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ABSTRACT 

The current research project was devoted to the incorporation of geopolymers as a 

new material for Trenchless projects, taking advantage of their properties in a field in 

which they had not been used before, providing a substantial help to municipalities to 

meet their rehabilitation needs. Trenchless Technologies are a family of methods, 

materials and equipment capable of being used for the installation of new or replacement 

or rehabilitation of existing underground infrastructure with minimal disruption to surface 

traffic, business, and other activities. 

The dissertation research work described herein is divided into six primary 

objectives: (1) the evaluation of geopolymer as a suitable candidate material for the 

rehabilitation of aging buried concrete infrastructure; (2) the study of the main parameters 

behind the process of geopolymerization; (3) the development of a geopolymer-based 

rehabilitation method with enhanced workability by means of a surface-active agent; (4) 

the evaluation of copper-substituted geopolymer with possible biocide properties; (5) 

testing and field validation of the resulting material; and (6) the study of its 

commercialization potential. 

Materials of a new generation are needed to suit the growing rehabilitation needs 

of buried concrete infrastructure. Many municipalities currently undergo difficult 

material selection processes; based on the best match between low cost and high quality. 

An optimal solution is not easy to achieve since ordinary Portland cement (OPC) 
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provides low cost and good workability, but, in many cases, does not provide extended 

durability; on the other hand epoxies and other organic polymers often resist biogenic 

corrosion well, yet are many times not within the budget of municipalities. 

Geopolymers are cementitious materials of a new generation. Their outstanding 

properties are the object of growing research all over the world, especially in France, 

Australia and the USA. However, regardless of their excellent mechanical strength and 

corrosion resistance properties, geopolymers are often seen by the construction industry 

as materials with poor workability and unsuitable for big scale projects. This perception 

and other drawbacks are addressed in the present work. 

The dissertation begins with the identification and study of the main variables 

controlling the geopolymerization process and their influence on the final material 

properties. A selection of materials is then conducted and the design of an appropriate 

formulation is achieved. The next step was to solve the problem of turning geopolymers 

into a friendly material for contractors. As spray coatings are a very common and 

convenient method for the application of cementitious materials, this process was 

especially emphasized throughout the dissertation. Several additives and mixing methods 

were experimented with during this research project to help on this objective. 

Having produced a sprayable geopolymer admixture, work was then conducted to 

evaluate the final properties of the resulting material and a comparison with products 

currently used by the industry. The encapsulation of copper with the intention of a future 

evaluation as a biogenic agent embedded in geopolymer was also considered. Important 

conclusions are made in this regard. An evaluation of the commercialization potential of 

this material is further discussed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The problem of the deterioration of concrete sewer pipes and manholes is an 

increasing concern for civil engineers across North America and the world. Many of 

these structures, installed during the decade of the 1960's, have reached or are reaching 

the end of their service life and are compromising the potable water and wastewater 

conveyance systems. The EPA estimated losses associated with the degradation of 

concrete sewer pipes and wastewater treatment facilities by sulfuric acid attack to be as 

high as $10 billion [1]. 

Sewer pipelines constitute some of the most important components among the 

sanitary installations of cities. They are generally old structures, built with an expected 

service life of 50 years. However, when they deteriorate, generally by biological 

corrosion or abrasion by water or sewage streams, their replacement by means of the 

traditional open-cut methods is complicated because traffic disruption and restoration of 

pavement and soils is necessary. That is the reason why the use of trenchless technologies 

for replacement and rehabilitation is important to help keep public works efficient, 

besides making them long-lasting and economical. It is important to assure that the 

materials used for the rehabilitation of these utilities are the most durable in every way: 

being corrosion and wear resistant; withstanding the normal loads and stresses of a sewer 
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pipe; and having a strong bond to concrete so that long term functionality may be 

guaranteed. Among the most common methods for pipe rehabilitation are gunite lining 

and spray lining, but other methods are also used. 

Coating materials used with these methods are of various kinds; for example; 

cementitious, epoxies and other polymers. Cementitious coatings are preferred because 

they increase the pH of the pipe and because of their good workability. Epoxies generally 

provide higher corrosion resistance, yet these materials have a number of disadvantages 

that make them unsuitable for certain applications. Portland cement for example, is 

known to deteriorate rapidly under acidic environments. Epoxies, on the other hand, are 

often expensive and out of the budget of many municipalities. However, there is potential 

for a relatively new material -geopolymer- discovered in the early 1970's as a good 

replacement candidate for both Portland cement and epoxies for pipe rehabilitation. 

Geopolymers are inorganic alumino-silicate polymers synthesized with the aid of 

temperature. They are used in replacement of Portland cement for a growing number of 

applications, and their properties, like mechanical strength and corrosion resistance, are 

generally superior to those of Portland cement. However, and in spite of their good 

properties, there are still a variety of reasons of why geopolymers are not widely used. 

One of them is their poor workability; geopolymers are known for their short setting 

times and high viscosities. There have been many efforts to overcome these 

disadvantages, from the selection of raw materials to the formulation of the activator 

solution, but still, a more complete solution is needed. 

Among the many additives used in the concrete industry, surfactants have been 

used commonly as air-entrainers to increase durability to concretes under freeze-thaw 



3 

conditions. Surfactants create a set of small, stable and unconnected air spheres within 

the mass of the concrete, increasing its resistance to attacks like freeze and thaw. They 

also have an observable good effect on concrete and mortar workability. Their use in 

geopolymers, has been little researched, if not completely ignored. 

Furthermore, the main mechanism to lower the pH values of sewers is 

biologically generated sulfide. Sulfate reducing bacteria reduce inorganic sulfate ions 

present in the sewage to sulfide ions, which react immediately with dissolved hydrogen in 

the wastewater to form dissolved hydrogen sulfide, which then is oxidized into sulfuric 

acid by aerobic bacteria that reside on the inner surface of the pipe wall above the water 

level. The sulfuric acid attacks the hardened cement paste by dissolution and expansion 

which causes the deterioration of the pipe and sometimes cracking and complete collapse. 

To attack the problem of biogenic corrosion, some researchers have proposed the 

use of copper oxide as a bactericide. Copper oxide embedded in epoxy has been used 

successfully to prevent the growth of H2S producing bacteria. Coincidently, geopolymers 

have been used to encapsulate heavy metals with the purpose of immobilization of toxic 

wastes. These metals include not only copper, but lead and arsenic as well. Both of these 

areas of research offer an interesting scenario for geopolymers to be used both as a 

protective coating and as a biogenic agent. 



1.2 Objective 

The main objective of this dissertation is to design and develop a geopolymer-

based mortar coating for the rehabilitation and protection of concrete sewer pipes and 

manholes against sulfuric acid corrosion. 

This objective was divided into several specific objectives: 

• To evaluate geopolymer as a suitable candidate material for the rehabilitation 

of buried infrastructure. 

• To study the different parameters of geopolymerization and to design an 

optimal mix design for the geopolymer mortar in terms of strength and 

corrosion resistance. 

• To study surfactants as workability agents for geopolymers and to characterize 

the resulting formulation in rheological and surface tension terms. 

• To study copper addition to create a copper-substituted geopolymer with 

possible biocide properties. 

• To perform field and quality tests for the resulting invention. 

• To explore the commercialization potential of the new geopolymer-based 

product. 

1.3 Organization of the Dissertation 

The dissertation is divided into eight chapters: (1) Introduction; (2) Literature 

Review; (3) Study of the Main Parameters of Geopolymerization; (4) Compressive 

Strength and Corrosion Resistance of Geopolymers compared to Portland Cement; (5) 

Optimization of the Activator Solution; (6) Development of a Sprayable Geopolymer 
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Mortar; (7) Quality Tests, Copper Addition and Commercial Opportunities; and (8) 

Summary, Conclusions and Recommendations. 

Chapter 1 consists of a general introduction of the problem, along with a 

description of the existing geopolymer technology and the objectives of the dissertation. 

Chapter 2 discusses the fields of knowledge related to this contribution, starting 

from the rehabilitation problem faced in North America and the details of the corrosion 

mechanisms by sulfuric acid. Then, the chapter proceeds to state the basics of 

geopolymers chemistry, setting mechanism, uses, advantages and problems. It also 

describes the existing knowledge on surfactant theory on what is relevant to cements and 

concretes, ending with a description of a copper incorporated coating for biogenic 

protection. 

Chapter 3 is related to the study of the main parameters of geopolymerization 

addressed to the understanding the role of geopolymerization fundamental variables, such 

as raw material, activator solution parameters and curing programs. 

Chapter 4 relates a comparative study of compressive strength and corrosion 

resistance between geopolymers and Portland cement. The study was conducted by 

means of an eight week testing program based on the exposure of different geopolymer 

formulations and Portland cement to sulfuric acid solutions of pH values similar to those 

commonly found in sewers and manholes. 

Chapter 5 addresses the testing program developed to develop an optimal 

activator solution to suit the properties needed for the geopolymer-based coating. 

Important conclusions regarding the main parameters of the activator solutions are made. 
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Chapter 6 studies the rheological and surface tension properties of geopolymer 

with the addition of surfactants. The properties of geopolymer under the action of 

different surfactants of different concentrations were characterized. Field tests were also 

conducted and included in this chapter. 

Chapter 7 examines the different quality tests conducted on the sprayable grout 

formulation. These tests complete the characterization needed to offer a specification 

sheet on the product. The chapter covers all the tests commonly conducted to 

cementitious coatings to be used in the field of rehabilitation. It also describes the 

incorporation of copper and encapsulation in geopolymers. Characterization under 

Scanning Electronic Microscopy (SEM) is presented, and a final recommendation is 

made based on experimental results. Additionally, a scenario of the commercial 

opportunities for this product is presented. 

Chapter 8 presents the main conclusions and suggests future research directions. 

1.4 Key Contributions 

The main contributions of the work in this dissertation are described in detail 

below: 

1. The development of a novel product for rehabilitation of concrete sewers and 

manholes. This product is a novel alternative to solve the many problems that 

municipalities face to conduct work on their sanitary systems. After being 

sufficiently tested in an industrial level, the geopolymer coating can become a 

commercial product with potential economic success. 

2. The study of geopolymers from an engineering perspective, rather than a pure 

chemical or materials science perspective. Although there has been much 
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research about the main mechanisms behind geopolymerization, not many 

efforts have been conducted to try and incorporate geopolymers as products 

and solutions for the construction industry. 

3. The study of geopolymer plastic behavior under different alkaline solutions 

and with different levels of surfactants. Important conclusions are drawn upon 

these behaviours. 

4. The study of an alternative product with possible bactericide properties to 

solve the corrosion problem of sewers from the root. The role of geopolymer 

as an encapsulating agent of heavy metals (copper) is also studied. 

5. The creation of a product with offers a licensing commercial opportunity to 

Louisiana Tech. 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Pipelines: Statement of the Problem 

2.1.1 Background 

Corrosion and deterioration of concrete pipes is a main concern associated with 

wastewater conveyance and treatment facilities around the world. The EPA [1] estimated 

losses associated with the degradation of concrete sewer pipes and wastewater treatment 

facilities by sulfuric acid attack in North America to be as high as $10 billion. The 

problem has grown worse in recent years especially in industrialized areas in the southern 

part of the USA where a large number of sewer lines are scheduled to be replaced over 

the next five years. 

Hydrogen Sulfide (H2S) can be generated by sewage with slow streams. When 

present in the atmosphere of the sewer, this acid gas can be converted into the corrosive 

sulfuric acid and seriously damage concrete structures [2]. The process is carried away by 

biological means. Certain sulfate-reducing bacteria can split oxygen from the sulfate ion, 

which is left in the form S2", and then immediately reacts with water to form a mixture of 

HSS and HS" [3]. 

H2S is then chemically converted to H2SO4 at the crown of the concrete sewer 

pipes. Parker [4] conducted studies on Thiobacillus Thiooxidans, the bacteria that is 

responsible for the generation of sulfuric acid in sewers. Several genus of the 

8 
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Thiooxidans bacteria to produce sulfuric acid have been identified: T thiparus, T 

thiooxidans, T. neapolitanus, T intermedins and T. novellas [5]. All these bacteria 

contribute in the process of decreasing the pH of the pipe down to the production of 

sulfuric acid. 

The EPA [1] conducted a survey on areas with sulfuric acid corrosion problems. 

Out of the 89 cities responding to this survey, 36% reported sewer collapses due to this 

problem. The study pointed out 16 states with severe corrosion problems on their sewers, 

including Louisiana. 

For all these cities the development of new materials and technologies for the 

rehabilitation of existing and the construction of new facilities is an area of significant 

interest to many owners of wastewater collection and treatment systems. 

2.1.2 Some Types of Pipe Damage and Deterioration 

2.1.2.1 Leakiness 

Leakiness is defined as water entering or leaving the pipe. It usually occurs in 

pipe joints, pipe walling, and connection to pipes and manholes. 

Among the possible causes of damage creating leakiness are wrong material 

selection, material aging and a damage event like a localized corrosion or collapse. The 

non-adherence between the coating and the host material is also a cause of this problem. 

In order to prevent leakiness, it is necessary to take into account internal or external 

stresses that may cause changes to the material during utilization [6]. 

2.1.2.2 Mechanical Wear 

Mechanical wear takes place in the wetted section of the pipe. It is a measure of 

the fine material removed by the action of a water or sewage stream in the inside of the 
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pipe. Mechanical wear increases the roughness of the pipe and can lead to its destruction 

by promoting corrosion and causing reduction of wall thickness [7]. 

Wear can also be defined as damage to a solid surface caused by the removal or 

displacement of material by the mechanical action of a contacting solid, liquid or gas. 

Gradual deterioration is often implied, and the effects are, for the most part, surface-

related phenomena, but these restrictions should not be rigorously applied when 

analyzing wear problems or failures. 

Surfaces are not completely flat at the microscopic level. At high magnification, 

even the best polished surface will show ridges and valleys, asperities and depressions. 

At these points, the contact pressure may be close to the hardness of the softer material; 

plastic deformation takes place on a very local scale. When sliding begins, these 

junctions have to be broken by the friction force, and this mechanism provides the 

adhesive component of the friction. Some asperities may plow across the surface of the 

mating material and the resulting plastic deformation or elastic hysteresis contributes to 

the friction force [8]. 

Fluids with particles, or slurry erosion, are the progressive loss of material from a 

solid surface by the action of a mixture of solid particles in a liquid in motion with 

respect to the solid surface. Slurry is by definition a physical mixture of solid particles 

and a liquid (usually water) of such a consistency that it can be pumped. The particles are 

in suspension in a liquid, and most pumpable slurries contain at least 10% solids [9]. 

Scouring wear is the wear caused by various materials carried along by the water, 

such as sand, gravel, solid metals, and textiles. Some variables related with this kind of 

stress include piping materials; pipe diameter; stressing or expansion condition of the 
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pipe; density of water-solid mixture; composition of water-solid mixture; type, size, form, 

ductility of solid particles; angle of attack between solid particles and pipe walling; 

velocity of flow; type of flow (laminar/turbulent); temperature of water-solids admixture; 

and the chemistry of sewage. 

The possible consequences of damage are the removal of the piping (or coating) 

material from the surface; increased roughness and reduction in hydraulic effectiveness. 

Other effects are the reduction of wall thickness with the consequent reduction of bearing 

strength and water tightness, and very importantly, the reduction of corrosion protection 

[7]-

The combined effects of wear and corrosion can result in total material losses that 

are much greater than the additive effects of each process taken alone, which indicates a 

synergism between the two processes. Although corrosion can often occur in the absence 

of mechanical wear, the opposite is rarely true. Corrosion accompanies the wear process 

to some extent in most environments. Corrosion and wear processes involve many 

mechanisms, the combined actions of which lead to the mutual reinforcement of their 

effectiveness [8]. 

2.1.2.3 Corrosion 

Corrosion is the reaction of a material with its environment, which causes a 

measurable change in the material (corrosion manifestation) and can lead to the 

impairment of the function of a component or a complete system (corrosion damage) 

[10]. Field experience has demonstrated that sulfate attack usually manifests itself in the 

form of loss of adhesion and strength [11]. Usually the corroding medium is a liquid 

substance, but gases and even solids can also act as corroding media. In some instances, 
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the corrodent is a bulk fluid; in others, it is a film (a biofilm, for example), droplets, or a 

substance adsorbed on or absorbed in another substance [12]. 

In the field of sewage installations, corrosion is understood as all the reactions to 

non-metallic and metallic construction and other materials with their environment which, 

due to chemical, electro-chemical and microbiological processes, lead to an impairment 

of the construction or other material. It cannot be excluded that such damage, which is 

designated as corrosion, is caused by a combined stressing due to chemical, 

microbiological and mechanical actions [7]. Corrosion can also happen without the aid of 

mechanical stress. 

The extent of corrosion manifestation depends primarily on aggressiveness of 

corrosion medium and available materials and the temperature and concentration of 

corrosion medium [7]. At the atomic level, the resistance of concrete to an aggressive 

sulfate environment is dependent upon the permeability of the concrete and the 

composition of the hydrated cement paste. Once sulfate ions ingress into the concrete, the 

form of sulfate attack, and therefore the effects of the attack, depend upon the amounts of 

monosulfate hydrate, calcium aluminate hydrate, unhydrated tricalcium aluminate and 

calcium hydroxide in the cement paste. 

The two forms of sulfate attack that are known to exist are the following: 

• Reaction with monosulfate hydrate, calcium aluminate hydrate, and/or 

unhydrated tricalcium aluminate to produce ettringite; and 

• Reaction with calcium hydroxide to produce gypsum, which results in a 

decrease in pore solution alkalinity. 
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Expansion may occur during sulfate attack due to the formation of ettringite and 

gypsum. In addition, the loss of calcium hydroxide through the production of gypsum can 

decrease the pore solution alkalinity, resulting in decalcification and loss of calcium-

silicate hydrate, the primary strength-giving component of the cement paste. External 

sulfate attack on concrete may lead to cracking, spalling, increased permeability and 

strength loss. Sulfate damage to concrete typically starts at the surface exposed to the 

sulfate environment and sulfate-containing salt that form on the concrete surface. 

Alternating wetting and drying increases the severity of sulfate attack [12]. 

The materials that are normally subject to corrosion are cement bound materials 

(concrete, asbestos cement, fiber cement, mortar) and metallic materials (steel, cast iron). 

Vitrified clay pipes and sewage tiles are resistant to corrosion, except for hydrofluoric 

acid. Plastic materials are resistant under certain environments, and they can corrode with 

a specific corrosion agent and the aid of additional mechanical and thermal stressing. 

Unalloyed or low alloyed metallic materials must receive internal and external corrosion 

protection in the form of galvanizing and/or plastomer coating. 

A more extended description of the corrosion mechanism is given in the next 

section. 

2.1.3 Mechanism of Corrosion 

Internal corrosion in pipes usually occurs due to bad practices of manufacture as 

in not following guidelines; formation of aggressive sewage due to the influx of various 

substances; and biogenic acid corrosion (microbiological processes). 
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2.1.3.1 Inorganic Chemical Corrosion 

Internal corrosion is caused by aggressive substances that are already in the 

sewage or form by means of chemical processes. Generally, among the characteristics of 

these sewages are suitable concentrations of corrosive substances, low pH values, low 

flow velocities, long flow periods, high temperatures, and bacterial influences, among 

others. Aggressive cleaning of the sewers can destroy protective layers [13]. 

Corrosion by an acid can result in the formation of a salt, which slows the reaction 

because the salt formation on the surface is then attacked [14]. 

It was reported that concrete pipes are attacked chemically when subjected to the 

action of acids with pH values of 6.5 or less over long periods of time [15]. Under 

anaerobic conditions, the acidity in municipal and industrial sewers could reach pH 

values of 3 or 2, and in some extreme cases 0.5 [16], thus greatly reducing the useful 

service life of these structures. 

Materials that cause concrete deterioration can be divided into two groups: a) 

materials that dissolve the hardened cement paste (dissolving attack); and b) materials 

that cause a volume change in the concrete mass (expansion attack). Generally, agents 

causing the first type of corrosion are acids or strong bases that react with the aluminates 

and ferrites in the hardened concrete to form soluble salts and Ca(OH)2, which are easily 

leached out of the concrete matrix. This attack can be recognized visually by the 

appearance of an eroded surface. The second attack is commonly caused by expansive 

phases produced by a reaction between sulfates present in the sewage and aluminate-

hydrates and calcium hydroxides present in the cement paste. The crystallization of such 

phases leads to expansion of the hardened concrete, and consequently to cracking, 
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spalling and delineation of the concrete mass. Ettringite is a common crystal product of 

this type of attack [17]. Possible consequences of a corrosion attack include: a) leakiness; 

b) reduction in wall thickness and thus reduction in load bearing capacity (and possible 

formation of cracks, deformation and/or collapse); and, c) increase in the roughness and 

subsequent reduction of the pipe's hydraulic effectiveness [7]. 

Susceptibility to chemical attack is an inherent characteristic of hardened Portland 

cement paste. Additives introduced in attempts to enhance Portland cement corrosion 

resistance include, among others, silica fume, fly ash and blast furnace slag. These 

additives react with Ca(OH)2 present in the cement pastes to produce C-S-H, and were 

shown to enhance the resistance of hardened cement paste in environments with pH 

values above 4.5 [15]. 

2.1.3.2 Bacterial Induced Corrosion 

This process of bacterial induced corrosion is usually called Biogenic Sulfuric 

Acid corrosion (BSC). While aggressive sewage affects only the "wet" area of a pipe, 

bacteriological agents affect the "gas space" above the water level. There are different 

forms of BSC: the endogenous form (the cause of BSC lies within the sewer system), 

which is itself divided in two forms: autogenous (sulfides developed from organic and 

inorganic sulfur mixes in wall slime of sewer and deposits) and allogenous (sulfides 

develop due to disadvantageous operating conditions in other places of the sewer 

system); and the exogenous form, in which sulfides can be introduced directly with 

commercial and industrial effluent. 

Proteins contained in the deposit are reduced by means of microbial processes 

under anaerobic or aerobic conditions to volatile sulfuric combinations, mainly H2S. In 
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addition, sulfates can be reduced to hydrogen sulfide by means of bacterial metabolism 

under anaerobic conditions (desulphurication) [14]. 

Sulfate-reducing bacteria (SRB) from the genera Desulfovibrio are the cause of 

anaerobic corrosion. SRB that exist in a slime layer convert the naturally occurring 

sulfates in the wastewater into H2S. (Eq. 1). Hydrogen sulfide can directly attack concrete 

sewer pipe by reacting with calcium hydroxide to form calcium bisulfide (Eq. 2) Portion 

of the hydrogen sulfide escapes to the concrete substrate above the water line from the 

sewer atmosphere and react with oxygen to form elemental sulfur. Elemental sulfur is a 

substrate to many Thiobacilli specie which metabolize it into sulfuric acid. Moreover, 

H2S can react with water vapour to produce a mild acidic condition which condenses on 

the substrate surface above the water line. This process lowers the pH to levels favorable 

for the growth of Thiobacilli bacteria. Thiobacilli bacteria are acidophilic and grow at pH 

2-3. Hydrogen sulfide can also be oxidized aerobically by green sulfur bacteria and 

purple sulfur bacteria to sulfuric acid through several steps (Eq. 3 and 4). 

CH3CHOHCOOH + 0.43H2S04 + 0.067NH3 

> 0.33CH1.4N0.2O0.4 + 0.96CH3COOH + 0 43H2S + 0 7C02 + 0.94H20 CO 
Desulfovibrio Desulfuricans 

Ca(OH)2 + 2H2S -» Ca(HS)2 + 2H20 (2) 

2H2S + 0 2 »2H20 + 2S° (3) 
green sulfur bacteria 

2S° + 302 + 2H20 • 2H2S04 (4) 
purple sulfur bacteria 

The main parameters of this process are temperature, flow time and depositing. 

Good conditions for the development of bacteriological attack are very long flow 

distances, sewers not fully utilized and very minimum ventilations. With an ideal 

temperature, a concentration of up to 23% is possible. The degree of attack can be 
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divided into weak, medium and strong, according to the following criteria: pH value in 

condensate water droplets at the sewer walling; sulfide concentration in the free cross 

section of the sewer; available quantity of thiobacilli [14]. 

Low pH values in concrete sewer pipes are usually produced by biologically-

generated sulfide. This process takes place in two stages. Sulfate reducing bacteria 

reduce inorganic sulfate ions present in the sewage to sulfide ions, which react 

immediately with dissolved hydrogen in the wastewater to form dissolved hydrogen 

sulfide. This hydrogen sulfide is released to the atmosphere due to turbulence in the 

waste stream and condenses near the crown of the pipe above the waterline. In the 

second stage, the hydrogen sulfide is oxidized into sulfuric acid by aerobic bacteria that 

reside on the inner surface of the pipe wall above the water level. One species of 

bacteria, Thiobacillus Thiooxidans, is known to grow well in the laboratory in 

environments with pH as low as 0.5. The sulfuric acid attacks the hardened cement paste 

by dissolution and expansion. The H+ ion acts as a dissolving agent while the SO42" ion 

produces expansion when reacting with the above mentioned concrete phases [18]. 

2.1.4 Currently Used Rehabilitation Methods 

Measures adopted to deal with sulfuric acid are generally directed at limiting the 

formation of hydrogen sulfide by means of sulfur content elimination. The introduction 

of bactericides to the waste stream has also been attempted, but their use was found to be 

impractical due to the large quantities needed and the potential damage to biologically-

based processes at the treatment plant. Other mitigation methods such as chlorination, 

injection of compressed air and the addition of lime were attempted with limited success. 
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The use of certain types of aggregates also helps preventing corrosion of the cement 

matrix [19]. 

Another family of mitigation methods focuses on protection of the concrete wall 

via the introduction of a thin layer of chemically resistant material on the inner surface of 

the concrete pipe. Materials used to coat concrete pipes include polyurethane, polyurea, 

epoxy, mortar epoxy, high alumina cement and asphalt. Shortcomings associated with 

coating systems include difficulties in ensuring an adequate bond between the spray-on 

coating and the host pipe substrate, as well as the formation of pinholes that allow 

sulfuric acid and/or the bacteria to penetrate the coating and destroy the bond between the 

coating and the inner wall of the host pipe or chamber. Yet another coating system 

consists of thermoplastic panels (e.g., polyvinylchloride) that are connected to the 

concrete wall mechanically (i.e., T-lock). Used extensively in the 1960s and 1970s, such 

systems were found to be prone to sulfuric acid penetrating the thermoplastic liner at the 

seam lines and corroding the concrete behind the liner [20, 21]. 

2.2 Coatings for the Rehabilitation of Pipes 

2.2.1 Basic Concepts 

Coating is a generic term for one or more layers of interconnected coating 

materials on a base with which they are connected through adhesion. 

Coating processes, as used in sewers, serve the purpose of replacing or improving 

the resistance against physical, biological, chemical and/or biochemical attacks from 

inside, for hindering a renewed build-up for incrustation, for re-establishing and/or 

increasing the static bearing strength as well as leak tightness [22]. 
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It is important to understand that the protection offered by a coating is effective 

until the coating is penetrated by a pit, pore, crack or by damage or wear. When corrosion 

products start to form between the base material and the coating, they will lift off the 

coating and allow further corrosion. However, even though the smoothness and 

continuity of a coating is desirable, in the practice, it is most times not feasible. 

There are four basic methods of application: in-situ concrete lining, displacement 

process, gunite lining and spray lining. As these last two are the most relevant with the 

present work, they will be discussed further in this chapter. 

The main area of application for coatings within the scope of rehabilitation are 

sewers of cement bound materials (concrete and reinforced concrete) since other 

materials (plastics, vitrified clay) present disadvantageous conditions for the adhesion of 

coating materials [22]. 

An important differentiating feature of the coating process is its thickness. There 

are four principal subdivisions: waterproofing, sealing, film-forming and coating with 

mortar [22]. 

From those, only mortar coatings are appropriate for rehabilitation. The thinnest 

values for this process are 5 mm for resin, 10 mm for plastic modified mortar and 20 mm 

for cement bound mortar. The respective thickness of layer depends on the aims being 

pursued as well as the type of damage. For corrosion, 5 mm is usually enough. For 

bearing relationship, static requirements would determine thickness. 
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2.2.2 Desirable Characteristics of a Coating 

These are the characteristics that a good sewer coating material should have [23]: 

• Consistence in accordance to the spray or gunite method used for application. 

• Good wetting of the concrete pipe surface. 

• Good adhesion and good internal bonding. 

• General insensibility to variations in the surface condition and to the influence 

of weather. 

• Low shrinkage and swelling. 

• Low thermal expansion coefficiency. 

• Insensitivity to induced stresses such as shrinkage, formation of cracks, 

changes of moisture and temperature. 

• Insensitivity to wetting and drying cycles. 

• No disadvantageous electrochemical behavior that can cause corrosion to the 

reinforcement steel. 

• Leak tightness towards flowing water, low capillary water take up. 

• Porosity to water vapor. 

• High degree of resistance to diffusion of chemically reactive or aggressive 

gases and ions. 

• Chemical resistance to substances contained in the sewage and especially to 

biogenic sulfuric acid corrosion and physiologically safe. 

• Resistance to alkali influences from the concrete. 

• High resistance to wear. 

• Fast hardening times. 
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When selecting an appropriate coating, a sequence of decisions needs to be made 

to cover several fundamental points. The first is the need to be clear about the service 

conditions. This clarity is the key to material selection. The second decision is the choice 

of application process for the material. This decision involves the question of 

compatibility with the coating material; that is, not all materials can be applied by all 

processes. A further question of compatibility arises between both material and process 

with the substrate, for example, whether distortion from high-temperature processes can 

be tolerated [8]. 

2.2.3 Actual Materials Used for Coatings 

2.2.3.1 Portland Cement Mortars 

Type V Portland cement is regularly used (when Portland cement is used for 

sewage and water pipeline coatings) because of its sulfate-attack resistance properties. 

This cement has a very low C3A composition which accounts for its high sulfate 

resistance. The maximum content of C3A allowed is five-percent for type V Portland 

cement. This type is used in concrete that has a tendency to be exposed to alkali soil and 

ground water sulfates. Another limitation is that the C4AF + 2»C3A composition cannot 

exceed twenty percent. This type of cement is essential in the construction of canal 

linings, culverts, and siphons because of their contact with ground waters containing 

sulfates. It is required because sulfates cause serious deterioration and swelling to the 

other types of Portland cement. The serious deterioration will eventually cause the 

concrete to fail. Type V Portland cement is a very uncommon type used in everyday 

construction but is routinely used in harsh marine environments [24]. 
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The reason of why Type V Portland Cement is resistant to sulfate attack is 

directly related to its hydration mechanism. Table 2.1 shows the four main reactions 

during Portland cement hydration. 

The first two reactions give C-S-H as the main product, which is the compound 

directly related to the strength properties of hardened cement/concrete. The fourth 

reaction rarely happens due to the small amount of gypsum commonly added to Portland 

cement (4-6%) and C4AF mostly remains as an un-hydrated compound (situation which 

may always be a source of problems as it will be described later). The third reaction is the 

main responsible of the low resistance to sulfates of most Portland cements. 

Since only a small amount of gypsum is added to the admixture, in most cases, 

the early-formed ettringite (C6AS3H32) reverts to a low-sulfate form often referred to as 

"monosulfoaluminate" (C4ASH12). However, this compound is unstable and will react to 

form ettringite when a new source of sulfate is present [25]. For sewers, this source may 

appear due to the exposure of the concrete to sulphuric acid in residual waters or because 

of the presence of the bacteria Desulfovibrio Desulfuricans which produces sulphuric 

acid under septic conditions [18]. 
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Table 2.1 Main hydration reactions of Portland cement. 

ALITE REACTION (MAIN) 

BELITE REACTION (LONG 
TERM) 
CALCIUM ALUMINATE 
REACTION 

CALCIUM FERROALUMINATE 
REACTION 

2C3S + 6H - • C3S2H3 + 3CH 

2C2S + 6H -> C3S2H3 + CH 

C3A + 3CSH2 + 26H -> C6AS3H32, 

which in the absence of gypsum reverts to: 

2C3A + C6AS3H32 + 4H -> 3C4ASH12 

C4AF + 3CSH2 + 21H -> C6(A,F)S3H32 + (A,F)H3 

which in the absence of gypsum reverts to: 

C4AF + C6(A,F)S3H32 + 7H -> 3C4(A,F)SH12 + (A,F)H3 

For Type I-III Portland cements, important amounts of monosulfoaluminate 

present in the hydrated mixture will lead to delayed ettingite formation, and thereby, 

cracking if the concrete is exposed to a late source of sulfates. In the case of Type V 

Portland Cement, since the amount of C3A is low enough to guarantee that a large 

amount of monosulfoaluminate will not be produced by the reverse reaction of ettringite 

due to lack of an early source of sulfates, the risk of cracking due to delayed ettringite 

formation is importantly reduced, although not 100% eliminated. 

Among the advantages of Portland cements are the following: 

• Most economical coating. 

• Type V resistant to sulfate attack because of its low C3A content. 

• Good adhesion to concrete surfaces. 

• Low viscosity, easy to be applied by gunite or spray lining processes. 

• Low thermal expansion coefficient. 

• Physiologically safe. 
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Some of its disadvantages are: 

• It is not 100% inert to sulfate attack. Usually degrades with time. 

• Tendency to the propagation of cracks. 

• High permeability allowing the diffusion of reactive or aggressive chemical 

species. 

• Long setting times. 

• Low resistance to wear and abrasion. 

• Low resistance to alkali-aggregate attack. 

2.2.3.2 Polymer Cement Concrete 

Polymer-modified mortar and concrete are prepared by mixing either a polymer 

or monomer in a dispersed, powdery, or liquid form with fresh cement mortar and 

concrete mixtures, and subsequently curing, and if necessary, the monomer contained in 

the mortar or concrete is polymerized in situ [26]. 

The polymers and monomers used as cement modifiers are shown in Fig. 2.1. 

- Elastomeric Latexes 

- Thermoplastic Latexes 

Thermosetting Latexes 

Bituminous Latexes 

L- Mixed Latexes Polymers and Monomers 
for Cement Modifiers 

Polymer 
Latexes 

- Redkpersibfc Polymer Powders 

- Water-Soluble Polymers 

Liquid Renins 

•— Monomers 

Fig. 2.1 Types of polymers used for PCC [26]. 
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With the addition of resin additives, there are created two-binder medium 

systems: the cement paste matrix and the plastics system mixed with it. With the use of 

stable synthetic resin emulsions and droplet sizes in the nanometer region, the hardening 

resin fills the fine interstices of the coating hydrate crystals and forms an "organic 

reinforcement" in the cement paste there. 

The mechanical properties of the plastic used only have a small influence on the 

properties of the hardened plastics-modified mortar. However, the geometric-mechanical 

bonding into the cement paste matrix and the adhesive bonding to the aggregate grains is 

of decisive importance [22]. 

It should be specially noted that increasing the amount of polymer over a 

determinate value will decrease the compressive resistance about 1 N/mm2 per 1% of the 

additive. Furthermore, the formation of foam must be prevented, for it would cause an 

excessive amount of pores and therefore, increase the concrete's permeability. 

Polymer modification of cement mortar and concrete is governed by both cement 

hydration and polymer film formation processes in their binder phase. The cement 

hydration process generally precedes the polymer formation process. In due course, a co-

matrix phase is formed by both cement hydration and polymer film formation processes. 

The mechanism for the formation of the polymer-cement co-matrix is shown in 

Fig. 2.2. As it can be seen, in the first stage immediately after mixing, cement and 

polymer particles, as well as the aggregates, stand together without any interaction (a), 

then, as soon as cement particles start to hydrate, a layer of polymer particles deposit 

partially over the hydrated cement particle (b). In the third stage, a mixture of cement gel 

and cement unhydrated particles are enveloped with a layer of polymer particles (c), and 
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in the final stage, the pores and interstitial spaces inside the hydrated cement matrix are 

filled by a polymer layer, which provides a bond between cement hydrates and 

aggregates (d) [26]. 

(a) Immediately after 
mixing 

e « • , O . 

(b) First »tap 

i " 8 HiliNi 

(g) Second step 

(d) Third step 
(Hardened structure) 

C 3 Unhydrated cement particles 

o Polymer particles 

I B Aggregates 

(Interstitial 8T« water) 

i£p, Mixtures of unhydrated cement 
particles and cement gel 

(On which polymer particles 
deposit partially) 

Mixtures of cement gel and 
unhydrated cement particles 
enveloped with a close-packed 
layer of polymer particles 

Cs , Cement hydrates enveloped 
xtP with polymer films or 

laejnberanea 

C? Entrained air 

Fig. 2.2 Mechanism of formation of polymer-cement co-matrix [26]. 

In Fig. 2.3., a proposed chemical reaction between a polyester, the cement matrix 

and an aggregate is proposed. After hydrolysis, an atom of oxygen of the polymer layer is 

able to react with the Ca2+ ions present in the interstitial solution in the pores of the 

cement matrix, and these ions are able to react with another atom bonded to another 

cement matrix surface or with oxygen from an aggregate. 

The sealing effect due to the polymer films or membranes formed in the structure 

also provides a considerable increase in waterproofness or watertightness, resistance to 

chloride ion penetration, moisture transmission, carbonation and oxygen diffusion, 
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chemical resistance and freeze-thaw durability. Such an effect is promoted with 

increasing polymer-cement ratio. 

0 OR (T XOR 
I -ROH (Hydrolysis) 

Polymer with carboxylate 
group (ester linkage) 

R: Alkyl group 

f-C-ORl 

I * J 

I Ca2- formed by cement hydration 

s i - o - s i - o -

Bondirtg to aggregate 
surface with S1O2 

0 o a 
\ • 

HJO a» Ca*» * HaO 
/ \ 

0 ,Q 0 0 

Cross-linking of 
polymer by Cat ions 

Fig. 2.3 A proposed chemical reaction between the polymer, cement matrix and 
aggregate [26]. 

Advantages of Polymer Concrete: 

• Decreased permeability, significantly lowering the diffusion of reactive or 

aggressive species. 

• Increased adhesion to concrete surfaces. 

• Higher resistance to wear and water flows. 

• Higher corrosion resistance. 

Disadvantages of polymer concrete: 

• High cost of polymeric additives. 

• Difficulty to control the composite's expansion coefficiency. 
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2.2.3.3 Reaction Resin Cements or Polymer Concrete 

If a mortar contains no cement and if the whole binding medium consists of a 

synthetic resin mixture capable of reaction at the usual construction temperatures, then 

one talks of a reaction resin mortar, or of a Polymer Concrete (PC). Most reaction resins 

are based on unsaturated polyesters, epoxy resins and "cold hardening" methacryl resins. 

These cements usually lack of capillary pore cavities; therefore, their durability in 

weathering and other operational conditions is excellent. What can be critical with certain 

types of resins is the durability of the bond to old concrete with its long-term moisturing, 

which are the typical conditions found in sewers. 

Reaction resin coatings are generally mixed from at least two components. The 

hardening occurs by means of chemical reaction immediately after the mixing of the two 

components. The speed of the reaction is a temperature-dependent quantity and 

decisively influences the hardening behavior. 

Because of the stresses that build up, consideration must be given to the different 

thermal coefficients of expansion of the piping material and the coating. If the 

coefficients of linear expansion of resin and pipe differ, then there will be 

disadvantageous effects on the adhesion or the bonding. The coefficients of the reaction 

resin can be markedly reduced by means of aggregates and very fine filler materials, 

which will achieve similar values to that of the cement concrete. 

The adhesion mechanisms between mineral and polymer substances are still very 

incompletely researched. In general, however, it can be said that very good adhesion 

strength can be achieved when the old concrete surface is clean and dry and the best 
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possible wetting occurs. Experience has also shown that the drier the pipe is during 

working, the better the adhesion will be [22]. 

Some of the advantages of polymer concrete are: 

• Porosity almost null, disabling the diffusion of reactive species to the 

concrete. 

• High resistance to wear and water flows. 

• Higher corrosion resistance than PCC. 

• May contain bactericide agents. 

Disadvantages of polymer concrete: 

• High cost of polymeric resins. 

• Sometimes the reactions may be hazardous for health or environmentally 

dangerous. 

• Adhesion may be poor under certain conditions. 

• Thermal expansion differences are considerable. 

2.2.3.3.1 Some Types of Resins for Polymer Concrete 

The first kind are Unsaturated Polyester resins (UP). By UP resins there is 

understood the solvents of unsaturated polyester in a polymerizable fluid monomer (e.g. 

styrol) (Fig. 2.4). The hardening reaction is a co- and mixed- polymerization (among 

others) that requires the formation of a radical for completion. The radicals are 

contributed mainly by the organic peroxides (hardener) whose effecting mechanism is 

triggered by heat (>80°C) or, for cold hardening, by the addition of an accelerator. 
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Care should be taken when handling these resins because the main components 

are easily flammable, peroxide is caustic, styrol water vapors are damaging to health and 

certain mixtures of hardeners and accelerators are explosive. [22]. 

Fig. 2.4 Unsaturated polyester (left) [22] and styrol (right). 

Epoxy resins are the second kind. Only two basic types of epoxy resins are used 

in structural work as standard resins, Bisphenol-A and Bisphenol-F as well as mixtures of 

the two. Common hardening systems in structural work are cyclo-aliphatic amines, 

aliphatic polyamines and polyaminoamines (polyamine). 

As with all chemical reactions, EP is also dependent on temperatures for its speed 

of hardening. Epoxy resins are characterized by high strength, good adhesion and 

chemical resistance. Epoxy resin coatings are resistant to mechanical influences. [22]. 

Fig. 2.5 shows an example of the reaction of an epoxy resin. 
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Fig. 2.5 An example of an epoxy reaction [22]. 

The last example are Polyurethane Resins (PR). Polyurethane is the generic term 

for plastic materials ranging from hard to elastic that are manufactured out of poly-

alcohols and poly-isocianates. The hardening reaction is a poly-addition. Two 

components are required in this reaction that must be available in an exact mixture 

relationship. 

Polyurethanes are characterized by their suitability for a large range of 

applications. It is possible, to a much larger extent than with other reaction resins, to 

adjust certain properties according to requirements, (e.g., expansion, resistance to wear, 

resistance to chemicals and to solvents). The resistance to chemicals generally rises with 

increasing hardness of the coating. 

With single-component materials in concrete construction, the reaction takes 

place with the water vapor available in the air or with the water vapor available in the 

pores system of the concrete [22]. 

2.2.4 Surface Preparation 

In order to be coated, the surface must be able to absorb stresses from the 

shrinkage of coating materials and inherent stresses in the coating system caused by 
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temperature and moisture changes. There inherent stresses comprehend radial and normal 

shearing stresses. 

After the right material has been selected, one must be sure that the concrete pipe 

for a coating must be [22]: 

• free of loose and soft parts and easily removed layers, 

• free of cracks parallel to the surface, 

• free of fines, 

• a roughness suitable for coating materials, 

• free of foreign materials (specially deposits of rats), 

• a surface must be eroded to the aggregate. 

If concrete shows chemical attack damage, further investigations must be made. If 

there is corrosion of reinforcement, carbonization and chloride contents must be 

determined. 

Among the methods for erosion of surfaces are the following: washing (also with 

chemicals), acidifying, brushing (manual and mechanical), caulking (chiseling, 

hammering), bush hammering, grinding, milling, sand blasting, stell shot spraying, moist 

spraying, steam jets, high pressure water jets (most commonly used), high pressure 

water-sand jets, scarfing, scarfing and milling and scarfing and sandblasting. 

Before the lining process is started, the pipe section must be thoroughly cleaned 

and inspected. The importance of proper surface preparation to the durability of any 

coating system cannot be overemphasized. Without proper surface preparation, the finest 

coating applied with the greatest of skill, will fall short of its maximum performance or 



33 

may even fail miserably. A coating can perform its function only so long as it remains 

intact and firmly bonded to the substrate. 

An adequately prepared surface not only provides a good anchor for the coating, 

but also ensures a surface free of corrosion products and contaminants that might shorten 

the life of the film by spreading along the coating/substrate interface and destroying 

adhesion or by actually breaking through the coating. 

The principle surface contaminants that adversely affect the performance of the 

coatings include oils, greases, dirt, rust, mill scale, water and salts (which may be the 

product of previous corrosion) such as chlorides and sulfides. These contaminants must 

be removed from the surface before paint is applied. 

Selection of the cleaning process is governed by the soil or contaminant to be 

removed, the degree of cleanliness required, the type of coating to be applied, and the 

size, shape, material and end use of the part. In addition, the speed with which the process 

runs will affect the cleaning characteristics. 

Methods of cleaning can be classified as: 

• Mechanical cleaning including power brushing, grinding and abrasive 

blasting. 

• Chemical cleaning including emulsion cleaning, solvent cleaning, vapor 

degreasing, alkaline cleaning, acid cleaning, pickling and steam cleaning. 

To meet rigid requirements for surface cleanness, mechanical and chemical 

cleaning methods can be used in conjunction [11]. 
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2.2.5 Coating Techniques 

2.2.5.1 Gunite 

Gunite is a concrete that is conveyed in a close pressure-resistant hose or pipe to 

the site and is there applied by means of spraying and then consolidated. Shuttering and 

vibration are not necessary. This process is usually a man-entering process, and spray 

lining is applied when the diameter is too small to fulfill this requirement. 

Depending on the type of starting mixture, gunite can be dry or wet. In the dry 

process, the premix consisting in cement, aggregates and admixtures is added in a dry 

state to the conveying pipe and then added with water at the spray jet. In the wet process, 

the premix consisting of cement, aggregate, additional water and additivies is fed in a wet 

state to the conveying pipe and conveyed in either a thin or thick flow. 

At the start of the process, gunite has a lot of rebound material that can in no case 

be used again as a part of the starting mixture. The expertise of the operator is critical in 

this process, since most of the steps are carried out by hand [22]. 

2.2.5.2 Spray Lining 

The pipe must be dry before it can be lined; usually a set of rubber disks are 

pulled through the pipe several times to ensure that any remaining encrustation and water 

are removed. A lining machine, which size depends on the pipe diameter, applies a 1:1 

sand mortar mix. Table 2.2 contains recommended pipe lengths and optimum lining 

thicknesses for lining operations. 
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Table 2.2 Recommended thicknesses for lining operations. 

Pipe diameter (mm) 

75-150 
150-450 
450-600 
>600 

Recommended pipe length (m) 

85-120 
165 
180 
550 max. 

Recommended lining 
thickness (mm) 
5 
5-6 
9-10 
9-10 

Immediately after the lining machine is withdrawn from the pipe section, the 

curing period begins. The pipe ends are capped to prevent air circulation which can lead 

to rapid drying and the subsequent cracking of the lining. Several important procedures 

must be followed during this period, which usually lasts 24-48 hours for normal Portland 

cement mortars. First, the lining thickness must be inspected to verify that it is in the 

acceptable range for the pipe diameter. A thickness gauge is inserted inside each end of 

the pipe section and thicknesses are determined at 300 mm intervals as far in as can be 

reliably measured. At each interval, lining thickness measurements should be made at the 

3, 6, 9 and 12 positions. A second task that must be performed during the curing period is 

the inspection of all appurtenances to ensure that they are in working order. Valves, 

especially ball valves, should be checked to ensure that they still operate through their 

full range of travel (note that it is not a good idea to line through valves, especially ball 

valves). When necessary, laterals and service connections that are <50 mm in diameter 

should be cleared by backflushing with water or by injecting compressed air. A third task 

is prevention of rapid curing of pipe that may be exposed to direct sunlight, which is 

usually accomplished by steady spraying with water during daylight hours. 

Several steps must also be followed during the reconnection process. First, any 

appurtenances that were cleaned and hand-lined must be inspected, approved and 

reconnected. Second, the newly lined pipe must be conditioned before the service can be 
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restored. In the conditioning process, the main is flushed to lower the pH, which can 

reach 10 or higher. It is then fully charged with chlorinated water and allowed to stand 

for periods that range from 15 min to 24 hours. Next, the main is discharged and 

dechlorinated and then recharged with system water. Bacteriological samples must be 

taken to ensure that water quality standards are met [27]. 

2.2.5.3 Curing 

Curing is an advantage for the intended application, since steam and hot water 

curing are standard methods already used for long time by the pipe industry [49]. 

2.2.6 Quality Tests Conducted on Coatings 

Many tests exist for the establishing the reliability of the protective coatings, and 

they can be subdivided in the following groups [28]: 

° Field tests 

° Simulated service tests 

° Laboratory (accelerated) tests 

Field tests produce the most reliable performance data because all the variables 

and phenomena that occur during real operation of the pipelines are present. However, it 

is always desirable to have control over a few of the most important variables that are 

known to affect a determinate process, and that is where simulated service tests (isolation 

of a few variables) and laboratory tests (isolation of one or two variables) are useful. It is 

important to know that in most cases the interaction between one or several variables for 

a process may be an important variable itself [29]. 

Specific requirements for the coating of sewers are detailed in Sections 2.2.6.1 

through 2.2.6.2 [22, 29]: 



37 

2.2.6.1 Corrosion Resistance 

For this test, prisms of coating material are prepared, and when fully hardened, 

they are stored under aggressive media: nitric acid, hydrochloric acid, sulfuric acid, or 

ammonium sulfate for up to 70 or 128 days. Then, samples are weighed and measured, 

and differences are determined. Five percent weight loss is maximum allowed and 2% 

should be acceptable [22]. 

As an alternative to mass loss, changes in cement paste strength after periods of 

sulfate exposure relative to the strength after seven days hydration can also be used to 

indicate the sulfate resistance of a determinate cement sample [12]. In this "accelerated 

test," cubic cement samples are exposed to a source of sulfates, while maintaining the pH 

and sulfate concentration constant, and compressive strength tests are made before and 

after the test. 

Another option of measuring sulfate resistance are the ASTM tests C452 and 

CI012 which are based on expansion. Much of the criticism for these tests centers on the 

specimen size, curing, form of sulfate exposure, duration of test and assessment of sulfate 

resistance by expansion measurements. The reason for this criticism is that the 

deterioration most often reported in the field is not caused by ettringite formation; rather, 

it is due to the descomposition of CH and C-S-H to gypsum by sulfate ions, and 

conversion of these products to aragonite (presumably due to carbonation). Neither of the 

currently accepted ASTM test methods predicts this form of damage. Because both 

ASTM C452 and CI012 use mortar bar expansion as a measure of sulfate resistance; only 

the ettringite form of sulfate attack is considered. On the other hand, when measuring loss 

of strength, both, ettringite formation and gypsum formation are taken into account. 
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ASTM C452 and C1012 may be used after the accelerated test to determine if the mode 

of failure was ettringite formation. 

The above test is used for direct sulfuric acid attack, and it is not suitable for 

sulfuric acid coming from a biological source. To prepare a biogenic corrosion test, a 

corresponding sewer atmosphere is created in an acclimatized water noxious gas 

cupboard. Gaseous H2S settles on the concrete surface and provides substrate for 

thiobacillus, a bacteria which is injected. The strength of attack depends on the number of 

bacteria present. Loss of substance is then measured. 

2.2.6.2 External Water Pressure Loading 

Amount of water pressure, duration of pressure can be varied. For resistance to 

immersion in water, a previously soaked concrete plate is coated to a thickness of 20 mm 

with the reaction resin mortar and immersed in water. After 28 and 90 days, the tensile 

adhesive strength of the coating on the plate is determined. The decay of the tensile 

adhesive strength must not be more than 20%. 

2.2.6.3 Abrasion Resistance 

This test is done with the use of coated half-pipes of channels that are built into 

the test stand and then tilted to about 22.5° backwards and forward to the horizontal over 

an eccentric shaft. In the channel it is placed a defined mixture of water and various 

aggregates through which the mechanical attack takes place. 

2.2.6.4 Bond Tensile Strength Test 

Adhesive strength is the tensile force active at right angles to a test surface that is 

required to separate a coating from the pipe. 
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2.2.6.5 Wetting and Drying 

The test setup consists of a stainless container for storing water, a high velocity 

fan for drying, electronic switches to control wet and dry cycles and a mechanism to 

maintain the water temperature. The samples must be stored without touching each other. 

The cycles were of two hours of soaking and three hours of drying, with an additional 

filling and draining period of one hour to give a total cycle time of six hours. Four wet-

dry cycles must be completed per day. The water is not recirculated, and hence any 

chemicals bleached from the samples will not affect the water quality for the subsequent 

cycles. 

2.2.6.6 Freezing and Thawing 

If the system is expected to undergo freezing and thawing processes in the field, it 

is recommended to perform the test according to ASTM C666, whether the tests are 

conducted in air or in water. 

2.3 Geopolymer Cements 

2.3.1 Basics 

Geopolymers are cementitious materials of a new generation discovered by J. 

Davidovits in the decade of the late 1970's. Geopolymers are inorganic alumino-silicate 

polymers that come from the chemical reaction under highly alkaline conditions between 

an active puzzolanic material (such as fly ash or metakaolin) and an activator solution 

based in a molar mixture of sodium hydroxide and an alkaline silicate (e.g., sodium or 

potassium silicate). Geopolymers are usually referred to as inorganic alumino-silicates 

[30]. The term "polysialate" was also suggested by Davidovits for the chemical 

designation of geopolymers based on silico-aluminate [31, 32, 33, 34]. 
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2.3.2 Raw Materials 

2.3.2.1 Metakaolin 

The term "metakaolin" designates different calcined kaolinite species, some 

reactive and some non-reactive. At about 100-200 degrees C, clay minerals lose most of 

their adsorbed water. The temperature at which kaolinite loses water by 

dehydroxilization is in the range of 500-800 degrees C. This thermal activation of a 

mineral is also referred to as calcining. Beyond the temperature of dehydroxylization, 

kaolinite retains two-dimensional order in the crystal structure, and the product is termed 

"metakaolin". The key in producing metakaolin for use as a supplementary cementing 

material or pozzolan is to achieve as near to complete dehydroxilization as possible 

without over-heating. Successful processing results in a disordered, amorphous state, 

which is highly pozzolanic. Thermal exposure beyond a defined point will result in 

sintering and the formation of mullite, which is dead burnt and not reactive. In other 

words, kaolinite, to be optimally altered to a metakaolin state, requires that it is 

thoroughly roasted but not burnt [35]. 

Before 1978, there were two species of metakaolin calcined, one at 550 C and the 

other at 925 C, but both metakaolins reacted weakly. However, the metakaolin 

manufactured in Europe in 1974 at 750 C proved to have excellent reactivity for 

geopolymerization [36]. 

2.3.2.2 Fly Ash 

The term "fly ash" is used to describe any of the fine particulate material 

precipitated from the stock gases of industrial furnaces burning solid fuels [37]. Fly ash 

generated in large quantities in coal-based thermal power plants is a potential raw 
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material for geopolymers due to the presence of silica and alumina bearing phases as 

major constituents. 

Fly ash was initially used in Portland cement concrete, not only as a pozzolan and 

to enhance rheological properties, but also for the reduction of the alkaline-aggregate 

reaction. 

Combustion residues do not require thermal pretreatment. The future could be that 

electricity utilities can produce energy and I0W-CO2 cement in the same plant. The coal 

in suspension is burnt instantaneously at around 1500 C. The remaining matter present in 

the coal (essentially constituted of silica, alumina and iron oxide), melts while in 

suspension, and then on rapid cooling as it is carried out by the fluid gases, solidifies into 

fine spherical particles. 

As a general rule, fly ash is extracted by means of electrostatic precipitators. 

Generally, fly ash is divided into two categories: low calcium fly ash (Class F) and high-

calcium fly ash (Class C). 

The fly ash spheres are made of amorphous and crystalline elements, mostly 

mullite, hematite, magnetite, quartz and unburned carbon residue. 

It appears that the reactivity of the fly ash depends upon the nature and proportion 

of the glass phase present, which in turn, for a given type and source of coal, is generally 

determined by the operating temperatures within the boiler. 

The average composition of coal fly ash in terms of Si:Al ratio may be 

appropriate for the synthesis of poly(sialate), Si:Al = 1 and poly(sialate-siloxo), Si:Al = 

2. Fly ashes can also be classified by their glass content (57-73%) low, (>90% high) and 
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intermediate (77-90%). High glass content favors geopolymerization and high content of 

anhydrite, hematite or magnetite slows down the reaction. 

2.3.2.3 Other Materials 

Other materials, including synthetic precursors, have been used to produce 

geopolymers [38, 39], but their use is still not widespread. 

Geopolymer cements can also be made from natural sources of pozzolanic 

materials such as lava or blast furnace slag. Blast furnace slag is a mixture of poorly 

crystalline phases of calcium, aluminum and silicon oxides. Slag is generated by high 

temperature as a liquid in the blast furnace during iron production. In the context of 

geopolymers, the key networking cat ions are Al3+ and Si4+; with divalent Ca2+ and Mg2+ 

atoms acting as modifiers of the net together with the alkalis [40]. Slags from particular 

blast furnaces are relatively consistent on their chemical properties; however, like fly 

ashes, blast furnace slags do vary between furnaces and locations. Shi [41] contributed 

significantly to the understanding of the reactivity of different slags, but much remains to 

be discovered respecting the networks they form after hardening [42]. 

2.3.3 Chemistry 

The polymerization process is carried out by putting the pozzolanic material in 

contact with the alkaline activator solution which gives as a result, the presence of 

polymeric chains. These polymeric chains can be hypothetically considered as a result of 

a polycondensation of ortho-sialate ions. Since the exact reaction mechanism has not 

been fully determined yet, it is usually assumed that the synthesis is carried out by the 

means of oligomers, (a polymer that consists of two, three, or four monomers, (e.g., 



43 

dimmers, trimmers) which provide the unitary structures of the tridimensional 

macromolecular net (Fig. 2.6). 
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Fig. 2.6 Sialate net of a geopolymer. 

Geopolymers that are based on alumino-silicates are called poly-sialates. This 

term is an abbreviation of poly-(silico-oxo-aluminate) or (-Si-O-Al-O-)n (being n the 

degree of polymerization). The sialate net consists of Si04 and AIO4 thetahedra linked 

together by shared oxygen atoms. Inside the cavities of the net, positive ions (Na+, K+, 

Li+, Ca++, Ba++, N H / , HSO+) should be present to balance the negative charge of Al3+ so 

that Al can be linked to 4 oxygens, like Si. The empirical formula for polysialates is the 

following: 

Mn(-(Si02)z-A102)n wH20, (5) 

where M is any of the above mentioned cat ions, n is the degree of polymerization, z, 

which can be 1, 2 or 3, determines de type of resulting geopolymer, that means if z = 1, 

the net will be of the polysialate type. If z = 2, then the net will be a poly(sialate-siloxo) 

and if z = 3, the net will be a poly(sialate-disiloxo), and w is the number of water 

molecules associated, as it is shown in Fig. 2.7 and 2.8. 



44 

CSt 

CSl/Or,, A1 70 

n C C K K - S i -

G r t h o s i c i 

jQ\, Ai^O^.jin * nS 

C J 
n C O H ) , - S i ~ 0 - A l - 0 -

COrQ,, 
©ti«jQtsiLa'Lcii.e 

;s^n -*-

O - A l -

l a t e 

\ 0 ^ t 

KUH,N,,OH 

r-H-0—*-nC0H5^ 
^ 

- S t - Q - A K O H O 

1 l < ' 
- C O H ) T — • C N a , K > C - S i - 0 - A l - 0 -

i i 
0 0 

CNa.K>~po lyC&to1 ate"} 

KOH, N,,OH 

nH_,Q —p-nCOH^3-• i v - O - A l - O - S - u 

i t J 1 
•Si O - A l - O - S t 

i . 1 
0 O 0 

- s i l o x o ) C ' S a . ' O - p o L y C s t a l G t e - : 

* 

) n •»- i f iH 

-COH)j 

- G - > | + 

5 1 t O X O ) 

-,0 

nH,-0 

Fig. 2.7 A proposed geopolymerization reaction. 
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Fig. 2.8 The three types of geopolymer. 

Geopolymers morphology ranges from amorphous to nearly crystalline. However, 

geopolymers used in the construction industry are usually amorphous. Even though the 

structural model of a geopolymer is still being researched, a hypothetical model proposed 

by Davidovits is shown in Fig. 2.9 [30]. 
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Fig. 2.9 Proposed structural model for K-Polysialate-siloxo geopolymer. 

2.3.4 Characterization 

The majority of geopolymeric materials of practical interest are non-crystalline. 

The structure cannot be investigated from X-Ray diffractograms or FTIR alone, NMR-

MAS spectroscopy provides better insight to the molecular framework. 

X-Ray diffractograms for various (Na-K)-polysialate siloxo reveal that the 

material has a diffuse peak at about 27-29 20. Sometimes, the precursors of geopolymer 

contain crystalline phases that may remain unreacted after the geopolymerization. FTIR 

results mainly deal with the behavior of the main (Si-Al-O) band, which is found at about 

1000 cm"1. An approximate relationship between the frequency of this band and the ratio 

of Si:Al in the aluminosilicate framework was observed by Milkey [43]. The higher the 

Al inclusions, the lower the wavelength. 
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The IR spectra for poly(sialate) and poly-(sialate-siloxo), as well as the 

geopolymeric precursors, consist of the strongest vibrations found in al aluminosilicates 

which are assigned to internal vibrations of Si-O-Si, Si-O-Al and are found at 950-1250 

cm"1 and at 420-500 cm"1. The stretching modes are sensitive to the Si:Al composition of 

the framework and may shift to a lower frequency with increasing number of tetrahedral 

aluminum atoms. 

29Si and 27A1 MAS-NMR studies represent a very powerful tool for the 

characterization of geopolymers. MAS-NMR can be used to determine if Al is 4-fold 

coordinated. In 29Si MAS-NMR it was shown that each AIO4 connected to a Si04 

connected to Si04 group increases 8(29Si) by approx 5 ppm [38, 44, 45]. 

2.3.5 Curing 

Curing of geopolymers can be done at ambient [46] or with the aid of temperature 

or steam [47]. Rapid drying during curing should be avoided, due to the large water loss 

during curing. This procedure is essential to obtain crack free materials [48]. Steam 

curing is an advantage for the intended application since steam and hot water curing are 

standard methods already used for long time by the pipe industry [49]. 

2.3.6 Properties 

Since the reaction mechanism of a geopolymer is polymerization and not 

hydration as for hydraulic cements, this process should mostly be aided by temperature, 

which may be a constraint for its further applications. Studies have shown [50] that a 

range of temperatures for the hardening of geopolymers goes from 30 to 90°C, depending 

on the raw materials used and the molar concentrations of the solutions. However, 

geopolymers are mostly produced at temperatures not below 60°C. 
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Setting times are controlled by the temperature of the process, but these cements 

usually set in a few hours after the beginning of the reaction. The rate of temperature 

should be carefully controlled to avoid an accelerated lost of moisture which may lead to 

the propagation of cracks. 

Geopolymers are usually more viscous than ordinary cement and harder to handle. 

The workability of geopolymers depend greatly on the ratio by mass of Si02 to NaOH 

and the concentration of NaOH. [X] Special super plasticizers are recommended as an aid 

during application. However, in spite of these disadvantages, geopolymers show 

excellent compressive resistance, superior even to that of rapid-setting cements, and their 

total strength is achieved in a maximum of three days. The curing period and type of 

activators are the most significant factors affecting the strength development of 

geopolymers. Longer curing time and higher curing temperature usually (up to 60°C) 

result in higher compressive strength, but because of its fast polymerization process, 

usually its maximum resistance will be attained within the first 3 days of hardening [51]. 

The compressive strength of geopolymers does not vary with age, and other factors also 

have influence like rest periods and water content [52]. 

Corrosion resistance of geopolymers is also a great advantage. Since their 

chemistry is not based on calcium aluminates which are subject to sulfate attack, these 

materials are practically inert to sulfate corrosion. The geopolymeric net does not show 

any affinity for a reaction with sulfate salts. Since it is composed by an alkaline silicate 

net, these cements are also inert to the alkali-aggregate reaction which commonly 

happens in Portland cements. 
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Sulfuric acid attack on geopolymers has been found to be controlled by diffusion 

mechanisms. There are two basic ways that a geopolymer can be affected by sulfuric acid 

corrosion: the first way is by the formation of gypsum out of the Ca(OH)2 present in the 

paste (usually when the raw material is fly ash, that typically has around 4-5% of CaO) 

after its reaction with sulfate ions. The second way is the leaching of the alkaline element 

(sodium or potassium) after the diffusion of the SO"2 ions in the geopolymer net. The 

ionic bond of Na/K to the geopolymer net does not seem to be strong enough to resist 

sulfuric acid corrosion, although the silicoaluminate net seems to be practically 

unaffected and the geopolymer can still retain a great percentage of its structural strength 

after sulfuric acid attack as can be shown under SEM observations [53]. 

Calcium-low or calcium-free geopolymers are specially recommended for 

corrosion resistance to sulfuric acid applications because calcium is known to readily 

react with sulfate ions in order to produce gypsum [54]. Geopolymers are practically 

immune to attack by nitric and hydrochloric acid, as well as sodium sulfate attack. It is 

important to select corrosion resistance aggregates in combination with the geopolymer 

in order to maintain its corrosion resistance properties [55]. 

Studies show that geopolymers respond to normal impact as brittle solids and 

their crushing strengths range from 32-57 MPa. Fly ash geopolymers are generally more 

resistant to erosion than non-fly ash geopolymers [56]. 

Accelerated chloride diffusion testing shows that the resistance of the geopolymer 

matrix to chloride penetration is orders of magnitude higher than that of OPC matrices, 

which provides significant advantages in prevention of rebar corrosion under aggressive 

salt-laden environments [57]. 
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Further, the geopolymeric net usually has voids where heavy metals and other 

toxic wastes may be accommodated and, therefore, stabilized preventing them from 

reaching other surfaces where they may become pollutants [50]. 

The application of geopolymers as a coating is still a vastly unexplored field. 

Even though there have been some reports showing that geopolymers may have an 

excellent adhesion to concrete surfaces [29], other results show the complete opposite 

results; therefore, the adhesion mechanisms between a geopolymer and a concrete surface 

need to be sufficiently researched. A geopolymer's behavior as a coating for fire 

protection has also been researched, showing that a geopolymer coated concrete wall may 

retain up to 54% of its compressive strength after being fired at 800°C for one hour [58]. 

Properly designed polyethylene molds were manufactured for the execution of these tests. 

2.3.7 Ecological Advantages 

There are several ecological advantages of these materials. The first is the 

reduction of C02 emisions by not using Portland cement to make concrete. C02 

emissions to the atmosphere can be reduced up to 90% by the use of geopolymer 

cements. One of Portland cements most important component is CaO, which comes from 

the burning of calcite (CaC03) at temperatures of about 1400 C. C02 is, therefore, 

released not only from the raw material combustion, but from the fuels used to reach the 

required temperature. The rule of thumb establishes that 1 ton of C02 is released to the 

atmosphere by every ton of Portland cement clinker produced. On the other hand, 

geopolymer cements come from wastes from coal burning processes (fly ash) and, 

therefore, do not require the manufacture of the raw material (as with Portland cement 

clinker) [59]. The absence of a high-temperature calcinations step in geopolymer 



50 

synthesis from ashes or slags is the main feature that provides this advantage. However, 

the use of metakaolin would increase the C02 emissions coming from geopolymer 

because of the raw material calcinations step involved, and these emmisions hinder their 

widespread use as raw materials [60]. To assess the C02 emissions reduction from 

geopolymer quantitatively, it is necessary to conduct life-cycle analysis. Results show 

that when geopolymers are carefully formulated, interesting reductions in their C02 

footprint can be obtained [61]. 

The second advantage is that by making use of the waste fly ash, the necessity to 

landifill this material is greatly reduced, if not eliminated. The danger of landfilling with 

fly ash was greatly acknowledged after the fly ash spill disaster that occurred in 

Tennessee in December 2008 which caused great environmental concern and cleaning 

costs of over $900 million dollars. This spill was followed a few weeks later by a smaller 

TVA-plant spill in Alabama which contaminated Widows Creek and the Tennessee 

River. The danger of these environmental disasters relies predominantly on the amounts 

of toxic heavy metals in these ashes which can cause water poisoning and, therefore, a 

great risk for the public health of communities [62]. 

2.3.8 Uses 

Geopolymer cement can be used virtually in any application for which Portland 

cement is currently used. However, and especially due to the high amounts of heat that 

are associated with it, geopolymers are starting to be used in pre-cast applications such as 

railway sleepers, pipes and others [63]. 
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Geopolymers can also be used for cheap construction technologies, like adobe 

style bricks which use lateritic clay earth as their main raw material, which require much 

less energy and are less expensive to produce [64]. 

2.3.9 Metal Encapsulation 

A geopolymer's ability to encapsulate heavy metals has been documented by a 

number of researchers all over the world. Minarikova [65], concluded that fly ash-based 

geopolymer can encapsulate metals like Zn2+, Cu2+, Cr3+, Cd2+ and Pb2+, with minimum 

losses in compressive strength. Perera [66] reported that geopolymer is able to 

incorporate Fe20 in its structure, while Ti02 and MnO are encapsulated but remained 

unreacted after the geopolymerization reaction took place. The leaching of many of these 

metals after geopolymerization was studied by Comrie [67], reporting a great potential 

for geopolymers to be used as a matrix for waste stabilization. Leaching values of these 

metals were shown to be much inferior to those in Portland cement concrete. 

Geopolymer's ability to encapsulate metals, however, is strongly dependant on the pH of 

the leaching compounds [68], but the level of metals to be encapsulated can be low, and 

in the order of 0.3-0.5%) [69]. 

This feature is particularly important also for ecological applications. Among the 

techniques used for toxic waste containment are the construction of barriers and waste 

encapsulation. A geopolymer's ability to encapsulate heavy metal ions could be a great 

advantage in this respect. Work has already been conducted in mines in several parts of 

the world, showing encouraging results to promote geopolymer as an effective means to 

immobilize these atoms [70]. 
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More particularly and in a more relevant manner to the present research, 

geopolymers have been shown to be able to encapsulate copper in a stable form. Terzano 

[71] reported that the mobility of Cu ions can be greatly reduced in the geopolymer 

matrix and that Cu was present mostly in the uncombined forms of Cu(OH)2 and CuO. 

One of the aspects that can favor Cu adsorption is a large pore structure [72]. Among the 

sources that can be used to obtain copper is Cu(N03,2-3H20 [73]. However, little is 

understood still about the mechanism of immobilization of copper in geopolymers and 

they could be a combined part of the geopolymer structure or simply be embedded 

interstitially among the pores of the structure [74]. 

2.3.10 Related Patents 

Many geopolymer patents have been filled out; however, the most relevant patent 

to what this research work accomplishes is an oilwell geopolymer composition [75] to be 

used in oilwell cementing techniques. The patent comprises a geopolymer admixture 

modified with a number of set retardants and accelerators and viscosity modifiers. 

However, many other geopolymer related patents exist. 

2.4 Surfactant Theory 

2.4.1 Surface Tension 

Surface tension is the property of a liquid that causes it to behave as an elastic 

sheet. It governs the shape that small masses of liquid can assume and the degree of 

contact a liquid can make with another surface. The units of surface tension are force per 

unit length or energy per unit area [76]. 

Surface tension is caused by the attraction between the liquid's molecules by 

various intermolecular forces. In the bulk of the liquid, each molecule is pulled equally in 
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all directions by the neighboring liquid molecules resulting in a force of zero. At the 

surface of the liquid, the molecules are pulled inwards by other molecules deeper inside 

the liquid and are not attracted so intensely by the molecules in the neighboring medium 

(air, vacuum, or another liquid). Therefore, all the molecules at the surface are subject to 

an inward force of molecular attraction which is balanced only by the liquid's resistance 

to compression, meaning there is no net inward force. However, there is a driving force to 

diminish the surface area and, in this respect, a liquid surface resembles a stretched 

elastic membrane. The molecules in the surface are in a higher state of energy than the 

inside molecules since they have fewer neighbors [77]. 

The formation of drops occurs when a mass of liquid is stretched. Therefore, 

liquids with higher surface tensions will form drops of a more circular shape that will 

take longer to detach from the main liquid. 

The surface tension of a liquid is an important factor due to two reasons: 

spray ability and wetting of a surface. There is a critical surface energy for wetting of a 

solid body and, thereby, assure adhesion. According to this theory (Zisman) [78], the 

surface of a solid body is wetted by every fluid whose surface energy is less than the 

critical surface energy of the solid body. 

In the wetting of normal concrete surfaces, the desired contact angle should be 

around 0 degrees, which means a spontaneous wetting of the concrete and capillary take-

up. When the angle becomes larger, a reduction of adhesion can be expected. The 

presence of low surface energy liquids such as oils, fats and polymers will prevent the 

adhesion of further layers [23]. 
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2.4.2 Surfactants 

Surfactants are wetting agents that lower the surface tension of a liquid, allowing 

easier spreading. They are usually organic compounds that are amphiphilic, meaning they 

contain both hydrophobic ("tails") and hydrophilic groups ("heads"). Therefore they are 

soluble both in organic solvents and water. 

Surfactants reduce the surface tension of water by adsorbing at the liquid-gas 

interface. Surfactants are often classified into four primary groups: 1) anionic or 

negatively charged; (e.g., carboxylates formed from the neutralization of carboxylic 

acids, sulfonates, from sulfonic acids, and sulfate esters); 2) cationic or positively 

charged; from which the most common example is substituted ammonium ion (RNH+); 3) 

non-ionic or uncharged polar portion; (e.g., polyoxyethylenated compounds in which the 

polarity and solubility are derived from a (CH2CH20)x structure) and 4) zwitterionic or 

dual charge which are far less common. 

The non-polar tail of the molecule is frequently a straight or branched chain 

hydrocarbon group of perhaps 8 to 20 carbon atoms, alkyl (8-15 carbons) benzene 

groups, or larger polymer structures. This portion must be comparatively large for there 

to be a significant surface activity; a short chain will not do. 

When a surfactant molecule is adsorbed at an interface, the nature of the molecule 

allows its two different portions to arrange themselves so as to have the polar head in the 

liquid phase and the non-polar into the air phase. This phenomena is the cause of the 

reduction of surface tension. The higher the concentration of a surfactant in solution, the 

lower the surface tension. 
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Normally used in the form of sodium salt, the ionized polar group becomes 

orientated into the aqueous phase, while the hydrocarbon chain orients into the air within 

the bubble [79]. 

2.4.3 Air Entraining Agents 

Air entraining agents are surfactants which are, as has been stated, materials 

whose molecules are adsorbed strongly at air-water or solid-water interfaces. That is, 

molecules that are abstracted from the solution phase and concentrated at the surface. 

Such molecules are termed "amphipathic". One portion of the molecule is polar and the 

other is non-polar. 

Air entraining agents are only a subgroup of surfactants. Air-entrainment is 

essential for the durability of concrete that will become wetted and exposed to freeze-

thaw conditions. All concrete should be air-entrained, except where high strength is 

required. Air entrainment improves the workability and consistency of plastic concrete 

and reduces bleeding. 

It should be noted that many, if not most, surfactants (soaps, detergents, etc.) 

could probably serve as air-entraining agents for use with concrete. Not all are equally 

good, and the critically important properties of the entrained air system depend on the 

nature of the surfactant used. 

The following are the most important types of air-entraining agents: 

1. Salts of wood resins (vinsol resin). The most widely used resin. Its active 

ingredient is sodium abietate, the sodium salt of abietic acid. 

2. Synthetic detergents (alkyl aryl sulfonates, alkyl sulfates; sodium dodecyl 

benzene sulfonate, sodium oleyl sulfate, sodium oleate). 
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3. Salts of sulfonated lignin (poor effect). 

4. Salts of petroleum acids. 

5. Salts of proteinaceous materials (not common). 

6. Fatty and resinous acids and their salts (not very effective). 

7. Organic salts of sulfonated hydrocarbons. 

Owing to the low cost of all these materials, it is unlikely that more expensive 

substances will be used in concrete until research proves why others are better. 

Vinsol resins, and the resins derived from pinewood and are, in general, are more 

effective in the presence of alkali metals such as calcium and sodium, and many 

admixture combinations are derived by prereacting with sodium hydroxide. 

Non-ionic surfactants are less efficient than anionic ones, but they are more stable 

in the presence of calcium ions, when anionic surfactants are precipitated and rely on the 

sparingly soluble nature of these materials in order to function. Bleed is reduced with the 

use of air-entrainers. 

Air-entraining agents used in concrete should be added as solutions dissolved in 

the mixing water of the concrete. If other admixtures are also used, the air-entraining 

agent should be added separately because sometimes there are reactions between 

materials that could result in a decrease in the effectiveness of the air-entraining agent. 

The dosage rate is usually between 0.3 to 1 ml/kg of cement, but this rate varies. 

Air entraining agents can be used with cements other than Portland cement. When 

used with blended cements, a larger amount of agent may be required. They have no 

appreciable effect on the rate of hydration of cement or on the heat evolved by that 

process. Even if they possess retardant properties, they are used in such small amounts 
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that such effects are negligible. Apparently they also have no effect on the chemical 

composition of the hydration products. The pore structure of the hardened cement paste 

was found to be the same, with or without air-entrainment. The only effect of these 

agents on cement paste seems to be the inclusion of the air-bubbles [80]. 

2.4.4 The Effect of Air Entrainment in Concrete 

The air bubbles in concrete are generated by the mixing action. All the air-

entrainment agent does is stabilize the bubbles that are formed; it does not generate them. 

Even non-air entrained concrete has some amount of entrapped air, but if the air-entrainer 

is used, there is more entrapped air and smaller bubble sizes are produced. 

The action of the air-entraining agent is to stabilize the smaller bubbles and to 

ensure they remain in the concrete. To avoid loss of strength, the total volume of the 

pores should not be larger than necessary; therefore, the pores should be small. The pores 

should not be readily filled with water if the paste is saturated; small isolated pores are 

most likely to meet this requirement. Typically, the pores are 10-250 urn in diameter and 

the average maximum distance from any point in the paste to the neareast void, called the 

void spacing factor, is about 150 urn. 

Without an air-entraining agent, the bubbles incorporated in the concrete by the 

mixing are lost relatively easily. They coalesce and form larger bubbles when they are 

brought to each other, then the larger bubbles come to the surface when the mixing action 

brings them relatively close, and they burst and are lost. 

One stabilizing action of the air-entraining agents is the result of its adsorption at 

the bubble surface. The adsorbed molecules form a film and are oriented with their polar 

beads in the water phase. If the molecules are charged, the bubble will acquire this 
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charge, so when two bubbles approach each other during the mixing, they experience an 

electrostatic repulsion that keeps them separate when they would otherwise coalesce. 

Inside the created bubbles, the polar tail is attached to the surface while the non-

polar tail is orientated in the inside of the bubble. Therefore, the surface of the air bubble 

becomes charged, and mutual repulsion between air bubbles occur. This phenomenon 

prevents the coalescence into larger bubbles. 

In cement and mortar, this surface charge causes the stabilized bubbles to adhere 

to the oppositely charged zones on cement and aggregate particles. The overall net effect 

is an aggregate-air-cement-air-aggregate type of bridge, improving the cohesion of the 

mix and further stabilizing the air-void system. This system improves the workability of 

the mix because of the effect of the bubbles acting like compressible bearings. 

Generally, an increased amount of agent dosage will increase the air content. A 

higher slump will have the same effect. Finely divided (fly ash, carbon black, etc.), 

material causes a reduction in the air content and an increase in the dosage of air-

entraining agent, due to the rapid adsorption of admixture by the amorphous carbon 

particles in the ash. 

Fine fractions tend to "bind" more of the mix water because of the requirement 

that it coats their larger surface areas, so the water cannot be a part of the bubble 

stabilizing process. This action is the reason why fly ashes with high LOI cause an 

especial reduction in air content and require additional air entrainer. The ashes that 

require more air-entraining agent also cause a greater instability and more rapid loss of 

the plastic concrete. Excessive sand fines and a richer mix also cause this problem. High 

temperature decreases bubble formation. Cements with high alkali entrain air more easily 



59 

that low-alkali ones; this air entrainment effect could be done due to the increase of the 

pH of the aqueous phase. Mixing increases air content to a certain value, then further 

mixing decreases it. Vibration reduces the air of concrete (and that is precisely its 

purpose). 

The air bubbles stabilized in the concrete increase the slump and workability, but 

they also decrease its strength, however, the improvement is more on workability than on 

slump. Workability refers to the case with which concrete can be transported, placed, 

compacted and finished. 

Lean lightweight aggregate concretes are specially benefited by the use of air-

entrainment. 

The increase in workability brought about by air-entrainment is usually described 

as some sort of "ball bearing" action of the air bubbles. These bubbles, which are usually 

several million per in3 of concrete, allow for easier deformation where the concrete is 

worked, resulting in an increase of workability. 

Air-entrainment affects viscosity in a greater way than yield point. Air-entrained 

concrete is less subject to bleeding and segregation than non-air entrained concrete. 

Bleeding is the emergence of mix water on the surface of concrete during and after 

placement. In addition, bleeding sometimes results in the formation of internal channels. 

Segregation is the settlement of solids that destroys the homogeneity of the 

concrete. Entrained air decreases segregation, but cannot correct those who are derived 

from poor grading of the aggregate, excessively lean or wet mixes and improper handling 

of concrete. 
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In terms of finishability, finishers sometimes feel that air-entrained concrete is 

more difficult to finish owing largely to its lack of bleed water. These are complaints that 

air entrained concrete is "sticky" and it hangs up on the finishing tools. The solution for 

this problem is to use magnesium or aluminum floats and a suitable delay before starting 

the finishing operations. Air entrainment does not affect the setting time of the concrete 

[81]. 

2.4.5 Superplasticizers 

Superplasticizers or high-range water-reducing admixtures are chemicals known 

by their dispersing capability that can be used at higher rates than water-reducing 

admixtures without a gross retardation of set and, therefore, "flowing" concrete can be 

obtained without excessive addition of water to the mix. All superplasticizers consist of 

high molecular weight, water soluble polymers with the majority being synthetic 

chemicals. They generally fall into four different categories: sulfonated melamine-

formaldehyde condensates, sulfonated naphthalene-formaldehyde concentrates, modified 

lignosulfonates and other synthetic polymers such as sulfonated polystyrene, 

hydroxylated polymers and copolymer dispersions. 

Several differences between superplasticizers and surfactants can be pointed out. 

The first is the size of the molecule. While superplasticizers are usually polymers with n 

in the order of thousands, surfactants and particularly air entrainers are much smaller 

molecules only in the size range of carbon chains of n in the order of dozens (Fig. 2.10). 

The explanation of the figure is the following; surfactants (left): a) Abietic acid, b) 

Sodium dodecyl benzene sulfonate, c) Sodium oleyl sulfate, d) Sodium oleate; and 
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superplasticizers (right): top) Sulfonated melamine formaldehyde concentrate, bottom) 

Sulfonated naphthalene-formaldehyde concentrate. 
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Fig. 2.10 Molecules of surfactants compared to molecules of superplasticizers [81]. 

The second difference is in terms of the polarity of the molecule. Surfactants have 

an electrically charged hydrophilic head and a non-charged hydrophobic tail. In the most 

common surfactants, the head is negatively charged. However, superplasticizers, after 

being dissolved, will have all of its edges being anionic and, therefore, they will have a 

negative charge on every end of their molecule (Fig. 2.11). 
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Fig. 2.11 Top: Surfactant molecule and formation of air bubbles (a, b). Bottom: 
Superplasticizer molecule [81]. 

The third difference is a result of their structure. As surfactants are polar on the 

head end and non-polar on the tail, they will adsorb on one end in the aqueous phase and 

on air in the non-polar end. This is the reason why surfactants are efficient in air-

entraining. On the other hand, superplasticizers will pile up around a cement particle and 

loosely attach to water on the other, producing the charge-repulsing effect that produces a 

decrease in viscosity (Fig. 2.12). It is fair to say that some modified lignosulfonate 

superplasticizers also have a weak air entraining effect, but that is not intended to be their 

primary effect [81, 82, 83]. 
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Fig. 2.12. Comparison of the action of surfactant molecules (top) and superplasticizer 
molecules (bottom) on cement particles. 

2.5 Bactericide Coatings 

In the past, chemical additions have been tried for the control of hydrogen sulfide 

in sewerage systems. Some of these additions are metal salts, like iron and zinc salts, 

which can chemically convert hydrogen sulfide in the wastewater to insoluble metallic 

sulfides. [84, 85] Various metals also have a toxic effect on sulfate-reducing bacteria 

(SRB) responsible for generation of sulfide when they are present at high concentrations 

in the wastewater [86]. However, the use of metal salts in sewage treatment was limited 

in the last two decades because of its high operational cost, safety concerns and 

regulations of the Mandated Industrial Pretreatment Program which restricts the levels of 

certain metals in municipal sewer systems. 
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Hewayde [14] investigated the effectiveness of a technique to inhibit the growth 

of Desulfovibrio Desulfuricans through coating the pipe's internal wall using either 

cuprous oxide or silver oxide embedded in epoxy. He found that coating the concrete 

pipes by either copper or silver oxide effectively reduced the bacteria count in the 

nutrient solutions. The coatings also helped reducing significatively the internal surface 

covered by a slime layer. However, mechanical adhesion of the copper oxide coatings 

was significatively better than for silver coatings, therefore, making it more durable in 

real life applications. 

2.6 General Conclusions 

The problem of rehabilitation of sewers in North America is facing a critical 

phase since many buried infrastructures are in need of repair. Common rehabilitation 

options include lining with either cementitious or polymeric materials. Portland cement 

based concrete has limited ability to withstand acidity generated by anaerobic conditions 

that exist in many sewage conveyance systems over extended periods of time. Over the 

past 60 years numerous approaches were developed for protecting concrete structures 

from sulfuric acid attacks with varying degrees of success, but always with significant 

added cost to either construction and/or operations. It is proposed that a more economic 

solution might be the development of a novel cementitious material with a different 

chemical composition that exhibits enhanced resistance to acidic environments by virtue 

of its own chemical composition. 

Geopolymers are cementitious materials of a new generation increasingly gaining 

reputation for construction applications. Their outstanding final properties like high early 

compressive strength and high corrosion resistance make them suitable for a large 
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number of projects worldwide. However, one of the main drawbacks for the generalized 

use of geopolymers is their poor workability and short setting times. 

The raw material for geopolymers is of extreme importance. Fly ash is a great 

candidate because it is a waste coming from coal burning operations, and it is widely 

available worldwide. While Class C ash is a more commercial product and can be used as 

an admixture for Portland cement concrete, Class F ash finds little application and is 

commonly disposed in landfills. 

Therefore, geopolymers seem like a good candidate material for the rehabilitation 

of sewers and manholes if their workability problems can be resolved. 

Surfactants have been commonly used in the concrete industry as air-entrainers. 

They help the concrete entrap air bubbles of a small and regular size and prevent concrete 

fatigue under freeze and thaw conditions. However, surfactants also have a significant 

effect on plastic concrete viscous and surface tension properties. Air entrained concrete is 

often more workable and easier to pour; however, these characteristics have been poorly 

researched or taken advantage of in the concrete industry. 

These properties of surfactants are of great interest if they can improve 

geopolymer's workability. Since a geopolymer coating is intended to be developed, it is 

interesting to investigate if surfactants would be useful to overcome the sprayability 

problems of geopolymers. 

Furthermore, to eliminate the problem of biogenic corrosion from the beginning, 

attempts have been tried to create biocide coatings by means of incorporating copper 

oxide in epoxies with successful results. Geopolymers are known to be able to have the 

capacity to encapsulate heavy metals from wastes. The capability of geopolymer to be 
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able to encapsulate copper and their posterior use as a biocide could be a tremendous 

opportunity to create a product with superior properties to those already available in the 

rehabilitation industry. A complete rehabilitation solution could therefore be available to 

a wide market of municipalities across North America, and the task of providing a better 

solution to cope with the growing rehabilitation needs could be achieved. 



CHAPTER 3 

STUDY OF THE MAIN PARAMETERS OF 

GEOPOLYMERIZATION 

3.1 Introduction 

As it was mentioned in the literature review, there are important variables that 

play a significant role in geopolymerization. When only sodium solutions are used, those 

variables can be grouped in three sections (Table 3.1). 

Table 3.1 Important variables in geopolymerization 

RAW MATERIAL 
Type (fly ash, metakaolin, etc) 

Class (Fly Ash Class C, F, etc) 
Chemical composition 
Phase distribution 

Particle size distribution 
Impurities 

ACTIVATOR SOLUTION 
Silicate type 

Hydroxide molarity 
Silicate/Hydroxide ratio 
Alkaline solution/Raw material 
ratio 

CURING 
Type (dry heat, steam, etc, 
room) 
Temperature 
Time 
Rest period 

Significant work has been published with respect to all of these variables, 

however, it was necessary to make preliminary studies at the Trenchless Technology 

Center at Louisiana Tech University to gain in-house experience with the fabrication of 

these materials. 

The first step was to reproduce a geopolymer formulation from the literature [58] 

and to evaluate its compressive strength. Next, the effect of the silicate type, 
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silicate/hydroxide ratio, activator solution/fly ash ratio and different temperature and time 

regimes was evaluated. The fly ash utilized for this initial test was kept constant. Finally, 

a more comprehensive study was conducted by means of a Taguchi design of 

experiments, using three different types of fly ash, the activator solution/fly ash ratios and 

more temperature/time regimes. 

3.2 Production of a Geopolymer Sample at 
Louisiana Tech Laboratory 

3.2.1 Formulation 

The formulation for this preliminary test can be seen on Table 3.2 [58]. 

Table 3.2 Formulation for the first geopolymer experiment at Louisiana Tech. 

REAGENT 
Sodium Hydroxide 15 M 
Sodium Silicate "D" 
Metakaolin 

% 
18.3 
36.7 
45 

3.2.2 Raw Materials 

3.2.2.1 Metakaolin 

Metakaolin from PowerPozz was used for this first experiment. The chemical 

composition is shown on Table 3.3. 
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Table 3.3 Chemical composition of the metakaolin sample used for this test. 

OXIDE 
Si02 

AI2O3 
Fe203 

CaO 
MgO 
SO3 
LOI 
Na20 
K20 
TOTAL 
Si/Al ratio 

WEIGHT % 
54,26 
39,82 
2,91 
0,70 
1,51 
0,01 
0,72 
N.A 
N.A 
99,93 
1.36 

The formulation from the literature [58] is very similar (Table 3.4): 

Table 3.4 Chemical composition of the metakaolin used for the literature reference paper. 

OXIDE 
Si02 

A1203 

Fe203 

CaO 
MgO 
SO3 
LOI 
Na20 
K20 
TOTAL 
Si/Al ratio 

WEIGHT % 
52,1 
43,0 
0,7 
0,0 
0,3 
N.A. 
0,8 
0,1 
2,5 
99,5 
1.21 

The Si/Al ratio for our metakaolin is slightly superior to the one used by [53], but 

still suitable for geopolymer cement. Another difference to be taken into account is the 

2.91%) of ferric oxide in the metakaolin used for our test, which may just cause slight 

color variations. 

The particle size distribution (Fig. 3.1) of the metakaolin used for the experiments 

was also analyzed. The full results can be seen in Appendix A. 1. 
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Fig. 3.1 Particle size distribution of the metakaolin used for the test. 

The particle size is finer than that of cement, which will make the paste highly 

reactive, but also highly hygroscopic. 

3.2.2.2 Alkaline Solution 

A combination of 15 M NaOH solution and a commercial sodium silicate with 

chemical composition of 14.7 % by weight Na20 and 29.4 % by weight Si02 was utilized 

as the activator solution for the geopolymer mortar. The silicate was obtained from the 

PQ company and it is labeled commercially as "D". 

3.2.3 Procedure 

The first step was to prepare the alkaline solution. Na(OH) pellets were dissolved 

in distilled water until a 15 molar solution was obtained. Then, the NaOH solution was 

mixed with the sodium silicate solution in the proportions indicated in Table 3.2. After a 

uniform mixture was obtained, metakaolin and activator solution were thoroughly mixed 

by hand (Fig. 3.2) until they formed a thick slurry. 
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Fig. 3.2 Mixing of activator solution and metakaolin to produce geopolymer cement. 

Then, three 3x6" cylinders were casted (Fig. 3.3) and cured for 24 hrs. Two were 

cured at 75°C and 1 at room temperature. 

4 u 
'&£J& 

% 

Fig. 3.3 Casting of geopolymer specimen (left), Geopolymer specimens obtained at room 
(left) and 75°C (right). 

3.2.4 Results 

The surface of the cylinders was smooth. The specimen cured at room 

temperature had a slightly darker color, apparently because it did not lose as much water 

as the other two. 
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Three day compressive strength was determined for these specimens to establish a 

comparison with the literature. The results are shown in Table 3.5: 

Table 3.5 Compressive strength of sample geopolymer specimens. 

SPECIMEN 

75°C cured (#1) 
75°C cured (#2) 
Average of #1 and #2 
Room temperature cured (#3) 
Literature (26) 

COMPRESSIVE STRENGTH 
(psi) 

3895.86 
3574.98 
3735.42 
1848.33 
3916.01 

3.2.5 Observations 

A large difference in compressive strength between the cured and uncured 

geopolymer specimens could be observed. The paste consistency of these specimens was 

very thin, so a much lower raw material/activator solution ratio could be utilized. This 

experiment was the first time that geopolymer cement was produced at Louisiana Tech 

Laboratories. 

3.3 First Preliminary Design of Experiments 

3.3.1 Objectives 

The evaluation of the effect of five variables (two related to curing and three 

related to the alkaline solution) in the process of geopolymerization. 
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3.3.2 Design of Experiments 

The Design of Experiments for this stage can be seen in Table 3.6. 

Table 3.6 Research variables for the first preliminary design of experiments. 

RESEARCH VARIABLE 
Silicate type 
Curing time 
Curing temperature 
Activator solution/Fly ash ratio (AS/FA) 
NaSi02/NaOH ratio 
FIXED PARAMETERS 
NaOH concentration 
Fly ash:sand ratio 
RESPONSE VARIABLE 
Compressive strength in cubes 

LEVELS 
DandN 
1, 2 and 3 days 
60 and 90 C 
0.54 and 0.82 
1.5 and 2.5 

14 M 
1:1 
NORM 
ASTM C-109 

Three repetitions were made for each combination for a total of 324 cube 

specimens. First, the effect of the silicate type was evaluated. Then, the effect of the 

curing temperature, the activator solution/fly ash ratio and the silicate/hydroxide ratio 

were evaluated for three curing times. 

3.3.3 Materials 

Fly ash Class F was obtained from a source in Avon Lake, OH with the chemical 

composition shown on Table 3.7, the phase composition shown on Table 3.8 and particle 

size distribution shown on Fig. 3.4. The data for Fig. 3.4 can be seen on Appendix A.2. 



Table 3.7 Chemical composition of the fly ash. 

Oxide 

Si02 
A1203 
Fe203 
CaO 
MgO 
S03 
LOI 
Na20 
K20 
Total 
Si02/A1203 
Si02 + A1203 

Ohio 
Fly Ash, wt% 

50.25 
22.56 
20.0 
2.1 
0.00 
0.50 
2.48 
0.00 
0.00 
97.89 
2.23 
72.81 

Table 3.8 Phase composition of the fly ash. 

Minerals 
Quartz 
Mullite 
Amorphous 

wt% 
10.33 
25.27 
64.4 
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Fig. 3.4 Particle size distribution of the fly ash used in this study. 

The composition of the sodium silicate solution used on this set of experiments 

can be seen in Table 3.9: 
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Table 3.9 Chemical composition of the sodium silicate utilized. 

TYPE 
N 
D 

Si02/Na20 
3.22 
2 

% Na20 
8.2 
14.7 

%Si02 

26.4 
29.4 

VISCOSITY (cPoise) 
180 
400 

Sodium hydroxide pellets of 99%) purity were used to prepare the molar solutions. ASTM 

C-778 standard sand was used. 

3.3.4 Methodology 

A 14 M NaOH solution was prepared by dissolving NaOH pellets in distilled 

water and allowed to cool one day. An activator solution (AS) was prepared by mixing 

the hydroxide and silicate in the desired proportions. The weight proportions are shown 

in Appendix A. 3. The activator solution was gradually added and the mixture was stirred 

manually. The cement was casted on 2" cube molds and oven-cured at 60 or 90 degrees 

for one, two and three days before testing. Plastic bags were used to cover the samples 

and prevent the loss of moisture. A universal machine was used to perform the 

compression tests. 

3.3.5 Results and Discussion 

The full results of this test are shown on Appendix A.4 and also on Fig. 3.6-3.8. 

As it can be seen on Fig. 3.5, silicate "D" (with a larger amount of solids and a 

NaO/Si02 ratio of 2) performs better in terms of compressive strength than silicate "N" 

(NaO/Si02 ratio of 3.5) achieving higher values for all days of curing. Therefore, 

subsequent analyses were made only for silicate "D". 
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Fig. 3.5 Effect of the type of silicate. 

Fig. 3.6 shows that the 0.53 AS/FA ratio gives slightly better results than the 0.82 

ratio. Both ratios produced very fluid mortar pastes. 
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Fig. 3.6 Effect of AS/FA ratio. 

Fig. 3.7 shows that there is no significative difference between the two 

NaSi02/NaOH ratios chosen. For economical reasons, a ratio of 1.5 was chosen for the 
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next stage. However, it must be considered the economical convenience might change 

and that both ratios produce similar results. The temperature effects can be seen in Fig. 

3.8. While 90 C shows a slight better performance in 1 day of curing, for longer curing 

times, there does not seem to be any significant difference with respect to 60 C, so it may 

be desirable to use 60 C in a certain application if the addition of 30 C implies a higher 

cost. 
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Fig. 3.8 Effect of temperature. 

3.3.6 Conclusions 

Silicate "D" contains a large amount of solids; therefore, more reactive material 

will be available to participate in the reaction, that is why silicate "D" provides better 

compressive strength than silicate "N". 

Similarly, as for Portland cement, a lower w/c ratio down to a certain limit is 

desirable to obtain better compressive strength, the activator solution/fly ash plays the 

same role in geopolymer concrete; that may be the reason why a lower ratio produced 

better compressive strength results for these experiments. 

While curing at 90 C provides slightly better results at 1 day, this effect becomes 

negligible at 2-3 days, this fact is important when cost comes into consideration. 

The convenience of using either NaSi02/NaOH ratio or another will depend on 

the commercial availability of such products in the market. The fact that these two ratios 

provided the same results provides flexibility to choose. 
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3.4 Second Design of Experiments 

3.4.1 Objective 

To prepare a testing plan for the evaluation of different sources of fly ash as a raw 

material for geopolymerization and the evaluation of different curing regimes. Lower 

AS/FA ratios were also tried during this stage. 

3.4.2 Design of Experiments 

The design of experiments for this stage can be seen on Table 3.10. 

Table 3.10 Research variables for the first preliminary design of experiments. 

RESEARCH VARIABLE 
Fly ash source 
Activator solution/Fly ash ratio (AS/FA) 
Curing time 
Curing temperature 
FIXED PARAMETERS 
NaOH concentration 
Fly ash:sand ratio 
Na2Si03/NaOH ratio 
Na2Si03 type 
RESPONSE VARIABLE 
Compressive strength in cubes 

LEVELS 
Tatum, TX; Ruston, LA and Baton Rouge, LA 
0.35, 0.45 and 0.5 
0.5, 1,3,6, 12and24hrs 
Room, 60 and 90 C 

14 M 
1:1 
1.5 
D 
NORM 
ASTM C-109 

A Taguchi design of experiments for the variables mentioned in Table 3.10 was 

prepared using MINITAB to reduce the number of experiments, since one of the 

variables had more levels than the rest. The list of experiments from MINITAB can be 

seen in Table 3.11. The weights for each experiment can be seen in Appendix A. 5. 



80 

Table 3.11 Design of experiments obtained using MINITAB. 

Time 
0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
3.0 
3.0 
3.0 
6.0 
6.0 
6.0 
12.0 
12.0 
12.0 
24.0 
24.0 
24 0 

Temp 
Room 

60 
90 

Room 
60 
90 

Room 
60 
90 

Room 
60 
90 

Room 
60 
90 

Room 
60 
90 

SA/FA 
0.35 
0.45 
0.50 
0.35 
0.45 
0.50 
0.45 
0.50 
0.35 
0.50 
0.35 
0.45 
0.45 
0.50 
0.35 
0.50 
0.35 
0 45 

Fly ash1 

Tx 
Ti 
Mi 
Ti 
Mi 
Tx 
Tx 
Ti 
Mi 
Mi 
Tx 
Ti 
Mi 
Tx 
Ti 
Ti 
Mi 
Tx 

3.4.3 Materials 

Three different sources of fly ash were used for this study (Tatum, TX; Ruston, 

LA, Baton Rouge, LA). Their chemical composition can be seen on Table 3.12. Sodium 

hydroxide in pellets (99% purity) was used to prepare the molar solutions. Type "D" 

sodium silicate from PQ was also utilized. 

1 Tx = Tatum, Ti = Ruston, Mi = Baton Rouge 
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Table 3.12 Oxide composition of the fly ashes used in this study. 

OXIDE COMPOSITION 
Si02 
A1203 
Si02/A1203 
Si02+A1203 
CaO 
Fe203 
MgO 
S03 
Moisture content 
LOI 
Finess (% passing 325) 
Specific Gravity 

BOYCE, LA 
37.77 
19.13 

1.97 
56.90 
22.45 

7.33 
4.81 
1.56 
0.12 
0.17 

80.36 
2.57 

MOUNT PLEASANT, 
TX 

55.61 
19.87 
2.80 

75.48 
12.93 
4.52 
2.49 
0.49 
0.02 
0.22 

77.30 
2.48 

TATUM, TX 
48.7 
16.6 
2.93 
65.3 

18.72 
6.93 
3.91 
0.85 
0.12 
0.49 

85.83 
2.48 

3.4.4 Methodology 

Mortar compressive strength was evaluated under the norm ASTM C-109. 560 g 

of NaOH powder was dissolved in one liter of tap water and allowed to cool to prepare a 

14 M NaOH solution. The NaOH solution was then mixed with the sodium silicate and 

mixed thoroughly. The fly ash and sand were premixed dry. The activator solution was 

then added to the admixture of fly ash and sand and mixed until a uniform paste was 

observed. The fresh geopolymer paste was cast in the 2"x2"x2" in molds and stored in 

the oven or at room temperature. 

3.4.5 Results and Discussion 

A summary of the results obtained with the present design of experiments can be 

seen in Table 3.13 and Fig. 3.8. The full results are in Appendix A.6. 
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Table 3.13 Results of the TAGUCHI design of experiments obtained with MINITAB. 

Time 

0.5 
0.5 
0.5 
1.0 
1.0 
1.0 
3.0 
3.0 
3.0 
6.0 
6.0 
6.0 
12.0 
12.0 
12.0 
24.0 
24.0 
24.0 

Temp 

R 
60 
90 
R 
60 
90 
R 
60 
90 
R 
60 
90 
R 
60 
90 
R 
60 
90 

AS/FA 

0.35 
0.45 
0.50 
0.35 
0.45 
0.50 
0.45 
0.50 
0.35 
0.50 
0.35 
0.45 
0.45 
0.50 
0.35 
0.50 
0.35 
0.45 

Fly ash 

Tx 
Ti 
Mi 
Ti 
Mi 
Tx 
Tx 
Ti 
Mi 
Mi 
Tx 
Ti 
Mi 
Tx 
Ti 
Ti 
Mi 
Tx 

Comp 
strength 
1091.7 
1316.7 
6850.0 
1700.0 

12966.7 
3750.0 
750.0 

3950.0 
12983.3 
3783.3 
8441.7 
10616.7 
3383.3 
5766.7 
16300.0 
950.0 

10533.3 
9325.0 
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Fig. 3.9 Main Effects Plot from the Taguchi Design of Experiments 

It can be seen in the main effects plot that curing times can be divided in three 

statistical groups. The first group contains only the 0.5 hr curing, for which the effect was 

similar to curing at room temperature. The second group contains curing times of 1 and 3 

hours, with an average near to 6,000 psi of 1-day compressive strength. The third, and 

most important group, is the one that contains curing times of 6, 12 and 24 hours. The 

results for this group show that if the right kind of fly ash and mix design is selected, 

good results in terms of compressive strength may be achieved with times as low as 6 

hours of curing. This result is the most important in terms of compressive strength for the 

evaluation of different curing times. Fig. 3.9 shows an apparent tendency of compressive 

strength to decay after 24 hrs, but there was no statistical difference compared to the 

results at 12 hours. 



84 

In the curing temperature graph, it is shown the important difference between 

room and both temperatures of 60 and 90 C. This graph shows the importance of curing 

temperature in geopolymerization. Curing at room temperature does not "kick start" the 

geopolymerization reaction and, therefore, the gain in compressive strength and other 

properties is minimal because of the deficient amount of geopolymer formed. The 

temperature selected for a given geopolymer application will depend on the final 

properties desired and the industrial process that will be used for its manufacture (precast 

etc.) 

The descending line in the graph for the activator solution/fly ash ratio shows that 

there is an inverse relationship between the activator solution/fly ash ratio and the 

compressive strength of the geopolymer. This relationship means that in this frame, the 

lower the AS/FA ratio, the higher the compressive strength that will be achieved. There 

must be an optimal point for this ratio, but the lower limit of workability is more likely to 

be achieved first. 

For the purposes of this study, two fly ashes of the same type (Tatum, TX), but of 

different source (Tatum, TX and the TXI plant in Ruston) were used; they were assumed 

to provide similar results and that effect can be seen in the fourth graph of the main 

effects plot. The fly ash from Louisiana (coded as Mi) provided a significantly higher 

compressive strength. This result suggests that the type of fly ash used in the admixture is 

a very important variable. The reason why this variable is put in the fourth place in the 

ranking is because two of the levels were nearly identical. However, two fly ash types 

that were initially considered had to be discarded because they did not produce a quality 

geopolymer. The first one came from Mansfield, LA. The sample seemed to be 
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contaminated with ammonia, and a caustic smell appeared when it came in contact with 

the NaOH. The fresh geopolymer contained bubbles and didn't set in 24 hours. The other 

sample that did not offer a good performance was the one coming from Courtland, LA. 

The powder was highly hygroscopic; it required 1.8 more activator solution to form a 

paste with some workability. Further, when cured at 60 C, all the samples expanded and 

the result was a highly porous rock with little or no compressive strength. 

3.4.6 Conclusions 

The fly ash source is a very important variable for geopolymerization. It is 

responsible in a large degree of the mechanical properties of the resulting geopolymer. 

However, the activator solution also plays a significant role in the final properties, and it 

seems that a low activator solution/fly ash ratio is desirable, similarly to a low 

water/cement ratio for Portland cement. The curing temperature is important for low 

curing times, but if curing times exceed 24 hours a lower temperature can be used with 

good results. 

3.5 General Conclusions 

The aforementioned results show the first time that geopolymers were produced 

in a Louisiana Tech facility. Sodium silicate and hydroxide were selected because of their 

cheaper price, better performance and local availability. Although several raw materials 

can be used for geopolymerization, fly ash shows a great potential especially for being a 

waste and with a more suitable particle size than metakaolin, which is more hygroscopic, 

for better workability in the practice. 

Results conducted at Louisiana Tech also confirmed the thermally-induced nature 

of geopolymerization and showed that lower activator solution/fly ash ratios are preferred 
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to achieve high strength. The silicate/hydroxide ratio is also an important variable than 

can be manipulated to achieve the desired results. 

Elevated temperature is only desirable if short curing times are needed, but care 

must be taken to prevent excessive evaporation and cracking. The optimal curing time is 

1 day, and extended curing would only be necessary if low curing temperatures are used. 

The fly ash source is additionally a fundamental variable for geopolymerization 

and critical for the final properties of the hardened material. For some types of fly ash, 

curing times could be reduced. 



CHAPTER 4 

CORROSION RESISTANCE OF 

GEOPOLYMER COMPARED 

TO PORTLAND CEMENT 

4.1 Introduction 

The previous chapter showed the testing conducted to evaluate the effect of 

several variables relevant to geopolymerization on the compressive strength of the 

material. The present chapter presents the study of the corrosion resistance of different 

geopolymer formulations exposed to sulfuric acid corrosion with the intent of selecting 

the appropriate raw material for the coating design. 

ASTM C-261 was selected as the testing procedure to achieve this goal. 

Geopolymers prepared from three different precursors were used. A corrosion resistant 

cement developed by [16] was selected as the blank for comparison. 

Typical pH from sewers was used for the evaluations. 

4.2 Materials 

Geopolymer mortar cubes prepared from three precursors were utilized in this 

study, namely fly ash from Tatum, TX (class C) and Avon Lake, OH (class F) and a 

commercially available metakaolin powder. A blend comprised of 92 % OPC and 8 % 

silica fume by weight was utilized for comparison purposes. The chemical composition 
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of the four precursors was determined by XRF analysis and is given in Table 4.1. The 

Si02 to AL.O3 mass ratio and the sum of Si02+Al203 are also listed. 

Table 4.1 Chemical composition of metakaolin, fly ash and OPC utilized in study. 

Oxide 

Si02 
A1203 
Fe203 
CaO 
MgO 
S03 
LOI 
Na20 
K20 
Total 
Si02/A1203 
Si02 + 
A1203 

Metakaolin, wt % 

54.26 
39.82 
2.91 
0.70 
1.51 
0.01 
0.72 
0.00 
0.00 
99.93 
1.36 
94.08 

Class C 
Fly Ash, 
wt% 
48.7 
16.6 
6.93 
18.72 
3.91 
0.85 
0.49 
0.00 
0.00 
96.2 
2.93 
65.30 

Class F 
Fly Ash, 
wt% 
50.25 
22.56 
20.0 
2.1 
0.00 
0.50 
2.48 
0.00 
0.00 
97.89 
2.23 
72.81 

OPC, wt 
% 

26.12 
4.25 
3.65 
58.51 
1.59 
2.36 
2.67 
0.14 
0.52 
99.8 
6.15 
30.37 

Chemically resistant fine aggregates were used for all specimens. A combination 

of 14 M NaOH solution and a commercial sodium silicate with chemical composition of 

14.7 % by weight Na20 and 29.4 % by weight Si02 was utilized as the activator solution 

for the geopolymer mortar. 

4.3 Mix Design 

The mix designs used for this study are summarized in Table 4.2. The metakaolin 

formulation was based on a mix design proposed by [32]. Fly ash geopolymer mix 

designs were based on prior work conducted by the authors [33]. The weight proportions 

are shown on Appendix B. 1. 
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Table 4.2 Mix designs for fly ash, metakaolin and OPC based mortars. 

Raw material 

Raw material/Sand wt ratio 
Na2Si03/NaOH wt ratio 
Activator solution/Raw material 
wt ratio 

Class C 
Fly ash 

1:1 
1.5 

0.35 

Class F 
Fly ash 

1:1 
1.5 

0.45 

Metakaolin 

1:1 
2 

1.125 

Portland cement 

1:1 
-

0.35* 

4.4 Methodology 

For the geopolymer mortar, the precursor (fly ash or metakaolin), sand and 

activator solution were mixed as per ASTM C-305. The mixer used was a Univex 

SRM20 Planetary Countertop Mixer, 20 Qt. Next, the fresh paste was cast into 50x50x50 

mm cubical molds in two layers as per ASTM C-109. Following casting, the specimens 

were placed in an oven and cured at 60 °C for 24 hours, and then left at room temperature 

for 6 days before soaked in the corresponding acid solution. The mass of each 

geopolymer specimen was measured using an ACCULAB scale with an accuracy of ± 0.1 

g prior to immersion in the acid bath. The OPC and silica fume blend (8 % by weight as 

OPC replacement) mortar specimens were also mixed according to ASTM C-305. The 

fresh paste was cast into 50x50x50 mm molds and was allowed to set under controlled 

temperature and moisture conditions. The specimens were then removed from the molds 

and placed in lime saturated water for six days to cure prior to been introduced to the acid 

baths. The specimens were placed in an oven at 105°C until constant mass was achieved 

and allowed to cool to room temperature before been immersed in the acid solutions. 

Four sulfuric acid solutions were prepared by diluting a 99% laboratory grade 

sulfuric acid solution with distilled water to form concentrations of approximately 3%, 

1%, 0.05%) and 0.01% (pH = 0.6, 1, 2 and 3, respectively). Class C fly ash and 

metakaolin geopolymer, as well as OPC cubes were exposed to all pH levels. Class F ash 



90 

geopolymer was exposed only to the lowest pH (0.6) solution. The details of the 

preparation of the acid solutions can be seen in Appendix B.2. After submerging the 

specimens, the pH of the solutions was checked daily and adjusted on an as need basis. 

The ratio of the volume of solution to that of the specimens was 4 to 1 [47]. All solutions 

were refreshed weekly. Mass loss and remaining compressive strength were selected as 

the response variables for this study. Specimens were removed from the acid bath for 

testing at 1, 2, 4, 6 and 8 weeks following immersion. Following removal from the acid 

bath, specimens were rinsed with tap water to remove leach products and mass that 

became structurally separated from the matrix. The mass loss value for each 

precursor/duration/pH combination was taken as the average mass loss of three cubes that 

were oven dried at 105° C to constant mass. Untreated "blank" specimens were used to 

determine the 7th day compressive strength. Compressive strength was measured using a 

universal compressive testing machine. The compressive testing machine was calibrated 

prior to testing. 

The total of cube specimens for the OPC blend, metakaolin and Class C fly ash 

geopolymer was 75, being 3 cubes for each age in the sulfuric acid test per pH for a total 

of 60, 3 to obtain the initial compressive strength and 12 to evaluate mass loss at each 

pH. The total of cube specimens for the Class F fly ash geopolymer was 9, 3 to obtain the 

initial compressive strength, 3 for the sulfuric acid immersion test and 3 for the mass loss. 

Results with Class F Fly Ash were evaluated only for a pH of 0.6. All of the specimens 

for a specific test set were produced out of the same batch. 
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4.5 Results and Observations 

4.5.1 Change in Mass 

Mass loss (in percentage of initial weight) was recorded at each measurement 

period for class C and F fly ash and metakaolin based geopolymer mortars and OPC 

mortar. The results are shown graphically in Figs. 4.1 through 4.4. and numerically in 

Appendix B.3. 
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Fig. 4.1 Mass loss vs. immersion time for class C fly ash-based geopolymer mortar. 



92 

50 
50 
O 
- I 
50 
50 

2 4 
WEEKS 

Fig. 4.2 Mass loss vs. immersion time for metakaolin based geopolymer mortar. 
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Fig. 4.3 Mass loss vs. immersion time for OPC mortar specimens. 
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Fig. 4.4 Mass loss vs. immersion time for class F, class C and metakaolin geopolymer 
and OPC mortar specimens. 

From Fig. 4.1, it can be seen that class C fly ash geopolymer specimens immersed 

in acid baths with pH values of 2 and 3 displayed similar trends in terms of mass loss 

over the 8-week period, with maximum mass loss of less than 5%. Specimens immersed 

in a sulfuric acid solution with a pH of 1 exhibited a 10% mass loss at the end of the 

immersion period, while specimens immersed in a solution with a pH of 0.6 lost 25%) of 

their initial mass. In the case of metakaolin-based geopolymer (Fig. 4.2), the mass loss 

recorded for specimens immersed in solutions with pH values of 2 and 3 was around 

10%. Specimens immersed at an acid bath with a pH of 1.0 lost 20% of their mass, while 

the mass loss recorded for specimens at the 0.6 pH acid bath was considerably larger, 

averaging 45%). As for OPC specimens (Fig. 4.3), data revealed mass loss of about 2.5% , 

4%, 23%) and 72% for specimens immersed in acid baths with pH values of 3, 2, 1 and 

0.6, respectively, at the conclusion of the immersion period. 
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Mass loss values for class C fly ash geopolymer and OPC for pH values of 2 and 

3 were similar (< 5%). Mass losses of OPC specimens for pH values of 0.6 and 1 were 

found to be significantly greater compared with these observed for the class C fly ash 

geopolymer mortar cubes. Metakaolin geopolymer specimens exhibited mass losses 

smaller than their OPC counterparts at pH of 0.6, comparable at pH of 1, and greater than 

the OPC specimens at pH values of 2 and 3. 

Fig. 4.4 presents a comparison of the mass loss for classes F and C fly ash and 

metakaolin geopolymer specimens, and OPC specimens for the case of a pH value of 0.6. 

The average mass loss of class F geopolymer specimens is less than half that of their 

class C counterparts, and about eight times smaller than that of the binary OPC blend 

cubes at the end of the eight week immersion period (9% vs. 72%). 

4.5.2 Remaining Compressive Strength 

The remaining compressive strength was tested at each measurement period for 

the fly ash and metakaolin based geopolymer mortar specimens and the OPC mortar 

specimens. The 7th day compressive strength values for untreated (blank) specimens are 

listed in Table 4.3. The results for all measurement periods are shown graphically in 

Figs. 4.5 and 4.6 and numerically on Appendix B.4. 

Table 4.3 Seven-day compressive strength of mortar specimens. 

Material 
Class C fly ash geopolymer 
Class F fly ash geopolymer 
Metakaolin geopolymer 
Enhanced Portland cement 

7-day compressive strength* 
72.7 MPa 
46.5 MPa 
53.5 MPa 
48.3 MPa 
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Fig. 4.5 Remaining compressive strength vs. immersion time for class C fly ash-based 
geopolymer mortar specimens. 

w 
!> 
I—I 
SO 
50 

£^ PH ^ 

B5 

5 50 
i — I 

W 
tf 0 

\ ^ < ^ - - ' ' 

V 
\ * — 

m f l R 

~™ # — 1 

— •- -3 
n , 1 

-

„ 

— * 

-* * » ^ 

™ i 

"" — -•— — 

V 

* .... 

1 

•_ -

••••%, 

1> 

-

- t. 

120 00 

100 00 

80 00 

60 00 

F 40 00 

20 00 

0.00 

2 4 
WEEKS 

3 

Fig. 4.6 Remaining compressive strength vs. immersion time for metakaolin-based 
geopolymer mortar specimens. 

Fig. 4.5 reveals that class C fly ash geopolymer mortar exhibits high resistance to 

acids with pH values of 3 and 2, retaining 86% and 85% of its compressive strength 

respectively, at the end of the immersion period. Specimens immersed in acid baths with 
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pH values of 1.0 and 0.6 retained 64% and 25% of their original compressive strengths 

respectively. Metakaolin based specimens immersed in an acid bath with pH of 3 

retained 95% of their original strength at the conclusion of the 8-week term. Specimens 

immersed at pH values of 2, 1 and 0.6 retained 80%, 45% and 4% of their original 

compressive strengths, respectively, over the same time period (see Fig. 4.6). Fig. 4.7 

reveals that the remaining compressive strength of the binary OPC blend specimens was 

considerably lower than that of the class C fly ash geopolymer cubes for pH values of 

0.6, 1 and 2, and similar for a pH of 3. 

Fig. 4.7 Remaining compressive strength vs. immersion time for OPC mortar specimens 
versus time. 
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Fig. 4.8 Remaining compressive strength of class F geopolymer after 8 weeks compared 
to class C fly ash and metakaolin geopolymer and Portland cement (pH=0.6). 

Fig. 4.8 shows a comparison of the remaining compressive strengths of class F 

and C fly ash geopolymer, metakaolin geopolymer and OPC-blend specimens immersed 

in an acid bath with pH of 0.6. It can be seen that specimens made from class F fly ash 

geopolymer retains approximately 90% of their original strength at the end of the 

immersion period, compared with the OPC cubes which retained on average only 12%) of 

their original strength. One possible explanation is the lower amount of CaO in the class 

F fly ash (2% by weight for class F vs. 18.7% for class C and 58.5%) for the OPC). In the 

case of metakaolin while there is little CaO presence, the poor corrosion resistance could 

be attributed, at least partially, to the high ratio of activator solution to metakaolin 

powder needed to achieve adequate workability (1.125:1). Evaporation of the relatively 

large amount of free water remaining in the matrix following polymerization of the 

metakaolin is expected to result in large, interconnected pores, which would benefit 

diffusion of the aggressive species in the acid solution. A graph summarizing the 
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compressive strengths of fly ash and metakaolin geopolymers and OPC blend specimens 

for the four acid baths at the end of the 8-week period is shown in Fig. 4.9. The full 

results of all the corrosion resistance tests can be seen in Appendix B.3-4. 
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Fig. 4.9 Remaining compressive strengths of fly ash and metakaolin geopolymer and 
Portland cement. 

4.5.3 Visual Appearance 

The visual appearance of class C fly ash and metakaolin based geopolymer 

specimens following an 8-week immersion in the various acid baths is shown in Fig. 

4.10. The visual appearance of the OPC specimens after been submerged for 8 weeks in 

the various acid baths is shown in Fig. 4.11. Fig. 4.12 displays the class F fly ash 

specimens at the end of the eight week immersion period. 



99 

pH 3 2 1 ©,» 

pH 3 

! • / ^B N^S*«%S¥^. 

Fig. 4.10 Visual appearance of fly ash geopolymer (left) and metakaolin geopolymer 
(right) after 8 weeks of exposure. 

Fig. 4.11 Visual appearance of OPC-silica fume specimens after 8 weeks of exposure. 
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Fig. 4.12 Visual appearance of Class F fly ash geopolymer after 8 weeks of exposure. 

Class C fly ash-based geopolymer specimens exposed to an acid with a pH of 0.6 

featured eroded surfaces with some cracks at the corners of the specimens. Specimens 

exposed to sulfuric acid with a pH of 1 exhibited a less severe degree of erosion; 

however, cracking was noted at the corners of some of the specimens The specimens' 

outer surfaces were soft, and free sand particles were present at the surface. Specimens 

exposed to pH values of 2 and 3 solutions showed little or no visual damage at the end of 

the 8 week immersion period. Metakaolin based geopolymer specimens placed in the 0 6 

and 1.0 pH acid baths exhibited severe erosion and significant dimensional changes in the 

upper part of the cubes. A white pasty leaching was noted on the surface of the 

specimens. It is proposed that the precipitate layer was amorphous silica formed by 

supersaturated silicic acid liberated from the silicates during the depolymerization of the 

aluminosilicate polymer, as suggested by Iller [87]. In other words, the treatment of a 

geopolymer matrix with a strong acid might result in a direct attack on the 

aluminosilicate framework causing breakage of the Si-O-Al bond and leading to mass 

loss and an increase in the amount of silicic acid in the solution [88]. Specimens placed 
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in acid baths with pH values of 2 and 3 appeared unaltered. This result was anticipated as 

silicic acid is most stable at pH of 2 to 3, which can explain observing two different 

mechanisms of deterioration of the metakaolin geopolymer matrix. Class F fly ash 

geopolymer specimens exhibited little, if any, alteration in their visual appearance in 

terms of erosion or change in color following an 8-week immersion in the 0.6 pH sulfuric 

acid bath. The Portland cement silica fume binary blend specimens exhibited a dramatic 

visual deterioration at the conclusion of the exposure period compared with the 

geopolymer-based specimens. This effect is particularly true for the cases of pH values 

of 0.6 and 1 where a significant reduction in size was noted. OPC specimens immersed 

in the 2 and 3 pH acid baths exhibited a moderate level of deterioration. 

4.6 Discussion 

4.6.1 Mass Loss 

The large difference observed between the mass loss of class C and F fly ash-

based geopolymers and Portland cement can be attributed to the reaction of the calcium 

silicate hydrate (CSH) present in Portland cement paste with the sulfuric acid. Class C 

geopolymer contains a small amount of CSH in its structure that contributes to both its 

lower corrosion resistance (compared to class F fly ash-based geopolymer) and its higher 

compressive strength (control specimens). The lower compressive strength and higher 

mass loss of the metakaolin based geopolymer might be attributed to lower reactivity of 

the metakaolin used in this study due to a high percentage of crystalianity (and thus a 

lower percentage of amorphous phase), which will result in a lower degree of 

polymerization [89]. Furthermore, since the particle size of the material was finer than 

the other raw materials used, it required a significantly higher activator solution to fly ash 
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ratio to obtain a workable paste. As water serves only as the transport media and does not 

participate in the reaction, a large number of interconnected pores are left after 

evaporation, resulting in a reduced mechanical strength. 

4.6.2 Remaining Compressive Strength 

While the initial strength of class F fly ash geopolymer was lower than that of 

class C fly ash geopolymer, it retained a higher percentage of its initial strength at the end 

of the test period in the higher acidity environments. The sharp drop in the compressive 

strength of the OPC specimens is attributed to the high mass loss and size reduction of 

the specimens, as can be seen in Fig. 11. The reaction products of CSH + H2S04 are 

structurally weak and tend to easily leach out of the paste. On the other hand, geopolymer 

reaction with H2S04 is minimal and does not result in leaching of considerable amounts 

of reaction products. It is presumed that the metakaolin did not fully react with alkaline 

solutions due to a high degree of crystalinity and, therefore, did not achieve a satisfactory 

degree of geopolymerization, resulting in a low corrosion resistance. 

4.7 Conclusions 

Class C fly ash and metakaolin based geopolymer mortars retained between 80% 

and 95% of their compressive strengths following an 8-week immersion test in sulfuric 

acid solutions with pH values of 2 and 3. Visual inspection revealed little wear and no 

eroded surfaces at these pH levels. Mass loss at eight weeks was 5% and 10% for the fly 

ash and metakaolin based specimens, respectively. At pH values of 1 and 0.6 a more 

aggressive corrosion mechanism(s) appears to be at work and performance declined 

significantly. A comparison with specimens made from enhanced OPC silica fume blend 

base specimens showed that fly ash-based geopolymer mortar retained a higher 
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percentage of its initial compressive strength when exposed to sulfuric acid solutions with 

pH values of 0.6, 1, 2 and 3 at the end of the 8-week test period. Remaining compressive 

strength values for metakaolin based geopolymer were lower at the pH of 0.6 but higher 

at pH values of 1, 2 and 3 compared with these of the OPC binary blend specimens. 

Also, OPC-based specimens exhibited a more severe surface degradation and size 

reduction compared with specimens made from the geopolymer materials. 

The relatively high content of CaO (18.72 %) is believed to be a key reason for 

the lower corrosion resistance potential (but higher strength) of geopolymer specimens 

made with class C fly ash precursor compared with specimens made from class F fly ash. 

On the other hand, class C fly ash geopolymer mortar exhibits superior chemical 

resistance compared with an enhanced OPC blend, and thus could serve as a viable 

alternative in applications where both high corrosion resistance and high strength are 

desired or where class F ash is not locally available. Geopolymer specimens with 

metakaolin as a precursor yielded an overall residual compressive strength and corrosion 

resistance comparable to or slightly better than their OPC counterpart but lower than the 

fly ash-based geopolymers. This result is attributed, at least partially, to the relatively 

high activator solution to powder ratio needed to achieve adequate workability and, 

potentially, to a highly crystalline structure that does not easily lent itself to 

polymerization. 

Although the compressive strength results are mostly attributed to the chemical 

composition of the materials used in this study, it is fair to say that the pore system of the 

samples surely had also an important effect in the results. Different activator solution/raw 

material ratios were used in the present work. The reason for that was to achieve the same 
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workability without using admixtures like superplasticizers. However, the resulting pore 

system and densities of the samples could be different as a result of this choice. Muntigh 

[90] conducted a study on the pore systems of geopolymers coming from different 

formulations. He concluded that an increase in activator solution resulted in longer pores, 

but these pores were sometimes narrower for some of the fly ashes utilized. He also 

determined the sulfate diffusion coefficients with the aid of a diffusion cell, and he 

concluded that these coefficients are significatively lower than those for OPC, mainly 

because geopolymer is a denser product and because it does not readily react with 

sulfates. Degradation and opening of the pore space will, therefore, occur in a slower 

degree. This conclusion is important because it stresses the importance of not having 

compounds that will readily react with sulfates (such as CaO) present in the geopolymer 

mix as related to its pore system. It is also mentioned in his work that no generalization 

can be made in terms of the pore system of a geopolymer produced under particular 

conditions and that specific studies would need to be performed in every case, until a 

general model can be approached. He even considered that it could be necessary to use a 

model alternative to Fick's laws to better describe the diffusion characteristics of 

geopolymeric materials. 

Finally, the most dramatic results were produced under the pH value of 0.6, which 

is not typical for many sewers. However, these conditions were selected because of the 

limited time available to obtain results and move to the next stage. It is important to 

mention that a different mechanism of corrosion may be present for higher pH values and 

the results of differences in durability may vary. To prove this point, long term corrosion 

resistance tests at pH values typicall of sewers (3-4) should be conducted. 
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These results also have a relation with the corrosion mechanism involved in 

geopolymers. Hewayde [2] proposed that at pH values higher than 1, the corrosion 

mechanism relies mostly on the sulfate ions, and under 1 they rely on both the hydrogen 

and sulfate ions, therefore, the degree of corrosion resistance increases in a non linear 

manner for regular OPC concretes. However, due to the high sulfate resistance of 

geopolymers this change in corrosion rate may not be as dramatic for geopolymers as it is 

for Portland cement. 



CHAPTER 5 

OPTIMIZATION OF THE ACTIVATOR 

SOLUTION 

5.1 Introduction 

The previous chapters described the test conducted to determine geopolymer's 

suitability as a rehabilitation material for buried infrastructure. The results showed the 

promising characteristics of geopolymers to accomplish these goals. 

However, in spite of their superior properties, geopolymers' viscous and fresh 

properties are often a problem that prevents or discourages their use in real life 

applications. Problems with high viscosity and surface tension often need to be 

overcome. 

It was, therefore, decided to create a design of experiments to optimize the 

activator solution to be used with the Class F ash selected in the previous chapter. The 

design would lead to an initial formulation for the sprayable geopolymer mortar. 

5.2 Design of Experiments 

A 3 design of experiments was used for this stage of the research. 3 DOEs are 

useful statistical tools to evaluate the effect of three variables at three levels each. The 

software MINITAB was used to create the DOE and to evaluate the results. The test 

variables were three (silicate type; D, N and Star; hydroxide molarity 6, 10 and 14 and 

103 
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silicate/hydroxide ratio 1, 2 and 3). Three replicates were made for each combination. 

The result was 27 experiments with three repetitions each. The experiment setup from 

MINITAB can be seen in Appendix C.l. Four response variables were selected for this 

study: compressive strength, remaining compressive strength, mass loss and flow. The 

main effect of all three research variables was evaluated as well as the interaction effect 

between the research variables. An analysis of contrasts was performed to find out which 

levels were statistically different for each research variable. The software R was used for 

this purpose. 

5.3 Materials 

Class F Fly Ash from the power plant in Miami Fort, FL was used in this study. 

The three silicates used in this study were obtained from PQ corporation. Sodium 

Hydroxide 99% pure in flakes was obtained from Baddley Chemicals in Baton Rouge, 

LA. The sand utilized met standard ASTM C-777. The chemical composition and particle 

size distribution of the fly ash is shown in Table 5.1 and Fig. 5.1. The chemical 

composition and other characteristics of the sodium silicate are summarized in Table 5.2. 
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Table 5.1 Chemical composition of fly ash utilized in this study. 

Oxide 

Si02 
A1203 
Fe203 
CaO 
MgO 
S03 
LOI 
Na20 
Total 
Si02/A1203 
Si02 + A1203 

Class F 
FlyAsh,wt% 

50.25 
22.56 
20.0 
2.1 
0.00 
0.50 
2.48 
0.00 
97.89 
2.23 
72.81 

Table 5.2 Mineralogical composition of fly ash utilized in this study. 

Minerals 
Quartz 
Mullite 
Amorphous 

wt% 
10.33 
25.27 
64.4 
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Fig. 5.1 Particle size distribution of fly ash utilized in this study 

Table 5.3 refers to the chemical composition and other characteristics of the 

sodium silicate used for this set of experiments. 

Table 5.3 Characteristics of sodium silicates utilized in this study. 

SODIUM 
SILICATE 
TYPE 
D 
N 
Star 

Na20 % wt. 

14.7 
8.9 
10.6 

Si02 % wt. 

29.4 
29.7 
26.5 

SiOz/NazO 

2.00 
3.22 
2.5 

Viscosity 
(cPoise) 

400 
180 
60 

5.4 Methodology 

Sodium hydroxide solutions of three different molarities were prepared using tap 

water. All sodium hydroxide molar solutions were prepared in the lab and allowed to cool 

off for one day. Then, they were mixed with sodium silicate to prepare the alkaline 

solution. 
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Next, the precursor (fly ash) and sand were mixed on a 1:1 ratio. They were 

mixed with the activator solution as per ASTM C-305. The fresh paste was cast into 

50x50x50 mm cubical molds in two layers as per ASTM C-109. Following casting, the 

specimens were placed in an oven and cured at 60 °C for 24 hours. The specimens that 

were to be used for the chemical tests were left at room temperature for 6 days before 

immersion in the corresponding acid solution. The precise weigh proportions are shown 

on Appendix C.2. 

Compressive strength was measured after a 24 hours curing period according to 

ASTM C-109. To measure corrosion resistance, the remaining compressive strength after 

soaking the specimens in a 0.6 pH sulfuric acid solution for 8-weeks was evaluated 

according to ASTM C-267. Mass loss was also evaluated for the same period of time. 

Flow was evaluated for the fresh paste right after mixing ASTM C-1437. 

5.5 Results and Discussion 

5.5.1 Compressive Strength 

Fig. 5.2 shows the large effect of silicate "D" in compressive strength. An 

increase in compressive strength as the molarity of the NaOH increases can also be 

observed. Moreover, a lower Silicate/Hydroxide ratio tends to give higher compressive 

strengths. 
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Main Effects Plot (data means) for Compressive strength 
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Fig. 5.2 Main effects plot for compressive strength. 

In the first box (silicate type vs. hydroxide molarity), of the interation plot shown 

in Fig. 5.3 it can be seen that the molarity has the same effect regardless of the silicate 

type; it always increases the compressive strength as it increases. However, for the "D" 

silicate, molarities 10 and 14 seem to have the same effect. This fact can be an interesting 

characteristic for practical applications. In the second plot (Silicate type vs. 

Silicate/Hydroxide ratio), it can be seen that the ratio affects the silicate N and Star in an 

opposite way. With the first one it decreases the compressive strength as it increases, and 

with the Star silicate it increases the compressive strength as it increases. For the silicate 

D, the ratio of 1 seems to give the best results. No significant interaction can be observed 

in the last graph, (hydroxide molarity vs. Silicate/Hydroxide ratio); (i.e., the molarity of 

the hydroxide and the ratio do not seem to have a combined effect). 
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Interaction Plot (data means) for Compressive strength 
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Fig. 5.3 Interaction plot for compressive strength. 

Information about the significance of the research variables and interactions is 

obtained from ANOVA (Appendix C.l). All variables and interactions were significative 

with the exception of hydroxide molarity-Silicate/hydroxide ratio. 

An analysis of contrasts was performed using the software R. The code used to 

run is shown in Table 5.6. 

Table 5.4 Coding for research variables in R. 

Silicate Type 
D = 1 
N = 2 
Star = 3 

Hydroxide type 
6 = 1 
10 = 2 
14 = 3 

Silicate/Hydroxide 
1 
2 
3 

These first three contrasts (Appendix C.4) compare the three types of silicate (D 

vs. N, D vs. Star and N vs. Star). If the p value of the comparison is less than 0.05 (the 

significance level), the levels are considered statistically equal. The p values from D vs N 

and D vs. Star are 0.00017 and 3.08299 e-12; therefore, D is considered to give a 
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statistically different effect, as we clearly saw in the main effects plot. The p value for N 

vs. Star silicates is 0.93; therefore, they are not different, (e.g„ they produce the same 

compressive strength in average). 

The same process was run for the three levels of the hydroxide molarity and since 

all three p values are less than 0.05, all levels can be assumed to be different. 

The same process was run again for the silicate/hydroxide ratio, and it can be 

concluded that the ratio 1 is different from the ratio of 2 (though slightly since p = 0.016, 

they would be considered equal with a more strict level of significance, like 0.01). 

5.5.2 Remaining Compressive Strength 

In Fig. 5.4, it can be seen that silicate D and a hydroxide concentration of 14 and a 

ratio of 3 seem to be the best parameters in terms of corrosion resistance. 

Fig. 5.4 Main effects plot for remaining compressive strength. 

From the boxes in Fig. 5.5, it is clear that when using silicate D or Star, the 

hydroxide concentration becomes more relevant, but when using silicate N, there is not 

much difference between using a hydroxide concentration of 10 or 14 M. Also, the 
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silicate/hydroxide ratio affects the three silicates in a different way. For silicate D, there 

is a slight slope showing the increase in corrosion resistance as the ratio gets higher, but 

for silicate N, there is a big difference when using a ratio or 2 or 3. The ratio affects 

silicate Star in an inverse way as the other silicates, (e.g., a ratio of 3 produces the smaller 

values of remaining compressive strength). In the graph of concentration vs. ratio, it can 

be seen that when using a concentration of 6, there is not a big effect of the ratio; 

however, when using a concentration of 10 there seems to be an optimum point using a 

ratio of 2, and when using a concentration of 14 the best thing is to have a ratio of 3. 
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Fig. 5.5 Interaction plot for remaining compressive strength. 

The ANOVA Table (Appendix C) shows that all variables and interactions are 

significative with the exception of the silicate/hydroxide variable. It shows that there is 

not a significant difference between using silicate D or N, but there is when using silicate 

Star. Therefore, the results using silicate Star are statistically different (and lower from 

what we can see in the main results plot). 
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Even though the ANOVA table showed that the molar concentration was 

significant, the contrast (Appendix C.5) shows us that there is no significative difference 

between any of the levels. By doing the LSD (Least significant difference) test, the same 

conclusion can be reached. 

For the silicate/hydroxide ratio contrast it can be seen that the only ones that seem to be 

siginiticatively different are 1 from 3. 

5.5.3 Mass Loss 

Both silicate type and hydroxide concentration were significant according to 

ANOVA. In Fig. 5.6, it can be very clearly seen that the Star silicate produces the highest 

mass loss, D silicate the least, and the molarity of 14 also the least mass loss. This result 

could be attributed to the lower density achieved by using the Star silicate and the 6 and 

10 M hydroxide solutions, water that leaves voids after evaporating. 
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Fig. 5.6 Main effects plot for mass loss. 

According to ANOVA (Appendix C.6), the interactions were significative, so 

from the interaction plot (Fig.. 5.7), it can be concluded that if the silicate that produces 

the least mass loss (silicate D) is chosen a molarity of 14 and a silicate/hydroxide ratio of 

3 would have needed to be selected. That makes sense since the amount of silicate "D" is 

being maximized. 
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Fig. 5.7 Interaction plot for mass loss. 

In the contrasts for the levels of the silicate (Sil), it can be seen that D and N (1 

and 2) are not significatively different, but 1 and 3 and 2 and 3 are. This result means that 

the silicate Star is the one significatively different in terms of mass loss, and it also 

produces the highest mass loss. In the case of the molarity, it can be seen that the only 

levels that were significatively different were 10 from 14. 

The contrast analysis for the ratios was not calculated since the ratios were not 

significant in the ANOVA model. 

5.5.4 Flow 

In Fig. 5.8 it can be seen that the silicate D has the largest effect on flow, while N 

and Star have similar effects. The hydroxide concentration seems to have a linear effect 

on the flow, with higher concentrations producing lower values of flow. The 

silicate/hydroxide ratio has the same linear effect as the hydroxide concentration, but 

with a smaller slope. The differences between the three levels were evaluated using R. 
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Fig. 5.9 Interaction plot for flow. 

ANOVA (Appendix C.8) showed that the silicate*hydroxide interaction had no 

significance. In Fig. 5.9 it can be seen that the tendency (a higher value of hydroxide 

concentration produces a higher value of flow) is the same for all types of silicate. With 

respect to the silicate*silicate/hydroxide interaction, the results show that when using 
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silicate D, the effect of the ratio (the higher the ratio, the lower the value of the flow) is 

more significant than when using silicates N or Star. Finally, the effect of the ratio seems 

to affect more on flow when using a hydroxide concentration of 6. 

Appendix C.9 shows the first set of contrasts. It can be observed that the silicate 

D (1) is the only level that is significatively different from the other two and that the use 

of silicate N and Star does not make an important difference. 

From the analysis of the ratios shown in Appendix C.9 it can also be seen that all 

levels of the ratio produce different results. 

5.6 Decision Support Table 

Since it was clear from the previous results that the selected levels of the research 

variables acted differently for the different response variables, it was decided that a 

Decision Support Table (Table 5.5) would be created in order to select the best choice of 

levels for the design of a sprayable coating. 

Based on their level of significance, each variable was given a weight to help on 

the decision making process. Compressive Strength and Flow were the limiting variables 

since both are important factors but with opposite results; the levels of the variables that 

produced good results for one did the opposite for the other. 

From Table 5.5, it can be extracted that the best combination for compressive 

strength is D-14-1. However, for the case of flow, the best combination is either N or Star 

silicate with a hydroxide concentration of 6 and a Sil/Hyd ratio of 1. As it may be noted, 

both variables produce opposite results in terms of desirability. Fortunately, the analysis 

for corrosion resistance offers more flexibility; any hydroxide concentration and ratio can 

be used, as long as silicate N or D is used. Therefore, the combination that gives the best 



flow without compromising compressive strength and corrosion resistance was N-10-1 

and it was chosen as the initial formulation for tests with the coating. 

Table 5.5 Decision Support Table for the Design of Experiments results. 

TEST 
Compressive 
strength (psi) 

Rem. C. Str. (%) 

Mass loss (%) 

Flow (dim) 

VARIABLE 
Silicate 

Hydrox. Cone. 

Sil/Hyd 

Silicate 

Hydrox. Cone. 

Sil/Hyd 

Silicate 

Hydrox. Cone. 

Sil/Hyd 

Silicate 

Hydrox. Cone. 

Sil/Hyd 

LEVEL 

D 
N 
Star 
6 
10 
14 
1 
2 
3 
D 
N 
Star 
6 
10 
14 
1 
2 
3 
D 
N 
Star 
6 
10 
14 
1 
2 
3 
D 
N 
Star 
6 
10 
14 
1 
2 
3 

MEAN 

6413 
3250 
3128 

3324.1 
4431.5 
5036.1 
4652.8 

4100 
4038.9 

88.78 
73.87 
67.18 
71.86 
75.21 
82.76 
73.72 
75.27 
80.84 
8.696 

11.203 
14.156 
11.666 
12.021 
10.368 
11.642 
11.171 
11.242 
55.53 
88.64 
92.39 
99.03 
80.58 
56.94 
86.81 
78.19 
71.56 

DESIRABILITY 

ok 

ok 
ok 

ok 
ok 
ok 
ok 
ok 
ok 
ok 
ok 
ok 
ok 
ok 

ok 
ok 
ok 
ok 
ok 
ok 

ok 
ok 
ok 

^ 

ok 
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5.7 Conclusions 

The activator solution is one of the main components of geopolymer. Its correct 

formulation has a very important effect on geopolymers' final properties; therefore, a 

careful selection of the levels of each of its variables must be made through a design of 

experiments. 

With regards to the compressive strength, it was concluded that the silicate type 

had the highest effect and that the higher the alkali concentration of the silicate, the 

higher the strength achieved. This effect was due to both the higher supply of alkali and 

the higher density of the obtained geopolymer. The molarity of the hydroxide solutions 

also played a big role, as the higher the concentration, the higher the achieved strength. 

Also, a lower silicate/hydroxide ratio tended to produce higher strength. From the 

interaction plots, it can be seen that the selection of the hydroxide to use should largely 

depend on the silicate chosen. Hydroxide molarities act differently depending on the 

silicate type. 

All of the three variables studied: silicate type, hydroxide type and the 

silicate/hydroxide ratio had a significant effect on the remaining compressive strength of 

the specimens. The Star silicate was the only one to produce significantly different results 

because of being less concentrated and dense. The molar concentration of 14 is the one 

that produces the best results; however, if the right silicate is used, a concentration of 10 

can also give good results. As for the ratio, the only significant difference was between 

ratios 1 and 3. It can also be concluded that the molar concentration affects the different 

silicates differently, affecting more the D and Star silicates. The optimal ratio seemed to 

be around 2 when using silicates D and Star, but it showed an opposite tendency when 



119 

using silicate N. When using a molar concentration of 14, the ratio does not seem to 

matter much, but when using a concentration of 6, the best ratio is 3 and when using a 

concentration of 10, the best ratio is 2. 

In terms of mass loss, two variables were significative, silicate type and hydroxide 

concentration. The levels D and 14 were the ones that produced the least mass loss. 

Further, all interactions were significant and since the levels D and 14 were the best for 

the silicate and the hydroxide concentration respectively, it can be recommended to use a 

ratio of 2 and 3 to minimize mass loss. In general, the amount of water of the solutions 

has an impact on the mass loss of the specimens; however, it was proven by the statistical 

model that the solutions do not have a significant impact on the remaining compressive 

strength of the specimens. From this result, we can infer that the corrosion resistance of 

the geopolymer is not affected by the studied variables, and that the mass loss is mostly 

due to the loss of water. 

For the fourth variable considered in the study, silicate D produces higher values 

of the flow; meanwhile, there is no significative difference when using silicates N or Star. 

All hydroxide concentrations produced different results with the higher the concentration, 

the lower the flow. All ratios produced different results, the lower the ratio, the higher the 

flow value. From the first interaction plot (silicate vs. hydroxide concentration), we can 

conclude that all hydroxide molarities affect all silicates the same way, always the higher 

the concentration, the higher the flow. With respect to the second plot (silicate vs. ratio), 

there seems to be a more significative effect of the ratio on the silicate D than on the 

other two. Finally, from the last graph (hydroxide concentration vs. ratio) we can see that 



120 

the effect of the ratio is also more significative when using hydroxide concentration of 6 

than when using the other two. 

Based on all these parameters and on the desirability index chart created, it was 

decided to use a N-10-1 formulation as an initial trial to achieve sprayability since it 

could produce the best results for all the variables considered in the design. Further steps 

were necessary to achieve the final formulation, and they are described in Chapter 6. 



CHAPTER 6 

DEVELOPMENT OF A SPRAYABLE 

GEOPOLYMER MORTAR 

6.1 Introduction 

The previous chapters described the first steps towards the development of a 

sprayable geopolymer mix to be used as a coating for buried infrastructures. An 

evaluation of the properties of geopolymers, selection of raw materials and the design of 

an activator solution had been performed. 

In the present chapter, a sprayable geopolymer formulation is designed and tested. 

The study starts with a study of the effect of the activator solution parameters in the 

viscosity of fresh geopolymer paste, the evaluation and performance of different 

surfactants as additivies in terms of surface tension reduction, viscosity change, and to 

enhance sprayability, the properties obtained with the new mix. 

The chapter ends with a final sprayable formulation to be used for industrial tests. 

The results of field tests conducted at the Trenchless Technology Center (TTC) lab are 

also presented and explained. 
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6.2 Preliminary Tests of the Mortar as Coating 

6.2.1 First Coating Test 

Starting from the optimal formulation developed in the previous chapter 

comprised of silicate N, sodium hydroxide 10 M and a ratio of sodium hydroxide/sodium 

silicate of 1 (coded N-10-1), a series of preliminary tests were conducted. The activator 

solution/fly ash ratio used was 0.45. The coating was applied successfully to the inner 

surface of a 12" concrete pipe using a steel trowel (Fig. 6.1). 

Fig. 6.1 First coating test using a 12" diameter concrete pipe. 

The main observations for this test were: 

• The paste workability was acceptable, but the paste dried out in about 30 

minutes. Layers had to be applied of small, thin sections. 

• A few holes had to be covered manually. 

• The finishing of the surface was uneven and rough. 

• After curing at 60 C, the coating developed some cracks. 

• Visually, the adhesion to the parent wall was satisfactory. 

• The sample showed some white efflorescence after a few days. 
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6.2.2 Second Coating Test 

A second coating test was performed with the same formulation but now using a 

0.5 activator solution/fly ash ratio, to try and improve workability. The same curing 

temperatures and procedures were used. 

Some observations were: 

• Workability was significatively improved. 

• It could be trowelled successfully, but again, it dried out in less than 30 

minutes. 

• The paste sagged when heat was applied. No heating curve was used. There 

was also bubble formation. 

• The sample was moisturized during curing and it developed no cracks. 

• The sagging could be due to excessive thickness of some of the parts of the 

layer. 

6.2.3 Third Coating Test 

After a few setting time tests, it was determined that the low silicate/hydroxide 

ratio (1:1) was causing short setting times. A new formulation of N-10-1.5 was used for 

the third coating test (Fig. 6.2). This coating could be applied successfully and the 

finishing process was a lot easier. This section of the pipe was not cured until after 24 

hours rest period at room temperature. It was observed that there was no sagging because 

the mortar was already dry, and 100 C could be applied directly after this initial time. 
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Fig. 6.2 Third coating test using the reformulated N-10-1.5 mix design. 

6.2.4 Use of Superplasticizer 

Several tests using Rheobuild and Glenium superplasticizers were used to 

improve the workability of the paste. AS/FA ratios of 0.45 and 0.5 and 1% and 2% of 

superplasticizer were used, but they were found to have no effect on workability. 

6.3 Design of Experiments 

6.3.1 Effect of NaOH Concentration and 
Sil/Hyd Ratio on Viscosity 

On this occasion, a 2x3 design of experiments was used to further optimize the 

activator solution. It was desirable to evaluate the effect on viscosity of two parameters, 

the NaOH and the Sil/Hyd. The setting time of those mixes was also evaluated. (See 

Table 6.1). The weights used for this design of experiments are on Appendix CIO. 



125 

Table 6.1 Design of experiments to evaluate viscosity. 

RESEARCH VARIABLE 
NaOH concentration 
NaSiOz/NaOH ratio 
FLXED PARAMETERS 
Curing time 
Curing temperature 
Activator solution/Fly ash ratio (AS/FA) 
Silicate type 
Fly ash: sand ratio 
RESPONSE VARIABLE 
Viscosity after 30 minutes 

LEVELS 
6, 8, 10, 12 and 14 M 
1, 1.5 and 2 

24hrs 
100 C 
0.4 
N 
1:1 
METHOD 
RHEOMETER MANUAL 

6.3.2 Materials and Equipment 

Hydroxide solutions of 5 different molarities (6, 8, 10, 12 and 14 M) were used. 

The other parameters remained constant from the previous chapter. 

The equipment used was a DV-III Ultra Rheometer from Brookfield, which is a 

controlled rate rheometer with capabilities to measure, viscosities, yield stress and other 

rheological characteristics. The equipment includes the necessary spindles and software 

to perform the measurements. 

6.3.3 Procedure 

The first step was to plug the rheometer and turn it on. Correct leveling was 

checked for observing that the bubble on top of the rheometer is centered. On the 

rheometer screen, "External Mode" was clicked to allow taking the readings from a 

computer. Ten minutes should be allowed before making any measurement. The 

rheometer should already be connected to the computer where the software was installed 

using an USB cable. After the 10 minutes have passed, the Rheocalc software was 

started. The appropriate USB connection must be selected. The rheometer readings were 

re-set by clicking on "Re-zero". 
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The tutorial was then followed to create a program for the experiment. In this 

case, it was required to create a curve of viscosity vs. time, so a time of 30 minutes was 

selected together with a SV-27 spindle and a speed of 5 rpm. The materials were prepared 

once the program was setup. 

Paste samples were prepared according to the weights specified in Appendix D.l. 

No sand was used to avoid abrasion of the rheometer spindles and also because its 

presence would not cause an effect on the readings. Fly ash was mixed with the activator 

solution according to ASTM C-305. The paste was then poured inside the cylindrical 

mold and the needle was inserted. The cylindrical mold containing the sample was then 

inserted in the sample holder. The cylindrical spindle was inserted next, making sure not 

to disturb the sample excessively. After the procedure was started, the rheometer created 

a viscosity curve with the points selected on the program. The data was then exported to 

Excel and it then analyzed. The data was be used to construct viscosity vs. time curves 

and to feed MINITAB for the DOE analysis. 

6.3.4 Results 

6.3.4.1 Viscosity Curves 

Fig. 6.3 shows the viscosity vs. time curves for the five different hydroxide 

concentrations fo geopolymer pastes with a silicate/hydroxide ratio of 1:1. It can be seen 

that the geopolymer paste shows a thixotropic behaviour (e.g., its viscosity is reduced 

when being sheared at a constant rate for a period of time). The viscosity, however, is 

increased with the increased molarity, but for the concentration of 14 M, setting time 

occurs around 45 minutes and, therefore, the viscosity grows suddenly. This result shows 

more clearly why a molar concentration of 14 would be undesirable. 
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Fig. 6.3 Time vs Viscosity curves for geopolymer pastes made with a sil/hyd ratio of 1. 

Fig. 6.4 shows a very similar scenario as Fig. 15. The viscosities of the pastes 

prepared with hydroxide molarities from 6 to 12 show a normal thixotropic curve, but the 

paste prepared with a molarity of 14 exhibits shorter setting times and viscosity increase. 
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Fig. 6.4 Time vs Viscosity curves for geopolymer pastes made with a silicate/hydroxide 
ratio of 1.5. 

Fig. 6.5 shows that the setting time effet of a hydroxide molarity of 14 can be 

reduced if the silicate/hydroxide ratio is increased to two. The bump of the curve for a 

molarity of 14 around 500 s could be attributed to agglomeration of the sample. 
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Fig. 6.5 Time vs Viscosity curves for geopolymer pastes made with a silicate/hydroxide 

ratio of 1.5. 

6.3.4.2 DOE MINITAB Results 

The main effects curve for viscosity (Fig. 6.6) shows a very clear effect of the 

hydroxide molarity on the final viscosity after a 3 hours testing period. The 

silicate/hydroxide ratio of 1 produces a slightly higher viscosity, but a ratio or 1.5 or 2 

produce slightly the same effect. The data fed into and the outputs from MINITAB can be 

seen on Appendix D.2. 
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Fig. 6.6 Main effects plot for viscosity. 

The interaction plot (Fig. 6.7) shows no significant interaction between these two 

variables, that means the hydroxide has the same thickening effect without regards to the 

sil/hyd ratio. 
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Fig. 6.7 Interaction plot for viscosity. 
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6.3.5 Conclusions 

The hydroxide concentration plays a very significant role increasing the viscosity 

of geopolymers, while the silicate/hydroxide ratio plays a secondary role. Geopolymers 

show a thixotropic behavior over a span of 3 hours of testing. A hydroxide molarity of 14 

can reduce setting time significatively. 

6.4 Preliminary Spraying Tests 

6.4.1 Initial Spray Test using Portland Cement 

Since a Portland cement mortar of 0.4 w/c ratio commonly used in the cement 

lining industry, it was decided to make a test with this formulation and evaluate its 

flow/sprayability. The spraying tests were performed using an air mortar sprayer 

(Tyrolessa - see Fig. 6.8) with a capacity of 13.2 lb. The pressure needed to operate this 

sprayer may go from 50 to 120 psi depending on the admixture to be sprayed. To operate 

the sprayer, it is needed at least a 5 hp compressor for a sprayer 7 acfm @ 90 psi 

(available at the TTC facilities). The spraying tests were perfomed over a vertical wood 

form (Fig. 6.9). The form could be cleaned after each test to avoid build up of mortar. 

When necessary, the sprayed mortar was finished using a regular square trowel. A 

successful spraying test was achieved and the paste had a flow larger than 150 (ASTM C-

1437). 
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Fig. 6.8 Tyrolessa mortar sprayer. 

Fig. 6.9 Spraying geopolymer over wood board. 

A paste of geopolymer with the successful formulation from the previous test was 

intended to be sprayed with the same mortar sprayer at the same pressure, but it could not 

be sprayed. The mortar flew from the holes without being separated into droplets. 

From this test, it could be observed that it is not only that the stiffness and weight 

of the geopolymer paste makes its sprayability difficult, but also that the surface tension 

of geopolymer is a lot higher. Therefore, the idea of trying a surfactant was conceived. 
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6.4.2 Achieving Sprayability using Surfactants 

6.4.2.1 Initial Tests 

The first attempt to use a surfactant as an admixture for geopolymer was using 

regular hand soap (sodium lauryl sulfate as main ingredient). Fifteen ml of hand soap 

were diluted in a 300 g of fly ash geopolymer admixture. The result was a fully sprayable 

admixture, although the paste was a little runny on the surface. These initial results 

encouraged making of further tests with surfactants. Two types of commercial air-

entrainers were ordered (Super Air and Super Air-Plus from Fritz-Pak) and (Daravair 

1000 and Daravair 1400 from Grace). 

Table 6.2 is a summary of the tests performed with the tyloressa mortar sprayer. 

The formulation for all the tests was a N-10-1.5 with a 1:1 fly ash: sand ratio and a 0.45 

activator solution/fly ash ratio. 
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Table 6.2 Preliminary spraying tests. 

Test 
number 

1 

2 

3 

4 

5 

Surfactant type 

Soap 

Super Air Plus 

Super Air Plus 

Super Air Plus 

Daravair 1400 

Surfactant 

5 

0.375 

0.7 

0.375 

0.33 

Extra water 
(%)* 

-

3.33 

3.33 

3.33 

Observations 

Surface tension reduced 
significantly. 
Sprayed successfully over 
vertical surface. 
Surface difficult to be 
finished. 
The paste was runny. 
The soap was liquid, so it 
already contained water. 
The spraying was not as 
efficient as with the soap. 
Both the air entrainer and 
the water amount were 
increased. 
Sprayed successfully. 
The surfactant amount was 
reduced to the original 
0.375%. 
Water was added in parts, 
but it had to be added 
completely. 
It could be sprayed 
successfully. 
Spraying was not as 
efficient as previous tests. 

6.4.2.2 Compressive Strength Evaluation/ 
Curing Regimes/Reformulation 

After an initial sprayable paste was obtained, compressive strength under two 

different curing regimes was also evaluated. The effect of both the air entrainer and extra 

water were evaluated. The tests performed are summarized in Table 6.3. 
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Table 6.3 Effect of water, surfactant and curing regime on sprayable geopolymer mortar. 

Test 
number 

1 

2 

3 

4 

5 

Surfactant 
type 

None 

None 

Super Air 
Plus 

Super Air 
Plus 

None 

Surfactant 
(%)* 

0.375 

0.375 

Extra 
water 
(%)* 

3.33 

3.33 

Curing 

60 C after 24 
hrs at room 
temp. 
60 C after 24 
hrs at room 
temp. 
60 C after 24 
hrs at room 
temp. 
60 C after 24 
hrs at room 
temp. 
60 C 
immediately 
after casting 

Compressive 
strength (psi) 

5683.33 

3933.33 

3200.00 

2083.3325 

4316.67 

Several observations could be seen from this test: 

• The curing regime has an influence. The sample that was cured immediately 

(#5) achieved less compressive strength than the one that was cured after 24 

hrs. 

• The negative effect of the water on the compressive strength of the mortarwas 

found to be less that the effect of the surfactant. 

• The combined effect of both the surfactant and the water was found to be a 

linear combination of both effects. 

• The reduction of compressive strength was found to be inacceptable. 

Therefore, more tests were performed looking to reduce the amount of both 

surfactant and water and still achieve workability. 

These observations led to preparing a new set of tests to achieve this goal. 
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First of all, the effect of a higher curing temperature was evaluated. Since curing 

at an industrial stage will be most likely be done using steam, a curing temperature of 100 

C was thought to be appropriate. 

Test #4 from the previous test was repeated and curing at 100 C for 1 and two 

days. These were the results (Table 6.4). 

Table 6.4 Results from the repetition of the successful mix design under higher 
temperature conditions. 

Test number 

4 

Compressive strength 
(psi) -1 days of curing at 

100 C 
2425 

Compressive strength 
(psi) - 2 days of curing 

at 100 C 
2700 

As it could be seen, the temperature did have an effect on the compressive 

strength, but curing 2 days does not seem to be necessary because the effect on 

compressive strength seems to be small. Therefore, 100 C will be set up as the curing 

temperature for this mortar composition. 

Second, the amounts of both air entrainer and water needed to be optimized. It 

was decided to try to use Super Air regular instead of Super Air Plus (the concentration 

of Vinsol resin, the active ingredient is half). The following tests were performed (Table 

6.5). 

Cubes of this last formulation were casted to evaluate compressive strength. A 

curing regime of 100 C was applied after 24 hours of room temperature curing. Taking 

into account the linear effects of both air entrainer and water, the estimated compressive 

strength was 3750 psi. The actual measured compressive strength of the cubes was 

3916.67 psi. 
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Table 6.5 Supplementary spraying tests performed. 

Test number 

1 

2 

3 

4 

5 

6 

7 

8 

Surfactant type 

None 

Super Air 

Super Air 

Super Air 

Super Air 

Super Air 

Super Air 

Super Air 

Surfactant (%)* 

3.75 

0.015 

0.05 

0.1 

0.1 

0.1 

0.1 

Extra water 
(%)* 

3 

3 

3 

3 

3 

2.65 

1.65 

0.65 

Observations 

Water alone 
could not help 
achieve 
sprayability 
This test 
worked and 
proved that 
sprayability can 
only be 
achieved using 
the air entrainer. 
This amount of 
air entrainer 
was the smallest 
recommended 
by the supplier. 
It did not work 
to achieve 
sprayability. 
The amount of 
air entrainer 
was increased 
but it was not 
enough. 
This amount 
was 
satisfactory. 
The mortar 
could be 
sprayed in the 
wall. 
A test with 
reduced extra 
water was tried. 
Again, it could 
be sprayed 
satisfactorily. 
Another test 
with reduced 
water was tried. 
It worked again. 
This is the 
minimum 
amount of water 
that could be 
added. 
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6.4.2.3 Spraying of a Concrete Wall 

Once these results were achieved, a 1' x 1' concrete wall was built. A mortar 

based on the last successful formulation was prepared and sprayed over the wall. The 

wall was finished using a roller and a steel trowel (Fig. 6.10). 

Fig. 6.10 Spraying over a concrete wall. 

Among the general observations are that even though the mortar could be 

sprayed, the efficiency of the spraying was not the best. A lot of material flew through the 

holes of the sprayer and fell on the floor. Also, some efflorescence appear in the surface 

once it dried which could be a result of the little extra water that was added on the surface 

to help on the finishing process. 

6.4.2.4 Change of the Order of 
Mixing the Surfactant 

The manufacturer recommended to mix the surfactant on a wet cement paste (the 

bag dissolves itself), but during our tests, the additive did not seem to be dissolved 

correctly when added this way. In comparison to using liquid soap, it would seem more 

logical to have the soap dissolved in advance before adding it to the mix. Moreover, the 



139 

component that added the most viscous properties to the geopolymer mix was the sodium 

silicate. 

It was, therefore, decided to try and dissolve the surfactant on the silicate prior to 

addition to the paste. The results were visibly different. The paste in which the additive 

was dissolved first looked notably more viscous and workable, and with less surface 

tension (e.g., the surfactant action was enhanced). 

After these results, it was decided to make a DOE to decide which surfactant and 

the right dosage to produce optimal workability and performance. 

6.5 Surfactant Addition Testing Program 

6.5.1 Design of Experiments 

The design of experiments can be seen in Table 6.6. 

Table 6.6 Research variables for the surfactant design of experiments. 

RESEARCH VARIABLE 
Surfactant type 
Addition level 
Concentration 
RESPONSE VARIABLE 
Compressive strength 
Flow 
Viscosity 

LEVELS 
Vinsol resin and Sodium Lauryl Sulfate 
0.25,0.75,1.25,1.75% 
10, 20, 30% 
METHOD 
ASTM C-109 
ASTM C-143 7 
RHEOMETER 

6.5.2 Materials and Formulation 

Naturally, the same class F fly ash and formulation from the previous stages was 

used. The surfactants used were of two different types, the first one being a Vinsol resin 

by the commercial name of "Air Plus" and the second one Sodium Lauryl Sulfate of 99% 

purity. 
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6.5.3 Procedure 

First, the desired surfactant amount is mixed in water until a uniform suspension 

is obtained. It is then immediately added to the sodium silicate to achieve surface tension 

reduction. The sodium silicate and the hydroxide are then added to the bowl, and fly ash 

and sand (for compressive strength and flow) comes next. The paste is mixed according 

the ASTM C-305 procedure for mortar and paste. 

Cubes and flow were measured as in the previous chapters. The mix used to 

determine flow is used to cast the cubes to determine compressive strength. Fresh 

geopolymer cubes were cured at 100 C for 24 hours. Viscosity in paste was measured 

after 30 minutes at the same speed and parameters using the procedure detailed on section 

6.3.3. 

6.5.4 Results and Discussion 

6.5.4.1 Compressive Strength 

As it can be seen on the main effects plot (Fig. 6.11), the surfactant type has a 

large effect on the compressive strength. Air Plus (Vinsol resin) produced higher results 

in average than Sodium Lauryl Sulfate. Furthermore, the addition level decreased the 

compressive strength, as it could be expected. The reason for Sodium Lauryl Sulfate to 

affect the compressive strength in a deeper manner is because it is comprised of a longer 

carbon chain that is more susceptible to thermal expansion. The cubes also showed 

expansion by the means of a loop on the top of the specimen after curing at 100 C. The 

input and output values from MINITAB can be seen in Appendix D.3. 



141 

Fig. 6.11 Main effects plot for Compressive Strength. 

From the interaction plot (Fig. 6.12), it can be seen now that there is no significant 

interaction between the silicate type and the addition level, (e.g., for both surfactants the 

more addition the less the compressive strength). There is also no interaction between the 

surfactant type and the concentration of the surfactant; they both exhibit the same 

behavior. 
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Fig. 6.12 Interaction plot for Compressive Strength. 

From the Anova Table (Appendix D.5), it can be seen that all variables and 

interactions are significant, with the exception of the interaction between surfactant type 

and concentration. 

6.5.4.2 Flow 

The main effects plot (Fig. 6.13) for flow shows that again, the surfactant type 

had a large effect on the flow of the pastes. Sodium Lauryl Sulfate had a greater effect 

decreasing the flow. The addition level did not seem to have a very important role, as 

well as the concentration. 
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Fig. 6.13 Main effects plot for Flow. 

Interaction Plot for Flow 
Data Means 

Surfactant type 

0 25 0 75 125 175 

Addition level 

10 20 30 

—̂ — 

p 

— a . 

®—~ 

~ ~ -s 

:=*—-* 

-70 

60 

50 

Surfactant 
type 

- • — AP 
a* SLS 

70 

60 

50 

Addition 
level 

—«)— 025 
—m~ 0 75 

125 
— A - 175 

Concentration 

Fig. 6.14 Interaction plot for Flow. 

It can be seen in the interaction plot that little or no interaction can be seen for 

these variables (Fig. 6.14). The ANOVA Table (Appendix D.6) shows that all variables 

and interactions had an effect with the exception of concentration and surfactant 

type*concentration. However, The surfactant type has the highest effect with an F of 
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1262.56, and, therefore, all other variables and interactions can be considered as having 

little effect. 

6.5.4.3 Viscosity 

From the main effects (Fig. 6.15) graph for viscosity it can be seen that again the 

surfactant type played a significant role this time. SLS produced higher viscosities and, 

therefore, lower workability materials. The addition level had a very clear effect this 

time, decreasing the viscosity with the addition level; however, as it can be seen, the 

concentration had an opposite effect, so the reduction on viscosity can be attributed to the 

increased addition of water and not of surfactant. 

Main Effects Plot for Viscosity 
Data Means 
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26000 

24000-

22000 
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^ 
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\ 
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Fig. 6.15 Main effects plot for Viscosity. 
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Fig. 6.16 Interaction plots for viscosity. 

Again, the MINITAB interaction plots (Fig. 6.16) show little effect of the 

interactions in this case, which can be confirmed with the use of the ANOVA Table 

(Appendix D.6). 

Moreover, these effects could be seen in the viscosity curves for all these 

combinations which are summarized in Figs. 6.17 through 6.19. 
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Fig. 6.18 Viscosity Curves for samples with a 1.25% of surfactant (left) and 1.75% of 
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Fig. 6.19 Viscosity Curves for samples with a concentration of 10%, 20% and 30%. 

6.5.4.4 Surface Tension 

Having observed that SLS had undesirable characteristics, it was decided to drop 

it out of the design and continue the testing only with Super Air. The same design of 

experiments for the variables of addition level and concentration was run for this type of 

surfactant. The results from these tests are displayed in Fig. 6.20. The inputs and outputs 

from MINITAB can be seen on Appendix D.5. 
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Fig. 6.20 Main Effects Plot for Surface Tension. 
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Fig. 6.21 Interaction Plot for Surface Tension. 

The interaction plot (Fig. 6.21) and analysis of variance (Appendix D.6) show no 

interaction between the variables. An example of four drops can be seen in Fig. 6.22. 
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Fig. 6.22 Forms of droplets from the surface tension meter. 

6.6 Field Tests 

A total of three field tests have been conducted for this geopolymer mix. They 

have been very useful to more finely tune the parameters obtained from laboratory tests 

and to provide a more exact formulation to be used in the commercial product. The 

details of each test are presented as follows. 

6.6.1 Field Test with DNA Construction 

DNA construction is a large rehabilitating company dedicated to the rehabilitation 

of concrete manholes. Their staff has over 20 years experience in the field and have 

worked with a variety of materials including Portland cement, epoxy and hydraulic fast 

setting cement. Their observations and recommendations were very important in this 

stage of the project, since they could give an insight view on the product and evaluate if 

changes needed to be made and if it would be a good product for the industry. The 

corrosion resistance capabilities of geopolymer were immediately of their interest. They 

made a few initial observations about the workability of the mix and its fresh adhesion to 

the concrete wall. 

Despite being initially a little reluctant and skeptic about the material, as 

especially about how would they clean their hoses and equipment, DNA agreed to 

perform the first industrial test ever with Louisiana Tech University's geopolymer grout. 
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The resulting mix from a formulation similar to the one in Table 6.7 is shown in 

Fig. 6.23 through 6.25. The mix showed good consistency and could be sprayed with no 

problems at all. Some observations were regarding the sagging of the mix, once it started 

to build. It was recommended to change the sand for a finer and lighter one and also to 

try and allow the mix to dry a bit quicker. 

Fig. 6.23 Mixing and spraying with first field test. 
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Fig. 6.24 Spraying and finishing with DNA. 

Fig. 6.25 A finished section of the manhole coated with the mix design. 

Besides changing the sand, it was decided to change the hydroxide solution 

molarity to a 12.5 solution not only to allow it to set a little faster, but also to make it 

more commercially available; 12.5 M hydroxide solutions are known as 50% solutions 

and are one of the most commercially available hydroxide solutions in the market. 

6.6.2 Second Field Test (with Spraybuddy) 

After having had positive feedback from DNA Construction, it was decided to 

make our own test with TTC equipment. A bigger spraying machine was purchased 

(Spraybuddy) with a capacity of 3 ft3. The machine was a great help to evaluate the mix 

ourselves without depending from a large company and to make smaller changes to the 

mix if needed (Fig 6.26). 
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Fig. 6.26 Spraying with Spraybuddy 

From this test, it could be concluded that mixing with a rotary mixer is not 

appropriate for geopolymer grouts. These mixers rely on the ability of the material to fall 

on a cascade and geopolymer's viscosity makes the mixing process difficult. It is much 

better and efficient to use a paddle mixer for this purpose. The mix obtained in the drum 

mixer was drier and more viscous than the previous test and, therefore, difficult to spray. 

6.6.3 Third Field Test (Second with Spraybuddy) 

For this test, a paddle mixer was used and the workability of the paste was much 

better. The mix could be sprayed successfully (Fig. 6.27) and finished with a trowel. The 

final mix design was reported and finalized. 
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Fig 6.27 Second spraying test with Spraybuddy. 

6.6.4 Conclusions 

The field tests provided excellent information on the performance of the sprayable 

geopolymer coating. The results from the lab were close to a satisfactory performance in 

terms of the field tests. Small changes needed to be done before the final mix design was 

achieved. Curing would be the next major concern. As it was shown in the previous 

chapters, a combination of heat and moisture is required for the correct curing of this 

geopolymer mix. This process could be achieved with the use of a steam generator, but it 

will be discussed further in Chapter 8. 
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6.7 Proposed Final Formulation 

The proposed final formulation can be seen on Table 6.7. 

Table 6.7 Final proposed mix design. 

Mix Name 
Batch Size 

Concrete 

1 ]ft3 

Cementitious Materials 
1 Class F Fly Ash 
2 CuS04 

Total of Cementitious Matenals 
Aggregates 

1 Sand 
Absorption 0 00% 

Batched Moisture Content 0 00% 
Total of all Aggregates 

Liquids 
1 Sodium silicate N 
2 Sodium hydroxide 12 5 M solution 
3 Surfactant 

Total Water 

'. 1 . . " " ' . . . . " . "t ....*!. * " ! 
. • * • " . " i . . : . . . , - . - . . * \ ' . : " . . ' : 

Water-Cementitious Matenals Ratio 
Air Content % 
Density (Unit Weight) pcf 
Gravimetnc Air Content % 

Yield ft3 

Specific 
Gravity 

2 8 
2 28 

\ , ~\ -
!̂ ' '. T " 

1 56 
' ^ i '; 

1385 
1.33 
1.14 

*> 
.; * * 

« i 
x i " ». 

Proportions as 
Designed 

Amount 
(Ib/vd3) 

1586 047 
12 953 

1599 160 

799 580 
799 580 

380 651 
253 767 
19 826 

654 244 

* \s'» 
"-

0 4125 
7 45% 
113 09 
7 00% 

27 00 

Volume 

(ft3) 
9 078 
0 091 
9169 

8 214 
8 214 

4 404 
3 058 
0 279 
7 741 

» } ! 

" 

< 1 

* 

Batched 
Proportions 

Amount 
(lb) 

58 742 
0480 
59 22 

. Y - " , 

29 614 
29 614 

14038 
9393 
0734 

24 231 

^ " 
A~ 

0 4125 
7 45% 
113 09 
7 00% 
1 00 

Volume 

(ft3) 
0 336 
0 003 
0 340 

0 304 
0 304 

% , , , 
0163 
0113 
0010 
0 287 

» 
^ -̂  

,8s- ?.....! 

^ 

Yielded 
Proportions 

Amount 
(Ib/vd3) 
8 667 
864 

17 307 

• .̂'* 

3 726 
3 726 

32 400 
0 000 

19 826 
52 226 

W ^ ,-* 
•* V 

; \- ? -

^ V- V " * 

V >. V " V 

Volume 

(ft3) 
0 050 
0 061 
0 110 

rw*^" 

0 038 
0 038 

• * : „ ; 
0 519 
0 000 
0 318 
0 837 

6 00% 
#REFI 

6.8 General Conclusions 

A few changes were necessary to adapt the optimal mix design from chapter 5 to 

a sprayable coating formulation. First of all, a few minor changes were necessary to 

control setting time and improve flow. The activator solution variables have a deep effect 

on the flow and viscosity of geopolymers. 

Then, the use of surfactants was a key idea to achieve workability. The final 

addition had to be achieved first by a number of trial tests, then by a full design of 

experiments to know the exact amounts. The type of surfactants was of great importance 

for this goal, but the addition level and concentration were as well. The concentration 

reduces the flow and increases viscosity, and the addition level decreases viscosity but 

only because of the increased amount of water on the mix. 



155 

Controlled viscosity with low surface tension was desirable to achieve the optimal 

mix. Lab results were confirmed by industrial spraying tests for this product. 



CHAPTER 7 

QUALITY TESTS, COPPER ADDITION AND 

COMMERCIAL OPPORTUNITIES 

7.1 Background 

A successful spraying geopolymer formulation was presented in the previous 

chapter. However, to have achieved sprayability was not the final stage of this project. 

The product still needed to undergo a series of testing to assure its quality. The first part 

of this program refers to the mechanical testing conducted on this material in terms of 

compressive, flexural and tensile strength. Young's modulus and Poisson ratio were also 

calculated. The addition of fiber was an important aspect in consideration to improving 

the flexural strength of this grout. It was carefully considered as well. 

Corrosion resistance had already been a useful way to select the raw material and 

alkaline solution for this coating. It was important to also know the final corrosion 

resistance of the final mix design, especially after the addition of an air entrainer. 

Other important parameters, such as adhesion, wear resistance and expansion 

were evaluated. In the end, a full specification table for this material, similar to those of 

commercial products, was created. 

In the second part of this chapter, the addition of copper oxide to geopolymer was 

evaluated. Copper is a known bactericide that has been used since ancient times. Since 

most of the H2S in sewers is produced by bacteria, it is a logical idea to try and prevent 
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their growth by adding a bactericide agent. That prevention would solve the problem 

from the very beginning. Previous attempts to do this include embedding CU2O in epoxy. 

The results show a significant decrease in bacterial count in the solutions [14]. 

On the other hand, geopolymers are capable of embedding copper in their 

structure, although it is not known if it is done in a cation replacement or in an interstitial 

manner. The main purposes of doing this have been for toxic metal removal out of 

wastewater [74]. 

Copper has some impact on the properties of the geopolymer, including the 

reduction of compressive strength. 

It is, therefore, the purpose of this chapter to evaluate the inclusion of a copper 

agent in three forms (oxide, sulfate salt and nitrate salt) to the geopolymer and evaluate 

its effect on properties such as compressive strength and flow. XRD analyses were 

performed. The presence of copper compounds in a crystalline phase is also evaluated by 

means of a XRD analysis, and conclusions are made on the possible incorporation of 

copper inside the amorphous structure of geopolymers with the use of TEM/EDS. 

At the end of the chapter, important commercial considerations are made for the 

future and possible commercialization of this product. 

7.2 Quality Testing 

7.2.1 Mechanical Strength 

Mechanical strength was tested in three ways: compressive (cubes and 6 inch 

diameter cylinders), tensile and flexural. Young's modulus and Poisson ratio of the 

designed mix were also evaluated. The details of each test are presented on the next 

subsections. 
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7.2.1.1 Compressive Strength 

Compressive strength was evaluated both in 2 cubic inch cubes and 6 inch 

diameter cylinders. Standards followed are ASTM C-109 and ASTM C-39. Mortar mix 

was prepared according to the formulation presented in Table 6.7 and mixed as per 

ASTM C-305. The mix was then cast into 2 cubic inch and 6 inch diameter cylindrical 

molds. Three repetitions were made for each case. The samples were left to rest for 24 

hours at room temperature then cured at 212 F for another 24 hours period, then they 

were tested using the Universal Machine. Compressive strength was evaluated for 1, 3, 7 

and 28 days in 2 inch cubes and for 24 hrs in 6"xl2" cylinders.The results are presented 

in Table 7.1 

Table 7.1 Compressive strength results for the proposed geopolymer mix. 

Specimen 

1 
2 
3 
Average 

COMPRESSIVE STRENGTH (psi) 
C-109 
24 hrs 
6028 
6135 
6200 
6121 

C-109 
3 days 
6544 
6519 
6364 

6475.67 

C-109 
7 days 
6960 
6828 
6931 

6960.33 

C-109 
28 days 

7022 
7011 
6998 

7010.33 

C-39 
24 hrs 
5825 
5035 
5155 

5338.33 

7.2.1.2 Flexural Strength 

Flexural strength was evaluated using l"xl"xl0" bars. The standard used was 

ASTM C-580. Mortar from the formulation presented in Table 6.7 was mixed according 

to ASTM C-305 and cured for 24 hours after a rest period of 24 hours. The addition of 

fibers was considered in this testing program. The fibers used were poly-vinyl alcohol 

(PVA), fiber glass (FB), poly-propylene (PP), pseudo glass (PG). The details and the 

results are shown on Table 7.2. The fiber content is expressed in percentage of fly ash. 

Workability is defined as flow according to ASTM C-1437. It can be seen that the 
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flexural strength of the mix was about 14% of the compressive strength in cubes and 16% 

of the compressive strength in cylinders, both values above the typical 10% for most 

cementitious materials. The table also shows the positive effect of the fiber addition on 

flexural strength. The best results were achieved with the addition of 1% of fiber glass, 

increasing the flexural strength to 17.4% of the compressive strength measured in cubes, 

but good results can also be achieved with as little as 0.25% of Polypropylene fibers 

(16.9%) 

Table 7.2 Flexural strength of geopolymer mix with and without the addition of fibers. 

Fiber 
Content 
Workabilit 
y 
I 

2 

3 

4 

Average 

% 
Difference 

Without 
Fiber 

44 

976 

670 

1034 

822 

875.5 

PVA 

0.10% 

769 

956 

-
853 

859.33 

-185 

0.50% 

48 

922 

1048 

978 

1007 

988.8 

12 94 

0.75% 

41 

1068 

1147 

922 

1003 

1035.0 

18 22 

FG 

0.50% 

56 

715 

732 

808 

761 

754.0 

-13 88 

1.00% 

52 

1004 

1024 

1175 

1050 

10633 

2144 

PP 

0.10% 

49 

858 

1037 

982 

1037 

978.5 

11 76 

0.25% 

47 

1204 

987 

912 

1047 

1037.5 

18 50 

PG 

0.50% 

52 

870 

926 

835 

969 

900.0 

2 80 

1.0 
0% 
48 

850 

100 
0 
906 

899 

913 
.8 
4 3 
7 

7.2.1.3 Tensile Strength 

Tensile strength tests were conducted according to ASTM C-307. Six butterfly 

specimens were prepared with the mix of Table 6.7 and mixed according to ASTM C-

305. They were cured 24 hours at 212 F after a rest period of 24 hrs. They were then 

tested using the SMS Machine available at the Engineering Lab (Fig. 7.1). 
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Fig. 7.1 Tensile strength tests on geopolymer mix 

The results of this test are summarized on Table 7.3. 

Table 7.3 Tensile strength results for geopolymer mix. 

SPECIMEN 
1 
2 
3 
4 
5 
6 
AVERAGE 

TENSILE STRENGTH (psi) 
361.31 
422.98 
401.04 
385.34 
394.98 
344.21 
384.97 

The tensile strength could also be increased with the addition of fibers, but that 

will be left for future research. 

7.2.1.4 Young's Modulus and Poisson Ratio 

Young's modulus and Poisson ratio were calculated according to ASTM C-469. 

The values are shown on the specification list for this geopolymer grout shown on Table 

7.9. The raw data used for this calculation can be seen on Appendix E.l. 
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7.2.2 Corrosion Resistance 

The corrosion resistance of the final mix was evaluated with the same procedure 

explained in Section 4.4. The results are summarized in Table 7.4. A comparison graph 

with Portland Cement is shown on Fig. 7.2. It can be seen that eventhough the remaining 

compressive strength was reduced to the original remaining compressive strength 

obtained in chapter 4, the addition of surfactant did not have a very strong effect on it if it 

is compared to the remaining compressive strength of a N-10-2 geopolymer mix (75%). 

Table 7.4 Remaining compressive strength and mass loss of final geopolymer mix. 

TEST/SPECIMEN 
Remaining Compressive 
Strength (psi) 
1 
2 
3 
AVERAGE 
MASS LOSS (g) 
1 
2 
3 
AVERAGE 

TEST DATE (week) 
0 

6028 
6135 
6200 
6121 

0 
271.23 
264.54 
268.34 
268.03 

1 

6058 
6088 
6011 

6052.33 
1 

265.44 
260.32 
261.99 
262.58 

2 

5725 
5638 
5553 

5638.67 
2 

254.95 
251.34 
252.63 
250.6 

4 

4952 
4665 
4705 
4774 

4 
249.53 
246.02 
245.53 
247.02 

6 

4504 
4590 
4489 

4527.67 
6 

244.11 
240.74 
241.55 
242.13 

8 

4356 
4234 
4338 

4309.33 
8 

235.97 
235.44 
230.07 
233.82 
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Fig. 7.2 Remaining Compressive Strength from Class F Fly Ash Geopolymer, OPC and 
the Coating Formulation after 8 weeks of immersion in a H2SO4 solution of pH = 0.6. 

7.2.3 Absorption, Voids and Air Content 

This test was conducted per ASTM C-642. Again, mortar from the formulation 

shown in Table 6.7 was mixed according to ASTM C-305 and casted on three 3x6" 

cylindrical molds. The samples were cured as mentioned in the previous sections. ASTM 

C-642 requires the following weights to be obtained: A) mass of oven dried sample in air, 

B) mass of surface-dry sample in air after immersion, C) mass of surface-dry sample in 

air after immersion and boiling and D) apparent mass of sample in water after immersion 

and boiling. The values for each category for each sample are shown in Table 7.5. 

Table 7.5 Mass of specimens required for ASTM C-642. 

Required mass (g) 
A 
B 
C 
D 

Specimen 1 
1147.73 
1222.82 
1227.36 
707.60 

Specimen 2 
1214.81 
1246.68 
1251.23 
752.96 

Specimen 3 
1163.71 
1225.71 
1232.34 
710.34 
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The following calculations are required by ASTM C-642: 

\B-A 
Absorption after immersion, % = 

Absorption after immersion and boiling, % = 

*100 

C-A 
*100 

Bulk density, dry = 
C-D P = 9i 

B 
Bulk density after immersion = [———] • p 

Bulk density after immersion and boiling = [———] • p 
L« ™~" LJ 

Apparent density = -—— P = 9i 

Volume of permeable voids, % = [(g2 — g\)lg?\ x 100 

Using the above equations, the values calculated for this coating are shown in 

Table 7.6. 

Table 7.6 Values calculated using standard ASTM C-642. 

RESULT 
Absorption after immersion, % 
Absorption after immersion and boiling, % 
Bulk density, dry, Mg/m3 

Bulk density after immersion, Mg/mJ 

Bulk density after immersion and boiling, 
Mg/m3 

Apparent density, Mg/m 
Volume of permeable voids, % 

VALUE 
4.75 
5.23 
2.28 
2.40 
2.41 

2.60 
12.30% 

The air content of fresh geopolymer coating mix was further evaluated with a 

pressure meter as required by ASTM C-231. Enough sample for 0.4 ft according to the 

formulation from Table 6.7 was mixed according to ASTM C-305. Then, the sample was 

poured inside the base of the pressure meter and the paste was spread using a steel bar. 
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The surface was leveled with a trowel and the cover was wiped off and cleaned. 

Then the cover is clamped securely with petcocks open. Water was injected in the sample 

using the supplied syringe until all of the air is displaced and expelled through the 

opposite petcock. The petcocks were left open until the hand on dial was stabilized at the 

initial pressure line by pumping up or bleeding off with the air release valve. After the 

petcocks were closed, the needle valve lever was pressed down to release the air into the 

base. The needle was held down for a few seconds while lightly tapping on the gauge to 

stabilize it. Then, the test was done and the percent of entrained air could be read from 

the dial. The procedure was repeated three times with three different samples and an 

average was obtained. The result is shown on Table 7.9. 

7.2.4 Length Change in a Sulfate Solution 

The length change of the coating material in a sulfate solution was evaluated 

using ASTM C-1012. Enough material from the formulation presented on Table 6.7 was 

mixed according to ASTM C-305 to produce four l"xl"xlO" bars. The bars were cured 

with the procedure detailed in previous sections and at the 7th day they were stored in a 

sulfate solution prepared according to ASTM C-1012. A volume of 4-1 solution to bars 

was used. The bars were then measured using the length comparator described in the 

same ASTM. The dates for measuring and the results are shown in Table 7.7. The actual 

readings can be seen in Appendix E.2. 

Table 7.7 Length change (%) of coating formulation bars in a solution of NaS04 

SPECIMEN 
1 
2 
3 
4 
AVERAGE 

WEEK1 
0.034 
0.089 
0.012 

0.05 
0.0462 

WEEK 2 
0.084 
0.165 

0.1 
0.101 

0.1125 

WEEK 3 
0.085 
0.167 
0.107 
0.105 

0.1160 

WEEK 4 
0 088 
0.171 

0.11 
0.108 

0.1192 

WEEK 8 
0 09 

0 172 
0.117 

0.11 
0.1223 

WEEK 13 
0 097 
0.181 
0.115 
0 119 

0.1280 

WEEK 15 
0 105 
0.187 

0.12 
0.124 

0.1340 
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Therefore, as it can be seen from the table, the maximum length change after 

immersion in a sulfate solution after 15 weeks is 0.1340%. 

7.2.5 Abrasion Resistance 

The abrasion resistance test was conducted according to ASTM C-744. This test 

requires the preparation of samples 4"x 4" square, 15-20mm thick (at the widest section) 

and a 13mm, drilled hole through the center.. The test set-up and results are the 

following: 

• Instrument: Taber Rotary Abraser - Model 5155 

• Abrasive Wheel: CS-17 

• Load: 1,000 gram per wheel 

• Vacuum Nozzle Gap: 1/8 inch 

• Total Cycles: 500 

The test Method starts with the recording of the initial weight of the samples. 

Then each specimen was measured for thickness and an appropriate shim combination 

was used to achieve a thickness (height) of 40mm. 500 cycles were run, the sample was 

removed and a final weight was recorded. The wheels were refaced prior to each test. 

Per ASTM C744 the Wear Index is to be calculated per ASTM C501as follows: 

IW = 88/(WO - WF) 

Where: 

IW = Wear Index 

WO - original weight of specimen, g 

WF = final weight of specimen, g 

The test results are shown on Table 7.8. 
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Table 7.8 Test results for the geopolymer coating formulation and OPC. 

With a full wearpath 

1A 
1B 
3A 
3B 
4A 
4B 

353 58 

371 23 

323 81 

339 86 

414 70 

431 64 

500 
500 
500 
500 
500 
500 

353 46 

371 11 

323 64 

339 70 

414 48 

431 43 

0 12 

0 12 

0 17 
0 16 
0 22 

0 21 

733 3 

733 3 

5176 

550 0 

400 0 

419 0 

Sample #1 corresponds to the geopolymer formulation with no surfactant. Sample 

#3 corresponds to the coating formulation presented on this thesis. Sample #4 

corresponds to a Portland cement sample. The results show the superior resistance to 

abrasion of both geopolymer samples compared to Portland cement. 

7.2.6 Bond Strength (Adhesion) 

This test was conducted using the Positest portable Pull-Off adhesion tester 

according to ASTM D-4541. 

The preparation of the sample consisted on a 6"xl2" solid cinder block coated 

manually with a 1/2" thick layer of geopolymer coating. The sample was cured in the 

same way as the previous samples. 

The first step for this test is the preparation of a 20 mm dolly, which is cleaned 

and removed of contaminants. The coating is then abraded slightly using an abrasive pad. 

The adhesive epoxy is then mixed according to instructions and deposited on the dolly 

with a thickness of approximately 2-4 mils. Then, the dolly is attached to the surface and 

the adhesive is allowed to cure according to manufacturer's instructions. 

After the adhesive has been cured, the provided template must be placed on the 

coating, surrounding the dolly. With a hand drill (using a 5/32" drill bit), the first 

positioning hole is drilled. After this, the template was removed, the surface cleaned for 
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debris and then reinserted again, with a pin inserted in the #1 position. Then hole #2 is 

drilled. The cleaning procedure and reinserting the template by inserting both pins in the 

#1 and #2 positions were repeated. Next, the holes corresponding to the 20 mm dolly 

were drilled. After all these holes have been drilled, the template was placed back onto 

the surface but rotated so the drilled positioned holes line up with the template 

repositioning holes labeled 20 mm. A circular hole will be the result of repeating the 

drilling procedure. After doing this, the sample was ready for the pull-out test. 

To perform the pull-out test, the first step was to ensure the relief valve on the 

pump was completely open. Then the red "drag" indicator on the pressure gauge was 

turned to zero. The actuator handle was now pushed completely down into the actuator 

assembly, which is placed over the dolly head. The pressure valve was closed tightly after 

that. Now, the pumping began with the handle until the black indicator on the pressure 

gauge started to move. At this stage, pumping must continue at a uniform rate no more 

than 150 psi per second until the actuator pulls the dolly from the coating. The reading 

was recorded. Results were repeated on three different samples and they are reported in 

Table 7.9. 

7.2.7 Viscosity and Flow 

After following the procedures to measure viscosity indicated on section 6.3.3 and 

flow as per ASTM C-1437, the following results for the present geopolymer coating were 

recorded. Fig. 7.3 shows a viscosity vs time graph and Fig. 7.4 shows several shear strain 

vs. shear stress graphs for different rest periods. It can be seen that the yield stress 

increases after different times the mix was prepared and the shear stress is increased as 

well. 
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Fig. 7.3 Viscosity vs time graph for 30 minutes. 
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Fig. 7.4 Yield stress after several rest periods. 

7.2.8 Pot Life (Setting Time) 

A setting time test was conducted according to the ASTM C-403 procedure for 

mortar. Mortar from the formulation shown in Table 6.7 was prepared and mixed 

according to ASTM C-305, and then it was cast into a cone mold. Penetration with the 
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calibrated needle was performed until the penetration was 25 mm and until the sample 

was completely hardened. Setting time was above 3 hours for all the tests. 

7.2.9 XRD Phase Identification Analysis 

XRD tests were performed on the final formulation of the coating to identify the 

amorphous content. As it was explained in the literature review, both the fly ash material 

and the resulting geopolymer have large amounts of amorphous content. The analysis 

performed for Class F fly ash and the geopolymer of the coating is presented on Table 

7.9, and the spectrums can be seen on F.l. 

Table 7.9 XRD Phase analysis of the geopolymer coating and Class F Fly Ash. 

Phase 

Quartz 
Mullite 
Amorphous 

Class F Fly Ash 

10.33 
25.27 
64.4 

Class F Fly ash 
Geopolymer 

5.58 
14.62 
79.8 

Geopolymer 
Coating 

4.6 
10.2 
84.7 

As it can be seen, the amount of amorphous material changes from the Fly ash to 

the Geopolymer by almost a 15%. This change is a good sign of geopolymerization. 

Moreover, the height of the lump for the broad part of the spectrum changes from about 

23 degrees to about 28 after geopolymerization. It can be seen that the amount of 

amorphous material for the geopolymer coating is higher, with more of the crystalline 

minerals reacting. This higher amount could just be a result of the higher temperature of 

calcinations used to produce the coating. The highest part of the broad section of the 

spectrum remains around 28 degrees. 

7.2.10 Summary (Product Specification Table) 

Finally, and after all the testing, a specification sheet was reached and presented 

on Table 7.10. 
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Table 7.10 Specification sheet for the geopolymer coating. 

TEST 
Compressive Strength Cubes 

24 hr 
3 day 
7 day 
28 day 

Compressive Strength Cylinders 
24 hr 

Flexural Strength (24 hr) 
Tensile Strength (24 hr) 
Young's Modulus 
Poisson Ratio 
Corrosion Resistance 

Remaining Comp. Str. 
Mass loss 

Absorption after immersion 
Volume of permeable voids 
Air content 
Abrasion resistance 
Bond Strength 
Initial Viscosity (paste) 
Viscosity after 30 minutes 
Pot life 

ASTM 
C-109 

C-78 

C-580 
C-307 
C-469 
C-469 
C-267 

C-642 
C-642 
C-231 
C-774 

D-4541 
-
-

C-403 

VALUE 

6121.00 
6475.67 
6960.33 
7010.33 

5338.33 
875.5 

384.97 
1717 
0.16 

70% 
12.7% 
4.75% 
12.30% 

14% 
533.5 
1400 

43,000 cPoise 
20,000 cPoise 

<3hrs 

7.3 Copper Addition Testing Program 

7.3.1 Design of Experiments 

On this occasion, a 2x3 design of experiments was used to evaluate three sources 

of copper and two addition levels. Response variables were compressive strength, flow 

and crystalline content. The design of experiments is shown on Table 7.11. 
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Table 7.11 Design of experiments for copper addition. 

RESEARCH VARIABLE 
Copper source 
Addition level 
FIXED PARAMETERS 
Curing time 
Curing temperature 
Activator solution/Fly ash ratio (AS/FA) 
Silicate type 
Fly ash:sand ratio 
RESPONSE VARIABLE 
Compressive Strength 
Flow 
Crystalline content (XRD) 

LEVELS 
Cu20, CuS04, Cu(N03-3H20)2 

10 and 50 atomic percent of Na 

24 hrs 
100 C 
0.4 
N 
1:1 
METHOD 
ASTM C-109 
ASTM C-143 7 
-

7.3.2 Materials 

Three sources of copper were studied, copper oxide, copper sulfate and copper 

nitrate. The decision to use these sources comes from literature, copper oxide was the one 

embedded in epoxy by Hewayde [14] and copper sulfate and nitrate were used by other 

authors [67, 68] to encapsulate copper in geopolymer. The results with those three 

sources would be interesting to be evaluated. 

The amounts were decided in terms of Na+ cation replacement. Since the main 

intention was to see if copper would replace Na inside the geopolymer net, it was decided 

to use a quantity that would replace a certain percentage of Na ions in the geopolymer. 

The numbers 10% and 50% correspond to 10% and 50% in weight of Cu vs. Na. 

7.3.3 Procedure 

The usual procedure for mixing was used when testing for compressive strength 

in cubes and flow. To analyze oxides by XRD, powdered samples with no aggregate were 

sent to a specialized lab for quantification. The intention was to evaluate the amounts of 

oxide still present on its crystalline form to evaluate the degree of reaction. 
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7.3.4 Results 

7.3.4.1 Compressive Strength 

Fig. 7.5 shows the main effects plot for compressive strength. A strong influence 

of the copper source can be observed. As expected, the addition level also had a large 

effect on the compressive strength of the samples. The nitrate source contained a lot of 

extra bound water that could have helped decreasing the compressive strength. 

Main Effects Plot for CStrength 
Data Means 

5500-

5000 

e 

I 4500-

4000 

3500 , 

Oxide Sulfate Nitrate 10% 50% 

Fig. 7.5 Main effects plot for compressive strength. 

It can be seen on the interaction plot (Fig. 7.6) that there is not interaction 

between the levels of the two variables; in all cases, a higher addition of copper source 

ended up in lower compressive strength. 

Source 

\ 

\ 

Level 

\ 

\ 
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Interaction Plot for CStrength 
Data Means 
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Fig. 7.6 Interaction plot for compressive strength. 

7.3.4.2 Flow 

Fig. 7.7 shows that the copper source had a large effect on the flow of the paste. 

Copper nitrate contained 3 molecules of bound water, and its dissolution could have 

caused the increase of flow. Also, the copper oxide was insoluble in water and made the 

paste thicker and less workable. The red color of the oxide could be observed while 

mixing. It can also be seen in the right hand side of the box that the level of addition was 

not a source of variation for this model. It is the presence of the copper salts and not the 

amount what makes the flow change significatively. 

Source 
- • — Oxide 

B- Sulfate 
Nitrate 
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Fig. 7.7 Main effects plot for Flow. 

The interaction plot (Fig. 7.8) shows that there is no significant interaction 

between the variables (i.e., the amount of them used affects all the variables the same 

way). 
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Fig. 7.8 Interaction plot for Flow. 

7.3.4.3 XRD 

XRD analysis was performed for all the geopolymer samples. Paste samples were 

prepared, then pulverized and sent to an external lab for analysis. The results are 

summarized in Table 7.12. The full reports are presented in Appendix G. 

Table 7.12 XRD Phase content evaluation. 

Si02 (Quartz) 
(AI203)x(Si02)y 

(Mullite) 
Fe203 (Hematite) 
Fe204 (Magnetite) 

Cu20 (Cuprite) 
Na2(S04) 

(Thenardite) 
NaNOj (Nitratine) 

Amorphous 

10% 
Cu20 

4 7 
11.3 

0.3 
0.1 
27 
-

-
80 9 

50% 
Cu20 

4.7 
13.0 

1.3 
0.2 
5.7 
-

-
75.1 

10% 
CuS04 

4.4 
10 2 

01 
0.2 
-

1.4 

-
83 7 

50% 
CuS04 

5.3 
11.8 

-
0.3 
3.6 
3.6 

-
79.0 

10% 
Cu(N03)2-3H20 

4.8 
11.9 

0.2 
0.5 
-
-

0.8 
818 

50% 
Cu(N03)2-3H20 

45 
10.6 

0.1 
-
-
-

2.2 
82 6 

It can be seen on Table 7.12 that the CU2O remains unreacted after 

geopolymerization. The phase amounts presented in Table 7.12 roughly match those that 



176 

can be calculated from the amount of oxide that was added. On the other hand, the copper 

salts did dissolve and release copper ions, which can be proven by the absence of the 

crystalline phases in the XRD analysis and the presence of replaced sodium salts (sulfate 

and nitrate) suggesting that copper is indeed replacing sodium. To further explore these 

suggestions, TEM/EDS evaluations were performed on the material. 

7.3.5 TEM/EDS Evaluations 

It was proposed that light, scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) be used to determine where in the sample the copper ends. In 

particular, it was valuable to determine the chemical state of the copper, that is, combined 

with some other element or elements in a crystalline form, or was it part of the abundant 

amorphous geopolymer material? Electron diffraction is rarely used in these applications, 

though it seems likely to be extremely useful. A sample of the solid bulk material was 

thin-sectioned for scanning electron microscopy and energy-dispersive x-ray 

spectroscopy (EDS). EDS mapping proved to be especially useful. 

The results from EDS analysis and TEM imaging and are presented on Figs. 7.9 

and 7.10. The first spectrum corresponds to the top picture and so on and so forth. It can 

be seen that while little or no presence of copper can be found in the unreacted parts of 

the material (fly ash spheres), the amount of copper increases as the sample section 

becomes more amorphous, strongly indicating the presence of copper in the geopolymer 

section of the material. Whether copper is effectively replacing sodium as a modifying 

cat ion in the geopolymer net remains to be answered by a more specialized technique. 

However, even if the copper is entrapped interstitially, it could still have practical 
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applications as a bactericide, since it is not expressly required for copper to be a part of 

the geopolymer net to have bactericide effects. 
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Fig. 7.10 TEM images of the geopolymer coating sample. 
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7.4 Commercialization Potential 

A report by the USA National Innovation Marketplace, a member of Planet 

Eureka, showed promising commercialization potential for the present invention. With a 

concept score of 32 while the national average is 29, the invention has odds of selling for 

$681.6 million, but could reach up to $1.1 billion if the marketing concept is improved. 

The full report is shown in Appendix H. 

Further, a study conducted by students from the MGMT 400 class conducted by 

Dr. Pratts presented a business case scenario for the invention proposed in this thesis 

work. They assume the USA sewer system to host a 1 million mile sewer system 

infrastructure. Focusing on the market for large diameter pipe (36" to 240") which size is 

about $10.2 billion dollars per year, and assuming that only 3% of those will be 

rehabilitated per year, they consider that an initial investment of $3.5 million would 

provide the investor with an IRR of 65% after year 5 [91]. 

7.5 General Conclusions 

A full testing and characterization program of the formulation from the previous 

chapter is presented. The properties of the coating are satisfactory for rehabilitation 

projects for sewers and manholes. The addition of fibers increases the flexural strength of 

the coating. The Young's modulus for this material is relatively low compared to normal 

concretes. This characteristic might be beneficial as the coating will be less brittle and 

resist impact stresses better. Corrosion resistance proved to be significatively higher than 

that of the OPC-Silica Fume blend. Its value was slightly inferior to that of a Class F Fly 

ash geopolymer produced with more concentrated solutions, but it was a trade to achieve 
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better workability. The addition of surfactants did not reduce the coating corrosion 

resistance to sulfuric acid. 

The volume of permeable voids and air content percentage match with the 

predicted value from the spec sheet of the surfactant manufacturer. The length change of 

bars under a sulfate solution was only around 0.11% after 15 weeks. The abrasion 

resistance of the coating also proved to be higher than that of Portland Cement. Bond 

strength had a satisfactory result of 1400 psi. 

The geopolymer coating showed a thixotropic behavior, as most other 

geopolymericn formulations. The viscosity value can be reduced to half after 30 minutes 

of mixing. Rest periods of intervals of 30 minutes each showed an increase in the yield 

stress of the geopolymer paste. The overall value of viscosity was also increased. It is, 

therefore, recommended to mix and spray as promptly as possible to avoid undesirable 

thickening of the mix. The low surface tension of the geopolymer coating is achieved my 

means of the surfactant added. This low surface tension is important to achieve good 

efficiency while spraying. Once applied, the geopolymer coating will start setting after 

three hours; however, its full properties will not be achieved until the end of the curing 

period. 

Copper addition to the geopolymer coating was tried with three sources: oxide, 

sulfate and a hydrated nitrate. The addition of copper is expected to produce a biocide 

effect on the coating. However, it also has consequences in the properties of the material. 

All of the sources produced a decrease in compressive strength, with copper nitrate the 

most significative, mostly because of the extra water included in the molecule. Copper 

nitrate had slight effects on flow, increasing it slightly. 
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XRD characterization showed that copper oxide is not dissolved nor incorporated 

in the geopolymer paste and remained as a crystalline oxide. The copper salts did 

dissolve and partially substitute sodium ions in the paste. TEM/EDS analysis revealed the 

presence of copper ions in the amorphous part of the material (geopolymer), but it still 

needs to be resolved if it is present interstitially or in chemical combination. 

Several economic studies have shown a potential for the commercialization of the 

present invention. The USA National Innovation Marketplace provided an above average 

score for the invention and showed commercialization potential of $681.6 million dollars. 

An internal study conducted by a class at Louisiana Tech showed that when focusing on 

large diameter pipes, the product could have the potential of returning 65% of revenue 

after year 5. All of these results are encouraging to pursue a patent request and future 

licensing of the product by Louisiana Tech. 



CHAPTER 8 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

8.1 Summary 

The growing need for rehabilitation solutions of sanitary systems is a serious 

concern for many municipalities across North America. Common rehabilitation options 

include lining with either cementitious or polymeric materials. Portland cement based 

concrete has limited ability to withstand acidity generated by anaerobic conditions that 

exist in many sewage conveyance systems over extended periods of time, while 

polymeric coatings are often expensive and out of the budget of cities. Geopolymers are a 

novel kind of cementitious material with outstanding properties, which makes them 

promising candidates as a new rehabilitation option. Among geopolymer's excellent 

properties is their high corrosion resistance to acids like sulfuric acid. However, poor 

workability and low setting times have shied away many contractors from utilizing them 

in large scale operations. Surfactants are commonly used in the construction industry in 

the form of air entrainers. Although the main intention for the use of these materials is to 

introduce small air bubbles into the concrete with the purpose of increasing freeze-thaw 

durability, an improvement of the workability of cements is often noticed by many 

concrete manufacturers. Their use in geopolymers has not been explored yet. Finally, one 

of the most important efforts made in the field of biogenic corrosion prevention has been 
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to coat the pipes with bactericide agents embedded in epoxy. Those bactericide agents are 

in the form of copper and silver oxide. Geopolymer's ability to encapsulate heavy metals 

and the toxicity of copper could be a great area of opportunity to provide the industry 

with an enhanced complete solution to eradicate the problem of biogenic corrosion in 

sewers. 

The work conducted at Louisiana Tech was aimed then towards the development 

of a workable, sprayable geopolymer-based coating to rehabilitate sewers and manholes. 

The first step was to produce geopolymer in our labs and with locally available materials. 

Then, the main parameters of geopolymerization were investigated, with the purpose of 

providing with an idea of the role of the different components of geopolymerization in 

the final properties of the product. After this first set of tests, corrosion resistance tests 

were performed on geopolymers prepared from different raw materials and their 

durability compared to that of an enhanced OPC-Silica Fume blend. When the 

appropriate raw material was selected, a design of experiments was created to help on the 

decision making process of the optimization of the activator solution that would complete 

an initial geopolymer formulation for this project. The next step was to improve the 

workability of this geopolymer mix to enable it to be applied with currently used 

techniques (i.e., paddle mixing and spraying). Surfactants were then chosen as the 

additive to do this task. After a series of lab and field testing an optimum formulation was 

achieved. Then, quality tests commonly performed on coatings were also performed on 

this formulation and a specification sheet for the product was created. In the end, the 

addition of copper was evaluated. Three sources of copper were tried and the final 

properties evaluated in terms of compressive strength, flow and X-ray diffraction. 
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Different studies on the economical possibilities of this product in the market were 

conducted. 

8.2 Conclusions 

After the initial set of tests, it was concluded that geopolymers are suitable 

materials to replace Portland cement for spray lining applications. The main parameters 

that govern geopolymerization are: raw material selection, curing conditions and 

activator solution formulation. In general, higher curing temperature conditions provide a 

higher degree of geopolymerization and higher strengths. Curing times longer than 24 

hours are not necessary when appropriate temperatures are used. The activator solution to 

fly ash ratio plays a big role in the geopolymer final properties, and it is recommended to 

reduce it as much as possible without impeding workability. 

The raw material is the most important parameter with respect to the durability 

properties of geopolymer. Class C fly ash geopolymers generally have higher and earlier 

development of strength, while Class F fly ash geopolymer, though having lower and 

slower development of strength, provides better durability in terms of sulfuric acid 

resistance due to their lower amount of free lime. Both types of geopolymer offer better 

corrosion resistance than a specially formulated corrosion resistance blend of OPC-Silica 

Fume. 

The most important factor for the design of the activator solution is the silicate 

type. While a more concentrated silicate (commercially named "D") provides higher 

compressive strength, a less concentrated silicate (commercially named "N") provides 

better workability and longer setting times. Both silicates provide similar results in terms 

of corrosion resistance. A secondary advantage of using a lower concentration silicate is 
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its price. Since this type of silicate comes right out of the primary silicate production 

process and does not need to be reconcentrated, it is much cheaper and more readily 

available than the concentrated silicate. The second most important parameter for the 

formulation of the activator solution is the NaOH concentration. Generally, a higher 

concentration provides higher strength but at the expense of loss of workability and short 

setting time. A concentration of 12.5 M or 50% solution was found to be the best for this 

application. The third parameter involved in the formulation of the activator solution was 

the silicate/hydroxide ratio. This value proved to be important with respect to the setting 

time, and a value of 1.5 was found the be optimum since a value of 1 would reduce the 

setting time. All of these parameters have a great impact on the viscosity of geopolymers, 

the most important being the sodium silicate, then the hydroxide concentration and, later, 

the silicate/hydroxide ratio. Geopolymers behave as thixotropic materials. 

Surfactants were a great aid to solve the problem of geopolymer viscosity and 

workability. After a series of lab and field tests, the correct amount and type of surfactant 

to be used with geopolymers was found. A significant reduction in surface tension helped 

the material being sprayed more efficiently. A higher amount of surfactant lowered the 

surface tension of geopolymers while reducing their viscosity. However, a higher 

concentration of the surfactant used increased the viscosity slightly. This increase 

happens because when breaking the surface of the liquid, the surfactant impedes the flow 

and thereby makes it slightly more viscous. However, since the surfactant is added in a 

suspension form, a higher addition of surfactant also means a higher addition of water 

and, therefore, a reduction in viscosity. 
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The quality tests show that the geopolymer coating has better or the same quality 

than a cementitious coating in most aspects. Copper addition proved to be possible, with 

partial replacement of the Na ions in the geopolymer paste. The geopolymer coating has 

important commercial opportunities for Louisiana Tech. 

8.3 Recommendations 

The most important recommendation is to conduct a full scale testing of the 

coating under steam curing to prevent cracking. The curing performed in our tests 

included only temperature and, therefore, a few cracks due to the dry conditions were 

formed. 

Although the biocide properties of copper are widely known, a series of bacterial 

tests with this coating formulation should be performed, to obtain a quantitative measure 

of their effect on bacterial growth. Important conclusions are to be drawn from this work, 

like modifications on the amounts of copper to be used or the benefit of one source over 

the other. Leaching tests are also necessary to determine geopolymer's ability in the 

retention of the copper ions inside the matrix. 

A complete field test on an actual manhole is recommended to evaluate the 

behavior of the coating under real life conditions. 

Optical and SEM examinations are necessary to evaluate factors like pore size 

distribution, phase determination, thermally-induced microcracks, etc. An NMR-MAS 

examination of the coating would also be wise to determine the type of geopolymer that 

has been produced. The examination of the thermal expansion coefficient for the coating 

is another important factor to make recommendations for the curing procedure. 



188 

Additionally, short curing times will be desirable for many projects. Therefore, 

the addition of cure-control polymer micro-capsules may be an interesting area of 

research. These polymer systems have already been used in construction projects with 

success. The incorporation of these capsules for geopolymer cure-control is definitively 

an area worth of investigation. 



APPENDIX A 

EXPERIMENTAL DETAILS FOR CHAPTER 3 



A.l Particle Size Distribution of Metakaolin 

Size(um) 

0 04 
0.07 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 
1.1 
1.2 
1.3 
1.4 
1.6 
1.8 

2 
2.2 
2.4 
2 6 

3 
4 
5 
6 

6.5 
7 

7.5 
8 

8.5 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
22 
25 
28 
32 
36 
37 

Cumulative 

0.0009 
0.0032 
0.005 

0.0124 
0.0221 
0.0308 
0.0395 
0.0504 
0.0635 
0 079 

0.0945 
0.1093 
0.1228 
0 1351 
0 1465 
0.157 

0.1758 
0.1922 
0.2067 
0.2195 
0 2312 
0 2424 
0 2636 
0.3154 
0.3643 
0.408 

0.4279 
0 4465 
0.464 

0 4805 
0 496 

0.5109 
0.5386 
0.5643 
0 5884 
06114 
0.6334 
0.6546 
0.6751 
0 6946 
0.7132 
0 7309 
0 7475 
0 7776 
0.8149 
0.8458 
0.8818 

0.913 
0.9209 

Cumulative(%) 

0.09 
0.32 
05 
1.24 
2.21 
3.08 
3.95 
5.04 
6 35 
7.9 

9 45 
10 93 
12 28 
13.51 
14.65 
15 7 
17 58 
19 22 
20.67 
21.95 
23 12 
24 24 
26.36 
31.54 
36 43 
40 8 

42.79 
44 65 
46 4 

48 05 
49 6 
51.09 
53.86 
56.43 
58 84 
61.14 
63.34 
65.46 
67 51 
69.46 
71.32 
73.09 
74 75 
77.76 
81.49 
84.58 
88.18 
91.3 

91.87 

Histogram (%) 

0.00 
0.95 
1.16 
2.46 
5.51 
6.96 
8.98 
13.77 
19.57 
26.73 
30.30 
32 34 
32.61 
32.55 
32 79 
32.62 
32.42 
32 06 
3169 
30.92 
30 96 
32.22 
34 11 
4146 
50 46 
55.19 
57 25 
57.79 
58.40 
58.87 
58 87 
60.02 
60.54 
62 09 
63 78 
66.16 
68.36 
70.75 
73.14 
74.06 
74.93 
75.38 
74.52 
72.72 
67.19 
62.78 
62.08 
60.99 
59 24 

Normalized 
histogram 

0.00 
0.04 
0 05 
0.10 
0.23 
0 30 
0.38 
0.59 
0 83 
1.14 
1 29 
137 
139 
1.38 
1 39 
1 39 
1.38 
136 
135 
1.31 
1 32 
1 37 
145 
176 
2.14 
2.35 
2 43 
2 46 
2.48 
2.50 
2 50 
2.55 
2.57 
2.64 
2 71 
2.81 
2.91 
3.01 
3.11 
3.15 
3 18 
3 20 
3.17 
3.09 
2.86 
2 67 
2.64 
2.59 
2.49 



Size(um) 

38 
40 
45 
50 
53 
56 
63 
71 
75 
80 
85 
90 
95 
100 
106 
112 
125 
130 
140 
145 
150 
160 
170 
180 
190 
200 
212 
242 
250 
300 
400 
500 
600 
700 
800 
900 
1000 
1100 
1200 
1300 
1400 
1600 
1700 
1800 
1900 
2000 
2100 
2200 
2300 
2400 
2500 

Cumulative 

0 9267 
0.9391 
0.9638 
0 9804 
0.9872 
0.9922 
0.998 

Cumulative(%) 

92 67 
93 91 
96.38 
98.04 
98 72 
99 22 
99.8 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Histogram (%) 

58.34 
55.66 
48.29 
36 28 
26.87 
20.91 
1134 
3.85 
0.00 
0.00 
0 00 
0.00 
0 00 
0 00 
0 00 
0.00 
0.00 
0.00 
0 00 
0 00 
0.00 
0.00 
0.00 
0 00 
0.00 
0 00 
0 00 
0.00 
0 00 
0 00 
0.00 
0.00 
0 00 
0.00 
0.00 
0 00 
0.00 
0.00 
0.00 
0 00 
0.00 
0.00 
0 00 
0.00 
0.00 
0.00 
0.00 
0 00 
0 00 
0.00 
0 00 

2353.01 

Normalized 
histogram 

2.48 
2.37 
2.05 
1.54 
1.14 
0 89 
0 48 
0.16 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 00 
0.00 
0.00 
0.00 
0 00 
0.00 
0 00 
0 00 
0 00 
0.00 
0.00 
0.00 
0.00 
0 00 
0 00 
0 00 
0 00 
0 00 
0.00 
0.00 
0.00 
0.00 
0 00 
0.00 
0.00 
0 00 
0.00 
0 00 
0.00 
0.00 
0.00 
0.00 
0.00 
100.00 



A.2 Particle Size Distribution of Class F Flv Ash 

Size(um) 
2000 
1674 
1408 
1184 
995 5 
837 1 
703 9 
591.9 
497 8 
4186 
352.0 
296 0 
248 9 
209.3 
176 0 
148.0 
124.4 
104 6 
87 99 
73.99 
62.22 
52 32 
44 00 
37 00 
31 11 
26 16 
22.00 
18.50 
15 55 
13 08 
11 00 
9 25 
7.78 
6.54 
5 50 
4.62 
3 89 
3.27 

2.750 
2312 

Cumulative 
0 00 

0.00 
0 00 
0.00 
0.00 
0 00 
0 00 
0.00 
0.00 
0.00 
0.00 
0.00 
0 00 
0.00 
0 00 
0.00 
0.00 
0 18 
1 45 
3 65 
4 90 
4 67 
3 83 
3.93 
4 63 
5 54 
5.38 
5.72 
5.85 
3 67 
6.05 
5.38 
2.67 
3.79 
5 40 
3.55 
2.80 
1.74 
0 90 
0.46 

Cumulative(%) 
100 00 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100 00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100 00 
99.82 
98.37 
94 72 
89 82 
85.15 
8132 
77 39 
72.76 
67 22 
61.84 
56 12 
50.27 
46.60 
40.55 
35 17 
32.50 
28.71 
23.31 
19.76 
16.96 
15.22 
14.32 
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A.3 Weight Proportions for Section 3.3.4 

TEST 

1 

2 

3 

4 

5 

6 

7 

8 

NAME 

Silicate D 

Silicate N 

AS/FA 
0.53 

AS/FA 
0.82 

Sil/Hyd 
1.5 

Sil/Hyd 
2.5 

Temp 60 
C 

Temp 90 
C 

Ohio Fly 
Ash 
1500 

1500 

1500 

1500 

1500 

1500 

1500 

1500 

Sand 

1500 

1500 

1500 

1500 

1500 

1500 

1500 

1500 

Activator 
Solution 

795 

795 

795 

1230 

795 

795 

795 

795 

Silicate 
D 

477 

0 

477 

738 

477 

567 86 

477 

477 

Silicate 
N 
0 

477 

0 

0 

0 

0 

0 

0 

Hydroxide 
14 M 
318 

318 

318 

492 

318 

227.14 

318 

318 

Weights are provided in grams. 
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A.4 Results for Section 3.3.4 

TEST 

Silicate D 

AVERAGE 

Silicate N 

AVERAGE 

Silicate D - AS/FA 
0.53 

AVERAGE 

Silicate D - AS/FA 
0.82 

AVERAGE 

Silicate D - Sil/Hyd 
1.5 

AVERAGE 

Silicate D - Sil/Hyd 
2.5 

AVERAGE 

force (lbs) 

1 

37200 

36800 

35000 

1 

24600 

23200 

24800 

2 

40200 

41000 

40800 

2 

25800 

26800 

27400 

3 

41400 

42000 

41800 

3 

26000 

27800 

27200 

force (lbs) 

1 

38400 

37600 

36600 

1 

31800 

33200 

32000 

2 

41400 

42400 

41800 

2 

39800 

38600 

40200 

3 

42200 

42600 

42800 

3 

40400 

39600 

39200 

force (lbs) 

1 

35000 

35400 

34800 

1 

34600 

32200 

33800 

2 

40200 

41000 

39800 

2 

40400 

39600 

40000 

3 

41000 

40800 

39600 

3 

41000 

40200 

40400 

strength (psi) 

1 

9300 

9200 

8750 

9083.33 

1 

6150 

5800 

6200 

6050.00 

2 

10050 

10250 

10200 

10166.67 

2 

6450 

6700 

6850 

6666.67 

3 

10350 

10500 

10450 

10433.33 

3 

6500 

6950 

6800 

6750.00 

strength (psi) 

1 

9600 

9400 

9150 

9383.33 

1 

7950 

8300 

8000 

8083.33 

2 

10350 

10600 

10450 

10466.67 

2 

9950 

9650 

10050 

9883.33 

3 

10550 

10650 

10700 

10633.33 

3 

10100 

9900 

9800 

9933.33 

strength (psi) 

1 

8750 

8850 

8700 

8766.67 

1 

8650 

8050 

8450 

8383.33 

2 

10050 

10250 

9950 

10083.33 

2 

10100 

9900 

10000 

10000.00 

3 

10250 

10200 

9900 

10116.67 

3 

10250 

10050 

10100 

10133.33 
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Temperature 60 C 

AVERAGE 

Temperature 90 C 

AVERAGE 

force (lbs) 

1 

32200 

32400 

34000 

1 

36400 

35800 

36200 

2 

38800 

40400 

37600 

2 

39200 

38600 

40600 

3 

39000 

38800 

40200 

3 

40600 

40400 

41000 

strength (psi) 

1 

8050 

8100 

8500 

8216.67 

1 

9100 

8950 

9050 

9033.33 

2 

9700 

10100 

9400 

9733.33 

2 

9800 

9650 

10150 

9866.67 

3 

9750 

9700 

10050 

9833.33 

3 

10150 

10100 

10250 

10166.67 



A.5 Compressive Strength Results for Section 3.3.4 

TEST 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

NAME 

0.5-R-0.35-TX 

0.5-60-0.45-TI 

0.5-90-0.5-MI 

1-R-0.35-TI 

1-60-0.45-MI 

1-90-0.5-TX 

3-R-0.45-TX 

3-60-0.5-TI 

3-90-0.35-MI 

6-R-0.5-MI 

6-60-0.35-TX 

6-90-0.45-TI 

12-R-0.45-MI 

12-60-0.5-TX 

12-90-0.35-TI 

24-R-0.5-TI 

24-60-0.35-MI 

24-90-0.45-TX 

AS/FA 

0.35 

0.45 

0.5 

0.35 

0.45 

0.5 

0.35 

0 45 

0.5 

0.35 

0.45 

0.5 

0.35 

0.45 

05 

0.35 

0.45 

0.5 

FLY ASH TX 

500 

0 

0 

0 

0 

500 

500 

0 

0 

0 

500 

0 

0 

500 

0 

0 

0 

500 

FLY ASH TI 

0 

500 

0 

500 

0 

0 

0 

500 

0 

0 

0 

500 

0 

0 

500 

500 

0 

0 

FLY ASH MI 

0 

0 

500 

0 

500 

0 

0 

0 

500 

500 

0 

0 

500 

0 

0 

0 

500 

0 

SAND 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

500 

ACT SOL 

175 

225 

250 

175 

225 

250 

175 

225 

250 

175 

225 

250 

175 

225 

250 

175 

225 

250 

SILD 

105 

135 

150 

105 

135 

150 

105 

135 

150 

105 

135 

150 

105 

135 

150 

105 

135 

150 

HYD 14 M 

70 

90 

100 

70 

90 

100 

70 

90 

100 

70 

90 

100 

70 

90 

100 

70 

90 

100 

*Weights in grams. 



A.6 Compressive Strength Results for Section 3.4.2 

Code 
5-R-35-TX-1 
5-R-35-TX-2 
5-R-35-TX-3 
Average 

5-60-45-TI-l 
5-60-45-TI-2 
5-60-45-TI-3 
Average 

5-90-50-MI-l 
5-90-50-MI-2 
5-90-50-MI-3 
Average 

1-R-35-TI-1 
1-R-35-TI-2 
1-R-35-TI-3 
Average 

1-60-45-MI-l 
1-60-45-MI-2 
1-60-45-MI-3 
Average 

1-90-50-TX-l 
1-90-50-TX-2 
1-90-50-TX-3 
Average 

3-R-45-TX-1 
3-R-45-TX-2 
3-R-45-TX-3 
Average 

3-60-50-TI-l 
3-60-50-TI-2 
3-60-50-TI-3 
Average 

3-90-3 5-MI-l 
3-90-35-MI-2 
3-90-35-MI-3 

Average 

Comp. Str. (24 hrs - psi) 
1050 
1150 
1075 

1091.67 
1300 
1350 
1300 

1316.67 
7100 
7150 
6300 

6850.00 
1750 
1700 
1650 

1700.00 
13450 
12950 
12500 

12966.67 
3750 
3600 
3900 

3750.00 
700 
800 
750 

750.00 
4200 
3700 
3950 

3950.00 
12250 
13300 
13400 

12983.33 

Code 
6-R-50-MI-1 
6-R-50-MI-2 
6-R-50-MI-3 
Average 

6-60-35-TX-l 
6-60-35-TX-2 
6-60-3 5-TX-3 

Average 
6-90-45-TI-l 
6-90-45-TI-2 
6-90-45-TI-3 
Average 

12-R-45-MI-1 
12-R-45-MI-2 
12-R-45-MI-3 
Average 

12-60-50-TX-l 
12-60-50-TX-2 
12-60-50-TX-3 

Average 
12-90-3 5-TI-l 
12-90-35-TI-2 
12-90-35-TI-3 

Average 
24-R-50-TI-1 
24-R-50-TI-2 
24-R-50-TI-3 
Average 

24-60-35-MI-l 
24-60-35-MI-2 
24-60-3 5-MI-3 

Average 
24-90-45-TX-l 
24-90-45-TX-2 
24-90-45-TX-3 

Average 

Comp Str. (24 hrs - psi) 
3850 
3850 
3650 

3783.33 
8000 
9375 
7950 

8441.67 
10350 
9750 
11750 

10616.67 
3450 
3150 
3550 

3383.33 
6250 
5200 
5850 

5766.67 
16200 
15950 
16750 

16300.00 
1000 
950 
900 

950.00 
8800 
10800 
12000 

10533.33 
9325 
9325 
9325 
9325 

197 



APPENDIX B 

EXPERIMENTAL DETAILS FOR THE 

CORROSION TESTS 



B.l Weight Proportions for Section 4.3 

Material 
Cement blend 

OPC 
Silica fume 

Metakaolin 
Class C ash 
Class F ash 

Weight 

10,000 
2,500 
7,500 
12,500 
1,200 

Sand 

12,500 

7,500 
12,500 
1,200 

AS/FA 

0.35** 

1.25 
0.35 
0.45 

Water 

4375 

0 
0 
0 

S. Silicate 

0 

6250 
2625 
324 

NaOH 

0 

3125 
1750 
216 

Weights are expressed in grams. 
* Water/cement ratio 



B.2 Preparation of Sulfuric Acid Solutions 

Week 
pH 
0.6 

1 

2 

3 

Volumes (It) 
Acid (97%) 
Water 
Total solution 
Acid (97%) 
Water 
Total solution 
Acid (97%) 
Water 
Total solution 
Acid (97%) 
Water 
Total solution 

Initial 

0 29193 

914702 
9 43895 
0 09731 
9 34164 
9 43895 
0 00482 
9 43413 
9 43895 
0 44924 
0 44947 
9 43413 

1 
0 24327 
7 62252 
7 86579 
0 08109 
7 78470 
7 86579 
0 00401 
7 86178 
7 86579 
0 00078 
7 86501 
7 86579 

2 
0 19462 
6 09802 
6 29263 
0 06487 
6 22776 
6 29263 
0 00321 
6 28942 
6 29263 
0 00062 
6 29201 
6 29263 

4 
014748 
4 57199 
4 71947 
0 04865 
4 67082 
4 71947 
0 00241 
4 71707 
4 71947 
0 00047 
4 71901 
4 71947 

6 
0 09731 
3 04901 
314632 
0 03244 
3 11388 
314632 
0 00161 
314471 
314632 
0 00031 
314600 
314632 



B.3 Mass Loss Results 

MASS LOSS RESULTS (net 
Fly ash C 

PH 
0.6 
1 
2 
3 

Metakaolin 

PH 
0.6 
1 
2 
3 

OPC 

PH 
0.6 
1 
2 
3 

Fly ash F 
pH 

0.6 

Original mass 

299.93 
298.93 
287.40 
289 87 

Original mass 

234.97 

229.13 

234.70 
236.10 

Original mass 

289.80 
286.27 

283.70 
284.67 

0 

275.50 

weight) 

1 

294.83 
294.80 
282.40 

285 93 

1 

191.17 

211.70 

219.40 
228.17 

1 

245.77 

275.00 
280.10 
282.67 

1 

268.20 

2 

285.80 
288.63 

279.20 
284.07 

2 

167 93 
200.40 
210.17 
218 07 

2 

228.73 
273.70 
279 77 
282 33 

2 

266.00 

Weeks 
4 

278.07 

285.83 
275.50 
280 07 

Weeks 
4 

152 17 

198.53 
209 63 

22140 

Weeks 
4 

196 87 
26197 
279 67 

282.50 

Weeks 
4 

26170 

6 

244.33 
272 23 

277.00 
282 40 

6 

140.20 
186 77 
209 53 

217 10 

6 

142.27 
254 57 
275.20 
278.40 

6 

256 82 

8 

225.93 
268.87 

273.90 
278 87 

8 

128 80 
178 37 

207 40 
214 13 

8 

80.20 
21910 
272.70 
277 53 

8 

252.73 

MASS LOSS RESULTS (%) 
Fly ash Class 

PH 
0.6 

1 

2 

3 

Metakaolin 

PH 

OPC 
pH 

0.6 
1 
2 

3 

06 
1 
2 

3 

Fly ash F 
pH 

0.6 

C 

0 
0.00 
0.00 

0.00 
0.00 

0 
0.00 
0.00 
0.00 

0.00 

0 
0.00 
0.00 
0.00 

0.00 

0 

0.00 

1 
1.70 
138 
1.74 

1.36 

1 
18.64 

7.61 
6.52 

3.36 

1 
15.19 
3.94 
1.27 

0 70 

1 

2.65 

Weeks 

2 
4.71 

3.45 

2.85 
2.00 

Weeks 

2 
28.53 
12.54 
10.45 
7.64 

Weeks 

2 
21.07 

4.39 
1.39 

0.82 

! 

2 

3.45 

4 
7.29 
4 38 

4.14 
3.38 

4 

35.24 
13 35 

10.68 
6.23 

4 
32.07 

8.49 
1.42 

0.76 

Weeks 

4 

5.01 

6 
18.54 

8 93 
3.62 

2.58 

6 

40.33 
18.49 
10.72 

8.05 

6 
50.91 
11.07 
3.00 

2.20 

6 

6.78 

8 
24.67 

10 06 

4.70 
3.79 

8 
45.18 

2216 
11.63 
9.30 

8 
72.33 
23 46 
3.88 

2 51 

8 

8.27 

O 



B.4 Remaining Compressive Strength Results 

COMPRESSIVE STRENGTH RESULTS COMPRESSIVE STRENGTH RESULTS (%) 
Fly ash TX 

PH 
0 6 

1 

2 

3 

Metakaolin 

PH 
0 6 

1 
2 
3 

OPC 

PH 
0 6 

1 
2 
3 

Fly ash OH 

PH 
0 6 

Initial strength 

10550 

10550 

10550 

10550 

Initial strength 

7766 67 

7766 67 

7766 67 

7766 67 

Initial strength (7D) 

7000 

7000 

7000 

7000 

0 

6750 

1 

8733 33 

10466 67 

10716 67 

11000 00 

1 

3916 67 

4600 00 

6550 00 

6983 33 

1 

425000 

6266 67 

6383 33 

6816 67 

1 

6600 

2 

9116 67 

10234 00 

9750 00 

11200 00 

2 

2950 00 

5433 33 

6100 00 

7700 00 

2 

3333 33 

3916 67 

5566 67 

6683 33 

2 

6450 

Weeks 
4 

5750 00 

8866 67 

9950 00 

10150 00 

Weeks 
4 

2033 33 

3783 33 

6049 00 

7300 00 

Weeks 
4 

1316 67 

3883 33 

5416 67 

6666 67 

Weeks 
4 

6293 02 

6 

3683 33 

8383 33 

8866 67 

9233 33 

6 

866 67 

3700 00 

6200 00 

7333 33 

6 

1050 00 

2966 67 

4700 00 

6108 33 

6 

6174 9 

8 

2716 67 

6766 67 

900100 

9150 00 

8 

333 33 

3500 00 

6250 00 

7400 00 

8 

816 67 

2516 67 

4116 67 

5433 33 

8 

6089 85 

Fly ash TX 

PH 
0 6 

1 

2 

3 

Metakaolin 

PH 

OPC 
pH 

0 6 

1 

2 

3 

0 6 

1 

2 

3 

Fly ash OH 

PH 
06 

0 

100 

100 

100 

100 

0 

100 

100 

100 

100 

0 

100 

100 

100 

100 

0 

100 00 

1 

82 78 

99 21 

10158 

104 27 

1 

50 43 

59 23 

84 33 

89 91 

1 

60 71 

89 52 

9119 

97 38 

1 

97 78 

\ 
2 

86 41 

97 00 

92 42 

10616 

\ 
2 

37 98 

69 96 

78 54 

9914 

\ 
2 

47.62 

55 95 

79 52 

95 48 

2 

95 56 

Weeks 

4 

54 50 

84 04 

94 31 

96 21 

i/Veeks 

4 

2618 

48 71 

77 88 

93 99 

Weeks 

4 

18 81 

55 48 

77 38 

95 24 

Weeks 
4 

93 23 

6 

34 91 

79 46 
84 04 

87 52 

6 

1116 

47 64 

79 83 

94 42 

6 

15 00 

42 38 

6714 

87 26 

6 

9148 

8 

25 75 

6414 

85 32 

86 73 

8 

4 29 

45 06 

80 47 

95 28 

8 

1167 

35 95 

58 81 

77 62 

8 

90 22 



APPENDIX C 

SOFTWARE OUTPUT AND EXPERIMENTAL 

RESULTS FOR CHAPTER 5 



C.l MINITAB Experimental Setup 

Multilevel Factorial Design 
Factors: 3 Replicates: 3 
Base runs: 27 Total runs: 81 
Base blocks: 1 Total blocks: 1 
Number of levels: 3, 3, 3 
General Linear Model: Compressive versus Silicate typ, Hydroxide mo,... 
Factor Type Levels Values 
Silicate type fixed 3 D, N, Star 
Hydroxide molarity fixed 3 6, 10, 14 
Silicate/Hydroxide fixed 3 1, 2, 3 
Response variables 
Compressive strength 
Remaining compressive strength 
Mass loss 
Flow 



C.2 MINITAB Output for Compressive Strength 

Analysis of Variance for Compressive strength, using Adjusted SS for Tests 

Source 
Silicate type 
Hydroxide molarity 
Silicate/Hydroxide 
Silicate type*Hydroxide molarity 
Silicate type*Silicate/Hydroxide 
Hydroxide molarity* 

Silicate/Hydroxide 
Silicate type*Hydroxide molarity* 

Silicate/Hydroxide 
Error 
Total 

Source 
Silicate type 
Hydroxide molarity 
Silicate/Hydroxide 
Silicate type*Hydroxide molarity 
Silicate type*Silicate/Hydroxide 
Hydroxide molarity* 

Silicate/Hydroxide 
Silicate type*Hydroxide molarity* 0.000 

Silicate/Hydroxide 
Error 
Total 

DF 
2 
2 
2 
4 
4 
4 

8 

54 
80 

0. 
0. 
0. 
0. 
0. 
0. 

Seq SS 
187248657 
40706991 
6175417 
8563519 

31254259 
1024815 

22585093 

11828750 
309387500 

P 
000 
000 
000 
000 
000 
334 

Ad] SS 
187248657 
40706991 
6175417 
8563519 

31254259 
1024815 

22585093 

11828750 

Ad] MS 
93624329 
20353495 
3087708 
2140880 
7813565 
256204 

2823137 

219051 

427. 
92. 
14. 
9. 

35. 
1. 

12. 

F 
.41 
.92 
.10 
.77 
.67 
.17 

.89 



C.3 R Output for Compressive Strength 

Contrasts for the three levels of silicate type 

fit.contrast (fact3, Sil, c(l,-l,0)) 

Estimate Std. Error t value Pr(>|t|) 
Design c= ( 1 - 1 0 ) -175.25 21.26976 -8.239396 0.0001726944 

fit.contrast(fact3, Sil, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 1 0 - 1 ) 3416.667 382.1439 8.940786 3.082991e-12 

fit.contrast(fact3, Sil, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 0 1 - 1 ) 33.33333 382.1439 0.08722718 0.9308136 

Contrasts for the three levels of hydroxide molarity 

fit.contrast(fact3, Mol, c(l,-l,0)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 1 - 1 0 ) -866.6667 382.1439 -2.267907 0.02735857 

fit.contrast (fact3, Mol, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 1 0 - 1 ) -2433.333 382.1439 -6.367584 4.365507e-08 

fit.contrast(fact3, Mol, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 0 1 - 1 ) -1566.667 382.1439 -4.099677 0.0001400809 

Contrasts for the three levels of silicate/hydroxide ratio. 

fit.contrast(fact3, Ratio, c (1,-1,0)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 1 - 1 0 ) 950 382.1439 2.485975 0.01604577 

fit.contrast(fact3, Ratio, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 1 0 - 1 ) 283.3333 382.1439 0.741431 0.4616446 

fit.contrast(fact3. Ratio, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 0 1 - 1 ) -666.6667 382.1439 -1.744544 0.08675387 



C.4 MINITAB Output for Remaining Compressive Strength 

Analysis of Variance for Residual compressive strength, using Adjusted SS for Tests 

Analysis of Variance for Remain. Comp. Str. (%), using Adjusted SS for Tests 

Source 
Silicate type 
Hydroxide cone 
Silicate/Hydroxide 
Silicate type*Hydroxide cone 
Silicate type*Silicate/Hydroxide 
Hydroxide cone*Silicate/Hydroxide 
Silicate type*Hydroxide cone* 

Silicate/Hydroxide 
Error 27 1991.09 1991.09 73.74 
Total 53 16903.33 

8.58743 R-Sq = 88.22% R-Sq(ad]) = 76.88% 

iF 

2 
2 
2 
4 
4 
4 
8 

Seq 
4402. 
1121. 
505. 

1952. 
1685. 
2997. 
2248. 

SS 
.39 
.13 
.24 
.52 
.05 
.64 
.28 

Ad] 
4402, 
1121. 
505. 

1952, 
1685. 
2997. 
2248. 

SS 
.39 
.13 
.24 
.52 
.05 
.64 
.28 

Ad] 
2201, 
560, 
252, 
488, 
421, 
749, 
281, 

MS 
.20 
.56 
.62 
.13 
.26 
.41 
.03 

29. 
7. 
3. 
6. 
5. 

10. 
3. 

F 
.85 
.60 
.43 
.62 
.71 
.16 
.81 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

P 
.000 
.002 
.047 
.001 
.002 
.000 
.004 



C.5 R Output for Remaining Compressive Strength 

Contrasts for the three levels of silicate type. 

fit.contrast(fact3, Sil, c(l,-l,0)) 
Estimate Std. Error t value Pr(>|t|) 

Sil c=( 1 - 1 0 ) 11.625 8.587433 1.353722 0.1870493 
fit.contrast(fact3, Sil, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 1 0 - 1 ) 31.745 8.587433 3.696681 0.000981703 
fit.contrast(fact3, Sil, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 0 1 - 1 ) 20.12 8.587433 2.342959 0.02674986 

Contrasts for the three levels of hydroxide concentration. 

fit.contrast (fact3, Mol, c(l,-l,0)) 
Estimate Std. Error t value Pr(>|t|) 

Mol c=( 1 - 1 0 ) -4.075 8.587433 -0.4745306 0.6389372 
fit.contrast(fact3, Mol, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 1 0 - 1 ) -10.88 8.587433 -1.266968 0.2159869 
fit.contrast(fact3, Mol, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 0 1 - 1 ) -6.805 8.587433 -0.792437 0.4350138 

Contrasts for the three levels of silicate/hydroxide ratio. 

fit.contrast(fact3, Ratio, c(l,-l, 0)) 
Estimate Std. Error t value Pr(>|t|) 

Ratio c=( 1 - 1 0 ) -2.795 8.587433 -0.3254756 0.74733 
fit.contrast(fact3, Ratio, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 1 0 - 1 ) -18.555 8.587433 -2.160716 0.0397543 
fit.contrast(fact3, Ratio, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 0 1 - 1 ) -15.76 8.587433 -1.83524 0.07750954 
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C.6 MINITAB Output for Mass Loss 

Analysis of Variance for Mass loss, using Adjusted SS for Tests 

Analysis of Variance for Mass loss (%), using Adjusted SS for Tests 

Source 
Silicate type 
Hydroxide cone 
Silicate/Hydroxide 
Silicate type*Hydroxide cone 
Silicate type*Silicate/Hydroxide 
Hydroxide cone*Silicate/Hydroxide 
Silicate type*Hydroxide cone* 

Silicate/Hydroxide 
Error 
Total 

DF 

27 

Seq SS Adj SS Adj MS F P 
268.953 268.953 134.477 306.54 0.000 
27.245 27.245 
2.316 
13.794 
20.847 
17.314 
32.465 

11.845 
53 394.779 

2.316 
13.794 
20.847 
17.314 
32.465 

11.845 

13.623 
158 
448 
212 
329 
058 

0.439 

31.05 
2. 
7. 

11. 
9. 
9. 

64 
86 
88 
87 
25 

0 .000 
0 .090 
0 .000 
0 .000 
0 .000 
0 .000 

0.662343 R-Sq = 97.00% R-Sq(adj) 94.11% 



C.7. R Output for Remaining Mass Loss 

Contrasts for the three levels of silicate type. 

fit.contrast(fact3, Sil, c(l,-l,0)) 
Estimate Std. Error t value Pr(>|t|) 

Sil c=( 1 - 1 0 ) -0.955 0.6623429 -1.441851 0.1608440 
fit.contrast(fact3, Sil, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 1 0 - 1 ) -7.165 0.6623429 -10.81766 2.561866e-ll 
fit.contrast(fact3, Sil, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 0 1 - 1 ) -6.21 0.6623429 -9.375808 5.555252e-10 

Contrasts for the three levels of hydroxide molarity. 

fit.contrast(fact3, Mol, c(l,-l,0)) 
Estimate Std. Error t value Pr(>|t|) 

Mol c=( 1 - 1 0 ) -2.17 0.6623429 -3.276248 0.002888962 
fit.contrast(fact3, Mol, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 1 0 - 1 ) -2.205 0.6623429 -3.329091 0.002527461 
fit.contrast(fact3, Mol, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 0 1 - 1 ) -0.035 0.6623429 -0.05284272 0.9582463 
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C.8 Minitab Output For Flow 

Analysis of Variance for Flow, using Adjusted SS for Tests 

Analysis of Variance for Mass loss (%), using Adjusted SS for Tests 

Source DF 
Silicate type 2 
Hydroxide cone 2 
Silicate/Hydroxide 2 
Silicate type*Hydroxide cone 4 
Silicate type*Silicate/Hydroxide 4 
Hydroxide conc*Silicate/Hydroxide 4 
Silicate type*Hydroxide cone* 8 

Silicate/Hydroxide 
Error 27 
Total 53 

Seq SS 
14814.9 
16020.0 
2104.7 

61.0 
1284.3 
2525.6 
614.6 

Adj SS 
14814.9 
16020.0 
2104.7 

61.0 
1284.3 
2525.6 
614.6 

Adj MS 
7407.4 
8010.0 
1052.4 

15.2 
321.1 
631.4 
76.8 

754, 
815. 
107. 

1. 
32. 
64. 
7. 

F 
.01 
.34 
.12 
.55 
.68 
.27 
.82 

0, 
0. 
0. 
0. 
0. 
0. 
0. 

p 
.000 
.000 
.000 
.216 
.000 
.000 
.000 

265.3 265.3 9.8 
37690.3 

S = 3.13434 R-Sq = 99.30% R-Sq(adj) = 98.62% 



C.9 R Output For Flow 

Contrasts for the three levels of silicate type. 

fit.contrast(fact3, Sil, c(l,-l,0)) 
Estimate Std. Error t value Pr(>|t|) 

Sil c=( 1 - 1 0 ) -23.75 5.691937 -4.172569 0.0002799551 
fit.contrast(fact3, Sil, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 1 0 - 1 ) -21.75 5.691937 -3.821195 0.0007089056 
fit.contrast(fact3, Sil, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Sil c=( 0 1 -1 ) 2 5.691937 0.3513742 0.7280349 

Contrasts for the three levels of hydroxide molarity. 

fit.contrast (fact3, Mol, c(l,-l,0)) 
Estimate Std. Error t value Pr(>|t|) 

Mol c=( 1 - 1 0 ) 34.5 5.691937 6.061205 1.800809e-06 
fit.contrast(fact3, Mol, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 1 0 - 1 ) 53.25 5.691937 9.355339 5.814386e-10 
fit.contrast(fact3, Mol, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Mol c=( 0 1 - 1 ) 18.75 5.691937 3.294133 0.002761360 

Contrasts for the three levels of silicate/hydroxide ratio. 

fit.contrast(fact3, Ratio, c(l,-l, 0)) 
Estimate Std. Error t value Pr(>|t|) 

Ratio c=( 1 - 1 0 ) 20.5 5.691937 3.601586 0.001256791 
fit.contrast{fact3. Ratio, c(l,0,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 1 0 - 1 ) 56 5.691937 9.838478 2.011232e-10 
fit.contrast(fact3, Ratio, c(0,l,-l)) 

Estimate Std. Error t value Pr(>|t|) 
Ratio c=( 0 1 - 1 ) 35.5 5.691937 6.236893 1.136051e-06 



CIO Weights For Section 5.4 

Silicate 

N 
D 
N 
N 
D 
D 
Star 
N 
Star 
N 
D 
D 
Star 
N 
Star 

N 
Star 
Star 
Star 

D 
Star 

D 
D 
Star 
N 
N 
D 

Hydroxide Silicate/Hydroxide Fly 

10 
10 
6 
14 
10 
6 
14 
10 
10 
6 
14 
6 
14 
14 
10 
10 
6 
6 
10 
14 
14 
10 
6 
6 
6 
14 
14 

1 
1 
2 
3 
3 
3 
3 
2 
3 
1 
1 
1 
1 
2 
2 
3 
3 
2 
1 
3 
2 
2 
2 
1 
3 
1 
2 

ash (g) Molds 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

< 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

Silicate I 

270 
270 
360 
405 
405 
405 
405 
360 
405 
270 
270 
270 
270 
360 
360 
405 
405 
360 
270 
405 
360 
360 
360 
270 
405 
270 
360 

Hydroxide 
270 00 
270 00 
180 00 
135 00 
135.00 
135 00 
135.00 
180 00 
135 00 
270.00 
270 00 
270 00 
270.00 
180 00 
180 00 
135 00 
135 00 
180 00 
270 00 
135 00 
180 00 
180 00 
180 00 

270 00 
135 00 
270 00 
180 00 



C l l Compressive Strength Results 

FORMULATION 

D-14-2 

D-14-1 

D-6-1 

Star-14-3 

N-14-3 

N-14-2 

Star-6-3 

Star-14-1 

D-14-2 

D-6-3 

Star-6-1 

Star-14-2 

D-10-2 

D-6-3 

N-10-1 

N-6-3 

D-10-1 

N-6-2 

N-10-1 

N-10-2 

D-14-3 

D-14-2 

D-14-1 

D-10-2 

Star-6-2 

D-10-1 

Star-10-3 

D-6-2 

Star-14-3 

Star-10-2 

Star-10-3 

N-10-3 

D-10-3 

D-6-2 

Star-10-1 

N-6-3 

D-6-3 

N-10-2 

D-10-2 

Star-10-3 

Star-6-2 

C. Strength (%) 

6750 

9250 

5700 

4950 

4200 

3050 

2750 

1750 

5300 

5900 

2650 

4450 

6900 

4900 

5000 

550 
6800 

2450 

4600 

3100 

6600 

7000 

8600 

5500 

2750 

7150 

3550 

5050 

5150 

2700 

3550 

1750 

7350 

5000 

2450 

650 
6100 

3250 

7800 

3550 

2400 

FORMULATION 

N-6-3 

N-14-3 

D-14-1 

N-10-2 

D-10-3 

Star-10-1 

D-6-2 

D-14-3 

Star-14-1 

D-14-3 

N-6-1 

N-6-1 

N-14-1 

D-10-3 

D-10-1 

N-6-2 

N-10-3 

N-14-2 

N-14-1 

Star-6-2 

Star-14-1 

N-10-3 

D-6-1 

Star-6-1 

N-14-1 

Star-10-1 

Star-10-2 

Star-6-1 

N-14-3 

Star-14-2 

Star-6-3 

N-10-1 

Star-14-2 

D-10-1 

Star-10-2 

N-14-2 

Star-6-3 

N-6-2 

N-6-1 

Star-14-3 

C. Strength (%) 

650 
3750 

7200 

3150 

6750 

3400 

4850 

6100 

1750 

4950 

2700 

2450 

5750 

7200 

6150 

2600 

1650 

4200 

6400 

2500 

1825 

2000 

5900 

2450 

5950 

3500 

2550 

2400 

4100 

3850 

2650 

5000 

4150 

6400 

3050 

3900 

2700 

2450 

2450 

5050 



C.12 Remaining Compressive Strength, Mass Loss And Flow Results 

FORMULATION 

D-10-2 

D-10-2 

Star-14-3 

Star-6-3 

Star-10-2 

D-10-1 

Star-14-1 

N-14-1 

D-6-3 

N-14-3 

Star-10-3 

D-14-2 

N-6-2 

Star-14-1 

D-14-1 

N-6-2 

D-6-2 

D-14-1 

D-6-1 

N-6-1 

Star-10-2 

N-10-2 

Star-10-1 

N-10-3 

Star-14-3 

Remain. Comp. Str. (%) 

89 85 
77 97 
8119 
53 7 
88 55 
84 77 
76 06 
6188 
94.08 
78 42 
67 61 
98 43 

56 
98 59 
96 88 

48 
74 5 
85 63 
80 28 
65 13 
83 13 
58 33 
80 21 
63 89 
74 26 

Mass loss (%) 
10 94 
10 06 
12 56 
15 17 
13 85 
1102 
1183 
9 47 
812 
1168 
14 51 
6.35 
1168 
1124 
8 89 
1116 
1014 
1109 
918 
9 25 
12 96 
12 74 
16 97 
12 08 
1175 

Flow 
52 

515 
76 5 
1015 

98 
67 
68 

665 
46 
71 
90 
28 

117 5 
65 5 
26 5 
117 
79 5 
46 5 
99 5 
122 
915 
94 

96 5 
102 5 

77 



FORMULATION 

N-10-2 
D-6-3 
N-14-2 
D-14-1 
N-10-1 
Star-6-1 
D-10-1 
D-6-1 
N-14-1 
N-6-1 
N-10-1 
N-14-1 
N-6-3 
D-14-2 
Star-6-3 
Star-6-2 
D-6-2 
D-14-3 
Star-14-2 
D-10-3 
D-10-3 
N-12-2 
Star-10-3 
Star-6-1 
Star-6-2 
Star-10-1 
Star-14-2 
N-14-3 
N-6-3 

Remain. Comp. Str. (%) 
82 11 
98 52 
65 92 
9162 
70 89 

50 
78 87 
75 21 
76 24 
67 11 
77 05 
66 3 

113 51 
11417 
55 56 
549 
86 58 
96.03 
75 9 

104 23 
70 42 
72 63 
42 25 

42 
56 86 
60 96 
67 47 
84 65 
12162 

Mass loss (%) 
1175 
694 
8 96 
984 
12 01 
15 46 
984 
7 34 
1186 
918 
1127 
10 47 
13 73 
5 55 
14 43 
16 01 
8 52 
764 
13 51 
7 97 
7 09 
1116 
13 85 
15 39 
15 72 
16 31 
13 29 
10 65 
12 56 

Flow 
84 

445 
67 

49 5 
915 
122 
66 5 
103 
65 
128 
83 5 
605 
845 
32 5 
105 

108 5 
82 
28 
69 
46 
51 
89 
92 
124 

108 5 
104 
65 5 
62 5 
89 5 
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D.l Weights for Section 6.3.1 

FORMULATION 
N-6-1 
N-6-1.5 
N-6-2 
N-8-1 
N-8-1.5 
N-8-2 
N-10-1 
N-10-1.5 
N-10-2 
N-12-1 
N-12-1.5 
N-12-2 
N-12-1 
N-12-1.5 
N-12-2 

FLY ASH (g) 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
400 

S. SILICATE (g) 
80 
96 

106.67 
114.29 

120 
124.44 

128 
130.91 
133.33 
135.38 
137.14 
138.67 

140 
141.18 
142.22 

NAOH(g) 
80.00 
64.00 
53.33 
45.71 
40.00 
35.56 
32.00 
29.09 
26.67 
24.62 
22.86 
21.33 
20.00 
18.82 
17.78 



D.2 Viscosity Results for 6.3.4 

NaOH Cone 
12 
14 
8 
10 
12 
14 
14 
10 
8 
12 
12 
6 
6 
10 
10 
10 
14 
6 
8 
8 
6 
14 
12 
8 
6 
6 
14 
10 
12 
8 

Sil/Hyd 
1 
1.5 
2 
1 
2 
2 
1 
2 
1 
1.5 
2 
2 
1 
1.5 
1 
1.5 
1 
1 
1 
1.5 
1.5 
1.5 
1.5 
2 
2 
1.5 
2 
2 
1 
1.5 

Viscosity after 30 min 
15750 
24150 
5600 
6400 
11500 
19550 
30500 
6600 
4400 
7800 
12200 
6200 
3500 
6150 
6250 
6000 
28400 
3250 
4500 
4650 
3850 
26200 
10000 
5200 
3900 
3700 
20000 
6600 
16280 
4650 
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D.3 ANOVA Table from MINITAB 

Multilevel Factorial Design 

Factors: 
Base runs: 
Base blocks: 

2 
15 
1 

Replicates: 
Total runs: 
Total blocks: 

2 
30 
1 

Number of levels: 5, 3 

General Linear Model: Viscosity versus NaOH Cone, Sil/Hyd 

Factor Type Levels Values 
NaOH Cone fixed 5 6, 8, 10, 12, 14 
Sil/Hyd fixed 3 1.0, 1.5, 2.0 

Analysis of Variance for Viscosity, using Adjusted SS for Tests 

Source 
NaOH Cone 
Sil/Hyd 
NaOH Conc*Sil/Hyd 
Error 
Total 

DF 
4 
2 
8 

15 
29 

Seq SS 
1790526387 

32210027 
117272773 
10007950 

1950017137 

Ad] SS 
1790526387 

32210027 
117272773 
10007950 

Ad] MS 
447631597 
16105013 
14659097 

667197 

670. 
24. 
21. 

F 
.91 
.14 
.97 

0. 
0. 
0. 

P 
.000 
.000 
.000 

S = 816.821 R-Sq = 99.49% R-SqUdj) = 99.01% 



D.4 MINITAB Input And Outputs For Section 6.5.4 

Surfactant 
type 
SLS 
AP 
SLS 
SLS 
AP 
SLS 
AP 
AP 
SLS 
SLS 
SLS 
SLS 
SLS 
SLS 
SLS 
SLS 
AP 
SLS 
AP 
SLS 
SLS 
AP 
AP 
AP 
AP 
AP 
SLS 
SLS 
AP 
AP 
SLS 
AP 
SLS 
AP 
AP 
SLS 

Addition 
level 
0.25 

1.25 

0.75 

1.25 

1.75 

0.75 

1.25 

1.75 

0.25 

1.75 

1.75 

0.25 

0.75 

1.25 

1.75 

0.75 

1.25 

1.75 

0.25 

1.25 

0.25 

1.25 

0.75 

1.25 

0.25 

0.75 

1.25 

0.75 

0.75 

0.25 

0.75 

0.25 

0.25 

1.75 

0.25 

0.25 

Cone. 

20 
20 
10 
10 
10 
20 
20 
30 
30 
10 
30 
10 
20 
10 
20 
30 
20 
10 
30 
10 
30 
30 
30 
10 
20 
10 
30 
30 
10 
10 
30 
10 
20 
20 
20 
20 

Comp. St. 

4668 

4283 

5313 

5166 

5650 

3809 

3795 

4904 

4876 

4665 

4002 

5151 

4317 

5040 

4222 

4600 

4821 

4779 

6793 

5026 

5270 

6191 

6284 

6016 

6887 

6439 

3975 

4412 

6354 

7118 

4721 

7229 

4742 

5162 

6835 

4635 

Flow 

46.5 

74 
45 
38.5 

56 
41 
70 
50.5 

48 
47.5 

52 
53 
44 
41 
52 
35 
76 
46 
69.5 

39 
48 
65 
66 
73.5 

68 
51 
42.5 

38 
55 
64 
35 
62 
48 
53 
68 
44 

Viscosity 

30650 

19800 

22850 

22750 

16750 

27300 

19600 

20600 

27700 

21400 

23050 

28600 

26800 

21250 

19450 

38200 

20000 

20600 

32000 

23000 

27800 

21000 

24900 

19850 

24650 

23200 

31400 

35600 

23800 

24000 

38900 

23500 

31200 

17350 

25800 

30000 



Surfactant 
type 
SLS 
AP 
SLS 
SLS 
SLS 
AP 
AP 
SLS 
AP 
AP 
SLS 
AP 
AP 
AP 
AP 
SLS 
AP 
AP 
AP 
SLS 
AP 
SLS 
AP 
SLS 
AP 
AP 
AP 
SLS 
SLS 
AP 
AP 
AP 
SLS 
SLS 
SLS 
SLS 

Addition 
level 
1.25 

0.75 

0.25 

1.75 

1.75 

0.75 

1.25 

1.25 

1.75 

1.75 

0.75 

1.25 

1.75 

1.25 

0.75 

1.75 

0.75 

0.75 

0.25 

0.25 

0.25 

0.75 

0.25 

1.25 

1.75 

0.25 

1.25 

0.25 

1.25 

0.75 

1.75 

1.75 

1.75 

1.75 

1.25 

0.75 

Concentration 

30 
20 
10 
30 
30 
20 
10 
30 
30 
10 
10 
10 
30 
30 
30 
10 
30 
10 
20 
10 
30 
10 
10 
20 
10 
30 
30 
30 
20 
20 
20 
20 
20 
20 
20 
20 

Compressive 
strenght 
4339 

6165 

5165 

3805 

3952 

5699 

5797 

4065 

4834 

5656 

4972 

4897 

4960 

5993 

6104 

4721 

5591 

6448 

7006 

4845 

7243 

4506 

6985 

4520 

6061 

7127 

5570 

5173 

4148 

6162 

5143 

5356 

4301 

4201 

4478 

4973 

Flow 

40 
58 
53 
50 
56 
60 
75.5 

46 
50 
58 
47 
80 
48.5 

70 
66 
48 
68 
55 
68 
52 
70 
50 
66 
47 
62 
71 
68 
50 
48 
56 
53 
55.5 

50 
52 
44 
45 

Viscosity 

30200 

23200 

28800 

22050 

23550 

23200 

20200 

32650 

21000 

15800 

21000 

21000 

21350 

20800 

25350 

22000 

23900 

21000 

23800 

29450 

31500 

20500 

25400 

26000 

17700 

30800 

22350 

25000 

25600 

23800 

18800 

19200 

20200 

18600 

24800 

25800 



D.5 ANOVA Tables from MINITAB 

Multilevel Factorial Design 

Factors: 
Base runs: 
Base blocks: 

3 
24 
1 

Replicates: 
Total runs: 
Total blocks: 

3 
72 
1 

Number of levels: 2, 4, 3 

Analysis of Variance for Compressive strenght, using Adjusted SS for T 

Source DF Seq SS Adj SS Adj MS 

Surfactant type 1 32006667 32006667 32006667 432 
Addition level 3 15974964 15974964 5324988 71 
Concentration 2 4050950 4050950 2025475 27 
Surfactant type*Addition level 3 4729480 4729480 1576493 21 
Surfactant type*Concentration 2 381575 381575 190788 2 
Addition level*Concentration 6 2293054 2293054 382176 5 
Surfactant type*Addition level* 6 2491448 2491448 415241 5 

Concentration 
Error 48 3553705 3553705 74036 
Total 71 65481844 

Source P 
Surfactant type 0.000 
Addition level 0.000 
Concentration 0.000 
Surfactant type*Addition level 0.000 
Surfactant type*Concentration 0.086 
Addition level*Concentration 0.000 
Surfactant type*Addition level* 0.000 
Concentration 

Error 
Total 

272.095 R-Sq = 94.57% R-Sq(adj) U.97% 

Unusual Observations for Compressive strenght 

Obs 
6 
7 

17 
24 
48 
72 

Compressive 
strenght 
3809.00 
3795.00 
4821.00 
6016.00 
4897.00 
4973.00 

Fit 
4366.33 
4299.67 
4299.67 
5570.00 
5570.00 
4366.33 

SE Fit 
157.09 
157.09 
157.09 
157.09 
157.09 
157.09 

Residual 
-557.33 
-504.67 
521.33 
446.00 

-673.00 
606.67 

St Resid 
-2.51 
-2.27 
2.35 
2.01 
-3.03 
2.73 

R 
R 
R 
R 
R 
R 

R denotes an observation with a large standardized residual. 



Analysis of Variance for Flow, using Adjusted SS for Tests 

Source 
Surfactant type 
Addition level 
Concentration 
Surfactant type*Addition level 
Surfactant type*Concentration 
Addition level*Concentration 
Surfactant type*Addition level* 

Concentration 
Error 
Total 

Seq SS 
5304.50 
768.28 

7.75 
1515.83 

16.00 
84.89 

833.08 

201.67 
71 8732.00 

DF 
1 
3 
2 
3 
2 
6 
6 

48 

Adj SS 
5304.50 
768.28 

7.75 
1515.83 

16.00 
84.89 

833.08 

201.67 

Adj MS 
5304.50 
256.09 

3.87 
505.28 

8.00 
14.15 

138.85 

4.20 

F 
1262.56 

60.95 
0.92 

120.26 
1, 
3. 

30 
.37 

33.05 

P 
0.000 
0.000 
0.405 
0.000 
0.160 
0.008 
0.000 

S = 2.04973 R-Sq = 97.69% R-Sq(adj) 

Unusual Observations for Flow 

96.58% 

Obs Flow Fit SE Fit Residual St Resid 
48 80.0000 76.3333 1.1834 3.6667 2.19 R 

R denotes an observation with a large standardized residual. 

Analysis of Variance for Viscosity, using Adjusted SS for Tests 

Source 
Surfactant type 
Addition level 
Concentration 
Surfactant type*Addition level 
Surfactant type*Concentration 
Addition level*Concentration 
Surfactant type*Addition level'' 

Concentration 
Error 
Total 

Source 
Surfactant type 
Addition level 
Concentration 
Surfactant type*Addition level 
Surfactant type*Concentration 
Addition level*Concentration 
Surfactant type*Addition level* 

Concentration 
Error 
Total 

DF 
1 
3 
2 
3 
2 
6 
6 

48 
71 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

Seq SS 
263542535 
629047049 
307300069 
48571215 
19546736 
86909931 

293121597 

41965000 
1690004132 

P 
000 
000 
000 
000 
000 
000 
000 

Adj SS 
263542535 
629047049 
307300069 
48571215 
19546736 
86909931 

293121597 

41965000 

Adj MS 
263542535 
209682350 
153650035 
16190405 
9773368 

14484988 
48853600 

874271 

301. 
239. 
175. 
18. 
11. 
16. 
55. 

F 
.44 
.84 
.75 
.52 
.18 
.57 
.88 

S = 935.025 R-Sq = 97.52% R-Sq(adj) = 96.33? 

Unusual Observations for Viscosity 

Obs 
28 
54 
64 

Viscosity 
35600.0 
21000.0 
25000.0 

Fit 
37566.7 
22666.7 
26833.3 

SE Fit 
539.8 
539.8 
539.8 

Residual 
-1966.7 
-1666.7 
-1833.3 

St Resid 
-2.58 
-2.18 
-2.40 

R 
R 
R 

R denotes an observation with a large standardized residual. 



D.6 MINITAB Input and Outputs for Section 6.5.4.4 

Addition 
level 
1.75 
0.25 
1.25 
0.75 
0.25 
1.75 
0.25 
1.25 
0.25 
0.75 
1.75 
1.25 
0.75 
0.75 
1.75 
0.25 
1.75 
0.25 
1.25 
0.25 
0.75 
0.25 
1.25 
1.75 
0.75 
1.75 
0.25 
0.75 
0.75 
1.75 
0.75 
1.25 
1.25 
1.75 
1.25 
1.25 

Concentration 

10 
20 
20 
10 
10 
30 
10 
10 
30 
30 
20 
30 
20 
30 
20 
10 
20 
30 
30 
30 
20 
20 
20 
10 
10 
10 
20 
20 
30 
30 
10 
10 
20 
30 
30 
10 

Surface 
tension 
62.57 
99.65 
51.32 
101.2 

104.08 
44.81 
104.06 
85.43 
90.42 
49.53 
47.43 
48.06 
56.88 
51.88 
49.51 
106.02 
46.03 
114.25 
50.42 
106.53 
59.89 
101.55 
44.06 
75.57 
107.72 
72.49 
113.24 
71.19 
46.22 
48.93 
97.33 
88.73 
48.58 
44.83 
48.16 
99.41 



D.7 ANOVA Table for Surfactant Addition 

Multilevel Factorial Design 

Factors: 2 Replicates: 3 
Base runs: 12 Total runs: 36 
Base blocks: 1 Total blocks: 1 

Number of levels: 4, 3 

General Linear Model: Surface tens versus Addition lev, Concentratio 

Factor Type Levels Values 
Addition level fixed 4 0.25, 0.75, 1.25, 1.75 
Concentration fixed 3 10, 20, 30 

Analysis of Variance for Surface tension, using Adjusted SS for Tests 

Source DF Seq SS Adj SS Adj MS F P 
Addition level 3 12885.2 12885.2 4295.1 122.92 0.000 
Concentration 2 6429.5 6429.5 3214.8 92.00 0.000 
Addition level*Concentration 6 2848.9 2848.9 474.8 13.59 0.000 
Error 24 838.6 838.6 34.9 
Total 35 23002.3 

5.91119 R-Sq = 96.35% R-Sq(adj) = 94.68? 

Unusual Observations for Surface tension 

Surface 
Obs tension Fit SE Fit Residual St Resid 

9 90.420 103.733 3.413 -13.313 -2.76 R 
18 114.250 103.733 3.413 10.517 2.18 R 

R denotes an observation with a large standardized residual. 
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E.l Young's Modulus and Poisson Ratio 

SPECIMEN 1 

SI psi S2(psi) e2(in/m) e l E(ksi) 

116 2314 0 00130455 4 97E-05 1752 

SI = Stress correspondm to a longitudinal 

strain (el) of 00005 
S2= Stress corresponding to 40% of Ultimate loa 

e2= Longitudinal strain produced pa stress S2 

Ultimate Stress = 5784 psi 

e t l et2 mu 
5 54E-06 0 000202 0.16 

SPECIMEN 2 

SI psi S2(psi) e2(in/ in) e l E(ksi) 

101 2314 0 001317 4 97E-05 1746 

S l = Stress correspondm to a longitudinal 

strain (el) of 00005 

S2= Stress corresponding to 40% of Ultimate L 

e2= Longitudinal strain produced pa stress S2 

Ultimate Stress = 5784 psi 

e t l et2 mu 

5 54E-06 0.000219 0.17 

SPECIMEN 3 

SI psi S2(psi) e2(m/m) e l E(ksi) 

97 2315 0 001392 4.97E-05 1653 

SI = Stress correspondin to a longitudinal 

strain (e l ) of .00005 

S2= Stress corresponding to 40% of Ultimate l> 

e2= Longitudinal strain produced pa stress S2 

Ultimate Stress = 5784 psi 

e t l et2 mu 
8 31E-06 0 000216 0.15 
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E.2 Data for Length Change in a Sulfate Solution 

SPECIMEN 

Reference 
1 

2 

3 

4 

SPECIMEN 

Reference 
1 

2 

3 

4 

AVERAGE 

0 

0.0817 

0.0952 

0.1008 

0.147 

0.1252 

0 

0.0817 

0 

0 

0 

0 

0 

1 

0.0816 

0.0985 

0.1096 

0.1481 

0.1301 

1 

0.0816 

0.034 

0.089 

0.012 

0.05 

0.04625 

2 

0.0815 

0.1034 

0.1171 

0.1568 

0.1351 

2 

0.0815 

0.084 

0.165 

0.1 

0.101 

0.1125 

READINGS 

WEEK 

3 

0.0815 

0.1035 

0.1173 

0.1575 

0.1355 
% LENGTH 
CHANGE 
WEEK 

3 

0.0815 

0.085 

0.167 

0.107 

0.105 

0.116 l 

4 

0.0815 

0.1038 

0.1177 

0.1578 

0.1358 

4 

0.0815 

0.088 

0.171 

0.11 

0.108 

0.11925 

8 

0.082 

0.1045 

0.1183 

0.159 

0.1365 

8 

0.082 

0.09 

0.172 

0.117 

0.11 

0.12225 

13 

0.0815 

0.1047 

0.1187 

0.1583 

0.1369 

13 

0.0825 

0.097 

0.181 

0.115 

0.119 

0.128 

15 

0.0819 

0.1059 

0.1197 

0.1592 

0.1378 

15 

0.829 

0.105 

0.187 

0.12 

0.124 

0.134 
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F.l XRD Pattern for Class F Flv Ash 
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F.2 XRD Pattern for Class F Flv Ash Geopolymer 
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G.l XRD Pattern for the Sample With 10% Added Cu?SOd 
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G.2 XRD Pattern for the Sample With 50% Added Cu?SOi 
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G.3 XRD Pattern for the Sample With 10% Added Cu?INO0-3H?.O 

16300 

14300 

J. £.tJ\J\J 

10300 

8300 

0 

3 20 40 60 80 100 

t o 

Os 



23" 

O 
O 
v-4 

o 
00 

o 

o 
^3" 

O 

O 

o 
o o 00 

o 
o o <£> 

o 
o o "sf 

o © 
o <-M 

o © 
o o 

o 
o o 00 

o 
o o <£> 

o 
o o sr 

o 
o o r\j 

o 



APPENDIX H 

PLANET EUREKA REPORT 

238 



* \ USA Nf tT tOM A l 

n-l v f?n'i 

P l a r s r t F y r r L t ! 

Geapalymsr Casting far Coiwrete 

pict&iQs usefy' »<% ce« and r magspxids fe ' Ttufwips' ^a fe sxs***ns 

S s c i ^ y w icstng •ssieressr.sti.-s r{egrrty c'ccte'eteano ;TCcngs fe r f e« st *^ sl-.^Lies by Dividing 
s^ £»'•:• <~>ec" a" :al and c s i c ? ;»~orr-ancs a! 3 after cost. 

wmnsKm hwwwrtian Status 

Ceiwntr t t i * 

| CstSrs Sts-K 

*SSt W 

l*as i W 

«*1 B V 

$1 3 2 

Vast L*« i j «8ar»estir» 

————f- mmmmBPmvm** i IP^ l^p^ i ipMv 

C-siMwt 

• i f V 

lassv 

*S*f1w 

J3:8 

32 
^ M s ^ ^ ~ ^ X . 

S ? ' ; E 

SSSB Sr-a«- yr J t i s s M i M 

Geopotymer Cos: ng fcr Concrete -psalms use.V '*% p.ps aitf s&rage panda 'a* <nanrc.pai' tvais.' s/sssms 

sss .e j r i . - : i i " : ff»:K:lj"K T s i c m j ^ r s a - l--i a«-« :.s*3^as ess jS^-'cr-sS-'srSfjrcrc-iftf r lrsrir.cl j 'ei- a r a r r t -

^Mtrato-sCSHr.aaiij s l i , 5 r e 'e»ii"'5''e<'sl-s;(-',ass\iii. » s ke • * i r e * « : K i r s - j i t p i y i : ! I I S S C ' I I I B S U V S H , ' ! 
•eatsc T * ; f s : . d 3 s> ;» ; a j f 1 } " w : ' 8 , ' ' l a : * f f ta j ra :->:-• :s rsfcr~.a-:e ~&eostrs»i>><nes*9! Cc>*:"»!s :ca*ef <-•?• 
H»;ie;ss""S- 5 :trs!5"!« ,sKafssJ !as'i*fi;!iir* ""»*£€«? .~~i*::s*»3 i^j-wjerfrar CS ' i " . Ps^s*! ZV¥*. 2PZ 5 I ! * ' 
I S ' - I W - I « •*» JSOJS ,™t : c a * f j i r * ! j essife*s1"s--s : Kc;Ttas»w,,e. e£ ; = C ;tp«» r* t r e^ jd ssvKsr ts f r c "- j 
S5.:'«u trtsi—t*:: i t ; 1 -s i — e i l i - r i.w.azz ~ ". t ; t a K s , r , s « a t * ; ie*s;c«™iis atai* r™s*ar» l ITS-?r ash«rs: 
i j ' : : * ! : ! ; ' - :-stoi3si-«s rr siei:tfj ee:- -s a i l ! , ~ : . « J " 5 h i « , » » n : — i JSCJS j~a ic i t i - jc .wefSTnBexiCstJs^s iK 
i i t 's, a-i cs" 2« ci»c;.cei a:a i? *• :c:* 

Te :oKPa*3"»J t t tn . : K S : ; T « » C £ halASJictrsrAMSsesrFCiKCln a r i ' »ss f» j3 . ,s - j« ; *a r« acts'. _ :e : ! t -s3 r^ctc* 
: « : K !is 3553tji t *3 : i - ra- c"seS: K i s s <̂ .r:-a »"»»-ce:«":»st — t ; a i K t . ~er:sa! -;l-as ^»_s; e j : « r'njn-css \ a ! f 
: sa™; " t i shs sjrs CECT5 f n i a T t r 8 t l * ~ : >s:r:^s- ;a : s-s s . - i c a t r 5 s i ; f * : s : 

?100 ' : *sc j3 fey3 ' ; See ing inv-sr.Tte^r, C*mbu??'* 

L i s t n g » f : L 5 A " 5 ^ K 0 S C 1 ^ P a g « l o f 5 Gate Fosted: 222J-Z4-': 

M L R . YN 



Report Assumptions and Inv«tfcF(s| Canr wsentary 

i ' ' P 3<S* = - 1 C i " 3'- ' 

s,» * r t * »» - * - r r*s» 

-» 2 ^ " " i : "-a 

„ * * * J T J S - * • * 

-s» «r!>* -•*• B « *s - "*•»* 

» * * *S ^ * * ^ 

™r^ s ffl ^ HS " " " 

25 I B 

* i . 

HWt 

4 

* l t i " " 7 

%A 

4C«* 

S9«t 

SO5* 

> 

^ ^ • * _ ^ « * > . ^ 

HA 

S 

* 0 % 
! 

i 

w*>'* ^,-^MS ao& ' i * ,*>M- £Mi ir> i*> \ &b$i <& A $Jb\-z?¥ a 

*«** s*tlt-*ll £l«l r | s r * « & tjij^^s. &. « l j * *^«®>»* I t s * 
**, fc!fg?./&- .KL.'ttnrt » 4t Jit K >sS*«,.<*<» -If ^ *§*.!<* ! 5*- *^» f-te-^ 
<Ai^t j i$* | * i j f v * *« 4 l K i 

I r SUA* s-1 ,«&&***&*.,& * f w l ' I»„UJ»*y s»*»» ^ J l ^ f«s-*2 
«*«*« lis-t tt 1^**1**1 &I& I*$ •#? «l * m* £ f<wtf|AH ^ 

j(s ifps ^ f K V j ^ n i ^ ai d l 4*|£4ii«fct Mai* "E. j***«r* ^ rs ! *>* 

3 W t 

P^sr1*ian ^"c^oten ^"sfe 

^ * i l f » S a lfs-*f> > i i * , « * ; 

*.» i * ) • i i i i * m •• 

MLRs Y N . 

• M e a l i : 

e ' a t - s a j f 

^ 7 " ^ " * ; f !f7" j 
^ ^ i 

C«n«^3t Scot* 

fAerwf Conc^t Score 
iVif Ccn* r«-re Bands 

H % 

3ptSTitsi « 

C* at - * a : -

45^ 

& Otasgnostfes 

Ocr JS3I; Dta«nc«te« 

= « r e « r t « C 2J3 

Overt e f l rs* ! ! 

P»s^3r 63 B«ll»»9 

DrsTiatlc D l^wena* 1 

•w v" f « 1 e # 

M t e s * - r s 

I , j 

aawm 

" > 3 r : ! > 

r——— 

L . . 

t i s l - g * JSA - ; :4"4K 01-t Pag« 2 of 5 Date Posted 2:D5-D4-*r 



241 

rweniar CG£if!iertaiy& Al:er*MStive 'Seveopmsn: Scenarios lliftlll 

Corrosion msistz nee cf geopo tytre' soaang 
vistb g superior *£>i.,3wWTyf e wee*s'oriri*i'nei'<;jo/i >•? 

su/fi'iic acd. 

hwenrcrfsi Commentary 
Lr Albums W"" :alw "ectr'ot rvrhsss 
'ec'ozi* Ier:er siec? res ~ s^ancs: 
temen t : ^ rnxehal: Alloucrs€ sVUl lnjrn. 1ple 
research :tn:'3:ts en jecf c y*ier e:r:rete &-::.:& 
C" * . . <. d id [.iM».e -Ty«siiii_;s. j ! J He *>d i r t . •=* 
over ?Z i j - :af :os en adys-is: preteel en system: 
Ci . u i M t , ! i s , i u . . i " t f i A J ^ J I S feeiyat5t. ift . 70C 
nc.E?y preJess:~3 * : -• : . j - "srun-shosied SJ-II-
f t j y u * I jt.tiil - i d t . i t . n i . i j : • « ds 
P'esemsaons s{ ncuslry :cn*s-*""res 

If M A R K E T W © CONCEPT I r i f r m w H i 
S^EF#£ *\*K£f* <I^^Ti »**3 to'S 

Ccrentat i t t 

s f i * r g 
5S« :S;s 20«* « « 

tTtsraLsw 

LOHtSUMKat 

»**&',". * ; t 4 i ^ ^ » 

P^lPj^jJ,;*;.., 

**» 
S382N { 

S ^ s s w 

i s ; t* 
*isa.i« 

i n a 

1.3.15 

wis 

*K7 3 M 

M l : ?M 

1ft « R 

JS6B 

SIS OB 

Iff fRODUCT SERVICE Improve* 

«- * 'War*' * r a Cc rew i t l iw Sdc<*Llk»lf A3:r»ssh'» 
a**:..* t s * j . . . ; s « j j . . 
: ' : « -s c' a 5-5 y s* I- ? 

tew t up l i f t 

•V- V & 

Q k . K ^ 

S3S8M 

'S2S7M 

»!»£ 

$S.:i I f r * - * ' <w 

mew *uu2u 
'1 * s r 40 a B 

1i£.= 118 SB 

LsSi^c «: J3A T5 34*43^ 01* 

WARP6TIM OC*CE»-sna FftSG JBTi 3E«V1C£ lmp«>*-*;i 
*!ti««&»*?> ™^f4 * I T* £sss "94 rally.? & ^ss**Kt* n -̂«£Si) I** ** ** <&s< 

Lcw2iips>:rt 

:sns»r¥at-«8 
S0?i &ses 
3i as 13 

'.IMS 
U i e j 

« • « • » - -

c'se i -•; 

Ajjrssch1* 
S t * 33; : 
T SS 1-J 

1 H : 

K ; : 

t C a I JS € B 

|5 S 2 I: Si7 B 

t i l 1 us e D 

Pag* £ of 5 Oste Pos-^rf: 2333-3+* 5 



242 

Ac-jilic v-l Delr-i s il! 

M C n K E N l 4 lata A Ila'ui 

r«TEervat«# - 80* Odes 
Ptjaiy0eree*faa,s *s.i.r,, *ersnta3» 

i n : : : : 

i i i «• y 

U%Z¥ 

-.." • • ' . • -" I ' - i ' .S. I ' - . * . » - ' . J * ---! * " 

soc.eso 

l*3KI 

*1d 5 M 

JS3 3M 

j«2o eoi 

SS*H 

t i j . ' H 

M7* 3 I 

• j j re t : ,?- :: :»Cc:U 

I K T J J * 

»ss»«v 

-X : v 

Uira LCA 2jpssrt 

Lew 3 W i r t 

r.ar"*» v . - w ! 

20** i : ^ 

S0^ 

t l h H W h w r i 

^*5»l U « 3 

JS^ 

««4 

7€^ 

54H 

SB* 

23* 

I M l 

Graph nf CT:EIUA] PNT (Aw*rpn*««; * nfctrihi *««*$ 
ConbmaTo^s 

1 g » 

" ^ f ^ f l g , . - * It 0*3 

; . 3 - "jaS" r/tss. ara t" jjaN?": ::s~s 

21 ~2 Tc Bgs "-^2BI— s-j""as Hz: 

™ 3 - - g> «.» i*-*-*: s~ Stnzt Ccrsi-.cer 

rrj? • p*:"5t*-«~ » "•iai.'sritrrs 

3I€5: • Exit's. si ' srt'a^t 1-3 

A - X^ ^ ^ \ i s 

L c e r s r n i D««ia diQ^iZS 

tor avat cn& iM*: haw S - IF *£D 

i . •*• * 

6 

~ 

:"» • ; * . " » ~ * 5 ; 5 : 

^r.t-V - 5..'- * * 's»*j<5". ; is:^- "• 

*.».?: * «•• a s » - ' j ': 

Listi"fl »: ^SA ' : 34*45; 01-" Parje 4 of 5 Date Pcs:ed: ;33?-34-'r 



AeMittena F o r * c a « s for O t t e r CcuntFtes 

?,*$.$ %~" L < ^ ^ 
1'it >-; 

«8% IMS 2S**e>:« 
Cost rv-cht 

K<*ees» 
e'ssirg 

fcl£« .if.?!; AUTKfilY* 

L i s t i n g * - J S * 7 - 54 '4Zv 0 1 * Pag* 5 of 5 Date Posted 2J3J>-;4-- 5 



REFERENCES 

[I] Environmental Protection Agency, "Hydrogen Sulfide Corrosion in Wastewater 
Collection and Treatment Systems, Technical Report." Source: U.S. 
Environmental Protection Agency, office of Water, Washington, D.C. 1991. 

[2] Hewayde, E., "Degradation of Concrete Sewer Pipes by Sulfuric Acid." Ph.D. 
Thesis. University of Western Ontario, Canada. 2005. 

[3] Barton, L., "Sulfate Reducing Bacteria," Plenum Press, New York, USA. 1995. 

[4] Parker, CD., "The Isolation of Species of Bacterium Associated with the 
Corrosion of Concrete Exposed to Atmospheres Containing Hydrogen Sulfide," 
Australian Journal of Experimental Biology and Medical Science. Vol. 23, p. 81-
90. 1946. 

[5] Islander, R.L., Devinny, J.S., Mansfeld, F., Postyn, A., and Shih, H., "Microbial 
Ecology of Crown Corrosion in Sewers," Journal of Environmental Engineering. 
Vol. 117, No. 6, p. 751-770. 1991. 

[6] ATV-M 143E: "Inspection, Repair, Rehabilitation and Replacement of Sewers 
and Drains. Part 1: Principles," Vol. 12. 1989. 

[7] Stein, Dietrich, "Rehabilitation and Maintenance of Drains and Sewers;" Ernst 
and Sohn, Chapter 2, p. 103-135. 2001. 

[8] Davis, J.R., "Surface Engineering for Corrosion and Wear Resistance;" Davis and 
Associates, Chapter 3, p. 46-72. 2001. 

[9] Jarvenkyla, J. J. Haavisto, K.T.: "The abrasion resistance of sewers." Part 1: Pipes 
& Pipelines International 9/10; Part 2: Pipes & Pipelines International 11/12. 
1993. 

[10] DIN 50900: "Corrosion of Metals - Terminology. Part 1". 

[II] Davis, J.R., "Surface Engineering for Corrosion and Wear Resistance;" Davis and 
Associates, Chapter 1, p. 4-9. 2001. 

244 



245 

[12] Monteiro, Paulo, J.M., et. al, "Accelerated test for Measuring Sulfate Resistance 
of Hydraulic Cements" for Caltrans LLPRS Program, Pavement Research Center, 
Institute of Transportation Studies, University of California, Berkeley. 2000. 

[13] Davis, J.R., "Surface Engineering for Corrosion and Wear Resistance;" Davis and 
Associates, Chapter 2, p. 11-42. 2001. 

[14] Hewayde, Esam H., et al. "The Impact of Coatings on Biological Generation of 
Sulfides in Wastewater Concrete Pipes," Department of Chemical and 
Biochemical Engineering, The University of Western Ontario, London, Ont, 
Canada. 2005. 

[15] Haile T.G., Nakhla, G. "Protection of Concrete Pipes from Bacterial-induced 
Corrosion," M.S. Research Project Proposal. University of Western Ontario. 
2006. 

[16] Breit, W. "Acid Resistance of Concrete." Beton 52 H.10, p. 505-510. 2002. 

[17] Day, R.C. "The effect of secondary ettringite formation on the durability of 
concrete: a literature analysis." Research and Development Bulletin RD 1089, 
Portland Cement Association. 1992. 

[18] Hewayde, E., Allouche, E.N. and Nakhla, G.F. "The Use of Metakaolin and 
Geopolymer Cement to Improve Concrete Resistance to Sulfuric Acid Attack." 
Proceedings, 7th International Symposium on Utilization of High-Strength/High 
Performance Concrete, ACI SP-228, p. 1453-1466. 2005. 

[19] Eglinton, M., "Resistance of Concrete to Destructive Agencies." In: Hewlett, P.C. 
Lea's: Chemistry of Concrete and Cement. Burlington, MA, USA: Butterworth-
Heinemann, p. 327-328. 1998. 

[20] Webb, R.E., and Chong, J., "Technologies for the assessment of large diameter 
lined concrete sewers in the city of Phoenix." Proceedings of the NASTT/ISTT 
International No-Dig 2003 Show. Las Vegas, Nevada. 2003. 

[21] Koo, D.H., Ariaratnam, S.T., "Innovative method for assessment of underground 
sewer pipe condition." Automation in Construction, Vol. 15, p. 479-488. 2006. 

[22] Stein, Dietrich, "Rehabilitation and Maintenance of Drains and Sewers;" Ernst 
and Sohn, Chapter 5, p. 395-397. 2001. 

[23] Stein, Dietrich, "Rehabilitation and Maintenance of Drains and Sewers;" Ernst 
and Sohn, Chapter 5, p. 400-425. 2001. 

[24] ASTM C150 / C150M - 09 Standard Specification for Portland Cement. 



246 

Montes, Carlos; "Utilizacion de Materias Primas Alternas en la Fabricacion de un 
Cemento de Sulfoaluminato de Calcio," M.S. Thesis, CIMAV. Chihuahua, 
Mexico. 2003. 

Ohama, Y. "Handbook of Polymer-Modified Concrete and Mortars - Properties 
and Process Technology," p. 11-21. 1995. 

http://www.cmit.csiro.au/research/urbanwater/pipes/tech-spray2.cfm. 

Davis, J.R., "Surface Engineering for Corrosion and Wear Resistance;" Davis and 
Associates, Chapter 7, p. 183. 2001. 

Balaguru, D.P. "Geopolymer for Protective Coating of Transportation 
Infrastructures" Center for Advanced Infrastructure and Transportation (CAIT), 
Civil and Environmental Engineering; Rudgers, The State University, Piscataway, 
N.J., 1998. 

Davidovits, J. "Properties of Geopolymer Cements," Geopolymer Institute. 1994. 

Davidovits, J., "Soft mineralogy and geopolymers." Paper presented at the 
Geopolymer '88, First European Conference of Soft Mineralurgy, Compiegne, 
France. 1988. 

Davidovits, J., "Geopolymer Chemistry and Properties." Paper presented at the 
Geopolymer '88, First European Conference of Soft Mineralurgy, Compiegne, 
France. 1988. 

Davidovits, J., "Geopolymers: Inorganic Polymeric New Materials," Journal of 
Thermal Analysis. Vol. 37, p. 1633-1656. 1991. 

Van Jaarsfeld, J.S.J, van Deventer, J.S.J., and Lukey G.C., "The effect of 
composition and temperature on the properties of fly ash- and kaolinite based-
geopolymers." Chemical Engineering Journal, Vol. 89 (1-3), p. 63-73. 2002. 

http://www.metakaolin.com/Operation%20Description.htm. 

Breck, D., "Zeolite molecular sieves: structure, chemistry, and use" New York, 
Wiley. 1974. 

http://www.fhwa.dot.gov/infrastructure/materialsgrp/flyash.htm. 

Hos J.P., McCormick, P.G., and Byrne L.T., "Investigation of a Synthetic 
Aluminosilicate Organic Polymer." Journal of Materials Science, Vol. 37, p. 
2311-2316.2002. 

http://www.cmit.csiro.au/research/urbanwater/pipes/tech-spray2.cfm
http://www.metakaolin.com/Operation%20Description.htm
http://www.fhwa.dot.gov/infrastructure/materialsgrp/flyash.htm


247 

[39] Gordon, M., Bell, J.L and Kriven, W.M., "Comparison of Naturally and 
Synthetically derived, potassium-based geopolymers." Ceramic transactions, 165, 
p. 95-106. 2005. 

[40] Tsuyuki, N., and Koizumi, K., "Granularity and surface structure of ground 
granulated blast-furnace slags." Journal of Materials Science, Vol. 35, p. 249-
257. 1999. 

[41] Shi, C , Krivenko, P.V. and Roy, D.M., "Alkali-activated Cements and 
Concretes." Abingdon, UK, Taylor and Francis. 2006. 

[42] Shimoda, K., Tobu, Y., Kanehashi, K., Nemoto, T. and Saito, K., "Total 
understanding of the local structures of an amorphous slag: Perspective from 
multi-nuclear (29Si, 27A1,170, 25Mg, and 43Ca) solid state NMR." Journal of Non-
Crystalline Solids, Vol. 354, p. 1036-1043. 2008. 

[43] Milkey, R. G, "Infrared spectra of some tectosilicates." Am. Mineral., Vol. 45, p. 
990-1007. 1960. 

[44] Barbosa V. F. F., Mackenzie K.J.D., Thaumaturgo, C , "Synthesis and 
characterization of materials based on inorganic polymers of alumina and silica: 
sodium polysialate polymers," International Journal of Inorganic Materials, Vol. 
2[4],p. 309-317. 2000. 

[45] Xu H. and van Deventer J.S.J., "The Effect of Alkali Metals on the Formation of 
Geopolymeric Gels from Alkali-Feldspars," Colloid. Surf. A, Vol. 216, p. 27-44. 
2003. 

[46] Davidovits, J., "Geopolymer chemistry and sustainable Development.The 
Poly(sialate) terminology : a very useful and simple model for the promotion and 
understanding of green-chemistry." Proceedings World Congress Geopolymer 
2005, Saint-Quentin, France (Ed. J. Davidovits), p. 9-16. 2005. 

[47] Wallah, S.E., and Rangan B.V., "Low calcium fly ash based geopolymer 
concrete: long-term properties." Research Report GC2. Faculty of Engineering, 
Curtin University of Technology. Perth, Australia. 2003. 

[48] Perera, D.S., Uchida, O., Vance, E.R. "Influence of curing schedule on the 
integrity of geopolymers." Journal of Materials Science, Vol. 42. 2007. 

[49] Gebler, Steven H. "Review of Accelerated Curing in the Concrete Pipe Industry." 
Concrete International, August 1983. 

[50] Hardjito, D., et al "Geopolymer Concrete: Turn Waste Into Environmentally 
Friendly Concrete," International Conference on Recent Trends in Concrete 
Technology and Structures, INCONTEST. 2003. 



248 

[51] Wallah, Steenie E., "Performance of fly-ash based geopolymers concrete under 
sulfate and acid exposure," Faculty of Engineering and Computing, Curtin 
University of Technology, Perth, Australia. 2005. 

[52] Hardjito, Djwantoro, Wallah, Steenie E., Sumajouw, Dody M.J., Rangan, B.V. 
"Factors influencing the compressive strength of fly ash-based geopolymer 
concrete." Civil Engineering Dimension. Vol 6, No.2, p. 88-93. September 2004. 

[53] Song, Xiu-Jiang, "Response of Geopolymer Concrete to Sulfuric Acid Attack," 
(ACCI, School of Civil and Environmental Engineering, UNS W, Sydney, 
Australia. Proceedings of the World Congress Geopolymer 2005. 

[54] Allahverdi, Ali, "Sulfuric Attack on Hardened Paste of Geopolymer Cements," 
College of Chemical Engineering, Iran University of Science and Technology, 
Tehran, Iran. 2005. 

[55] Song, Xiu-jiang, "Investigation of Cracking Developed in Sulfuric Acid Resistant 
Concretes," ACCI, School of Civil and Environmental Engineering, UNSW, 
Sydney, Australia. 2005. 

[56] Goretta, K.C., Gutierrez-Mora, F., Singh, D. "Erosion of geopolymers made from 
industrial waste." Journal of Materials Science, Vol. 4. 2007. 

[57] Provis, John L., Muntingh, Yolandi, Lloyd, Redmond R., Xu Hua, Keyte, Louise 
M., Lorenzen Leon, Krivenko, Pavel V., Van Deventer Jannie S.J. "Will 
geopolymers stand the test of time?," Ceramic Engineering and Science 
Proceedings, Vol. 28(9), p. 235-248. 

[58] Varela, Benjamin, "The Use of Geopolymers as Concrete Coatings for Fire 
Protection." Department of Mechanical Engineering, Rochester Institute of 
Technology, Rochester, NY. Proceedings of the World Congress Geopolymer 
2005. 

[59] Davidovits, J., "Geopolymer Cements to minimize Carbon-dioxide greenhouse-
warming." Ceramic transactions, Vol. 37, Cement-based materials: present, 
furure, and environmental aspects, m. Moukwa & al. Eds., p. 165-182; American 
Ceramic Society. 1993. 

[60] Duxson, Peter, Provis, John L., Grant, C. Lukey, van Deventer, Jannie, S.J. "The 
role of inorganic polymer technology in the development of green concrete." 
Cement and Concrete Research, Vol. 37, p. 1590-1597. 2007. 



[61] Weil, M., Gasafi, E., Buchwald, A., Dombrowski, K. "Sustainable Design of 
Geopolymers - Integration of Economic and Environmental Aspects in the Early 
Stages of Material Development." 11th Annual International Sustainable 
Development Research Conference, Helsinki, Finland 2005. 

[62] http://www.timesfreepress.com/news/2009/jun/06/tva-ship-spilled-coal-ash/ 

[63] Gourley, J. T., Johnson, G. B., "Developments in Geopolymer Precast Concrete." 
Proceedings World Congress Geopolymer 2005, Saint-Quentin, France (Ed. J. 
Davidovits), p. 139-144. 2005. 

[64] http://www.geopolymer.org/fichiers_pdf/ltgs.pdf. 

[65] Minarikova Martina; Skvara Frantisek; "Fixation of heavy metals in 
geopolymeric materials based on brown coal fly ash." Ceramics. Vol. 50, No. 
4, p. 200-207. 2006. 

[66] D S Perera, E R Vance, Y Zhang, Z Zhang, J Davis and P. Yee, "Speciation 
studies of Fe, Mn, Ca and Ti and dissolution studies in a metakaolinite-based 
geopolymer with Si/Al ~ 2," Proceedings World Congress Geopolymer 2005, 
Saint-Quentin, France (Ed. J. Davidovits), p. 57-59. 

[67] Comrie, Douglas, C , Paterson, John H., Ritcey, Douglas J., "Applications of 
Geopolymer Technology to Waste Stabilization." Available at 
http://www.p2pays.org/ref/14/13863.pdf 

[68] Luna, Y., Querol, X., Antenucci, D., Jdid El-Aid, Fernandez Pereira, C, Vale, J. 
"Immobilization of a metallurgical waste using fly ash-based geopolymers." 
World of Coal Ash (WOCA), May 7-10, Covington, Kentucky, USA. 2007. 

[69] Yunsheng Zhang, Wei Sun1, Wei She1 and Guowei Sun1, "Synthesis and heavy 
metal immobilization behaviors of fly ash based geopolymer," Journal of Wuhan 
University of Technology—Materials Science Edition, Vol. 24, No. 5, October, 
2009. 

[70] Davidovits, J., Comrie, D., Paterson, H. and Ritcey, D.J. "Geopolymeric 
Concretes for Environmental Protection." Concrete International, Vol. 12, No. 7, 
p. 30-39. 1990. 

[71] Terzano, R., Spagnuolo, M., Medici, L., Vekemans, B., Vincze, L., Janssens, K., 
Ruggiero, P. "Copper Stabilization by Zeolite Synthesis in Polluted Soils Treated 
with Coal Fly Ash." Environ. Sci Technology. 2005. 

[72] Wang, S., Li, L., Zhu, Z.H., "Solid-state conversion of fly ash to effective 
adsorbents for Cu removal from wastewater." Journal of Hazardous Materials. 
2007. 

http://www.timesfreepress.com/news/2009/jun/06/tva-ship-spilled-coal-ash/
http://www.geopolymer.org/fichiers_pdf/ltgs.pdf
http://www.p2pays.org/ref/14/13863.pdf


250 

[73] Xu, J.Z., Zhou, Y.L., Chang, Q., Qu, H.Q., "Study on the factors of affecting the 
immobilization of heavy metals in fly ash-based geopolymers." Materials Letters, 
Vol. 60. 2006. 

[74] Van Jaarsfeld, J.G.S and Van Deventer, J.S.J., "The potential use of geopolymeric 
materials to immobilize toxic metals: Part 1. Theory and applications." Minerals 
Engineering, Vol 10, No. 7, p. 659-669. 1996. 

[75] Services Petroliers Schlumberger, "Geopolymer composition and application in 
oilfield industry." European Patent EP20060291275 
http://www.freepatentsonline.com/EP 1887065.pdf 

[76] http://www.britannica.com/EBchecked/topic/575080/surface-tension 

[77] http://www.answers.com/topic/surface-tension 

[78] Zisman W A 1964 "Contact Angle, Wettability and Adhesion Advances in 
Chemistry Series," No. 43. Ed. F M Fowkes. Washington, DC. American 
Chemical Society. 

[79] Rosen MJ., "Surfactants and Interfacial Phenomena." 3rd Ed. Hoboken, New 
N Jersey: John Wiley & Sons. 2004. 

[80] Dolch, William L., "Air-entraining admixtures." Concrete Admixtures Handbook. 
Properties, Science, and Technology. 2nd.Ed. Ramachandran, V.S. William 
Andrew Publishing/Noyes. 1995. 

[81] Edmeades, Rodney M., Hewlett, Peter C , "Cement Admixtures." Lea's 
Chemistry of Cement and Concrete. Chemistry of Concrete and Cement. 
Burlington, MA, USA: Butterworth-Heinemann, p. 843-848. 1998. 

[82] Bruere G.M. "Fundamental actions of air-entraining agents." Paper III/I, 
International Symposium on Admixtures for Cement and Concrete, Brussels, 
1967. 

[83] Kreijger, P.C. "Plasticizers and dispensing admixtures." Lancaster: The 
Construction Press CI80 Admixtvires Congress, London, p. 1-16. 1980. 

[84] Pomeroy, R. D., "Prevention of Hydrogen Sulfide in Sewage," Sewage Work 
Journal, Vol. 18, No. 4, p. 597-640. 1946. 

[85] Pomeroy, R. D., "Control of Hydrogen Sulfide Generation in Sewer," Water and 
Sewage World, Vol. March, p. 133-137. 1956. 

http://www.freepatentsonline.com/EP
http://www.britannica.com/EBchecked/topic/575080/surface-tension
http://www.answers.com/topic/surface-tension


251 

[86] Metcalf and Eddy, "Wastewater Engineering, Treatment and Reuse," 4 edition, 
McGraw Hill, Inc. 2003. 

[87] Iller, R.K., "The Colloid Chemistry of Silica and Silicates." Cornell Univ. Press, 
Ithaca, NY, p. 27-37. 1955. 

[88] Bakharev, T., "Resistance of Geopolymer Materials to Acid Attack." Cement and 
Concrete Research, Vol. 35, p. 658-670. 2005. 

[89] Allouche, E.N., Montes, C , Diaz, I., and Vaidya, S., "Applications of Inorganic 
Polymer Concrete in Transportation Structures Located in Harsh Environments -
Final Report. A technical report prepared for the Louisiana Transportation 
Research Center under Contract # 736-99-1515," December 2008. 

[90] Muntigh, Y. 2006 "Durability and Diffussive Behaviour Evaluation of 
Geopolymeric Material." M.S. Thesis. Department of Process Engineering. 
University of Stellenbosch, S.Africa. 2006. 

[91] Blakely, C , Logan, A., Bozeman, R., Dhanani, A., "Bulldog Concrete Sewer 
Rehabilitation." Term paper for MGMT Class 400. Supervisor: Dr. J. Pratt. 
Winter 2010. Louisiana Tech University. 


	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2010

	Development of a geopolymer-based cementitious coating for the rehabilitation of buried concrete infrastructure
	Carlos Montes
	Recommended Citation


	tmp.1562943936.pdf.ZrU8f

