)/(se(j)-sd(j)*beta(j-1))
v()=RHS(G)+sd(G)*v(j-1))

$ /(se(j)-sd(j)*beta(j-1))

end do

TL(2*N,2)=0
flag=0

do m=1,2*N-1

J=2*N-m
TL(j,2)=beta(j)*TL(j+1,2)+v(j)
if(abs(TL(j,2)-TL(j,1)).gt.0.000001) then
flag=1

end if

end do

CCCeeeeeceeceececceceecceeccecccceecceceecceccece

do j=1,2*N
if(j.eq.1) then
q1(,2)=0.0
else if(j.eq.2*N) then

ql(j,2)=0.0
else if(j.LE.N) then
ql(j,2)=sa(j,1)+sb(j,1)*(TL(j,2)-TL(j-1,2))
else
L=j-N+1
ql(j,2)=sa(L,2)+sb(L,2)*(TL(j,2)-TL(j-1,2))
end if
end do

cceeeecceceeeccceeceeeceececceeccceceeeccccceecccce

if{flag.eq.1) then
do j=1,2*N
TE(j,1)=TE(,2)
TL(j,1)=TL(j,2)
qe(),1)=qe(j,2)
ql(,1)=ql(,2)
end do

else

do j=1,2*N
TE(j,0)=TE(j,2)
TL(j,0)=TL(j,2)
qe(j,0)=qe(j,2)
q1(,0)=ql(j,2)
TE(j,1)=TE(},2)
TL(j,1)=TL(j,2)
qe(j,1)=qe(j,2)
q1(,1)=ql(j,2)
end do

end if

end do
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if (max.1t.(TE(1,0)-T0)) then
max=TE(1,0)-TO

end if

TEM(nt)=TE(1,0)-TO

if (nt.eq.40) then
open (unit=9,file="S00J/TE02P.dat")
do j=1,2*N-1
write(9,1010) j*dx, TE(,0)
end do

open (unit=10,file="500J/TL02P.dat")
do j=1,2*N-1
write(10,1010) j*dx,TL(j,0)
end do
endif

C time=0.25ps

if (nt.eq.50) then
open (unit=11,file="500J/TE025P.dat")
do j=1,2*N-1
write(11,1010) j*dx,TE(j,0)
end do

open (unit=12,file="500J/TLO25P.dat")
do j=1,2*N-1
write(12,1010) j*dx,TL(j,0)
end do
endif

C time=0.5ps

if (nt.eq.100) then
open (unit=13.file="500J/TEQSP.dat’)
do j=1,2*N-1
write(13,1010) j*dx,TE(j,0)
end do

open (unit=14,file="500J/TLO5P.dat")
do j=1,2*N-1
write(14,1010) j*dx,TL(j,0)
end do
endif

C time=1.0ps

if (nt.eq.200) then
open (unit=15,file='S00J/TE1P.dat')
do j=1,2*N-1
write(15,1010) j*dx,TE(},0)
end do

open (unit=16,file="500J/TL1P.dat")
do j=1,2*N-1
write(16,1010) j*dx,TL(j,0)
end do
endif

C time=6.0ps

if (nt.eq.1200) then
open (unit=17,file="500J/TE6P.dat’)
do j=1,2*N-1
write(17,1010) j*dx, TE(j,0)
end do

open (unit=18, file="500J/TL6P.dat'")
do j=1,2*N-1
write(18,1010) j*dx, TL(j,0)
end do
endif

1010  format(e15.6,2¢15.6)

Rt o NoNo NN !

end do
open(unit=6,file="ratio.dat’)
print *,"zone"
do j=0,TIMESTEP
print *,(j)*dt, TEM(j)/max
end do
do j=1,2*N-1
print * j*dx,TL(j,0)
end do

end
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APPENDIX B

SOURCE CODE FOR 2D
SINGLE-LAYERED CASE
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¢ Program main
implicit double precision (a-h,l,0-z)
dimension t(4001),t1(4001),x(400),y(200)
dimension
TE0(400,200),TEold(400,200),TL0(400,200),TLol
d(400,200),
3 gexo(400,200),q1x0(400,200),
qeyo(400,200),qlyo(400,200),
$ qex(400,200),q1x(400,200),
qey(400,200),qly(400,200),
$ TEm(4001),TLm(4001),
ulm(4001),u2m(4001), vim(4001),v2m(4001),
$ xs5a0(401,201),ysa0(401,201),ssa0(401,201),
$
x5200(401,201),ysa00(401,201),ssa00(401,201),
$ xsan(401,201),ysan(401,201),ssan(401,201),
$ xse0(401,201),yse0(401,201),sse0(401,201),
$ xsen(401,201),ysen(401,201),ssen(401,201),
3
v10(401,201),v20(401,201),v1n(401,201),v2n(401

,201),

$
ulo(401,201),u20(401,201),uln(401,201),u2n(401
,201)
C $

ulxt(401,2001),xsext(401,2001),u2xt(401,2001),y
sext(401,2001),

C $ ulxt1(401,2001),xsext1(401,1000),

C $ u2xt1(401,1000),ysext1(401,1000)

integer p, counter

C Lame constant
lemta=199.0d+9

C Shear modulus
cmiu=27.0d+9

C Thermal expansion coefficient
alphat=14.2d-6

C Density

C rou=1.93d+4
theta=1.0

1x=1.0D-7
ly=1.0D-6
n=80

m=40
dx=lx/n
dy=ly/m
p=400
dt=0.005d-12
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counter=0
t(1)=0.0
x(1)=0.0
y(1)=0.0

T0=300.0

do j=2,m+1

y(i)=yG-1+dy
end do

do i=2,n+1
x(1)=x(i-1)+dx
end do

Cmrmrme e Initial conditions when k=1--------
C TEo: TE at the previous time point
C TEold: TE at the right now time point, but at
iteration i
C gexo: gex at the previous time point
C gex: gex at the right now time point
k=1
do j=1,m+1
do i=l,n+1
TEo(ij)=T0
TLo(i,j)=T0
TEold(i,j)=T0
TLold(i,j)=T0
xsan(i,j)=0.0
ysan(i,j)=0.0
xsa0(1,j)=0.0
ysao(i,j)=0.0
$520(1,j)=0.0
xs5200(1,j)=0.0
ysa00(1,j)=0.0
$5200(1,))=0.0
xseo(1,j)=0.0
yseo(i,})=0.0
sseo(1,j)=0.0
vl1o(i,j)=0.0
v20(1,j)=0.0
ulo(i,j)=0.0
u20(i,j)=0.0
end do
end do

do j=2,m
do i=1l,n
gexo(i,j)=0.0
qlxo(i,j)=0.0
qex(1,)=0.0
qix(1,j)=0.0
enddo
enddo
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doj=1,m
do i=2,n
geyo(i,j)=0.0
qlyo(i,j)=0.0
qey(1,j)=0.0
qly(i,j)=0.0
enddo
enddo

TEm(k)=0.0
TLm(k)=0.0

big=0.0
write(*,*) 'start’

C***************************************

C----Start the Time Step Loop from 2 to p+1-------
do k=2,p+1
t(k)=(k-1)*dt
t1(k)=(k-0.5)*dt

call
temp(n,m,dx,dy,x,y,t1(k),dt, TLo,TLold,TEo,TEold,
$
Xsan,ysan,xsao,ysao,qexo,qeyo,qlxo,qlyo,
$ qex,qey,qlx,qly)

Debug
if(k.eq.100) then
print *, TEold(14,20)
endif

Debug

oNoNeNOX®!

doj=1,m+1

do i=1,n+1
xsan(1,})=xsao(i,})
ysan(i,}}=ysao(i,j)

enddo

enddo

tol=1d-16
detuvmax=tol+1d-5

do while (detuvmax.gt.tol)
detuvmax=0.0
C Compute stress
do j=1,m+1
xsen(1,j)=0.0
xsen(n+1,j)=0.0
end do

do i=1,n+1
ysen(1,1)=0.0
ysen(i,m+1)=0.0
end do

119

doj=2,m
doi=2,n
xsen(i,j)=(lemta+2.0*cmiu)*xsan(i,j)+lemta*ysan(
1)
$ -

(3.0*lemta+2.0*cmiu)*alphat*(TLold(i,j)-300.0)

ysen(i,j)=lemta*xsan(i,j)+(lemta+2.0*cmiu)*ysan(
Lj)

$ -
(3.0*lemta+2.0*cmiu)*alphat*(TLold(i,j)-300.0)

end do
end do

do j=1,m
ssen(1,j)=0.0
ssen(n,j)=0.0
end do

do i=2,n-1
ssen(1,1)=0.0
ssen(1,m)=0.0
end do

do j=2,m-1

do i=2,n-1
ssen(1,j)=cmiu*ssan(i,)

end do

end do

C Calculate velocity

call
velocity(n,m,dx,dy,dt,TEo,TEold,xseo,yseo,sseo,
$
xsen,ysen,ssen,vio,v2o,vin,v2n,ulo,u2o,
uln,u2n)

C Calculate strain
do j=2,m
do i=2,n
xsan(i,))=((theta*(v1n(i,))-vin(i-1,))
$ +(1.0-theta)*(v1o(i,j)-
vlo(i-1,j)))/dx)
$ *dt+xsao(i,])
c

ysan(i,j)=((theta*(v2n(i,j)-v2n(i,j-1))
+(1.0-theta)*(v2o(i,))-
v20(i,j-1)))/dy)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



$ *dt+ysao(i,j)
end do
end do
c
¢ Shear strain
c
do j=2,m-1
do 1=2,n-1
ssan(i,j)=((theta*(v1n(ij+1)-vin(ij))
$ +(1.0-
theta)*(v1o(i,j+1)-vio(ij)))/dy
$ +(theta*(v2n(i+1,j)-
v2n(i,j)
$ +(1.0-
theta)*(v2o(i+1,j)-v20(i,j)))/dx)
$ *dt+ssao(i,))
end do
end do
c
¢ Completion of calculation of strain
c
do j=1,m+1
do i=1,n+1
det1=xsan(i,j)-xsao0o(i,j)
det2=ysan(i,j)-ysaoo(1,j)
det3=ssan(i,j)-ssaoo(i,])
det=max(abs(det1),abs(det2),abs(det3))
if{ abs(det).gt.detuvmax) then
detuvmax=abs(det)
endif
end do
end do
c
do j=1,m+1
do i=1,n+1
xs200(1,j)=xsan(i,j)
ysaoo(i,j)=ysan(i,j)
ssaoo(i,j)=ssan(i,})
end do
end do
c
write(*,*) 'detuvmax=", detuvmax
c
C End do with detmax
C end of do while
end do
c
doj=1,m+1
do i=1,n+1

TEo(1,j)=TEold(i,j)
TLo(i,j)=TLold(i,))
xsao(1,j)=xsan(i,j)
ysao(i,j)=ysan(i,j)
ssao(1,)=ssan(i,})
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xseo(i,j)=xsen(i,})
yseo(ij)=ysen(i,j)
sseo(i,j)=ssen(i,j)
vlo(i,j)=vin(i,j)
v20(i,})=v2n(1,j)
ulo(i,j)=uln(i,j)
u2o(i,j)=u2n(i,j)

end do

end do

do j=2,m
doi=ln
gexo(i,))=qex(iy)
qlxo(1,j)=qlx(i,j)
enddo
enddo

do j=1,m
do i=2,n
qeyo(i,j)=qey(i,j)
qlyo(i,j)=qly(i,))
enddo
enddo

if (big.1t.(TEold(1,1)-T0)) then
big=TEold(1,1)-TO

end if

TEm(k)=TEold(1,1)-TO

TLm(k)=TLold(1,1)

ulm(k)=uln(1,2)

u2m(k)=u2n(2,1)

vim(k)=vin(1,2)

v2m(k)=v2n(2,1)

counter=counter+1
write(*,*) counter

C end of time loop k=2,p+1
end do

C OQutputs
open(unit=6,file="TE02.dat")
print *, "zoneTE"
do i=1,n+1

print *, x(i), TEold(i,j)
enddo

open(unit=6,file="TL02.dat’)
print *, "zoneTL"
do i=1,n+1

print *, x(1), TLold(j, 1)
enddo

open(unit=6,file="U1.dat")
print *, "zoneU1"

a0 o0 o000
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do 1=1,n+1
print *, x(1), uln(i,2)
enddo

open(unit=6,file="V1.dat')
print *, "zoneV1"
doi=1,n+1

print *, x(i), vin(i,2)
enddo

open(unit=6,file="xse10(Test).dat")
print *, "zonexsel"
do i=1,n+1
print *, (x(1)*1.0D+6), (xseo(i,2)*1.0D-9)
enddo

open(unit=6,file="yse1l.dat")
print *, "zoneysel"
do i=1,n+1

print *, x(i), ysen(i,2)
enddo

OO0 o000 a0 oo

C show the temperature TE at x=0 and y=0 versus
time
open(unit=6,file="etm84H(T).dat")
print *,"zone"
do k=1,p+1
print *, (t(k)*1.0D+12),(TEm(k))
enddo

open(unit=6,file="'um84H.dat")
print *,"zone"
do k=1,p+1
print *, (t(k)*1.0D+12),(ulm(k)*1.0D+9)
enddo

open(unit=45,file="vm3.dat')

do k=1,p+1

write(45,1020) t(k),vim(k),v2m(k)
enddo

OO0 o000

1010 format(401e15.6)
1020 format(el5.6,2¢15.6)

end

subroutine
temp(n,m,dx,dy,x,y,t,dt,TLo,TLold,TEo,TEold,
$

Xs$an,ysan,Xsao,ysao,qexo,qeyo,qlxo,qlyo,
$ gex,qey.qlx,qly)

implicit double precision (a-h,l,0-z)
double precision TEM
dimension x(400),y(200),TEM(1000)
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dimension
TE0(400,200), TEold(400,200),
$ TL0(400,200), TLold(400,200),
$ TEnew(400,200), TLnew(400,200),
$ xsan(401,201),ysan(401,201),
$ xsao(401,201),ysa0(401,201),S(401,201),
$ tkex(401,201),tkey(401,201),
$ qex0(400,200),q1x0(400,200),
$ qex(400,200),q1x(400,200),
$ geyo(400,200),qlyo(400,200),
$ qey(400,200),qly(400,200),
$ dTE(400,200),dTL(400,200)

integer iteration,flagE flagL

C Lame constant
lemta=199.0d+9

C Shear modulus
cmiu=27.0d+9

C Thermal expansion coefficient
alphat=14.2d-6

C Electron heat capacity
Ae=70.0

C Lattic heat capacity
cl=2.5d+6

C Electron - lattic coupling factor
g=2.6d+16

C Electron thermal conducitivity
tk0=315.0

C Laser fluence
flu=500

C Laser pulse duration
tp=0.1D-12

C Optical penetration depth
delta=15.3d-9

C Surface reflectivity
sur=0.93

C Spatial profile parameters
rs=1.0d-6

C Electron relaxation time
taue=0.04D-12

C Lattice relaxation time
taul=0.8D-12

iteration=0

d=dt*dx*dy

sse=dt/(2.0*taue+dt)

ssl=dt/(2.0*taul+dt)
ee=-2.0*dx*dy*(3.0*lemta+2.0*cmiu)*alphat
ff1=2.0*dx*dy*cl

C flagE and flagL indicate whether TE and TL are
precise enough
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C keep on iterating as long as flagE or flagL
equalsto 1
2 flagE=1

flagl.=1

aximumE=0.0

do j=2,m+1
do i=2,n+1

temp1=abs((TEold(i,j)+TEo(i,j))/(TLold(i,j)+TLo(

1j))
temp2=abs((TEold(i-1,j)}+TEo(i-1,j))
b /(TLold(i-1,j)+TLo(i-1,j)))
temp3=abs((TEold(i,j-1)+TEo(i,j-1))
b /(TLold(i,j-1)+TLo(1,j-1)))

tkex(i,j)=0.5*tk0*(temp 1 -+temp?2)
tkey(i,j)=0.5*tk0*(temp1+temp3)
enddo
enddo

doj=2,m
doi=2,n

S(1,j)=0.94*flu*(1.0-sur)/(tp*delta)
$ *exp(-x(i)/delta-y(j)*y(j)/(rs*1s)
$ -2 77%(t-2.0%tp)*(t-
2.0*tp)/(tp*tp))

ffe=4.0* Ae*dx*dy*(TEold(i,j)*TEold(i,j)
$  +TEold(ij)*TEo(ij)* TEo(ij)*TEo(ij))
$  /(3.0%TEold(ij)+TEo(i})))

tempx 1=dt*dy*tkex(i,j)/dx
tempx2=dt*dy*tkex(i-1,j)/dx

tempyl=dt*dx*tkey(i,j)/dy
tempy2=dt*dx*tkey(i,j-1)/dy

al=ffe+(tempx 1+tempx2-+tempy1+tempy2)*sse+g
*d

b1=-4.0*dy*taue*sse*(qexo(i,j)-

gexo(i-1,j))
b2=-4.0*dx*taue*sse*(qeyo(i,j)-

qeyo(i,j-1))

cl=tempx1*sse*(TEold(i+1,j)+TEo(i+1,j)-TEo(i,))
c2=-tempx2*sse*(TEo(i,j)-TEold(i-
1,j)-TEo(i-1,)))

c3=tempyl*sse*(TEold(i,j+1)+TEo(i,j+1)-TEo(i,}})
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c4=-tempy2*sse*(TEo(i,j)-TEold(ij-
1)-TEo(i,j-1))

d1=-g*d*(TEo(i,j)-TLold(i;)-TLo(ij))
d2=2.0*d*S(i,j)
d3=ffe*TEo(ij)

C TEnew: The new TE at the right now time point
calculated based on the
C old TEs and TEs at the previous time point

TEnew(i,j)=(bl+b2+c1+c2+c3+cd+d1+d2+d3)/al

C dTE: Difference between the new and the old
TEs at now time point
dTE(i,j)=abs(TEnew(i,j)-TEold(i,j))

C aximumE: The maximum difference between all
the new and the old TEs
if (aximumE.le.dTE(1,j)) then
aximumE=dTE(,j)
endif
enddo
enddo

C If aximumE is less than 1D-6, which means that
the largest difference
C between the new and old TEs are smaller than
1D-6, make flag=0 to
C stop the iteration for TE

if{aximumE.1t.1D-6) then

flag=0
endif

C Since the calculation have no boundary TEs, just
make them equal to
C their neighbours
do j=2,m
TEnew(1,j)=TEnew(2,j)
TEnew(n+1,j)=TEnew(n,j)
end do
doi=1,n+1
TEnew(i,1)=TEnew(1,2)
TEnew(i,m+1)=TEnew(i,m)
end do

C***************************************

O Start calculating TLnew-----------—--
aximum[=0.0

do j=2,m
do1=2,n

e1=ff1+2.0*tk0*dt*dy*ssl/dx+2.0*tkO*dt*dx*ssl/d
y+td*g
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f1=-4.0*dy*taul*ss1*(qlxo(i,j)-qlxo(i-
[N)))

1)

2=-4.0*dx*taul*ssl*(qtyo(i,j)-qlyo(i,j-

g1=—tk0*dt*dy*ss|*(2.0*TLo(i,j)-
TLold(i-1,j)
$  -TLo(i-1,j)-TLold(i+1,j)-TLo(i+1,))/dx
g2=-tkO*dt*dx*ssI*(2.0*TLo(i,j)-
TLold(i,j-1)
$  -TLo(ij-1)-TLold(ij+1)-TLo(i,j+1))/dy

hl=-g*d*(TLo(i,j)-TEnew(i,j)-TEo(i,}))

h2=ee*(xsan(i,})+ysan(i,j)-xsao(i,j)-
ysao(i,j))

h3=ff1*TLo(i,))

TLnew(i,j)=(f1+f2+gl+g2+h1+h2+h3)/el
dTL(i,j)=abs(TLnew(i,j)-TLold(i,j))

if(aximumL.1t.dTL(3,j)) then
aximuml=dTL(i,j)
endif
enddo
enddo

if(aximumL.1t. 1D-6) then
flagl =0
endif

doj=2,m
TLnew(1,j)=TLnew(2,))
TLnew(n+1,j)=TLnew(n,j)
end do

do i=1,n+1
TLnew(i,1)=TLnew(i,2)
TLnew(i,m+1)=TLnew(i,m)
end do

C Update all the TEold, TLold with TEnew and
TLnew
do j=1,m+1
do i=1,n+1
TEold(i,j)=TEnew(i,j)
TLold(i,j)=TLnew(i,j)
enddo
enddo

C If flagE or flagL is still be 1, then we should go
back to 2
C to do iteration again to calculate new TE and TL
C Use "iteration" to remember the time of
iterations
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if((flagE.eq.1).OR.(flagL.eq.1)) then
iteration=iteration+1

goto 2

else

do j=2,m
doi=1,n
gex(i,j)=4.0*taue*sse*qexo(1,j)/dt-
gexo(i,j)
$

tkex(i,j)*sse*(TEold(i+1,j)+TEo(i+1,j)
$ -TEold(1,j)-TEo(1,j))/dx
enddo
enddo

do j=1,m
doi=2,n
gey(i,j)=4.0*taue*sse*qeyo(i,j)/dt-
qeyg(i,j)

tkey(i,j)*sse*(TEold(i,j+1)+TEo(i,j+1)
3 -TEold(i,j)-TEo(i,j))/dy
enddo
enddo

Commmrmmeme el Compute glx and gly------------------
do j=2,m
doi=1n
qlx(i,j)=4.0*taul*ssl*qlxo(i,j)/dt-
qlxo(i,))
$

tkQ*ssl*(TLold(i+1,j)+TLo(i+1,j)
$ -TLold(i,j)-TLo(i,j))/dx
enddo
enddo

doj=1m
doi=2,n
qly(i,j)=4.0*taul*ssl*qlyo(i,j )/dt-
qlyo(i,j)
$ -
tkO*ss1*(TLold(i,j+1)+TLo(i,j+1)
$ -TLold(i,j)-TLo(i,j))/dy
enddo

enddo
endif

write (*,*) "iteration=", iteration

END
C end of subroutine temp()

subroutine
velocity(n,m,dx,dy,dt, TEo,TEold,xseo,yseo,ssco,
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3
xsen,ysen,ssen,vlo,v20,vin,v2n,ulo,u2o,uln,u2n)

implicit double precision (a-h,l,0-z)
c

dimension TEo0(400,200),TE0ld(400,200),

$ xseo(401,201),yse0(401,201),sse0(401,201),

$ xsen(401,201),ysen(401,201),ssen(401,201),

$
v10(401,201),v20(401,201),v1n(401,201),v2n(401
,201),

$
ulo(401,201),u20(401,201),uln(401,201),u2n(401
,201)
c
¢ Density

lou=1.93d+4
c Electron - blast coefficient

i=70
theta=1.0

do j=2,m
doi=1,n
vIn(i,j)=((theta*(xsen(i+1,j)-xsen(i,j))
3 +(1.0-theta)*(xseo(i+1,j)-
xseo(1,j)))/(dx)
$ +(theta*(ssen(i,j)-ssen(i,j-1))
$ +(1.0-theta)*(sseo(i,j)-sseo(i,j-
1 )))é(d}')

+tri*theta*(TEold(i+1,j)*TEold(i+1,j)-TEold(i,j)
$ *TEold(ij))/(dx)
$ +ri*(1.0-
theta)*(TEo(i+1,j)*TEo(i+1,j)
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$ -TEo(,))*TEo(i,}))
$ /(dx))*dt/lou+vio(i)
c
uln(i,j)=(theta*v1in(i,j}+(1.0-
theta)*v1o(i,j))*dt+ulo(i,))

end do
end do
c
do j=1,m
do i=2,n
v2n(1,j)=((theta*(ssen(i,j)-ssen(i- 1,j))
+(1.0-theta)*(sseo(i,j)-sseo(i-
Li)/(dx)
$ +(theta*(ysen(i,j+1)-ysen(i,}))
$ +(1.0-theta)*(yseo(i,j+1)-
yseg(i,j)))/(dy)

+tri*theta*(TEold(i,j+1)*TEold(i,j*+1)-
TEold(i,j)
$ *TEold(ij))/(dy)

$ +ri*(1.0-
theta)*(TEo(i,j+1)*TEo(ij+1)

$  -TEo(ij)*TEo(ij))

$ /(dy))*dt/lou+v20(i,j)

c
u2n(i,j)=(theta*v2n(i,j)+(1.0-
theta)*v2o0(i,j))*dt+u2o(i,j)
end do
end do
return
END
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APPENDIX C

SOURCE CODE FOR 2D
DOUBLE-LAYERED CASE

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner.

¢ Program main
implicit double precision (a-h,1,0-z)
dimension t(4001),t1(4001),x(401),y(201)
dimension
TEo(401,201),TEold(401,201),TL0o(401,201),TLol

d(401,201),

$ TEm(4001),TLm(4001),
u1m(4001),u2m(4001), vim(4001),v2m(4001),

$ qex0(400,200),q1x0(400,200),

qeyo(400,200),qlyo(400,200),

$ qex(400,200),q1x(400,200),
qey(400,200),q1y(400,200),

$ xs5a0(401,201),ysao(401,201),ssa0(401,201),

$
x5200(401,201),ysa00(401,201),ssa00(401,201),

$ xsan(401,201),ysan(401,201),ssan(401,201),

$ xseo0(401,201),yseo(401,201),sse0(401,201),

$ xsen(401,201),ysen(401,201),ssen(401,201),

$
v10(401,201),v20(401,201),vIn(401,201),v2n(401
,201),

$
ulo(401,201),u20(401,201),uln(401,201),u2n(401
,201)

integer p, counter

C Gold lame constant
lemtal=199.0d+9

C Gold shear modulus
cmiul=27.0d+9

C Gold thermal expansion coefficient
alphat1=14.2d-6

C Gold density

C loul=1.93d+4

C Chromium lame constant
lemta2=83.3d+9

C Chromium shear modulus
cmiu2=115.0d+9

C Chromium thermal expansion coefficient
alphat2=4.9d-6

C Chromium density

C lou2=7.19d+3

1x=0.5D-7
ly=1.0D-6
n=80
m=40
dx=Ix/n
dy=ly/m
p=4000
dt=0.005d-12
counter=0
t(1)=0
x(1)=0
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y(1)=0

T0=300.0

do j=2,m+1
y(G)=y(-1)+dy

end do

do i=2,2*n+1
x(1)=x(i-1)+dx

end do

C initial condition

k=1
do j=1,m+1
do 1=1,2*n+1
TEo(i,j=T0
TLo(i,j)=TO0
TEold(i,j)=TO0
TLold(i,j)=T0
C xsan(i,))=0.0
C ysan(i,j)=0.0
xsa0(1,j)=0.0
ysao(1,))=0.0
ss20(1,j)=0.0
xsa00(1,j)=0.0
ysa00(i,j)=0.0
$$200(1,j)=0.0
xseo(1,j)=0.0
yseo(1,j)=0.0
sseo(i,j)=0.0
vlo(i,j)=0.0
v20(i,j)=0.0
ulo(i,j)=0.0
u20(1,j)=0.0
end do
end do

doj=2,m
do i=1,2*n
qexo(i,j)=0.0
qlxo(i,j)=0.0
qex(i,j)=0.0
qix(i,j)=0.0
enddo
enddo

do j=1,m
do i=2,2*n
qeyo(1,j)=0.0
qlyo(i,j)=0.0
qey(i,j)=0.0
qly(i,j)=0.0
enddo
enddo
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TEm(k)=0.0
TLm(k)=T0

big=0.0
write(*,*) 'start’
do k=2,p+1

t(k)=t(k-1)+dt
t1(k)=t(k-1)+dt/2.0

call
temp(n,m,dx,dy,x,y,t1(k),dt,TLo,TLold,TEo,TEold,
h
Xsan,ysan,Xxsao,ysao,qexo,qeyo,qlxo,qlyo,
$ gex,qgey,qlx,qly)

do j=1,m+1
do i=1,2¥n+1
xsan(i,j)=xsao(i,j)
ysan(i,j)=ysao(i,j)
enddo
enddo

doj=l,m
do i=1,2*n
ssan(i,j)=ssao(i,})
end do
end do

tol=1d-14

detuvmax=tol+1d-5

do while (detuvmax.gt.tol)
detuvmax=0.0

C Compute stress
do j=1,m+1
xsen(1,;)=0.0
xsen(2*n+1,5)=0.0
end do

do i=1,2*n+1
ysen(1,1)=0.0
ysen(i,m+1)=0.0
end do
do j=2,m
C The thin film of gold

do 1=2,n+1

xsen(i,j)=(lemtal+2.0*cmiul)*xsan(i,j)+lemtal*y
san(i,j)
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$ -
(3.0*lemtal+2.0*cmiul)*alphat1*(TLold(i,))-
300.0)

ysen(i,j)=lemtal *xsan(i,j)+(lemtal+2.0*cmiul)*y
san(i,j)

$ -
(3.0*lemta1+2.0*cmiul)*alphat1*(TLold(i,j)-
300.0)

end do

C The thin film of chromium
do i=n+2,2*n

xsen(i,j)=(lemta2+2.0*cmiu2)*xsan(i,j)+lemta2 *y
san(i,j)

$ -
(3.0*lemta2+2.0*cmiu2)*alphat2*(TLold(i,})-
300.0)

ysen(i,j)=lemta2*xsan(i,j)+(lemta2+2.0*cmiu2)*y
san(i,])

$ -
(3.0*lemta2+2.0*cmiu2)*alphat2*(TLold(i,j)-
300.0)

end do

end do

doj=I,m
ssen(1,j)=0.0
ssen(2*n,j)=0.0
end do
C Gold film
do i=1,n-1
ssen(i,1)=0.0
ssen(i,m)=0.0
end do
C Chromium film
do i=n+2,2*n
ssen(i,1)=0.0
ssen(i,m)=0.0
end do

do j=2,m-1

C The thin film of gold
doi=2,n
ssen(i,j)=cmiul *ssan(i,j)
end do

C The thin film of chromium
do i=n+1,2*n-1
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ssen(i,j)=cmiu2 *ssan(i,j)
end do

end do

ssen(n,1)=cmiul *ssan(n,1)
ssen(n,m)=cmiul *ssan(n,m)
ssen(n+1,1)=cmiu2*ssan(n+1,1)
ssen(n+1,m)=cmiu2*ssan(n+1,m)

C Calculate velocity
call velocity(n,m,dx,dy,dt, TEold,TLold,
$

Xsen,ysen,ssen,xsao,ysao,ssao,v1o,v2o,vin,v2n,ul

o,u2o,uln,u2n)

C Calculate strain
doj=2,m

C The thin film of gold
do i=2,n
xsan(i,j)=((v1n(i,j)-vIn(i-1,))/dx)
$ *dt+xsao(i,j)

ysan(i,j)=((v2n(i,j)-v2n(i,j-1))/dy)
$ *dt+ysao(i,j)
end do

C At interface

xsan(n+1,j)=((vin(n+1,j)-vin(n,j))*2.0/dx)
$ *dt+xsao(i,))

ysan(n+1,j)=((v2n(n+1,j)-v2n(n+1,-1))/dy)
$ *dt+ysao(i,j)

C The thin film of chromium
do i=n+2,2*n
xsan(i,j)=((vIn(i+1,j)-v1n(i,}))/dx)
$ *dt+xsao(i,j)

ysan(i,j)=((v2n(i,j)-v2n(i,j-1))/dy)
$ *dt+ysao(i,j)
end do

end do

C Shear strain
do j=2,m-1

C The thin film of gold
do i=2,n
ssan(i,j)=((v1n(i,j+1)-vIn(ij))/dy
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$ +(v2n(i+1,j)-v2n(1,j))/dx)
$ *dt+ssao(i,j)
end do

C The thin film of chromium
do i=n+1,2*n-1
ssan(i,j)=~((vln(i+1,j+1)-vin(i+1,j))/dy
$ +Hv2n(it+1,j)-v2n(i,j)y/dx)
$ *dt+ssao(i,j)
end do

end do

ssan(n,1)=((v1n(n,2)-vin(n,1))/dy

$ +(v2n(n+1,1)-v2n(n,1))/dx)

$ *dt+ssao(n,1)
ssan(n,m)=((vln(n,m+1)-vin(n,m))/dy
$ +(v2n(n+1,m)-v2n(n,m))/dx)

$ *dt+ssao(n,m)
ssan(n+1,1)=((vin(n+2,2)-vin(n+2,1))/dy

$ +(v2n(n+2,1)-v2n(n+1,1))/dx)

3 *dt+ssao(nt1,1)
ssan(n+1,m)=((vin(n+2,m+1)-vin(n+2,m))/dy

$ +(v2n{n+2,m)-v2n(n+1,m))/dx)

$ *dt+ssao(n+1,m)

C Completion of calculation of strain
do j=1,m+1
do i=1,2*n+1
det1=xsan(i,j)-xsa00(i,j)
det2=ysan(i,j)-ysaoo(i,})
det3=ssan(i,j)-ssaoo(i,j)
det=max(abs(det1),abs(det2),abs(det3))
if{ abs(det).gt.detuvmax) then
detuvmax=abs(det)
endif
end do
end do

do j=1,m+l
do i=1,2*n+1
xsa00(1,j)=xsan(i,})
ysaoo(1,j)=ysan(i,))
$sa00(i,j)=ssan(i,j)
end do '
end do

C  write(*,*) 'detuvmax=', detuvmax

C End do with detmax
end do

C
do j=1,m+1
do i=1,2*n+1
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TEo(i,j)=TEold(i,j)
TLo(i,))=TLold(i,j)
xsao(i,j)=xsan(i,])
ysao(i,j)=ysan(i,j)
ssao(i,))=ssan(i,})
xseo(i,j)=xsen(i,j)
yseo(i,j)=ysen(i,j)
sseo(1,j)=ssen(i,j)
vlo(i,))=vin(i,j)
v20(i,j)=v2n(i,))
ulo(ij)=uln(i,j)
u20(i,j)=u2n(i,j)
end do
end do

do j=2,m
do i=1,2*n
qexo(ij)=gex(ij)
qlxo(i,j)=qlx(i,)
enddo
enddo

doj=1m
doi=2,2*n
qeyo(i,))=qey(i,))
qlyo(ij)=qly(ij)
enddo
enddo

if (big.1t.(TEold(1,1)-T0)) then

big=TEold(1,1)-TO
end if

TEm(k)=TEold(1,1)-T0
TLm(k)=TLold(1,1)
ulm(k)=uln(1,2)
u2m(k)=u2n(2,1)
vim(k)=vin(1,2)
v2m(k)=v2n(2,1)

counter=counter+1
write(*,*) counter

C Output intermediate result
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write(10,1010) x(i), TLold(i,1)
enddo
end if

if (k.eq.100) then

C The result at time t=0.5ps

open(unit=11,file="Te05(y=0).dat’)
do i=1,2*n+1

write(11,1010) x(i), TEold(i, 1)
enddo

open(unit=12,file="T105(y=0).dat’)
do i=1,2*n+1

write(12,1010) x(1), TLold(i,1)
enddo

end if

if (k.eq.200) then

C The result at time t=1ps

open(unit=13,file="Te1(y=0).dat’)
do i=1,2*n+1

write(13,1010) x(i), TEold(i,1)
enddo

open(unit=14,file="T11(y=0).dat")
do i=1,2*n+1

write(14,1010) x(i),TLold(i,1)
enddo

open(unit=15,file="ul(y=0).dat’)
do i=1,2*n+1

write(15,1010) x(i),uln(i,2)
enddo

open(unit=16,file='v1(y=0).dat’)
do i=2,2*n

write(16,1010) x(i),u2n(i, 1)
enddo

open(unit=17 file="sigmax 1(y=0).dat’)

if (k.eq.50) then do i=1,2*n+1
write(17,1010) x(1),xsen(i,2)
C The result at time t=0.25ps enddo

open(unit=9,file="Te025(y=0).dat’) open(unit=18, file="sigmay1(y=0).dat")

do =1,2*n+1 do 1=2,2*n
write(9,1010) x(i),TEold(i,1) write(18,1010) x(i),ysen(i,2)
enddo enddo

end if

open(unit=10,file="T1025(y=0).dat")
do i=1,2*n+1 if (k.eq.1000) then
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C The result at time t=5ps

open(unit=19,file="Te5(y=0).dat")
do i=1,2*n+1

write(19,1010) x(i), TEold(i,1)
enddo

open(unit=20,file="T15(y=0).dat’)
do i=1,2*n+1

write(20,1010) x(i), TLold(i, 1)
enddo

open(unit=21,file="u5(y=0).dat")
do i=1,2*n+1

write(21,1010) x(i),uln(i,2)
enddo

open(unit=22, file='v5(y=0).dat")
do i=2,2*n

write(22,1010) x(i),u2n(i,1)
enddo

open(unit=23 file='sigmax5(y=0).dat’)
do i=1,2*n+1

write(23,1010) x(i),xsen(i,2)

enddo

open(unit=24,file="sigmay5(y=0).dat’)
do i=2,2*n

write(24,1010) x(i),ysen(i,2)

enddo

end if

C the result at time t=10ps

if (k.eq.2000) then
open(unit=25,file="Te10(y=0).dat’)
do i=1,2*n+1

write(25,1010) x(1), TEold(i,1)
enddo

open(unit=26,file="T110(y=0).dat’)
do i=1,2*n+1

write(26,1010) x(1), TLold(i,1)
enddo

open(unit=27 file="u10(y=0).dat')
do i=1,2*n+1

write(27,1010) x(i),uln(i,2)
enddo

open(unit=28, file="v10(y=0).dat')
do i=2,2*n
write(28,1010) x(i),u2n(i, 1)

enddo

open(unit=29 file="sigmax 1 0(y=0).dat')
do i=1,2*n+1

write(29,1010) x(i),xsen(1,2)

enddo

open(unit=30,file='sigmay10(y=0).dat’)
do i=2,2*n

write(30,1010) x(i),ysen(i,2)

enddo

end if

C the result at time t=15ps

if (k.eq.3000) then
open(unit=31,file='ul 5(y=0).dat")
do i=1,2*n+1

write(31,1010) x(i),uln(i,2)
enddo

open(unit=32 file='v15(y=0).dat")
do i=2,2*n

write(32,1010) x(1),u2n(i,1)
enddo

open(unmt=33 file="sigmax15(y=0).dat’)
do i=1,2*n+1

write(33,1010) x(i),xsen(1,2)

enddo

open(unit=34 file='sigmay15(y=0).dat’)
do i=2,2*n

write(34,1010) x(i),ysen(i,2)

enddo

end if

C the result at time t=20ps

if (k.eq.4000) then
open(unit=35,file="Te20(y=0).dat")
do i=1,2*n+1

write(35,1010) x(i), TEold(i,1)
enddo

open(unit=36,file="T120(y=0).dat")
do i=1,2*n+1

write(36,1010) x(i),TLold(i,1)
enddo

open(unit=37 file="u20(y=0).dat")
do i=1,2*n+1

write(37,1010) x(i),uln(i,2)
enddo

open(unit=38, file='v20(y=0).dat")
do i=2,2*n
write(38,1010) x(i),u2n(i,1)
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enddo

open(unit=39,file="sigmax20(y=0).dat’)
do i=1,2*n+1

write(39,1010) x(i),xsen(i,2)

enddo

open(unit=40, file="sigmay20(y=0).dat')
do i=2,2*n

write(40,1010) x(1), ysen(i,2)

enddo

end if

C end of time loop k=2,p+1
end do

C Outputs

open(unit=6,file="xse 10( Test).dat’)
print *, "zonexsel"
do i=1,n+1
print *, (x(i)*1.0D+6), (xseo(i,2)*1.0D-9)
enddo

open(unit=6,file="ysel.dat')
print *, "zoneysel"
do i=1,n+1

print *, x(i), ysen(i,2)
enddo

oloNoRo RO NN O NONONONY]

C show the temperature TE at x=0 and y=0 versus
time

C  open(unit=6,file="etm84(T).dat")

C  print *,"zone"

C dok=1,p+1

C print *, (t(k)*1.0D+12),(TEm(k)/big)

C enddo

C show the temperature u at x=0 and y=0 versus
time
open(unit=6,file='um315.dat")
print * "zone"
do k=1,p+1

print *, (t(k)*1.0D-+12),(ulm(k)*1.0D+9)
enddo

oNoNoEoNQ;

1010 format(401e15.6)
1020 format(e15.6,2¢15.6)

end

subroutine
temp(n,m,dx,dy,x,y,t,dt,TLo, TLold,TEo,TEold,
$

Xsan,ysan,Xxsao,ysao,qexo,qevo,qlxo,qlyo,
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$ gex,qey,qlx,qly)

implicit double precision (a-h,l,0-z)

double precision TEM

dimension x(401),y(201),TEM(1000)

dimension

TEo0(401,201),TE0ld(401,201),

$ TLo(401,201),TLold(401,201),

$ TEnew(401,201), TLnew(401,201),

$ xsan(401,201),ysan(401,201),

$ xsa0(401,201),ys20(401,201),5(401,201),

$ tkex(401,201),tkey(401,201),

$ qex0(400,200),q1x0(400,200),

$ qex(400,200),q1x(400,200),

$ qeyo(400,200),qlyo(400,200),

$ qey(400,200),qly(400,200),

$ dTE(400,200),dTL(400,200)

integer iteration,flagE flagl,

C Gold lame constant
lemtal=199.0d+9

C Gold shear modulus
cmiul=27.0d+9

C Gold thermal expansion coefficient
alphat1=14.2d-6

C Gold electron heat capacity
Ael=70.0

C Gold lattic heat capacity
cl1=2.5d+6

C Gold electron - lattic coupling factor
gl=2.6d+16

C Gold electron thermal conducitivity
tk01=315.0

C Gold electron relaxation time
taue1=0.04D-12

C Gold lattice relaxation time
taul1=0.8D-12

C Chromium lame constant
lemta2=83.3d+9

C Chromium shear modulus
cmiu2=115.0d+9

C Chromium thermal expansion coefficient
alphat2=4.9d-6

C Chromium electron heat capacity
Ae2=193.3

C Chromium lattic heat capacity
cl2=3.3d+6

C Chromium electron - lattic coupling factor
g2=4.2d+17

C Chromium electron thermal conducitivity
tk02=94.0

C Chromium electron relaxation time
taue2=6.8D-15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C Chromium lattice relaxation time
taul2=1.36D-13

C Laser fluence
flu=500.0

C Laser pulse duration
tp=0.1d-12

C Optical penetration depth
delta=15.3d-9

C Surface reflectivity
sur=0.93

C Spatial profile parameters
rs=1d-6

iteration=0

d=dt*dx*dy

ssel=dt/(2.0*taue1+dt)

sse2=dt/(2.0*taue2+dt)

ssi1=dt/(2.0*taul1+dt)

ssI2=dt/(2.0*taul2+dt)

eel=-
2.0*dx*dy*(3.0*lemtal+2.0*cmiul )*alphatl

ee2=-
2.0*dx*dy*(3.0*lemta2+2.0*cmiu2)*alphat2

ff11=2.0*dx*dy*cl1

ff12=2.0*dx*dy*cl2

C flagE and flagL indicate whether TE and TL are
precise enough
C keep on iterating as long as flagE or flagL
equalsto 1
2 flagE=1

flagl=1

aximumE=0.0
C Define tkex(i,j)
doj=2,m
do i=2,n

temp 1 =abs((TEold(i,j)+ TEo(i,j))(TLold(i,j)* TLo(

1))))
temp2=abs((TEold(i-1,j)+TEo(i-1,j))
$ /(TLold(i-1,j)+TLo(i-1,j)))

tkex(i,j)=0.5*tk01 *(temp 1+temp2)
enddo
do i=n+1,2*n

temp 1 =abs((TEold(i,j)+TEo(ij))(TLold(i,j)*+TLo(

1K)))]
temp2=abs((TEold(i-1,j)*+ TEo(i-1,j))
$ /(TLold(i-1,j)*TLo(i-1,j)))

tkex(1,j)=0.5*tk02*(temp 1 +temp2)
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enddo
enddo

do j=2,m
doi=2,n

temp1=abs((TEold(i,j)*+ TEo(i,j))/(TLold(ij)+TLo(

4)))
temp3=abs((TEold(i,j-1)+TEo(i,j-1))
3 /(TLold(i,j-1)*+TLo(i,j-1)))

tkey(i,j)=0.5*tk01*(temp1+temp3)
enddo
do i=n+1,2*n

temp1=abs((TEold(i,j)*+TEo(i,j))/(TLold(ij)+TLo(

L)
temp3=abs((TEold(i,j-1)+TEo(i,j-1))
3 /(TLold(i,j-1)+TLo(i,j-1)))

tkey(i,j)=0.5*tk02*(temp1+temp3)
enddo
enddo

C Calculate TEnew for Gold and Chromium layers
and the interface
doj=2,m
C Gold layer
do i=2,2*n
if (i.le.n) then
$(i,))=0.94*{lu*(1.0-sur)/(tp*delta)
*exp(-x(1)/delta-y(jy*y(j)/(rs*rs)
3 2. 77*(t-2.0*tp)*(t-
2.0%p)(tp*tp))

ffel=4.0*Ae1*dx*dy*(TEold(ij)*TEold(i,j)
$  +TEold(ij)*TEo(ij)+TEo(ij)*TEo(ij))
$  A3.0%TEold(ij)+TEo(ij)))

tempx 1=dt*dy*tkex(i,jy/dx
tempx2=dt*dy*tkex(i-1,j)/dx

tempy1=dt*dx*tkey(i,j)/dy
tempy2=dt*dx*tkey(i,j-1)/dy

al 1=ffel+(tempx 1+tempx2-+tempyl+tempy2)*sse
1+gl*d

bl1=ffel*TEo(i,j)
b21=-4.0*dy*taue1*sse1*(qexo(i,j)-qexo(i-
Li)

b3 1=tempx1*sse1*(TEold(i+1,j)+TEo(i+1,j)-
TEo(i,j))
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b41=-tempx2*ssel *(TEo(i,j)-TEold(i-
1,j)-TEo(i-1,)))

b51=-4.0*dx*tauel *sse1 *(qeyo(i,j)-
qeyo(i,j-1))

b61=tempyl*ssel*(TEold(i,j+1)+TEo(i,j+1)-
TEo(i))

b71=-tempy2*ssel *(TEo(i,j)-
TEold(i,j-1)-TEo(i,j-1))

b81=-g1*d*(TEo(i,j)-TLold(i,j)-
TLo(i,))

b91=2.0*d*S(i,j)

C TEnew: The new TE at the right now time point
calculated based on the
C old TEs and TE:s at the previous time point

TEnew(i,j)=(b11+b21+b31+b41+b51+b61+b71+b
81+b91)/all

C dTE: Difference between the new and the old
TEs at now time point
dTE(i,j)=abs(TEnew(i,j)-TEold(i,j))

C Interface at i=n+1
else if (i.eq.n+1) then
ai=-
(tkex(n,j)*ssel+tkex(n+1,j)*sse2)/dx
bil=-4.0*tauel*sse 1 *qexo(n,j)/dt
bi2=tkex(n,j)*ssel *(TEo(n+1,j)-
TEold(n,j)
$ -TEo(n,j))/dx
bi3=4.0*taue2*sse2*qexo(i,j)/dt
bid=-
tkex(n+1,j)*sse2*(TEold(n+2,j)+TEo(n+2,j)
$ -TEo(n+1,j))/dx

TEnew(i,j)=(bil+bi2+bi3+bid)/ai
dTE(i,j)=abs(TEnew(i,j)-TEold(i,j))

else
C Chromium Layer

S(1,))=0.94*flu*(1.0-sur)/(tp*delta)
*exp(-x(i)/delta-y(j)*y(j)/(xs*rs)
$ -2.77%(t-2.0*tp)*(t-
2.0*p)/(tp*tp))
ffe2=4.0* Ae2*dx*dy*(TEold(i,j)*TEold(i,))

$ +TEold(i,j)*TEo(i,j)*+ TEo(ij)*TEo(i;))
$ /(3.0%(TEold(i,j)+TEo(i,j)))

tempx 1=dt*dy*tkex(i,j)/dx
tempx2=dt*dy*tkex(i-1,j)/dx
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tempyl=dt*dx*tkey(i,j)/dy
tempy2=dt*dx*tkey(i,j-1)/dy

al2=ffe2+(tempx1+tempx2-+tempy1+tempy2)*sse
2+g2*d

b12=ffe2*TEo(i,j)
b22=-4.0*dy*taue2*sse2*(qexo(1,j)-qexo(i-
Li)

b32=tempx1*sse2*(TEold(i+1,j)+TEo(i+1,j)-
TEo(i,)))

b42=-tempx2*sse2*(TEo(i,j)- TEold(i-1,j)-
TEo(i-1,j))

b52=-4.0*dx*taue2*sse2*(qeyo(i,j)-
qeyo(i,j-1))

b62=tempy1*sse2*(TEold(i,j+1)+TEo(i,j+1)-

TEo(i,))
b72=-tempy2*sse2*(TEo(i,j)-TEold(i,j-1)-

TEo(ij-1))
b82=-g2*d*(TEo(i,j)-TLold(i,j)-TLo(i,}))
b92=2.0*d*S(i,j)

C TEnew: The new TE at the right now time point

calculated based on the

C old TEs and TE:s at the previous time point

TEnew(i,j)=(b12+b22+b32+b42+b52+b62+b72+b
82+b92)/a12

C dTE: Difference between the new and the old
TEs at now time point
dTE(i,jy=abs(TEnew(i,j)-TEold(i,j))
endif
enddo
enddo

do j=2,m
do i=2,2*n
C aximumE: The maximum difference between all
the new and the old TEs
if (aximumE.le.dTE(i,j)) then
aximumE=dTE(,j)
endif
enddo
enddo

C If aximumE is less than 1D-6, which means that
the largest difference
C between the new and old TEs are smaller than
1D-6, make flagE=0 to
C stop the iteration for TE
if(aximumkE.lt.1D-6) then
flagE=0
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endif

doj=2,m
TEnew(1,j)=TEnew(2,j)
TEnew(2*n+1,j)=TEnew(2*n,j)
end do
do i=1,2*n+1
TEnew(i,1)=TEnew(i,2)
TEnew(i,m+1)=TEnew(i,m)
end do

aximumL=0.0

tempx 1=tk01*dt*dy/dx
tempx2=tk02*dt*dy/dx
tempy1=tk01*dt*dx/dy
tempy2=tk02*dt*dx/dy

doj;=2,m
do i=2,2*n

C Gold Layer
if (i.le.n) then

c11=ff11+2.0*(tempx 1 +tempy1)*ssl1+d*gl

d11=ff11*TLo(i,j)
d21=-4.0*dy*taull*ssl1*(qlxo(i,))-qlxo(i-
L)

d31=tempx1*ssl1*(TLold(i+1,j)+TLo(i+1,j)-
TLo(i,j))
d41=-tempx1*ssl1*(TLo(i,j)-TLold(i-1,j)-
TLo(i-1,j))
d51=-4.0*dx*taull *ssl1*(qlyo(i,j)-qlyo(i,j-
D)

d61=tempy1*ssl1*(TLold(i,j+1)+TLo(i,j+1)-
TLo(i,)))
d71=-tempy1*ssl1*(TLo(i,j)-TLold(i,j-1)-
TLo(i,j-1))
d81=-g1*d*(TLo(1,))-TEold(i,j)-TEo(i,j))
d91=eel*(xsan(i,j)+ysan(i,j)-xsao(i,))-
ysao(i,j))

TLnew(i,j)=(d11+d21+d31+d41+d51+d61+d71+d
81+d91)/c11
dTL(i,j)=abs(TLnew(i,j)-TLold(i,j))

else if (i.eq.n+1) then
C Interface at i=n+1
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ci=-(tk01*ssl1+tk02*ss12)/dx

dil=-4.0*taull *qlxo(n,j)/(2.0*taul1+dt)

di2=tk01*ss11 *(TLo(n+1,j)-TLold(n,j)
$ -TLo(n,j))/dx

di3=4.0*taul2*qlxo(n+1,j)/(2.0*taul2+dt)
di4=-
tk02*ss12*(TLold(n+2,j)+TLo(n+2.j)
$ -TLo(n+1,j))/dx

TLnew(i,j)=(dil+di2+di3+did)/ci
dTL(i,j)=abs(TLnew(i,j)-TLold(i,j))
else
C Gromium Layer

c11=ff12+2.0*(tempx2-+tempy2)*ssl2+d*g2

d11=ff12*Tlo(i,))
d21=-4.0*dy*taul2*ss12*(glxo(i,j)-glxo(i-
L)

d31=tempx2*ssI2*(TLold(i+1,j)+TLo(i+1,j)-
TLo(ij))
dd1=—tempx2*ssI2*(TLo(i,j)-TLold(i-1,j)-
TLo(i-1,j))
d51=4.0*dx*taul2*ssI2*(qlyo(i,j)-
qlyo(i,j-1))

d61=tempy2*ss12*(TLold(i,j+1)+TLo(i,j+1)-
TLo(i,))
d71=-tempy2*ss12*(TLo(i,j)-TLold(ij-1)-
TLo(i,j-1))
d81=-g2*d*(TLo(ij)-TEnew(i,j)-TEo(ij))
d91=ee2*(xsan(i,j)+ysan(i,j)-xsao(i,j)-
ysao(i,j))

TLnew(i,j)=(d11+d21+d31+d41+d51+d61+d71+d
81+d91)/c11

dTL(i,j)=abs(TLnew(i,j)-TLold(i,}))
endif
enddo
enddo

doj=2,m
do i=2,2*n
C aximumL: The maximum difference between all
the new and the old TLs
if (aximumL.le.dTL(i,j)) then
aximumL=dTL(i,j)
endif
enddo
enddo

if(aximumL.1t.1D-6) then
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flagL=0 doi=2,n
endif qey(i,j)=(4.0*tauel/(2.0*taue 1 +dt)-
1.0)*qeyo(i,j)
doj=2,m 3 -
TLnew(1,j)=TLnew(2,j) tkey(i,j)*ssel/dy*(TEold(i,j+1)+TEo(i,j+1)
TLnew(2*n+1,j)=TLnew(2*n,j) $ -TEold(i,j)-TEo(i,j))
end do enddo
do i=n+1,2*n
do i=1,2*n+1 qey(i,j)=(4.0*taue2/(2.0*taue2+dt)-
TLnew(i,1)=TLnew(i,2) 1.0)*qeyo(i,))
TLnew(i,m+1)=TLnew(i,m) $ . -
end do tkey(i,j)*sse2/dy*(TEold(i,j+1)+TEo(i,j+1)
b -TEold(i,j)-TEo(i,}}))
C Update all the TEold, TLold with TEnew and enddo
TLnew enddo
doj=1,m+1
do i=1,2*n+1 Commemmmmmmeeee Compute glx and gqly-----------------
TEold(i,j)=TEnew(i,j) doj=2,m
TLold(i,j)=TLnew(i,j) doi=1,n
enddo qix(i,j)=(4.0*taul1/(2.0*taul 1 +dt)-
enddo 1.0)*qlIxo(i,))
$ -
C If flagE or flagL is still be 1, then we should go tk01*ss11/dx*(TLold(i+1,j)+TLo(i+1,j)
back to 2 $ -TLold(i,j)-TLo(i,j))
C to do iteration again to calculate new TE and TL enddo
C Use "iteration" to remember the time of C qix(n,j)=(4.0*taul1*ssl1/dt-
iterations 1.0)*qlxo(n,j)-tk01 *ssl1/dx
if((flagE.eq.1).0OR.(flagL.eq.1)) then C 3
iteration=iteration+1 *(TLold(n+1,j)+TLo(n+1,j)-TLold(n,j)
goto 2 C 3 -TLo(n,j))
else C qlx(n+1,j)=glx(n,})
Commmmmme - Compute gex and gey----------------
doj=2,m do i=n+1,2*n
doi=1,n qlx(1,j)=(4.0*taul2/(2.0*taul2+dt)-
qex(i,j)=(4.0*tauel/(2.0*tauel+dt)- 1.0y*qlxo(i,j)
1.0)*gexo(i,j) $ -
3 - tk02*ss12/dx*(TLold(i+1,j)+TLo(i+1,))
tkex(i,j)*ssel/dx*(TEold(i+1,j)+TEo(i+1,j) $ -TLold(i,j)-TLo(i,j))
3 -TEold(i,j)-TEo(i,j)) enddo
enddo enddo
C gex(n,j)=(4.0*tauel*ssel/dt-
1.0)*qexo(n,j)-tkex(n,j) do j=1,m
C 3 *ssel/dx do i=2,n
C $ *(TEold(n+1,))+TEo(n+1,j)- qly(i,j)=(4.0*taull/(2.0*taul1+dt)-
TEold(n,j)-TEo(n,j)) 1.0)*qlyo(i,j)
C gex(n+1,j)=qex(n,j) h) -
do i=n+1,2*n tk01*ssl1/dy*(TLold(i,j+1)+TLo(i,j+1)
qex(i,j)=(4.0*taue2/(2.0*tane2+dt)- $ -TLold(i,})-TLo(i,j))
1.0)*qexo(1,j) enddo
$ - do i=n+1,2*n
tkex(i,j)*sse2/dx*(TEold(i+1,j)+TEo(i+1,j) qly(i,j)=(4.0*taul2/(2.0*taul2+dt)-
$ -TEold(i,j)-TEo(i,))) 1.0)*glyo(i,j)
enddo $ -
enddo tk02 *ss12/dy*(TLold(i,j+1)+TLo(i,j+1)
$ ~TLold(i,j)-TLo(i,j))
do j=1,m-1 enddo
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enddo
endif
C write (*,*) "iteration=", iteration
Commmmmmem e Iterations Done
END

C end of subroutine temp()

subroutine velocity(n,m,dx,dy,dt,TEold,TLold,

$
Xsen,ysen,ssen,Xsao,ysao,ssao,vlo,v2o,vin,v2n,ul
o,u2o,uln,u2n)

implicit double precision (a-h,l,0-z)

dimension TEo0ld(401,201),TLo0ld(401,201),

$ xsen(401,201),ysen(401,201),ssen(401,201),

$ xsao(401,201),ysao(401,201),ssa0(401,201),

$
v10(401,201),v20(401,201),vIn(401,201),v2n(401
,201),

$
ulo(401,201),u20(401,201),u1n(401,201),u2n(401
,201)

C Gold lame constant
lemtal=199.0d+9

C Gold shear modulus
cmiul=27.0d+9

C Gold thermal expansion coefficient
alphat1=14.2d-6

C Gold density
loul=1.93d+4

C Gold electron - blast coefficient
tril=70

C Chromium lame constant
lemta2=83.3d+9

C Chromium shear modulus
cmiu2=115.0d4+9

C Chromium thermal expansion coefficient
alphat2=4.9d-6

C Chromium density
lou2=7.19d4+3

C chromium electron - blast coefficient
tri2=193.3

C Velocity and displacement in the thickness
direction
doj=2,m

C The thin film of gold
doi=1,n
vin(1,j)=((xsen(i+1,j)-xsen(1,j))/dx
$ +(ssen(i,j)-ssen(i,j-1))/dy
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$ +ril *(TEold(i+1,j)*TEold(i+1,j)-
TEold(i,j)* TEold(i,j))/dx)
$ *dvioul+vlo(i)

uln(i,j)=vin(i,j)*dt+ulo(i,))
end do

C The thin film of chromium
do i=n+2,2*n+1
vin(i,j)=((xsen(i,j)-xsen(i-1,j))/dx
$ +(ssen(i-1,j)-ssen(i-1,j-1))/dy
$ +tri2*(TEold(i,j)*TEold(i,j)- TEold(i-
1,j)*TEold(i-1,j))/dx)
$ *dtlou2+vio(i,})

uln(i,j)=vin(ij)*dt+ulo(i,j)
end do

end do

vin(n,2)=((xsen({n+1,2)-xsen(n,2))/dx

$ +ssen(n,2)/dy

$ +tril *(TEold(n+1,2)*TEold(n+1,2)-
TEold(n,2)*TEold(n,2))/dx)

$ *dt/loul+vlo(n,2)

uln(n,2)=vin(n,2)*dt+ulo(n,2)
C

vin(n,m)=((xsen(n+1,m)-xsen(n,m))/dx

$ -ssen(n,m-1)/dy

$ +tril*(TEold(n+1,m)*TEold(n+1,m)-
TEold(n,m)*TEold(n,m))/dx)

$ *dtlout+vlo(n,m)

uln(n,m)=vin(n,m)*dt+ulo(n,m)

vin(nt+2,2)=((xsen(n+2,2)-xsen(n+1,2))/dx

$ +ssen(n+1,2)/dy

$ +tri2*(TEold(n+2,2)*TEold(n+2,2)-
TEold(n+1,2)*TEold(n+1,2))/dx)

$ *dtlou2+vlo(nt+2,2)

uln(nt+2,2)=vin(n+2,2)*dt+ulo(n+2,2)

vin(n+2,m)=((xsen(n+2,m)-xsen(n+1,m))/dx

$ -ssen(n+1,m-1)/dy

$ +tri2*(TEold(n+2,m)*TEold(n+2,m)-
TEold(n+1,m)*TEold(n+1,m))/dx)

$ *dt/lou2+vlio(n+2,m)

uln(n+2,m)=vin(n+2,m)*dt+ulo(n+2,m)

vin(n,1)=((xsen(n+1,2)-xsen(n,2))/dx

$ +2.0*ssen(n,1)/dy

$ +rilX(TEold(n+1,1)*TEold(n+1,1)-
TEold(n,1)*TEold(n,1))/dx)

$ *dtloul+vlo(n,1)

uln(n,1)=vin(n,1)*dt+ulo(n,1)

vin(n,m+1)=((xsen(n+1,m)-xsen(n,m))/dx
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$ -2.0*ssen(n,m)/dy

$  +tril*(TEold(n+1,m+1)*TEold(n+1,m+1)-
TEold(n,m+1)

$ *TEold(n,m+1))/dx)

$ *dt/loul+vlio(n,m+1)

uln(n,m+1)=vin(n,m+1)*dt+ulo(n,m+1)

vin(n+2,1)=((xsen(n+2,2)-xsen(n+1,2))/dx

$ +2.0*ssen(n+1,1)/dy

$ +tri2*(TEold(n+2,1)*TEold(n+2,1)-
TEold(n+1,1)*TEold(n+1,1))/dx)

$ *dvlou2+vlio(n+2,1)

uln(nt+2,1)=vin(n+2,1)*dt+ulo(n+2,1)

vin(n+2,m+1)=((xsen(n+2,m)j-
xsen(n+1,m))/dx

$ -2.0*ssen(n+1,m)/dy

$ +tri2*(TEold(n+2,m+1)*TEold(n+2,m+1)-
TEold(n+1,m+1)

$ *TEold(n+1,m+1))/dx)

$ *dtlou2+vio(nt+2,m+1)

uln(o+2,m+1)=vin(n+2 m+1)*dt+ulo(n+2,m+1)

C Velocity and displacement in the length
direction
doj=1,m

C The thin film of gold

doi=2,n

v2n(i,j)=((ssen(i,j)-ssen(i-1,j))/dx

$ +(ysen(i,j+1)-ysen(i,j))/dy

$ +tril *(TEold(i,j+1)*TEold(ij+1)-
TEold(i,j)*TEold(i,j))/dy)

$ *dvloul+v2o(i,j)

u2n(i,j)=v2n(i,j)*dt+u2o(i,))
end do

C The thin film of chromium

do i=n+2,2*n

v2n(i,j}=((ssen(i,j)-ssen(i-1,j))/dx

$ +H(ysen(i,j+1)-ysen(i,j))/dy

$ +tri2*(TEold(i,j+1)*TEold(i,j+1)-
TEold(i,j)*TEold(i,j))/dy)

$ *dvlou2+v2o(i,j)

u2n(i,j)=v2n(i,j)*dt+u2o(i,j)
end do

end do

v2n(n,1)=(ysen(n,2)/dy)*dt/loul+v2o(n,1)
u2n(n,1)=v2n(n,1)*dt+u2o(n,1)

v2n(n,m)=(-ysen(n,m)/dy)*dt/loul+v2o(n,m)
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u2n(n,m)=v2n(n,m)*dt+u2o(n,m)

v2n(n+2,1)=(ysen(n+2,2)/dy)*dt/lou2+v2o(n+2,1)
u2n(n+2,1)=v2n(n+2,1)*dt+u2o(n+2,1)

v2n(n+2,m)=(-
ysen(n+2,m)/dy)*dt/lou2+v2o(n+2,m)
u2n(n+2,m)=v2n(n+2 m)*dt+u2o(n+2,m)

C The interface between gold and chromium
C Velocity in length direction

doj=1l,m

al=cmiul *dt/dy
a2=cmiul *dt/dx
a3=cmiul*ssao(i,j)
bl=cmiu2*dt/dy
b2=cmiu2*dt/dx
b3=cmiu2*ssao(i,j)

v2n(n+1,j)=(a2*v2n(n,j)+b2*v2n(n+2 j)+b1*(v1in(

‘oHl,j+1)-vIin(nt+1,j))

$ +b3-al*(vin(n+1,j+1)-vin(nt1,j))-
a3)/(a2+b2)

u2n(n+1,))=v2n(n+1,j)*dt+u2o(n+1,))
end do

C Velocity in thickness direction
do j=2,m
al=(lemtal+2.0*cmiul)*dt*2.0/dx
a2=(lemtal+2.0*cmiul)*xsao(n+1.j)
a3=lemtal*dt/dy
ad=lemtal*ysao(n+1,))
a5=(3.0*lemtal+2.0*cmiul)*alphatl
bl=(lemta2+2.0*cmiu2)*dt*2.0/dx
b2=(lemta2+2.0*cmiu2)*xsao(n+2,j)
b3=lemta2*dt/dy
bd4=lemta2*ysao(n+2,j)
b5=(3.0*lemta2+2.0*cmiu2)*alphat2
vin(n+1,j)=(al*vin(n,j)+b1*vin(n+2,j)+b2
$ +b3*(v2n(n+1,j)-v2n(n+1,j-1))+b4-
b5*(TLold(n+2,j)-300.0)
b -a2-a3*(v2n(n+1,j)-v2n(n+1,j-1))-
a4+a5*(TLold(n+1,j)-300.0))
$ /(al+bl)

uln(n+1,j)=vin(nt+l1,j)*dt+tulo(n+1,))
end do

return
end
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