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ABSTRACT 

A culvert is typically a hydraulic passage, normally placed perpendicular to the 

road alignment, which connects the upstream and downstream sections underneath an 

embankment, while also providing structural support for earth and traffic loads. The 

structural condition of culverts continues to deteriorate due to aging, limited maintenance 

budgets, and increased traffic loads. Maintaining the performance of culverts at 

acceptable levels is a priority for the U.S. Department of Transportation (DOT), and an 

effective maintenance of culvert structures can be greatly improved by introducing asset 

management practices. A priority list generated by traditional condition assessment might 

not provide optimum solutions, and benefits of culvert asset management practices can be 

maximized by incorporating prediction of deterioration trends. This dissertation includes 

the development of a decision making chart for culvert inspection, the development of a 

culvert rating methodology using the Analytic Hierarchy Process (AHP) based on an 

expert opinion survey and the development of a Markovian model to predict the 

deterioration rate of culvert structures at the network level. 

The literature review is presented in three parts: culvert asset management 

systems in the U.S.; Non-destructive Technologies (NDT) for culvert inspection 

(concrete, metal, and thermoplastic culvert structures); and statistical approaches for 

estimating the deterioration rate for infrastructure. A review of available NDT methods 

was performed to identify methods applicable for culvert inspection. 

iii 
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To identify practices currently used for culvert asset management, culvert 

inventory data requests were sent to 34 DOTs. The responses revealed that a relatively 

small number of DOTs manage their culvert assets using formal asset management 

systems and, while a number of DOTs have inventory databases, many do not have a 

methodology in place to convert them to priority lists. In addition, when making 

decisions, DOTs do not incorporate future deterioration rate information into the decision 

making process. The objective of this work was to narrow the gap between research and 

application. 

The culvert inventory database provides basic information support for culvert 

asset management. Preliminary data analysis of datasets provided by selected DOTs was 

performed to demonstrate the differences among them. An expert opinion survey using 

AHP was performed to confirm the weight of 23 factors, which was believed to 

contribute to the hydraulic & structural performance of culvert structures, so as to 

establish the culvert rating methodology. 

A homogenous Markov model, which was calibrated using the Metropolis-

Hastings Algorithm, was utilized in the computation of the deterioration rate of culverts 

at the network level. A real world case study consisting of datasets of three highways 

inspected regularly by Oregon DOT is also presented. The performance of the model was 

validated using Pearson's chi-square test. 
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CHAPTER 1 

INTRODUCTION 

This chapter outlines the motivation for the development of a deterioration rate 

prediction model for culvert structures. In this section, an overview, the objective and 

scope of this dissertation, as well as its layout, are introduced. 

1.1 Overview and Objective 

Culverts are pipes typically located under roadways, embankments, or service 

areas that allow passage of storm water. Culverts are built with straight horizontal 

alignment and a single grade (vertical alignment). Although the length of culverts is not 

restricted, most existing culverts are located under two-lane roadways and are no longer 

than 75 ft long. The Status of the Nation's Highways, Bridges, and Transit: Conditions 

and Performance (FHWA, 2004) reported a total of 118,394 culverts in the bridge 

inventory in the United States. This count refers to structures with no deck, superstructure, 

or substructure, but rather self-contained units under roadways, and constructed of 

concrete or corrugated steel. The National Bridge Inventory (NBI) only tracks culverts 

with a structural width 20 feet and larger, and this also can be multiple culverts that are 

placed adjacent to each other totaling 20 feet and greater. The total number of culverts in 

the U.S. is much larger than 118,394, and while a total count does not exist at the present 

time, estimates are in the order of several hundreds-of-thousands of culvert structures 

1 
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under the jurisdiction of DOTs, and at least an equal amount under the jurisdiction of 

local governments and other bodies, such as the U.S. Forestry Service. 

Many culverts structures are in a deteriorated condition and reaching the end of 

their design life. When a culvert loses its structural integrity, it could lead to adverse 

impacts on the road surface above it in the form of surface depression, extensive cracking, 

and, in extreme cases, a collapse. However, to maximize the service life of these assets, 

an estimate of the deterioration rate of culvert structures is required so that future 

conditions can be predicted. The lack of tools for determining deterioration rate and 

enabling forecasting of the future conditions of culvert structures is a technical gap in 

many existing asset management systems. The research focus and objectives of this 

dissertation are presented as followed: 

1. Culvert inspection technology. Identify available NDT evaluation methods and 

establish their suitability for the condition assessment of different culvert 

structures based on their ability to detect particular types of defects. 

2. Culvert rating methodology. Develop a universally acceptable culvert rating 

methodology using AHP, based on an expert opinion survey for more efficient 

management of culvert assets. 

3. Culvert deterioration rate prediction. Build a Markov model to evaluate the 

deterioration rate and service life of culverts at the network level for more 

appropriate budget allocation. 
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1.2 Motivation 

In 1999, the FHWA Asset Management Office was established and was task with 

the incorporation of asset management concepts in transportation systems. However, 

there is still no universally accepted culvert condition assessment system used by DOTs. 

Consequences of culvert failures can be very severe especially in interstate highways. 

Table 1.1 lists selected culvert failures reported by media sources across the USA over 

the past 18 years. 

Table 1.1 Culvert Failure-Case Histories 

Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Year 

1983 

2001 

2003 

2003 

2003 

2003 

2006 

2008 

2010 

Location 

Antwerp, 
Ohio 

Highway 401, 
Ontario, Canada 

Interstate 70, 
Colorado 
SR-79, 
Ohio 

SR-173, 
Ohio 

Interstate 75, 
Michigan 

Interstate 88 
Unadilla, NY 

Interstate 480, 
Ohio 

U.S. 138, 
Colorado 

Consequences 

Five persons died, four injured 

4 hours detour lasting 1 day 

Closure of 1-70 lasting 7 days; the 
replacement costs $45,000 

20 minutes detour lasting 6 days 

20 minutes detour lasting 5 days 

20 minutes detour lasting 5 days; 
the replacement costs $95,000 

Two truck drivers died; 
closure of 1-88 in both directions; 

the full replacement lasting 2 months 
Closure of lanes for 8 days; 

the replacement costs $384,000 

Closure of U.S. 138 lasting 24 days 

Based on a questionnaire sent to FHWA division bridge engineers of U.S. DOTs 

in 2007, only 29 states use asset management software to manage their culverts, of which 
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eight states use Pontis®. Pontis® is an asset management software developed by 

Cambridge Systematics, Inc. and Optima Inc, for transportation agencies to manage 

bridges and culvert as well as other transportation structures. Pontis® stores inspection 

data for bridges and culverts, and employs a deterioration prediction function to help 

transportation agencies to make optimal decisions in terms of preserving their assets. 

Thirteen states use in-house programs and eight states use a combination of Pontis® and 

in-house programs (FHWA, 2007a). The remaining DOTs that responded to this survey 

did not use culvert asset management software, indicating a gap between technology and 

application. Table 1.2 lists available culvert rating systems used by various DOTs. 

Table 1.2 Condition Rating Methods for Culverts in the USA 

Rating System 

PennDOT's System 

MN DOT's System 

ORITE'S System 

Meegode's System 

Caltran's System 

ODOT's System 

Kurdziel's System 

Arnoult's System 

Agency 

PennDOT 

MNDOT 

ORITE1 

NJDOT 

CADOT 

OH DOT 

TRB 

FHWA 

Year 

2008 

2006 

2005 

2004 

2003 

2003 

1988 

1986 

' ORITE: Ohio Research Institute for Transportation and the Environment 

The service lives of culvert structures largely depend on the supporting soil, local 

environment, and corrosive and abrasive properties of the transported fluid and solids 

(Meegoda, 2009). The California Test Method 643 uses pH of soil and water, and the 

minimum electrical resistivity to estimate the service life of corrugated metallic culverts. 
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This method is based on a testing of over 7,000 corrugated metallic culverts in California 

in 1959. The American Iron and Steel Institute (AISI) method is similar to the California 

Test Method 643, which uses the invert's service life to represent the culvert's durability. 

The Florida Method is also similar to California Test Method 643 and pH, and the 

minimum resistivity are the input parameters for predicting the service life of corrugated 

metal culverts. Table 1.3 summarizes the methods for service life estimation developed 

by different agencies across the USA. 

Table 1.3 Service Life Estimation Methods 

Estimation Methods 

California Test Method 643 

AISI1 Method 

Florida Method 

Agency 

CADOT 

AISI 

FLDOT 

Year 

1999 

1994 

1993 

'AISI: American Iron and Steel Institute Method 

The main limitation of the California Test Method 643, the AISI Method and the 

Florida Method is their applicability to specific culvert materials that are located in the 

original areas where the corresponding methods were developed. For example, the 

Florida Method cannot be utilized in other states since deterioration rate of culverts are 

different at different states due to the climate, the construction material, and traffic 

loading and so on. The accuracies of three methods also change with time, so the 

prediction models need to be updated by additional validation. Advantages of these 

methods include fast evaluation, and limited possibility of human error and support of 

rapid decision making. 
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To sum up, the current technology for culvert asset management is not optimized 

in the U.S. in terms of gaining maximum benefit while minimizing disruption of traffic. 

A number of culvert failures have occurred in the past decades, resulting in the loss of 

lives, high economic loss and adverse social impact. In addition, culvert rating system is 

a bottleneck that supports decision making tasks such as prioritization and service life 

estimation as well as the final renewal plans. Thus, a proactive approach that aims at 

identifying culverts in structural distress in a timely manner to prevent collapses is 

needed. Currently, there is no unified rating system in the U.S., and the performance of 

current rating systems is difficult to be evaluated. Furthermore, service life estimation by 

statistical methods, an approach that provides future deterioration information of culverts 

at the group level, but has not been developed and applied by DOTs widely so far. 

The objective of this work is to reduce the gap between current asset management 

theory and engineering applications, as to maximize the service life of culvert assets 

while minimizing the likelihood of culvert failure. In this research, technologies related to 

culvert asset management, including NDT inspection, condition rating, database 

management and deterioration prediction algorithms, are investigated. Successful 

application of culvert asset management can maximize the benefit of investment into 

culverts while minimizing the risk of catastrophic failures. 

1.3 Scope and Organization 

Chapter 1 presents an overview and the objectives of this research. Background 

knowledge about culverts and general information regarding culvert assets in the U.S. is 

provided. Case histories of culvert collapses, available culvert rating systems in the U.S. 

and culvert service life estimation methods are then presented and analyzed, supporting 
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the need for this research work. The scope and organization of the thesis are introduced in 

the latter part of Chapter 1. 

Chapter 2 provides a literature review of topics relevant to this research work, 

including an overview of culvert asset management in the U.S., NDT for culvert 

inspection and statistical approaches for predicting structural deterioration rate. 

Chapter 3 presents the development of a culvert rating methodology. To 

investigate most of the recent technologies in data management, requests for culvert 

inventory data were sent to DOTs and the FHWA. After comparing the acquired 

inventory datasets, the Oregon DOT's inventory dataset was selected as the basis for 

developing a culvert rating methodology. An expert opinion survey was conducted to 

assist in establishing weights for each factor using AHP to rank the condition of all 

culverts. 

Chapter 4 gives detailed description of utilizing the Markov model for culvert 

deterioration estimation at the network level. Datasets from three highways of the Oregon 

DOT were analyzed. Model calibration is the key for computing the unknown parameters 

of the Markov Model, which was computed by the Metropolis-Hastings Algorithm 

(MHA). Model validation was performed using the Pearson's chi-square test. Finally, a 

case study was provided. The results indicated that a Markov model based on the overall 

rating methodology did not pass the chi-square test, while the model based on the 

structural rating methodology passed the test. Possible reasons for that finding are 

investigated. 

Chapter 5 concludes the research work of this dissertation, providing suggestions 

for future work. 



CHAPTER 2 

LITERATURE REVIEW 

The following literature review provides background information regarding 

culvert asset management systems developed and/or utilized in the U.S., as well as an 

overview of culvert inspection technologies and deterioration estimation methods. 

Section 2.1 provides a state-of-the-art review for culvert asset management systems in the 

U.S. Section 2.2 examines the capabilities and limitations of Non-destructive 

Technologies (NDT) for different material types. Section 2.3 describes statistical 

approaches and their applications for predicting the deterioration of infrastructure 

elements. 

2.1 Technologies for Culvert Asset Management 
in the U.S.-State of the Art Review 

Culvert asset management is a strategic and systematic process which aims at 

maximizing benefits of the total asset inventory through optimizing resource allocation 

and utilization in business and engineering practices (FHWA, 2007b) while minimizing 

social and environmental impact. Significant research about culvert asset management 

has been performed. Publically available management technologies for culvert structures 

available in the U.S., which include inventory, inspection, assessment, maintenance, 

rehabilitation and replacement considerations, are indexed by Culvert Technologies 

published by the FHWA (2008). 

8 
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Application of trenchless technologies for the comprehensive asset management 

of culverts and drainage structures was investigated and a decision support system for 

culverts was proposed (Salem and Najafi, 2008). The culvert management manual 

provides an efficient way to protect the public's investment in terms of inventory, 

inspection and maintenance technologies (Ohio DOT, 2003). A Culvert information 

management system (CIMS) including inspection, maintenance and replacement of 

corrugated steel culvert pipes was developed, which optimizes decision making, (i.e. 

budget allocation) (Meegoda, 2005). Trenchless lining techniques are a cost-effective 

solution compared with open-cutting when performing rehabilitation of existing culvert 

structures; Multi-criteria Decision Analysis (MCDS) is a robust way to maximize 

benefits by use of a customized decision aid model (FHWA, 2005). For evaluating the 

performance of culverts, a condition assessment system was developed to assist the Utah 

DOT to track the status of its culvert assets (McGrath, 2004). A state-of-the-practice 

review performed for condition assessment, rehabilitation and replacement of corrugated 

metal pipe culverts, culvert inspection and rating systems was compiled by Simicevic 

(2008). A decision making system for optimizing management of culvert repair, 

rehabilitation and replacement was developed, and enhancement for CIMS which 

included a culvert assessment module and optimization module were proposed for New 

Jersey DOT by Meegoda (2009). 

A synthesis made by NCHRP reveals that it will be helpful for the DOTs to 

establish a proactive maintenance program and database for culverts (NCHRP, 2002). 

Case studies for culvert asset management (CMS) were developed to demonstrate how 

transportation agencies could apply CMS to improve the asset quality of culverts (FHWA, 
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2007b). A method for predicting the remaining service life of corrugated steel culvert 

pipes (CSCPs) utilizing the Markov model was proposed by Meegoda (2004). A material 

durability rating system for metal and concrete pipes was developed, which aimed at 

ensuring the different types of culvert's materials are uniformly rated (Kurdziel, 1988). 

Factors for a culvert condition rating system were analyzed, and 9 out of the 33 factors 

considered were found to be statistically significant to develop the new model which has 

a 1 to 5 rating scale (Cahoon, 2002). 

2.2 Non-destructive Technologies (NDT) for Culvert 
Inspection and Condition Assessment 

Condition assessment of culvert structures to establish their structural integrity is 

a common practice by many transportation agencies as part of their asset management 

and capital planning programs. There are many Non-destructive Technologies that could 

provide information regarding the presence, nature and severity of defects in different 

culvert types/materials. The challenge is to select the most appropriate NDT methods 

scheme so that the needed data can be acquired in a reliable and economic manner. 

NDT assessment is a rapidly developing field with applications in many 

engineering disciplines including condition assessment of civil infrastructure systems and 

facilities such as roads, bridges, runways, waste and potable water conveyance and 

distribution systems and more. This section focuses on a subgroup of technologies that 

can be used to assess the service performance and structural integrity of culvert structures 

and the embedment around them without the need of intrusive or destructive means. The 

goal of this section is to identify available NDT evaluation methods and establish their 

suitability for the condition assessment of different culvert structures based on their 

ability to detect particular defect types. This database is expected to serve as the basis for 
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a rational and systematic decision support matrix which ranks the suitability of various 

NDT methods for a particular project, based on their capabilities and limitations. 

2.2.1 Defect Classification for 
Culvert 

Most culverts can be classified as cementitious, thermoplastic or metallic in terms 

of materials. Specific defects are known to be associated with particular construction 

materials. Table 2.1 shows the relationship between defects and culvert materials. Culvert 

structures take various shapes including circular, pipe arch, rectangular, pear and more. It 

is acknowledged that specific defect types might be more prevalent in particular culvert 

geometries; however, this aspect is not considered in this research. 

Table 2.1 Common Defects for Different Culvert Materials/Types 

DEFECTS 

Cracks 

Spalls 

Delamination 

Joint misalignment 

Internal/External 

corrosion 

Invert erosion 

Abrasion/wall thinning 

Encrustation/Debris 

Pipe ovality 

Footing defects 

Slabbing 

Defective joints 

CEMENTITIOUS 

Cast-in-

place 

V 
V 
V 
X 

V 

V 
V 

V 
V 

V 
X 

X 

Pre-cast 

V 
V 
V 

V 

V 

V 
V 
V 
V 
X 

V 
V 

THERMO­

PLASTIC 

V 
X 

X 

X 

X 

V 
V 
V 
V 
X 

X 

X 

METALLIC 

Pipe 

X 

X 

X 

V 

V 

V 
V 
V 
V 
X 

X 

V 

Structural 

plates 

X 

X 

X 

V 

V 

V 

V 
V 
V 
V 
X 

V 
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Lateral deflection 

Crown Sag 

Corroded reinf. bars 

Dents & localized 

damage 

V 
X 

V 

X 

V 
X 

V 

X 

V 

V 
X 

V 

V 

V 
X 

V 

V 

V 
X 

V 

2.2.2 Short Descriptions of 
Selected Methods 

2.2.2.1 Laser Profiling. Three-dimensional laser profiling, also called the light-

line method, uses a laser to generate a line of light around the pipe circumference that, 

when viewed by a camera, is capable of capturing the geometry of the inside wall of the 

culvert. Laser profiling can detect deformations, siltation and corrosion in culvert 

structures. A 3D wire-mesh model of the pipe can also be created and displayed. Laser 

inspection can be conducted only in drained pipes, and thus, the culvert must be taken out 

of service (Jason Consultants, 2008). Inaccurate readings might occur when the laser 

crosses the interface of materials with different densities. 

Laser profiler systems can generate variety of reports and 2D or 3D models of the 

pipe. Information provided included the grade of the pipe, the location and magnitude of 

deflections, measurements of sediment and water depth. Laser profilers are commonly 

combined with Closed Circuit Television (CCTV) systems and mounted on modular 

robotic transporter platforms for creating enhanced data collection systems. Recent 

research efforts focused on the development of artificial intelligent (AI) software capable 

of automatic feature extraction from the raw data. Duran (2003) reported a system that 

combines image analysis techniques and Artificial Neutral Network (ANN) to 

automatically locate and classify defects in the pipe structure. 
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2.2.2.2 Sonar. Sonar is a NDT method that operates under water to detect the 

presence of debris and gross defects at the pipe's invert. Sonar scans can only be 

performed in partially or fully filled pipes. Due to the irregular edges caused by the brick-

mortar interface, sonar cannot be used for the inspection of brick pipes. Sonar technology 

is commonly used as supplement to CCTV and laser profiler inspections. 

2.2.2.3 Ultrasonic. High frequency sound waves that range between 50kHz to 

10MHz are able to provide information regarding the presence and location of boundaries 

within the pipe wall that results from the presence of delimitations, voids and poorly 

dense/high corroded zones (Berriman, 2003). The travel speed of ultrasound waves 

changes depending on the density of the medium through which they travel. When the 

propagating wave encounters reflector surfaces such as the flaws, voids and boundaries 

between two different mediums, part of the acoustic energy is reflected back and received 

by a transducer, which also performs the signal transmitting function (Iyer, 2005). The 

presence and location of various targets can be obtained from the raw data using a time 

domain based analysis. The results of inspection are presented in 2D or 3D formats. 

Integrating data from complimentary NDT methods could result in a more reliable and 

accurate interpretation of the results via super-positioning algorithms (EPA, 2008). 

2.2.2.4 Ground Penetrating Radar (GPR). The primary application of GPR in 

the utility industry is to identify the location and depth of buried pipes and conduits. A 

qualitative measure of the magnitude of deterioration behind a liner can be established 

using high frequency GPR units that are placed within the pipeline very close to its 

interior wall (Koo et al., 2006). GPR units were also reported to be used for locating 

concrete deterioration and voids behind concrete liner employing a 1 GHz frequency 
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antenna mounted such that it nearly touches the inner wall of the tunnel is inner surface 

(Parkinson and Ekes, 2008). 

The penetration depth of GPR is greatly affected by the dielectric characteristics 

of the underground medium and the wavelengths of the transmitted signal. Resolution is 

typically inversely related to the penetration depth. GPR consists of a transmitting 

antenna that emits radio waves into the ground. The waves penetrate through the medium 

until they reach a material which has a different conductivity and dielectric constant, 

causing part of the signal to reflect back at that interface. The reflected signal is detected 

by a receiving antenna. After analyzing the time it took the pulse to travel to the 

boundary interface and return, the presence of the target and its estimated depth features 

below the ground surface can be determined. The center frequency of the transmitted 

antenna ranges from 25 to 1500 MHz, depending on the application at hand (Bungey, 

2004). GPR data can be presented using 2D and 3D surveys. In a 2D survey, the features 

are located and marked at the site using standard surveying techniques. The 3D survey is 

more flexible, and data can be post-processed at the office. The effectiveness of the GPR 

methods is affected by soil conductivity, depth of the target, the presence and proximity 

of other buried objects, moisture content and environmental electromagnetic noise. 

2.2.2.5 Infrared Thermography. This method can be deployed for leak detection 

and component assessment, and has been successfully applied in practice for a number of 

years (Weil, 2004). Pulsed active infrared thermography (PAIRT) detects subsurface 

defects based on the principle that different defects can show different thermal properties; 

the thermal emission could then be detected by thermal sensors, namely an infrared 

camera capable of detecting the surface emissivity. By applying the PAIRT method, an 
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approximate quantitative wall thickness evaluation can be made, based on the principle 

that a pipe area with thinner wall thickness will be affected by thermal energy first, using 

the expression given in Eq. 2.1, 

f.2\ 
t = Z_ 

v5; 
(2.1) 

where t is the observation time, S is the thermal diffusivity of the materials (m2/s), and Z 

is wall thickness (in the case of pipes). If the wall of pipeline has its thickness reduced by 

a factor of 2 due to corrosion, a thermal disturbance will arrive to the outer surface of the 

corroded section four times faster compared with other sections of the pipeline 

(Maldagure, 1999). Thus, by measuring the observation time t, it is possible to calculate 

the thickness of the pipe wall. In this method, the thermal transient inside the pipe needs 

to be generated by changing the flow condition in the pipe, then by observing the 

temperature distribution on its outside surface. A qualitative evaluation of the wall 

thickness can be obtained using the above expression. In cases where it is difficult to 

change the flow inside the pipeline, an external heat source can be used to uniformly 

increase the temperature of the outer wall of the pipe. Next, an infrared camera is utilized 

to record the temperature distribution on outside surface. Recent development of high 

resolution, dual/wide-band, infrared thermographic imaging systems increased the 

effectiveness of this method, allowing it to detect with high reliability thermal anomalies 

associated with leaks and erosion voids caused by leaks. 

2.2.2.6 Gamma-Gamma Logging. This technology is used mainly for concrete 

pipe assessment, especially for vertical boreholes in the mining and oil and gas industries. 

Gamma radiation, such as cesium-13 7, is generated by Gamma-Gamma probes and 
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scattered back to a shielded detector. The data logged can be used to evaluate the density 

of the concrete. A recent study at Karlstuhe University in Germany indicated that 

Gamma-Gamma probe could be used to locate and measure the voids and cavities in 

bedding materials. The technology might be applicable for evaluating the general 

condition of cementitious culverts pipes or detecting voids in their surrounding bedding 

(EPA, 2009). 

2.2.2.7 Visual and CCTV. Visual and CCTV are most commonly used NDT for 

inspection. Man-entry visual inspection is only applicable to culverts that have sufficient 

working space (i.e., large diameter). For non-man-entry pipes, remote inspection 

technology, closed circuit television (CCTV), is the most commonly used method for 

examining the culvert barrel. A camera is mounted on a crawler or transporter, which is 

connected through a cable that provides power, thus enabling the crawler to travel along 

the pipe while capturing video images of the traveled section. The video is then reviewed 

by a certified inspector that documents the condition of the barrel. A pan-and-tilt camera 

enables to inspect the entire circumferences of the pipe, overcoming the limitations of 

front-viewing cameras. Although the accuracy of CCTV inspection results is highly 

dependent on the inspector's experience, it is still one of the most widely used NDT for 

inspection of culvert structures. 

2.2.2.8 Other Emerging NDT and Monitoring Methods. There are a number of 

emerging non-destructive testing technologies that have demonstrated potential for 

providing valuable information regarding specific attributes of buried structures or pipes. 

Table 2.2 summarizes emerging NDT and monitoring methods that might be beneficial 

for culvert inspection programs (FHWA 2006). 
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Table 2.2 Emerging NDT and Monitoring Methods 

NDT Methods 

Smart Paint 1 

Smart Paint 2 

Penetrating Dye 

Radiographic 

Testing 

Nuclear Methods 

Magnetic Field 

Disturbance 

Pachometer 

Liquid Penetrant 

Testing 

Magnetic Particle 

Backscatter 

Tomography 

Description 

Uses microencapsulated dye to outline fatigue cracks 

Uses resin layer attached to electrodes to monitor vibrations; 

used to support accurate fatigue calculations 

Detects extent and size of surface flaws in steel members, the 

test area needs to be cleaned and separated from structure 

X-rays or gamma rays are passed through the member and 

are absorbed differently by various flaws (IAEA, 2005) 

Measures chlorides in reinforced concrete to determine 

corrosion hazard 

Evaluates fatigue damage to steel reinforcement in concrete 

members 

The magnetic device used to determine the position of 

reinforcement 

Evaluates cracks of mechanical parts such as gears 

Detects and locates the slight subsurface discontinuities or 

defects 

Provides image of defects inside infrastructure elements using a 

single-side access (applicable to most materials) 

2.2.3 Methods Selection of NDT 
for Culvert Inspection 

Tables 2.3 - 2.5 represent the mapping of NDT methods to specific defect types 

for different culvert materials. These matrices can assist engineers in selecting the 

appropriate NDT method for their projects. 



Table 2.3 Inspection of Concrete Culvert Structures 

NDT 
Methods 

Visual 

Smoke 

CCTV/ 
Optical 
scanning 

Pigs 

Laser 
Profiling1 

Sonar/ 
Ultra­
sonic2 

Impact-
echo 

SAWS3 

IRT4 

GPR5 

Gamma-
Gamma 

Dye Test 

Defect Type / Location 

Cracks, 
Spalls 

V 

V 

V 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Joint 
defects/ 
mis-align. 

V 

V 

V 

X 

V 

X 

X 

X 

X 

X 

X 

X 

Int. 
Corros. 

V 
X 

V 

X 

V 

X 

X 

X 

X 

X 

X 

X 

Debris 

V 
X 

V 

X 

V 

V 

X 

X 

X 

X 

X 

X 

Ovality 

X 

X 

X 

V 

V 

X 

X 

X 

X 

X 

X 

X 

Infl. 

V 

V 

V 

X 

X 

X 

X 

X 

X 

X 

X 

V 

Invert 
Erosion 

V 
X 

V 

X 

V 

X 

X 

X 

X 

X 

X 

X 

Bedding 
Voids 

X 

X 

X 

X 

X 

X 

X 

V 
V 
V 

V 

X 

Wall 
Thinning 

X 

X 

X 

X 

X 

V 

V 

X 

X 

X 

X 

X 

Delam. 

X 

X 

X 

X 

X 

X 

V 

V 
X 

V 

V 

X 

Ext. 
Corros. 

X 

X 

X 

X 

X 

X 

V 

X 

X 

X 

X 

X 

Crown 
Sag 

V 
X 

V 

V 

V 

V 

X 

X 

X 

X 

X 

X 

Corrod. 
Bars 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Defect 
behind 
liner 

X 

X 

X 

X 

X 

X 

X 

X 

X 

V 

X 

X 

1 unflooded condition;2 flooded conditions;3 spectral analysis of surface waves;4 Infrared Tomography;5 from inside the pipe. 



Table 2.4 Inspection of Thermoplastic Culvert Structures 

NDT 
Methods 

Visual 

Smoke 

CCTV 

Laser 

Sonar/ 
ultrasonic2 
IRTJ 

GPR4 

Defect Type 

Cracks 

V 
V 
V 
X 

X 

X 

X 

Debris 

V 
X 

V 
V 

V 

X 

X 

Ovality 

X 

X 

X 

V 
X 

X 

X 

Inflow 

V 
V 
V 
X 

X 

X 

X 

Joint defects/ 
misalignment 

V 
X 

V 
V 
X 

X 

X 

Abrasion/ 
wall thinning 

X 

X 

X 

V 

V 

X 

X 

Bedding 
Voids 

X 

X 

X 

X 

X 

V 
V 

Low 
density 
bedding 
X 

X 

X 

X 

X 

X 

X 

Dents & 
localized 
damage 
V 
X 

V 
X 

X 

X 

X 

Lateral 
Deflection 

V 
X 

V 
V 

V 

X 

X 

Crown 
Sag 

V 
X 

V 
V 

V 

X 

X 

1 unflooded condition; 2 flooded conditions;3 Infrared Tomography;4 from inside the pipe. 

o 



Table 2.5 Inspection of Metallic Culvert Structures 

NDT 
Methods 

Visual 

Smoke 

CCTV 

Laser 

Sonar/ 
ultrasonic2 
Mechanical 
impedance 
IRT3 

GPR4 

Defect Type 

Off-set 
joint 
V 
V 
V 
V 
X 

X 

X 

X 

Internal 
Corrosion 
V 
X 

V 
V 
X 

X 

X 

X 

Debris 

V 
X 

V 
V1 

V 

X 

X 

X 

Ovality 

X 

X 

X 

V 
X 

X 

X 

X 

Inflow 

V 
V 
V 
X 

X 

X 

X 

X 

Abrasion/wall 
thinning 

X 

X 

X 

V 

V 

X 

X 

X 

Bedding 
Voids 

X 

X 

X 

X 

X 

V 

V 
X 

External 
Corrosion 

X 

X 

X 

X 

X 

X 

X 

X 

Lateral 
Deflection 
V 
X 

V 
V 

V 

X 

X 

X 

Crown Sag 

V 
X 

V 
V 

V 

X 

X 

X 

Low density 
bedding 

X 

X 

X 

X 

X 

V 

X 

X 

unflooded condition;2 flooded conditions;3 Infrared Tomography; 4 from inside the pipe. 

© 
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2.3 Statistical Approaches for 
Deterioration Prediction 

This section introduces statistical models for deterioration prediction, presents 

calibration methods for deterioration prediction models, and contrasts alternative 

prediction models. 

2.3.1 Deterioration Models 

Statistical approaches for deterioration prediction in the area of infrastructure 

management have been proven to be robust, not only at the network level, but also at the 

individual element level. Table 2.6 presents model suitability in deterioration predictions 

based on a literature review. 

Table 2.6 Model Suitability for Deterioration Prediction 

Statistical Approach 

Markov Model 

Semi-Markov Model 

Ordered Probit Model 

Probabilistic Neutral 

Network 

Multiple Logistic 

Regression 

Multiple Discrimination 

Analysis 

Ordinal Regression Model 

Serviceability Forecast 

Network 

Level 

V 
V 

Individual 

Level 

V 

V 

v 

v 

V 

Structural Forecast 

Network 

Level 

V 
V 

Individual 

Level 

V 

V 

v 

v 

V 
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2.3.1.1 Markov Model flyEVD. A discrete time Markov chain {Xt} is the Markov 

stochastic process that consists of countable state space T, in which T= (0,1,2 ), for 

the probability ofX,+/ in state j , given Xt in state /, one-step transition probability p.",n+1 

can be denoted by Eq. 2.2 (Karlin 1972), 

P^n+1=P{Xn+1=j\Xn = i}. (2.2) 

In the Markov chain, next state Xt+i only depends on the current state Xh not the 

history of the chain, which ranges from Xo to X,.i (Gilks 1996). Assuming the Markov 

chain is time homogeneous, a transition probability matrbc, Py, describes the probability 

of transition from one state to another over a certain time (normally 1 year in 

infrastructural management). Future condition of infrastructure element / at any year can 

be predicted by the Chapman-Kolmogorov equation as shown in Eq. 2.3, 

Ci^Ct-fatf, (2-3) 

where: (^probability of I at state i in t years; C°=initial state of/; P£;-=transitional 

probability; /=condition states of I. 

The semi-Markov model assumes the time spent in each state is not evenly 

distributed, which allows fitting a variety of statistical distributions to deterioration 

problems. 

A significant amount of research has been done in the application of the Markov 

chain theory in the infrastructure area. Micevski et al. (2002) successfully modeled the 

deterioration of storm water pipes using the Markov model utilizing the Metropolis-

Hastings Algorithm (MHA), one of the Markov chain Monte Carlo methods for 

calibration; the results were compared with the depreciation curve from Australia AAS27, 
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which concluded that AAS27 highly exaggerated the depreciation of storm water pipes. 

Baik (2006) developed a Markov chain based deterioration model for wastewater systems, 

and its transition probabilities were computed by OPM. The results showed that OPM 

outperformed a nonlinear optimization-based deterioration model. In an integrated 

pavement management system application, pavement deterioration prediction was 

performed by applying a discrete-time Markov model (Abaza, 2004). 

For modeling the deterioration of large combined sewers, Wirahadikusumah 

(2001) discussed how to improve the modeling of the sewer system by using a Markov 

chain based model with a nonlinear optimization. Kleiner (2006) simulated the 

deterioration of infrastructure assets using a semi-Markov model, which is a non-

stationary, time-dependent transition process. Dirksen (2008) investigated the 

probabilistic modeling of sewer deterioration in the Netherlands, by applying the Markov 

model to sewer pipelines. A model was constructed of the "surface damage by corrosion" 

which was solely dependent on structural condition. After combining the states 3, 4, 5 to 

one state because of the characteristics of the data, a three states transition probability 

matrix was established and calibrated, which illustrated a robust performance in 

deterioration forecasting. 

In predicting the remaining service life for corrugated steel culvert pipes, 

Meegoda (2004) proposed a novel half-life probability method to calculate the 

transitional probabilities for the Markov chain due to lack of historical data. Based on an 

expert opinion survey, Kathula (2000, 2001) developed a Markovian-based statistical 

model for Sanitary Sewer Management Systems (SSMS), to evaluate the future distress 

condition of concrete and clay sewer pipes. Tran (2009a) performed a structural 
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deterioration prediction of storm water pipes at the network level using the Markov 

model, which aims to support the decision maker in allocating the budget and estimate 

the remaining service life. Tran (2008) investigated the applicability of the Markov 

model in predicting the serviceability deterioration of storm water pipe. Tran (2009b; 

2010c) applied the Markov model to evaluate the structural deterioration of storm-water 

pipe assets. Sinha (2007) proposed a probability based Markov prediction model for 

performance estimation as part of a pipeline management system. Golroo (2009) 

investigated the application of the Markov chain process in modeling concrete pavement 

condition in cold climates. A semi-Markov approach was selected for modeling asset 

deterioration by Black (2005) based on the observed condition data for ground-mounted 

transformers. 

2.3.1.2 Ordered Probit Model (OPM). The ordered probit model was introduced 

by Madanat (1995) to evaluate the deterioration of bridge decks which outperformed the 

common expected-value approach for estimation of transition probabilities in terms of 

accurate prediction and realistic reasoning. Madanat (1997) developed a random effects 

ordered probit model, which accounts for the heterogeneity in a sample, for evaluating 

bridge deck deterioration. The theory of OPM is given by Eq. 2.4 and Eq. 2.5, 

logdSt) = rt + Eit (2.4) 

n = T$=iPkXk, (2-5) 

where: S^continuous deterioration process that ranges from 0 to +oo for infrastructure /, 

where the log scale constrain the deterioration process to a positive value; r^linear 

formula denoting input factors Xk and corresponding coefficient Bk, t e r r o r of random 
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events for /. Thresholoul d value 6 divides the deterioration log (S*) to segments 

representing the conditions of the infrastructure element. 

Assume et follows the normal distribution N, / has 4 rating scales and 3 threshold 

values, so the probability that / stays in condition 1 is given by Eq. 2.6, 

P],t= probability [log(Si) < flj^robability [rt + et< 6^= probability [et < 6X — rj\. 

(2.6) 

Assigning Fto be the cumulative distribution function of eu Eq. 2.7, Eq. 2.8, Eq. 

2.9 and Eq. 2.10 can be derived, 

Pu= F(dx-rd, (2.7) 

P2,i = [di < logisj < e2] = F ( 0 2 - rt) - F(e1 - n), (2.8) 

P3,i = [92 < logdSO < 63] = F(63 - rj - F(02 - n), (2.9) 

P4,i= l-Pu-P2,i-P3,i, (2.10) 

where Pq ^probability of segment / at condition q, ranges from 1 to 4; F=cumulative 

normal distribution of E\; Qt, 82 and 93 are threshold values of the OPM. 

Baik (2006) successfully applied the OPM to deterioration of a waste water 

collection system, and suggested that OPM outperformed a nonlinear optimization-based 

approach. To capture the deterioration of individual storm water pipe segments, Tran 

(2009a; 2010b) developed OPM for structural and hydraulic deterioration estimation of 

individual storm water drainage pipes. Tran (2008) proposed an ordinal regression model 

(ORM) based on OPM for evaluating the serviceability deterioration of storm water pipes. 

2.3.1.3 Probabilistic Neural Network fPNNV Probabilistic Neutral Networks is 

a hybrid computation method based on a Neural Network platform which incorporates 
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the Bayesian classification theory. The difference between NN and PNN is that NN, i.e. 

back-propagation neural networks, needs a long training process, while the PNN finds the 

best solution for each pattern of structural conditions by using the Parzen-Cacoullos 

theory. 

PNN is constructed by four layers named the input layer, pattern layer, summation 

layer and output layer. Condition recognition is realized by a Bayesian classifier given by 

Eq. 2.11 (Tran, 2010c), 

D(X) = Ct if hhJiW > ljhjfj(X) i,j = 1 m, (2.11) 

where: X = K-dimensional vector which has k input factors; D(X)=projection of X in a 

group of m conditions; Moss incurred by misclassifying the condition i to;'; /i=prior 

probability of occurrence for a condition; /(X)=PDF (probability density function) for a 

condition. I and h are assumed to be uniform for each condition in modeling, so pattern 

classifying only depends on which condition has the highest value of f(X). 

PDF is the core algorithm for the Bayesian classifier. Although there is no 

confident information to draw the PDF, it is still possible to estimate f(,X) based on 

given knowledge, such as observation data, through the Parzen-Cacoullos Method, which 

is given by Eq. 2.12, 

fW=J^W.iW(Z*), (2.12) 

where: X=AT-dimensional vector representing infrastructure with K input factors; o=group 

of K smoothing factors denoting the standard deviation of each factor; N=number of 

available observations; /(X)=PDF; W=kernel density function. Eq. 2.13 is achieved after 
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fitting the widely used Gaussian kernel density function into Eq. 2.12 as a substitute for 

W, 

where: m is the vector number of X. In a four-layer PNN, the input layer consists of 

neurons, one for each input factor; the pattern layer is responsible for calculating the 

exponential part of Eq. 2.13 and sending it to the summation layer, in which f{X) will be 

computed. At last, in the output layer, the pattern assigning will be performed by 

Bayesian classifier, to judge which pattern has the highest f(X) value. 

Tran did extensive work in the development of PNN for storm water pipe 

deterioration prediction not only in the structural aspect (Tran, 2006; Tran, 2007a; Tran, 

2009b; Tran, 2009c), but also the hydraulic/serviceability performance (Tran, 2007b; 

Tran, 2010b). 

2.3.1.4 Multiple Logistic Regression (MLR"). Multiple logistic regression is a 

probabilistic approach that illustrates the deterioration of infrastructure by a logistic 

cumulative distribution function. The principle of MLR is simple; it segments the 

continuous deterioration curve of infrastructure / into four zones by three threshold 

values (assuming I has four conditions). The four segmented zones are corresponding 

with the four conditions of I. The condition of / can be identified by computing the 

highest value of the probabilities of I staying in each of the conditions. 

The logistic function is presented by Eq. 2.14, 
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where /(z)=latent deterioration curve ranging from 0 to 1; z=a factor including the 

thresholds and the linear function, / (z) is a cumulative distribution function, assuming 

that the infrastructure / has four conditions from 1 (best) to 4 (worst), the probabilities of 

/ staying in each of the conditions are expressed by Eq. 2.15, Eq. 2.16, Eq. 2.17 and Eq. 

2.18, respectively, 

Pi = [f(*)<0i]= „+1k , _ , (2. 15) 

P2 = [dx < / ( z ) < 62]= k - k (2. 16) 

P3 = [82 < / (z) < 63] = ' t - e
 9 t g x , (2. 17) 

P 4= 1-P1-P2-P3, (2.18) 

where: Pi.P2.P3 and P4 =probability of / in condition 1, 2, 3 and 4; flj^and 63 = 

thresholds for / (z ) ; ^t=input factors relating to the deterioration process, fc=total number 

of factors; /?tcoefficient of Xt. In predicting the deterioration rate of the storm water 

pipes, MLR was successfully applied, and its performance was compared with the PNN 

(Tran 2009c). 

2.3.1.5 Multiple Discrimination Analysis (MDA). Multiple discrimination 

analysis can be used to perform pattern classification by using the discriminant function, 

which is determined by factors that affect the performance of the final output. Tran 

(2007b) applied the MDA to investigate the serviceability condition of storm water pipes. 

In pattern classifying, MDA computes the Z scores of a set of linear discriminate 

functions which are used for defining the pattern zone in K-l space, in which K is the 

total count of the pattern number. Calibration of the MDA is to maximize between-class 

http://Pi.P2.P3
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variance relative to the within-class variance based on test data (Tran, 2007b). Pattern 

recognition of the MDA is realized by the testing infrastructure /, whose value will be 

compared with the centroid of the MDA; the pattern is assigned to the closest centroid. 

The centroid of the specific class can be achieved by averaging Z scores of each function 

coming from the sample data. The discriminant function is shown as Eq. 2.19, 

Dk = Bk0 + BkilXx + Bk2X2 +••• +BkjXj, (2.19) 

where: Dk =discriminant function; Bk0 =constant; Bk coefficients for discriminant 

function; X= vectors of input. 

In summary, all deterioration models rely on high quality datasets but the models 

do not have tools to verify the accuracy of the datasets used. Other limitations include 

application area and dataset format requirements. For example, the Markov model is only 

applicable to deterioration prediction at the network level which can provide future 

information of infrastructure, and only age and condition of the culverts are needed to 

perform the deterioration prediction. The Markov model needs the preliminary process 

(sorting) of the datasets to get the target group that represent the regional deterioration 

characteristics. It is not optimized to apply the entire datasets to the Markov model, as it 

might result in inaccurate results. Thus, another limitation of Markov model is that the 

accuracy of the prediction results is highly related to the data sorting or data selecting. 

OPM, PNN and MLR are models applicable to deterioration prediction at the 

individual level for infrastructure elements. Applying all factors from the inspection 

datasets to perform the calibration is not an optimized solution. Statistical significances 

between the factors and predicted results need to be evaluated. 
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Currently, there is no model that can perform all deterioration predictions for an 

infrastructure at the network level and the individual level. To take advantage of different 

deterioration models, Tran (2010a) proposed a conceptual framework for asset 

management decisions in sewer network which incorporates a network deterioration 

model, an individual condition classifying model, an individual deterioration model and a 

risk ranking model. 

2.3.2 Calibration and Validation 
Methods 

Model calibration is aimed at inferring the unknown parameters in the proposed 

model. For the Markov model, the unknown factor is the transition probability Py. For 

OPM, model calibration is to find out the coefficients and thresholds, etc. This section 

summarizes commonly used calibration methods, including expert opinion, maximum 

likelihood function, and half-life probability. The Metropolis-Hastings Algorithm will be 

introduced in Section 4.3. 

2.3.2.1 Expert Opinion. Expert opinion should be considered when the 

engineering problem is hard to solve by soft computation modeling. It is nearly 

impossible to use soft computation methods to develop a culvert rating methodology 

based on the Analytic Hierarchy Process (AHP) because the weight of rating factors 

needs to be confirmed by expert opinion. In the deterioration rate estimation of sanitary 

sewers, an expert opinion survey was applied in the development of the Structural 

Condition Matrix (SCM) for clay pipes and concrete pipes, each one consisting of five 

structural distresses named "open crack," "open joint," "displaced joint," "corrosion" and 

"deformation" (Kathula, 2000). 
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2.3.2.2 Maximum Likelihood Technique. Maximum likelihood technique is a 

robust approach in inference of unknown parameters by maximizing the joint probability 

of observations. In a model consisting of unknown parameters 9 and observation d, 

when assuming 6 is a fixed value, the function /(d |0) will be a likelihood function. In a 

series of observations, the maximum likelihood technique is used to compute the joint 

probability density for all observations and find the maximum one. In engineering 

applications, the log-likelihood is more convenient to use. The likelihood function is 

given by Eq. 2.20, 

L{e\d1.d2.d3 dn) = fid^d) -f{d2\9) -ttdn\6), (2.20) 

where L ^ l ^ , d2, d3,...,dn) is the likelihood of observing facts d and/(d|0)=probability 

of observing d which consists of di, d2, ...,d„. In infrastructure management, the maximum 

likelihood method was applied widely in a variety of deterioration estimation models, 

such as OPM (Madanat, 1995; Baik, 2006; Tran, 2009a; Tran, 2010b), ORM (Tran, 2008) 

and MLR (Tran, 2009c) etc. 

2.3.2.3 Half-life Probability. The half-life probability method was originally 

developed by Meegoda (2004) for predicting the remaining service life of a corrugated 

steel culvert pipe (CSCP) due to lack of the historical data. By assuming the average 

corrosion rates is 3 mil/year for urban (1.5 mil/year for rural), 50% of the cross section 

reduction for gauge 18 (0.052") will take 8.7 years, so the probability that CSCP 

remained at condition 1 after one year is calculated by Eq. 2.21, 

(Pu)B-7 = 50%, (2.21) 

where P1X denotes the transition probability that the CSCP stays in condition 1 after one 

year of service. The transition matrix Py is established in a similar way to compute Pu. 
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The Half-Life Probability method provides the flexibility to estimate deterioration when 

there are insufficient datasets. However, assumptions need to be made based on generally 

accepted knowledge. The suitability of the assumptions affects the accuracy of the 

predictability performance of the model. 

2.3.3 Comparison of Model 
Performances 

The performance of deterioration prediction models can be compared at the same 

level. For example, it is possible to compare the performance of PNN and OPM at the 

individual element level; but it is impossible to compare the PNN with the Markov 

model, because the Markov model is used for network level prediction. Table 2.7 

presents comparisons of the above discussed statistical models. 

Table 2.7 List of Models for Performance Comparison 

Network Level 
Individual Level 

MM 
PNN 
NN 
PNN 
PNN 
OPM 
OPM 

Standards 
MDA 
MDA 
BPNN 
MLR 
NN 
PNN 

Model performance testing can provide a clear understanding of the advantages 

and limitations of the model's applications. Table 2.8 lists the results of the model 

performance comparisons. 
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Table 2.8 Comparison of Model Performance in Deterioration Estimation 

Compared 
Models/Standards 

A B 
Reference Comparison Method Performance/Remark 

Markov AAS27 
Model Curve 

PNN MDA 

NN MDA 

PNN BPNN4 

PNN MLR 

OPM NN 

OPM PNN 

Micevski 
2002 
Tran 
2006 
Tran 
2007b 

Tran 
2007a 

Tran 
2009c 

Tran 
2009a 

Tran 
2010b 

Curve comparison AAS27 overestimates 
actual STR deterioration. 

Performance rate 
A outperforms B in STR 
deterioration modeling. 

Performance rate 
A outperforms B in SERV 
deterioration modeling . 

Chi-square test 
False negative rate 
Fraction correction 
rate 

For STR deterioration 
modeling, in training 
dataset: A outperforms B 
but in test dataset: B 
outperforms A. 

False negative rate 
Overall success rate 

A is more suitable than B in 
STR deterioration modeling. 

Chi-square test 
False negative rate 
Fraction correction 
rate 

A is less suitable than B in 
STR deterioration modeling. 

Chi-square test 
False negative rate 
Overall success rate 
Agreement test 

A is more suitable than B in 
hydraulic deterioration 
modeling. 

AAS27 is the Depreciation Requirements of Australia Accounting Standards; 

2STR=Structural; 3SERV=Serviceability; 4BPNN=Back Propagation Neural Networks. 
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2.3.4 Summary of Statistical 
Approaches for 
Infrastructure Deterioration 
Prediction 

Based on the above presented literature review of deterioration prediction models, 

Table 2.9 summarizes statistical approaches that have been applied in the infrastructure 

field. It is impossible to apply only one model to solve all deterioration issues of 

infrastructures systems due to the limitations of each model. To perform a systematic 

renew, a conceptual framework which incorporates multiple deterioration models could 

be more beneficial for asset management (Tran, 2010a). 

Table 2.9 Statistical Approaches in Buried Infrastructure Deterioration Prediction 

Category Reference Infrastructure 
Markov Model for Network Level 
STR1 

STR 

STR 

STR 
STR 

SERV4 

STR 

Kathula 
2001 
Micevski 
2002 
Meegoda 
2004 
Sinha 2007 
Dirksen 
2008 
Tran 2008 

Tran 2009b 

Sanitary 
Sewers 
Storm-water 
Pipes 
Culverts 

Pipelines 
Sewer Pipelines 

Storm-water 
Pipes 

Storm-water 
Pipes 

Semi-Markov Model for Network Level 
STR Kleiner 

2001 
Large Buried 
Assets 

Calibration / Software 

Expert Opinion 

M-tf Algorithm 

Half-Life Probability 

Expert Opinion 
Max.3 Likelihood 
Function 
Bayesian inference; 
MCMC5 Simulation 

M-H Algorithm 
MATLAB® 

Monte Carlo 
Simulation 

Testing 

Risk Ratio Test 

Chi-Square Test 

* 

* 

* 

Chi-Square Test 
Performance 
Rate 
Confusion 
Matrix 
Chi-Square Test 

* 

STR Black 2005 Transformers Weibull Distribution 
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Ordered Probit Model for Individual 
Level 
STR 

STR 

STR 

HYDR6 

Madanat 
1995 
Baik 2006 

Tran 2009a 

Tran 2010b 

Bridges 

Sewer pipes 

Storm-water 
Pipes 

Storm-water 
Pipes 

Max. Likelihood 

Max. likelihood 

Max. Likelihood 

Max. Likelihood 

Probabilistic Neural Network Model for Individual Level 
STR 

SERV 

STR 

STR 

HYDR 

Multiple 
STR 

Multiple 
SERV 

Tran 2006 

Tran 2007b 

Tran 2007a 

Tran 2009c 

Tran 2010b 

Storm-water 
Pipes 

Storm-water 
Pipes 
Urban Drainage 
Pipes 
Storm-water 
Pipes 

Storm-water 
Pipes 

MATLAB® 

Bayesian MCMC 
Simulation 
Bayesian Approach 

MATLAB'8' 

MATLAB® 

Logistic Regression for Individual Level 
Tran 2009c 

Discrimination 
Tran 2007b 

Storm-water 
Pipes 

Max. Likelihood 
Calibration 

Analysis for Individual Level 
Storm-water 
Pipes 

SPSS® 

t-statistic 
Chi-Square Test 
t-statistic 
P2-statistic 
Confusion 
Matrix 
Chi-Square Test 
Confusion 
Matrix 
Chi-Square Test 
Agreement Test 

Chi-Square Test 
Performance 
Rate 
Performance 
Rate 
Chi-Square Test 
FNR7 and FCR8 

Confusion 
Matrix 
Chi-Square Test 
Confusion 
Matrix 
Chi-Square Test 
Agreement Test 

Confusion 
Matrix 
Chi-Square Test 

Performance 
Rate 

Ordinal Regression Model for Individual Level 
SERV Tran 2008 Storm-water Bayesian inference; 

Pipes MCMC Simulation 
Performance 
Rate 
Chi-Square Test 
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1STR=Structural; 2M-H=Metropolis-Hastings; 3Max.=Maximum; 4SERV=Serviceability; 

5MCMC= Markov chain Monte Carlo; 6HYDR=Hydraulic; 7FNR=False Negative Rate; 

8FCR=Fraction Correction Rate; * = N/A. 



CHAPTER 3 

DEVELOPMENT OF CULVERT 
RATING METHODOLOGY 

Utilizing a culvert rating methodology is crucial for building the prioritization list 

in condition assessment (current information) and estimating the service life of culverts 

(future deterioration information). In this chapter, Section 3.1 summarizes rating systems 

in the U.S.; Section 3.2 includes culvert inventory datasets acquired from DOTs based on 

official requests; Section 3.3 explores AHP based on expert opinion survey to establish 

rating methodology for datasets from Oregon DOT; and Section 3.4 describes the rating 

methodologies based on overall rating opinion and structural rating opinion. 

3.1 Culvert Rating Systems in U.S. 

In the U.S., there are different types of rating systems to evaluate the performance 

of culverts, but no universally accepted one is available. Based on a literature search, 

rating systems used in the U.S. were identified. 

The Culvert Inspection Manual describes how to rate a culvert based on severity 

of defects (Arnoult, 1986). The Recording and Coding Guide for Structure Inventory and 

Appraisal of the Nation's Bridges (FHWA, 1995) applied inspection and ratings 

developed in 1986 and added item No. 62 to evaluate the settlement, joints and structural 

condition and other aspects of the culvert structure. For metal culverts, Kurdziel (1988) 
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developed a 10-scale condition rating system ranging from failure condition to excellent 

condition. 

The Pennsylvania DOT established a culvert rating system based on physical 

condition, structural condition, flow condition and roadway deflection, in which the 

physical condition was selected for the overall condition score expressed as a single digit. 

The California DOT developed a rating system for metal culvert barrels which is 

compatible with inventory datasets; rating factors include the waterway adequacy, shape, 

seams, joints and culvert material which were standardized in comparison charts. 

The Oregon DOT developed a systemic culvert rating dataset including twenty-

three factors. Measurement of each of the factors range from good to no rating, but no 

overall condition rating method was yet developed. 

The Minnesota DOT evaluated structural condition of culverts based on the 

Hydlnfra management system, and the overall score ranges from 0 to 4. Yes/No are the 

only parameters used during rating in an effort to minimize human error. 

The Ohio DOT's rating system has 16 factors which are evaluated from nine to 

zero ranging from excellent to fail. Cahoon (2002) proposed a rating system that includes 

nine factors which are selected from 33 parameters found to be statistically significant for 

the final rating. The Ohio Research Institute for Transportation and the Environment 

(ORITE) developed a new rating system for culverts based on a survey; the overall score 

was computed by adding scores of selected items (Mitchell et al, 2005). 

The literature review provides the general background of rating systems in the 

United States. To investigate details of rating systems, culvert inventory datasets are 

needed which will be introduced in Section 3.2. 
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3.2 Culvert Inventory Data Collection 

Data requests were sent to 28 agencies including the FHWA and the state DOTs, 

of which 12 agencies provided datasets. A sample of the inventory dataset request was 

presented in Appendix A. Acceptable formats of the inventory dataset includes, but are 

not limited to, DVD, CD, printout hardcopy and electronic files. Table 3.1 shows the 

agencies that provided the culvert inventory dataset and the corresponding formats. 

Table 3.1 Agencies Providing Inventory Datasets 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Agencies 

FHWA 

California 

Colorado 

New York 

North Carolina 

Ohio 

Oregon 

Utah 

Vermont 

Wisconsin 

Shelby County 

Maryland 

Formats 

Online Database 

Electronic File (Email) 

Electronic File (Email) 

Electronic File (Email) 

Electronic File (Email) 

Electronic File (Email) 

Electronic File, FTP & DVD 

DVD (Photos & Reports) 

Electronic File (Email) 

Electronic File (Email) 

Electronic File (Email) & CD 

Printout Copies (Mail) 

Based on the datasets acquired, comparisons in terms of the number of culvert 

datasets, the number of rating factors and the number of description factors among 

transportation agencies were made. The aim of the comparison is to identify the objective 

for this research work; basic facts of datasets collected are given in Table 3.2. 
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Table 3.2 General Information of Data Acquired 

Agency 

Oregon DOT 

MNDOT 

Caltrans 

Ohio DOT 

Utah DOT 

NCDOT 

NYSDOT 

Shelby County 

WIDOT 

Colorado DOT 

Culvert Datasets 

758 

16,237 

53,797 

9313 

47.059 

5,042 

11357 

198 

3662 

84552 

Rating Factors 

23 

18 

7 

15 

16 

14 

66 

21 

NA 

NA 

Description Factors1 

15 

18 

10 

34 

26 

18 

41 

82 

22 

NA 

1 Factors used for recording basic information of culvert, such as culvert ID, span, etc. 

2 National Bridge Inventory (NBI) datasets. 

The Maryland DOT provided a sample of the inspection report; Utah DOT 

provided photos and reports of a finished project which is about the condition assessment 

of highway culverts. Shelby County provided not only the culvert inspection datasets, but 

also the software of Culvert Management System (CMS). The decision making for the 

preferred research objective was made based on following aspects: 

• The completeness of datasets and data format. 

• The number of rating factors. 
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• The number of datasets provided. 

• The benefit of this research to the transportation agency. 

• The year of system was developed. 

• Rating scale of culverts. 

After the preliminary screening, further comparison for rating factors was made 

among four DOTs, namely Oregon DOT, Ohio DOT, North Carolina DOT and Caltrans. 

Since there is no available standard to compare rating systems of culverts, the criteria 

should be carefully established. For a more precise comparison, the rating factors were 

divided into two groups, namely structural integrity and waterway condition. Normally, 

there are more factors to describe the structural aspect which can be further expanded to 

three categories called "barrel," "inlet and outlet structural," and the "roadway." Table 

3.3 shows the comparison of rating factors made among the four rating systems. 

Table 3.3 Comparison of Rating Factors among Four DOTs 

Category Oregon DOT 

Factors for Structural Integrity 

Barrel 

Inlet/Outlet 
Structures 

Misalignment 

Abrasion 
Gen Brrl Damage 
Cracking 
Invert Dam 

Open Joints 

Out of Round 
Settlement 
Piping 
Drift 
Vegetation 
Embankment 
Popouts 

Ohio DOT 

Culvert 
Alignment 
Slab 
Abutment 
Protection 
General 

Seams or Joints 

Shape 

Embankment 

Caltrans 

Alignment 

Material 
Seams and joints 
Shape 
Piping 

Embankment 

North Carolina 
DOT 

Sufficiency 
Rating 
Remaining Life 
Pipe Condition 
Top Slab 
Bottom Slab 
Structure 
Alignment 

Wingwalls 
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Embankment 
Seeps 
Embankment 
Erosion 
Inlet Embankment 
Protection 
Outlet 
Embankment 
Protection 

End Structure 

Headwalls 

Flared End 
Section 

Headwall 

Roads 
Pavement 
Cracking 
Roadway Sag 
Guardrail Dip 

Pavement 

Guardrail 

Roadway 

Headwalls 

EXT & INT 
Walls 

Roadway 
Condition 

Factors for Water Way/Chanel 
Inlet Channel 
Scour 
Outlet Channel 
Scour 
Steambank 
Erosion 

Blockage 

Water Way 

Channel 

Scour 

Waterway 
Blockage 

Waterway 
adequacy 
Streambed 
Scour 

Waterway 

Channel 
Alignment 

Scour 

BC1 Drain 
Systems 

Box Culvert. 

Based on Table 3.3, the rating system from the Oregon DOT was selected to be 

the research objective since it has relatively more rating factors and meets more aspects 

of the selecting criteria. It is difficult to apply datasets to compare four rating systems; the 

decision about selecting the datasets from Oregon DOT is based on previous experience. 

The rating system of the Oregon DOT consists of 23 factors, and the rating scale 

is from 0 to 4, a typical scale used by many DOTs. In this rating system, 4 indicates the 

best, 3 means fair, 2 means poor, 1 denotes worst and 0 means no rating. Currently, the 

Oregon DOT does not have an approach to compute the overall scores for each culvert, 

but definitions and ratings for 23 factors are well developed. The objective of Section 3.3 

is to develop an algorithm to compute the overall score for culvert inventory datasets. 
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The following work, including the development of a culvert rating methodology 

and deterioration rate prediction, is based on the culvert inventory datasets provided by 

the Oregon DOT. 

3.3 Analytic Hierarchy Process (AHP'l Based on 
Expert Opinions 

The Analytical Hierarchy Process (AHP) based on an expert opinion survey is 

used to establish weights of each factor. AHP is an algorithmic procedure wherein both 

data and experience play equally important roles. In this research, AHP used a three-level 

hierarchy-based model that reflects the goals and concerns of the decision-maker. The 

hierarchy was arranged in a descending order from the overall focus to the criteria, sub 

criteria, and alternatives. The hierarchy was then systematically evaluated using pairwise 

comparison of various criteria, matrix manipulation and eigenvalue computations, to 

obtain a final score for each alternative. AHP provided a systematic methodology to 

organize tangible and intangible factors and provided a structured, yet relatively simple, 

analysis algorithm to the decision-making problem (Yang and Allouche, 2010). 

Based on characteristics of the factors, level 1 of AHP consisted of two parts: the 

culvert structural integrity and the water way. The structural integrity category included 

three parts as level 2, namely Barrel, Embankment and Roadway. No level 2 was 

assigned for water way since there are only 3 factors. Level 3 was formed by 23 factors 

from the inventory datasets. Figure 3.1 shows the structure of AHP including 

abbreviations for each factor. 
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Culvert Condition Rating 

Culvert Structural Integrity S1 

- Abrasion A3 

- Cracking C3 

Barrel B2 Embankment E2 

Misalignment M3 

Gen Brrl Damage 
GBD3 - Emb Seeps ES3 

Invert Dam 13 

Open Joints OJ3 

- Out of Round OR3 

Settlement S3 

Emb Popouts EP3 

Emb Erosion EE3 

Inlet Emb 
Protection IEP3 

Outlet Emb 
Protection OEP3 

Piping P3 

Drift D3 

Vegetation V3 

- Blockage B3 

Waterway/ Channel Condition W1 

Roadway R2 

Pavement 
Cracking PC3 

Roadway Sag 
RS3 

Guardrail Dip 
GD3 

Inlet Channel Scour 
ICS3 

Outlet Channel Scour 
OCS3 

Streambank Erosion 
SE3 

Figure 3.1 AHP for Culvert Rating Methodology 

Table 3.4 shows the definitions of rating factors for the AHP, in which the rating 

scores range from 0 to 4 depending on the actual conditions of culverts when performing 

inspections. 

Table 3.4 Definition of Rating Factors in AHP Structure (Oregon DOT 2010) 

Title 

Abrasion Rating 

Definition 

Wearing or grinding of the barrel material due to the sediment 
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Blockage Rating 

Channel Scour -

Inlet 

Channel Scour -

Outlet 

Cracking Rating 

Drift Rating 

Embankment 

Protection - Inlet 

Embankment 

Protection - Outlet 

Erosion Rating 

General Damage 

Rating 

Guardrail Dip 

Rating 

Invert Damage 

Open Joints Rating 

Out of Round 

Rating 

Pavement 

Crack/Patch 

Rating 

Piping Damage 

Rating 

Popouts Rating 

or debris working against the barrel. 

Rating value of the blockage inside the structure. 

Has the channel been deepened by scour at the inlet. 

Has the channel been deepened by scour at the outlet. 

Inspection rating of the impact of cracking on the structure. 

Debris that drifts on or near the water surface that passes 

though the culvert. 

Condition of the bank protection in place at the inlet of the 

culvert. 

Condition of the bank protection in place at the outlet of the 

culvert. 

Rating value given to the impact of embankment erosion. 

Rating value of the barrel/structure for general damage. 

Rating value for deformation of guardrails. 

Rating value of damage to the invert. Bottom portion of the 

culvert/structure. 

Ratings value of open joints. 

Percentage rating of deformity to the barrel of the culvert from 

its original geometry. 

Cracks or patches observed in the pavement. 

Rating the condition of fill material removed by seepage along 

a culvert barrel, forming a void adjacent to the culvert. 

Rating value of the impact of noticeable outward/downward 

displacements of parts of the embankment. 
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Roadway Sag 

Rating 

Seeps Rating 

Settlement Rating 

Vegetation 

Obstruction Rating 

Rating value of roadway deviation from its original grade. 

Inspection rating value given to the impact of any seeps in the 

embankment. 

Rating value of embankment settlement. 

Rating value for vegetation obstructing the inlet or outlet. 

A survey form aiming to identify weights of each factor was sent to DOTs (see 

Appendix B). The general response rate was 41%. Respondents are professional 

engineers who have experience with culvert inspection and management. Table 3.5 

shows responses from the survey. 

Table 3.5 Responses from Survey 

Response 14 

No Response 18 

Declined 2 

3.4 Culvert Rating Methodology 

Based on the questionnaires, the pairwise computation was applied to process the 

received data, weights of each factor in AHP is shown in Table 3.6. The overall rating 

represents opinions for weights of 23 factors while the structural rating only focuses on 

20 factors, excluding the 3 factors from the water way condition. The structural rating 

only focuses on structural factors, which was easily achieved by simply setting the weight 

of the structural rating as 100%. Table 3.6 presents the definitions of factors for the 

culvert rating system, and it also lists weights of each factor in the AHP in terms of the 
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overall rating methodology and the structural rating methodology. Table 3.6 provides two 

ways to rate a culvert; the overall rating represents the condition of the culvert based on 

all 23 factors, while the structural rating shows the condition of the culvert based on 20 

factors which focuses on structural aspects. The survey report is included in Appendix C. 

Table 3.6 Definition of Factors for Culvert Rating System and Weight of Factors in AHP 

AHP Levels 

Sample Size 
Level 1 

Level 2 

Level 3 

Factors 

SI 
Wl 
Total 
B2 
E2 
R2 
Total 
M3 
A3 
GBD3 
C3 
13 
OJ3 
OR3 
S3 
P3 
D3 
V3 
B3 
Total 
EP3 
ES3 
EE3 
IEP3 

OEP3 

Total 

Definition 

Culvert Structural Integrity 
Water Way Condition 

Barrel 
Embankment 
Roadway 

Misalignment 
Abrasion 
Gen Barrel Damage 
Cracking 
Invert Damage 
Open Joints 
Out of Round 
Settlement 
Piping 
Drift 
Vegetation 
Blockage 

Embankment Pop-outs 
Embankment Seeps 
Embankment Erosion 
Inlet Embankment Protection 
Outlet Embankment 
protection 

Overall 

14 
56.79% 
43.21% 
100% 
23.19% 
15.61% 
17.99% 
56.79%=S1 
1.73% 
1.36% 
1.85% 
2.04% 
2.05% 
2.27% 
1.77% 
2.42% 
2.79% 
1.44% 
1.22% 
2.25% 
23.19%=B2 
2.53% 
2.84% 
3.17% 
3.38% 

3.68% 

15.61%=E2 

Structural 

14 
100% 
0% 

40.83% 
27.48% 
31.68% 
100.00%=S1 
3.05% 
2.39% 
3.25% 
3.60% 
3.61% 
4.00% 
3.12% 
4.26% 
4.90% 
2.53% 
2.16% 
3.97% 
40.83%=B2 
4.45% 
5.01% 
5.59% 
5.95% 

6.49% 

27.48%=E2 
PC3 Pavement Cracking 3.54% 6.24% 
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RS3 
GD3 
Total 
ICS3 
OCS3 
SBE3 

Total 

Roadway Sag 
Guardrail Dip 

Inlet Channel Scour 
Outlet Channel Scour 
Stream Bank Erosion 

7.34% 12.93% 
7.11% 12.52% 
17.99%=R2 31.68%=R2 
14.88% 0 
15.50% 0 
12.83% 0 

43.21%=W1 0%=W1 

Eq. 3.1 shows the algorithm for the computation of overall scores of culverts 

based on the overall rating, 

Condition Score for General Rating = (0.0173 x M 3 + 0.0136 x A3 + 0.0185 X GBD3 + 

0.0204 x C3 + 0.0205 x 73 + 0.0227 x 0/3 + 0.0177 x 0R3 + 0.0242 x 53 + 0.0279 x 

P3 + 0.0144 x D3 + 0.0122 x V3 + 0.0225 x B3) + (0.0253 x EP3 + 0.0284 x ES3 + 

0.0317 x EE3 + 0.0338 x 7EP3 + 0.0368 x OEP3) + (0.0354 x PC3 + 0.0734 x RS3 + 

0.0711 X GD3) + (0.1488 X 7C53 + 0.1550 X OCS3 + 0.1283 X SBE3). 

(3.1) 

Eq. 3.2 shows the algorithm for the computation of overall scores of culverts 

based on the structural rating, 

Condition Score for Structural Rating = (0.0305 x M3 + 0.014 x A3 + 0.0239 x 

GBD3 + 0.0360 x C3 + 0.0361 x 73 + 0.040 X OJ3 + 0.0312 X OR3 + 0.0426 x 53 + 

0.0490 x P3 + 0.0253 x D3 + 0.0216 x V3 + 0.0397 x B3) + (0.0445 x EP3 + 0.0501 x 

E53 + 0.0559 x EE3 + 0.0595 x 7EP3 + 0.0649 x OEP3) + (0.0624 x PC3 + 0.0734 x 

R53 + 0.0711 x GD3). (3.2) 

The datasets are in the format of a Microsoft® Excel file; thus, the above two 

equations can be easily added as two extra columns into original files. Overall scores, 

computed from the Eq. 3.1 and the Eq. 3.2, include one decimal, which have to be 

converted to the scale currently used by the Oregon DOT that ranges from zero to four. 
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Table 3.7 shows the conversion chart for the overall scores that are computed by Eq. 3.1 

and Eq. 3.2. In this chart, the condition four includes the culverts scored from 3.5 to 4.0, 

which is a conservative approach to guarantee the safety of the culvert asset. The 

condition one has a wider range, from 0.1 to 1.4, which aims to address more culverts in 

severe conditions. 

Table 3.7 Rating Score Conversion Chart 

Conditions Description Range 

Good 

Fair 

Poor 

Critical 

No Rating 

From 

3.5 

2.5 

1.5 

0.1 

0 

To 

4.0 

3.4 

2.4 

1.4 

0 

When computing the overall scores of culverts, there are factors showing no 

rating, which means the inspection score of this factor is zero. The existence of factors 

having no rating has a significant influence to the overall score. There are two opinions 

regarding this issue at the time of developing this rating system. The first opinion is that 

including an unrated factor score may create a false score; another opinion is that 

assuming zero in lack of an assigned value results in a conservative overall score. 

In this research, the Oregon DOT suggested employing the second opinion, in 

which all factors in datasets rated as zero will be applied for the overall score 

computation. The reasons explained by the Oregon DOT use real cases. For example, due 

to the high flow or if the barrel is backwatered, especially in coastal environments, the 

invert and other barrel field cannot be rated which will be assumed as a worst case 
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scenario to issue a score zero. In turn, the project team, dive team, or maintenance can go 

back out in better conditions and more accurately rate the barrel fields. There is an 

exception for factor guardrail. If there was no guardrail, zero was issued when 

inspections were performed since four may be misleading to indicate the existence of 

culvert. In this research, guardrails rated as zero, were suggested to adjust to four by the 

Oregon DOT, which would give a better representative picture of the condition of the 

culvert. 



CHAPTER 4 

DEVELOPMENT OF MARKOV MODEL FOR 
CULVERT DETERIORATION PREDICTION 

Deterioration prediction for culvert structures utilizing the Markov model aims to 

provide reliable future information to optimize decision making so as to maximize the 

service life of culvert assets. Section 4.1 gives the basic theory of the deterioration 

prediction for culverts using the Markov model. Section 4.2 analyzes the data source 

applied for the deterioration prediction. Section 4.3 discusses the model calibration 

technique utilizing the MHA. Section 4.4 presents the programming and running for the 

model calibration and the service life estimation. Section 4.5 includes the model 

validation performed by a Pearson's chi-square test. Section 4.6 describes the field 

calibration method which is based on inspection photos. 

4.1 Markov Model in Deterioration 
Prediction for Culverts 

The Markov model has been introduced in Section 2.3.1.1, and its calibration 

method, the MHA, is presented in Section 4.3. To apply the Markov model to the culvert 

deterioration problem, it is necessary to adjust the parameters based on characteristics of 

datasets. Parameters of the Markov model include the size of the transition matrbc, 

homogenous or non-homogenous, and the time interval which is based on the developed 

rating methodology in Chapter 3. 
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The Markov model, also called the Markov chain, is a stochastic process that in a 

space which consists of a sequence of discrete random variables, [xQ, Xv X2i . . .}, at 

each time when t > 0, the next state Xt+1 depends only on the current state Xt. This 

statement means Xt+1 does not depend on the history states {X0, Xt,..., Xt_x } (Gilks, 

1996). In this study, since the culvert rating has 4 states, which are 4 (good), 3 (fair), 2 

(poor) and 1 (critical), so the transition matrix for Xt is a four by four matrix P, see Eq. 

4.1, which shows the probability of changing state within one year (Micevski, 2002), 

P = 

P44 P43 P42 P41 

0 P33 P32 P31 
0 0 p22 p2i 
0 0 0 p n 

(4.1) 

where Pj;=the transition probability from the state i to the state j over a time interval, 

which in this research, was assumed to be one year. 

For example, p43 denotes the probability that the culvert moves from condition 4 

(good) to condition 3 (fair) in 1 year. For i < j , ptj = 0, means the culvert cannot change 

from one condition to another condition that is better than before without maintenance. 

For example, p14 denotes the probability is 0 for the culvert to move from condition 1 

(critical) to 4 (good), which matches with engineering experience. 

Given the transition matrix from the Markov model, the condition of a culvert 

after t years can be obtained by Eq. 4.2, the Chapman-Kolmogorov formula, 

Cl = $ • ( P y ) \ (4.2) 

where Ck=the probability of a culvert in state k at year t; C°k =the initial state of I; P;;-=the 

transitional probability; /c=condition states of culvert ranging from 1 to 4. Eq. 4.2 can be 

expanded to Eq. 4.3 as following, 



[cl 4 4 ci] = [c° c° C° C°] 

P44 P43 P42 P41 

0 P33 P32 P31 

0 0 p22 p21 

0 0 0 p u 

53 

(4.3) 

where: Cf = [cl c3 c\ c[] =the probability distribution of four conditions to the 

culvert at year t; C° — [c° c3 c2 c°] =initial state of culvert, of which C° = 

[ 1 0 0 0] in this study. 

4.2 Data Source 

The datasets are acquired from culvert inventory datasets developed and managed 

by the Oregon DOT. The datasets were input when performing field inspection; Table 4.1 

gives the background information of inventory datasets for this research. 

Table 4.1 Data Source 

Road ID 

Hwy 053 
(U.S. 26) 
Hwy 009 
(U.S. 101) 
Hwy 045 
(OR 38) 

Culverts 
Number 

216 

108 

434 

Built 
Years 

1935 

1930 

1931 

Inspection Years 

June 2007 

May 2009 

April 2009 

Geography 

Hood River/Wasco County 
(North Central Oregon) 
Clatsop County 
(Northwestern Oregon) 

Douglass County 
(Southwestern Oregon) 

The term "highway" followed by the three digit index is a designation that is only 

used internally by the Oregon Department of Transportation. The State highway index 

number is used to identify State highways and set the mile posts along the highway 

system. The highway index number is different than the signs and routes along the 

highway and those listed on the Oregon official state highway map. 
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Warms Springs Highway 053 makes up a segment of U.S. 26. The Highway 

begins at mile point 57.45; datasets include 63 to 86 that travel off the east slope of the 

Cascade Mountain Range which has a lot of snow and rain. Mile point 86 to 113 are 

within the high desert with an annual rainfall average around 12 to 16 inches. For the 

Highway 053, a major realignment of this highway took place in the 1940s. Highway 053 

between Mt. Hood and Madras has not seen many changes recently. No construction 

plans before the reconstructions were found, so the built year was estimated as 1920s to 

1930s. Figure 4.1 shows the sections of Highway 053 in the datasets. 

Figure 4.1 Section of Hwy 053 Shown from Points A to B (Google Map) 

Oregon Coast Highway 009 (U.S. 101) is a highway that runs adjacent to the 

Pacific Ocean along the entire Oregon coast; datasets include the sections basically from 

the City of Astoria/Warrenton, south to just past the town of Cannon Beach. Mile points 

start north and increase to the south. Highway 009 has gone through many changes, as 
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most of the highway was built in the 1930s. Figure 4.2 shows the sections of Highway 

009 in the datasets. 

Figure 4.2 Section of Hwy 009 Shown from Points A to B (Google Map) 

The Umpqua Highway 045 (OR 38) was built in the 1930s of which datasets 

include the section from Reedsport on the coast to Interstate 5. The mile points start at the 

coast and increase heading east. A portion of Highway 045 is located near the Pacific 

Coast and the tidal estuaries. Culverts located along this section are influenced from the 

salt environment and water, which are up to mile point 10. The remaining section of 

Highway 045 travels through the coastal mountains to Interstate 5. Figure 4.3 shows the 

sections of highway 045 in the datasets. 
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Figure 4.3 Section of Hwy 045 Shown from Points A to B (Google Map) 

Since no information about the year the culverts were built was available in the 

culvert inventory datasets, three assumptions to infer ages of culverts were made. The 

estimation of age information was based on construction plans of highways which 

include the rehabilitation and replacement of culverts dating back to 1930s. The first 

assumption was that when the construction of the highway was initiated, the culvert was 

considered as a new culvert with an age of zero. 

Secondly, if renewal actions were initiated on whole road sections, the previous 

ending conditions of culverts will be considered as condition 2. Finally, the percentage of 

culverts at condition 4 in the datasets was considered to be high following 60 years of 

service, which necessitate reduction to match engineering experience. 

Based on these three assumptions, Table 4.2 shows the processed datasets for the 

overall rating methodology, and Table 4.3 shows the processed datasets for the structural 

rating methodology. 
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Table 4.2 Datasets (Overall) Table 4.3 Datasets (Structural) 

Age 

7 

8 

10 

18 

19 

32 

33 

34 

37 

41 

50 

59 

60 

62 

72 

78 

79 

Subtotal 

Culvert Condition 

4 

2 

53 

6 

11 

11 

1 

0 

1 

1 

0 

1 

0 

2 

0 

3 

1 

1 

94 

3 

7 

1 

21 

0 

19 

2 

2 

0 

10 

0 

3 

0 

19 

1 

0 

2 

2 

89 

2 

0 

0 

1 

0 

1 

0 

0 

0 

0 

10 

0 

54 

0 

0 

0 

8 

0 

74 

Total 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

2 

259 

Age 

7 

8 

10 

18 

19 

32 

33 

34 

37 

41 

50 

59 

60 

62 

72 

78 

79 

Subtotal 

Culvert Condition 

4 

8 

54 

17 

11 

17 

1 

2 

1 

8 

0 

3 

0 

2 

0 

3 

1 

1 

129 

3 

1 

0 

10 

0 

14 

2 

0 

0 

3 

0 

1 

0 

12 

1 

0 

16 

2 

62 

2 

0 

0 

1 

0 

0 

0 

0 

0 

0 

10 

0 

54 

0 

0 

0 

1 

0 

66 

Total 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

2 

259 

The datasets were randomly split into two parts, 80% for the calibration and 20% 

for the validation. Model calibration is discussed in Section 4.3, and model validation is 

presented in Section 4.5. 

Table 4.4 shows calibration datasets for the overall rating; Table 4.5 shows 

calibration datasets for the structural rating. 
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Table 4.4 Calibration Datasets (Overall) Table 4.5 Calibration Datasets (Structural) 

Age 

8 

10 

19 

59 

60 

72 

78 

79 

Subtotal 

Culvert Condition 

4 

54 

17 

17 

0 

2 

3 

1 

1 

95 

3 

0 

10 

14 

0 

12 

0 

16 

2 

54 

2 

0 

1 

0 

54 

0 

0 

1 

0 

56 

Total 

1 

0 

0 

0 

0 

0 

0 

2 

0 

2 

207 

Age 

8 

10 

19 

59 

60 

72 

78 

79 

Subtotal 

Culvert Condition 

4 

53 

6 

11 

0 

2 

3 

1 

1 

77 

3 

1 

21 

19 

0 

19 

0 

2 

2 

64 

2 

0 

1 

1 

54 

0 

0 

8 

0 

64 

Total 

1 

0 

0 

0 

0 

0 

0 

2 

0 

2 

207 

Table 4.6 shows validation datasets for the overall rating; Table 4.7 shows 

validation datasets for the structural rating. 



Table 4.6 Validation Datasets (Overall) Table 4.7 Validation Datasets (Structural) 

Age 

7 

18 

32 

33 

34 

37 

41 

50 

62 

Subtotal 

Culvert Condition 

4 

8 

11 

1 

2 

1 

8 

0 

3 

0 

34 

3 

1 

0 

2 

0 

0 

3 

0 

1 

1 

8 

2 

0 

0 

0 

0 

0 

0 

10 

0 

0 

10 

Total 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

52 

Age 

7 

18 

32 

33 

34 

37 

41 

50 

62 

Subtotal 

Culvert Condition 

4 

2 

11 

1 

0 

1 

1 

0 

1 

0 

17 

3 

7 

0 

2 

2 

0 

10 

0 

3 

1 

25 

2 

0 

0 

0 

0 

0 

0 

10 

0 

0 

10 

Total 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

52 
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4.3 Model Calibration Technique 

Model calibration is used to infer the transition matrbc P for the Markov model, 

which is performed by the Markov chain Monte Carlo (MCMC) method. The theoretical 

support of the Bayesian inference is needed for the MCMC, see Eq. 4.4, 

P(f l |D)s32j2p, (4.4) 

where: 0=unknown parameters; D=observed fact; P(0|D)= the posterior distribution of 9; 

P{D|0)=the likelihood to observe D based on the known 9 provided by the sampling; 

P(0)=the prior knowledge about 9; P(D)=constant value. 

Next, Eq. 4.4 was applied to the deterioration prediction problem for culverts 

which utilizes the Markov model. Then P(9\D) is the posterior distribution of the 

transition matrix P; P(D\9) is the likelihood to observe culvert conditions, given P from 

the sampling algorithm. The objective of the Bayesian inference is to evaluate the 

P(0|D) based on the prior distribution of 9 and the observed fact, D. In theory, the 

posterior expectation is possible to be evaluated by generating samples from posterior 

distribution n utilizing Monte Carlo integration, which can approximate to a very 

accurate result by increasing the sample size. Normally, it is impossible since there is no 

standard expression for n, but drawing samples from a process that is proportional to n is 

feasible, if this process is performed through the Markov chain which has a stationary 

distribution that is equal to n, then it is called Markov chain Monte Carlo (Gilks, 1996). 

In this study, the MHA, a member of MCMC methods, was selected to construct a 

Markov chain that has the expected posterior distribution as its stationary distribution. 

The theory of MHA was used to generate the candidate (transition matrbc) based on a 
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fixed sampling algorithm. The qualified candidates will pass the testing and the chain 

keeps moving to the optimum point, where the chain converges. 

The candidate point Xt+1 is generated by the proposed symmetric distribution q, a 

multivariate normal distribution, and the variance-covariance matrix £. Comparing the 

random variable U that is uniformly sampled from (0, 1) with a (see Eq. 4.5), if U < 

a(Xt,Xt+1), the proposed X,+i is accepted, and the chain moves; or it will be rejected, 

and the chain stays at current point. The MHA runs a large number until the chain 

converges to the stationary based on the optimum setting of the proposed distribution q 

and the£. Since q is a symmetric distribution, so q(Xt\Xt+1) = q(Xt+1\Xt), Eq. 4.5 can 

be simplified to Eq. 4.6. For Eq. 4.7, derived from Eq. 4.4, n0 is fixed, so IT is 

TrfY ^ / fY \ 

proportional to L, therefore t+* can be easily obtained by computing " r , 

a(Xt.Xt+1) - mm ( ^ - ^ — — - j , (4.5) 

a(Xt.Xt+1)=min(l.^f), (4.6) 

n(9\D) oc L(£>|0) x rro(0), (4.7) 

where 7r(0|D) =the posterior distribution of P; 7r(0|D) =the likelihood function; 

n0(8)=the prior distribution of P. The likelihood function is presented in Eq. 4.8; for the 

convenience of programming, the logarithm format is applied, see Eq. 4.9, 

uD\e) = num=i(ct
krK (4.8) 

log[L(D\9)] ^TLUYUiMt-logm), (4.9) 

where: t=culvert age (years); T=the largest age of culvert from inspection datasets; fc=the 

conditions of culvert; Af£=the number of culvert in the condition k at the year t; C£=the 

probability in the condition k at year t calculated by the C-K formula. 
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If the £ is too large, the acceptance rate will decrease and the chain is hard to 

converge to the stationary. If the E is too small, the acceptance rate will increase but the 

chain converges slowly. The common rule to pick the optimum £ is that the acceptance 

rate of the algorithm should be close to 0.234 (Roberts, 2001). 

4.4 Programming and Calibration 

The MATLAB® R2007b software was selected to program the model calibration 

based on the MHA. The codes are presented in Appendix D. The program was run 5,000 

times to make sure Markov chain converged to the stationary. Accepted iterations 

completed at final 1,500 running were used for calculating the average value of P. 

The variance-covariance matrix is critical for the convergence of the Markov 

model, which affects the acceptance rate; trial running has to be performed to make sure 

the acceptance rate can be close to the optimum value of 0.234. Table 4.8 shows the 

variance-covariance matrixes for the model calibration. Table 4.9 shows the final 

acceptance rates for the MHA based on two rating methodologies, which are 0.234 for 

the overall rating and 0.235 for the structural rating. 

Table 4.8 Variance-covariance Matrices for Model Calibration 

Overall Rating 

0.45 
0.00 
0.00 
0.00 

0.00 
0.30 
0.00 
0.00 

0.00 
0.00 
0.35 
0.00 

0.00 
0.00 
0.00 
0.3 

Structural Rating 

0.42 
0.00 
0.00 
0.00 

0.00 
0.31 
0.00 
0.00 

0.00 
0.00 
0.25 
0.00 

0.00 
0.00 
0.00 
0.30 

Table 4.9 Acceptance Rates for MHA 

Rating Methodology Total Running Accepted Iteration Acceptance Rate 
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Overall Rating 5000 1170 0.234 

Structural Rating 5000 1175 0.235 

To monitor the MHA running and the convergence of the Markov model, the 

norm of the matrix was introduced. The norm of matrix is a scalar which describes the 

magnitude of the elements in the matrix. Norm in MATLAB® has different types. In this 

study, the maximum value of the singular value decomposition (SVD) was returned as 

the norm value. 

The norm of transitional matrbc indicates the magnitude of acceptance, P; the 

norm of (Pnew — Pold) indicates the magnitude changes of the adjacent P. If the Markov 

chain converges well, the norm of transitional matrbc should be stable and norm of 

(Pnew ~ Poid) will he close to 0. Figure 4.4 demonstrates the norm of P for overall rating 

datasets; Figure 4.5 demonstrates the norm of (Pnew — P0id) for overall rating datasets. 

Figure 4.4 Norm of Transition Matrices for Overall Rating 



Figure 4.5 Norm Error for Transition Matrices for Overall Rating 

Figure 4.6 demonstrates norm of P for the structural rating; Figure 4.7 

demonstrates norm of (Pnew — PoW) for the structural rating. 

Figure 4.6 Norm of Transition Matrices for Structural Rating 

Figure 4.7 Norm Error for Transition Matrices for Structural Rating 
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Figure 4.4 and Figure 4.6 indicate that the Markov model converged to stationary 

after less than 200 iterations (accepted running).Transitional matrixes computed by the 

MHA are presented in Table 4.10 in terms of the overall rating and the structural rating. 

Table 4.10 Transition Matrices from Calibration Datasets 

Overall Rating 

0.9684 

0.0000 

0.0000 

0.0000 

0.0316 

0.9759 

0.0000 

0.0000 

0.0000 

0.0238 

0.9994 

0.0000 

0.0000 

0.0004 

0.0006 

1.0000 

0.9583 

0.0000 

0.0000 

0.0000 

Structural 

0.0413 

0.9716 

0.0000 

0.0000 

Rating 

0.0003 

0.0284 

0.9995 

0.0000 

0.0001 

0.0000 

0.0005 

1.0000 

By applying transition matrices to the C-K formula, see Eq. 4.3, the deterioration 

trend of culverts at the network level and service life of the culvert at the individual level 

can be achieved. The result of Eq. 4.2, [c| c3 c2 c[], at the network level can be a 

proportion of culverts in condition k at year t. At the individual level, it indicates the 

condition of culvert (group average) at year t. 

For example, for the overall rating at year 19, [c\9 c3
9 c2

9 cl9] = 

[0.5433 0.3614 0.0938 0.0019], which means 54.33% of culverts are in condition 

4 (network level). For an individual level, it means the probability of culvert to stay in 

condition 4 is 54.33%, then this culvert will be recognized as condition 4 since 54.33% is 

the largest value in [c\9 c3
9 cl9 cl9]. Figure 4.8 shows deterioration curves for 

culverts based on overall rating; Figure 4.9 shows deterioration curves for culverts based 

on structural rating. 
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Figure 4.8 Deterioration Curves for Culverts from Overall Rating 
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Figure 4.9 Deterioration Curves for Culverts from Structural Rating 
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The service life estimation is based on applying [c% cj c2 c[] to culverts at 

the individual level, which represents the average service life of the culvert group (see 

Table 4.11). Figure 4.10 and Figure 4.11 are derived based on Table 4.11. 

Table 4.11 Culvert Service Life Prediction 

Culvert Condition 
4 

Good 

3 

Fair 

2 

Poor 

Computed by curve fitting, see Fig. 4.10 and Fig. 4.11 

1 

Critical* 

Overall Rating Methodology (years) 0 28 52 77 

Structure Rating Methodology (years) 0 21 42 63 

Condition 
4 . 5 -

4 < 

3 .5 

3 -

2 .5 -

2 -

1.5 -

1 -

0 .5 • 

0 -

• •?,- . ^ 1 
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Culvert Conditon VS. Age 
(Overall Rating) 

, y=-0.03Sx + 4.029 
^ ^ Ra = 0.996 

f "- ! t ' I 

•Culvert Conditon 

- Linear (Culvert 
Conditon) 

Age (years) 
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Figure 4.10 Service Life Curve for Culvert based on Overall Rating 
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Condition 
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Figure 4.11 Service Life Curve for Culvert based on Structure Rating 

Equations in Figure 4.10 and Figure 4.11 are constructed based on datasets of 

condition 4, 3 and 2, which fit curves for the service life of culverts. Eq. 4.10 and Eq. 

4.11 are obtained by transformation of the regression equations shown in Figure 4.10 and 

Figure 4.11, 

t = -25.5 * CGeneral + 102.83, (4.10) 

where: CGeneral=cu\\ert condition at year t based on overall rating; t=culvert age (years), 

t = - 2 1 * Cstructural + 84, (4.11) 

where: Cstructurai =culvert condition at year t based on structural rating; t=culvert age 

(years). 

4.5 Model Validation by Pearson's Chi-square Test 

Pearson's chi-square test is applied to the validation of datasets, and is capable of 

evaluating goodness-of-fit to the developed model. The 95% confidence level and 

(n — 1) degree of freedom are parameters for testing, in which n means total conditions 

of the culverts. Based on developed rating methodologies, n is 4, so the critical value will 
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be 7.81. If the chi square value, computed from validation dataset, is lower than the 

critical value, the model passes testing. Chi-square value indicates the fitness level 

between the predicted frequency of culvert conditions and the observed frequency of 

culvert conditions. Eq. 4.12 shows the Pearson's x2 statistic, and testing results are listed 

in Table 4.12, 

* 2 =£f = 1 ^p, (4.12) 

where O, means the observed number of culverts in condition i, P, denotes the predicted 

number of culverts in condition /, and / ranges from 4 to 1 indicating the condition of the 

culverts. 

Table 4.12 Pearson's Chi-square Test for Deterioration Prediction Models 

Overall Rating Methodology (Failed) 

Condition Observed 

1 0 

2 10 

3 8 

4 34 

X2 = 12.91 > x' 

Predicted 

1 

10 

19 

22 

Pi 

0.00 

0.00 

6.37 

6.55 

'(0.05,3) — 7-81 

Structura 

Condition 

1 

2 

3 

4 

x2 = 

1 Rating Methodology (Passed) 

Observed 

0 

10 

25 

17 

Predicted ^ ^ 

1 0 

14 1.14 

20 1.25 

18 0.06 

2.45 < *2
(ao5>3) = 7.81 

The Markov model based on overall rating failed the x2 testing, while the model 

based on structural rating passed the test, indicating the latter exhibits better performance 

for the dataset considered in this study. 

For further validation of the model calibration, the datasets were randomly split 

two additional times, with 80% of the data used for calibration and 20% for validation. 

Table 4.13 summarized the characteristics of the datasets used in the three runs. 
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Table 4.13 Data Splitting Based on Structural Rating Methodology 

Culvert 

Ages 

7 

8 

10 

18 

19 

32 

33 

34 

37 

41 

50 

59 

60 

62 

72 

78 

79 

First Splitting' 

Calibration 
80% 

V 
V 

V 

V 
V 

V 
V 
V 

Validation 
20% 

V 

' V 

V 
V ' 
V 
V 
V 
V 

V 

Second Splitting 

Calibration 
80% 

V 
V 
V 
V 

V 

V 

V 
V 
V 

V 

Validation 
20% 

V 

V 
V 

V 

V 
V 

V 

Third Splitting 

Calibration 
80% 

V 
V 

V 
V 

V 
V 
V 
V 
V 
V 

V 
V 
V 
V 

Validation 
20% 

V 

V 

V 

1 Given by Table 4.5 and Table 4.7. 

Model calibration was performed using the program described in Section 4.4. 

Transition matrices, calibrated by the MHA algorithm, for second and third data splits are 

listed in Table 4.14, while the transition matrix for first splitting is presented in Table 

4.10. 

Table 4.14 Transition Matrices for Second and Third Data Splitting 
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Second Splitting 

0.9556 

0.0000 

0.0000 

0.0000 

0.0442 

0.9724 

0.0000 

0.0000 

0.0000 

0.0276 

0.9998 

0.0000 

0.0002 

0.0000 

0.0002 

1.0000 

Third Splitting 

0.9630 

0.0000 

0.0000 

0.0000 

0.0364 

0.9564 

0.0000 

0.0000 

0.0002 

0.0436 

0.9999 

0.0000 

0.0004 

0.0000 

0.0001 

1.0000 

The acceptance rate is 0.262 for the second splitting, 0.264 for the third splitting. 

Deterioration curves for second and third splitting generated based on the transition 

matrices in Table 4.14, are presented in Appendix E. 

Pearson's chi-square test for the second and third splits was performed; and the 

results are summarized in Table 4.15. 

Table 4.15 Pearson's Chi-square Test for Deterioration Prediction Models 

2n< 

Condition 

1 

2 

3 

4 

x2 = 

1 Data Splitting (Passed) 

Observed 

0 

11 

24 

16 

Predicted 

1 

14 

21 

16 

(Ot-Pi) 

Pi 

0.00 

0.64 

0.43 

0.00 

1-07 < X2
(o.o5.3) = 7.81 

3rd Third Data Splitting (Failed; 

Condition 

1 

2 

3 

4 

x2 = 

Observed 

0 

1 

42 

9 

97.74 > xl 

Predicted 

0 

17 

12 

22 

) 

(Oi-Pi) 

Pi 

0 

15.06 

75.00 

7.68 

(0.05,3) _ 7-81 

Table 4.16 summarized the service life prediction for the three data splits for the 

structural rating methodology. 

Table 4.16 Service Life Prediction for the Data Splitting Exercises 
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Culvert Condition 

First Time Data Splitting 

Second Time Data Splitting 

Third Time Data Splitting 

4 (Good) 

0 

0 

0 

3 (Fair) 

21 

19 

30 

2 (Poor) 

42 

42 

30 

1 (Critical)* 

NA 

NA 

NA 

* Curve fitting is not applied this time; Table 4.11 presents the curve fitting method. 

The three randomly data splitting exercises provided a mean to evaluate the 

deterioration rate of culvert structures. If the model passed the Pearson's chi-square test, 

the deterioration rate prediction results were similar. For example, calibration results for 

first and second data splits exhibited consistent results. If the model failed the Pearson's 

chi-square test, the deterioration rate prediction results are unlikely to match real 

engineering experience. Ways to improve the prediction performance of the proposed 

algorithm include increasing the size of the datasets, increasing the accuracy of the 

culvert inspection and choosing a more relined culvert rating methodology. 

The dramatic change of the values of transition matrices that were acquired from 

model calibrations by three times data splits, shows the considered datasets are noisy. If 

the data was consistent, a change in the different data split would not impact the value of 

transition ratio greatly. The Markov model is capable of generating the best matrix that 

matches the deterioration facts (the inspection datasets). Culvert structural deterioration 

rate for a certain region is very stable unless the climate or the traffic load experiences a 

huge change. Noisy level of datasets, which represents the matching degree between 

datasets and culvert structural deterioration rate from real world, is impossible to be 

evaluated so far. However, the engineering experiences and the Pearson's chi-square test 

provide a way to screen the model calibration results, the transition matrices. 
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4.6 Field Calibration 

Field calibration for the culvert rating was performed to evaluate the effectiveness 

of the established rating methodology. Several factors affect the accuracy of the rating 

methodology. 

1. Human factors when performing the rating. After checking photos taken by the 

site engineer, several ratings had to be corrected based on the opinion of the 

professional engineer from the Oregon DOT. For example, Figure 4.12 and Figure 

4.13 show the culvert at mile point 16.93 along OR 58. This culvert pipe is 

concrete with a corrugated metal pipe extension that is very common; the ratings 

of defects of piping and open joints are four. After correction, piping was adjusted 

to two, and open joints was issued three. 

Figure 4.12 Culvert Photo at MP16.93 
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Figure 4.13 Culvert Photo at MP16.93 

2. Inexperienced rating. Figure 4.14 is the view looking into the culvert; defects 

include open joints, settlement and ponding of water. 
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Figure 4.14 Culvert photo at MP 45.57 

Figure 4.15 is the view looking into culvert; defects include major cracking at the 

crown and open joints. Figure 4.16 shows the view of looking into the culvert; defects 

include settlement, open joints and ponding of water. In Figure 4.16, the infiltration can 

be easily neglected by the inspector, which might create voids in the roadway 

embankment during rain events. 
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Figure 4.15 Culvert photo at MP 1.21 
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Figure 4.16 Culvert photo at MP 31.14 
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Figure 4.17 shows severe settlement at the joint while Figure 4.18 shows open 

joints and light-to-moderate joint settlement/ Figure 4.19 shows typical open joints in a 

pre-cast concrete culvert. 
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Figure 4.17 Culvert photo at MP 40.58 
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Figure 4.18 Culvert photo at MP 40.58 
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Figure 4.19 Culvert photo at MP 23.70 



CHAPTER 5 

DISCUSSIONS, CONCLUSIONS 
AND SUGGESTIONS FOR 

FUTURE RESEARCH 

Deterioration prediction for culverts utilizing the Markov model provides future 

information when initiating an asset management aimed at maximizing the benefit of 

investment and the service life of culvert structures. Chapter 5 concludes the dissertation 

with discussion (Section 5.1), conclusion (Section 5.2) and recommendation for future 

research (Section 5.3). 

5.1 Discussions 

The Markov model is a robust way to predict the deterioration rate of culverts, 

synergizing the effectiveness of the renewal plan that based only on the condition 

assessment. Data quality is crucial for the Markov model to provide useful information, 

but the effect is hard to examine. Pearson's x2 statistic is a robust way to evaluate the 

prediction performance of the Markov model in this study. Pearson's x2 testing results 

can be affected by many factors: error from culvert inspection, culvert rating 

methodology, quality and size of inspection datasets. Therefore, the meaning of passing 

the Pearson's x2 testing is only limited to predicting the performance of the Markov 

model that has statistical significance for selected datasets which can only support the 

decision making for the data source region. 

79 
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A culvert rating methodology was developed in this study using the AHP based 

on expert opinions, derived to overall rating and structural rating. It is hard to judge 

which one is better because there is no universally acceptable way to validate results. 

Based on deterioration estimation results, structural rating was found to be more 

conservative than the overall rating. More culverts will be addressed for maintenance and 

replacement actions if the structural rating method is used, which will increase the safety 

of total culvert asset but raise the cost. In addition, the Markov model based on structural 

rating passed the x2 testing, a positive indication for the performance of the culvert asset 

management system. Age data plays a fundamental role in predicting future condition of 

culverts; thus, adding age information to culvert inventory datasets is proposed by the 

author. 

5.2 Conclusions 

1. A method selection process for choosing suitable NDT methods for performing a 

culvert inspection was developed. 

2. A culvert rating methodology using the AHP based on expert opinions from 

DOTs was developed and expressed in mathematical form. 

3. A Markov model for predicting the deterioration rate of culverts at the network 

level and the service life at the individual level was developed based on culvert 

inspection datasets from three highways in the state of Oregon. 

4. The norm of matrix was introduced as an effective way to monitor the running of 

the MHA for the model calibration. 
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5. Model validation was performed via the Pearson's x2 testing; results show that the 

Markov model based on the structural rating methodology passes the test and is 

the recommended procedure for calculating the overall score for culverts. 

6. Datasets were split three times at the ratio of 80%-20% (calibration-validation), 

wide variations of the calibration results for the transition matrices show that the 

datasets exhibit a certain level of noise, which is unable to be evaluated so far. 

5.3 Suggestions for Future Research 

Suggestions for the future work related with this research are presented. 

1. NDT methods as a selection tool for culvert inspection can be expanded to a 

decision making tool to assist engineers to find the optimal solution for a 

particular project. 

2. The culvert rating methodology is based on an expert opinion survey, which 

includes two versions in this work, the overall rating including 23 factors and the 

structural rating including 20 factors. Case studies to evaluate the effectiveness of 

these rating methodologies are critical for further evaluation and validation of 

these approaches. The method to isolate a culvert when a field has a critical rating, 

but the AHP score shows the culvert is performing fair to good (i.e. if invert 

damage and general barrel damage are critical and all other fields are fair to good), 

should be investigated. 

3. Model calibration highly relies on the quality of the datasets; the model can be 

more accurate if more datasets are acquired. Since the Markov model is group 

level based, impact of regional weather conditions for deterioration should be 
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evaluated. The noise level of datasets should be evaluated using appropriate 

methodologies. 
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LOUISIANA TECH 
U N i V F R S I T Y 

To: Mr. Manuel Morales Date: Aug. 18.2009 
Sr. Transportation Engineer 
Culvert Inspection Program Coordinator 
California Department of Transportation 
1120N. Street, MS 31 
Sacramento, CA 95814 

Re; Culverts Inspection/inventory Data Requesting 

Trenchless Technology Center (TTC) is currently undertaking a research project titled 
"Culvert Rehabilitation to Maximize Service Life While Minimizing Direct Costs and 
Traffic Disruption" (Proj. 14-19) on the behalf of the Transportation Research Board 
(TRB). 

The TTC is requesting your assistance in collecting culverts inspection/inventory data 
(including condition rating scores for individual culverts, if available). We will be happy 
to accommodate whatever format the data is available at (e.g., hard copies, pdf, electronic 
database files). The TTC will use the date provided to develop a new methodology for 
asset management of culvert structures. The requested data will be used only in support 
of this research project At no point in time will the TTC share or disclose the 
information to another party, or disclose the source of the data, without a written 
permission from California DOT. 

We would like to thank you in advance for your assistance. 

Sincerely, 

Erez Aitduche, Ph.D., P.E. Chenguang Yang 
Technical Director of Trenchless Center Ph.D. Student in Civil Engineering 
599 W. Arizona Ave. 599 W. Arizona Ave. 
Louisiana Tech University Louisiana Tech University 
Ruston, LA 71272 Ruston, LA 71272 
Phone: 318-257-2852 Phone: 318-257-3091 
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To: Whom it may concern Date: Feb.09. 2010 

Re: Expert Opinion Survey for Condition Rating of Culvert Structures 

The Trenchless Technology Center (TTC) is currently undertaking a research project 

aiming at the development of a rehabilitation design guideline for culvert structures. As 

part of this work, the TTC is looking to develop a new methodology for asset 

management of culvert structures. 

We are requesting your assistance in completing the attached questionnaire. It should 

take approximately 15 minutes to complete this survey. The information provided will be 

used only in support of this research project. All participants will receive a summary 

report describing the findings of the study (names of participants to remain anonymous). 

Please fax the completed questionnaire to 318-257-2777, email a scanned electronic copy 

to cya003@,latech.edu 

OR mail to 

Sandi Perry (to Chenguang Yang) 

599 W Arizona Ave, TTC Office 201 
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Louisiana Tech University 

Ruston, LA 71272 

We would like to thank you in advance for your assistance. 

Sincerely, 

Erez Allouche, Ph.D., P.Eng. Chenguang Yang 

Technical Director, Trenchless Ph.D. Student in Civil Engineering 

Technology Center 

The goal of this survey is to identify the weight of each of the factors in Figure B.l so as 

to calculate an overall score for the culvert's condition using the Analytic Hierarchy 

Process (AHP) based on expert opinions. 

A review of field inspection reports used by various DOTs across the country revealed 

twenty-three factors used to describe deficiencies in culvert structures. The objective of 

this survey is to conduct a pair-wise computation to determining the relative weight of 

each of these factors. The structure of an AHP process is shown in Figure B.l. Table B.l 

provides the definitions of the various rating factors. 
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Analytic Hierarchy Process 
Culvert Condition Rating 

( Level 1 ) 

( Level 3 ) 

Culvert Structural Integrity 

( Level 2 ) Barrel Embankment 

Misalignment 

Abrasion 
— Emb Popouts 

Gen Brrl Damage — Emb Seeps 

Cracking 

Invert Dam 

Open Joints 

Out of Round 

Settlement 

— Emb Erosion 

Inlet Emb 
Protection 

Outlet Emb 
Protection 

Piping 

Drift 

Vegetation 

Blockage 

Water Way / Channel Condition 

Roadway 

Pavement 
Cracking 

— Inlet Channel Scour 

Roadway Sag 

Guardrail Dip 

Outlet Channel Scour 

— Streambank Erosion 

Figure B.l Three Level AHP Structure for Culvert Condition Rating 



Table B.l Definition of Rating Factors in AHP Structure 

Title 

Abrasion Rating 

Blockage Rating 

Channel Scour - Inlet 

Channel Scour - Outlet 

Cracking Rating 

Drift Rating 

Embankment Protection - Inlet 

Embankment Protection - Outlet 

Erosion Rating 

General Damage Rating 

Guardrail Dip Rating 

Invert Damage 

Open Joints Rating 

Out of Round Rating 

Pavement Crack/Patch Rating 

Piping Damage Rating 

Definition 

Wearing or grinding of the barrel material due to sediment or debris working against the 

barrel. 

Rating value of the blockage inside the structure. 

Has the channel been deepened by scour at the inlet. 

Has the channel been deepened by scour at the outlet. 

Inspection rating of the impact of cracking on the structure. 

Debris that drifts on or near the water surface that passes though the culvert. 

Condition of the bank protection in place at the inlet of the culvert. 

Condition of the bank protection in place at the outlet of the culvert. 

Rating value given to the impact of embankment erosion. 

Rating value of the barrel/structure for general damage. 

Rating value for deformation of guardrails. 

Rating value of damage to the invert. Bottom portion of the culvert/structure. 

Ratings value of open joints. 

Percentage rating of deformity to the barrel of the culvert from its original geometry. 

Cracks or patches observed in the pavement. 

Rating the condition of fill material removed by seepage along a culvert barrel, forming a 

void adjacent to the culvert. 

0 0 



Popouts Rating 

Roadway Sag Rating 

Seeps Rating 

Settlement Rating 

Vegetation Obstruction Rating 

Rating value of the impact of noticeable outward/downward displacements of parts of the 

embankment. 

Rating value of roadway deviation from its original grade. 

Inspection rating value given to the impact of any seeps in the embankment. 

Rating value of embankment settlement. 

Rating value for vegetation obstructing the inlet or outlet. 

o 



INSTRUCTIONS: 

To complete the survey, select the level of preference of each factor as compared to the factors listed in the first column of the relevant 

table by circling the right relationship between each pair of parameters. For example, in the first table below, if one were to select 4 

(Equally Important), one is suggesting that "Water Way Condition" is "Equally Important" to "Structural Integrity" in terms 

of the culvert's overall condition rating. 

Example: 

AHP Level 1- Culvert Structural Integrity 

Water Way 
Condition 

Significantly 
Less Important 

1 

Less 
Important 

2 

Somewhat 
Less Important 

3 

Equally Important 

0 
Somewhat 

More Important 

5 

More 
Important 

6 

Significantly 
More Important 

7 



Survey Starts: 

AHP Level 1- Culvert Structural Integrity 

Water Way 

Condition 

Significantly 
Less 

Important 

1 

Less 
Important 

2 

Somewhat 
Less 

Important 

3 

Equally 
Important 

4 

Somewhat 
More 

Important 

5 

More 
Important 

6 

Significantly 
More 
Important 

7 

AHP Level 2 - Barrel 

Embankment 

Roadway 

Significantly 

Less 
Important 

1 

1 

Less 
Important 

2 

2 

Somewhat 

Less 
Important 

3 

3 

Equally 
Important 

4 

4 

Somewhat 

More 
Important 

5 

5 

More 
Important 

6 

6 

Significantly 

More 
Important 

7 

7 

AHP Level 2 - Embankment 

Roadway 

Significantly 
Less 

Important 

1 

Less 
Important 

2 

Somewhat 
Less 

Important 

3 

Equally 
Important 

4 

Somewhat 
More 

Important 

5 

More 
Important 

6 

Significantly 
More 

Important 

7 



AHP Level 3 - Misalignment 

Abrasion 
Gen Brrl 
Damage 
Cracking 

Invert 
Damage 

Open Joints 
Out of Round 

Settlement 
Piping 
Drift 

Vegetation 
Blockage 

Significantly 
Less 

Important 

Less 
Important 

2 

2 

2 

2 

2 
2 
2 
2 
2 
2 
2 

Somewhat 
Less 

Important 
3 

3 

3 

3 

3 
3 
3 
3 
3 
3 
3 

Equally 
Important 

4 

4 

4 

4 

4 
4 
4 
4 
4 
4 
4 

Somewhat 
More 

Important 
5 

5 

5 

5 

5 
5 
5 
5 
5 
5 
5 

More 
Important 

6 

6 

6 

6 

6 
6 
6 
6 
6 
6 
6 

Significantly 
More 

Important 
7 

7 

7 

7 

7 
7 
7 
7 
7 
7 
7 



AHP Level 3 - Abrasion 

Gen Brrl 
Damage 

Cracking 

Invert 
Damage 

Open Joints 

Out of Round 

Settlement 

Piping 

Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

Less 
Important 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

Equally 
Important 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Somewhat 
More 

Important 

5 

5 

5 

5 

5 

5 

5 

5 

5 

5 

More 
Important 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

Significantly 
More 

Important 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

-fc. 



AHP Level 3 - Gen Brrl Damage 

Cracking 
Invert 

Damage 
Open Joints 

Out of Round 
Settlement 

Piping 
Drift 

Vegetation 
Blockage 

Significantly 
Less 

Important 

Less 
Important 

2 

2 

2 
2 
2 
2 
2 
2 
2 

Somewhat 
Less 

Important 
3 

3 

3 
3 
3 
3 
3 
3 
3 

Equally 
Important 

4 

4 

4 
4 
4 
4 
4 
4 
4 

Somewhat 
More 

Important 
5 

5 

5 
5 
5 
5 
5 
5 
5 

More 
Important 

6 

6 

6 
6 
6 
6 
6 
6 
6 

Significantly 
More 

Important 
7 

7 

7 
7 
7 
7 
7 
7 
7 

e-/i 



AHP Level 3 - Cracking 

Invert 
Damage 

Open Joints 

Out of Round 

Settlement 

Piping 
Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

1 

1 

1 

1 

1 

1 

1 

1 

Less 

Important 

2 

2 

2 

2 

2 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

3 

3 

3 

3 

3 

Equally 
Important 

4 

4 

4 

4 

4 

4 

4 

4 

Somewhat 
More 

Important 

5 

5 

5 

5 

5 

5 

5 

5 

More 
Important 

6 

6 

6 

6 

6 

6 

6 

6 

Significantly 
More 

Important 

7 

7 

7 

7 

7 

7 

7 

7 

AHP Level 3 - Invert Damage 

Open Joints 

Out of Round 

Settlement 

Piping 
Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

1 

1 

1 

1 

1 

1 

1 

Less 
Important 

2 

2 

2 

2 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

3 

3 

3 

3 

Equally 
Important 

4 

4 

4 

4 

4 

4 

4 

Somewhat 
More 

Important 

5 

5 

5 

5 

5 

5 

5 

More 
Important 

6 

6 

6 

6 

6 

6 

6 

Significantly 
More 

Important 
7 

7 

7 

7 

7 

7 

7 



AHP Level 3 - Open Joints 

Out of Round 

Settlement 

Piping 

Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

Less 
Important 

2 

2 

2 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

3 

3 

3 

Equally 
Important 

4 

4 

4 

4 

4 

4 

Somewhat 
More 

Important 

5 

5 

5 

5 

5 

5 

More 
Important 

6 

6 

6 

6 

6 

6 

Significantly 
More 

Important 

7 

7 

7 

7 

7 

7 

AHP Level 3 - Out of Round 

Settlement 

Piping 

Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

Less 
Important 

2 

2 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

3 

3 

Equally 
Important 

4 

4 

4 

4 

4 

Somewhat 
More 

Important 
5 

5 

5 

5 

5 

More 
Important 

6 

6 

6 

6 

6 

Significantly 
More 

Important 

7 

7 

7 

7 

7 



AHP Level 3 - Settlement 

Piping 

Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

1 

1 

1 

1 

Less 
Important 

2 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

3 

Equally 
Important 

4 

4 

4 

4 

Somewhat 
More 

Important 

5 

5 

5 

5 

More 
Important 

6 

6 

6 

6 

Significantly 
More 

Important 

7 

7 

7 

7 

AHP Level 3 - Piping 

Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

1 

1 

1 

Less 
Important 

2 

2 

2 

Somewhat 
Less 

Important 

3 

3 

3 

Equally 
Important 

4 

4 

4 

Somewhat 
More 

Important 

5 

5 

5 

More 
Important 

6 

6 

6 

Significantly 
More 

Important 

7 

7 

7 

AHP Level 3-Drift 

Vegetation 

Blockage 

Significantly 
Less 

Important 

1 

1 

Less 
Important 

2 

2 

Somewhat 
Less 

Important 

3 

3 

Equally 
Important 

4 

4 

Somewhat 
More 

Important 

5 

5 

More 
Important 

6 

6 

Significantly 
More 

Important 

7 

7 

0 0 



AHP Level 3 - Vegetation 

Blockage 

Significantly 
Less 

Important 

1 

Less 
Important 

2 

Somewhat 
Less 

Important 

3 

Equally 
Important 

4 

Somewhat 
More 

Important 

5 

More 
Important 

6 

Significantly 
More 
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C.l BACKGROUND 

Culvert condition rating methodology is an important element in culvert asset 

management. A proactive decision making process in culvert asset management has been 

proven to provide significant economic benefits, not only in direct cost savings but also 

in reduced social costs. The Federal Highway Administration (FHWA) and U.S. 

Department of Transportation (DOT) indentified the need for new rating methodologies 

for more efficient management of culvert assets. 

Currently there is no universally accepted culvert rating system that can be used 

to prioritize culvert maintenance and rehabilitation needs. As one of the tasks in the 

development of asset management system for culvert structures, the Trenchless 

Technology Center (TTC) at Louisiana Tech University conducted a survey aimed at the 

development of such a rating methodology. The survey was sent to transportation 

professionals in 34 DOTs knowledgeable in the culvert asset management practices. 

Analytic Hierarchy Process (AHP) was used to compile and analyze collected responses 

from the survey. The algorithm used is described in Section 3. The method was used to 

evaluate the importance of various factors ("the weight") in culvert condition rating. 

C.2 SUMMARY OF RESPONSES 

A questionnaire was distributed to a total of 34 DOT offices with a response rate 

of 41%. The respondents consisted of engineering staff from the various DOTs offices. 

Table C.l and Figure C.l provide the general information about responses. 

Table C.l Responses of Survey 

Response 14 

No Response 18 
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Declined 2 

6% 

H No Response 

• Declined 

DResponse 

Figure C.l Feedback from Survey 

C.3 COMPUTATION METHODS AND RESULTS 

Figure C.2 displays the structure of the three-level Analytic Hierarchy Process 

(AHP) used to develop the expression for calculating the aggregated score for each 

culvert structure. Two factors were assigned to the first level of the AHP, which were 

structural integrity and waterway condition. For structural integrity, assigned second level 

factors included barrel, embankment and roadway condition. As fewer factors are used to 

describe waterway condition, no second level factors were used. The third level of the 

AHP included 23 factors. The survey aimed at identifying the relative weight of each 

factor, which would then be used in the final computation of the overall culvert score, 

thus providing support information to decision makers tasked with generating a priority 

list for the maintenance and rehabilitation of culvert structures. 



Culvert Condition Rating 

Culvert Structural Integrity 

Barrel Embankment 

Misalignment 

Abrasion 
— Emb Popouts 

Gen Brrl Damage — Emb Seeps 

Cracking 

Invert Dam 

Open Joints 

Out of Round 

Settlement 

Emb Erosion 

Inlet Emb 
Protection 

Outlet Emb 
Protection 

Piping 

Drift 

Vegetation 

Blockage 

Water Way / Channel Condition 

Roadway 

Pavement 
Cracking 

— Roadway Sag 

Guardrail Dip 

Inlet Channel Scour 

Outlet Channel Scour 

— Streambank Erosion 

Figure C.2 Analytic Hierarchy Process for Culvert Rating Methodology 
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Analytic Hierarchy Process (AHP) is an algorithmic procedure where both data 

and experience play equally important roles. AHP uses a three-level hierarchy-based 

model that reflects the goals and concerns of the decision-maker. The hierarchy is 

arranged in a descending order from the overall focus to the criteria, sub-criteria and 

alternatives. 

The hierarchy is then systematically evaluated using pairwise comparison of 

various criteria, matrbc manipulation and eigenvalue computations to obtain a final score 

for each alternative. AHP provides a systematic methodology to organize tangible and 

intangible factors and provides a structured, yet relatively simple, analysis algorithm to 

the decision-making problem. 

Table C.2 lists the definition of the factors used in the development of the culvert 

rating system and shows the computation results based on the respondents' opinion. 

Table C.2 Definition of Factors for Culvert Rating System and Weight of Factors in AHP 

AHP Levels 

Sample Size 
Level 1 

Level 2 

Level 3 

Factors 

SI 
Wl 

Total 
B2 
E2 
R2 

Total 
M3 
A3 

GBD3 
C3 
13 

OJ3 
OR3 

Definition 

Culvert Structural Integrity 
Water Way Condition 

Barrel 
Embankment 

Roadway 

Misalignment 
Abrasion 

Gen Barrel Damage 
Cracking 

Invert Damage 
Open Joints 

Out of Round 

Respondents Opinion 

14 
56.79% 
43.21% 
100% 

23.19% 
15.61% 
17.99% 

56.79%=S1 
1.73% 
1.36% 
1.85% 
2.04% 
2.05% 
2.27% 
1.77% 
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S3 
P3 
D3 
V3 
B3 

Total 
EP3 
ES3 
EE3 

IEP3 

OEP3 

Total 
PC3 
RS3 
GD3 
Total 
ICS3 
OCS3 
SBE3 
Total 

Settlement 
Piping 
Drift 

Vegetation 
Blockage 

Embankment Pop-outs 
Embankment Seeps 

Embankment Erosion 
Inlet Embankment 

Protection 
Outlet Embankment 

protection 

Pavement Cracking 
Roadway Sag 
Guardrail Dip 

Inlet Channel Scour 
Outlet Channel Scour 
Stream Bank Erosion 

2.42% 
2.79% 
1.44% 
1.22% 
2.25% 

23.19%=B2 
2.53% 
2.84% 
3.17% 

3.38% 

3.68% 

15.61%=E2 
3.54% 
7.34% 
7.11% 

17.99%=R2 
14.88% 
15.50% 
12.83% 

43.21 %=W1 

Based on Table C.2, Eq. C.l was developed to compute condition scores of 

culvert based on the respondents' opinions. 

Condition Score = 0.568 x 51 + 0.432 X Wl (C.l) 

The first level parameter SI consists of second level parameters B2, E2 and R2. 

The first level parameter Wl only consists of second level parameters ICS3, OCS3 and 

SBE3. Thus Eq. C.l can be expanded to include second level parameters, yielding the 

following expression. 

Condition Score = (0.232 XB2 + 0.156 x £2 + 0.180 x R2) + (0.149 x ICS3 + 

0.155 x OCS3 + 0.128 x SBE3) (C.2) 
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Eq. C.2 could be further expanded to include third level parameters. Eq. C.3 is the 

final equation which accounts for all 23 parameters. 

Condition Score = (0.017 x M3 + 0.014 x A3 + 0.019 x GBD3 + 0.020 x 

C3 + 0.021 x 73 + 0.023 x OJ3 + 0.018 x 0R3 + 0.024 x S3 + 0.028 x P3 + 

0.014 x D3 + 0.012 X V3 + 0.023 x S3) + (0.025 x EP3 + 0.028 x ES3 + 0.032 x 

EE3 + 0.034 x 7£P3 + 0.037 x 0£P3) + (0.035 x PC3 + 0.073 x RS3 + 0.071 x 

GD3) + (0.149 x 7CS3 + 0.155 x OCS3 + 0.128 x SB£3) 

(C.3) 

While looking somewhat cumbersome, Eq. C.3 can be easily incorporated into a 

spreadsheet program. Table C.3 shows a sample implementation of Eq. C.3 for an actual 

data set obtained from a highway, located in the northwest part of the USA. The lowest 

scoring culverts are highlighted. 

Table C.3 Sample Implementation of Eq. C.3 

ert ID 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Wl 

1.11 

1.20 

1.32 

1.24 

1.54 

1.30 

1.41 

1.40 

1.25 

1.40 

1.49 

1.58 

SI 

1.46 

1.58 

1.74 

1.64 

2.02 

1.71 

1.85 

1.85 

1.65 

1.84 

1.97 

2.07 

B2 

0.60 

0.65 

0.71 

0.67 

0.83 

0.70 

0.76 

0.75 

0.67 

0.75 

0.80 

0.85 

E2 

0.40 

0.43 

0.48 

0.45 

0.56 

0.47 

0.51 

0.51 

0.45 

0.50 

0.54 

0.57 

R2 

0.46 

0.50 

0.55 

0.52 

0.64 

0.54 

0.59 

0.58 

0.52 

0.58 

0.62 

0.66 

Final Score 

2.57 

2.78 

3.06 

2.88 

3.56 

3.01 

3.26 

3.25 

2.90 

3.23 

3.46 

3.65 
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13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

1.03 

1.19 

1.23 

1.37 

1.26 

1.52 

1.27 

1.19 

1.32 

1.56 

0.87 

1.40 

1.46 

1.25 

1.45 

1.35 

1.36 

1.18 

1.36 

1.57 

1.62 

1.80 

1.65 

2.00 

1.67 

1.56 

1.73 

2.05 

1.14 

1.85 

1.91 

1.64 

1.90 

1.77 

1.79 

1.55 

0.55 

0.64 

0.66 

0.74 

0.68 

0.82 

0.68 

0.64 

0.71 

0.84 

0.46 

0.75 

0.78 

0.67 

0.78 

0.72 

0.73 

0.63 

0.37 

0.43 

0.44 

0.50 

0.45 

0.55 

0.46 

0.43 

0.48 

0.56 

0.31 

0.51 

0.53 

0.45 

0.52 

0.49 

0.49 

0.43 

0.43 

0.50 

0.51 

0.57 

0.52 

0.63 

0.53 

0.49 

0.55 

0.65 

0.36 

0.59 

0.61 

0.52 

0.60 

0.56 

0.57 

0.49 

2.39 

2.76 

2.85 

3.17 

2.91 

3.52 

2.93 

2.75 

3.05 

3.61 

2.00 

3.25 

3.37 

2.89 

3.35 

3.11 

3.16 

2.74 

C.4 SUMMARY 

The Analytic Hierarchy Process (AHP) method was used to establish the weight 

of 28 factors as part of the developed culvert rating system using expert opinions solicited 

from 14 U.S. state Department of Transportation agencies. 

In Level 1, the weight of structural integrity was found to be 57%, and the weight 

of waterway condition was calculated to be 43%. In the category of structural integrity, 

barrel was identified as the most important factor, followed by roadway condition as the 

second most important factor. 
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Twelve factors were used for describing barrel condition, with the three most 

important factors being piping, settlement and open joints. Detailed information about 

relative weights of each factor is given in Table C.2. An equation that relates all 23 

relevant factors for calculating the overall rating for a given culvert structure was derived 

based on the results of the survey. 

Additional comments were offered by survey participants. One participant 

reported that implications to the riding surface is the most important factor in rating 

hierarchy of structural integrity, and that both piping and roadway sag present threats to 

the roadway. 

Another participant had difficulty in determining whether culvert conditions were 

supposed to address either (A) The structure's current ability to function or (B) a long-

term prognosis. For example, a blocked culvert may not operate at all, but the remedy 

(unblocking) might be easy and inexpensive to implement, making this factor less 

important than other factors such as piping, cracking or erosion for which the culvert may 

need to be rehabilitated or replaced. 

The goal of the inspection is to determine if and when an action is needed. 

Blockage is a serviceability related failure and the collapse is a structural criterion related 

failure. Preventing imminent collapse precedes unblocking the culvert, but clearing the 

culvert might precede a rehab operation (in fact it has to). These actions are not mutually 

exclusive. 



112 

C.5 ACKNOWLEDGEMENTS 

We would like to thank all participants in this survey for their professional views, 

suggestions, and support for this project. We also sincerely appreciate the help from Mr. 

Robert E. Trevis. Comments and feedback are welcome. 



APPENDIX D 

CODES FOR PROGRAMMING 



D.l Code for MHA 

Software: MATLAB R 2007b, Version 7.5.0.342 

Main Program 

clear all; 

D = load ('data.txt'); % read input from overall or structural rating, subprogram 1 

[m,n] = size (D); % m year, n value 

iter = 0; % accept iteration number 

maxstep = 0; % total loop number 

px = init_p (n); % create p, subprogram 4 

sigma = init_s (n); % create sigma, subprogram 5 

p_sumation = zeros (4,4); 

accept = 0; 

for step = 1:5000 

pxnew = getp (px, sigma, n); %get new px from old px and sigma, subprogram 3 

u = rand (); % u uniformly distribute from 0,1 

pxold = px; 

pold = f (px); % subprogram 2 

pnew = f (pxnew); % subprogram 2 

lold = likely (pold, D); % likelyhood function, subprogram 6 

l_new = likely (pnew, D); % likelyhood function, subprogram 6 

t = l_new - lold; 

alpha = min (0,t); 

if u <= exp (alpha) 

err = norm (pnew - pold); 

if step > 5000 - 500 

p_sumation = p_sumation + p; 

accept = accept + 1; 

end 

px = pxnew; 
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p = pnew; 

iter = iter + 1; 

else 

px = pxold; 

p = pold; 

iter = iter + 0; 

end 

maxstep = maxstep + 1; 

[iter, maxstep, iter/maxstep, err] 

disp (p); 

subplot (2,1,1); 

plot (iter,norm (p)); 

hold on; 

subplot (2,1,2); 

plot (iter,err); 

hold on; 

drawnow; 

end 

p_ave = p_sumation / accept 

s = iter / maxstep 

Subprograms: 

l .D = load('data.txt*) 

% For overall rating: 

[54, 0, 0, 0; 17, 10, 1, 0; 17, 14, 0, 0; 0, 0, 54, 0; 

2, 12, 0, 0; 3, 0, 0, 0; 1, 16, 1, 2; 1, 2, 0, 0] 

% For structural rating: 

[53, 1, 0, 0; 6, 21, 1, 0; 11, 19, 1, 0; 0, 0, 54, 0; 

2, 19, 0, 0; 3, 0, 0, 0; 1, 2, 8, 2; 1, 2, 0, 0] 

2. pold = f (px); pnew = f (pxnew); 



function out = f (x) 

n = length (x); 

out = (exp (x)) / (l+exp (x)); 

for j = 2:n 

fork=l :j-l 

out (j,k) = 0; 

end 

end 

b = out * ones(n,l); 

for j = 1 :n 

for k = 1 :n 

out(j,k) = outO,k)/bO,l); 

end 

end 

3. pxnew = getp (px, sigma, n) 

function out = getp(px, sigma, n) 

out = px + randn(n)*sigma; 

4. px = init_p (n) 

function out = init_p(n) 

out = zeros(n,n); 

forj= l:n-2 

outO j) = 0.9; 

out(j,j+l) = 0.1; 

out(j,j+2) = 0.1; 

end 

out(n-l,n-l) = 0.8; 

out(n-l,n) = 0.2; 

out(n,n) = 1; 



5. sigma = init_s (n); 

% For overall rating: 

function out = init_s (n) 

out = zeros(n); 

out (1,1) = 0.45; out (2,2) = 0.30; out (3,3) = 0.35; out (4,4) = 0.3; 

end 

% For structural rating: 

function out = init_s (n) 

out = zeros(n); 

out (1,1) = 0.42; out (2,2) = 0.31; out (3,3) = 0.25; out (4,4) = 0.3; 

end 

6. lold = likely (pold, D); l_new = likely (pnew, D); 

function out = likely(p, D) 

year = [8,10,19,59,60,72,78,79]; 

[m,n] = size(D); 

1 = 0; 

forj= l:m 

sO = p A (year (j)); 

s = s0(l,:); 

for k = 1 :n 

l = l+log(s(k))*(D(j>lc)); 

end 

end 

out = 1; 



D.2 Code for Service Life Prediction Based on C-K Formula 

Software: MATLAB R 2007b, Version 7.5.0.342 

% For Overall Rating: 

K = [0.9684, 0.0316, 0.0000, 0.0000; 

0.0000, 0.9759, 0.0238, 0.0004; 

0.0000, 0.0000, 0.9994, 0.0006; 

0.0000, 0.0000, 0.0000, 1.0000]; 

I = [1.00, 0.00,0.00, 0.00]; 

N=100; 

Result = I*K; 

for n = 2:N 

Result = [Result;I*(KAn)]; 

end 

Result2 = zeros(N,l); 

for n = 1 :N 

Result2(n,l) = max(Result(n,:)); 

End 

% For Structural Rating: 

K= [0.9583, 0.0413, 0.0003, 0.0001; 

0.0000, 0.9716, 0.0284, 0.0000; 

0.0000, 0.0000, 0.9995, 0.0005; 

0.0000, 0.0000, 0.0000, 1.0000]; 

I = [1.00,0.00,0.00,0.00]; 

N = 100; 

Result = I*K; 

for n = 2:N 

Result = [Result;I*(KAn)]; 

end 

Result2 = zeros(N,l); 
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for n = 1 :N 

Result2(n,l) = max(Result(n,:)); 

end 
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Figure E.l Culvert Deterioration Curves for Second Data Splitting 
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Figure E.2 Culvert Deterioration Curves for Third Data Splitting 
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