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ABSTRACT 

This dissertation explores the fundamentals of light-matter interaction towards 

applications in the field of Opto-electronic and plasmonic devices. In its core, this 

dissertation attempts and succeeds in the the modeling of light-matter interactions, which 

is of high importance for better understanding the rich physics underlying the dynamics 

of electromagnetic field interactions with charged particles. Here, we have developed a 

self-consistent multi-physics model of electromagnetism, semiconductor physics and 

thermal effects which can be readily applied to the field of plasmotronics and Selective 

Laser Melting (SLM). Plasmotronics; a sub-field of photonics has experienced a 

renaissance in recent years by providing a large variety of new physical effects and 

applications. Most importantly, plasmotronics promises devices with ultra-small 

footprints and ultrafast operating speeds with lower energy consumption compared to 

conventional electronics. One of the primary objectives of this dissertation is to present 

an optoelectronic switch termed as Surface Plasmon Polariton Diode (SPPD) for 

functional plasmonic circuits based on active control of Surface Plasmon Polaritons 

(SPPs) at degenerate PN+-junction interfaces.  

 In this context, the operational characteristics of the proposed plasmonic device 

are studied by the self-consistent multi-physics model that couples the electromagnetic, 

thermal and IV characteristics of the device. The SPPD uses heavily doped PN+-junction 

where SPPs propagate at the interface between N and P-doped layer and can be switched 



iv 

by an external voltage. Here, we explore the features of SPPD using three different 

semiconductor materials; GaAs, Silicon and Indium Gallium Arsenide (In0.53Ga0.47As). 

When compared to Si and GaAs, the In0.53Ga0.47As provides higher optical confinement, 

reduced system size and faster operation. For this reason, in our dissertation 

(In0.53Ga0.47As) is identified as the best semiconductor material for the practical 

implementation of the optoelectronic switch providing high optical confinement, reduced 

system size, and fast operation. The optimal device is shown to operate at signal 

modulation surpassing -100 dB and switching rates up to 50 GHz, thus potentially 

providing a new pathway toward bridging the gap between electronic and photonic 

devices. Also, the proposed optoelectronic switch is compatible with the current CMOS 

semiconductor fabrication techniques and could lead to nanoscale semiconductor-based 

optoelectronics. 

Furthermore, we have extended the concept of the above optoelectronic switch to 

design and study a new type of all-optical switch, referred to as Surface Plasmon 

Polariton Diode (thermal) (SPPDt). The SPPDt operation is governed by a unique optical 

nonlinearity that exists only for surface electromagnetic waves, i.e. SPPs, propagating at 

highly doped semiconductor junction interfaces. This dissertation will address the design 

and characterization of the SPPDt and will bring new insights into the underlying thermo-

optic nonlinearity. The gained understanding will be applied to design practically feasible 

devices including logic gates which can bridge the temporal and spatial gap between 

electronics and optics by providing high switching rates and signal input/output (I/O) 

power modulation. 
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Enhanced light-matter interactions have further been explored and extended 

towards tailoring plasmonic resonances due to laser interactions with metal powder beds 

pertaining to Selective Laser Melting (SLM) processes. This is done by adapting the self-

consistent model developed for the plasmonic device to better understand the complex 

electrodynamic and thermodynamic processes involved in SLM. The SLM is an 

advanced rapid prototyping or additive manufacturing technology that uses high power 

density laser to fabricate metal/alloy components with minimal geometric constraints. 

The fabrication process is multi-physics in nature and its study requires the development 

of complex simulation tools. In this dissertation, for the first time, the electromagnetic 

interactions with dense powder beds are investigated under full-wave formalism. 

Localized gap and surface plasmon polariton resonance effects are identified as possible 

mechanisms toward improved absorption in small and medium-size titanium powder 

beds. Furthermore, observed near homogeneous temperature distributions across the 

metal powders indicates fast thermalization processes and allows for the development of 

simple analytical models to describe the dynamic interplay of laser facilitated Joule 

heating and effects of radiation and thermal conduction. The Explicit description is 

provided for important SLM process parameters such as critical laser power density, 

saturation temperature, and time to melt. Specific guidelines are presented for improved 

energy efficiency and optimization of the SLM process deposition rates.  
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Motivation 

The demands for faster data transfer and processing has increased dramatically 

over the past five decades. This has led to enormous advances in the semiconductor 

industry and a continuous progression towards smaller, faster, and more efficient 

electronic devices [1]. The scaling of the electronic devices also brought about a myriad 

of challenges. The most daunting problems inhibiting the significant further increase in 

the processor speed are thermal and resistor-capacitor (RC) delay time, associated with 

the electronic interconnections and scaling of the devices [2]. Because of these scaling 

issues and excessive heat dissipation, saturation in the microprocessor clock speed has 

been observed over the past decade (see Figure 1-1) [2].  
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Figure 1-1: Past and present trends in Intel Microprocessor technology [1]. 

Researchers have long realized that photonics could be a key technology for fast 

data communication and computing [2-6]. It is now well understood that photonic 

devices have the potential to address some of the present bottlenecks in semiconductor-

based electronics such as high-power consumption and interconnects delay times. Also, 

photonic devices can operate at low transmission losses and provide extremely large 

bandwidths due to multiplexing capabilities, operating on several channels in parallel. 

Unfortunately, the implementation of photonic devices within electronic components has 

been limited predominantly due to size mismatch, i.e. the optical components are 

diffraction limited to half the wavelength in the optical material. Moreover, it is expected 

that CMOS foundries will further decrease the feature sizes on silicon chips, ultimately 

down to 10 nm. This reduction in size would further increase the dimensional mismatch, 

as the size of the dielectric photonic devices is restricted by the diffraction limit [2]. 

Furthermore, miniaturizing introduces several problems including a dielectric break 

down, hot carriers and short channel effects, which degrade device reliability [7].  A 
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possible solution which can facilitate the size and power requirement for future integrated 

circuits lies in designing photonics components below the diffraction limit. 

Due to the dramatic advances in nanotechnology and its applications in the area of 

photonics, and specifically plasmonics, now it is believed feasible to merge electronics 

with sub-wavelength optics in a new field of sub-wavelength optoelectronics [2-4]. 

Plasmonics is the study of Surface Plasmon Polaritons (SPPs), i.e. spatially confined 

electromagnetic modes propagating at the metal-dielectric interfaces which offer the 

bandwidths of photonic devices and physical dimensions shared with nanoscale 

electronics [2-4] [6] [8] [11-23]. One of the most fascinating aspects of SPPs is the way 

light can be channeled using device geometries much smaller than the free space 

wavelength. The SPPs propagate at the interface of metals/semiconductors and has been 

used in wide range of disciplines including bio-sensing [24], super lensing [25-27], nano 

lasing [10] [28], optical invisibility, and metamaterials [29-30].   

Furthermore, the potential of such synergy offered by plasmonics is depicted in 

Figure 1-2 where the fundamental limits of the operation speed vs. spatial size for a large 

variety of optical, optoelectronic and all-electronic devices is shown. The speed and size 

of the devices rely on the unique material properties of semiconductors (electronics), 

insulators (photonics), and metals (plasmonics) [8]. Semiconductor electronics is limited 

in speed by heat generation and interconnect delay time to about 10 GHz [8]. Metal-

based plasmonics (SPPM and PSPM) can share the dimensions of nano-scale electronics 

and speeds offered by dielectric photonics. However, metal plasmonics cannot be merged 

to nano-scale electronics due to the mismatch in the frequency of operation. 

Semiconductor plasmonics can share both (size and frequency of operation) as that of 
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nano-electronics in addition to speeds and data rates as that of dielectric photonics. Thus, 

optoelectronic and all-optical devices based on semiconductor plasmonics can offer a 

unique solution to merge subwavelength optics with nano-electronics. 

 

Figure 1-2: Temporal and spatial limits of semiconductor electronics, dielectric photonics, 

semiconductor plasmonics, particle surface plasmons in semiconductors (PSPS), particle 

surface plasmons in metals (PSPM), surface plasmon polaritons in semiconductors (SPPs), 

surface plasmon polaritons in metals (SPPM). 

Recently, light-trapping layers employing metallic plasmonic microstructures 

have gained significant attention [31-33], efficient resonant light absorption by several 

plasmonic nanostructures with microcavities [34], and gap-plasmon resonators [35] [36] 

have been extensively studied. Regarding metal-based absorbers, absorption 

enhancement using stacked plasmonic resonators, colloidal microspheres, and their 

corresponding arrays has been also presented [37-41]. Extensive light trapping through 

surface plasmon resonances can be applied to the field of three-dimensional (3D) printing 

with metals and alloys using selective laser melting (SLM). SLM is the most promising 

and successful additive manufacturing technique to date [42-44]. The SLM is a layer-by-
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layer rapid manufacturing technology that uses high power laser beams to melt and fuse 

metallic powders in a controlled manner [44]. The technology is known for printing high-

quality 3D metal-parts with high geometric complexity. A significant feature of the SLM 

is near-net-shape production without the need for expensive molds or time-consuming 

post-processing and high production flexibility [45] [46]. Due to the numerous 

advantages compared to traditional manufacturing technologies, the implementation of 

SLM in the industry has been rapidly increasing [42] [43] [47] [48]. However, further 

improvements in productivity and reduction in costs are crucial factors that need to be 

addressed for future widespread SLM implementation. 

The fundamental physical processes involved in SLM are complex and include 

scattering and absorption of laser radiation into highly heterogeneous metal powders, heat 

transfer, the formation of molten pools and its solidification, all within multiple lengths 

and timescales. Extreme confinement and light trapping can convert the electromagnetic 

energy into heat with high efficiency and thus can fasten the initiation of the melting in 

SLM powders.  

1.2 Previous Work 

The potential of plasmonics to bridge the gap between electronics and photonics 

is now well recognized by the scientific community with a large number of investigators 

working in the field [9]. In 2008, Brongersma et al. demonstrated all-optical switch based 

on SPP waveguide that uses metallic (passive) nanostructures coupled with active 

PMMA films with photochromic molecules [9]. Unfortunately, the switching rates of the 

photochromic molecules were low (~20 ns) [9]. The active electronically controlled 

plasmonic element has been demonstrated as a selective ring resonator switch [48] where 
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the SPPs are controlled by induced small refractive index changes of order 10-3. A sub-

micron bidirectional all-optical plasmonic switch with asymmetric T-shape single slit was 

recently demonstrated with transmission modulation of -6 dB [49]. All-optical absorption 

and gain-assisted switching were demonstrated using the SPP waveguide coupled with 

PMMA films [8] and a cavity filled with a semiconductor (InGaAsP) gain material [50]. 

A metal-oxide-Si field effect plasmonic modulators, and all-optical modulation by 

plasmonic excitation of CdSe quantum dots have been investigated at visible and 

telecommunication frequencies [13] [51].  

Recently, a fast-all-optical switch based on a carbon nanotube metamaterial has 

been proposed; however, the device shows a rather low transmission modulation of less 

than 10% [52]. The SPP modulation rates so far demonstrated a range from a few kHz 

[13] to tens of MHz [53-55]. Overall, the rapid progress in the past few years have shown 

that (i) exceedingly fast (tens of Gbit/s) optoelectronic switching can be achieved using 

dielectric components. However, the device sizes are large (> 100𝜇𝑚2) and the signal 

modulation is relatively low (few dB), while (ii) metal-based plasmonic modulators can 

have small sizes (< 1 𝜇𝑚2). However, an efficient switching mechanism is still to be 

identified. Despite the progress, it is arguable that in order for optoelectronic devices to 

compete with their all-electronic counterparts, a signal modulation surpassing  -10 dB 

and bandwidths beyond the current limit of 10 GHz must be achieved.  

Alternatively, to address the above-mentioned shortcoming related to SLM, 

different methods have been proposed. These include the use of higher power lasers to 

melt multiple layers at the same time [56], or the use of multiple lasers [57]. Increase in 

SLM productivity has been achieved by using up to four lasers simultaneously and by 
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implementing the hull-core scanning strategy [58]. Unfortunately, limited installation 

space for optical components hinders further increase in the number of lasers. Moreover, 

the hull-core strategy mainly offers significant benefits to parts requiring heavy wall-

thickness that are usually not manufactured using SLM. Hence, there is a clear need for 

alternative paths toward improved productivity. Currently, the SLM process is limited by 

the maximum laser energy deposited in the powder bed, which mainly depends on 

material properties (absorbance) as well as SLM process scan rates. Therefore, in order to 

improve productivity, a comprehensive understanding of the complex laser-matter 

interactions with the powder bed is required. Also, experimental and numerical 

approaches have been proposed to study the complex multiphysics involved in SLM 

metal powder materials [59-63]. The analysis of the absorption of electromagnetic energy 

from the laser is usually based on the solution of the corresponding diffraction problem 

under the ray approximation while the wave nature of the interactions, including 

excitation of cavity and especially surface resonances are commonly neglected [64-68].  

1.3 The significance of this Work 

The available literature related to plasmonic switching shows an emphasis on 

control and modulation of SPPs on metal surfaces; however, not much attention is being 

paid on the fact that due to the extremely high plasma frequencies inherent to noble 

metals (for silver 𝜔𝑝 = 9 eV) there is a substantial bandwidths mismatch with electronics 

that cannot be easily bridged. In this dissertation, we demonstrate efficient excitation and 

active control of SPPs at the interface of highly doped 𝑁-type and 𝑃-type 

semiconductors. Utilizing highly doped semiconductor material serves three distinct 

purposes: (i) act as a metal-like interface to allow propagation of SPPs, (ii) allow fast 
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electronic switching of the SPP facilitated by a PN-junction, and (iii) provides an 

operation frequency that is tunable across the THz frequency range. In particular, to study 

the complex multiphysics involved in the semiconductor based plasmonic switch, we 

developed a numerical framework to self-consistently solve the Maxwell’s, Poisson-

Boltzmann, drift-diffusion and heat equations. This model allows for accurate simulations 

of the excitation and electro-optical and all-optical control of the SPPs, the minority 

carrier transport across the PN +- junction, the spatially and time dependent local 

permittivity variations under external bias, and the introduction of thermal effects due to 

Ohmic heating and electromagnetic energy dissipation. 

Alternatively, the available literature associated with Selective Laser Melting 

(SLM) technology mainly focuses on the analysis of the laser energy absorption based on 

the solution of the corresponding diffraction problem under the ray approximation. In this 

dissertation, we consider the commonly neglected wave nature of the interactions leading 

to new physics including excitation of the cavity and especially surface resonances. Thus, 

we show that further optimization in the energy absorption by the metal powders could be 

achieved by laser action on metal particles if the laser pulse with frequency is closely 

tuned to the particle’s SPP resonances, resulting in localized electron excitations, and 

leading to the optical resonance phenomena [69-72]. To study the complex multiphysical 

phenomena involved in actual powder beds, where length scales can vary from 

nanometers into tens of micrometers, here we have developed a general numerical and 

high-fidelity analytical model which can describe the system beyond the ray 

approximation. Most importantly, for the first time, the electromagnetic interactions with 

dense powder beds are investigated under full-wave formalism. Localized gap and 
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surface plasmon polariton resonance effects are identified as possible mechanisms toward 

improved absorption in small and medium-size titanium powder beds. 

The work done for this dissertation has contributed to the publications [120-128]. 

1.4 Organization of this Dissertation 

The remainder of the dissertation is organized as follows. Chapter 2 presents an 

overview of the fundamentals of light-matter interactions. It also presents studies of the 

dispersion relations of guided modes (including SPPs) in 3-layer configuration such as 

dielectric-dielectric-metal structures. Chapter 3 investigates a novel semiconductor-based 

optoelectronic switch called Surface Plasmon Polariton Diode (SPPD). It also provides an 

explicit description of SPPs at degenerate semiconductor interfaces. Chapter 4 discusses a 

novel all-optical plasmonic switch. Chapter 5 presents experimental data and analysis 

related to the proposed optoelectronic switch.  Chapter 6 presents the surface plasmon 

induced enhancements in SLM powder beds. 
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CHAPTER 2 

 

LIGHT MATTER INTERACTIONS 
 

  Before exploring the rich Multiphysics phenomenon involved in plasmonic 

devices and laser interaction with metal powder beds, first, we briefly discuss the basic 

physical concepts which are critically needed to comprehend the more detailed 

discussions in the following chapters. 

The fundamental processes involved when light interacts with matter are in 

principle described more precisely by the means of quantum theory. This can be 

explained in three basic processes. For simplicity, let us consider a 2-level atom with a 

lower energy state 𝐸1 and a higher energy state 𝐸2. (i) Absorption is when an incident 

radiation gets absorbed, the atom uses the absorbed energy to jump into a higher energy 

state. The transition energy equates the difference between the two levels such that ℎ𝜈 =

𝐸2 − 𝐸1, where ℎ is the plank’s constant and 𝜈 is the frequency of the incident radiation. 

(ii) spontaneous emission is the electron in the higher energy state that can fall into the 

lower energy level with the emission of energy equal to ℎ𝜈 being sent out as a photon. 

The last process for the light-matter interaction is (iii) stimulated emission is where the 

excited electron in the upper energy level can be triggered to jump to the lower energy 

state by an incoming radiation. Scattering and absorption fits quite well into the above 

described elementary processes.  
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Scattering of light by spherical particles is one of the fundamental problems of 

electrodynamics. It is a classical subject for which a theory was developed long ago, and 

it includes both the near and far field interactions. Light scattering due to particles that 

are considerably smaller than the light wavelength is known as Rayleigh scattering 

developed by Lord Rayleigh in 1871 [73]. For particles with sizes on the order of light 

wavelengths or larger, the scattering takes place mainly in the forward direction known as 

Mie scattering developed by Gustav Mie in 1908 [74]. Until recently, the interest was 

mainly towards far-field effects. Due to the advances in nanotechnology and specifically 

nano-optics, the rich physics behind the near-field effects are presently being explored. 

This comprise of the scattering of light intensities with spatial variations shorter than the 

incident wavelength, a phenomenon that enables new underlying physics, both linear and 

nonlinear effects, at the nanoscale. In this dissertation, we explore the possible benefits of 

SPPs towards optoelectronic, all-optical plasmonic devices with potential applications in 

optical computing and sensing. Also, for the first time, we study the SPP enhancements 

in SLM metal powder beds. 

2.1 Introduction to Plasmonics 

Plasmonics is the sub-field of photonics devoted to the study of SPPs, a collective 

electron oscillation that propagates at the interface between a dielectric and a metal. 

Surface plasmons have been investigated for over a century, starting from experiments 

using diffraction gratings used for optical characterization, theoretical work by Rayleigh 

on diffraction [73], Zenneck's and Sommerfeld's work on surface waves [75] and later 

improvements in the understanding of metals, especially using the Drude's behavior [76].  

Ritchie [77] was the first researcher to study the propagating surface plasmons. He has 
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first observed that the free electrons on the surface of the metal can attain coherent 

fluctuations which are called surface plasma oscillations. Later, the existence of the 

coherent fluctuations has been demonstrated in electron energy-loss experiments 

conducted by Powell and Swan [78].  

One of the key concepts related to SPPs is its dispersion relation. This is the 

origin of understanding the coupling of light to SPPs. Moreover, dispersion relation 

benefits in predicting the matching of localized surface plasmons (LSPs) and SPPs to 

achieve highly enhanced electromagnetic field transmission. Close observation of the 

SPP dispersion relation suggests that the SPPs cannot be excited when the light is 

incident directly on to a flat metal-dielectric interface. This is because of the wavevector 

mismatch between the incident light and corresponding SPP mode. Therefore, we need 

special mechanisms that can assist in providing additional momentum essential for the 

coupling of incident light to the metal-dielectric interface.  The preceding sections are 

devoted to the basic background and theory of SPPs, excitation mechanisms, and 

applications of SPPs in the light guiding. 

2.1.1 Theory of Surface Plasmon Polaritons 

Figure 2-1 depicts the simplest geometry sustaining the SPPs. To investigate the 

properties of the SPPs, we need to study the dispersion relation of SPPs at the flat 

interface between a metal (𝑦 < 0) and a dielectric (𝑦 > 0). Metal exhibits complex 

dielectric constant 휀1, in which the real part 𝑅𝑒[휀1] < 0 is negative and the top dielectric 

layer has positive dielectric constant 휀2 > 0.  
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Figure 2-1: Schematic of the surface charges and the electromagnetic field of SPPs 

propagating on a metal surface in the x-direction. The exponential dependence of the field 𝐸𝑦 is 

seen on the right.  𝐻𝑧 shows the magnetic field in the z-direction of the p-polarized wave. 

Let us assume an electromagnetic wave propagating along the x-direction with 

wavevector 𝑘𝑥 at the interface of two materials (see Figure 2-1).  Here we consider a 

polarized transverse magnetic (TM) wave in the z-direction �⃗⃗� = 𝐻(𝑥, 𝑦)�̂� bound to the 

surface; the field has its maximum at the interface and decays exponentially into both 

materials. The frequency 𝜔, of these longitudinal oscillations, is tied to its wave vector 

𝑘𝑥 by a dispersion relation 𝑘𝑥(𝜔). The SPPs dispersion relation is obtained by enforcing 

the appropriate boundary conditions and solving the wave equations of the magnetic field 

in both materials 

𝜕2 �⃗⃗� 1
𝜕𝑥2

+
𝜕2 �⃗⃗� 1
𝜕𝑦2

=
휀1𝜇1
𝑐2

𝜕2 �⃗⃗� 1
𝜕𝑡2

,      𝑦 < 0 Eq. 2-1 

and 

𝜕2 �⃗⃗� 2
𝜕𝑥2

+
𝜕2 �⃗⃗� 2
𝜕𝑦2

=
휀2𝜇2
𝑐2

𝜕2 �⃗⃗� 2
𝜕𝑡2

,       𝑦 > 0 Eq. 2-2 

where 휀1, 𝜇1, and �⃗⃗� 1 are the relative permittivity, permeability and the magnetic field of 

the material (1), respectively, and 휀2 , 𝜇2, and �⃗⃗� 2 correspond to the material (2), 𝑐 is the 

speed of light in the vacuum which can be written as 𝑐 = 1/√휀0𝜇0, where 휀0 and 𝜇0 are 
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the permittivity and permeability of free space. We notice that most normal materials 

have permeability equal to unity (𝜇1 = 𝜇2 = 1). Assuming a harmonic propagation with 

frequency 𝜔, we seek a solution of the governing Eq. 2-1 and Eq. 2-2 in the form of 

plane waves, and the 𝑧-polarized magnetic field can be expressed as 

�⃗⃗� 1(𝑥, 𝑦) = �̂� 𝐻1𝑒
𝑖(𝑘𝑥𝑥+𝑘𝑦1𝑦)𝑒−𝑖𝜔𝑡 , 𝑦 < 0 Eq. 2-3 

and 

�⃗⃗� 2(𝑥, 𝑦) = �̂� 𝐻2𝑒
𝑖(𝑘𝑥𝑥−𝑘𝑦2𝑦)𝑒−𝑖𝜔𝑡 ,          𝑦 > 0 Eq. 2-4 

where 𝑘𝑥 is the SPP wave vector, and the transversal wave vectors 

𝑘𝑦1, 𝑘𝑦2 corresponding to material (1) and the material (2) are given as 

𝑘𝑦1
2 = 휀1𝑘0

2 − 𝑘𝑥
2 𝑎𝑛𝑑   𝑘𝑦2

2 = 휀2𝑘0
2 − 𝑘𝑥

2
 Eq. 2-5 

where 𝑘0 = 𝜔/𝑐 is the free space wave vector. Furthermore, we can estimate the 

electrical field by using Maxwell’s curl equation (Ampere’s law): 

𝛻 × �⃗⃗� (1,2) =
𝜕�⃗⃗� (1,2) 

𝜕𝑡
  Eq. 2-6 

where we assume zero conduction currents   𝐽 = 0 and �⃗⃗� (1,2) is the magnetic field 

corresponding to material (1) and material (2). The electrical field displacement for 

material (1) and material (2) respectively is written as �⃗⃗� (1,2) = 휀(1,2)�⃗� . For harmonic 

oscillation, we again write it as �⃗� (𝑡) = 𝐸0𝑒
−𝑖𝜔𝑡 , where 𝐸0 is the amplitude of the 

electrical field. Then from Eq. 2-6, we obtain 

�⃗� 1, = (−
1

𝑖휀1𝜔
)(
𝜕�⃗⃗� 1
𝜕𝑦

 𝑥 −
𝜕 �⃗⃗� 1
𝜕𝑥

�̂�) Eq. 2-7 

�⃗� 2 = (−
1

𝑖휀2𝜔
)(
𝜕�⃗⃗� 2
𝜕𝑦

 𝑥 −
𝜕�⃗⃗� 2
𝜕𝑥

�̂�) Eq. 2-8 
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The continuity at the boundary (𝑦 = 0) results in 𝐸1𝑥 = 𝐸2𝑥 and �⃗⃗� 1 = �⃗⃗� 2. This leads to 

–𝑘𝑦1

𝜀1�⃗⃗� 1
=

𝑘𝑦2

𝜀2�⃗⃗� 2
, resulting in: 𝑘𝑦1휀2 = −𝑘𝑦2휀1. Since the SPPs field is confined to the 

interface and evanescently decays in the y-direction, the conditions 𝑅𝑒[𝑘𝑦1] > 0 and 

𝑅𝑒[𝑘𝑦2] > 0 necessitates in 𝑅𝑒[휀1] < 0 if 휀2 > 0. For most metals and dielectrics, this 

condition is satisfied in the visible and infrared wavelength range. The above analysis 

describes the existence of the SPPs for the TM polarization. Next, substituting 𝑘𝑦1 and 

𝑘𝑦2 results in SPP dispersion relation for the wave propagating in the x-direction as  

𝑘𝑥 = 𝑘0𝑛𝑠𝑝𝑝 = 𝑘0 √
휀1휀2
휀1 + 휀2

= 𝑘𝑠𝑝𝑝  Eq. 2-9 

where 𝑛𝑠𝑝𝑝 is the refractive index of SPP. SPPs propagate at the interface of metal-

dielectric  with the  phase velocities below the speed of light in the dielectric medium and 

it could not exist for frequencies above SPPs resonant frequency; 𝜔𝑠𝑝 = 𝜔𝑝/√1 + 휀1, 

where 𝜔𝑝 is the plasma frequency of the bulk material, for silver ℏ𝜔𝑝 = 9.1 𝑒𝑉 [79]. In 

the calculations pertaining to the SPP dispersion relation, generally, the permittivity of 

the metal is assumed by the Drude Model. 

2.1.2 The Drude Model and Dispersion Relation 

The Drude Model explains the transport properties of electrons in the metal and 

free carriers in heavily doped semiconductors. The model assumes a sea of constantly 

jittering electrons bouncing and re-bouncing off heavier and relatively immobile positive 

ions. The model gives the complex permittivity of metal as a function of frequency and it 

describes how the electric field of light interacts with the free electrons in the metal 

which cause them to oscillate until their motions are damped [80] [81]. The complex 

permittivity of the metal is given by 
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 휀𝑚(𝜔) = 휀𝑚
′ + 𝑖휀𝑚

′′ = 휀∞ −
𝜔𝑝

2

𝜔 (𝜔 + 𝑖𝜔𝜏)
 Eq. 2-10 

The real and imaginary parts of Drude permittivity are given as 

휀𝑚
′ = 휀∞ −

𝜔𝑝
2

𝜔2 +𝜔𝜏
2
  , 휀𝑚

′′ =
𝜔𝜏 𝜔𝑝

2

𝜔(𝜔2 +𝜔𝜏
2)

 Eq. 2-12 

where 𝜔𝑝 is the intrinsic bulk plasma frequency that lies in UV for most metals, 휀∞ is the 

high frequency dielectric permittivity, 𝜔𝑝 = √
𝑛𝑒𝑒2

𝜀0𝑚𝑒
 is the plasma frequency of the free 

eletron gas (𝑛𝑒 is the number density of the electron gas; 𝑚𝑒 is the effective mass of the 

electron in the material) and 𝜔𝜏 is the damping factor. The wave vector of SPPs at the 

interface of air-silver is illustrated in Figure 2-2.  

 

Figure 2-2: Wave vector of SPPs (𝑘𝑠𝑝𝑝) propagating on silver/air interface (red curve). The 

green line represents the wave vector of light in air (𝑘0), while the blue dotted line corresponds 

to the surface plasmon frequency 𝜔𝑠𝑝 = 𝜔𝑝/√휀𝑑 + 휀𝑚. 

Here, 𝑘𝑠𝑝𝑝 at the interface of Air/Silver calculated using the Drude parameters 

given as 𝜔𝜏 = 5.139 THz, 𝜔𝑝 = 2.186 PHz and 휀∞ = 5 [82]. From Figure 2-2 we 

observe that at low frequencies, the 𝑘𝑠𝑝𝑝 (red curve) matches with that 𝑘0. However, as 
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the frequency increases, 𝑘𝑠𝑝𝑝 becomes much larger than the 𝑘0. The peak of the SPP 

wavevector represents the 𝜔𝑠𝑝 = 𝜔𝑝/√휀𝑑 + 휀𝑚 (for silver 𝜔𝑠𝑝 = 977 THz), below 

which SPPs can be excited. Since the 𝑘𝑠𝑝𝑝 is inversely related to the SPP wavelength 

(𝜆𝑠𝑝𝑝), we can observe that 𝜆𝑠𝑝𝑝 is much smaller than the wavelength of light in free 

space (𝜆) at the same frequency. This unique property of SPPs have led to numerous 

applications as described in the previous section.  Also, from Figure 2-2 we can observe 

a momentum mismatch between the 𝑘𝑠𝑝𝑝 and 𝑘0. Namely, the SPP momentum ℏ𝑘𝑠𝑝𝑝 is 

always greater than the momentum of light in free space ℏ𝑘0. To conserve the energy and 

momentum, we need to couple the 𝑘0 with the 𝑘𝑠𝑝𝑝 by employing special coupling 

mechanisms like prism or a grating coupler which are described in the preceding sections. 

Wave vectors 𝑘𝑦1and 𝑘𝑦2 are imaginary due to the relations 𝑘0 < 𝑘𝑠𝑝𝑝 and 

𝑅𝑒[휀1] = 휀1
′ < 0, so that as described above, the field amplitude of the SPP decays 

exponentially as exp (−|𝑘𝑦(1,2)||𝑦|), normal to the surface. The value of the skin depth at 

which the field falls to 1/𝑒 becomes 

�̂�2 =
𝜆

2𝜋
 (
휀1
′ + 휀2
휀2
2 )

1/2

,        𝑦 > 0 Eq. 2-12 

�̂�1 =
𝜆

2𝜋
 (
휀1
′ + 휀2

휀1
′2

)

1/2

,        𝑦 < 0 Eq. 2-13 

For 𝜆 = 0.6 𝜇𝑚, one obtains for silver �̂�2 = 0.39 𝜇𝑚 and  �̂�1 = 0.024 𝜇𝑚, and for gold 

0.28 𝜇𝑚 and 0.031 𝜇𝑚, respectively. At large 𝑘𝑠𝑝𝑝, �̂�(1,2) is given by 1/𝑘𝑠𝑝𝑝 leading to a 

strong confinement of the field near the interface of both media. At low 𝑘𝑠𝑝𝑝 or large |휀1
′ | 

values, the field in the air has a strong (transverse) component 𝐸𝑦 compared to the 

longitudinal component 𝐸𝑥, namely 𝐸𝑦 𝐸𝑥 = −𝑖|휀1
′ |1/2⁄  and extends far into the 
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dielectric; it resembles a guided photon field (Zenneck-Sommerfeld wave). In the metal, 

𝐸𝑦 is small in comparison to 𝐸𝑥 since 𝐸𝑦 𝐸𝑥 = 𝑖|휀1
′ |−1/2⁄ . These relations are derived 

from ∇. 𝐸 = 0, which is valid outside the surface air/metal. At large 𝑘𝑠𝑝𝑝 both 

components 𝐸𝑥 and 𝐸𝑦 become equal: 𝐸𝑦 = ±𝑖𝐸𝑥 (air: +𝑖, metal: −𝑖). 

 The intensity of the SPP propagating along the interface of the dielectric-metal 

decreases as 𝑒−2𝑘𝑠𝑝𝑝
′′ 𝑥. The 𝑙𝑠𝑝𝑝 (propagation length of the SPP) after which the SPP field 

intensity decreases to  1/𝑒 is given by 𝑙𝑠𝑝𝑝 = (2𝐼𝑚[𝑘𝑠𝑝𝑝])
−1

. In the visible region, 𝑙𝑠𝑝𝑝 

reaches the value of 22 𝜇𝑚 in silver at 𝜆 = 0.5 𝜇𝑚 and 𝑙𝑠𝑝𝑝 = 500 𝜇𝑚 at 𝜆 = 1.06 𝜇𝑚. 

The absorbed energy at the interface of the dielectric-metal eventually heats the metal 

layer.  

2.1.3 SPPs in Semiconductors 

Intrinsic semiconductors can be tuned to attain diverse electric properties by 

doping with acceptor impurities (boron) which result in a P-type semiconductor with 

donor impurities (phosphorous) and will result in N-type semiconductor [80]. In N-type 

semiconductors, electrons are the majority carriers and the holes are the minority carriers, 

whereas it is the opposite in the P-type semiconductor. Doping with N-type impurities 

can result in obtaining optical properties similar to metal. Like metals, when the light is 

incident on the N-type semiconductor, it can excite collective electron oscillation and can 

generate SPPs. Similar to metals, the optical response of highly doped degenerate 

semiconductors can be characterized by the Drude Model with permittivity given as 

휀(𝜔) = 휀𝑏 − 𝜔𝑝
2(𝑛, 𝑇)/(𝜔2 + 𝑖𝜔𝜔𝜏(𝑛)) , where the bound electron permittivities are 

휀𝑏 = 11.6 for Si, 12.6 for GaAs and 13.9 for In0.53Ga0.47As [83]. An important difference 

to note is that both the plasma frequency, 𝜔𝑝 = 𝑒√𝑛(𝑇)/휀0𝑚𝑒, and relaxation rate, 𝜔𝜏 =
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𝑒/𝑚𝑒𝜇(𝑛, 𝑇), now depend on the doping concentrations and local temperature, where 𝑛 

is the electron doping concentration, 𝑒 is the electron charge, 휀0 is the permittivity of free 

space, 𝑚𝑒 is the effective electron mass, and 𝜇 is the mobility of electrons. For the 

semiconductor materials considered in this dissertation: n-GaAs, n-Si and n-In0.53Ga0.47As  

the effective mass is by given as 𝑚𝑒 (𝐺𝑎𝐴𝑠) = 0.067 ×𝑚0 [84], 𝑚𝑒 (𝑆𝑖) = 0.26 × 𝑚0 [84] 

and 𝑚𝑒 (In0.53Ga0.47As) = 0.041 × 𝑚0 [85], where 𝑚0is the mass of the electron. 

Doping dependence of 𝜔𝑝 and 𝜔𝜏 allows for fine tuning of the optical properties 

of the doped semiconductors at far-infrared and THz frequencies. Figure 2-3 (a) shows 

the plasma frequency for n-GaAs, n-Si and n-In0.53Ga0.47As calculated as the function of 

the doping concentration.  

 

Figure 2-3: (a) Plasma frequencies versus the doping concentration. (b) Relaxation frequencies 

versus the doping concentration The blue line is n-In0.53Ga0.47As, the green line is n-GaAs and 

the red line is n-Si. 

Here, we can observe that the plasma frequency is a strong function of doping 

concentration and increases with the doping. The n-In0.53Ga0.47As, which is represented 

by the red line, has higher plasma frequency compared to n-Si and n-GaAs. This is 
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because of the direct consequence of the smaller effective mass of electrons in n- 

In0.53Ga0.47As. Similarly, Figure 2-3 (b) shows the effect of doping on the damping 

frequency 𝜔𝜏. We can clearly observe that higher 𝜔𝜏 is a strong function of  𝜇: higher the 

𝜇 lower the damping of the electron oscillation. This is because 𝜇 has a strong 

dependency on doping concentration [86] [87] [88]. 

2.1.4 SPP Dispersion Relation-Multilayer System 

In this section, we study the dispersion relation of the SPPs in a multilayer 

geometry consisting of alternating, conducting and dielectric thin films. In such systems, 

both the interfaces can sustain individual bound SPPs. Also, if the thickness of the middle 

layer is comparable or smaller than the decay length (Eq. 2-12 and Eq. 2-13) of the 

interface mode. The interactions between the bound SPPs will result in coupled modes. 

Figure 2-4 depicts the multilayer geometry under consideration. 

 

Figure 2-4: Geometry of a three-layer system consisting of a thin layer (2) with permittivity 휀2 

is sandwiched between two infinite half spaces (1) and (3). 

To investigate the properties of the coupled modes for the multilayer geometry shown in 

Figure 2-4, first, it is assumed that SPPs propagate along the x-direction and there is no 

spatial variation along the y-direction.  
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𝐻𝑦(𝑧) = 𝑒
−𝑖𝛽z 

{
 
 

 
 𝐻1𝑒

−𝑘1z ,                              𝑧 >
𝑎

2

𝐻2
−𝑒−𝑘2z +𝐻2

+𝑒𝑘2z ,          −
𝑎

2
< 𝑧 <

𝑎

2

𝐻3𝑒
𝑘3z ,                              𝑧 < −

𝑎

2

  Eq. 2-14 

𝐸𝑥(𝑧) = 𝑒
−𝑖𝛽z 

{
  
 

  
 𝑖𝐻1𝑘1𝑒

−𝑘1z 
1
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𝑎

2

(𝑖𝐻2
−𝑘2𝑒

−𝑘2z − 𝑖𝐻2
+𝑘2𝑒

𝑘2z )
1

𝜔휀0휀2
,    −

𝑎

2
< 𝑧 <

𝑎

2

𝑖𝐻3𝑘3𝑒
−𝑘3z 

1

𝜔휀0휀3
,                              𝑧 < −

𝑎

2

 Eq. 2-15 

Continuity condition for a p-polarized wave: 𝐻1,𝑦 = 𝐻2,𝑦 and  
1

𝜀1

𝜕𝐻1,𝑦

𝜕𝑧
=

1

𝜀2

𝜕𝐻2,𝑦

𝜕𝑧
. 

Applying the above continuity condition at the interfaces, 𝑧 =
𝑎

2
 and 𝑧 = −

𝑎

2
 results in 

Boundary 1-2 (𝑧 =
𝑎

2
) 

𝐻1𝑒
−𝑘1

𝑎
2
 = 𝐻2

−𝑒−𝑘2
𝑎
2
 +𝐻2

+𝑒𝑘2
𝑎
2
 
 Eq. 2-16 

𝑘1
휀1
𝐻1𝑒

−𝑘1
𝑎
2
 =

𝑘2
휀2
𝐻2
−𝑒−𝑘2

𝑎
2
 −

𝑘2
휀2
𝐻2
+𝑒𝑘2

𝑎
2
 
 Eq. 2-17 

Boundary 2-3 (𝑧 = −
𝑎

2
) 

𝐻1𝑒
−𝑘1

𝑎
2
 = 𝐻2

−𝑒−𝑘2
𝑎
2
 +𝐻2
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𝑎
2
 
 Eq. 2-18 

𝑘3
휀3
𝐻3𝑒

−𝑘3
𝑎
2
 =

𝑘2
휀2
𝐻2
−𝑒−𝑘2

𝑎
2
 −

𝑘2
휀2
𝐻2
+𝑒𝑘2

𝑎
2
 
 Eq. 2-19 

 

Let us substitute 𝑅𝑖 =
𝑘𝑖

𝜀𝑖
 and substitute Eq. 2-16 in Eq. 2-17; Eq. 2-18 in Eq. 2-19 and 

multiply by 𝑒𝑘2
𝑎

2
 
 

𝑅1(𝐻2
− +𝐻2

+𝑒𝑘2𝑎) = 𝑅2(𝐻2
− −𝐻2

+𝑒𝑘2𝑎) Eq. 2-20 

𝑅3(𝐻2
+ +𝐻2

−𝑒𝑘2𝑎) = 𝑅2(𝐻2
+ −𝐻2

−𝑒𝑘2𝑎) Eq. 2-21 

The original system of four variables is now reduced to two 
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𝑒2𝑎𝑘2 =
(𝑅1 − 𝑅2)(𝑅3 − 𝑅2)

(𝑅1 + 𝑅2)(𝑅3 + 𝑅2)
 Eq. 2-22 

𝑒2𝑎𝑘2 =
(𝑘1 휀1⁄ − 𝑘2 휀2⁄ )(𝑘3 휀3⁄ − 𝑘2 휀2⁄ )

(𝑘1 휀1⁄ + 𝑘2 휀2⁄ )(𝑘3 휀3⁄ + 𝑘2 휀2⁄ )
 Eq. 2-23 

where 휀1, 휀2, and 휀3 are the dielectric permittivity’s of  the three mediums, 𝑎 is the 

thickness of the middle layer, and 𝑘𝑙 = √𝑘𝑠𝑝𝑝2 − 휀𝑙𝑘0
2 are the transversal SPP 

wavevectors in the three layers 𝑙 ∈  {1,2,3}.   

2.1.5 Propagation Properties of SPP 

Previous sections describe the basics of the SPPs. In this section, we talk about 

the propagation properties of SPPs. Two critical parameters that determine mode 

characteristics of SPPs are the 𝑙𝑠𝑝𝑝 = (2𝑘𝑥
′′)−1 = 𝜆/(4𝜋𝑛𝑠𝑝𝑝

′′ ) and the normalized mode 

area 𝐴, defined as [11] 

𝐴 =
𝐴𝑚
𝐴0

=
∬ 𝑊(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

𝑚𝑎𝑥 [𝑊(𝑥, 𝑦)]
 ×

1

𝐴0
 Eq. 2-24 

where 𝜆 is the operating wavelength, 𝑛𝑠𝑝𝑝
′′ is the imaginary part of the SPP effective 

refractive index, 𝐴𝑚 is the mode area, 𝐴0 = 𝜆
2/4 is the diffraction limited mode area, 

and the energy density 𝑊(𝑥, 𝑦) is defined as 

𝑊(𝑥, 𝑦) =
1

2
𝑅𝑒 {

𝑑[𝜔휀(𝑥, 𝑦)]

𝑑𝜔
} |𝐸(𝑥, 𝑦)|2 +

1

2
𝜇0|𝐻(𝑥, 𝑦)|

2 Eq. 2-25 

where 𝐸(𝑥, 𝑦) and 𝐻(𝑥, 𝑦) are the electric and magnetic fields, respectively. From Eq. 

2-24 and Eq. 2-25. we can deduce that a larger value of 𝐴 corresponds to a lower degree 

of mode confinement. Hence, there is a need for the trade-off. For device geometry 

shown in Figure 2-4, both   asymmetric mode (SM) and asymmetric mode (ASM) of 

SPPs can be possible. For a metal insulator metal (MIM) waveguide, for the fundamental 
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ASM, it is shown to have a critical cut-off thickness for the central dielectric layer which 

is equal to 𝜋𝑐/𝜔√휀1  [89], while the fundamental SM does not exhibit the cutoff 

thickness for the central dielectric layer. In other words, the field of an SM can be 

confined into a central dielectric region with an arbitrarily small thickness, indicating it 

can provide a very high level of confinement (A~𝜆2/500), which was demonstrated in 

[28]. It is far beyond the diffraction limit. However, such strong mode confinement is 

achieved at the cost of the propagation length, which is in the order of a few micrometers 

(𝑙𝑠𝑝𝑝~10 𝜇𝑚 [90]). 

The propagation length for the long-range SPP (LRSPPs) mode can be up to a few 

centimeters (𝑙𝑠𝑝𝑝~20 𝑚𝑚 [15]). Such large 𝑙𝑠𝑝𝑝 is accompanied by a very poor mode 

confinement (here, the mode area is comparable to that of the optical fiber mode [90]). 

Also, it has been demonstrated that a dielectric loaded SPP (DLSPPs) can provide a 

modest mode confinement (A~0.16 𝜆2) [91] as well as a fairly good propagation length 

(𝑙𝑠𝑝𝑝~100 𝜇𝑚) [91]. 

2.1.6 SPP Excitation Methods 

As described above, to compensate for the momentum mismatch between 𝑘0 and 

the 𝑘𝑠𝑝𝑝 at the metal-dielectric interface, we need special mechanisms to couple the 

incident light to the SPP. Special excitation techniques are employed for launching SPP, 

for example, prism coupling [92], grating coupling [93], near field excitation [94], and 

highly focused laser beam excitation [95]. Here, we present the two most popular 

techniques, prism coupling and grating coupling [76]. 
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2.1.6.1 Grating Coupling 

Metal gratings can be used to compensate the wavevector mismatch between 

incident light and SPPs. Figure 2-5 depicts a grating coupler with a period of 𝛬, with air 

as the surrounding dielectric (휀2 = 1). When a light with wave vector 𝑘0 hits the metal 

grating at an incident angle 휃0, its surface component can have two wave vectors; 

𝑘0 sin 휃0 ±𝑚(
2𝜋

𝛬
), where m is an integer (𝑚 = 1,2,3… ). The dispersion relation Eq. 2-9 

can then be fulfilled by  

𝑘𝑠𝑝𝑝 = 𝑘0 𝑠𝑖𝑛 휃0 ±𝑚(
2𝜋

𝛬
) =  𝑘0 √

휀1휀2
휀1 + 휀2

 Eq. 2-26 

The incident light can be coupled to an SPP mode when 𝑚(
2𝜋

𝛬
) equals to the wavevector 

mismatch (∆𝑘 = 𝑘𝑠𝑝𝑝 − 𝑘0). In addition, it should be noted that the reverse process can 

also take place: SPPs propagating along the grating can reduce their wave vector 𝑘𝑠𝑝𝑝 by 

∆𝑘 so that the SPPs can be decoupled and transformed into light.  

 

Figure 2-5: Grating coupler: Matching incident light to SPP wavevector. 

2.1.6.2 Prism/ATR Coupling 

SPPs can be coupled in a three-layer system consisting of a thin metal film 

sandwiched between two insulators of different dielectric constants. For simplicity, here 
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we consider air as one of the dielectric layers (휀1 = 1) and prism with higher dielectric 

constant (휀2 > 1). A beam reflected at the interface between the prism (see Figure 2-7), 

and the metal will have an in-plane momentum 𝑘𝑥 = 𝑘0√휀2 sin 휃0, which is sufficient to 

excite SPPs at the interface between the metal and the lower-index dielectric, i.e. in this 

case at the metal/air interface. This way, SPPs with propagation constants 𝑘𝑠𝑝𝑝 between 

the light lines of air and the higher-index dielectric can be excited (see Figure 2-6). SPP 

excitation manifests as a minimum in the reflected beam intensity. Here, phase-matching 

to SPPs at the prism/metal interface cannot be achieved as the respective SPP dispersion 

line lies outside the prism light cone (see Figure 2-6). 

 

Figure 2-6: Prism coupling and SPP dispersion. Propagation constants between the light lines 

of air and the prism are accessible, resulting in additional SPP damping due to the leakage 

radiation into the latter; the excited SPPs have propagation constants inside the prism light 

cone. 

The above-described coupling system is also known as attenuated total internal 

reflection (ATR) -involving the tunneling of the fields of the excitation beam to the 
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metal/air interface where SPP excitation takes place. Two different geometries for prism 

coupling are possible, depicted in Figure 2-7. The most common configuration is the 

Kretschmann Method [96], in which a thin metal film is evaporated on top of a glass 

prism. Photons from a beam impinging from the glass side at an angle greater than the 

critical angle of total internal reflection tunnel through the metal film and excite SPPs at 

the metal/air interface. Another geometry is the Otto configuration [97], in which the 

prism is separated from the metal film by a thin air gap. Total internal reflection takes 

place at the prism/air interface, exciting SPPs via tunneling to the air/metal interface. 

Also, excitation of SPPs using a prism can be termed as the evanescent wave coupling 

mechanism. 

 

Figure 2-7: Prism coupling to excite SPPs using the attenuated total internal reflection in the 

(a) Kretschmann and (b) Otto configurations. 
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CHAPTER 3 

 

ACTIVE CONTROL OF CHARGE DENSITY WAVES AT 

DEGENERATE SEMICONDUCTOR INTERFACES 
 

  The field of plasmonics has experienced a renaissance in recent years by 

providing a large variety of new physical effects and applications. Surface plasmon 

polaritons, i.e. the collective electron oscillations at the interface of a 

metal/semiconductor and a dielectric, may bridge the gap between electronic and 

photonic devices, provided a fast switching mechanism is identified. In this chapter, we 

demonstrate a surface plasmon-polariton diode (SPPD), an optoelectronic switch that can 

operate at exceedingly large signal modulation rates. The SPPD is built by using heavily 

doped PN+-junction where surface plasmon polaritons propagate at the interface between 

N and P-type semiconductor layers and can be switched by an external voltage.  

Furthermore, we also present a comprehensive multi-physics study of the 

complex phenomena behind the SPPD operation and discuss the numerical framework 

developed to self-consistently solve the Maxwell’s, Poisson-Boltzmann, drift-diffusion, 

and heat equations. This model allows for accurate simulations of the excitation and 

electro-optical control of the SPPs, the minority carrier transport across the PN +- 

junction, the spatially and time-dependent local permittivity variations under external 

bias, and the introduction of thermal effects due to Ohmic heating and electromagnetic 

energy dissipation. Combined with the use of two Figures of Merits (FOMs), we 
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specifically perform studies to identify the best semiconductor material among Silicon, 

lattice matched Indium Gallium Arsenide (In0.53Ga0.47As) and GaAs that can offer SPPD 

operation with low loss, high tunability and extreme mode confinement which could 

potentially lead to smaller and low dissipation optoelectronic devices with high signal 

modulation. We also study the operation characteristics, transmission modulation of the 

SPPD. In addition, we also present the possible optoelectronic logic gates using the SPPD 

as an impute waveguide.  

Most importantly, in the current study, we consider the constraints imposed by the 

present micro and nanomanufacturing technology by using realistic doping 

concentrations and electromagnetic frequency range of operation that is accessible 

through experimentation, specifically using CO2 or quantum cascade lasers (QCL) [102] 

[70]. 

3.1 Surface Plasmon Polariton Diode 

Basic schematic of the SPPD is shown in Figure 3-1. It consists of a PN + - 

junction made of highly doped (degenerate) semiconductor with an active drift-diffusion 

region formed between two control electrodes. When a forward bias is applied across the 

device, minority carriers (electrons) are injected in the P- doped layer altering its 

dielectric constant 휀𝑝. For applied voltage higher than a critical value 𝑉 > 𝑉𝑐, the P- layer 

acquires a metal like characteristics impeding the propagation of the SPP across the 

active region and establishing the OFF state of the device. For a given operation 

frequency 𝜔, the critical voltage can be obtained from the transparency condition 𝜔 =

𝜔𝑝(𝑉𝑐)/√휀𝑏 (or 휀𝑝(𝜔, 𝑉𝑐) = 0), and the carrier balance equation 𝑛 = 𝑛𝑐 ≈ 𝑛0𝑒
𝑉𝑐/𝑉𝑇, 

giving 
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𝑉𝑐 = 𝑉𝑇ln [
휀𝑏𝜔

2

𝜔𝑝0
2 ] Eq. 3-1 

where 𝜔𝑝0 = 𝑞𝑛𝑖(𝑇)/√휀𝑏𝑚𝑒𝑁𝐴 is the renormalized plasma frequency of the minority 

carriers under thermal equilibrium, 𝑚𝑒 is the electrons effective mass in the P- layer, 휀𝑏 

is the contribution of the lattice electrons to the semiconductor permittivity, 𝑉𝑇 =

𝑘𝐵𝑇/𝑞 = 0.026V is the thermal voltage, 𝑛0 = 𝑛𝑖
2/𝑁𝐴 where  𝑛𝑖 is the intrinsic 

concentration and 𝑁𝐴 is the acceptor doping concentration. In all calculations that 

follows, the SPPD geometric characteristics are fixed with the P- layer having a thickness 

of 𝑑 = 1.5 𝜇𝑚 and the overall length of the active drift-diffusion region is 𝑤 = 4 𝜇𝑚.  

The SPPD can be designed using a large variety of semiconductor materials.  

 

 

Figure 3-1: Basic schematic of a Surface Plasmon Polarition Diode (SPPD). 

3.2 Thermo-electro-optical Model 

Since the SPPD switching is due to injection of minority carriers in the presence 

of an external forward bias voltage, the flow of charge carriers is expected to result in 

Ohmic heating and a corresponding increase of metallurgical junction temperature. The 
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junction temperature is additionally influenced by the electromagnetic energy dissipation 

of the SPP. To have a proper understanding of the complex Multiphysics processes 

governing the SPPD operation, a self-consistent thermo-electro-optic model is developed. 

A finite difference integrated circuits COMSOL Semiconductor Module (CSM) is 

implemented to obtain the minority carriers distribution across the device, which is then 

used to extract the inhomogeneous dielectric function of the P-layer. Full-wave finite 

difference (FD) calculations of the SPPD electromagnetic response are then performed 

using the COMSOL Electromagnetic Module (CEM) (see Figure 3-2). As we see in the 

proceeding sections of this chapter, the SPPD response is also sensitive to the thermal 

effects due to Ohmic heating which is accounted for by the COMSOL Heat Transfer 

Module (CHTM). A seamless integration between the three physical modules is 

accomplished by developing a MATLAB based facilitator code which shares the inter-

dependent physics parameters between the separate modules and allows for self-

consistent steady-state and time-dependent simulations. 

 

Figure 3-2: Self Consistent thermo-electro-optic model. 
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3.3 The figure of Merit of SPPD 

The operation of the SPPD depends on a large set of parameters including donor 

and acceptor doping, temperature, applied bias, semiconductor materials, and device 

geometry. In this study, we focus on silicon (Si), lattice matched Indium Gallium 

Arsenide (In0.53Ga0.47As) and Gallium Arsenide (GaAs) based devices. These 

semiconductors are excellent candidates due to well-established manufacturing protocols 

at high (degenerate) doping levels and as shown next, these materials can also provide 

superior SPP characteristics. As described in Chapter 2, the SPPs at the metal-

semiconductor interfaces have wavelengths substantially shorter compared to those in the 

adjacent dielectric media. However, with the increased confinement/localization, there is 

a corresponding increase in propagation losses, thus for a practical application, a positive 

trade-off must be achieved between these two characteristics. To address this issue and 

provide a roadmap toward practically feasible SPPD, we introduce two figures of merit 

(FOM) to quantify the SPP localization and propagation characteristics. 

𝐹𝑂𝑀1 = |
𝑅𝑒[𝑘𝑆𝑃𝑃(𝜔,𝑁𝐷 , 𝑁𝐴)]

𝑅𝑒[𝑘𝑃(𝜔,𝑁𝐴)]
|

𝐹𝑂𝑀2 = |
𝑅𝑒[𝑘𝑆𝑃𝑃(𝜔,𝑁𝐷 , 𝑁𝐴)] − 𝑅𝑒[𝑘𝑃(𝜔, 𝑁𝐴)]

𝐼𝑚[𝑘𝑆𝑃𝑃(𝜔,𝑁𝐷 , 𝑁𝐴)
|

 Eq. 3-2 

The FOM1 is defined as the ratio of the SPP wavevector 𝑘𝑆𝑃𝑃 to the wavevector 

𝑘𝑃 of bulk waves propagating in the lightly P-doped layer (the dielectric layer) and is a 

measure of how much smaller in size the SPPD can be compared to conventional optical 

devices. The FOM2 describes both the SPPs localization and dissipation losses.  

An optimal SPPD design is determined by the parametric range where the two 

figures of merit are large. The FOMs for Si, In0.53Ga0.47As, and GaAs are calculated for 

practically feasible doping and frequency ranges as shown in Figure 3-3. As expected, 
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our parametric studies show that the SPPD can be formed with minimal physical sizes if 

the operational frequency is close to the surface plasmon frequency 𝜔𝑠𝑝~√𝑁𝐷. The 

lateral size of the SPPD can be a factor of two (in the case of Si) and a factor of four (in 

the case of In0.53Ga0.47As and GaAs) smaller than that of dielectric devices. However, at 

the surface plasmon frequency, the SPP are highly attenuated. Hence, operation at lower 

frequencies should be considered as shown by the second figure of merit so that positive 

tradeoff between localization and propagation losses is achieved. The data clearly 

demonstrates that SPPD based on In0.53Ga0.47As is expected to manifest both small device 

sizes and propagation length that is more than 100 times larger compared to the free 

space wavelength. In what follows, we fix the operation wavelength at 30 THz 

(corresponding to the free space wavelength of 10microns) and adjust the doping 

concentration accordingly so that an optimal operation is achieved. It must be also noted 

that in the performed parametric studies we have considered a range of doping 

concentrations consistent with experimentally attainable values for Si ( 𝑁𝐷 ≤

4 × 1026𝑚−3), In0.53Ga0.47As ( 𝑁𝐷 ≤ 8 × 10
25𝑚−3) [103] and GaAs ( 𝑁𝐷 ≤

6 × 1025𝑚−3). 
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Figure 3-3: The Surface Plasmon Polaritons (SPPs) Figures of Merit (FOM) vs. frequency and 

doping for (a,b,c) Si and (d,e,f) In0.53Ga0.47As. 

3.4 SPPD Operational Characteristics 

3.4.1 Steady State Analysis 

Using the numerical model, we begin our study of the SPPD input-output 

characteristics by first considering the steady-state case. The signal modulation of the 

device is described as the logarithmic ratio of the output/input SPP power densities, 

𝑚𝑝 = 10log10(𝑃𝑜𝑢𝑡/𝑃𝑖𝑛).  As identified above, a rapid decrease in power transmission is 

expected for forward bias larger than the critical 𝑉 > 𝑉𝑐, for which the P- doped layer 

acquires metal-like characteristics. Indeed, with an increase in the applied voltage, the 

SPP dispersion is rapidly modified as seen in Figure 3-4 (a-c).   
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Figure 3-4: The SPPs dispersion at different external bias voltages for (a) Si with doping 

concentrations; 𝑁𝐴 = 1 × 10
20, 𝑁𝐷 = 4 × 10

20𝑐𝑚−3 (b) In0.53Ga0.47As with 𝑁𝐴 =
1 × 1019, 𝑁𝐷 = 5 × 10

19𝑐𝑚−3 and GaAs with 𝑁𝐴 = 5 × 10
19, 𝑁𝐷 = 5 × 10

19𝑐𝑚−3. The 

SPPD transmittance for (d) Si (e) In0.53Ga0.47As and (f) GaAs, for different P-doping 

concentrations, are obtained using the self-consistent Multiphysics model (dots, dashed) and 

compared to the WKB approximation (solid lines). The corresponding responsivities are shown 

as inserts of (d, e). In the calculations the operation frequency is set at 30 THz, the thickness of 

the P-type layer is 𝑑 = 1.5 𝜇𝑚, 𝑛𝑏 identifies the refractive index of P- layer and the overall 

length of the active drift-diffusion region is fixed at 𝑤 = 4 𝜇𝑚. 

For fixed operation frequency 𝑓𝑜 = 𝜔𝑜/2𝜋 = 30 THz and zero applied bias, the 

SPPs can travel across the device which is exemplified by the fact that the effective 

refractive index 𝑛𝑆𝑃𝑃 of these surface modes is larger than the refractive index 𝑛𝑃 of the 

P- doped layer.  As the applied voltage approached the critical, the SPP dispersion curve 

is shifted and a refractive index mismatch between SPPs in the drift diffusion region 

𝑛𝑆𝑃𝑃(𝜔𝑜 , 𝑉) and in the rest of the device 𝑛𝑆𝑃𝑃(𝜔𝑜 , 𝑉 = 0) is observed. This immediately 

leads to reflection and signal attenuation at the active zone establishing the OFF-state. 

The actual modulation of the SPP signal is shown in Figure 3-4 (d-f). Signal modulations 
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surpassing 𝑚𝑝 > −20 dB are observed for applied bias above the critical, and 

responsivities are in excess of ∆𝑚𝑝/∆𝑉 > −1000 dB ∙ V−1for Si, ∆𝑚𝑝/∆𝑉 > −500 dB ∙

V−1 for In0.53Ga0.47As and ∆𝑚𝑝/∆𝑉 > −800 dB ∙ V−1 for GaAs are demonstrated (see 

inserts in Figure 3-4 (d, e)). Generally, an increase in acceptor doping concentration (𝑁𝐴) 

leads to larger responsivity. These results are orders of magnitudes higher compared to 

the competing optoelectronic devices studied in the literature [14] [13] [51] [104-106], 

attesting to the SPPD potential as a high-quality switch.  

The SPPD switching can be described using the Wentzel-Kramers-Brillouin 

(WKB) method [100], which when implemented for the SPP transmittance across the 

drift-diffusion region gives 

𝑇(𝑉) = |𝑒𝑖 ∫ 𝑘𝑠𝑝𝑝(𝑥,𝑉)𝑑𝑥
𝑤

0 |
2

≈ 𝑒−2𝑤𝐼𝑚[𝑘𝑠𝑝𝑝(𝑉)] Eq. 3-3 

where 𝑤 is the length of the active drift-diffusion region (corresponding roughly to the 

length of the top electrode), and the SPP wave vector 𝑘𝑠𝑝𝑝, which is generally position 

and voltage dependent due to the spatially inhomogeneous minority carrier concentration 

in the P-type layer. Under steady state conditions, the SPP wave vector in the drift-

diffusion zone can be assumed to be spatially homogeneous and dependent only on the 

applied voltage (𝑘𝑠𝑝𝑝(𝑥, 𝑉) ≈ 𝑘𝑠𝑝𝑝(𝑉)). As a result, the WKB approximation gives an 

explicit analytical formulation of the SPP transmission across the device. For a given 

frequency of operation 𝜔 and sufficiently low minority carrier concentration, we have 

𝑘𝑠𝑝𝑝 ∈ ℝ and 𝑇 ≈ 1. For 𝑉 > 𝑉𝑐, the permittivity of the p-doped layer becomes negative 

(휀𝑝(𝜔) < 0) and the SPP wave vector is complex quantity (𝑘𝑆𝑃𝑃 ≈ 𝑖 (
𝜔𝑝0

𝑐
) 𝑒

𝑉

2𝑉𝑇 ∈ ℂ). 

Consequently, the transmittance exponentially decreases with an increase in the applied 
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voltage (see solid line in Figure 3-4(d-f)). Also, as seen in Figure 3-4(d-f), numerical 

data is compared to the analytical theory showing a remarkable correlation between the 

two results. 

3.4.2 SPPD-Numerical Simulations 

Figure 3-5 depicts snapshots of the minority carrier concentration, SPP local field 

profiles and temperature distributions across the device.  

 

Figure 3-5: (a, b, c) Steady-state minority carrier concentration profiles at different applied 

voltages.  (d, e, f) SPP propagation along the length of the device. (g, h, i) Local temperature 

profile. In the calculations the operation frequency is set at 30 THz, the thickness of the P-type 

layer is 𝑑 = 1.5𝜇𝑚 and the length of the active drift-diffusion region is fixed at 𝑤 = 4 𝜇𝑚. 

For zero external voltage bias, the P- doped layer is devoted of minority carriers 

and the SPP modes propagate freely at the PN +- junction interface. Close observation of 

the SPP local field profiles validates the fact that stronger modal localization is achieved 

for SPPD based on the lattice-matched In0.53Ga0.47As.  As the external bias voltage 



37 

approach/surpass the critical, exponential increase in the minority carrier concentration is 

observed within the device’s active region. This results in alteration of the refractive 

index of the P-doped layer leading to reflection and attenuation of SPP modes and the 

establishment of the OFF-state. Furthermore, the flow of charge carriers increases the 

device temperature due to Ohmic heating (see Figure 3-5(g-i)).   

Interestingly, it is evident that minor changes in the electron concentration in 

close proximity to the metallurgic junction can result in rapid switching of the SPP. This 

is due to the localized nature of the SPP: these modes are confined to the PN + - junction 

and slight modification of the electron density near the junction can lead to drastic 

changes in the SPP propagation characteristics as has been already demonstrated in 

Figure 3-5(a-c). Furthermore, the higher local temperatures observed in proximity to the 

top electrode can be attributed due to two different processes.  

First, the local current density achieves maximum values near the anode (which 

acts as a sink), and second, the integrated convective heat transfer is higher at the position 

of the cathode (predominantly due to the larger surface area). From the data, it is also 

evident that the In0.53Ga0.47As device switches at lower applied voltages as compared to 

Si and GaAs device. This is due to the fact that the critical voltage 𝑉𝑐 increases 

logarithmically with the electron’s effective mass, which for Si is six times and GaAs is 

0.6 times higher than for In0.53Ga0.47As. 

3.4.3 SPPD-Step Response 

A major interest in plasmonic-based optoelectronic switching can be attributed to 

their perceived fast temporal response [13] [107] [53] [54] [55]. Here, we study the speed 

at which the optical properties of the P-layer switches between dielectric (휀𝑝 > 0) to 
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metallic (휀𝑝 < 0) and vice-versa. The switching rate depends on the applied bias and 

doping concentrations and can be obtained from time-dependent calculations of the 

minority concentration and the corresponding SPPD propagation characteristics. To 

assess the response times of the SPPD, we have performed a transient analysis under step 

type input voltage bias. Our results for sets of acceptor concentrations are shown in 

Figure 3-6.  

 

Figure 3-6: SPPD output signal (solid line) under step-type of input voltage (dashed black 

line) with magnitude (a) 1.3 V for Si and (b) 0.9 V for In0.53Ga0.47As and (b) 4 V for GaAs. The 

signal is repetitively switched following the external voltage.  In the calculations, the operation 

frequency is set at 30 THz, and the donor doping concentration is 𝑁𝐷 = 4 × 10
20𝑐𝑚−3 for the 

Si, 𝑁𝐷 = 5 × 10
19𝑐𝑚−3 for the In0.53Ga0.47As and 𝑁𝐷 = 5 × 10

19𝑐𝑚−3 for the GaAs device. 

In the calculations, the maximum values of the input voltages are fixed above the 

corresponding critical values 𝑉𝑐 = 1.14 𝑉 for Si, 𝑉𝑐 = 0.81 𝑉 for In0.53Ga0.47As and 𝑉𝑐 =

1.52 𝑉 for GaAs.  The SPPD transmittance curve, depicted in Figure 3-6, is obtained by 

finite difference (FD) self-consistent numerical calculations in the time domain and 

shows reproducible switching. Under a forward bias larger than the critical (𝑉 > 𝑉𝑐 ), the 

minority carriers easily overcome the potential barrier due to the space-charge region. 

The electron concentration rises exponentially, and close to the metallurgic junction and 

within a few ps, the concentration surpasses the critical value 𝑛𝑐 at which point, the SPPs 

are no longer able to propagate (establishing the “OFF” state of the device).  
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Once the applied bias is removed, the excess electrons in the P-layer diffuse and 

their concentration falls below the critical value. At this point, the SPPs can propagate 

through the device establishing the “ON” state. Consistently, faster response times are 

observed for GaAs. This can be attributed to the fact that GaAs SPPD is studied at very 

high voltages 𝑉 = 4 𝑉, whereas the Si  𝑉 = 1.3 𝑉 and the In0.53Ga0.47As device 𝑉 =

0.9 𝑉. Moreover, the modulation rates are revealed to dependent on the acceptor doping 

concentration (𝑁𝐴), with higher doping’s leading to faster signal modulation rates. 

From Figure 3-5(a-c), it is evident that to switch the SPPD it is not necessary for 

the minority concentration to surpass the critical value within the entire drift-diffusion 

zone; but only in close proximity to the metallurgic junction. This is a fundamentally 

different effect compared to convention all-electronic diodes where the response time is 

proportional to the electron fly time between the terminals. The SPPs, however, are 

exponentially sensitive to the dielectric environment in close proximity to the space-

charge region (the metallurgic interface) and are switched OFF once the electron 

concentration within 20 to 50 nm from the junction surpasses the critical value 𝑛𝑐. This 

happens within a few picoseconds. This fact and the almost immediate signal transfer 

between a set of SPPDs (the SPPs travel with the speed of light) is what may allow for 

much faster response times and negligible interconnect delay times of lumped 

optoelectronic circuits made of SPPD as compared to conventional diodes. 

3.4.4 SPPD-Response Times and Operation Temperature 

To assess the true potential of the SPPD as a fast-optoelectronic switch, we have 

performed extensive parametric analyses of the 3 dB ON (𝜏3𝑑𝐵
𝑂𝑁 )/OFF (𝜏3𝑑𝐵

𝑂𝐹𝐹) times and 

maximum local temperature at the drift-diffusion region. The temporal response of the 
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device depends on the injection rate of electrons from the N-type into the P-type layer 

and thus on both applied voltage and doping concentrations.  

The response times and temperature for different applied voltages and doping 

concentrations are shown in Figure 3-7. The ON time of the device is diffusion limited 

and is thus independent on the initial applied bias (the ON state is initiated after the 

voltage is switched off). The OFF times, however, are governed by the drift of the 

electrons in the P-type layer and are thus inversely proportional to the applied voltage. 

Furthermore, as shown in Figure 3-7(b), the response times decrease exponentially with 

an increase in the P-layer doping. This phenomenon is due to the dependence of  𝜏ON and 

 𝜏OFF on the SPP penetration depth in the P-type layer which varies with the doping. The 

effects of applied voltage and doping on the response times can be quantitatively 

estimated as follows. In the presence of external bias, electrons drift into the P-layer with 

a velocity 𝑣𝑑 ≈ 𝜇𝑒
𝑝(𝑉 − 𝑉𝑏𝑖)/𝑥𝑝 , where 𝜇𝑒

𝑝
 is the minority carrier drift mobility in P-

type layer [101] [116, 117], 𝑥𝑝 is the thickness of the P-layer and 𝑉𝑏𝑖 is the build-in 

potential [99].  
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Figure 3-7: (a, d, g) Dependence of the SPPD OFF times on the applied voltage (𝑉 > 𝑉𝑐). The 

device OFF time is dependent on the electron drift into the p-region and is thus inversely 

proportional to the applied voltage. (b, e, h) Dependence of the SPPD ON times on the applied 

voltage (𝑉 > 𝑉𝑐). (h) The SPPD response times as a function of the P-layer doping 

concentration. (c, f, i) The maximum temperature recorded inside the device vs. the applied 

voltage. In the calculations, the operational frequency is set at 30 THz. The doping 

concentrations for the Si device are  𝑁𝐴 = 1 × 10
19𝑐𝑚−3(blue dots) and 𝑁𝐴 = 1 ×

1020𝑐𝑚−3(red dots) with 𝑁𝐷 = 4 × 10
20𝑐𝑚−3, for In0.53Ga0.47As the doping concentrations are 

 𝑁𝐴 = 1 × 10
19𝑐𝑚−3(red dots) and 𝑁𝐴 = 1 × 10

18𝑐𝑚−3(blue dots) with 𝑁𝐷 = 5 × 10
19𝑐𝑚−3 

for GaAs 𝑁𝐴 = 𝑁𝐷 = 5 ×  1019 𝑐𝑚−3.  The doping influences both the width of the space 

charge region and the electron mobility and thus the ON and OFF times. In the figures, the 

numerical data (dots diamonds) is compared to the analytical drift-diffusion model (solid lines). 

The SPPD OFF time is inversely proportional to the drift velocity and 

concurrently the applied bias and can be estimated as 𝜏OFF = 𝑙𝑠𝑝𝑝/𝑣𝑑, where 𝑙𝑠𝑝𝑝 =
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1/𝑘𝑧
𝑠𝑝𝑝 = 1/√𝑘𝑠𝑝𝑝2 − 휀𝑝𝑘0

2  is the field penetration depth of the SPP in the P-type layer. 

At zero bias, the excess minority carriers in the P-layer are removed by net carrier 

outflow from the quasi-neutral region by the process of diffusion.  

Using dimensional analyses, we can write the response (ON) time as  𝜏ON =

𝑙𝑠𝑝𝑝
2 /(2𝐷𝑛), 𝐷𝑛 = (𝑘𝑇/𝑞)𝜇𝑒

𝑛 is the diffusion co-efficient of the electron in p-region, and 

𝜇𝑒
𝑛 is the electron mobility [88] [118] [119]. The predicted above analytical 

considerations response times are shown with solid lines in Figure 3-7. Since the electron 

mobility of In0.53Ga0.47As is higher compared to Si and GaAs, we obtain faster response 

times for In0.53Ga0.47As. For sufficiently high applied voltages, the 3 dB data rates in 

excess of 50 Gbit/s can be obtained for In0.53Ga0.47As while moderate rates of up to 10 

Gbit/s are expected for Si. However, the increase in the applied voltage can lead to an 

increase in heat dissipation. As clearly visible in Figure 3-7(c, f, i) where the maximum 

local temperatures within the device are depicted.  

To minimize heating for the considered device sizes, the applied forward bias 

should not exceed 1.4 V in the case of Si, 1 V in the case of In0.53Ga0.47As, and 1.8 V in 

the case of GaAs. Further minimization of the power dissipation can be accomplished by 

reducing the size of the SPPD drift-diffusion region and varying the N- layer doping 

while keeping the SPP operation frequency within the experimentally accessible mid-IR 

spectral range. Here, the SPPD response times are estimated by fitting the transmittance 

data with an exponential function 𝑒−𝑡/𝜏, where 𝜏 is the rise/fall time. The 3 dB response 

times are then estimated using the standard procedure10 log10 ( 𝑒
−
 𝜏3dB
𝜏 ) = −3. 
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3.5 SPPD Logic Gates 

In Figure 3-8, we study possible optoelectronic logic elements based on the 

SPPD.  

 

Figure 3-8: (a, d) Schematic of the SPPD logic (NAND and NOR) gates. (c, f) Logic table of 

the SPP NAND and NOR gates. (b, e) SPP propagation in the SPPD based NAND and NOR 

gates corresponding to the control voltages 𝑉1 and 𝑉2 as specified in the logic tables. 

The logic elements are constructed by connecting three SPPs waveguides in a “Y” 

shape configuration, each waveguide controlled by separate SPPD. The NAND gate 

(Figure 3-8(a)) is controlled by two external voltages 𝑉1 and 𝑉2 applied at the input 

waveguides SPPDs, while the NOR gate (Figure 3-8(b)) is controlled by external 
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voltages applied in a series at the input and output waveguides SPPDs. In the absence of 

external bias (𝑉1 = 0𝑉 and 𝑉2 = 0𝑉), the input SPPs interact constructively at the Y-

junction, and the signal is transferred establishing “ON” states of both NAND and NOR 

gates. In the presence of single external bias (𝑉1 = 0𝑉, 𝑉2 = 2𝑉 or 𝑉1 = 2𝑉, 𝑉2 = 0𝑉), 

the SPPs from one of the impute waveguides is transmitted in the case of the NAND gate 

(“ON” state) and reflected in the case of a NOR gate (“OFF” state).  

When both input SPPDs are biased, there is no transmission, and both gates are in 

“OFF” state. The actual three-dimensional magnetic field profiles calculated in 

correspondence to the logic tables (see Figure 3-8(c, f)) are depicted in Figure 3-8(b, e). 

Both electronic control (through the SPPD applied voltages) and constructive/destructive 

interference at the output waveguides are utilized to establish the proper input/output 

signal associations. We must emphasize that in principle there are many possible gate 

configurations, and the chosen “Y” shape design may not be the optimal. More 

importantly, due to the SPPD nature of the operation, the proposed logic gates are 

optoelectronic (not all-optic) and can be simply viewed as a fast and efficient way of 

controlling the propagation of surface plasmon polariton (SPP) modes at highly doped 

semiconductor interfaces.  

3.6 SPPD-Temperature Sensor 

The exponential dependence of the equilibrium minority concentration at the 

metallurgic junction with respect to the external voltage and local temperature can be 

used to develop a temperature sensor with high sensitivity. Specifically, from Eq. 3-1 it 

follows the expected sensitivity of a temperature sensor based on the SPPD given as 
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𝑑𝑉𝑐
𝑑𝑇

=
𝑘

𝑞
ln [
휀𝑏𝜔

2

𝜔𝑝0
2 ] Eq. 3-4 

For GaAs and operation frequency of 40 THz, the sensitivity of the device is expected to 

be a few mV/K. The power output for three different temperatures is shown in Figure 

3-9(a). These examples show the basic principle of the sensor operation. For an applied 

voltage of 0.5 V and temperature 300 K, there is no output signal. With the increase of 

the temperature, the diode is switched ON (red line). The modulation sensitivity with 

respect to the temperature is studied in Figure 3-9(b). A slight change in temperature 

results in an exponential change in the output power with a sensitivity of more than 10 

dB/K. 

 

Figure 3-9: SPPD temperature sensor. Due to the abrupt (exponential) switching of the SPPD 

output signal, a temperature sensitivity of less than 1.7 mV/K is demonstrated. 

3.7 SPPD-Experimental Implementation 

Finally, for the experimental implementation and characterization of the SPPD, it 

is crucial to introduce an efficient coupling/decoupling scheme. In what follows, we 

consider local SPP excitation and detection using a pair of far–infrared single-mode 
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fibers and a set of gratings. The overall geometry of the proposed set up is shown in 

Figure 3-10(a).   

 

Figure 3-10: (a) Schematic of the SPPD with input and output waveguides coupling. (b) 

Magnetic field intensity for two different input grating 𝛬1 = 6 𝜇𝑚 (top) and 𝛬1 = 5 𝜇𝑚 

(bottom) at constant SPP cavity grating 𝛬2 = 2.6 𝜇𝑚. (c)  SPP coupling efficiency for the 

𝛬1 = 6 𝜇𝑚 (top) grating showing maximum efficiency at operating frequency of 30 THz. (d) 

SPP coupling efficiency for the 𝛬1 = 5 𝜇𝑚 (bottom) grating showing maximum efficiency at 

operating frequency of 25 THz. 

The input radiation is coupled first to a low loss dielectric-dielectric-metal (DDM) 

waveguide mode of the P-layer, either 𝑇𝑀1 for a planar device or 𝑇𝑀11 for the 

rectangular device, which are then fed into a SPPD cavity via an etched grating. The 

cavity length is set at 7 μm to support low order SPP resonances with a cavity height of 

1.8 μm. The SPPD output signal is then fed into the output fiber with a second grating. 

The local magnetic field profile for the planar device is shown in Figure 3-10(b). The 
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excitation of the lower wavelength SPP cavity mode is clearly visible within the drift-

diffusion region.  

In the calculations, we have used two sets of input grating, 𝛬1 = 6 μm (top) and 

𝛬1 = 5 μm (bottom), with a fixed output grating of 𝛬2 = 2.6 μm. The grating periods 

have been optimized to obtain better coupling/decoupling efficiencies at two operational 

frequencies; 30 THz (top) and 25 THz (bottom). This is shown in Figure 3-10(c, d) 

where the output power efficiency is as high as ~9% (for 30 THz) and up to ~20% (for 

25 THz). It must be noted that due to the used symmetric input grating, the decoupling 

efficiencies are fundamentally restricted to less than 50%. Alternatively, asymmetric 

grating configurations could also be considered to further improve the collected output 

signal. Regardless, the demonstrated efficiencies are sufficient for the practical 

demonstration of the device.  
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CHAPTER 4 

 

EXPERIMENTAL REALIZATION OF SPPD 
 

In this chapter, we present an important step towards the experimental realization 

of the SPPD studied in Chapter 3.  Here, in collaboration with UT Austin, Mid-IR 

Photonics Laboratory, we demonstrate electrical control of the mid-IR optical properties 

of PN+-junction fabricated by spin-doping of Si-on-oxide (SOI) wafers.  We characterize 

the PN+-junction device electrically and optically, measure the changes in the optical 

properties as a function of external bias voltage and the frequency.  Finally, we present 

the comparison between the numerical results obtained using the thermo-electro-optical 

model and the corresponding experimental data. We found excellent agreement between 

the two, indicating the potential of the presented device architectures. 

4.1 Fabrication of Si PN+-Junction Device 

The Si device is fabricated from an SOI wafer comprised of p-doped (𝑁𝐴 =

1 × 1018 𝑐𝑚−3) Si active region grown on 1 µm SiO2 (see Figure 4-1). We initiate the 

fabrication process by diffusing N-type impurities to create a PN+-junction. This is 

achieved by a spin on diffusion of phosphorous (N-type) impurity, where the SOI wafer 

is coated with 15% P compound-concentration dopant, prebaked (400°C, 105 s) and then 

annealed (950°C, 40 min) in an 𝑁2 environment. Next, the dopant film is removed with a 
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buffered oxide etch and followed by dicing of the doped SOI wafer, including the Si-

wafer handle into square pieces.  

 

Figure 4-1: Fabrication process flow for the manufacturing of degenerate semiconductor (Si) 

PN+ junctions. 

The diced samples are now placed in an evaporation chamber, where Ti/Au is 

coated on both the SOI and Si handles. Metal-coated samples are bonded at 9 MPa 

pressure and 400°C for 20 min. The SOI wafer substrate is then removed using a deep 

silicon etcher, followed by a buffered oxide etch to remove the SiO2 layer. Now the Si 

samples are then fabricated into mesa devices, with the mesas formed by standard UV 
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photolithography and dry etching in an Oxford ICP etcher. The SOI sample is etched by 

HBr/Cl2(45/5 sccm). Top and bottom contacts are then defined by photolithography, 

metallization (Ti/Au, 5/125 nm), and the lift-off process. Schematics of the steps for the 

fabrication process of Si-devices are shown in Figure 4-1. The samples are then mounted 

to copper mounting blocks and wire-bonded to stand-off ceramic pads. Schematics of the 

final device structures are shown in Figure 4-2(a). 

 

Figure 4-2: (a) Layer structure for the P spin-doped SOI wafer, and device schematic for the 

spin-doped N++P junction diode following wafer-bonding, substrate removal, and device 

fabrication. (b) Experimental set-up for amplitude modulation step-scan measurement of 

reflection (|R|) modulation from the biased devices. 

All samples were characterized by reflection spectroscopy using a Bruker v80V 

Fourier transform infrared (FTIR) spectrometer and a mid-IR microscope operating in 

rapid-scan mode and normalized to a reflection from an Au surface (which in the mid-IR 

has a near-perfect reflection).  Upon fabrication, we measured the current-voltage (IV) 

characteristics of each device.  Finally, we measured the change in reflection under 

applied bias using the experimental set-up shown in Figure 4-2(b), where light incident 

upon the surface of a modulated N+P-junction diode (square wave voltage signal with an 

amplitude 𝑉𝑎) and reflected to the microscope’s HgCdTe (MCT) detector, whose output 

 (b) (a) 
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is fed into a lock-in amplifier (LIA). The FTIR is then operated in a step-scan mode, and 

the DC output fed into the FTIR at each mirror position, giving the spectrum |𝐼𝑅(𝜆, 𝑉𝑎) −

𝐼𝑅(𝜆, 0)|.  To determine the absolute change in reflectivity (normalizing for the FTIR 

source spectrum, optics, and MCT response), an additional spectrum is taken, where the 

incident light is chopped before reflecting from the unbiased sample, giving 𝐼𝑅(𝜆, 0).  

The modulation amplitude of reflection is then calculated using |𝑅(𝜆)| = |𝐼𝑅(𝜆, 𝑉𝑎) −

𝐼𝑅(𝜆, 0)|/𝐼𝑅(𝜆, 0).  All measurements were performed at room temperature. 

4.2 SPPD Characterization 

Two types of characterizations of the Si SPPD devices have been performed. 

First, the fabricated devices were studied under zero external bias. These studies provided 

important material characteristics such as doping concentration profiles, layers thickness, 

plasma frequencies, and relaxation rates. Once the material of the device and geometrical 

characteristics were matched with the theory, we proceeded to characterize the SPPD 

modulation under external bias. Our results have clearly demonstrated the sensitivity of 

the SPPD optical response to external voltage bias validating the underlining theory 

behind the SPPD operation. 

4.2.1 Model for Optical Parameter Extraction 

Here, we consider diffusion of donors in P-type semiconductors with donor 

profile given as 

               𝑁𝐷(𝑥) = 𝑁𝐷𝑒𝑟𝑓𝑐 (
𝑥

𝑥𝐷
) , 𝑁𝐴(𝑥) = 𝑁𝐴, 𝑥 ≥ 0 Eq. 4-1 

where 𝑥𝐷 is the doping length. In steady-state, the electron and hole current densities are 

zero and the normalized potential 𝜑(𝑥) = 𝑞𝑉(𝑥)/𝑘𝑇 is a solution of the Poisson-

Boltzmann equation 
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              𝜑′′(휁) = 𝜆2 (
2𝑛𝑖
𝑁𝐷

 𝑠𝑖𝑛ℎ(𝜑(휁)) +
𝑁𝐴
𝑁𝐷

− 𝑒𝑟𝑓𝑐(휁)) Eq. 4-2 

where 휁 = 𝑥/𝑥𝐷,  𝜆 = 𝑥𝐷/𝜆𝐷 and 𝜆𝐷 = √𝜖𝜖0𝑘𝑇/𝑞2𝑁𝐷 is the Debye length. Eq. 4-2 in 

non-linear, inhomogeneous second order ODE and do not have an analytical solution. 

However, for high doping, the Debye length is much smaller compared to the doping 

length scale ( 𝜆 = 𝑥𝐷/𝜆𝐷 ≫ 1), and we can neglect the second order derivative in Eq. 4-2 

giving the local charge neutrality 𝑁𝐷 − 𝑛 − 𝑁𝐴 + 𝑝 = 0. The potential is then easily 

obtained as  

              𝜑(휁) = 𝑠𝑖𝑛ℎ−1 (
𝑁𝐷𝑒𝑟𝑓𝑐(휁) − 𝑁𝐴

2𝑛𝑖
) Eq. 4-3 

The junction is formed at 𝜑(휁𝑗) = 0 and, hence, we have 𝑥𝑗 = 𝑥𝐷erfc
−1(𝑁𝐴/𝑁𝐷). 

Similarly, using Eq. 4-3 we obtain the build-in potential  

𝑉𝑏𝑖 =
𝑘𝑇

𝑞
(𝜑(0) − 𝜑(∞)) =

𝑘𝑇

𝑞
(sinh−1 (

𝑁𝐴
2𝑛𝑖

) + sinh−1 (
𝑁𝐷 −𝑁𝐴
2𝑛𝑖

)) Eq. 4-4 

If 𝑁𝐷 ≫ 𝑁𝐴 ≫ 2𝑛𝑖 we get 𝑉𝑏𝑖 ≈ 𝑉𝑇ln(𝑁𝐴𝑁𝐷/𝑛𝑖
2), which is the classical value for 

homogeneous doping and abrupt junction. The electron/hole concentrations are obtained 

from the local charge neutrality condition and enforcing the mass action law giving  

           
𝑛(휁) =

1

2
(√(𝑁𝐷(휁) − 𝑁𝐴)

2 + 4𝑛𝑖
2 +𝑁𝐷(휁) − 𝑁𝐴)

𝑝(휁) = 𝑛𝑖
2/𝑛(휁)

 Eq. 4-5 

The accuracy of the approximate results Eq. 4-3 and concurrently Eq. 4-5 was checked 

by numerically integrating the Poisson-Boltzmann equation (Eq. 4-2). Our results for 

three sets of parameters are shown in Figure 4-3. Since for the degenerate doping levels 

used in the SPPD we have 𝜆 > 1000, it is clear that Eq. 4-3 coincides with the exact 
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numerical solution and hence will be used in the optical parameters extraction procedure 

described next. 

 

Figure 4-3: The built-in electrical potential obtained by numerically solving Eq. 4-2 (solid 

lines) is compared to the charge neutrality result Eq. 4-3 (dashed line). The doping parameters 

used are 𝜆 = 1 (blue), 𝜆 = 3 (green), and 𝜆 = 10 (red). In all calculations, we have set 

𝑛𝑖/𝑁𝐷 = 0.01 and 𝑁𝐴/𝑁𝐷 = 0.1. 

To extract the doping profile from the experimental data, we use the transfer 

matrix approach (TMA). For inhomogeneous permittivity profile 휀(𝑥), we represent the 

doped semiconductor material as a system of 𝑁 homogeneous layers each with constant 

permittivity  

                휀𝑗(𝜔) = 휀𝑏(𝜔) −
𝜔𝑝𝑗
2

𝜔(𝜔 − 𝑖𝜔𝜏𝑗)
 Eq. 4-6 

𝜔𝑝𝑗
2 =

�̃�𝑝𝑗
2

2
(√(erfc (

𝑥𝑗−1 + 𝑤𝑗/2

𝑥𝐷
) −

𝑁𝐴
𝑁𝐷
)

2

+ (
2𝑛𝑖
𝑁𝐷
)
2

+ erfc (
𝑥𝑗−1 + 𝑤𝑗/2

𝑥𝐷
) −

𝑁𝐴
𝑁𝐷
) Eq. 4-7 

where 𝑤𝑗 = 𝑥𝑗 − 𝑥𝑗−1 are the j-layer thicknesses, �̃�𝑝𝑗 = √𝑞2𝑁𝐷/𝜖0𝑚𝑒𝑗 is the plasma 

frequency at the front of the device, and the doping and position dependent relaxation 

rates, mobilities and effective electron mass are given as   
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𝜔𝜏𝑗 =
𝑞

𝜇𝑛𝑗𝑚0𝑚𝑒𝑗
 Eq. 4-8 

    𝜇𝑛𝑗 = 𝜇𝑛,𝑚𝑖𝑛 +
𝜇𝑛,𝑚𝑎𝑥 − 𝜇𝑛,𝑚𝑖𝑛

1 + [
𝑁𝐴
𝑁𝑟
+
𝑁𝐷
𝑁𝑟
𝑒𝑟𝑓𝑐 (

𝑥𝑗−1 +𝑤𝑗/2
𝑥𝐷

)]
0.85 

Eq. 4-9 

𝑚𝑒𝑗 = 0.28 + 0.42 × [
𝑁𝐷
𝑁𝑚

𝑒𝑟𝑓𝑐 (
𝑥𝑗−1 +𝑤𝑗/2

𝑥𝐷
)]

0.65

 Eq. 4-10 

For phosphorous doped Silicon, we have 𝑁𝑟 = 1 × 10
23 𝑚−3, 𝜇𝑛,𝑚𝑖𝑛 = 0.0092 𝑚2/𝑉. 𝑠, 

𝜇𝑛,𝑚𝑎𝑥 = 0.141 𝑚
2/𝑉. 𝑠 and 𝑁𝑚 = 1024 𝑚−3. At high doping, the effective mass and 

mobility are doping dependent and shown in Figure 4-4. 

 

Figure 4-4: Dependence of (a) effective mass and (b) mobility on doping.   

For normal incidence, the transfer matrix method connects the field amplitudes 

and their derivatives in the adjacent layers as follows 

     (
𝜓𝑗(𝑥𝑗)

𝜓𝑗
′(𝑥𝑗)

) = �̂�𝑗 (
𝜓𝑗−1(𝑥𝑗−1)

𝜓𝑗−1
′ (𝑥𝑗−1)

) , �̂�𝑗 = (
𝑐𝑜𝑠(𝑘𝑗𝑤𝑗)

1

𝑘𝑗
𝑠𝑖𝑛(𝑘𝑗𝑤𝑗)

−𝑘𝑗𝑠𝑖𝑛(𝑘𝑗𝑤𝑗) 𝑐𝑜𝑠(𝑘𝑗𝑤𝑗)

) Eq. 4-11 

The reflection and transmission coefficients are obtained by matching the field 

components at the front and back of the stratified media and the reflectance then follows 

(a)

(a) 
(b) 
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     𝑅 = |𝑟|2 = |
𝑘𝑏𝑀11 − 𝑘𝑎𝑀22 + 𝑖(𝑀21 + 𝑘𝑎𝑘𝑏𝑀12)

𝑘𝑏𝑀11 + 𝑘𝑎𝑀22 + 𝑖(𝑀21 − 𝑘𝑎𝑘𝑏𝑀12)
|

2

 Eq. 4-12 

where 𝑀𝑖𝑗 are the components of the transfer matrix �̂� = �̂�𝑁�̂�𝑁−1⋯�̂�2�̂�1. 

4.2.2 Reflectivity Measurements and Optical Parameter Extraction 

The reflectance of the in-homogeneously doped semiconductors depends on three 

independent parameters: maximum (surface) doping concentration 𝑁𝐷, doping 

penetration depth 𝑥𝐷, and the permittivity of the original P-doped semiconductor 휀𝑏. The 

extraction procedure is a five (5) step process which follows the fabrication steps of the 

SPPD device.  

Step 1: P-doped wafer: Obtain the wavelength dependent permittivity 휀𝑏(𝜆) of the P- 

doped semiconductor from reflectivity measurements. In the far-infrared spectral range, 

the semiconductor permittivity is predominantly real and can be directly obtained from 

the Fresnel equations. For normal incidence, 𝑅(𝜆) = (1 − 𝑛𝑏(𝜆))/(1 + 𝑛𝑏(𝜆)), which 

can be re-written to estimate the  permittivity as 휀𝑏(𝜆) = (1 + √𝑅(𝜆))
2

/ (1 − √𝑅(𝜆))
2

. 

Figure 4-5 depicts the extracted p-doped layer permittivity of Si. 

 

Figure 4-5: (a) Reflectance and (b) Effective permittivity of the p-doped wafer. 
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Step 2: Un-doped multilayer device: We use the transfer matrix method (TMM) to find 

a set of parameters (layers thicknesses) that minimize the error between the 

experimentally obtained reflectance of the un-doped multi-layer device predicted by the 

model. Figure 5.6 depicts the schematic of the initial SOI wafer under consideration, the 

thickness of the corresponding SiO2 and Si Substrate are of ~1 𝜇𝑚 and ~500 𝜇𝑚. 

Applying the TMM, the first layer (p-doped) permittivity (휀𝑝(𝜆)) is obtained from the 

standalone P-layer reflectance data (see Step 1). For the middle (SiO2) layer, we 

considered tabulated frequency dependent permittivity/refractive index. The bottom Si 

handle has a constant permittivity 휀𝑠𝑖 = 11.7. Figure 4-6(b) shows a comparison 

between the theoretical and experimental reflectance data. A best match is obtained for P-

layer thickness; 𝑑 = 2.05 𝜇𝑚 and 휀𝑝
′′ = 0.2. 

 

Figure 4-6: (a) Schematic of the un-doped multilayer device. (b) Comparison of the 

experiment (red solid line) and TMM model (blue and green solid line). 

Step 3: Doped multilayer device: Figure 4-7(a) depicts the device geometry after the 

spin on doping of n-type impurity on the SOI wafer. Transition layer with graded  

 



57 

 

Figure 4-7: (a) Schematic of the SOI wafer after spin on diffusion of n-type impurities, (b) 

Comparison of reflectance due to experiment (red solid line) and TMM model (blue solid line), 

(c) plasma frequency, (d) relaxation frequency, (e) electron concentration and (d) permittivity. 

doping concentration is formed from the top surface leading to the formation of a PN- 

junction. As a result, position-dependent permittivity is formed  

          휀𝑠(𝜔, 𝑥) = 휀𝑝(𝜔) + 𝑖휀𝑝
′′ −

𝜔𝑝
2(𝑥)

𝜔(𝜔 + 𝑖𝜔𝜏(𝑥))
 Eq. 4-13 

where 𝜔𝑝(𝑥) and 𝜔𝜏(𝑥) are the position dependent plasma and relaxation frequencies, 

respectively. To determine these complex dependences, we again rely on the TMM 

model. The extraction procedure includes optimizing fitting parameters such as doping 

length (𝑥𝐷), the thickness of the PN-region (d1) and maximum donor concentration (𝑁𝐷). 

The theoretical and experimental reflectance (see Figure 4-7(b)) are matched for 𝑥𝐷 =

0.29 𝜇𝑚, 𝑁𝐷 = 2.85 × 1026 𝑚−3 and thickness  𝑑1 = 1.10 𝜇𝑚. From the extracted 

parameters, we can also estimate the pn-junction distance from the top of the sample  
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𝑥𝑗 = 0.598 𝜇𝑚. Figure 4-7(c-f) shows the variation in the  𝑛(𝑥), 𝜔𝑝(𝑥),𝜔𝜏(𝑥) and 

휀𝑝(𝑥). Close inspection of Figure 4-7(f) shows the transition in the permittivity from 

negative to positive at the PN-junction interface which satisfies the condition for the 

existence of the SPP.  

Step 4: Doped multilayer device with bottom electrode:  The schematic of the final 

SPPD device after deep etching and gold electrode deposition is shown in Figure 4-8(a). 

To model the PN+-layer, we use the 𝜔𝑝(𝑥) and 𝜔𝜏(𝑥)  profiles obtained in Step 3. The 

250 nm gold layer is modelled using the Drude; 휀𝑔(𝜔) = 9.5 − 𝑓𝑝
2/𝑓(𝑓 + 𝑖𝑓𝜏) , where  

𝑓𝑝 = 2.183 𝑃𝐻𝑧 and 𝑓𝜏 = 17.14 𝑇𝐻𝑧. The theoretical and experimental reflectance 

shown in Figure 5.8(b) are in good agreement when the optical parameters extracted in 

Step 3 are used; 𝑥𝐷 = 0.29 𝜇𝑚, 𝑁𝐷 = 2.85 × 1026 𝑚−3 and 휀𝑝
′′ = 0.78 (see Figure 4-

6(b)). 

 

Figure 4-8: (a) Schematic of the Si PN-diode with the bottom gold anode. (b) Comparison of 

the experiment (red solid line) and TMM model (blue and green solid line). 

The best fit is obtained for diode thickness 𝑑2 = 0.81 𝜇𝑚. The PN-layer thickness 

obtained here is in slight deviation from the one obtained in Step 3 (𝑑1 − 𝑑2 = 0.19 𝜇𝑚), 
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which is a result of the deep etching process. Also, there is a slight discrepancy in the 

amplitude at short wavelengths. This may be the result of added impurities and oxidation 

during gold deposition and etching.  

Step 5: Doped multilayer device with the bottom and top electrodes:  The last step in 

the SPPD fabrication is the deposition of the top electrode. The experimental patterning 

of the top electrode and the schematic of the numerically simulated device are shown in 

Figure 4-9(a). The theoretically and experimentally obtained reflectance are depicted in 

Figure 4-9(b). These results complete our investigation into the SPPD material and 

geometrical characteristics. 

 

Figure 4-9: (a) Schematic of the Si PN-diode with top and bottom electrodes. (b) Comparison 

of the experiment (red solid line) and TMM model (blue) and direct full-wave simulation using 

the COMSOL software (green dots). 

4.2.3 Reflectivity Modulation and IV Characteristics 

Figure 4-10 shows the relative change in reflectance |∆𝑅(𝜆)| = |𝑅(𝜆, 𝑉𝑎) −

𝑅(𝜆, 0)|/𝑅(𝜆, 0) for forward biases. Both experiment and theory show distinct spectral 

features associated with the charge injection/depletion of the biased junction, with 

changes in reflectance occurring predominantly at the edges of strong reflection features.  
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These changes are more pronounced in forward bias but are also observed in reverse bias.  

The correspondence between theory and experiment is excellent up to a forward bias of 

𝑉𝑎 = 0.68 𝑉. For higher voltage, a discrepancy between theory and experiment is 

observed, with the theory predicting stronger modulation of reflectance. This discrepancy 

can be explained by the effect of a contact resistance present in the experimental device.  

 

Figure 4-10: (a) Schematic of the Si PN-diode with top and bottom electrodes. (b) Comparison 

of the experiment (red solid line) and TMM model (blue) and direct full-wave simulation using 

the COMSOL software (green dots). 

4.2.4 Extraction of Contact resistance 

To better understand the discrepancy in the reflectance at high applied voltage, we 

studied the IV response of the device. The experimental and theoretical response is 

shown in Figure 4-11.  

 



61 

 

Figure 4-11: (a) Equivalent circuit for the PN-diode in series with the contact resistance. (b) 

IV-curve comparison of the experiment (red solid line), analytical model (dashed blue) and 

ideal diode IV (dashed black). 

To model the experimental data, we consider an “ideal” diode rectified by a series 

contact resistance 𝑅. The current vs voltage relationship in this case is given as   

𝐼 = 𝐼𝑠 (𝑒
𝑉−𝐼𝑅
𝑛𝑉𝑇 − 1) Eq. 5-14 

where 𝐼𝑠 is the saturation current at reverse bias, 𝑉𝑇 = 𝑘𝑇/𝑞 is the thermal voltage and 

𝑛 = 2 is the high current exponent. Eq. 4-14 can be solved explicitly in terms of the 

current giving 

𝐼 = 𝐼𝑠 [
𝑛𝑉𝑇
𝑅𝐼𝑠

𝑊(
𝑅𝐼𝑠
𝑛𝑉𝑇

𝑒
𝑉+𝑅𝐼𝑠
𝑛𝑉𝑇 ) − 1] Eq. 4-15 

where 𝑊 is the Lambert W-function. A best fit is obtained for a contact resistance of 𝑅 =

10 Ω. This is rather a large value which shows that there is a room for substantial 

improvement in the experiment. Additionally, at large voltages, the effective temperature 

of the junction is expected to increase with the current (see Figure 3-5(g-i)).
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CHAPTER 5 

 

ALL-OPTICAL SWITCHING OF SPPS USING 

EXTRAORDINARILY HIGH THERMO-OPTICAL 

NONLINEARITY 
 

In the preceding chapters, we have shown the possibilities of using semiconductor 

materials in the subwavelength regime in designing plasmonic optoelectronic switching 

device where the switching of SPPs is obtained by applying an external voltage. In this 

chapter, we will focus our efforts to extend our initial work and design an all-optical 

analog of SPPD; where the switching of SPPs is by using a control SPP mode. The 

switching mechanism is through a new thermo-optical nonlinearity present at the highly-

doped PN-junction with the goal of obtaining the all-optical plasmonic device, with high 

signal modulation paving the path to a viable cutting-edge optical computing. 

5.1 Introduction to Thermo-optical Nonlinear Switch 

Here, we perform a thorough investigation of thermal characteristics of the SPPD 

and will demonstrate a new type of all-optical device, which we refer to as Surface 

Plasmon Polariton Diode (thermal) or SPPDt, can operate at all-optical switching rates 

surpassing 10GHz. The general schematic of the SPPDt is shown in Figure 5-1. A cross-

type structure of a highly doped P-layer is formed on top of a highly doped N-layer. One 

of the constraints of SPPDt is the chosen semiconductor material must have excellent 

thermal properties, specifically large thermal diffusivity. In the operation of the SPPDt, 
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two types of SPP modes are involved, a signal and a control. If the control beam is 

switched off the signal passes through the drift-diffusion region uninterrupted. The 

application of the control beam results in added heating in the shared part of the 

waveguide (the drift-diffusion zone, below the top electrode) which induces a strong 

thermo-optical effect in the vicinity of the PN-junction and switches OFF the signal. 

  We mainly focus on discussing the following: a) design and operational 

characteristics of SPPDt. b) to access the SPPDt switching characteristics for different 

doping of P-layer, operational frequency and as well as the width of the active drift-

diffusion region. c) to design all four possible SPPDt logic gates (AND, NAND, OR and 

NOR).  

 

Figure 5-1: Schematic of the SPPDt. 

5.2 Working Principle of SPPDt 

Structure and design of an SPPDt is shown in Figure 5-1. Silicon is chosen for 

the initial device’s demonstration and future analysis will be done for other 
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semiconducting materials for understanding the best performer. The temperature 

dependence of the effective permittivity of the P-type layer is given by the Drude model, 

휀𝑝(𝑇) = 휀𝑏 − 𝜔𝑝
2(𝑇)/𝜔(𝜔 + 𝑖𝜔𝜏(𝑇)), where the plasma frequency of the P-layer 

𝜔𝑝
2(𝑇) = 𝑒2𝑛𝑖

2(𝑇)𝑒𝑒𝑉/𝑘𝐵𝑇/(휀0𝑁𝐴𝑚𝑒) and relaxation frequency 𝜔𝜏(𝑇) = 𝑒/𝑚𝑒𝜇𝑒
𝑝(𝑇) are 

strongly dependent on the temperature through the intrinsic electron concentration 𝑛𝑖, 

electron mobility in the P-layer 𝜇𝑒
𝑝
 and applied voltage.  

The working concept of the SPPDt can be explained using the temperature 

dependence of the intrinsic concentration. The 𝑇3/2 is the dependence of the intrinsic 

carrier concentration 𝑛𝑖
2 = 𝐵𝑇3 𝑒−𝐸𝑔(𝑇)/𝑘𝑇, where 𝐵 = 4(2 𝜋𝑘/ℎ2)3(𝑚𝑒𝑓𝑓

ℎ 𝑚𝑒𝑓𝑓
𝑒 )

3/2
 and  

𝐸𝑔(𝑇) = 𝐸𝑔 − 𝛼𝑇
2/(𝑇 + 𝛽), where 𝐸𝑔 = 1.12 𝑒𝑉, 𝛼 = 4.73 × 10−4𝑒𝑉/𝐾, 𝛽 = 636 𝐾 

for Si [99] and the exponential dependence of the equilibrium minority concentration 𝑛 =

𝑛0𝑒
𝑉𝑐/𝑉𝑇(where 𝑛0 = 𝑛𝑖

2/𝑁𝐴  and 𝑁𝐴 is the acceptor concentration) at the metallurgic 

junction with respect to the applied voltage and temperature can be used to develop a 

high sensitive thermal switching of SPP’s. At the ambient temperature, the depletion 

region at the PN-junction prevents the free carriers to cross from the N-type into the P-

type layer. As a result for frequencies 𝜔𝑝
ℎ < 𝜔 < 𝜔𝑝

𝑛, the n- layer acquires metal-like 

properties (휀𝑠
𝑛 < 0 ) while the P-layer acts as a dielectric (휀𝑠

𝑝 > 0 ), where  𝜔𝑝
ℎ is the 

plasma frequency of the P-layer and  𝜔𝑝
𝑛 is the plasma frequency of the N-layer. This 

allows SPPs to propagate along the interface establishing the “ON” state of the device.   

Next, a temperature change is induced at the PN-junction, through a high intensity 

control beam of the excited electro-magnetic modes. This increase in the lattice 

temperature consequences in the injection of electrons within the active drift zone (see 

Figure 5-1) resulting in dramatic modification of P-layer permittivity (휀𝑠
𝑝 < 0). This 
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modification results in strong reflection of the SPPs at the active zone, establishing the 

“OFF” state of the device. 

The above phenomenon can be qualitatively described using the Wentzel-

Kramers-Brillouin (WKB) method as described for the SPPD  

𝑇𝑇(𝑉, 𝑇) = |exp (𝑖∫ 𝑘𝑆𝑃𝑃(𝑥, 𝑉, 𝑇)𝑑𝑥
𝑤

0

)|

2

≈ 𝑒−2𝑤𝐼𝑚[𝑘𝑆𝑃𝑃(𝑉,𝑇)] Eq. 5-1 

where 𝑤 is the thickness of the active drift region, 𝑇 is the lattice temperature, and the 

SPP wave vector 𝑘𝑆𝑃𝑃 is the position, voltage and temperature dependent due to the 

spatially inhomogeneous minority carrier concentration in the P-type layer. For a given 

frequency of operation 𝜔 and sufficiently low minority carrier concentration we have 

𝑘𝑆𝑃𝑃 ∈ ℝ and 𝑇𝑇 ≈ 1. For 𝑇 > 𝑇𝑐, the SPP wave vector becomes complex quantity 

(𝑘𝑆𝑃𝑃 ∈ ℂ) and the transmittance exponentially decreases with the thickness 𝑤. We can 

obtain the operational range of the device by forcing the transparency condition 

Re[휀𝑝(𝜔, 𝑉, 𝑇𝑐)] = 0, which now is solved with respect to the critical temperature 𝑇𝑐, 

beyond which the P-layer acquire metal-like properties. This critical temperature can be 

obtained explicitly and is given as 

𝑇𝑐 = 𝛼𝑇𝑎𝑊
−1 (

𝛼𝑒𝛼𝜔𝑝
2/3(𝑇𝑎)

𝜔2/3휀𝑏
1/3

) Eq. 5-2 

where 𝛼 = (𝐸𝑔 − 𝑒𝑉)/3𝑘𝐵𝑇𝑎, 𝐸𝑔 is the band gap energy at the ambient temperature 𝑇𝑎, 

and 𝑊 is the Lambert W function. 

5.3 SPPDt-Steady State Analysis 

As described, the SPPDt switching is mainly due to the injection of minority 

carriers in the presence of a constant forward bias voltage and the high-intensity control-
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SPP. Here, the junction temperature is predominantly influenced by the electromagnetic 

energy dissipation of the control-SPP. Additionally, the flow of charge carriers will also 

result in Ohmic heating. The above two processes will result in an increase of 

metallurgical junction temperature. To have a proper understanding of the complex 

Multiphysics processes governing the SPPDt operation, we again use the developed self-

consistent thermo-electro-optic (see Section 3.2). 

Using the thermo-electro-optic model, we begin our study of the SPPDt input-

output characteristics by first considering the steady-state case. As identified above, a 

rapid decrease in SPP power transmission is expected for a forward bias just less than 

𝑉 < 𝑉𝑐 and the local temperature larger than the critical 𝑇 > 𝑇𝑐, for which the P- doped 

layer acquires metal-like characteristics. Indeed, with an increase in the local 

temperature, the signal-SPP dispersion is rapidly modified as seen in Figure 5-2(a).  For 

fixed operation frequency 𝑓𝑜 = 𝜔𝑜/2𝜋 = 30 THz and constant applied bias (𝑉 =

1.12 𝑉), the SPPs can travel across the device which is exemplified by the fact that the 

effective refractive index 𝑛𝑆𝑃𝑃 of these surface modes, is larger than the refractive index 

𝑛𝑃 of the P- doped layer.  As the lattice temperature approached the critical, the SPP 

dispersion curve is shifted and a refractive index mismatch between SPPs in the drift 

diffusion region 𝑛𝑆𝑃𝑃(𝜔𝑜, 𝑉, 𝑇) and in the rest of the device 𝑛𝑆𝑃𝑃(𝜔𝑜, 𝑉, 𝑇 = 0) is 

observed. This immediately leads to reflection and signal attenuation at the active zone 

establishing the OFF-state. 
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Figure 5-2: The Surface Plasmon Polaritons (SPPs) dispersion at constant external bias 

voltages 𝑉𝑎 = 1.12 𝑉 and different lattice temperature for (a) Si with doping 

concentrations; 𝑁𝐴 = 1 × 10
20, 𝑁𝐷 = 4 × 10

20𝑐𝑚−3. (b) The SPPDt transmittance for Si at 

obtained using the self-consistent Multiphysics model (dots) and compared to the WKB 

approximation (solid lines). In the calculations the operation frequency is set at 30 THz, the 

thickness of the P-type layer is 𝑑 = 1.5 𝜇𝑚, 𝑛𝑏 identifies the refractive index of P-layer and 

the overall length of the active drift-diffusion region is fixed at 𝑤 = 4 𝜇𝑚. 

Preliminary results based on the WKB and Eq. 5-2 are shown in Figure 5-2(b). In 

the numerical calculations, we have used, 𝑁𝐴 = 10
20𝑐𝑚−3,𝑁𝐷 = 4 × 10

20𝑐𝑚−3, 𝑓 =

30 THz , 𝑉 ∈ (1.1, 1.12, 1.15, 1.17)𝑉 and 𝐸𝑔(𝑇) as specified in the above section. In the 

calculations, we used relevant experimental data for Si. The model predicts a decay of the 

signal with an increase in the temperature. The temperature range across which the 

SPPDt is switched OFF depends on a variety of parameters including operation 

frequency,𝜔, acceptor, 𝑁𝐴 and donor, 𝑁𝐷, concentrations, applied voltage and the device 

spatial characteristics specifically the width of the drift-diffusion zone. We could attain a 

sharp decay and faster response for larger applied voltage provided 𝑉 < 𝑉𝑐. As depicted 

in Figure 5-2(b) signal modulation surpassing -20 dB can be achieved for a temperature 

change of as little as 10 K. The numerical data is also compared to an analytical theory 
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based on the Wentzel-Kramers-Brillouin (WKB) showing a remarkable correlation 

between the two results. 

5.3.1 Thermo-optic Co-efficient at the doped PN-interface 

The dependence of the surface plasmon refractive index (𝑛𝑠𝑝𝑝 = 𝑘𝑆𝑃𝑃/𝑘0) on the 

lattice temperature is investigated at different applied voltages. The result in Figure 5-3, 

clearly shows that high thermo-optic co-efficient of   
𝑑𝑛𝑆𝑃𝑃

𝑑𝑇
~0.3𝐾−1 at the drift-diffusion 

region. Such high thermo-optic co-efficient suggests that the SPPDt is the promising all-

optical plasmonic switch. Here, the effect of 𝑛𝑆𝑃𝑃 can be analysed using the Drude Model 

for semiconductors, in which the change in 𝑛𝑆𝑃𝑃  is mostly due to the intrinsic 

concentration of the P-layer. 

 

Figure 5-3: Thermo-optic co-efficient at doped PN-junction. 
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5.3.2 Numerical Analysis 

Under steady ambient conditions with the control beam switched OFF, the 

electron concentration in the P-layer is below the critical and the SPPDt is in ON state 

(see Figure 5-4(a) & Figure 5-4(b)). 

 

Figure 5-4: (a) Steady-state minority carrier concentration profiles at a constant applied 

voltage 𝑉𝑎 = 1.12 𝑉 and different lattice temperature 𝑇 = (300 𝐾, 350 𝐾, 400 𝐾).  (b) SPP 

propagation along the length of the device. 

 Once the control SPP is switched ON, it brings additional electromagnetic 

heating, increasing the local temperature in the drift-diffusion zone. The temperature 

increase depends on the frequency range of operation, device geometry, choice of 

semiconductor and total power density of the control beam. In the simulations, we have 

used a control beam power density of 50 mW. μm−2, a typical value used in experiments 

involving SPP. This power level is sufficient to raise the local temperature by 40 K and 

switch OFF the signal, providing a signal modulation of -14 dB. The presented 

preliminary data, based on the WKB approximation and the exact numerical calculations, 

demonstrates that the SPP propagating at the PN- junction interfaces are subject to an 
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exceptionally strong thermo-optical effect that is not commonly observed in nature but is 

due to the abrupt electron concentration profile at the space charge region.   

5.3.3 Effect of Doping 

There is a direct relationship between the acceptor concentration and the critical 

temperature. The decrease in the P-layer concentration leads to a decrease in the critical 

temperature. Figure 5-5 depicts the SPP transmittance as a function of 𝑁𝐴 and lattice 

temperature. 

 
 

Figure 5-5: The SPPDt transmittance for Si at different P-doping concentrations and different 

external voltage 𝑉 = (1.1 𝑉, 1.12 𝑉, 1.15 𝑉).  are obtained using the self-consistent 

Multiphysics model (dots) and compared to the WKB approximation (solid lines). In the 

calculations the operation frequency is set at 30 THz, the thickness of the P-type layer is 𝑑 =
1.5 𝜇𝑚 and the overall length of the active drift-diffusion region is fixed at 𝑤 = 4 𝜇𝑚. 

 For a lower doping concentration, we can see that the SPPDt attains OFF-state 

for lower critical temperature 𝑇𝑐. Here, for the external voltage of 𝑉𝑎 = 1.12 𝑉 and a 

lattice temperature of 𝑇 = 350 𝐾, the device with  𝑁𝐴 = 10
19𝑐𝑚−3 attains 50% more 

modulation in comparison with a device doped with 𝑁𝐴 = 10
20𝑐𝑚−3. Using the self-

consistent model, we will have established the parametric range for the acceptor doping 
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concentration which can provide critical temperatures less than 350 K and signal 

modulation no less than -10 dB. 

5.3.4 Effect of Operational Frequency 

The SPPDt operation strongly depends on SPP frequency, 𝜔. Figure 5-6 depicts 

the SPP transmittance as a function of operational frequency and lattice temperature. 

 

Figure 5-6: The SPPDt transmittance for Si at different operational frequencies and different 

external voltage 𝑉 = (1.1 𝑉, 1.12 𝑉, 1.15 𝑉)  are obtained using the self-consistent 

Multiphysics model (dots) and compared to the WKB approximation (solid lines). In the 

calculations, the thickness of the P-type layer is 𝑑 = 1.5𝜇𝑚 and the overall length of the active 

drift-diffusion region is fixed at 𝑤 = 4 𝜇𝑚. 

 For instance, the critical temperature increases with 𝜔 and the chosen SPP 

operation frequency will affect the localization and propagation characteristics of the SPP 

modes. Using the self-consistent model, we have performed parametric analysis for two 

frequencies, 30THz and 20THz. Here, we can clearly see that the device with a doping 

concentration  𝑁𝐴 = 1 × 10
20, 𝑁𝐷 = 4 × 1020𝑐𝑚−3 operates for critical temperatures 

less than 350 K, signal modulation no less than -10 dB for the operational frequency of 

20 THz and applied voltage of 𝑉 = 1.12 𝑉. 
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5.4 SPPDt-Response Times (Transient Analysis) 

The speed at which the optical properties of the P-layer switches between 

dielectric (휀𝑝 > 0) to metallic (휀𝑝 < 0) and vice-versa depends on the rise time of the 

local temperature, which itself depends on the thermal diffusion coefficient of the 

material, the size of the device, operation frequency, and the control signal power 

density. Using dimensional analyses of the time dependent heat equation 𝜌𝑐𝑝𝜕𝑡𝑇(𝑥 , 𝑡) =

𝑘∇2𝑇(𝑥 , 𝑡) + 𝑄𝐽(𝑥 , 𝑡), we can get rough estimates of the expected characteristic times of 

the SPPDt, namely  𝜏 = 𝑙2/𝛼, where 𝛼 = 𝑘/𝜌𝑐𝑝 is the thermal diffusivity of the 

semiconductor material and 𝑙 = 𝑙𝑠𝑝𝑝 is the characteristic length scale which in our case 

coincides with the SPP effective mode size. Solving the heat diffusion equation 

analytically gives a set of increasingly smaller time scales: 𝜏𝑛 = 𝑙
2/𝛼𝜋2(2𝑛 + 1)2, 

where 𝑛 = 0, 1, 2, .. and a steady state achieved for times of the order of 𝜏0. A set of 

characteristic times were estimated by fixing the operation frequency at 30 THz,𝑁𝐴 =

1019𝑐𝑚−3, 𝑁𝐷 = 5 × 10
19𝑐𝑚−3, for the four semiconductor materials of interest and are 

shown in Table 1. Furthermore, depending on the input power, the switching of the 

device can be achieved even before the steady-state is established, hence for times 𝜏 <

𝜏0. As shown in Table 5-1, silicon is the promising material with high switching rates 

due to high conductivity. 
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Table 5-1: SPPDt characteristic times. 

 𝝉𝐧 GaAs InAs InSb  Si 

 𝝉𝟎 45.4 ps 74 ps 88 ns 17.6 ps 

 𝝉𝟏 16.3 ps 26.7 ps 31.7 ps 6.3 ps 

 𝝉𝟐 8.3 ps 13.6 ps 16.2 ps 3.2 ps 

 

 

5.5 SPPDt Logic Gates 

The all-optical SPPDt impute waveguide elements can potentially be used to 

substitute one of the fundamental units in a microprocessor: the logic gate. The ON and 

OFF state pertaining to the logic gates correspond to the ubiquitous ones and zeroes 

found in binary language. Thus, logic gates have a necessary role within computer 

systems that are limited by the speed of their ON-OFF switching. Using the SPPDt, we 

will have designed the fundamental NAND/NOR diode logic by interconnecting the 

SPPDt (see Figure 5-7).  
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Figure 5-7: (a,b) Schematic of the TSPD logic (NAND and NOR) (c,d) Logic table 

corresponding to the NAND and NOR gates, respectively. 

The logic gates operation is through the thermo-optic nonlinearity. The applied 

voltages will be fixed (below or above the critical depending on the gate) and the output 

will depend on the power densities of the two impute SPP waves. For instance, in the 

absence of a control beam, the input SPPs interact constructively at the Y-junction, and 

the signal is transferred establishing the “ON” states for both NAND and NOR gates. In 

the presence of the control beam (𝑐𝑏1 = 𝑂𝐹𝐹, 𝑐𝑏2 = 𝑂𝑁 or 𝑐𝑏1 = 𝑂𝑁, 𝑐𝑏2 = 𝑂𝐹𝐹), the 

SPPs from one of the impute waveguides is transmitted in the case of the NAND gate 

(“ON” state) and reflected in the case of a NOR gate (“OFF” state) due to high thermo-

optic effect at the active region. When both input control beams are ON, there is no 

transmission and both gates are in “OFF” state. As part of this project, a practically 

feasible design that is consistent with the CMOS technology will be provided. 
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CHAPTER 6 

 

SURFACE PLASMON ENHANCEMENT IN SELECTIVE LASER 

MELTING PROCESSES 

 

 

 
As discussed in the previous chapters, one of the most fascinating aspects of SPPs 

is the way light is channeled using the system geometries and has been used in a wide 

range of application. Extreme confinement and light trapping can convert the 

electromagnetic energy into heat with high efficiency and thus can fasten the initiation of 

the melting in SLM powders. The fundamental physical processes involved in SLM are 

complex and include scattering and absorption of laser radiation into highly 

heterogeneous metal powders, heat transfer, the formation of molten pools and its 

solidification, all within multiple lengths and timescales.  

In this chapter, we perform a comprehensive multi-physics study of the complex 

phenomena associated with light-matter interactions in metal powder beds pertaining to 

SLM. A numerical framework is developed which self-consistently solves the Maxwell’s 

and Heat equations to study the relevant electro and thermodynamic phenomenon. This 

model allows for accurate simulations of the excitation of the gap, bulk, and surface 

electromagnetic resonance modes, the energy transport across the powders, time-

dependent local permittivity variations at high powers, and the thermal effects (Joule 

heating) due to electromagnetic energy dissipation. We have acquired numerical data 

representing the local laser heating and temperature profiles for steady-state and transient 
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illumination. The numerical results are compared with a developed semi-analytical model 

showing an excellent agreement for powder beds consisting of titanium particles with 

sizes ranging from hundreds of nanometers up to tens of microns. The analytical model 

provides a qualitative and quantitative description of the volumetric temperature rise, 

critical laser power, saturation temperature and deposition rates as a function of various 

optical and thermometric parameters. Finally, specific guidelines are outlined for a 

potentially significant increase in the SLM energy efficiency and deposition rates. 

6.1 Thermo-optical Model 

In a typical SLM process, there are two competing mechanisms that are primarily 

responsible for the initiation of melting in the powder bed. The first mechanism is related 

to complex light-matter interactions such as multiple reflections and scattering while the 

second is associated with heat re-distribution within the powder bed, black-body 

radiation, and conduction/convection heat transfer.  To account for these strongly coupled 

effects, a self-consistent thermo-optical model is developed. Full-wave finite difference 

(FD) calculations of the optical phenomena manifested within the powder bed are 

performed using the COMSOL Electromagnetic Module. The thermal effects due to Joule 

heating are accounted for by the COMSOL Heat Transfer Module. A seamless 

integration between the two physical modules is accomplished by developing a 

MATLAB based facilitator code. The developed code shares the inter-dependent physical 

parameters between the two separate modules and allows for self-consistent steady-state 

and time-dependent simulations (see Figure 6-1). 

Due to multiple length and time scales involved in SLM, specific mesh size and 

time step constraints must be strictly enforced. The electromagnetic simulations are stable  
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Figure 6-1: Self Consistent thermo-optic model. 

and sufficiently accurate as long as we set the mesh size Δℎ = 𝛿/5, where 𝛿 is the 

particles skin depth (the skin depth is generally much smaller than the wavelength 𝜆 at 

optical frequencies). For titanium, the skin depth is 𝛿 = 22 nm (for 𝜆 = 1.0 μm) [108], 

and to accurately simulate the largest particle beds considered in this work (particle 

radius up to 10 microns), operational memory surpassing 30GB is required. Combined 

with adaptive meshing, this memory constrain is easily addressed even on an average 

workstation. Hence, the historical use of ray tracing methods is no longer a necessity and 

the simulation community should transition to exact numerical calculations of the 

electromagnetic phenomenon associated with SLM. Such transition can provide high 

fidelity codes that accurately capture new electromagnetic phenomenon such as 

excitation of surface electromagnetic states which are completely missed in commonly 

used ray approximation schemes.  

Apart from the spatial considerations, the self-consistent thermo-optics model has 

to capture all relevant time scales properly as well. The numerical solutions of the heat 

equation are stable provided the time step is Δ𝑡 <
1

2𝛼𝑃
Δℎ2 =

1

50𝛼𝑃
𝛿2 = 50ps, where 𝛼𝑃 
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is the particle thermal diffusivity (titanium is assumed in the estimate). This time step is 

sufficiently larger compared to the transient times in the electromagnetic simulations. As 

a result, steady-state solutions of the Maxwell’s equations can be generated in each time 

step, and the local Joule heating can be incorporated in the heat transfer module. This 

iterative process continues until saturation in the particle temperature or onset of melting 

is reached at macroscopic times. 

6.1.1 Numerical Simulation-Isolated Particle 

To test the developed thermo-optical model, we first consider a simple 

configuration comprising of a free-standing titanium particle, (see Figure 6-2(a)). As we 

consider extreme thermodynamic conditions, actual temperature dependent thermo-

physical parameters are considered in the model [109] [110]. As the first step, we 

consider steady-state conditions where the absorption scattering cross-section obtained by 

the finite-difference model, shown in Figure 6-2(a), is found to match the Mie formalism 

[111].  The particle absorption exhibits resonance behavior for small particles and 

asymptotically approaches the absorbance from a flat metal at large particle sizes. In 

Figure 6-2(b), we observe that while the local Joule heating can be highly 

inhomogeneous and localized within the particle skin depth, the corresponding steady-

state temperature is near uniform. This is attributed to the fact that a homogenization of 

the temperature profile inside the particle is established rapidly and within a characteristic 

time 𝜏 ≈ 𝑅2 𝛼𝑃⁄ , where R is the particle radius. For titanium particles with radius 𝑅 =

5 μm, the corresponding characteristic time is 𝜏~2.7 μs. 
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To better understand the temporal dynamics of the particle heating process, we 

have performed a set of time-dependent simulations shown in Figure 6-2(c) and Figure 

6-2(d).  

 

Figure 6-2: (a) Absorption cross-section of isolated titanium (Ti) particle using the Mie theory. 

At the chosen operational wavelength 𝜆 = 1.070 μm (corresponding to Concept Laser Mlab 

cusing R 3D printer [112]) the refractive index of titanium is 𝑛𝑝 = 3.4740 + 𝑖4.0113 [113]. 

(b) The local Joule heating is found to be predominantly along the polarization direction of the 

impinging radiation and the steady state temperature profile of the particle (𝑅 = 0.5 μm) 

irradiated with laser power density 𝑃0 = 200 W/cm
2 is found to be remarkably homogeneous. 

(c, d) The volume-averaged particle temperature as a function of the elapsed time is obtained 

using the self-consistent multiphysics model (dots) and compared to the analytical result given 

by Eq. 6-3 (solid lines). In (c) the size of the particle is fixed at 𝑅 = 0.5 μm and irradiated with 

three different laser power densities 𝑃0 = (200, 320, 500) W/cm
2, while in (d) three different 

particle sizes are investigated at a fixed laser power density 𝑃0 = 500 W/cm
2. In the 

calculations, the operational wavelength is set at 1.070 𝜇𝑚, and the particle melting 

temperature is shown with dashed line. 
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A linear increase of the volume averaged temperature with time is observed up 

until the onset of saturation due to black-body radiation. In the simulations, various 

conditions related to the particle sizes and input laser power densities are investigated. 

Figure 6-2(c) depicts the temperature rise and saturation for three separate laser power 

densities and titanium particle with fixed size 𝑅 = 0.5 μm. The power densities are 

chosen such that we can separately investigate the three operational regimes where the 

saturation temperature is lower, equal and higher compared to the particle melting 

temperature 𝑇𝑚 = 1941 𝐾 [114]. For laser power densities below the critical 𝑃0 < 𝑃𝑐 =

320 W/cm2, the temperature saturates at a maximum value lower than the particle 

melting temperature. At higher powers 𝑃0 > 𝑃𝑐, the time to melt is inversely proportional 

to the power density and depends linearly on the particle size (see Figure 6-2(d)). In all 

investigated cases and for laser power densities typical for SLM, the onset of melting or 

temperature saturation (for power densities less than the critical 𝑃0 < 𝑃𝑐) happens within 

a few milliseconds. This time scale is much larger than the local temperature 

homogenization time 𝜏 which as we have shown above is within a few microseconds. The 

existence of two separate time scales pertaining to the SLM process allows for the 

development of a simple analytical model which we present next. 

6.1.2 Analytical Model 

Starting with the local form of the heat equation, performing averaging over the 

particle volume and using the divergence theorem, we arrive at 

               𝜌𝑐𝑝𝑉
𝑑〈𝑇(𝑡)〉

𝑑𝑡
= 𝑘𝑃∮�⃗� 𝑇(𝑟 , 𝑡) ∙ 𝑑𝑆 + �̇� Eq. 6-1 

where 〈𝑇(𝑡)〉 = 𝑉−1 ∫𝑇(𝑟 , 𝑡)𝑑𝑉 is the volume average temperature, 𝑉 is the particle 

volume, �̇� = 𝜎𝑎𝑃0 is the Joule heating rate which depends on the incident laser power 
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density 𝑃0 and the absorption cross-section 𝜎𝑎. The heat flux at the surface is due to 

conduction/convection and radiation losses and can be written as a function of the 

average surface temperature 〈𝑇(𝑡)〉𝑅 = 𝑆−1 ∫𝑇(𝑟 , 𝑡)𝑑𝑆 as follows 

               𝜌𝑐𝑝𝑉
𝑑〈𝑇(𝑡)〉

𝑑𝑡
= −ℎ𝑆(〈𝑇(𝑡)〉𝑅 − 𝑇𝑎) − 𝜖𝜎𝐵𝑆(〈𝑇(𝑡)〉𝑅

4 − 𝑇𝑎
4) + �̇� Eq. 6-2 

where 𝑇𝑎 = 300 𝐾 is the ambient temperature, 𝜎𝐵 is the Boltzmann constant, and 𝜖 =

𝜎𝑎/𝜋𝑅
2 is the emissivity. For stagnant flow, the heat transfer coefficient is given as ℎ =

𝑘𝑎/𝑅, where 𝑘𝑎 is the thermal conductivity of the buffer gas. For times sufficiently larger 

compared to the termalization time 𝑡 ≫ 𝜏 but smaller compared to the time to melt (or 

saturation at lower powers), we can equal the average volumetric and surface 

temperatures 〈𝑇(𝑡)〉 = 〈𝑇(𝑡)〉𝑅 = 𝑇(𝑡). In this case Eq. 6-2 has an exact analytical 

solution which however is rather a combustor and not very illuminating. Instead, we 

recognize that SLM ambient conditions involve buffer gases with low thermal 

conductivities and high powder bed temperatures for which the conduction term can be 

neglected. The rate equation Eq. 6-2 then has a simple analytical solution in implicit form 

𝑡 =
𝑡0
2
(tan−1 (

𝑇

𝑇𝑠
) + tanh−1 (

𝑇

𝑇𝑠
) − tan−1 (

𝑇𝑎
𝑇𝑠
) − tanh−1 (

𝑇𝑎
𝑇𝑠
)) Eq. 6-3 

where 𝑡 is the time since the onset of heating, 𝑡0 =
𝜌𝑐𝑝𝑅

3𝜖𝜎𝐵𝑇𝑠
3 is a characteristic time 

corresponding to reaching saturation, and 𝑇𝑠 = (𝑇𝑎
4 +

 𝑃0

4𝜎𝐵
)
1/4

 is the saturation 

temperature which is independent on the particle size. For a given melting 

temperature, 𝑇𝑚, the theory predicts a critical power density 𝑃𝑐 = 4𝜎𝐵(𝑇𝑚
4 − 𝑇𝑎

4) required 

to initiate the melting process. For high powers such that  𝑇𝑎 ≪ 𝑇𝑚 ≪ 𝑇𝑠, a linear rise of 

temperature is expected 𝑇 ≈ 𝑇𝑎 + (𝑡/𝑡0)𝑇𝑠, and the time to melt can be estimated as 
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𝑡𝑚 =
𝑡0𝑇𝑚

𝑇𝑠
=

4𝜌𝑐𝑝𝑅𝑇𝑚

3𝜖𝑃0
, showing linear dependence with the particle size and inverse 

dependence on the incident power. This is consistent with the numerical findings in 

Figure 6-2(c, d), where we compare the analytical theory with the numerical results for 

different incident power densities and particle sizes. We observe an excellent agreement 

both in terms of predicting the transient behavior and steady state temperature. As 

discussed above, the analytical model is only applicable if a near homogeneous 

temperature is observed for macroscopic times or provided 𝑡𝑚 ≫ 𝜏. This condition sets a 

limit for the laser power density 𝑃0 < 𝑘𝑃𝑇𝑚/𝑅, beyond which the analytical model 

cannot be trusted. For titanium particles with radius 𝑅 = 1 𝜇𝑚, the power densities must 

be lower than 4000 W/cm2. 

6.2 Dense Metal Powders 

The developed thermo-optical models have also been extended to study the dense 

metal powders used in SLM. The system under consideration consists of a layer of 

touching titanium spheres resting on a substrate representing the already melted pool and 

is depicted as an insert in Figure 6-3. In the numerical simulations, the metal powder is 

represented as a periodic arrangement of closely packed particle in a square lattice with 

near neighbor interactions taken into account by imposing periodic boundary conditions 

across the system (in the plane parallel to the substrate). The calculated absorptance 

under steady-state conditions, normal laser incidence, fixed wavelength, and varying 

particle sizes is shown in Figure 6-3. 
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Figure 6-3: Absorptance versus particle size for closely packed (touching) titanium spheres 

arranged in a square lattice on top of a titanium substrate (see insert).  In the calculations, the 

laser radiation is normal to the particle bed and the laser wavelength is set at 1.070 𝜇𝑚.  

Morphologically dependence resonances are manifested due to electromagnetic interactions 

between neighbors and excitation of surface plasmon states (points A, B, and C). 

Compared to a single non-interactive particle (see Figure 6-2(a)), here we 

observe absorptance with added complexity. This added complexity is predominantly due 

to inter-particle field interactions that provide additional channels for excitation of 

morphology-dependent resonances facilitated by surface plasmon polaritons (SPPs).  

As discussed in previous chapters, SPPs are the transfer magnetic (TM) surface modes 

that propagate at the metal-dielectric interfaces. For planar surfaces, the SPP wavevector 

is given as 𝑘𝑠𝑝 = (𝜔/𝑐)√휀𝑑휀𝑝/(휀𝑑 + 휀𝑝), where 휀𝑑 and 휀𝑝 are dielectric and metal 

permitivities, respectively. For large metal particles and neglecting curvature effects, the 

leading SPP resonances can be obtained using the standing-wave condition Re[𝑘𝑠𝑝𝑅] =

2𝑛, where 𝑛 = 1, 2, … For titanium particles illuminated with laser radiation at fixed free 

space wavelength 𝜆 = 2 𝜋𝑐/𝜔 = 1.070𝜇𝑚, we obtain a set of resonance particle sizes  𝑅 =

0.34 𝜇𝑚, 0.680 𝜇𝑚, 1.02 𝜇𝑚,…. These correlate rather well with the absorbtance peaks 
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in Figure 6-3: manifested for 𝑅 = 0.37𝜇𝑚 (A point), 𝑅 = 0.752 𝜇𝑚 (B point), and 𝑅 =

1.07 𝜇𝑚 (C point).  

As seen in Figure 6-4 as the particle size increases, higher order SPP resonances 

are excited. The quality factor of these resonances generally decreases with the order and  

 

Figure 6-4: (a, b, c) Local electric field profiles due to impinging (from the left) laser radiation 

showing excitation of standing surface waves associated with SPPs. (d, e, f) The SPP modes 

induce localized Joule heating which is found to be predominantly on the polarization direction 

of the impinging radiation. (g, h, i) The local steady-state temperature on the particle surface 

shows a highly homogeneous distribution despite the strongly localized Joule heating. In the 

calculations, the operational wavelength is set at 1.070 𝜇𝑚 and the incoming laser beam power 

density is 𝑃0 = 40 W/cm
2. 

as a result, gradual disappearing of the resonance structure is observed for large 

particles  𝑅 > 5 𝜇𝑚, with the absorbtance approaching 𝐴 → 61.5% which is consistent 

with estimates using the ray tracing method [64]. 
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The numerically obtained steady-state electric field, Joule heating and 

temperature distributions for titanium powders with particle sizes supporting SPP 

resonances are depicted in Figure 6-4. Close inspection of the local electric field profiles 

provides further validation of the proposed explanation of the resonance effects as 

facilitated by SPP standing-waves (see Figure 6-4(a-f)). While the local electric field and 

corresponding Joule heating are aligned with the laser polarization direction and show 

highly inhomogeneous profiles, the steady-state surface temperature is remarkably 

homogeneous (Figure 6-4(g-i)). As discussed in the preceding sections, this is due to fast 

thermalization times sufficiently larger than the homogenization time 𝑡 ≫ 𝜏 = 𝑅2 𝛼𝑃⁄ . 

This fact, similarly to the case of a free-standing particle, allows the implementation of 

the analytical model Eq. 6-3 with few simple modifications. To account for the change in 

geometry (dense powders) in the model, the Joule heating rate is now given by �̇� =

𝐴𝑃0𝑆, the emissivity is equal to the absorptance 𝜖 = 𝐴, and 𝑆 = 4𝑅2 is the cross-

sectional area of the unit cell (touching spheres). 

The temporal response of the volume averaged particle temperature calculated 

using the numerical method and analytical theory is shown in Figure 6-5. In the 

calculations, we consider again a set of input power densities and particle sizes were 

chosen to exemplify the various regimes of operation.  
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Figure 6-5: The volume-averaged particle temperature as a function of the elapsed time for a 

periodic array of titanium particles obtained using the self-consistent multiphysics model (dots) 

and compared to the analytical result (solid line). (a) The size of the particle is set to match the 

𝑛 = 1 SPP resonance (point A) and is irradiated with three different laser power densities 𝑃0 =
(40, 82, 200) W/cm2. (b) The temperature versus time calculated for periodic arrays of 

titanium particles with varying sizes and irradiated with a constant laser power density 𝑃0 =
200 W/cm2. In the calculations, the operational wavelength is set at 1.070 𝜇𝑚. 

Figure 6-5(a) depicts the temperature versus time for a periodic array of 0.35 𝜇𝑚 

sized particles (matching the 𝑛 = 1 SPP resonance) at input powers below, at and above 

critical. Similar behavior to that of a free-standing particle is observed. The main 

difference compared to the free-standing particle is that for dense powders, the critical 

laser power density is reduced by a factor of ≈ 1/4. This is consistent with the shading 

effect due to the adjacent particles which can reabsorb the thermal radiation if the angle 

of emission is 휃 > 휃𝑀 .  

For closely packed powders, the angle of the radiation window is 휃𝑀 = tan−1(2) 

and the critical power is reduced by a factor proportional to the radiation solid angle 

fraction Ω𝑅/4𝜋 =
1

2
∫ sin(휃) 𝑑휃
𝜃𝑀

0
= 0.27 ≈ 1/4. In all three cases, the analytical theory 

closely matches the numerical results and melting conditions are reached within a few 
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milliseconds. Similar consistency is observed at fixed incident power density and varying 

particle sizes as shown in Figure 6-5(b). In the linear regime, the time to melt 𝑡𝑚 =

𝜋𝜌𝑐𝑝𝑅𝑇𝑚

3𝐴𝑃0
 is proportional to the particle radius which is clearly evident in the presented 

data. Note, in the presentation we use log-normal plots to capture the behavior for large 

range of times. 

The presented study provides an insight into the intra- and inter-particle heat 

transfer processes within the powder bed. Inter-particle heat transfer is typically governed 

by conduction into the buffer gas (argon in our case), contact conduction between the 

particles and to the substrate they reside on. For typical SLM buffer gasses and low 

pressures, the conductive transfer is weaker compared to radiation losses and can be 

neglected for power densities  𝑃0 < 𝑘𝑃𝑇𝑚/𝑅 . When considering the intra-particle heat 

transfer, the time scale defining the transient processes are typically much smaller than 

the time scales governing particle melting. In other words, under typical SLM conditions, 

conductive homogenization of non-uniform energy and temperature distributions across 

the powder bed and inside the individual particles happen extremely fast, and we can 

safely consider the metal powder under near uniform temperature at macroscopic times. 

6.3 Selective Laser Melting-Volumetric Deposition Rate and Energy Efficiency 

Some of the major obstacles for the widespread implementation of metal printing 

based on SLM is the time-consuming processing which can take hours to create a single 

component. Increasing the printing rate and improving the energy efficiency are the main 

goals for the industry. To access possible strategies for such technology improvements, 

we have performed a systematic study of the volumetric deposition rate versus average 

particle size and input laser power density. The deposition rate is estimated as �̇� =
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4𝜋𝑅3𝑁/3𝑡𝑚= 𝜋𝑅𝑊0 3𝑃0𝑡𝑚⁄ , where 𝑁 = 𝑆0/4𝑅
2 is the number of particles within the 

laser beam spot area 𝑆0, 𝑊0 = 𝑆0𝑃0 is the incident laser beam power, and 𝑡𝑚 =

𝑡𝑚(𝐴, 𝑃0, 𝑅) is the melting onset time which is a function of the absorptance 𝐴, power 

density 𝑃0 and average particle size. In Figure 6-6(a) we present the volumetric 

deposition rates for various laser power densities and particle sizes.  

 

Figure 6-6: (a) Volumetric Deposition rate as a function of particle size and incident laser 

intensity. In the calculations the operational wavelength is set at 1.070 𝜇𝑚, incident laser 

power as 𝑊0 = 100 W. The periodic array of homogenous sized particle array is irradiated 

with three different laser power densities 𝑃0 = (500, 200,100) W/cm
2. The corresponding 

MVDR is depicted by black dots. (b) Efficiency as a function of incident laser intensity. 

In the calculations, we have fixed the total laser power at 𝑊0 = 100 W, typical 

for SLM printing machines [112] [115]. A substantial speed up could be achieved for 

powder beds with mean particles sizes that support excitation of SPP resonances and 

hence increased absorbtance. Increasing the laser power density or decreasing the laser 

spot size lead to an overall increase in deposition until it reaches a fundamental limit 

which we refer to as a maximum volumetric deposition rate (MVDR). This limit can be 

obtained from the rate equation Eq. 6-3, which is solved in the limit of high powers, 

rapid temperature rise and negligible radiation losses. Under these conditions the time to 
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melt is �̃�𝑚 = 𝜌𝑐𝑝𝑉(𝑇𝑚 − 𝑇𝑎)/4𝐴𝑅
2𝑃0 and the maximum volumetric deposition rate is 

�̇�𝑀𝑉𝐷𝑅 = 𝐴𝑊0/[𝜌𝑐𝑝(𝑇𝑚 − 𝑇𝑎)], independent of the laser power density. 

Apart from increasing the speed of the printing process, it is also important to 

study the SLM energy efficiency. The efficiency can be defined as the fraction 휂 =

𝑈𝑝/𝑈𝐿 of the particle thermal energy 𝑈𝑝 = 𝜌𝑐𝑝𝑉(𝑇𝑚 − 𝑇𝑎) to the laser energy 𝑈𝐿 =

�̇�𝑡𝑚 deposited up to the onset of melting. The efficiency can also be written as the ratio 

between the times to melt with and without radiation losses, 휂 = �̃�𝑚/𝑡𝑚, and is depicted 

in Figure 6-6(b). The efficiency has a strong dependency on the incident laser powder 

density and goes to zero at the critical power. Interestingly, it is also found to be 

independent of the particle size and absorptance. This is due to the fact that 𝑈𝐿 and 𝑈𝑝 are 

both proportional to the particle volume, and in the case of energy losses due to radiation, 

only the thermal emissivity is simply proportional to the absorptance, which leads to 

saturation temperature independent on the absorbance and particle size.  

However, at intermediate and high buffer gas pressures, the conductive heat 

transfer into the gas will start to play a more significant role. In this case, the efficiency 

will start to be sensitive to the powder bed particle size distribution. Overall, under 

typical SLM condition, it can be concluded that using smaller laser focus spot sizes, 

optimal powder density along with particle/grain sizes that support plasmonic resonances 

may substantially improve deposition rates and energy efficiency. Since optimization is 

achieved for particle size distributions tailored to the excitation of surface plasmon 

resonances, this points toward the need to develop powder beds consisting of particle 

sizes smaller than those currently used by the industry. Such a shift toward finer powder 

beds can also lead to higher morphological uniformity of the melt pools and hence 
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improved metallurgical microstructure of the printed parts, finer geometrical resolutions 

along with improved surface quality. However, it must be also recognized that using finer 

powder beds can also lead to issues related to clean up, contamination and layers 

deposition. If these technical issues are resolved, there is a clear path toward further 

improvements in the SLM technology. 
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

 

 

7.1 Concluding Remarks 

In conclusion of this dissertation, we have introduced and demonstrated a novel 

optoelectronic switching device, i.e. surface plasmon polariton diode (SPPD), capable of 

operating at exceedingly high switching rates and signal modulation. The fast response of 

the device is achieved by active control of the propagation of surface plasmon polaritons 

(SPPs) along with a highly doped PN-junction.  Multiphysics numerical code was 

developed to self-consistently model the electromagnetic, solid state, and the thermal 

response of the device. Using the developed Multiphysics model, we have studied the 

operational characteristics using three different semiconductor materials, Si, GaAs, and 

In0.53Ga0.47As. The performed steady-state and time-dependent numerical analysis 

suggests that an SPPD based on lattice matched In0.53Ga0.47As can operate at 

responsivities more than −600 dB ∙ V−1  and data rates up to 50 Gbit/s.  

Moreover, owing to the use of SPPs, the proposed optoelectronic switch can have 

physical dimensions substantially smaller compared to conventional optical devices. 

Likewise, tuning the thickness of the active drift diffusion region, doping concentrations 

and operational frequency suggests that SPPD can operate at signal modulation in excess 

of 18 dB and switching rates of up to 1 THz. Designs of the fundamental logic elements, 
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NAND and NOR gates, have been suggested and demonstrated. Finally, a practical 

design based on a set of coupling/out-coupling gratings is proposed for the experimental 

demonstration of the optoelectronic switch. 

The experimental efforts in collaboration with UT Austin had led to Proof of 

Concept devices based on highly doped Silicon-on-Insulator (SOI) and lattice matched 

In0.53Ga0.47As. A step-by-step process is implemented in which the theory is matched to a 

set of control experiments, providing the critical data needed to refine the material 

parameters used in the theory. Two Figures of Merit (FOM) have been used to 

characterize the tradeoff between the SPP propagation losses and mode confinement for 

operation frequencies in the far-IR spectral range and III-V semiconducting materials and 

compounds consistent with the experimental capabilities. Performed comprehensive 

study of the SPPD steady-state and time-dependent I/O characteristics in conjunction 

with the experimental results that has led to in-depth understanding of the unique 

switching mechanism behind the SPPD, establishing a clear roadmap toward direct, 

electro-optical signal modulation at rates from a few kHz up to 1 THz, guide and 

accelerate the development of a prototype.  

Furthermore, this dissertation also addressed the design and theory of all optical 

equivalent of an SPPD, where switching of SPPs is accomplished using a secondary 

control SPP modes, referred to as Surface Plasmon Polariton Diode (thermal) (SPPDt). 

Largely, the switching relies on the exceptionally strong thermo-optical nonlinearity 

present at the PN-junction. Full-scale simulations of the all-optical response of the SPPDt 

based on Silicon were performed demonstrating extremely fast switching for applied 

voltage higher than 1.1 V, and signal modulation of up to 24 dB. We have studied the 
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operation characteristics of the Si-device under steady-state conditions. Also, we 

identified the device critical temperature dependence on the acceptor doping 

concentration and frequency of operation. Practical designs of NAND and NOR SPPDt 

logic gates were proposed and studied. Possible applications of the SPPD as a high 

sensitivity temperature sensor were demonstrated.  

Finally, for the first time, we have applied the concept of SPP to the field of SLM. 

For this, we have adapted the developed self-consistent Multiphysics code for SPPD and 

SPPDt, which simultaneously solves the Maxwell’s and the heat transfer equations. The 

model used adaptive meshing and can be executed in parallel. The adapted model helps 

to understand the laser interactions with metal powder beds related to the SLM processes 

and studied the relevant electromagnetic and thermodynamic phenomenon.  This allows 

full-wave calculations of spatial domains sufficiently large to model the SLM processes 

without the use of approximated methods such as ray tracing. The presented approach is 

easy to implement and provides a new direction for the simulation community for 

transition into exact numerical phenomena associated with SLM.  

Using the developed numerical method, we have performed extensive studies of the 

local laser heating and temperature profiles for steady-state and transient illumination. It 

is observed that under typical SLM conditions, the deposited laser energy is thermalized 

within a time scale substantially shorter compared to the time to melt, leading to highly 

homogeneous temperature profiled across the powder beds. This allows the 

implementation of a simple analytical model to provide a qualitative and quantitative 

description of the volumetric temperature rise in the powder beds as a function of the 

various optical and thermometric parameters. Overall, our results show that metal powder 
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beds comprised of particle size distributions supporting surface plasmon polariton (SPP) 

resonances can greatly improve the absorption rate and hence the SLM volumetric 

deposition rate. 

7.2 Future Work 

7.2.1 Surface Plasmon Polariton Diode (SPPD) 

One of the main goals of this dissertation is to design and assess the potential of 

excitation and fast optoelectronic control of SPPs at the interface of doped 

semiconductors. We have successfully accomplished all primary objectives related to the 

underlying working principle, general design assessment, parametric optimization of 

switching times and material characterization of SPPD. As a future work, we will focus 

on: 

1. The transient response of the prototypes based on highly doped Silicon-on-

Insulator (SOI) and lattice matched In0.53Ga0.47As will be further tested using a 

direct detection method (IR-detector) for modulation rates ranging from low 

(kHz) to moderate and high frequencies (few MHz up to 3 GHz).  

2. A new on-chip electro-optical detection will be implemented. Experimental 

measurements, in conjunction with the theory, will be performed to establish the 

physical limitations and scaling laws governing the SPD 3dB bandwidth.  

3. Experimental realization of an on-chip SPPD logic gates. 

7.2.2 Surface Plasmon Polariton Diode (thermal) (SPPDt) 

The second objective of this dissertation is to design and assess the potential of a 

fast all-optical analog of the SPPD, where the SPPs are controlled by a secondary 

electromagnetic mode at the interface of doped semiconductors. We have accomplished 
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objectives related to the underlying working principle, general design assessment, 

operation characteristics and parametric optimization under steady-state. Some of the 

areas of future work are: 

1. SPPDt switching characteristics step and temporal response for Silicon and 

In0.53Ga0.47As using thermo-electro-optical model. Validate the results using the 

analytical methods.  

2. Study the optical characteristics using different semiconducting materials and 

establish a roadmap to THz switching with transmission modulation higher than 

90%. 

3. Perform comprehensive Multiphysics modeling of SPPDt Logic gates (AND, 

NAND, OR and NOR). 

4. To study a practical design based on a set of coupling/out-coupling gratings for 

the experimental demonstration of the SPPDt. 

7.2.3 Multiphysics Modelling of SLM Process 

The third objective of this dissertation is to perform a self-consistent thermo-

optical model of the laser-matter interactions pertaining to SLM. Electromagnetic 

interactions and the thermal effects with the dense powder beds are investigated by 

means of full-wave finite difference calculations. Future work comprises of: 

1. Perform analysis by considering realistic particle powder beds’ configurations 

including (i) Compounds in the form of quasi-periodic lattices and (ii) 

Experimental relevant particle size distributions. 

2. Perform particle shape optimization by considering spheroidal and shell 

configurations for improved absorption and heat transfer within the powder beds. 
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3. Study the requirements of the mean and standard deviation of the particle sizes in 

the powder bed to obtain insight towards the mechanical properties of the final 

manufactured part. 

4. Integrate a fluid dynamics module in the code in order to understand the solid-

liquid-solid phase transitions. 
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