
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2013

Unmanned Ground Vehicle navigation and
coverage hole patching in Wireless Sensor
Networks
Guyu Zhang
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Automotive Engineering Commons, and the Electrical and Computer Engineering
Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Zhang, Guyu, "" (2013). Dissertation. 314.
https://digitalcommons.latech.edu/dissertations/314

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/314?utm_source=digitalcommons.latech.edu%2Fdissertations%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

U N M A N N E D G R O U N D VEHICLE NAVIG ATIO N

A N D COVERAGE HOLE PATCH ING IN

W IRELESS SENSO R N ETW O R K S

by

Guyu Zhang, B.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

January 2013

UMI Number: 3573576

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation PiiblishMiQ

UMI 3573576
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

January 14, 2013
Date

We hereby recommend that the dissertation prepared under our supervision

by Guyu Zhang__

entitled__

Unmanned Ground Vehicle Navigation and Coverage Hole Patching in

Wireless Sensor Networks

be accepted in partial fulfillment o f the requirements for the Degree o f

Doctor of Philosophy

Supervisor o f Dissertation Research

Head o f Department

Department

Recommendation concurred in:

C Â (B u n a l *)

(A , [A ^ vsxT v _________

Director o f Graduate Studies

Advisory Committee

Approved: <

Dean o f the Graduate School *

Dean o f the College
GS Form 13a

(6 /07)

ABSTRACT

This dissertation presents a study of an Unmanned G round Vehicle (UGV)

navigation and coverage hole patching in coordinate-free and localization-free Wireless

Sensor Networks (WSNs). Navigation and coverage m aintenance are related prob

lems since coverage hole patching requires effective navigation in the sensor network

environment. A coordinate-free and localization-free WSN th a t is deployed in an

ad-hoc fashion and does not assume the availability of GPS information is considered.

The system considered is decentralized and can be self-organized in an event-driven

manner where no central controller or global m ap is required.

A single-UGV, single-destination navigation problem is addressed first. The

UGV is equipped with a set of wireless listeners that determine the slope of a navigation

potential field generated by the wireless sensor and actuator network. The navigation

algorithm consists of sensor node level-number assignment th a t is determined based

on a hop-distance from the network destination node and UGV navigation through

the potential field created by triplets of actuators in the network. A multi-UGV,

multi-destination navigation problem requires a path-planning and task allocation

process. UGVs inform the network about their proposed destinations, and the network

provides feedback if conflicts are found. Sensor nodes store, share, and communicate

to UGVs in order to allocate the navigation tasks. A special case of a single-UGV,

multi-destination navigation problem th a t is equivalent to the well-known Traveling

Salesman Problem is discussed.

The coverage hole patching process starts after a UGV reaches the hole bound

ary. For each hole boundary edge, a new node is added along its perpendicular bisector,

and the entire hole is patched by adding nodes around the hole boundary edges.

The communication complexity and present simulation examples and experi

mental results are analyzed. Then, a Java-based simulation testbed th a t is capable

of simulating both the centralized and distributed sensor and actuator network algo

rithms is developed. The laboratory experiment demonstrates the navigation algorithm

(single-UGV, single-destination) using Cricket wireless sensors and an actuator network

and Pioneer 3-DX robot.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Date Ot / M / *>>3

GS Form 14
(5/03)

TABLE OF CONTENTS

ABSTRACT... iii

LIST OF TABLES... ix

LIST OF FIGURES.. x

ACKNOWLEDGMENTS...xiv

CHAPTER 1 INTRODUCTION.. 1

1.1 M otivations... 2

1.2 Scope of W ork.. 3

CHAPTER 2 RELATED W O RK... 9

2.1 Coverage Problem and Coverage Hole P atch ing ... 9

2.2 Automatic Unmanned Ground Vehicle N avigation.. 10

2.3 Task Allocation.. 13

2.4 Leader Election.. 14

2.5 Obstacle Avoidance... 15

2.6 Hardware Experim ent.. 15

CHAPTER 3 PROBLEM FORM ULATION... 17

CHAPTER 4 ALGORITHM S... 24

4.1 Single-UGV, Single-Destination C ase .. 26

4.1.1 Level Assignment A lgorithm ... 26

4.1.1.1 Centralized A lgorithm ... 27

vi

vii

4.1.1.2 Distributed A lgorithm .. 28

4.1.2 UGV Control Algorithm .. 32

4.1.2.1 Centralized UGV Control A lgorithm 39

4.1.2.2 Distributed UGV Control A lgorithm 41

4.1.2.3 Comparisons with Other A lgorithm s.................................... 45

4.2 Multi-UGV, Multi-Destination Case... 46

4.2.1 Leader Election A lgorithm ... 46

4.2.2 Level Number Assignment A lgorithm ... 52

4.2.3 Task Allocation A lgorithm ... 53

4.2.4 Special Case: Traveling Salesman P roblem .. 55

4.3 Hole Patching A lgorithm .. 58

CHAPTER 5 WIRELESS SENSOR NETWORK SIMULATOR............................. 62

5.1 Architecture D esign... 62

5.2 Function Development... 65

5.2.1 Node Layer... 65

5.2.2 Interface Layer.. 68

5.2.3 Network Layer.. 70

5.3 Applications... 71

CHAPTER 6 HARDWARE T E ST B E D ... 77

6.1 Equipment Design............... v ... 77

6.2 Experiment S e tu p ... 80

6.3 Experiment Results... 81

CHAPTER 7 RESULTS AND DISCUSSION...83

CHAPTER 8 CONCLUSIONS AND FUTURE WORK

BIBLIOGRAPHY..

LIST OF TABLES

Table 5.1: Selected functions in the Node c lass .. 66

Table 5.2: Selected functions in the UGV class.. 68

Table 5.3: Selected functions in the Netcard class... 69

Table 5.4: Selected functions in the SigDetector class.. 70

Table 5.5: Selected functions in the Network class.. 70

ix

LIST OF FIGURES

Figure 1.1: Hole patching in a WSAN.. 4

Figure 1.2: Hop distances between nodes: node u and v are with hop distance
1 in the left figure while node u and v are with hop distance 2 in
the right.. 6

Figure 3.1: Arrays of listeners on the UGV.. 20

Figure 4.1: Logic flow of the proposed algorithms.. 24

Figure 4.2: Successive processes of Algorithm 2.. 30

Figure 4.3: UGV navigation in a WSAN, where each node’s ID, level number
and connections are shown. At this step in the example, we have
the potential field generated by the triplet of actuator nodes A, B ,
and C, shown as circles, which are assigned to nodes 1, 2, and 3,
respectively... 34

Figure 4.4: Illustrated cases in the proof of Lemma 4.1.. 36

Figure 4.5: An example of Equation 3.3, where nodes A, B and C are arbitrarily
placed... 38

Figure 4.6: General view of navigation-assisted nodes in the centralized control
algorithm... 39

Figure 4.7: Successive iterations of the Level Assignment Algorithm. Active
nodes, shown as squares marked with their ID, broadcast their ids
for maximum distances of (a) one (b) two (c) four and (d) eight
hops. Relay nodes, shown as circles marked with the maximum ID
received prior to the iteration, only retransm it received messages
with larger IDs. The shaded nodes represent those nodes covered
by the eventual leader for th a t iteration. Solid arcs represent the
communication graph. A dashed arc from node a to node b indicates
th a t node a was able to transm it its id to the given node within
the proper hop distance. Observe th a t during the final iteration
of this example only two nodes remain active and the leader gets
selected after the iteration completes.. 51

Figure 4.8: A critical case for the nearest neighbor algorithm in MTSU. The
distances between nodes are labeled underneath, where <5 is a very
small positive real value.. 56

Figure 4.9: Area coverage where nodes are connected a t the length of rc. Left:
no coverage hole when rs = rcj \/3; middle: a coverage hole exists
in the middle when rs < rcj y j 3; right: no coverage hole when
rs > r c/V 3.. 59

Figure 4.10: Hole patching process. Upper: an identified coverage hole; middle:
new nodes are added along the edges of former coverage hole; lower:
the hole is fully patched.. 61

Figure 5.1: Architecture of the simulation testbed... 63

Figure 5.2: Structure of the run{) function.. 67

Figure 5.3: Components in NodeStore... 71

Figure 5.4: GUI Application Interface.. 73

Figure 5.5: GUI with a network deployed... 74

Figure 5.6: GUI shows a network with multiple levels assigned................................. 75

Figure 5.7: GUI Application with results displayed... 76

Figure 6.1: The Cricket m ote.. 78

Figure 6.2: Cricket nodes hung on the ceiling.. 78

Figure 6.3: Cricket nodes on the UGV... 79

Figure 6.4: System block diagram of the experimental setup.................................... 80

Figure 6.5: Trajectory of the one navigation. Besides the symbols labeled in
the figure, local minimum points are highlighted by large dots. The
part th a t the large arrow points to is an error movement, which
might be caused by reading errors of listeners.. 82

Figure 6.6: Potential fields calculated from listener readings during runtim e 82

Figure 7.1: Illustration of a path taken by the UGV using our distributed
navigation algorithm in a simple WSAN.. 83

Figure 7.2: Average number of messages sent by each node in the distributed
level assignment algorithm ... 85

Figure 7.3: Evaluation of the distributed (top) and centralized (bottom) UGV
control algorithms. Ri shows the ability to control the main
navigation direction.. 86

Figure 7.4: Evaluation of the UGV control algorithm: R2 shows the control
ability for the step movement.. 87

Figure 7.5: Comparison of one-actuator and three-actuator navigation with
regards to R \ .. 88

Figure 7.6: Comparison of the one-actuator and three-actuator navigation
algorithms regarding the mission failure rate F 91

Figure 7.7: Number of messages sent per node in the leader election process 91

Figure 7.8: Performance ratio of the traveled distance by the proposed algorithm
and the genetic algorithm (circles), and performance ratio of the
traveled distance by the simple algorithm and the genetic algorithm
(triangles) in the multi-UGV, multi-destination scenario when UGVs
start at the same locations... 93

Figure 7.9: Comparison of results by the proposed algorithm to the simple
nearest neighbor algorithm in the single UGV and multiple destination
scenario.. 94

Figure 7.10: A randomly deployed network with three coverage holes...................... 95

Figure 7.11: The coverage holes are patched after the patching algorithm............... 96

Figure 8.1: Local minimum point is occupied by an obstacle.................................... 98

Figure 8.2: Representation of the size limit on the obstacle. T he listeners ring
represents the UGV...

ACKNOWLEDGMENTS

I would never have been able to finish my dissertation without the guidance of

my committee members, help from group members and support from my family. It is

a pleasure to pay tribute to those who made this dissertation possible.

I would like to express my deepest g ratitude to my advisor, Dr. Rastko R.

Selmic, for his brilliant insight, broad knowledge, and patient advice throughout the

research in the past few years. I would like to thank Dr. Christian A. Duncan, who

helped me set up the simulation testbed and gave me countless valuable advises and

criticisms in all aspects of my research. I would like to thank Dr. Jinko Kanno, who

shared ideas and requirements from a m athem atician’s point of view.

I thank my beloved wife, Xuemei Zhang, for her love, tru s t and support. I also

thank Xuemei for delivering me two lovely angels, Sarah Zhang and Selena Zhang.

I dedicate this dissertation to my parents, Lin Zhang and Meijiu Pan, who have

dedicated their entire life for me. I also dedicate this dissertation to my grandparents,

Zhixiang Zhang and Xiufang Yang. They never leave me in my heart.

Finally, I would like to offer my regards and blessings to all of those who were

im portant to the successful realization of th is dissertation, as well as expressing my

apology that I could not mention personally each one.

CHAPTER 1

INTRODUCTION

Developments in MEMS-based sensor technology, low-power R F and A /D

design enabled the developments of relatively inexpensive and low-cost wireless sensor

systems [14,20,26]. Wireless Sensor Network (WSN) technology was developed in

parallel with these fields. A WSN is a distributed, self-organized system consisting of

sensors that are connected over wireless communication links. WSNs can be used in a

variety of applications such as home automation, intelligent traffic control and cyber

physical systems [45,62,74], Different applications of WSNs may have distinct Quality

of Service (QoS) restrictions, including connection reliability, time-varying delay and

packet loss. In applications where a fully covered sensing dom ain is preferred [50],

such as in habitat monitoring, QoS is based on the coverage area. The WSN is built

when connections of sensor and actuator nodes can be automatically established after

the deployment is completed. For example, consider the air-drop deployment of a

WSN in a remote and hazardous area. Certain areas may not be fully covered due to a

random deployment or due to node failures. In such cases, a more refined deployment

of the WSN to reach the required QoS is needed.

This chapter provides a brief overview of motivations for this research, as well

as the scope of problems considered.

1

2

1.1 M otivations

The problem of autom atic UGV navigation through a self-organized WSN to

patch coverage holes that have been detected is considered. A utom atic navigation

of UGVs becomes a challenging problem when expensive and energy consuming

localization modules such as GPS are not always available since it is not realistic to

charge or replace batteries frequently in certain circumstances. As a result, there is no

attempt to apply any localization techniques or acquire any coordinate information to

assist with the navigation problems.

A general overview of a self-organized network is given in [47]. Briefly, no

outside control is necessary for a self-organized network. A self-organized network with

inside central controllers is considered as a centralized system while a self-organized

network without a central controller can be considered as a decentralized system. For

a wireless sensor network system with a central controller, these controllers maintain

global information of the whole system. The global inform ation can be obtained

either by direct connections from a central controller to each individual node, or by

indirect connections such as m ulti-hop links, where each local package needs to be

transm itted in a certain number of hops to reach the central controller. Centralized

approaches can suffer from central controller failure and delayed responses to local

changes. In the systems where information is gained from indirect connections, high

communication demands are needed, which are worsened when the size of the network

increases considerably, limiting bandwidth.

3

Recently, researchers have introduced the sensor node as a small-form-factor

embedded system which is capable to a certain extent of processing data. In this

experiment (Figure 6.1), one such node, the Cricket mote [53] is used.

Because of these reasons stated above, there is motivation to investigate

algorithms that are supposed to run in an event-driven, decentralized manner. In this

way, no central controller will exist to provide any command or guidance. Information

transfer is realized by messages th a t are transm itted through wireless links between

nodes. Thus, since global information is too expensive to get for every node, each

node should be responsible to take its own action based on the limited received

messages. Compared to algorithms th a t proceed in a centralized manner, distributed

approaches are typically fast, flexible to changes and robust to individual points’

failures. However, due to the limitation of global information, distributed algorithms

can produce suboptimal solutions.

1.2 Scope of Work

Buchart deals with coverage hole detecting problems in [10], where nodes on

the boundaries of coverage holes can be identified. These identified nodes are called

hole boundary nodes.This dissertation focuses on two problems th a t happen after

the hole boundary nodes are identified. First, is an attem pt to navigate Unmanned

Ground Vehicles (UGVs) to bring in supplemental nodes to these coverage holes.

Second, these supplemental nodes are used to patch coverage holes. This process is

illustrated in Figure 1.1.

Figure 1.1: Hole patching in a WSAN.

The problem of coordinate-free and localization-free UGV navigation in a sensor

covered area is explored. Then, a potential-field-based navigation approach is proposed,

where the potential field is formulated by actuators in the WSN. Thus, a Wireless

Sensor and Actuator Network (WSAN) is used for the navigation. WSANs have become

an active research area since they are considered as an enhancement to the traditional

WSN. In contrast to traditional sensor networks, which only get information about the

physical world (like environment and habitat monitoring, battlefield surveillance and

chemical pollution detection), WSANs can make decisions and perform appropriate

actions to change or adjust the environment based on gathered information. WSANs

do not only m onitor the environment passively, bu t also actively interact with the

physical world. For example, in [56], authors use a WSAN to monitor and control

combined sewer overflow events in city sewer systems.

Unmanned Ground Vehicles (UGVs) are autonomous mobile robotic platforms

that can be deployed in remote and inaccessible environments and are often expected

to substitute for humans in many harsh environments. Placing a GPS module on

each sensor node significantly reduces an already limited battery life. Predefined maps

or landmarks are usually used in UGV navigation. However, this information is not

always available since WSANs are usually deployed in rem ote and coordinate-free

areas. Moreover, these kinds of off-line navigation methods th a t use prior data make

the UGV unable to adapt readily to the dynamic changes of the environment.

By using potential fields generated by a subset of a WSAN, it is demonstrated

th a t UGV navigation can be realized by ju st the interaction between the UGV and

static sensor and actuator nodes. The proposed navigation algorithm proceeds in

two phases. In the first phase all nodes in th e network are classified into different

sets or different levels according to the distance to certain nodes. Here the distance

is referred to as the hop-distance, not the physical distance. Nodes u and v have

hop distance one if there is a direct connection between them , as shown in the left

figure of Figure 1.2. The solid line means there is a connection between two nodes.

The non-adjacent nodes are of distance two if there is a node w with which u and v

can both communicate, as shown in the right figure of Figure 1.2. Phase One floods

the network from the destination node until all nodes have equivalent hop-mapping

assigned. In the case of a specific application of coverage hole patching, the hole

boundary nodes are the starting nodes for the process. T he flooding process stops

when all nodes are updated with a new hop level number. Then in Phase two of the

proposed algorithm, a navigation start point is set up according to the position of the

UGV, and the navigation rule in the potential field is defined, which can be found in

detail in Chapter 4.

6

W W

Figure 1.2: Hop distances between nodes: node u and v are w ith hop distance 1 in
the left figure while node u and v are with hop distance 2 in th e right.

The same navigation approach to determine the navigation route is used, and

the situations that arise when multiple destinations and multiple UGVs are involved

are also discussed. Due to the distributed manner of the algorithm, the first problem

th a t needs to be addressed is the identification of different destinations before any

path planning. This problem is trivial when a single node is th e destination, where

the node’s ID number can be considered as th e destination. However, when each

destination consists of a set of nodes (like the coverage holes), a solution m ust be

found to distinguish each destination, also referred to as a task. A leader election

algorithm is proposed to be implemented a t every node. For example, in the case

of coverage hole detection and patching, nodes th a t are on th e hole boundary can

trigger the leader election process to identify a unique ID for th a t specific cluster

of nodes. After every destination gets an ID number, it is proposed th a t a level

assignment algorithm starts from the destination nodes. T his multiple destination

level assignment algorithm is used to calculate the hop distances, hence estimating the

actual distances, between nodes and destinations, where after the assignment every

node in the WSAN stores the hop distance to the various destinations. Finally, the

7

multi-UGV, multi-destination navigation planning problem is formulated as a task

allocation problem, where each UGV is considered to be an agent and each destination

a task. Also considered is a special case where multiple destinations exist with only

one UGV in operation. This problem can be considered as an open traveling salesman

problem, where the UGV is not required to go back to the original position.

Since the hole boundary nodes are treated simply as target destinations for the

purpose of UGV navigation without certain underlying assumptions tha t are conditions

or results inherited from the previous hole detection algorithm, this problem can be

generalized to any problem that relates to navigation of UGVs to any pre-determined

set of target nodes within a WSAN.

During the hole-patching process, in order to maximize the area covered for

each new node, it is proposed to deploy one new node along the perpendicular bisector

of every hole boundary edge. New nodes are added by visiting all the existing hole

boundary edges. Since a global map or coordinates are not available, a hole detection

algorithm is used iteratively to validate the position for the new node.

A Java-based simulation testbed is developed that is capable of simulating both

distributed and centralized navigation algorithms in a WSAN. A brief description of

the hierarchy and functions of this testbed is provided in C hapter 5. All proposed

algorithms are tested in the simulation testbed while all the ou tpu ts are plotted in

MATLAB.

To begin the process of empirically evaluating the algorithm in real-life scenarios,

a hardware testbed is introduced with a single UGV and a wireless sensor and actuator

network deployed on the laboratory ceiling, as shown in Figure 6.2. The Cricket

8

platform [53] is used to build the WSAN and a Pioneer 3-DX [54] as the UGV. The

experimental results of the single-UGV and single-destination algorithm are compared

with an optimal UGV path between the initial position and the destination in WSAN.

Future on-going work will expand this empirical testing to the multiple UGV and

multiple destination problem. Also, initial results of the proposed algorithms have

been presented in papers [75-78].

The remainder of this dissertation is organized as follows: some related methods

are introduced in Chapter 2. C hapter 3 formulates the problems and states general

assumptions. C hapter 4 presents detailed descriptions of th e proposed algorithms.

For certain problems, both centralized and decentralized algorithms are presented for

comparison. The description of the construction of the Java-based simulation testbed

is given in Chapter 5, followed by the introduction of the hardware experiment set up

in Chapter 6. Chapter 7 covers numerical simulation results and discussions. Finally,

conclusions and propose future work are discussed in C hapter 8.

CHAPTER 2

RELATED WORK

This chapter provides essential reviews and discussions of papers th a t are in

specific areas of WSNs and Unmanned Ground Vehicle navigation.

2.1 Coverage Problem and Coverage H ole Patching

Each sensor node in a WSN has a limited sensing and communication range.

Coverage holes are inevitable in WSNs, especially for those networks which are deployed

randomly. The coverage of W SNs is classified into three types: blanket coverage,

barrier coverage, and sweep coverage in [34]. Coverage problems in WSNs are generally

named Ic-coverage problems in [2,34], where Jfc-covered means th a t every point inside

the area of interested is covered by a t least k sensors. A uthors of [34] introduced

an algorithm to analyze the coverage problem by calculating the overlapped area of

sensing disks. However, this algorithm requires inform ation of node positions. In

the current case, one point is considered to be covered if it is within at lease one

sensor node’s sensing area. The coverage problem considered is a 1-coverage problem.

In [10], Buchart presented two centralized algorithms Partitioning Network and Cycle

Collapsing Algorithm to detect coverage holes in a WSN, which is modeled by maximal

simplicial complex [24,33,50,65]. In this dissertation, the coverage hole detecting

problem is considered in a decentralized manner in [75], where only locations of

9

10

outmost boundary nodes are assumed to know. In [44], Li et al. propose a distributed

algorithm called SMeSH (Triangle Mesh Self-Healing) algorithm, which requires only

minimal connectivity information. During the first step, a m ethod to deactivate

redundant nodes is provided, through which the number of connections in the graph

could be decreased, especially in high density networks. Then, the hole detection

algorithm only considers the connectivity information of active nodes.

When there are excessive inactive nodes in a network, Liu et al. [46] and Deng et

al. [25] presented algorithms to activate these sleeping nodes to patch coverage holes.

In the case a sensor network consists of mobile sensor nodes, Wu et al. [73] proposed

an approach to move these redundant nodes to patch holes. In contrast, in current

scenario, the network is assumed to be composed of static nodes, where coverage

holes cannot be patched by simply activating some sleep nodes. On the other hand, a

certain number of UGVs are equipped to move supplemental nodes to patch coverage

holes.

2.2 A utom atic Unm anned Ground Vehicle Navigation

Voronoi diagrams, visibility graphs and potential fields are well-known tech

niques to solve the motion-planning problems [3,8,28,36,49]. Several results have also

been shown that the cooperation between mobile robots and wireless sensor networks

can enhance a mobile robot’s navigation capability [13,48]. While Voronoi diagrams

and visibility graphs require a priori knowledge of the workspace map, potential

field-based methods do not have the same restriction. In [40], Koren and Borenstein

discussed some drawbacks of simple potential field-based navigation, such as problems

11

with local minima and with oscillations in narrow passages. In [38], Khatib proposed

using artificial potential fields for obstacle avoidance in robot motion planning. The

method generates attractive potential fields th a t pull the robot while obstacles generate

repulsive potential fields th a t push the robot away. The artificial potential field is

constructed by distances between objects: in [38], Khatib calculated the real distance

in coordinate systems; in [9], Borenstein and Koren used sonar sensors to measure the

distance; in [43], Li et al. used hop distance to roughly represent distance. In [19],

a potential field is calculated using tem perature, humidity and altitude data, which

are acquired by the sensor network. In the current case, when there is no knowledge

of coordinates or location and the actuating source can be varied, it is proposed to

construct a serial of potential fields by signal strength.

Batalin et al. [4] proposed a localization-free navigation method that proceeds

in two phases. In the first phase, each node calculates transition probabilities to

determine the optimal navigation direction. In the second phase, a more reliable and

accurate signal strength based m ethod is employed to drive th e robot. In [41], two

localization-free, single mobile node navigation algorithms were presented. Periodically,

either a measured distance or a hop distance metric between the mobile node and the

sensor nodes is used to move the mobile node towards the destination. In both of the

approaches, only one sensor node is chosen as a beacon or benchmark to control the

moving direction for each step.

Mercker et al. [51] discussed the physical motion of a mobile robot in a

distributed landmark-free sensor network. In [70], a distributed, location-aware

and Voronoi diagram related multi-mobile robots navigation approach was presented.

12

A credit field is built as the navigation field based on a hop distance; a series of Voronoi

diagrams is calculated by the mobile robot to find the path through the network.

In [17], P. Chen et al. proposed a localized Delaunay triangulation based, distributed

guiding navigation protocol th a t allows for multiple paths and multiple events in the

network. Fu et al. [29] used a wireless sensor network for indoor robot navigation,

employing prior knowledge of sensor positions to localize a robo t’s position and

orientation by acquiring the information of pre-set radio emission sensors. D. Chen et

al. [16] proposed a set of distributed algorithms for in-network path planning where

sensor nodes whose coordinates are known serve as landmarks for the navigation. The

algorithms ensure that each source node has at least one safe route to the destination

in a dynamic environment. The algorithms are event-based and generally perform

better in dynamic networks where they incur much less communication overhead than

existing, periodic, flooding-type algorithms. However, in the worst case scenario, for

example, when a node tha t is very close to the destination fails, the performance of the

algorithm degrades significantly. In [22], mobile robots were used to establish positions

of all sensor nodes, which are not known a priori, and then the navigation path is

computed and stored in the sensor network. Flying robots can also be employed to

repair network connectivity [23]. Alankus et al. [1] proposed a set of query strategies

that a mobile robot controller can use to periodically collect real-time data from the

network and construct a probabilistic road-map for the navigation.

To reduce the communication expense, Buragohain et al. [11] introduced a

concept of a skeleton graph, which is a sparse subset of the real graph. However, this

13

algorithm cannot work in coordinate-free situations like this case since the construction

of a sub-network is based on the real distances between nodes.

In [43], the robot navigates incrementally along the optimal safest path via an

artificial potential field combined with a goal location. Li et al. used a hop-distance

metric based on the minimum number of hops as a measure of the node’s distance

from given targets or obstacles. Each node calculates a potential value from the hop

distances and potential values from its direct neighbors. The authors proved that the

computed path has an upper bounded with respect to the potential integration on

the optimal sensor path. This method belongs to one-beacon based navigation since

the hop-distance metric is built from node to node. O ’Hara et al. presented a similar

one-beacon based navigation algorithm in [57]. Their experimental results show th a t

the path is 24% longer than the optimal path on average. Chapter 4 will compare the

current approach (three-beacon based) to one-beacon based navigation.

2.3 Task A llocation

Batalin et al. [5,6] proposed distributed task allocation algorithms using a sensor

network. The sensor network is divided into multiple navigation fields based on the

priority of tasks that are related to distances from robots to certain tasks. However, it

is possible that all the robots might get assigned to the same task if they are originally

put in the same navigation field since robots do not participate in the decision making

process. When mobile nodes are able to localize themselves in a predefined map, Coltin

et al. [21] proposed two algorithms to allocate tasks in wireless sensor networks: an

auction-based algorithm and a tree-based algorithm. Simulation results demonstrate

14

that the auction-based algorithm is more efficient regarding the traveling distance

while the tree-based algorithm is more efficient regarding the communication cost.

Viguria et al. [71] presented an auction-based distributed algorithm th a t can avoid

infinite loops caused by a scenario th a t two robots share the best bids for at least

three tasks. However, while this project aims to develop an algorithm without the

existence of any central controller, their algorithm is not fully distributed since central

robots are required to control all the bids and assign tasks. Parker [61] introduced a

distributed behavior-based task allocation software architecture (ALLIANCE) that

is robust and flexible. ALLIANCE mainly utilizes sensory d a ta to allocate tasks,

while broadcast communication is used to enhance ro b o t’s perceptual abilities. An

underlying assumption is that each robot should either be able to sense actions from

others or in the range of others’ communication radius. This assumption in not

considered in this method.

2.4 Leader Election

A leader election problem for ring networks is presented in rings [15,42] and for

arbitrary networks in [30,39]. A good survey of distributed algorithms can be found

in [67]. Burns [12] has proved that the lower bound of an asynchronous leader election

algorithm is f2(m + n logn). Vasudevan et al. [69] proposed an asynchronous leader

election algorithm (AEFA) for dynamic networks, where a source node is responsible

for initializing and finalizing the algorithm. However, in the current scenario, there is

no need to find another leader if a source node already exists.

15

2.5 O bstacle Avoidance

Obstacle avoidance will be discussed as a possible extension in Chapter 8. As

described in [9], a single sonar has some inherent shortcomings such as misreading

from ultrasonic noise or neighboring sensors reflection, poor directionality and specular

reflection. By assuming a robot can perfectly follow the edges of an obstacle and know

the corners of obstacles a prior, Papadimitriou et al. [60] analyzed the lower bound on

the length of navigation. Borenstein et al. [9] developed a vector field histogram-based

approach for the real-time and fast obstacle avoidance, where the navigation area is

divided into many cells, and obstacles are represented by a modified certainty grid

method [27]. The greater the certainty value of a cell, the higher the probability that

the cell is occupied by an obstacle. This approach uses coordinates to calculate the

certainty value of each cell and assumes the coordinates of th e navigation goal are

known a priori. However, these two conditions can not be satisfied when an obstacle

avoidance algorithm is developed in a coordinate-free and localization-free WSN area.

2.6 Hardware Experim ent

In Wang and Hu [72], a Cricket platform is used for localization by a trilateration

method. A trilateration query protocol is applied in order to localize newly added

sensor nodes. In [37], Kapse et al. introduced an indoor localization method using

Cricket platforms and a Pioneer robot. In addition, Mohammad [55] used both Cricket

and Pioneer 3-DX systems to fulfill the navigation task based on the trilateration

theory, dem onstrating th a t the robot follows the designated path within the error

of 10 cm. W ith the Cricket platform, Wang and Xiao [18] developed a localization

16

method based on Maximum Likelihood Estim ation (MLE). However, these methods

require the coordinate information of each node, which is not always possible. Instead,

this project proposes navigation algorithms th a t are applicable for coordinate-free

sensor and actuator networks where precise knowledge of the location of the nodes is

not required.

CHAPTER 3

PROBLEM FORMULATION

The main problem addressed is to navigate UGVs in a self-organized WSAN

such th a t the UGVs are able to reach target nodes. The problem stems from the

hole coverage patching problem where the UGV is required to automatically navigate

through the sensor network towards the nodes th a t have been identified as coverage

hole boundary nodes, as shown in Figure 1.1. W hen there is more than one hole

boundary node, the UGV is allowed to navigate to any one of the hole boundary nodes

since they are equivalent in term s of hole patching tasks. Though the navigation

technique can be used for other purposes requiring traversal to an identified set of

nodes, for concreteness the process is explained with regards to the original application

of the hole patching problem.

To model the system, certain assum ptions are m ade on the capabilities of

the WSAN and UGVs. In particular, the problem is considered under the following

assumptions:

1. Nodes in the network are identical w ith regard to bo th communication and

actuation capabilities. Each node is capable of producing an actuating signal

with an amplitude a a t up to three distinct frequencies f k for k e {1,2,3};

2. Sensor nodes are stationary after the deployment;

17

18

3. Communication between nodes is uniform and constant where two nodes can

always communicate if and only if they are within communication radius rc;

4. The actuating model is omni-directional with actuation signal range ra > 2r c;

5. The UGV has a sufficient control to move in a given direction, i.e., the UGV is

a point mass as in [4,43] without any kinematic dynamics;

6. The UGV can communicate with sensor nodes within distance rc and is equipped

with a set L of listener devices capable of detecting actuator signals at frequencies

fk within distance r a;

7. The target node(s) are identified before the s tart of the navigation algorithm at

time t0, and the UGV and the target node(s) are always connected by a path in

the communication graph;

8. Coverage holes or destinations are far enough from each other.

A brief overview is presented before the details of th e algorithms. Both

centralized and distributed algorithms share the same core concept. F irst, sensor

nodes are classified by the hop-distance from the nearest ta rg e t node. The hole

boundary nodes are labeled, which are identified in the previous process, as hop-0 or

level-0 nodes. Then, hop-1 (level-1) nodes, hop-2 (level-2) nodes, etc. are identified,

based on communication connections between nodes. Such a classification process

is called a level assignment. The level assignment process stops when all nodes are

assigned a level number. The UGV does not take part in the level assignment process.

Second, the UGV progressively moves towards lower level nodes until reaching any

hole boundary edge or hole boundary node. This is accomplished by using an actuator

19

network, which could be formed by one of several actuator sources including LEDs,

magnetic forces, or specific radio frequencies. The WSAX effectively guides the UGV

by generating a potential field. This process is called the UGV control. In general,

the level assignment algorithm is the preliminary step for the UGV control algorithm.

At any instant, a subset of the nodes in the network can be transm itting an

actuation signal at a given frequency. For time i, let S jr., for k e {1, 2,3}, be the set of

nodes currently transmitting at frequency /*. and let S l = US£ be the set of all nodes

currently actuating. From assumptions, each node i G Sj, can generate a radially

symmetric potential field Uik a t frequency /*.. Three different frequencies, / i , f i and

/ 3 , were chosen each time for the active actuators to avoid interference. For each node

i € Sj,, the potential field at each listener j £ L on the UGV, is given by

Uljk — a • 6ij, (3.1)

where is the signal strength th a t listener j gets from node i. Signal strength el} is

inversely proportional to the path loss (dp)m [63], where dtJ is the physical distance

from node i to listener j and m is the path loss coefficient, usually m > 1. For

simplicity, it is assumed th a t el3 = . The signal strength ei3 becomes infinity

when dij = 0. The combined potential field at listener j for frequency fk is given by

= = <3-2>
tes* *€$1

where dl;! / 0. The computation complication can be avoided in the case of distance

equals zero. For example, when the detected distance d equals zero, d can be set

artificially to a every small value. Based on this real potential field, the UGV constructs

an artificial potential field a t each listener, which it uses to navigate the network,

given by Uj = Ylk ^/Ujjk- the proposed algorithm, it is ensured th a t at most one

node is transm itting at a specific frequency at any given time. Thus, Uj simplifies to

The listener devices are placed on the UGV such th a t all (but one) listeners

UGV) on a circle centered around the remaining listener 0. Let 90 to indicate the

center of the circle, as shown in Figure 3.1. Listeners should be placed such that

their separation is above the precision of their distance measurement capabilities. For

example, for Cricket systems, the precision is 1-3 cm [53]. The number of listeners and

the radius p can be changed to adjust the accuracy of the UGV control. Simulation

results illustrate the concept of multiple listeners.

At time t, the UGV determines its new relative moving direction 9l by finding

the local minimum value among the potential fields given by

If 61 = 6q, then the UGV is assumed to have reached a local minimum position.

' k

j e L are equally spaced at angles 6j (to indicate an angle direction to navigate the

Figure 3.1: Arrays of listeners on the UGV.

6l = (9,, where Uj = min Uj.J J 1C. T J (3.4)

21

The UGV moves in discrete steps w ith a predefined step size, requiring a

trade-off between accuracy and energy consumption. In the simulation tests, a step

size p is used. For larger step sizes, the accuracy will be lower, increasing the likelihood

th a t the UGV oscillates around the local minimum of the potential field. However,

in a sparse network with a large sensor communication radius, it may not be energy

efficient to use a relatively small and fixed step size as the UGV could repeatedly be

adjusting its course. Making the step size dynamic and analyzing the trade-off under

real-life situations will be considered in future work.

When multiple UGVs and multiple destinations arise during the same time

period, a decentralized allocation process is needed to allocate each UGV a distinct

destination. Each UGV can take only one destination a t a tim e and each task only

needs one UGV to execute. Supposing M destinations and N UGVs, an Integer Linear

Programming (ILP) problem can be formulated as follows:

• the set of M destinations or tasks is denoted as {Tj, T2, •••> Tm }

• the set of M relative weights of the tasks is denoted as {tci, io2, •••, w m }

• the set of N UGVs is denoted as { / 1 , / 2, ..., I n }

• the nonnegative cost of UGV U for task T3 is CtJ, where 1 < i < N and

1 < j < M.

As in most real-life applications, only problems when M > N are considered.

The task allocation problem is to find an optimal allocation of UGVs to accomplish

all tasks. An allocation can be considered as a set of UGV-task pairs (A, T3). Now

the problem can be formulated as an ILP problem - find non-negative integers

th a t maximize

22

(3.5)

subject to

2_^ocij > 1 , Vi,
j (3.6)

= 1, Vj.

The Equation (3.5) is the overall system cost, while Equation (3.6) defines the

constraints. Let define each individual utility as

where d,j is the hop distance between UGV /, and task Tr T he definition of weight

Wj varies for different applications. For the initial application, the weight Wj of task

Tj can be calculated as the number of nodes involved in T3. If a solution exists, it can

be obtained using ILP.

Also considered is the special case when multiple holes exist with only one

available UGV in the network. The single-UGV, multi-destination navigation problem

is similar to the Traveling Salesmen Problem (TSP), where the UGV aims to inten

tionally visit all destinations once. Still, some destinations can be visited more than

once if they are on the path aimed at other destinations. The UGV is not required to

go back to the original s ta rt point.

Before the leader election process starts, it is an open problem to determine

which nodes should participate and respond to it. Although in the original problem,

this process can only proceed in nodes identified themselves as hole boundary nodes [75],

(3.7)

there is no general answer to all applications. To focus on th e topic, it is assumed

that nodes can identify themselves.

Detailed introduction of the proposed algorithms as well as pseudo codes are

presented in Chapter 4.

CHAPTER 4

ALGORITHMS

This chapter describes algorithms for network hop-distance identification and

UGV navigation control, as well as coverage hole patching. A general logic view of

proposed algorithms is shown in Figure 4.1.

Input:
source nodes (navigation target nodes)

1
L e^erT T ection^A lgoH thm jj

Level Assignment Algorithm I

^ ^ ^ ^ u io c a tio ^ ^ U g o r ith ^ ^ ^ ^ e lin g ^ ^ ^ ^ U ^ r ith ^ ^

U^^^CQ M roT^gorith^^

H ol^ T atch in g^ Igorith m J

Figure 4.1: Logic flow of the proposed algorithms.

The Leader Election Algorithm is required to distinguish different targets when

there are multiple targets exist. After targets are identified, the Level Assignment

Algorithm will be triggered to estimate the nodes’ distances to each target. Then, if

there are multiple UGVs ready to be deployed, the Task Allocation Algorithm will

24

25

be applied to assign UGVs to different targets (tasks). Alternatively, the Traveling

UGV Algorithm will be used to determ ine the traveling order to the targets. Once

the UGV has a target selected/assigned, the navigation will proceed by the UGV

Control Algorithm. Finally, the Hole Patching Algorithm will be performed if there

are coverage holes needed to be patched in the network.

The Leader Election Algorithm and the Level Assignment Algorithm are

prerequisite steps prepared for the later algorithms. The Task Allocation Algorithm

and the Traveling UGV Algorithm deal with cases when multiple targets and multiple

UGVs are involved. The UGV movement or UGV navigation is controlled by the

UGV control Algorithm, which can be considered as the core algorithm. The Hole

Patching Algorithm is related to the original application where coverage holes are

aimed to be patched.

A simple single-UGV, single-destination navigation problem is first considered.

Two algorithms will be included related to this problem: the Level Assignment

Algorithm and the UGV Control Algorithm. A centralized algorithm is presented,

followed by a corresponding distributed version. In the centralized algorithm, there

exists a central controller, which connects to all the nodes and has full access to

all information in the nodes. In this case, the cost of transm itting messages is not

considered since the data are processed and stored locally inside the controller. In

the distributed algorithm, each node is considered as an individual processing and

storage unit. A main difference between centralized and distributed algorithms is the

way they retrieve and process data: for the centralized algorithm, data are retrieved,

processed and stored inside the central controller while for the distributed algorithm,

26

data processing in the individual nodes is heavily coupled with the exchange of data

via radio communication, where delays can be common. Therefore, space complexity

are discussed and time complexity in the centralized algorithm and communication

complexity in the distributed algorithm, respectively.

When considering the multi-UGV, multi-destination navigation problem, the

following algorithms are used in navigation and control: Timer-based Leader Election

Algorithm, Distributed M ulti-Destination Level Number Assignment Algorithm and

WSAN-Aided Greedy Task Allocation Algorithm. In the special case of a single-UGV,

multi-destination navigation problem, the WSAN-Aided Nearest Neighbor Algorithm

is presented.

After the algorithms for UGVs navigation, a Hole Patching Algorithm (HPA) is

presented for cases when hole boundary nodes are identified. Hole patching nodes are

deployed along virtual perpendicular bisectors of each hole boundary edge. Since no

additional information is available about either the coverage hole or nodes’ coordinates,

some redundant nodes might be added to the network, and the algorithm is not optimal

in terms of number of added nodes.

4.1 Single-UG V, Single-D estination Case

4.1.1 Level Assignm ent Algorithm

The control algorithm requires th a t each node has a graph theoretic notion

of its distance to the target node(s), called the hop distance. A hop is simply a

communication link from one node to another. Thus, the hop distance between two

nodes is equivalent to the smallest number of edges in all paths in the communication

27

graph between them. The hop distance hij is defined as the number of hops from node

i to node j .

4.1.1.1 Centralized Algorithm

In the centralized level assignment algorithm, d a ta are processed and stored

inside the central controller. The controller arranges nodes with the same hop distance

to targets in the same set. Let 5 be the set of all nodes in the network and 5(0) be

the set of target nodes (hole boundary nodes), where 5(0) C 5. The level assignment

process starts from the nodes in 5(0), defined as hop 0 nodes. The subset S(l) C 5 is

defined as S(l) — {7 | hio = I}, where o £ 5(0). Consequently, hop-1 nodes belong to

5(1), hop-2 nodes belong to 5(2), etc. Once node i £ 5 is added to 5(Z), it is said

th a t node i is assigned its level number. Level numbers are assigned in ascending

order until all nodes receive a level number. Algorithm 1 presents the centralized level

assignment algorithm.

Algorithm 1 Centralized Level Assignment Algorithm for Single-Destination WSAN
1 Set I = 0
2 for hole boundary node i do
3 i S{1)
4 end for
5 w h ile there still exist node(s) not yet leveled do
6 for node j 6 S(l) do
7 for node k 6 N(j) do
8 if k does not belong to S(l) or another lower level set th e n
9 k -> S(l + 1)

10 end if
11 end for
12 en d for
13 1=1 + 1
14 end w h ile

28

Algorithm 1 is based on the Breadth F irst Search Algorithm (BFS), possibly

with multiple source nodes. Similarly as in BFS, the time complexity of Algorithm 1

is bounded by the number of nodes in the network, n, as well as the number of

communication links, m. It has a running time of 0 (n + m) and uses 0(n) additional

space as the level in every node in the network must be stored. There is room for

improvement, particularly if the UGV is relatively close to the target node. If target

nodes are initially within range of the UGV, which could be checked with a simple ping,

the level assignment process can be term inated once the level of one of these nodes

has been identified. As described in the next subsection, th e proposed navigation

algorithm always moves the UGV to lower leveled nodes. For a specific target, no

higher level is required if the UGV has detected a lower level. Consequently, if T is

the number of target nodes, let b be the maximum degree, number of neighbors, of any

node in the network, and D be the hop distance from the UGV to one of the target

nodes, the algorithm’s time and space complexity can also be bounded by 0 (T b D).

4.1.1.2 D istributed Algorithm

In a distributed system, every node has a limited ability to store and process

data, and da ta are shared by direct transm issions between nodes. How to modify

the centralized algorithm to perform a level assignment on a distributed system is

shown. For each node, let the level assignment I represent the current known shortest

hop distance from the node to any target node. Initially, I is 0 for all target nodes

and infinity for all other nodes. As the algorithm proceeds, a node adjusts its level

number whenever it receives a message indicating a shorter hop distance, subsequently

29

transmitting its revised level number to all of its neighbors. This process is similar to

a distributed shortest path problem from target nodes to all o ther nodes, with the

weight of each edge equaling one. Many distributed shortest-path finding methods

already exist [31,35,52,66], but they focus more on providing algorithm s to handle

changes in network topology. However, node or link failures are not considered when

developing the Level Assignment Algorithm since, unlike these prior algorithms, it is

not needed as an independent algorithm. The level assignment is processed mainly for

the UGV control algorithm, presented in Section 4.1.2.

The level assignment algorithm needs to be both simple and efficient. In case of

communication failures, the UGV can adjust its navigation. The proposed algorithm

is simpler than the complex distributed shortest path algorithm s [31,35,52,66] due

to the following facts: first, it avoids loops in finding the minimum weights by using

unit weight for every edge; second, the messages transm itted in the algorithm are very

simple, only the local level number is needed; third, the algorithm does not employ any

technique to detect changes in the network during the Level Assignment Algorithm,

which is helpful for the time and energy savings in WSANs.

The original application considered here is to navigate a UGV towards a single

target hole consisting of possibly many target nodes, where the entire set of target

nodes is considered as a single target. Algorithm 2 presents the pseudo-code of the

Level Assignment Algorithm for the single-target navigation problem. The process of

Algorithm 2 is illustrated in Figure 4.2. The level number of a node only depends on

the level number of its neighbors.

30

A lg o rith m 2 Distributed Level Number Assignment Algorithm for Single-Destination
WSAN

1 if node is target node th en
2 I <- 0
3 broadcast I
4 else
5 I <- oo
6 end if t> Initialization phase
7 w h ile time remaining do
8 lr <— the received level number from a neighbor
9 if I > lr + 1 th en

10 I i— lr 1 1
11 broadcast I
12 end if
13 end w h ile t> Level number assignment

hole boundary
node / l = oc

l = cc

hole boundary,
node I = oo

/ =0

lr =0,1 = 1
- 0 , / - 1 lr =1,1 = 2

hole boundary
node /

1=0

Figure 4.2: Successive processes of Algorithm 2.

After receiving direct messages from the target nodes, 1-hop neighbors self-

identify as level-1 nodes. Subsequently, level-2 nodes self-identify after receiving

messages from level-1 nodes, etc. Every node eventually receives the lowest level

number possible under the assum ption th a t there are no topological changes in the

31

communication graph during this process. What is essential and addressed in different

manners in other schemes is when to term inate the process.

This study is more concerned with communication cost over performance time.

Therefore, it is assumed that there is an estimated bound on the time it takes a single

message to propagate from a target node to every other node in the network. In

particular, it is assumed th a t the tim e it takes for a message to pass from a target

node to all other nodes is 0 (D) . Clearly, D < n but it could be significantly less in

practice. Therefore, each node runs the level assignment process for some factor of

D units of time. In practice, this algorithm can be event driven. Except when the

node(s) self-triggers the algorithm, updates of level numbers can simply be a part of

the regular message retrieval system whereby the nodes can update their level numbers

as new information arrives. The proposed navigation algorithm could be adapted for

this situation; however, in the analysis presented here the simplified model is used.

The communication complexity is defined as the maximum number of messages

transmitted during the execution as in [35,66,68]. In this scenario, a message broadcast

to multiple neighbors counts as one underlying cost. Since Algorithm 2 is event driven,

messages are generated exclusively when a level num ber changes. Therefore, the

communication complexity is asym ptotically bounded by the maximum number of

times that a level number changes. In [31,52,66], the authors discuss communication

complexity for synchronous communication models. The distributed model looks at

asynchronous communication resulting in the inevitability of redundant messages

because of potential transmission delays, as can be found, for example in [7, Chapter

5],

32

Suppose there are n nodes in the network and k target nodes. During the

initialization phase of Algorithm 2, only target nodes send a message, yielding a

communication complexity of 0 (1) for each target node and O(k) for all target nodes.

In the level number assignment phase of Algorithm 2, the if-condition is always false

for target nodes. For every non-target node, the first new level value received must

necessarily be no more than n — k. Since each broadcast by a node occurs exclusively

when the level number decreases until reaching a minimum of at least one, each node

can therefore broadcast at most n — k times. Thus, th e to ta l number of messages

generated is 0 (k + (n — k) ■ (n — k)) or 0 (n 2) where k is a constant. In practice,

particularly when used for finding holes in a coverage area, the graph is expected to

be sparse. Meanwhile, if there is an upper bound on the num ber of neighbors for

each node and some additional assum ptions on the communication delays are also

made, the expected complexity can be improved to 0 (n) according to the theorems

presented in [68].

4.1.2 U G V Control Algorithm

The control algorithm presented here uses similar concepts as in [64]. However,

a potential field is generated using a series of three actuator nodes. There are two

main advantages for using multiple actuators: first, the system is more robust to

node failures and more tolerant of noise. For example, in an algorithm with only one

actuator node (beacon), when the connection (actuation signal, not communication

signal) between the UGV and the actuator node is lost because of node failure or

noise, new communications between the UGV and its neighboring nodes have to

33

be established to find an alternative actuator node in order to continue the UGV’s

navigation progress. However, when there are three actuators, the algorithm can be

tuned to tolerate up to two failures of actuating connections. In such a case, with

no need to stop and establish new communication connections with other nodes, the

UGV can instead move directly towards the active actuator, which is equivalent to a

one-actuator algorithm. Chapter 7 shows simulation results th a t compare the UGV

control algorithm with one and three actuators. Second, using three actuator nodes

offers additional flexibility in terms of the generated potential field, compared to the

case with only a single actuator node. For example, in a real-tim e experiment the

movement of the UGV can be controlled in order to avoid certain coverage areas by

adjusting the amplitude of a for each node independently. The shape of the potential

field can be adjusted with three adjustable actuators, allowing for more variation

in the UGV path compared with the control using only one actuator. Only three

actuators are used since without additional assumptions the presence of a fourth node

to act as an actuator cannot be guaranteed. W hen using more actuators, there is

also a trade-off between energy required by the additional actuators and energy saved

in reducing the navigation traveled distance of the UGV. Though worthy of further

exploration, the analysis of this trade-off using specific actual physical systems is

reserved for future work.

To avoid the UGV getting stuck during the navigation, it is im portant for

the network to control which three actuators are active. Suppose the three active

actuators are labeled nodes A, B, and C. Let node B be a neighbor of the UGV that

has the lowest level number among all the neighbors of the UGV, for example node 2 in

34

Figure 4.3. When there is more than one neighbor with the same lowest level number,

the UGV arbitrarily picks one of them. Once node B is chosen, two of its neighbors

are chosen as nodes A and C, where at least one of nodes A and C should be one level

lower than node B. It is possible that in the initial step the first node chosen for node

B has only one neighbor. However, as is discussed shortly, th is condition is trivial.

The UGV navigation can be fulfilled by sequentially switching these actuator triplets.

That is, three active actuators are used to generate a potential field to drive the UGV

to a specific position (a local minimum point) based on Equation 3.3. As proven in

Lemma 4.1, the UGV converges to the local minimum of the potential field located

inside the area within distance rc of all three active actuator nodes. Assumption 6

ensures th a t the UGV can always hear signals from the three active actuators.

node 1,1 = 1 (node A)
node 4, I = 7

node 3, I = 6 (node C)

UGV
node 5, / = 8 node 2, I = 7 (node B)

node 8, I = 8
node 7,1 — 9

node 6, Z = 10

Figure 4.3: UGV navigation in a WSAN, where each node’s ID, level number and
connections are shown. At this step in the example, we have the potential field
generated by the triplet of actuator nodes A, B , and C, shown as circles, which are
assigned to nodes 1, 2, and 3, respectively.

35

Due to the original problem statem ent and the application to reach hole

boundary nodes, as well as for simplicity reasons, this dissertation does not allow the

UGV to go back to any higher level nodes. However, it is possible and feasible to

make the UGV tolerate some extent of backtracking. This is useful when the UGV

cannot find any lower level nodes due. for example, to node failures or encounters

certain dangerous situations. In this dissertation, the navigation is considered to have

failed if the UGV cannot find any lower level node, which can only happen if there is

a topological change in the network.

L em m a 4.1. Any local minimum point p of the potential field A B C is located in the

area within distance rc of all three active actuator nodes A, B and C .

Proof Define di;j to be the physical (real) distance between two points i and j . That

is, the distance from node i to a local minimum point p can be denoted as dip. W ithout

loss of generality, a = 1 can be set in Equation 3.3, making the combined potential field

at point p to be Up = (dAP)rn + (dBp)m + (dCp)rn. Assume for the sake of contradiction

th a t the lemma is false and th a t p lies outside the stated area. Then at least one

of the distances is larger than rc. There are two situations, as shown in Figure 4.4.

First, assume that B is furthest from p. Let q be a point infinitesimally close to p on

the ray extending from B to p. T hat is, q = p + e(B — p) for some e > 0. Observe

th a t dqB < dPB■ Now examine the triangle formed by B, A and p. Since the edge

from B to A has length dBA < rc and since the edge from B to p has length dBp > rc,

the angle at p must have value less than 90° as edge B A cannot be the longest side.

But this means that q lies inside the circle centered at A of radius d^p, for sufficiently

36

small e. Therefore, dAq < dAp. Similarly, dCq < dCp can be shown. This implies th a t

Uq = (dAq)m + (dBq)m + (dcq)m < (dAp)m + (dBp)m + (dCp)m = Up. This contradicts

the fact that p is a local minimum.

V

Figure 4.4: Illustrated cases in the proof of Lemma 4.1.

Now, assume that A is furthest from p, the case for C being analogous. Again

let q = p + e(A — p) be a point infinitesimally close to p. Using the property of the

triangle formed by A, B and p as before, it can be shown th a t dBq < dBp. However,

the case for node C is a bit trickier. If dAc < rc, then the triangle argument can again

be used to show th a t dCq < dcp yielding the contradiction th a t Uq < Up. However,

it is possible th a t dAc > rc. Now look a t the change in the sum of the two distance

terms associated with A and C in the movement from p towards A. T hat is, consider

A = (dAq)rn+(dcq)Tn—(dAp)m — (dcp)m- Observe from the choice of q, th a t dAq = dAp—x

for some x infinitesimally close to 0 and th a t dcq < dcp + x. Thus, let A < f (x) =

(idAp — x)m 4- (dCp + x)m — (dAp)m — (dcp)m■ Clearly, /(0) = 0. If the first derivative of

this function is located at 0, it can be seen that f ' (x) = ra((dcp+a:)Tn~1 — (dAp — x)"1-1).

37

Consequently, /'(()) = m((d,Cp)m~ 1 — {dAp),n 1) < 0 since from the assumption dAp >

dcp and in > 1. This means th a t f (x) < 0 for x infinitesimally close to 0. So,

Uq- U p = (dAqr + (dBq)m + (dcq)m- (d Ap)m- (d Bpr - (d c p)m = {dBq)m- (d Bp)m + A.

Since A < f (x) < 0 and dBq < dBp, Uq — Up < 0 which again contradicts the fact that

p was a local minimum. □

Lemma 4.1 proves th a t when the am plitudes of actuating signal strength

from nodes A, B and C are equal, the UGV th a t can arrive at the local minimum

point of the current potential field (generated by nodes A , B and C) will be able

to communicate to all of the three nodes A, B and C . Based on simulation results,

when the amplitudes are not equal and can be adjusted, it is found th a t the local

minimum point is still located inside the communication range of nodes A, B and C ,

as illustrated in Figure 4.5, where nodes A, B and C are arbitrarily placed. As can

be seen from the upper figure of Figure 4.5, there is only one minimum point in the

defined area, indicating the local minimum of Equation 3.3 is also the global minimum

or the UGV can at least always find the right direction until reaching the minimum

point. In the lower figure of Figure 4.5, one can see th a t the local minimum point is

always located in the intersection (darkest area shown) of the communication radii of

nodes A, B and C , which also validates Lemma 4.1.

38

Cost (3 actuators)

© Node A, B, C
^ Local minimum
 Radio connection

Figure 4.5: An example of Equation 3.3, where nodes A, B and C are arbitrarily
placed.

39

4.1.2.1 Centralized U G V Control Algorithm

In the centralized algorithm, the central controller has the level numbers of

all nodes. To take advantage of this property and for simplicity, the centralized

control algorithm proceeds off-line since the working sequences of the actuators can

be predetermined as in [64]. After Algorithm 1 is finished, the central controller

constructs a subset of nodes for navigation, which is called the navigation nodes.

Navigation nodes are classified as base nodes and assist nodes, as shown in Figure 4.6.

• Base node

O Assist node

— Communication connection

Figure 4.6: General view of navigation-assisted nodes in the centralized control
algorithm.

The base nodes, which control the main navigation direction form a sequence

of nodes from higher level nodes starting with a neighboring node of the UGV to a

hop 0 node, guaranteeing that the UGV can navigate to the destination. Assist nodes

are chosen to generate the potential fields. Algorithm 3 provides the pseudo-code for

the centralized control algorithm where the initial node p is a node originally within

communication range of the UGV.

40

The procedure for determining base nodes and assist nodes in Algorithm 3

proceeds iteratively with each iteration taking a t most 0 (b) tim e, where b has been

defined as the maximum number of neighbors of each node (also the maximum degree

of the underlying communication graph). Each iteration of th e moving phase takes

constant time except for the delay in waiting for the UGV to navigate to a local

minimum. Since each iteration decreases a level, the process terminates in at most D

iterations. Thus, the to tal time complexity is 0(bD). Since th e algorithm needs to

store a base node and an assist node for each successive level, the space complexity of

Algorithm 3 is 0(D).

Algorithm 3 Centralized UGV Control Algorithm for Single-Target WSAN
1: c> C o d e t o co n stru ct b ase n o d es
2: I is the level of the initial node p
3: L = l
4: put p into baseNode[L]
5: w h ile L > 0 do
6: search for an arbitrary lower level neighbor of baseNode[L\
7: put the neighbor into baseNode[L — 1]
8: L = L - 1
9: en d w h ile

10: t> C o d e to co n stru ct a ssist n o d es
11: L = I
12: w h ile L > 0 do
13: search for any neighbor of baseNode[L] that is not the node in baseNode[L — 1]
14: put the neighbor into assistNode[L)
15: L = L — 1
16: en d w h ile
17: > C o d e to m ove th e U G V
18: L = I
19: w h ile L > 0 do
20: turn on actuators baseNode[L\ , baseNode\L — 1] and assistNode[L]
21: navigate UGV to the local minimum of the three active actuators
22: turn off actuators baseNode[L\ and assistNode[L]
23: L = L - 1
24: en d w h ile

41

4.1.2.2 Distributed U G V Control A lgorithm

The communication in the distributed WSAN uses an event-driven and message-

passing framework. A single thread of each node, responsible for handling communica

tion and processing, runs in an infinite loop th a t continuously checks for events on a

queue and based on the type processes that event. In particular, if the event is a new

message from another node, it reads the new message and processes the message in a

similar manner. Algorithm 4 shows the general framework, though there are many

other valid ways possible.

Algorithm 4 Event-Based System Framework
1: p r o c e d u r e m a in T h r e a d

2: t> In itialize som e global variables
3: leaderFlag <— f a ls e t> True w h en sensor alarm triggered
4: lo o p
5: event <- g e t N e x t E v e n t
6: i f event.type = newMessage t h e n
7: p r o c e s sM e ssa g e

8: e l s e i f event.type — sensorEvent t h e n
9: p r o c e ssS e n s o r E v e n t

10: e l s e i f event.type = leaderAlarmEvent t h e n
11: p r o c e s sL e a d e r A la r m

12: e l s e i f event.type = activated!opCountEvent t h e n
13: p r o c e ss A c t iv a t e H o p C o u n t

14: e n d i f
15: e n d lo o p
16: e n d p r o c e d u r e
17:
18: p r o c e d u r e p r o c e s s M e s s a g e
19: m i - r e c e iv e M e s s a g e
20: i f m.type = exit t h e n
21: EXIT > T erm in ate th e program
22: e l s e i f m.type = leader Election t h e n
23: HANDLELEADERELECTIONMESSAGE(m.i<2, m l)
24: e l s e i f m.type = leader Elected t h e n
25: HANDLELEADERELECTEDMESSAGE(m.id)
26: e l s e i f m.type — level Assignment t h e n
27: HANDLELEVELASSIGNMENTMESSAGE(m.i<2, m l)
28: e n d i f
29: e n d p r o c e d u r e

42

The subsections discuss the individual events and message types. Also note

that due to power constraints in WSANs, it is not practical to use a common clock.

Thus, the framework is built on an asynchronous model. The assumption is made that

times are relatively the same, e.g. five seconds on one system is about five seconds on

the other.

A distributed, on-line navigation algorithm is proposed th a t proceeds in a series

of steps. The distributed control algorithm is an improved version of the centralized

one. In each step, there are two phases: a communication phase where the specific

potential field is determined for an interm ediate target area and a navigation phase

where the UGV moves through the field towards the interm ediate target area. The

specific active potential field is determined during the communication phase. In

the navigation phase, the UGV first calculates the next moving direction based on

Equation 3.3 and then moves by a predefined step size in that direction, after which

the UGV calculates a new direction. W hen the UGV reaches a local minimum of

the potential field (within a margin of error), the current step is completed and the

communication phase of the next step starts.

At the initial step and whenever the UGV reaches a local minimum, the

algorithm switches to the communication phase, where it assigns a triplet of actuator

nodes.

From Algorithm 2, it is known th a t node B , unless it is a target node, has at

least one neighbor that is a t a level lower than itself. In the UGV control algorithm,

node B assigns the role of node C to one of its lower-leveled neighbors and then

arbitrarily picks one other neighbor as node A. The triplet of actuator nodes A , B

43

and C generates the active potential field for the following navigation phase. For

simplicity, in the rest of this dissertation, it is assumed communication between the

UGV and the triplet of actuator nodes is done primarily through node B.

Lemma 4.1 guarantees that the UGV can always connect to a node that has a

lower level than the previous node B after reaching the local minimal point. That

is, the next communication phase is guaranteed to pick a new node B for the next

potential field whose level number is at least as low as the previous node C. In general,

when the UGV ultimately reaches a target node, there exists a series of nodes from

high level nodes to the final level-0 node along the UGV’s path th a t each act as

node B during some step of the UGV control. The fact th a t the UGV can always

communicate with node B also implies th a t it can detect the actuator signals from

all three active actuator nodes as the distance from the UGV to the farthest of these

three nodes is at most 2rc, and by Assumption 4 there is 2rc < ra.

Another consequence of Lemma 4.1 is that the UGV can send a single command

to nodes A, B and C to turn the actuators off when the current step is completed,

which helps to conserve energy in the network nodes.

In the pseudo-code for the distributed control algorithm (Algorithm 5), the

specifics of the process for choosing nodes A, B and C are not included, which has been

discussed earlier. Communication details, such as waiting time to receive messages,

are not discussed here. The communication complexity of the control algorithm is

fairly straightforward. Let D be the hop distance from the UGV to one of the target

nodes. At each phase, a t most a constant number of messages is transm itted from

the UGV to establish and turn on and off a trip let of actuator nodes a t the current

44

UGV location. Each actuator node responds a t most once to this call. This means

that there are O(D) messages transm itted by the UGV, and each node in the network

transmits at most 0 (1) messages, though in practice far fewer nodes will be involved.

Thus, the communication complexity is 0(n) .

Algorithm 5 Distributed UGV Control Algorithm for Single-Target WSAN
1 > C od e for th e U G V
2 repeat
3 broadcast a string “UGV.request”
4 wait for response from all neighbors
5 select node B, the neighbor with the smallest level number
6 send message “UGV.nB.on” to B
7 receive node ids of A and C from B
8 rep eat
9 listen for actuator signals from nodes A, B and C

10 calculate potential field at each listener
11 move towards the minimum in the potential field
12 u ntil at a local minimum
13 send message “UGV.ofF to nodes A, B and C
14 until node B is a target node
15
16 > C o d e for all netw ork nodes
17 turn off actuator
18 loop
19 m —> the received string from a neighbor
20 if m = = “UGV-request” th en
21 send message with level I to the UGV
22 else if m = = “U G VjiB.on” th en
23 broadcast the string (“N B.N” + I)
24 wait for response from neighbors
25 select nodes A and C based on lowest level numbers received
26 send message “NB” to nodes A and C
27 send ids of A and C to the UGV
28 turn on actuator
29 else if m = = “UGV.ofF th en
30 turn off actuator
31 else if m = = “NB” th en
32 turn on actuator
33 else if m = = “NB_N” + B.l th en
34 t> B.l is the level number from sender
35 if I < B.l th en
36 send level number I to B
37 end if
38 end if
39 end loop

45

S pecial C ase - A N o d e W ith D eg ree O ne E x is ts : It is necessary to

examine the case where there is a degree-one node i. Based on Algorithm 2, every

node except level-0 nodes identifies its own level number by adding 1 to the smallest

level number of its neighbors. Being a degree-one node, if i can get any valid level

number, its level number has to be one level higher than its neighbor, so there is no

higher level neighbor to node i. As the UGV always travels from a higher level node to

a lower level node, even if the UGV detects node i in its vicinity during its navigation,

it always can pick another suitable node B with degree at least two. Thus, the UGV

is only forced to assign node i as node B if the UGV is in the initial position of the

navigation. There are many ways to avoid this situation. For example, the UGV can

deploy one node at its initial position to act as the third node needed to construct a

potential field.

Contrary to initial assumptions, if the network topology of the WSAN changes,

it is possible for the UGV to be jam m ed somewhere in th e middle of navigation

because a lower level node cannot be found. Though this situation is not formally

covered in this dissertation, it is possible to solve this problem once some corrective

algorithms (including th e algorithms presented in [75]) are triggered to s ta rt over

again.

4 .1 .2 .3 C o m p ariso n s w ith O th e r A lg o rith m s

There are two m ajor differences between the presented algorithms and the

navigation protocol presented by Li et al. in [43]: first, it is proposed to use three

actuators to generate a potential field while Li et al. proposed th a t each node calculates

46

a potential field by received hop count. Second, because of the difference in generating

the potential field, in this algorithm, the UGV will move through the WSAN in the

space between nodes (can be found in Figure 7.1 in Chapter 7) while Li et al. proposed

th a t the mobile node moves from one node to the next node until it reaches the

destination.

A three-actuator algorithm can always be turned into a one-beacon algorithm

by activating only one of the actuators. In a centralized case, the base nodes (without

the assist nodes) can be used as beacons. In a distributed case, when node B does not

send requests to nodes A and C (nodes A and C are not activated), the algorithm

becomes a one-beacon algorithm. To emphasize the advantage of using more actuators,

Chapter 7 compares the three-beacon and one-beacon versions of the algorithm.

4.2 M ulti-U G V , M ulti-D estination Case

4.2.1 Leader Election Algorithm

The first task th a t m ust be handled is the identification of each individual

destination when there are many targets. Since m ultiple sensor nodes can detect a

single event simultaneously, a destination might be actually composed of a cluster of

nodes, all of which detect the same event. W hat needs to be accomplished is assigning

a unique identifier to this destination task. This process is equivalent to assigning

an identifier to the cluster of nodes. In this case, it is assumed th a t every node

has a unique (ordinal) identifier, and thus the highest identifier among the cluster

of nodes can simply be chosen. This is done by using a modification of standard

leader election algorithms. T h a t is, the cluster of nodes votes on a particular node,

47

the highest identifier, as the leader. The initiation and execution of this algorithm

depends on a few fundamental assumptions. F irst, it is assumed th a t the cluster

of nodes associated with a particular destination form a connected subgraph in the

communication network; th a t is, they can communicate among themselves. If this is

not the case, the only drawback is that a destination might be assigned with multiple

identifications. Second, it is assumed that the destinations are well separated; th a t

is, two clusters of nodes cannot communicate directly with each other. Otherwise,

multiple destinations might be treated as a single destination. Third, it is assumed

that once a node in a cluster detects an event, the other nodes in its cluster will detect

the event a t relatively the same time. Since the system is asynchronous, there will

certainly be differences in timing, but a simple delay in processing the initial passing

of messages can accommodate this difference. The leader election algorithm begins

when a sensor event is triggered. The creation of a sensor event is application specific

but could be triggered when a node senses a dangerous chemical reading or a high

temperature or, as in the initial application, when a node determines tha t it is on the

boundary of a coverage hole in the sensing area.

Because power consumption is im portant in WSANs, th e main issue in this

algorithm’s performance is not particularly processing time but the communication or

message complexity. When message complexity is counted by the number of pairwise

transmissions, Burns proved [12] an Vt(m -F n log n) bound on the message complexity

where m and n are the total number of links and nodes in the network, respectively.

A straight-forward approach to identifying a leader would be for every node

to transm it its id to the cluster. This would be accomplished by having every node

48

transm it a message containing its id to its neighbors who would then relay th a t

information on to their neighbors and so on. By remembering the messages sent to

prevent retransmission, the process would term inate with every node receiving the

identifiers of all nodes in their cluster. By selecting the largest id amongst the list,

each node would agree upon their cluster’s identification. However, a careful analysis

of this approach will show th a t, if n\ nodes in this cluster and ni\ edges in their

communication subgraph, Q(nimi) messages are transm itted. If the size of the cluster

is small relative to the overall size of the sensor network, this might not be a significant

problem; however, since power consumption is critical, it is preferable to have a more

efficient solution that still remains relatively simple.

The timer-based leader election algorithm builds off of this approach but instead

of transm itting its identification to the entire cluster, it sends the id only to nodes

that are at most t hops away, which is initially set to one. In successive passes, as long

as the node has not seen a higher identifier, it doubles the distance and retransmits.

Once a node has received a higher identifier, the node stops broadcasting its own

identifier and simply acts as a relay. Each message transm itted contains two critical

components, the potential leader’s id and the message lifespan, £msg• Each node keeps

track of the current best leader, the highest id known so far, which initially is just that

node’s id. W hen a new message is received, if the id is larger than the current best

known, the receiving node updates the maximum value, and if the lifespan is larger

than one, it retransm its the new identifier, w ith a decreased lifespan. As a further

refinenment, if the id matches the current known highest and the remaining lifespan

is larger than previously, the message is retransm itted. Each pass lasts a certain time

49

T, discussed shortly. After the alotted time, triggered by an alarm event, the node

retransmits if it still has the highest id seen by it so far, as shown in Algorithm 6.

Algorithm 6 Timer-based Leader Election Algorithm
1: p r o c e d u r e p r o c e s s S e n s o r E v e n t
2: > Initialize global variables
3: leader Flag «— t r u e t> Node can participate in leader messages
4: idmax 4— id > Current max is node’s id
5: ^max «—oo t> No relay of this value
6: dmax <— estimated diameter of cluster c> Application specific value
7: (-mag 4— 1 o Initial message lifespan
8: Tw <— Tp +■ Tt > Wait time between retransmissions
9: ide 4— — 1 t> Stores official leader, once elected

10: c> Start transmitting after slight delay
11: p o s t A l a r m E v e n t (leaderAlarmEvent, initialDelay)
12: e n d p r o c e d u r e
13:
14: p r o c e d u r e p r o c e s s L e a d e r A l a r m

15: i f id max = id t h e n
16: i f Urnsg ~ 2dmax t h e n
17: ide 4— id > This node is the leader
18: BROADCAST(?eaderElected, ide)
19: p o s t E v e n t (activateHopCountEvent)
20: e lse t> Still the potential leader
21: BROADCAST (leader Election, (id,£mSg))
22: PO STA hARM EVEN T(leaderA larm Event, T w)
23: Z-msg 4— 2£msg > Increase message lifespan and wait time
24: T w 4— 27',,,
25: e n d i f
26: e n d i f
27: e n d p r o c e d u r e
28:
29: p r o c e d u r e HANDLELEADERELECTIONMESSAGE(ldr , £r)
30: i f leaderFlag = fa ls e t h e n
31: r e t u r n t> Not part of the leader algorithm, ignore message
32: e l s e i f idr > idmax o r (idr = idmax a n d i r > £max) t h e n
33: > A new larger id or longer transmission range for max id
34. idmax 4 idT
35: fm ax 4— l r
36: BROADCAST(idmax, A — 1) t> Retransmit with shorter lifespan
37: e n d i f
38: e n d p r o c e d u r e
39:
40: p r o c e d u r e HANDLELEADERELECTEDMESSAGE(ld)
41: i f ide = — 1 t h e n > First notification of a leader.
42: ide 4— id
43: b r o a d c a s t (leader Elected, ide)
44: p o s t E v e n t (activateHopCountEvent)
45: e n d i f
46: e n d p r o c e d u r e

50

The process term inates once tim e has passed for a message length th a t is

roughly the diameter of the subgraph. This is certainly not more than rii, the number

of nodes in the cluster, but based on the application one could find a tighter estimate.

Once the process term inates, the sole leader will broadcast a final message to the

cluster to commence the next phase of the algorithm: determ ining hop distances in

the entire network.

When transmitting a message of distance £ hops, it is important that the node

waits sufficiently long for the message to propagate through the network. Though

it does not cause errors in leader election, a shorter wait tim e can increase the

chances of more messages being transm itted. This time delay can be computed using

£(TP + T(), where Tp is the time to process a message and Tt is the time to transm it

a message. This can easily be adapted to include the tim e to retransm it in case of

errors in communication. Algorithm 6 presents the algorithm in its entirety. Note,

procedure p r o c e s s S e n s o r E v e n t is the procedure initially triggered by a sensing

event, procedure p r o c e s s L e a d e r A l a r m is the procedure triggered after every delay,

which retransmits the id at progressively longer hop counts, assuming the id is still the

maximum seen by that node, and procedures h a n d l e L e a d e r E l e c t io n M e s s a g e and

HANDLe L e a d e r E l e c t e d M e s s a g e handle the passing of leader messages throughout

the cluster. Figure 4.7 illustrates one example of the algorithm . Before proceeding

further, it is im portant to show th a t the algorithm does determ ine a leader for each

cluster.

51

(a)

9 "

(b)

(c)

(d)

Figure 4.7: Successive iterations of the Level Assignment Algorithm. Active nodes,
shown as squares marked with their ID, broadcast their ids for maximum distances of
(a) one (b) two (c) four and (d) eight hops. Relay nodes, shown as circles marked with
the maximum ID received prior to the iteration, only retransm it received messages
with larger IDs. The shaded nodes represent those nodes covered by the eventual
leader for that iteration. Solid arcs represent the communication graph. A dashed arc
from node a to node b indicates th a t node a was able to transm it its id to the given
node within the proper hop distance. Observe th a t during th e final iteration of this
example only two nodes remain active and the leader gets selected after the iteration
completes.

52

Lemma 4.2. When the maximum waiting time Tw > dmax(Tp + Tt), any cluster of

nodes will have exactly one elected leader after following Algorithm 6.

Proof. Since each cluster is sufficiently close to communicate among themselves but

sufficiently separated to not communicate with nodes in any other clusters, each cluster

can be considered as a distinct connected graph. Based on th e value of dmax, any

message of lifespan £msg > dmax can be received by all other nodes in the cluster. Since

Tw — (.msg(Tp + Tt), the message has sufficient time to reach the furthest nodes. Since

each id is unique, this implies th a t the highest node has sufficient tim e to transm it

its identifier to all other nodes in the cluster. Consequently, since all other nodes in

the cluster will at some point have received this identifier, these nodes will no longer

consider themselves the leader. □

4.2.2 Level Number Assignm ent Algorithm

In the network, each node calculates and m aintains its hop distance to all

destination clusters, or tasks. The UGVs navigate through th e network towards a

destination cluster by progressing from one node to a closer node. To calculate these

distances, the previous single UGV single destination Level Assignment Algorithm

is modified. It is proposed th a t each node store a local m ap m apt , where the tasks’

ids are set as the m ap’s keys and the hop distances are set as the m ap’s values. For

simplicity, it is assumed that the map returns an infinite distance for ids not currently

in the data structure.

Algorithm 7 describes the modified level assignment algorithm, which is

triggered when the initial cluster nodes determ ine a winner from the leader election

53

and invoke the procedure PROCESSAc t iv a t e H o p C o u n t . The other nodes passively

process and retransm it level numbers as they are received from other nodes. Since

the system is event-based, there is no need to term inate the process, the messages

progress through the network until all nodes have determined their hop distances to

each task.

A lg o rith m 7 Distributed Multi-Destination Level Number Assignment Algorithm
1: p r o c e d u r e p r o c e s s A c t iv a t e H o p C o u n t
2: mapt.p u t (ide, 0) c> The mapt is initially empty
3: b r o a d c a s t {level Assignment, (id(, 1))
4: e n d p r o c e d u r e
5:
6: p r o c e d u r e HANDLELEVELASSIGNMENTMESSAGE(*dr , £r)
7: i f mapt.GET(() idr) > £r t h e n
8: > Discovered a distance for i d T closer than previously known
9: m a pt -P V T (() id r , £r)

10: BROADCAST (level Assignment, (idr,£r + 1))
11: e n d i f
12: e n d p r o c e d u r e

4.2.3 T ask A lloca tion A lg o rith m

The UGVs passively wait for neighboring sensor nodes to determine hop

distances to known task clusters. Once these values have been determined, the

multiple UGVs must negotiate to determ ine which task each should tackle. The

WSAN is used to store information about the tasks: each node stores an additional

local hash map mapc that stores the information on the claiming status of tasks. While

the tasks’ ids are set as the m ap’s keys, the values of the map are arrays of length two:

the ids of the assigned UGV in the first position and the hop distance between the

UGV and the task in the second position. Each node’s mapc is dynamic, updating its

contents based on new incoming messages. Meanwhile, the UGVs also store a copy

of m,apr of the same structure constructed during the process. Initially, m.apr stores

the known distances to each task from the local UGV itself and is updated as new

message arrive. The pseudocode is shown in Algorithm 8.

Algorithm 8 WSAN-Aided Greedy Task Allocation Algorithm
1 {Code for the UGVs}
2 variables: idu, Ts, dh and local map mapc = NULL
3 if receive a level number h from task Ts th en
4 if mapc.get(Ts) = = NULL th en
5 mapc.add(Ts, {idu, h})
6 end if
7 end if
8 find the task Ts with shortest distance in mapc
9 moving toward Ts and broadcast (Ts, { idu, h}) to the network

10 w hile receive a message on task Ts do
11 if local distance is less than received distance th en
12 update mapc with the received information
13 end if
14 end w h ile
15 if receive a rejection message th en
16 find an alternate task Ts not claimed by other UGVs in mapc
17 move toward Ts and broadcast (Ts, {idu, h}) to the network
18 end if
19
20 {Code for the nodes}
21 variables: idr and local map mapt = NULL
22 w h ile receive a claim message regarding Ts do
23 if mapt.get(Ts) = = NULL th en
24 add the received information to mapc
25 broadcast this received information to neighbors
26 else i f stored distance is larger than received distance th en
27 update mapc with the received information
28 broadcast this received information to neighbors
29 e lse i f stored distance equals received distance th en
30 forward tied info to lower level neighbors regarding Ts
31 end if
32 end w h ile
33 if receive a tied information th en
34 if is the leader then
35 pick one UGV and send a rejection message backward
36 else
37 forward the tie information
38 end if
39 end if

55

The algorithm starts when a UGV receives a message th a t includes the tasks

ids and the hop distances from the tasks. Then the UGV will wait a predefined time

period to construct its own local hash map mapc. After that, it will choose a task that

is the shortest distance away and claim this to the whole network by broadcasting

the pair (TSjdh) where Ts is the identification of the chosen task and dh the distance

to this task cluster. In response, nodes th a t receive this claim will check their local

memory to see whether there is another appropriate UGV that has already taken the

task. When there is a conflict, such as two UGVs ugvi and ugv-z claiming the same

task T\ and their distances to T\ are equal, the node will forward the information to

the leader node of T\. The leader will select one UGV by sending a reject message to

the other UGVs. For example, if the leader node takes ugv\ to fulfill the task, then

ugv2 will receive a rejection and will need to claim another available task.

4.2.4 Special Case: Traveling Salesm an Problem

The problem presented here is similar to the Traveling Salesman Problem, which

is a classic NP-complete problem [32]. Though there exists many heuristic methods

for solving the problem, global information is required to optimize the solution, and

th a t is not always available in distributed systems.

The Nearest Neighbor Algorithm is usually applied when only local information

can be obtained. However, the simple nearest neighbor algorithm might result in

moving back and forth between certain points. A typical situation is shown in

Figure 4.8, where a UGV is located a t point o, and there are six tasks located at

points a, a', b, b', c, and d . Distances between nodes are shown in the figure.

Figure 4.8: A critical case for the nearest neighbor algorithm in MTSU. The distances
between nodes are labeled underneath, where S is a very small positive real value.

For the simple nearest neighbor algorithm, the sequence to visit all tasks is

a —> a' —»• b —> b' —»• c —» d . In the systems where the UGV cannot be considered

as a point mass, these sharp turns can be a waste of energy and time. To evaluate

the performance and take the angle change into the account (besides distance), the

following cost function is formulated:

where all visited tasks are stored in sequence in ip, P is th e weighting factor cor

responding to the traveling distance, d ^ i+1 is the distance from destination ip, to

destination ipi+1 , Q is the weighting factor corresponding to the turning angles, and

is the angle change from destination ip, to destination V ' t + i -

Intuitively, to avoid moving back and forth (large tu rn ing angles), a UGV

should first finish servicing destinations in the same direction before returning to

service other destinations. A WSAN-Aided Nearest Neighbor Algorithm (Algorithm 9)

where the UGV m aintains a distance m ap which stores all th e level numbers of last

visited destination, which denotes th e distances between th e UGV and the other

destinations. After arriving at a new destination, the UGV updates the distance map.

(4.1)

57

By comparing the updated distances to the former ones, the UGV is aware of which

destinations are getting closer. This way, the UGV does not need the distance map

since every node, including the destinations, can get hop level numbers to every other

destinations after the level assignment algorithm. The UGV only needs to request the

level number map of the current destination.

Algorithm 9 WSAN-Aided Nearest Neighbor Algorithm
1: {Code for the UGVs}
2: Initialize:
3: Tc — — 1, mapt = NULL , maptemp = NULL
4: w h ile listening do
5: if receive a level number h from task Ts th e n
6: if mapt.get(Ts) = = NULL || mapt.get(Ts) > h th en
7: mapt.add,(Ts,h)
8: end if
9: end if

10: end w h ile > initializing listening mode
11: maptem = mapt
12: w h ile mapt.size() > 0 do
13: if Tc —= —1 th en
14: find the Ts which is with the lowest hop distance in rnaptem, Tc = Ts
15: else i f reached Ts th en
16: mapt.remove(Ts)
17: listen for existing tasks, and build up maptem with existing tasks and corresponding hop

distances
18
19
20
21
22
23
24
25
26
27
28
29
30

for iterator i of maptem do
if mapt.get(i) = = NULL th en

continue
else if maptem-get{i) > mapt.get(i) th en

maptem ,remove(i)
end if

en d for
if maptem-size() > 0 th en

find the Ts which is with the lowest hop distance in maptem, Tc = Ts
mapt — maptem

e lse
find the Ts which is with the lowest hop distance in mapt, Tc = Ts

en d if
31: else
32: keep moving to current task Tc
33: end if
34: end w h ile >
35:

> moving mode

36: {Code for the nodes}
37: nodes will send their local map (Ty, hi), (T2 , /i2)...(Tm, hm) to UGV upon requestion

58

Algorithm 9 is triggered on when the UGV receives a message containing a

level number, which means there is a task coming out. Then, the UGV will listen for

incoming messages for a predefined period of time (determined by the application) and

will construct the initial distance mapt , in which tasks’ ids are set as the m ap’s keys

and the hop distances are set as the m ap’s values. After the tim e elapses, the UGV

will simply take the nearest destination as the first destination. When arriving at the

first destination, the UGV will request a new distance map maptem from the current

destination and compare mapt to maptem. The destinations with shorter distances will

be regarded as the destinations in the same main direction. Then, the next destination

should be the closest one in the same main direction. Every tim e arriving at a new

target, the UGV will take the newer map maptern to replace m apt.

4.3 H ole Patching Algorithm

A deterministic hole patching algorithm in a coordinate-free network is pre

sented. The only information available is the coverage hole boundary nodes or coverage

hole edges. Since Assumption 8 (in C hapter 3) specifies th a t the coverage holes are

far away from each other, one side of each coverage hole edge should be the hole area,

while the other side should be the area that is already covered. A check up process is

necessary since there is no coordinate or other information available, and one cannot

tell which side of the edge is a hole. This check up process is described later in this

section.

In general, new nodes are added around each edge of a coverage hole. To

each hole edge, a new node will be deployed along the perpendicular bisector of the

59

edge. Sensor’s communication range rc and sensing range r , are dependent since it is

not do not desired to introduce new coverage holes during the patching process. As

discussed in [10], there are two options: if rs > rc/ V 3, as long as the new node can

connect to both of the two nodes, there will be no new hole introduced; else a more

precise technique is needed to measure distances between nodes to avoid introducing

new holes. Figure 4.9 shows the cases where three nodes are pairwise connected at

length of rc. As can be seen, when rs > rc/y/3, no hole will be added once the three

nodes are connected by rc. In the case when rs < r c/ \ /3 and all communications are

preserved, a new node should not go further than y/3 ■ rs. For simplicity, it is assumed

that rs > rc/ \ /3 in this dissertation.

Figure 4.9: Area coverage where nodes are connected a t th e length of rc. Left: no
coverage hole when rs = rcj a/3; middle: a coverage hole exists in the middle when
rs < rcj a/3; right: no coverage hole when rs > rc/ y / 3.

At least one side of the edge is not covered, which is the hole th a t needs to be

patched. It is proposed to run a hole detecting algorithm to determine which side the

new node should be deployed. As stated in Algorithm 10, on each edge, one side will

be tried first and it will be seen if the new node will be a new hole boundary node. If

yes, deployment at this side is valid. Otherwise, there are two situations that need to

60

be checked. First, if there is no hole existing any more, deployment of a node at this

side is still valid and the patching is done. If not, it means the new node has dipped

into the area th a t is covered already, and deployment should go to the other side of

the edge along the perpendicular bisector.

A lg o rith m 10 Centralized Hole Patching Algorithm
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

for coverage hole i do
pushing all the edges of this hole to a stack Shi (by clockwise or anti-clockwise order)
w h ile this hole still exists do

moving UGV to the next edge (denote the two ends as a and b for description) in Shi
moving UGV to any one side of edge ab along its perpendicular bisector
at a position p where ap < rc and bp < rc, activate a new node c on the UGV
run a hole detection algorithm
i f this hole is NOT changed th en

moving UGV to the opposite side of edge ab along ab’s perpendicular bisector
e lse if no hole exists th en

this hole is patched, break
else

removing the edges that disappear in current hole, pushing new edges to Shi
go to Line 4

end if
end w h ile

end for

Figure 4.10 shows the hole patching process. Only the area inside the boundary

is considered as the coverage hole. New nodes are deployed around the hole. If the

hole still exists after a round, a new round will s ta rt from the newly identified hole,

as dem onstrate in the lower figure of Figure 4.10. The simulation testbed will be

introduced in next chapter, which covers design, introduction of functions, and some

examples as well.

61

Figure 4.10: Hole patching process. Upper: an identified coverage hole; middle: new
nodes are added along the edges of former coverage hole; lower: the hole is fully
patched.

CHAPTER 5

WIRELESS SENSOR NETWORK SIMULATOR

A simulation testbed has been deployed in Java which is capable of simulating

both centralized and decentralized sensor and actuator network algorithms. In the

centralized algorithm simulation, actions of nodes and UGVs are managed directly by

a central controller. In contrast, the distributed algorithms run in an event-driven

manner and are built using m ulti-threads, where each individual node is designated

as a thread. The node is active only when the corresponding thread is running.

Although no communication delay models are considered in this dissertation, the

testbed simulates asynchronous working patterns based on th e properties of multi

threading. Messages might not be received in the proper sequence since the running

sequence of the threads is not enforced, which inherently simulates the communication

delays to some extent. The generated d a ta are saved to text files, which can be read

and analyzed using MATLAB or other software of the user’s choice.

5.1 A rchitecture Design

The architecture of the testbed is shown in Figure 5.1, which has four main

layers. Some existing components are provided in the figure. The top layer is the

simulator layer. Various types of simulators can be built regarding different applications.

62

63

For example, a GUI application was developed which is able to intuitively demonstrate

running algorithms. Examples of the GUI are shown in Section 5.3.

Simulator

D d t a (i t in r i t o r i K
£1--; .

^ III

u m

t rr Network

UC.V M o d u l e

N o d i M o d u l i
WmggKm■raBHHKipiBiBMiMliiBiWiBlj

n n

*’3 1,1#s#»2K*wf_..

A ^ r r . ’V ' i r £25.*

Signal D etec to r

N etcard

Static N o d e

M obile N o d e

0 4 *

Figure 5.1: Architecture of th e simulation testbed.

64

There is also another simulator which generates and writes large sets of data

to text files that MATLAB can use for analysis. Simulation da ta of Chapter 7 are all

generated by this type of simulators.

The Node layer represents the lowest level in the testbed. It includes different

types of nodes (classes) th a t could exist in the network, like static nodes and mobile

nodes (UGVs). Specific functions are defined according to certain type of nodes. For

example, in distributed algorithms, an event-driven manner is strictly followed.That

means th a t the node’s reactions are triggered only by the received events. Also, the

status of all the memory units (variables, arrays, etc.) inside one particular node

object should not be directly altered by any other node objects. According to the

official Java tutorial [59], it is said th a t an object is created after the corresponding

class is instantiated. Therefore, an Interface layer is required to allow the node objects

to interact with each other. During the sim ulation, this interaction is realized by

accessing networking data in the Network layer through the Interface layer. Thus, the

Interface layer is actually the medium between the Node layer and the Network layer.

For example, the Netcard class is in charge of message transm itting, which requires

access to communication graph stored in the Network layer. The Signal Detector

(.SigDetector is the real name) class is in charge of detecting signal strength, which

requires coordinates to calculate distance in the simulation.

The Network layer is the second layer which is underneath the Simulator layer.

Networking information, such as the communication graph, is stored in the Network

layer. In the meantime, information th a t has to be kept private from lower layers is

also stored in the Network layer, such as the nodes’ coordinates, which can be used to

65

get the network’s communication graph as well as the node’s signal strength. These

coordinates might also be needed to draw the network for dem onstration purpose.

However, the access to coordinates and the communication graph has to be strictly

controlled to ensure they will not be used directly by the lower layer Node class or

UGV class.

The basic unit stored in the network layer is called a module. Functional

node modules as well as UGV modules can be constructed when interface objects are

mounted to node objects. The node module consists of a Static Node object and a

Netcard object; the UGV module consists of a Mobile Node object, a Netcard object

and a Signal Detector object. A more detailed introduction is provided in the following

section.

5.2 Function Developm ent

In this section, the developments of some major components (classes) in each

layer are introduced.

5.2.1 N ode Layer

The Node layer is the lowest layer in the simulator, which currently contains

one Node class and one UGV class. Node class defines functions for the static sensor

and actuator node. Some m ajor functions axe listed in Table 5.1. A Netcard object

is mounted to the Node class by a function setN etcardQ . A Node combined with a

Netcard is considered as a node module, which can perform all the expected node

functions. For each node module, Node class takes care of d a ta processing while

Netcard class takes care of message sending and receiving. The checkTokenQ function

66

is the core function in node module since it checks all received events and determines

the follow up actions. Except target nodes, which initiate a process (the node which

initiates the level assignment process), all other node’s actions are determ ined by

checking tokens. Received tokens are added to a buffer queue in order in the Netcard

object. For instance, updateLevelQ function will be called if its predefined token is

found. Thus, functions like the listed onActQ and retumMSGQ function will be called

inside checkTokenQ function regarding corresponding tokens.

Table 5.1: Selected functions in the Node class

Function Description
setNetcardQ connect a Netcard interface to this node

updateLevelQ

update the local level num ber if a received level number
plus one is smaller than the local level number; a follow up
broadcasting of the updated level number will be initiated
if a level number is changed
broadcast a “join” message and then construct a neighbor
list based on the nodes replied
in response to jo inM SG () w ith a message which includes
its ID and level number________________________________
turn on actuating based on a received message
add all the received messages into a string tokenizer queue;
go through all the tokens until the queue is empty________
executions for applications
term inate executions if the node’s tasks completed or
exceptions happen_____________________________________
pack useful information into one string, which can be used
for the transmission

joinMSGQ

returnMSGQ

onActQ

checkToken()

run()

killNodeQ

packStringQ

Since every node module runs as an independent thread , according to Java

documentation [58], only functions inside run can be executed during a thread’s

runtime. The main structure of runQ function is described in Figure 5.2. A node

module (the thread) keeps running if all the while flags are true. These flags can be

altered by timers or status changes. Meanwhile, the checkTokenQ function is scanned

67

in the “while” loop. Normally, the input token (or event) is added to the buffer queue

and poped from the buffer queue in the order it arrived. Buffer queue is a memory

unit constructed in Netcard class in the Interface layer.

run
while (flags) {

chcckToken(token)

Figure 5.2: S tructure of the runQ function.

UGV class is a class of the Node class. Thus, the U G V class inherits all the

functions from the Node class. For example, the U G V class can call Node class’

joinM SGQ function directly to construct a neighbor list w ithout the need to define

a new one. In the meantime, the U G V class needs to override some classes like

checkTokenQ and runQ to define its own functionalities. Most importantly, some new

functions are added for specific UGV functions, some of which are listed in Table 5.2.

As stated in Algorithm 5, UGV module controls activations of actuators (by function

pickNodeQ1 offActuQ, etc) as well as navigation control (by function getDirectionQ ,

moveUGVQ, etc).

68

Table 5.2: Selected functions in the UGV class

Function Description
setSigDetector() connect a signal detector interface to th is node

choose and return the node with lowest level number among
pickNodeQ th iRhbors

ff . turn off active actuator nodf:s when the UGV arrives at the
° C ' local minimum point

calculate the next moving direction using received signalgetDirectionQ strengths based on Eq. 3.3
moveUGV() move in a predefined step along the calculated direction

term inate executions once the UGV’s tasks completed or
killUGV() exceptions happen

Since the UGV class inherits from the Node class, a Netcard is automatically

mounted. Additionally, a signal detector SigDetector is added to give the UGV

module the ability to detect signal strength. From the UGV’s point of view, the

potential field is built by accumulating signal strength of actuating signals. The

listeners array, which is described in Chapter 3, is contructed inside UGV class. Then,

the UGV’s moving direction can be determined by comparing each listener’s potential

value, which is calculated by the signal strength. The signal strength can be retrieved

by the Signal Detector object.

More interfaces can be added to give nodes more functionalities in the fu

ture. For example, a sonar array interface can also be built for obstacle avoidance

applications.

5.2.2 Interface Layer

The Interface layer is the medium between the Network layer and the Node

layer. Thus, classes in the Interface layer have access to classes in the Network layer as

well as classes in the Node layer. While some data are not available directly to lower

69

layer classes, interface classes are used to get these data. For example, a neighbor

list will be constructed in the Netcard class after network connections are established.

Thus, while coordinates or communication graph are unknown for Node objects and

UGV objects in this simulation, data can still be exchanged through interface classes.

Currently, there are two classes constructed in the Interface layer: the Netcard class

and the Signal Detector class. While the Netcard class takes care of message sending

and receiving, the SigDetector class is in charge of detecting actuator signals and

finally giving directions in navigation.

M ajor functions of the Netcard class are listed in Table 5.3. Two objects,

Network and Node, are connected to th is Netcard object. A public-access queue is

claimed as a receiver’s memory buffer in the Netcard class. Sending a message can be

emulated by adding the message to the queues of the destinations through the Netcard

object. For example, if node n\ sends a message “m sg” to node n 2, the underlying

operation in the simulation is n\ ’s Netcard writes “m sg” to n 2’s Netcard buffer queue

through the Network access. For each node, receiving a message is emulated by

popping or peeking data from its own N etcard’’s queue.

Table 5.3: Selected functions in the Netcard class

Function Description
setNetworkQ set the network this netcard belongs to

setNodeQ set the node this netcard connects to
broadcastMessage() broadcast a message to all nodes in communication range

sendMessage() send a message to specific node(s)
peekMessageQ get the next message from the message queue

70

Major functions of the Signal Detector class are listed in Table 5.4. There are

also two objects connected: the Network object and the Node object. The Signal

Detector class is able to get signal strengths, which is related to distances as stated

in [63]. The Signal Detector calculates distances by accessing coordinates stored in

the Network class.

Table 5.4: Selected functions in the SigDetector class

Function Description
setNetworkQ set the network this netcard belongs to

set Node () set the node this signal detector connects to
getSignal() get the signal strength from one other node

getDirectionQ give a direction for the next movement

5.2.3 Network Layer

There is only one class, th e Network class, built in th e Network layer. Some

major functions are listed in Table 5.5.

Table 5.5: Selected functions in the Network class

Function Description
createNodeQ create a node object

buildNetwork() add a node and UGV objects to the network
getConnections() build a communication graph for the network
startNetworkQ turn on all the nodes and UGVs

The network can be considered as a central storage, which instead of issuing

control commands, can only provide information. Network layer is also in charge of

constructing a network. As a result, all the node module objects, UGV module objects,

are created following the creation of the Network object. All the network information

71

is stored or can be accessed by the Network object, like a number of sensor nodes, a

number of UGVs, a communication graph, etc.

In the Network class, node module objects are stored in a hash map, where

the node’s ID number is the index number, and a new structure called the NodeStore

is the value. This NodeStore is defined as an inner class inside the Network class.

Figure 5.3 shows the components th a t are included in the NodeStore structure. Once

a NodeStore object is created, one Node object, one Netcard object and one Thread

object will be simultaneously created. In the decentralized simulation, each node

module runs as an independent thread. Here the Thread object is used to generate

and start the running of a new thread, or activate a new node in the current case.

NodeStore

----------Node

 id

----------Netcard
----------- SigDetector

----------(x, y)

----------Thread

Figure 5.3: Components in NodeStore.

5.3 Applications

Applications are built in the highest Simulator layer. Currently, there are two

types of applications developed to test the proposed algorithms. One is developed to

run certain algorithms repeatedly and generate sets of d a ta for analysis. The other

one is a Graphical User Interface (GUI) application. As the startup interface shown

72

in Figure 5.4, there are three main parts. The first is the control part, which includes

buttons, sliders and mouse actions as well; the second part is the network display

canvas, which shows the topology of the network; the th ird is the output of results,

which can display debug and statistical results. As shown in Figure 5.5, a network is

plotted on the canvas, where the sensor and actuator node is represented by a small

dot. The UGV is represented by a polygon, and the destination is represented by

a star. When there is a communication connection between two nodes, a straight

line is plotted. While new nodes can be added by mouse clicking in the canvas area,

all nodes, UGVs and destinations can be moved by mouse pressing and dragging.

Figure 5.6 shows an example of m ultiple level assignment. After deploying a small

network by mouse clicking (destinations are predefined), the algorithm runs when the

level button action is fired. A result of complete single UGV and single destination

navigation simulation is shown in Figure 5.7, where active actuators are highlighted

with small stars and the UGV moving trace is plotted as well. In next chapter, the

hardware used for the experiment is introduced as well as the experiment setup.

n o o Interactive Wireless Sensor and Actuator Network Simulator

(D eploy")

(Level)

(Statistics)

(Reset)

t
Functional

■ P

m b

Jan 6 ,2013

“11
— I i t
■ ■ B 3 »

netw ork reset flag

Output Text Area

A i H H n R

(~ Move Node ~) (Show Radius)

t
Miscellaneous Button

Communication Radius

: — O
Sensing Radius

■ o

I
Radius Slider

Figure 5.4: GUI Application Interface.

CO

6 .©,9. Interactive Wireless Sensor and Actuator Network Simulator

(D eploy)

(Level)

(Statistics)

(Reset ^

3S

netw ork rese t flag
netw ork rese t flag

Communication Radius

o
Sensing Radius

o

(Move Node) (Show Radius)

Jan 6 ,2 0 1 ?

Figure 5.5: GUI with a network deployed.

(Deploy)

c = r >
(Statistics)

— JMi«— JB M L i

H H H K
■ ■

(R e se t)

1

Communication Radius

Sensing Radius

ituucT
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:
node:

I L U I I C I H l e v e l)

I I current levels
7 curren t levels
19 current levels
7 curren t levels:
17 curren t levels
0 curren t levels
18 curren t levels
17 curren t levels
0 curren t levels:
18 curren t levels
13 curren t levels
8 curren t levels.
13 current levels
8 curren t levels:
3 curren t levels:
3 curren t levels:
6 curren t levels:
5 curren t levels:
6 curren t levels.
12 current levels
S curren t levels:
12 current levels
14 curren t levels
14 curren t levels
19 cu rren t levels
19 cu rren t levels

l c v c . 1 1 / i i i i i i n u i ;

: LEVEL1 7 1 3 2 1 2 1 3 1 3 ^
LEVEL 17102121S ?

LEVEL 1314
LEVEL17102121S1316

LEVEL 212111714
LEVEL 171121215

LEVEL 212121314
: LEVEL 212111714131
LEVEL 17112121S1316
: LEVEL 212121314171

LEVEL21213131S
LEVEL 131121214
: LEVEL 21213131S171
LEVEL 1311212141715
LEVEL 131021215
LEVEL 13102121517 IE
LEVEL 131121216 j
LEVEL 131221215 t
LEVEL 1311212161712

LEVEL 212101715
LEVEL 131221215171*

LEVEL 212101715131
LEVEL 131321216
LEVEL 1 3 1 3 2 1 2 1 6 1 7 |

: LEVEL 131421217
LEVEL 131421 2 1 7 1 7 1 ‘

(Move Node) (Show Radius)

Figure 5.6: GUI shows a network with multiple levels assigned.

Ot

Dec 31,2012

(Deploy)

(Level)

(S ta tistic s)

(*«*«)

i| i’y Mfwp

^ISlUL.

W m

-■89:J81

jnetw ork re se t flag
'a c tu a to rs : [35, 44. 45, 34]

L.9. IS] network rese t flag
1 9 , ac tuators [35, 45, SS, 65]

[network rese t flag
ac tuato rs: [35, 55. S6, 45]

{network rese t flag
|a c tu a to rs : [35, 56, 46, 55]
netw ork rese t flag
ac tu a to rs: [35, 46, 26, 36]
netw ork rese t flag
LEVEL 23510
LEVEL 23510
LEVEL 23510
LEVEL 23510
LEVEL 23510
LEVEL 23510
LEVEL 23S10
LEVEL23S10
g e t 0 level
g e t 0 level
g e t 0 level
g e t 0 level
g e t 0 level

Ige t 0 level
ig e t 0 level
|g e t 0 level
ugv quit
ugv d istance: 445.0
1 ac tuator: 4 7 4 .7209344787538

C om m unication Radius

f

(Move Node } (Show Radius)

Figure 5.7: GUI Application with results displayed.

05

CHAPTER 6

HARDWARE TESTBED

6.1 Equipm ent Design

Currently, only the algorithm th a t is in the single-UGV, single-destination

configuration is realized. The Cricket platform [53] is used for the wireless sensor and

actuator network. Beside some basic sensing and communication capabilities, the

Cricket platform can estimate the range between nodes by using the combination of

RF and ultrasound signals. The technique is based on the tim e difference of arrival

between two simultaneously sent signals such as R F and ultrasound. The precise

measurement of the time difference of arrival allows for an accurate calculation of the

distance between a pair of sensor nodes. In the experiment, the estimated distances is

used to form potential fields directly, instead of the estimates from signal strength as

stated in Equation 3.1.

As can be seen in Figure 6.1, the Cricket mote is equipped with one ultrasound

transmitter and one ultrasound receiver. To better receive the ultrasound signals, it is

suggested that the Cricket motes are positioned face to face. As shown in Figure 6.2,

the Cricket nodes are placed on the ceiling with the face down to the ground. The

robot is equipped with five Cricket motes (which serve as listener nodes) with the

face up to the the ceiling, as shown in Figure 6.3. This setup serves as a hardware

77

78

realization of steepest descent algorithm in a given potential field. Given the potential

field, the robot, at every step, searches for the minimum of the potential field. A

hardware-based solution is proposed, where controller electronically searches for the

minimum of the potential field using the on-board listeners.

Figure 6.1: The Cricket mote.

Figure 6.2: Cricket nodes hung on the ceiling.

79

Figure 6.3: Cricket nodes on the UGV.

The robotic device is the Pioneer 3-DX, a standard unmanned ground vehicle.

The UGV is controlled by a laptop piggybacked on the UGV. The laptop serves as

the controller and can communicate with listeners and send commands to the UGV.

The navigation system consists of four parts: the W SAN (considered as a

beacon group), listeners, a laptop serving as a robot controller, and a UGV.

There are three connections inside these four components. As shown in

Figure 6.4, COMM1 is the connection between the laptop (controller) and the UGV.

Once the controller determines an updated direction for the UGV, a command is sent

to the UGV through the serial port; COMM2 is the connection between the controller

and listeners. The controller grabs and processes the d a ta received by listeners and

sends back commands to listeners through the serial port. A connection between

listeners and the WSAN is established through COMM3. T he potential fields are

established using wireless communication between beacons and listeners.

80

*. COMM 3

Listeners
Group

COMM 2

COMM 1

Figure 6.4: System block diagram of the experimental setup.

6.2 Experim ent Setup

In the experiment, each sensor node on the ceiling is assigned with a level

number, where nodes with the lowest level are assumed to be the destination. Once

connected to a higher level number sensor node, the UGV will move from higher level

nodes to the node with lowest level (destination). The navigation term inates when

the UGV arrives a t the last minimum potential point, i.e., when it does not move

any further. To avoid oscillating around the local minimum, in this experiment, the

moving step of the UGV is set to 15 cm. During the navigation, after every 15 cm

81

step, the UGV will recalculate the potential field. The potential field received by each

listener is calculated by adding the estim ated distances from the listener to all the

three active Cricket nodes.

6.3 Experim ent R esults

The moving trajectory of the navigation p a th is shown from one experiment

trial in Figure 6.5. The Cricket nodes and the UGV are projected onto the same plane,

where the nodes are shown as beacons in the figure. The starting point of the UGV is

at the origin (0,0), and the navigation path can be seen from nodes with level 3 to

the node with level 0. All steps (which are made after moving 15 cm) are represented

by the small dots, and the local minimum points are shown as the large dots. Some

parts of the real moving trajectory mismatch the ideal trajectory, which is caused by

mechanical errors. In addition, as the arrow points out, the UGV might move to a

wrong direction caused by error readings of listeners. However, it will go back to the

right track as long as listeners and beacons can work properly. Figure 6.6 shows the

potential fields (count by distance) received by listeners in certain steps (from step

24 to step 34) during the navigation. The UGV aims to the local minimum of each

potential field and, consequently, it is noted th a t the sensed potential field reduces its

value.

82

1000 LevIO

Levi 3 Levi 2 Levl'1
B-1500

E£,
Xto>* Levi 1

B-6
-500 -Levi 3

1 B-2
□ Beacon Nodes
 Designed Trajectory

Real Trajectory

Levi 2
B-4-1000

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500
x axis(mm)

Figure 6.5: Trajectory of the one navigation. Besides the symbols labeled in the figure,
local minimum points are highlighted by large dots. The part th a t the large arrow
points to is an error movement, which might be caused by reading errors of listeners.

800

790

E"
«. 780
e
(I)

1 770

J 760©>0
§ 750

«= 740
<o
1 730 o0.

720

710

> > Listener-1
+ A A Listener-2

□ Listener-3
+ Listener-4

> O Listener-5
o D

A + A A

□ 9

9
+

+

8

8
>

A
+ A

□
□
Q
>

>

8

24 25 26 27 28 29 30 31
Number of steps

32 33 34

Figure 6.6: Potential fields calculated from listener readings during runtime.

CHAPTER 7

RESULTS AND DISCUSSION

This chapter includes the simulation comparisons and analysis of the proposed

algorithms.

For illustrative purposes, in Figure 7.1, a network is shown ashaving a simple

topology.

4 3 3

\ \ / \

/ \ V / 7 V

/ 4 3 \ J 2 \ \ y i

Figure 7.1: Illustration of a path taken by the UGV using our distributed navigation
algorithm in a simple WSAN.

The path taken during the UGV navigation in the WSAN is highlighted. The

destination node is designated with a star, and the s tart and end positions of the UGV

83

84

are designated with two black boxes. The dots and edges represent network nodes,

whose level numbers are also shown, and the communication connections between

them, respectively.

From the theoretical analysis, in the worst case, where the underlying commu

nication graph of the WSAN is a complete graph, Algorithm 2 is not practical as it has

a communication complexity of 0 (n 2). However, in most real-life cases, particularly in

applications related to sensor network coverage, sensor nodes are sparsely deployed in

order to increase the coverage area. In addition, because of the processing and energy

limitations in sensor nodes, each node can only connect with a few other nodes.

Network density is calculated by a = m ir i/s [79] with n being the number of

nodes and s being the area of the sensor field. A fixed sensing area is used; the size is

800 x 600 and it deploys 400 nodes. The density is altered by varying the value of rc.

To illustrate, consider a network in which the underlying communication graph G is a

plane graph such th a t every minimal region bounded by the edges of G , except the

outside region, is an equilateral triangle with an edge length rc. (The shape of G is

similar to the graph shown in Figure 7.1.) Setting rc = 35 yields a network density of

cr = 400 x (352)tt/(800 x 600) « 3.2.

Four hundred nodes are random ly deployed onto a sensor field of fixed size

and the communication radius rc is adjusted to control network density. The average

number of messages sent by each node is first analyzed for Algorithm 2 using different

network densities; see Figure 7.2. From the results, one can see th a t even when the

network density is relatively high, the total number of messages sent is still far less than

n 2, which indicates that Algorithm 2 can be used for coverage related applications.

85

- © - mean
x 75 percentile
•fr 25 percentile

50-,

45-
4 0 -D>

<0<0» 35-
I
« 30-0
» 25-
1
a 20 -

«
S’ 15-bV
% 1 0 -

5-

40

20 25 30

aet"Or* *
de»*ity

Figure 7.2: Average number of messages sent by each node in the distributed level
assignment algorithm.

Both the centralized and distributed algorithms share the same core idea. From

a computational perspective, one could say th a t the centralized algorithm performs

faster than the distributed one because of the difference in da ta transmissions. For the

centralized algorithm, the time used in transm itting da ta can generally be neglected

since all essential d a ta are located in the central controller, while in the distributed

algorithm, the tim e used in sending and receiving da ta is much more significant.

However, when one considers the physical navigation of the UGV, under reasonably

efficient computation times, a better test of performance is to take into consideration

the length of the path taken by the UGV, whose physical movement will easily

dominate the overall time of the algorithm.

86

For the UGV control algorithms, the centralized version is compared with the

distributed version by measuring the ratio R i = d/d!, where d is the UGV’s actual

moving distance and d! is the Euclidean distance from the start point of the navigation

to the end point of the navigation. The ratio R \ is a m easure of the navigation

efficiency: as R\ approaches 1, the to tal distance taken approaches th a t of the ideal

straight distance. Lower values of R\ indicate a higher navigation efficiency. Figure 7.3

shows R\ values for different network densities. Based on th e analysis of R\, there

is no significant difference between th e two algorithm s regarding their navigation

efficiency, which as previously mentioned is expected since they share the same core

idea.

1.25

1.2

1.15

1.05
12 141.25

1.15

1.05

— -0 - mean (9 listeners)
* 75th percentile (9 listeners
■sir 25th percentile (9 listeners

•q - o'

9 10 11
network density

12 13 14

Figure 7.3: Evaluation of the distributed (top) and centralized (bottom) UGV control
algorithms. R\ shows the ability to control the main navigation direction.

87

Besides d the consecutive distances of local minimum points are also evaluated.

Let u\, u2, ■ ■ ■, Uk be the k local minimum points encountered in the navigation control

algorithm, and let d* be the length of the shortest path from the starting point of the

UGV through each of these minimum points in succession. The ratio R 2 = d/d* is

analyzed. W hereas Ri measures the overall navigation efficiency, R 2 measures the

ability to control the accuracy of the moving direction. A smaller value of R 2 indicates

better accuracy since a straight path is more preferable than a zigzag path. From

Equation 3.3 and the UGV control algorithms, better accuracy is obtained if the UGV

compares more potential fields, which can be read and calculated from listeners placed

on the UGV. Figure 7.4 shows the validation results from Algorithm 5.

1.6

1.5

S' 1-4
0)■p3
J3•H
JJ 1.3 10
• H

c f 1.2

1.1

~T~
— © — mean (6 listeners)

X 75 percentile(6 listeners
x 25 percentile(6 listeners

— -0— mean (9 listeners)
☆ 75 percentile(9 listeners
6 25 percentile(9 listeners

Q X j y -O- - -o- -a .
© — ©

o

x x
X X

8 9 10 11
network density

12 13 14

Figure 7.4: Evaluation of the UGV control algorithm: R 2 shows the control ability for
the step movement.

88

Since they use the same general control logic, the simulation results for

Algorithm 3 (Centralized UGV Control Algorithm) are om itted. Notice th a t the

values of R 2 do not vary significantly with changes in network density, indicating that

the moving direction of the UGV depends mainly on the number of listeners used.

The three-beacon navigation algorithm can easily be transformed to a one-

beacon algorithm. In the centralized version, this can be accomplished by only finding

and using the base nodes; in the distributed version, it is only necessary to assign and

use node B. Figure 7.5 shows the comparison of R\ from the distributed three-actuator

control algorithm (Algorithm 5) and its one-actuator variant.

— v — mean (1-actuator)
— S — mean (3-actuator)

1.35

•Oe-p
1.3

9
XX

« 1.25
•o
04

Q -0

1.15

6 7 8 9 10 11 12 13 14
n e tw o r k d e n s i t y

Figure 7.5: Comparison of one-actuator and three-actuator navigation with regards to
Rr.

89

It is worth considering the trade-off between using fewer beacons at any step,

consequently conserving energy, and overall robustness when using more beacons; for

example, a shorter travel distance saves the UGV considerable energy. Notice th a t

navigating using three actuators performs better than using one actuator considering

the total traveled distance. In real life, connection failures, node failures, or long

transmission delays when the receiving of signals is interrupted are likely to occur due

to changes in the environment. These connection failures are simulated by making

certain random nodes “dead”, meaning the nodes no longer perform any function. As

this situation is most applicable to distributed cases, the discussions here are regarding

Algorithm 5 (Distributed UGV Control Algorithm). The UGV navigation can fail if

the UGV cannot find active beacons.

In these simulations, the navigation mission is considered to have failed if the

UGV cannot find a lower-leveled node. Specifically, for the one-actuator navigation,

the navigation has failed if the UGV cannot connect to any of the possible D nodes. By

contrast, for the three-actuator navigation, the UGV can tolerate up to two connection

failures, where the node failure(s) should happen after nodes A, B and C are chosen,

and at least one active node should not have a higher level than node B. In this case,

even when node B is dead, the UGV can keep moving forward, without stopping to

reset communication, in contrast to one-actuator navigation where every tim e the

UGV loses a connection to a node B , the UGV must try to set up a new link with an

alternative actuator, whose level num ber cannot be higher th an node B. However,

if the connection is lost before a node is chosen to be the node B, then there is no

90

difference between three-actuator navigation and one-actuator navigation since in

three-actuator navigation, nodes A and C are chosen by node B.

For simplicity and ease of comparison, in the simulation examples, it is assumed

all connection failures happen after node B has been chosen. Dead nodes are randomly

picked in the simulation, and three-actuator and one-actuator navigation are run with

a certain percentage of dead nodes. As shown in Figure 7.6, the mission failure rate is

calculated F = n j j n t , where n j is the number of failures and n t is the total number of

navigation missions. It is found that the three-actuator navigation algorithm performs

much better than one-actuator navigation regarding connection failure and, in general,

th a t values of F get smaller when the network density increases. The latter is mainly

because the UGV can connect to more nodes when the network gets denser, allowing

the UGV more opportunities to find another actuator to replace a failed node.

To test the efficiency of the Tim er-based Leader Election Algorithm, the

algorithm is run in a randomly generated network where nodes with distinct ids

are deployed uniformly in the sensing field. Network density is still calculated by

a = nur'l/s as before. A network with 100 nodes was simulated. Very large networks

were not considered since the leader election algorithm is no t expected to run in a

large group of nodes. Network density can be adjusted by changing the value of rc. For

example, setting rc = 98 yields a network density of a = 100 x (982)tt/ (800x 600 ~ 6.28).

As Figure 7.7 shows, in a uniformly deployed network, the average number of messages

transmitted is relatively small. Meanwhile, the number of transm itted messages is not

related to network density.

91

0.9

0.8

0.7

^ 0.6
•o
©4>
2 0.5J3 -H
U
m 0.4

-rl■o
0.3

0.2

0.1

0
6 7 8 9 10 11 12 13 14

network density

Figure 7.6: Comparison of the one-actuator and three-actuator navigation algorithms
regarding the mission failure rate F.

10

9.5

•a 9oa
£ 8.5
a
Ot
§ 8

<44

©

6.5

6

— — m ean
T-f 2 5 /7 5 p e r c e n t i l e

- *
i

%

* t
*

t *
* ☆

A
/ k

&

>

<y

☆
^ <

\ M

x O ' - 4

> \ A
*

t
k *

t

☆

.. . i i i i
6.28 7.09 7.95 8.86 9.81 10.82 11.87 12.98 14.13 15.33

n e tw o r k d e n s i t y

+ . ■ • + .

■ mean (3-actuator, lot dead)
- o mean (1-actuator, lot dead)

Bean (3-actuator, 30t dead)
aean (1-actuator, 30% dead)

* • r - t * — » • -

.+ ■

■O

— * f------
' $

Figure 7.7: Number of messages sent per node in the leader election process.

92

The proposed WSAN-aided Greedy Task Allocation Algorithm was also eval

uated, considering only traveling distance w ithout turning angles. First, a genetic

algorithm is used as the benchmark for comparison purposes. The genetic algorithm

tests 80 samples in each iteration and runs 2000 iterations for each simulation. The

results obtained by the genetic algorithm are roughly considered very close to the

optimal solutions. A simple algorithm th a t does not include any allocation process is

also run. When there exist destinations th a t have not been serviced yet, each UGV

will just converge to the nearest destination w ithout checking if any other UGV is

heading towards the same destination.

As shown in Figure 7.8, the proposed algorithm and simple contrast algorithm

are both compared with the genetic algorithm when multiple UGVs start at the same

positions. It can be seen th a t while the proposed algorithm is far better than the

simple algorithm, it is, in general, not worse th an twice the genetic algorithm. The

performance of the proposed algorithm deteriorates when the number of destinations

is significantly larger th an the number of UGVs, such as 3/12, th a t is, when there

are 3 UGVs for 12 destinations. The proposed algorithm requires around 2.5 times

the distance than the one by the genetic algorithm . On the other hand, the simple

algorithm requires 7 times more than the genetic one. No optim al solution can be

guaranteed since the system has no global information, and coordinates of nodes and

UGVs are not available. Therefore, it is not expected that the proposed WSAN-Aided

Nearest Neighbor Algorithm has a be tte r performance than the Nearest Neighbor

Algorithm in each and every case. However, simulation results demonstrate that the

93

proposed algorithm performs better than the simple Nearest Neighbor Algorithm

when angle change is taken into account in the cost function.

10

9

8

7

® 6ua<8 c4J Otn-H■o 4

3

2

1

0

Figure 7.8: Performance ratio of the traveled distance by the proposed algorithm
and the genetic algorithm (circles), and perform ance ratio of the traveled distance
by the simple algorithm and the genetic algorithm (triangles) in the multi-UGV,
multi-destination scenario when UGVs start a t the same locations.

In Figure 7.9 two values are plotted: ratioi shows the percentage of networks

where the proposed algorithm performs b e tte r than or equal to the simple Nearest

Neighbor Algorithm considering distance and angle change, respectively; ratio2 shows

the ratio of the cost function (4.1) when both of the distance and angle change are both

considered. Experiments were run using a Pioneer 3-DX mobile robot to estimate the

weighting factors P and Q. By setting Pioneer 3-DX’s velocity to the maximum value,

linear velocity was measured as 170 centimeters per second and angular velocity as 90

degrees per second. Based on this measurement, normalized weighting factors were

- © - mean
* 75 percentile
* 25 percentile

~ A ~ none allocation mean

A

1/ I \ i

k

/
\ "

/
zy —

.. . j

/
/

//4

- 2
/

/

/
/

*
1

/■
*
X

‘ ' 1 U - , r " ^
K ~* J X

2/5 3/5 3/8 4/8 5/8 3/12 5/12 6/12 7/12 8/12
number of UQVs /number of targets

94

assigned as P = 0.35 and Q — 0.65. Note th a t the proposed algorithm outperforms

the simple algorithm regarding the angle change only. See Figure 7.9. In contrast, it

under-performs when a large num ber of targets is present because the network gets

dense and turns, with large angle changes needed to navigate among targets. Although

the proposed algorithm does not show much advancement regarding ratio 2 a t the

selected P and Q, it can be claimed that the proposed algorithm has the potential to

outperform based on the results of ratioj.

1.2
- -* - c o s t e q u a l s d i s t a n c e
— — c o s t e q u a l s a n g l e c h an g e -

&- -

~0- - - -©- - « - - - -O

0.4

0.2
24

n u m b er o f t a r g e t s

1.15
— -O — m ean

2 5 /7 5 p e r c e n t i l u

o" 1.05 * .
jjaM # - - - -O

0.95

0.9
6 9 12 15 18 21 24

n u m b er o f t a r g e t s

Figure 7.9: Comparison of results by the proposed algorithm to the simple nearest
neighbor algorithm in the single UGV and multiple destination scenario.

A randomly deployed network is shown in Figure 7.10. The communication

connections are simplified by maximum simplexity to detect coverage holes, which

95

are plotted in the figure. Figure 7.11 shows the results after running the proposed

hole patching algorithm. It demonstrates that this hole patching algorithm works well

when the coverage holes are an irregular shape.

Figure 7.10: A randomly deployed network w ith three coverage holes.

96

Figure 7.11: The coverage holes are patched after the patching algorithm.

CHAPTER 8

CONCLUSIONS AND FUTURE W ORK

Presented in th is dissertation is the theoretical analysis and the simulation

verification of the proposed algorithms in a coordinate-free wireless sensor and

actuator network environment. The algorithms are described for network hop-distance

identification, UGV navigation control, and analysis is provided of the time and space

complexity of the centralized version algorithms and the more relevant communication

complexity of the distributed cases. A coverage hole patching algorithm is presented

for networks with holes in sensing coverage.

Though the current work considered problems in an open field devoid of

obstructions, for more diverse applications, algorithms can be extended to be capable

of obstacles avoidance. The problem under consideration as well as some assumptions

are stated in the following.

Wall-following is the simplest obstacle avoidance method, by which a robot just

follows the edges of obstacles until return to the initial track. For example, the Pioneer

3DX robot used for the experiment can follow a wall with an array of sonars. There

are various complicating factors in a model with obstacles. For one, in a distributed

unmapped terrain, the positions of the obstacles would be unknown, necessitating

avoidance being done as the obstacles are encountered. Second, assumptions m ust

97

98

be on the hardware available to a UGV in order to detect obstacles, ranging from

ultrasonic sensors th a t operate in one general direction to video cameras th a t have

a much larger field of vision bu t also a much larger energy requirement. When

trying to reach an unknown target or incrementally a local actuating signal minimum,

determining which direction ideally to traverse an obstacle, i.e. clockwise or counter

clockwise, is not necessarily straight-forward, particularly when the end destination is

not known. When an obstacle is on the UGV navigation path , as dem onstrated in

Figure 8.1, the proposed UGV control algorithm can possibly fail if the UGV cannot

connect to an alternate node. Although the wall-following m ethod can always find a

path if the target is not completely cut off by the obstacle, the final goal is to find

an efficient solution which can travel a relatively shorter distance most of the time.

Figure 8.1: Local minimum point is occupied by an obstacle.

To avoid having a “maze-like” environment where the main solution is to do a wall

following algorithm, some reasonable assum ptions can be m ade on the size, shape,

and relative proximity of obstacles.

99

To simplify the problem, it is assumed th a t first, each obstacle is convex,

and obstacles are spread far enough to each other, thus excluding the scenario th a t

multiple obstacles are overlapped to form a non-convex obstacle shape. Second, to

ensure the actuating signal can be received, while ignoring the distance between

listeners and ultrasonic sensors on the UGV, the diam eter d„ (the largest distance

between two points on the perimeter of the obstacle) of single obstacle is bounded by

da < Ta — 2p — dt — <5 (ra > dQ + 2p + dt + 5), where ra is the radius of actuation signal,

p is the radius of listener ring on the UGV, dt is a variable which defines the shortest

distance between the UGV and the obstacle, and <5 is a small value th a t defines the

distance between an active actuator node and the obstacle, as shown in Figure 8.2.

Figure 8.2: Representation of the size limit on the obstacle. The listeners ring
represents the UGV.

Note that this assumption has an underlying condition - there is no attenuation

when signal goes through an obstacle. This condition can la te r be removed when

100

applying certain attenuation factor. Third, the UGV will not detect another obstacle

while trying to go around an obstacle.

In the future, navigation th a t integrates sensing d a ta from sensors in the

network will also be considered. For example, the am plitude of each individual

actuating signal could be adjusted by readings from certain sensors, thus allowing the

navigation path to be controlled according to the environment. A node energy model

will also be formulated for consideration in optimizing the navigation path.

BIBLIOGRAPHY

[1] G. Alankus, N. Atay, C. Lu, and O. B. Bayazit. Spatiotemporal query strategies for

navigation in dynamic sensor network environments. In Proc. IEEE International

Conference on Intelligent Robots and Systems, pages 3718-3725, 2005.

[2] H.M. Ammari and S.K. Das. On computing conditional fault-tolerance measures

for k-covered wireless sensor networks. In Proceedings o f the 9th ACM international

symposium on Modeling analysis and simulation of wireless and mobile systems,

pages 309-316, New York, NY, USA, 2006.

[3] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential field

techniques for robot path planning. Systems, M an and Cybernetics, IEE E

Transactions on, 22(2):224 -241, M arch/April 1992.

[4] M.A. Batalin, G. S. Sukhatme, and M. Hatting. Mobile robot navigation using

a sensor network. In Proc. IE E E International Conference on Robotics and

Automation, volume 1, pages 636-641, 2003.

[5] M.A. Batalin and G.S. Sukhatme. Sensor network-based m ulti-robot task

allocation. In IRO S ’03, volume 2, pages 1939 - 1944, Orlando, FL, October

2003.

[6] M.A. Batalin and G.S. Sukhatme. Using a sensor network for distributed multi

robot task allocation. In IC R A ’Of, pages 158-164, New Orleans, LA, April

2004.

101

102

[7] D. Bertsekas and R. Gallager. Data networks, chapter 5.2.4. Prentice-Hall, Inc,

1987.

[8] J. Borenstein and Y. Koren. Real-tim e obstacle avoidance for fast, mobile

robots. System s, Man and Cybernetics, IE E E Transactions on, 19(5): 1179 -

1187, September/October 1989.

[9] J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance

for mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278-288,

1991.

[10] J.G . Buchart. Detecting coverage holes in wireless sensor networks. M aster’s

thesis, Louisiana Tech University, May 2008.

[11] C. Buragohain, D. Agrawal, and S. Suri. D istributed navigation algorithms

for sensor networks. In Proceedings o f 25th IE E E International Conference on

Computer Communications, pages 1-10, April 2006.

[12] J.E. Burns. A formal model for message passing system. Technical report, Indiana

University, Bloomington, IN, September 1980.

[13] K. Chakrabarty, S.S. Iyengar, H. Qi, and E. Cho. Grid coverage for surveillance

and target location in distributed sensor networks. Computers, IEEE Transactions

on, 51 (12): 1448 - 1453, December 2002.

[14] A. Chandrakasan, R. Am irtharajah, S. Cho, J. Goodman, G. Konduri, J. Kulik,

W. Rabiner, and A. Wang. Design considerations for distributed microsensor

systems. In Custom Integrated Circuits, 1999. Proceedings o f the IE E E 1999,

pages 279 -286, 1999.

103

[15] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-

finding in circular configurations of processes. Commun. A C M , 22:281-283, May

1979.

[16] D. Chen, B. Kumar, C.K. Mohan, K.G. Mehrotra, and RK. Varshney. In-network

path planning for distributed sensor network navigation in dynamic environments.

In Proc. IEEE International Conference on Mobile Ad Hoc and Sensor Systems,

pages 511-513, October 2008.

[17] P. Chen, W. Chen, and Y. Shen. A distributed area-based guiding navigation

protocol for wireless sensor networks. In Proc. IEEE International Conference on

Parallel and Distributed Systems, pages 647-654, December 2008.

[18] W. Chen and X. Li. Sensor localization under limited measurement capabilities.

IEEE Network, 21 (3): 16 -23, M ay-June 2007.

[19] W. Chen, T. Mei, H. Liang, Z. You, S. Li, and M.Q.-H. Meng. Environment-map-

free robot navigation based on wireless sensor networks. In Proc. IEE E I CIA,

pages 569-573, August 2007.

[20] L.P. Clare, G.J. Pottie, and J.R. Agre. Self-organizing distributed sensor networks.

In SPIE Conference on UGSTA , pages 229-237, April 1999.

[21] B. Coltin and M. Veloso. Mobile robot task allocation in hybrid wireless sensor

networks. In IE E E /R S J International Conference on IRO S, pages 2932-2937,

Taipei, October 2010.

[22] P. Corke, R. Peterson, and D. Rus. Localization and navigation assisted by

cooperating networked sensors and robots. International Journal o f Robotics

Research, 24(9):771-786, October 2005.

104

[23] P. Corke and G. Sukhatme. Deployment and connectivity repair of a sensor net

with a flying robot. In Proc. the 9th International Symposium, on Experimental

Robotics, pages 333-343, 2004.

[24] V. De Silva and R. Ghrist. Coordinate-free coverage in sensor networks with

controlled boundaries via homology. Int. J. Rob. Res., 25(12):1205-1222,

December 2006.

[25] X. Deng, C. Xu, F. Zhao, and Y. Liu. Repair policies of coverage holes

based dynamic node activation in wireless sensor networks. In IE E E /IF IP

8th International Conference on EUC , pages 368 -371, December 2010.

[26] M.J. Dong, K.G. Yung, and W .J. Kaiser. Low power signal processing

architectures for network microsensors. In Pros. International Symposium on

Low Power Electronics and Design, pages 173 - 177, August 1997.

[27] A. Elfes. Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6):46-57, June 1989.

[28] M. Foskey, M. Garber, M.C. Lin, and D. Manocha. A voronoi-based hybrid

motion planner. In Procs. 2001 IE E E /R S J International Conference on IRS,

volume 1, pages 55 -60, 2001.

[29] S. Fu, Z. Hou, and G. Yang. An indoor navigation system for autonomous mobile

robot using wireless sensor network. In Proc. IEE E International Conference on

Networking, Sensing and Control, pages 227-232, May 2009.

[30] R.G. Gallager, P.A. Humblet, and P.M. Spira. A distributed algorithm for

minimum-weight spanning trees. A C M Trans. Program. Lang. Syst., 5:66-77,

January 1983.

105

[31] J.J. Garcia-Luna-Aceves and S. Murthy. A path-finding algorithm for loop-free

routing. IEE E/AC M Transactions on Networking, 5:148-160, 1997.

[32] M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[33] R. Ghrist and A. Muhammad. Coverage and hole-detection in sensor networks

via homology. In IPSN, pages 254-260, 2005.

[34] C. Huang and Y. Tseng. The coverage problem in a wireless sensor network. In

Proceedings of the 2nd ACM international conference on Wireless sensor networks

and applications, pages 115-121, New York, NY, USA, 2003.

[35] P. A. Humblet. An adaptive distributed dijkstra shortest path algorithm. Technical

report, Massachusetts Institu te of Technology, Laboratory for Information and

Decision Systems, 1988.

[36] J.A. Janet, R.C. Luo, and M.G. Kay. The essential visibility graph: an approach

to global motion planning for autonomous mobile robots. In Procs. IEE E

International Conference on RA, volume 2, pages 1958 -1963, May 1995.

[37] A. Kapse, Dongbing Gu, and Zhen Hu. Using cricket sensor nodes for pioneer robot

localization. In Mechatronics and Automation, 2009. ICM A 2009. International

Conference on, pages 2008 -2013, August 2009.

[38] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In

Proc. IEE E International Conference on RA, volume 2, pages 500-505, 1985.

[39] E. Korach, S. Kutten, and S. Moran. A m odular technique for the design of

efficient distributed leader finding algorithms. AC M Transactions on Programming

Languages and Systems, 12:84-101, 1990.

106

[40] Y. Koren and J. Borenstein. Potential field methods and their inherent limitations

for mobile robot navigation. In IEEE International Conference on Robotics and

Automation, pages 1398 -1404, April 1991.

[41] W. Lee, K. Hur, and D. Eom. Navigation of mobile node in wireless sensor

networks without localization. In Proc. IEEE International Conference on MFIIS,

pages 1-7, Seoul, August 2008.

[42] G. LeLann. Distributed systems - towards a formal approach. In IFIP Congress’l l ,

pages 155-160, 1977.

[43] Q. Li, M. DeRosa, and D. Rus. D istributed algorithm s for guiding navigation

across a sensor network. In Proc. the 9th Annual International Conference on

Mobile Computing and Networking, MobiCom ’03, pages 313-325, 2003.

[44] X. Li, D.K. Hunter, and K. Yang. W lcl2-1: D istributed coordinate-free

hole detection and recovery. In Global Telecommunications Conference, 2006.

GLOBECOM ’06. IEEE, pages 1 -5, December 2006.

[45] Y. Li and M.T. Thai, editors. Wireless Sensor Networks and Applications.

Springer, 2008.

[46] J. Liu, Y. Feng, H. Xu, J. Xue, and M. Qian. Greedy approximation

algorithm of patching hole in wireless sensor networks. In Consumer Electronics,

Communications and Networks (CECNet), 2012 2nd International Conference

on, pages 2604 -2608, April 2012.

[47] N. Marchetti, N.R. Prasad, J. Johansson, and Tao Cai. Self-organizing networks:

State-of-the-art, challenges and perspectives. In Communications (COMM), 2010

8th International Conference on, pages 503 -508, june 2010.

107

[48] S. Martinez, J. Cortes, and F. Bullo. Motion coordination with distributed

information. Control Systems, IEEE , 27(4):75 -88, August 2007.

[49] E Masehian and M.R. Amin-Naseri. A voronoi diagram-visibility graph-potential

field compound algorithm for robot path planning. J. Robot. Syst., 21(6):275-300,

June 2004.

[50] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M.B. Srivastava. Coverage

problems in wireless ad-hoc sensor networks. In INFO CO M 2001. Twentieth

Annual Joint Conference of the IE E E Computer and Communications Societies.

Proceedings. IEEE , volume 3, pages 1380 -1387, 2001.

[51] T. Mercker, M. Akella, and J. Alvarez. Robot navigation in a decentralized

landmark-free sensor network. Journal o f Intelligent and Robotic Systems, 60(3-

4):553-576, 2010.

[52] P.M. Merlin. Design and analysis of distributed routing algorithms. M aster’s

thesis, University of California, Santa Cruz, 1994.

[53] MIT Computer Science and Artificial Intelligence Lab. Cricket User Manual,

second edition, January 2005.

[54] MobileRobots ActivMedia Robotics. Pioneer 3 Operations Manual, third edition,

January 2006.

[55] A.K. Mohammad. Mobile robot navigation using cricket indoor location system.

Master’s thesis, Louisiana Tech University, 2008.

[56] L. Montestruque and M. Lemmon. Csonet: a m etropolitan scale wireless sensor-

actuator network. In International Workshop on Mobile Device and Urban Sensing

(MODUS), 2008.

108

[57] K.J. O ’Hara, D.B. Walker, and T.R. Balch. Physical p a th planning using a

pervasive embedded network. IE E E Transactions on Robotics, 24(3):741 - 746,

June 2008.

[58] Oracle. Class thread, h t tp : / /d o c s .o r a c le .e o m / ja v a s e / l .5 .0 /d o c s /a p i /

j a v a /1ang /T hread . h tm l.

[59] Oracle. Java object. h t t p : / /d o c s .o r a c le .c o m / ja v a s e / tu to r i a l / j a v a /

javaO O /ob jects.h tm l.

[60] C.H. Papadimitriou and E.B. Silverberg. Optimal piecewise linear motion of an

object among obstacles. Algorithmica, 2:523-539, 1987.

[61] L.E. Parker. Alliance: an architecture for fault tolerant m ultirobot cooperation.

Robotics and Automation, IEEE Transactions on, 14(2):220 -240, April 1998.

[62] D. Puccinelli and M. Haenggi. Wireless sensor networks: applications and

challenges of ubiquitous sensing. IEE E Circuits and Systems, 5(3): 19 - 31, 2005.

[63] T. Rappaport. Wireless Communications: Principles & Practice. Prentice-Hall,

Inc, New Jersey, 1996.

[64] J. Schiff, A. Kulkarni, D. Bazo, V. Duindam, R. Alterovitz. D. Song, and

K. Goldberg. Actuator networks for navigating an unmonitored mobile robot. In

Proc. of IEEE Conference on Automation Science and Engineering, pages 53-60,

Washington DC, August 2008.

[65] V. De Silva and R. Ghrist. Homological sensor networks. Notices of the American

Mathematical Society, 54:2007, 2007.

[66] J. Spinelli. Broadcasting topology and routing information in computer networks.

M aster’s thesis, Massachusetts Institu te of Technology, May 1985.

http://docs.oracle.eom/javase/l.5.0/docs/api/
http://docs.oracle.com/javase/tutorial/java/

109

[67] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,

second edition, 2000.

[68] J. Tsitsiklis and G. Stamoulis. On the average communication complexity of

asynchronous distributed algorithms. Journal o f the AC M , 42(2):382 -400, 1995.

[69] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley. Leader

election algorithms for wireless ad hoc networks. In D ARPA Information

Survivability Conference and Exposition, volume 1, pages 261 - 272, April 2003.

[70] A. Verma, H. Sawant, and J. Tan. Selection and navigation of mobile sensor

nodes using a sensor network. In Pervasive Computing and Communications,

2005. PerCom 2005. Third IE E E International Conference on, pages 41 -50,

March 2005.

[71] A. Viguria and A.M. Howard. An integrated approach for achieving multirobot

task formations. Mechatronics, IE E E /A S M E Transactions on, 14(2):176 -186,

April 2009.

[72] S. Wang and H. Hu. Three-dimensional localization using cricket system. Technical

report, School of Com puter Science and Electronic Engineering, University of

Essex, December 2011.

[73] R. Wu, J. He, T. J.. Li, and H. Shi. Energy-efficient coverage hole self-repair

in mobile sensor networks. In Proceedings o f the 2009 International Conference

on New Trends in Information and Service Science, NISS ’09, pages 1297-1302,

Washington, DC, USA, 2009. IEEE Com puter Society.

[74] N. Xu. A survey of sensor network applications. IEEE Communications Magazine,

40, 2002.

110

[75] J. Yao, G. Zhang, J. Kanno, and R.R. Selmic. Decentralized detection and

patching of coverage holes in wireless sensor networks. In Proc. SP IE Defense

and Security, pages 73520V-73520V-10, 2009.

[76] G. Zhang, C.A. Duncan, J. Kanno, and R.R. Selmic. Unmanned ground vehicle

navigation in coordinate-free and localization-free wireless sensor and actuator

networks. In Proc. 2010 IEEE Multi-conference on Systems and Control, pages

428-433, Yokohama, Japan, September 2010.

[77] G. Zhang, C.A. Duncan, J. Kanno, and R.R. Selmic. D istributed unmanned

ground vehicle navigation in coordinate-free and localization-free wireless sensor

and actuator networks. In Decision and Control and European Control Conference

(CDC-ECC), 2011 50th IEEE Conference on, pages 7262 -7267, December 2011.

[78] G. Zhang, J. Li, C.A. Duncan, J. Kanno, and R.R. Selmic. Ugv navigation in

wireless sensor and actuator network environments. In Proc. SP IE Defense and

Security, pages 83870G-83870G-11, Baltimore, MD, April 2012.

[79] H. Zhang and J. C. Hou. Maximizing a-lifetime for wireless sensor networks. Int.

J. Sen. Netw., 1:64-71, September 2006.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2013

	Unmanned Ground Vehicle navigation and coverage hole patching in Wireless Sensor Networks
	Guyu Zhang
	Recommended Citation

	00001.tif

