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ABSTRACT 

The rise of terrorism has created an interest in better ways to detect when humans 

are exposed to neurotoxins, especially nerve gases developed for military use, most of 

which are acetylcholinesterase inhibitors. Many current methods of detection are based 

on mass spectrometry, a method that is cumbersome and not particularly robust when 

used as an early warning method. The detection of acetylcholinesterase inhibitors would 

benefit from a combined model of the processes occurring in the neuromuscular junction 

between the presynaptic action potential and the motor end-plate action potential that 

includes the kinetics of acetylcholine and acetylcholinesterase in the synaptic cleft. The 

ability to simulate the impact of different amounts of neurotoxin on the physiological 

processes needed for the generation of an action potential and subsequent muscle 

contraction would allow better estimates on the physiological toxicity of a nerve agent 

and its impact on an organism. 

The goal of this research was to assist the future development of a unified model 

and simulation of the chemical kinetics and electrical dynamics occurring in the synaptic 

cleft during acetylcholinesterase inhibition by neurotoxins. The first objective towards 

the goal of this research was to develop an accurate and useful model of the kinetics of 

acetylcholinesterase inhibition that can be simulated and coupled to the voltage and 

current signals generated by a neuron. A one dimensional diffusion model was used 

which took advantage of geometric symmetry to focus on the dominant transport effects. 

iii 
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It will be shown that the simulation herein can reproduce the work of earlier 

research in depicting the time and spatial course of a normal action potential, and the time 

and spatial course of action potentials influenced by different degrees of 

acetylcholinesterase inhibition. This is the first simulation to achieve a model of 

acetylcholinesterase inhibition during the diffusion of a neuro-toxic inhibitor into the 

neuromuscular junction, and show the altered subsequent action potentials. Also 

illustrated will be how this simulation could detect the time and space dynamics of 

moving concentration gradients in the neuromuscular junction under suitable conditions. 

In addition, an in vivo simulation of inhibited acetylcholinesterase being returned to the 

active state through the kinetics of pralidoxime therapy will be shown. The mathematical 

method used in these simulations easily generalizes to a complete three dimensional 

transport model of the diffusion-reaction processes occurring in the neuromuscular 

junction. 
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CHAPTER 1 

INTRODUCTION 

The rise of terrorism has created an interest in better ways to detect when humans 

are exposed to neurotoxins, especially nerve gases developed for military use, most of 

which are acetylcholinesterase inhibitors [1], [2]. Military acetylcholinesterase inhibitors 

are usually organophosphorus-type (OP) compounds. Many current methods of detection 

are based on mass spectrometry, a method that is cumbersome and not particularly robust 

when used as an early warning method. The ability to detect acetylcholinesterase 

inhibitors would benefit from a combined model of the processes occurring in the 

neuromuscular junction between the presynaptic action potential and the motor end-plate 

action potential that includes the kinetics of acetylcholine and acetylcholinesterase in the 

synaptic cleft. The ability to simulate the impact of different amounts of neurotoxin on 

the physiological processes needed for the generation of an action potential, and 

subsequent muscle contraction would better estimate the physiological toxicity of a nerve 

agent and its impact on an organism. 

Chemical warfare agents, particularly nerve gases, present a potential threat to 

military personnel in theater and a definite threat to civilian populations at home. While 

considerable concern for this threat exists, the early detection of nerve agents and 

determination of their effects when present in the environment in differing quantities is 

problematic at this time. 

1 
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Determining the physiological effects of specific quantities of neural-toxin on the 

generation of an action potential and the subsequent muscle contraction requires the 

development of an integrated model that encompasses both the chemical kinetics within 

the gap between the synaptic terminal and the motor end-plate; and the electrical 

dynamics of the excitable motor nerve fiber and the excitable muscle fiber. This 

combined modeling and simulation approach is what has been lacking so far. There has 

been extensive research associated with developing models of the activity of excitable 

neuron and muscle cells [3]-[9], and the kinetics associated with the inhibiting effects of 

the neural toxins on acetylcholinesterase in the synaptic gap [10]-[17]. However, no work 

has been published that presents a combination of those processes. The goal of this 

research is to develop a unified model and simulation of the chemical kinetics and 

electrical dynamics occurring in the synaptic cleft during acetylcholinesterase inhibition 

by neurotoxins. 

Several research teams have modeled the electro-chemical processes in the 

neuromuscular junction during a normal action potential event [18]-[20], and they have 

also examined how the activity of uniformly inhibited acetylcholinesterase affects the 

length of the action potential and end-plate currents [21]-[25]. The simulation herein is 

the first to model or address: 

• The effects of acetylcholinesterase inhibitors diffusing into the junction 

during the action potential while the action potential occurs. 

• The effects of non-uniformly inhibited acetylcholinesterase in time and 

space on the duration of the overall action potential. 
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• The space and time distribution of each state of the acetylcholine receptors 

in the neuromuscular cleft. 

• The potential efficacy of the regeneration of deactivated 

acetylcholinesterase in the neuromuscular junction via oxime reaction 

kinetics as a method of therapeutic recovery from OP exposure. 

The point where activity is transmitted from one cell to another cell is called a synapse. 

The general components of any biological synapse are called the presynaptic terminal, 

the postsynaptic terminal, and the synaptic gap (or cleft), which separates them. Nerve 

cells can be a part of two types of synapses, in one case a neuron connects to another 

neuron, and in the other a motor-neuron connects to a muscle-cell. This work concerns 

the case of a neuron connecting to a muscle-cell, called the neuromuscular junction, and 

it is in this region that a neuron signals a muscle fiber to contract. The neuromuscular 

junction consists of three main portions: the neuron (presynaptic terminal), the portion of 

the muscle's outer membrane (sarcolemma) where the neuron is connected, called the 

motor end-plate (postsynaptic terminal), and the cleft separating them where the 

chemistry of muscle movement is initiated. An electron micrograph image of a cross-

section of the neuromuscular junction is shown in Figure 1.1 which depicts the major 

structures comprising this organ. The section taken is normal to the plane of the cleft and 

shows the relative size of the junctional folds compared to the width of the cleft. A global 

illustration of the neuromuscular junction is shown in Figure 1.2, where a neuron is 

attached to a muscle fiber at the motor end-plate. Figure 1.3 follows with a more detailed 

view of the junction. At the neuromuscular junction, the motor-nerve fiber (presynaptic 

membrane) loses its fatty myelin sheath and branches into fine terminals. Each terminal 



lies in a shallow gutter-like depression on the surface of the muscle cell (postsynaptic 

membrane) [14], [15]. 

..Presynaptic 
>'.-terinthai 

•' Junctional 

mf% 

IHBHB 

• - ; * • 

Rfesya^HSgy,1-""-•• ,• Postsynaptic .^ ,-> . y : ' * * ^ 
^ ^ • t a ^ S p V •. • :• ->• •: •' terminal .-' " r * /:?v.*S!* 
*•'.* ^ r ^ i i ^ s P M ' • • . , J t . •* • • • • • • • * • * * J 
-•»»« * > w f l W S H » i r * ^ Anoint *.*t4«i*w * « -• tmsm 

Figure 1.1. Electron micrograph cross-section of the neuromuscular junction [26]. 

Figure 1.2. A global view of the neuromuscular junction. (1) Neuron, (2) Motor end-
plate, (3) Muscle fiber, (4) Myofibril [27]. 
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At the nerve-muscle synapse, the membranes of the nerve terminal and the muscle 

cell are separated by a fluid filled cleft approximately 50 nanometers (nm) wide. About 

every micrometer along the nerve terminal there are specialized areas which are 

associated with clusters of tiny vesicles, each containing on the order of 10,000 molecules 

of the neurotransmitter acetylcholine (C7HK5NO2). In the muscle membrane, directly 

opposite from the vesicle clusters, are deep invaginations called junctional folds. At the 

crests of these folds and part of the way down into them are the acetylcholine receptors. 

These receptors are specialized protein molecules embedded in the membrane of the 

motor end-plate and can be found anywhere on the surface of a muscle cell [17], [18]. 

The receptors are tightly packed in these regions, and their density falls off by a factor of 

at least 100 only a few micrometers from the crest of the fold [3], [22]. Qualitatively, this 

means that the receptors are densely packed and concentrated along the ridges of the 

motor end-plate surface, and are very sparse in the junctional fold troughs. That 

placement makes sense because the acetylcholine receptors are localized in the regions of 

high acetylcholine concentration. 

An impulse arriving at the presynaptic nerve terminal causes an influx of calcium 

(Ca+2) ions across its membrane. This induces several hundred of the synaptic vesicles to 

fuse with the presynaptic membrane at specialized regions called active zones, liberating 

the vesicles' content of acetylcholine molecules into the synaptic cleft [14]. The 

transmitter diffuses rapidly across the cleft to the muscle cell membrane, where it 

combines with the embedded receptor molecules. Each receptor can bind two 

acetylcholine molecules, and the acetylcholine molecules stay attached for about 1 

millisecond (ms) [17], [23]. 



6 

Figure 1.3. Detailed view of the neuromuscular junction. (1) neuron, (2) Sarcolemma, (3) 
Synaptic vesicles, (4) Acetylcholine receptor, (5) Mitochondrion, the mitochondria 

supply the energy needed for all cellular processes [28]. 

Within 0.3 milliseconds after each acetylcholine packet or vesicle load is released, 

it causes approximately 2,000 receptors in the muscle-cell membrane to change their 

conformation into an open state. In this open state, the receptors are channels which can 

pass both sodium (Na+) and potassium (K+) ions through the membrane. This flow of ions 

(Na+ into the muscle, and K+ out) gives rise to a net electric current that short-circuits the 
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normal potential of-90 millivolts (mV) across the resting cell membrane [15]. This brief 

depolarization is known as the end-plate potential or the excitatory postsynaptic 

potential. Under normal conditions, the end-plate potential exceeds the threshold value 

for initiating an impulse that spreads through the entire muscle-cell membrane and causes 

the muscle-cell to contract. Other protein structures in the membrane powered by 

adenosine triphosphate (ATP), called protein pumps, actively transport Na+ and K+ ions 

continuously through the membrane in their opposite directions, respectively. This 

simultaneous process consumes energy and restores the depolarized membrane back to its 

normal resting potential when the open receptors return to their closed state [29], [30]. 

Acetylcholine molecules would linger in the synaptic cleft, diffusing from one receptor to 

another on the post-synaptic membrane and opening additional channels, if it were not for 

the enzyme acetylcholinesterase, which catalytically breaks acetylcholine down into 

acetate and choline molecules. The molecules of this enzyme are not embedded in the 

muscle cell membrane like the acetylcholine receptors; instead, they are immobilized 

within a loose matrix of collagen and mucopolysaccaride fibers that extend throughout 

the synaptic cleft and deep into the junctional folds [5], [6], [23]. Acetylcholinesterase 

destroys about a third of the acetylcholine molecules before they even reach the receptors 

and then rapidly cleaves those remaining as they detach from the receptors. The speed 

with which acetylcholine is bound to the receptors and inactivated makes it possible for 

the entire process of neuromuscular transmission to be repeated up to several hundred 

times per second [22]. 

The acetylcholine receptor belongs to a family of cell membrane embedded 

proteins called ligand-gated ion channels, where ligand refers to an effector molecule 
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when it binds to a specific site on a target protein [31]. The receptor, which binds the 

effector(s), and the ion channel are part of the same nanomolecular protein complex. The 

ion channel is embedded in the membrane, and the receptor protrudes above the 

membrane. The best known members of this group respond to the extracellular 

neurotransmitters acetylcholine, glycine, Y-aminibutyric acid (GABA), and glutamate, 

and mediate rapid synaptic transmission in the central and peripheral nervous systems. 

Many of these ligand-gated ion channels share a common structure whose subunits have 

homologous protein sequences [30]. Most acetylcholine receptors used in experimental 

research are obtained from the electricity generating organs of the marine ray Torpedo 

marmarota and the famous Amazonian electric eel (Electrophorus electricitus). These 

fish use their electric organs for electrogenesis and electroreception during the activities 

of hunting, navigation, and defense, but the details of the electroreception mechanisms 

are not yet well understood [30], [31]. The electric organs are built up from charge 

generating cells called electrocytes, or electroplaxes (an older term). Electrocytes are flat 

disk-shaped cells that are stacked in sequence in a similar manner to a battery. The 

electric organ consists of vertical stacks of several thousand electrocytes that are 

innervated by a cholinergic nerve on one surface. Stimulation of the nerve causes 

depolarization of the innervated face of each electrocyte, producing a potential difference 

between the two sides of the cell. The potentials across the cells in each column add to 

produce a large electric discharge. The cells function by pumping Na+ and K+ ions out of 

the cell with ATP powered transport proteins to build up a resting potential, and 

acetylcholine is secreted to open the receptors and equilibrate the ionic concentration 

with the environment outside the cell. Postsynaptically, electrocytes work much like 
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muscle cells, but an electric charge is emitted instead of a kinetic contraction. The 

membranes of electrocytes are packed with acetylcholine receptors. These receptors can 

be purified from electrocyte membranes for protein sequence and cloning experiments, or 

the entire membrane with the embedded receptors intact can be used for receptor function 

experiments [31], [32], [33]. 

The acetylcholine receptor is comprised of five subunits; three are designated as 

/?, 8, and y, and two with identical structure designated as a. Each a-unit can bind one 

acetylcholine molecule at a special acetylcholine binding site. These receptors are 

normally closed in the absence of ligand binding, and can open within approximately 20 

microseconds of an appropriate ligand binding event. The receptor subsequently closes 

after dissociation of at least one ligand from the receptor. Figure 1.4 below shows the 

general structure of the acetylcholine receptor. The protein structure and sequence of 

ligand-gated ion channels is a broad and complex discipline with many good references 

available [33], [35], [36]. 

The response of the acetylcholine receptor can be separated into two steps. Each 

receptor, which is normally in the closed state, binds two acetylcholine molecules, one to 

each subunit a, to form what is called a ligand-receptor complex. After binding, this 

complex undergoes a conformation transition which opens a pore into the muscle 

membrane that is permeable to Na+, K+, and Ca+2. The binding and unbinding steps are 

relatively slow; transitions to and from the open state of the pore are, in contrast, 

relatively rapid. Thus, channel openings occur in short bursts which can last several 

milliseconds, and which represent the lifetime of the ligand-receptor complex. During the 

burst, the channel flickers open and shut [29], [32], [33]. 
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Figure 1.4. The structure and function of the acetylcholine receptor, while embedded in 
the cellular plasma membrane [34]. 

If the receptor is exposed to acetylcholine or other molecules which mimic the 

function of acetylcholine (agonists) for a period of seconds or minutes, then the receptor 

becomes desensitized or unresponsive [32], [33]. Conversion of the ligand-receptor 

complex to the desensitized state occurs at a rate that is influenced by the extracellular 

concentration of Ca+2 and other factors. Receptor desensitization is responsible for the 

paralyzing effect of anti-cholinesterase drugs which, by inhibiting acetylcholinesterase, 

prolong the lifetime of acetylcholine in the synaptic cleft [31], [33]. 

The rapid depolarization and re-polarization events which constitute the many-

times-per-second neuromuscular transmission process are possible, in part, because of the 

activity of the cholinesterase protein. There are at least two kinds of cholinesterases 
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found in humans: acetylcholinesterase, and butyrylcholinesterase. The difference 

between them is that each has a preference to react with its root-named effector molecule 

(the substrate), acetycholine and butyrylcholine, respectively [36]. Acetylcholine and 

butyrylcholine are both transmitter-type molecules with similar chemistry, and each 

cholinesterase can react with the other's substrate as well, though not preferentially. 

Acetylcholinesterase is found primarily in the blood and neural synapses, while 

butyrylcholinesterase is located primarily in the liver [36], [37]. 

While the consensus in the research literature agrees that acetylcholine is hydrolyzed 

by cholinesterases, none of them have determined exactly how many cholinesterases exist 

in the body and their quantity, or their precise distribution [37]. For most purposes, 

distinguishing between acetylcholinesterase and butyrylcholinesterase is sufficient. 

Current evidence suggests that in lower animal forms butyrylcholinesterase 

predominates, gradually giving way to acetylcholinesterase with evolution. Although 

their molecular forms are similar, the two enzymes are distinct entities, encoded by 

specific genes. An interesting criterion for differentiating these enzymes is the substrate 

concentration versus activity relationship which will be described in Chapter 3, where the 

fundamentals of enzyme chemistry and kinetics will be discussed [37]. 

As stated earlier, the function of acetylcholinesterase is to deactivate 

acetylcholine. This is accomplished via a hydrolysis (water using) reaction that cleaves 

acetylcholine into the molecules choline (C5H14NO) and acetic acid (CH3COOH). The 

molecular weight of acetylcholinesterase is approximately 7,500,000 grams per mole 

[37]. Like most enzymes, acetylcholinesterase is a large polymer where the conformation, 

and inter-molecular and intra-molecular forces of its structure play important roles in its 
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function. Because of these conditions, the portion of this molecule where its chemical 

activity is located may be significantly smaller than the body of the entire molecule (in 

other cases, the entire molecular body may be used to build the active region). In 

addition, the molecule could have multiple active regions. Consequently, descriptions of 

the chemical kinetics of enzymes usually focus on their active sites: their characterization 

and number rather than quantifying the properties of individual enzyme molecules [38], 

[39]. 

The structure of acetylcholinesterase is shown in Figure 1.5. This illustration is 

intended to give the reader a general idea of the relative size and complexity of protein 

enzymes. The position of the active site is indicated by the cluster of spheres in the 

center. In this dissertation, the function of acetylcholinesterase is the focus rather than 

issues related to the protein's structure and conformation. The interested reader is invited 

to examine the following references for more information on protein structure: [41], [42], 

[43]. 

The activity of acetylcholinesterase is extremely high. Each active site of this 

enzyme is able to hydrolyze approximately 14,000 acetylcholine molecules per second at 

normal body temperature [39], which is also close to the theoretical number of molecular 

collisions at that same temperature [41]. Typical chemical reactions depend on the 

number of collisions between molecules and their orientation relative to each other. Some 

orientations result in a reaction and some do not. Thus, most feasible reactions depend on 

a high number of collisions to proceed at a rate that scientists would have a reason to find 

interesting. 
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Figure 1.5. The structure of acetylcholinesterase, showing the conformations of the 
primary and secondary structure, and the location of the active site [40]. 

For acetylcholinesterase, this high activity means that essentially every collision 

between acetylcholinesterase and acetylcholine molecules results in a reaction, and 

enzymes with that property are termed diffusion limited. Qualitatively, this means the 

reaction speed of acetylcholinesterase is controlled only by how quickly acetylcholine 

molecules can reach the active sites. Some enzymes are thought to accelerate catalysis to 

this limit by using dipolar electric fields to pre-orient their substrate to the optimal 

position as it is drawn in to the enzyme's active site [39], [41]. The ability to catalyze a 

reaction with every substrate collision also makes acetylcholine a very reliable enzyme, 

and reliability is a useful and important attribute for an enzyme whose function is such an 

integral part of movement and cognition. 



CHAPTER 2 

ENZYME KINETICS FUNDAMENTALS 

A chemical reaction is a process where a substance (or substances) is changed 

into one or more new substances. A chemical equation is the method used to represent a 

chemical reaction in a standard way, and it uses symbols to show what happens during a 

chemical reaction. In a chemical equation, the reactants are conventionally written on the 

left and the products on the right of the reaction arrow. A more general definition is to 

say that the arrow points away from the reactants and towards the products. 

Any chemical reaction can be represented by the general equation 

reactants —* products (2.1) 

This equation tells that during the course of a reaction, reactants are consumed while 

products are formed. As a result, the progress of a reaction can be followed by 

monitoring either the decrease in concentration of the reactants or the increase in 

concentration of the products. 

Chemical equations are almost always written in a way that conserves the total 

number of atoms which are depicted on the reactant and product sides of the reaction 

arrow, referred to as a balanced stoichiometric equation. A stoichiometric equation can 

be very simple with two species in one reaction: 

302 -* 203 (2.2) 

14 
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Or several reactant species and product species in one reaction: 

4/V//3 + 502 -» 4N0 + 6H20 (2.3) 

In general, a balanced stoichiometric reaction equation can be represented in the 

following form: 

aA + bB <-> cC + dD (2.4) 

Where the upper case letters A, B, C, and D represent the molecular formula of each 

chemical species participating in the reaction, and the lower case letters a, b, c, and d are 

called the stoichiometric coefficients, and represent the number of molecules of each 

participating species. Any subscript numbers which might appear in a molecular formula 

represent the number of atoms of each different atomic species in that molecule which is 

represented by the formula. 

If a number of reactants and products are involved in several different reactions 

which are combined in a stoichiometric reaction network, then there exists a coupled 

system like the following: 

S02 ->S+ 02 (2.5) 

2 5 + 302 -» 2S03 

S03 + H20 <-> tf2S04 

Biological processes are well known (notorious even) for the complexity and size 

of their chemical reaction networks. Chemical networks which describe metabolism may 

easily contain several hundred species, many of which are enzymes. 

Enzymes are proteins which function as catalysts in chemical reactions. A catalyst 

is a substance which can increase the speed and yield of a chemical reaction without 

being a reactant or product in the reaction. Because enzymes are proteins, they are 
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typically involved in cellular reactions and are of primary importance in metabolic 

pathways. Ordinarily, these metabolic reaction cascades would need large amounts of 

energy (heat) to proceed. Enzymes allow these reactions to take place at rapid rates and 

lower temperatures. Enzymes are also known to be highly specific for both substrate and 

reaction type. The basic lock and key theory describes this process as illustrated in Figure 

2.1. It assumes that the structure of the enzyme and substrate molecules explain the 

specificity and inhibition features observed in enzymatic reactions. In particular, an 

enzyme joins with its substrate and lowers the energy requirements for activation of the 

reaction, then the reaction occurs, after which the enzyme is then released unchanged and 

used again. 

BEFORE RI ACTION DURING REACTION ARKR MACIION 

>4Pi r—, 
SYNTHESIS A l 
('building') , erayme \ j 
REACTION \ < T - \ \ < 

$t# mottetJlet 
new 

eompwmdi 
BEFORE REACTION W»WO MACIION AFTHt I f ACTION 

BREAKDOWN - enzyme . 
REACTION V jS S 

c<Mtn>otiNi<ci 
cowpownds 

Figure. 2.1. The lock and key theory of enzyme function. The synthesis reaction creates a 
larger molecule from smaller molecules. The breakdown reaction breaks a large molecule 

into smaller parts. Both reaction types are equally common in biology [44]. 
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While this model explains enzymes' specificity, it fails to explain the stabilization 

of the transition state that enzymes achieve. Daniel Koshland [45] suggested a 

modification to the lock and key model. Since enzymes are rather flexible structures, the 

active site can be reshaped by interactions with the substrate as the substrate interacts 

with the enzyme. As a result, the amino acids which make up the active site are molded 

into the precise positions that enable the enzyme to perform its catalytic function. In 

some cases, such as glycosidases, the substrate molecule also changes shape slightly as it 

enters the active site. 

Consider a single enzyme-plus-substrate-to-product reaction: 

E + s K E . s 5 £ + f <2-6> 
where it is assumed that an intermediate substrate-enzyme complex E-S is formed. 

Further, the reaction E-S —>• E + P is assumed irreversible. While multiple active site 

enzymes occur and have a developed kinetic theory, the typical enzyme reaction involves 

1:1 stoichiometry: one active site per enzyme molecule and one molecule substrate 

creates one molecule product. Some other important kinetic assumptions are: 

(1) Only initial reaction rates are considered. These rates decrease with time due 

to the decline in substrate concentration. However, this effect can be ignored with 

the proper experimental technique. 

(2) There is an excess of substrate concentration in the reaction with the enzyme. 

The rate constant kE+2 is small compared to kE.j and thus the reaction E +S *-*• 

E-S reaches equilibrium quickly and maintains this equilibrium throughout the 

overall reaction. 
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After a negligible time, the rate of formation and dissociation of the complex ES 

becomes and remains very small compared to the rate of changes for S and P, which is 

the "quasi-steady state" assumption. The Michaelis-Menten derivation [42] uses these 

assumptions to apply mathematical techniques that simplify the kinetic equations for the 

system. Because of the computing power presently available, it will not be required to 

apply these simplifications to the model proposed herein. 

While enzymes have evolved to react specifically with a particular (or small set 

of) substrate(s), there also exist molecules which can bind with an enzyme and decrease 

or increase its activity. Molecules which decrease an enzyme's activity are called 

inhibitors, and those which increase its activity are called activators. Enzyme inhibitors 

are more common than the activators. 

The inhibitor binding process can obstruct the substrate reaching the enzyme's 

active site and/or impede the enzyme catalysis reaction. Inhibitor binding is defined as 

either reversible or irreversible, though the distinction between these terms is not absolute 

and may be difficult to make if the inhibitor-enzyme complex is highly stable. If the 

effect of an inhibitor can be changed by varying the concentration of the inhibitor, then 

the inhibition is said to be reversible because of the invocation of LeChatier's principle 

[42]. There are three main classes of reversible inhibition: competitive, non-competitive, 

and mixed. The classification is correlated according to the type of effect on the enzyme 

kinetics when the inhibitor's concentration is varied. This investigation will focus on 

irreversible inhibition. Several researchers have described the fundamental kinetics of 

reversible inhibition, and unless specifically stated otherwise, their work will form the 
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framework for this area throughout the remainder of this dissertation, [39], [42], [46], 

[47]. 

Irreversible inhibitors usually covalently modify an enzyme. Thus, the inhibition 

cannot be reversed with concentration changes and equilibrium. Two typical 

stoichiometric equations involving irreversible inhibitors are shown below (with 

chemical symbol definitions offered in the text following): 

E + / «-i 1 E • I - ^ E • /• V" '> 

kEtl fcB-! kdead O Q\ 

E-S + I «-± * E • S • / -=^ E • /* + S ^ - ^ 

Irreversible inhibitors are also different from irreversible inactivators. For example, in 

extreme concentrations the hydroxide ion (OFT) functions as an irreversible inactivator 

because it can permanently destroy (denature) the entire structure of many enzymes; 

however, this effect is non-specific and is not connected to the special structure of any 

particular enzyme. An irreversible inhibitor, however, is usually specific for one class of 

enzyme and inhibits by altering only the active site of its target. Irreversible inhibitors 

form a reversible non-covalent complex with the enzyme species (EI) or with the 

enzyme-substrate species (ESI), which then reacts to produce the covalently bonded 

"dead" or "poisoned" complex, E-I*. The rate at which the dead complex forms is called 

the inactiviation rate, or kdead- Since formation of EI may compete with E-S, binding of 

irreversible inhibitors can be prevented by competition either with substrate or with a 

second, reversible inhibitor. This protection effect is good evidence of a specific reaction 

of the irreversible inhibitor with the active site [42]. 
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In the past, highly toxic organophosphorous compounds have been developed for 

use as pesticides and chemical warfare agents. The toxic effects of these 

organophosphorous compounds are mainly due to the increased quantity of inhibited 

acetylcholinesterase in the neuromuscular junction. Organophosphorous compounds 

inhibit acetylcholinesterase by reacting with and altering the amino acid units that 

comprise the protein sequences used to build up the enzyme's active site. In this case, the 

amino acid serine is phosphylized by the phosphorus atom of the organophosphorous 

compound. The inability of poisoned enzyme to hydrolyze acetylcholine results in the 

accumulation of that transmitter and the subsequent over-stimulation of the cholinegeric 

receptors, which is followed by the breakdown of transmission in all synapses that use 

the acetylcholine/cholinegeric receptor system. Organophosphorous compounds are not 

irreversible inactivators of acetylcholinesterase because they chemically modify only the 

active site of the enzyme, and therefore, other chemical reactions are able to retro-modify 

the active site and restore functionality to the enzyme. Restoration reactions with oxime 

compounds are the most effective and best understood in biological systems [48], [49]. 

Oxime compounds can reactivate acetylcholinesterase by attaching to the phosphorus 

atom and forming an oxime-phosphonate which then splits away from the 

acetylcholinesterase protein molecule. Oximes have the general stoichiometric formula of 

R4R2CNOH, where Rj and R2 are un-reactive organic side chains consisting only of 

carbon and hydrogen atoms. Some of the most effective oxime nerve-agent antidotes are 

obidoxime, pralidoxime, and methoxime. However, the effectiveness of the oxime 

treatment depends on the particular nerve agent used to inhibit the acetylcholinesterase 

[50], [51]. Chapters 4 and 5 will explore the chemistry and kinetics of oximes more fully. 
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A stoichiometric equation makes a statement about the species population at the 

beginning of a reaction and at the end, but may omit information about intermediate 

kinetic steps in a complicated reaction. By itself the stoichiometric equation also says 

nothing about how to follow the progress of the reaction with time, or the rates of species 

population change. Chemical kinetics is the area of chemistry concerned with the speeds, 

or rates, at which a chemical reaction occurs. The word "kinetic" suggests movement or 

change; here, kinetics refers to the rate of a reaction, or the reaction rate, which is the 

change in the concentration of a reactant or product with time. 

There are many reasons for studying the rate of a reaction. To begin with, there is 

intrinsic curiosity about why reactions have such vastly different rates. Some processes, 

such as the initial steps in vision and photosynthesis and nuclear chain reactions, take 

place on a time scale as short as 10"12 to 10"6 seconds. Others, like the curing of cement 

and the conversion of graphite to diamond, take years, or millions of years to complete. 

On a practical level, knowledge of reaction rates is useful in drug design, in pollution 

control, and in food processing. Industrial chemists often place more emphasis on 

speeding up the rate of a reaction rather than maximizing its yield. What follows is a 

description of fundamental chemical kinetics and some rules which allow derivation of 

kinetic rate equations from a known stoichiometric reaction or reaction network. 

The equation below depicts a simple reaction in which a molecules of species A 

are converted to b molecules of species B: 

aA —• bB (2.9) 

In general, it is more convenient to express the reaction rate in terms of the change in 

concentration with time. Thus, the simple reaction aA —* bB can be rate expressed as 
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rate = _ I£M or rate = ^ (2-10) 
a At b At 

where A[A] and A[B] are the changes in concentration (mole/liter) over time period At. 

Because the concentration of A decreases during A/, A[AJ is a negative quantity. The rate 

of a reaction is a positive quantity, so a minus sign is needed in the rate expression to 

make the rate positive. On the other hand, the rate of product formation does not require a 

minus sign because A[B] is a positive quantity (the concentration of B increases with 

time). These rates are average rates because they are averaged over a certain time period 

At [52]. 

The rate law or rate equation for a chemical reaction is an equation which links 

the reaction rate with concentrations or pressures of reactants and constant parameters 

(normally rate coefficients and partial reaction orders), and is derived from the law of 

mass action. In chemistry, the law of mass action has two aspects: 1) the equilibrium 

aspect, concerning the composition of a reaction mixture at equilibrium, and 2) the 

kinetic aspect concerning the rate equations for elementary reactions. 

Taken as a statement about kinetics, the rate law states that the rate of an 

elementary reaction (a reaction that proceeds through only one transition state, that is, 

one mechanistic step) is proportional to the product of the concentrations of the 

participating molecules. In modern chemistry, this is derived using statistical mechanics 

[53]. 

The hypothesis that reaction rate is proportional to reactant concentrations is, 

strictly speaking, only true for elementary reactions (reactions with a single mechanistic 

step). In general, many reactions occur with the formation of reactive intermediates, 

and/or through parallel reaction pathways. However, all reactions can be represented as a 
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series of elementary reactions and, if the mechanism is known in detail, the rate equation 

for each individual step is given by a particular rate expression so that the overall rate 

equation can be derived from the individual steps. In biochemistry, there has been 

significant interest in deducing the rate laws for chemical reactions occurring in the 

intracellular medium. Although deviations of the law of mass action have been reported, 

it has been shown that the law of mass action can be valid in intracellular environments 

under certain conditions [54]. 

To determine the rate equation for a particular system, one combines the reaction 

rate with a mass balance for the system. For a generic reaction A + B —• C, the simple 

rate equation (as opposed to the much more common complicated rate equations) is of the 

notationally simplified form: 

f-^KW (2U) 

This rate equation is a differential equation, and as such it can be integrated to obtain the 

integrated rate equation that links concentrations of reactants or products with time [55]. 

In this equation, [XJ expresses the concentration of a given species X, and k(T) is known 

as the reaction rate coefficient or rate constant. Under the imposed experimental 

conditions used to study chemical kinetics, this rate constant can be treated as constant. In 

reality, the rate coefficient depends on many things that affect the reaction rate besides 

the species concentrations. It is mainly a function of temperature, and also ionic strength, 

surface area of the adsorbent and light irradiation. 

The exponents m and n are called reaction orders and depend on the reaction 

mechanism. The stoichiometric coefficients and reaction orders are equal only in simple, 
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one step reactions. Usually, the reaction orders are determined via experimental 

measurement, and can be any real number value. 

In the more general case, given a known reaction or reaction network, the rate 

equation for each species in the reaction(s) can be expressed as: 

d[Xj] 

dt 
j=± \ h=i 

=^\kij^Yl[Xh]fjh 
(2.12) 

This form is structurally very rich and general, because for the real number j ^ ^ , the 

system can represent any multinomial, and thus a multidimensional Taylor series 

approximation, to any continuous and differentiable rate law. In the general case, the 

stoichiometric coefficients do not explicitly appear in the rate equation and are absorbed 

into the rate constant. For these purposes, Equation (2.12) shows that the total rate 

derivative of some particular species / is equal to the sum of the individual reaction rate 

terms of that species in the reactions where it is a participant. By convention, each 

reaction rate term is expressed as a function only of the reactant species participating in 

that particular reaction. As a consequence, chemical species which are purely products 

will not appear in their own differential rate expressions. 

It should also be mentioned here that when species X( is mobile, and can diffuse 

throughout the geometry of the system in a way that produces concentration gradients, 

then (2.12) is modified to the form below: 

dJ^ = v • (DAvlXtB+£ F T } ( 2 J 3 ) 

h=l 
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The additional term in (2.13) represents the description of the transport of species Xi in 

the system. Equation (2.13) describes a reaction-diffusion system, and treatment of these 

systems will be more developed in Chapter 3 [56]. 

The rules for deriving rate expressions from stoichiometric equations are best 

illustrated by the following examples. For instructional purposes, the reaction kinetics of 

these examples are assumed to be one step; thus, the stoichiometric coefficients of each 

species will be explicitly included in the kinetic expressions. 

Example 1: 

2C0 + 02 ^ 2C02
 ( 2 l l 4 ) 

The stoichiometric equation depicts one kinetic reaction comprised of three 

chemical species. Description of this system will require the development of three kinetic 

rate equations: dfCOJ/dt, d[02]/dt, and d[C02]/dt. 

Species CO participates in one reaction designated by rate constant kj, therefore 

the kinetic rate equation for species CO will consist of one term. In reaction ki_ species 

CO is a reactant, and so that term will be negative and expressed as a multiplicative 

product of its stoichiometric coefficient, the rate constant kj, and all the reactant species 

concentrations which participate in reaction kj, each raised to the power of their 

respective stoichiometric coefficient. More explicitly, the term will be negative 2ki, times 

[CO]2, times [Orf, thus: -2ki[CO]2[O2]• The complete kinetic rate equation for species 

CO is shown below as: 

d[CO] _ nj r ™ l 2 r „ n (2.15) 

dt = -2/qtCOm] 
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Species O2 participates in one reaction designated by rate constant k]\ therefore, 

the kinetic rate equation for species O2 will consist of one term. In reaction kj, species O2 

is a reactant, and so that term will be negative and expressed as a multiplicative product 

of its stoichiometric coefficient, the rate constant ki and all the reactant species 

concentrations which participate in reaction ki, each raised to the power of their 

respective stoichiometric coefficient. More explicitly, the term will be negative ki, times 

[CO]2, times [O2], thus: -kj[CO]2[02]. The complete kinetic rate equation for species O2 

is shown below as: 

di°2] ,. r _ l 2 r „ , (2.16) 
dt 

= -kx[CO]2[02] 

Species CO2 participates in one reaction designated by rate constant kj\ therefore, 

the kinetic rate equation for species CO2 will consist of one term. In reaction kj, species 

CO2 is a product, and so that term will be positive and expressed as a multiplicative 

product of its stoichiometric coefficient, the rate constant kj and all the reactant species 

concentrations which participate in reaction k}, each raised to the power of their 

respective stoichiometric coefficient. More explicitly, the term will be positive 2kj, times 

[CO]2, times [O2], thus: 2ki[CO]2[O2]• The complete kinetic rate equation for species 

CO2 is shown below as: 

d[C02] , (2.17) 
~ ~ = 2k1[CO]2[02]

 K } 

Taken all together, the stoichiometric reaction equation, and the kinetic reaction rate 

equations with their associated initial conditions are shown in (2.18): 
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2C0 + 02 S 2C02 

Kinetic reaction rate equations 

(2.18) 

Initial conditions 

d[CO] 

dt 

d[Q2] 
dt 

d[CQ2] 

dt 

= -2/q[CO]2[02] 

= 2kx[CO]2[02] 

[CO](0) = [CO]0 

[O2](0) = [O2]0 

[CO2](0) = [CO2]0 

Example 2: 

4N02 + 02 ^ ^ 2W205 (2-19) 

The stoichiometric equation depicts two kinetic reactions (one forward, one 

backward) comprised of three chemical species. Description of this system will require 

the development of three kinetic rate equations: d[N02]/dt, d[02]/dt, and dffyOsJ/dt. 

Species NO2 participates in two reactions, designated by the rate constants kj and 

k.i\ therefore, the kinetic rate expression for species NO2 will be a sum of two terms. For 

the reaction controlled by ki, species NO2 is a reactant, and the first term is expressed as a 

negative multiplicative product of its stoichiometric coefficient, the rate constant &/, and 

all the reactant species concentrations which participate in reaction kj, each raised to the 

power of their respective stoichiometric coefficient, written as: -4ki[N02]4[02]-

For the reaction controlled by k.i, species NO2 is a product, and the second term is 

expressed as a positive multiplicative product of its stoichiometric coefficient, the rate 

constant k.i, and all the reactant species concentrations which participate in reaction k.i, 

each raised to the power of their respective stoichiometric coefficient, written thus: 4k. 

i[N20sf. The complete kinetic rate equation for species NO2 is shown below as: 
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S.-^i^py + tt.,^^ (220) 

Species O2 participates in two reactions designated by the rate constants kj and k. 

1; therefore, the kinetic rate expression for species O2 will be a sum of two terms. For the 

reaction controlled by kj, species O2 is a reactant, and the first term is expressed as a 

negative multiplicative product of its stoichiometric coefficient, the rate constant ki, and 

all the reactant species concentrations which participate in reaction kj, each raised to the 

power of their respective stoichiometric coefficient, written thus: -ki[N02p'[O2]'. For the 

reaction controlled by k.i, species O2 is a product, and the second term is expressed as a 

positive multiplicative product of its stoichiometric coefficient, the rate constant k.i, and 

all the reactant species concentrations which participate in reaction k.i, each raised to the 

power of their respective stoichiometric coefficient, written as: k-jffyOs]2. The complete 

kinetic rate equation for species O2 is shown below as: 

^ = -kdN02no2] + k.dNzOs? (221) 

Species N2O5 participates in two reactions, designated by the rate constants kj and 

k.i\ therefore, the kinetic rate expression for species N2O5 will be a sum of two terms. For 

the reaction controlled by ki, species N2O5 is a product, and the first term is expressed as 

a positive multiplicative product of its stoichiometric coefficient, the rate constant ki, and 

all the reactant species concentrations which participate in reaction ki, each raised to the 

power of their respective stoichiometric coefficient; written as: 2kj[N02j4[02j. For the 

reaction controlled by k.i, species N2O5 is a reactant, and the second term is expressed as 

a negative multiplicative product of its stoichiometric coefficient, the rate constant k.i, 

and all the reactant species concentrations which participate in reaction k.i, each raised to 
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the power of their respective stoichiometric coefficient, written thus; -2k.i[NiOif'. The 

complete kinetic rate equation for species N2O5 is shown below as: 

d[N2Q5] l 4 r _ . r 12 (2.22) 
— — — = 2fc1[ArO2]

4[02] - 2k_x[N2OsY 

Taken all together, the stoichiometric reaction equation, the kinetic reaction rate 

equations, and their associated initial conditions are shown in (2.23): 

4N02 + 02 *^—i 2N205 (2-23) 

Kinetic rate equations Initial conditions 

d[N02]_ „,, r _ l 4 r n l ^ r w n l 2 [NO2](0) = [NO2]0 

dt 
= -4fc1[iV02]4[02] + 4fc.1[iV20s]' 

d\-°2\ _ u r „ „ i4r« i . ,. r„ n 12 MP) = Mo 
dt 

= -fci[^02]4[02]+fc-i[^205] ' 

^M = 2kl[N02n02] - 2^[N205r ^ ° ^ = ^ J o 

(2.24) 

Example 3: 

2NH3 4 yv2 + 3//2 

2/V02 + 7//2 ^ 2N//3 + 4H20 

N2 + 202 ^ 4 2W02 

The stoichiometric equation depicts four kinetic reactions (distributed among 

three equations) comprised of six chemical species. Description of this system will 

require the development of six kinetic rate equations: d[NHi]/dt, d[N2]/dt, d[H2]/dt, 

d[N02]/dt, d[H20]/dt, and dfOJ/dt. 

Species NH3 participates in two reactions, designated by the rate constants k] and 

k2; therefore, the kinetic rate expression for species NH3 will be a sum of two terms. For 
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the reaction controlled by ki, species NH3 is a reactant, and the first term is expressed as a 

negative multiplicative product of its stoichiometric coefficient, the rate constant k], and 

all the reactant species concentrations which participate in reaction ki, each raised to the 

power of their respective stoichiometric coefficient, written as: -2ki[NHi]2. For the 

reaction controlled by kz, species NH3 is a product, and the second term is expressed as a 

positive multiplicative product of its stoichiometric coefficient, the rate constant &?, and 

all the reactant species concentrations which participate in reaction fe, each raised to the 

power of their respective stoichiometric coefficient, written thus: 2k2[NOrf*'fHj'''. The 

complete kinetic rate equation for species NH3 is shown below as: 

dJm=.2kl[NH3?+2k2[N02nH2r p-*) 

Species N2 participates in three reactions designated by the rate constants ki, k3 

and k.3; therefore, the kinetic rate expression for species N2 will be a sum of three terms. 

For the reaction controlled by kj, species N2 is a product, and the first term is expressed 

as a positive multiplicative product of its stoichiometric coefficient, the rate constant kj, 

and all the reactant species concentrations which participate in reaction kj, each raised to 

the power of their respective stoichiometric coefficient, written as: ki[NH3]2. For the 

reaction controlled by £3, species N2 is a reactant, and the second term is expressed as a 

negative multiplicative product of its stoichiometric coefficient, the rate constant fcj and 

all the reactant species concentrations which participate in reaction £3, each raised to the 

power of their respective stoichiometric coefficient, written thus: -ksffy][O2]2. For the 

reaction controlled by k.3 species N2 is a product, and the third term is expressed as a 

positive multiplicative product of its stoichiometric coefficient, the rate constant k.3, and 

all the reactant species concentrations which participate in reaction k.3, each raised to the 
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power of their respective stoichiometric coefficient, written thus: k.3 [NOJ2. The 

complete kinetic rate equation for species N2 is shown below as: 

^ = kl[NH3r - k3[N2][02? + k_3[N02}* ( 2 - 2 6 ) 

Species H2 participates in two reactions, designated by the rate constants kj and 

kf, therefore, the kinetic rate expression for species H2 will be a sum of two terms. For 

the reaction controlled by ki, species H2 is a product, and the first term is expressed as a 

positive multiplicative product of their respective stoichiometric coefficient, the rate 

constant kj, and all the reactant species concentrations which participate in reaction ki, 

each raised to the power of its stoichiometric coefficient, written as: 3ki[NHs]2. For the 

reaction controlled by k2, species H2 is a reactant, and the second term is expressed as a 

negative multiplicative product of its stoichiometric coefficient, the rate constant k2, and 

all the reactant species concentrations which participate in reaction fo, each raised to the 

power of their respective stoichiometric coefficient, written as follows: -7k2[N02] [H2] . 

The complete kinetic rate equation for species H2 is shown below as: 

$M = 3kl[NH3r - 7k2[N02r[H2]
7 ( Z 2 7 ) 

Species NO2 participates in three reactions designated by the rate constants k2, k$ 

and L3; therefore, the kinetic rate expression for species NO2 will be a sum of three terms. 

For the reaction controlled by k2, species NO2 is a reactant, and the first term is expressed 

as a negative multiplicative product of its stoichiometric coefficient, the rate constant fe, 

and all the reactant species concentrations which participate in reaction k2, each raised to 

the power of their respective stoichiometric coefficient, written as: -2k2[N02]2[H2]7. For 

the reaction controlled by ki, species NO2 is a product, and the second term is expressed 
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as a positive multiplicative product of its stoichiometric coefficient, the rate constant fa, 

and all the reactant species concentrations which participate in reaction fa, each raised to 

the power of their respective stoichiometric coefficient, written thus: 2fa/7V '̂[Orf1'. For 

the reaction controlled by k.3 species NO2 is a reactant, and the third term is expressed as 

a negative multiplicative product of its stoichiometric coefficient, the rate constant k.3, 

and all the reactant species concentrations which participate in reaction k.3, each raised to 

the power of their respective stoichiometric coefficient, written thus: -2k.3 [N02]2- The 

complete kinetic rate equation for species NO2 is shown below as: 

^ 1 = -2k2[N02f[H2V + 2k3[N2][02]
2 - 2fc_3[JV02]

2 ( 2 ' 2 8 ) 

Species H2O participates in one reaction designated by the rate constant fa. For 

the reaction controlled by fa, species H2O is a product, and the first term is expressed as a 

positive multiplicative product of its stoichiometric coefficient, the rate constant fa, and 

all the reactant species concentrations which participate in reaction fa, each raised to the 

power of their respective stoichiometric coefficient, written thus: 7k2[NOJ [HJ . The 

complete kinetic rate equation for species H2O is shown below as: 

« = 7*,fl«UW (229) 

Species O2 participates in two reactions, designated by the rate constants fa and k. 

3; therefore, the kinetic rate expression for species O2 will be a sum of two terms. For the 

reaction controlled by fa, species O2 is a reactant, and the first term is expressed as a 

negative multiplicative product of its stoichiometric coefficient, the rate constant fa, and 

all the reactant species concentrations which participate in reaction fa, each raised to the 

power of their respective stoichiometric coefficient, written as: -2fa/7V2/[O2J2'. For the 
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reaction controlled by k.3, species O2 is a product, and the second term is expressed as a 

positive multiplicative product of its stoichiometric coefficient, the rate constant k.3, and 

all the reactant species concentrations which participate in reaction k.3, each raised to the 

power of their respective stoichiometric coefficient, written thus: lk.3 [NO2]2. The 

complete kinetic rate equation for species O2 is shown below as: 

^ = -2k3[N2][02r + 2k_3[N02]* ( 2 3 0 ) 

Taken all together, the stoichiometric reaction equation, and the kinetic reaction rate 

equations with their associated initial conditions are shown in (2.31): 

2NH3 ^ N2 + 3//2 (2-31) 

2N02 + 1H2 ^ 2NH3 + 4H20 

N2 + 202 ^ 1 2iV02 

Kinetic Rate Equations Initial conditions 

*M=kl[NH3r - UNMJ+k.3[No2r ^ - ™° 

$M=3kllmr - 7k2[No2nH2r
 [HJ(0) = [HJ» 

- 2k_3[N02]
2 

iM-TfeW^ lH2Om = [H2O]0 
at 

d-^=-2k3[N2][o2r+2k_3[No2r MTO - M. 
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It has been shown that the rules of mass action kinetics can be used to develop 

model equations of the kinetics of a given stoichiometric reaction network in a 

straightforward fashion. The stoichiometric reaction coefficients of the chemical species 

were also shown to correlate to the reaction order (species concentration exponent) in the 

derived rate equations, and this is true for elementary single step reactions, but not true in 

general. In balanced stoichiometric equations the stoichiometric coefficients are 

expressed as the simplest collective set of whole numbers for convenience. In general, 

stoichiometric coefficients are not necessarily connected to the reaction order. The 

explicit substitution of the stoichiometric coefficients as concentration exponents and 

kinetic rate coefficients in the preceding examples was used as a device to clarify the 

relations between the reaction networks and their coupled differential rate equations. To 

illustrate, the application of fundamental molecular collision theory to reaction network 

(2.31) suggests that seven H2 molecules and two NO2 molecules coming together 

simultaneously in the correct proximity and orientation is an unlikely event. This reaction 

probably occurs in several steps. In practice, the concentration exponents are replaced by 

additional unknown parameters which must subsequently be determined by experiment, 

and the stoichiometric coefficients are incorporated into the kinetic rate constant (also 

determined by experiment). Models based on mass-action kinetics have the advantage of 

being determined directly from the elemental reactions and their stoichiometry. However, 

a detriment is the fact that a large number of rate constants and other parameters must be 

determined in order to implement the model. In many cases, these elemental reactions are 

not experimentally observable and the parameters would thus be difficult to acquire. 



CHAPTER 3 

MODEL DEVELOPMENT 

The synaptic chemical transmission is an important part of the transport of 

neuronal signals, and investigation of the molecular events was instrumental in creating 

neurotransmitter theory. Analysis of such behavior can be best accomplished with the 

transmission process represented as a reaction-diffusion simulation for the 

neurotransmitter because experimental analysis is impractical for the molecular processes 

in the cleft. Unless great care is taken, the tools used to collect the data can disrupt the 

physical system so badly that it ceases natural function. Several mathematical models for 

the dynamic behavior of acetylcholine in spontaneous generation of the action potential at 

the neuromuscular junction have been implemented to analyze the transient process of the 

synaptic chemical transmission. In the model of Rosenberry [5], the radial diffusion of 

acetylcholine is treated in two axis-symmetrical compartments with homogeneity in the 

transverse direction, while Thomas and Friboulet [57] used a model where the transverse 

coordinate diffusion gradient was discretized and the effects of radial diffusion out of the 

cleft were described as a uniform sink term. Models where the reaction-diffusion of 

acetylcholine is developed in a volume consisting of two space variables r and x, 

representing the radius and axis respectively, and the diffusion is symmetric about the 

axis, have also been published [5]. A report by Naka and Shiba [58] described a two 

35 
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dimensional compartment model to examine the effects of transverse and radial diffusion 

of acetylcholine on the transient behavior of the molecular dynamics of the action 

potential event. The transmission process is represented as a reaction-diffusion system, in 

which the acetylcholine concentration varies with time and position in a two dimensional 

space between the axis-symmetrical discs of the synaptic cleft. The variation in 

concentration of the open channel form of the receptor in response to the interaction of 

receptor with incoming acetylcholine corresponds to transient evolution of the action 

potential. Naka and Shiba [58] did much analytical development and support of 

simplifying assumptions and modeling techniques which helped unravel the complexities 

of simulating the neuromuscular action potential event; thus, their work was an integral 

part of the development of the Jenkins-Szlavik model. This researcher was able to seize a 

number of concepts and propositions and apply them to the pertinent portions of the 

model herein which will show simulation of the key issues of the transient 

neurotransmission process under the influence of acetylcholinesterase inhibitors, and the 

therapeutic regeneration of inhibited acetylcholinesterase. 

Based on an optimal selection of the subdivision numbers and critical radius for 

their simulation, Naka and Shiba [58] proposed a minimal compartment model which 

was comprised of three compartments in the transverse direction and ten compartments in 

the radial direction, in a disc with 500 nm radius and 50 nm in height. Evaluation of 

varying diffusion coefficients suggested anisotropic diffusion for this model to represent 

the characteristic behavior of the chemical neurotransmission process. Their proposal of 

anisotropic diffusion provides a solid case demonstrating that radial diffusion has 

stronger effects than axial diffusion on the processes occurring in the neuromuscular 
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junction. For this reason Jenkins chose to ignore axial diffusion in this model, and 

discretized the cleft volume into 20 annular compartments. Jenkins found that the results 

of the simulation did not become any smoother at compartment numbers larger than 

twenty. This choice gave a benefit of simpler computations and still captured the essential 

character of the dynamics involved in the generation and inhibition of the action potential 

[58]. 

Jenkins assumed the neuromuscular junction as a whole to have the general shape 

of a cylinder where the radius is approximately 10 times that of the height. To illustrate 

this concept, consider a coin, one face represents the presynaptic membrane, while the 

other face represents the postsynaptic membrane, as shown in Figure 3.1 below. 

Presynaptic membrane, outer 
surface 

I 
i 

Postsynaptic membrane, inner 

Figure 3.1. A schematic diagram of the neuromuscular junction geometry used in the 
model. The dimension of width is exaggerated for clarity. 

50 nm 



38 

The material between each face has been removed such that the edge of the coin 

becomes a void which represents the cleft that separates the presynaptic membrane and 

the postsynaptic membrane (motor end-plate). The result is a model of the cleft as a very 

thin disk comprised of two circular plates separated by a space of 50 nm, with a radius of 

500 nm, and open to the environment along the circumference. The coordinate system is 

embedded such that a line connecting each membrane through their respective centers 

represents the direction along the axis, designated by the variable x; and the direction 

normal to this axis, along the radius and which terminates at the circumference, is 

designated by the variable r. As shown in Figure 3.2, acetylcholine vesicles are modeled 

as a cylindrical shape entering the cleft through the surface of the presynaptic membrane 

at the center. The pulse of acetylcholine is assumed to enter the cleft, instantaneously 

diffuse axially across the cleft to the motor end-plate, and then diffuse radially towards 

the circumference of the membranes and then into the environment. The radial diffusion 

process is assumed to be angularly symmetric about the axis. It should be mentioned here 

that in reaction-diffusion systems with anisotropic diffusion, it is important to make a 

distinction between directions where diffusion occurs at some finite rate, and those 

directions where the diffusion is modeled as instantaneous. Instantaneous diffusion is 

often termed instantaneously well mixed or instantaneous uniform concentration. 

The acetylcholine receptors are immobilized in the surface of the postsynaptic. A 

schematic representation of this transport model is shown in Figure 3.3, as viewed along 

the axis and normal to the surface of the cleft. The enzyme acetylcholinesterase is 

assumed to be uniformly distributed and immobilized throughout the volume of the cleft, 

and reacts with acetylcholine as it diffuses out of the cleft. 
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Acetycholine pulse 

Figure 3.2. The shape and diffusion of the acetylcholine pulse, and the relative location of 
the acetylcholine receptors in the neuromuscular junction model. 

The inhibitor and oxime species are each modeled as diffusing into the cleft from 

the environment through the edge and towards the center, through the same series of 

concentric annuli. None of the chemical species in this reaction-diffusion system are 

allowed to permeate through both the presynaptic and postsynaptic membranes in either 

the positive axial direction (postsynaptic membrane) or the negative axial direction 

(presynaptic membrane). 
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Figure 3.3. The transport model of the acetylcholine, inhibitor, and oxime species 
in the neuromuscular junction. 

The behavior of this reaction-diffusion system is mathematically expressed by a 

one-dimensional, axially symmetric partial differential diffusion equation with nonlinear 

reaction terms for acetylcholine, organophosphate inhibitor, and oxime species. These 

equations are coupled with a set of nonlinear ordinary differential equations that represent 

the immobilized receptor and enzyme species which are distributed at spatial 

compartments in the cleft. The spatio-temporal analysis employs computer simulation via 

discretization of the radial coordinates in the space for the partial differential equations, 
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and numerical integration of the governing ordinary differential equations. Simulation of 

the response of this system to release a discrete packet of acetylcholine into the cleft 

leads to characterization of the radial diffusion process of acetylcholine in the chemical 

transmission with reference to their effect on spontaneous generation of the action 

potential during normal and inhibited conditions. 

The stoichiometric Equations (3.1) to (3.5) represent the full set of chemical 

species and their stoichiometric reactions that were modeled in this dissertation. Some of 

kE±, fcE-i kE2 kE3 (3 i) 

A + E * > A-E —> acE —> E + products ' 

2kRv fc/?_! (T. O^ 

A + R <— * A • R V'Z) 

kR2, 2fci?_2 , . oR, cR /"2 1\ 

A+A-R «-2 1 A2 • Rclosed < * A2 • R°Pen (3-3) 

E + IVlL^E.I
k^E.l<ieaa (3.4) 

E.jaeaa + ox
k^t^E.I.0xi^E + l-OX ( 3 ' 5 ) 

the stoichiometric equations depict two or more reactions, and these equations can be 

collected into different groups, depending on which of the three processes in this model 

are being described: normal cleft reactions, inhibited enzyme cleft reactions, and enzyme 

regeneration reactions. 

To begin, determine all the stoichiometric chemical equations which comprise the 

reactions in the neuromuscular junction during a normal action potential event. By 

choosing from the complete set, these equations are: 

kElt kE-x kE2 kE3 (-1 K\ 

A+E * > A • E —» acE —> E + products v ; 
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2kRlt fcfi_! /"I 7^ 
A + R <— > A>R ^ , / J 

fcR2. 2fcR_2 , , OR, CR /"l Q^ 

A+A-R <-? * i42 • / ? c i o s e d < » A2 • R°Pen V*> 

Equation (3.6) represents the full kinetic cycle of acetylcholine initially reacting with 

acetylcholinesterase and proceeding to the final renewal of the enzyme. The first step 

shows acetylcholine, A, reacting with acetylcholinesterase, E, reversibly to form the 

Michaelis complex of A-E. The forward reaction, controlled by the rate constant kEj, is 

several orders of magnitude faster than the reverse reaction controlled by kE.j. In the next 

step, species A-E then irreversibly reacts to form the acylated enzyme intermediate acE, 

where the reaction rate is controlled by the constant kE2. The final step shows how acE 

then decomposes back to acetylcholinesterase and reaction products, where the rate is 

controlled by the rate constant kEi and one of the reaction products is choline. This final 

step regenerates the enzyme and is the major resource for acetylcholine replacement 

because choline is a precursor of acetylcholine. Water is also a reactant in this last step, 

but in this case, water is treated as an excess solvent, and as such, its concentration does 

not change and so it is not included in the reaction kinetics. 

Equation (3.7) represents the first acetylcholine molecule reversibly binding to the 

closed receptor. Because there are two sites available for docking, a numerical factor of 

two is included with the kinetic rate constant 2kRj, which controls the forward binding 

reaction. Because only one acetylcholine molecule can dissociate from the receptor in the 

reverse reaction, the kinetic rate constant kR.j does not require an additional 

multiplicative factor. 
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The two-step process kinetics of acetylcholine receptor function is represented by 

Equation (3.8). Just as in Equation (3.7), the first step of this equation shows a second 

acetylcholine molecule binding reversibly to the ligand-receptor complex A-R. Only one 

position for binding exists on the receptor in this case, so the forward kinetic rate 

constant, kR2, does not require a multiplicative factor. In the reverse reaction, either of the 

two acetylcholine molecules could dissociate from the closed ligand-receptor complex 

^^ciosed g 0 ^ e n u m e r j c a i factor of two is included with the kinetic rate constant 2kR.2. 

The second step of Equation (3.8) shows the closed, double bound, ligand-receptor 

complex reversibly changing from the closed conformation to the open conformation, 

A2R
ope" (forward reaction), and back to the closed conformation (reverse reaction). The 

forward and backward reactions are controlled by the kinetic rate constants oR and cR, 

respectively. It is at this step where the redistribution of sodium and potassium ions 

through this open channel leads to the eventual contraction of the muscle cell. Several 

experiments, and kinetic-thermodynamic analyses, [8], [23], [41], have shown that the 

conformational change from A2R
closed to A2R

open is energetically favored, so that a channel 

which has two molecules of acetylcholine bound to it will spend most of its time of 

existence in the open condition. 

The inhibited enzyme cleft reactions include Equations (3.9) through (3.11) with 

the addition of Equation (3.12), as shown below: 

fc£1; fc£_! kE2 kE3 ft Q\ 

A + E < > A • E —* acE —» E + products yj y) 

A + R <—̂  1 A-R ^AU) 

kR2, 2kR-2 , . OR, CR n 111 
A+A-R^ * A2 • Rclosed * >A2-R°Pen VA1> 
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i? + / EL_±i * . / fe if •/"«* (3.12) 

The qualitative kinetics represented by the stoichiometric Equations (3.9) through (3.11) 

has been discussed. Equation (3.12) shows the two-step kinetic process of 

acetylcholinesterase, E, reacting with an inhibiting organophosphorus compound I, where 

the reaction leads to the non-functional inhibited enzyme 
E.jdead ^ t h e first s t e p ) 

acetylcholinesterase reacts reversibly with the inhibitor to produce the intermediate 

enzyme-inhibitor complex EL The forward and reverse reactions of this step are 

controlled by the respective kinetic rate constants klj and kl.j. The second step represents 

the enzyme-inhibitor complex irreversibly reacting to produce the non-functional 

inhibited enzyme E-fead, and the reaction rate is controlled by the kinetic rate constant 

i^dead-

The reactions which describe the process of acetylcholinesterase regeneration in 

the neuromuscular junction in this model are given by: 

fcEi, fcE_i kE2 kE3 C\ 1 X\ 

A + E < > A-E -* acE —> E + products V'Li) 

A + R
2^1L^A.R (3-14) 

(3.15) 

E.^aa + ox^L^E^.oxi^E + I-OX ( 3 J 6 ) 

kR2, 2kR-2 , J oR, cR 

A + A • R 4 > A2 • Rclosed * > A2 • Ropen 

All the reactions of a normal action potential event are included again (Equations (3.13) -

(3.15)), and the addition of Equation (3.16). Equation (3.16) shows the two-step kinetic 

process of regenerating functional acetylcholinesterase from the deactivated enzyme via 
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the use of an oxime compound. In the first step, the inhibited enzyme, E-fead, reacts 

reversibly with the oxime compound, OX, to form the intermediate phosphyl-oxime 

complex EI-OX. The forward and backward reactions are controlled by the reaction rate 

constants kox and k.ox, respectively, where kox is many orders of magnitude larger than k. 

ox- The second step represents the irreversible dissociation reaction of the phosphyl-

oxime complex, controlled by reaction rate constant kregen, to produce the phosphylated 

oxime residue I-OX, and also regenerates functional acetylcholinesterase, E. This 

completes the qualitative analysis of all the chemical reactions used in the Jenkins-

Szlavik model of the neuromuscular junction. 

Next, it will be useful to develop a robust and general algorithm to describe how 

to start with a set of stoichiometric equations, derive their resulting theoretical differential 

kinetic equations, and finish with the set of coupled numerical equations. The numerical 

equations can then be used to calculate numerical values that can be compared to 

measurements obtained from the actual physical system, and the results of that 

comparison can be used to evaluate the validity of the model. In this system, a key issue 

is the reaction that occurs between mobile chemical species and immobile chemical 

species. All the species vary in concentration with time; however, some of the species are 

mobile, and some are immobile. The mobile species have concentrations that can vary 

with respect to position in space, as well as time. Most kinetic chemical equations are 

modeling chemical species which are assumed to be mobile in a uniformly mixed 

environment, but one's first encounter with describing the kinetics of mobile and 

immobilized molecules can be non-intuitive. To address this issue, two species which 

include all of the important characteristics associated with the mobile and immobile 
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kinetics will be selected, and a general algorithmic procedure that can be applied to all of 

the other species and reactions will be developed. 

The molecules acetylcholine and acetylcholinesterase have been chosen as the 

species with the important characteristics which are shared by all the other different 

molecules in this system, and as such are suitable for the detailed algorithmic derivation 

and development. Collectively, the chemical kinetics of these two species includes 

mobility, immobilization, reaction with different mobile and immobile species, and 

reaction with each other. A detailed development of their chemical kinetics starting from 

the stoichiometric reactions and finishing with the full set of numerical computable 

equations will allow comparison between similarities and differences. This comparison 

will lead to the recognition of patterns and establishment of the general principles which 

describe the complete kinetic behavior of the system in time and space. 

Both acetylcholine and acetylcholinesterase vary in concentration with time; 

however, acetylcholine is mobile, and acetylcholinesterase is immobile. The mobile 

species have concentrations that can vary with respect to position in space, as well as 

time. Therefore, these species are modeled with partial differential equations. The 

immobile chemical species are modeled with ordinary differential equations. The end 

result is a set of coupled partial and ordinary differential equations that describe how 

mobile molecular species and immobile molecular species are able to interact with each 

other. 

The stoichiometric equations that describe the normal cleft reactions are a suitable 

choice for the forthcoming derivation because acetylcholine and acetylcholinesterase are 

members of these reactions. The differential equation for acetylcholine will be derived 
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first, and this goal will require knowledge of where acetylcholine occurs in the network 

of coupled normal cleft reactions, shown as Equations (3.17) to (3.19), which have been 

included here for easy reference: 

kEu fcB-i kE2 kE3 /"5 17 \ 

A + E < > A • E —> acE —* E + products y ' 

A + Rf^J^iA.R (3-18) 

kR2, 2kR_2 , . oR, cR /"J 1 Q\ 

A + A • R «-^ • A2 • Rclosed * » A2 • R°pen ( J ' i y j 

Because acetylcholine is known to be a mobile species in this system, it is known that the 

general form of the kinetic partial differential equation (PDE) is shown below in (3.20) 

according to the description given in Chapter 2 (page 11) of this dissertation. The details 

dt 
= V • (DAV[A\) + £ fcw(T) (]~[[^]w) 

of the rigorous and general enumeration rules of ktj and Xh are omitted to avoid 

unnecessary complexity. Recall that this equation is a function of the concentration of 

acetylcholine, [A], and that the symbol for acetylcholine is given by A. The term on the 

left-hand-side of (3.20) is the partial derivative of [A] with respect to time, t. The first 

term on the right-hand-side of (3.20) describes the diffusion of acetylcholine throughout 

the cleft, and the second term on the LHS relate to the reactions of acetylcholine with 

other species in the cleft. At this point, it will be more instructive to show the fully 

developed theoretical form of (3.20) and explain the rules used for its derivation while 
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the reader can easily refer to it and the equations of the stoichiometric reaction network 

that contains acetylcholine. 

Equation (3.21) shows the full theoretical kinetic rate equation for the reaction of 

acetylcholine in the neuromuscular junction. Recall that the neuromuscular junction 

d[A(r,t)] d2[A(r,t)] ld[A(r,t)] r nr n r (3.21) 

-kR2[A(r, t)][A • R] + kR_2[A2 • R^sed^ _ kEl[A(r, t)][E] + kE.x[A • E] 

geometry is modeled as a thin coin, in cylindrical coordinates, with acetylcholine entering 

the coin between the plates at the center, and diffusing and reacting from the center to the 

outer edge. Acetylcholine, chemical species A, is mobile, and is transported throughout 

the cleft by diffusion where it reacts with some of the other species it encounters. This 

reaction-diffusion process is described by Equation (3.21), and is known as a reaction-

diffusion equation. A qualitative description of the terms on each side of (3.21) now 

follows. 

The first term on the left-hand side of the equal sign is of course the partial 

derivative of acetylcholine concentration with respect to time. The first two terms on the 

RHS of the equal sign account for the transport of acetylcholine in the cleft. These two 

terms are the result of implementing the gradient and divergence operators on the 

concentration of species A, embedded in cylindrical coordinates. The first term describes 

transport by diffusion, and the second term accounts for the increased radial dispersion 

effects caused by the geometry of the model. The rest of the terms in (3.21) relate to the 

reaction of acetylcholine where it appears in each of the stoichiometric equations shown 
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in (3.17) to (3.19), and these terms result from applying the same rules developed in 

Chapter 2 (page 11) for deriving differential rate expressions from a given stoichiometric 

network. Referring to those coupled stoichiometric equations, it is easy to see that 

acetylcholine participates in six reactions, designated by the rate constants kEj, kE.lt 

2kR;, kR„i, kR.2, and 2kR-2- These six reactions explain why (3.21) has six kinetic rate 

terms for species A, each comprised of a multiplicative product of the particular rate 

constant and all the reactant species concentrations participating in that reaction, where 

each species concentration is raised to the power of its stoichiometric coefficient. 

The derivation of the complete reaction-diffusion equation for acetylcholine is not 

yet accomplished, but at this point it seems useful to walk through the derivation rules of 

the kinetic reaction equation for the other representative species, acetylcholinesterase. In 

the Jenkins-Szlavik model of the neuromuscular cleft system, the species 

acetylcholinesterase, E, is known to be immobilized and assumed uniformly distributed. 

As an immobile species, the concentration of acetylcholinesterase depends only on time, 

t. This means the kinetic reaction equation for acetylcholinesterase is an ordinary 

differential equation (ODE), not another diffusion-reaction equation. As such, this 

reaction equation will be less complicated than (3.21) and familiar to readers with some 

experience with chemical kinetics. As was done with acetylcholine, the full theoretical 

kinetic equation for acetylcholinesterase will be given in (3.22), and the rules of its 

derivation will follow. 

d\E] (3 22) 
- j ^ - = -kEt [A (r, t)] [E] + kE_x [A-E] + kE3 [acE] K } 
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Equation (3.22) shows the full theoretical kinetic rate equation for the reaction of 

acetylcholinesterase in the neuromuscular junction with the same conditions and 

geometry of Equation (3.21). The first term on the left hand side is the derivative of the 

concentration of species E, [E], with respect to time, t. Since species E is immobile in the 

cleft, there are no transport terms appearing on the right hand side of (3.22). This means 

all the right hand side terms are related to the reaction of species E where it appears in the 

coupled stoichiometric reaction network depicted in Equations (3.17) to (3.19). Referring 

to those coupled stoichiometric equations, the reader will note that species E participates 

in three reactions, designated by the rate constants kEj, kE.j, and kE^. These three 

reactions explain why (3.22) has three kinetic rate terms for species E, each comprised of 

a multiplicative product of the particular rate constant and all the reactant species 

concentrations participating in that reaction, where each species concentration is raised to 

the power of its stoichiometric coefficient. 

The full theoretical kinetic reaction rate equations for the representative mobile 

species acetylcholine and immobile species acetylcholinesterase have now been derived. 

All types of differential equations must have their initial and boundary conditions 

specified before they can be solved, and the determination of these conditions for (3.21) 

and (3.22) follow next. 

Equation (3.23), the PDE which governs the reaction-diffusion of acetylcholine in 

the neuromuscular junction, now needs to have the initial and boundary conditions 

d[A(r,t)] d2[A(r,t) ld[A(r,t)] r n r n r (3.23) 
at °A dr* +°Ar dr 2kR1[A(r,i)][R] + kR_M • R] 
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-kR2[A(r, t)][A • R] + kR.2[A2 • Rclosed] - kE^r, t)][E] + kE^[A • E] 

determined. These conditions are imposed by the geometry and physio-chemical 

parameters of the system. The determination of those conditions will now require a focus 

on the partial derivative terms in Equation (3.23). Recall that the physical system is 

modeled as the volume bounded by the two sides of a very thin coin, the two side 

surfaces are impermeable, and the circumference edge is open to the environment. 

Acetylcholine enters the cleft in the center of that volume and diffuses radially (outward) 

towards the edge, reacting with other molecular species along the way. Because PDE 

(3.23) contains a second derivative with respect to the radius, determining the solution 

will require known information about the concentration of species A at two points in the 

domain of r that is simultaneously true for all points in the domain of t. Intuitively, one 

should suspect the best candidates would be the extreme values of r in its domain: r = 0 

and r = 500 nm; i.e., those values of r designate the physical boundaries. The known 

information about the concentration of acetylcholine at these points specifies the 

boundary conditions. At the maximum value of r, the edge of the cleft and beyond, the 

reader knows the concentration of species A is essentially zero for all time. Therefore, 

this boundary condition is easy to understand and state mathematically: 

[4(500,t)] = 0 , V t > 0 (3-24) 

The physical interpretation is that acetylcholine diffuses from inside the cleft into a 

region outside the cleft where its concentration is maintained at zero. At the center of the 
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cleft where r = 0, intuition is of less help and it is beneficial to explain the situation in 

more detail. There does not exist a known relationship describing the concentration of 

acetylcholine at r = 0 as a function of all time, so seeking a boundary condition explicitly 

in terms of [A(r,t)] is not useful. The next candidate is to examine what is known about 

the first partial derivative of [A(r,t)] with respect to r at r = 0. By the use of symmetry, it 

is possible to model diffusion in a two-dimensional space with a one-dimensional 

direction. However, the diffusion process in this two-dimensional space is identical to a 

particular one-dimensional problem where diffusion occurs in the x-direction. Imagine a 

linear tube of length L, where 0 < x < L. At x = 0 the tube is closed, and at x = L the tube 

is open to the environment. Particles of species A are inserted into this system at x = 0 

and allowed to diffuse along the tube. In this case, because the tube is closed at x = 0 for 

all values of time, the reader would determine the boundary condition there as 

d[A(0,t)] n n (3.25) 

- H i — - = o , v t > o v ' 
ox 

This is known as a Neumann boundary condition, and it shows the mathematical 

expression of describing how a quantity is not allowed to leave the system at some 

identified location. Now imagine this one-dimensional problem is mathematically rotated 

2% radians about the axis at x = 0. This will produce the symmetric two-dimensional 

space, one-dimensional direction diffusion system, where x is now defined to be r and the 

boundary condition at r = 0 is still the same Neumann condition. In this case, it is 

expressed as: 
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d[A(0,t)] n n (3.26) 
- ^ — - = 0, V t > 0 v ' 

or 

The physical interpretation means that acetylcholine cannot leave the cleft at its center. 

Two thought experiments are described here to aid the reader's intuition in understanding 

this condition at r = 0. First, imagine a perfectly frictionless and hemispherical surface 

(concave down) at rest in a uniform gravitational field. By nature of the non-friction 

surface, no object could be placed on it without sliding off, unless it was balanced exactly 

at the top and center point, the "pole". Balanced at that point, all the forces acting on the 

object would resolve to zero, and it would stay in place if not disturbed, regardless of the 

lack of friction at the surface. Finally, imagine a traveler moving north along a 

longitudinal. When the geographic North Pole is reached, the direction "North" no longer 

exists. Every direction from that point is south. 

The initial condition for acetylcholine is 

[i4(r,0)] = { 0.17 mmole/cm3 0 < r < 25nm (3.28) 
0 otherwise 

The physical interpretation is that the vesicle of acetylcholine which instantaneously 

enters the cleft centered at r = 0 has a radius of 25 nm, and no acetylcholine initially 

exists anywhere else in the cleft. 

Equation (3.29), the ODE which governs the reaction-diffusion of acetylcholine in 

the neuromuscular junction, only needs to have the initial condition on the concentration 

1 J = -kE^Air, f)][E] + kE_x[A • E] + kE3[acE] ( 3 ' 2 9 ) 

dt 
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of species E specified. The concentration of acetylcholinesterase in the neuromuscular 

junction is known to be 0.845 mmole/cm ([5], [57], [58]), which means that when t = 0 

[E](0) = 0.845 mmole/cm3 (3.30) 

With the boundary and initial conditions of (3.23) and (3.29) determined, these 

equations are now ready for numerical development. No general method for the analytic 

solution of coupled nonlinear PDE/ODE systems yet exists. As a rule, transport-reaction 

equations are "well behaved", albeit stiff (the variables can exhibit a wide distribution of 

rates of change), and thus can be reliably approximated with numerical techniques. For 

systems involving PDEs, the two usual numerical methods of choice are the finite 

difference method (FDM) and the finite element method (FEM). The FEM can model a 

broad array of physical systems and is better able to handle complex shapes and 

boundaries. However, because the FEM approximates the solution of the PDE instead of 

the actual PDE, implementing this method can be very abstract for the non-specialist in 

numerical techniques. In contrast, finite difference methods approximate the original 

equations that describe the physical model, and so the less experienced investigator has a 

larger opportunity to use physical intuition during the implementation. Jenkins modeled 

the neuromuscular junction as a cylinder because that shape captured the relevant 

dynamics along with a simple geometry and boundaries [58], and so the finite difference 

method was the natural choice. 

Several classes of finite difference methods exist, of which one is the method of 

lines (MOL). The MOL is well suited for equations developed from transport-reaction 

processes, and is typically the first method of choice [59]-[65]. This technique involves 

discretizing one or more PDEs in all but one dimension, and then integrating the semi-
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discrete problem m a system ofODEs. The advantage i§ that the methods for numerieally 

solving coupled ODE systems are well understood and mature. If the original PDEs are 

well posed as an initial value problem, then there are many algorithms that provide an 

efficient and robust method of solution. This model's descriptive equations were 

numerically solved with the method of lines and the Matlab ODE solver algorithm 

odel5s [59]. 

To begin, one needs to have the coordinate system chosen and the applicable 

equations derived, as per the description in this chapter beginning on page 3. The first 

step in applying the MOL is to divide the system volume into a group of sub-volumes, 

where the shape of the sub-volumes is influenced by the chosen coordinate system, as 

shown below in Figure 3.4. A Cartesian system would be divided into squares or cubes, 

and a spherical system would be partitioned into thin concentric shells. The model of this 

dissertation uses a polar coordinate system with angular symmetry; therefore a series of 

concentric circles was a natural choice. The neuromuscular cleft was modeled as a 

cylinder with an axial length of L, and a radius of R. Further, the cleft was subdivided 

into 20 concentric volumes, arranged such that the origin of the radial coordinate r was at 

the center of the annuli, and the width of each annular volume r\ was centered at radial 

coordinate (R/20)*(i - lA), for / = 2, 3, . . . ,20 (The centermost sub-volume at / = 1 is a 

disk, not an annulus). Recall that twenty volumes was the optimal volume number for 

accuracy and mitigation of computational labor, and this number was derived from the 

analysis of the model developed by Naka. A change of variables will now be required 

because of the large number of different chemical species in these equations. 
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r3 = R/8 rs = 9R/40 
r, = 3R/20 r4 = 7R/40 

Inhibitor and 
oxime diffusion 

n = (i-V£)R/20 . . 

0 < ri < R 

Figure 3.4. The relation between each annulus index and the corresponding location on 
the cleft radius. 

The complexity of the symbols used for the chemical species would obscure the 

steps taken to transform the analytic equations into their respective numerical 

approximations, so the variables will be re-expressed in a more standard notation that is 

used in numerical calculations. The closer-to-standard notation should also provide a 

better interface between the numerical equations and conceptualizing the computer code 

that must be developed to compute those equations. The analytic PDE for the diffusion-
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reaction of acetylcholine and the associated initial and boundary conditions is shown by 

Equation (3.31): 

d[A(r,t)] n d2[A(r,t)] , n ld[A(r,t)} . . . . . . . . . _. (3.31) 
Jt = DA ap. + DA~ -Q-r 2kR1[A(rlt)][R] + kR-jA • R] 

-kR2[A(r, t)][A • R] + kR.2[A2 • R*™°*] - kEi[A(r, t)][E] + kE.^A • E] 

[i4(500,t)] = 0, V t > 0 

d[A(0,t)] 

dr 
= 0, V t > 0 

[A(r,0)] = { 
0.17 mmole/cm3 0 < r < 25nm 

0 otherwise 

Next, make the variable substitutions defined in (3.32) 

[A(r,t)] = U, [A-R] = U4 (3.32) 

[E] = C/2 [A2-R
dosed] = U5 

[R] = t/5 / * £ / = £/«, 

After substitution, Equation (3.30) now becomes Equation (3.33) 

dUx d2\Jx ldUi (3.33) 
"ST = DA—^ + DA-—±-2kR1U1U3 + kR_tU4 - kR2U1U4 + kR.2U5 at or'- r or 

-kE1U1U2 + kE.±U6 

^ ( 5 0 0 , 0 = 0, V t > 0 

d 

U1(r,0) = { 

. •l/1(0,t) = 0, V t > 0 
or 

0.17 mmole/cm3 0 < r < 25nm 
0 otherwise 

Now discretize Equation (3.33) via application of a standard central difference 

approximation to both the first and second partial derivative with respect to r. The result 
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is that the original PDE (3.33) is transformed into the general form of its numerical 

approximation, shown in Equation (3.34) below. This discretization "absorbs" the 

boundary conditions of (3.33) and they are processed when the index i is given numeric 

^ = W?[(f/l)i+1 -2iuDi + ( ( / l ) * - l ] + ^ o K U l ) i + 1 ~ iUl)i~l] (3'34) 

-2fc/?1(t/1)£([/3)i + kR-^UJi ~ k^iUMUJt + kR-2(U5)t 

-kE^UMUz^ + kE-AUJt 

mmole 

cm3 

0 i> 1 

values. Discretizing the initial conditions of (3.33) requires applying the knowledge about 

the initial distribution of acetylcholine in the cleft with respect to position. The above 

equation represents the general expression a coupled system of ODEs that approximate 

the behavior of analytic Equation (3.33), where each /-subscript represents one of the 

enumerated sub-volumes. Each /-specific equation may differ from all the others 

depending on the boundary, mobility, location, and time-dependence of each species in 

the equation. For the system considered in this study, the ODEs in (3.34) are well 

behaved initial value equations. However, in the general case, the resulting coupled ODE 

system may contain boundary value equations, which do not use the same numerical 

solution algorithms as initial value equations. The particular equation associated with 

each index from i = 1, to i = 20 must now be determined. 

The sub-volume at i = 1 represents the system being modeled at the system 

boundary at r — 0, and is the location where species A enters the cleft. Substitution of i = 

1 into (3.34) gives the result: 
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^ ^ = eA[(u^2 - 2(1/01 + o / i ) o i + ^ KUO2 - (^1)0] (3,35) 

-IkR^UOiiUs)! + fcK-i(tf4)i - ^ 2 ( ^ 1 ) 1 ( ^ ) 1 + fcfl-20's)i 

-/c£1([/1)i(f/2)i + ^ - 1 ( ^ 6 ) 1 

mmote 
(f/i)i(0) = 0.17 

A4 

cm3 

04 = 
* (Ar)2 

As written, this equation presents two difficulties which may be unfamiliar to the non-

specialist, and a detailed explanation of their resolution is beneficial. First, the term 

A [(^1)2 — (^i)oJ contains an index where i = 0, when i was previously defined as 
rx(Ar) 

strictly 1 < i < 20. However, that term is an approximation of —- at r - 0, and the 

boundary condition in (3.33) stated that ^ = 0 at r = 0, thus ^ - [(U^ - ([/x)0] = 0. 

Second, notice that the term 6A[(U1)2 ~ 2(tfi)i + (£/i)o] also contains an index where i 

= 0, but is not as easily resolved as the earlier, similar index. This index is an artifact of 

the numerical solution method, and is defined as a ghost point. The ghost point is 

resolved by using the boundary conditions to get a relationship between (f/i)0 and the 

valid points in the system's physical domain. This can be done by using the given 

boundary condition and applying a central difference approximation about i = 1. To 

begin, relate the analytic boundary expression to its general central difference numerical 

analog: 

d[A(r,t)] = dQJJt _ (U,)t+1 - C^i)f-i (3.36) 
dr l r - ° dr ~ 2(Ar) 
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Next, use algebra to relate the ghost point to a valid point in the physical domain of the 

system when / = 1: 

(t/i)2 ~ (Ui)o = (3-37) 
2(Ar) 

0 / i ) 2 - a / i ) o = 0 (3.38) 

0/i)o = (UO2 (3-39) 

The ghost point is now resolved. After substitution and algebraic manipulations, this 

leads to the computable specific equation for species A in sub-volume z = 1, given by 

(3.40): 

^ ^ = 29A[(U1)2 - (UM - 2kRx(Ux)x(U3)x + fc«-i0/4)i
 ( 3 ' 4 0 ) 

-kR2(Ux)x(U4)x + kR-2(U5)± - kEx(Ux)x(U2)x + kE.x(U6)x 

mmole 
(tfi)i(O) = 0.17 

cm3 

In the annular volumes i = 2 through / = 19, species 4̂ is transported into and out of each 

annulus and reacts with other chemical species. These volume elements are all 

mathematically similar and differ only by virtue of their index value, i. Therefore, for i = 

2,..., 19, we represent for each of d(Ui)2/dt, d(Ui)i/dt,..., d(Ui)i9/dt, the entire set of 

equations and their associated initial conditions as follows: 

^ § ^ = 0A[(udi+1 - 2(ux)t + (Ux)t.x] + 7^Kux)i+x - cuot-i] (3<41) 

-2fc/?1([/1)i(t/3)t + fcfl-iO/Jt - k^iUJiiUJi + kR„2(U5)i 
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(tfi)i(O) = 0 

The sub-volume at i = 20 represents the system being modeled at the system boundary at 

r — 25 nm, and is the location where species A exits the cleft. Substitution of /' = 20 into 

(3.41) gives the result: 

^ ^ = ^ [ ( ^ ) 2 1 - 2 ( ^ 0 + (^ ) 1 9 ] + ^ 5 K«/l)21 - 0/l)l9] ( 3 ' 4 2 ) 

-2fc/?1(f/1)20(f/3)20 + fci?_i(f/4)2o - kR2Wi)20{U,)20 + kR_2(U5)20 

-kE1(U1)20(U2ho + kE^CUe^o 

(tfi)2o(0) = 0 

Another ghost point, (Ui)2i> appears twice in this equation. In this case, (£/i)2i 

represents the concentration of species v4 outside the cleft and this quantity has been 

defined in the boundary condition of (3.33) as equal to zero. Since other molecular 

species can be outside the cleft and may have constant (or time dependent) concentrations 

other than zero, it will be useful to define a new symbol to represent a molecular species 

concentration in the environment outside the neuromuscular junction. Consequently, it is 

not complicated to attach a label, "inf', to indicate some species concentration outside the 

cleft. Following this logic, define (UO21 = Ainf, where misrepresents the concentration of 

species A outside the cleft. That ghost point is now resolved. The substitution of Ainf into 

(3.42) leads to the computable specific equation for species A in sub-volume i = 20, given 

by (3.43): 

^ ^ = eA[Ainf - 2(1/020 + ("Owl + ^ [Ainf - M19]
 ( 3 - 4 3 ) 

-2fe/?1(f/1)2o(t/3)2o + ^ -1 (^4)20 - ^ 2 ( ^ 1 ) 2 0 ( ^ ) 2 0 + kR.2(U5)20 

- ^ 1 ( 1 / 1 ) 2 0 ( ^ ) 2 0 + ^-1 (^6)20 
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0/i)2o(0) = 0 

This completes the derivation of the numerical equations that describe the diffusion-

reaction of acetylcholine in the neuromuscular junction under normal conditions. 

The analytic ODE for the reaction of acetylcholinesterase and the associated 

initial condition is shown by Equation (3.44): 

d\E~\ (3 44) 
-j1 = -kEx [A (r, t)] [E] + kE _ t [A-E] + kE3 [acE] K ' 

[E](0) = 0.845 mmole/cm3 

Next, make the variable substitutions defined in (3.45) 

[A{r,t)} = Ux [E] = U2 (3.45) 

[A-E] = U3 [acE] = U7 

After substitution, Equation (3.44) now becomes Equation (3.46) 

dU2 (3.46) 
- p = -kE1U1U2 + kE.±U6 + kE3U7

 K ' 

(72(0) = 0.845 mmole/cm3 

Now prepare to discretize Equation (3.46) with respect to the space variable. This 

discretization process will require knowledge about the functional relation between the 

initial concentration of acetylcholinesterase and its position in the in the cleft 

neuromuscular junction. In other words, the relation [E] = f(r) when t = 0 must be 

known, and this relation would then be applied to the discretized initial condition. Since 

the distribution of acetylcholinesterase in the junctional cleft is assumed to be uniform, 

then the discretization result is that the theoretical ODE and the initial condition merely 

become notationally compatible with the system of equations defined in (3.34) with no 

other changes, as shown below in (3.47): 
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dW2)i (3.47) 
-^p- = -kExQJxMUdt + kE^(U6)t + kE3(U7)t

 l > 

(^)i(O) = 0-845 mmole/cm3 

The above equation represents the general expression of a coupled system of ODEs that 

approximate the behavior of analytic Equation (3.46), where each /-subscript represents 

one of the enumerated sub-volumes. Acetylcholinesterase is known to be immobilized 

and distributed uniformly throughout the cleft; consequently, the volume elements 

designated by indices i = 1 through i = 20 are all mathematically similar and differ only 

by virtue of their index value, i. Therefore, for i - 1,..., 20, we represent for each of 

d(U2)i/dt, d(U2)i/dt,..., d(U2)2(/dt, the entire set of equations and their associated initial 

conditions as follows: 

d(U2)i (3.48) 

- ^ = -kE^UJtMt + kE^(U6)t + kE3(U7)t
 l ; 

(^2)1(0) = 0.845 mmole/cm3 

This finishes the derivation of the numerical equations which describe the reaction of 

acetylcholinesterase in the neuromuscular junction under normal conditions for the two 

representative species acetylcholine and acetylcholinesterase. Only two chemical species 

were derived in detail, but the same process could be used to develop the numerical 

equations for the remaining molecular species in the normal action potential reaction 

network. 

To derive the reaction equations associated with the inhibited enzyme regime, and 

the enzyme regeneration regime, one would apply these same techniques and rules to 

every chemical species in the stoichiometric reaction network of each of those reaction 

regimes. For completeness, the stoichiometric reaction network, theoretical reaction 
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equations, and numerical reaction equations for all the chemical species in each reaction 

regime will be presented. 

Normal action potential reaction regime: 

Description: 

This regime consists of 20 sub-volume elements, 8 chemical species, and 10 

separate kinetic reactions. 

Mobile species: A 

Immobile species: E, A-E, acE, R, A-R, ArR
dosed, ArR

open 

The initial concentration of A in the cleft is 0.17 mmole/cm3 for r < 25 nm, and 

the concentration of A outside the cleft is Ainf for all t > 0. Species E and R are uniformly 

distributed throughout the cleft with initial concentrations of 0.845 mmole/cm3 and 

0.000664 mmole/cm , respectively. All other species have initial concentrations of zero. 

Stoichiometric reaction network: 

kEv kE-i kE? kE3 /"3 AQ\ 

A + E < 1 A . E _4 acE —> E + products ^ , 4 y j 

2kRx, kR-x (T. 5(V> 

A + R <-^ 1 A • R ^ D u ; 

kR2, 2fcfi_2 . OR, CR n S11 

A + A • R ^ 1 A2 • Rclosed < » A2 • R°ven <3-M> 

Theoretical reaction equations: 

d[A(r,t)] ^ 1 W , t D r ^ r t i r o i (3 ,52 ) 

g-t = DA g^ + DA~ Yr URx[A(r,t)][R] 

+kR_x[A • R] - kR2[A(r, t)][A • R] + kR„2[A2 • Rclosed] - kE^r, t)][E] 

+ kE.x[A-E] 

[A(S00,t)] = 0, V t > 0 
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d 1/4(0,0] L v J = 0, V t > 0 
dr 

U(r ,0)] = { 0.17 mmote/. cm3 0 < r < 25nm 
otherwise 

- j p = - f c ^ U ( r , 0 ] [ f ] + kE_±[A • E] + fc£3[ac£] ( 3"5 3 ) 

[£](0) = 0.845 mmole/cm3 

^ P = -2kRx[A{r, t)][R] + kR.x[A • R] {3M) 

at 

[i?](0) = 0.000664 mmole/cm3 

d[A'*] = 2kR1[A(r,t)][R] - kR_x[A • R] - kR2[A(r,t)][A • R] ( 3"5 5 ) 

at 

+2kR_2[A2 • Rclosed] 

[A-R](0) = 0 

d\A2 • Rclosed] , A (3.56) 
- ^ — 1= kR2[A{r,t)][A-R]-2kR.2[A2'R

closed} 
at 

-oR[A2 • ftctoMd] + c/?[i42 • Ropen] 

[A2 • flclMed](0) = 0 

d\A-E] (3 57) 
1 ,, J = kEdACr.QftE] ~ kE-dA • £] - fc£2[4 • E] K ' } 

at 
[A-E](0) = 0 



d[acE] r , (3 
1 J = kE2 [A-E]- kE3 [acE] K 

[acE](0) = 0 

d[A2.R<v<«]_„nTA oclosedl _nTA n m m 0 
= oR[A2 • Rcl°™d] - CR[A2 • R°Pen] 

[A2 • Ropen](0) = 0 

Change of variable definitions: 

[A(r,t)J = Uj [A2R
closed] = Us (3 

[E] = U2 [A-E] = U6 

[R] = U3 [acE] = U7 

[AR] = U4 [ArR
open] = U8 

Numerical reaction equations: 

^ l = 2BA[W{)2 - WM - 2/ci?1(f/1)1(y3)1 + kR-xQJt\ (3 

-kRiiUMU*)! + M?_2(tfs)i ~ ^ i ( f / i ) i ( t / 2 ) i + ^ - 1 ( ^ ) 1 

mmole 
(UMO) = 0.17 

cm3 

Fori = 2, 3,4, . . . , 19 



-IkR^UMU^ + fc/UOU - k^iUJiiUJi + kR.2(U5\ 

(tfi)t(O) = 0 

^ ^ = eA[Ainf - 2(^)20 + (f/i)i9] + ^ ~ ^ [Ainf ~ (f/i)i9] ^ 

-2fc/?1({/1)20(f/3)20 4- kR^iUJzo - kR2(U1)20(U4)20 + kR_2(U5)20 

-kEl(U1)20{U2)20 + kE.1(JJe)20 

(f/i)2o(0) = 0 

d(U2)i (3 

((/2).(0) = 0.845 mmole/cm3 

Fori = 1,2, 3, ...,20 

d(^ 3 ) i (3 

(^3)1(0) = 0.000664 mmole/cm3 

Fori =1 ,2 , 3, ...,20 

^ i = 2/ci?1(£/1)i(£/3)i - fc/?.!^)! - ^2(^1)1(^4)! " 2kR.2(U5)1
 ( 3 

(i/4)i(0) = 0 



Fori = 1,2, 3, ...,20 

(^s)i(O) = 0 

Fori = 1,2, 3, ...,20 

~ - = kE^U^QJ^ - kE^(U6)t - kE2(U6)1
 ( 3 

(t/6)!(0) =0 

Fori = 1,2, 3, ...,20 

d(tf7)i (3 
- ^ l = kE2(U6)1-kE3(U7)1

 K 

(y7)i(0) = 0 

Fori = 1,2, 3, ...,20 

^ i = o / ? ( t / 5 ) 1 - c i ? ( f / 8 ) 1
 P 

0/8)i(0) = 0 

The normal reaction regime produces a coupled numerical system comprised of 8 

variables distributed among 160 ODEs. 
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Inhibited enzyme reaction regime: 

Description: 

This regime consists of 20 sub-volume elements, 11 chemical species, 13 separate 

kinetic reactions, 

Mobile species: A, I 

Immobile species: E, A-E, acE, R, AR, ArR
dosed, ArR

open, EI, E-fmd 

The initial concentration of A in the cleft is 0.17 mmole/cm3 for r < 25 nm, and 

the concentration of A outside the cleft is Ainf for all t > 0. Species E and R are uniformly 

distributed throughout the cleft with initial concentrations of 0.845 mmole/cm3 and 

0.000664 mmole/cm3, respectively. The initial concentration o f / in the cleft is zero, and 

the concentration of / outside the cleft is 7;„/for all t > 0. All other species have initial 

concentrations of zero. 

Stoichiometric reaction network: 

kE-i, fcE_i kE2 kE3 /"J 7 1 ^ 
A + E < > A-E —» acE —> E + products K°-'l) 

2kRlt fcR_i 
A + R < > A-R 

kR2, 2fcfl_2 , . oR, cR 
A + A • R < > A2 • Rclosed < > A2 • Ropen 

klx, fc/_! kdead 

E + I < > E • I <—> E • laeaa 

Theoretical reaction equations: 



+kR_1[A • R] - kR2[A(r, t)][A • R] + kR_2[A2 • R
closed] - kE^A^r,t)][E] 

+kE.1[A-E] 

[4(500,t)] = 0, V t > 0 

d[A(0,t)] 

dr 
0, V t > 0 

lAfr 0̂ 1 = ( ®'^ mmole/cm3 0 < r < 25nm 
I 0 otherwise 

-LA = -kE1 [A(r, t)][£"] + kE^[A • E] + kE3[acE] ( 3 

[£](0) = 0.845 mmole/cm3 

d[A
dt

E] = kEt[A(r, t)][E] - kE.M • £] - kE2[A • E] ( 3 

d[acE] r , (3 
1 = fc£2 [i4 • E] - kE3 [acE] v 

[ac£](0) = 0 

[/?](0) = 0.000664 mmole/cm3 
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' = 2kRx[A(r,t)][R] - kR.x[A • R] - kR2[A(r,t)][A • R] ( 3 ' ? 7 ) 

+2kR_2[A2 • Rclosed] 

[A-R](fl) = 0 

d[A2 • Rclosed] , „ (3.78) 
-LJ-^t ~ = kR2[A(r, t)][A • R] - 2kR_2[A2 • Rclosed] 

-oR[A2 • R*°se*] + CR[A2 • R°*>en] 

[A2 • R
closed)(0) = 0 

d[A2-R
open] , . (3.79) 

-±-~ = oR[A2 • R
cl°sed] -cR[A2- i?°Pen] V ; 

[A2 • fl°Pen](0) = 0 

a[/(r,t)] n d2[Kr,t)] t n ld[/(r,t)] r F i r r r r p (3.80) 

[/(500,t)]= V , V t > 0 

a[/(o.t)] 
dr = 0, Vt > 0 

[/(r,0)] = ( W r = 500 nm 
l 0 otherwise 

^ | l 3 = fc/Jf ][/(r, t)] - fc/.^F • /] - kdead[E • I] ( 3 ' 8 1 ) 

[£-/](0) = 0 



d[E • Ideaa] 
~ kdead [E * /] 

dt 

[E • Idead](0) = 0 

(3 

Change of variable definitions: 

[A(r,t)J = U, 

fA-EJ = U3 

[R] = U5 

[ArR
dosed] = U7 

[I(r,t)J =U9 

fE.jdeadj = U n 

[E] = U2 

facEJ - U4 

[A-R] = U6 

[ArR
open] = U8 

[EI] = U10 

(3 

Numerical reaction equations 

<*(tfi)i 
dt 2^[(f / i ) 2 - (f/i)i] - 2kR1(U1)1(U3)i + fc/?-i(^4)i 

-kR2{Ui)i(lJ,)i + WL 2a/s) i " ^1(^1)1(^2)1 + ^ - 1 ( ^ ) 1 

mmoZe 
(I/^iCO) = 0.17 

cm-3 

(3 

Fori = 2, 3,4, ..., 19 

= ^ [ ( ^ + i - 2 ( ^ + (y 1) £_ 1]+ : 
D* 

[(f/i)t+i - 0/i) i- i] 

-IkR^UiU^i + kR-^UJt - kRziUJiCUJi + fe/?_2(t/5)i 

-kE^UJtMh + kE-dUelt 

Wi)i(0-) = 0 

(3 
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^ = 9A[Ainf - 2 ( 1 ^ 0 + ( f / l ) l 9] + - ^ [ ^ n / - ( ^ ) 1 9 ] (3-85) 

-2fe/?1([/1)20(^)20 + ^ - l ( ^ 4 ) 2 0 - ^2(^1)20(^4)20 

+kR_2(U5)20 - kE1{\J1)20{U2)20 + kE-dUeho 

(^1)20(0) = 0 

Fori = 1,2, 3, ...,20 

^ ^ = -kEdUJt^t + kE-dUelt + kE3(U7)t
 QM) 

(U2)i(0) = 0.845 mmole/cm3 

Fori = 1,2, 3, ...,20 

^ 2 i = kE^UMUzlt - kE.x(JJz)t - kE2(U3)t
 ( 1 8 7 ) 

(£/3)t(0) = 0 

Fori =1,2, 3, ...,20 

rifl^t ._„_, . . _ „ , . (3.88) 
—^— = kE2(U3)i - kE3(U4)i 

([/4)i(0) = 0 

Fori =1,2,3, ...,20 

^ ^ = -ZkRWMUslt + kR.±(U6h
 ( 3 ' 8 9 ) 
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(^s)i(O) = 0.000664 mmole/cm3 

Fori =1 ,2 , 3, ...,20 

^ ^ = 2kR1(U1MUs)t ~ kR-dUJi ~ kR2(UxUUe)t - 2kR_2(U7)t
 ( 3 ' 9 0 ) 

(UJM = 0 

Fori = 1,2, 3, ...,20 

d(U?)i = kR2(UMU6)t - 2kR_2(U7)t - oR(U7)t + cR(U8)i
 ( 3 < 9 1 ) 

dt 

(t/7)£(0) = 0 

Fori =1 ,2 , 3, ...,20 

d ( f / s ) £ «pr/M w m M <3-92> 
d t = oR(U7)i ~ cR(Ua)t 

TOt(0) = 0 

^ 1 = 29,[([f9)2 - ( ^ J - kh(JJ2\(JJ9)x + fc/.^o)! (3 '93) 

(t/9)!(0) = 0 

Fori = 2, 3,4, . . . , 19 

^ - = 0/[(i/9)*+i - 2 ( % + a / 9 ) i + i i + ^ 5 [W*+ i - W / - i ] (3 '94) 

-fc/i(I/2)t(^)« + W-i(t/io)i 
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(U9M0) = 0 

^ ^ = 0,[V - 2«/9)20 + «/9)19] + ^ [ V - Ww] (3'95) 

-fc/i (f/2)20(^9)20 + fc/-l(t/10)20 

(l/9)20(0) = 0 

Fori =1 ,2 , 3, ...,20 

d(U10)i . . , „ W f f x , f ,„ . , m . (3.96) 
= fc/i(f/2)i(^9)i ~ fc/-l(tflo)f ~ kdead(U10)i dt 

(tfio)i(O) = 0 

Fori = 1,2, 3, ...,20 

dO/ii); (3.97) 

"77 — Kdeadl^loJi 

(^ll)f(O) = 0 

The inhibited enzyme reaction regime produces a coupled numerical system comprised of 

11 variables distributed among 220 ODEs. 
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Enzyme regeneration reaction regime: 

Description: 

This regime consists of 20 sub-volume elements, 12 chemical species, 13 separate 

kinetic reactions, 

Mobile species: A, OX, IOX 

Immobile species: E, A-E, acE, R, AR, ArR
closed, ArR

opm, EI, E-fead 

The initial concentration of A in the cleft is 0.17 mmole/cm3 for r < 25 nm, and 

the concentration of A outside the cleft is Ainf for all t > 0. Species E-fead and R are 

uniformly distributed throughout the cleft with initial concentrations of 0.845 mmole/cm3 

and 0.000664 mmole/cm3, respectively. The initial concentration of OX and IOX in the 

cleft is zero, and the concentration of OX and IOX outside the cleft is OXinf and IOXinf 

for all t > 0. All other species have initial concentrations of zero. 

Stoichiometric reaction network: 

kEv /££_! kE2 kE3 /"J Q o \ 

A + E < > A-E —• acE - » E + products V™> 

2kRv kR-i 

A + R < > A-R 

kR2, 2kR-2 , j oR, CR 

A + A • R ̂  1 A2 • Rclosed < > A2 • R°Pen 

E.J«eaa + 0X
k£^E.I.0X

k^E + l.0X 

Theoretical reaction equations: 

d[A(r,t)] n d2[A(r,t)] , n ld[A(r,t)] (3.99) 
dl = DA ^ 2 + DA~ Yr ^R^Air.tybR} 

+kR^[A • R] - kR2[A(r, t)][A • R] + kR_2[A2 • Rcl°™d] 
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-fcE1[i4(r,t)][Jf] + fe£,_1[i4-F] 

[4(500, t)] = 0, V t > 0 

d[,4(0,t)] 
dr = 0, V t > 0 

[A(r,0)] = { 0.17 mmole/cm3 0 < r < 25nm 
0 otherwise 

-jS- = -fcEi[i4(r, t)][F] + feE_![i4 • £"] + fcE3[ac£] + kregen[E • / • OX] ( 3 ' 1 0 0 ) 

[tf](0) = 0 

^P- = Atf^Cr,*)]^] - fcF_iU • E] - kE2[A • E] ( 3 1 0 1 ) 

[A-E](0) = 0 

d[acE] , (3.102) 
- ^ = fc£2[,4 • E] - kE3[acE] {XLUZ) 

[acE](0) = 0 

^ 1 = -2kRt[A(r, t)][R] + kR-dA • *] ( 3 ' 1 0 3 ) 
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[f?](0) = 0.000664 mmole/cm3 

^ ^ = IkRMiT, t)][R] - kR_x[A • R] - kR2[A{r, t)][A • R] ( 3 1 ° 4 ) 

+2kR.2[A2 • Rclosed] 

[A-R](0) = 0 

d[A2 • Rclosed) , w (3.105) 
i = fc/?2[^l(r, t)][/l • R] - 2kR.2[A2 • /?<*««*] 

-oR[A2 • Rclosed] + CR[A2 • R°Pen] 

[A2 • R
closed](0) = 0 

d[A2 • i?°Pen] , w (3 106) 
-^-^-j - = 0/?[42 • Rdosed^ _ ^ ^ . Ropen] V-lw>) 

[A2 • R
open](0) = 0 

<*[£./«*««*] (3.107) 
- ^ i = -fc0*[£ • 7de«d][0*(r, t)] + fc_o;f [£ • 7 • OX] } 
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[E • r e a £ *] (0 ) = 0.845 rnmole/cm3 

d\OX(r,t)]_ d2[OX(r,t)] ld[OX(r,t)] (3.108) 

d~t Dox d P +Doxr d~r 

-k0X[E • Idead][OX(r, t )] + k-ox[E 'I-OX] 

[0^(500, t)] = OXinf , V t > 0 

a [o^(o,t)] 
<5r 

[0*(r,O)] = [ 

= 0, V t > 0 

OZin/ r = 500 nm 
0 otherwise 

dJ^l = W * • ^ - ] [ 0 « r . O ] - k-oxW •/•<*] ( 3 1 0 9 ) 

-Kegen[E 'I ' OX] 

[E • I • OX](0) = 0 

d[I-OX(r,t)] _ d2[I • OX(r,t)] ld[I • OXjr.t)] (3.110) 
Ft ~ D,ox dr* +D'0Xr dr 

+kregen[E -1 - OX] 

[I • OX(500, t)] = I- OX *lnf, V t > 0 

d[I-OX(p.t)] 
dt 

= 0, V t > 0 

[i-ox(r,Q)] = { 
_ ( / • OXinf r = 500 nm 

0 otherwise 
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Change of variable definitions: 

[A(r,t)] = Ui [E] = U2 (3.111) 

[A-E] = U3 facEJ = U4 

[R] = U5 [AR] = U6 

[ArRclosed] = u? [ArR°Pen] = U8 

(E-IdeadJ = U9 [OX(r,t)] = U10 

[EIOX] = Uj, [I-OX(r, t)J = Uj2 

Numerical reaction equations: 

^ ^ i = 29A[QJi)2 ~ 0/i)i] ~ 2fc/?1(i/1)1((/3)1 + kR.^U^ ( 3 - U 2 ) 

-kR2(UMU4\ + fc/?_2(tf5)i - kE^UJ^h + ^ - 1 ( ^ ) 1 

vn.rn.ole 
(f/OiCO) = 0.17 

cm3 

Fori = 2, 3, 4, ... , 19 

^ ^ = ^[ (^ i ) ( + i - 2(tfx)( + (Vi)(-i] + ^ [ ( t / i ) t + i - (l/i)/-i] ( 3>113 ) 

-IkR^UMUJi +kR_1(U4)i-kR2(U1)i(U4)i +kR-2(Us-)t 

-kEdUiMUih + kE^Wt 

(UMO) = 0 

http://vn.rn.ole
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^ = BA[Aiuf ~ 2(^)20 + ( ^ ) i j + ^ 5 [Ainr ~ (ffi)u]
 ( 1 1 1 4 ) 

-2fc/?1([/1)20(t/3)2o + ^ - 1 ( ^ 4 ) 2 0 - ^ 2 ( ^ 1 ) 2 0 ( ^ ) 2 0 + kR.2(U5)20 

-kE1(U1)20(U2)20 + kE_t(U6ho 

(^1)20(0) = 0 

Fori =1 ,2 , 3, . . . , 20 

d(f/2); (3.115) 
- ^ i = -kE1iU1)iCU2)t + kE-dU6)i + kE3(U7)t + kreaen{Ux^

 } 

(U2)i(0) = 0 

Fori = 1,2, 3, ... ,20 

^ i = kEiQJJiMlt ~ kE.x{U3)t - kE2(U3)t
 ( 3 ' 1 1 6 ) 

(tf3)i(0) = 0 

Fori = 1,2, 3, . . . ,20 

d(U*)i . „ „ , , . - „ , , (3-117) 
d t = kE2(U3)i - kE3(U4)t 

(U4)i(0) = 0 

Fori =1 ,2 , 3, ... ,20 

d(U5)i (3.118) 
- ^ P = -2/c/?1(t/1) i([/5) i + /c/?_1(f/6)i

 V 

(^s)i(O) = 0.000664 mmole/cm3 
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Fori =1 ,2 , 3, . . . , 20 

^ ^ = IkR^UMU^i - kR^CUJi - kR^UMUJt - 2kR.2(U7)i
 ( 3 ' U 9 ) 

(f/6)4(0) = 0 

Fori = 1,2, 3, . . . , 20 

d(tf7)i f3 120) 
- ^ P = kR2(U1UU6)i ~ 2kR_2(U7)i - oR{U7)t + cfl(tf8), ^ ; 

(t/7)4(0) = 0 

Fori= 1,2,3, ... ,20 

d(U8)i D m . _ „ . , . (3.121) 

( £ U ( 0 ) = 0 

Fori = 1,2, 3 , . . . ,20 

d(U9)i (3.122) 
—^- = -kOx(U9)i(U10)i + k_ox(U11)i 

(f/9)i = 0.845 mmole/cm3 

^ ~ ^ = 29OX[(U10)2 - (U10)±] - koAUJdUio)! + k-oxWidi ^ ' ^ 



(tfio)i(O) = 0 

F o r i - 2 , 3,4, ... , 19 

dt 

Dox 

d{Ulo)i = eox[W10)i+1 - 2(u10)t + 0/io)*-i] ( 3 

KUio)i+i ~ (.U10)i-i\ - koxWMU^t + k-oxWiJi rj(Ar) 

(tfio)*(0) = 0 

- 0o*[ OXinf - 2(f/10)2o + (i/io)i9j 
dt 

+ ; r 7 ^ [ o ; W ~ ^10)19] - ^(^9)20(^10)20 + k_ox(uxl) 

(#10)20(0) = 0 

Fori = 1,2, 3 , . . . ,20 

d(tf i i ) i (3 

d t = kOx(U9)i(U10)i - k_ox(U1±)i - KegeniUidt 

(# l l ) t (0 ) = 0 

^ 1 2 ) 1 _ , „ rm ^ m M ^ m ^ (3-
"•regen 

(^12)1(0) = 0 
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F o r i - 2 , 3,4, . . . , 19 

d(£/i2)i r , . ( . 1 (3.128) 
dt 

Di-ox 
[C«/12)I+1 - 0/12)i-i] + "•re.gen 

(U12)2(0) = 0 

rf(^)2Q _ 0 r , o x _2(u , , (u , i (3-129) 

I'OX r i 

+ r C ^ U ' °^in/ - (^12)l9j + Kegen(U\l)20 

(^12)20(0) = 0 

The enzyme regeneration reaction regime produces a coupled numerical system 

comprised of 12 variables distributed among 240 ODEs. 

This completes the derivation of the numerical equations which describe the 

reaction of all the molecular species in the neuromuscular junction during the three 

reaction regimes. The same procedure would produce the computable numerical 

equations for any known or postulated reaction network. Assumption of mass-action 

dynamics greatly simplifies deriving the differential kinetic equations, and it is a valid 

first assumption for simple reactions. However, kinetics which does not follow mass-

action dynamics is also common, especially with stoichiometrically complex reactions. 

Therefore, all kinetic expressions should be supported and verified with experimental 

data. All the kinetic expressions written in this model have been verified by experiment, 

predominantly in vitro. There are also some investigations supported by in vivo 
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experiments ([3], [4], [7], [66]-[68]). That endeavor is presently much more difficult and 

provides one of the reasons why description of the molecular transport and reaction 

events occurring in the neuromuscular junction depends heavily on mathematical models. 



CHAPTER 4 

MEASURMENTS AND MODELS OF 

PRIOR INVESTIGATIONS 

There is substantial literature describing and modeling all the chemical reactions 

in the neuromuscular cleft, along with incorporation of the transport effects [3]-[5], [18]-

[21], [57], [58], [66]. While many investigators have examined the reactions of 

acetylcholine with acetylcholinesterase, acetylcholine with its receptor, and in vitro 

inhibition of acetylcholinesterase and acetylcholine, the Jenkins-Szlavik model is the first 

attempt to model the simultaneous reaction-diffusion dynamics of acetylcholine, receptor, 

acetylcholinesterase, and a mobile acetylcholinesterase inhibitor, in an in vivo 

environment. This work shall also demonstrate a novel model of the reaction-diffusion 

kinetics of in vivo reactivation of inhibited acetylcholinesterase via exposure to oxime 

species diffusing into the cleft. In addition, this model shows that cleft-averaged receptor 

kinetics is valid at the time scales of interest because the receptors always show uniform 

conformation states across the entire post-synaptic membrane during the action potential 

regardless of the degree of enzyme inhibition. 

Figure 4.1, from Miledi [9], shows the results of experimentally measured end-

plate currents from the frog neuromuscular junction. Part A shows the response when 

86 
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approximately five acetylcholine quanta were released into the cleft from a Ca+2 filled 

pipette, in a region restricted close to the pipette tip. Part B shows the response for a 

release of five to eighteen quanta diffusely scattered across the entire end-plate, and part 

C depicts the result when about 300 quanta are released over the entire end-plate area. 

The arrow in each picture represents the half-decline time of each event. 

Figure 4.1. Post-synaptic potentiation: interaction between quanta of acetylcholine at the 
skeletal neuromuscular synapse [9]. 

Figure 4.2 depicts experimental measurements from the same investigators for the 

response of increasing doses of acetylcholine applied iontophoretically onto the motor 

end-plate [9]. A 0.5 ms acetylcholine pulse was varied in amplitude, and the circle on 
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each falling phase marks the half-decline time. This time is progressively prolonged with 

increasing peak amplitude because of potentiation. These pictures show the general 

shape of the amplitude vs. time course of the end-plate current, and that there is little 

difference in the time course of the end-plate currents generated by one or many 

acetylcholine quanta under normal physiological conditions [3] - [10]. Since the end-plate 

current is directly proportional to the conductivity of an acetylcholine receptor, the time 

course of an end-plate current should have the same shape as the time course of the 

number of conducting (open) acetylcholine receptors under "clamped" voltage 

conditions, differing only by some scaling factor. The Jenkins-Szlavik model was 

concerned with simulating the transport and chemical reaction events in the 

neuromuscular junction, so the population vs. time course of open receptors was a natural 

product of the calculations. 

Figure 4.2. Post-synaptic potentiation: interaction between quanta of acetylcholine at the 
skeletal neuromuscular synapse [9]. 
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The effect of acetylcholinesterase inhibition on the end-plate current is of great 

importance, and it has been investigated through experiment and simulation by several 

researchers. Miledi [10], as shown in Figure 4.3, measured the inhibition effect of several 

enzyme inhibitors during an end-plate current event on skeletal frog muscle. 

,il-

10.0pM DEPP 

/ 
/ 0.40 MM DEPP 

/ /'" 
/' 

0.15 |iM DEPP 

/ / 
/ NoinhbHor 

•A y 
V-5X J-

0 10 20 ms 

Figure 4.3. Computer averaged end-plate currents showing the increasing decay time 
with increasing exposure to acetylcholinesterase inhibitors [10]. 

Friboulet [57] and Naka [58], shown in Figures 4.4 and 4.5, respectively, also 

simulated the effect of acetylcholinesterase inhibition directly on the population of open 

receptors with time. These two models are in good agreement with each other and 

experimental measurements. There have been many such simulations in the last three 

decades, [3]-[8], [18]-[21], but these are two of the latest and each has excellent clarity. 

Most of the others have been overtaken by the advancement of experimental technique 
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and computing resources. For example, Wathey [18] developed a simulation that used 

sophisticated mathematical and numerical techniques which were implemented to 

compensate for the low capacity (and expense) of the computer memory available in 

1979. 

2Q00H 

3 
c a 

C 

I 
0 

1000 f 

Time (msec} 
Figure 4.4. The number of open receptors per acetylcholine quantum from Friboulet's 

simulation [57]. 
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Figure 4.5. The number of open receptors per acetylcholine quantum from Naka's 
simulation [52]. 

The diffusion constant of acetylcholine is a critical parameter in every simulation 

of the neuromuscular junction. Friboulet used a diffusion coefficient of 2.0-10"9 cm2/ms, 

Naka [58] used diffusion coefficients in the range: 2.5-10"10 ~ 4.0T0"9 (cm2/ms) in the 

development of their model, Wathey [18] used a value of 3.0-10"9 cm2/ms, Madsen [19] 

used 4.0-10" cm /ms, and the diffusivities used by Tsoukaias [69] were valued at greater 

than 3.0-10"9 cm2/ms. Diffusion constants in biological tissue are especially difficult to 

measure quantitatively [48], [69]-[71], so differences in the published values for the 

diffusion constant is expected. 

While the time course of a normal action potential is not sensitive to the amount 

of acetylcholine present, these data show that the degree of acetylcholinesterase activity 

can drastically alter the time and magnitude profile of an action potential. Regarding the 

degree of enzyme activity, note that all of these investigators have addressed 
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acetylcholinesterase inhibition either with in vitro chemical kinetics, or via a "blanket" 

degree of defined inactivity in cleft simulation calculations [6], [10], [21], [24], [57], 

[58]. While those methods of enzyme inhibition are serviceable ways to investigate 

acetylcholine kinetics, they are also artificial and not versatile. A model in which the 

enzyme inhibition emerged from the coupled kinetics of acetylcholine, neurotoxin, and 

acetylcholinesterase would provide more insight and greater resolution in simulations of 

the neuromuscular junction. 



CHAPTERS 

RESULTS AND DISCUSSION 

For the Jenkins-Szlavik simulation being presented in this dissertation, a model 

was constructed to represent the chemical transmission and inhibition process of 

acetylcholine in the neuromuscular junction as a reaction-diffusion system. This system 

model is a one-dimensional space, radially symmetric about the axis, and the generation 

of the receptor states that leads to the miniature end plate potential is included in the 

simulation. The system is comprised of twenty annular compartments in the radial 

direction which take advantage of the dominance of radial transport over axial transport 

[58] at the length scales of the neuromuscular junction to reduce the computational 

requirements. While this model can be considered as something of a synthesis of similar 

two dimensional models by Naka and Wathey, [57], [18], it simultaneously builds on 

their work and omits details which were non essential to mitigate the computational load. 

Despite the omitted details, this model captured the essential temporal and spatial 

behavior of the reaction-diffusion processes occurring in the neuromuscular junction. 

The Jenkins-Szlavik model is the first to quantify the degree of 

acetylcholinesterase inhibition as a process emerging from the reaction-diffusion kinetics 

as the neurotoxin diffuses into the neuromuscular cleft. An illustration of this feature is 

shown in Figure 5.1. This figure depicts the concentration of neurotoxin and active 
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acetylcholinesterase in the cleft as a function of time as the neurotoxin diffuses into the 

cleft. The graph is intended for illustrative purposes only, as the diffusion constant of the 

neurotoxin was assigned an unrealistically low value. This low value allowed the process 

to spread over a larger portion of time to clarify the illustration. Notice that the two 

concentration curves are not reflections, where one curve could be derived from 

knowledge of the other. Instead, they result from genuinely coupled chemical and 

diffusional kinetics. The known initial amount of enzyme and the known amount of 

enzyme as a function of some later time (and location) are easily translated into a number 

which represents degree or percentage of enzyme inhibition. 

The concentration of neurotoxin and enzyme in the cleft, 
averaged over 20 sub-volumes 

8 10 12 
time, s 

20 

Figure 5.1. An illustration of the dynamically coupled enzyme and neurotoxin 
concentrations in the neuromuscular junction during the diffusion-reaction process. 
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The primary function of a simulation of the events in the neuromuscular junction 

is to measure the state of the acetylcholine receptors during the course of an action 

potential. The result of the Jenkins-Szlavik model of that process is shown in Figure 5.2. 

The figure below shows the simulation of different degrees of enzyme inhibition on the 

time course of open receptors in the cleft under an acetylcholine diffusion constant of 

9.0-10"10 cm2/ms. The result visually resembles the same process trends as Friboulet and 

Naka. This qualitative resemblance is initially reassuring, but some kind of quantitative 

comparison of the error between the Jenkins-Szlavik model and the Naka and Friboulet 

models will be needed. 

Total molecules of open receptor species A2R* in the whole cleft, 
at 0, 25, 50, 75, and 100 percent enzyme inhibition, 
averaged over 20 annular volume elements, 
D = 9.00e-010 cm2/ms, 1.50 XquantumA 
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Figure 5.2. The Number of open receptors per acetylcholine 
quantum from the Jenkins-Szlavik simulation. 
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Figures 1 3 , 1 4 , 1 5 , and 16 show a e o m p a m plat of the Jenkins-Szlavlk 

model with the Friboulet and Naka models, respectively, and show the error between the 

Jenkins-Szalvik model and the respective Friboulet and Naka models. The results of the 

Friboulet and Naka simulations were derived from numerical integration of differential 

equations, so no mathematical expressions for the receptor vs. time curves were 

available. Therefore, it was decided to approximate the Friboulet and Naka results as 

two-parameter exponential decay processes: Ropen(t) = ae . 

2500 r 

Hie Jenkins-Szlavik model compared to the Friboulet model, 
where the Friboulet model is approximated as an exponential decay 

JenkiiK&lavik model: 100,75,50,25,0% inhibition 

»Friboulet approximation, 100% inhibition 

75% inhibition 

50%inhibition 

25% inhibition 

Figure 5.3. A comparison of the Jenkins-Szlavik and Friboulet models of the time course 
of open receptors in the neuromuscular junction with time. The Friboulet model is 

approximated as a set of exponential decay processes. 
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Error between Jenkins-Szlavik model and the Fnboulet model 
15 

10 

5 
u 
a. 0 

-5 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
t, ms 

Figure 5.4. The relative error between the Jenkins-Szlavik model and the Friboulet model 
for different levels of enzyme inhibition. 

All the receptor vs. time curves contained an inflection point, which does not 

occur in a pure exponential decay process, so it was necessary to model the Friboulet and 

Naka approximations at a time point later than the inflection point for all the curves. The 

point t = 0.5 ms was chosen as the initial point to begin the approximations, which still 

left 90% of the time domain available for analysis. The measurements used to develop 

the equations for the approximations had to be taken directly from the graphs of the 

Friboulet and Naka models, and these measurements contain much uncertainty derived 

from the thickness of each curve's ink, the interpolation between increments on the axes, 

the thickness of the increment markers on the ruler, and other sources. 

\ ^^-— 100% inhibition 

j i i i i i i i 
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The Jenkins-Szlauk model compared to the Naka model, 
where the Naka model is approximated as an exponential decay 

Jenkins-Szlavik model: 100,75,50,25,0% inhibition 

Naka approximation, 100% inhibition 

75% inhibition 

Figure 5.5. A comparison of the Jenkins-Szlavik and Naka models of the time course of 
open receptors in the neuromuscular junction with time. The Naka model is approximated 

as a set of exponential decay processes. 

Error between Jenkins-Szlavk model and the Naka model 
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Firgure 5.6. The relative error between the Jenkins-Szlavik model and the Naka model 
for different levels of enzyme inhibition. 
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From Figures 5.4 and 5.6, which show the error between the Jenkins-Szlavik 

model and Friboulet and Naka models, respectively, it is seen that over the interval of 

[0.75, 5.0] milliseconds (85% of the time domain), the error between the models is never 

greater than ±13%, and for most of the curves it is less than ±10%. This magnitude is 

acceptable when all the sources of error and uncertainty are considered [57], [58]. 

The error comparison figures also show that in general, the Jenkins-Szlavik model 

agrees better with the Naka model than the Friboulet model, and the error of the Jenkins-

Szlavik model increases as the degree in enzyme inhibition increases in both the 

Friboulet and Naka models. The Friboulet system modeled acetylcholine diffusion in one 

direction and along the axis, and the process of acetylcholine leaving the cleft was 

modeled as a uniformly distributed sink in space. The Naka system modeled 

acetylcholine diffusion along the axis and radially, the process of acetylcholine leaving 

the cleft was modeled as radial diffusion to the edge of the cleft and into the external 

environment, and is a process closer to physical reality. Recall that the Jenkins-Szlavik 

system modeled acetylcholine diffusion in one dimension along the radius, and modeled 

acetylcholine leaving the cleft in the same manner as Naka. In all three models, 

increasing the degree of enzyme inhibition caused a greater number of acetylcholine 

molecules to remain in the system, which in turn causes the effects of acetylcholine 

diffusion to become more prominent [57], [58]. 

The investigation of Naka presented evidence which asserted that radial diffusion 

in the neuromuscular junction is of greater importance than diffusion along the axis. If 

true, that assertion would explain why the Jenkins-Szlavik model agrees better with the 

Naka model than the Friboulet model. In addition, since the Jenkins-Szlavik system 
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models diffusion processes differently from the Friboulet and Naka systems, one would 

expect the error between the respective models to increase as diffusion begins to 

predominate, i.e. as the degree of enzyme inhibition increases [57], [58]. 

The equations (5.1) - (5.3) below, derive the relation between the time course of 

Iep(.t) = E - gep(t) (5.1) 

Iep(t)= £-yR-JV»-(t) <5-2> 

N 

I m r f fd[A2R°Pen]\ Js. (5-3) 

lep(f) = E-YR- J [ j t J dt 

the open acetylcholine receptors and the end-plate current. The relation shows that the 

end-plate current is directly proportional to the number of open receptors in time, and 

means that the end-plate current differs from the number of open receptors only by a 

multiplicative constant. This result also gives a method to couple the chemical and 

diffusional kinetics occurring in the cleft to the current and voltage dynamics which 

follow in the neurons. 

The Jenkins-Szlavik model has been constructed such that it can show the 

temporal and radial concentration gradients of all the chemical species involved in action 

potential kinetics, in the normal and inhibited regime. In addition, this model is the first 

simulation to attempt modeling the kinetics of acetylcholinesterase inhibition with an 

organophosphorus compound and the effects of this inhibition on the action potential 

while the inhibitor diffuses into the neuromuscular cleft. It would be possible for this 

model to resolve the position of a moving interface between different chemical species if 

the process of the inhibitor diffusion could create such an event. Of particular interest 
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might be the moving boundary between normal and inhibited enzyme, and the state of 

receptor conformation in the inhibitor-occupied and inhibitor-free zones. While this 

model should be able to detect the boundaries between different chemical species, 

subsequent calculations show that under the conditions extant in the neuromuscular 

junction, these boundaries are not likely to exist. An illustration of this conclusion 

follows in the next paragraph. 

By definition, if the existence of an interface or boundary requires the presence of 

a type of gradient, and the larger the gradient in the interval of its domain; then the 

greater the distinction of the interface across that same domain. In this case, the gradient 

would refer to the molar concentration of one or more chemical species as a function of a 

spatial coordinate. The illustration of an idealized case of this concept would be helpful, 

and Figure 5.7 below shows a concentration distribution where the inhibitor is diffusing 

radially into the neuromuscular junction from the blood, under conditions that produce a 

sudden and large increase in concentration for a small change in the radial position (often 

called a step change in concentration). This sudden concentration increase can be 

interpreted as the boundary between high and low concentrations of the inhibitor. If this 

boundary evolves in time and position, then it is called a moving boundary. The gradient 

of this concentration distribution would measure the relative intensity of the change with 

position, and would provide a metric of how closely the concentration profile resembles 

this step increase. Figure 5.8 shows the derivative of the concentration distribution with 

respect to the cleft radius (called the gradient) of the idealized step function and it 

resembles the shape of a Gaussian distribution. The larger the magnitude and narrower 
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the spread of a given gradient, then the closer the associated concentration distribution 

resembles an ideal step function, which leads to the possibility of resolving and tracking 

the evolution of a moving interface between different chemical species in the cleft. 

x10 System specific concentration distribution 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
radius, micrometer 

Figure 5.7. The idealized "step" concentration distribution. 

Qualitatively describing the shape of a concentration distribution curve or 

gradient curve as a metric for the intensity of an interface is not sufficient for scientific 

research: one does not have science until one has numbers. It would be useful to develop 

a numerical scale for the concentration distribution and concentration gradient whose 

magnitude would indicate the intensity of the interface across a known distance. It would 

also be useful to have a numerical description of an interface intensity that was more 
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generally applicable to a wide range of conditions and parameters, instead of a case-by-

case or system-by-system interpretation. 

0.018 
System specific concentration gradient 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
radius, micrometer 

Figure 5.8. The idealized "step" concentration gradient 

Towards this goal is the introduction of the relative length, and relative 

concentration distribution, given respectively by 

0 < r < R (5.4) rrel — 

C(r)rel = 

R 

C(r) 0 < C(r) < C, 
max 

(5.5) 

where r is the variable radial distance, R is the maximum radial distance, C(r) is the 

concentration as a function of the radius, and Cmax is the maximum concentration 
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achieved in the cleft volume. The relative length and relative concentration distribution 

are derived by a simple and common nondimensionalization technique which maps the 

length and concentration variables onto a dimensionless and universal scale. This scale 

can be used to express any known concentration distribution in a standard form. When 

the standard form of an ideal step concentration is known, then the scaled concentration 

distributions of any other system can be compared to it and the degree of step 

concentration "membership" of those distributions can be judged, as shown in Equations 

(5.6) to (5.8) below 

0 < C(r) < Cmax C(r) = / ( r ) 0 < r < R (5.6) 

0 < C(r)rei • Cmax < Cmax C(r)rel • Cmax = f(rrel • R) 0 < rrel • R < R (5.7) 

0 < C(r)rel < 1 f(rrel-R) 0 < rrel < 1 (5.8) 
L VJrel ~ T. 

'-•max 

However, applying this same scaling method directly on the gradient of the 

concentration distribution would restrict those resulting relative gradient values to a 

domain whose magnitude could never be greater than unity, a condition which is not 

useful and difficult to interpret. A better way to create a standard scale for the 

concentration gradient is to take the derivative of the relative concentration distribution, 

C(r)rei, with respect to rrei, thus: 

d{C(x)rei)_ 1 fl(r . (5.9) 
— / (Jrel -R)-R 
u,rel '-max 

Equation (5.9) shows that this definition of the relative concentration gradient is 

primarily another constant scaling factor applied to the concentration gradient function, 

but this definition does not restrict the gradient to values between zero and unity. 
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Applying these concepts to the idealized step concentration distribution and step 

concentration gradient introduced in Figures 5.7 and 5.8 will illustrate their utility. When 

the ideal step concentration distribution and step concentration gradient are scaled to their 

relative forms, the results are shown in Figures 5.9 and 5.10. 
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Figure 5.9. The idealized relative "step" concentration distribution. 
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Figure 5.10. The idealized relative "step" concentration gradient. 

From these graphs it can be seen that for a concentration distribution to have 

credible step-like qualities, there should be some continuous interval in the length 

domain, less than or equal to 0.05 fraction of the total length, where the rate of 

concentration change is on the order of at least 20 concentration units per length unit 

across that interval. This method of eveluation can be used with any system of arbitrary 

size and arbitrary concentration units. Intuitively, one should suspect that the best 

conditions to detect the presence of a chemical interface within the cleft would be an 

initially large difference in concentration of a diffusible species between the cleft and the 

bloodstream. Let us imagine the military neurotoxin ^(molecular weight 267.4 g/mole), 
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one of the fastest and most potent acetylcholinesterase inhibitors, as the neurotoxin 

diffusing into the neuromuscular junction from the blood. The lethal dose of VX for an 

average human is about 10 mg VX per kg body mass. An average adult human male has a 

mass of 86 kg and a blood volume of approximately 5.0 liters. Therefore, the lethal VX 

blood concentration is 0.68 mM in the blood [72]. Let us assume a venous injection 

process of VX which produces that particular blood concentration as a logistic function 

of time over a 5 second period, as shown in Figure 5.11. Further, imagine the process 

subsequently maintains that concentration indefinitely under conditions where 

physiological detoxification mechanisms are negligible. 

Blood concentration of inhibitor (species I) with time 

0 1 2 3 

Figure 5.11. A hypothetical venous injection of inhibitor. 
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The known military grade neurotoxins are all small molecules whose diffusion 

constant in blood plasma are not precisely known, but are assumed to be not much 

different from that of acetylcholine diffusing through water. Literature sources of 

information, [73] - [77], on molecules of a similar size as the military neurotoxins give 

10 8 9 

diffusion coefficient values in the range 2.5-10"" - 3.0-10"° cm /ms and the same 

diffusion constant as that used for acetylcholine in [5], [57], [58], namely 9.0-10"10 

cm /ms has been assumed for these molecules. A surface plot of the simulated VX 

concentration, represented by [I], in the cleft as a function of the radial distance and time 

is shown in Figure 5.12, where the rapid rise and apparently close to uniform 

concentration along the radius of the inhibitor can be viewed. The cleft reaches saturation 

of inhibitor in 2.5 seconds. 

concentration distribution of inhibitor, species I 

Figure 5.12. The simulated concentration distribution of inhibitor in the neuromuscular 
junction during diffusion. 
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The curves shown in Figures 4.4, 4.5, 4.6, and 5.2 depict the concentration of a 

substance as a function of time in a single, well mixed volume. The curves are naturally 

smooth over the time domain because several hundred time points are calculated, and 

separated by a small interval (A/) between them. The reader should now recall that in this 

case the cleft of the neuromuscular junction is modeled as a cylinder with a very small 

height to base ratio, and that cylindrical volume has been sectioned into 20 concentric 

annular sub-volumes. In Figure 5.12 the simulation data has been arranged to represent a 

cross-section of all the annular rings in sequence, along with their inhibitor concentration 

data. Referring to the radius scale in Figure 5.12, 0 micrometers represents the center of 

the cleft, and 50 micrometers represents the cleft/bloodstream interface. This radial 

distance has been divided into 20 sections (Ar = 2.5 micrometers) each of which 

represents one of the annular volumes, and the concentration in each of these sections as 

a function of time has been plotted. Because Ar is large compared to the total radial 

distance, a direct plot of the concentration vs. radius data would not necessarily appear 

smooth. Therefore, it is more useful to fit a polynomial curve to the data via a regression, 

and plot the derived polynomial curve. 

Figure 5.12 shows multiple concentration vs. radius distributions in the 

neuromuscular junction during the venous injection of VX process that was shown in 

Figure 5.11. Figure 5.12 depicts these distributions over a 10 second period, where each 

curve has been sampled at 200 millisecond intervals in the domains where the 

concentration was rapidly changing. The maximum concentration of 0.68 mM is reached 

at between 2 and 3 seconds (see Figure 5.11); however, no significant concentration 

gradients are obviously visible for any of the distributions. After a period greater than 3 
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seconds the cleft is saturated with the inhibitor, and the concentration distribution is 

uniform throughout the cleft volume. A quadratic polynomial gave the best fit for the 

data, shown as Equation (5.10): 

[I](r) = ar2 + br + c (5.10) 

a = 8.8700 • 10-4 b = 0.0000 c = 0.0006 

The polynomial coefficients a, b, and c shown in Equation (5.10) were arithmetically 

averaged over the coefficient values of all the regressed polynomial distribution curves. 

Even though the distribution curves appear flat with no significant gradients, such 

a qualitative judgment is of course not sufficient. A numerical description of the 

concentration gradients in the cleft during this injection process should be analyzed. 

Figure 5.13 shows the concentration gradients of the same process in time and space, and 

better illustrates the magnitude of the concentration differences along the radius. These 

gradient curves were determined from the derivative of each of the quadratic 

concentration distribution curves shown in Figure 5.12, and the surface in Figure 5.13 has 

been rotated to a different perspective from that of Figure 5.12 to provide a better 

intuitive grasp of the space and time relationship of the gradients. The axes in both 

figures occupy the same relative positions and represent the same information. Figure 

5.13 shows a series of gradient curves plotted over the same 10 second period and 

sampled at approximately 200 millisecond intervals in the domain where the gradient was 

changing rapidly. The curves show a concentration gradient process which is initially 

zero across the entire radius, then shows linear relations which increase in slope to a 

maximum value over time, and then the slopes of the linear relations decrease with time 
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back to a zero value for the gradient across the radius. The maximum gradient value is 

15.010" mM/cm and located at the radius end-point where the cleft interfaces with the 

bloodstream. These results mesh with the process shown in Figure 5.12, as the quadratic 

concentration distribution curves will have concentration gradient curves which are 

linear. Initially, the distribution of inhibitor in the cleft is zero, and so it has a gradient of 

zero as well. As the inhibitor enters the cleft, there should be some time when the 

differences of inhibitor concentration along the radius in the cleft should be the greatest, 

and this corresponds to a maximum value for the gradient at that time and location. 

Finally, when the cleft is saturated with inhibitor, the concentration distribution will be 

uniform, and at this same time the concentration gradient in the cleft will be zero. 

concentration gradient of inhibitor, species I 
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i 15 . - - - - - " 
E 

I 10,-

r ' c m x 10"5 

Figure 5.13. The simulated concentration gradient of inhibitor during diffusion into the 
neuromuscular junction. 
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Surface plots show the complete time and space relationships of the inhibitor 

concentration in the cleft, but this can be more information than is needed to interpret the 

relevant essential points in this analysis. Once the reader has an intuitive understanding of 

the general shape of the time, space, and concentration function in the cleft provided by 

the surface plots, it might be easier to interpret the salient characteristics of the inhibitor 

diffusion process with ordinary concentration vs. radius graphs where time dimension is 

presented as a set of level curves for different time values. Figure 5.14 shows the 

inhibitor concentration distributions of Figure 5.12 projected onto the concentration vs. 

radius plane, where the initial distribution is plotted with the symbol "x" and the final 

distribution uses the symbol "o". 

1Q"4 concentration distribution Df inhibitor, species I 

Figure 5.14. The inhibitor concentration distributions in the cleft, 
where Di = 9.0-10"10 cm2/ms, over a time period of 10 seconds. 
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The distribution level curves are seen rising rapidly from zero and subsequently 

crowding around the final cleft saturation value as time increases. Figure 5.15 shows the 

inhibitor concentration gradients of Figure 5.13 projected onto the concentration vs. 

radius plane, where the initial gradient is plotted with the symbol "x" and the final 

gradient uses the symbol "o". The gradient level curves rise from zero to a maximum 

value and decrease back to zero as time increases. The linear nature of these gradients is 

easily seen in this type of graph. In both graphs the level curves were sampled frequently 

where the concentration was changing rapidly, and sampled sparsely where the 

concentration changed slowly. Because of this, the different level curves do not represent 

a constant time interval between them. 

Figure 5.15. The inhibitor concentration gradients in the cleft, 
where Di = 9.0T0"10 cm2/ms, over a time period of 10 seconds. 
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In Figures 5.12 and 5.14, the concentration distributions seem very flat across the 

cleft radius, yet the representation of the gradients in Figures 5.13 and 5.15 suggest that at 

certain times the gradients might be large. For this reason we shall now compare the 

analysis in the previous paragraphs with the analysis which follows using the relative 

concentration data. Normalizing the simulation data used to generate Figures 5.12 and 

5.14 to their relative scales results in the graph depicted in Figure 5.16. 
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Figure 5.16. The normalized inhibitor concentration distributions in the cleft, 
where Di = 9.0-10"10 cm2/ms, over a time period of 10 seconds. 
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Figure 5.16 shows the inhibitor concentration distributions of Figure 5.12 

normalized and projected onto the concentration vs. radius plane, where once again the 

initial distribution is plotted with the symbol "x" and the final distribution uses the 

symbol "o". The distribution level curves rise rapidly from zero and subsequently crowd 

around the final cleft saturation value as time increases. However, in this case it is also 

seen that the level curves have a negligible slope (gradient) over time, which terminates 

at a zero value as the concentration of inhibitor in the cleft reaches saturation. Because it 

is known from the relative idealized step gradient (Figure 5.10) that a valid concentration 

interface needs at least 10 concentration units per length unit over a continuous distance 

that is less than 0.05 fraction of the total radius, we can easily conclude that no 

concentration gradients significant enough to produce a concentration boundary exist in 

the cleft under the conditions of this simulation. After 500 milliseconds no gradients large 

enough to be considered as possible concentration boundaries exist anywhere in the cleft. 

It would be useful to find the neurotoxin diffusion constant magnitude at which the 

Jenkins-Szlavik model predicts concentration boundaries might resolve in the 

neuromuscular junction. 

In Figure 5.17 the level curves of normalized concentration distribution are shown 

for a neurotoxin diffusion constant decreased by a factor of 10, sampled at 100 

millisecond intervals over a period of 20 seconds. The gradients of the level curves are 

seen to be negligible over the entire time domain. 

Figure 5.18 shows the normalized concentration distribution curves for a 

neurotoxin diffusion constant decreased by a factor of 100, and the same sample interval 
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and time duration. The first few level curves show a small gradient that rapidly decays to 

zero in a period of twenty seconds. 
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Figure 5.17. The normalized inhibitor concentration distributions in the cleft, 
where Di = 9.0-10" cm Iras, over a time period of 20 seconds. 

In Figure 5.19 the neurotoxin diffusion constant is decreased by a factor of 1000, 

and the level curves are sampled at 150 millisecond intervals over a period of 30 seconds. 

It is seen that significant concentration gradients are predicted to exist in the cleft for 

approximately 1.5 seconds. However, these gradients are not large enough to resolve a 

boundary between concentrations over a distance less than 0.05 fraction of the total 

radius. A diffusion constant approaching the magnitude of 10"13 cm2/ms is not physically 
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realizable in a biologically functioning neuromuscular junction for molecules the size of 

the known organophosphorus neurotoxins. 
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Figure 5.18. The normalized inhibitor concentration distributions in the cleft, 
where Di = 9.0-10"12 cm2/ms, over a time period of 20 seconds. 

The data from this simulation shows that the concentration gradients of a 

neurotoxin in the cleft are never very large at the values for the diffusion coefficients, 

blood concentration, and length of time conditions which exist for typical biological 

processes. The concentration of inhibitor in the neuromuscular junction and in the blood 

are essentially always in equilibrium because the inhibitor transports throughout the cleft 

essentially as fast as it enters the blood. The optimal conditions to create a concentration 
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interface (for example between inhibited and normal acetylcholinesterase) inside the cleft 

would be a very rapid, and preferably high, concentration increase of inhibitor in the 

blood, coupled with a very small diffusion coefficient for the inhibitor within the cleft. A 

much longer radial diffusion length would also increase the likelihood of an interface 

being able to resolve. 
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Figure 5.19. The normalized inhibitor concentration distributions in the cleft, 
where Dj = 9.0-10"13 cm2/ms, over a time period of 30 seconds. 

Most humans will quickly begin dying at VX blood concentrations higher than 

0.68 raM [72], [48], [49], so the modeling of larger concentrations does not seem useful. 

Faster methods to administer a lethal dose of toxin certainly exist, but most exposure 
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events involving military neurotoxins will likely produce infiltration rates on the order of 

minutes, or slower. Simulations with different diffusion coefficients produced data 

showing that significant radial concentration gradients do not appear in the cleft until the 

diffusion coefficient of the inhibitor is on the order of 10"12 cm2/ms or smaller. In 

summary, this simulation shows that the volume of the neuromuscular junction will not 

contain sharp concentration interfaces of inhibitor, enzyme, or significantly different 

receptor states along its radius, and the assumption of a uniformly mixed inhibitor 

concentration in the neuromuscular junction is valid. The kinetic events can be 

adequately modeled by summation of the discrete radial inhibitor concentration values 

and averaging them over the whole volume of the cleft. 

It is well known that acetylcholinesterase is concentrated in the neuromuscular 

junction. This enzyme is also embedded in the membranes of erythrocytes, where it is 

thought to affect the functional life-span of red blood cells [78], [79], and occurs in other 

tissues with a non-quantified distribution. It has also been established that in the military 

or terrorist event context, the levels of exposure to military-grade neurotoxins can lead to 

severe incapacitation and lethality within minutes [50], [72]. These conditions, along with 

other factors such as the severe ethical barriers, combine to make the quantifiable time 

course of the total degree of acetylcholinesterase inhibition throughout the human body a 

non-trivial problem. Determining the parameters and exposure conditions needed to 

establish such a relationship could become the core of a future research project. 

It is possible to reactivate organophosphorus (OP) poisoned acetylcholinesterase 

in vitro [12], [51], [80] - [84]. Therapeutic regimens using oxime compounds to 

rehabilitate acetylcholinesterase have been developed as part of the clinical treatment for 
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OP toxin exposure as well [50], [85], [86]. At this time, the standard treatment of 

poisoning by OP-type toxin includes the administration of atropine (an antimuscarinic 

agent) and obidoxime or pralidoxime as the enzyme reactivators. 

Nerve agents act by inhibiting the hydrolysis of acetylcholine by 

acetylcholinesterase. They bind to the active site of acetylcholinesterase, rendering it 

incapable of deactivating acetylcholine. Acetylcholine that is not hydrolyzed can 

continue to interact with the postsynaptic receptor, which results in persistent and 

uncontrolled stimulation of that receptor. After persistent activation of the receptor, 

fatigue results. This is the same principle exhibited by the depolarizing neuromuscular 

blocker succinylcholine. The clinical effects of nerve agents are the result of this 

persistent stimulation and subsequent fatigue at the acetylcholine receptor. In an initial 

step, the enzyme becomes inactivated, but not permanently. Some degree of reactivation 

of the acetylcholinesterase enzyme occurs in this initial phase, but the process is slow. An 

additional reaction between acetylcholinesterase and the nerve agent makes their 

interaction irreversible, a phenomenon known as aging. The aging kinetics of VX is 

completed after a period of approximately 48 hours [80]. For the clinical effect to be 

reversed after aging occurs, new enzyme must be produced. This irreversible bond is one 

difference between the reactive chemistry of organophosphate compounds (including 

nerve agents) and carbamates, which bind reversibly to acetylcholinesterase. This concept 

is also used for pretreatment of military personnel with the carbamate pyridostigmine 

[87]. The qualitative kinetics of these reactions are becoming better understood, and 

computational models for these reactions in vitro have been developed and published 

[88]. Removal of the phosphyl moiety from the serine in the enzyme's active site is the 
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primary mechanism of oxime action, and the Jenkins-Szlavik model is the first attempt to 

computationally describe the kinetics of OP inhibited acetylcholinesterase reactivation 

with oxime compounds in vivo. If the kinetic parameters are known, it is of course no 

more difficult to compute the chemical dynamics of the reactivation reactions than it was 

for the inhibition reactions. The adult OP-therapy dosage is 1-2 grams of pralidoxime 

(137.16 g/mole) given intravenously over a period of 20-30 minutes [86]. The heart 

pumps about 5 liters per minute and the human body holds about 5 liters, so within about 

a minute most of the blood has made one circuit and can be modeled as uniformly mixed 

[70], [79]. After 2 minutes, most of the blood has circulated twice through the 

vasculature, and anything that did not mix the first time would be further equilibrated 

throughout the blood medium during subsequent laps through the circulatory system. 

Given this rapid blood mixing time relative to the period of pralidoxime administration, 

then the rate of molar pralidoxime delivery to the blood can be treated as constant at 1.46 

nmole-cm'^ms"1. The Jenkins-Szlavik simulation was used to model the process of 

clinical acetylcholinesterase reactivation in one typical neuromuscular junction under the 

following conditions: initially zero active enzyme, the diffusion constant of pralidoxime 

was the same as that of acetylcholine, and the therapy began after the amount of 

neurotoxin (VX) remaining in the blood became negligible. 

Figure 5.20 below shows the average amount of inhibited enzyme in the cleft 

decreasing with time from the initial value of 7.4-10" mmole/cm to zero in a five minute 

time period. Figure 5.21 depicts the regeneration of acetylcholinesterase as the average 

amount in the cleft rises from an initial value of zero to 7.4-10"5 mmole/cm3 (the amount 

of enzyme in a normal junction) in the same time period. 
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Figure 5.20. The average amount of inactive acetylcholinesterase 
in the cleft during oxime therapy. 

Figure 5.22 shows the assumed linear rate of therapeutic pralidoxime entering the 

junction via the method of injection. Keep in mind that this simulation models the 

reactivation of enzyme which is occurring in one typical neuromuscular junction. In a 

genuine therapy situation, the neuromuscular junction population would have differing 

amounts of enzyme inhibition; the oxime kinetics would also reactivate the 

acetylcholinesterase throughout the body, not just the neuromuscular cleft. Those 

conditions, and other metabolic factors, suggest that recovery from a serious OP 

neurotoxin event would (of course) require more time and resources than five or ten 

minutes of chemical therapy. At this stage, these simulation results have been presented 

as a proof-of-concept which has a high degree ability to assist the development of 

feasible therapies to counter organophosphorus poisoning. 
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Figure 5.21. The average amount of active acetylcholinesterase in the 
cleft during oxime therapy. 

This concludes the results portion of the dissertation. It has been shown that this 

model can duplicate the experimental and simulation results of prior published research 

concerning the normal and inhibited kinetics of the chemical species in the 

neuromuscular junction during an action potential event. Further, it was shown that this 

model is the first to simulate those kinetic events in vivo as a neurotoxin is 

simultaneously diffusing into the neuromuscular junction, rather than first artificially 

setting the degree of acetylcholinesterase inhibition to some value, then starting the 

simulation. The model demonstrated the potential to detect and resolve moving 

boundaries between concentration interfaces or different chemical species, and it was also 

shown that these boundaries do not exist in the normal biological environment of the 
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neuromuscular junction. Finally, this model is the first to simulate the regeneration of 

organophosphate inhibited acetylcholinesterase in the neuromuscular junction in the 

presence of an oxime compound diffusing into the cleft. It was shown that, in principle, 

this enzyme regeneration process is no more difficult to simulate than the enzyme 

inhibition process. The caveat of "in principle" is mentioned because coupling the 

enzyme regeneration results with quantifying the efficacy of therapeutic oxime infusion 

is another complex issue. 

The amount of species OX in the whole cleft averaged over 20 annular volumes 
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Figure 5.22. The average concentration of oxime in the cleft during oxime therapy. 



CHAPTER 6 

FUTURE WORK 

Jenkins and Szlavik used a one dimensional diffusion model which took 

advantage of geometric symmetry to focus on the dominant transport effects. It was 

shown that the Jenkins-Szlavik simulation can reproduce the work of earlier research in 

depicting the time and spatial course of a normal action potential, and the time and spatial 

course of action potentials influenced by different degrees of acetylcholinesterase 

inhibition. This is the first simulation to achieve a model of acetylcholinesterase 

inhibition during the diffusion of a neurotoxic inhibitor into the neuromuscular junction, 

and show the altered subsequent action potentials. Jenkins and Szlavik illustrated how 

this simulation could detect the time and space dynamics of moving concentration 

gradients in the neuromuscular junction under suitable conditions. In addition, this model 

showed an in vivo simulation of inhibited acetylcholinesterase being returned to the 

active state through the kinetics of pralidoxime therapy. 

The mathematical method used in these simulations easily generalizes to a 

complete three dimensional transport model of the diffusion-reaction processes occurring 

in the neuromuscular junction. In most previous cleft models, the model was constructed 

such that the injection of acetylcholine molecules is assumed to be a single quanta 

entering at the center of the presynaptic membrane. However, freeze-fracture images, and 

electron micrograph images, suggest that several quanta can simultaneously enter 

125 
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the cleft at different locations on the presynaptic m e m t a a surface. Figure 6.1 shows an 

electron micrograph of acetylcholine vesicles in the presynaptic membrane, prior to 

release of acetylcholine into the gap of the neuromuscular junction. The vesicles can be 

seen distributed along the boundary of the gap. With a complete 3D transport-reaction 

model (in cylindrical coordinates), the Jenkins-Szlavik model could address any valid 

criticisms of centered-membrane-quanta models, and investigate the effects of 

acetylcholine entering the cleft in different sectors. 

Figure 6.1. An electron micrograph image of transmitter vesicle release at the 
neuromuscular junction [30]. 

Figure 6.2 shows an example of this type of three dimensional model and the 

structure of the coordinates. The detail resolved by the number of levels, annuli, and 

sectors would, in principle, be limited only by the available computing power. 
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Figure 6.2. An example of a three dimensional discretization of the 
neuromuscular junction composed of three levels, 

nine annuli, and seventy-two sectors. 

The Jenkins-Szlavik model has a large potential to advance the therapeutic 

methods of regenerating organophosphorus damaged acetylcholinesterase. The in vitro 

kinetic models of this therapy are well established, but effective therapy for living 

systems will require investigation of models that reflect a structure closer to that of the 
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living systems. A model of the regeneration kinetics of acetylcholinesterase in the cleft is 

a step closer to that goal. 

This model can also provide a framework to develop models of prevention of 

organophosphorus trauma, and prevention is a better countermove than therapy. The core 

of this prevention process is human butylcholinesterase, and it is used something like a 

"vaccine" to the organophosphorus "infection". This enzyme is closely related to 

acetylcholinesterase, but it is not crucial to neuronal signaling. Butylcholinesterase is 

found in glial cells and plasma; however, the detailed distribution of butylcholinesterase 

in the human body is not known [37]. Because its structure is close to 

acetylcholinesterase and it is a component of plasma, butylcholinesterase can be used as a 

method to protect against organophosphorus poisoning in an animal model. The basic 

strategy is to pretreat the blood with an infusion of butylcholinesterase before the 

encounter with neurotoxin, whereupon it can "soak up" the toxin before the toxin can 

enter the neuromuscular junction. This strategy of protection is an active area of research 

and significant progress has been made with kinetic models and experimental 

measurements [89]-[91]. Certainly the development of therapies and pharmacological 

preventions to neurotoxin trauma is never trivial, but a big advantage of working with 

butylcholinesterase is that it occurs in the body naturally, so toxicity issues are 

minimized. The kinetic model of the reactions in the cleft used in the Jenkins-Szlavik 

model can be readily adapted to address the chemistry of neurotoxicity prevention. It 

would be a simple matter to couple the kinetics of butylcholinesterase reacting with 

neurotoxin in the blood (well mixed) with the diffusion-reaction kinetic events in the 
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neuromuscular junction in time and space. It would even be possible to examine the 

effectiveness of butylcholinesterase combined with pyridostigmine, or other therapeutics. 

This method-of-lines algorithm has a level of detail that is simple to scale up, and 

is easily "tuned" to many kinds of physical models. Any number of mobile or immobile 

chemical species can be implemented, along with their respective kinetic and diffusion 

constants. Source and sink terms can be applied as a function of any of the system 

variables, and at any location. In a real sense, the only practical limit is the degree of 

computing power available. The Jenkins-Szlavik simulation provides an opportunity to 

recursively couple a highly flexible model to data from experiments supported by state-

of-the-art instruments, and this recursive coupling is an excellent way to quantify and 

advance our knowledge of the processes that occur during neuromuscular transmission. 
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MATLAB SOURCE CODES 

% THIS PROGRAM QUALITATIVELY WORKS 
% Models the complete normal and inhibited chemistry in the neuromuscular junction; 
% the model consists of a series of instantly and uniformly mixed 
% volumes which share transport of Acetylcholine via 1D diffusion at 
% each adjacent border 
% 
% VOLUME 1 
% f(t) > A 
% 
% 
% VOLUME 2 -40 
% kD 
% A — > @ 
% 
%U1 U2 kE1 U3 kE2 U4 kE3 U2 
% A + E <—> AE — > acE —-> E + ChP 
% kE_1 
% 
% U2 U9 kl1 U10 
% E + I <—> El 
% 
% U10 kjJead U11 
% El > E dead 

% 
% VOLUME 41 - 50 
%U1 U5 2*kR1 U6 
%A + R < > AR 
% kRJ 
% 
%U1 U5 kR2 U7 
%A + AR < >A2R 
% 2*kR_2 
% 
% U7 oR US 
%A2R < > A2R* 
% CR 

% five CSTR uniform volumes, 
%function MQL_50 
clc; 
clear; 
clear; 
A jn f = 0.0; % mM 
IJnf = 1.65e-7; % mM 
% total volume in the cleft 
V_cleft = 3.93e-17;%(L) 
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% the length of the cleft (width, or height) (LA1/3) 
L_cleft = 5.0e-7; 

% the radius of the cleft (LA1/3) 
R_cleft = 5.0e-6; 

% the number of equal axial disks 
P = 1; 
x_cleft = zeros(1 ,P) 

% the number of annular rings per disk 
Q = 20; 

% number of coupled sub-volumes 
S = P*Q 

%thickness of each radial annulus 
dr = R_cleft/Q; 

%thickness of each axial disk 
dx = L_cleft/P; 

% area of the cleft edge 
Area_edge = 2*pi*R_cleft*L_cleft; 

% axial direction vector 
x = linspace(0.0, L_cleft, P+1); 

%radial direction vector 
r = linspace(0.0, R_cleft, Q); 

% This loop assigns an x-value coordinate to the center of each well mixed 
% axial disk 
forj = 1:P 

x_cleftG) = 0.5*(xG) + x(j+1)); 
end 
x_cleft; 

% create the "space", a 1-dimension vector that all the axial and radial volume points are mapped 
% into 
s = [1:S]; 

% axial diffusion constant (cmA2/ms) 
D_x = 2.0e-9; 

% radial diffusion constant for Ach (LA2/3*msA-1) 
D_r = 3.50e-11;%3.50e-11 

% radial diffusion constant for the inhibitor 
D_r_tox = 3.5e-11; 

%number of time points 
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N=2000; 

%number of time samples 
n_sample = 15; 

N_grad =floor(linspace(1, N, n_sample))%these values need to be integers because they will be 
vector indices 

%time interval vector for the normal and inhibited reactions (ms, 1e-3 s) 
t_0 = 0.0; t_f = 5.0; % ms 
t = linspace(tj), t_f, N); 
tspan = [t]; 

%time interval vector for the diffusing toxin reaction 
t_tox_0 = 0.0; t j o x j = 4.0e+7; % ms 
t_tox = linspace(t_tox_0, t_tox_f, N); 
tspan_tox = [t_tox]; 

% pulse parameters 
t_on = 3.0; t_off = 4.50; %*THIS IS NOT THE TIME INTERVAL* 

n_on = round((((t_on - t_0)/(t_f - t_0))*(length(t)-1)) + 1); 
n_off = round((t_off - t_0)*(length(t) -1)/(t_f -1_0) + 1); 
peak = round(0.5*(n_on + n_off)); 
spread = 20.0; 
magnitude = 0.50; 

% calculate the volume of each annulus 
volume = zeros(1 ,Q); % ( L ) 
vol_frac = volume; 
fori=1:Q 

volume(i) = ((2*i-1)/QA2)*pi*L_cleft*R_cleftA2; 
vol_frac(i) = volume(i)A/_cleft; 

end 
sum(volume(1 :Q)); % a check of the annuli sum should equal the V_cleft 
sum(vol_frac(1 :Q)); 
V_cleft; 

% forward and backwards difference vectors 
r_grad_b = r(2:length(r)); 
r_grad_f = r(1 :length(r)-1); 

% defining the initial value vectors of the diffusing toxin reaction reactants 
A_0_tox = zeros(1 ,S); 
E_0_tox = zeros(1 ,S); 
AE_0_tox = zeros(1 ,S); 
acE_0_tox = zeros(1 ,S); 
R_0_tox = zeros(1,S); 
AR_0_tox = zeros(1 ,S); 



A2R_0_tox = zeros(1 ,S); 
A2Ro_0_tox = zeros(1 ,S); 
l_0_tox = zeros(1,S); 
EI_0_tox = zeros(1,S); 
E_dead_0_tox = zeros(1 ,S); 
ChP_0_tox = zeros(1,S); 

% defining the initial value vectors of the normal AP reaction reactants 
A_0_n = zeros(1 ,S); 
E_0_n = zeros(1 ,S); 
AE_0_n = zeros(1,S); 
acE_0_n = zeros(1,S); 
R_0_n = zeros(1 ,S); 
AR_0_n = zeros(1 ,S); 
A2R_0_n = zeros(1 ,S); 
A2Ro_0_n = zeros(1 ,S); 
ChP_0_n = zeros(1,S); 

% defining the initial value vectors of the inhibited AP reaction 
% reactants, 
A_0_i = zeros(1,S); 
E_0_i = zeros(1,S); 
AE_0_i = zeros(1 ,S); 
acE_0_i = zeros(1 ,S); 
R_0_i = zeros(1,S); 
AR_0_i = zeros(1 ,S); 
A2R_0_i = zeros(1 ,S); 
A2Ro_0_i = zeros(1,S); 
I 0 i = zeros(1 ,S); 
EI_0_i = zeros(1,S); 
E_dead_0_i = zeros(1 ,S); 
ChP_0_i = zeros(1 ,S); 

factor_R= 1.0; 
standard_R = 0.664; 

% Toxin diffusion reaction initial cleft values of A, E, R in mM 
A_0_tox(1,1) = 0.0; % in mM (10 annuli is used as the control reference) 
E_0_tox(1,:)= 0.0277; % in mM 
R_P_tox(1,:) = factor_R*standard_R; % in mM 

% Toxin diffusion reaction initial value vector 
W0 = [A_0_tox ... A ( V(1 )-V(Q)) 

E_0_tox ... E ( V(Q+1) - V(2Q)) 
AE_0_tox ...AE (V(2Q+1)-V(3Q)) 
acE_0_tox ... acE ( V(3Q+1) - V(4Q0)) 
R_0_tox ... R ( V(4Q+1) - V(5Q)) 
AR_0_tox ... AR ( V(5Q+1) - V(6Q)) 
A2R_0_tox ... A2R ( V(6Q+1) - V(7Q)) 
A2Ro_0_tox ... A2R* ( V(7Q+1) - V(8Q) ) 
l_0_tox ... I(V(8Q+1)-V(9Q)) 
El_0_tox ...EI ( V(9Q+1) - V(10Q)) 



E_dead_0_tox ...E_dead ( V(10Q+1) - V(11Q)) 
ChP_0_tox...ChP(V(11Q+1)-V(12Q) ) 

] ; 

E_tox = zeros(length(t), length(r)); % toxin diffusion enzyme reaction matrix 
R_tox = zeros(length(t), length(r));% toxin diffusion receptor reaction matrix 
l_tox = zeros(length(t), length(r)); % toxin diffusion inhibitor of esterase 
EI_tox = zeros(length(t), length(r)); % toxin diffusion enzyme-toxin reaction matrix 
E_dead_tox = zeros(length(t), length(r)); %toxin diffusion poisoned enzyme reaction matrix 

E_cleft_tox = zeros(N,1); % toxin diffusion reaction species 
R_cleft_tox = zeros(N,1); 
l_cleft_tox = zeros(N,1); 
Elclefttox = zeros(N,1); 
E_dead_cleft_tox = zeros(N,1); 

molecule_E_cleft_tox = zeros(N,1); % toxin diffusion reaction species 
molecule_R_cleft_tox = zeros(N,1); 
molecule_l_cleft_tox = zeros(N,1); 
molecule_EI_cleft_tox = zeros(N,1); 
molecule_E_dead_cleft_tox = zeros(N,1); 

% run the diffusing toxin reaction function 
[t_tox, W]= odel 5s(@Func_Radial_toxin_kinetics, tspanjox, WO, rj, D_x, D_r, D_r_tox, r, dx, dr, 
t_on, t_off); 

for i = 1 :length(t) % time length vector 
forj = 1:length(r) % radius length vector 

E_tox(i,j) = W(i,j+Q); % toxic diffusion reaction species 
R_tox(i,j) = W(i,j+4*Q); 
l_tox(i,j) = W(i,j+8*Q); 
Eljox(ij) = W(i,j+9*Q); 
E_dead_tox(i,j) = W(i,j+10*Q); 

end 
end 

% calculate the total amounts of these species in the cleft 
fori = 1:N 

forj = 1:Q 

E_cleft_tox(i) = E_cleft_tox(i) +(volume(j)*E_tox(i,j))A/_cleft; % toxin diffusion molar 
species 

R_cleft_tox(i) = R_cleft_tox(i) +(volumeO)*R_tox(ij))A/_cleft; 
l_cleft_tox(i) = l_cleft_tox(i) +(volumeO)*IJox(i,j))A/_cleft; 



EI_cleft_tox(i) = EI_cleft_tox(i) +(volume(j)*EIJox(i,j))A/_cleft; 
E_dead_cleft_tox(i) = E_dead_cleft_tox(i) +(vdume(j)*EjJead_tox(ij))/Vj:left; 

molecule_E_cleft_tox(i) = E_cleft_tox(i)*V_cleft*(6.02e+20); % toxin diffusion molecule 
species 

molecule_R_cleft_tox(i) = R_cleft_tox(i)*V_cleft*(6.02e+20); 
molecule_l_cleft_tox(i) = l_cleft_tox(i)*V_cleft*(6.02e+20); 
molecule_EI_cleft_tox(i) = EI_cleft_tox(i)*V_cleft*(6.02e+20); 
molecule_E_dead_cleft_tox(i) = E_dead_cleft_tox(i)*V_cleft*(6.02e+20); 

end 
end 
t_min = t_tox./(1000*60); 
%{ 
figure(1) 
plot(t_min, E_dead_cleft_tox) 
title(sprintf('Concentration of poisoned enzyme vs time \n soman kinetics and blood concentration 
of %i mM\n initial active enzyme %i mM', I jnf, E_cleft_tox(1,1))); 
xlabel('time, min'); ylabel('Poisoned Enzyme, mM'); 
%} 
figure(2) 
E_tox_active_f rac = 100*((E_0_tox( 1,1 )-E_dead_cleft_tox)/E_0_tox( 1,1)); 
plot(t_min, E_tox_active_frac) 
title(sprintf('Percent enzyme active in cleft vs. time,\n with soman kinetics and blood concentration 
of %i mM ', (Ijnf))); 
xlabel('time, min'); ylabel('Percent active enzyme'); 

% tolerance value 
tol = 0.0001; 
loop_count = 0; 
choice = 1; 

while(choice == 1) 

E_i_active_percent = input('What percent active enzyme will be in the cleft during the inhibited 
action potential reaction?\n'); 

Ejnitialjnhibited = (E_i_active_percent/100)*E_0_tox(1,1); % in mM 
disp(sprintf('\n The initial amount of active enzyme in the cleft \n during the inhibited reaction is 
%i mM', E_initial_inhibited)); 

toxjndex = find((E_cleft_tox >= Ejnitialjnhibited - tol) & (E_cleft_tox <= Ejnitialjnhibited + 
tol), 1); 
disp(sprintf('\n The location of the time point index is % i ' , toxjndex)); 

disp(sprintf('\n This is equivalent to starting the action potential after %i minutes have passed 
since exposure to the toxic inhibitor \n ', Mox(tox_index)/(60000))); 

%E cleft tox' 



factor_A = 1.0; 
standard_A = 42.3*((Q/10)A2); 
factor_E = 1.0; 
standard_E = 0.0277; 
% Normal AP reaction initial cleft values of A, E, R in mM 
A_0_n(1,1) = factor_A*standard_A; % in mM (10 annuli is used as the control reference) 
E_0_n(1,:)= factor_E*standard_E; % in mM 
R_0_n(1,:) = factor_R*standard_R; % in mM 

%normal AP reaction initial value vector 
U0 = [A_0_n ...A (U(1)-U(Q)) 

E_0_n ... E (U(Q+1)-U(2Q)) 
AE_0_n ...AE ( U(2Q+1) - U(3Q)} 
acE_0_n ... acE ( U(3Q+1) - U(4Q)) 
R_0_n ... R (U(4Q+1)-U(5Q)) 
AR_0_n ... AR ( U(5Q+1) - U(6Q)) 
A2R_0_n ...A2R ( U(6Q+1) - U(7Q)) 
A2Ro_0_n ... A2R* ( U(7Q+1) - U{8Q)) 
ChP_0_n ... ChP (U(8Q+1) - U(9Q)) 

% Inhibited AP reaction initial cleft values of A, E, R in mM 
A_0_i(1,1) = factor_A*standard_A ; % in mM (10 annuli is used as the control reference) 
E_0_i(1,:)= E_tox(tox_index,:); % in mM 
R_0_i(1,:) = R_tox(tox_index,:); % in mM 
l_0_i(1,:)= l_tox(tox_index,:); % in mM 
El_0_i(1,:) = EI_tox(tox_index,:); % in mM 
E_dead_0_i = E_dead_tox(tox_index,:); % in mM 

% Inhibited AP reaction initial value vector 
V0 = [A_0_i ...A(V(1)-V(Q)) 

E_0_i ... E(V(Q+1)-V(2Q)) 
AE_0_i ... AE ( V(2Q+1) - V(3Q) ) 
acE_0_i ... acE ( V(3Q+1) - V(4Q0)) 
R_0_i ... R(V(4Q+1)-V(5Q)) 
AR_0_i ... AR ( V(5Q+1) - V(6Q)) 
A2R_0_i ... A2R ( V(6Q+1) - V(7Q) ) 
A2Ro_0_i ...A2R*(V(7Q+1)-V(8Q)) 
l_0_i ... I(V(8Q+1)-V(9Q)) 
El_0_i ...EI(V(9Q+1)-V(10Q)) 
E_dead_0_i ...E„dead (V(10Q+1) - V(11Q)) 
ChP_0_i... ChP(V(11Q+1)-V(12Q) ) 

]; 

% run the normal enzyme reacion function 
[t,U] = ode15s(@Func_Radial_normal_kinetics, tspan, U0, rj, D_x, D_r, r, dx, dr, t_on, t_off); 

% run the inhibited enzyme reaction function 



[t,V] = ode15s(@Func_Radial_inhibited_kinetics, tspan, VO, rj, D_x, D_r, D_r_tox, r, dx, dr, t_on, 
t_off); 

% create the normal and inhibited reaction species concentration matrices as functions of r and t 
A_n = zeros(length(t),length(r)); % normal acetycholine reaction matrix 
E_n = zeros(length(t), length(r)); % normal enzyme reaction matrix 
AE_n = zeros(length(t), length(r));% normal enzyme-complex reaction matrix 
acE_n = zeros(length(t), length(r));% normal acylated-enzyme reaction matrix 
R_n = zeros(length(t), length(r));% normal receptor reaction matrix 
AR_n = zeros(length(t), length(r));% normal single bound receptor reaction matrix 
A2R_n = zeros(length(t), length(r));% normal double bound receptor reaction matrix 
A2Ro_n = zeros(length(t), length(r));% normal open receptor reaction matrix 
ChP_n = zeros(length(t), length(r));% normal choline/product reaction matrix 

A j = zeros(length(t), length(r)); % inhibited acetycholine reaction matrix 
E j = zeros(length(t), length(r)); % inhibited enzyme reaction matrix 
A E j = zeros(length(t), length(r)); % inhibited enzyme-complex reaction matrix 
acEj = zeros(length(t), length(r)); % inhibited acylated-enzyme reaction matrix 
R j = zeros(length(t), length(r));% inhibited receptor reaction matrix 
ARj = zeros(length(t), length(r));% inhibited single bound receptor reaction matrix 
A2R_i = zeros(length(t), length(r));% inhibited double bound receptor reaction matrix 
A2Ro_i = zeros(length(t), length(r));% inhibited open receptor reaction matrix 
l_i = zeros(length(t), length(r)); % inhibitor of esterase 
EM = zeros(length(t), length(r)); % enzyme-toxin reaction matrix 
E_dead_i = zeros(length(t), length(r)); % poisoned enzyme reaction matrix 
ChPJ = zeros(length(t), length(r)); % inhibited choline/product reaction matrix 

for q = 1 :length(N_grad) %represents the distributed time points in N, accessed through 
N__grad(q) 

for i = 1 :length(t) % time length vector 
forj = 1:length(r) % radius length vector 

A_n(ij) = U(ij); % normal reaction species 
E_n(i,j) = U(i j+Q); 
AE_n(i,j) = U(i,j+2*Q); 
acE_n(i,j) = U(i,j+3*Q); 
R_n(i,j) = U(ij+4*Q); 
AR_n(i,j) = U(i,j+5*Q); 
A2R_n(i,j) = U(i,j+6*Q); 
A2Ro_n(i,j) = U(i,j+7*Q); 
ChP_n(i,j) = U(i,j+8*Q); 

A_i(iJ)= v(iJ); % inhibited reaction species 
E_i(i j) = V(i j+Q); 
AE_i(i,j) = V(i,j+2*Q); 
acEJ(iJ) = V(i,j+3*Q); 
R_i(ij) = V(i,j+4*Q); 
AR_i(i,j) = V(i,j+5*Q); 
A2R_i(ij) = V(i,j+6*Q); 
A2Ro_i(i,j) = V(i,j+7*Q); 



I_i(i j ) = V(i,j+8*Q); 
EU(iJ) = V(i,j+9*Q); 
E_dead_i(i,j) = V(i,j+10*Q); 
ChP_i(ij) = V(ij+11*Q); 

end 
end 

% calculate the concentration gradients of these species 
cocn_grad_A_n = diff(A_n(N_grad(q),:))./diff(r); 
cocn_grad_l = diff(l_i(N_grad(q),:))./diff(r); 
cocn_grad_E = diff(Ej(N_grad(q),:))./diff(r); 

%plot(r, A_n(N_grad(q),:)); hold on; 
figure(1) 
title('[A] gradient') 
plot(r_grad_b, cocn_grad_A_n); hold on; 

figure (2) 
title('[l] gradient') 
plot(r_grad_b, cocn_grad_l); hold on; 

figure (3) 
title('[E] gradient') 
plot(r_grad_b, cocn_grad_E); hold on; 

end 
hold off; 

%2*pi*R_cleft*L_clefl*D_r/clr 

% calculate the normal and inhibited Ach lost from the last annulus via diffusion 
%[t, AJost] = ode15s(@Acetylcholine_lost, tspan, A_n(1,14), [], D_r, dr, r); 

%A_nJost = (D_r/(2*r(15)*dr))*(A_inf -A_n(:,14))%cumtrapz(t(2*pi*R_cleft*L_cleft*D_r/1e-
18)*A_n(:,Q)); 
%Aj_lost = cumtrapz(t,(2*pi*R_clefl*L_cleft*D_r/1e-18)*Aj(:,Q)); 

% initialize the total concentration/molecules in the cleft vectors 

A_cleft_n = zeros(N,1);% normal reaction species 
E_cleft_n = zeros(N,1); 
AE_cleft_n = zeros(N,1); 
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acE_cleft_n = zeros(N,1); 
R_cleft_n = zeros(N,1); 
AR_cleft_n = zeros(N,1); 
A2R_cleft_n = zeros(N,1); 
A2Ro_cleft_n = zeros(N,1); 
ChP_cleft_n = zeros(N,1); 

molecule_A_cleft_n = zeros(N,1);% normal reaction species 
molecule_E_cleft_n = zeros(N,1); 
molecule_AE_cleft_n = zeros(N,1); 
molecule_acE_cleft_n = zeros(N,1); 
molecule_R_cleft_n = zeros(N,1); 
molecule_AR_cleft_n = zeros(N,1); 
molecule_A2R_cleft_n = zeros(N,1); 
molecule_A2Ro_cleft_n = zeros(N,1); 
molecule_ChP_cleft_n = zeros(N,1); 

A_cleft_i = zeros(N,1); % inhibited reaction species 
E_cleft_i = zeros(N,1); 
AE_cleft_i = zeros(N,1); 
acE_cleft_i = zeros(N,1); 
R_cleft_i = zeros(N,1); 
AR_cleft_i = zeros(N,1); 
A2R_cleft_i = zeros(N,1); 
A2Ro_cleft_i = zeros(N,1); 
l_cleft_i = zeros(N,1); 
El_cleft_i = zeros(N,1); 
E_dead_cleft_i = zeros(N,1); 
ChP_cleft_i = zeros(N,1); 

molecule_A_cleft_i = zeros(N,1);% inhibited reaction species 
molecule_E_cleft_i = zeros(N,1); 
molecule_AE_cleft_i = zeros(N,1); 
molecule_acE_cleft_i = zeros(N,1); 
molecule_R_cleft_i = zeros(N,1); 
molecule_AR_cleft_i = zeros(N,1); 
molecule_A2R_cleft_i = zeros(N,1); 
molecule_A2Ro_cleft_i = zeros(N,1); 
molecule_l_cleft_i = zeros(N,1); 
molecule_EI_cleft_i = zeros(N,1); 
molecule_E_dead_cleft_i = zeros(N,1); 
molecule_ChP_cleft_i = zeros(N,1); 

%{ 
%Species names 
species_names = rA,,,E,

1'AE,,,acE,,,R,,,AR,
I
,A2R,,,A2R*,,,r,,EI,,,E_dead,,,ChP,,,AJosf]; 

species__names(1) 
species_names(2) 
%} 

% calculate the total amounts of these species in the cleft 
fori = 1:N 

forj = 1:Q 

A_cleft_n(i) = A_cleft_n(i) +(volume(j)*A_n(i,j))A/_cleft; %normal molar species 



E_cleft_n(i) = E_cleft_n(i) +(volume(j)*E_n(i,j))/V_cleft; 
AE_cleft_n(i) = AE_cleft_n(i) +(volumeG)*AE_n(iJ))A/_cleft; 
acE_cleft_n(i) = acE_cleft_n(i) +(volume(j)*acE_n(i,j))A/_cleft; 
R_cleft_n(i) = R_cleft_n(i) +(volumeG)*R_n(i,j))A/_cleft; 
AR_cleft_n(i) = AR_cleft_n(i) +(volumeG)*AR_n(i,j))/V_cleft; 
A2R_cleft_n(i) = A2R_cleft_n(i) +(volume(j)*A2R_n(i,j))A/_cleft; 
A2Ro_cleft_n(i) = A2Ro_cleft_n(i) +(volumeG)*A2Ro_n(i,j))A/_cleft; 
ChP_cleft_n(i) = ChP_cleft_n(i) +(volumeO)*ChP_n(ij))A/_cleft; 

A_cleft_i(i) = A_cleft_i(i) +(volumeO)*A_i(ij))A/_cleft; % inhibited molar species 
E_cleft_i(i) = E_cleft_i(i) +(volumeG)*E_i(i,j))/V_cleft; 
AE_cleft_i(i) = AE_cleft_i(i) +(volumeG)*AE_i(i,j))/V_cleft; 
acE_cleft_i(i) = acE_cleft_i(i) +(volume(j)*acE_i(i,j))A/_cleft; 
R_cleft_i(i) = R_cleft_i(i) +(volumeG)*R_i(i,j))A/_cleft; 
AR_cleft_i(i) = AR_cleft_i(i) +(volumeO)*AR_i(i,j))A/_cleft; 
A2R_cleft_i(i) = A2R_cleft_i(i) +(volumeO)*A2R_i(i,j))A/_cleft; 
A2Ro_cleft_i(i) = A2Ro_cleft_i(i) +(volume(j)*A2Ro_i(i,j))A/_cleft; 
l_cleft_i(i) = l_cleft_i(i) +(volume(j)*l_i(i,j))A/_cleft; 
El_cleft_i(i) = El_cleft_i(i) +(volume(j)*EI_i(i,j))A/_cleft; 
E_dead_cleft_i(i) = E_dead_cleft_i(i) +(volume(j)*E_dead_i(i,j))A/_cleft; 
ChP_cleft_i(i) = ChP_cleft_i(i) +(volumeG)*ChP_i(i,j))/V_cleft; 

molecule_A_cleft_n(i) = A_cleft_n(i)*V_cieft*(6.02e+20); %normal molecule species 
molecule_E_cleft_n(i) = E_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_AE_cleft_n(i) = AE_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_acE_cleft_n(i) = acE_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_R_cleft_n(i) = R_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_AR_cleft_n(i) = AR_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_A2R_cleft_n(i) = A2R_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_A2Ro_cleft_n(i) = A2Ro_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_ChP_cleft_n(i) = ChP_cleft_n(i)*V_cleft*(6.02e+20); 

molecule_A_cleft_i(i) = A_cleft_i(i)*V_cleft*(6.02e+20); %inhibited molecule speci 
molecule_E_cleft_i(i) = E_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_AE_cleft_i(i) = AE_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_acE_cleft_i(i) = acE_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_R_cleft_i(i) = R_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_AR_cleft_i(i) = AR_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_A2R_cleft_i(i) = A2R_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_A2Ro_cleft_i(i) = A2Ro_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_l_cleft_i(i) = l_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_EI_cleft_i(i) = EI_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_E_dead_cleft_i(i) = E_dead_cleftj(i)*V_cleft*(6.02e+20); 
molecule_ChP_cleft_i(i) = ChP_cleft_i(i)*V_cleft*(6.02e+20); 

end 
end 

%figure(loop_count + 3) 

%plot( t, molecule_A2Ro_cleft_n(:),t,molecule__A2Ro_.cleftj(:)); 
%ylabel('molecules of open receptor');xlabel('t, ms'); 



%title(spnntf( Total molecules of open receptor species A2R* in the whole cleft,\n norm and 
inhibited, averaged over %i annular volume elements,\n %i percent active enzyme; D__r = %i',Q, 
E_i_active__percent, D_r));% 

loop_count = loop_count+1; 
choice = input('Do you want to run another inhibited reaction; 1(yes), 0(no)? \n'); 
end 

% save the species concentration data to data files 
save U U; save V V; save W W; 

save A_0_n A__0_n; save A_0_i A_0_i; save E_0_i E_0j ; 
save E_0_tox E__0_tox; 

save A_n A_n; save E_n E„n; save AE_n AE_n; save acE_n acE_n; save R_n R__n; save AR_n 
AR_n; save A2R_n A2R_n; 
save A2Ro_n A2Ro_n; save ChP_n ChP_n; %save A_n_lost A_n_lost; 

save A_i A_i; save E_i E_i; save AE_i AE_i; save acE_i acE_i; save EM El_i; save E_dead_i 
E_dead_i; save R j R_i; 
save AR_i AR_i; save A2R_i A2R_i; save A2Ro_i A2Ro_i; save \J I j ; save C h P j ChPj ; %save 
A j j o s t A j j o s t ; 

save A__cleft_n A_cleft_n; save E__cleft__n E_cleft_n; 
save AE_cleft__n AE_cleft_n; save acE_cleft_n acE_cleft_n; save R_cleft_n R_cleft_n; 
save AR_cleft_n AR_cleft_n; save A2R_cleft_n A2R_cleft_n; 
save A2Ro_cleft_n A2Ro_cleft_n; save ChP_cleft_n ChP_cleft_n; 

save A_cleft_i A_cleft_i; save E_cleft_i E_cleft_i; save AE_cleft_i AE_cleft_i; 
save acE_cleft_i acE_cleft_i; save R_cleft_i R_cleft_i; save AR_cleft_i AR_cleft_i; 
save A2R_cleft_i A2R_cleft_i; save A2Ro_cleft_i A2Ro_cleft_i; save l_cleft_i l_cleft_i; 
save El_cleft_i El__cleft_i; save E_dead_cleft_i E_dead_cleft_i; 
save ChP_cleft_i ChP_cleft_i; 

save molecule_A_cleft_n molecule_A_cleft_n; 
save molecule_E_cleft_n moleculeJE_cleft_n; 
save molecule_AE_cleft_n molecule_AE_cleft_n; 
save molecule_acE_cleft_n molecule_acE_cleft_n; 
save molecule_R_cleft_n molecule_R_cleft_n; 
save molecule_AR_cleft_n molecule_AR_cleft_n; 
save molecule_A2R_cleft_n molecule_A2R_cleft_n; 
save molecule_A2Ro_cleft_n molecule_A2Ro_cleft_n; 
save molecule_ChP_cleft_n molecule_ChP_cleft_n; 

save molecule_A_cleft_i molecule_A_cleftj; 
save molecule_E_cleft_i molecule_E_cleft_i; 
save molecule_AE_cleft_i molecule_AE_cleft_j; 
save molecule_acE_cleftj molecule_acE_cleft_i; 
save molecule_R_cleft_i molecule_R_cleft_i; 
save molecule_AR_cleft_i molecule_AR_cleft_i; 
save molecule_A2R_cleft_i molecule_A2R_cleft_i; 
save molecu!e_A2Ro_cleft_i molecule_A2Ro_cleft_i; 
save moleculeJ_cleftj moleculeJ_cleft_j; 



save molecuie_EI_cleftJ molecule_EI_cleft_i; 
save imolecule_E_dead_cleftj molecule_E_dead_cleft_i; 
save molecule_ChP__cleftj molecule_ChP_cleft_i; 

save E_cleft_tox E_cleft_tox; 
save R__cleft_tox R_cleft_tox; 
save l_cleft_tox I_cleft__tox; 
save EI_cleft„tox EI_cleft_tox; 
save E_dead_cleft_tox E_dead_cleft_tox; 

save molecule_E_cleft_tox molecule_E_cleft_tox; 
save molecule_R_cieft__tox moleculeJR_cleft_tox; 
save molecule_l_c!eft_tox molecule_l_cleft_tox; 
save molecule_EI_cleft_tox molecule_EI_cleft_tox; 
save molecule_E_dead_cleft_tox molecule_E__dead_cleft_tox; 

save r r; save D_r D_r; save dr dr; 
save 11; save t_tox t_tox; 
save N N; save Q Q; 
save volume volume; 
save I inf Mnf; 

disp('latest data saved, program finished'); 

%{ 
figure(2) 
plot(t,AJost); 
yiabelfnormal Ach, mM');xlabel{'t, ms'); 
title(sprintf('Molar normal Ach lost via diffusion, in the whole cleft\n averaged over %i annular 
volume elements',Q));% 

figure(1) 
surf(t, r, A_n') 
shading flat 
title(sprintf('Species A in pure radial diffusion and reaction through %i volume elements', Q)); 
xlabel('time, ms'); ylabel('radius, cm'); zlabel(" concentration, mmo!e/cmA3'); 
AJost 
%A__balance = 
sum(U(:,1:10))+sum(U(:,21:30))+sum(U(:,51:60))+sum(U(:,61:70))+sum(U(:,71:80)) 

%} 



% THIS PROGRAM QUALITATIVELY WORKS 
% This program simulates the regeneration of acetylcholinesterase in the 
% cleft 

%******* CHECKED FOR UNIT/DIMENSION CONSISTENCY ON 4/15/07, 17:00 
************************* 
% 

clc; 
clear; 
% if the diffusion constant has dimensions of cmA3/ms then the following 
% units apply 
AJnf = 0.0; % mmole/cmA3 = M 
save A jn f Ajnf; 
I j n f = 2.65e-2; % mmole/cmA3 = M 
save I Jnf I jnf; 
OXjnf = 7.30e-5;% mmole/cmA3 = M 
save OXjnf OXjnf; 

% total volume in the cleft 
V_cleft = 3.93e-14; % ( cmA3 ) 

% the length of the cleft (width, or height) (LA1/3) 
L_cleft = 5.0e-6;% cm 

% the radius of the cleft 
R_cleft = 5.0e-5; % cm 

% the number of equal axial disks 
P = 1; 
xcleft = zeros(1 ,P) 

% the number of annular rings per disk 
Q = 20; 

% number of coupled sub-volumes 
S = P*Q 

%thickness of each radial annulus 
dr = R_cleft/Q; % cm 

%thickness of each axial disk 
dx = L_cleft/P; %cm 

% area of the cleft edge 
Area_edge = 2*pi*R_cleft*L_cleft; %cmA2 

% axial direction vector 
x = linspace(0.0, L_cleft, P+1); 

%radial direction vector 



r = linspace(0.0, R_cleft, Q); 
save r r; 

% This loop assigns an x-value coordinate to the center of each well mixed 
% axial disk 
forj = 1:P 

x_cleftG) = 0.5*(x(j) + xO+1)); 
end 
x_cleft; 
save x_cleft x_cleft; 

% create the "space", a 1-dimension vector that all the axial and radial volume 
% into 
s = [1:S]; 

% axial diffusion constantfor Ach (cmA2/ms) 
D_x = 2.0e-9; 

% radial diffusion constant for Ach (crnA2/ms) 
D_r_Ach = 0.90e-9; % 3.50e-9 cmA2/ms 
save D_r_Ach D_r_Ach; 

% radial diffusion constant for the inhibitor 
D_r_tox= 0.90e-9 %cmA2/ms ; %logspace(~6,-12,10) 
save D_r_tox D_r_tox; 

% radial diffusion constant for the oxime 
D_r_oxime = 0.9e-9 %crnA2/ms; %logspace(-6,-12,10) % 
save D_r_oxime D_r_pxime; 

%number of time points 
N=7000; 

%time interval vector for the normal and inhibited reactions (ms, 1e-3 s) 
t_0 = 0.0; t_f = 5.0; % rns 
t = linspace(t_0, t_f, N); 
tspan = [t]; 

%time interval vector for the diffusing oxime reaction 
t_regen_0 = 0.0; t_regen_f = 2.50e+5; % ms 
t_regen = linspace(t_regen_0, tregen_f, N); 
tspan_regen = [t_regen]; 

% pulse parameters 
t_on = 3.0; t_off = 4.50; % ms %*THIS IS NOT THE TIME INTERVAL* 

n_on = round((((t_on - t_0)/(t_f - t_0))*(length(t)-1)) + 1); 
n_off = round((t_off - t_0)*(length(t) -1)/(t_f -1_0) + 1); 
peak = round(0.5*(n_on + n_off)); 
spread = 20.0; 
magnitude = 0.50; 



% calculate the volume of each annulus 
volume = zeros(1,Q); %( cmA3 ) 
vol_frac = volume; 
fori=1:Q 

volume(i) = ((2*i-1)/QA2)*pi*L_cleft*R_cleftA2; 
vol_frac(i) = volume(i)/V_cleft; 

end 
sum(volume(1 :Q)); % a check of the annuli sum should equal the V_cleft 
sum(vol_frac(1 :Q)); 
V_cleft; 

% defining the initial value vectors of the diffusing toxin reaction reactants 
A_0_tox = zeros(1 ,S); 
E_0_tox = zeros(1 ,S); 
AE_0_tox = zeros(1 ,S); 
acE_0_tox = zeros(1,S); 
R_0_tox = zeros(1,S); 
AR_0_tox = zeros(1 ,S); 
A2R_0_tox = zeros(1 ,S); 
A2Ro_0_tox = zeros(1,S); 
l_0_tox = zeros(1 ,S); 
El_0_tox = zeros(1 ,S); 
E_dead_0_tox = zeros(1 ,S); 
ChP_0_tox = zeros(1 ,S); 

% defining the initial value vectors of the normal AP reaction reactants 
A_0_n = zeros(1 ,S); 
E_0_n = zeros(1 ,S); 
AE_0_n = zeros(1 ,S); 
acE_0_n = zeros(1 ,S); 
R_0_n = zeros(1 ,S); 
AR_0_n = zeros(1 ,S); 
A2R_0_n = zeros(1,S); 
A2Ro_0_n = zeros(1 ,S); 
ChP_0_n = zeros(1 ,S); 

% defining the initial value vectors of the inhibited AP reaction 
% reactants, 
A_0_i = zeros(1,S); 
E_0_i = zeros(1,S); 
AE_0_i = zeros(1,S); 
acE_0_i = zeros(1 ,S); 
R_0_i = zeros(1 ,S); 
AR_0_i = zeros(1,S); 
A2R_0_i = zeros(1 ,S); 
A2Ro_0_i = zeros(1 ,S); 
l_0_i = zeros(1,S); 
El_0_i = zeros(1 ,S); 
E_dead_0_i = zeros(1 ,S); 
ChP_0_i = zeros(1,S); 



% defining the initial value vectors of the oxime regeneration reaction 
% reactants, 
A_0_regen = zeros(1,S); 
E_0_regen = zeros(1 ,S); 
AE_0_regen = zeros(1 ,S); 
acE_0_regen = zeros(1,S); 
R_0_regen = zeros(1 ,S); 
AR_0_regen = zeros(1,S); 
A2R_0_regen = zeros(1,S); 
A2Ro_0_regen = zeros(1,S); 
E_dead_0_regen = zeros(1,S); 
OX_0_regen = zeros(1 ,S); 
EIOX_0_regen = zeros(1 ,S); 
IOX_0_regen = zeros(1 ,S); 

0/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

% This runs the program for 10 values of the oxime diffusion constant 
for loop = 1:1 

factor_R= 1.0; 
standard_R = 6.64e-4; %mmole/crnA3 = IV! 
factor_E_dead = 0.5; 
standard_E_dead = 7.4e-5; %mmole/cmA3 = M (Naka, et al) 
% oxime diffusion reaction initial cleft values of A, E, R in mM 
A_0_regen(1,1) = 0.0; % in mM (10 annuli is used as the control reference) 
E_0_regen(1,:) = (1 - factor_E_dead)*standard_E_dead; 
E_dead_0_regen(1,:)= factor_E_dead*standard_E_dead; % in mM 
R_0_regen(1,:) = factor_R*standard_R; % in mM 

% Toxin diffusion reaction initial value vector 
Z0 = [A_0_regen ... A ( Z(1)-Z(Q)) 

E_0_regen ... E ( Z(Q+1) - Z(2Q)) 
AE_0_regen ... AE ( Z(2Q+1) -Z(3Q)) 
acE_0_regen ... acE ( Z(3Q+1) - Z(4Q0)) 
R_0_regen ... R ( Z{4Q+1) - Z(5Q)) 
AR_0_regen ... AR ( Z(5Q+1) - Z(6Q)) 
A2R_0_regen ... A2R (Z(6Q+1) - Z(7Q)) 
A2Ro_0_regen ... A2R* ( Z(7Q+1) - Z(8Q)) 
E_dead_0_regen ... E_dead (Z(8Q+1) - Z(9Q)) 
OX_0_regen ...OX ( Z(9Q+1) - Z(10Q)) 
EIOX_0_regen ...EIOX { Z(10Q+1) -Z(11Q)) 
%IOX_0_regen ... IOX ( Z(11Q+1) - Z(12Q) ) 

] ; 

E_regen = zeros(length(t), length(r)); % oxime diffusion enzyme reaction matrix 
R_regen = zeros(length(t), length(r));% oxime diffusion receptor reaction matrix 
OX_regen = zeros(length(t), length(r)); % oxime diffusion reaction matrix 
EIOX_regen = zeros(length(t), length(r)); % oxime diffusion enzyme-toxin-oxime reaction matrix 
E_dead_regen = zeros(length(t), length(r)); %oxime diffusion poisoned enzyme reaction matrix 



E_cleft_regen = zeros(N,1); % toxin diffusion reaction species 
R_cleft_regen = zeros(N,1); 
OX_cleft_regen = zeros(N,1); 
EIOX_cleft_regen = zeros(N,1); 
E_dead_cleft_regen = zeros(N,1); 

molecule_E_cleft_regen = zeros(N,1); % toxin diffusion reaction species 
molecule_R_cleft_regen = zeros(N,1); 
molecule_OX_cleft_regen = zeros(N,1); 
molecule_EIOX_cleft_regen = zeros(N,1); 
molecule_E_dead_cleft_regen = zeros(N,1); 

% run the diffusing toxin reaction function 
[t_regen, Z]= ode15s(@Func_regen_parameters, tspan_regen, ZO, Q, D_x, D_r_Ach, 
Droxime(loop), r, dx, dr, t_on, t_off, OXjnf ) ; 

for i = 1:length(t) % time length vector 
forj = 1 :length(r) % radius length vector 

E_regen(i,j) = Z(i,j+Q); % toxic diffusion reaction species 
R_regen(i,j) = Z(i,j+4*Q); 
OX_regen(i,j) = Z(i,j+9*Q); 
EIOX_regen(i,j) = Z(i,j+10*Q); 
E_dead_regen(ij) = Z(i,j+8*Q); 

end 
end 
switch loop 

case(1) 
E_regen_1 = E_regen; 
save E_regen_1 E__regen_1; 
R_regen_1 = R_regen; 
save R_regen__1 R_regen_1; 
OX_regen_1 = OX_regen; 
save OX_regen_1 OX_regen__1; 
EIOX_regen_1 = EIOX_regen; 
save EIXO_regen__1 EIOXj-egen__1; 
E_dead_regen_1 = E_dead_regen; 
save E_dead_jegen_1 E__dead__regen_1; 

case(2) 
E_regen_2 = E_regen; 
save E__regen___2 E_regen_2; 
R_regen_2 = R_regen; 
save R_regen_2 R_regen_2; 
OX_regen_2 = OX_regen; 
save OX_regen_2 OX_regen_2; 
EIOX_regen_2 = EIOX_regen; 
save EIOX_regen_2 EIOX_regen_2; 
E_dead_regen_2 = E_dead_regen; 
save E__dead__regen_2 E_dead__regen_2; 



case(3) 
E_regen_3 = E_regen; 
save E_regen_3 E_regen_3; 
R_regen_3 = R_regen; 
save R_regen_3 R_regen_3; 
0X_regen_3 = OX_regen; 
save 0X_regen_3 0X_regen_3; 
EI0X_regen_3 = EIOX_regen; 
save EI0X_regen_3 EI0X_regen_3; 
E_dead_regen_3 = E_dead_regen; 
save E_dead__regen_3 E__dead_regen__3; 

case(4) 
E_regen_4 = E_regen; 
save E_regen_4 E_regen_4; 
R_regen_4 = R_regen; 
save R_regen_4 R_regen_4; 
0X_regen_4 = OX_regen; 
save 0X_regen_4 0X_regen__4; 
EI0X_regen_4 = EIOX_regen; 
save EI0X_regen_4 EI0X_regen_4; 
E_dead_regen_4 = Edeadregen; 
save E_dead_regen_4 E_dead_regen_4; 

case(5) 
E_regen_5 = E_regen; 
save E_regen_5 E_regen_5; 
R_regen_5 = R_regen; 
save R_regen_5 R_regen_5; 
0X_regen_5 = OX_regen; 
save 0X_regen_5 0X_regen_5; 
EIOX_regen_5 = EIOX_regen; 
save EI0X_regen_5 EI0X_regen_5; 
E_dead_regen_5 = E_dead_regen; 
save E_dead_regen_5 E_dead_regen_5; 

case(6) 
E_regen_6 = E_regen; 
save E_regen__6 E_regen„6; 
R_regen_6 = R_regen; 
save R_regen_6 R_regen_6; 
0X_regen_6 = OX_regen; 
save 0X_regen_6 0X_regen_6; 
EIOX_regen_6 = EIOX_regen; 
save EI0X_regen__6 EIOX__regen_6; 
E_dead_regen_6 = E_dead_regen; 
save E_dead_regen_6 E__dead_regen_6; 

case(7) 
E_regen_7 = E_regen; 
save E_regen_7 E_regen„7; 
R_regen_7 = R_regen; 
save R_regen_7 R_regen_7; 
0X_regen_7 = OX_regen; 
save 0X__regen_7 0X__regen_7; 
EI0X_regen_7 = EIOX_regen; 
save EI0X_regen_7 EI0X_regen_7; 
E_dead_regen_7 = E_dead_regen; 
save E_dead_regen_7 E_dead_regen_7; 

case(8) 



E_regen_8 = E_regen; 
save E_regen_8 E_regen_8; 
R_regen_8 = R_regen; 
save R_regen_8 R_regen_8; 
0X_regen_8 = OX_regen; 
save 0X_regen_8 0X_regen_8; 
EI0X_regen_8 = EIOX_regen; 
save EI0X_regen_8 EI0X_regen_8; 
E_dead_regen_8 = E_dead_regen; 
save E_dead_regen__S E_dead_regen_8; 

case(9) 
E_regen_9 = E_regen; 
save E_regen_9 E_regen_9; 
R_regen_9 = R_regen; 
save R_regen__9 R_regen_9; 
0X_regen_9 = OXj-egen; 
save OX_regen_9 OX_/egen__9; 
EIOX_regen_9 = EIOX_regen; 
save EIOX_regen_9 EIOX_regen_9; 
E_dead_regen_9 = E_dead_regen; 
save E_dead_regen_9 E_dead_regen_9; 

case(10) 
E_regen_10 = E_regen; 
save E_regen_10 E_regen_10; 
R_regen_10 = Rregen; 
save R_regen__10 R_regen_10; 
OX_regen_10 = OX_regen; 
save OX_regen_10 OX_regen_10; 
EIOX_regen_10 = EIOX_regen; 
save EIOX_regen_10 EIOX_regen_10; 
E_dead_regen_10 = E_dead_regen; 
save E_dead_regen_10 E_dead_regen_10; 

% calculate the total amounts of these species in the cieft 
fori = 1:N 

forj = 1:Q 

E_cleft_regen(i) = E_cleft_regen(i) +(volume(j)*E_regen(i,j))A/_cleft; % toxin diffusion 
molar species 

R_cleft_regen(i) = R_cleft_regen(i) +(volume(j)*R_regen(i,j))/V_cleft; 
OX_cleft_regen(i) = OX_cleft_regen(i) +(volume(j)*OX_regen(i,j))A/_cleft; 
EIOX_cleft_regen(i) = EIOX_cleft_regen(i) +(volumeO)*EIOX_regen(ij))A/_cleft; 
E_dead_cleft_regen(i) = E_dead_cleft_regen(i) +(volume(j)*E_dead_regen(i,j))A/_cleft; 

molecule_E_cleft_regen(i) = E_cleft_regen(i)*V_cleft*(6.02e+20); % toxin diffusion 
molecule species 

molecule_R_cleft_regen(i) = R_cleft_regen(i)*V_cleft*(6.02e+20); 
molecule_OX_cleft_regen(i) = OX_cleft_regen(i)*V_cleft*(6.02e+20); 
molecule_EIOX_cleft_regen(i) = EIOX_cleft_regen(i)*V_cleft*(6.02e+20); 
molecule_E_dead_cleft_regen(i) = E_dead_cleft_regen(i)*V_cleft*(6.02e+20); 

end 
end 
t_min = t_regen./(1000*60); 



% 
figure(5*loop+1); 
plot(t_min(:), E_cleft_regen(:)./standard_E_dead); 
title(sprintf('The amount of species %s in the whole cleft averaged over %i annular 
volumes\nD_roxime = %-5.2e cmA2/ms','E',Q,D_r_oxime(loop))); 
xlabel(sprintf('t, minutes')); ylabel(sprintf('Species %s, fraction'.'E')); 

figure(5*loop+2); 
plot(t_regen(:), OX_cleft_regen(:)); 
title(sprintf('The amount of species %s in the whole cleft averaged over %i annular 
volumes\nD_roxime = %-5.2e cmA2/ms','OX',Q,D_r_oxime(loop))); 
xlabel(sprintf('t, ms')); ylabel(sprintf('Species %s, mM'.'OX')); 

figure(5*loop+3); 
plot(t_regen(:), EIOX_cleft_regen(:)); 
title(sprintf(The amount of species %s in the whole cleft averaged over %i annular 
volumes\nD_roxime = %-5.2e cmA2/ms','EIOX',Q,D_r_oxime(loop))); 
xlabel(sprintf('t, ms')); ylabel(sprintf('Species %s, mM'.'ElOX')); 

figure(5*loop+4); 
plot(t_regen(:), E_dead_cleft_regen(:)); 
title(sprintf(The amount of species %s in the whole cleft averaged over %i annular voiumes\n 
D_roxime = %-5.2e cmA2/ms','E*dead',Q,D_r_oxime(loop))); 
xlabel(sprintf('t, ms')); ylabel(sprintf('Species %s, mM','E*dead')); 

figure(5*loop+5); 
plot(t_regen(:), molecule_R_cleft_regen(:)); 
title(sprintf('The amount of species %s in the whole cleft averaged over %i annular volumes\n 
D__roxime = %-5.2e cmA2/ms','R',Q,D_r_oxime(loop))); 
xlabel(sprintf('t, ms')); ylabel(sprintf('Species %s. molecules'.'R')); 
% 
switch loop 

case(1) 
molecule_E_cleft_regen_1 = molecule_E_cleft_regen; 
save molecule„E_cleft_regen_1 molecule„E_cleft_regen_1; 
molecule_R_cleft_regen_1 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_1 molecule_R_cleft_regen_1; 
molecule_OX_cleft_regen_1 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_1 molecule_OX_cleft_regen_1; 
molecule_EIOX_cleft_regen_1 = molecule_EIOX_cleft_regen; 
save molecule__EIOX__cleft_regen_1 molecule_EIOX_cleft_regen_1; 
molecule_E_dead_cleft_regen_1 = molecule_E_dead_cleft_regen; 
save molecule_E_dead_cleft_regen_1 molecule_E_dead_cleft_regen_1; 

case(2) 
molecule_E_cleft_regen_2 = molecule_E_cleft_regen; 
save molecule_E_cleft_regen_2 molecule_E_cleft_regen_2; 
molecule_R_cleft_regen_2 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_2 molecule_R_cleft_regen_2; 
molecule_OX_cleft_regen_2 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_2 molecule_OX_cleft_regen_2; 
molecule_EIOX_cleft_regen_2 = molecule_EIOX_cieft_regen; 
save molecule„EIOX__cleft_regen__2 molecule_EIOX_cleft_regen__2; 
molecule_E_dead_cleft_regen_2 = molecule_E_dead_cleft_regen; 



savemolecule_E_dead_cleft_regen_2 molecule_E_dead_cleft_regen_2; 
case(3) 

molecule_E_cleft_regen_3 = molecule_E_cleft_regen; 
save molecule_E_cleft__regeri„3 molecule_E__cleft_regen_3; 
molecule_R_cleft_regen_3 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_3 molecule_R_cleft_regen_3; 
molecule_OX_cleft_regen_3 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_3 molecule_OX_cleft_regen_3; 
molecule_EIOX_cleft_regen_3 = molecule_EIOX_cleft_regen; 
save molecule_EIOX_cleft_.regen_3 molecule__EIOX_cleft_regen_3; 
molecule_E_dead_cleft_regen_3 = molecule_E_dead_cleft_regen; 
save molecule_E_dead__cleft__regen_3 moIecule_E_dead_cleft_regen_3; 

case(4) 
molecule_E_cleft_regen_4 = molecule_E_cleft_regen; 
save molecule_E__cleft_regen__4 molecule_E_cleft_regen_4; 
molecule_R_cleft_regen_4 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_4 molecule_R_cleft_regen_4; 
molecule_OX_cleft_regen_4 = molecule_OX_cleft_regen; 
save molecule__OX_cleft_regen_4 molecule„OX_cleft_regen__4; 
molecule_EIOX_cleft_regen_4 = molecule_EIOX_cleft_regen; 
save molecule„EIOX_cleft_regen_4 molecule_EIOX__cleft__regen__4; 
molecule_E_dead_cleft_regen_4 = molecule_E_dead_cleft_regen; 
save molecule_E_dead_cleft_regen__4 molecule_E_dead_cleft_regen_4; 

case(5) 
molecule_E_cleft_regen_5 = molecule_E_cleft_regen; 
save molecule_E_cleft_regen__5 molecule_E_cleft_regen_5; 
molecule_R_cleft_regen_5 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen__5 molecule_R_cleft_regen_5; 
molecule_OX_cleft_regen_5 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_5 molecule_OX_deft_regen_5; 
molecule_EIOX_cleft_regen_5 = molecule_EIOX_cleft_regen; 
save molecule_EIOX_cleft_regen_5 molecule__EIOX_c!eft_regen_5; 
molecule_E_dead_cleft_regen_5 = molecule_E_dead_cleft_regen; 
save molecule_E_dead_cleft_regen__5 molecule_E_dead_cleft_regen_5; 

case(6) 
molecule_E_cleft_regen_6 = molecule_E_cleft_regen; 
save molecule JE_cleft_regen_6 molecule_E_cleft_regen_6; 
molecule_R_cleft_regen_6 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_6 molecule_R__cleft_regen_6; 
molecule_OX_cleft_regen_6 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_6 molecule_OX_cleft_regen_6; 
molecule_EIOX_cleft_regen_6 = molecule_EIOX_cleft_regen; 
save molecule_EIOX__cleft_/egen_6 molecule__EIOX___cleftj-egenJ3; 
molecule_E_dead_cleft_regen_6 = molecule_E_dead_cleft_regen; 
save molecule_E__dead_cleft_regen_6 molecule_E_dead_cleft_regen_6; 

case(7) 
molecule_E_cleft_regen_7 = molecule_E_cleft_regen; 
save molecule_E_cleft_regeri_7 mo!ecule_E_cleft_regen_7; 
molecule_R_cleft_regen_7 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen„7 molecule_R_cleft_regen_7; 
molecule_OX_cleft_regen_7 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_7 molecule_OX_cleft_regen_7; 
molecule_EIOX_cleft_regen_7 = molecule_EIOX_cleft_regen; 
save molecule_EIOX_cleft_regen_7 molecule_EIOX_cleft_regen_7; 
molecule_E_dead_cleft_regen_7 = molecule_E_dead_cleft_regen; 
savemolecule_E_dead_cleft_regen_7 molecule_E_dead_cleft_regen_7; 



case(8) 
molecule_E_cleft_regen_8 = molecule_E_cleft_regen; 
save molecule_E_cleft_regen_8 molecule_E_cleft_regen__8; 
molecule_R_cleft_regen_8 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_8 molecule_R_cleft_regen_8; 
molecule_OX_cleft_regen_8 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_8 molecule_OX_cleft_regen_8; 
molecule_EIOX_cleft_regen_8 = molecule_EIOX_cleft_regen; 
save molecule_EIOX_cleft_regen_8 molecule_EIOX_cleft_regen_8; 
molecule_E_dead_cleft_regen_8 = molecule_E_dead_cleft_regen; 
save molecule__E_dead__cleft__regen__8 molecule_E_dead_cleft_regen_8; 

case(9) 
molecule_E_cleft_regen_9 = molecule_E_cleft_regen; 
save molecule__E__cleft_regen__9 moleculeJE_cleft_regen_9; 
molecule_R_cleft_regen_9 = molecule_R_cleft_regen; 
save molecule_R_cleft_regen_9 molecule_R_cleft_regen_9; 
molecule_OX_cleft_regen_9 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_9 molecule_OX_cleft_regen_9; 
molecule_EIOX_cleft_regen_9 = molecule_EIOX_cleft_regen; 
save molecule__EIOX_cleft_regen__9 molecu!e_EIOX_cleft_regen_9; 
molecule_E_dead_cleft_regen_9 = molecule_E_dead_cleft_regen; 
save molecule_E_dead_cleft_regen_9 molecule_E_dead_cleft_regen_9; 

case(10) 
molecule_E_cleft_regen_10 = molecule_E_cleft_regen; 
save molecule_E_cleft_regen_10 molecule_E_cleft_regen_10; 
molecule_R_cleft_regen_10 = molecule_R_cleft_regen; 
save moleculeJ3_cleft_regen_10 molecule_R_cleft_regen_10; 
molecule_OX_cleft_regen_10 = molecule_OX_cleft_regen; 
save molecule_OX_cleft_regen_10 molecule_OX_cleft_regen_10; 
molecule_EIOX_cleft_regen_10 = moiecule_EIOX_cleft_regen; 
save molecule_EIOX_cleft_regen_10 molecule_EIOX_cleft_regen_10; 
molecule_E_dead_cleft_regen_10 = molecule_E_dead_cleft_regen; 
save molecule__E__dead_cleft_regen__10 rnolecule_E_dead_cleft_regen_10; 

end 
%{ 
disp{sprintf('Stop when loop count is 10, the present loop count is % i ' , loop__count+1)); 
loop_count = loop_count+1; 
choice = inputfDo you want to run another inhibited reaction: 1(yes), 0(no)? \n'); 
if choice == 1 
D_r_oxime = input(sprintf('What is the new radial diffusion constant for the inhibitor? The last 

value was (%-5.2e) \n',D__r__oxime}); 
end 
%} 
loop %keeps track of where the program is computationally 
end 

save loop loop; save Q Q; 
save 11; save t„regen t_jegen; save t j r i in t_min; 
dispfdata saved, program finished'); 

%{ 
loop_count = 0; 
choice = 1; 
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while(choice == 1] 

E_i_active_percent = input('What percent active enzyme will be in the cleft during the inhibited 
action potential reaction?\n'); 

Ejnitialjnhibited = (Ej_active_percent/100)*E_0Jox(1,1); % in mM 
disp(sprintf('\n The initial amount of active enzyme in the cleft \n during the inhibited reaction is 
%-5.2e mM', Ejnitialjnhibited)); 

toxjndex = fmd((E_cleft_tox >= Ejnitialjnhibited - tol) & (E_cleft_tox <= Ejnitialjnhibited + 
tol), 1); 
disp(sprintf('\n The location of the time point index is % i ' , toxjndex)); 

disp(sprintf('\n This is equivalent to starting the action potential after %-5.2f minutes have passed 
since exposure to the toxic inhibitor \n ', t_tox(tox_index)/(60000))); 

E_cleft_tox'; 

0 / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
70 

********* 
% species string array 
species = fA ';'E ';'AE ';'acE ';'R VAR ";'A2R ';'A2R* ';'! ';'EI ';'Ejdead';'ChP ' ]% 

loop„count = loop_count+1; 

choice = input('Do you want to run another inhibited reaction: 1(yes), 0{no)? \n'); 

end 

save(sprintf('E_cleft_toxj%i',loop_count+1), 'E_cleft_tox' ); 
save(sprintf('Lcleft_toxj%i',loopj30unt+1), 'l_cleft_tox' ); 
save (sprintf('Elj3leftJ:ox_%i',Ioopjx>unt+1), 'Eljoleftjox' ); 
save (sprintf('E_dead_cleft_toxj%i',loop_count+1), 'E_dead_cleft_tox' ); 
save (sprintf('molecule_E_cleft_toxjyoi,lloop_count+1), 'molecule_E_cleft_tox'); 
save (sprintf('molecule_l_cleft_toxj%i,,loop_count+1), 'molecule_Lcleft_tox'); 
save (sprintf('moleculej=l_cleft_toxj%i',loop_count+1), 'molecule_EI_cleftj:ox'); 
save (sprintf('molecule_Ejdead_cleftJoxj%i',loopj;ount+1), 'moleculej=jdead_cleftj;ox'); 

%} 



% 
% Models the complete normal and inhibited chemistry in the neuromuscular junction; 
% the model consists of a series of instantly and uniformly mixed 
% volumes which share transport of Acetylcholine via 1D diffusion at 
% each adjacent border 
% 
%The user inputs the degree of enzyme inhibition at which to run the 
%simulation 

% VOLUME 1 
% f(t) > A 
% 
% 
% VOLUME 2 -40 
% kD 
% A — > @ 
% 
%U1 U2 kE1 U3 kE2 U4 kE3 U2 
% A + E <—> AE — > acE — > E + ChP 
% kE_1 
% 
% U2 U9 kl1 U10 
% E + I <—> El 
% 
% U10 k_dead U11 
% El -> E dead 

% 
% VOLUME 41 - 50 
%U1 U5 2*kR1 U6 
%A + R < > AR 
% k R J 
% 
%U1 U5 kR2 U7 
% A + AR < > A2R 
% 2*kR„2 
% 
% U7 oR U8 
%A2R < > A2R* 
% cR 

%******* CHECKED FOR UNIT/DIMENSION CONSISTENCY ON 3/25/07, 17:45 
************************* 
% 

clc; 

clear; 

A_inf = 0.0; % mmole/cmA3 = M 
Mnf = 0.1*5.68e-4; % mrnole/cmA3 = M (the same concentration in blood as nitrogen at STP) 



% total volume in the cleft 
V_cleft = 3.93e-14; % ( crnA3 ) 

% the length of the cleft (width, or height) 
L_cleft = 5.0e-6; % cm 

% the radius of the cleft 
R_cleft = 5.0e-5; % cm 

% the number of equal axial disks 
P = 1; 
x_cleft = zeros(1 ,P) 

% the number of annular rings per disk 
Q = 20; 

% number of coupled sub-volumes 
S = P*Q 

%thickness of each radial annulus 
dr = R_cleft/Q; % cm 

%thickness of each axial disk 
dx = L_cleft/P; % cm 

% area of the cleft edge 
Area_edge = 2*pi*R_cleft*L_cleft; % cmA2 

% axial direction vector 
x = linspace(0.0, L_cleft, P+1); 

%radial direction vector 
r = linspace(0.0, R_cleft, Q); 

% This loop assigns an x-value coordinate to the center of each well mixed 
% axial disk 
forj = 1:P 

x_cleftO) = 0.5*(x(j) + xG+1)); 
end 
x_cleft; 

% create the "space", a 1-dimension vector that all the axial and radial volume points are mapped 
% into 
s = [1:S]; 

% axial diffusion constant (cmA2/ms) 
D_x = 2.0e-6; 

% radial diffusion constant for Ach (crnA2/ms) 
D r = 0.90e-9; % 3.50e-9 cmA2/ms 



% radial diffusion constant for the inhibitor 
D_r_tox = D_r; %3.5e-9; 

%number of time points 
N=5000; 

%time interval vector for the normal and inhibited reactions (ms, 1e-3 s) 
t_0 = 0.0; t_f = 5.0; % ms 
t = linspace(t_0, t_f, N); 
tspan = [t]; 

%time interval vector for the diffusing toxin reaction 
t_tox_0 = 0.0; t_tox_f = (3.0e+5); % ms, 5 minutes 
tjox = linspace(t_tox_0, t_tox_f, N); 
tspanjox = [t_tox]; 

% pulse parameters 
t_on = 3.0; t_off = 4.50; %*THIS IS NOT THE TIME INTERVAL* 

n_on = round((((t_on - t_0)/(t_f - t_0))*(length(t)-1)) + 1); 
n_off = round((t_off - t_0)*(length(t) -1)/(t_f -1_0) + 1); 
peak = round(0.5*(n_on + n_off)); 
spread = 20.0; 
magnitude = 0.50; 

% calculate the volume of each annulus 
volume = zeros(1 ,Q); % ( cmA3) 
vol_frac = volume; 
for i=1 :Q 

volume(i) = ((2*i-1)/QA2)*pi*L_cleft*R_cleftA2; 
vol_frac(i) = volume(i)/V_cleft; 

end 
sum(volume(1:Q)); % a check of the annuli sum should equal the V__cleft 
sum(vol_frac(1:Q)); 
V_cleft; 

% creation of function handle 
l_blood = @Func_l_blood_cocn; 

% this computes the concentration of the inhibitor in the blood as a 
% function of time 
l_cocn = Func_l_blood_cocn( tspan_tox, I inf); 

% defining the initial value vectors of the diffusing toxin reaction reactants 
A_0_tox = zeros(1 ,S); 
E_0_tox = zeros(1 ,S); 
AE_0_tox = zeros(1 ,S); 
acE_0_tox = zeros(1,S); 
R_0_tox = zeros(1,S); 



AR_0_tox = zeros(1 ,S); 
A2R_0_tox = zeros(1 ,S); 
A2Ro_0_tox = zeros(1 ,S); 
l_0Jox = zeros(1,S); 
El_0_tox = zeros(1 ,S); 
E_dead_0_tox = zeros(1,S); 
ChP_0_tox = zeros(1 ,S); 

% defining the initial value vectors of the normal AP reaction reactants 
A_0_n = zeros(1,S); 
E_0_n = zeros(1 ,S); 
AE_0_n = zeros(1,S); 
acE_0_n = zeros(1 ,S); 
R_0_n = zeros(1,S); 
AR_0_n = zeros(1,S); 
A2R_0_n = zeros(1 ,S); 
A2Ro_0_n = zeros(1 ,S); 
ChP_0_n = zeros(1,S); 

% defining the initial value vectors of the inhibited AP reaction 
% reactants, 
A_0_i = zeros(1,S); 
E_0J = zeros(1,S); 
AE_0_i = zeros(1 ,S); 
acE_0_i = zeros(1 ,S); 
R_0_i = zeros(1 ,S); 
AR_0_i = zeros(1 ,S); 
A2R_0_i = zeros(1,S); 
A2Ro_0_i = zeros(1,S); 
l_0_i = zeros(1,S); 
EI_0_i = zeros(1,S); 
E_dead_0_i = zeros(1 ,S); 
ChP_0_i = zeros(1 ,S); 

factor_R= 1.0; 
standard_R = 6.64e-4; %mmole/cmA3 Friboulet, Wathey (2.0e-3, Naka, et al) 
factor_E_tox = 1.0; 
standard_E_tox = 7.4e-5; %mmole/cmA3 (Naka, et al) 
% Toxin diffusion reaction initial cleft values of A, E, R in mM 
A_0_tox(1,1) = 0.0; % in mM (10 annuli is used as the control reference) 
E_0_tox(1,:) = factor_E_tox*standard_E_tox; % in mM 
R_0_tox(1,:) = factor_R*standard_R; % in mM 

% Toxin diffusion reaction initial value vector 
W0 = [A_0_tox ... A ( V(1)-V(Q)) 

E_0_tox ... E ( V(Q+1) - V(2Q)) 
AE_0_tox ...AE (V(2Q+1)-V(3Q)) 
acEJMox ... acE ( V(3Q+1) - V(4Q0)) 
R_0_tox ... R ( V(4Q+1) - V(5Q) ) 
AR_0_tox ... AR ( V(5Q+1) - V(6Q) ) 
A2R_0_tox ... A2R ( V(6Q+1) - V(7Q)) 
A2Ro_0_tox ... A2R* (V(7Q+1) - V(8Q)) 
l_0_tox ... I(V(8Q+1)-V(9Q)) 



ELOJQX ...EI(V(8Qt1) = V(10Q)) 
E_dead_0_tox ... E_dead ( V( 10Q+1) - V( 11Q)) 
ChP_0_tox...ChP(V(11Q+1)~V(12Q) ) 

] ; 

E_tox = zeros(length(t), length(r)); % toxin diffusion enzyme reaction matrix 
R_tox = zeros(length(t), length(r));% toxin diffusion receptor reaction matrix 
IJox = zeros(length(t), length(r)); % toxin diffusion inhibitor of esterase 
EI_tox = zeros(length(t), length(r)); % toxin diffusion enzyme-toxin reaction matrix 
E_dead_tox = zeros(length(t), length(r)); %toxin diffusion poisoned enzyme reaction matrix 

E_cleft_tox = zeros(N,1); % toxin diffusion reaction species 
R_cleft_tox = zeros(N,1); 
l_cleft_tox = zeros(N,1); 
EI_cleft_tox = zeros(N,1); 
E_dead_cleft_tox = zeros(N,1); 

molecule_E_cleft_tox = zeros(N,1); % toxin diffusion reaction species 
molecule_R_cleft_tox = zeros(N,1); 
molecule_l_cleft_tox = zeros(N,1); 
molecule_EI_cleft_tox = zeros(N,1); 
molecule_E_dead_cleft_tox = zeros(N,1); 

% run the diffusing toxin reaction function 
[t_tox, W]= ode15s(@Func_Radial_toxin_kinetics_test, tspan_tox, WO, 0, D_x, D_r, D_r_tox, r, 
dx, dr, t_on, t_off, l_blood, I j n f ) ; 

for i = 1 :length(t) % time length vector 
forj = 1:length(r) % radius length vector 

E_tox(ij) = W(i,j+Q); % toxic diffusion reaction species 
RJox(ij) = W(i,j+4*Q); 
IJox(ij) = W(i,j+8*Q); 
El jox( i j ) = W(i,j+9*Q); 
E_dead_tox(i,j) = W(i,j+10*Q); 

end 
end 

% calculate the total amounts of these species in the cleft 
fori = 1:N 

forj = 1:Q 

E_cleft_tox(i) = E_cleft_tox(i) +(volumeG)*E_tox(i,j))A/_cleft; % toxin diffusion molar 
species 

R_cleft_tox(i) = R_cleft_tox(i) +(volume(j)*RJox(i,j))A/_cleft; 



l_cleft_tox(i) = l_cleft_tox(i) +(volumeG)*l_tox(i,j))/V_cleft; 
EI_cleft_tox(i) = EI_cieft_tox(i) +(volumeG)*EI_tox(i,j))/V_cleft; 
E_dead_cleft_tox(i) = E_dead_cleft_tox(i) +(volume(j)*E_dead_tox(i,j))/V_cleft; 

molecule_E_cleft_tox(i) = E_cleft_tox(i)*V_cleft*(6.02e+20); % toxin diffusion molecule 
species 

molecule_R_cleft_tox(i) = R_cleft_tox(i)*V_cleft*(6.02e+20); 
molecule_l_cleft_tox(i) = l_cleft_tox(i)*V_cleft*(6.02e+20); 
molecule_EI_cleft_tox(i) = EI_cleft_tox(i)*V_cleft*(6.02e+20); 
molecule_E_dead_cleft_tox(i) = E_dead_cleft_tox(i)*V_cieft*(6.02e+20); 

end 
end 
t jn ln = t_tox./(1000*60); 

figure(1) 
plot(t_min, E_dead_cleft_tox) 
title(sprintf('Concentration of poisoned enzyme vs time \n VX kinetics and blood concentration of 
%i mM\n initial active enzyme %i mM', l_inf, E_cleft_tox(1,1))); 
xlabel('time, min'); ylabel('Poisoned Enzyme, mM'); 

figure(2) 
E_tox_active_frac = 100*((E_0_tox(1,1 )-E_dead_cleft_tox)/E_0_tox(1,1)); 
plot(t_min, E_tox_active_frac) 
title(sprintf('Percent enzyme active in cleft vs. time,\n with VX kinetics and blood concentration of 
%-5.2e mM', (l_inf))); 
xlabel('time, min'); ylabel('Percent active enzyme'); 

figure(1) 
plot(tspan_tox./60000,l_cocn); 
title('Blood concentration of nerve agent') 
xlabel('time, min'); ylabel('lnhibitor blood concentration, mmole/cmA3'); 

% tolerance value 
tol = 1.0e-7; 
loop_count = 0; 
choice = 1; 

while(choice == 1) 

E_i_active_percent = input('What percent active enzyme will be in the cleft during the inhibited 
action potential reaction?\n'); 

E_initial_inhibited = (E_i_active_percent/100)*E_0_tox(1,1); % in mM 
disp(sprintf('\n The initial amount of active enzyme in the cleft \n during the inhibited reaction is 
%-5.2e mM', E_initial_inhibited)); 

toxjndex = find((E_cleft_tox >= EJnitialJnhibited - tol) & (E_cleft_tox <= E_initial_inhibited + 
tol), 1); 
disp(sprintf('\n The location of the time point index is % i ' , tox index)); 



disp(sprintf(\n This is equivalent to starting the action potential after %-5.2f minutes have passed 
since exposure to the toxic inhibitor \n ', t_tox(tox_index)/(60000))); 

E cleft tox"; 

factor_A = 1.5; 
standard_A = 0.0423*((Q/10)A2); %( mmole/cmA3) 
factor_E = 1.0; 
standard_E = 7.4e-5; %(rnmole/cmA3) (Naka, et al) 
% Normal AP reaction initial cleft values of A, E, R in mM 
A_0_n(1,1) = factor_A*standard_A; % in mM (10 annufi is used as the control reference) 
E_0_n(1,:) = factor_E*standard_E; % in mM 
R_0_n(1,:) = factor_R*standard_R; % in mM 

%normal AP reaction initial value vector 
U0 = [A_0_n ...A (U(1)-U(Q)) 

E_0_n ... E (U(Q+1)-U(2Q)) 
AE_0_n ... AE ( U(2Q+1) - U(3Q)) 
acE_0_n ... acE ( U(3Q+1) - U(4Q)) 
R_0_n ... R (U(4Q+1)-U(5Q)) 
AR_0_n ...AR ( U(5Q+1) - U(6Q)) 
A2R_0_n ...A2R ( U(6Q+1) - U(7Q)) 
A2Ro_0_n ... A2R* ( U(7Q+1)-U(8Q)) 
ChP_0_n ... ChP (U{8Q+1) - U(9Q)) 
] ; 

% Inhibited AP reaction initial cleft values of A, E, R in mM 
A_0_i(1,1) = factor_A*standard_A; % in mM (10 annuli is used as the control reference) 
E_0_i(1,:) = E_tox(tox_index,:); % in mM 
R_0_i(1,:) = R_tox(tox_index,:); % in mM 
l_0_i(1,:) = l_tox(tox_index,:); % in mM 
El_0_i(1,:)= EI_tox(tox_index,:); % in mM 
E_dead_0_i = E_dead_tox(tox_index,:); % in mM 

% Inhibited AP reaction initial value vector 
V0 = [A_0_i ... A(V(1)-V(Q)) 

E_0_i ... E(V(Q+1)-V(2Q)) 
AE_0_i ...AE (V(2Q+1)-V(3Q)) 
acE_0_i ... acE ( V(3Q+1) - V(4Q0)) 
R_0_i ... R(V(4Q+1)-V(5Q)) 
AR_0_i ... AR ( V(5Q+1) - V(6Q)) 
A2R_0_i ... A2R ( V(6Q+1) - V(7Q)) 
A2Ro_0_i ... A2R*(V(7Q+1)-V(8Q)) 
l_0_i ... I(V(8Q+1)-V(9Q)) 
El_0_i ...EI(V(9Q+1)-V(10Q)) 
E_dead_0_i ... E_dead ( V( 10Q+1) - V( 11Q)) 
ChP_0_i... ChP(V(11Q+1)-V(12Q) ) 

]; 



78 ryn m normal enzyme mem function 
[t,U] = ode15s(@Func_Radial_normal_kinetics_test, tspan, UO, rj, D_x, D_r, r, dx, dr, t_on, t_off); 

% run the inhibited enzyme reaction function 
[t,V] = ode15s(@Func_Radial_inhibited_kinetics_test, tspan, VO, Q, D_x, D_r, D_r_tox, r, dx, dr, 

t_on, t_off); 

% create the normal and inhibited reaction species concentration matrices as functions of r and t 
A_n = zeros(length(t),length(r)); % norma! acetycholine reaction matrix 
E_n = zeros(length(t), length(r)); % normal enzyme reaction matrix 
AE_n = zeros(length(t), length(r));% normal enzyme-complex reaction matrix 
acE_n = zeros(length(t), length(r));% normal acylated-enzyme reaction matrix 
R_n = zeros(length(t), length(r));% normal receptor reaction matrix 
AR_n = zeros(length(t), length(r));% normal single bound receptor reaction matrix 
A2R_n = zeros(length(t), length(r));% normal double bound receptor reaction matrix 
A2Ro_n = zeros(length(t), length(r));% normal open receptor reaction matrix 
ChP_n = zeros(length(t), length(r));% normal choline/product reaction matrix 

A j = zeros(length(t), length(r)); % inhibited acetycholine reaction matrix 
E j = zeros(length(t), length(r)); % inhibited enzyme reaction matrix 
A E j = zeros(length(t), length(r)); % inhibited enzyme-complex reaction matrix 
acE_i = zeros(length(t), length(r)); % inhibited acylated-enzyme reaction matrix 
R j = zeros(length(t), length(r));% inhibited receptor reaction matrix 
A R j = zeros(length(t), length(r));% inhibited single bound receptor reaction matrix 
A2R_i = zeros(length(t), length(r));% inhibited double bound receptor reaction matrix 
A2Ro_i = zeros(length(t), length(r));% inhibited open receptor reaction matrix 
I j = zeros(length(t), length(r)); % inhibitor of esterase 
El_i = zeros(length(t), length(r)); % enzyme-toxin reaction matrix 
E_dead_i = zeros(length(t), length(r)); % poisoned enzyme reaction matrix 
ChPj = zeros(length(t), length(r)); % inhibited choline/product reaction matrix 

for i = 1 :length(t) % time length vector 
forj = 1:length(r) % radius length vector 

A_n( i j ) = U(i,j); % normal reaction species 
E_n(i,j) = U(i,j+Q); 
AE_n(i,j) = U(i,j+2*Q); 
acE_n(i,j) = U(i,j+3*Q); 
R_n(i,j) = U(i,j+4*Q); 
AR_n(i,j) = U(i,j+5*Q); 
A2R_n(i,j) = U(i,j+6*Q); 
A2Ro_n(i,j) = U(i,j+7*Q); 
ChP_n(i,j) = U(i,j+8*Q); 

A_i(i.j) = v(iJ); % inhibited reaction species 
E_i(i,j) = V(ij+Q); 
AE_i(i,j) = V(ij+2*Q); 



acE_i(i j ) = V(i,j+3*Q); 
R j f l j ) = V(i,j+4*Q); 
AR_i(i,j) = V(i,j+5*Q); 
A2Rj(i,j) = V(i,j+6*Q); 
A2Ro_i(i,j) = V(i,j+7*Q); 
l_i(i j ) = V(i,j+8*Q); 
E l j ( i j ) = V(i,j+9*Q); 
E_dead_i(i,j) = V(i,j+10*Q); 
ChPJ(ij) = V(ij+11*Q); 

end 
end 

%2*pi*R_cleft*L_cleft*D_r/dr 

% calculate the normal and inhibited Ach lost from the last annulus via diffusion 
%[t, AJost] = ode15s(@AcetylcholineJost, tspan, A_n(1,14), [], D_r, dr, r); 

%A_nJost=(D_r/(2*r(15)*dr))*(Ajnf-A_n(:l14))%cumtrapz(t,(2*pi*R_cleft*L_cleft*D_r/1e-
18)*A_n(:,Q)); 
%A_iJost = cumtrapz(t,(2*pi*R_cleft*L_clefl*D_r/1 e-18)*A_i(: ,Q)); 

% initialize the total concentration/molecules in the cleft vectors 

A_cleft_n = zeros(N,1);% normal reaction species 
E_cleft_n = zeros(N,1); 
AE_cleft_n = zeros(N,1); 
acE_cleft_n = zeros(N,i); 
R_cleft_n = zeros(N,1); 
AR_cleft_n = zeros(N,1); 
A2R_cleft_n = zeros(N,1); 
A2Ro_cleft_n = zeros(N,1); 
ChP_cleft_n = zeros(N,1); 

molecule_A_cleft_n = zeros(N,1);% normal reaction species 
molecule_E_cleft_n = zeros(N,1); 
molecule_AE_cleft_n = zeros(N,1); 
molecule_acE_cleft_n = zeros(N,1); 
molecule_R_cleft_n = zeros(N,1); 
molecule_AR_cleft_n = zeros(N,1); 
molecule_A2R_cleft_n = zeros(N,1); 



molecule A2Ro cleft n = 2§r8§(Ni1)i 
molecule_ChP_cleft_n = zeros(N,1); 

A_cleft_i = zeros(N,1); % inhibited reaction species 
E_cleft_i = zeros(N,1); 
AE_cleft_i = zeros(N,1); 
acEc le f t i = zeros(N,1); 
R_cleft_i = zeros(N,1); 
AR_cleft_i = zeros(N,1); 
A2R_cleft_i = zeros(N,1); 
A2Ro_cleft_i = zeros(N,1); 
l_cleft_i = zeros(N,1); 
El_cleft_i = zeros(N,1); 
E_dead_cleft_i = zeros(N,1); 
ChP_cleft_i = zeros(N,1); 

molecule_A_cleft_i = zeros(N,1);% inhibited reaction species 
molecule_E_cleft_i = zeros(N,1); 
molecule_AE_cleft_i = zeros(N,1); 
molecule_acE_cleft_i = zeros(N,1); 
molecule_R_cleft_i = zeros(N,1); 
molecule_AR_cleft_i = zeros(N,1); 
molecule_A2R_cleft_i = zeros(N,1); 
molecule_A2Ro_cleft_i = zeros(N,1); 
molecule_l_cleft_i = zeros(N,1); 
molecule_EI_cleft_i = zeros(N,1); 
molecule_E_dead_cleft_i = zeros(N,1); 
molecule_ChP_cleft_i = zeros(N,1); 

%{ 
%Species names 
species_names = t'A,

!
,E,,,AE^'acE,,,RVAR','A2R,,,A2R*^T,'E^,lE„dead•,'ChP,

!'AJost,]; 
species__names(1) 
species_names(2) 
%} 

% calculate the total amounts of these species in the cleft 
fori = 1:N 

for j = 1:Q 

A_cleft_n(i) = A_cleft_n(i) +(volumeG)*A_n(ij))A/_cleft; %normal molar species 
E_cleft_n(i) = E_cleft_n(i) +(volume(j)*E_n(i,j))A/_cleft; 
AE_cleft_n(i) = AE_cleft_n(i) +(volumeO)*AE_n(i,j))/V_cleft; 
acE_cleft_n(i) = acE_cleft_n(i) +(volume(j)*acE_n(ij))A/_cleft; 
R_cleft_n(i) = R_cleft_n(i) +(volumeG)*R_n(i,j))/V_cleft; 
AR_cleft_n(i) = AR_cleft_n(i) +(volumeG)*AR_n(i,j))A/_cleft; 
A2R_cleft_n(i) = A2R_cleft_n(i) +(volumeG)*A2R_n(i j))A/_cleft; 
A2Ro_cleft_n(i) = A2Ro_cleft_n(i) +(volume(j)*A2Ro_n(ij))/V_cleft; 
ChP_cleft_n(i) = ChP_cleft_n(i) +(volume(j)*ChP_n(i,j))A/_cleft; 

A_cleft_i(i) = A_cleft_i(i) +(volume(j)*A_i(i,j))A/_cleft; % inhibited molar species 
E_cleft_i(i) = E_cleft_i(i) +(volume(j)*E_i(i,j))A/_cleft; 
AE_cleft_i(i) = AE_cleft_i(i) +(Volume{jrAE_i(i,j))A/_cleft; 
acE_cleft_i(i) = acE_cleft_i(i) +(volumeO)*acE_i(i,j))A/_cleft; 
R_cleft_i(i) = R_cleft_i(i) +(volumeO)*R_i(i,j))A/_cleft; 



AR_cleft_i(i) = AR_cleft_i(i) +(volume(j)*AR_i(i,j))A/_cleft; 
A2R_cleft_i(i) = A2R_cleft_i(i) +(volumeO)*A2R_i(i,j))/V_cleft; 
A2Ro_cleft_i(i) = A2Ro_cleft_i(i) +(volumeG)*A2Ro_i(i,j))A/_cleft; 
l_cleft_i(i) = l_cleft_i(i) +(volumeG)*l_i(i,j))A/_cleft; 
El_cleft_i(i) = El_cleft_i(i) +(volumeG)*EI_i(i,j))/V_cleft; 
E_dead_cleft_i(i) = E_dead_cleft_i(i) +(volumeG)*E_dead_i(i,j))A/_cleft; 
ChP_cleft_i(i) = ChP_cleft_i(i) +(volume(j)*ChP_i(i,j))A/_cleft; 

molecule_A_cleft_n(i) = A_cleft_n(i)*V_cleft*(6.02e+20); %normal molecule species 
molecule_E_cleft_n(i) = E_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_AE_cleft_n(i) = AE_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_acE_cleft_n(i) = acE_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_R_cleft_n(i) = R_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_AR_cleft_n(i) = AR_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_A2R_cleft_n(i) = A2R_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_A2Ro_cleft_n(i) = A2Ro_cleft_n(i)*V_cleft*(6.02e+20); 
molecule_ChP_cleft_n(i) = ChP_cleft_n(i)*V_cleft*(6.02e+20); 

molecule_A_cleft_i(i) = A_cleft_i(i)*V_cleft*(6.02e+20); %inhibited molecule species 
molecule_E_cleft_i(i) = E_cleftj(i)*V_cleft*(6.02e+20); 
molecule_AE_cleft_i(i) = AE_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_acE_cleft_i(i) = acE_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_R_cleft_i(i) = R__cleft_i(i)*V_cleft*(6.02e+20); 
molecule_AR_cleft_i(i) = AR_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_A2R_cleft_i(i) = A2R_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_A2Ro_cleft_i(i) = A2Ro_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_l_cleft_i(i) = l_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_EI_cleft_i(i) = EI_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_E_dead_cleft_i(i) = E_dead_cleft_i(i)*V_cleft*(6.02e+20); 
molecule_ChP_cleft_i(i) = ChP_cleft_i(i)*V_cleft*(6.02e+20); 

end 
end 

figure(3) 
plot( t, molecule_A2Ro_cleft_n(:),t,molecule_A2Ro_cleft_i(:)); hold on; 
ylabel('molecules of open receptor');xlabel('t, ms'); 
title(sprintf(Total molecules of open receptor species A2R* in the whole cleft,\ri at 0, 25, 50, 75, 
and 100 percent enzyme inhibition,\n averaged over %i annular volume elements,\n D_r = %-
5.2e cmA2/ms, %-5.2f X quantum A',Q, D_r, factor_A));% 
%{ 
figure(4*loop_count + 2) 
plot( t{:), molecule_A___cleft__n(:),t(:),molecule__A_cleftj(:)); 
ylabel('molecules of Acetylchoiine'^xlabelCt ms'); 
title(sprintf('Total molecules of acetylcholine species A in the whole cleft,\n norm and inhibited, 
averaged over %i annular volume elements,\n %-5.2f percent active enzyme; D_r = %-5.2e 
cmA2/ms\n %-5.2f X quantum A',Q, Ej_active_percent,D__r,factor_A));% 

figure(4*loop_count + 3) 
plot( t, molecule_E_cleft_n(:),t,molecu!e_E_cleftj(;)); 
ylabel('molecules of Acetylcholinesterase');xlabel('t, ms'); 



title(sprintf(Total molecules of acetylcholinesterase species E in the whole cleft,\n norm and 
inhibited, averaged over %i annular volume elementsAn %-5.2f percent active enzyme; D_r = %-
5.2e cmA2/ms\n %-5.2f X quantum A',Q, Ej_active_percent,D_r,factor_A));% 

figure(4*loop__count + 4) 
plot( t jox, molecule„E_cleft_tox(:)); 
ylabel('molecules of Acetylcholinesterase');xlabel('t, ms'); 
title(sprintf(Total molecules of acetylcholinesterase species E in the whole cleft,\n averaged over 
%i annular volume elementsAn %-5.2f percent active enzyme; D_r = %-5.2e cmA2/ms\n %-5.2f X 
quantum A',Q, E_i_active_percent,D_r,factor_A));% 
%} 
loop_count = loop_count+1; 
choice = input('Do you want to run another inhibited reaction: 1(yes), 0(no)? \n'); 
end 

% save the species concentration data to data files 
save U U; save V V; save W W; 

save A_0_n A_0_n; save A_0_i A_0_j; save E_0_j E_0_i; 
save E_0_tox E_0_tox; 

save A_n A_n; save E_n E_n; save AE_n AE_n; save acE_n acE_n; save R_n R_n; save AR_n 
AR_n; save A2R_n A2R_n; 
save A2Ro_n A2Ro_n; save ChP_n ChP_n; %save A_n_lost A_n_lost; 

save A j A_i; save E_i E_i; save A E j A E j ; save acE__i acE j ; save EM EM; save E_dead_i 
E_dead_j; save R_i R_i; 
save A R j A R j ; save A2R_i A2R_i; save A2Ro_i A2Ro_i; save M M; save C h P j ChPj ; %save 
AJJost A_i__lost; 

save A_cleft_n A__cleft__n; save E__cleft_n E__cleft_n; 
save AE_cleft_n AE_cleft_n; save acE_cleftmn acE__cleft__n; save R_cleft_n R_cleft„n; 
save AR_cleft__n AR„cleft_n; save A2R_cleft_n A2R_cleft_n; 
save A2Ro_cleft_n A2Ro_cleft_n; save ChP_cleft_n ChP_cleft_n; 

save A_cleft_i A_cleft_i; save E_cleft_i E_cleft_i; save AE__cleft_i AE_cleft_i; 
save acE_cleft_i acE__cleft_i; save R_cleft_i R_cleft__i; save AR_cleftj AR_cieft_i; 
save A2R_cleft_i A2R_cleft_i; save A2Ro_cleft_i A2Ro_cleft_i; save l_cleft_i l_cleft_i; 
save El_cleft_i El_cleft_i; save E_dead_cleft_i E__dead_cleft_i; 
save ChP_cleft„i ChP_cleft_i; 

save molecule_A_cleft_n molecule_A_cleft_n; 
save molecule_E_cleft_n moiecule_E_cleft_n; 
save molecule_AE__cleft_n molecule_AE_cleft_n; 
save molecule__acE__cleft__n molecule__acE_cleft_n; 
save molecule_R__cleft_n molecule_R_cleft_n; 
save molecule_AR_cleft_n molecule_AR_cleft_n; 
save molecule_A2R_cleft_n molecule_A2R_cleft_n; 
save molecule_A2Ro_cleft_n molecule_A2Ro_cleft_n; 
save molecule_ChP_cleft_n molecule_ChP_cleft_n; 

save molecule_A_cleft_i molecule_A_cleft_i; 
save molecule_E_cleftj molecule_E_cleft_i; 



save molecule_AE_cleft_i molecule_AE_cleft_i; 
save molecule_acE_cleft_i molecule_acE__cleft_i; 
save molecule_R_cleft_i moleculeJR__cleftJ; 
save molecule_AR_cleft_i molecule_AR_cleft_i; 
save molecule_A2R_cleft_i molecule_A2R_cleft_i; 
save molecuie_A2Ro_cleft_i molecuie_A2Ro_cleft_i; 
save moleculeJ_cleft_i moleculeJ_cleft_J; 
save molecule_El_cleft_i molecule_EI__c!eft_i; 
save molecule_E_dead_cleft_i molecule_E__dead_cleft_i; 
save molecule_ChP_cleft_i molecule_ChP_cleft_i; 

save E_cleft_tox E_cleft_tox; 
save R_cleft_tox R_cleft_tox; 
save l_cleft_tox l__cleft_tox; 
save EI_cleft_tox EI__cleft_tox; 
save E_dead_cleft_tox E_dead_cleft_tox; 

save rnolecule_E_cleft_tox molecule_E_cleft_tox; 
save molecule_R_cleft__tox molecule_R_cleft__tox; 
save molecule_l__cleft_tox mo!ecule_l_cleft_tox; 
save molecule_EI_cleft_tox molecule_EI_cleft_tox; 
save molecule_E_dead_cleft_tox molecule_E_dead_cleft_tox; 

save r r; save D_r D__r; save dr dr; 
save 11; save t_tox t_tox; 
save N N; save Q Q; 
save volume volume; 
save Mnf IJnf; 

disp('latest data saved, program finished'); 

%{ 
figure{2) 
plot(t,AJost); 
ylabel('normal Ach, mM');xlabel('t, ms'); 
title(sprintf('Molar normal Ach lost via diffusion, in the whole cleflAn averaged over %i annular 
volume elements',Q));% 

figure(1) 
surf(t, r, A_n') 
shading flat 
title(sprintf('Species A in pure radial diffusion and reaction through %i volume elements', Q)); 
xlabel('time, ms'); ylabel('radius, cm'); zlabel(* concentration, mmoie/cmA3'); 
AJost 
%A_balance = 
sum(U(:,1:10))+sum(U(:,21:30))+sum(U(:,51:60))+sum(U(:,61:70))+sum(U(:,71:80)) 

%} 
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The parameters for the exponential decay approximations used in the error comparison 

Naka y = al*exp(-a2*t) 

t R lnt InR al* 10"3 a2* 10"3 

#1 2 118 0.693 4.77 4.3699 0.00018 

1.2 500 0.182 6.215 

#2 0.64 1250 -0.446 7.131 3.1621 0.0015 

2 174 0.693 5.159 

#3 2.5 153 0.916 5.03 2.8553 0.0012 

0.55 1500 -0.598 7.313 

#4 0.75 1500 -0.288 7.313 2.9534 0.0009 

3.5 125 1.194 4.828 

#5 0.85 1759 -0.162 7.472 2.5884 0.0005 

4.5 334 1.504 5.811 

Fribulet 

#1 0.5 1257 -0.693 7.136 3.046 0.0018 

3.0 15 1.10 2.708 



#2 0.5 1529 -0.693 7.332 

3.0 50 1.10 3.912 

#3 0.5 1676 -0.693 7.424 

4.0 30 1.386 3.401 

#4 0.5 1853 -0.693 7.524 

5.0 88 1.609 4.477 

#5 1.0 1800 -0.693 7.495 

6.5 345 1.872 5.843 
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3.029 0.0014 

2.9771 0.0011 

2.5982 0.0007 

2.4333 0.0003 
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