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ABSTRACT 

Wireless Sensor Networks (WSNs) consist of a large number of sensors, which in 

turn have their own dynamics. They interact with each other and the base station, which 

controls the network. In multi-hop wireless sensor networks, information hops from one 

node to another and finally to the network gateway or base station. Dynamic Recurrent 

Neural Networks (RNNs) consist of a set of dynamic nodes that provide internal 

feedback to their own inputs. They can be used to simulate and model dynamic systems 

such as a network of sensors. 

In this dissertation, a dynamic model of wireless sensor networks and its 

application to sensor node fault detection are presented. RNNs are used to model a sensor 

node, the node's dynamics, and the interconnections with other sensor network nodes. A 

neural network modeling approach is used for sensor node identification and fault 

detection in WSNs. The input to the neural network is chosen to include previous output 

samples of the modeling sensor node and the current and previous output samples of 

neighboring sensors. The model is based on a new structure of a backpropagation-type 

neural network. The input to the neural network (NN) and the topology of the network 

are based on a general nonlinear sensor model. A simulation example, including a 

comparison to the Kalman filter method, has demonstrated the effectiveness of the 

proposed scheme. The simulation with comparison to the Kalman filtering technique was 

carried out on a network with 15 sensor nodes. A fault such as drift was introduced and 
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successfully detected with the modified recurrent neural net model with no early false 

alarm that could have resulted when using the Kalman filtering approach. 

In this dissertation, we also present the real-time implementation of a neural 

network-based fault detection for WSNs. The method is implemented on a TinyOS 

operating system. A collection tree network is formed, and multi-hoping data is sent to 

the base station root. Nodes take environmental measurements every N seconds while 

neighboring nodes overhear the measurement as it is being forwarded to the base station 

for recording it. After nodes complete M and receive/store M measurements from each 

neighboring node, recurrent neural networks are used to model the sensor node, the 

node's dynamics, and the interconnections with neighboring nodes. The physical 

measurement is compared to the predicted value and to a given threshold of error to 

determine a sensor fault. The process of neural network training can be repeated 

indefinitely to maintain self-aware network fault detection. By simply overhearing 

network traffic, this implementation uses no extra bandwidth or radio broadcast power. 

The only costs of the approach are the battery power required to power the receiver for 

overhearing packets and the processor time to train the RNN. 
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CHAPTER 1 

MOTIVATION 

A sensor is a dynamic system; thus, in order to understand the sensor 

performance, we need to understand its dynamics and the way they interact with the 

external physical world, other sensors, the environment, and humans. Due to the lower 

cost and development of networking technology, sensors are increseangly being 

networked in wired and wireless sensor networks. 

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes that can 

communicate with each other, sensors that measure a desired physical quantity, and the 

system base station for data collection, processing, and connection to the wide area 

network. Modern wireless sensor nodes have microprocessors for local data processing, 

networking, and control purposes [1]. WSNs have enabled numerous advanced 

monitoring and control applications in environmental, biomedical, and other applications. 

Sensors in such networks have their own dynamics, often nonlinear, and modeling 

such a sensor network is often not trivial. Since Recurrent Neural Networks (RNNs) 

consist of interconnected dynamic nodes, we explore their similarities with WSNs and 

exploit those similarities in the WSN modeling. This dissertation presents modeling of 

WSNs using a modified dynamic RNN. 

The real motivation for WSN modeling stems from the need for intelligent fault 

detection in complex distributed sensory systems. Since sensor networks often operate in 
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potentially hostile and harsh environments, most applications are mission critical. Sensors 

are often used to compute control actions [2-4] where sensor faults can cause catastrophic 

events. For instance, NASA was forced to abort the launch of space shuttle Discovery 

due to a failure of one of the sensors in the sensor network of the shuttle's external tank 

(failure was discovered by human inspection). 

Components such as sensors and actuators have significantly higher fault rates 

than the traditional integrated semiconductor circuit-based systems. Multi-sensor systems 

need feedback information about the health status of their nodes in order to recover and 

heal from eventual faults. Such a system would have improved reliability over existing 

sensor networks. Since external and internal malfunctions or excessive noise can occur, 

sensor readings are somewhat uncertain in the sense that no existing sensor will deliver 

accurate readings at all times. It is therefore desirable to develop a WSN that will have 

the capability of fault detection, isolation, and accommodation. Efficiency in converting 

data to features while consistently accommodating the uncertainty inherent in the 

measurements form a key issue for diagnosis and dealing with sensor faults [5] [6]. Fault-

tolerance has become essential and urgent for modern sensory systems [7]. The 

traditional way of achieving fault-tolerance in dynamic systems is through hardware 

redundancy such as the use of multiple sensors. But the multiplication of sensor devices 

adds cost, complexity, and power consumption to the sensor node and the whole network. 

Most of the present research efforts have concentrated on an analytical redundancy [8] 

[9] in which sensor measurements are processed analytically and mathematical models 

are compared with physical measurements. Instead of using additional hardware in the 

form of multiple sensors, we propose to use computational resources for intelligent fault 
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detection. A dynamic model of a sensor node is formed from information using 

neighboring nodes in the network. RNNs have been applied to model a network due to 

their topological similarities with WSNs. 



CHAPTER 2 

WIRELESS SENSOR NETWORK MODELING 

USING MODIFIED RECURRENT NEURAL 

NETWORKS: APPLICATION 

TO FAULT DETECTION 

2.1 Introduction 

Instead of using additional hardware in the form of multiple sensors, we propose 

to use computational resources for intelligent fault detection. A dynamic model of a 

sensor node is formed and based on information from neighboring nodes in the network. 

RNN's have been applied to model a network, due to their topological similarities with 

WSNs. Communication uncertainties are modeled using confidence factors based on 

received signal strength. More detailed communication models can be applied, but this is 

not the topic of the dissertation. 

In addition to neural networks, the identification of a nonlinear dynamic system 

was studied using some alternative techniques. Gallman and Narendra [10] used an 

iterative algorithm to obtain the dynamics of the system from finite length input and 

noisy output data records. This algorithm has shown to converge for a class of inputs, 

including colored Gaussian processes. Haber [11] discussed a two-step identification 

method of least-squares parameter estimation based on correlation functions for nonlinear 
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dynamic systems with linear parameters. Shiavo and Luciano [12] presented a new, 

powerful, and flexible fuzzy algorithm for nonlinear dynamic system identification 

The rest of the chapter is organized as follows. Section 2.2 covers briefly some 

background on RNNs and their function approximation property. In Section 2.3, a 

modified RNN and its model of a dynamic sensor node is introduced, including a result 

that shows how neighboring nodes can be used in sensor node modeling. Section 2.4 

describes how such a tool can be used in the sensors' failure detection in distributed 

sensor networks. Numerical simulations are given in Section 2.5 to show the 

effectiveness of the proposed modeling scheme. Finally, Section 2.6 is the conclusion. 

2.2 Background 

Artificial RNNs have the ability to capture and model dynamic properties of 

nonlinear systems. The RNN nodes have their own dynamics with interconnecting 

weights between the nodes - similar to the wireless sensor networks where each sensor 

node has its own dynamics. Recurrent networks also include feedback loops which 

standard Neural Networks (NNs) do not have [13-15]. 

We have used a nonlinear output error model [13] given by 

y(k) = FNN(y(k-l),y(k-2),...,y(k-m),u(k)Mk-l),u(k-2),...,u(k-n)) (2.1) 

where y(k) is the NN output, y(k-i) are previous NN outputs, and u{k-i) are inputs 

including the previous inputs. The nonlinear function FNN is computed using a 

feedforward neural net given in matrix form by 

Fm(x)=WTcr(VTx) (2.2) 

where x is the NN input, V is the first-layer weights, W is the second layer weights, and 

o(-) is the neural net activation function (usually chosen as standard sigmoid function). 



The output activation function is chosen as a linear function. The structure of the NN is 

given in Figure 2.1. 

m 

Figure 2.1 Two-layer recurrent neural network 

The two-layer NN in Figure 2.1 consists of two layers of tunable weights and 

thresholds and has a hidden layer and an output layer. The hidden layer has L neurons, 

and the input layer is a combination of delayed input u(k) and the output y(k). 

Many well-known results indicate that any sufficiently smooth function can be 

approximated arbitrarily close on a compact set using a two-layer NN with appropriate 

[16] [17] weights. Both layer weights V and W can be tuned. The NN universal 

approximation properly says that any continuous function / can be approximated 

arbitrarily well using a linear combination of sigmoidal functions, namely 

f(x) = WTa(VTx) + e(x) , (2.3) 

where the e(x) is the NN approximation error. The reconstruction error is bounded on a 

compact set S by \\e(x)\\ < eN. Moreover, for any eK one can find a NN such as \\£(x)\\ < eN 

for all x e S . 
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Given a function g(x) and a domain set D c 9T, the function is said to satisfy 

Lipschitz condition on set D if 

\\g(x)-g(y)\\<4x-y\\, (2.4) 

for any x,ye D. The function is said to be globally Lipschitz if the above condition is 

valid on %". If the function g is mapping 9? —»91, then the condition is equivalent to 

\g(x)-g(y)\<l]x-y\ , (2.5) 

which says that a straight line connecting any two points of g(x) cannot have a slope with 

an absolute value greater than L. Therefore, any function with an infinite slope at some 

point is not Lipschitz at that point. 

2.3 Modified Recurrent Neural Nets in Sensor Network 
Modeling 

Dynamic RNNs consist of a set of dynamic nodes that provide internal feedback 

to their own inputs (see Figure 2.1). They can be used to simulate and model dynamic 

systems such as a network of sensors. WSNs consist of a large number of sensors, which 

in turn have their own dynamics. They interact with each other and the base station, 

which controls the network. In multi-hop wireless sensor networks, information hops 

from one node to another and finally to the network gateway or base station. 

To develop a dynamic model for such sensors, without a loss of generality, we 

assume that there is one sensor per sensor node. More sensors per node will simply 

increase the size of the RNNs. 

Sensor nodes can be viewed as small dynamic systems with memory-like features. 

Output of one node forwards the information to the next node (for example, node 3 
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provides the input to node 5, Figure 2.2). While the standard RNN is structured in layers, 

we introduce an ad-hoc RNN analogous to WSN systems with confidence factors 

(0 < CtJ < 1) between the nodes i and j . The confidence factor depends on the signal 

strength and data quality in communication links between the nodes. For instance, in 

tuning node 2, valuable inputs are coming from node 1 and node 4, providing that 

corresponding confidence factors are close to 1. If node 7 is not in the coverage area of 

node 2, then the confidence factor is 0 and node 7 will not influence node 2 directly. 

Confidence Factors 
RNN Nodes 

Figure 2.2 Ad hoc recurrent neural network with topology 
of a wireless sensor network 

Note that the confidence factors do not provide stochastic modeling of the 

communication channel. The overall modeling process can be divided into two phases: 

the learning phase is where the neural network (NN) adjusts its weights that correspond 

to the healthy and N faulty models, where TV is the number of fault types. The production 

phase is where the current output of the sensor node is compared with the output of the 



9 

NN. The difference between these two signals is used as a measure of a sensor's health 

status. In case of a fault, NN weights (model) are compared with the faulty models to 

isolate the fault. If no similar fault model is found, then the fault bank model is updated 

with the new type of fault and corresponding model parameters, i.e., NN weights. This 

whole process is repeated during the production phase. 

Consider a nonlinear dynamic sensor model given by 

yi(k) = fi(yi(k-l),yi(k-2),...,yi(k-m),ui(k)) (2.6) 

where «,(&), yt{k) are the sensor input and output at sample k, and •/,. s are unknown 

nonlinear functions. In order for a sensor to be operational and the user to determine the 

real sensor input, the function /,- has to be invertible. 

ut(k) = f-1 (y,(k-1), y.(k-2),..., yt(k-m),yt(k)) (2.7) 

Equation 2.7 indicates that in order to determine the physical input at the sample k, 

knowledge of the present and past m sensor outputs is required. A more general dynamic 

sensor model is given by [12] 

yi(k) = fi(yi(k-l),yi(k-2),...,yi(k-m),ui(k)) (2.8) 

where u"{k) is a vector of input data u"(k) = [ui(k),ui(k-\),...,ui(k-n)]. Similarly, in 

order for the sensor to be usable and users to determine the physical input values based 

on the sensor outputs, the nonlinear function has to be invertible with respect to input 

signal arguments 

u;!(k) = fi(yi(k-V),yi(k-2),...,yi(k-m),yi(k)) . (2.9) 

Such sensor models correspond to a general sensor model given in [19], i.e., 

Hammerstein-Wiener nonlinear feedback dynamic sensor model (Figure 2.3), which 
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consists of a linear dynamic block surrounded by three nonlinear static blocks [20]. 

Physical 
Input 

Nonlinearity 

Measured 
Output 

Static 
Nonlinearity 

Figure 2.3 A linear dynamic block surrounded by three 
static nonlinear blocks representing a Hammerstein-Wiener 

dynamic sensor model 

It is assumed that all sensors have models of the same order. If that is not the case, 

the analysis can still be carried out with slight modification. 

Assumption 1: Sensor nodes have a nonlinear model of the same order given by 

(2.6). 

Assumption 2: Functions/, s are globally Lipschitz functions with L,s being their 

Lipschitz constant, respectively. 

While wireless sensor nodes are distributed in the field, the neighboring nodes are 

assumed to have bounded differences in measured physical quantity. Mathematically, the 

assumption is given as follows. 

Assumption 3: Neighboring sensor nodes have measurement events that differ by 

a bounded constant, i.e., for a sensor node's neighbors a and b, 

ua(k)-ub(k) = eab(k), (2.12) 

and\\e„Ak)\\<e-

The next result shows how to model a wireless sensor network using a recurrent 
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neural network and how to use such a tool in failure detection of sensor nodes. 

Theorem 1 (Wireless sensor network model using RNNs): 

Having a model of a sensor node i (Equation 2.6), assumptions 1-3, and the node 

neighbors that include nodes i\, h,..., iu (see Figure 2.4), the output of the sensor node 

can be approximated using a RNN with inputs consisting of the previous outputs from 

node i and its neighboring nodes 

yt(k) = RNN^y^k-lXy^k-2),..., yi(k-m),yiXk),yij(k-l),...,yij(k-m)) + c (2.13) 

wherej=l, 2,..., iV; and c is a small bounded constant. 

Figure 2.4 Sensor node i and its neighboring 
sensors /;, ii, ..., im-

Proof: 

From Assumption 3 it follows that 

ui(k) = uij(k) + eij(k), (2.14) 

where j=l,2,...,N{. Equivalently, the input u,(k) is given by 

1 N, 

ui(k) = —Jju(k) + eij(k). (2.15) 

Therefore, one has 
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yi(k) = fi(yi(k-l),yi(k-2),...,yi(k-m),^-JTuij(k) + eij(k)). (2.16) 

Using expression (2.7) one has 

yi(k) = fi(yi(k-\),yi(k-2),...,yl(k-m),^fjfi-\yij(k-l),yiJ(k-2),...,yij(k-m),yij(k)) + elj(k))-

(2.17) 
Knowing that the function/ is Lipschitz yields 

yi(k) = gi(yi(k-l),yi(k-2),...,yi(k-m),yiik),yij(k-l),...,yi.(k-m)) + d 

(2.18) 
wherey=l, 2,..., Ni, and jd\\ < emax(Ly.). 

Using NN function approximation property, a RNN that approximates the 

unknown function gi is such that 

gi(yi(k-l),yi(k-2),...,yi(k-m),yij(k),yiJ(k-l),...,yij(k-m)) = RNNi(x) + ei(x) 

(2.19) 
where the vector x is given by 

x = [yi(k-l),yi(k-2),...,yi(k-m),yij(k),yij(k-l),...,yij(k-m)]. (2.20) 

The bounded constant c is then given by 

c = em + e max(L;) . (2.21) 

This completes the proof. 

This proof shows that the sensor node output can be approximated as a RNN with 

inputs as m previous output samples of the same node and m previous output samples of 

neighboring sensors. The RNN approximates sensor dynamics which can in general be 

nonlinear. The proposed method can actually be applied for linear and nonlinear, 

dynamic and static sensor models. 

The previous results assume ideal communication links. In cases containing 

communication link uncertainties, the exact value of y, (k) is not available. Instead, we 



13 

use the output values of the neighboring sensor nodes combined with confidence factors, 

i.e., C.. v. (k). Then the recurrent neural net sensor node models is given by 

yi(k) = RNNi(yi(k-l),yi(k-2),...,yi(k-m),CJiyiXk),Cjiyij(k-\),...,Cjiyij(k-m)) + c. 

(2.22) 

Confidence factors for sensor node i are proportional to the signal strength 

between node / and its neighbors. A confidence factor between neighboring nodes i andy 

represents a "confidence" of sensor node i from data generated by sensor node j . The 

factor depends on certain parameters, such as the proximity and distance between two 

nodes, the terrain between the nodes, the topology of the sensor network, and the 

received signal strength. We use received signal strength, which can be obtained from 

receiving sensor nodes, as a measure of the confidence factor. The received signal 

strength indicator (RSSI) has been used in practical applications as a part of IEEE 802.11 

standard, and existing commercial sensor nodes have this capability (Crossbow and 

MotelV wireless sensor nodes). 

2.4 Application to Sensor Node Fault Detection 

Previous results provide a tool for approximating a wireless sensor node output 

using RNNs. The method can be applied to a wide range of nonlinear dynamic models. A 

motivation for the above results stems from the need to detect faults in a network of 

distributed, wireless network of sensor nodes. 

In order to detect possible sensor faults at the node level, we compare the real 

output and the RNN approximation model. If such a difference is larger than a threshold 

then a fault has occurred at the sensor. 

For a sensor node i, its real output yt:(k), and a RNN model output RNN;(k), if 
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\\RNN i(k) - y/(k)\\ > rji, then a fault has occurred at the sensor node i. 

Figure 2.5 and Figure 2.6 show the structure of the modified recurrent network 

with its inputs consisting of the delayed output signals of the same NN and the previous 

and current modified output signals from neighboring sensors. It is initially assumed that 

all confidence factors between the node i and the neighboring nodes are equal to 1. Figure 

2.5 shows the topology during the learning phase and Figure 2.6 during the production 

phase, where a fault analyzer detects the difference between sensor and modified RNN. 

file:////rnn


15 

ut(k)_ 

RWil \> 

Sensor / 

Rmk-nft 

Sensor /", 

Sensor / 

Sensor /. 

\ it) 

i ik-b 

Y(k-nt 

C: 

C 

v(A-n 

v (k-nt 

yik) 

.V(M> 

v (k-i>t 

Q 

Modified 
Recurrent 

Neural 
Network 

jm. 

LEARNING 
ALGORITHM 

RNN(k) 

Figure 2.5 Block diagram of the system identification in the 
learning phase 



16 

uXk) Sensor /' yXk) 

R\Mk-\) 
AWAU-2) 

Sensor / \; (A—I) 

C 

Sensor / y„(k-\) 

v ik-iti 

c 

c, 

Sensor / 

v(A) 

.v (it- li 

\-{k-m 

Modified 
Recurrent 

Neural 
Network 

Threshold 

FAULT 
ANALYZER 

RNN,(k) 

Fault 
Alarm 

Figure 2.6 Block diagram of the system identification in the 
production phase 

2.5 Simulation and Simulation Results 

We have simulated a sensor network with 15 sensor nodes using one sensor per 

node. Each node has 2 or 3 "visible" neighbors. Of course, if sensor ;' is a neighbor of j , 

then the opposite is also true. 
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Each sensor is modeled as a Hammerstein-Wienner [12] nonlinear feedback 

dynamic sensor, (Figure 2.3), where the nonlinearity part is an arctan{-) function and the 

dynamical element is given by H(s) = . Input to the sensor / during both 
s2 + s + 1 

training and production phases is chosen by 

« /(t) = 10 + s i n f i ± ^ - ] + « /(0 (2-23) 

where n ;0) is a white noise at sensor node i with the variance of 0.6, and the sampling 

time is equal to 0.1 seconds. 

Each sensor is modeled using a Modified Recurrent Neural Network (MRNN) 

described in a previous section. A MRNN node has input consisting of delayed output 

samples of the same node and current and previous outputs of the neighboring sensor 

nodes. At first, we assumed confidence factors equal to one, but later we made a more 

realistic assumption with confidence factors less than one. 

In the simulation, the RNN has an input layer with 8 nodes, a hidden layer with 10 

nodes, and an output layer with one node. The learning algorithm is the standard 

backpropagation. The learning rates for the first layer and the hidden layer are set to 0.01. 

The learning phase stopped after the difference between expected and actual artificial 

neural network (ANN) output reached a steady-state value. The simulation software was 

written in Microsoft Visual C++ .NET. 

Sensor #1 results are shown in Figure 2.7. The output of the MRNN closely 

approximates the actual output of the sensor with a small error. The MRNN model can 

certainly reproduce the dynamic behavior of the sensor. Figure 2.8 shows the discrepancy 

between the actual and the MRNN model outputs with confidence factors set to 1. 
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During the learning phase, Figure 2.9 shows the evolution of the difference 

between the neural network model and the actual sensor output. Notice that this error 

decreases as the number of iterations increases. 
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A more realistic assumption is to consider confidence factors between nodes as 

being less than one. Taking C21 =0.8, C31 =0.6, and C41 =0.95, the results for sensor node 1 

are shown in Figure 2.10. 
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Figure 2.11 shows the sampled output of sensor #1 when this sensor has a fault 

(drift) starting at 1.6 seconds. Also shown is the estimated MRNN output when the sensor 

is in a normal healthy mode. 
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Figure 2.11 Output of faulty sensor #1 and its MRNN model 

The neural net learning rate rj, which has a value between 0 and 1, plays a key 

role in the learning process. It affects the rate of convergence during the learning phase. 

For too small values of the learning rate, the learning process will be very slow with a 

high probability of convergence. On the other hand, when 7] approaches one, the learning 

process is fast with a low probability of convergence. Therefore, using a moderate value 

of 7] is recommended. In addition, a number of training samples also plays an important 

role in modeling accuracy and sensor generalization. By generalization we refer to the 

ability of the network to approximate the output for an input different from the training 

set. The results in the simulation illustrate the result. 
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The initial NN weights also affect the learning time and convergence of the cost 

function (sum of errors between desired and actual outputs). For instance, when the initial 

weights are chosen near a local minimum, the cost function will converge to that 

minimum (particularly for a small learning rate). When the initial weights are chosen near 

a global minimum, the cost function will converge to this global minimum. In both, the 

choice of initial weights and the learning rate can affect the number of iterations needed 

for satisfactory neural network convergence. 

A data window with n+l samples corresponds to current and n previous sensor 

outputs. The window size affects the precision and accuracy of the step-ahead 

approximated sensor value as well as the sensitivity of the fault detection technique. We 

have chosen a window size of four samples. Increasing the window size adds more nodes 

to the MRNN. Therefore, a trade-off occurs between increased accuracy, additional 

complexity of the NN, and ultimately the duration of the training process. In particular, 

for online measurement applications, using a smaller window size is desirable. After 

satisfactory convergence has been achieved, the validation is provided by estimating the 

next (future) sensor sample. 

2.6 Conclusion 

We have developed a dynamic model of a wireless sensor network and its 

application to sensor failure detection and identification. This model shows how the NN 

model depends on the sensor model and the network structure. The overall network 

model corresponds to the topology of the wireless sensor network. The inputs to the NN 

are taken from the modeled node and neighboring nodes. Communication confidence 

factor was taken into account in the modeling. 
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Example simulation is carried on a network with 15 sensor nodes. A fault such as 

drift was introduced and was successfully detected with modified recurrent neural net 

model. 



CHAPTER 3 

MODIFIED RECURRENT NEURAL 

NETWORK VS. KALMAN 

FILTERING IN WSN 

FAULT DETECTION 

3.1 Introduction 

Many techniques are available for nonlinear dynamic system identification using 

NNs. Bernieri et al. [21] [22] compared output signals of a NN model and the sensor to 

detect faults. Once the fault has been detected, the parameters of the NN identifier are 

compared in order to isolate a fault. Narendra and Parthasarathy [13] demonstrated that 

NNs can effectively be used for the identification and control of nonlinear dynamic 

systems. Ahmed [23] presented a rapid neural network for identifying unknown nonlinear 

dynamic systems when the inputs and outputs are accessible for measurements. Straub 

and Shroder [24] presented a new approach to identifying nonlinear dynamic systems 

which is based on a general regression NN. Introducing, proving, and simulating a new 

tool for nonlinear dynamic systems, like the MRNN technique, need to be compared to 

some other powerful techniques like Kalman filtering. 

23 
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3.2 A Simulation Example of MRNN Tool VS. Kalman 
Filtering 

We compared the RNN model with a Kalman filter. The estimated value from the 

previous time step and the current measurement coming from the real sensor are used as 

input variables to the Kalman filter. The Kalman filter is a recursive estimator. Thus, only 

the estimated state from the previous time step and the current measurement are needed 

to compute the estimate for the current state. The Kalman filter has two distinct phases: 

predict and update. The predict phase uses the state estimate from the previous timestep 

to produce an estimate of the state at the current timestep. In the update phase, 

measurement information at the current timestep is used to refine this prediction to arrive 

at a new, (hopefully) more accurate state estimate for the current timestep. 

For sensor #1, the results for the recurrent neural network modeling and Kalman 

filtering techniques are shown in Figure 3.1, including a comparison of both results. The 

output of the MRNN closely approximates the actual output of the sensor with an error 

clearly smaller than the one produced using the Kalman filter model. The MRNN model 

can certainly better reproduce the dynamic behavior of the sensor. Also shown are the 

discrepancies between the actual output of sensor #1, its resulting model neural network, 

and Kalman filtering with confidence factors set to 1. 
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Figure 3.1 Actual output of sensor #1, its models using 
modified recurrent neural network and Kalman filter, and 
their corresponding discrepancies with confidence factors 

set to 1 

Figure 3.2 shows the evolution of the error between the NN model and the actual 

sensor output during the learning phase. The error decreases with the number of training 

iterations. 
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Figure 3.2 Evolution of the difference e(k) between the 
MRNN model and the actual output of sensor #1 with 

confidence factors set to 1. 

A more realistic assumption is to consider confidence factors between nodes as 

less than one. Taking c21 =0.8, C3I =0.6, and C41 =0.95, the results for sensor node 1 are 

shown in Figure 3.3 and Figure 3.4. One can notice a larger difference between the sensor 

output and the MRNN model in this case, but the result of our approach is still better 

than that of the Kalman filtering technique. 
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Figure 3.4 Evolution of the difference e(k) between the 
MRNN model and the actual output of sensor #1 with 

confidence factors less than 1 

To model a sensor fault, we have used a linear drift given by d(t) = 0.2tu(t-3) 

where u(t) is a unit step function and time t is in hours. Figure 3.5 shows the sampled 

output of faulty sensor #1 when this sensor has a fault (linear drift) starting at fo=3 hours. 

Also shown is the estimated MRNN output when the sensor is in a normal healthy mode. 

Using the MRNN modeling technique, the fault is successfully detected when the fault in 

the sensor output reaches 1 degree Fahrenheit at t=S hours. 
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Figure 3.5 Output of faulty sensor #1 and its MRNN model 

3.3 Conclusion 

RNN modeling technique results are compared to the powerful Kalman filtering 

technique results. The inputs to the NN are taken from the modeled node and from 

neighboring nodes. A communication confidence factor is taken into account in the 

modeling. Simulation with comparison to the Kalman filtering technique is carried out on 

a network with 15 sensor nodes. A fault such as drift is introduced and can be 

successfully detected with the modified recurrent neural net model with no early false 

alarm that could have resulted when using the Kalman filtering approach. 



CHAPTER 4 

REAL-TIME IMPLEMENTATION OF FAULT 

DETECTION IN WIRELESS SENSOR 

NETWORKS USING 

NEURAL NETWORKS 

4.1 Introduction 

Wireless sensor networks (WSNs) consist of a set of sensor nodes that can 

communicate with each other; sensors that measure a desired physical quantity; and the 

system base station for data collection, processing, and connection to the wide area 

network. Modern wireless sensor nodes have microprocessors for local data processing, 

networking, and control purposes [1]. Increases in modern embedded computing power 

have given rise to many WSN applications. These applications range from medical 

projects to environmental measurements. For instance, networks have been developed to 

record vital signs and forward them to a base station for real time analysis, possibly 

improving triage time. Also being developed are sensor boards that record movement 

data during the rehabilitation of stroke patients [25]. This raw data would improve 

physical therapists' ability to track and quantify improvements. 

30 
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The very heart of WSN technology is the ability to measure remote environmental 

qualities with low-cost nodes able to self-group into a network topology to reliably 

forward data to a base station. A vineyard monitoring system that measures soil moisture 

and the irrigation system's water pressure is given in [26]. Environmental measurements 

can also help analyze structural health. A WSN has also been implemented that spans the 

Golden Gate Bridge in San Francisco, CA [27]. These nodes allow engineers to monitor 

important remote qualities such as ambient vibrations both safely and cost effectively. 

WSNs can take remote measurements, organize into a network, and forward data 

to a base station. Due to the environments they operate in and efforts to maintain cost 

effectiveness, node failures can occur. The probability of failure increases as the number 

of nodes in a network increases. The traditional solution to this problem is redundant 

systems; however, multiplication of sensor devices adds cost, complexity, and power 

consumption to both the sensor node and the whole network. Most of the present research 

efforts have concentrated on an analytical redundancy [28] [29] in which sensor 

measurements are processed analytically and mathematical models are compared with 

physical measurements. However, with the limited onboard microprocessors and battery 

power, these approaches decrease the amount of measurements taken while increasing 

processing time and battery consumption. 

In Chapter 2, we presented the theory and modeling of WSNs with recurrent 

neural networks (RNNs). This approach has been implemented on Moteiv's Tmote Sky 

platform running the operating system TinyOS. 
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4.2 Implementation 

The hardware testbed uses Moteiv's Tmote Sky wireless sensor node modules. 

The nodes have an onboard microcontroller; a wireless radio stack; and the ability to take 

sensor readings of temperature, light, and humidity [30]. The microcontroller is an 8 

MHz Texas Instruments MSP430 microcontroller. The radio chipset is a 2.4 GHz 

Chipcon CC2420 wireless transceiver with an integrated PCB trace antenna [31]. The 

onboard temperature sensor used in this implementation is Sensirion's SHT11 

temperature/humidity sensor [32]. The Tmote Sky node requires a minimum operating 

voltage of 2.1 volts. To conserve power, this implementation has taken aspects of 

bandwidth, transmitting/receiving power, and MCU processing time into consideration. 

All information needed for the training and prediction of the NN is gathered by simply 

overhearing radio transmissions. As environmental measurements are taken and multi-

hopped forward to the root of the collection tree, neighboring nodes overhear the 

transmissions and record the neighbor's measurements for the local node's NN training. 

This approach uses no extra radio transmission power or network bandwidth. 

The software coding of the implementation is done using TinyOS, an open-source 

operating system designed for wireless embedded sensor networks [33]. It is specifically 

designed for the embedded systems with memory constraints and low power 

consumption. TinyOS uses the programming language NesG [34] which is similar to the 

programming language C with big differences in the linking model. NesC programs 

include a configuration file and a module file. The module file looks much like event 

driven C coding, but the configuration file is the key to NesC. TinyOS has been ported 

for dozens of hardware platforms and many more chipsets. The configuration file allows 
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the programmer to link the module code to specific hardware chipsets, background 

functions, and communication network topologies. 

To decrease development time, many common actions of WSNs are already built 

into TinyOS architecture. An essential function of any WSN is to relay the collected data 

to a base station for future processing and analysis. TinyOS has addressed this issue and 

has included provisions for Collection Tree Protocol (CTP) [35]. CTP is based on a tree 

network where the base station is defined as the root of the tree and all other nodes 

branch out from their parent nodes in the network. The routing engine is based on 

expected transmissions (EXT). The EXT of a node is the EXT of its parent plus the link 

level EXT to its parent. When a node searches for acceptable routes, it will choose the 

route with the lowest EXT. Because TinyOS is component based, sending messages to 

the root of a network is very similar to sending messages to a specific node. 

To multi-hop a message to the root of the network, the Send. Send () command 

is linked to the collection component instead of the address driven message sending 

component, used to send node-to-node messages. This component will forward the 

packet to the Multi-hop Forwarding Engine and relay the packet through the tree to the 

base station via the route with the lowest EXT. The collection layer only triggers the 

R e c e i v e . R e c e i v e () event when a packet reaches its final destination (normally the 

base station). In the fault detection implementation, neighboring nodes need access to the 

forwarded information to train their NN. Under normal network operation, all packets are 

received from the radio and screened at the hardware level to determine if the packet is 

needed by the receiving node. The Snoop. R e c e i v e () event bypasses this check and 

is triggered any time a packet is received by a node. The packet's origin can then be 
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compared against the list of nodes in the routing engine's neighbor table. If the packet is 

from a valid neighbor, the information is stored for future training. 

4.3 Code Overview 

Upon applying voltage to the sensor node, the node will go through a pre-defined 

boot-up sequence. This sequence will initialize components such as the radio, the 

network engine, and specific sensors. Once the components have successfully come 

online, a periodic timer is started with a period T. Because TinyOS is event driven, the 

node remains idle until an event handler is triggered. From this point on in the program, 

the code is no longer sequentially executed. TinyOS will handle events as they occur. 

Upon receiving a message, the node must consult the forwarding engine to ensure 

it is in the node's neighbor table. If the message was overheard from a viable neighbor, 

the local node stores the information and checks to ensure all the data is now gathered. If 

data collection is complete, the node sets a flag and checks another routine's flag status. 

If the situation dictates, the program will enter the NN training subroutine. This process 

can be seen in Figure 4.1. The workhorse of this program is the subroutine (Figure 4.2) 

that is executed each time the periodic timer fires. 
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First, the node calls the sensor to take a reading. If training and prediction were 

completed prior to this timer cycle, the node would next compare this reading against the 

NN predicted reading. If the error was greater than a threshold setting, the sensor would 

have a fault. This information would be relayed so that proper maintenance attention 
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would be administered. However, if the data was within the threshold range, the data 

would be verified as good, and preparation would be taken to complete the cycle again. 

Had training and prediction not been completed prior, the sensor would store the 

new measurement in an array. Next, the subroutine would inspect a counter to determine 

if this was the M measurement. If so, a flag would be set, and if other subroutine's flags 

allowed, NN training would begin. The actual training of the NN is completed as 

described earlier. Once training has been completed and the next measurement has been 

predicted, a flag is set to signal that the node is ready to compare the next measurement 

against the NN's prediction. 

4.3.1 Experimental Setup 

We conducted an experiment using a nine node network. These nodes were 

configured in a collection tree topology with two branches, as shown in Figure 4.3. 

Figure 4.3 Network topology setup for experimental data collection 
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The two branches were placed in different climates (i.e. separate rooms with 

differing temperatures.) Temperature measurements were taken and forwarded to the 

base station node via the route shown by the black lines. As these data samples were sent 

to the base station, nodes were listening to overhear data from their neighbors, shown by 

the red lines. After sufficient data was collected to train the network, RNN predictions 

and fault detection began. 

4.3.2 Results 

To simplify the results, we will examine the data collected from a single branch 

shown in Figure 4.3. This branch consists of four neighboring nodes shown connected by 

red lines in Figure 4.4. Neighboring node 1 was placed in a sunny window, while the 

other three nodes were dispersed throughout the room. At sampling point 9, an air 

conditioning unit was turned on to emulate a faulty sensor. We can see that the training 

node was the closest to the air conditioning unit, followed by neighboring nodes 3 and 2. 

At sampling point 10, NN prediction and fault detection was started. The NN prediction 

is shown as a dotted line in Figure 4.4. At sampling point 15, the training node was 

placed directly on the air conditioning unit to simulate a quick drift fault. The fault was 

detected at sampling point 16. A fault is defined as the real world measured value lying 

outside a ±2 degree threshold of the prediction. Although only one node's training is 

shown here, all nodes except the base station node train, predict, and detect faults 

simultaneously. 
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To reduce power consumption and MCU runtime needed to complete the training 

process, the RNN was configured to allow the highest level of error acceptable in the 

result. This tolerance saved valuable seconds of processor time during training iterations 

by omitting result calculations to unneeded significant digits. The implementation set a 

precision goal of less than one degree Fahrenheit. Obtaining accuracy to hundredths of a 

degree was considered wasted power and time for our application. With this goal in mind, 

we were able to tune down the NN to achieve the process from the beginning of the 

neural network training to prediction of the next measurements to less than 12 seconds. 

Depending upon the required accuracy needed, this time could be further shortened or 

extended in other applications. 

Power consumption measurements were isolated to the MCU. This limitation 

removed all variables such as radio stack and sensor power consumption. Due to the 
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rapidly advancing nature of the node platforms, many available chipsets were all drawing 

differing amounts of power. Therefore, amperage readings were taken with all 

peripherals other than the MCU off. While the MCU was idle, the current draw was 7 

juA; and while calculating weights for the NN training, it was 1800 juA. Using the 

standard 3.0 volts and requiring 12 seconds to train, this process only draws 0.0648 

Joules. This amount is minuscule when compared to the amount of power drawn by only 

the onboard CC2420 low power radio. While initialized, the idle radio consumes 20 mA. 

Over the same 12 second timeframe, the radio alone draws 0.72 Joules. Therefore, this 

fault detection application has extremely low power consumption. 

4.4 Conclusion 

The traditional methods of fault detection rely on hardware. Because this 

approach is software based, it can be implemented at a lower cost and can be easily 

upgraded in older systems. By simply overhearing data as it is forwarded to the base 

station, no extra bandwidth or redundant hardware is needed to detect a fault. 

The price to be paid for this approach is a small amount of processor time and 

battery power. Neural network training can be completed in a matter of seconds, and with 

the implementation of TinyOS's task scheduler, the system remains extremely responsive 

during the training. During training, nodes can continue to take measurements, transmit 

data, and forward packets to the base station. 

Based on distance, the neighboring nodes closest to the local node are more likely 

to have similar values. This tendency is especially true in environmental measurements. 

Due to laws of diffusion, nodes with closer proximity will likely have closer temperature 

readings than neighboring nodes of farther distance. This information can increase 
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prediction accuracy when attached to NN weights during training. Without adding extra 

hardware to preserve the nodes' cost effectiveness, the only onboard equipment to 

estimate physical distance between the nodes is the received signal strength indictor 

(RSSI). Implementation of the confidence factor was attempted, but due to interferences 

and noise, the values changed wildly, even though the actual distance change was only 

inches. From numerous projects' efforts on localization, we know current indoor RSSI 

measurements are not capable of reliably measuring precise distance [35]. While the 

confidence factor approach is ahead of its time, future advances in low cost localization 

algorithms will allow its implementation. 

For indefinite real time fault detection, the minimum sampling interval N must be 

less than the time required to train. A node must be able to train, predict, compare, and 

store new data every N seconds. With sampling interval N greater than training time, 

uniform sampling points can be taken with enough time between sampling for training, 

prediction, and fault detection. 



CHAPTER 5 

KALMAN FILTER 

5.1 Example Applications 

An example application would be providing accurate continuously-updated 

information about the position and velocity of an object given only a sequence of 

observations about its position, each of which includes some error. It is used in a wide 

range of engineering applications from radar to computer vision. Kalman filtering is an 

important topic in control theory and control systems engineering. 

For example, in a radar application, where one is interested in tracking a target, 

information about the location, speed, and acceleration of the target is measured with a 

great deal of noise corruption at any instant. The Kalman filter exploits the dynamics of 

the target, which govern its time evolution, to remove the effects of the noise and get a 

good estimate of the location of the target at the present time (filtering), at a future time 

(prediction), or at a time in the past (interpolation or smoothing). A simplified version of 

a Kalman filter is the alpha beta filter (still commonly used) which has static weighting 

constants instead of using co-variance matrices. 

42 
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5.2 Naming and Historical Development 

The filter is named after Rudolf E. Kalman, though Thorvald Nicolai Thiele and 

Peter Swerling actually developed a similar algorithm earlier. Stanley F. Schmidt is 

generally credited with developing the first implementation of a Kalman filter. It was 

during a visit of Kalman to the NASA Ames Research Center that he saw the 

applicability of his ideas to the problem of trajectory estimation for the Apollo program, 

leading to its incorporation in the Apollo navigation computer. The filter was developed 

in papers by Swerling (1958), Kalman (1960), and Kalman and Bucy (1961). 

5.3 The Kalman Filter 

The Kalman filter is a recursive estimator [37]-[41], meaning that only the 

estimated state from the previous time step and the current measurement are needed to 

compute the estimate for the current state. In contrast to batch estimation techniques, no 

history of observations and/or estimates is required. It is unusual in being purely a time 

domain filter; most filters (for example, a low-pass filter) are formulated in the frequency 

domain and then transformed back to the time domain for implementation. In what 

follows, the notation "|m represents the estimate of x at time n given observations up to, 

and including time m. 

The state of the filter is represented by two variables: 

• Jct)l, the estimate of the state at time k. 

• P t | t , the error covariance matrix (a measure of the estimated accuracy of the state 

estimate). 
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The Kalman filter has two distinct phases: Predict and Update. The predict phase 

uses the state estimate from the previous timestep to produce an estimate of the state at 

the current timestep. In the update phase, measurement information at the current 

timestep is used to refine this prediction to arrive at a new, (hopefully) more accurate 

state estimate, again for the current timestep. 

Predict 

In predicted state, 

xk\k-\ — Fkxk-\\k-\ + "kuk-\' (5.1) 

where Fk is the state transition model which is applied to the previous state xk_l , and Bk 

is the control-input model which is applied to the control vector uk. 

For predicted estimate covariance, 

where Qk is the covariance process noise which is assumed to be drawn from a zero mean 

multivariate normal distribution. 

For innovation or measurement residual, 

Jk=Zk -Hkxk\k-i • (5-3) 

For innovation (or residual) covariance, 

Sk=HkPklk_1H
T

k+Rk (5.4) 
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where Hkis the observation model which maps the true state space into the observed 

space, and Rk is the covariance observation noise which is assumed to be zero mean 

Gaussian white noise. 

For optimal Kalman gain, 

Kk=Pk\k-iHlSkX- ( 5 - 5 ) 

To find the updated state estimate 

**l*=**l*-i + **5'f (5-6) 

Updated estimate covariance is 

Pk]k=^~KkHk)Pk^. (5.7) 

The formula for the updated estimate covariance above is only valid for the optimal 

Kalman gain. 

£ K - **|t 1 = E\-Xk ~ **|*-i] = 0 (5.8) 

E[y] = 0 (5.9) 

where E[£] is the expected value of t,, and covariance matrices accurately reflect the 

covariance of estimates. 

Pk]k=cov(xk-xk\k) (5.10) 

^ M = c o v ( * * " - * * l * - i ) ( 5 J 1 ) 

Sk=cow(yk) (5.12) 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDED 

FUTURE WORK 

6.1 Conclusions 

Since sensor networks often operate in potentially hostile and harsh environments, 

components such as sensors have significantly higher fault rates than the traditional 

integrated semiconductor circuits-based systems. The traditional way of achieving fault-

tolerance in dynamic systems is through hardware redundancy such as the use of multiple 

sensors. 

We developed a dynamic model of WSNs and its application to sensor node fault 

detection where a neural network modeling approach is used for sensor node 

identification and fault detection. Neural network models will periodically learn the 

dynamic of the sensors. After each learning period, sensor output is compared to its 

model so that when a malfunction happens, it can be detected. In case a fault occurs, an 

alert signal is displayed at both node and base station level. 

Since external and internal malfunctions or excessive noise can occur, sensor 

readings are somewhat uncertain in a sense that no existing sensor will deliver accurate 

readings at all times. Our model provides an improved reliability over existing sensor 

46 
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networks to develop a WSN that will have capability of fault detection, isolation, and 

accommodation. 

Advantages: 

• Dynamic systems need feedback information about the health status of their nodes 

in order to recover and heal from the eventual faults. Our model enables such 

systems to have improved reliability over existing devices. 

• The traditional way of achieving fault-tolerance in dynamic systems is through 

hardware redundancy such as the use of multiple sensors. But multiplication of 

sensor devices adds cost, complexity, and power consumption to the sensor node 

and the whole network. 

• A fault can be detected with reduced false alarm occurrence, as compared to 

traditional techniques such as Kalman filter approach. 

• Our model fits well for fast online measurement applications. 

The presented model can be applied to a wide range of applications in systems 

where multiple devices are running in parallel, such as WSNs, so that it has the capability 

of fault detection, isolation, and accommodation. The system can be used in any mission 

critical WSN application. Any time higher fault awareness is required, the presented 

model can be applied. 

Power consumption and processor time preserved for learning remain an obstacle 

toward fulfilling a clean, safe, and self-aware wireless sensor network. 

6.2 Recommended Future Work 

Implementation of the confidence factor was attempted, but due to interferences 

and noise, the values changed wildly even though the actual distance change was only 
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inches. From numerous projects' efforts on localization, it is known that the current 

indoor received signal strength intensity (RSSI) measurements are not capable of reliably 

measuring distance precisely. While the confidence factor approach is ahead of its time, 

future advances in low cost localization algorithms will allow its implementation. 

Because the neural model uses outputs from neighboring sensors, a failure in one 

sensor will propagate to dynamically interconnected sensor nodes. This failure can 

happen between neural network learning sessions and can cause false alarms. This failure 

will stay until sensor models are trained again. Therefore, more network training causes 

fewer error propagations between dynamically interconnected nodes. The long term 

solution is to allow the neural model to grow, meaning to increase the number of layers 

and/or number of neurons in layers, and train the network for all events, including faulty 

cases. The result would be a dynamic network which would have immunity against faults 

and faults propagation. This is an analogy to the human brain, which continuously learns 

and adjusts to prevent false alarms. 

The parameters of each parallel model (a neuron) are estimated separately. In the 

next step of the process synthesis, the partial models are evaluated, selected, and included 

in the newly created neuron layers. During the network synthesis new layers are added to 

the network. The process of the network synthesis leads to the evolution of the resulting 

model structure in such a way so as to obtain the best quality approximation of the real 

system output signals. The process is completed when the optimal degree of the network 

complexity is achieved. 



APPENDIX A 

SIMULATION SOURCE CODE USING VISUAL 

C++. NET 
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//SIMULATION CODE USING VISUAL C++. NET 

//HEADER FILE 

#define time_step 0.1 
#define pi 3.14 

// Definition of tuning rates 
#define tuning_rate_l 0.01 // First layer 
#define tuning_rate_2 0.01 // Second layer 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

c21 
c31 
c41 
cl2 
c32 
c52 
cl3 
c23 
c43 
cl4 
c34 
c54 
cl5 
c25 
c45 

1 
1 
1 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

.8 

.9 

.6 

.6 

.9 

.75 

.95 

.7 

.85 

.55 

.6 

.85 

double sensor_l(double t) 
double sensor_2(double t) 
double sensor_3(double t) 
double sensor_4(double t) 
double sensor_5(double t) 

double static_sensorl(double x,int flag) 
double static_sensor3(double x,int flag) 
double static_sensor4(double x,int flag) 

double *get_nn_input_sensor_l(double, double * 
double *get_nn_input_sensor_2(double, double * 
double *get_nn_input_sensor_3(double, double * 
double *get_nn_input_sensor_4(double, double * 
double *get_nn_input_sensor_5(double, double * 

void get_nn_output_l(double [8 
void get_nn_output_2(double [8 
void get_nn_output_3(double [8 
void get_nn_output_4(double [8 
void get_nn_output_5(double [8 

[10],double * 
[10].double * 
[10],double * 
[10],double * 
[10],double * 

double *,double) 
double *,double) 
double *,double) 
double *,double) 
double *,double) 

void weight_tuning_nn_l() 
void weight_tuning_nn_2() 
void weight_tuning_nn_3() 
void weight_tuning_nn_4() 
void weight_tuning_nn_5() 
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double get_output_sensor_l(double) 
double get_output_sensor_2(double) 
double get_output_sensor_3(double) 
double get_output_sensor_4(double) 
double get_output_sensor_5(double) 

void failure_detection_sensor_l(FILE 
void failure_detection_sensor_2(FILE 
void failure_detection_sensor_3(FILE 
void failure_detection_sensor_4(FILE 
void failure_detection_sensor_5(FILE 

double get_noise(int ); 

//MAIN FUNCTION 

/*This code is used for modeling a wireless sensor network using 
a modified recurrent neural network. The inputs to the recurrent 
neural network are:The previous and current outputs of the same 
network and the previous and current outputs of the neighboring 
sensors.The learning rates are tuned according to the error 
between the output of output of the sensor and the recurrent 
neural network output. 

Author: Azzam I. Moustapha 
Professor: R. Selmic 
Louisiana Tech University 

06-15-05*/ 

ttinclude <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include <cstdlib> 
#include <time.h> 
#include "header.h" 

using namespace std; 

FILE 
FILE 
FILE 
FILE 
FILE 
main() 
{ 

*fweight_l 
*fweight_2 
*fweight_3 
*fweight_4 
*fweight_5 

int c ; 

/ / c o u t « g e t _ n o i s e (i) « e n d l ; 



weight_tuning_nn_l(); 
//weight_tuning_nn_2(); 
//weight_tuning_nn_3() 
//weight_tuning_nn_4() 
//weight_tuning_nn_5() 
//failure_detection_sensor_ 
//failure_detection_sensor_ 
//failure_detection_sensor_ 
//failure_detection_sensor_ 
//failure_detection_sensor_ 

1(fweight_l) 
.2 (f weight_2) 
3(fweight_3) 
.4 (f weight_4) 
.5 (f weight_5) 

while (c=getchar(i 
return 0; 

//SENSOR 1 

/*This code is used for modelling a sensor using 
Hammerstein-Wiener nonlinear feedback Dynamic 
sensor which involve linear dynamic block 
sorrounded by three nonlinear static blocks*/ 

/*-

Discrete Version 

Sensor model consits of 4 sub-blocks: 

input st| 
nonlin. I 

I Dynamic 
->| Linear 

j output st 
-> nonlin. 

I feedback | 
< I st nonlin. |<-

Author: Azzam I. Moustapha 
Professor: R. Selmic 
Louisiana Tech University 

12-07-04 



*/ 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

double sensor_l(double t) 
{ 
double i; 
double physical_input; 
double final_output; 
double out_static_blockl; 
double out_feedback_block; 
int static_flagl; 
int dynamic_flag2; 
int static_flag3; 
int static_flag4; 
double tau; 
double a=-l; 
double b=-l; 
double m=l; 
i = 0; 

//setting the flags in such a way to have a Nonlinear Dynamic Sensor 
static_flagl=l; 
dynamic_flag2=l; 
static_flag3=l; 
static_flag4=l; 

double out_dynamic_sensor_t; 
double out_dynamic_sensor_t_l; 
double out_dynamic_sensor_t_2; 
out_dynamic_sensor_t_l=0; 
out_dynamic_sensor_t_2=0; 
tau=0; 

// Open the files for the storage of the data 

/* main iteration loop */ • 

// specify measured physical quantity (for example temperature) 
while (i<=t) 

{ 
//we have added noise to the sensor input in order to have a 

more realistic input 
physical_input =10.0+sin(i*2*(pi)/3);//+get_noise(i); //24 

specified physical input dependance on time 
// change this accordingly 



// find output of the input static block 
out_static_blockl = static_sensorl(physical_input, 

static_flagl); 
//tau = out_static_blockl - out_feedback_block; 

// find output of the dynamic block 

ou t_dynami c_s en s o r_t=-a * out_dynami c_s ensor_t_2-
b*out_dynamic_sensor_t_l+m*tau; 

// replace old values with new values 
ou t_dynami c_sensor_t_2=ou t_dynami c_s en s or_t_l; 
out_dynamic_sensor_t_l=out_dynamic_sensor_t; 

// find output of the feedback static block 
out_feedback_block = static_sensor3( out_dynamic_sensor_t, 

static_flag3);// input to this block is the state xl from dynamic block 

tau = out_static_blockl - out_feedback_block; 

// find output of the output static block 
final_output = static_sensor4(out_dynamic_sensor_t, 

static_flag4);// input to this block is the state xl from dynamic block 
i=i+time_step; 

} 
return (final_output); 

} // END of main function 

//nonlinear input static sensor block 
double static_sensorl(double x,int flag) 

{ 

double in_sensor_nonlinearity; 
in_sensor_nonlinearity = atan(x) 

sensor nonlinearity; 

function depending on application */ 

/* here we specify the input 

change this 

if (flag==l) 
return(in_sensor_nonlinearity) 

else 
return(x); 

//nonlinear feedback static sensor function 
double static_sensor3(double x,int flag) 
{ 

if (flag==l) 
return(x); 

else 
return(0); 
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//nonlinear output static sensor block 
double static_sensor4(double x,int flag) 

{ 

double out_sensor_nonlinearity; 
out_sensor_nonlinearity =atan(x); /* here we specify the output 

sensor nonlinearity; 
change this 

function depending on application */ 

if (flag==l) 
return(out_sensor_nonlinearity); 

else 
return(x) ; 

//END OF PROGRAM 

//SENSOR 2 

/*This code is used for modelling a sensor using 
Hammerstein-Wiener nonlinear feedback Dynamic 
sensor which involve linear dynamic block 
sorrounded by three nonlinear static blocks 

Discrete Version 

Sensor model consits of 4 sub-blocks: 

input st| 
nonlin. 

| Dynamic 
->| Linear 

| output st 
->I nonlin. 

feedback | 
st nonlin. <-

Author: Azzam I. Moustapha 
Professor: R. Selmic 
Louisiana Tech University 

12-07-04 



*/ 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 

double sensor_2(double t) 
{ 
double i; 
double physical_input; 
double final_output; 
double out_static_blockl; 
double out_feedback_block; 
int static_flagl; 
int dynamic_flag2; 
int static_flag3; 
int static_flag4; 
double tau; 
double a=-l; 
double b=-l; 
double m=l; 
i = 0; 

//setting the flags in such a way to have a Nonlinear Dynamic Sensor 
static_flagl=l; 
dynami c_flag2 = 1; 
static_flag3=l; 
static_flag4=l; 

double out_dynamic_sensor_t; 
double out_dynamic_sensor_t_l; 
double out_dynamic_sensor_t_2; 
out_dynamic_sensor_t_l=0; 
out_dynamic_sensor_t_2=0; 
tau=0; 

// Open the files for the storage of the data 

/* main iteration loop */ 

// specify measured physical quantity (for example temperature) 
while (i<=t) 

{ 
physical_input =5+sin(i*(pi/24)); // specified physical 

input dependance on time 
// change this accordingly 



// find output of the input static block 
out_static_blockl = static_sensorl(physical_input, 

static_flagl); 
//tau = out_static_blockl - out_feedback__block; 

// find output of the dynamic block 

out_dynami c_s en s o r_t=-a * out_dynami c_s ens or_t_2-
b*out_dynamic_sensor_t_l+m*tau; 

// replace old values with new values 
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l; 
out_dynamic_sensor_t_l=out_dynamic_sensor_t; 

// find output of the feedback static block 
out_feedback_block = static_sensor3( out_dynamic_sensor_t, 

static_flag3);// input to this block is the state xl from dynamic block 

tau = out_static_blockl - out_feedback_block; 

// find output of the output static block 
final_output = static_sensor4(out_dynamic_sensor_t, 

static_flag4);// input to this block is the state xl from dynamic block 
i=i+time_step; 

} 
return (final_output); 

} // END of main function 

//SENSOR 3 

/*This code is used for modelling a sensor using 
Hammerstein-Wiener nonlinear feedback Dynamic 
sensor which involve linear dynamic block 
sorrounded by three nonlinear static blocks 

Discrete Version 

Sensor model consits of 4 sub-blocks: 

input stl 
nonlin. j 

| Dynamic. 
->| Linear 

| output st 
->I nonlin. 

feedback | 
st nonlin.I<-



Author: Azzam I. Moustapha 
Professor: R. Selmic 
Louisiana Tech University 

12-07-04 

*/ 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 

double sensor_3(double t) 
{ 
double i; 
double physical_input; 
double final_output; 
double out_static_blockl; 
double out_feedback_block; 
int static_flagl; 
int dynamic_flag2; 
int static_flag3; 
int static_flag4; 
double tau; 
double a=-l; 
double b=-l; 
double m=l; 
i = 0; 
//setting the flags in such a way to have a Nonlinear Dynamic Sensor 
static_flagl=l; 
dynami c_flag2 = 1; 
static_flag3=l; 
static_flag4=l; 

double out_dynamic_sensor_t; 
double out_dynamic_sensor_t_l; 
double out_dynamic_sensor_.t_2 ; 
out_dynamic_sensor_t_l=0; 
out_dynamic_sensor_t_2=0; 
tau=0; 

// Open the files for the storage of the data 

/* main iteration loop */ 

// specify measured physical quantity (for example temperature) 
while (i<=t) 
{ 



physical_input =15+sin(1*(px/24)); // specified physical 
input dependance on time 

//• change this accordingly 

// find output of the input static block 
out_static_blockl = static_sensorl(physical_input, 

static_flagl); 
//tau = out_static_blockl - out_feedback_block; 

// find output of the dynamic block 

out_dynamic_sensor_t=-a*out_dynamic_sensor_t_2-
b*out_dynamic_sensor_t_l+m*tau; 

// replace old values with new values 
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l; 
out_dynamic_sensor_t_l=out_dynamic_sensor_t; 

// find output of the feedback static block 
out_feedback_block = static_sensor3( out_dynamic_sensor_t, 

static_flag3);// input to this block is the state xl from dynamic block 

tau = out_static_blockl - out_feedback_block; 

// find output of the output static block 
final_output = static_sensor4(out_dynamic_sensor_t, 

static_flag4);// input to this block is the state xl from dynamic block 
i=i+time_step; 
} 

return (final_output); 

} // END of main function 

//SENSOR 4 

/*This code is used for modelling a sensor using 
Hammerstein-Wiener nonlinear feedback Dynamic 
sensor which involve linear dynamic block 
sorrounded by three nonlinear static blocks 

Discrete Version 

Sensor model consits of 4 sub-blocks: 

input st| | Dynamic | | output st 
nonlin. I- I > Linear I >| nonlin. 

feedback 
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< I st nonlin.|< 

/* 

Author: Azzam I. Moustapha 
Professor: R. Selmic 

Louisiana Tech University 
12-07-04 

*/ 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 
//#define time_step 0.01 

using namespace std; 

double sensor_4(double t) 

{ 
double i; 
double physical_input; 
double final_output; 
double out_static_blockl; 
double out_feedback_blcck; 
int static_flagl; 
int dynamic_flag2; 
int static_flag3; 
int static_flag4; 
double tau; 
double a=-l; 
double b=-l; 
double m=l; 
i = 0; 
//setting the flags in such a way to have a Nonlinear Dynamic Sensor 
static_flagl=l; 
dynamic_flag2=1; 
static_flag3=l; 
static_flag4=l; 

double out_dynamic_sensor_t; 
double out_dynamic_sensor_t_l; 
double out_dynamic_sensor_t_2; 
out_dynamic_sensor_t_l=0; 
out_dynamic_sensor_t_2=0; 
tau=0; 

// Open the files for the storage of the data 

/* main iteration loop */ 

// specify measured physical quantity (for example temperature) 



while(i<=t) 
{ 

physical_input =20+sin(i*(pi/24)); // specified physical 
input dependance on time 

// change this accordingly 

// find output of the input static block 
out_static_blockl = static_sensorl(physical_input, 

static_flagl); 
//tau = out_static_blockl - out_feedback_block; 

// find output of the dynamic block 

out_dynamic_sensor_t=-a*out_dynamic_sensor_t_2-
b*out_dynamic_sensor_t_l+m*tau; 

// replace old values with new values 
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l; 
out_dynamic_sensor_t_l=out_dynamic_sensor_t; 

// find output of the feedback static block 
out_feedback_block = static_sensor3( out_dynamic_sensor_t, 

static_flag3);// input to this block is the state xl from dynamic block 

tau = out_static_blockl - out_feedback_block; 

// find output of the output static block 
final_output = static_sensor4(out_dynamic_sensor_t, 

static_flag4);// input to this block is the state xl from dynamic block 
i=i+time_step; 

} 

return (final_output); 

} // END of main function 

//SENSOR 5 

/*This code is used for modelling a sensor using 
Hammerstein-Wiener nonlinear feedback Dynamic 
sensor which involve linear dynamic block 
sorrounded by three nonlinear static blocks 

Discrete Version 

Sensor model consits of 4 sub-blocks: 

input st| I Dynamic | | output st 
nonlin. I I- I >| Linear I I >| nonlin. 



feedback 
st nonlin. 

Author: Azzam I. Moustapha 
Professor: R. Selmic 
Louisiana Tech University 

12-07-04 

'I 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 

double sensor_5(double t) 
{ 
double i; 
double physical_input; 
double final_output; 
double out_static_blockl; 
double out_feedback_block; 
int static_flagl; 
int dynamic_flag2; 
int static_flag3; 
int static_flag4; 
double tau; 
double a=-l; 
double b=-l; 
double m=l; 
i = 0; 
//setting the flags in such a way to have a Nonlinear Dynamic Sensor 
static_flagl=l; 
dynamic_flag2=l; 
static_flag3=l; 
static_flag4=l; 

double out_dynamic_sensor_t; 
double out_dynamic_sensor_t_l; 
double out_dynamic_sensor_t_2; 
out_dynamic_sensor_t_l=0; 
out_dynamic_sensor_t_2=0; 
tau=0; 

// Open the files for the storage of the data 
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/* main iteration loop */ . 

// specify measured physical quantity (for example temperature) 
while (i<=t) 
{ 

physical_input =ll+sin(i*(pi/24)); // specified physical 
input dependance on time 

// change this accordingly 

// find output of the input static block 
out_static_blockl = static_sensorl(physical_input, 

static_flagl); 
//tau = out_static_blockl - out_feedback_block; 

// find output of the dynamic block 

out_dynamic_sensor_t=-a*out_dynamic_sensor_t_2-
b*out_dynamic_sensor_t_l+m*tau; 

// replace old values with new values 
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l; 
out_dynamic_sensor_t_l=out_dynamic_sensor_t; 

// find output of the feedback static block 
out_feedback_block = static_sensor3( out_dynamic_sensor_t, 

static_flag3);// input to this block is the state xl from dynamic block 

tau = out_static_blockl - out_feedback_block; 

// find output of the output static block 
final_output = static_sensor4(out_dynamic_sensor_t, 

static_flag4);// input to this block is the state xl from dynamic block 
i=i+time_step; 
} 

return (final_output); 

} // END of main function 

//NOISE 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 
double get_noise(int i) 
{ 
double RAN_MAX = 3267600; 
double n; 
int e; 
int co; 
srand(1002*i); 
co=0; 
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e=rand()*1000/RAN_MAX; 
n=100*(rand()/(RAN_MAX*100))*pow(-l,e); 
return(n); 
} 

//NN for SENSOR 1 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w's) 
for the first and second layer used in the modified recurrent 
neural network */ 

using namespace std; 
extern FILE *fweight_l; 

void weight_tuning_nn_l() 
{ 
FILE *ferror_l; 
FILE *fweight_l; 
int i,j,T; 
double t; 
double u[8]; 
double v[8][10]; 
double v0[10]; 
double w[10]• 
double wO; 
double *k; 
double pi[10],sl[10],sigma[10] ; 
double p2[10]; 
double output[2]; 
double E0,SE1[10],E1[8][10],SE,SE0; 

ferror_l=fopen("nn_error_l","w"); 
fweight_l=fopen("nn_weight_l","w"); 
t=0.0; 
T=0; 
SE0=0; 

for (i=0;i<5;i++) 
{ 
output[0]=0,• 
output[1]=0; 

} 

for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

} 
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for (i=0; i<8; i++) 
for (j=0; j<10;j++) 

{ 

v[i][j] = 0; 

} 

for (i=0;i<10;i++) 

{ 

v0[i] =0; 

} 

for (i=0; i<10; i++) 

{ 
w[i]=0; 

} 
w0 = 0; 

do 

{ 

for (i=0;i<10;i++) 

{ 
SEl[i]=0; 

} 
t = 0; 

do 

{ 

// Getting inputs from neighboring sensors 
k=get_nn_input_sensor_l(t, output); 

for(i=0;i<8;i++) 
u[i]=*(k+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

SEl[i]=0; 
} 

// Calculating output of the modified recurrent NN during learing phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p l [ i ] = p l [ i ] + v [ j ] [ i ] * u [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 

{ 
s l [ i ] = p l [ i ] + v O [ i ] ; 



sigma[i] = 1.0/(1.0 + exp(-si [i])) ; 
} 

for (i=0;i<10;i++) 
{ 
p2[i]=w[i]*sigma[i]; 
output[0]=output[0]+p2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Calculating error between sensor output and RNN output 
E0=sensor_l(t)-output[0]; 
output[0]=0; 

f o r ( i = 0 ; i < 8 ; i + + ) 
f o r ( j = 0 ; j < 1 0 ; j + + ) 

{ 
E l [ i ] [ j ] = s i g m a [ j ] * ( l - s i g m a [ j ] ) * E 0 * w [ i ] ; 
S E l [ i ] = S E l [ i ] + E l [ i ] [ j ] ; 

} 

// Updating weights of the second layer according to the error 
for (i=0;i<10;i++) 

{ 
w[i]=w[i]+tuning_rate_2*E0*sigma[i]; 

} 

// Updating weights of the first layer according to the error 
for (i=0;i<8;i++) 

for (j=0;j<10;j++) 
{ 
v[i][j]=v[i][j]+tuning_rate_l*SEl[j]*u[i]; 

} 
// Calculating the sum of errors 

SE0=SE0+E0; 

t=t+time_step; 
//cout<<"Modeling Sensor #1 ..."; 
//system("els"); 
} 

while (t<12.0); 

SE=0.5*SE0*SE0; 

fprintf(ferror_l,"%d %.16f\n",T,SE0); 

SE0=0; 
T=T+1; 
cout<<SE<<endl; 
//system("els"); 
} 
//Checking if the error is higher than threshold 
while (SE>2.61e-10);//0.00041);//2.61e-8);//-6 
c o u t < < e n d l < < " E r r o r i s : " < < S E « e n d l < < e n d l ; 
f o r ( i = 0 ; i < 8 ; i + + ) 
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{ 
for (j=0;j<10;j++) 
fprintf(fweight_l,"%lf\n",v[i][j] ) ; 

} 
for (i=0;i<10;i++) 
fprintf(fweight_l,"%lf\n",w[i]); 
for (i=0;i<10;i++) 
fprintf(fweight_l,"%lf\n",vO[i]); 
fprintf(fweight_l,"%lf\n",w0); 
t=0; 
get_nn_output_l(v,w,vO,wO); 
fcloseall(); 
return; 
} 

double *get_nn_input_sensor_l(double t, double *output) 
{ 
double in[8]; 

// input to NN from previous output of same NN 
in[0]=output[ 0 ] ; 
// input to NN from previous output of same NN 
in[1]=output[1]; 
// input to NN from output of neighbor sensor 2 
in[2]=c21*sensor_2(t); 
// input to NN from previous output of neighbor sensor 2 
in[3]=c21*sensor_2(t-time_step); 
//input to NN from output of neighbor sensor 3 
in[4]=c31*sensor_3(t); 
// input to NN from previous output of neighbor sensor 3 
in[5]=c31*sensor_3(t-time_step); 
//input to NN from output of neighbor sensor 4 
in[6]=c41*sensor_4(t); 
// input to NN from previous output of neighbor sensor 4 
in[7]=c41*sensor_4(t-time_step); 

return(in) ; 
} 

void get_nn_output_l( double v[8][10],double *w, double *v0, double wO 
) 

{ 
FILE *fsensor_l; 
int C; 
int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10]; 
double s[8]; 
double sigm[10]; 
fsensor_l=fopen("NN_output_l","w"); 
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// Initialization of output 
output[0]=0; 
output[1]=0;: 
t=0; 

C=0; 
do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_l(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

fprintf(fsensor_l, "%f %f 
%.16f\n",t,sensor_l(t),output[0]); 

//Resetting the output 
output[0]=0;r 

t=t+time_step; 
} 
while (t<12.0); 

fcloseall(); 
return ; 

} 



//NN for SENSOR 2 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
neural network */ 

using namespace std; 

extern FILE *fweight_2; 
void weight_tuning_nn_2() 
{ 
FILE *ferror_2; 
FILE *fweight_2; 
int i,j,T; 
double t; 
double u[8]; 
double v[8][10]; 
double vOtlO]; 
double w[10] ,-
double wO; 
double *k; 
double pi[10],si[10],sigma[10]; 
double p2[10]; 
double output[2]; 
d o u b l e E 0 , S E 1 [ 1 0 ] , E l [ 8 ] [ 1 0 ] , S E , S E 0 ; 
f e r r o r _ 2 = f o p e n ( " n n _ e r r o r _ 2 " , " w " ) ; 
fweight_2=fopen("nn_weight_2","w"); 
t=0.0; 
T=0; 
SE0=0; 

for (i=0;i<5;i++) 
{ 
output[0]=0,• 
output[1]=0; 
} 

for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

} 

for (i=0; i<8; i++) 
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for (j=0; j<10;j++) 
{ 
v[i] [j] = 0; 

} 

for (i=0;i<10;i++) 

{ 

v0[i] =0; 

} 

for (i=0; i<10; i++) 

{ 

w[i]=0; 

} 

w0 = 0; 

do 

{ 

for (i=0;i<10;i++) 

{ 
SEl[i]=0; 

} 
t = 0; 

do 

{ 

// Getting inputs from neighboring sensors 
k=get_nn_input_sensor_2(t, output); 

for(i=0;i<8;i++) 

u[i]=*(k+i); 

// Resetting variables 

for (i=0;i<10;i++) 

{ 
pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

SEl[i]=0; 
} 

// Calculating output of the modified recurrent NN during learing phase 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
f o r ( j = 0 ; j < 8 ; j + + ) 

p l [ i ] = p l [ i ] + v [ j ] [ i ] * u [ j ] ; 
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f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s l [ i ] = p l [ i ] + v O [ i ] ; 
s i g m a [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
p2[i]=w[i]*sigma[i]; 
output[0]=output[0]+p2[i]; 
} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Calculating error between sensor output and RNN output 
E0=sensor_2(t)-output[0]; 
output[0]=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 

{ 
El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i]; 
SEl[i]=SEl[i]+El[i][j]; 

} 

// Updating weights of the second layer according to the error 
for (i=0;i<10;i++) 

{ 
w[i]=w[i]+tuning_rate_2*E0*sigma[i]; 

} 

// Updating weights of the first layer according to the error 
for (i=0;i<8;i++) 

for (j=0;j<10;j++) 
{ 
v[i][j]=v[i][j]+tuning_rate_l*SEl[j]*u[i]; 

} 

// Calculating the sum of errors 
SE0=SE0+E0; 
t=t+time_step; 
} 
while (t<12.0); 

cout«"Modeling Sensor #2 ..."; 
system("els"); 

SE=0.5*SE0*SE0; 
SE0=0; 
fprintf(ferror_2,"%d %.16f\n",T,SE); 
T=T+1; 
} 
// Checking if the error is higher than threshold 
while (SE>2.61e-10); 

cout«endl«"Error is: "«SE«endl«endl; 
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for (i=0;i<8;i++) 
{ 

for (j=0;j<10;j++) 
fprintf(fweight_2,"%lf\n",v[i][j] ) ; 

} 
for (i=0;i<10;i++) 

fprintf(fweight_2,"%lf\n",w[i]); 
for (i=0;i<10;i++) 

fprintf(fweight_2,"%lf\n",vO[i]) ; 
fprintf(fweight_2,"%lf\n",w0); 

t=0; 
get_nn_output_2(v,w,vO,wO); 
fcloseall(); 
return ; 
} 

double *get_nn_input_sensor_2(double t, double *output) 
{ 
double in[8]; 
// input to NN from previous output of same NN 
in[0]=output[0]; 
// input to NN from previous output of same NN 
in[1]=output[1]; 
// input to NN from output of neighbor sensor 1 
in[2]=sensor_l(t);//cl2 
// input to NN from previous output of neighbor sensor 1 
in[3]=sensor_l(t-time_step);//cl2 
//input to NN from output of neighbor sensor 3 
in[4]=sensor_3(t);//c32 
// input to NN from previous output of neighbor sensor 3 
in[5]=sensor_3(t-time_step);//c32 
//input to NN from output of neighbor sensor 4 
in[6]=sensor_5(t);//c52 
// input to NN from previous output of neighbor sensor 4 
in[7]=sensor_5(t-time_step);//c52 

return(in); 
} 

void get_nn_output_2( double v[8][10],double *w, double *v0, double wO 
) 

{ 
FILE *fsensor_2; 

int i, j ; 
double t; 
double *1; 
double output[2]; 
double prl[10] ; 
double sul[10]; 
double pr2[10]; 
double s[8]; 
double sigm[10]; 
fsensor_2=fopen("NN_output_2","w"); 
// Initialization of output 
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output[0]=0; 
output[1]=0; 
t = 0; 

do 

{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_2(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m f i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Printing results 
fprintf(fsensor_2, "%f %f 
%.16f\n",t,sensor_2(t),output[0]); 

// Resetting the output 
output[0]=0;; 
t=t+time_step; 

} 
while (t<12.0); 
fcloseall(); 
return ; 

} 

//NN for SENSOR 3 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 



neural network */ 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 

extern FILE *fweight_3; 

void weight_tuning_nn_3() 
{ 
FILE *ferror_3; 
FILE *fweight_3; 
int i, j , T; 
double t; 
double u[8]; 
double v[8][10]; 
double v0[10]; 
double w[10]; 
double wO; 
double *k; 
double pi[10],sl[10],sigma[10]; 

double p2 [10]; 

double output[2]; 
double E0,SE1[10],E1[8][10],SE,SE0; 
ferror_3=fopen("nn_error_3","w"); 
fweight_3=fopen("nn_weight_3","w"); 

t=0.0; 
T=0; 
SE0=O; 
for (i=0;i<5;i++) 
{ 

output[0]=0,• 
output[1]=0; 
} 

for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

} 

for (i=0; i<8; i++) 
for (j=0; j<10;j++) 

v[i] [j] = 0; 
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for (i=0;i<10;i++) 
{ 
vO[i] =0; 

} 
for (i=0; i<10; i++) 

{ 
w[i]=0; 

} 

w0 = 0; 

do 
{ 

for (i=0;i<10;i++) 
{ SEl[i]=0; 
} 

t=0; 

do 
{ 

// Getting inputs from neighboring sensors 
k=get_nn_input_sensor_3(t, output); 

for(i=0;i<8;i++) 
u[i]=*(k+i); 

/•/ Resetting variables 
for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

SEl[i]=0; 
} 

// Calculating output of the modified recurrent NN during learing phase 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
f o r ( j = 0 ; j < 8 ; j + + ) 

p l [ i ] = p l [ i ] + v [ j ] [ i ] * u [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s l [ i ] = p l [ i ] + v O [ i ] ; 
s i g m a [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s i [ i ] ) ) ; 

} 



for (i=0;i<10;i++) 
{ 
p2[i]=w[i]*sigma[i]; 
output[0]=output[0]+p2[i]; 
} 

output[0]=output[0]+w0; 
output[1]=output[0]; 
// Calculating error between sensor output and RNN output 
E0=sensor_3(t)-output[0]; 

output[0]=0; 
for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{ 

El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i]; 
SEl[i]=SEl[i]+El[i] [j]; 

} 

// Updating weights of the second layer according to the error 
for (i=0;i<10;i++) 
{ 

w[i]=w[i]+tuning_rate_2*E0*sigma[i]; 

} 

// Updating weights of the first layer according to the error 
for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{ 
v [ i ] [ j ] = v [ i ] [ j ] + t u n i n g _ r a t e _ l * S E l [ j ] * u [ i ] ; 
} 
// Calculating the sum of errors 
SE0=SE0+E0; 

t=t+time_step; 

} 
while (t<12.0); 

cout«"Modeling Sensor #3 . . . " ; 
system("els"); 

SE=0.5*SE0*SE0; 
SE0=0; 
fprintf(ferror_3,"%d %.16f\n",T,SE); 
T=T+1; 
} 
// Checking if the error is higher than threshold 
while (SE>2.61e-10); 

c o u t « e n d l < < " E r r o r i s : "«SE<<endl<<endl; 
for ( i=0; i<8; i++) 
{ 
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for (j=0;j<10;j++) 
fprintf(fweight_3,"%lf\n",v[i][j]); 

} 
for (i=0;i<10;i++) 
fprintf(fweight_3,"%lf\n",w[i]); 
for (i=0;i<10;i++) 
fprintf(fweight_3,"%lf\n",vO[i]); 
fprintf(fweight_3,"%lf\n",wO); 
t=0; 
get_nn_output_3(v,w,vO,wO); 
fcloseall(); 
return ; 
} 

double *get_nn_input_sensor_3(double t, double *output) 
{ 
double in[8]; 

// input to NN from previous output of same NN 
in[0]=output[0]; 
// input to NN from previous output of same NN 
in[1]=output[1]; 
// input to NN from output of neighbor sensor 1 
in[2]=cl3*sensor_l(t) ; 
// input to NN from previous output of neighbor sensor 1 
in[3]=cl3*sensor_l(t-time_step); 
//input to NN from output of neighbor sensor 2 
in[4]=c23*sensor_2(t); 
// input to NN from previous output of neighbor sensor 2 
in[5]=c23*sensor_2(t-time_step); 

//input to NN from output of neighbor sensor 4 
in[6]=c43*sensor_4(t); 
// input to NN from previous output of neighbor sensor 4 
in[7]=c43*sensor_4(t-time_step); 

return(in); 
} 

void get_nn_output_3( double v[8][10],double *w, double *v0, double wO 
) 

{ 
FILE *fsensor_3; 

int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10]; 
double s[8]; 
double sigm[10]; 
fsensor_3=fopen("NN_output_3","w"); 
// Initialization of output 



output[0]=0; 
output[1]=0; 
t = 0; 

do 

{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_3(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 

for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v 0 [ i ] ; 
s i g m f i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i];. 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

/•/ Printing results 
fprintf(fsensor_3, "%f %f 

%.16f\n",t,sensor_3(t),output[0]); 
// Resetting the output 
output[0]=0;r 
t=t+time_step; 

} 
while (t<12.0); 
fcloseall(); 
return ; 

} 

//NN for SENSOR 1 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
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neural network */ 

ttinclude <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 

extern FILE *fweight_4; 

void weight_tuning_nn_4() 
{ 
FILE *ferror_4; 
FILE *fweight_4; 
int i, j , T; 
double t; 
double u[8] ; 
double v[8] [10] ; 
double V0[10]; 
double w[10]; 
double w0; 
double *k; 
double pi[10],sl[10],sigma[10]; 

double p2[10]; 

double output[2]; 
double E0,SE1[10],E1[8][10],SE,SEO; 
ferror_4=fopen("nn_error_4","w"); 
fweight_4=fopen("nn_weight_4","w"); 
t=0.0; 
T=0; 
SE0=0; 
for (i=0;i<5;i++) 
{ 

output[0]=0; 
output[1]=0; 
} 

for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

} 

for (i=0; i<8; i++) 
for (j=0; j<10;j++) 

{ 

v[i] [j] = 0; 

} 



for (i=0;i<10;i++) 

{ 
vOti] =0; 

} 

for (i=0; i<10; i++) 

{ 
w[i]=0; 

} 

w0 = 0; 

do 

{ 

for (i=0;i<10;i++) 
{ SEl[i]=0; 
} 

t = 0; 

do 

{ 

// Getting inputs from neighboring sensors 
k=get_nn_input_sensor_4(t, output); 

for(i=0;i<8;i++) 
u[i]=*(k+i); 

// Resetting variables 
for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

SEl[i]=0; 
} 

// Calculating output of the modified recurrent NN during learing phase 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
f o r ( j = 0 ; j < 8 ; j + + ) 

p l [ i ] = p l [ i ] + v [ j ] [ i ] * u [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s l [ i ] = p l [ i ] + v O [ i ] ; 
s i g m a [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s l [ i ] ) ) ; 



} 

for (i=0;i<10;i++) 
{ 
p2 [i]=w[i]*sigma[i]; 
output[0]=output[0]+p2[i]; 
} 

output[0]=output[0]+w0; 
output[1]=output[0]; 
// Calculating error between sensor output and RNN output 

E0=sensor_4(t)-output[0]; 
output[0]=0; 
for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{ 

El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i]; 
SEl[i]=SEl[i]+El[i][j]; 

} 

// Updating weights of the second layer according to the error 
for (i=0;i<10;i++) 
{ 

w[i]=w[i]+tuning_rate_2*E0*sigma[i]; 

} 

// Updating weights of the first layer according to the error 
for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{ 
v [ i ] [ j ] = v [ i ] [ j ] + t u n i n g _ r a t e _ l * S E l [ j ] * u [ i ] ; 
} 
// Calculating the sum of errors 
SE0=SE0+E0; 
t=t+time_step; 

} 
while (t<12.0); 

cout<<"Modeling Sensor #4 ..."; 
system("els"); 

SE=0.5*SE0*SE0; 
SE0=0; 
fprintf(ferror_4,"%d %.16f\n",T,SE); 
T=T+1; 
} 
// Checking if the error is higher than threshold 
while (SE>2.61e-10); 

cout«endl«"Error is: "«SE<<endl<<endl; 
for (i=0;i<8;i++) 
{ 
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for (j=0;j<10;j++) 
fprintf(£weight_4,"%lf\n",v[i][ j ] ) ; 

} 
for (i=0;i<10;i++) 
fprintf(fweight_4,"%lf\n",w[i]); 
for (i=0;i<10;i++) 
fprintf(fweight_4,"%lf\n",vO[i]); 
fprintf(fweight_4,"%lf\n",w0); 
t=0; 
get_nn_output_4(v,w,vO,wO); 
fcloseall(); 
return ; 
} 
double *get_nn_input_sensor_4(double t, double *output) 
{ 
double in[8]; 
// input to NN from previous output of same NN 
in[0]=output[0]; 
// input to NN from previous output of same NN 
in[1]=output[1]; 
//input to NN from output of neighbor sensor 1 
in[2]=cl4*sensor_l(t); 
// input to NN from previous output of neighbor sensor 1 
in[3]=cl4*sensor_l(t-time_step); 
// input to NN from output of neighbor sensor 3 
in[4]=c34*sensor_3(t) ; 
// input to NN from previous output of neighbor sensor 3 
in[5]=c34*sensor_3(t-time_step); 
//input to NN from output of neighbor sensor 5 
in[6]=c54*sensor_5(t); 
// input to NN from previous output of neighbor sensor 5 
in[7]=c54*sensor_5(t-time_step); 

return(in); 
} 

void get_nn_output_4( double v[8][10],double *w, double *v0, double wO 
) 

{ 
FILE *fsensor_4; 

int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10]; 
double s[8]; 
double sigm[10]; 
fsensor_4=fopen("NN_output_4","w"); 
// Initialization of output 
output[0]=0; 
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output[1]=0; 
t = 0; 

do 

{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_4(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l + i) ; 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m f i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i] ; 
output[0]=output[0]+pr2[i] ; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 
// Printing results 

fprintf(fsensor_4, "%f %f 
%.16f\n",t,sensor_4(t),output[0]); 

// Resetting the output 
output[0]=0;; 
t=t+time_step; 

} 
while (t<12.0) ; 
fcloseall(); 
return ; 

//NN FOR SENSOR 5 
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/* The following function is used for tuning the weights (v's,w's) 
for the first and second layer used in the modified recurrent 
neural network */ 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

using namespace std; 

extern FILE *fweight_5; 
void weight_tuning_nn_5() 
{ 
FILE *ferror_5; 
FILE *fweight_5; 
int i,j,T; 
double t; 
double u[8] ; 
double v[8][10] ; 
double v0[10]; 
double w[10]; 
double w0; 
double *k; 
double pi[10] , si[10],sigma[10]; 

double p2[10]; 

double output[2]; 
double E0,SE1[10],E1[8][10],SE,SE0; 
ferror_5=fopen("nn_error_5","w"); 
fweight_5=fopen("nn_weight_5","w"); 
t=0.0; 
T=0; 
SE0=0; 
for (i=0;i<5;i++) 
{ 

output[0]=0; 
output[1]=0; 
} 

for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

} 

for (i=0; i<8; i++) 
for (j=0; j<10;j++) 

{ 
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v[i][j] = 0; 

} 

for (i=0;i<10;i++) 
{ 

v0[i] =0; 

} 

for (i=0; i<10; i++) 
{ 

w[i]=0; 

} 

w0 = 0; 

do 
{ 

for (i=0;i<10;i++) 
{ SEl[i]=0; 
} 

t=0; 

do 
{ 

// Getting inputs from neighboring sensors 
k=get_nn_input_sensor_5(t, output); 

for(i=0;i<8;i++) 
u[i]=*(k+i); 

// Resetting variables 
for (i=0;i<10;i++) 
{ 

pl[i]=0; 
p2[i]=0; 
sl[i]=0; 

SEl[i]=0; 
} 

// Calculating output of the modified recurrent NN during learing phase 

for (i=0;i<10;i++) 
for (j=0;j<8;j++) 
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p l [ i ] = p l [ i ] + v [ j ] [ i ] * u [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s l [ i ] = p l [ i ] + v O [ i ] ; 
s i g m a [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
p2[i]=w[i]*sigma[i]; 

output[0]=output[0]+p2[i]; 
} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Calculating error between sensor output and RNN output 
E0=sensor_5(t)-output[0]; 
output[0]=0; 
for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{ 

El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i]; 
SEl[i]=SEl[i]+El[i] [j]; 

// Updating weights of the second layer according to the error 
for (i=0;i<10;i++) 
{ 

w[i]=w[i]+tuning_rate_2*E0*sigma[i]; 

// Updating weights of the first layer according to the error 
for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{ 
v [ i ] [ j ] = v [ i ] [ j ] + t u n i n g _ r a t e _ l * S E l [ j ] * u [ i ] ; 
} 
// Calculating the sum of errors 
SE0=SE0+E0; 

t=t+time_step; 

} 
while (t<12.0) ; 

cout<<"Modeling Sensor #5 ..."; 
system("els"); 
SE=0.5*SE0*SE0; 
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SEO=0; 
fprintf(ferror_5,"%d %.16f\n",T,SE); 
T=T+1; 
} 
// Checking if the error is higher than threshold 
while (SE>2.61e-10); 

cout<<endl«"Error is: "«SE«endl«endl; 
for (i=0;i<8;i++) 
{ 

for (j=0;j<10;j++) 
fprintf(fweight_5,"%lf\n",v[i][j]); 

} 
for (i=0;i<10;i++) 
fprintf(fweight_5,"%lf\n",w[i]); 
for (i=0;i<10;i++) 
fprintf(fweight_5,"%lf\n",vO[i]); 
fprintf(fweight_5,"%lf\n",w0); 
t=0; 
get_nn_output_5(v,w,vO,wO); 
fcloseall(); 
return ; 
} 

double *get_nn_input_sensor_5(double t, double *output) 
{ 
double in[8]; 

// input to NN from previous output of same NN 
in[0]=output[0]; 
// input to NN from previous output of same NN 
in[l]=output[1]; 
// input to NN from output of neighbor sensor 1 
in[2]=cl5*sensor_l(t); 
// input to NN from previous output of neighbor sensor 1 
in[3]=cl5*sensor_l(t-time_step); 
//input to NN from output of neighbor sensor 2 
in[4]=c25*sensor_2(t); 
// input to NN from previous output of neighbor sensor 2 
in[5]=c25*sensor_2(t-time_step); 
//input to NN from output of neighbor sensor 4 
in[6]=c45*sensor_4(t); 
// input to NN from previous output of neighbor sensor 4 
in[7]=c45*sensor„4(t-time_step); 

return(in); 
} 

void get_nn_output_5( double v[8][10],double *w, double *v0, double wO 
) 

{ 
FILE *fsensor_5; 
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int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10] ; 
double s[8]; 
double sigm[10]; 
fsensor_5=fopen("NN_output_5","w"); 
// Initialization of output 
output[0]=0; 
output[1]=0; 
t=0; 

do 
{ 
/./ Getting input from neighboring sensors 
l=get_nn_input_sensor_5(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 

output[0]=output[0]+pr2[i] ; 
} 

output[0]=output[0]+w0 ; 
output[1]=output[0]; 
// Printing results 
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fprintf(fsensor_5, "%f %f 
%.16f\n",t,sensor_5(t),output[0]); 

// Resetting the output 
output[0]=0; 
t=t+time_step; 

} 
while (t<12.0); 
fcloseall(); 
return ; 

} 

//NN SENSOR 1 WITH FAILURE 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

#define drift 0.02 
/* The following function is used for tuning the weights (v's,w's) 

for the first and second layer used in the modified recurrent 
neural network */ 

using namespace std; 

void failure_detection_sensor_l(FILE *fweight_l) 
{ 
FILE *ffailure_l; 
int i, j ; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10] ; 
double s[8]; 
double sigm[10]; 
double v[8][10],w[10],v0[10],w0; 
ffailure_l=fopen("nn_failure_l","w"); 
fweight_l=fopen("nn_weight_l","r"); 

// Initialization of output 
output[0]=0,• 
output[l]=0; 
t=0.0;//0.1; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
{fscanf(fweight_l,"%lf\n",&v[i][j]); 

} 
for (i=0;i<10;i++) 
fscanf(fweight_l,"%lf\n",&w[i]); 

for (i=0;i<10;i++) 
fscanf(fweight_l,"%lf\n",&v0[i]); 



fscanf(fweight_l,"%lf\n",&wO); 

do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_l(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0] ; 
// Resetting the output 
output[0]=0; 
cout«endl«t<<" " <<output [ 1 ] «endl ; 
t=t+time_step; 
fprintf(ffailure_l,"%f %.10f %.10f\n", t-

time_step,get_output_sensor_l(t-time_step),output[1]); 
} 
while ((t<12.0)&&(abs(get_output_sensor_l(t-time_step)-
output[1])<0.02)); 

if (t<12.0) 
cout«endl«endl«"time= "<<t-time_step<<" FAILURE 

DETECTED IN SENSOR #l"«endl; 
fcloseall(); 
return; 

} 

double get_output_sensor_l(double t) 
{ 

if (t<1.45) 
return(sensor_l(t)); 
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else return(sensor_l(t)+t*drift); 
} 

//NN SENSOR 2 WITH FAILURE 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
neural network */ 

// Definition of tuning rates 
#define tuning_rate_l 0.1 // First layer 
#define tuning_rate_2 0.1 // Second layer 

#define c2 0.8 
ttdefine c3 0.6 
#define c4 0.9 

using namespace std; 

void failure_detection_sensor_2(FILE *fweight_2) 
{ 

int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10]; 
double s[8]; 
double sigm[10]; 
double v[8][10],w[10],vO[10],wO; 
fweight_2=fopen("nn_weight_2","r"); 

// Initialization of output 
output[0]=0; 
output[1]=0;r 
t=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
fscanf(fweight_2,"%lf\n",&v[i][j]); 

for (i=0;i<10;i++) 
fscanf(fweight_2,"%lf\n",&w[i]); 

for (i=0;i<10;i++) 



fscanf(fweight_2,"%lf\n",&vO[i]); 

fscanf(fweight_2,"%lf\n",&wO); 

do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_2(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Resetting the output 
output[0]=0; 
cout«endl<<t«" "«output [1] «endl; 
t=t+time_step; 

} 
while ((t<12.0)&&(abs(get_output_sensor_2(t-time_step)-

output[1])<0.015)); 
if (t<12.0) 

cout<<endl<<endl«"time= "<<t-time_step«" FAILURE 
DETECTED IN SENSOR #2"«endl; 

fcloseall(); 
return 

} 

double get_output_sensor_2(double t) 
{ 
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if ((t>4.9)&&(t<5.09)) 
return(2.0); 

else return(sensor_2(t)); 

//NN SENSOR 2 WITH FAILURE 

#include <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
neural network */ 

// Definition of tuning rates 
#define tuning_rate_l 0.1 // First layer 
#define tuning_rate_2 0.1 // Second layer 

#define c2 0.8 
#define c3 0.6 
ttdefine c4 0.9 

using namespace std; 

ttinclude <iostream> 
#include <math.h> 
#include <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
neural network */ 

// Definition of tuning rates 
#define tuning_rate_l 0.1 // First layer 
#define tuning_rate_2 0.1 // Second layer 

#define 
#define 
#define 

c2 
c3 
c4 

0. 
0. 
0. 

.8 

.6 

.9 

using namespace std; 

void failure_detection_sensor_4(FILE *fweight_4) 
{ 

int i,j; 
double t; 



double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10] ; 
double s [8] ; 
double sigm[10]; 
double v[8][10],w[10],v0[10],w0; 
fweight_4=fopen("nn_weight_4","r"); 

// Initialization of output 
output[0]=0; 
output[1]=0; 
t=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
fscanf(fweight_4,"%lf\n",&v[i][j]); 

for (i=0;i<10;i++) 
fscanf(fweight_4,"%lf\n",&w[i]); 

for (i=0;i<10;i++) 
fscanf(fweight_4,"%lf\n",&v0[i]); 

fscanf(fweight_4,"%lf\n",&w0); 

do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_4(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + exp ( - s u l [ i ] ) ) ,-

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i] ; 



output[0]=output[0]+pr2[i ] ; 
} 

output[0]=output[0] +w0 ; 
output[1]=output[0] ; 

// Resetting the output 
output[0]=0; 
cout<<endl<<t<<" "<<output[1]<<endl; 
t=t+time_step; 

} 
while ((t<12.0)&&(abs(get_output_sensor_4(t-time_step)-

output[1])<0.015)); 
if (t<12.0) 

cout<<endl«endl«" time= "«t-time_step«" 
DETECTED IN SENSOR #4"«endl; 

fcloseall(); 
return ; 

double get_output_sensor_4(double t) 
{ 

if ((t>4.9)&&(t<5.09)) 
return(2.0); 

else return(sensor_4(t)); 
} 

void failure_detection_sensor_3(FILE *fweight_3) 
{ 

int i, j ; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10] ; 
double s[8]; 
double sigm[10]; 
double v[8][10],w[10],vO[10],wO; 
fweight_3=fopen("nn_weight_3","r"); 

// Initialization of output 
output[0]=0; 
output[1]=0;; 
t=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
fscanf(fweight_3,"%lf\n",&v[i][j]); 

for (i=0;i<10;i++) 
fscanf(fweight_3,"%lf\n",&w[i]); 

for (i=0;i<10;i++) 
fscanf(fweight_3,"%lf\n",&v0[i]); 

fscanf(fweight_3,"%lf\n",&w0); 



do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_3(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Resetting the output 
output[0]=0; 
cout«endl<<t«" " <<output [ 1 ] <<endl ; 
t=t+time_step; 

} 
while ((t<12.0)&&(abs(get_output_sensor_3(t-time_step)-

output[1])<0.015)); 
if (t<12.0) 

cout<<endl<<endl<<" time= "<<t-time_step«" FAILURE 
DETECTED IN SENSOR #3"«endl; 

fcloseall(); 
return ; 

} 

double get_output_sensor_3(double t) 
{ 

if ((t>4.9)&&(t<5.09)) 
return(2.0); 

else return(sensor_3(t)); 
} 



//NN for SENSOR 3 with FAILURE 

#include <iostream> 
ttinclude <math.h> 
#include <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w 
for the first and second layer used in the modified recurrent 
neural network */ 

// Definition of tuning rates 
#define tuning_rate_l 0.1 // First layer 
#define tuning_rate_2 0.1 // Second layer 

#define c2 0.8 
#define c3 0.6 
#define c4 0.9 

using namespace std; 

void failure_detection_sensor_3(FILE *fweight_3) 
{ 

int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sultlO]; 
double pr2[10] ; 
double s[8]; 
double sigm[10]; 
double v[8][10],w[10],v0[10],w0; 
fweight_3=fopen("nn_weight_3","r"); 

// Initialization of output 
output[0]=0; 
output[1]=0; 
t=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
fscanf (fweight_3, "%lf \n", &v[i]'[ j ] ) ; 

for (i=0;i<10;i++) 
fscanf(fweight_3,"%lf\n",&w[i]); 

for (i=0;i<10;i++) 
fscanf(fweight_3,"%lf\n",&v0[i]); 

fscanf(fweight_3,"%lf\n",&w0); 
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do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_3(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i) ; 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Resetting the output 
output[0]=0; 
cout<<endl«t<<" " <<output [1 ] <<endl ; 
t=t+time_step; 

} 
while ((t<12.0)&&(abs(get_output_sensor_3(t-time_step)-

output[1])<0.015)); 
if (t<12.0) 

cout«endl«endl«"time= "«t-time_step<<" FAILURE 
DETECTED IN SENSOR #3"«endl; 

fcloseall(); 
return ; 

} 

double get_output_sensor_3(double t) 
{ 

if ( (t>4.9)&&(t<5.09)) 
return(2.0); 

else return(sensor_3(t)); 
} 



//NN for SENSOR 4 with FAILURE 

#include <iostream> 
#include <math.h> 
ttinclude <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
neural network */ 

// Definition of tuning rates 
#define tuning_rate_l 0.1 // First layer 
#define tuning_rate_2 0.1 // Second layer 

#define c2 0.8 
#define c3 0.6 
ttdefine c4 0.9 

using namespace std; 

void failure_detection_sensor_4(FILE *fweight_4) 
{ 

int i, j ; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10] ; 
double s[8]; 
double sigm[10]; 
double v[8][10],w[10],vO[10],w0; 
fweight_4=fopen("nn_weight_4","r"); 

// Initialization of output 
output[0]=0; 
output[1]=0; 
t=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
fscanf(fweight_4,"%lf\n",&v[i] [j]) ; 

for (i=0;i<10;i++) 
fscanf(fweight_4,"%lf\n", &w[i]) ; 

for (i=0;i<10;i++) 
fscanf(fweight_4,"%lf\n",&v0[i]); 

fscanf(fweight_4,"%lf\n",&w0); 

do 
{ 



// Getting input from neighboring sensors 
l=get_nn_input_sensor_4(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 

// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m f i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i]; 

} 

output[0]=output[0]+w0; 
output[1]=output[0] ; 

// Resetting the output 
output[0]=0; 
cout«endl«t<<" " <<output [ 1 ] «endl ; 
t=t+time_step; 

} 
while ((t<12.0)&&(abs(get_output_sensor_4(t-time_step)-

output[1])<0.015)); 
if (t<12.0) 

cout<<endl«endl<<"time= "<<t-time_step«" FAILURE 
DETECTED IN SENSOR #4"«endl; 

fcloseall(); 
return ; 

} 

double get_output_sensor_4(double t) 
{ 

if ( (t>4.9)&&(t<5.09)) 
return(2.0); 

else return(sensor_4(t)); 
} 

//NN FOR SENSOR 5 WITH FAILURE 

#include <iostream> 



#include <math.h> 
ttinclude <stdlib.h> 
#include "header.h" 

/* The following function is used for tuning the weights (v's,w'w) 
for the first and second layer used in the modified recurrent 
neural network */ 

// Definition of tuning rates 
#define tuning_rate_l 0.1 // First layer 
#define tuning_rate_2 0.1 // Second layer 

#define c2 0.8 
#define c3 0.6 
#define c4 0.9 

using namespace std; 

void failure_detection_sensor_5(FILE *fweight_5) 
{ 

int i,j; 
double t; 
double *1; 
double output[2]; 
double prl[10]; 
double sul[10]; 
double pr2[10] ; 
double s[8]; 
double sigm[10]; 
double v[8][10],w[10],v0[10],w0; 
fweight_5=fopen("nn_weight_5","r"); 

// Initialization of output 
output[0]=0; 
output[1]=0; 
t=0; 

for (i=0;i<8;i++) 
for (j=0;j<10;j++) 
fscanf(fweight_5,"%lf\n",&v[i][j]); 

for (i=0;i<10;i++) 
fscanf(fweight_5,"%lf\n",&w[i]); 

for (i=0;i<10;i++) 
fscanf(fweight_5,"%lf\n",&v0[i]); 

fscanf(fweight_5,"%lf\n",&w0); 

do 
{ 
// Getting input from neighboring sensors 
l=get_nn_input_sensor_5(t, output); 
for(i=0;i<8;i++) 
s[i]=*(l+i); 



// Resetting variables 
for (i=0;i<10;i++) 

{ 
prl[i]=0; 
pr2[i]=0; 
sul[i]=0; 

} 
// Calculating the output of the neural network during the testing 

phase 
for (i=0;i<10;i++) 

for (j=0;j<8;j++) 
p r l [ i ] = p r l [ i ] + v [ j ] [ i ] * s [ j ] ; 

f o r ( i = 0 ; i < 1 0 ; i + + ) 
{ 

s u l [ i ] = p r l [ i ] + v O [ i ] ; 
s i g m [ i ] = 1 . 0 / ( 1 . 0 + e x p ( - s u l [ i ] ) ) ; 

} 

for (i=0;i<10;i++) 
{ 
pr2[i]=w[i]*sigm[i]; 
output[0]=output[0]+pr2[i J; 

} 

output[0]=output[0]+w0; 
output[1]=output[0]; 

// Resetting the output 
output[0]=0; 
cout«endl«t<<" " «output [ 1 ] «endl ; 
t=t+time_step; 

} 
while ((t<12.0)&&(abs(get_output_sensor_5(t-time_step)-
output[1])<0.015) ) ; 

if (t<12.0) 
cout<<endl<<endl<<"time= "«t-time_step«" FAILURE 

DETECTED IN SENSOR #5"«endl; 
fcloseall(); 
return ; 

} 

double get_output_sensor_5(double t) 
{ 

if ((t>4.9)&&(t<5.09)) 
return(2.0); 

else return(sensor_5(t)); 
} 
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//SIMULATION CODE USING MATLAB 7.1 

//conf fac =1 

%Real data for five temperature sensors 
si = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47]; 
s_l = [41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47 43] ; 

s2 = [44 41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48 
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55 
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50 
50 48 45]; 
s_2 = [41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48 
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55 
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50 
50 48 45 44]; 

s3 = [42 41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53 
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70.70 71 71 70 66 63 60 
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50 
50 48 46]; 
s_3 = [41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53 
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60 
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50 
50 48 46 42] ; 

s4 = [42 40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46 
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55 
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46 
50 48 45]; 
s_4 = [40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46 
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55 
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46 
50 48 45 42]; 

s5 = [39 40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45 
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72.69 62 59 54 51 
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50 
48 47 47]; 
s_5 = [40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45 
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51 
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50 
48 47 47 39]; 

%Setting up the neural network learning session 
p=[sl; s_l; s2; s_2; s3; s_3; s4; s_4]./10; 

net=newff(minmax(p),[10,1],{'logsig','purelin1},'traingd'); 
net.trainParam.lr = 0.05; 
net.trainParam.mc = 0.9; 
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net.trainParam.min_grad = le-3 0; 
net.trainParam.epochs = 100000; 
net.trainParam.goal = 2e-4; 

%training the network 
%[net,tr]=train(net,p,si./10); 

%calculating the model 
%al=sim(net,p)*10; 
%al 

u = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47] ' ; 
t=l:73; 

%KALMAN FILTERING TECHNIQUE 
A=0; 
B=l; 
C=l; 
n=73; 

randn('seed1,0) 

Q = 10 ; R = 1; 

w = sqrt(Q)*randn(n,1); 
v = 0*sqrt(R)*randn(n,1); 

%Building sensor as a system 

Plant = ss(0,[l 1],1,0,-1,'inputname',{'u' ' W },'outputname','y'); 

%Building Kalaman Filter model 

[kalmf,L,P,M] = kalman (Plant, Q, R) ,-
kalmf = kalmf(1,:); 
kalmf 

a = A; 
b = [B B0 0*B]; 
c = [C;C]; 
d = [ 0 0 0; 0 0 1 ] ; 
P = ss(a,b,c,d,-1,'inputname',{'u1 'w' 'v'},'outputname',{'y' 'yv'}); 
sys = parallel(P,kalmf,1,1, [],[] ) 
%Close loop around input #4 and output #2 
SimModel = feedback(sys,1,4,2,1) 

%Delete yv from I/O list 

SimModel = SimModel([1 3],[1 2 3]) 

SimModel.inputname 

SimModel.outputname 

[out,x] = lsim(SimModel,[w,v,u]); 
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y = out(:,1); 
ye = out(:,2); 
yv = y + v; 

ye(l)=sl(l); 
y(l)=sl(l); 

for i=l:72 
ye(i)=ye(i+l); 
y(i)=y(i+l); 
end 
ye(73)=sl(73) ; 
y(73)=sl(73); 
%and compare the true and filtered responses graphically. 
%subplot(211), plot(t,y,'--',t,ye,'-'), 
%xlabel('No. of samples'), ylabel('Output') 
%title('Kalman filter response') 
%subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'), 
%xlabel('No. of samples'), ylabel('Error') 
%ye=ye+5; 
%subplot(211) 
plot(si,'bl'); 
%hold on 
%plot(al,'b'); 
hold on 
plot(ye,'r'); 
%hold on 
%plot(y,'g') ; 
%subplot(212), 
%plot(sl-al,'b'); 
%hold on 
%plot(sl-ye','r'); 

//conf fac <1 

si = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47]; 
s_l = [41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68.65 61 59 55 49 
49 50 47 43]; 

s2 = [44 41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48 
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55 
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50 
50 48 45]; 
s_2 = [41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48 
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55 
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50 
50 48 45 44] ; 

s3 = [42 41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53 
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60 

% true response 
% filtered response 
% measured response 
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55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50 
50 48 46]; 
s_3 = [41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53 
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60 
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50 
50 48 46 42] ; 

s4 = [42 40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46 
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55 
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46 
50 48 45] ; 
s_4 = [40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46 
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55 
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46 
50 48 45 42]; 

s5 = [39 40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45 
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51 
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50 
48 47 47] ; 
s_5 = [40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45 
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51 
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50 
48 47 47 39] ; 
c21=0.8; 
c31=0.6; 
c41=0.95; 
p=[sl; s_l; c21*s2; c21*s_2; c31*s3; c31*s_3; c41*s4; c41*s_4]./10; 

net=newff(minmax(p),[10,1],{'logsig','purelin'},'traingd1); 

%net=init(net); 
%net.trainParam.show = 50; 

net.trainParam.lr =0.05; 
net.trainParam.mc = 0.9; 
net.trainParam.min_grad = le-3 0; 
net.trainParam.epochs =100000; 
net.trainParam.goal = 2e-2; 
[net,tr]=train(net,p,si./10); 
al=sim(net,p)*10; 
al 
u = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47] ' ; 
t=l:73; 
A=0; 
B=l; 
C=l; 
n=73; 
randn('seed',0) 

Q = 3 ; R = 1; 
w = sgrt(Q)*randn(n,1); 
v = sqrt(R)*randn(n,1); 
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Plant = ss(0,[l 1],1,0,-1,'inputname',{'u' 'w'},'outputname','y'); 
[kalm£,L, P,M] = kalman (Plant, Q, R) ,-
kalmf = kalmf(1,:); 
kalmf 
a = A; 
b = [B B 0*B]; 
c = [C;C]; 
d = [ 0 0 0; 0 0 1 ] ; 
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},'outputname',{'y' 'yv'}); 

sys = parallel(P,kalmf,1,1,[],[]) 

%Close loop around input #4 and output #2 
SimModel = feedback(sys,1,4,2,1) 

%Delete yv from I/O list 

SimModel = SimModel([1 3],[1 2 3]) 

SimModel.inputname 

SimModel.outputname 

[out,x] = lsim(SimModel,[w,v,u]); 

y = out(:,l); % true response 
ye = out(:,2); % filtered response 

yv = y + v; % measured response 

ye(l)=sl(l) ; 

%and compare the true and filtered responses graphically. 

%subplot(211), plot(t,y,'--',t,ye,'-'), 
%xlabel('No. of samples'), ylabel('Output') 
%title('Kalman filter response') 
%subplot(212), plot(t,y-yv, '-.',t,y-ye, '-') , 
%xlabel('No. of samples'), ylabel('Error') 
%{ 
subplot(211),plot(si,'bl'); 
hold on 
plot(al, 'b' ) ,-
hold on 
plot(ye,'r'); 
subplot(212), 
%plot (si,'b'); 
plot(sl-al,'b'); 
hold on 
plot(sl-ye','r'); 
%} 

//WITH DRIFT 
t=3:73; 
sl = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47] ; 
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s_l = [41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47 43]; 

s2 = [44 41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48 
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55 
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50 
50 48 45]; 
s_2 = [41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48 
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55 
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50 
50 48 45 44]; 

s3 = [42 41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53 
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60 
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50 
50 48 46]; 
s_3 = [41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53 
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60 
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50 
50 48 46 42] ; 

s4 = [42 40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46 
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55 
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46 
50 48 45]; 
s_4 = [40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46 
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55 
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46 
50 48 45 42] ; 

s5 = [39 40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45 
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51 
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50 
48 47 47] ; 
s_5 = [40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45 
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51 
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50 
48 47 47 39] ; 

p=[sl; s_l; s2; s_2; s3; S_3; s4; s_4]./10; 

net=newff(minmax(p),[10,1],{'logsig','purelin'},'traingd'); 

%net=init(net); 
%net.trainParam.show =50; 

net.trainParam.lr = 0.05; 
net.trainParam.mc = 0.9; 
net.trainParam.min_grad = le-3 0; 
net.trainParam.epochs = 100000; 
net.trainParam.goal = 2e-2; 
[net,tr]=train(net,p,si./10); 
al=sim(net,p)*10; 
al 
drift=0.2*(t-3); % linear drift 
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fsl=sl+drift; % output of faulty sensor #1 

u = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46 
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53 
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49 
49 50 47] ' ; 

A=0; 
B=l; 
C=l; 
n=73; 
randn('seed1 , 0) 

Q = 2 ; R = 1; 
w=0*u;%w = sqrt(Q)*randn(n,1); 
v = sqrt(R)*randn(n,1); 

Plant = ss(0,[l 0],1,0,-1,'inputname',{'u' 'W},'outputname','y'); 
[kalmf, L,P,M] =• kalman(Plant,Q,R); 
kalmf = kalmf(1,:); 
kalmf 
a = A; 
b = [B 0 0*B]; 
c = [C;C]; 
d = [ 0 0 0; 0 0 1 ] ; 
P = ss(a,b,c,d,-l,'inputname',{'u' 'w' ' V }, 'outputname',{'y' 'yv'}); 

sys = parallel(P,kalmf,1,1, [], []) 

%Close loop around input #4 and output #2 
SimModel = feedback(sys,1,4,2,1) 

%Delete yv from I/O list 

SimModel = SimModel([1 3],[1 2 3]) 

SimModel.inputname 

SimModel.outputname 

[out,x] = lsim(SimModel,[w,v,u]); 

y = out(:,l); % true response 
ye = out(:,2); % filtered response 
yv = y + v; % measured response 
ye(l)=sl(l); 

%and compare the true and filtered responses graphically. 
%subplot(211), plot(t,y, '--',t,ye, '-') , 
%xlabel('No. of samples'), ylabel('Output') 
%title('Kalman filter response') 
%subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'), 
%xlabel('No. of samples'), ylabel('Error') 
for i=l:73 

if abs(fsl(i)-sl(i))>2 
disp('error in sensor at hour') 



I l l 

disp(i) 
break 

end 
end 
subplot(211), 
plot(si,'b'); 
hold on 
plot(fsi,•r'); 
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