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ABSTRACT

Layered structures have appeared in many systems such as biological tissues,

micro-electronic devices, thin films, fins, reactor walls, thermoelectric power conver-

sion, thermal coating, metal oxide semiconductors, and thermal processing of DNA

origami nanostructures. Analyzing heat transfer in layered structures is of crucial

importance for the design and operation of devices and the optimization of thermal

processing of materials. There are many numerical methods dealing with the layered

structures or interface problems. The existing numerical methods such as the im-

mersed interface method and the matched interface boundary method, if using three-

grid points across the interface, usually provide only a second-order truncation error,

which reduces the accuracy of the overall numerical solution even if the higher-order

compact finite difference method is employed at other points. Obtaining a higher-

order accurate numerical scheme using three-grid points across the interface so that

the overall numerical scheme is stable and convergent with higher-order accuracy is

mathematically challenging.

The objective of this dissertation is to develop a higher-order accurate finite

difference method using three-grid points across the interface. To this end, we first

consider three mathematical models, the steady-state heat conduction model, the

unsteady-state heat conduction model and the nanoscale heat conduction model. The

well-posedness of these three models are proved. After that, compact higher-order
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finite difference schemes for solving these three models are developed, respectively. In

particular, for the interior points, the well-known padé scheme (three-point fourth-

order compact finite difference scheme) is applied. On the boundary and interface,

by preserving the first-order derivative, ux, fourth-order finite difference schemes for

the interface conditions, third-order or fourth-order finite difference schemes for the

Neumann boundary conditions and the Robin boundary conditions, are developed,

respectively. As such, the overall schemes are at least third-order accurate. The sta-

bility and convergence of the scheme for the steady-state case with Dirichlet boundary

are proven. Finally, four different examples are given to test the obtained numerical

schemes. Results showed that the convergence rate is close to 4.0, which coincides

with the theoretical analysis. Further research will focus on the analysis of the stabil-

ity and convergence of the schemes for the unsteady-state heat conduction case and

the nanoscale heat conduction case, and the extension of our schemes to multidimen-

sional cases.





TABLE OF CONTENTS

ABSTRACT ........................................................................................................... iv

LIST OF TABLES..................................................................................................viii

LIST OF FIGURES................................................................................................ ix

ACKNOWLEDGMENTS ....................................................................................... xi

CHAPTER 1 INTRODUCTION......................................................................... 1

1.1 General Overview...................................................................................... 1

1.2 Research Objectives .................................................................................. 3

CHAPTER 2 LITERATURE REVIEW AND PREVIOUS WORK ................... 5

2.1 Heat Conduction Equations ...................................................................... 5

2.2 Interface Problems .................................................................................... 9

2.3 Compact Finite Difference Method........................................................... 15

CHAPTER 3 MATHEMATICAL MODELS....................................................... 20

3.1 Steady State Heat Conduction Model....................................................... 21

3.2 Unsteady State Heat Conduction Model................................................... 27

3.3 Nanoscale Heat Conduction Model ........................................................... 29

CHAPTER 4 NUMERICAL METHODS: PART I—GRADIENT PRESERVED
METHOD...................................................................................... 32

4.1 Generalization of Compact Finite Difference Method............................... 32

4.2 Gradient Preserved Method ...................................................................... 38

vi



vii

4.3 Analysis of the Scheme for Steady State Heat Conduction Model with
Dirichlet Boundary.................................................................................... 44

4.4 Conclusion................................................................................................. 48

CHAPTER 5 NUMERICAL METHODS: PART II — SCHEMES FOR THE
DOUBLE-LAYERED HEAT CONDUCTION MODELS ............. 50

5.1 Schemes for Steady State Heat Conduction Model................................... 50

5.2 Schemes for Unsteady State Heat Conduction Model............................... 56

5.3 Schemes for Nanoscale Heat Conduction Model ....................................... 72

CHAPTER 6 NUMERICAL EXAMPLES .......................................................... 94

CHAPTER 7 CONCLUSIONS AND FUTURE WORK.....................................109

BIBLIOGRAPHY................................................................................................... 111



LIST OF TABLES

Table 6.1: Numerical errors and convergence order for Example 1...................... 95

Table 6.2: Numerical errors and convergence order for Example 2......................100

Table 6.3: Numerical errors and convergence order in space for Example 3........103

Table 6.4: Properties of gold and chromium for Example 4 [53, 72, 98]. .............105

viii



LIST OF FIGURES

Figure 2.1: One-dimensional mesh for IMIB. ........................................................ 12

Figure 3.1: Double-layered solid structure. ........................................................... 20

Figure 4.1: One-dimensional mesh for a double-layered solid structure. ............... 32

Figure 5.1: One-dimensional mesh for steady-state heat conduction model.......... 50

Figure 5.2: Two-dimensional mesh for unsteady-state heat conduction model. .... 57

Figure 5.3: Two-dimensional mesh for nanoscale heat conduction model. ............ 73

Figure 6.1: Temperature profiles along the spatial direction when M = 36
using the present scheme for Dirichlet boundary in Example 1.......... 96

Figure 6.2: Temperature profiles along the spatial direction when M = 36
using the present scheme for Neumann boundary in Example 1. ....... 97

Figure 6.3: Temperature profiles along the spatial direction when M = 36
using the present scheme for Robin boundary in Example 1. ............. 97

Figure 6.4: Temperature profiles along the spatial direction whenm = 15,M =
30 using the present scheme for Robin boundary in Example 1. ........ 98

Figure 6.5: Temperature profiles along the spatial direction when M = 40,
N = 105 at t = 0.5, using the present scheme for Dirichlet boundary
in Example 2....................................................................................... 101

Figure 6.6: Temperature profiles along the spatial direction when M = 40,
N = 105 at t = 0.5, using the present scheme for Neumann
boundary in Example 2....................................................................... 101

Figure 6.7: Temperature profiles along the spatial direction when M = 40,
N = 105 at t = 0.5, using the present scheme for Robin boundary
in Example 2.......................................................................................102

ix



x

Figure 6.8: Temperature profiles along the spatial direction when M = 40,
N = 105 at t = 0.5 using the present scheme in Example 3................104

Figure 6.9: A double-layered nanoscale thin film in Example 4. ...........................105

Figure 6.10: Temperature profiles along the spatial direction for three different
values, α1 = α2 = α = 0.05, 0.5, 5, at t = 0.2 (ps), based on a mesh
of 40 grid points with a time increment of 0.0001 (ps) in Example 4. 106

Figure 6.11: Temperature profiles along the spatial direction for three different
values, α1 = α2 = α = 0.05, 0.5, 5, at 0.32 (ps), based on a mesh
of 40 grid points with a time increment of 0.0001 (ps) in Example 4. 106

Figure 6.12: Temperature profiles along the spatial direction for three different
values, α1 = α2 = α = 0.05, 0.5, 5, at 0.5 (ps), based on a mesh of
40 grid points with a time increment of 0.0001 (ps) in Example 4. ....107

Figure 6.13: Normalized temperature ( u−u0

umax−u0 ) profiles along the time direction
at location x0 for three different values, α1 = α2 = α = 0.05, 0.5, 5,
based on a mesh of 40 grid points with a time increment of 0.0001
(ps) in Example 4................................................................................107



ACKNOWLEDGMENTS

Dr. Weizhong Dai, the most important person I should thank at this moment.

Without his support, input, direction and patience, I would not be able to finish

this dissertation. He is such an elegant, brilliant and diligent man, just like his

own equation, Success = 89% Hard work + 10% Intelligence + 1% Luck. We had

countless hours of conversation on almost every topic. He can always explain and

solve a problem in a very simple and clear way. He taught me a lot and gave me lots

of advice on research, teaching, career, life in general and much more. Without him,

I would never have found my passion for research and my own equation, Happiness

= x1% Hard work + x2% Intelligence + x3% Luck + x4% Love. I am so lucky, more

than 1%, to have the chance to learn under such a wise mathematician.

I would also like to thank the professors I met at Louisiana Tech University.

I want to give my thanks to Dr. Erica P. Murray, the first professor aside from

my advisor, for her suggestions and sincerity at the very beginning of my PhD life.

Moreover, I would like to thank the rest of my committee members, Dr. Sumeet Dua,

Dr. Katie A. Evans, and Dr. Don Liu for their help and feedback to improve this

dissertation. I want to thank Dr. Songming Hou for providing me with plenty of

time to talk with me either regarding research or life and for his valuable suggestions

on this work. I am grateful to Dr. Paula W. Brown for her assistance in improving

my English, both verbally and writing. I would like to thank Mr. Danny Eddy, Dr.

xi



xii

Dave Meng, Dr. Scarlett S. Bracey, and Dr. Jonathan B. Walters for their help when

I was their teaching assistant.

I am very grateful to the College of Engineering and Science for providing me

an assistantship during my study in PhD CAM program. Special thanks gives to

Dr. William Edwin Koss for allowing the Program of Mathematics and Statistics to

select me as the recipient of the Dr. Walter E. Koss Scholarship for the academic year

2014-2015. Thanks to all the faculty and staffs at Louisiana Tech for their support

and help. Each person has influenced my research or life in some way.

My gratitude goes above all to my family. To my parents, siblings and my

wife, thank you for your love and support as I pursued my hopes and dreams; thank

you for your unmatched support you have given me through the years. Without your

love and sacrifice, I could never have completed this work.

I want to acknowledge the help that has come from all my friends, for their

understanding and assistance in these past four years. First, I’d like to thank the

friends I made in Ruston, Louisiana. They helped me in various ways at different

periods and I had a much more colorful life here because of them. I would also like

to thank the friends I made before I started my PhD journey, in particular, Zhiyan

Yang (12 years), Qifang Li (9 years), Zhipin Lin (9 years) and Jia Zhang (7 years).

I thank them for their support and for their willingness to lend a listening ear when

needed even from afar. Last but not least, I would like to thank my academic siblings,

Fei Han, Casey O. Orndorff, Yushan Lin, Joshua P. Wilson and Aniruddha Bora. I

enjoyed my conversations with them on research and life. I am very happy to be

a member of this academic family. It is a special pleasure to thank Bora, Zhiping,



xiii

Jia and Rui Liu for their help on either improving my dissertation or preparing my

defense. I will keep in touch.

Thanks to all who smiled at me while I was on campus even though we did

not know each other.

All the people I mentioned above made my PhD journey much more enjoyable.

I cannot thank them enough.



CHAPTER 1

INTRODUCTION

1.1 General Overview

Layered structures have appeared in many engineering systems such as biolog-

ical tissues, micro-electronic devices, thin films, reactor walls, thermoelectric power

conversion, thermal coating, metal oxide semiconductors and thermal processing of

DNA origami nano structures [1-8]. In particular, the multi-layered metal thin-films,

for example, gold-coated metal mirrors, are often used in high-power infrared-laser

systems to avoid damage at the front surface of a single layer film caused by the

high-power laser energy [7]. Furthermore, to achieve high thermoelectric efficiency,

a low thermal conductivity is required. Low thermal conductivity is often realized

by nano-structuring with the introduction of a high density of materials [4]. All

semiconductor devices possess metal contacts; hence, the study of heat conduction

through metal-semiconductor interfaces is a technological problem [8]. Thus, analysis

of heat conduction in layered structures is of crucial importance for the design and

operation of devices and the optimization of thermal processing of materials.

There are many models and numerical methods in the literature dealing with

thermal analysis in layered structures. The governing equations include steady-

state heat conduction, unsteady-state heat conduction, where the equations vary

1
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from elliptic partial differential equations, parabolic partial differential equations,

Boltzmann transport equations to dual-phase-lagging equations, etc. The numeri-

cal methods include finite difference method, finite element method, finite volume

method, Monte Carlo method, mesh-free method, etc. Moreover, the numerical

methods that deal with the interface include Peskin’s immersed boundary method

[9-14], the immersed interface method [15-25], the ghost fluid method [26-28], the

matched interface and boundary method [29-34], finite element method [35-44] and

some body-fitting approaches [45, 46]. For time-dependent problems, summation-

by-parts operators with simultaneous approximation terms is another good choice

besides the above methods [47-50].

Although there are many numerical methods such as the aforementioned im-

mersed interface method and the matched interface boundary method, the existing

numerical method using three-grid points across the interface usually provides only

a second-order truncation error, which reduces the accuracy of the overall numerical

solution even if the higher-order compact finite difference method is employed at other

points. It is desirable to have a higher-order numerical scheme using three points

across the interface because fourth-order three-points in space compact numerical

scheme has been obtained for the interior points [51]. As such, the overall scheme

will provide a much more accurate solution. At the same time, the solution system is

a tridiagonal linear system, which can be easily solved using the well-known Thomas

algorithm. Using as small a number of grid points as possible to obtain a reasonable

accurate solution is particularly interesting in micro/nano scale heat conduction

because of the very small dimension. However, obtaining a higher-order accurate
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numerical scheme using three-grid points across the interface so that the overall

numerical scheme is unconditionally stable and convergent with higher-order accuracy

is mathematically challenging.

1.2 Research Objectives

The objective of this dissertation is to develop a higher-order accurate finite

difference method using three-grid points across the interface. By coupling with a

three-point fourth-order compact finite difference scheme at the interior points, we

aim to obtain a stable and convergent numerical scheme and achieve a higher-order

accurate solution. To this end, this dissertation research will focus on the development

of a higher-order accurate finite difference method for the thermal analysis in steady-

state, unsteady-state and micro/nano scale based on the one-dimensional double-

layered elliptic, parabolic and dual-phase-lagging equations with different kinds of

interface conditions and boundary conditions in order to avoid the complex geometry.

The organization of the rest of the dissertation is given as follows. In Chapter

2, the literature that leads to the current work is reviewed. In Chapter 3, the models

for thermal analysis in one dimensional steady-state, unsteady-state and micro/nano

scale (only nanoscale will be used for the rest of the dissertation) of heat conduction in

double-layered structures are considered, in which the elliptic equation, the traditional

heat conduction equation, and the dual-phase-lagging equation are given. The well-

posedness of these three models are analyzed. In Chapter 4, we give the idea of the

gradient preserved method, and then apply it to developing the numerical schemes for

the steady-state heat conduction model with the Dirichlet boundary. The solvability,
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stability, and convergence of the numerical scheme are analyzed theoretically. In

Chapter 5, by using the gradient preserved method and three-points compact finite

difference method, we propose higher-order accurate finite difference schemes for

obtaining the approximate solutions for the steady-state heat conduction model (with

Neumann and Robin boundaries), the unsteady-state heat conduction model and the

nanoscale heat conduction model. In Chapter 6, we test these new numerical methods

by four examples for accuracy and applicability. In Chapter 7, summary of the current

work is given and future work is discussed.



CHAPTER 2

LITERATURE REVIEW AND PREVIOUS WORK

This chapter will review the heat conduction equations, existing numerical

methods dealing with interface, and compact finite difference method, which are

related to this dissertation.

2.1 Heat Conduction Equations

Based on Fourier’s law, the heat flux and the temperature gradient in solid

structure satisfy

q (~r, t) = −k∇u (~r, t) , (2.1)

where ~q is the heat flux, u (~r, t) is the temperature, k is the conductivity, ~r is the

space vector, t is the time, and ∇ is the gradient operator. Coupling with the energy

equation

ρCut (~r, t) = −∇ · q (~r, t) + f (~r, t) , (2.2)

where ρ is the density, C is the specific heat, and f (x, t) is the heat source term, one

may obtain

ρCut (~r, t) = k∇2u (~r, t) + f (~r, t) , (2.3)

5
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which is often called the unsteady-state heat conduction equation. If the temperature

is time-independent, i.e. ut (~r, t) = 0, it is called the steady-state, and the equation

can be reduced to

−k∇2u (~r) = f (~r) , (2.4)

which is called an elliptic equation. In particular, for the one-dimensional case, the

unsteady-state equation can be written as

ρCut (x, t) = kuxx (x, t) + f (x, t) , (2.5)

and the steady-state equation (elliptic equation) is

−kuxx (x) = f (x) . (2.6)

In general, if k is dependent on x, the unsteady-state and steady-state equations can

be written as

ρCut (x, t) =
∂

∂x
(k (x) ux (x, t)) + f (x, t) , (2.7)

and

−
d

dx
(k (x) ux (x)) = f (x) , (2.8)

respectively. The boundary condition could be the Dirichlet boundary condition

u|∂Ω = g (x, t) , (2.9)

where ∂Ω is the boundary, g (x, t) is a given function, or the Neumann boundary

condition

∂u

∂~n
|∂Ω = g (x, t) , (2.10)
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where ~n is the outward normal vector on the boundary, or the Robin boundary

condition

α
∂u

∂~n
|∂Ω + βu|∂Ω = g (x, t) , (2.11)

where α, β are constants.

In 1997, Tzou introduced the phase-lag concept to allow for the heat flux

and the temperature gradient to occur at different instants of time in nanoscale heat

transfer [53]. This can be represented as

q (~r, t+ τq) = −k▽u (~r, t+ τT ) , (2.12)

where τq, τT are the delay times for the heat flux and the temperature gradient,

respectively. In the heat diffusion model at the nanoscale, τq = τT = 0, which implies

an infinite speed of heat propagation (zero delay time between heat input at one

location and its detection at other locations). On the other hand, in the thermal

wave theory of heat conduction, τT = 0, a first-order Taylor series expansion of the

above equation with respect to t, gives the classical thermal wave model

q (~r, t) + τqqt (~r, t) = −k▽u (~r, t) , (2.13)

as originally proposed by Cattaneo and Vernotle [54, 55]. This wave equation relaxes

the assumption of infinite speed of heat propagation. The heat flux delay time (or

phonon mean free time) is related to the wave speed w, by expression τq =
η
w2 , where

η is the thermal diffusivity. It is clear that when the wave speed is infinite, the wave

equation reduces to the classical heat diffusion equation. In order to obtain a solution
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for q and u, we combine the energy equation (2.2) and obtain

k

ρC
ut (~r, t) = ▽

2u (~r, t)−
ρCτq
k

utt (~r, t) +
1

k
(f (~r, t) + τqft (~r, t)) . (2.14)

For the dual-lag model, the case τq < τT implies that the flux (or heat flow) causes a

temperature gradient to occur across the medium. On the other hand, when τq > τT ,

the temperature gradient (which occurs first) induces the flux or heat flow. A first-

order Taylor series approximation of Eq. (2.12) leads to the expression

q (~r, t) + τqqt (~r, t) ≃ −k

[

▽u (~r, t) + τT
∂ (▽u (~r, t))

∂t

]

. (2.15)

As discussed by Tzou, the lags or delayed responses can be caused by the following

factors: (1) A lag is caused by the time it takes for heat to be transferred from

the heated electrons to the phonons, which is usually of the order of a picosecond.

(2) For dielectric films, insulators, and semiconductors, the dominant mechanism of

heat transport is phonon collisions and scattering. In this case, the lag is caused by

the phonon mean free time. (3) Heat transport at low temperatures can be delayed

because of a reduced collision rate among molecules. (4) Porous media can cause a

delay in response caused by the time it takes for heat flow to circulate around the air

pockets in the medium. As such, it is seen that the lags may belong to the intrinsic

or to the structural properties of the materials. Combining with the energy equation,

we eliminate q and obtain the dual-phase-lagging equation as

ρC

k
ut(~r, t)+

ρCτq
k

utt(~r, t)=▽
2u(~r, t)+τT

∂(▽u(~r, t))

∂t
+

1

k
(f(~r, t)+ τqft(~r, t)). (2.16)

The dual-phase-lagging equation as a new modified constitutive equation re-

placing the Fourier law to simulate the heat transfer in some special cases such as
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nanoscales, ultrafast laser-pulsed processes, living tissues, and carbon nanotubes has

been widely used. A recent review article [1], published by Ghazanfarian and his

collaborators in 2015, indicates that more than three-hundred articles on the thermal

lagging behavior in heat and mass transfer have been published and all or part of

which are involved with the phase-lagging models.

2.2 Interface Problems

There are lots of research papers in the literature that address interface prob-

lems. In this dissertation, we only discuss a few commonly used finite difference

methods for interface problems.

Peskin proposed an immersed boundary method (IBM) to simulate the blood

flows in heart, where the interface problem comes from the singular source at the

time-varying boundary [11-13]. One of the important ideas in the IBM is the use of

a discrete delta function to distribute a singular source to nearby grid points. For

example, the Peskin original discrete cosine delta function is

δε (x) =















1
4ε

(

1 + cos
(

πx
2ε

))

, |x| < 2ε,

0, |x| ≥ 2ε.

(2.17)

Consider the following interface problem

uxx = δ (x− xI) , x = xI ∈ (0, 1) ; u (0) = u (1) = 0, (2.18)

where xI is the location of the interface. It can be seen that the finite difference

method

(uj−1 − 2uj + uj+1) /h
2 = δh (x− xI) (2.19)



10

with δh given by Eq. (2.17) is only first-order accurate. However, due to the sim-

plicity, efficiency and robustness of the IBM, it has been applied in many engineering

computations [56-58]. In addition, higher-order version of the IBM has been gradually

proposed by Peskin and his coworkers [9, 10]. In particular, Tornberg and Engquist

developed a globally fourth-order scheme for problems with singular sources at the

interface by using some sophisticated discrete delta functions with a narrow support

[59].

In 1994, LeVeque and Li proposed the immersed interface method (IIM) for

solving elliptic equations with interface problems [18]. The idea of IIM is to use

Taylor series expansion on the grid points near the interface, and then by matching

the interface conditions, to determine the weights of these points. The method in

determining the finite difference coefficients is to minimize the local truncation error.

By defining polynomials up to the second order at each side of the interface, the

IIM is a second-order accurate method, although its local truncation error at points

around the interface is only first-order. The original IIM has been improved in many

ways, such as the discrete maximum principle [19], a multi-grid method [15] and a

fast algorithm if the problem comes with piecewise constant coefficient [21]. The

coupling of the IIM with the level set approach to handle moving interfaces has also

been proposed [16, 17]. The IIM has been successfully applied to many important

problems [10, 60-62]. More details on reviewing the IIM can be found in the book

written by Li and Ito [63].

In 1999, Osher and his coworkers proposed the ghost fluid method (GFM) [26].

In GFM, the interface jump conditions are captured implicitly by extending values
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across the interface into a ghost fluid based on the level set method. Although the

GFM is typically first-order accurate, it is widely used due to its simplicity when

dealing with complex interface.

In 2006, the matched interface and boundary (MIB) method was originally

developed for simulating electromagnetic wave scatting and propagation [31, 64]. For

elliptic interface problems, the MIB can be treated as a generalization of the IBM, the

IIM and the GFM. In the MIB technique, the solution on each side of the interface

is smoothly extended to the other side of the interface by using fictitious values. To

get those fictitious values, first, the extrapolation of fictitious values are numerically

realized by enforcing given boundary conditions. Secondly, the number of fictitious

values is determined by the order of the central finite difference scheme. However, as

pointed out in [33], the MIB can be fitted in an interpolation formulation without

relating to any fictitious node value. The purpose of using fictitious values is to make

the MIB presentation clear.

In 2010, Pan and his collaborators developed an interpolation matched inter-

face and boundary (IMIB) method with second-order accuracy based on the original

MIB method [65]. Since the IMIB is the generalization of MIB, GFM and IIM, and

one of the most important idea of this dissertation comes from the IMIB method, we

give more details on this method by using a one-dimensional elliptic interface problem

as

d2 (β (x) u (x))

dx2
= f (x) , 0 < x < 1, (2.20)
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with a Dirichlet boundary condition:

u (0) = 0, u (1) = 0, (2.21)

and conditions across the interface I:

uI+ − uI− = 0, (2.22)

βI+ (ux)I+ − βI− (ux)I− = 0, (2.23)

where the function β (x) might be discontinuous at the interface, the superscript −

or + denotes the limiting value of a function at different sides of the interface.

First, we design an equal-distant mesh and denote grid size to be h = 1/M,

where M is a positive integer, as shown in Figure 2.1. Grid points in the mesh are

denoted as xj = jh, 0 ≤ j ≤ M, where the interface is located at grid point xI =

mh + θh. Fm, Fm+1 are two fictitious values at locations xm and xm+1, respectively.

0

x
0

h
x

m−1
x

m

F
m

θh (1−θ)h
x

I

Interface

x
m+1

F
m+1

h
x

m+2
x

M

1

Figure 2.1: One-dimensional mesh for IMIB.

We now give the derivations on the IMIB method. Using Taylor series expan-

sion, we can obtain the approximations of the values u and its first-order derivative

ux on the left-hand and right-hand side of the interface as

uI− =

(

−
θ

2
+
θ2

2

)

um−1 +
(

1− θ2
)

um +

(

θ

2
+
θ2

2

)

Fm+1, (2.24)

uI+ =

(

1−
3θ

2
+
θ2

2

)

Fm +
(

2θ − θ2
)

um+1 +

(

−
θ

2
+
θ2

2

)

um+2, (2.25)
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and

(ux)I− =

(

−
1

2
+ θ

)

um−1 − 2θum +

(

1

2
+ θ

)

Fm+1, (2.26)

(ux)I+ =

(

−
3

2
+ θ

)

Fm + (2− 2θ)um+1 +

(

−
1

2
+ θ

)

um+2, (2.27)

respectively. Then, we can discretize uxx at grid points xm and xm+1, as
(

Fm+1−um

h
− Fm−um−1

h

)

h
= fm, (2.28)

(

um+2−um+1

h
− um+1−Fm

h

)

h
= fm+1. (2.29)

Combining Eqs. (2.22)-(2.29) together, we obtain a system of 8 equations with 10

unknowns {uI−, uI+, (ux)I− , (ux)I+ , Fm, Fm+1, um−1, um, um+1, um+2}. After deleting

uI−, uI+, (ux)I− , (ux)I+ , Fm and Fm+1, we obtain the following scheme

(

2− θ2
)

um−1 −
(

5− 2θ − θ2
)

um + (2− θ)2 um+1 − (1− θ)2 um+2

= (3− 2θ) a+
(

2− 3θ + θ2
)

bh +
(

1 + 2θ − 2θ2
)

h2fm, (2.30)

− θ2um−1 −
(

1 + θ2
)

um −
(

2 + 4θ − θ2
)

um+1 + (1 + 2θ − θ)2 um+2

=− (1 + 2θ) a +
(

θ + θ2
)

bh+
(

1 + 2θ − 2θ2
)

h2fm+1. (2.31)

Eq. (2.30) and Eq. (2.31) can be rewritten as

um+1 − 2um + um−1

h2
=

1 + 2θ − 2θ2

2
fm +

1− 2θ + θ2

2
fm+1 +

a

h2
+
b (1− θ)

h
, (2.32)

um+2 − 2um+1 + um
h2

=
θ2

2
fm +

2− θ2

2
fm+1 −

a

h2
+
bθ

h
. (2.33)

Given that fm+1 = fm + (fI+ − fI−) +O (h) , the above schemes can be changed to

um+1 − 2um + um−1

h2
= fm +

a

h2
+
b (1− θ)

h
+

1− 2θ + θ2

2
(fI+ − fI−) , (2.34)

um+2 − 2um+1 + um
h2

= fm+1 −
a

h2
+
bθ

h
−
θ2

2
(fI+ − fI−) . (2.35)
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As pointed in [65], Eqs. (2.30)-(2.31) are the same as the second-order MIB [32], Eqs.

(2.32)-(2.33) are equivalent to the IIM [18] and interpolation formulation of MIB [33].

Also, if fI+ − fI− = 0, Eqs. (2.34)-(2.35) are just the same as the GFM [27].

All the above methods have been extended to treat time-dependent equations

with interface problems. Another good choice in dealing with the time-dependent

interface problems is the summation-by-parts operators with simultaneous approxi-

mation terms [50, 66]. The method can facilitate the derivation of higher-order spatial

discretization that are provably time stable based on the energy method. For example,

the interface procedures for the heat equation have been considered by Giles [67], by

Roe et al. [68] and by Henshaw and Chand [69].

In 2014, Sun and Dai provided a fourth-order accuracy in space scheme for

solving heat conduction in a double-layered film with the Neumann boundary condi-

tion [70]. Dai et. al also developed a fourth-order compact finite-difference scheme

for solving the 1-D Pennes’ bioheat transfer equation in a triple-layered skin structure

[71]. For heat conduction in nanoscale, Dai and his collaborators proposed several

schemes based on different mathematical models [72-76], but all of them are only

second-order accuracy in spatial dimension.

Apart from the methods mentioned above, many other approaches have been

proposed in the literature, such as the finite element method [35-44], discontinuous

Galerkin approach [77], integral equation approach [78], etc. We will not give more

details on these methods as our focus is on the finite difference method.
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2.3 Compact Finite Difference Method

From numerical analysis, we know that the derivative gx (x) at xi can be

approximated using

gx (xi) ≃
g (xi)− g (xi−1)

h
, with truncation error O (h) ,

gx (xi) ≃
g (xi+1)− g (xi−1)

2h
, with truncation error O

(

h2
)

,

and in general,

gx (xi) ≃

n
∑

j=−n

αjg (xi+j) , with truncation error O (hn) .

Here, xi+1 = xi + h, xi−1 = xi − h, and xi+j = xi + jh. This implies that to obtain a

truncation error of O (hn) , one may need to use 2n+1 values of g (x) to approximate

gx (xi) . This becomes inconvenient when solving partial differential equations near

the boundary. To overcome this trouble, in 1992, Lele proposed a new method called

the compact finite difference method [51]. The idea is to use as few grid points as

possible to obtain as higher order of truncation error as possible. For example, if one

wants to obtain the approximation of gx (xi) , the relationship between {gx (xi)} and

{g (xi)} can be written in an implicit way as

β (gx)i−2 + α (gx)i−1 + (gx)i + α (gx)i+1 + β (gx)i+2

=c
gi+3 − gi−3

6h
+ b

gi+2 − gi−2

4h
+ a

gi+1 − gi−1

2h
, (2.36)

where α, β, a, b, c are constants to be determined, and (gx)i , gi representing gx (xi),

g (xi) and so on. Using the Taylor series expansion at xi on both sides, and matching

them, one may obtain

a+ b+ c = 1 + 2α + 2β, with truncation error O
(

h2
)

,
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a + 22b+ 32c = 2 ·
3!

2!

(

α + 22β
)

, with truncation error O
(

h4
)

,

a + 24b+ 34c = 2 ·
5!

4!

(

α + 24β
)

, with truncation error O
(

h6
)

,

a + 26b+ 36c = 2 ·
7!

6!

(

α + 26β
)

, with truncation error O
(

h8
)

,

a + 28b+ 38c = 2 ·
9!

8!

(

α + 28β
)

, with truncation error O
(

h10
)

.

Solving the above system, we obtain the following several cases as

(1) When β = 0, c = 0, a = 2
3
(α + 2) , b = 1

3
(4α− 1) , Eq. (2.36) gives a

fourth-order approximation for gx (xi) . In particular, when α = 1
4
, b = 0, Eq. (2.39)

becomes a three-point scheme. This is the most useful compact scheme since only

three grid points are involved.

(2) When β = 0, c = 0, α = 1
3
, a = 14

9
, b = 1

9
, Eq. (2.36) gives a sixth-order

approximation for gx (xi) .

(3) When β = 1
36
, α = 4

9
, c = 0, b = 25

54
, a = 40

27
, Eq. (2.36) gives a eighth-order

approximation for gx (xi) .

(4) When β = 1
20
, c = 1

100
, b = 101

150
, a = 17

12
, Eq. (2.36) gives a tenth-order

approximation for gx (xi) .

At the boundary, one may use a similar way and write the compact scheme

as, for example,

(gx)1 + α (gx)2 =
1

h
(ag1 + bg2 + cg3 + dg4) . (2.37)

Thus, when a = −11+2α
6

, b = 6−α
2
, c = 2α−3

2
, d = 2−α

6
, Eq. (2.37) gives a third-order

truncation error of O (h3) . In particular, when α = 3, a = −17
6
, b = 3

2
, c = 3

2
, d = −1

6
,

Eq. (2.37) gives a fourth-order truncation error of O (h4) .
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Similarly, we may write the relationship between {gxx (xi)} and {g (xi)} in an

implicit way to obtain the approximation of gxx (xi) as

β (gxx)i−2 + α (gxx)i−1 + (gxx)i + α (gxx)i+1 + β (gxx)i+2

=c
gi+3 − 2gi + gi−3

9h2
+ b

gi+2 − 2gi + gi−2

4h2
+ a

gi+1 − 2gi + gi−1

h2
. (2.38)

Again, using the Taylor series expansion at xi on both sides, and matching them, one

may obtain

a+ b+ c = 1 + 2α + 2β, with truncation error O
(

h2
)

,

a + 22b+ 32c =
4!

2!

(

α+ 22β
)

, with truncation error O
(

h4
)

,

a + 24b+ 34c =
6!

4!

(

α+ 24β
)

, with truncation error O
(

h6
)

,

a + 26b+ 36c =
8!

6!

(

α+ 26β
)

, with truncation error O
(

h8
)

,

a + 28b+ 38c =
10!

8!

(

α + 28β
)

, with truncation error O
(

h10
)

.

Solving the above system, we obtain the following several cases.

(1) When β = 0, c = 0, a = 4
3
(1− α) , b = 1

3
(−1 + 10α) , Eq. (2.38) gives a

fourth-order truncation error of O (h4) . In particular, choosing α = 1
10
, b = 0, a = 12

10
,

Eq. (2.38) reduces to the well-known Padé scheme. This is the most useful compact

scheme since only three grid points are involved. This dissertation research will apply

this scheme to the interior points.

(2) When β = 0, c = 0, α = 2
11
, a = 12

11
, b = 3

11
, Eq. (2.38) gives a sixth-order

truncation error of O (h6) .

(3) When β 6= 0, c 6= 0, a = 6−9α−12β
4

, b = 2454α−294
535

, c = 696−1191α
428

, Eq. (2.38)

gives another sixth-order truncation error of O (h6) .
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(4) When α = 344
1179

, β = 38α−9
214

, c = 0, b = 1038
899

, a = 1038
899

, Eq. (2.38) gives the

eighth-order truncation error of O (h8) .

(5) When β = 43
1798

, α = 334
899
, c = 79

1798
, b = 1038

1798
, a = 1065

1798
, Eq. (2.38) gives the

tenth-order truncation error of O (h10) .

For the boundary, one may use

(gxx)1 + α (gxx)2 =
1

h2
(ag1 + bg2 + cg3 + dg4) , (2.39)

and determine those constants using a similar way. For example, when a = α + 2,

b = (−2α + 5), c = α + 4, d = −1, Eq. (2.39) gives a second-order truncation error

of O(h2); when α = 11, a = 13, b = −27, c = 15, d = −14, Eq. (2.39) gives a

third-order truncation error of O(h3).

The compact finite difference method has been widely used in many areas

based on different differential equations. For example, fourth-order accurate (in

space) schemes have been proposed for the traditional heat conduction equation

with Neumann boundary [79-82]. Although the authors used different techniques

to deal with the boundary, they all used the fourth-order Padé scheme for the interior

points. For convection-diffusion equations, fourth-order accurate schemes have also

been developed [83-87]. Moreover, compact finite difference schemes of sixth-order

accuracy for solving the parabolic type of partial differential equations have been

proposed and applied to areas of heat conduction, geodynamic simulation and so on

[88-90]. For equations related to quantum mechanics, complex values and nonlinear

terms are frequently appeared in the governing equations, such as the well-known

Schrödinger equation, the complex Ginzburg-Landau equation, etc. Compact finite
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difference schemes have been developed for solving this type of equations [91, 92].

Furthermore, fourth-order accurate compact finite difference schemes have been ap-

plied to equations with third order mixed derivatives in space and time, such as the

dual-phase-lagging model for micro/nano heat transfer [93, 94].

In summary, we have reviewed several heat conduction equations which will be

used in our dissertation research, some existing interfacial methods and compact finite

difference method. As mentioned in Chapter 1, the existing finite difference methods

using three-grid points across the interface typically provide only a second-order

truncation error, which reduces the accuracy of the overall numerical solution, even

though the higher-order compact finite difference method is employed at other points.

Thus, obtaining a higher-order accurate numerical scheme using three-grid points

across the interface so that the overall numerical scheme is stable and convergent

with higher-order accuracy is the objective of this dissertation.



CHAPTER 3

MATHEMATICAL MODELS

In this chapter, we consider heat transfer in a double-layered solid structure as

shown in Figure 3.1. Three mathematical models which are for steady-state, unsteady-

state and nanoscale heat conduction are discussed, respectively. For simplicity, only

one-dimensional cases are studied.

Layer 1 Layer 2Interface

Figure 3.1: Double-layered solid structure.

20
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3.1 Steady State Heat Conduction Model

Under the steady-state, the temperature in the double-layered structure is

independent on time. As such, the heat conduction in the double-layered structure can

be expressed as two simple elliptic equations with interfacial condition and boundary

condition as follows:

k1uxx (x) =f1 (x) , 0 < x < l, (3.1)

k2uxx (x) =f2 (x) , l < x < L, (3.2)

interfacial condition at x = l:

uI+ − uI− = a, (3.3)

k2 (ux)I+ − k1 (ux)I− = b, (3.4)

and boundary condition of either Dirichlet boundary condition:

u (0) = φ1, u (L) = φ2, (3.5a)

or Neumann boundary condition:

ux (0) = φ1, ux (L) = φ2, (3.5b)

or Robin boundary condition:

−α1ux (0) + γ1u (0) = φ1, α2ux (L) + γ2u (L) = φ2. (3.5c)

Here, u (x) is the temperature of the structure, f1 (x) , f2 (x) are smooth functions

(They are the opposite numbers of the original source terms to avoid minus signs

below), a, b, φ1, φ2 are real-value constants, k1, k2, α1, α2, γ1, γ2 are positive constants
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related to thermal properties of the structure, and uI+, uI−, (ux)I+, (ux)I− denote

u(l + 0), u(l − 0), ux(l + 0), ux(l − 0), respectively.

We call a problem is well-posed if the problem has a unique solution that

depends continuously on the data used to define the problem. It can be seen that the

above model with the Robin boundary is well-posed. In fact, multiplying the heat

conduction equations (3.1) and (3.2) by u (x) and then integrating over [0, l] and [l, L],

respectively, we obtain

∫ l

0

k1uxxudx+

∫ L

l

k2uxxudx =

∫ l

0

f1udx+

∫ L

l

f2udx. (3.6)

Using the integration by parts, we further obtain

k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx− k1uxu|

l
0 − k2uxu|

L
l =

∫ l

0

f1udx+

∫ L

l

f2udx. (3.7)

From the homogeneous interfacial condition, a = b = 0, and homogeneous Robin

boundary condition, φ1 = φ2 = 0, the left-hand-side (LHS) of Eq. (3.7) can be

changed to

LHS =k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx− k1 (ux)I− uI− + k1ux (0)u (0)

− k2ux (L) u (L) + k2 (ux)I+ uI+

=k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx+ k1

γ1
α1
u2 (0) + k2

γ2
α2
u2 (L) . (3.8)

On the other hand, the right-hand-side (RHS) of Eq. (3.7) can be evaluated by

Young’s inequality, ab ≤ 1
4ε
a2 + εb2, ε > 0, as

RHS =

∫ l

0

f1udx+

∫ L

l

f2udx

≤
1

4ε1

∫ l

0

(f1)
2 dx+ ε1

∫ l

0

u2dx+
1

4ε2

∫ L

l

(f2)
2 dx+ ε2

∫ L

l

u2dx, (3.9)
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where ε1, ε2 are positive constants. Note that by Cauchy-Schwarz’s inequality,

(

∫ b

a
f (x) g (x) dx

)2

≤
∫ b

a
f 2 (x) dx

∫ b

a
g2 (x) dx, one may obtain

[u (x)− u (0)]2 =

(
∫ x

0

uxdx

)2

≤

∫ l

0

12dx

∫ l

0

(ux)
2 dx

≤ l

∫ l

0

(ux)
2 dx, 0 < x < l, (3.10)

[u (L)− u (x)]2 =

(
∫ L

x

uxdx

)2

≤

∫ L

l

12dx

∫ L

l

(ux)
2 dx

≤ (L− l)

∫ L

l

(ux)
2 dx, l < x < L. (3.11)

Then, by (a+ b)2 ≤ 2a2 + 2b2, we have

u2 (x) = [u (x)− u (0) + u (0)]2

≤ 2 [u (x)− u (0)]2 + 2u2 (0)

≤ 2l

∫ l

0

(ux)
2 dx+ 2u2 (0) , 0 < x < l, (3.12)

u2 (x) = [u (L)− u (x)− u (L)]2

≤ 2 [u (L)− u (x)]2 + 2u2 (L)

≤ 2 (L− l)

∫ L

l

(ux)
2 dx+ 2u2 (L) , l < x < L. (3.13)

Integrating both sides of Eq. (3.12) and Eq. (3.13) over (0, l) and (l, L) , respectively,

we further obtain

∫ l

0

u2 (x) dx ≤2l2
∫ l

0

(ux)
2 dx+ 2lu2 (0) , 0 < x < l, (3.14)

∫ L

l

u2 (x) dx ≤2 (L− l)2
∫ L

l

(ux)
2 dx+ 2 (L− l) u2 (L) , l < x < L. (3.15)
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Thus, Eq. (3.7) becomes

k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx+ k1

γ1
α1

u2 (0) + k2
γ2
α2

u2 (L)

≤
1

4ε1

∫ l

0

(f1)
2 dx+ ε1

∫ l

0

u2dx+
1

4ε2

∫ L

l

(f2)
2 dx+ ε2

∫ L

l

u2dx

≤
1

4ε1

∫ l

0

(f1)
2 dx+ ε1

[

2l2
∫ l

0

(ux)
2 dx+ 2lu2 (0)

]

+
1

4ε2

∫ L

l

(f2)
2 dx+ ε2

[

2 (L− l)2
∫ L

l

(ux)
2 dx+ 2 (L− l)u2 (L)

]

, (3.16)

i.e.

(

k1 − 2ε1l
2
)

∫ l

0

(ux)
2 dx+

(

k2 − 2ε2 (L− l)2
)

∫ L

l

(ux)
2 dx

+

(

k1
γ1
α1

− 2ε1l

)

u2 (0) +

(

k2
γ2
α2

− 2ε2 (L− l)

)

u2 (L)

≤
1

4ε1

∫ l

0

(f1)
2 dx+

1

4ε2

∫ L

l

(f2)
2 dx. (3.17)

Choosing ε1 = min
{

1
4
k1
l2
, 1
4
k1γ1
α1l

}

, ε2 = min
{

1
4

k2
(L−l)2

, 1
4

k2γ2
α2(L−l)2

}

, we obtain

k1
2

∫ l

0

(ux)
2 dx+

k2
2

∫ L

l

(ux)
2 dx+

k1γ1
2α1

u2 (0) +
k2γ2
2α2

u2 (L)

≤
1

4ε1

∫ l

0

(f1)
2 dx+

1

4ε2

∫ L

l

(f2)
2 dx. (3.18)

Thus, if there are two solutions u1 (x) and u2 (x) satisfying Eqs. (3.1-3.4) and Eq.

(3.5c), we let u (x) = u1 (x)−u2 (x) . Then u (x) satisfies Eq. (3.18) with f1 = f2 ≡ 0,

implying that ux ≡ 0, implying the difference between u1 (x) and u2 (x) is a constant,

and u (0) = u (L) ≡ 0, indicating the constant is 0, and hence, u1 (x) = u2 (x) ,

which means this solution is unique. The solution is continuously dependent on

the boundary condition and source term based on Eq. (3.18). Thus, we finish the

proof of the well-posedness of the steady-state heat conduction model with Robin
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boundary condition. It should be pointed out that Eq. (3.18) is often called the

energy estimation.

Similarly, under the Dirichlet boundary condition, an energy estimation can

be obtained as

k1
2

∫ l

0

(ux)
2 dx+

k2
2

∫ L

l

(ux)
2 dx

≤
l2

k1

∫ l

0

(f1)
2 dx+

(L− l)2

k2

∫ L

l

(f2)
2 dx. (3.19)

From Eq. (3.19), we can prove that the model is well-posed under the Dirichlet

boundary condition.

For the Neumann boundary case, we first assume u1 (x) and u2 (x) to be

two different solutions satisfying the same initial and boundary conditions, same

interfacial conditions and same source terms. Letting u (x) = u1 (x) − u2 (x) , then

u (x) satisfies Eqs. (3.1)-(3.4) and Eq. (3.5b) in homogeneous case. Multiplying

homogenous Eqs. (3.1) and (3.2) by u (x) and then integrating over [0, l] and [l, L] ,

respectively, we obtain

∫ l

0

k1uxxudx+

∫ L

l

k2uxxudx = 0. (3.20)

Using the integration by parts at the homogenous boundary and interfacial condition,

Eq. (3.20) becomes

k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx− k1uxu|

l
0 − k2uxu|

L
l

=k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx

=0. (3.21)
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Thus, ux = 0 on [0, L] , and hence u (x) is a constant. This indicates that the solution

is unique within a constant difference. To show the solution depending on the source

term and boundary condition, we multiply Eqs. (3.1)-(3.2) by uxx, and integrate over

[0, l] and [l, L] , respectively. This gives

k1

∫ l

0

(uxx)
2 dx+ k2

∫ L

l

(uxx)
2 dx

=

∫ l

0

f1uxxdx+

∫ L

l

f2uxxdx

≤
1

2k1

∫ l

0

(f1)
2 dx+

1

2k2

∫ L

l

(f2)
2 dx+

k1
2

∫ l

0

(uxx)
2 dx+

k2
2

∫ L

l

(uxx)
2 dx, (3.22)

implying that

k1

∫ l

0

(uxx)
2 dx+ k2

∫ L

l

(uxx)
2 dx ≤

1

k1

∫ l

0

(f1)
2 dx+

1

k2

∫ L

l

(f2)
2 dx. (3.23)

Using a similar argument as in Eqs. (3.14)-(3.15), we further obtain

k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx

≤2k1l
2

∫ l

0

(uxx)
2 dx+ 2k2 (L− l)2

∫ L

l

(uxx)
2 dx+ 2k1lu

2
x(0) + 2k2 (L− l) u2x(L)

≤c

[

k1

∫ l

0

(uxx)
2 dx+ k2

∫ L

l

(uxx)
2 dx+ k1u

2
x(0) + k2u

2
x(L)

]

≤c

[

1

k1

∫ l

0

(f1)
2 dx+

1

k2

∫ L

l

(f2)
2 dx+ k1u

2
x(0) + k2u

2
x(L)

]

, (3.24)

where c = max
{

2l2, 2 (L− l)2 , 2l, 2 (L− l)
}

. Thus, the following theorem can be

obtained.

Theorem 3.1. Assume that f (x) is continuously differentiable. Then the

steady-state heat conduction model, Eqs. (3.1)-(3.5), is well-posed.



27

3.2 Unsteady State Heat Conduction Model

For the unsteady-state case, the temperature u (x, t) is dependent on time. As

such, the heat conduction in the double-layered structure can be expressed as two

simple parabolic equations with initial condition, interfacial condition and boundary

condition as follows:

ρ1C1ut (x, t) = k1uxx (x, t) + f1 (x, t) , 0 < x < l, 0 < t ≤ T, (3.25)

ρ2C2ut (x, t) = k2uxx (x, t) + f2 (x, t) , l < x < L, 0 < t ≤ T, (3.26)

initial condition:

u (x, 0) = ψ1 (x) , 0 ≤ x ≤ l, u (x, 0) = ψ2 (x) , l ≤ x ≤ L, (3.27)

interfacial condition at x = l:

uI+ (t)− uI− (t) = a (t) , 0 ≤ t ≤ T, (3.28)

k2 (ux)I+ (t)− k1 (ux)I− (t) = b (t) , 0 ≤ t ≤ T, (3.29)

and boundary condition of either Dirichlet boundary condition:

u (0, t) = φ1 (t) , u (L, t) = φ2 (t) , 0 ≤ t ≤ T, (3.30a)

Neumann boundary condition:

ux (0, t) = φ1 (t) , ux (L, t) = φ2 (t) , 0 ≤ t ≤ T, (3.30b)

or Robin boundary condition:

−α1ux(0, t)+γ1u(0, t)=φ1(t), α2ux(L, t)+γ2u(L, t)=φ2(t), 0 ≤ t ≤ T. (3.30c)

Here, k1, k2 are conductivities, ρ1, ρ2 are densities, C1, C2 are specific heats, f1 (x, t),

f2 (x, t) are source terms, ψ1 (x), ψ2 (x) , a (t), b (t), φ1 (t), φ2 (t) are given functions,
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α1, α2, γ1, γ2 are positive constants, and uI+ (t), uI− (t), (ux)I+ (t), (ux)I− (t) denote

u(l + 0, t), u(l − 0, t), ux(l + 0, t), ux(l − 0, t), respectively.

Similar to the steady-state case, we can obtain the following theorem.

Theorem 3.2 Assume that f1 (x, t) , f2 (x, t) , ψ1 (x) , ψ2 (x) , a (t) , b (t) ,

φ1 (t) , φ2 (t) are continuously differentiable. Then the above heat conduction model is

well-posed.

Proof. Assume u1 (x, t) , u2 (x, t) satisfy Eqs. (3.25)-(3.26) with the same

interfacial and boundary conditions, but different source terms, f̂1 (x, t) , f̂2 (x, t) for

u1 (x, t) , f̃1 (x, t) , f̃2 (x, t) for u2 (x, t) , and different initial conditions, ψ̂1 (x) , ψ̂2 (x)

for u1 (x, t) , ψ̃1 (x) , ψ̃2 (x) for u2 (x, t). Letting u (x, t) = u1 (x, t)−u2 (x, t) , f1 (x, t) =

f̂1 (x, t) − f̃1 (x, t) , f2 (x, t) = f̂2 (x, t) − f̃2 (x, t) , ψ1 (x) = ψ̂1 (x) − ψ̃1 (x) , ψ2 (x) =

ψ̂2 (x) − ψ̃2 (x) , we obtain u (x, t) satisfying Eqs. (3.25)-(3.27) with homogeneous

interfacial and boundary conditions.

We now multiply Eqs. (3.25)-(3.26) by u (x, t) , integrate them over (0, l) and

(l, L) , respectively, and then use the integration by parts at homogenous interfacial

and boundary conditions. This gives

ρ1C1

∫ l

0

utudx+ ρ2C2

∫ L

l

utudx+ k1

∫ l

0

(ux)
2 dx+ k2

∫ L

l

(ux)
2 dx

≤k1 (ux)I− (t) u
I−

(t)− k1ux (0, t) u (0, t) + k2ux (L, t)u (L, t)

− k2 (ux)
I+

(t) u
I+

(t) + ρ1C1

∫ l

0

f1udx+ ρ2C2

∫ L

l

f2udx

≤−
k1α1

γ1
u2 (0, t)−

k2α2

γ2
u2 (L, t) +

ρ1C1

2

∫ l

0

u2dx

+
ρ2C2

2

∫ L

l

u2dx+
ρ1C1

2

∫ l

0

(f1)
2 dx+

ρ2C2

2

∫ L

l

(f2)
2 dx, (3.31)
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(Here, we use the Robin boundary as an example), implying that

d

dt

[

ρ1C1

∫ l

0

u2dx+ ρ2C2

∫ L

l

u2dx

]

+ 2k1

∫ l

0

(ux)
2 dx

+ 2k2

∫ L

l

(ux)
2 dx+

2k1α1

γ1
u2 (0, t) +

2k2α2

γ2
u2 (L, t)

≤ρ1C1

∫ l

0

u2dx+ ρ2C2

∫ L

l

u2dx+ ρ1C1

∫ l

0

(f1)
2 dx+ ρ2C2

∫ L

l

(f2)
2 dx. (3.32)

Introducing E (t) = ρ1C1

∫ l

0
u2dx+ ρ2C2

∫ L

l
u2dx, Eq. (3.32) can be rewritten as

dE (t)

dt
≤ E (t) + ρ1C1

∫ l

0

(f1)
2 dx+ ρ2C2

∫ L

l

(f2)
2 dx. (3.33)

By Gronwall’s inequality, we obtain an energy estimation as

E (t) ≤ et
[

E (0) +

∫ t

0

(

ρ1C1

∫ l

0

(f1)
2 dx+ ρ2C2

∫ L

l

(f2)
2 dx

)

dτ

]

. (3.34)

Thus, u1 (x, t) and u2 (x, t) satisfy the same initial condition and the same source

term, which means the left hand side of Eq. (3.34) will be 0, we can obtain E (t) = 0,

indicating u ≡ 0, and hence, the solution is unique. It can be seen from Eq. (3.34)

that the solution is continuously dependent on the initial condition and the source

term.

Likewise, we can derive energy estimations similar to Eq. (3.34) for Dirichlet

and Neumann boundaries. Hence, the model is well-posed for all the three types of

boundaries.

3.3 Nanoscale Heat Conduction Model

For the heat conduction in the nanoscale double-layered structure, traditional

methods are the two-temperature model coupled within the acoustic mismatch model

or the diffuse mismatch model [95, 96], and the non-equilibrium molecular dynamical
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model [4]. Here, we employ a recently developed model within the dual-phase-lagging

framework for layered structures as follows [76]:

ρ1C1

(

ut (x, t) + τ (1)q utt (x, t)
)

=k1

(

uxx (x, t) + τ
(1)
T uxxt (x, t)

)

+ f1 (x, t) , 0 < x < l, 0 < t ≤ T, (3.35)

ρ2C2

(

ut (x, t) + τ (2)q utt (x, t)
)

=k2

(

uxx (x, t) + τ
(2)
T uxxt (x, t)

)

+ f2 (x, t) , l < x < L, 0 < t ≤ T, (3.36)

subject to the initial and temperature-jump (Robin) boundary conditions as

u (x, 0) = ψ1 (x) , ut (x, 0) = ϕ1 (x) , 0 ≤ x ≤ l, (3.37)

u (x, 0) = ψ2 (x) , ut (x, 0) = ϕ2 (x) , l ≤ x ≤ L, (3.38)

− α1ux (0, t) + u (0, t) = φ1 (t) , 0 ≤ t ≤ T, (3.39)

α2ux (L, t) + u (L, t) = φ2 (t) , 0 ≤ t ≤ T, (3.40)

and the interfacial condition at x = l as

uI+ (t)− uI+ (t) = 0, 0 ≤ t ≤ T, (3.41)

k2

(

(ux)I+ (t) + τ
(2)
T (uxt)I+ (t)

)

− k1

(

(ux)I− (t) + τ
(1)
T (uxt)I− (t)

)

=0, 0 ≤ t ≤ T. (3.42)

Here, k1, k2 are conductivities, ρ1, ρ1, are densities, C1 C2 are specific heats, τ
(1)
q

and τ
(2)
q , τ

(1)
T and τ

(2)
T stand for heat flux q and temperature gradient ∇u phase lags,

respectively, u (x, t) is the temperature, f1 (x, t) , f2 (x, t) are source terms, ψ1 (x) ,

ψ2 (x), ϕ1 (x), ϕ2 (x), a (t), b (t), φ1 (t), φ2 (t) are given functions, α1, α2 are positive
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constants, and uI+ (t), uI− (t), (ux)I+ (t), (ux)I− (t) , (uxt)I+ (t) , (uxt)I− (t) denote

u(l + 0, t), u(l − 0, t), ux(l + 0, t), ux(l − 0, t), uxt(l + 0, t), uxt(l − 0, t), respectively.

Under the homogeneous interfacial and boundary conditions, Sun et al. [76]

used a similar argument as aforementioned and obtained an energy estimation as

E (t) ≤ E (0) +
1

2

∫ t

0

[

1

ρ1C1

∫ l

0

(f1)
2 dx+

1

ρ2C2

∫ L

l

(f2)
2 dx

]

dτ, (3.43)

where E (t) = ρ1C1τ
(1)
q

∫ l

0
u2tdx+ρ2C2τ

(2)
q

∫ L

l
u2tdx+k1

∫ l

0
u2xdx+k2

∫ L

l
u2xdx+

k1
α1
u2 (0, t)

+ k2
α2
u2 (L, t) . Thus, if u1 (x, t) and u2 (x, t) satisfy the above nanoscale heat conduction

model, then u (x, t) = u1 (x, t) − u2 (x, t) satisfies Eq. (3.43) with E (0) = 0 and

f1 = f2 ≡ 0. Hence, E (t) ≡ 0, and u (x, t) ≡ 0. This implies that the solution is

unique and is further continuously dependent on the initial condition and the source

term. Thus, we obtain the following theorem.

Theorem 3.3. Assume that f1 (x, t) , f2 (x, t) , ψ1 (x) , ψ2 (x) , ϕ1 (x) , ϕ2 (x) ,

a (t) , b (t) , φ1 (t) , φ2 (t) are continuously differentiable. Then the nanoscale heat

conduction model is well-posed.

In summary, we have proposed the steady-state heat conduction model, unsteady-

state heat conduction model, and nanoscale heat conduction model for thermal anal-

ysis in double-layered solid structures in this chapter. In general, obtaining the

analytical solutions for these three models are tedious if not impossible, particularly

for the nanoscale heat conduction model. In this dissertation, we will seek their nu-

merical solutions, and aim at the development of higher-order accurate compact finite

difference schemes for solving the above three heat conduction models, respectively.



CHAPTER 4

NUMERICAL METHODS: PART I — GRADIENT

PRESERVED METHOD

In this chapter, a generalization of the compact finite difference method and

a new idea called the gradient preserved method will be proposed. In particular, we

will use the steady-state heat conduction model with Dirichlet boundary to illustrate

these two methods.

4.1 Generalization of Compact Finite Difference Method

As we can see in the previous literature review, the accuracy of the compact

finite difference method is relatively lower at boundary as compared with that at

interior points. This is because we can only use one side of the points to approximate

the derivative at boundary points. However, lower accuracy at boundary will reduce

the globe accuracy even if the higher-order compact finite difference method is used

for interior points. Our generalization of compact finite difference method is proposed

here to solve this troublesome.
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Figure 4.1: One-dimensional mesh for a double-layered solid structure.
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We first design a one-dimensional mesh and denote grid sizes to be h1 = l/m,

h2 = (L− l) /(M −m), respectively, where m, M (m < M) are positive integers, as

shown in Figure 4.1. Grid points in the mesh are denoted as xj = jh1, 0 ≤ j ≤ m;

xj = l + (j −m) h2, m + 1 ≤ j ≤ M, where the interface is located at grid point

xI = (m+ 1)h1 = l. Based on the mesh, we have the following theorem.

Theorem 4.1 Assume that g (x) ∈ C6 [0, 1]. Then

16g (x1)− g (x2) =15g (x0) + 14h1gx (x0) + 6h21gxx (x0)

+
4

3
h31gx3 (x0)−

2h51
15

gx5 (x0) +O
(

h61
)

, (4.1a)

16g (xM−1)− g (xM−2) =15g (xM )− 14h2gx (xM) + 6h22gxx (xM )

−
4

3
h32gx3 (xM) +

2h52
15

gx5 (xM ) +O
(

h62
)

, (4.1b)

g (x1)− g (x0) =h1gx (x0) +
5

12
h21gxx (x0) +

1

12
h21gxx (x1)

+
h31
12
gx3 (x0)−

h51
180

gx5 (x0) +O
(

h61
)

(see [82, 84]), (4.2a)

g (xM−1)− g (xM) =− h2gx (xM ) +
5

12
h22gxx (xM) +

1

12
h22gxx (xM−1)

−
h32
12
gx3(xM )+

h52
180

gx5 (xM)+O
(

h62
)

(see [82, 84]), (4.2b)

32g (x1)− g (x2) =31g (x0) + 30h1gx (x0) +
35

3
h21gxx (x0)

+
8

3
h21gxx (x1)−

1

3
h21gxx (x2)

+ 2h31gx3 (x0) +
h61
15
gx6 (x0) +O

(

h71
)

, (4.3a)

32g (xM−1)− g (xM−2) =31g (xM )− 30h2gx (xM) +
35

3
h22gxx (xM )

+
8

3
h22gxx (xM−1)−

1

3
h22gxx (xM−2)

− 2h32gx3 (xM) +
h62
15
gx6 (xM) +O

(

h72
)

. (4.3b)
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Proof. DenoteDjg (x) as the jth order derivative of g (x) . The Taylor series expansion

at location x0 gives

g (x1) =g (x0) + h1gx (x0) +
h21
2
gxx (x0) +

h31
6
gx3 (x0) +

h41
24
gx4 (x0)

+
h51
120

gx5 (x0) +
h61
720

gx6 (x0) + ...

=

(

D0+ h1D
1+

h21
2
D2+

h31
6
D3+

h41
24
D4+

h51
120

D5+
h61
720

D6+ ...

)

g (x0) , (4.4)

g (x2) =g (x0) + 2h1gx (x0) +
4h21
2
gxx (x0) +

8h31
6
gx3 (x0) +

16h41
24

gx4 (x0)

+
32h51
120

gx5 (x0) +
64h61
720

gx6 (x0) + ...

=

(

D0+ 2h1D
1+

4h21
2
D2+

8h31
6
D3+

16h41
24

D4+
32h51
120

D5+
64h61
720

D6+...

)

g (x0). (4.5)

Multiplying Eq. (4.4) by −16, then adding it to Eq. (4.5), we obtain

−16g(x1)+g(x2)=−

(

15D0+14h1D
1+

12

2
h21D

2+
8h31
6
D3−

16h51
120

D5−
48h61
720

D6+...

)

g(x0) . (4.6)

Thus, Eq. (4.1a) holds. By the Taylor series expansion at location xM , we have

g (xM−1)=

(

D0− h2D
1+

h22
2
D2−

h32
6
D3+

h42
24
D4−

h52
120

D5+
h62
720

D6+ ...

)

g (xM) , (4.7)

g(xM−2)=

(

D0−2h2D
1+

4h22
2
D2−

8h32
6
D3+

16h42
24

D4−
32h52
120

D5+
64h62
720

D6+ ...

)

g(xM ) . (4.8)

Multiplying Eq. (4.7) by −16, then adding it to Eq. (4.8), we obtain

− 16g (xM−1) + g (xM−2)

=−

(

15D0− 14h2D
1+

12h22
2

D2−
8h32
6
D3+

16h52
120

D5−
48h62
720

D6+ ...

)

g (xM ) . (4.9)

Thus, Eq. (4.1b) holds. The Taylor series expansion at location x0 also gives

h21gxx (x1) =h
2
1

(

D0+ h1D
1+

h21
2
D2+

h31
6
D3+

h41
24
D4+

h51
120

D5+ ...

)

D2g (x0)

=

(

h21D
2 + h31D

3 +
h41
2
D4 +

h51
6
D5 +

h61
24
D6 +

h71
120

D7 + ...

)

g (x0) . (4.10)
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Multiplying Eq. (4.4) by −12, then adding it to Eq. (4.10), we obtain

− 12g (x1) + h2gxx (x1)

=−

(

12D0 + 12h1D
1 + 5h21D

2 + h31D
3 −

h51
15
D5 −

h61
40
D6 + ...

)

g (x0) . (4.11)

Rearranging the terms in Eq. (4.11) yields

− 12g (x1) + 12g (x0)

=−

(

12h1D
1 + 5h21D

2 + h31D
3 −

h51
15
D5 −

h61
40
D6 + ...

)

g (x0)− h21gxx (x1) . (4.12)

Dividing Eq. (4.12) by −12, Eq. (4.2a) comes. The Taylor series expansion at

location xM also gives

h22gxx (xM−1)=h
2
2

(

D0− h2D
1+

h22
2
D2−

h32
6
D3+

h42
24
D4−

h52
120

D5+ ...

)

D2g (xM)

=

(

h22D
2− h32D

3+
h42
2
D4−

h52
6
D5+

h62
24
D6−

h72
120

D7+ ...

)

g (xM ) . (4.13)

Multiplying Eq. (4.7) by −12, then adding it to Eq. (4.13), we obtain

− 12g (xM−1) + h2gxx (xM−1)

=−

(

12D0 − 12h2D
1 + 5h22D

2 − h32D
3 +

h52
15
D5 −

h62
40
D6 + ...

)

g (xM) . (4.14)

Dividing Eq. (4.14) by −12 and rearranging the terms, Eq. (4.2b) comes.

Changing x1 to x2, xM−1 to xM−2, h1 to 2h1, h2 to 2h2, Eqs. (4.2a)-(4.2b)

become

g (x2)− g (x0) =

(

2h1D+
20

12
h21D

2+
8

12
h31D

3+
32h51
180

D5−
64h61
480

D6

)

g (x0)

+
4

12
h21gxx (x2) +O

(

h71
)

, (4.15a)
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and

g(xM−2)− g(xM)=

(

−2h2D+
20

12
h22D

2−
8

12
h32D

3−
32h52
180

D5−
64h62
480

D6

)

g(xM)

+
4

12
h22gxx (xM−2) +O

(

h72
)

. (4.15b)

Multiplying Eq. (4.2a) and Eq. (4.2b) by −32 and then adding them to Eq. (4.15a)

and Eq. (4.15b), respectively, we obtain

−32g(x1)+ g(x2)+ 31g(x0)=− 30h1gx(x0)−
35

3
h21gxx(x0)

−
8

3
h21gxx(x1)+

1

3
h21gxx(x2)

− 2h31gx3(x0)−
h61
15
gx6(x0)+O

(

h71
)

, (4.16a)

−32(xM−1)+ g(xM−2)+ 31g(xM )=30h2gx(xM)−
35

3
h22gxx(xM)

−
8

3
h22gxx(xM−1) +

1

3
h22gxx(xM−2)

+ 2h32gx3(xM)−
h62
15
gx6(xM) +O

(

h72
)

. (4.16b)

Thus, Eqs. (4.3a)-(4.3b) hold.

From Eqs. (4.1a), (4.2a) and (4.3a), we can see the absolute values of the

leading terms in gx5 (x0) of truncation errors for approximating gx (x0) are
h4
1

105
,

h4
1

180
,

h5
1

450
, respectively. Same results can be obtained for gx (xM ) . Further, one may see

that Eqs. (4.1a), (4.2a) and (4.3a) are some special cases of the expression:

(gxx)0 + α (gxx)1 + β (gxx)2 = ag0 + bg1 + cg2 + ξ (gx)0 + ζ (gx3)0 , (4.17)

where α, β, a, b, c, ξ, ζ are constants to be determined. Similarly, Eqs. (4.1b), (4.2b),

(4.3b) are some special cases of another expression:

(gxx)M+α (gxx)M−1+β (gxx)M−2 = agM+bgM−1+cgM−2+ξ (gx)M+ζ (gx3)M . (4.18)
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Eqs. (4.17)-(4.18) can be considered as couple of generalizations of the compact finite

difference method, Eq. (2.38), at boundary.

Since the interfacial condition can be treated as an inside-boundary condition,

we have some similar formulas as listed in Eqs. (4.1)-(4.3), which are included in the

following theorem.

Theorem 4.2 Assume that g (x) ∈ C6 [0, 1]. Then

16g (xm)− g (xm−1) =15g (xI−)− 14h1gx (xI−) + 6h21gxx (xI−)

−
4

3
h31gx3 (xI−) +

2h51
15

gx5 (xI−) +O
(

h61
)

, (4.19a)

16g (xm+1)− g (xm+2) =15g (xI+) + 14h2gx (xI+) + 6h22gxx (xI+)

+
4

3
h32gx3 (xI+)−

2h52
15

gx5 (xI+) +O
(

h62
)

, (4.19b)

g (xm)− g (xI−) =− h1gx (xI−) +
5

12
h21gxx (xI−) +

1

12
h21gxx (xm)

−
1

12
h31gx3 (xI−)−

h51
180

gx5 (xM) +O
(

h61
)

, (4.20a)

g (xm+1)− g (xI+) =h2gx (xI+) +
5

12
h22gxx (xI+) +

1

12
h22gxx (xm+1)

+
1

12
h32gx3 (xI+)−

h52
180

gx5 (xI+) +O
(

h62
)

, (4.20b)

32g (xm)− g (xm−1) =31g (xI−)− 30h1gx (xI−) +
35

3
h21gxx (xI−)

+
8

3
h21gxx (xm)−

1

3
h21gxx (xm−1)

− 2h31gx3 (xI−) +
h61
15
gx6 (xI−) +O

(

h71
)

, (4.21a)

32g (xm+1)− g (xm+2) =31g (xI+) + 30h2gx (xI+) +
35

3
h22gxx (xI+)

+
8

3
h22gxx (xm+1)−

1

3
h22gxx (xm+2)

+ 2h32gx3 (xI+) +
h62
15
gx6 (xI+) +O

(

h72
)

. (4.21b)
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Again, Eqs. (4.19a), (4.20a) and (4.21a) can be seen to be some special cases of the

following expression

(gxx)I− + α (gxx)m + β (gxx)m−1 = agI− + bgm + cgm−1 + ξ (gx)I− + ζ (gx3)I− , (4.22)

and Eqs. (4.19b), (4.20b), (4.21b) are some special cases of the expression

(gxx)I++α (gxx)m+1+β (gxx)m+2 = agI++bgm+1+cgm+2+ξ (gx)I++ζ (gx3)I+ . (4.23)

Thus, Eqs. (4.22)-(4.23) can be considered as couple of generalizations of the compact

finite difference method, Eq. (2.38), at interface.

It should be pointed out that the first-order and third-order derivatives are

included in our generalized version of compact finite difference method, which will be

used in the next section.

4.2 Gradient Preserved Method

We consider the steady-state heat conduction model proposed in Section 3.1:

k1uxx (x) =f1 (x) , 0 < x < l, (4.24)

k2uxx (x) =f2 (x) , l < x < L, (4.25)

with the interfacial condition at x = l:

uI+ − uI− = a, (4.26)

k2 (ux)I+ − k1 (ux)I− = b, (4.27)

and the Dirichlet boundary condition:

u (0) = φ1, u (L) = φ2. (4.28)
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We now develop a fourth-order compact finite difference scheme using three-points in

space. We use the one-dimensional mesh as shown in Figure 4.1 and denote uj as the

approximation of u (xj) , and so on for others.

For the interior points, x1 ≤ xj ≤ xm−1 and xm+2 ≤ xj ≤ xM−1, the fourth-

order Padé scheme gives

k1(uj−1−2uj+uj+1)

h21
=

1

12

[

(f1)j−1+10 (f1)j+(f1)j+1

]

, 1 ≤ j ≤ m− 1, (4.30)

k2(uj−1−2uj+uj+1)

h22
=

1

12

[

(f2)j−1+10 (f2)j+(f2)j+1

]

, m+ 2≤ j≤M − 1. (4.31)

At the boundary points, x0 and xM , we simply set

u0 = φ1, uM = φ2. (4.32)

To derive a scheme at interface, x = xI , we first obtain two tridiagonal

equations around the interface xI , in which one contains um−1, um and um+1, the

other contains um, um+1 and um+2.

From Eqs. (4.24)-(4.25), we have uxx (xI−) =
f1(xI−)

k1
, ux3 (xI−) =

(f1)x(xI−)
k1

and uxx (xI+) =
f2(xI+)

k2
, ux3 (xI+) =

(f2)x(xI+)
k2

. Substituting them into Eq. (4.21a)

and Eq. (4.21b) yields

u (xm−1)− 32u (xm) + 31u (xI−)− 30h1ux (xI−)

=−
h21
3k1

(35f1 (xI−) + 8f1 (xm)− f1 (xm−1)) +
2h31
k1

(f1)x (xI−) +O
(

h61
)

, (4.33)

u (xm+2)− 32u (xm+1) + 31u (xI+) + 30h2ux (xI+)

=−
h22
3k2

(35f2 (xI+) + 8f2 (xm+1)− f2 (xm+2)) +
2h32
k2

(f2)x (xI+) +O
(

h62
)

. (4.34)
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We then employ the fourth-order Padé scheme at points xm and xm+1 as

k1 (um−1 − 2um + uI−)

h21
=

1

12

[

(f1)m−1 + 10 (f1)m + (f1)I−
]

+O
(

h41
)

, (4.35)

k2 (um+2 − 2um+1 + uI+)

h22
=

1

12

[

(f2)m+2 + 10 (f2)m+1 + (f2)I+
]

+O
(

h42
)

. (4.36)

After dropping the truncation errors in Eqs. (4.33)-(4.36) and coupling with the

interfacial condition Eqs. (4.26)-(4.27), the following six equations are obtained.

uI+ − uI− = a, (4.37)

k2 (ux)I+ − k1 (ux)I− = b, (4.38)

um−1 − 32um + 31uI− − 30h1 (ux)I− = c1, (4.39)

um+2 − 32um+1 + 31uI+ + 30h2 (ux)I+ = c2, (4.40)

um−1 − 2um + uI− = c3, (4.41)

um+2 − 2um+1 + uI+ = c4, (4.42)

where c1 = −
h2
1

3k1

[

35 (f1)I− + 8 (f1)m − (f1)m−1 − 6h1 ((f1)x)I−
]

,

c2 = −
h2
2

3k2
[35 (f2)I+ + 8 (f2)m+1 − (f2)m+2 + 6h2 ((f2)x)I+],

c3 =
h2
1

12k1

[

(f1)m−1 + 10 (f1)m + (f1)I−
]

, c4 =
h2
2

12k2

[

(f2)m+2 + 10 (f2)m+1 + (f2)I+
]

.

Subtracting Eq. (4.41) from Eq. (4.42) and using Eq. (4.37), we obtain

um+2 − 2um+1 + 2um − um−1 = c4 − c3 − a. (4.43)

Multiplying Eq. (4.41) by 31 and subtracting Eq. (4.39), we have

30um−1 − 30um + 30h1 (ux)I− = 31c3 − c1. (4.44)

Similarly, multiplying Eq. (4.42) by 31 and subtracting Eq. (4.40) gives

30um+2 − 30um+1 − 30h2 (ux)I+ = 31c4 − c2. (4.45)
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Multiplying Eq. (4.44) and Eq. (4.45) by k1h2 and k2h1, respectively, and adding

them together, we obtain

30k1h2um−1 − 30k1h2um + 30k2h1um+2

− 30k2h1um+1 − 30h1h2 [k2 (ux)I+ − k1 (ux)I−]

=31k2h1c4 + 31k1h2c3 − k2h1c2 − k1h2c1. (4.46)

Then applying Eq. (4.38) to Eq. (4.46) yields

30k1h2um−1 − 30k1h2um + 30k2h1um+2 − 30k2h1um+1

=31k2h1c4 + 31k1h2c3 − k2h1c2 − k1h2c1 + 30h1h2b. (4.47)

Multiplying Eq. (4.43) by 30k2h1, then subtracting Eq. (4.47), we obtain

30 [(−k2h1)um+1 + (2k2h1 + k1h2) um − (k2h1 + k1h2) um−1]

= (−k2h1) c4 − (30k2h1 + 31k1h2) c3 + k2h1c2 + k1h2c1 − 30h1h2b− 30k2h1a. (4.48)

Dividing by −15 (k1h2 + 2k2h1) gives

[(

1 +
k1h2

k1h2 + 2k2h1

)

um−1 − 2um +

(

1−
k1h2

k1h2 + 2k2h1

)

um+1

]

= c5, (4.49)

where c5 =
1

15(k1h2+2k2h1)
[k2h1c4 + (30k2h1 + 31k1h2) c3 − k2h1c2 − k1h2c1 + 30h1h2b

+ 30k2h1a]. Similarly, multiplying Eq. (4.43) by 30k1h2, and adding it to Eq. (4.48),

then dividing by 15 (2k1h2 + k2h1), we obtain

[(

1−
k2h1

2k1h2 + k2h1

)

um − 2um+1 +

(

1 +
k2h1

2k1h2 + k2h1

)

um+2

]

= c6, (4.50)

where c6 =
1

15(2k1h2+k2h1)
[(30k1h2 + 31k2h1) c4 + k1h2c3 − k2h1c2 − k1h2c1 + 30h1h2b

− 30k1h2a].
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If Eqs. (4.19a)-(4.19b) are used at the interface, we can obtain similar equa-

tions to Eqs. (4.49)-(4.50) as

[(

1 +
k1h2

k1h2 + 2k2h1

)

um−1 − 2um +

(

1−
k1h2

k1h2 + 2k2h1

)

um+1

]

= c7, (4.51)

[(

1−
k2h1

2k1h2 + k2h1

)

um − 2um+1 +

(

1 +
k2h1

2k1h2 + k2h1

)

um+2

]

= c8, (4.52)

where c7 =
1

7(k1h2+2k2h1)
[k2h1c4+(14k2h1+15k1h2)c3−k2h1c2−k1h2c1+14h1h2b+14k2h1a],

c8=
1

7(2k1h2+k2h1)
[(14k1h2+15k2h1) c4+k1h2c3−k2h1c2−k1h2c1+14h1h2b−14k1h2a].

Here, c1 = −
h2
1

3k1

[

18 (f1)I− − 4h1 ((f1)x)I−
]

, c2 = −
h2
2

3k2
[18 (f2)I+ + 4h2 ((f2)x)I+ ].

If Eqs. (4.20a)-(4.20b) are used at the interface, we have similar equations to

Eqs. (4.49)-(4.50) as

[(

1 +
k1h2

k1h2 + 2k2h1

)

um−1 − 2um +

(

1−
k1h2

k1h2 + 2k2h1

)

um+1

]

= c9, (4.53)

[(

1−
k2h1

2k1h2 + k2h1

)

um − 2um+1 +

(

1 +
k2h1

2k1h2 + k2h1

)

um+2

]

= c10, (4.54)

where c9 =
2

k1h2+2k2h1
[(k2h1 + k1h2) c3 − k2h1c2 − k1h2c1 + h1h2b+ k2h1a],

c10 =
2

2k1h2+k2h1
[(k1h2 + k2h1) c4 − k2h1c2 − k1h2c1 + h1h2b− k1h2a] . Here,

c1=−
h2
1

12k1

[

5 (f1)I−+(f1)m−h1 ((f1)x)I−
]

, c2=−
h2
2

12k2
[5 (f2)I++(f2)m+1+h2 ((f2)x)I+].

Eqs. (4.30)-(4.31), Eq. (4.32) and Eqs. (4.49)-(4.50) (or Eqs. (4.51)-(4.52), or

Eqs. (4.53)-(4.54)) together form a higher-order accurate finite difference scheme for

the heat conduction model in steady-state with Dirichlet boundary. We can rewrite

the scheme in matrix form as

AD~u = ~dD, (4.55)

where ~u = [u1, u2, ..., um−2, um−1, um, um+1, um+2, um+3,..., uM−2, uM−1]
T ,
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AD=









































































−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

2(k1h2+k2h1)
2k2h1+k1h2

−2 2k2h1

2k2h1+k1h2

2k1h2

2k1h2+k2h1
−2 2(k1h2+k2h1)

2k1h2+k2h1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2









































































and ~dD =

































































































h2
1

12k1
[(f1)0 + 10 (f1)1 + (f1)2]− u0

h2
1

12k1
[(f1)1 + 10 (f1)2 + (f1)3]

h2
1

12k1
[(f1)2 + 10 (f1)3 + (f1)4]

...

h2
1

12k1

[

(f1)m−2 + 10 (f1)m−1 + (f1)m
]

c5 (or c7 or c9)

c6 (or c8 or c10)

h2
2

12k2

[

(f2)m+1 + 10 (f2)m+2 + (f2)m+3

]

h2
2

12k2

[

(f2)m+2 + 10 (f2)m+3 + (f2)m+4

]

...

h2
2

12k2

[

(f2)M−4 + 10 (f2)M−3 + (f2)M−2

]

h2
2

12k2

[

(f2)M−3 + 10 (f2)M−2 + (f2)M−1

]

h2
2

12k2

[

(f2)M−2 + 10 (f2)M−1 + (f2)M
]

− uM

































































































.
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Note that AD is a tridiagonal matrix, so one can use the Thomas algorithm to

obtain the solution easily. Once the values of um−1, um, um+1 and um+2 are obtained,

the values of uI−, uI+, (ux)I− and (ux)I+ can be easily obtained by using Eqs. (4.37)-

(4.42).

It should be pointed out that the third-order derivatives at interface, (ux3)I−

and (ux3)I+ , have been changed to some known values in the derivation to obtain Eqs.

(4.33)-(4.34) and the first-order derivatives at interface, (ux)I− and (ux)I+ , have been

deleted in the derivation to obtain Eqs (4.49)-(4.50).

Furthermore, (ux)I− and (ux)I+ have not been discretized in our derivations for

the scheme at interface. We name this idea the gradient preserved method (GPM). As

will be seen in next chapter, this idea can also be used for the Neumann boundary and

Robin boundary, where (ux)0 and (ux)M exist. The GPM can avoid the troublesome

arising from ux while it is at the interface or on the boundary.

4.3 Analysis of the Scheme for Steady State Heat Conduction Model

with Dirichlet Boundary

In this section, we will give the theoretical analysis for solvability, stability and

convergence of the proposed compact finite difference scheme for the steady-state heat

conduction model with the Dirichlet boundary.

It can be seen that the coefficient matrix AD is tridiagonal and satisfy condi-

tions: (1) |a1| > |c1| > 0, (2) |aj| ≥ |bj |+|cj | , 2 ≤ j ≤M−2, (3) |aM−1| > |cM−1| > 0.

Based on the lemma on page 528 of Atkinson’s book [97], the inverse matrix A−1
D exists,
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which implies that the solution is unique, and the solution can be obtained using the

Thomas algorithm.

To analyze the stability and convergence, we rewrite the scheme as follow:

− uj−1 + 2uj − uj+1 = h21gj, j = 1, ..., m− 1, (4.56)

1

k1h2+k2h1
[−(k2h1+k1h2)um−1+(k2h1+k1h2)um+k2h1um−k2h1um+1]

=
(

h21 + h22
)

gm, (4.57)

1

k1h2+k2h1
[−k1h2um+k1h2um+1+(k1h2+k2h1)um+1−(k1h2+k2h1)um+2]

=
(

h21 + h22
)

gm+1, (4.58)

− uj−1 + 2uj − uj+1 = h22gj, j = m+ 2, ...,M − 1, (4.59)

where u0, uN = 0, g is a function of f1 or f2.

Multiplying Eqs. (4.56)-(4.59) by 1
k2h1

uj (j = 1, ..., m− 1) , 1
k2h1

um,
1

k1h2
um+1

and 1
k1h2

uj (j = m+ 2, ...,M − 1) , respectively, and summing them together gives

1

k2h1

[

u21 + (u1 − u2)
2 + · · ·+ (um−2 − um−1)

2 + u2m−1 − um−1um
]

+
1

(k1h2 + k2h1) k2h1

[

− (k2h1 + k1h2) um−1um + (k2h1 + k1h2) u
2
m

+k2h1u
2
m − k2h1umum+1

]

+
1

(k1h2 + k2h1) k1h2

[

−k1h2umum+1 + k1h2u
2
m+1 + (k1h2 + k2h1) u

2
m+1

− (k1h2 + k2h1) um+1um+2]

+
1

k1h2

[

−um+1um+2 + u2m+1 + (um+1 − um+2)
2 · · ·+ (uM−2 − uM−1)

2 + u2M−1

]

=
1

k2h1

m
∑

j=1

h21gjuj +
1

k1h2

M−1
∑

j=m+1

h22gjuj, (4.60)
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The above equation can be simplified to

1

k2
h1

m−1
∑

j=1

(

δxuj− 1

2

)2

+
k0 + 1

k1k0 + k2
(h1 + h2)

(

δxum+ 1

2

)2

+
1

k1
h2

M−1
∑

j=m+2

(

δxuj+ 1

2

)2

=
1

k2h1

m
∑

j=1

h21gjuj +
1

k1h2

M−1
∑

j=m+1

h22gjuj, (4.61)

where k0 =
h1

h2
, δxuj− 1

2

=
uj−uj−1

h1
, j = 1, ..., m−1; δxum+ 1

2

= 2(um+1−um)
h1+h2

; δxuj+ 1

2

=
uj+1−uj

h2
,

j = m+ 2, ...,M − 1. Denoting |u|21 = h1
m−1
∑

j=1

(

δxuj− 1

2

)2

+ (h1 + h2)
(

δxum+ 1

2

)2

+ h2
M−1
∑

j=m+2

(

δxuj+ 1

2

)2

, we obtain the left-hand-side (LHS) of Eq. (4.61) as

LHS ≥min

{

1

k2
,
k0 + 1

k1k0 + k2
,
1

k1

}

|u|21

≡ε1 |u|
2
1 , (4.62)

where ε1 = min
{

1
k2
, k0+1
k1k0+k2

, 1
k1

}

. Denoting ‖u‖2 = h1
m−1
∑

j=1

u2j + h2
M−1
∑

j=m+1

u2j , and using

the Young’s inequality, ab ≤ ǫa2 + 1
4ǫ
b2, we obtain the right-hand-side (RHS) of Eq.

(4.61) as

RHS ≤
1

k2
h1

m
∑

j=1

gjuj +
1

k1
h2

M−1
∑

j=m+1

gjuj

≤
1

k2
h1

m
∑

j=1

|gjuj|+
1

k1
h2

M−1
∑

j=m+1

|gjuj|

≤max

{

1

k2
,
1

k1

}





√

√

√

√h1

m
∑

j=1

g2j ·

√

√

√

√h1

m
∑

j=1

u2j +

√

√

√

√h2

M−1
∑

j=m+1

g2j ·

√

√

√

√h2

M−1
∑

j=m+1

u2j





≤ε2

(

ǫh1

m−1
∑

j=1

u2j + ǫh2

M−1
∑

j=m+1

u2j +
1

4ǫ
h1

m−1
∑

j=1

g2j +
1

4ǫ
h2

M−1
∑

j=m+1

g2j

)

≤ε2

(

ǫ ‖u‖2 +
1

4ǫ
‖g‖2

)

≤ε2

(

ǫ |u|21 +
1

4ǫ
‖g‖2

)

, (4.63)
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where ε2 = max
{

1
k2
, 1
k1

}

. Here, the fact, ‖u‖2 < |u|21, has been used. Combining Eqs.

(4.62)-(4.63) together yields

ε1 |u|
2
1 ≤ε2

(

ǫ |u|21 +
1

4ǫ
‖g‖2

)

(

ε1
ε2

− ǫ

)

|u|21 ≤
1

4ǫ
‖g‖2

|u|21 ≤
2ε21
ε22

‖g‖2

=ε3 ‖g‖
2 . (4.64)

Here, we have used ǫ = ε1
2ε2

and ε3 =
2ε2

1

ε2
2

.

From the above priori estimate, we now prove the stability and convergence

of the scheme.

Theorem 4.3. Assume that
{

u
(1)
j

}

and
{

u
(2)
j

}

are the numerical solutions

obtained based on scheme Eqs. (4.30)-(4.32), and Eqs. (4.49)-(4.50) (or Eqs. (4.51)-

(4.52), or Eqs. (4.53)-(4.54)) with the same boundary and interfacial conditions but

different values of f
(1)
1 (x) , f

(1)
2 (x) , f

(2)
1 (x), f

(2)
2 (x) . Let u = u(2) − u(1), f1 (x) =

f
(2)
1 (x)− f

(1)
1 (x) , f2 (x) = f

(2)
2 (x)− f

(1)
2 (x) . Then it holds

|u|21 ≤ c

(

h1

m−1
∑

j=1

(f1)
2
j + h2

M−1
∑

j=m+1

(f2)
2
j

)

, (4.65)

where c is a constant, implying that the scheme is stable. It should be pointed out

that the above estimate is a discrete analogue of Eq. (3.19) in Chapter 3.

Theorem 4.4. Assume that u (xj) and uj are the exact solution of model

Eqs. (4.24)-(4.28) and numerical solution of scheme Eqs. (4.30)-(4.32), and Eqs.

(4.49)-(4.50) (or Eqs. (4.51)-(4.52), or Eqs. (4.53)-(4.54)). Let ǫ = u (xj) − uj.
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Then it holds

|ǫ|1 ≤ c
(

h41 + h42
)

, (4.66)

where c is a constant.

Proof. It can be seen that ǫ (xj) satisfies

−ǫj−1 + 2ǫj − ǫj+1 = h21Rj , j = 1, ..., m− 1, (4.67)

1

k1h2 + k2h1
[− (k2h1 + k1h2)ǫm−1 + (k2h1 + k1h2)ǫm + k2h1εm− k2h1ǫm+1]

=
(

h21 + h22
)

Rm, (4.68)

1

k1h2 + k2h1
[−k1h2ǫm+ k1h2ǫm+1+ (k1h2 + k2h1) ǫm+1−(k1h2 + k2h1)ǫm+2]

=
(

h21 + h22
)

Rm+1, (4.69)

− ǫj−1 + 2ǫj − ǫj+1 = h22Rj, j = m+ 2, ...,M − 1, (4.70)

where Rj is O (h41) when 1 ≤ j ≤ m, O (h42) when m + 1 ≤ j ≤ M − 1. From the

priori estimate, we obtain

|ǫ|21 ≤ c

(

h1

m−1
∑

j=1

(R1)
2
j + h2

M−1
∑

j=m+1

(R2)
2
j

)

≤ c
(

h41 + h42
)2
. (4.71)

4.4 Conclusion

In this chapter, we have proposed three higher-order compact finite differ-

ence schemes for solving the steady-state heat conduction model with the Dirichlet

boundary in one dimensional double-layered solid structures. In particular, by using

the GPM, we have proposed a kind of new third-order and fourth-order compact

schemes at the interface. The overall scheme is a tridiagonal linear system, which can

be efficiently solved using the Thomas algorithm. Furthermore, we have obtained a
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priori estimate for the compact finite difference scheme, which is the discrete analogue

of the energy estimate of the steady-state heat conduction model. Based on this priori

estimate, the compact scheme is analyzed to be unconditionally stable and convergent

with O (h41 + h42) . In next chapter, we will give the schemes for steady-state heat

conduction model with Neumann boundary and Robin boundary, and the schemes

for unsteady-state heat conduction model and nanoscale heat conduction model. As

will be seen, we will keep using the generalized compact finite difference method on

boundary and at interface, and using the idea of GPM to derive those schemes.



CHAPTER 5

NUMERICAL METHODS: PART II — SCHEMES FOR

THE DOUBLE-LAYERED HEAT CONDUCTION

MODELS

In this chapter, using the compact finite difference method and the gradient

preserved method, a kind of higher-order compact finite difference schemes for afore-

mentioned three mathematical models will be proposed. In particular, we will develop

fourth-order compact schemes at the interface using only three-points in space.

5.1 Schemes for Steady State Heat Conduction Model

To develop higher-order accurate finite difference schemes for solving the ellip-

tic problem in Eqs. (3.1)-(3.5), we first design a one-dimensional mesh and denote

grid sizes to be h1 = l/m, h2 = (L− l) /(M−m), respectively, where m, M (m < M)

are positive integers, as shown in Figure 5.1. Grid points in the mesh are denoted as

xj = jh1, 0 ≤ j ≤ m; xj = l+(j −m) h2, m+1 ≤ j ≤M and Ωh = {xj |0 ≤ j ≤M} ,

where the interface is located at grid point xI = (m+ 1)h1 = l.

x
0

0

h
1

x
1

x
2

x
m−1

x
m

x
I

l
h

1
h

2
x

m+1
x

m+2
x

M−2
x

M−1
x

M

L

h
2

Figure 5.1: One-dimensional mesh for steady-state heat conduction model.
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Denote uj as the approximation of u (xj) , and so on for others. We now

develop a fourth-order compact finite difference scheme using three-points in space.

We only consider the Neumann boundary and the Robin boundary here as the scheme

for the Dirichlet boundary has been given in previous chapter.

For the interior points, x1 ≤ xj ≤ xm−1 and xm+2 ≤ xj ≤ xM−1, the fourth-

order Padé scheme gives

k1(uj−1−2uj+uj+1)

h21
=

1

12

[

(f1)j−1+10 (f1)j+(f1)j+1

]

, 1 ≤ j ≤ m− 1, (5.1)

k2(uj−1−2uj+uj+1)

h22
=

1

12

[

(f2)j−1+10 (f2)j+(f2)j+1

]

, m+ 2≤ j≤M − 1. (5.2)

For Neumann boundary condition, ux (0) = φ1, Eq. (4.3a) yields

ux (x0)=−
31u(x0)−32u(x1)+u(x2)

30h1

−
h1
90

[35uxx(x0)+8uxx(x1)−uxx(x2)]

−
h21
15
ux3 (x0) +O

(

h51
)

. (5.3)

From Eq. (3.1), we have uxx(x0) = f1(x0)
k1

, uxx(x1) = f1(x1)
k1

, uxx(x2) = f1(x2)
k1

and

ux3 (x0) =
(f1)x(x0)

k1
. Substituting them into Eq. (5.3) gives

ux (x0) =−
31u(x0)−32u(x1)+ u (x2)

30h1

−
h1
90k1

[35f1(x0) + 8f1(x1)− f1(x2)]

−
h21
15k1

(f1)x (x0) +O
(

h51
)

. (5.4)

With ux (0) = φ1, after dropping the truncation error in Eqs. (5.4), we obtain

−31u0 + 32u1 − u2 = 30h1φ1 +
h21
3k1

[35 (f1)0 + 8 (f1)1 − (f1)2] +
2h31
k1

((f1)x)0 . (5.5)
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On the other hand, when j = 1, Eq. (5.1) gives

u0 − 2u1 + u2 =
h21
12k1

[(f1)0 + 10 (f1)1 + (f1)2] . (5.6)

Adding Eq. (5.5) and Eq. (5.6) together leads to a fourth-order scheme as

− 30u0 + 30u1

=− 30h1φ1 +
h21
12k1

[141 (f1)0 + 42 (f1)1 − 3 (f1)2] +
2h31
k1

((f1)x)0 , (5.7)

Similarly, from Eq. (3.2), we have uxx (xM) = f2(xM )
k2

, uxx (xM−1) =
f2(xM−1)

k2
,

uxx (xM−2) =
f2(xM−2)

k2
and ux3 (xM) =

(f2)x(xM )

k2
. By using Eq. (4.3b), we obtain

ux (xM) =
31u (xM )− 32u (xM−1) + u (xM−2)

30h2

+
h2
90k2

(35f2 (xM)+8f2 (xM−1)−f2(xM−2))−
h22
15k2

(f2)x(xM)+O
(

h52
)

. (5.8)

Dropping the truncation error in Eq. (5.8) and using ux (xM) = φ2 gives

− 31uM + 32uM−1 − uM−2

=− 30h2φ2+
h22
3k2

[

35 (f2)M+8 (f2)M−1−(f2)M−2

]

−
2h32
k2

((f2)x)M . (5.9)

On the other hand, from Eq. (5.2), when j =M − 1, we have

uM−2 − 2uM−1 + uM =
h22
12k2

[

(f2)M−2 + 10 (f2)M−1 (f2)M
]

. (5.10)

Adding Eq. (5.9) and Eq. (5.10) together gives a fourth-order scheme as

30uM−1 − 30uM

=− 30h2φ2 +
h22
12k2

[

−3 (f2)M−2 + 42 (f2)M−1 + 141 (f2)M
]

−
2h32
k2

((f2)x)M . (5.11)

For Robin boundary condition, Eq. (3.5c), one may simply replace φ1 and

φ2 in Eq. (5.7) and Eq. (5.11) with φ1−γ1u0

−α1
and φ2−γ2uM

α2
, respectively. This gives a
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fourth-order scheme as

− 30

(

1 +
h1γ1
α1

)

u0 + 30u1

=− 30h1
φ1

α1
+

h21
12k1

[141 (f1)0 + 42 (f1)1 − 3 (f1)2] +
2h31
k1

((f1)x)0 , (5.12)

30uM−1 − 30

(

1 +
h2γ2
α2

)

uM

=− 30h2
φ2

a2
+

h22
12k2

[

−3 (f2)M−2 + 42 (f2)M−1 + 141 (f2)M
]

−
2h32
k2

((f2)x)M . (5.13)

At the interface, we already had the scheme, which is either the fourth-order

scheme, Eqs. (4.49)-(4.50) or the third-order scheme, Eqs. (4.51)-(4.52) or Eqs.

(4.53)-(4.54).

Thus, Eqs. (5.1)-(5.2), Eqs. (5.7) and (5.11), and Eqs. (4.49)-(4.50) together

form a higher-order accurate finite difference scheme for the heat conduction model

in steady-state with Dirichlet boundary. The scheme can be rewritten in matrix form

as

AN~u = ~dN , (5.14)

where ~u = [u0, u1, u2, ..., um−2, um−1, um, um+1, um+2, um+3,..., uM−2, uM−1, uM ]T ,
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AN=









































































−30 30

1 −2 1

. . .
. . .

. . .

1 −2 1

2(k1h2+k2h1)
2k2h1+k1h2

−2 2k2h1

2k2h1+k1h2

2k1h2

2k1h2+k2h1
−2 2(k1h2+k2h1)

2k1h2+k2h1

1 −2 1

. . .
. . .

. . .

1 −2 1

30 −30









































































and ~dN =

































































































30h1φ1 +
h2
1

12k1
[141 (f1)0 + 42 (f1)1 − 3 (f1)2] +

2h3
1

k1
((f1)x)0

h2
1

12k1
[(f1)0 + 10 (f1)1 + (f1)2]

h2
1

12k1
[(f1)1 + 10 (f1)2 + (f1)3]

...

h2
1

12k1

[

(f1)m−2 + 10 (f1)m−1 + (f1)m
]

c5

c6

h2
2

12k2

[

(f2)m+1 + 10 (f2)m+2 + (f2)m+3

]

h2
2

12k2

[

(f2)m+2 + 10 (f2)m+3 + (f2)m+4

]

...

h2
2

12k2

[

(f2)M−3 + 10 (f2)M−2 + (f2)M−1

]

h2
2

12k2

[

(f2)M−2 + 10 (f2)M−1 + (f2)M
]

−30h2φ2 +
h2
2

12k2

[

−3 (f2)M−2 + 42 (f2)M−1 + 141 (f2)M
]

−
2h3

2

k2
((f2)x)M

































































































,
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where c5, c6 are given in Eqs. (4.49)-(4.50). By Gauss elimination, we can obtain the

determinant of AN , which is zero. Hence, AN is singular. This is a kind of tricky and

has to be careful when computing. To solve the numerical solution uniquely, we fix

u0 = 0. (5.15)

Same as the Dirichlet boundary case, the values of uI−, uI+, (ux)I− and (ux)I+ can

be obtained by using Eqs. (4.37)-(4.42).

Eqs. (5.1)-(5.2), Eqs. (5.7) and (5.11), and Eqs. (4.49)-(4.50) together form a

higher-order accurate finite difference scheme for the heat conduction model in steady

state with Robin boundary. The scheme can be rewritten in matrix form as.

AR~u = ~dR, (5.16)

where ~u = [u0, u1, u2, ..., um−2, um−1, um, um+1, um+2, um+3,..., uM−2, uM−1, uM ]T ,

AR=









































































−30
(

1+h1γ1
α1

)

30

1 −2 1

. . .
. . .

. . .

1 −2 1

2(k1h2+k2h1)
2k2h1+k1h2

−2 2k2h1

2k2h1+k1h2

2k1h2

2k1h2+k2h1
−2 2(k1h2+k2h1)

2k1h2+k2h1

1 −2 1

. . .
. . .

. . .

1 −2 1

30 −30
(

1+h2γ2
α2

)








































































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and ~dR =

































































































−30h1
φ1

α1
+

h2
1

12k1
[141 (f1)0 + 42 (f1)1 − 3 (f1)2] +

2h3
1

k1
((f1)x)0

h2
1

12k1
[(f1)1 + 10 (f1)2 + (f1)3]

h2
1

12k1
[(f1)2 + 10 (f1)3 + (f1)4]

...

h2
1

12k1

[

(f1)m−2 + 10 (f1)m−1 + (f1)m
]

c5

c6

h2
2

12k2

[

(f2)m+1 + 10 (f2)m+2 + (f2)m+3

]

h2
2

12k2

[

(f2)m+2 + 10 (f2)m+3 + (f2)m+4

]

...

h2
2

12k2

[

(f2)M−4 + 10 (f2)M−3 + (f2)M−2

]

h2
2

12k2

[

(f2)M−3 + 10 (f2)M−2 + (f2)M−1

]

−30h2
φ2

a2
+

h2
2

12k2

[

−3 (f2)M−2 + 42 (f2)M−1 + 141 (f2)M
]

−
2h3

2

k2
((f2)x)M

































































































.

Again, AR is a tridiagonal matrix, so one can use the Thomas algorithm to obtain

the solution efficiently. Once the values of um−1, um, um+1 and um+2 are obtained,

the values of uI−, uI+, (ux)I− and (ux)I+ can be easily obtained by using Eqs. (4.37)-

(4.42).

5.2 Schemes for Unsteady State Heat Conduction Model

To develop higher-order accurate finite difference schemes for solving the heat

conduction problem in Eqs. (3.19)-(3.24), we first design a mesh, as shown in Figure

5.2, where grid sizes and time step are h1 = l/m, h2 = (L− l) /(M −m), ∆t = T/N ,

respectively, and m, M (m < M) and N are positive integers. Grid points in the
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mesh are denoted as xj = jh1, 0 ≤ j ≤ m; xj = l + (j −m) h2, m + 1 ≤ j ≤ M ;

tn = n∆t, 0 ≤ n ≤ N and Ωh = {xj |0 ≤ j ≤M} , Ω∆t = {tn|0 ≤ n ≤ N} , where the

interface is located at grid point xI = (m+ 1)h1 = l.

x
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x
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x
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Figure 5.2: Two-dimensional mesh for unsteady-state heat conduction model.

We now develop a higher-order accurate compact finite difference scheme using

three-points in space and two-levels in time. Higher-order, third-order or fourth-order

always mean the order of accuracy in spatial dimension in this dissertation. Denote

unj as the approximation of u (xj , tn) .
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For the interior points, x1 ≤ xj ≤ xm−1, by the fourth-order Padé scheme, we

have

1

12
[uxx (xj−1, t) + 10uxx (xj , t) + uxx (xj+1, t)]

=
1

h21
[u (xj−1, t)− 2u (xj , t) + u (xj+1, t)] +O

(

h41
)

. (5.17)

Substituting it into Eq. (3.19) gives

ρ1C1

12
[ut (xj−1, t) + 10ut (xj , t) + ut (xj+1, t)]

=
k1
h21

[u (xj−1, t)− 2u (xj , t) + u (xj+1, t)]

+
1

12
[f1 (xj−1, t) + 10f1 (xj , t) + f1 (xj+1, t)] +O

(

h41
)

. (5.18)

Using the Crank-Nicolson method, we obtain

ρ1C1

12

[

u (xj−1, tn+1)− u (xj−1, tn)

∆t

+ 10
u (xj , tn+1)− u (xj , tn)

∆t

+
u (xj+1, tn+1)− u (xj+1, tn)

∆t

]

=
k1
2h21

[u (xj−1, tn+1)− 2u (xj , tn+1) + u (xj+1, tn+1)]

+
k1
2h21

[u (xj−1, tn)− 2u (xj , tn) + u (xj+1, tn)]

+
1

12

[

f1

(

xj−1, tn+ 1

2

)

+10f1

(

xj , tn+ 1

2

)

+f1

(

xj+1, tn+ 1

2

)]

+O
(

h41 +∆t2
)

. (5.19)

Dropping the truncation error yields a fourth-order compact scheme as

(

ρ1C1

12∆t
−

k1
2h21

)

un+1
j−1 +

(

10ρ1C1

12∆t
+
k1
h21

)

un+1
j +

(

ρ1C1

12∆t
−

k1
2h21

)

un+1
j+1

=

(

ρ1C1

12∆t
+

k1
2h21

)

unj−1 +

(

10ρ1C1

12∆t
−
k1
h21

)

unj +

(

ρ1C1

12∆t
+

k1
2h21

)

unj+1

+
1

12

[

(f1)
n+ 1

2

j−1 + 10 (f1)
n+ 1

2

j + (f1)
n+ 1

2

j+1

]

, 1 ≤ j ≤ m− 1. (5.20)
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Multiplying both sides by 12∆t
ρ1C1

, and letting µ1 = 6k1∆t
ρ1C1h2

1

, λ1 = ∆t
ρ1C1

, we can rewrite

the above equation in a simple way as

(1− µ1)u
n+1
j−1 + (10 + 2µ1)u

n+1
j + (1− µ1)u

n+1
j+1

=(1 + µ1) u
n
j−1 + (10− 2µ1) u

n
j + (1 + µ1) u

n
j+1

+ λ1

[

(f1)
n+ 1

2

j−1 + 10 (f1)
n+ 1

2

j + (f1)
n+ 1

2

j+1

]

, 1 ≤ j ≤ m− 1. (5.21)

Similarly, for the interior points, xm+2 ≤ xj ≤ xM−1, a fourth-order compact scheme

can be obtained as

(

ρ2C2

12∆t
−

k2
2h22

)

un+1
j−1 +

(

10ρ2C2

12∆t
+
k2
h22

)

un+1
j +

(

ρ2C2

12∆t
−

k2
2h22

)

un+1
j+1

=

(

ρ2C2

12∆t
+

k2
2h22

)

unj−1 +

(

10ρ2C2

12∆t
−
k2
h22

)

unj +

(

ρ2C2

12∆t
+

k2
2h22

)

unj+1

+
1

12

[

(f2)
n+ 1

2

j−1 + 10 (f2)
n+ 1

2

j + (f2)
n+ 1

2

j+1

]

, m+ 2 ≤ j ≤M − 1. (5.22)

Again, multiplying both sides by 12∆t
ρ2C2

, then letting µ2 =
6k2∆t
ρ2C2h2

2

, λ2 =
∆t

ρ2C2
, we obtain

a simple form of Eq. (5.22) as

(1− µ2)u
n+1
j−1 + (10 + 2µ2)u

n+1
j + (1− µ2)u

n+1
j+1

=(1 + µ2) u
n
j−1 + (10− 2µ2) u

n
j + (1 + µ2) u

n
j+1

+ λ2

[

(f2)
n+ 1

2

j−1 + 10 (f2)
n+ 1

2

j + (f2)
n+ 1

2

j+1

]

, m+ 2 ≤ j ≤M − 1. (5.23)

At the boundary points, x0 and xM , we simply set

un+1
0 = (φ1)

n+1 , un+1
M = (φ2)

n+1 , (5.24)

for Dirichlet boundary condition, Eq. (3.24a).
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For Neumann boundary condition, ux (0, t) = φ1 (t) , using Eq. (4.2a) and Eq.

(4.3a), respectively, we have

ux (x0, t) =
u (x1, t)− u (x0, t)

h1
−
h1
12

(5uxx (x0, t) + uxx (x1, t))

−
h21
12
ux3 (x0, t) +O

(

h41
)

, (5.25)

ux (x0, t) =−
31u (x0, t)− 32u (x1, t) + u (x2, t)

30h1

−
h1
90

[35uxx (x0, t) + 8uxx (x1, t)− uxx (x2, t)]

−
h21
15
ux3 (x0, t) +O

(

h51
)

. (5.26)

Eq. (3.19) gives us the following equations:

ρ1C1ut (xj , t) = k1uxx (xj , t) + f1 (xj , t) , j = 0, 1, 2, (5.27a)

ρ1C1uxt (x0, t) = k1ux3 (x0, t) + (f1)x (x0, t) . (5.27b)

Solving uxx (x0, t) , uxx (x1, t) , uxx (x2, t) and ux3 (x0, t), and substituting them into

Eq. (5.25) and Eq. (5.26), respectively, we obtain

ux (x0, t) =
u (x1, t)− u (x0, t)

h1
−
h1ρ1C1

12k1
[5ut (x0, t) + ut (x1, t)]

+
h1
12k1

[5f1 (x0, t) + f1 (x1, t)]

−
h21
12k1

(ρ1C1uxt (x0, t)− (f1)x (x0, t)) +O
(

h41
)

, (5.28)

ux (x0, t) =−
31u (x0, t)− 32u (x1, t) + u (x2, t)

30h1

−
h1ρ1C1

90k1
[35ut (x0, t) + 8ut (x1, t)− ut (x2, t)]

+
h1
90k1

(35f1 (x0, t) + 8f1 (x1, t)− f1 (x2, t))

−
h21
15k1

(ρ1C1uxt (x0, t)− (f1)x (x0, t)) +O
(

h51
)

. (5.29)
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Then, the Crank-Nicolson method gives

(ux)
n+1
0 +(ux)

n
0

2

=
un+1
1 −un+1

0

2h1
+
un1−u

n
0

2h1

−
h1ρ1C1

12k1

[

5
un+1
0 −un0
∆t

+
un+1
1 −un1
∆t

]

+
h1
12k1

[

5 (f1)
n+ 1

2

0 + (f1)
n+ 1

2

1

]

−
h21ρ1C1

12k1

(ux)
n+1
0 − (ux)

n
0

∆t
+

h21
12k1

((f1)x)
n+ 1

2

0 +O
(

h41 +∆t2
)

, (5.30)

and

(ux)
n+1
0 + (ux)

n
0

2

=−
31un+1

0 − 32un+1
1 + un+1

2

60h1
−

31un0 − 32un1 + un2
60h1

−
h1ρ1C1

90k1

(

35
un+1
0 − un0
∆t

+ 8
un+1
1 − un1
∆t

−
un+1
2 − un2
∆t

)

+
h1
90k1

[

35 (f1)
n+ 1

2

0 + 8 (f1)
n+ 1

2

1 − (f1)
n+ 1

2

2

]

−
h21ρ1C1

15k1

(ux)
n+1
0 − (ux)

n
0

∆t
+

h21
15k1

((f1)x)
n+ 1

2

0 +O
(

h51 +∆t2
)

. (5.31)

It should be pointed out that we only discretized uxt on the time direction, but kept

the space direction without discretization. This means the GPM was used. Dropping

the truncation errors and rearranging the terms in Eqs. (5.30)-(5.31) and using

ux (0, t) = φ1 (t) gives us a third-order scheme and a fourth-order scheme, respectively,

as

(5 + µ1) u
n+1
0 + (1− µ1) u

n+1
1

=(5− µ1)u
n
0 + (1 + µ1) u

n
1 + λ1

[

5 (f1)
n+ 1

2

0 + (f1)
n+ 1

2

1

]

+ λ1h1 ((f1)x)
n+ 1

2

0

− h1 (1 + µ1) (φ1)
n+1 + h1 (1− µ1) (φ1)

n , (5.32)
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and

(140 + 31µ1)u
n+1
0 + (32− 32µ1) u

n+1
1 − (4− µ1)u

n+1
2

= (140− 31µ1) u
n
0 + (32 + 32µ1)u

n
1 − (4 + µ1)u

n
2

+ 4λ1

[

35 (f1)
n+ 1

2

0 + 8 (f1)
n+ 1

2

1 − (f1)
n+ 1

2

2

]

+ 24λ1h1 ((f1)x)
n+ 1

2

0

− h1 (24 + 30µ1) (φ1)
n+1 + h1 (24− 30µ1) (φ1)

n , (5.33)

where µ1 =
6k1∆t
ρ1C1h2

1

, λ1 =
∆t

ρ1C1
. When j = 1, Eq. (5.21) becomes

(1− µ1) u
n+1
0 + (10 + 2µ1)u

n+1
1 + (1− µ1)u

n+1
2

=(1 + µ1) u
n
0 + (10− 2µ1)u

n
1 + (1 + µ1)u

n
2

+ λ1

[

(f1)
n+ 1

2

0 + 10 (f1)
n+ 1

2

1 + (f1)
n+ 1

2

2

]

. (5.34)

Multiplying Eq. (5.33) and Eq. (5.34) by (1− µ1) and (4− µ1) , respectively, then

adding them together, after simplification, we obtain

(

144− 114µ1 − 30µ2
1

)

un+1
0 +

(

72− 66µ1 + 30µ2
1

)

un+1
1

=
(

144− 168µ1 + 30µ2
1

)

un0 +
(

72− 18µ1 − 30µ2
1

)

un1 + 6µ1u
n
2

+ λ1 (144− 141µ1) (f1)
n+ 1

2

0 + λ1 (72− 42µ1) (f1)
n+ 1

2

1 + 3λ1µ1 (f1)
n+ 1

2

2

+ 24h1λ1 (1− µ1) ((f1)x)
n+ 1

2

0 − h1 (1− µ1) (24 + 30µ1) (φ1)
n+1

+ h1 (1− µ1) (24 + 30µ1) (φ1)
n , (5.35)

As we can see from Eq. (5.35), |144− 114µ1 − 30µ2
1| > |72− 66µ1 + 30µ2

1| is not true

for some values of the parameter, such as µ1 = 1. Hence, the third-order scheme, Eq.

(5.32), will be used for Neumann boundary condition, ux (0, t) = φ1 (t). Similarly, for

the other side of the Neumann boundary condition, ux (L, t) = φ2 (t) , by Eq. (4.2b),
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we have

ux (L, t) =
u (xM , t)− u (xM−1, t)

h2

+
h2
12

[5uxx (xM , t) + uxx (xM−1, t)]

−
h22
12
ux3 (xM , t) +O

(

h42
)

. (5.36)

Using the similar argument, we obtain a third-order scheme as

(1− µ2) u
n+1
M−1 + (5 + µ2) u

n+1
M

=(1 + µ2) u
n
M−1 + (5− µ2) u

n
M + λ2

[

(f2)
n+ 1

2

M−1 + 5 (f2)
n+ 1

2

M

]

− h2λ2 ((f2)x)
n+ 1

2

M + h2 (µ2 + 1) (φ2)
n+1 − (1− µ2) (φ2)

n , (5.37)

where µ2 =
k2∆t

ρ2C2h2
2

, λ2 =
∆t

ρ2C2
.

For Robin boundary condition, Eq. (3.24c), we replace (φ1)
n+1, (φ1)

n , (φ2)
n+1

and (φ2)
n by (φ1)

n+1

−α1
+ γ1

α1
un+1
0 , (φ1)

n

−α1
+ γ1

α1
un0 ,

(φ2)
n+1

α2
− γ2

α2
un+1
M and (φ2)

n

α2
− γ2

α2
unM ,

respectively, in Eq. (5.32) and Eq. (5.37), and obtain a third-order scheme as

[

5 + µ1 +
γ1
α1
h1 (1 + µ1)

]

un+1
0 + (1− µ1)u

n+1
1

=

[

5− µ1 +
γ1
α1

h1 (1− µ1)

]

un0 + (1 + µ1) u
n
1 + λ1

[

5 (f1)
n+ 1

2

0 + (f1)
n+ 1

2

1

]

+ h1λ1 ((f1)x)
n+ 1

2

0 +
1

α1
h1 (1 + µ1) (φ1)

n+1 −
1

α1
h1 (1− µ1) (φ1)

n , (5.38)

(1− µ2)u
n+1
M−1 +

[

5 + µ2 +
γ2
α2
h2 (1 + µ2)

]

un+1
M

=(1 + µ2) u
n
M−1 +

(

5− µ2 +
γ2
α2
h2 (1− µ2)

)

unM

+
1

12

[

(f2)
n+ 1

2

M−1 + 5 (f2)
n+ 1

2

M

]

−
h2
12

((f2)x)
n+ 1

2

M

+
1

α2
h2 (1 + µ2) (φ2)

n+1 −
1

α2
h2 (1− µ2) (φ2)

n . (5.39)
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At grid points around interface xI , we have the similar equations to Eqs. (4.37)-

(4.42) as

uI+ (t)− uI− (t) = a (t) , (5.40)

k2 (ux)I+ (t)− k1 (ux)I− (t) = b (t) , (5.41)

u (xm−1, t)− 32u (xm, t) + 31uI− (t)− 30h1 (ux)I− (t) = c1 (t) , (5.42)

u (xm, t)− 32u (xm+1, t) + 31uI+ (t) + 30h2 (ux)I+ (t) = c2 (t) , (5.43)

u (xm−1, t)− 2u (xm, t) + uI− (t) = c3 (t) , (5.44)

u (xm+2, t)− 2u (xm+1, t) + uI+ (t) = c4 (t) , (5.45)

where c1 (t) = −
h2
1

3k1
[35 (ρ1C1ut (t)− f1 (t))I− + 8 (ρ1C1ut (t)− f1 (t))m

− (ρ1C1ut (t)− f1 (t))m−1 −6h1 (ρ1C1uxt (t)− (f1)x (t))I−],

c2 (t) = −
h2
2

3k2
[35 (ρ2C2ut (t)− f2 (t))I+ + 8 (ρ2C2ut (t)− f2 (t))m+1

− (ρ2C2ut (t)− f2 (t))m+2 + 6h2 (ρ2C2uxt (t)− (f2)x (t))I+],

c3(t)=
h2
1

12k1

[

(ρ1C1ut(t)−f1(t))m−1+10(ρ1C1ut(t)−f1(t))m+(ρ1C1ut(t)−f1(t))I−
]

,

c4(t) =
h2
2

12k2

[

(ρ2C2ut(t)−f2(t))m+2+10 (ρ2C2ut(t)−f2(t))m+1+(ρ2C2ut(t)−f2(t))I+
]

.

Using the Crank-Nicolson method, Eqs. (5.40)-(5.45) become

un+1
I+ + unI+

2
−
un+1
I− + unI−

2
= an+

1

2 , (5.46)

k2 (ux)
n+1
I+ + k2 (ux)

n
I+

2
−
k1 (ux)

n+1
I− + k1 (ux)

n
I−

2
= bn+

1

2 , (5.47)

un+1
m−1+u

n
m−1

2
−
32 (un+1

m +unm)

2
+
31
(

un+1
I− +unI−

)

2
−
30h1

(

(ux)
n+1
I− +(ux)

n
I−

)

2

=
h21
3k1

[

ρ1C1

(

un+1
m−1 − unm−1

)

∆t
−(f1)

n+ 1

2

m−1

]

−
8h21
3k1

[

ρ1C1 (u
n+1
m − unm)

∆t
− (f1)

n+ 1

2

m

]

−
35h21
3k1

[

ρ1C1

(

un+1
I− −unI−

)

∆t
−(f1)

n+ 1

2

I−

]

+
2h21
k1

[

ρ1C1

(

(ux)
n+1
I− −(ux)

n
I−

)

∆t
−((f1)x)

n+ 1

2

I−

]

, (5.48)
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and

un+1
m+2+u

n
m+2

2
−
32
(

un+1
m+1+u

n
m+1

)

2
+
31
(

un+1
I+ +unI+

)

2
+
30h2

(

(ux)
n+1
I+ +(ux)

n
I+

)

2

=
h22
3k2

[

ρ2C2

(

un+1
m+2−u

n
m+2

)

∆t
−(f2)

n+ 1

2

m+2

]

−
8h22
3k2

[

ρ2C2

(

un+1
m+1−u

n
m+1

)

∆t
−(f2)

n+ 1

2

m+1

]

−
35h22
3k2

[

ρ2C2

(

un+1
I+ −unI+

)

∆t
−(f2)

n+ 1

2

I+

]

−
2h22
k2

[

ρ2C2

(

(ux)
n+1
I+ −(ux)

n
I+

)

∆t
−((f2)x)

n+ 1

2

I+

]

, (5.49)

un+1
m−1 + unm−1

2
− 2

un+1
m + unm

2
+
un+1
I− + unI−

2

=
h21ρ1C1

12k1∆t

(

un+1
m−1 − unm−1

)

−
h21
12k1

(f1)
n+ 1

2

m−1 +
10h21ρ1C1

12k1∆t

(

un+1
m − unm

)

−
10h21
12k1

(f1)
n+ 1

2

m +
h21ρ1C1

12k1∆t

(

un+1
I− − unI−

)

−
h21
12k1

(f1)
n+ 1

2

I− , (5.50)

un+1
m+2 + unm+2

2
− 2

un+1
m+1 + unm+1

2
+
un+1
I+ + un+1

I+

2

=
h22ρ2C2

12k2∆t

(

un+1
m+2 − unm+2

)

−
h22
12k2

(f2)
n+ 1

2

m+2 +
10h22ρ2C2

12k2∆t

(

un+1
m+1 − unm+1

)

−
10h22
12k2

(f2)
n+ 1

2

m+1 +
h22ρ2C2

12k2∆t

(

un+1
I+ − unI+

)

−
h22
12k2

(f2)
n+ 1

2

I+ . (5.51)

Thus, we obtain a system of 6 equations with 8 unknowns at time level n + 1,

{

un+1
m−1, u

n+1
m , un+1

m+1, u
n+1
m+2, u

n+1
I− , un+1

I+ , (ux)
n+1
I− , (ux)

n+1
I+

}

. That is

un+1
I+ − un+1

I− = an, (5.52)

k2 (ux)
n+1
I+ − k1 (ux)

n+1
I− = bn, (5.53)

c11 · u
n+1
m−1 + c12 · u

n+1
m + c13 · u

n+1
I− + c14 · (ux)

n+1
I− = c1n, (5.54)

c21 · u
n+1
m+2 + c22 · u

n+1
m+1 + c23 · u

n+1
I+ + c24 · (ux)

n+1
I+ = c2n, (5.55)

c31 · u
n+1
m−1 + c32 · u

n+1
m + c33 · u

n+1
I− = c3n, (5.56)

c41 · u
n+1
m+2 + c42 · u

n+1
m+1 + c43 · u

n+1
I+ = c4n, (5.57)

where an = 2an+
1

2 − (uI+ − uI−) , bn = 2bn+
1

2 − (k2 (ux)I+ − k1 (ux)I−) ,

c11 = 12− 3µ1, c12 = − (96− 96µ1) , c13 = − (420 + 93µ1) , c14 = h1 (72 + 90µ1) ,
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c1n = (12 + 3µ1) u
n
m−1 − (96 + 96µ1)u

n
m − (420− 93µ1) u

n
I− + h1 (72− 90µ1) (ux)

n
I−

+2λ1 (f1)
n+ 1

2

m−1 − 16λ1 (f1)
n+ 1

2

m − 70λ1 (f1)
n+ 1

2

I− + 12λ1h1 ((f1)x)
n+ 1

2

I− ;

c21 = 12− 3µ2, c22 = − (96− 96µ2) , c23 = − (420 + 93µ2) , c24 = −h2 (72 + 90µ2) ,

c2n = (12 + 3µ2) u
n
m+2−(96 + 96µ2)u

n
m+1−(420− 93µ2)u

n
I+−h2 (72− 90µ2) (ux)

n
I+

+2λ2 (f2)
n+ 1

2

m−1 − 16λ2 (f2)
n+ 1

2

m − 70λ2 (f2)
n+ 1

2

I− + 12λ2h2 ((f2)x)
n+ 1

2

I− ;

c31 = 1− µ1, c32 = 10 + 2µ1, c33 = c31 = 1− µ1,

c3n = (1 + µ1) u
n
m−1+(10− 2µ1) u

n
m+(1 + µ1) u

n
I−+λ1(f1)

n+ 1

2

m−1+10λ1(f1)
n+ 1

2

m +λ1(f1)
n+ 1

2

I− ;

c41 = 1− µ2, c42 = 10 + 2µ2, c43 = c41 = 1− µ2,

c4n = (1 + µ2) u
n
m+2+(10− 2µ2) u

n
m+1+(1 + µ2) u

n
I++λ2(f2)

n+ 1

2

m+2+10λ2(f2)
n+ 1

2

m+1+λ2(f2)
n+ 1

2

I+ .

Using a similar augment as in the steady-state case, we can delete un+1
I− , un+1

I+ ,

(ux)
n+1
I− , (ux)

n+1
I+ in the above equations and obtain two equations as follows:

c51 · u
n+1
m−1 + c52 · u

n+1
m + c53 · u

n+1
m+1 =c5n, (5.58)

c61 · u
n+1
m + c62 · u

n+1
m+1 + c63 · u

n+1
m+2 =c6n, (5.59)

where c51 = k1c24c41 (c13c31 − c11c33)− k2c14c31 (c23c41 − c21c43) ,

c52=k1c24c41(c13c32−c12c33)−k2c14c32(c23c41−c21c43), c53=k2c14c33(c22c41−c21c42) ,

c5n = −k1c24c33c41c1n + k2c14c33c41c2n + [k1c24c13c41 − k2c14 (c23c41 − c21c43)]c3n

−k2c14c21c33c4n + k2c14c33(c21c43 − c23c41)an − c14c24c33c41bn;

c61=k1c24c43(c12c31−c11c32), c62=k2c14c31(c23c42−c22c43)−k1c24c42(c13c31−c11c33) ,

c63 = k2c14c31 (c23c41 − c21c43)− k1c24c41 (c13c31 − c11c33) ,

c6n = k1c24c31c43c1n − k2c14c31c43c2n +
[

k1c24c13c31c43
−c33

− k1c24c43

(

c11 +
c13c31
−c33

)]

c3n

+
[

k2c14c23c31 + k1c24c33

(

c11 +
c13c31
−c33

)]

c4n

−k1c24c33c43

(

c11 +
c13c31
−c33

)

an + c14c24c31c43bn.
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We have treated ux as an unknown without discretization in the above derivation

based on the GPM.

Thus, Eqs. (5.21) and (5.23), Eq. (5.24), and Eqs. (5.58)-(5.59) together form

a higher-order accurate finite difference scheme for the heat conduction model in

unsteady-state case with Dirichlet boundary. The scheme can be rewritten in matrix

form as

AD~u
n+1 = ~dD, (5.60)

where ~un+1 =
[

un+1
1 , un+1

2 , ..., un+1
m−2, u

n+1
m−1, u

n+1
m , un+1

m+1, u
n+1
m+2, u

n+1
m+3,..., u

n+1
M−2, u

n+1
M−1

]T
,

AD=









































































10+2µ1 1−µ1

1−µ1 10+2µ1 1−µ1

. . .
. . .

. . .

1−µ1 10+2µ1 1−µ1

c51 c52 c53

c61 c62 c63

1−µ2 10+2µ2 1−µ2

. . .
. . .

. . .

1−µ2 10+2µ2 1−µ2

1−µ2 10+2µ2








































































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and ~dD =























































































(1+µ1)u
n
0+(10−2µ1)u

n
1+(1+µ1)u

n
2+(F1)

n+ 1

2

1 −(1−µ1)u
n+1
0

(1+µ1)u
n
1+(10−2µ1)u

n
2+(1+µ1)u

n
3+(F1)

n+ 1

2

2

(1+µ1)u
n
2+(10−2µ1)u

n
3+(1+µ1)u

n
4+(F1)

n+ 1

2

3

...

(1+µ1)u
n
m−2+(10−2µ1)u

n
m−1+(1+µ1)u

n
m+(F1)

n+ 1

2

m−1

c5n
c6n

(1+µ2)u
n
m+1+(10−2µ2)u

n
m+2+(1+µ2)u

n
m+3+(F2)

n+ 1

2

m+2

(1 +µ2)u
n
m+2+(10−2µ2)u

n
m+3+(1+µ2)u

n
m+4+(F2)

n+ 1

2

m+3

...

(1+µ2)u
n
M−4+(10−2µ2)u

n
M−3+(1+µ2)u

n
M−2+(F2)

n+ 1

2

M−3

(1+µ2)u
n
M−3+(10−2µ2)u

n
M−2+(1+µ2)u

n
M−1+(F2)

n+ 1

2

M−2

(1+µ2)u
n
M−2+(10−2µ2)u

n
M−1+(1+µ2)u

n
M+(F2)

n+ 1

2

M−1−(1−µ2)u
n+1
M























































































,

where (F1)
n+ 1

2

j = (f1)
n+ 1

2

j−1 +10 (f1)
n+ 1

2

j +(f1)
n+ 1

2

j+1 , 1 ≤ j ≤ m− 1; (F2)
n+ 1

2

j = (f2)
n+ 1

2

j−1 +

10 (f2)
n+ 1

2

j + (f2)
n+ 1

2

j+1 , m + 1 ≤ j ≤ M − 1. Note that AD is a tridiagonal matrix,

one can use the Thomas algorithm to obtain the solution efficiently. Once the values

of un+1
m−1, u

n+1
m , un+1

m+1 and un+1
m+2 are obtained, the values of un+1

I− , un+1
I+ , (ux)

n+1
I− and

(ux)
n+1
I+ can be easily obtained by using Eqs. (5.52)-(5.57).

Eqs. (5.21) and (5.23), Eqs. (5.32) and (5.37), and Eqs. (5.58)-(5.59) together

form a higher-order accurate finite difference scheme for the heat conduction model in

unsteady-state case with Neumann boundary. We can rewrite the scheme in matrix

form as

AN~u
n+1 = ~dN , (5.61)

where ~un+1 =
[

un+1
0 , un+1

1 , un+1
2 , ..., un+1

m−1, u
n+1
m , un+1

m+1, u
n+1
m+2, ..., u

n+1
M−2, u

n+1
M−1, u

n+1
M

]T
,



69

AN=









































































5+µ1 1−µ1

1−µ1 10+2µ1 1−µ1

. . .
. . .

. . .

1−µ1 10+2µ1 1−µ1

c51 c52 c53

c61 c62 c63

1−µ2 10+2µ2 1−µ2

. . .
. . .

. . .

1−µ2 10+2µ2 1−µ2

1−µ2 5+µ2









































































and ~dN=

































































































(5−µ1) u
n
0+(1+µ1)u

n
1+(LF )

n+ 1

2+(LΦ)n

(1+µ1)u
n
0+(10−2µ1)u

n
1+(1+µ1)u

n
2+(MF1)

n+ 1

2

1

(1+µ1)u
n
1+(10−2µ1)u

n
2+(1+µ1)u

n
3+(MF1)

n+ 1

2

2

...

(1+µ1)u
n
m−2+(10−2µ1)u

n
m−1+(1+µ1)u

n
m+(MF1)

n+ 1

2

m−1

c5n

c6n

(1+µ2)u
n
m+1+(10−2µ2)u

n
m+2+(1+µ2)u

n
m+3+(MF2)

n+ 1

2

m+2

(1 +µ2)u
n
m+2+(10−2µ2)u

n
m+3+(1+µ2)u

n
m+4+(MF2)

n+ 1

2

m+3

...

(1+µ2)u
n
M−3+(10−2µ2)u

n
M−2+(1+µ2)u

n
M−1+(MF2)

n+ 1

2

M−2

(1+µ2)u
n
M−2+(10−2µ2)u

n
M−1+(1+µ2)u

n
M+(MF2)

n+ 1

2

M−1

(1+µ2)u
n
M−1+(5−µ2)u

n
M+(RF )

n+ 1

2+(RΦ)n

































































































,
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where (LF )n+
1

2 = ∆t
ρ1C1

[

5 (f1)
n+ 1

2

0 + (f1)
n+ 1

2

1 + h1 ((f1)x)
n+ 1

2

0

]

,

(LΦ)n = −h1
[

(1 + µ1) (φ1)
n+1 + (1− µ1) (φ1)

n] ,

(RF )n+
1

2 = ∆t
ρ2C2

[

5 (f2)
n+ 1

2

M−1 + (f2)
n+ 1

2

M − h2 ((f2)x)
n+ 1

2

M

]

,

(RΦ)n = h2
[

(1 + µ2) (φ2)
n+1 − (1− µ2) (φ2)

n] . Once the values of un+1
m−1, u

n+1
m , un+1

m+1

and un+1
m+2 are obtained, the values of un+1

I− , un+1
I+ , (ux)

n+1
I− and (ux)

n+1
I+ can be easily

obtained by using Eqs. (5.52)-(5.57).

Eqs. (5.21) and (5.23), Eqs. (5.38)-(5.39), and Eqs. (5.58)-(5.59) together

form a higher-order accurate finite difference scheme for the heat conduction model

in unsteady-state case with Robin boundary condition. The scheme can be rewritten

in matrix form as

AR~u
n+1 = ~dR, (5.62)

where ~un+1 =
[

un+1
0 , un+1

1 , un+1
2 , ..., un+1

m−1, u
n+1
m , un+1

m+1, u
n+1
m+2..., u

n+1
M−2, u

n+1
M−1, u

n+1
M

]T
,

AR=









































































5+µ1+
γ1
α1
h1(1+µ1) 1−µ1

1−µ1 10+2µ1 1−µ1

. . .
. . .

. . .

1−µ1 10+2µ1 1−µ1

c51 c52 c53

c61 c62 c63

1−µ2 10+2µ2 1−µ2

. . .
. . .

. . .

1−µ2 10+2µ2 1−µ2

1−µ2 5+µ2+
γ2
α2
h2(1+µ2)








































































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and ~dR =

































































































[

5+γ1
α1
h1−
(

1+γ1
α1
h1

)

µ1

]

un0+(1+µ1)u
n
1+(LF )

n+ 1

2+(LΦ)n

(1+µ1)u
n
0+(10−2µ1)u

n
1+(1+µ1)u

n
2+(MF1)

n+ 1

2

1

(1+µ1)u
n
1+(10−2µ1)u

n
2+(1+µ1)u

n
3+(MF1)

n+ 1

2

2

...

(1+µ1)u
n
m−2+(10−2µ1)u

n
m−1+(1+µ1)u

n
m+(MF1)

n+ 1

2

m−1

c5n

c6n

(1+µ2)u
n
m+1+(10−2µ2)u

n
m+2+(1+µ2)u

n
m+3+(MF2)

n+ 1

2

m+2

(1 +µ2)u
n
m+2+(10−2µ2)u

n
m+3+(1+µ2)u

n
m+4+(MF2)

n+ 1

2

m+3

...

(1+µ2)u
n
M−3+(10−2µ2)u

n
M−2+(1+µ2)u

n
M−1+(MF2)

n+ 1

2

M−2

(1+µ2)u
n
M−2+(10−2µ2)u

n
M−1+(1+µ2)u

n
M+(MF2)

n+ 1

2

M−1

(1+µ2)u
n
M−1+

[

5+γ2
α2
h2−
(

1−γ2
α2
h2
)

µ2

]

+(RF)n+
1

2+(RΦ)n

































































































.

Again, AR is tridiagonal; one can obtain the solution efficiently by the Thomas

algorithm. Once the values of un+1
m−1, u

n+1
m , un+1

m+1 and u
n+1
m+2 are obtained, the values of

un+1
I− , un+1

I+ , (ux)
n+1
I− and (ux)

n+1
I+ can be obtained easily by using Eqs. (5.52)-(5.57).

In summary, we have developed three higher-order accurate finite difference

schemes for the unsteady-state heat conduction model with either the Dirichlet bound-

ary condition, the Neumann boundary condition or the Robin boundary condition.

The schemes are third-order for Neumann and Robin boundaries, fourth-order at the

interface. Again, it should be pointed out that on the derivations of schemes for the

Neumann boundary, the Robin boundary and at the interface, we did not discretize

the first-order derivative, ux, which means the GPM has been used.
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5.3 Schemes for Nanoscale Heat Conduction Model

To derive higher-order compact finite difference schemes for solving nanoscale

heat conduction model, Eqs. (3.29)-(3.36), we first introduce a new function, v (x, t) =

ut (x, t) . As such, the nanoscale heat conduction model can be changed to

ρ1C1(ut + τ (1)q vt) = k1

(

uxx + τ
(1)
T vxx

)

+ f1 (x, t) , 0 < x < l, 0 ≤ t ≤ T, (5.63)

ρ2C2(ut + τ (2)q vt) = k2

(

uxx + τ
(2)
T vxx

)

+ f2 (x, t) , l < x < L, 0 ≤ t ≤ T, (5.64)

subject to the initial and temperature-jump boundary conditions as

u (x, 0) = ψ1 (x) , v (x, 0) = ϕ1 (x) , 0 ≤ x ≤ l, (5.65)

u (x, 0) = ψ2 (x) , v (x, 0) = ϕ2 (x) , l ≤ x ≤ L, (5.66)

−α1ux(0, t) + u(0, t) = φ1(t) , − α1vx(0, t) + v(0, t) = (φ1)t(t) , 0 ≤ t ≤ T, (5.67)

α2ux (L, t) + u (L, t) = φ2 (t) , α2vx (L, t) + v (L, t) = (φ2)t (t) , 0 ≤ t ≤ T, (5.68)

and the interfacial condition at x = l as

uI− (t) = uI+ (t) , vI− (t) = vI+ (t) , 0 ≤ t ≤ T, (5.69)

k1

[

(ux)I−(t)+τ
(1)
T (uxt)I−(t)

]

=k2

[

(ux)I+ (t)+τ
(2)
T (uxt)I+ (t)

]

, 0≤ t≤T. (5.70)

We first design a mesh, as shown in Figure 5.3, where grid sizes and time step

are h1 = l/m, h2 = (L− l) /(M −m), ∆t = T/N , respectively, and m, M (m < M)

and N are positive integers. Grid points in the mesh are denoted as xj = jh1,

0 ≤ j ≤ m; xj = l + (j −m) h2, m + 1 ≤ j ≤ M ; tn = n∆t, 0 ≤ n ≤ N and

Ωh = {xj |0 ≤ j ≤M} , Ω∆t = {tn|0 ≤ n ≤ N} , where the interface is located at grid

point xI = (m+ 1)h1 = l.
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Figure 5.3: Two-dimensional mesh for nanoscale heat conduction model.

Denote unj and vnj to be the approximations of u (xj , tn) and v (xj , tn) , respec-

tively. For simplicity, we also denote uj, vj, (ut)j, (vt)j , etc. to be the values of

u (xj , t), v (xj , t), ut (xj , t), vt (xj , t), and so on for others.

For the interior points, x1 ≤ xj ≤ xm−1, the fourth-order Padé scheme gives

ρ1C1

12

[(

(ut)j−1+τ
(1)
q (vt)j−1

)

+10
(

(ut)j+τ
(1)
q (vt)j

)

+
(

(ut)j+1+τ
(1)
q (vt)j+1

)]

=
k1
h21

[(

uj−1 + τ
(1)
T vj−1

)

− 2
(

uj + τ
(1)
T vj

)

+
(

uj+1 + τ
(1)
T vj+1

)]

+
1

12

[

(f1)j−1 + 10 (f1)j + (f1)j+1

]

+O
(

h41
)

. (5.71)
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Using the Crank-Nicolson method gives

ρ1C1

12∆t

(

un+1
j−1 + τ (1)q vn+1

j−1

)

−
ρ1C1

12∆t

(

unj−1 + τ (1)q vnj−1

)

+
10ρ1C1

12∆t

(

un+1
j + τ (1)q vn+1

j

)

−
10ρ1C1

12∆t

(

unj + τ (1)q vnj
)

+
ρ1C1

12∆t

(

un+1
j+1 + τ (1)q vn+1

j+1

)

−
ρ1C1

12∆t

(

unj+1 + τ (1)q vnj+1

)

=
k1
2h21

(

un+1
j−1 + τ

(1)
T vn+1

j−1

)

+
k1
2h21

(

unj−1 + τ
(1)
T vnj−1

)

−
k1
h21

(

un+1
j + τ

(1)
T vn+1

j

)

−
k1
h21

(

unj + τ
(1)
T vnj

)

+
k1
2h21

(

un+1
j+1 + τ

(1)
T vn+1

j+1

)

+
k1
2h21

(

unj+1 + τ
(1)
T vnj+1

)

+
1

12

[

f
n+ 1

2

j−1 + 10f
n+ 1

2

j + f
n+ 1

2

j+1

]

+O
(

h41 +∆t2
)

. (5.72)

Separating the time levels tn+1 and tn yields

ρ1C1

12∆t

(

un+1
j−1 + τ (1)q vn+1

j−1

)

−
k1
2h21

(

un+1
j−1 + τ

(1)
T vn+1

j−1

)

+
10ρ1C1

12∆t

(

un+1
j + τ (1)q vn+1

j

)

+
k1
h21

(

un+1
j + τ

(1)
T vn+1

j

)

+
ρ1C1

12∆t

(

un+1
j+1 + τ (1)q vn+1

j+1

)

−
k1
2h21

(

un+1
j+1 + τ

(1)
T vn+1

j+1

)

=
ρ1C1

12∆t

(

unj−1 + τ (1)q vnj−1

)

+
k1
2h21

(

unj−1 + τ
(1)
T vnj−1

)

+
10ρ1C1

12∆t

(

unj + τ (1)q vnj
)

−
k1
h21

(

unj + τ
(1)
T vnj

)

+
ρ1C1

12∆t

(

unj+1 + τ (1)q vnj+1

)

+
k1
2h21

(

unj+1 + τ
(1)
T vnj+1

)

+
1

12

[

(f1)
n+ 1

2

j−1 + 10 (f1)
n+ 1

2

j + (f1)
n+ 1

2

j+1

]

+O
(

h41 +∆t2
)

. (5.73)

By dropping the truncation error, multiplying both sides by 12∆t
ρ1C1

, and letting µ1 =

6k1∆t
ρ1C1h2

1

, λ1 =
∆t

ρ1C1
, then introducing two new function wq1 (x, t) = u (x, t)+ τ

(1)
q v (x, t) ,

wT1
(x, t) = u (x, t) + τ

(1)
T v (x, t) , where 0 < x < l, 0 ≤ t ≤ T, the above equation can

be expressed as

(wq1)
n+1
j−1 − µ1 (wT1

)n+1
j−1 + 10 (wq1)

n+1
j + 2µ1 (wT1

)n+1
j + (wq1)

n+1
j+1 − µ1 (wT1

)n+1
j+1

=(wq1)
n
j−1 + µ1 (wT1

)nj−1 + 10 (wq1)
n
j − 2µ1 (wT1

)nj + (wq1)
n
j+1 + µ1 (wT1

)nj+1

+ λ1

[

(f1)
n+ 1

2

j−1 + 10 (f1)
n+ 1

2

j + (f1)
n+ 1

2

j+1

]

, 1 ≤ j ≤ m− 1. (5.74)
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For v (x, t) = ut (x, t) , a second-order approximation in time gives

vn+1
j + vnj

2
=
un+1
j − unj
∆t

+O
(

∆t2
)

, 0 ≤ j ≤M, (5.75)

implying that vn+1
j = 2

∆t

(

un+1
j − unj

)

− vnj . Substituting it into Eq. (5.74) gives

[(

1 + τ (1)q

2

∆t

)

− µ1

(

1 + τ
(1)
T

2

∆t

)]

un+1
j−1

+

[

−τ (1)q

2

∆t
+ µ1τ

(1)
T

2

∆t

]

unj−1 +
[

−τ (1)q + µ1τ
(1)
T

]

vnj−1

+

[

10

(

1 + τ (1)q

2

∆t

)

+ 2µ1

(

1 + τ
(1)
T

2

∆t

)]

un+1
j

+

[

−10τ (1)q

2

∆t
− 2µ1τ

(1)
T

2

∆t

]

unj +
[

−10τ (1)q − 2µ1τ
(1)
T

]

vnj

+

[(

1 + τ (1)q

2

∆t

)

− µ1

(

1 + τ
(1)
T

2

∆t

)]

un+1
j+1

+

[

−τ (1)q

2

∆t
+ µ1τ

(1)
T

2

∆t

]

unj+1 +
[

−τ (1)q + µ1τ
(1)
T

]

vnj+1

= [1 + µ1] u
n
j−1 + [10− 2µ1] u

n
j + [1 + µ1]u

n
j+1

+
[

τ (1)q + µ1τ
(1)
T

]

vnj−1 +
[

10τ (1)q − 2µ1τ
(1)
T

]

vnj +
[

τ (1)q + µ1τ
(1)
T

]

vnj+1

+ λ1

[

(f1)
n+ 1

2

j−1 + 10 (f1)
n+ 1

2

j + (f1)
n+ 1

2

j+1

]

. (5.76)

Thus, we obtain a fourth-order compact finite difference scheme as

A1 · u
n+1
j−1 +B1 · u

n+1
j + A1 · u

n+1
j+1

=A2 · u
n
j−1 +B2 · u

n
j + A2 · u

n
j+1

+ A3 · v
n
j−1 +B3 · v

n
j + A3 · v

n
j+1 + (F1)

n+ 1

2

j , 1 ≤ j ≤ m, (5.77)

where A1 =
(

1 + τ
(1)
q

2
∆t

)

−µ1

(

1 + τ
(1)
T

2
∆t

)

, B1 = 10
(

1 + τ
(1)
q

2
∆t

)

+2µ1

(

1 + τ
(1)
T

2
∆t

)

,

A2 =
(

1 + τ
(1)
q

2
∆t

)

+ µ1

(

1− τ
(1)
T

2
∆t

)

, B2 = 10
(

1 + τ
(1)
q

2
∆t

)

− 2µ1

(

1− τ
(1)
T

2
∆t

)

,

A3 = 2τ
(1)
q , B3 = 20τ

(1)
q , (F1)

n+ 1

2

j = λ1

[

(f1)
n+ 1

2

j−1 + 10 (f1)
n+ 1

2

j + (f1)
n+ 1

2

j+1

]

.
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Similarly, for interior points, xm+2 ≤ xj ≤ xM−1, a fourth-order compact finite

difference scheme can be obtained as

Ã1 · u
n+1
j−1 + B̃1 · u

n+1
j + Ã1 · u

n+1
j+1

=Ã2 · u
n
j−1 + B̃2 · u

n
j + Ã2 · u

n
j+1

+ Ã3 · v
n
j−1 + B̃3 · v

n
j + Ã3 · v

n
j+1 + (F2)

n+ 1

2

j , m+ 1 ≤ j ≤M − 1, (5.78)

where Ã1 =
(

1 + τ
(2)
q

2
∆t

)

−µ2

(

1 + τ
(2)
T

2
∆t

)

, B̃1 = 10
(

1 + τ
(2)
q

2
∆t

)

+2µ2

(

1 + τ
(2)
T

2
∆t

)

,

Ã2 =
(

1 + τ
(2)
q

2
∆t

)

+ µ2

(

1− τ
(2)
T

2
∆t

)

, B̃2 = 10
(

1 + τ
(2)
q

2
∆t

)

− 2µ2

(

1− τ
(2)
T

2
∆t

)

,

Ã3 = 2τ
(2)
q , B̃3 = 20τ

(2)
q , (F2)

n+ 1

2

j = λ2

[

(f2)
n+ 1

2

j−1 + 10 (f2)
n+ 1

2

j + (f2)
n+ 1

2

j+1

]

, µ2 =
6k2∆t
ρ2C2h2

2

,

λ2 =
∆t

ρ2C2
.

For left boundary conditions, which are

− α1ux (0, t) + u (0, t) = φ1, (5.79)

− α1vx (0, t) + v (0, t) = (φ1)t , (5.80)

by Eq. (4.2a), we have

u1 = u0 + h1(ux)0 +
h21
12

(uxx)1 +
5h21
12

(uxx)0 +
h31
12

(ux3)0, (5.81)

v1 = v0 + h1(vx)0 +
h21
12

(vxx)1 +
5h21
12

(vxx)0 +
h31
12

(vx3)0. (5.82)

Multiplying Eq. (5.82) by τ
(1)
T , then adding it to Eq. (5.81), we obtain

u1 + τ
(1)
T v1 =u0 + τ

(1)
T v0 + h1

[

(ux)0 + τ
(1)
T (vx)0

]

+
h21
12

[

(uxx)1 + τ
(1)
T (vxx)1

]

+
5h21
12

[

(uxx)0 + τ
(1)
T (vxx)0

]

+
h31
12

[

(ux3)0 + τ
(1)
T (vx3)0

]

. (5.83)
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Eq. (5.63) gives

ρ1C1

(

(ut)1 + τ (1)q (vt)1
)

= k1

[

(uxx)1 + τ
(1)
T (vxx)1

]

+ (f1)1 , (5.84a)

ρ1C1

(

(ut)0 + τ (1)q (vt)0
)

= k1

[

(uxx)0 + τ
(1)
T (vxx)0

]

+ (f1)0 , (5.84b)

ρ1C1

(

(uxt)0 + τ (1)q (vxt)0
)

= k1

[

(ux3)0 + τ
(1)
T (vx3)0

]

+ ((f1)x)0 . (5.84c)

Solving (uxx)1+τ
(1)
T (vxx)1, (uxx)0+τ

(1)
T (vxx)0 and (ux3)0+τ

(1)
T (vx3)0, then substituting

them into Eq. (5.83), we obtain

u1 + τ
(1)
T v1 =u0 + τ

(1)
T v0 + h1

[

(ux)0 + τ
(1)
T (vx)0

]

+
h21
12k1

[

ρ1C1

(

(ut)1 + τ (1)q (vt)1
)

− (f1)1
]

+
5h21
12k1

[

ρ1C1

(

(ut)0 + τ (1)q (vt)0
)

− (f1)0
]

+
h31
12k1

[

ρ1C1

(

(uxt)0 + τ (1)q (vxt)0
)

− ((f1)x)0
]

. (5.85)

Applying the Crank-Nicolson method to Eq. (5.85) gives

ρ1C1h
2
1

12k1





(

un+1
1 + τ

(1)
q vn+1

1

)

−
(

un1 + τ
(1)
q vn1

)

∆t





+
5ρ1C1h

2
1

12k1





(

un+1
0 + τ

(1)
q vn+1

0

)

−
(

un0 + τ
(1)
q vn0

)

∆t





+
ρ1C1h

3
1

12k1





(

(ux)
n+1
0 + τ

(1)
q (vx)

n+1
0

)

−
(

(ux)
n
0 + τ

(1)
q (vx)

n
0

)

∆t





=
1

2

[

un+1
1 + τ

(1)
T vn+1

1

]

+
1

2

[

un1 + τ
(1)
T vn1

]

−
1

2

[

un+1
0 + τ

(1)
T vn+1

0

]

−
1

2

[

un0 + τ
(1)
T vn0

]

−
h1
2

[

(ux)
n+1
0 + τ

(1)
T (vx)

n+1
0

]

−
h1
2

[

(ux)
n
0 + τ

(1)
T (vx)

n
0

]

+
h21
12k1

(f1)
n+ 1

2

1 +
5h21
12k1

(f1)
n+ 1

2

0 +
h31
12k1

((f1)x)
n+ 1

2

0 . (5.86)
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Multiplying both sides by 12k1∆t
ρ1C1h2

1

, letting λ1 =
∆t

ρ1C1
, µ1 =

6k1∆t
ρ1C1h2

1

, wq1 (x, t) = u (x, t)

+ τ
(1)
q v (x, t) , and wT1

(x, t) = u (x, t) + τ
(1)
T v (x, t) , where 0 < x < l, 0 ≤ t ≤ T,

rearranging the terms, we rewrite the above equation in a simple way as

(wq1)
n+1
1 − µ1 (wT1

)n+1
1 + 5 (wq1)

n+1
0 + µ1 (wT1

)n+1
0

+ h1

[

(

(wq1)x
)n+1

0
+ µ1 ((wT1

)x)
n+1
0

]

=(wq1)
n
1 + µ1 (wT1

)n1 + 5 (wq1)
n
0 − µ1 (wT1

)n0

+ h1
[(

(wq1)x
)n

0
− µ1 ((wT1

)x)
n
0

]

+ λ1

[

(f1)
n+ 1

2

1 + 5 (f1)
n+ 1

2

0 + h1 ((f1)x)
n+ 1

2

0

]

. (5.87)

Eqs. (5.79)-(5.80) give

(ux)
n+1
0 =

1

α1

(

un+1
0 − (φ1)

n+1) , (5.88a)

(vx)
n+1
0 =

1

α1

[

vn+1
0 − ((φ1)t)

n+1] , (5.88b)

(ux)
n
0 =

1

α1
(un0 − (φ1)

n) , (5.88c)

(vx)
n
0 =

1

α1
[vn0 − ((φ1)t)

n] . (5.88d)

Substituting them into Eq. (5.87) yields

(wq1)
n+1
1 − µ1 (wT1

)n+1
1 + 5 (wq1)

n+1
0 + µ1 (wT1

)n+1
0

+
1

α1

h1 (1 + µ1)
(

un+1
0 − (φ1)

n+1)+
1

α1

h1

(

τ (1)q + µ1τ
(1)
T

)

[

vn+1
0 − ((φ1)t)

n+1]

=(wq1)
n
1 + µ1 (wT1

)n+1
1 + 5 (wq1)

n
0 − µ1 (wT1

)n0

+
1

α1

h1 (1− µ1) (u
n
0 − (φ1)

n) +
1

α1

h1

(

τ (1)q − µ1τ
(1)
T

)

[vn0 − ((φ1)t)
n]

+ λ1

[

(f1)
n+ 1

2

1 + 5 (f1)
n+ 1

2

0 + h1 ((f1)x)
n+ 1

2

0

]

. (5.89)
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Substituting vn+1
j = 2

∆t

(

un+1
j − unj

)

−vnj , j = 0, 1, into the above equation, we obtain

(1− µ1) u
n+1
1 +

(

τ (1)q − µ1τ
(1)
T

)

[

2

∆t

(

un+1
1 − un1

)

− vn1

]

+ (5 + µ1) u
n+1
0 +

(

5τ (1)q + µ1τ
(1)
T

)

[

2

∆t

(

un+1
0 − un0

)

− vn0

]

+
1

α1
h1 (1 + µ1)

(

un+1
0 − (φ1)

n+1)

+
1

α1
h1

(

τ (1)q + µ1τ
(1)
T

)

[

2

∆t

(

un+1
0 − un0

)

− vn0 − ((φ1)t)
n+1

]

= (1 + µ1)u
n
1 +

(

τ (1)q + µ1τ
(1)
T

)

vn1 + (5− µ1)u
n
0 +

(

5τ (1)q − µ1τ
(1)
T

)

vn0

+
1

α1
h1 (1− µ1) (u

n
0 − (φ1)

n) +
1

α1
h1

(

τ (1)q − µ1τ
(1)
T

)

[vn0 − ((φ1)t)
n]

+ λ1

[

(f1)
n+ 1

2

1 + 5 (f1)
n+ 1

2

0 + h1 ((f1)x)
n+ 1

2

0

]

. (5.90)

After some algebraic simplifications, a third-order scheme can be obtained as

LB1 · u
n+1
0 + LC1 · u

n+1
1

=LB2 · u
n
0 + LC2 · u

n
1

+ LB3 · v
n
0 + LC3 · v

n
1 + (LF )n+

1

2 + (LΦ)n , (5.91)

where LB1 = 5 + µ1 +
(

5τ
(1)
q + µ1τ

(1)
T

)

2
∆t

+ h1

α1
(1 + µ1) +

h1

α1

(

τ
(1)
q + µ1τ

(1)
T

)

2
∆t
,

LC1=1−µ1+
(

τ
(1)
q −µ1τ

(1)
T

)

2
∆t
, LB2=5−µ1+

(

5τ
(1)
q +µ1τ

(1)
T

)

2
∆t
+ h1

α1
(1−µ1)

+ h1

α1

(

τ
(1)
q + µ1τ

(1)
T

)

2
∆t
, LC2=1+µ1+

(

τ
(1)
q −µ1τ

(1)
T

)

2
∆t
, LB3=

(

10+ 2
α1
h1

)

τ
(1)
q ,

LC3=2τ
(1)
q , (LF )n+

1

2 =λ1

[

(f1)
n+ 1

2

1 +5 (f1)
n+ 1

2

0 +h1 ((f1)x)
n+ 1

2

0

]

, (LΦ)n= h1

α1
(1+µ1)

(

(φ1)
n+1)− h1

α1
(1− µ1) ((φ1)

n)+h1

α1

(

τ
(1)
q +µ1τ

(1)
T

)

((φ1)t)
n+1−h1

α1

(

τ
(1)
q −µ1τ

(1)
T

)

((φ1)t)
n .

For right boundary conditions, which are

α2ux (L, t) + u (L, t) = φ2 (t) , (5.92)

α2vx (L, t) + v (L, t) = (φ2)t (t) , (5.93)
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by Eq. (4.2b), we have

uM−1 = uM − h2(ux)M +
h22
12

(uxx)M−1 +
5h22
12

(uxx)M −
h32
12

(ux3)M, (5.94)

vM−1 = vM − h2(vx)M +
h22
12

(vxx)M−1 +
5h22
12

(vxx)M −
h32
12

(vx3)M . (5.95)

Multiplying Eq. (5.95) by τ
(2)
T , then adding it to Eq. (5.94), we obtain

uM−1 + τ
(2)
T vM−1

=uM + τ
(2)
T vM − h2

[

(ux)M + τ
(2)
T (vx)M

]

+
h22
12

[

(uxx)1 + τ
(2)
T (vxx)M−1

]

+
5h22
12

[

(uxx)M + τ
(2)
T (vxx)M

]

−
h32
12

[

(ux3)M + τ
(2)
T (vx3)M

]

, (5.96)

Eq. (5.64) gives

(uxx)M−1 +τ
(2)
T (vxx)M−1 =

1

k2

[

ρ2C2

(

(ut)M−1 + τ (2)q (vt)M−1

)

− (f2)M−1

]

, (5.97a)

(uxx)M + τ
(2)
T (vxx)M =

1

k2

[

ρ2C2

(

(ut)M + τ (2)q (vt)M
)

− (f2)M
]

, (5.97b)

(ux3)M + τ
(2)
T (vx3)M =

1

k2

[

ρ2C2

(

(uxt)M + τ (2)q (vxt)M
)

− ((f2)x)M
]

. (5.97c)

Substituting them into Eq. (5.96) yields

uM−1 + τ
(2)
T vM−1

=uM + τ
(2)
T vM − h2

[

(ux)M + τ
(2)
T (vx)M

]

+
h22
12k2

[

ρ2C2

(

(ut)M−1 + τ (2)q (vt)M−1

)

− (f2)M−1

]

+
5h22
12k2

[

ρ2C2

(

(ut)M + τ (2)q (vt)M
)

− (f2)M
]

−
h32
12k2

[

ρ2C2

(

(uxt)M + τ (2)q (vxt)M
)

− ((f2)x)M
]

. (5.98)
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Applying the Crank-Nicolson method to Eq. (5.98) gives

ρ2C2h
2
2

12k2





(

un+1
M−1 + τ

(2)
q vn+1

M−1

)

−
(

unM−1 + τ
(2)
q vnM−1

)

∆t





+
5ρ2C2h

2
2

12k2





(

un+1
M + τ

(2)
q vn+1

M

)

−
(

unM + τ
(2)
q vnM

)

∆t





−
ρ2C2h

3
2

12k2





(

(ux)
n+1
M + τ

(2)
q (vx)

n+1
M

)

−
(

(ux)
n
M + τ

(2)
q (vx)

n
M

)

∆t





=
1

2

[

un+1
M−1 + τ

(2)
T vn+1

M−1

]

+
1

2

[

unM−1 + τ
(2)
T vnM−1

]

−
1

2

[

un+1
M + τ

(2)
T vn+1

M

]

−
1

2

[

unM + τ
(2)
T vnM

]

+
h2
2

[

(ux)
n+1
M + τ

(2)
T (vx)

n+1
M

]

+
h2
2

[

(ux)
n
M + τ

(2)
T (vx)

n
M

]

+
h22
12k2

(f2)
n+ 1

2

M−1 +
5h22
12k2

(f2)
n+ 1

2

M −
h32
12k2

((f2)x)
n+ 1

2

M . (5.99)

Multiplying both sides by 12k2∆t
ρ2C2h2

2

, letting λ2 =
∆t

ρ2C2
, µ2 =

6k2∆t
ρ2C2h2

2

, wq2 (x, t) = u (x, t) +

τ
(2)
q v (x, t) , and wT2

(x, t) = u (x, t) + τ
(2)
T v (x, t) , where 0 < x < l, 0 ≤ t ≤ T,

rearranging the terms, we rewrite the above equation as

(wq2)
n+1
M−1−µ2(wT2

)n+1
M−1+5(wq2)

n+1
M +µ2(wT2

)n+1
M −h2

[

(

(wq2)x
)n+1

0
−µ2((wT2

)x)
n+1
0

]

=(wq2)
n
M−1+µ2 (wT2

)nM−1+5 (wq2)
n
M−µ2 (wT2

)nM−h2
[(

(wq2)x
)n

0
+µ2 ((wT2

)x)
n
0

]

+ λ2

[

(f2)
n+ 1

2

M−1 + 5 (f2)
n+ 1

2

M − h2 ((f2)x)
n+ 1

2

M

]

. (5.100)

Eqs. (5.92)-(5.93) give

(ux)
n+1
M = −

1

α2

(

un+1
M − (φ2)

n+1) , (5.101a)

(vx)
n+1
M = −

1

α2

[

vn+1
M − ((φ2)t)

n+1] , (5.101b)

(ux)
n
M = −

1

α2

(unM − (φ2)
n) , (5.101c)

(vx)
n
M = −

1

α2

[vnM − ((φ2)t)
n] . (5.101d)
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Substituting them into Eq. (5.100) yields

(wq2)
n+1
M−1 − µ2 (wT2

)n+1
M−1 + 5 (wq2)

n+1
M + µ2 (wT2

)n+1
M

+
h2
α2

(1 + µ2)
(

un+1
M − (φ2)

n+1)+
h2
α2

(

τ (2)q + µ2τ
(2)
T

)

[

vn+1
M − ((φ2)t)

n+1]

= (wq2)
n
M−1 + µ2 (wT2

)nM−1 + 5 (wq2)
n
M − µ2 (wT2

)nM

+
h2
α2

(1− µ2) (u
n
M − (φ2)

n) +
h2
α2

(

τ (2)q − µ2τ
(2)
T

)

[vnM − ((φ2)t)
n]

+ λ2

[

(f2)
n+ 1

2

M−1 + 5 (f2)
n+ 1

2

M − h2 ((f2)x)
n+ 1

2

M

]

. (5.102)

Substituting vn+1
j = 2

∆t

(

un+1
j − unj

)

− vnj , j =M − 1, M, into Eq. (5.102) gives

(1− µ2)u
n+1
M−1 +

(

τ (2)q − µ2τ
(2)
T

)

[

2

∆t

(

un+1
M−1 − unM−1

)

− vnM−1

]

+ (5 + µ2)u
n+1
M +

(

5τ (2)q + µ2τ
(2)
T

)

[

2

∆t

(

un+1
M − unM

)

− vnM

]

+
h2
α2

(1 + µ2)
(

un+1
M − (φ2)

n+1)

+
h2
α2

(

τ (2)q + µ2τ
(2)
T

)

[

2

∆t

(

un+1
M − unM

)

− vnM − ((φ2)t)
n+1

]

=(1 + µ2) u
n
M−1 +

(

τ (2)q + µ2τ
(2)
T

)

vnM−1 + (5− µ2) u
n
M +

(

5τ (2)q − µ2τ
(2)
T

)

vnM

+
h2
α2

(1− µ2) (u
n
M − (φ2)

n) +
h2
α2

(

τ (2)q − µ2τ
(2)
T

)

[vnM − ((φ2)t)
n]

+ λ2

[

(f2)
n+ 1

2

M−1 + 5 (f2)
n+ 1

2

M − h2 ((f2)x)
n+ 1

2

M

]

. (5.103)

After some algebraic simplifications, we obtain a third-order scheme as

RA1 · u
n+1
M−1 +RB1 · u

n+1
M

=RA2 · u
n
M−1 +RB2 · u

n
M

+RA3 · v
n
M−1 +RB3 · v

n
M + (RF )n+

1

2 + (RΦ)n , (5.104)
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where RA1=1−µ2+
(

τ
(2)
q −µ2τ

(2)
T

)

2
∆t
, RB1=5+µ2+

(

5τ
(2)
q +µ2τ

(2)
T

)

2
∆t

+ h2

α2
(1+µ2)

+ h2

α2

(

τ
(2)
q +µ2τ

(2)
T

)

2
∆t
, RA2=1+µ2+

(

τ
(2)
q −µ2τ

(2)
T

)

2
∆t
, RB2=5−µ2+

(

5τ
(2)
q +µ2τ

(2)
T

)

2
∆t

+ h2

α2

[

(1−µ2)+
(

τ
(2)
q +µ2τ

(2)
T

)

2
∆t

]

, RA3=2τ
(2)
q , RB3=

(

10+ 2h2

α2

)

τ
(2)
q ,

(RΦ)n=h2

α2

[

(1+µ2) (φ2)
n+1+

(

τ
(2)
q +µ2τ

(2)
T

)

((φ2)t)
n+1−(1−µ2)(φ2)

n−
(

τ
(2)
q −µ2τ

(2)
T

)

((φ2)t)
n
]

,

(RF )n+
1

2 =λ2

[

(f2)
n+ 1

2

M−1+5 (f2)
n+ 1

2

M −h2((f2)x)
n+ 1

2

M

]

.

At the interface, by using Eqs. (4.21a)-(4.21b), we have

um−1 − 32um + 31uI− − 30h1 (ux)I−

=−
h21
3

[

35 (uxx)I− + 8 (uxx)m − (uxx)m−1

]

+ 2h31 (ux3)I− , (5.105)

vm−1 − 32vm + 31vI− − 30h1 (vx)I−

=−
h21
3

[

35 (vxx)I− + 8 (vxx)m − (vxx)m−1

]

+ 2h31 (vx3)I− , (5.106)

um+2 − 32um+1 + 31uI+ + 30h2 (ux)I+

=−
h22
3

[

35 (uxx)I+ + 8 (uxx)m+1 − (uxx)m+2

]

− 2h32 (ux3)
I+
, (5.107)

vm+2 − 32vm+1 + 31vI+ + 30h2 (vx)I+

=−
h22
3

[

35 (vxx)I+ + 8 (vxx)m+1 − (vxx)m+2

]

− 2h32 (vx3)
I+
. (5.108)

Multiplying Eq. (5.106) and Eq. (5.108) by τ
(1)
T , τ

(2)
T , respectively, then adding them

to Eq. (5.105) and Eq. (5.107), respectively, we obtain

(

um−1 + τ
(1)
T vm−1

)

− 32
(

um + τ
(1)
T vm

)

+ 31
(

uI− + τ
(1)
T vI−

)

− 30h1

(

(ux)I− + τ
(1)
T (vx)I−

)

=−
h21
3

[

35
(

(uxx)I− + τ
(1)
T (vxx)I−

)

+ 8
(

(uxx)m + τ
(1)
T (vxx)m

)

−
(

(uxx)m−1 + τ
(1)
T (vxx)m−1

)]

+ 2h31

(

(ux3)I− + τ
(1)
T (vx3)I−

)

, (5.109)
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and

(

um+2 + τ
(2)
T vm+2

)

− 32
(

um+1 + τ
(2)
T vm+1

)

+ 31
(

uI+ + τ
(2)
T vI+

)

+ 30h2

(

(ux)I+ + τ
(2)
T (vx)I+

)

=−
h22
3

[

35
(

(uxx)I+ + τ
(2)
T (vxx)I+

)

+ 8
(

(uxx)m+1 + τ
(2)
T (vxx)m+1

)

−
(

(uxx)m+2 + τ
(2)
T (vxx)m+2

)]

− 2h32

(

(ux3)
I+

+ τ
(2)
T (vx3)

I+

)

. (5.110)

Eqs. (5.63)-(5.64) give

ρ1C1

(

(ut)i+τ
(1)
q (vt)i

)

=k1

(

(uxx)i+τ
(1)
T (vxx)i

)

+(f1)i , i = m− 1, m, I−, (5.111a)

ρ2C2

(

(ut)i+τ
(2)
q (vt)i

)

=k2

(

(uxx)i+τ
(2)
T (vxx)i

)

+(f2)i , i = m+ 2, m+ 1, I+, (5.111b)

ρ1C1

(

(uxt)I− + τ (1)q (vxt)I−
)

= k1

(

(ux3)I− + τ
(1)
T (vx3)I−

)

+ ((f1)x)I− , (5.111c)

ρ2C2

(

(uxt)I+ + τ (2)q (vxt)I+
)

= k2

(

(ux3)I+ + τ
(2)
T (vx3)I+

)

+ ((f2)x)I+ . (5.111d)

Solving (uxx)i+τ
(1)
T (vxx)i , (uxx)i+τ

(2)
T (vxx)i , (ux3)I−+τ

(1)
T (vx3)I− and (ux3)I++τ

(2)
T (vx3)I+ ,

then substituting them into Eq. (5.109) and Eq. (5.110), respectively, we obtain

(

um−1 + τ
(1)
T vm−1

)

− 32
(

um + τ
(1)
T vm

)

+ 31
(

uI− + τ
(1)
T vI−

)

− 30h1

(

(ux)I− + τ
(1)
T (vx)I−

)

=−
35h21
3

[

ρ1C1

k1

(

(ut)I− + τ (1)q (vt)I−
)

−
1

k1
(f1)

I−

]

−
8h21
3

[

ρ1C1

k1

(

(ut)m + τ (1)q (vt)m
)

−
1

k1
(f1)m

]

+
h21
3

[

ρ1C1

k1

(

(ut)m−1 + τ (1)q (vt)m−1

)

−
1

k1
(f1)m−1

]

,

+ 2h31

[

ρ1C1

k1

(

(uxt)I− + τ (1)q (vxt)I−
)

−
1

k1
((f1)x)

I−

]

, (5.112)
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and

(

um+2 + τ
(2)
T vm+2

)

− 32
(

um+1 + τ
(2)
T vm+1

)

+ 31
(

uI+ + τ
(2)
T vI+

)

+ 30h2

(

(ux)I+ + τ
(2)
T (vx)I+

)

=−
35h22
3

[

ρ2C2

k2
(ut)I+ + τ (2)q (vt)I+ −

1

k2
(f2)I+

]

−
8h22
3

[

ρ2C2

k2
(ut)m+1 + τ (2)q (vt)m+1 −

1

k2
(f2)m+1

]

+
h22
3

[

ρ2C2

k2
(ut)m+2 + τ (2)q (vt)m+2 −

1

k2
(f2)m+2

]

− 2h32

[

ρ2C2

k2
(uxt)I+ + τ (2)q (vxt)I+ −

1

k2
((f2)x)I+

]

. (5.113)

Then, the Crank-Nicolson method gives

1

2

[(

un+1
m−1 + τ

(1)
T vn+1

m−1

)

+
(

unm−1 + τ
(1)
T vnm−1

)]

− 16
[(

un+1
m + τ

(1)
T vn+1

m

)

+
(

unm + τ
(1)
T vnm

)]

+
31

2

[(

un+1
I− + τ

(1)
T vn+1

I−

)

+
(

unI− + τ
(1)
T vnI−

)]

− 15h1

[(

(ux)
n+1
I− + τ

(1)
T (vx)

n+1
I−

)

+
(

(ux)
n
I− + τ

(1)
T (vx)

n
I−

)]

=−
35ρ1C1h

2
1

3k1∆t

[(

un+1
I− + τ (1)q vn+1

I−

)

−
(

unI− + τ (1)q vnI−
)]

−
8ρ1C1h

2
1

3k1∆t

[(

un+1
m + τ (1)q vn+1

m

)

−
(

unm + τ (1)q vnm
)]

+
ρ1C1h

2
1

3k1∆t

[(

un+1
m−1 + τ (1)q vn+1

m−1

)

−
(

unm−1 + τ (1)q vnm−1

)]

+
2ρ1C1h

3
1

k1∆t

[(

(ux)
n+1
I− + τ (1)q (vx)

n+1
I−

)

−
(

(ux)
n
I− + τ (1)q (vx)

n
I−

)]

+
h21
3k1

[

35 (f1)
n+ 1

2

I− + 8 (f1)
n+ 1

2

m − (f1)
n+ 1

2

m−1 − 6h1 ((f1)x)
n+ 1

2

I−

]

, (5.114)
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and
1

2

[(

un+1
m+2 + τ

(2)
T vn+1

m+2

)

+
(

unm+2 + τ
(2)
T vnm+2

)]

− 16
[(

un+1
m+1 + τ

(2)
T vn+1

m+1

)

+
(

unm+1 + τ
(2)
T vnm+1

)]

+
31

2

[(

un+1
I+ + τ

(2)
T vn+1

I+

)

+
(

unI+ + τ
(2)
T vnI+

)]

+ 15h2

[(

(ux)
n+1
I+ + τ

(2)
T (vx)

n+1
I+

)

+
(

(ux)
n
I+ + τ

(2)
T (vx)

n
I+

)]

=−
35ρ2C2h

2
2

3k2∆t

[(

un+1
I+ + τ (2)q vn+1

I+

)

−
(

unI+ + τ (2)q vnI+
)]

−
8ρ2C2h

2
2

3k2∆t

[(

un+1
m+1 + τ (2)q vn+1

m+1

)

−
(

unm+1 + τ (2)q vnm+1

)]

+
ρ2C2h

2
2

3k2∆t

[(

un+1
m+2 + τ (2)q vn+1

m+2

)

−
(

unm+2 + τ (2)q vnm+2

)]

−
2ρ2C2h

3
2

k2∆t

[(

(ux)
n+1
I+ + τ (2)q (vx)

n+1
I+

)

−
(

(ux)
n
I+ + τ (2)q (vx)

n
I+

)]

+
h22
3k2

[

35 (f2)
n+ 1

2

I+ + 8 (f2)
n+ 1

2

m+1 − (f2)
n+ 1

2

m+2 + 6h2 ((f2)x)
n+ 1

2

I+

]

. (5.115)

It should be pointed out that we only discretized uxt at time direction without

discretization on spatial direction, which means the GPM has been used here.

Multiplying Eq. (5.114) and Eq. (5.115) by 12k1∆t
ρ1C1h2

1

and 12k2∆t
ρ2C2h2

2

, respectively, we

obtain a simple form of the above two equations as

[

4 (wq1)
n+1
m−1 − µ1 (wT1

)n+1
m−1

]

−
[

32 (wq1)
n+1
m − 32µ1 (wT1

)n+1
m

]

−
[

140 (wq1)
n+1
I− + 31µ1 (wT1

)n+1
I−

]

+ h1

[

24
(

(wq1)x
)n+1

I−
+ 30µ1 ((wT1

)x)
n+1
I−

]

=
[

4 (wq1)
n
m−1 + µ1 (wT1

)nm−1

]

−
[

32 (wq1)
n
m + 32µ1 (wT1

)nm
]

−
[

140 (wq1)
n+1
I− − 31µ1 (wT1

)n+1
I−

]

+ h1

[

24
(

(wq1)x
)n+1

I−
− 30µ1 ((wT1

)x)
n+1
I−

]

− 4λ1

(

35 (f1)
n+ 1

2

I− + 8 (f1)
n+ 1

2

m − (f1)
n+ 1

2

m − 6h1 ((f1)x)
n+ 1

2

I−

)

, (5.116)
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and

[

4 (wq2)
n+1
m+2 − µ2 (wT2

)n+1
m+2

]

−
[

32 (wq2)
n+1
m+1 − 32µ2 (wT2

)n+1
m+1

]

−
[

140 (wq2)
n+1
I+ + 31µ2 (wT2

)n+1
I+

]

− h2

[

24
(

(wq2)x
)n+1

I+
+ 30µ2 ((wT2

)x)
n+1
I+

]

=
[

4 (wq2)
n
m+2 + µ2 (wT2

)nm+2

]

−
[

32 (wq2)
n
m+1 + 32µ2 (wT2

)nm+1

]

−
[

140 (wq2)
n
I+ − 31µ2 (wT2

)nI+
]

− h2
[

24
(

(wq2)x
)n

I+
− 30µ2 ((wT2

)x)
n
I+

]

− 4λ2

(

35 (f2)
n+ 1

2

I+ + 8 (f2)
n+ 1

2

m+1 − (f2)
n+ 1

2

m+2 + 6h2 ((f2)x)
n+ 1

2

I+

)

. (5.117)

Substituting vn+1
j = 2

∆t

(

un+1
j − unj

)

−vnj , where j = m−1, m, I−, I+, m+1, m+2, and

(vx)
n+1
j = 2

∆t

(

(ux)
n+1
j − (ux)

n
j

)

− (vx)
n
j , where j = I−, I+, into the above equations,

we obtain

(4− µ1)u
n+1
m−1 +

(

4τ (1)q − µ1τ
(1)
T

)

[

2

∆t

(

un+1
m−1 − unm−1

)

− vnm−1

]

− (32− 32µ1) u
n+1
m −

(

32τ (1)q − 32µ1τ
(1)
T

)

[

2

∆t

(

un+1
m − unm

)

− vnm

]

− (140 + 31µ1) u
n+1
I− −

(

140τ (1)q + 31µ1τ
(1)
T

)

[

2

∆t

(

un+1
I− − unI−

)

− vnI−

]

+ (24 + 30µ1)h1 (ux)
n+1
I−

+ 24
(

τ (1)q + 30µ1τ
(1)
T

)

h1

[

2

∆t

(

(ux)
n+1
I− − (ux)

n
I−

)

− (vx)
n
I−

]

=
[

4 (wq1)
n
m−1 + µ1 (wT1

)nm−1

]

−
[

32 (wq1)
n
m + 32µ1 (wT1

)nm
]

−
[

140 (wq1)
n
I− − 31µ1 (wT1

)nI−
]

+ h1
[

24
(

(wq1)x
)n

I−
− 30µ1 ((wT1

)x)
n
I−

]

− 4λ1

(

35 (f1)
n+ 1

2

I− + 8 (f1)
n+ 1

2

m − (f1)
n+ 1

2

m−1 − 6h1 ((f1)x)
n+ 1

2

I−

)

, (5.118)
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and

(4− µ2)u
n+1
m+2 +

(

4τ (2)q − µ2τ
(2)
T

)

[

2

∆t

(

un+1
m+2 − unm+2

)

− vnm+2

]

− (32− 32µ2) u
n+1
m+1 −

(

32τ (2)q − 32µ2τ
(2)
T

)

[

2

∆t

(

un+1
m+1 − unm+1

)

− vnm+1

]

− (140 + 31µ2) u
n+1
I+ −

(

140τ (2)q + 31µ2τ
(2)
T

)

[

2

∆t

(

un+1
I+ − unI+

)

− vnI+

]

− (24 + 30µ2)h2 (ux)
n+1
I−

−
(

24τ (2)q + 30µ2τ
(2)
T

)

h2

[

2

∆t

(

(ux)
n+1
I+ − (ux)

n
I+

)

− (vx)
n
I+

]

=
[

4 (wq2)
n
m+2 + µ2 (wT2

)nm+2

]

−
[

32 (wq2)
n
m+1 + 32µ2 (wT2

)nm+1

]

−
[

140 (wq2)
n
I+ − 31µ2 (wT2

)nI+
]

− h2
[

24
(

(wq2)x
)n

I+
− 30µ2 ((wT2

)x)
n
I+

]

− 4λ2

(

35 (f2)
n+ 1

2

I+ + 8 (f2)
n+ 1

2

m+1 − (f2)
n+ 1

2

m+2 + 6h2 ((f2)x)
n+ 1

2

I+

)

, (5.119)

After simplification, we obtain

M1A1 · u
n+1
m−1 +M1B1 · u

n+1
m +M1C1 · u

n+1
I− +M1D1 · (ux)

n+1
I−

=M1A2 · u
n
m−1 +M1B2 · u

n
m +M1C2 · u

n
I− +M1D2 · (ux)

n
I−

M1A3 · v
n
m−1 +M1B3 · v

n
m +M1C3 · v

n
I− +M1D3 · (vx)

n
I−

− 4λ1

(

35 (f1)
n+ 1

2

I− + 8 (f1)
n+ 1

2

m − (f1)
n+ 1

2

m−1 − 6h1 ((f1)x)
n+ 1

2

I−

)

, (5.120)

and

M2A1 · u
n+1
m+2 +M2B1 · u

n+1
m+1 +M2C1 · u

n+1
I+ +M2D1 · (ux)

n+1
I+

=M2A2 · u
n
m+2 +M2B2 · u

n
m+1 +M2C2 · u

n
I+ +M2D2 · (ux)

n
I+

M2A3 · v
n
m+2 +M2B3 · v

n
m+1 +M2C3 · v

n
I+ +M2D3 · (vx)

n
I+

− 4λ2

(

35 (f2)
n+ 1

2

I+ + 8 (f2)
n+ 1

2

m+1 − (f2)
n+ 1

2

m+2 + 6h2 ((f2)x)
n+ 1

2

I+

)

, (5.121)
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whereM1A1 = 4(1+τ
(1)
q

2
∆t
)−µ1(1+τ

(1)
T

2
∆t
), M1B1 = −32(1+τ

(1)
q

2
∆t
)+32µ1(1+τ

(1)
T

2
∆t
),

M1C1=−140
(

1+ τ
(1)
q

)

2
∆t
−31µ1(1+τ

(1)
T

2
∆t
), M1D1=24h1(1+τ

(1)
q

2
∆t
)+30µ1h1(1+τ

(1)
T

2
∆t
),

M1A2 = 4(1 + τ
(1)
q

2
∆t
) + µ1(1− τ

(1)
T

2
∆t
), M1B2 = −32(1 + τ

(1)
q

2
∆t
)− 32µ1(1− τ

(1)
T

2
∆t
),

M1C2=−140
(

1+τ
(1)
q

2
∆t

)

+31µ1(1−τ
(1)
T

2
∆t
), M1D2=24h1(1+τ

(1)
q

2
∆t
)−30µ1h1(1−τ

(1)
T

2
∆t
),

M1A3 = 8τ
(1)
q , M1B3 = −64τ

(1)
q ,M1C3 = −280τ

(1)
q , M1D3 = 48h1τ

(1)
q ;

M2A1 = 4(1 + τ
(2)
q

2
∆t
)− µ2(1 + τ

(2)
T

2
∆t
), M2B1 = −32(1 + τ

(2)
q

2
∆t
) + 32µ2(1 + τ

(2)
T

2
∆t
),

M2C1=−140
(

1+τ
(2)
q

2
∆t

)

−31µ2(1+τ
(2)
T

2
∆t
), M2D1=−24h2(1+τ

(2)
q

2
∆t
)−30µ2h2(1+τ

(2)
T

2
∆t
),

M2A2 = 4(1 + τ
(2)
q

2
∆t
) + µ2(1− τ

(2)
T

2
∆t
), M2B2 = −32(1 + τ

(2)
q

2
∆t
)− 32µ2(1− τ

(2)
T

2
∆t
),

M2C2 =−140
(

1+τ
(2)
q

2
∆t

)

+31µ2(1−τ
(2)
T

2
∆t
), M2D2 =−24h2(1+τ

(2)
q

2
∆t
)+30µ2h2(1−τ

(2)
T

2
∆t
),

M2A3 = 8τ
(2)
q , M2B3 = −64τ

(2)
q , M2C3 = −280τ

(2)
q , M2D3 = −48h2τ

(2)
q .

Applying the Crank-Nicolson method to interfacial conditions Eqs. (5.69)-

(5.70) yields

un+1
I+ − un+1

I− = unI− − unI+, (5.122)

k2

(

1 + τ
(2)
T

2

∆t

)

(ux)
n+1
I+ − k1

(

1 + τ
(1)
T

2

∆t

)

(ux)
n+1
I−

=k1

(

1− τ
(1)
T

2

∆t

)

(ux)
n
I− − k2

(

1− τ
(2)
T

2

∆t

)

(ux)
n
I+ . (5.123)

From Eqs. (5.77)-(5.78), when j = m, m+ 1, we have

A1u
n+1
m−1 +B1u

n+1
m + A1u

n+1
I−

=A2u
n
m−1 +B2u

n
m + A2u

n
j+1 +D1v

n
m−1 +D2v

n
m +D1v

n
I− ++ (F1)

n+ 1

2

m , (5.124)

and

Ã1u
n+1
I+ + B̃1u

n+1
m+1 + Ã1u

n+1
m+2

=Ã2u
n
I+ + B̃2u

n
m+1 + Ã2u

n
m+2 + D̃1v

n
I+ + D̃2v

n
m+1 + D̃1v

n
m+2 + (F2)

n+ 1

2

m+1 , (5.125)
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respectively. Combining Eqs. (5.120)-(5.125) together, we obtain a similar system to

Eqs. (5.52)-(5.57) as follows:

un+1
I+ − un+1

I− = an, (5.126)

K2 (ux)
n+1
I+ −K1 (ux)

n+1
I− = bn, (5.127)

c11 · u
n+1
m−1 + c12 · u

n+1
m + c13 · u

n+1
I− + c14 · (ux)

n+1
I− = c1n, (5.128)

c21 · u
n+1
m+2 + c22 · u

n+1
m+1 + c23 · u

n+1
I+ + c24 · (ux)

n+1
I+ = c2n, (5.129)

c31 · u
n+1
m−1 + c32 · u

n+1
m + c33 · u

n+1
I− = c3n, (5.130)

c41 · u
n+1
m+2 + c42 · u

n+1
m+1 + c43 · u

n+1
I+ = c4n, (5.131)

where an = unI− − unI+, K1 = k1

(

1 + τ
(1)
T

2
∆t

)

, K2 = k2

(

1 + τ
(2)
T

2
∆t

)

,

bn = k1

(

1− τ
(1)
T

2
∆t

)

(ux)
n
I− − k2

(

1− τ
(2)
T

2
∆t

)

(ux)
n
I+ ,

c11 =M1A1, c12 =M1B1, c13 =M1C1, c14 =M1D1,

c1n =M1A2 ·u
n
m−1+M1B2 ·um+M1C2 ·u

n
I− +M1D2 · (ux)

n
I− +M1A3 ·v

n
m−1+M1B3 ·vm

+M1C3 · v
n
I− +M1D3 · (vx)

n
I− − 4λ1

[

(f1)
n+ 1

2

m + 5 (f1)
n+ 1

2

I− + h1 ((f1)x)
n+ 1

2

I−

]

;

c21 =M2A1, c22 =M2B1, c23 =M2C1, c24 =M2D1,

c2n =M2A2·u
n
m+2+M2B2·um+1+M2C2·u

n
I++M2D2·(ux)

n
I++M2A3·v

n
m+2+M2B3·vm+1

+M2C3 · v
n
I+ +M2D3 · (vx)

n
I+ − 4λ2

[

(f2)
n+ 1

2

m+1 + 5 (f2)
n+ 1

2

I+ + h2 ((f2)x)
n+ 1

2

I+

]

;

c31 = A1, c32 = B1, c33 = c31 = A1,

c3n = A2u
n
m−1 +B2u

n
m + A2u

n
j+1 +D1v

n
m−1 +D2v

n
m +D1v

n
I− ++ (F1)

n+ 1

2

m ;

c41 = Ã1, c42 = Ã2, c43 = c41 = Ã1,

c4n = Ã2u
n
I+ + B̃2u

n
m+1 + Ã2u

n
m+2 + D̃1v

n
I+ + D̃2v

n
m+1 + D̃1v

n
m+2 + (F2)

n+ 1

2

m+1 .
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Using a similar argument as in the steady-state case, we can delete un+1
I− ,

un+1
I+ , (ux)

n+1
I− , (ux)

n+1
I+ in the above equations and obtain two equations as follows:

c51 · u
n+1
m−1 + c52 · u

n+1
m + c53 · u

n+1
m+1 =c5n, (5.132)

c61 · u
n+1
m + c62 · u

n+1
m+1 + c63 · u

n+1
m+2 =c6n, (5.133)

where c51 = K1c24c41 (c13c31 − c11c33)−K2c14c31 (c23c41 − c21c43) ,

c52 = K1c24c41 (c13c32 − c12c33)−K2c14c32 (c23c41 − c21c43),

c53 = K2c14c33 (c22c41 − c21c42) ,

c5n = −K1c24c33c41c1n +K2c14c33c41c2n + [K1c24c13c41 −K2c14 (c23c41 − c21c43)]c3n

−K2c14c21c33c4n +K2c14c33(c21c43 − c23c41)an − c14c24c33c41bn;

c61 = K1c24c43 (c12c31 − c11c32) ,

c62 = K2c14c31 (c23c42 − c22c43)−K1c24c42 (c13c31 − c11c33) ,

c63 = K2c14c31 (c23c41 − c21c43)−K1c24c41 (c13c31 − c11c33) ,

c6n = K1c24c31c43c1n −K2c14c31c43c2n +
[

K1c24c13c31c43
−c33

−K1c24c43

(

c11 +
c13c31
−c33

)]

c3n

+
[

K2c14c23c31 +K1c24c33

(

c11 +
c13c31
−c33

)]

c4n −K1c24c33c43

(

c11 +
c13c31
−c33

)

an

+c14c24c31c43bn.

As the same as before, the GPM was used again here.

Thus, Eqs. (5.77)-(5.78), Eqs. (5.91) and (5.104), and Eqs. (5.132)-(5.133)

together form a higher-order accurate finite difference scheme for the heat conduction

model in nanoscale. We can rewrite the scheme in matrix form as

A~un+1 = ~d, (5.134)

where ~un+1 =
[

un+1
0 , un+1

1 , un+1
2 , ..., un+1

m−1, u
n+1
m , un+1

m+1, u
n+1
m+2, ..., u

n+1
M−2, u

n+1
M−1, u

n+1
M

]T
,
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A=









































































LB1 LC1

A1 B1 A1

. . .
. . .

. . .

A1 B1 A1

c51 c52 c53

c61 c62 c63

Ã1 B̃1 Ã1

. . .
. . .

. . .

Ã1 B̃1 Ã1

RA1 RB1









































































and ~d =

































































































LB2u
n
0+LC2u

n
1+LB3v

n
0+LC3v

n
1+(LF )

n+ 1

2+(LΦ)n

A2u
n
0+B2u

n
1+A2u

n
2+A3v

n
0+B3v

n
1+A3v

n
2+(F1)

n+ 1

2

1

A2u
n
1+B2u

n
2+A2u

n
3+A3v

n
1+B3v

n
2+A3v

n
3+(F1)

n+ 1

2

2

...

A2u
n
m−2+B2u

n
m−1+A2u

n
m+A3v

n
m−2+B3v

n
m−1+A3v

n
m+(F1)

n+ 1

2

m−1

c5n

c6n

Ã2u
n
m+1+B̃2u

n
m+2+Ã2u

n
m+3+Ã3v

n
m+1+B̃3v

n
m+2+Ã3v

n
m+3+(F2)

n+ 1

2

m+2

Ã2u
n
m+2+B̃2u

n
m+3+Ã2u

n
m+4+Ã3v

n
m+2+B̃3v

n
m+3+Ã3v

n
m+4+(F2)

n+ 1

2

m+3

...

Ã2u
n
M−3+B̃2u

n
M−2+Ã2u

n
M−1+Ã3v

n
M−3+B̃3v

n
M−2+Ã3v

n
M−1+(F2)

n+ 1

2

M−2

Ã2u
n
M−2+B̃2u

n
M−1+Ã2u

n
M+Ã3v

n
M−2+B̃3v

n
M−1+Ã3v

n
M+(F2)

n+ 1

2

M−1

RA2u
n
M−1+RB2u

n
M+RA3v

n
M−1+RB3v

n
M+(RF )

n+ 1

2+(RΦ)n

































































































.
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Note that A is a tridiagonal matrix, one can use the Thomas algorithm to obtain

the solution efficiently. Once the values of un+1
m−1, u

n+1
m , un+1

m+1 and un+1
m+2 are obtained,

the values of un+1
I− , un+1

I+ , (ux)
n+1
I− and (ux)

n+1
I+ can be easily obtained by using Eqs.

(5.126)-(5.131). After all the values of un+1 (including un+1
I− , un+1

I+ , (ux)
n+1
I− and (ux)

n+1
I+ )

are obtained, we can use Eq. (5.75) to obtain the corresponding values of vn+1 for

preparing the next time iteration.

In summary, we have developed a higher-order finite difference scheme for the

nanoscale heat conduction model, which is the dual-phase-lagging equation. The

scheme is third-order at boundary, fourth-order at the interface. Hence, the overall

schemes are at least third-order. Again, it should be pointed out that the GPM has

been used in the derivations of the scheme.



CHAPTER 6

NUMERICAL EXAMPLES

In this chapter, we will test the accuracy and applicability of those compact

finite difference schemes obtained in Chapters 4 and 5 by four examples. In particular,

the first three examples are to verify the accuracy of the numerical solutions obtained

based on our present schemes for solving the steady-state heat conduction model,

unsteady-state heat conduction model, and nanoscale heat conduction model, respec-

tively. Numerical results will be compared with the exact solutions and numerical

solutions based on the existing methods. The fourth example is to demonstrate the

applicability of the scheme for the nanoscale heat conduction case by obtaining the

temperature rise in a double-layered nanoscale thin film, where a gold layer is on a

chromium padding layer and is irradiated by an ultrashort-pulsed laser.

Example 1. Consider a steady-state heat conduction problem in [65] as

uxx =2, 0 < x <
1

3
, (6.1)

10uxx =10ex,
1

3
< x < 1, (6.2)

with interfacial condition:

uI+ − uI− = e
1

3 −
1

9
, 10 (ux)I+ − (ux)I− = 10e

1

3 −
2

3
, (6.3)

94
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and boundary condition either of Dirichlet boundary:

u (0) = 0, u (1) = e, (6.4a)

Neumann boundary:

ux (0) = 0, ux (1) = e, (6.4b)

Robin boundary:

−ux (0) + u (0) = 0, ux (1) + u (1) = 2e. (6.4b)

It can be seen that the exact solution is u (x) = x2, if 0 ≤ x ≤ 1
3
; u (x) = ex, if

1
3
≤ x ≤ 1. We use the three schemes Eq. (4.55), Eq. (5.14) (combining with Eq.

(5.15)), and Eq. (5.16), to solve the above problem corresponding to the three types

of boundaries, respectively.

Table 6.1: Numerical errors and convergence order for Example 1.

Present schemes
Eq. (4.55) (Dirichlet ) Eq. (5.14) (Neumann) Eq. (5.16) (Robin)

M ‖EM‖
∞

Order ‖EM‖
∞

Order ‖EM‖
∞

Order
9 1.6044× 10−7 − 2.0465× 10−6 − 6.6332× 10−7 −
18 1.1584× 10−8 3.79 1.6070× 10−7 3.67 5.1046× 10−8 3.70
36 7.7137× 10−10 3.91 1.1090× 10−8 3.86 3.4904× 10−9 3.87
72 4.9705× 10−11 3.96 7.2617× 10−10 3.93 2.2759× 10−10 3.94
144 3.1535× 10−12 3.98 4.6425× 10−11 3.97 1.4520× 10−11 3.97

Methods for Dirichlet boundary in [65]
GFM (1st-order) IIM (2nd-order) IMIB (2nd-order)

M ‖EM‖
∞

Order ‖EM‖
∞

Order ‖EM‖
∞

Order
10 1.07× 10−2 − 5.71× 10−4 − 2.42× 10−4 −
40 2.70× 10−3 0.99 3.66× 10−5 1.98 1.13× 10−5 2.21
160 6.91× 10−4 0.98 2.30× 10−6 2.00 6.40× 10−7 2.07
640 1.73× 10−4 1.00 1.44× 10−7 2.00 3.90× 10−8 2.02
2560 4.32× 10−5 1.00 8.99× 10−9 2.00 2.42× 10−9 2.01
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In our computation, we choose h1 = h2 = h = 1
M
. We calculate the er-

ror uj − u (xj) and obtain the maximum error ‖EM‖
∞

= max
0≤j≤M

|uj − u (xj)| . If

‖EM1
‖
∞

= O (hq) , then ‖EM2
‖
∞

= O ((M2/M1)
q hq). It can be seen that q =

log(‖EM2‖∞

/‖EM1‖∞

)
log(M1/M2)

, which gives the convergence order. We choose M to 9, 18, 36,

72, 144, respectively. The maximum error and convergence order are obtained, which

are listed in Table 6.1. It can be seen from Table 6.1, the convergence order is around

4.0, which coincides with the theoretical analysis in Chapters 4 and 5. This example

(with Dirichlet boundary) was also calculated by three other methods in [65]. The

numerical results of these methods are also listed in Table 6.1. It can be seen that the

present schemes are much more accurate than the existing three methods, the ghost

fluid method (GFM), the immersed interface method (IIM) and the interpolation

matched interface and boundary method (IMIB) in [65].
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Figure 6.1: Temperature profiles along the spatial direction when M = 36 using
the present scheme for Dirichlet boundary in Example 1.
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Figure 6.2: Temperature profiles along the spatial direction when M = 36 using
the present scheme for Neumann boundary in Example 1.
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Figure 6.3: Temperature profiles along the spatial direction when M = 36 using
the present scheme for Robin boundary in Example 1.
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Figure 6.4: Temperature profiles along the spatial direction when m = 15,M = 30
using the present scheme for Robin boundary in Example 1.

Figures 6.1-6.3 show the temperature profiles along the spatial direction when

M = 36 using the present schemes for different types of boundaries, respectively.

From these figures, one may see a clear discontinuity at the interface and that there

is not significantly different between the exact solutions and numerical solutions.

Our schemes can be also used for h1 6= h2, where h1 =
1/3
m
, h2 =

2/3
M−m

. Figure

6.4 shows the temperature profiles along the spatial direction when m = 15,M = 30

using the present scheme for Robin boundary. It can be observed from this figure that

there is no significant difference between the exact solution and numerical solution.

Example 2. Consider a heat conduction problem as [70]:

ut (x, t) = uxx (x, t) , 0 ≤ x ≤
1

2
, 0 ≤ t ≤ T, (6.5)

5ut (x, t) =
1

5
uxx (x, t) ,

1

2
≤ x ≤ 1, 0 ≤ t ≤ T, (6.6)
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with initial conditions:

u (x, 0) = cos (πx) , 0 ≤ x ≤
1

2
, (6.7)

u (x, 0) =
1

5
cos (5πx) ,

1

2
≤ x ≤ 1, (6.8)

boundary conditions either of Dirichlet boundary:

u (0, t) = e−π2t, u (1, t) = −e−π2t, 0 ≤ t ≤ T, (6.9a)

Neumann boundary:

ux (0, t) = ux (1, t) = 0, 0 ≤ t ≤ T, (6.9b)

Robin boundary:

−ux (0, t) + u (0, t) = e−π2t, ux (1, t) + u (1, t) = −e−π2t, 0 ≤ t ≤ T, (6.9c)

and the interfacial condition at x = 1
2
as

uI+ (t)− uI− (t) = 0, (ux)I+ (t)−
1

5
(ux)I− (t) = 0, 0 ≤ t ≤ T. (6.10)

It can be seen that the exact solution is u (x, t) = e−π2t cos (πx) , if 0 ≤ x ≤ 1
2
;

u (x, t) = e−π2t cos (5πx) , if 1
2

≤ x ≤ 1. We use the three schemes Eq. (5.60),

Eq. (5.61) and Eq. (5.62) to solve the above example corresponding to three

different boundary conditions, respectively. In our computation, we choose h1 =

h2 = h = 1
M
, ∆t = 1

N
. We calculate the error unj −u (xj , tn) and obtain the maximum

error ‖EM,N‖∞ = max
0≤j≤M, 0≤n≤N,

∣

∣unj − u (xj , tn)
∣

∣ . If ‖EM1,N‖∞ = O (hq + (∆t)p) , then

‖EM2,N‖∞ = O ((M2/M1)
q hq + (∆t)p). It can be seen that q ≃

log(‖EM2,N‖
∞

/‖EM1,N‖
∞

)
log(M1/M2)

if ∆t is very small, which gives the convergence order in space. In our computation,

we choose N = 105 and M to be 10, 20, 40, 80, 160, respectively. The maximum
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Table 6.2: Numerical errors and convergence order for Example 2.

Present scheme (N = 1
∆t

= 105)
Eq. (5.60) (Dirichlet) Eq. (5.61) (Neumann) Eq. (5.62) (Robin)

M ‖EM,N‖∞ Order ‖EM,N‖∞ Order ‖EM,N‖∞ Order
20 6.0497× 10−4 − 6.0101× 10−4 − 6.0102× 10−4 −
40 3.8483× 10−5 3.9746 3.8486× 10−5 3.9650 3.8486× 10−5 3.9650
80 2.4370× 10−6 3.9810 2.4381× 10−6 3.9805 2.4380× 10−6 3.9806
120 4.8285× 10−7 3.9925 4.8303× 10−7 3.9927 4.8301× 10−7 3.9927
160 1.5277× 10−7 4.0002 1.5282× 10−7 4.0003 1.5281× 10−7 4.0004

Methods for Neumann boundary in [70] (N = 1
∆t

= 106)
4th order scheme 1st-order scheme 2nd-order scheme

M ‖EM,N‖∞ Order ‖EM,N‖∞ Order ‖EM,N‖∞ Order
20 4.6704× 10−4 − 7.6308× 10−2 − 1.4597× 10−2 −
40 2.8689× 10−5 4.0250 3.1961× 10−2 1.2555 3.6516× 10−3 1.9990
80 1.7764× 10−6 4.0135 1.4944× 10−2 1.0969 9.1471× 10−4 1.9971
120 3.5195× 10−7 3.9926 9.7533× 10−3 1.0552 4.0684× 10−4 1.9982
160 1.2332× 10−7 3.6454 7.2389× 10−3 1.0363 2.2893× 10−4 1.9988

error and convergence order are obtained, which are listed in Table 6.2. It can be

seen from Table 6.2 that the convergence order in space is around 4.0, which coincides

with the theoretical analysis in Chapter 5. This example (with Neumann boundary)

was also calculated by three other methods in [70]. The numerical results of these

methods are also listed in Table 6.2. It can be observed that the present scheme is

much more accurate than the first-order and second-order schemes, and has the same

order accuracy as the 4th-order scheme in [70].

Figures 6.5, 6.6, and 6.7 show the temperature profiles along the spatial

direction when M = 40, N = 105 at t = 0.5, using the present schemes for different

types of boundaries, respectively. From these figures, one may see that there is no

significant difference between the exact solutions and numerical solutions.
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Figure 6.5: Temperature profiles along the spatial direction when M = 40, N = 105

at t = 0.5, using the present scheme for Dirichlet boundary in Example 2.

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Length

Te
m

pe
ra

tu
re

Neumann Boundary

Present scheme
Exact solution
Present at interface
Exact at interface

Figure 6.6: Temperature profiles along the spatial direction when M = 40, N = 105

at t = 0.5, using the present scheme for Neumann boundary in Example 2.
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Figure 6.7: Temperature profiles along the spatial direction when M = 40, N = 105

at t = 0.5, using the present scheme for Robin boundary in Example 2.

Example 3. Consider a dual-phase-lagging heat conduction problem as [76]:

(ut (x, t) + utt (x, t))

=
2

3π2
(uxx (x, t) + uxxt (x, t))−

1

6
e−

t
2 sin

(π

2
x
)

, 0 < x <
1

2
, 0 < t ≤ 1, (6.11)

(ut (x, t) + utt (x, t))

=
1

3π2
(uxx (x, t) + 4uxxt (x, t))−

1

3
e−

t
2 cos

(π

2
x
)

,
1

2
< x < 1, 0 < t ≤ 1, (6.12)

subject to the initial and temperature-jump boundary conditions as

u (x, 0) = sin
(π

2
x
)

, ut (x, 0) = −
1

2
sin
(π

2
x
)

, 0 ≤ x ≤
1

2
, (6.13)

u (x, 0) = cos
(π

2
x
)

, ut (x, 0) = −
1

2
cos
(π

2
x
)

,
1

2
≤ x ≤ 1, (6.14)

−
1

2
ux (0, t) + u (0, t) = −

π

4
e−

t
2 , 0 ≤ t ≤ 1, (6.15)

1

2
ux (L, t) + u (L, t) = −

π

4
e−

t
2 , 0 ≤ t ≤ 1, (6.16)
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and the interfacial conditions at x = l as

uI+ (t)− uI+ (t) = 0, 0 ≤ t ≤ 1, (6.17)

1

3π2
((ux)I+ (t) + 4 (uxt)I+ (t))−

2

3π2
((ux)I− (t) + (uxt)I− (t))

=0, 0 ≤ t ≤ 1. (6.18)

It can be seen that the exact solution is u (x, t) = e−
1

2 sin(π
2
x), if 0 ≤ x ≤ 1

2
; u (x, t) =

e−
1

2 cos(π
2
x), if 1

2
≤ x ≤ 1. We use the scheme Eq. (5.134) to solve the above example.

Table 6.3: Numerical errors and convergence order in space for Example 3.

Present scheme
(

N = 1
∆t

= 105
)

2nd-order scheme in [76]
(

N = 1
∆t

= 103
)

M ‖EM,N‖∞ Order ‖EM,N‖∞ Order
10 1.9612× 10−7 − 2.4247e− 4 −
20 1.2327× 10−8 3.9918 6.0984e− 5 1.9913
40 7.4945× 10−10 4.0398 1.5268e− 5 1.9979
80 4.6033× 10−11 4.0251 3.8187e− 6 1.9997

In our computation, we choose h1 = h2 = h = 1
M
, ∆t = 1

N
.We calculate the er-

ror unj−u (xj , tn) and obtain the maximum error ‖EM,N‖∞ = max
0≤j≤M, 0≤n≤N,

∣

∣unj − u (xj , tn)
∣

∣ .

If ‖EM1,N‖∞ = O (hq + (∆t)p) , then ‖EM2,N‖∞ = O ((M2/M1)
q hq + (∆t)p). It

can be seen that q ≃
log(‖EM2,N‖

∞

/‖EM1,N‖
∞

)
log(M1/M2)

if ∆t is very small, which gives the

convergence order in space. We choose N = 105 and M to be 10, 20, 40, 80,

respectively. The maximum error and convergence order are obtained, which are

listed in Table 6.3. It is noted from Table 6.3 that the spatial convergence order of

the present scheme is approximately 4.0. The result coincides with the theoretical

analysis in Chapter 5. It can be seen that the present scheme is much more accurate

than the second-order scheme in [76].
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Figure 6.8: Temperature profiles along the spatial direction when M = 40, N = 105

at t = 0.5 using the present scheme in Example 3.

Figure 6.8 shows the temperature profiles along the spatial direction when

M = 40, N = 105 at t = 0.5 using the present scheme. It can be observed from

this figure that there is not significantly different between the exact solution and

numerical solution.

Example 4. Consider a double-layered nanoscale thin film, where a gold layer

is on a chromium padding layer and is irradiated by an ultrashort-pulsed laser, as

shown in Figure 6.9. Each thickness of the gold layer and the chromium layer is 1

(nm), implying that l = 1 (nm), L = 2 (nm).

The thermal properties of gold and chromium used in the analysis are listed

in Table 6.4 [53, 72, 98]. The heat source for both layers is given as [53]:

Q(x, t) = 0.94J
1− R

tpδ
exp

[

−
x

δ
− 2.77(

t− 2tρ
t2ρ

)2
]

,
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Figure 6.9: A double-layered nanoscale thin film in Example 4.

where J = 13.7 (J/m2), δ = 15.3 ( nm ), tp = 100 (fs) and R = 0.93. Here, 1 (ps)=

10−12(s), 1 (fs) =10−15 (s), and 1 (nm) = 10−9 (m). The initial temperature is chosen

to be 300 (K).

Table 6.4: Properties of gold and chromium for Example 4 [53, 72, 98].

Property cp (J/kg/K) K (ω/m/K) ρ (kg/m3) τq (ps) τT (ps)
Gold 129 317 193000 8.5 90
Chromium 449 94 7160 0.136 7.86

In our model, we choose f1(x, t) = Q + τ
(1)
q

∂Q
∂t
, f2(x, t) = Q + τ

(2)
q

∂Q
∂t
. For

the parameters in the boundary condition, we choose α1 = α2 = α = 0.05, 0.5, 5.0,

respectively, to indicate that how fast the heat exchanges with the surroundings. A

large α means that the heat transfer is close to the insulated situation. The solutions

are obtained using scheme Eq. (5.134). Again, we take h1 = h2 = h for simplicity.

Figures 6.10-6.12 show the temperature profiles along the spatial direction for

three different values, α1 = α2 = α = 0.05, 0.5, 5, at t = 0.2 (ps), 0.32 (ps), 0.5 (ps),

based on a mesh of 40 grid points with a time increment of 0.0001 (ps). At t = 0.2

(ps), the temperature rises to about 311 (K); at t = 0.32 (ps), the temperature at the

gold layer is almost uniform due to the very thin layer. It can be seen that the larger

the α is, the higher the temperature level is.
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Figure 6.10: Temperature profiles along the spatial direction for three different
values, α1 = α2 = α = 0.05, 0.5, 5, at t = 0.2 (ps), based on a mesh of 40 grid points
with a time increment of 0.0001 (ps) in Example 4.
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Figure 6.11: Temperature profiles along the spatial direction for three different
values, α1 = α2 = α = 0.05, 0.5, 5, at 0.32 (ps), based on a mesh of 40 grid points
with a time increment of 0.0001 (ps) in Example 4.
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Figure 6.12: Temperature profiles along the spatial direction for three different
values, α1 = α2 = α = 0.05, 0.5, 5, at 0.5 (ps), based on a mesh of 40 grid points
with a time increment of 0.0001 (ps) in Example 4.
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Figure 6.13: Normalized temperature ( u−u0

umax−u0 ) profiles along the time direction at
location x0 for three different values, α1 = α2 = α = 0.05, 0.5, 5, based on a mesh of
40 grid points with a time increment of 0.0001 (ps) in Example 4.
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Figure 6.13 shows the normalized temperature ( u−u0

umax−u0 ) profiles along the

time direction at location x0, i.e. the gold layer surface. This figure shows that the

temperature rises quickly to the maximum around t = 0.32 (ps). After that, due to

laser heating decreases, the heat transfers through the gold layer to chromium layer.

Thus, the temperature at the gold surface is gradually falling with time increase.

In summary, numerical results have verified the accuracy and efficiency of the

present finite difference schemes with the convergence order of four in space in L∞

-norm. Moreover, the scheme for nanoscale heat conduction model is applied to the

thermal analysis for a double-layered nanoscale thin film where a gold layer is on a

chromium padding layer and is irradiated by an ultrashort-pulsed laser.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation research, we have developed several higher-order compact

finite difference schemes that can accurately determine the temperature distribution

in double-layered solid structures. Three mathematical models, the steady-state

heat conduction model, the unsteady-state heat conduction model and the nanoscale

heat conduction model, have been considered. We have proved the well-posedness

of these three models. In our derivations of the compact finite difference schemes,

we employ a well-known Padé fourth-order compact finite difference scheme for the

interior points, while on the boundary and interface, the derivative ux is kept without

discretization, which we call the gradient preserved method (GPM). As a result, we

obtain several fourth-order accurate three-points in space finite difference scheme

for the interface. At the same time, we obtain third-order or fourth-order schemes

for the Neumann boundary condition or the Robin boundary condition. We have

analyzed the solvability, stability and convergence order of the numerical scheme for

the steady-state heat conduction model with the Dirichlet boundary, which is proved

to be solvable, unconditionally stable and fourth-order. Four numerical examples

have been used to test the present schemes. Numerical results show that the present

schemes are applicable and provide a higher-order accurate solution. The convergence

109
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order based on the numerical examples is round about 4.0, which coincides with the

theoretical analysis.

Future study will focus on the analysis of the stability and convergence order of

the present schemes for the unsteady-state heat conduction model and the nanoscale

heat conduction model as well as the extension of our schemes to multidimensional

cases, and the application to multi-layer structures.
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