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ABSTRACT 

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric 

resonators much smaller in size than the wavelength of the incident light. Common 

examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips 

and fishnet structures. These types of materials are designed and fabricated in order to 

provide unique optical responses to the incident electromagnetic radiation that are not 

available in naturally existing materials. The MMs can exhibit unusual properties such as 

strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index 

materials (NIMs) can provide negative index of refraction which can be used in many 

applications including invisibility cloaking devices and superlenses capable of overcoming 

the diffraction limit of light. Furthermore, NIMs manifest reversal of optical laws such as 

Snell’s law, the Doppler effect and Cerenkov radiation. 

This dissertation demonstrates comprehensive analytical and theoretical studies of 

the magnetic and electric susceptibilities of prospective two dimensional MMs including 

metallic parallel strips and bowtie resonators. Accurate analytical theories are developed 

to describe the diamagnetic response of a pair of metallic nanostrips separated by a 

dielectric material using the transmission line theory, and of metallic bowtie MMs through 

a high frequency LZ circuit model. These theoretical models were compared to exact 

numerical simulations based on the finite difference frequency domain (FDFD) Comsol 

Multiphysics software. The magnetic response for both systems was extracted numerically 
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by applying the polarization current approach and found to be in excellent agreement with 

the analytical theory. Our results show that strong optical magnetism can be realized by 

reducing the size of the resonators; however, the scaling breaks down at high frequencies 

where a clear saturation in the magnetic resonance frequency is manifested in both systems 

under investigation. Moreover, the proposed NIMs designs are shown to exhibit negative 

index of refraction in the case of metallic and semiconductor based strips resonators. A 

record high figure of merit (FOM) of -0.9 has been demonstrated for double negative index 

material (demonstrating simultaneously negative permittivity and permeability). The local 

electromagnetic response of the NIMs was extracted using two competing approaches, 

namely the field averaging and inverse methods. These methods have shown consistent 

results, specifically with respect to the predicted magnetic susceptibility, and thus have 

testified that the proposed magnetic resonance designs can lead to prospective high fidelity 

NIMs that should be implemented in practice.  

As a separate effort related to this thesis, a ceramic material (i.e. yttria stabilized 

zirconia (YSZ)) was used to fabricate a NOx sensor. Since diesel engines emits more 

particulates and NOx exhaust gases compared to gasoline engine, a NOx sensor is required 

to monitor emission in diesels vehicle. The proposed NOx sensor consists of a porous 

electrolyte and dense electrode. The porosity of YSZ is studied with direct Archimedes 

measurements and through scanning electron microscopy (SEM) of the YSZ at different 

firing temperatures. The electrochemical performance of NOx sensor was finally examined 

and verified by using impedance spectroscopy (IS).
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Metamaterials 

During the past few decades there have been great efforts in developing new types 

of optical materials that could manipulate light in a desired manner; these materials are 

commonly referred to as designed materials (DMs). The key goals for developing such 

materials are to lift current limitations in the responses and capabilities of electromagnetic 

devices which are set by the available naturally existing materials used to build them. The 

DMs are synthesized or manufactured at the atomic or nano-length scales and can exhibit 

electromagnetic responses far beyond those available in nature. There are many types of 

designed materials with the photonic crystals (PCs) and metamaterials (MMs), two 

particular examples. This dissertation research focuses on designing metamaterial 

structures that can provide electromagnetic response that are substantially different 

compared to the optical responses of ordinary media [1, 2]. 

The electromagnetic metamaterials (MMs) are composed of artificial atoms (i.e. 

metal-dielectric elements) in the same way as the traditional materials consist of atoms. 

Usually, the MMs are periodic arrangements of resonator structures with the basic 

structural element defining a unit cell that has to be much smaller than the wavelength of 

interest. These structural elements are in the form of split ring resonators (SRRs), fishnet 
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structure, parallel wires or slabs arranged in large 1D, 2D or 3D arrays (see Figure 1-1) [2, 

3, 4, 5, 6, 7, 8]. Metamaterials gain their properties from their internal geometrical structure 

rather than the intrinsic properties of the chemical constituents [2, 9]. Although 

metamaterials are composed of highly inhomogeneous inclusions, their electromagnetic 

responses to the incident light can be expressed in terms of homogenized effective electric 

permittivity 𝜀 and magnetic permeability 𝜇. 

 

  

Figure 1-1: The metamaterials are periodic arrangements of unit cells each consisting 

of designed resonator structure [5, 6, 17, 18]. 

When considering the history of metamaterials, it is important to mention that since 

B.C.E., metal inclusions into glass (stained glasses) has been used to control color. For 

instance, it was found that adding reduced or oxidized copper into the glass results in 

stained glasses with either red or blue colors, respectively. One of the most famous example 

of such metalized glasses is the Lycurgus Cup exhibited in the British Museum (Figure 1-
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2). This cup was made in the fourth century A.D. during the Roman Empire [19]. The cup 

appears green in Figure1-2 (a) when the light is reflected off the surface of the cup; 

however, when the light is transmitted through the cup, the cup looks red (Figure 1-2 (b)). 

The Lycurgus cup has a remarkable behavior which results from introducing colloidal gold 

and silver nanoparticles into the glass.  

 

 

Figure 1-2: The Lycurgus cup appears (a) green when light is reflected off the surface 

of the cup, and (b) red when the light is transmitted through the cup [19]. 

Apart from the Lycurgus cup, people based on trial and error have produced a large 

variety of stained glasses by incorporating nanosize metallic inclusions within the molted 

glass. In the eighth century, Jabir ibn Hayyan discussed the manufacturing of colored glass 

and the technique for coloring gemstones in his book ‘The book of the Hidden Pearl’ which 

is arguably considered the first book on man-made MMs [19]. 

In relatively modern times long before the term “metamaterials” emerged in 

science, there have been many attempts at producing artificial MMs and explaining their 

properties. In 1898, Bose developed the first artificial chiral material by using pieces of 

twisted jute in subwavelength sizes [20]. Later in 1904, J.C.M. Garnett in his paper 
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described how the colors occurred and changed within glasses when gold or silver films 

were annealed into nanoparticles and dispersed throughout soda glass. His study was based 

on the Drude model which describes the optical properties of free electron in metals [21].  

In 1908, the well-known Mie scattering theory was developed providing an exact treatment 

of scattering of light by metallic or dielectric spheres. This theory calculates the scattering 

of the incident light providing explicit formulation for the electric and magnetic fields 

inside and outside of the sphere [22]. All these previous works represent major efforts in 

developing optical materials and explaining the behavior of nanoparticles and are thus 

considered to be fundamental turning points in the history of metamaterials. 

 The emergence of modern optical metamaterials started in the late 60s. The most 

inspiring works of modern metamaterials are the three seminal paper by Victor Veselago 

in 1967 [23], David Smith in 2000 [24] and John Pendry in 2000 [11]. Veselago developed 

the theoretical framework of negative index materials, claiming that these types of 

materials would provide unusual phenomena in which the electric field, magnetic field and 

the wave vector of light propagate in the opposite direction compared to that in positive 

index materials. Additionally, he showed that to have negative index material, it is required 

for the permittivity and permeability to be concurrently negative within a common 

frequency band. In such left handed materials (LHMs), many unique properties are 

predicted to take place such as reversal of Snell’s Law and reversal of the Doppler and 

Cerenkov effects. Veselago’s work was ignored for a very long time due to the absence of 

naturally existing double negative material (i. e. materials with both 𝜀 < 0 and 𝜇 < 0), 

which made negative index of refraction a near impossibility. His ideas were not realized 

experimentally until 2000, when Smith et al. fabricated the first NIMs operating in the 
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microwave frequency regime [24]. Since this founding work there has been an enormous 

attention to NIMs by scientists working in optics, physics, electromagnetism, material 

science and engineering. This strong interest was further inflamed after John Pendry 

predicted that NIMs can be used to make perfect lenses allowing imaging with resolution 

beyond the conventional diffraction limit of light [6, 18, 9, 25, 26].  

 The electromagnetic response of metals at optical frequencies is drastically 

different from those at lower frequencies where the permittivity of metals is highly negative 

so that they behave as “perfect” conductors. At frequencies close or above the plasma 

frequency which of noble metals is situated in the optical range, they behave as dielectrics. 

As a result, metallic nanostructures can exhibit morphological plasmon resonances and are 

transparent at high frequencies. To achieve similar behavior at low (microwave) 

frequencies designed composites materials have been proposed based on sparse arrays of 

metal wires [9, 10, 26, 27]. Some ferromagnetic materials show negative magnetic 

susceptibilities at microwave frequencies as well; however, the magnetic response is very 

weak in the THz and nonexistent in the optical frequency range [28]. The resonance nature 

of the electric response of metallic structures at optical frequencies can provide excitations 

of strong closed currents and thus open the possibility for achieving negative permeability 

and negative permittivity within a common frequency range [10]. Following this concept, 

researchers have designed and fabricated metamaterials with simultaneously negative 

electric and magnetic responses. A brief history of the most inspiring works in the field of 

MMs follows. 

In 1999, Pendry was the first to propose a negative index material consisting of 

periodic metallic thin wires to provide a negative permittivity (𝜀 < 0) and coupled to split 
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ring resonators (SRRs) that support closed currents and strong diamagnetic moments (𝜇 <

0).  The lattice constant of his structure was much smaller than the excitation wavelength 

of light; hence, the system behaved as a homogeneous material exhibiting negative index 

of refraction [3], [29]. Based on Pendry’s design, in 2000, Smith et al. fabricated and 

characterized the first NIM to operate in the microwave regime [24]. Similar work was 

done by Shelby et al. in 2001 [30], [31]. The proposed design again relies on split ring 

resonators (SRR) to achieve negative permeability and wire strips centered on the SRRs to 

provide a negative permittivity (see Figure 1-3). This experiment showed a negative index 

of refraction at GHz frequencies. 

 

 

Figure 1-3: Bulk negative index materials with the unit cell consisting of SRR 

combined with the metallic wire [30]. 

These founding works thus validated the ideas behind negative index materials 

(NIMs) for microwaves. Later, researchers were able to demonstrate negative permeability 

at THz frequencies by shrinking the size of the SRRs to a few micrometers [32]. At the 

same time, Linden et al. [33] fabricated a single ring resonator made of copper and by 

reducing the size of the ring down to the nanometer length scale they were able to 

demonstrate magnetic response up to 100 THz. 
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While all initial efforts were focused on developing metamaterials’ structures 

consisting of metallic SRRs, it was recognized that this particular design cannot be scaled 

down to provide magnetism at optical frequencies. Hence, the research efforts shifted into 

seeking alternative and simpler designs that can be easily fabricated and experimentally 

characterized.  

Podolskiy et al. [7] showed that a simple structure based on pairs of metal nanorods 

is capable of demonstrating negative permeability and negative index of refraction at 

optical frequencies.  Then by following an identical design, Shalaev et al. [6] 

experimentally demonstrated the first optical metamaterial with NIR, the proposed 

structure consists of parallel gold nanorods separated by a dielectric material as shown in 

Figure 1-4. This structure showed an effective negative permeability at 200 THz. 

 

 

Figure 1-4: Optical negative index material consisting of array of pair of nanorods [6]. 

Only in 2008, the first true bulks NIM based on alternative layers of silver and 

magnesium fluoride in the form of a fishnet structure, shown in Figure 1-5, was 

successfully developed and tested, providing a direct evidence of negative refraction at 

near infrared frequencies. This structure had a figure of merit (FOM), the ratio between the 
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real and imaginary part of the refraction index, surpassing -3.5, which remains the record 

holder as of today [8]. 

 

 

Figure 1-5: Fishnet type bulk negative index materials in the optical range [8] (a) 

schematics of 21 layer fishnet structure and (b) SEM image of the fabricated fishnet 

structure. 

The large number of important potential applications of metamaterials continues to 

drive rapid growth of optical research in the field. In the next section, we discuss the most 

important applications of metamaterials, applicable to optics. 

1.1.1 Applications of Metamaterials  

There are many fascinating applications of metamaterials such as metamaterials 

antennas, biosensors, optical nanolithography, nanocircuits and metamaterials also used as 

a medium for the transformation of optics. The transformation optics approach is used to 

precisely control the light’s flow in a desirable way by tailoring the properties of the 

complex materials consisting of discrete elements with pre-set magnetic permeability and 

electric permittivity. Metamaterials allows realization of many attractive optical 

phenomena and devices such as cloaking devices that conceal the object to be invisible. 

Metamaterials with negative index of refraction can be used to develop superlenses capable 

of imagining objects beyond the diffraction limit of light. We first take the invisible cloak 

to present the basic concept of transformation optics as illustrated in Figure 1-6(a). Then, 
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we will describe how NIMs can be used to develop superlenses by amplifying the 

subwavelength details of the object. 

 

Figure 1-6: (a) Schematics of two- dimensional electromagnetic cloak, (b) Fabricated 

microwave cloak made of SRRs [34, 35]. 

An electromagnetic clock conceals any object contained in a given volume of space 

so that scattering of light from the object is minimized and external observers are thus 

unaware of the hidden object. To achieve this goal, one mathematically stretches a region 

of space opening a circular void for 𝑟 < 𝑅1. The initial uniform light rays are then partially 

deflected by a metamaterial shell in the region where 𝑅1 < 𝑟 < 𝑅2 , so the light rays are 

conformally guided around the object instead of striking its surface. All light rays in the 

region 𝑟 > 𝑅2  are thus un-altered.  There are no light rays that can get into or interact with 

the core region, nor do any waves get out of the core region.  No matter what objects are 

placed inside the core, it is perceived to an observer that nothing exists since any waves 

attempting to penetrate the core region are smoothly guided around the concealed object 

by the cloak and emerge traveling in the same direction and with the same phase as if it 

had passed through empty space. Thus, nothing exists for the observer, that is, the object 

is concealed or cloaked. The distortion of space can be tracked by certain coordinate 
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transformations which effectively introduced in the Maxwell’s equations a position 

dependent effective anisotropic permittivity and permeability. If these are reproduced in 

practice, the system will behave as the desired cloak. The first proof-of principle was built 

in the form of ten cylindrical layers of SRRs working over a band of microwave 

frequencies. The SRRs have different geometrical parameters (Figure. 1-6 (b)), therefore 

realizing the predesigned spatial distribution of anisotropic permittivity and permeability 

[34, 35, 36].  

The superlens is one of the most famous applications of negative index materials. 

This kind of lens is different than ordinary lenses since it can provide a perfect resolution 

of the object preserving in the image features smaller than the diffraction limit of light  𝜆/2. 

A small size object is represented by evanescent waves that carry information about the 

object’s microscopic structures. These waves decay exponentially in free space and all 

details of the subwavlength information for the object are lost at the image plane. Pendry 

[11, 34] showed that NIM can work as a perfect lens by recovering all the lost information. 

This is accomplished as the evanescent waves are amplified as they pass through a negative 

index material slab perfectly restoring the object at the focus plane as shown in Figure 1-

7. 
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Figure 1-7: The NIM slab can amplify evanescent waves leading to perfect imaging at 

the image plane [34]. 

1.2 Dissertation Organization 

This dissertation is organized as follows. In Chapter 2, we provide a theoretical 

study of magnetic plasmons in two dimensional metal-dielectric resonators. We have 

developed an analytical theory for the magnetic susceptibility of parallel stripes and bowtie 

metamaterials. We have performed full wave calculations utilizing COMSOL Multiphysics 

commercial software to extract the magnetic response of the systems. The magnetic 

response of both systems is calculated utilizing the current polarization approach and 

compared to the developed analytical theory. The fundamental physical reasons behind the 

observed saturation in the magnetic response at high frequencies are explained using RLC 

circuit models. 

In Chapter 3, we design negative index metamaterials based on the resonant 

structures studied in the preceding chapter. Two separate methods are used for extracting 

the magnetic permeability and electric permittivity of the systems, namely the local field 
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averaging method and the inverse method. The proposed designs based on periodic 

arrangements of parallel microstrips immersed into a dielectric host are shown to be 

adequate for the development of NIMs with high figure of merit (FOM). 

 In Chapter 4, we have used ceramic material i.e. yttria stabilized zirconia (YSZ) as 

an electrolyte of NOx sensor. The porosity of YSZ electrolyte pellets was studied using 

Archimedes measurement and scanning electron microscopy (SEM) at varying firing 

temperatures. The NOx sensor was fabricated by attaching parallel gold wires to electrolyte 

pellet and coated with layers of YSZ slurry at room temperature. The final NOx sensor 

structure consists of two gold wires embedded between two layers of YSZ. Two sensors 

fired at 1050℃ and 1100℃ have been fabricated. The performance of the NOx sensors was 

studied through Electrochemical Impedance Spectroscopy (EIS). Two types of plot were 

used for the analysis, Nyquist plot and the phase angle O2 dependence plot. Nyquist plot 

was used to examine the influence of temperature, NO, O2, and adding oxygen to NO. Our 

analyses show that increasing the temperature, Oxygen, and NO concentrations decreases 

the low frequency arc, which increases the sensitivity of the NOx sensor. A phase angle 

oxygen dependence analyses shows that the NOx sensor is less sensitive to the Oxygen 

concentration but have higher sensitivity to NO.   
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CHAPTER 2 

 

SATURATION OF MAGNETIC RESPONSE IN METAMATERIALS  
 

2.1  Magnetic Response of Materials 

Materials react differently to the external electromagnetic field and their response 

is based on their atomic and molecular structure and on the net magnetic field associated 

with it. The magnetic moment of atoms is caused by the motion of electrons and their spin. 

In most materials, electrons spins are randomly distributed due to thermal agitation which 

results in weak or nonexistent magnetization. Thus, the net magnetic field associated with 

the atoms is zero. However, special materials do exist where the spins can be partially 

aligned providing a net magnetization. These materials are classified as diamagnetic, 

paramagnetic or ferromagnetic with the magnetic response of the materials described by 

the magnetic susceptibility 𝜒𝑚. 

Diamagnetic materials manifest weak negative susceptibility and are repelled by 

an external magnetic field. Examples of the diamagnetic materials include silver, gold and 

copper. 

Paramagnetic materials manifest weak positive susceptibility and are attracted by 

an external magnetic field example for paramagnetic materials includes lithium, 

magnesium, and tantalum. 
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Ferromagnetic materials have a large positive susceptibility and demonstrate 

strong attraction to an external magnetic field. Example for ferromagnetic materials are 

Iron, nickel, and cobalt [37, 38, 39, 40].  

For achieving optical negative index materials which require not only negative 

permittivity but also negative permeability (i.e. diamagnetic response) at THz and optical 

range frequencies, scientists must engineer metamaterials with subwavelength sizes 

constituent elements that mimic the magnetic response of atoms but at a much higher 

strength.   

2.1.1 Magnetic Response of Metamaterials at High Frequencies 

Most naturally existing materials weakly couple to the magnetic field of the 

impinging light at the optical frequency range, thus their magnetic permeability equals to 

one [10]. At GHz frequencies, split ring resonators based metamaterials has been suggested 

by Pendry to provide negative permeability [3]. The split ring resonators can be regarded 

as a simple LC resonant circuit with resonance frequency 𝜔0 = 1/√𝐿𝐶, where the metal 

rings form the inductive and the dielectric gaps act as capacitive elements [4].  When 

electromagnetic wave is impinging on the SRRs, the magnetic field component 

perpendicular to the plane of the rings induces a circular current which itself induces a 

magnetic moment in the structure. For frequencies below the resonance frequency, the 

induced current in the SRR increases as the frequency of the applied magnetic field 

increases resulting in positive paramagnetic response. However, as the frequency of the 

external magnetic field increases and reaches the LC resonance frequency, the current 

eventually begins to lag and changes its sign, resulting in negative diamagnetic response. 

The various designs of SRRs can be viewed as metamaterials consisting of artificial 
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magnetic atoms [40, 41].  The general resonant form of the frequency dependent 

permeability for SRR is given as 

 𝜇𝑟(𝜔) = 1 −
𝐹𝜔2

𝜔2 − 𝜔0
2 + 𝑖𝜔𝜔𝑡

   , Eq. 2-1 

where 𝐹 is the fractional volume of the unit cell occupied by SRR, 𝜔0  is the resonance 

frequency, and 𝜔𝑡 is the resistive damping frequency [3]. 

After Pendry proved theoretically that strong diamagnetic response can be achieved 

using SRRs, Smith et al. demonstrated this effect experimentally in the microwave region 

[24].  Since these founding works, there have been many efforts aimed at better 

understanding the MMs’ behavior at low and high frequencies. The majority of the 

fabricated and designed metamaterials’ structures comprised of metallic (SRRs) separated 

by dielectric materials with structural size much smaller than the excitation wavelength of 

light [3, 24, 31-33, 42-44]. Progress in metamaterials has been rapid since many researchers 

determined to extend MMs to THz, infrared and visible bands.  

Smith’s SRRs had a diameter of several millimeters and scaling down the size of 

SRRs leads to a diamagnetic response at higher frequencies. Using this scaling technique 

was crucial to push the resonance frequency from 1 THz up to 100 THz frequency [32], 

[33]. However, the scaling approach of SRRs breaks down at optical frequencies [45], [46]. 

Hence, it was necessary to design other improved and simplified resonating structures, 

which can be easily fabricated and experimentally characterized. This was achieved by 

using pairs of metallic strips or wires separated by dielectric materials [6, 7, 47, 48]. The 

main reason to replace the SRRs by a pair of wires or strips is the possibility of 

demonstrating a diamagnetic response with just a monolayer of resonators [48]. Using 

parallel nanogold strips shows diamagnetic response at visible frequency range [6]. The 
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parallel slabs system also shows saturation for the magnetic resonance frequency as the 

size of the metallic strips is scaled down to nanometers [48]. There are many publications 

that attempt to phenomenologically explain the saturation effects pertaining to the scaling 

approach with the main ideas having to do with the finite kinetic energy of the conduction 

electron in small size of metal elements [4, 45, 46, 48].  

           In this chapter, we present a transmission line theory to model the magnetic response 

of a pair of silver slabs separated by a dielectric material. Additionally, by utilizing LZ 

circuit model, we provide an analytical model for the magnetic susceptibility and magnetic 

frequency resonance for silver bowtie nanostructures separated by dielectric material. The 

predictions of the analytical models were then compared to exact numerical simulations 

obtained utilizing finite different frequency domain (FDFD) Comsol Multiphysics 

software showing excellent correspondence. 

2.2 Parallel Slabs Metamaterials 

2.2.1 Theory of Magnetic Response of Parallel Slabs Metamaterials 

To obtain the magnetic susceptibility of parallel slabs metamaterials, see Figure 2-

1(a), we utilize the transmission line approach where the system is modeled with an 

equivalent circuit shown in Figure 2-1(b). 

 

https://www.overleaf.com/blog/278-how-to-use-overleaf-with-ieee-collabratec-your-quick-guide-to-getting-started%23.Vp6tpPkrKM9
https://www.overleaf.com/blog/278-how-to-use-overleaf-with-ieee-collabratec-your-quick-guide-to-getting-started%23.Vp6tpPkrKM9
https://www.overleaf.com/blog/278-how-to-use-overleaf-with-ieee-collabratec-your-quick-guide-to-getting-started%23.Vp6tpPkrKM9
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Figure 2-1: (a) Schematic of the metal nanostrips metamaterial element. (b) 

Generalized (low/ high) transmission line circuit model with 𝑌𝑚  and 𝑌𝑠 are the metal 

and the spacer admittance, 𝐿 is the inductance. 

 The circuit is composed of metallic and spacer admittances (𝑌𝑚, 𝑌𝑠), inductance 

L and a source electromotive force provided by the external magnetic field. The parallel 

slabs system consists of silver slabs separated by a glass with the geometrical outline 

illustrated in Figure 2-1(a). The system is illuminated from the top with a harmonic TM-

polarized wave with the magnetic field �⃗⃗� (𝑥, 𝑡) = �̂�𝐻0 𝑒
−𝑖𝑘0𝑥 𝑒𝑖𝜔𝑡, where 𝑘0 = 𝜔/𝑐 is the 

wave vector in free space and 𝑐 is the speed of light. The magnetic field excites an 

antiparallel current in the structure which drives it diamagnetic response. To model the 

system, we consider a small segment along the metal strips with length ∆𝑦 for which the 

Kirchhoff’s current and voltage laws are written as 

 
∆𝐼 = 𝐼𝑌𝑠 = 𝑌𝑠𝑉∆𝑦,

∆𝑉 = ∆𝑉𝑌𝑚 + ∆𝑉𝐿 + ∆𝑉𝐵 ,   
 Eq. 2-2 

where 𝑌𝑠 = 𝑖𝜔𝐶, 𝐶 is the capacitance per unit length, ∆𝑉𝑌𝑚 = 𝐼𝑍𝑚∆𝑦 and ∆𝑉𝐿 =

𝐿(𝜕𝐼/𝜕𝑡)∆𝑦 are the potential drops due to the metal strips admittance and inductance. We 

consider the harmonic oscillation of the current 𝐼 (𝑦, 𝑡) = �̂�𝐼0(𝑦)𝑒
𝑖𝜔𝑡, where 𝜔 is the 

angular frequency then the Kirchhoff’s voltage law follows as 
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 ∆𝑉 = 𝐼𝑍𝑚∆𝑦 + 𝑖𝜔𝐿𝐼∆𝑦 + ∆𝑉𝐵 , Eq. 2-3 

where ∆𝑉𝐵 = 𝜕𝜙𝐵/𝜕𝑡  is the electromotive force generated by incident magnetic field �⃗⃗� . 

The magnetic flux 𝜙𝐵 = ∫𝐵. 𝑑𝑎 over the resonator can be estimated as   

 ∆𝑉𝐵 = 𝑖𝜔𝜇0∆𝑦(4𝑏 + 2𝑑)sinc[(2𝑏 + 𝑑)𝑘0]𝐻0𝑒
𝑖𝜔𝑡 , Eq. 2-4 

where 𝜇0 is the permeability of free space. Substituting  ∆𝑉𝐵 back into Eq. 2-3 and 

considering the limits ∆𝑉/∆𝑦 → 𝜕𝑉/𝜕𝑦 and ∆𝐼/∆𝑦 → 𝜕𝐼/𝜕𝑦, we can decouple the two 

governing equations by differentiation. Finally, we arrive at the transmission line equation 

 
𝑑2𝐼(𝑦)

𝑑𝑦2
= −𝑘2𝐼(𝑦) − 𝑣2𝐻0, Eq. 2-5 

where 𝑘2 = 𝐿𝐶𝜔2 − 𝑖𝜔𝐶𝑍𝑚 and 𝜈2 = 𝜇0𝐶𝜔
2(4𝑏 + 2𝑑)sinc[(2𝑏 + 𝑑)𝑘0]. The 

transmission line circuit’s elements per unit length are derived in Appendix A.1 and given 

as  

 

𝑍𝑚 =
1

𝑖𝜔𝜖0𝜖𝑚𝑏𝑙𝑧
, 𝐶 = 𝜖0𝜖𝑠

𝑙𝑧
2𝑑
[1 +

2𝑏𝜖𝑠
𝑑𝜖𝑚

]
−1

,

𝐿 = 𝜇0
2(𝑏 + 𝑑)

𝑙𝑧
 ,

 Eq. 2-6 

where 𝜖𝑚 and 𝜖𝑠 are the relative permittivities of the metal and spacer, respectively. The 

current can be found by solving the transmission line equation under the homogenous 

boundary condition 𝐼(𝑎) = 𝐼(−𝑎) = 0, giving us 

 𝐼(𝑦) =  − 
𝐻0𝜈

2

𝑘2
 (1 −

cos(𝑘𝑦)

cos(𝑎𝑘)
) . Eq. 2-7 

Note, the current in the top strip is antiparallel to the current in the bottom strip. 

Using the current, we can calculate the magnetic moment to be 

 �⃗⃗� =
1

2
∫ 𝑟 × 𝑗  𝑑𝑉
𝑉

 , Eq. 2-8 
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where the current density is 𝑗 = 𝑗(𝑦)�̂� = (𝐼(𝑦)/2𝑏𝑙𝑧)�̂�, and 𝑟 × 𝑗 = 𝑗(𝑦)(𝑥�̂� − 𝑧�̂�). Since 

the current density is in the x-y plane, the magnetic moment is aligned along the z-axis. 

Performing the integration of Eq. 2-8 separately along the top and bottom strips, and using 

the antiparallel nature of the current, we can write the magnetic moment as 

 �⃗⃗� 𝑧 =
1

2
∫ (𝑥�̂�) 𝐽(𝑦)
𝑉+

𝑑𝑉+ +
1

2
∫ (𝑥�̂�)
𝑉−

 𝐽(𝑦)𝑑𝑉− , Eq. 2-9 

which after integration gives 

 �⃗⃗� 𝑧 = 𝐻0
𝑎𝑙𝑧(2𝑑 + 4𝑏)

1 −
𝑖𝑍𝑚
𝜔𝐿

 sinc((2𝑑 + 4𝑏)𝑘0)(tanc(𝑎𝑘) − 1). Eq. 2-10 

The z- component of the magnetic susceptibility 𝜒𝑚 = 𝑛𝑚𝑧/𝐻0 then follows as 

 𝜒𝑚 = 𝑝
sinc((2𝑑 + 4𝑏)𝑘0)

1 − 𝑖𝑍𝑚/𝜔𝐿
 (
tanc(𝑎𝑘) − 1

2
 ) , Eq. 2-11 

where 𝑛 = 𝑝/ 𝑉𝑅 is the resonators’ number density, 𝑝 is the resonators surface fraction and 

𝑉𝑅 = 4𝑎(𝑑 + 2𝑏) 𝑙𝑧 is the resonator volume. 

 Figure 2-2 shows the real and imaginary part of the magnetic susceptibility 

calculated using Eq. 2-11 versus the frequency for three different sizes of the parallel slabs 

resonators (𝑎 = 39 𝑛𝑚, 𝑎 = 85.68 𝑛𝑚, and 𝑎 = 111.39 𝑛𝑚) and the size of the slab’s 

thickness and spacer’s width fixed as  𝑏 = 𝑑 = 𝑎/10. 
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Figure 2-2: The real (solid line) and imaginary (dashed line) parts of the magnetic 

susceptibility Eq. 2-11 as a function of frequency with considering the lengths of 

metallic slabs as (𝑎 = 111.4 𝑛𝑚, 𝑎 = 85.68 𝑛𝑚 𝑎𝑛𝑑 𝑎 = 39 𝑛𝑚) represented by red, 

blue and green colors, respectively. 

Figure 2-2 reveals a strong magnetic response represented by multiple resonances.  

It is observed that the real part of the magnetic susceptibility reaches negative values for 

all modes and all three parallel strips’ resonators sizes. We also observe that as the size of 

the resonators decreases, higher magnetic resonance frequency is obtained. The strongest 

magnetic response of the system is obtained for the first resonance mode (𝑓 = 0.66 eV) 

corresponding to a metallic slab’s length 𝑎 = 111.4 𝑛𝑚 represented by red. The higher 

order resonances appear at higher frequencies and are generally weaker. In the next section, 

we derive analytical expression for the magnetic frequency resonance which shows 

explicitly the various size dependencies of the magnetic response.  
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2.2.2 Magnetic Resonance Frequency  

The magnetic susceptibility of parallel slabs metamaterial Eq. 2-11 has a resonant 

behavior for a set of frequencies given by the following condition 

 𝑎𝑘 = 𝑎𝜔√𝐿𝐶 (1 − 𝑖 𝜔𝑅/𝜔) = 𝜋(𝑛 + 1/2) , Eq. 2-12 

where (𝑛 = 0, 1, 2, . . ) is the resonance mode number. In Eq. 2-12 the resonator relaxation 

frequency is 𝜔𝑅 = 𝑍𝑚/𝐿 = −𝑖𝜂 𝜔𝑝
2/𝜔2𝜖𝑚, where 𝜂 is the geometrical factor and it is 

given as 𝑐2/2𝑏 (𝑑 + 𝑏)𝜔𝑝
2. The permittivity of metallic strips is given by the Drude model 

𝜖𝑚 = 𝜖𝑏 − 𝜔𝑝
2/𝜔(𝜔 − 𝑖𝜔𝜏), where 𝜖𝑏 is the contribution due to the lattice electrons, the 

plasma and free electrons’ relaxation frequencies for silver are 𝜔𝑝 = 9.1 𝑒𝑉 and 𝜔𝜏 =

0.021 𝑒𝑉, respectively. For intermediate frequencies 𝜔𝜏 ≪ 𝜔 ≪ 𝜔𝑝 and neglecting losses, 

the resonance condition Eq. 2-12 can be written as 

 𝜔2
(1 + 𝜂)�̃�𝑝

2 − 𝜔2

(1 + 𝜂)�̃�𝑝
2 − (1 + 𝜂) [1 + (

2𝑏𝜖𝑠
𝑑𝜖𝑏

)]𝜔2
= 𝜔𝑛0

2  , Eq. 2-13 

where we have introduced the renormalized plasma frequency �̃�𝑝
2 = 𝜔𝑝

2/ 𝜖𝑏 and a 

characteristic frequency  

 𝜔𝑛0 =
𝑐 𝜋

𝑎√𝜖𝑠(1 + 𝑏/𝑑)(1 + 𝜂)
(𝑛 +

1

2
) . Eq. 2-14 

To obtain the magnetic resonance frequency, we solve Eq. 2-13 by introducing the 

non-dimensional frequency  𝜈 = (𝜔/�̃�𝑝√1 + 𝜂)
2
 , then Eq. 2-13 can be written as 

 𝑣2 − (1 + 𝛾Δ𝑛)𝑣 + Δ𝑛 = 0 , Eq. 2-15 

where Δ𝑛 = (𝜔𝑛0/(�̃�𝑝√1 + 𝜂))
2
 and 𝛾 = (1 + 𝜂)[1 + (2𝑏𝜖𝑠/𝑑𝜖𝑏)]. Finally, we solve 

Eq. 2-15 for 𝑣 at the resonance condition 𝜔 = 𝜔𝑛 to obtain  
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 𝜔𝑛 =
�̃�𝑝

√2
√(1 + 𝜂) (1 + 𝛾Δ𝑛 − √(1 + 𝛾Δ𝑛)2 − 4Δ𝑛)  .  Eq. 2-16 

For large resonators Δ𝑛 ≪ 1 and 𝜂 ≪ 1 we have 

 𝜔𝑛0 =
𝑐 𝜋

𝑎√𝜖𝑠(1 + 𝑏/𝑑)(1 + 𝜂)
(𝑛 +

1

2
) . Eq. 2-17 

For small resonators the resonance frequencies approaches saturation values  

 

𝜔𝑛,𝑠 =
�̃�𝑝

√1 + (1 + (
𝑎

𝜋𝑏(2𝑛 + 1)
)
2

) (
2𝑏𝜖𝑠
𝑑𝜖𝑏

)

  .  
Eq. 2-18 

2.2.3  Numerical Simulation Based on the Finite Difference Frequency Domain 

(FDFD) Method   

To check the analytical theory, we have performed full-wave finite difference 

frequency domain (FDFD) simulations using the COMSOL Multiphysics software. We 

used the Radio Frequency (RF) model to optimize the magnetic response of the system 

based on the frequency domain. The numerical model solves the Maxwell’s curl equations 

based on the complex permittivity for two dimensional parallel strips metamaterials placed 

in vacuum or dielectric material 

 
�⃗� ×  (�⃗� × �⃗⃗� ) = 𝜀𝑟 𝜇𝑟 𝑘0

2�⃗⃗� 

�⃗� ×  (�⃗� × �⃗� ) = 𝜀𝑟 𝜇𝑟 𝑘0
2�⃗� 
 , Eq. 2-19 

where 𝜀𝑟  and 𝜇𝑟  are the complex permittivity and the magnetic permeability of the media. 

Once the local electric and magnetic fields are obtained, we apply the polarization 

current approach to extract the magnetic response of the parallel slabs system. The 

magnetic moment of the resonator is written as  

 �⃗⃗� 𝑧(𝑟 ) =
1

2
∫𝑟 × 𝑗 𝑝𝑑𝑆 , Eq. 2-20 
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where the polarization current density is defined as 

 𝑗 𝑝(𝑟 ) = 𝑖𝜔�⃗� (𝑟 ) = 𝑖𝜔𝜖0(𝜀𝑟(𝑟 ) − 1)�⃗� (𝑟 ) .  Eq. 2-21 

The effective susceptibility then follows as 

 𝜒𝑚 =
𝑛𝑚𝑧

𝐻
=

𝑖𝜔

2𝑆𝑅𝐻
∫(

𝜀𝑟(𝑟 ) − 1

𝜀𝑟(𝑟 )
) (𝑥𝐷𝑦 − 𝑦𝐷𝑥)𝑑𝑆 , Eq. 2-22 

where 𝐷𝑦 and 𝐷𝑥 are the components of the electric field displacement, 𝑆 is the cross-

sectional area of the parallel strips resonators. 

The numerically obtained magnetic susceptibility of the parallel strip resonator is 

shown in Figure 2-3. In the calculations we consider the following parameters, the length 

of the silver strips is set at 2𝑎 = 60 nm, the thickness is 2𝑏 = 3 nm, and the width of the 

spacer layer is 2𝑑 = 3 nm. 
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Figure 2-3: Magnetic response of parallel strip resonators: (a) The real and imaginary 

parts of the magnetic susceptibility in the near and far-infrared spectral range. The 

dotted line represents the numerical results and the solid line represents the analytical 

susceptibility. (b) Surface plot of the local magnetic field at the first magnetic 

resonance frequency (0.636 eV) showing a diamagnetic response (the local magnetic 

field is antiparallel to the incident). (c) Surface plot of the local magnetic field at the 

second magnetic resonance frequency (1.776 eV). 
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 Figure 2-3(a) depicts the real and imaginary part of the magnetic susceptibility 

calculated using Eq. 2-22 versus the frequency. The system shows strong magnetic 

response represented by multiple resonances within the infrared frequency range. The 

optimum magnetic response of the system is again obtained for the first mode exhibiting 

strong diamagnetic response with the real part of the magnetic susceptibility being negative 

in the frequency ranging from 0.636 eV to 1 eV.  Figure 2-3(b) illustrates the local magnetic 

field profile at the first order resonant frequency 𝜔1 = 0.636 eV. As expected the magnetic 

field is localized between the nanostrips and is polarized opposite to the incident magnetic 

field. The local magnetic field at the second order resonance frequency 𝜔2 = 1.776 eV is 

shown in Figure 2-3 (c). Again, strong diamagnetic response is present. In the next section, 

we show that the magnetic response of the parallel slab system can be tuned by varying the 

resonator spatial sizes. 

2.2.4 Saturation of Magnetic Plasmon Frequency Based on the Scaling of the 

Parallel Strips Resonators 

In Section 2.2.1, we study the magnetic susceptibility as a function of frequency for 

three different sizes. From Figure 2-2, we observe that decreasing the size of the resonators 

increases the magnetic resonance frequency. To demonstrate the maximum magnetic 

resonance frequency that can be achieved using the parallel slabs MMs, we have performed 

a parametric study of the magnetic resonance frequency as a function of the inverse strip’s 

length 1/a (Figure 2-4) with the corresponding metallic slab’s thickness and spacer layer 

width as b = d= a/10. The numerical values of the magnetic resonance frequency show an 

excellent match as compared to the analytical result calculated with Eq. 2-16. As we scale 

down the strips, initially the resonance frequency increases linearly with the inverse strip’s 

length 1/a. This linear relation is applicable only for the low frequency range and can be 
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estimated using Eq. 2-17. This limiting result is represented with colored dashed lines in 

Figure 2-4. However, as we further decrease the resonator size, the linear dependence 

breaks down and for sufficiently small sizes (𝑎 < 100 nm) a clear saturation is observed. 

The maximum resonance frequency that can be achieved by this system asymptotically 

converges to the predicted saturation frequency given by Eq. 2-18. The transmission line 

theory reveals the physical reason behind the manifested saturation. Specifically, at high 

frequencies, the metal strips behave as capacitive elements which preclude the excitation 

of magnetic resonances for frequencies higher than the limiting value 𝜔𝑛,𝑠 →

�̃�𝑝/√1 + (
2𝑏𝜖𝑠

𝑑𝜖𝑏
). 

 

  

Figure 2-4: Saturation of the magnetic resonance frequency as a function of the 

inverse resonators length scales. Solid lines represent the analytical theory prediction 

while and dots represent the numerical results. We consider only the first three modes 

(starting with blue color to red color). The dashed black lines show the analytically 

obtained saturation frequency Eq. 2-18 while the dashed (blue, green and red) lines 

represent the linear response Eq. 2-17 for large size resonators. 
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2.2.5 Tuning the Magnetic Plasmon Frequency through Varying the Thickness of 

Metallic Strips 

In Figure 2-5, we have optimized the highest possible magnetic plasmon resonance 

by varying the thickness of the metallic strips for two different lengths, 𝑎 = 500 nm and 

𝑎 = 800 nm, with considering  𝑎 ≫ b , and the spacer’s width is 𝑑 = 50 nm.  

 

 

Figure 2-5: Magnetic frequency resonance versus the metallic slab’s thickness for 

two different lengths of the metallic slabs (𝑎 = 500 nm  (blue curve) and 𝑎 =
800 nm (red curve) and the spacer gap 𝑑 = 50 nm. The dots represent the numerical 

results and the solid lines represent the analytical results given by Eq. 2-18. 

From Figure 2-5 we clearly observe that the numerical and analytical magnetic 

plasmon frequencies calculated using Eq. 2-16 increases by increasing the strip’s thickness. 

The maximum resonance frequency that can be achieved for our structure is 𝑓 = 0.325 eV 

and corresponds to metallic strip’s length 𝑎 = 500 nm. Again, we observe that the 

magnetic resonant frequency saturates as the thickness of the slab increases beyond the 

skin depth of 𝑏 ≥ 20 nm.   
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In the next section, we consider more complex geometrical structure (i.e. Bowtie 

resonators) with the goal of obtaining magnetic response approaching the optical range. 

2.3 Bowtie Metamaterials 

2.3.1 Analytical Theory of Diamagnetic Response of Bowtie Metamaterials 

The system under consideration is composed of silver bowtie structure separated 

by a dielectric material (i.e. air) in the gap (or spacer) regions. The geometrical parameters 

of the bowtie structure are 𝑎, 4𝜙0, and 2𝜋 − 4𝜙0, where 𝑎 is the radius of the bowtie, 4𝜙0is 

the azimuthal angle of the gap region, and 2𝜋 − 4𝜙0 is the azimuthal angle of the metallic 

bowtie resonators. The system is illuminated from the top with a harmonic TM-polarized 

wave with the magnetic field �⃗⃗� (𝑟 , 𝑡) = �̂�𝐻0 𝑒
−𝑖�⃗� 0𝑟  𝑒𝑖𝜔𝑡, where 𝑘0 is the wave vector of 

light in the free space. To model the magnetic susceptibility 𝜒𝑚 of the bowtie structure 

depicted in Figure 2-6(a), we solve the Kirchhoff’s voltage law for LZ circuit depicted in 

Figure 2-6(b). 

 

Figure 2-6: (a) Bowtie structure compared to (b) LZ circuit with the source of the 

magnetic field. 
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Consider the electromotive source due to the magnetic field in LZ circuit, 

Kirchhoff’s Voltage law can be written as 

 ∆𝑉𝑧 + ∆𝑉𝐿 = ∆𝑉𝐵 , Eq. 2-23 

where ∆𝑉𝑧 and ∆𝑉𝐿 are the potential drops due to metal bowtie impedance and inductance, 

∆𝑉𝐵 is the electromotive potential given by Faraday’s law. Connecting the potential drops 

to the current, we get  

 𝑍𝐵𝑇 𝐼(𝑡) + 𝐿
𝜕𝐼(𝑡)

𝜕𝑡
= −

𝜕Φ𝐵

𝜕𝑡
  , Eq. 2-24 

where the magnetic flux is defined as Φ𝐵 = 𝜇0 ∫ �⃗⃗� (𝑟 , 𝑡). 𝑑𝑎 . Assuming the time harmonic 

current 𝐼(𝑡) = 𝐼(𝜔)𝑒𝑖𝜔𝑡, we solve Eq. 2-24 

 𝐼(𝑡) = −
𝜇0𝜋𝑎

2𝐻(𝑡)

𝐿
  (

1

1 − 𝑖 (
𝑍𝐵𝑇
𝜔𝐿)

 ) , Eq. 2-25 

where 𝜋𝑎2 is the surface area of the bowtie structure, 𝑍𝐵𝑇 is the total impedance of metallic 

components and spacer, and 𝐿 is the inductance. The impedance and the inductance of the 

bowtie resonators are derived in Appendix A.2 and given as 𝑍𝐵𝑇 = (8𝜙0/𝑖𝜔𝜀0𝜀𝑠𝑙𝑧)(1 +

(𝜀𝑠(𝜋 − 2𝜙0)/2𝜀𝑚𝜙0)) and 𝐿 = 𝜇0𝜋𝑎
2/2𝑙𝑧, where 𝜀𝑚 is the relative permittivity of silver 

given by the Drude model (see Section 2.2.2), and 𝜀𝑠 is the relative permittivity of air. The 

excited asymmetric current, propagates in the �̂� direction induces a magnetic moment r in 

the z-direction, hence causing the diamagnetic response of the system. The magnetic 

moment is then calculated using Eq. 2-8 with current density 𝐽 𝜙 = �̂�2𝑟𝐼/𝑙𝑧𝑎
2,  giving us 

 𝑚𝑧 = −�̂�𝜋𝑎2𝑙𝑧𝐻0(
1

1 − 𝑖 (
𝑍𝐵𝑇
𝜔𝐿)

 ) , Eq. 2-26 
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where 𝑙𝑧 is the depth of the bowtie structure perpendicular to the direction of the resonator 

place. The magnetic susceptibility 𝜒𝑚 of the bowtie resonator then follows as 

 𝜒𝑚 =
𝑛𝑚𝑧

𝐻0
= − 

𝑝

1 − 𝑖(𝑍𝐵𝑇/𝜔𝐿)
  , Eq. 2-27 

where 𝑛 = 𝑝/ 𝑉𝑅 is the resonators’ number density, and 𝑉𝑅 = 𝜋𝑎
2𝑙𝑧 is the volume of the 

bowtie structure. Substituting the inductance and impedance, we obtain our final 

expression  

 
𝜒𝑚 =

𝜔2

𝜔0
2 (1 +

𝜀𝑠
𝜀𝑚
(
𝜋 − 2𝜙0
2𝜙0

)) − 𝜔2
  , 

Eq. 2-28 

where we have introduced a characteristic frequency defined as 

 𝜔0 =
4𝑐

𝑎
√
𝜙0
𝜖𝑠𝜋

 Eq. 2-29 

The real and imaginary part of the magnetic susceptibility calculated using Eq. 2-28 is 

illustrated in Figure 2-7. In the calculations, we vary the frequency while the radius of the 

bowtie resonators is fixed at 𝑎 = 10 nm  and the different angles of the dielectric spacer 

are considered 𝜙0 = 4∘, 𝜙0 = 6
∘ and 𝜙0 = 8

∘. 
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Figure 2-7: Magnetic susceptibility versus frequency.  Blue curve is for space angle 

𝜙0 = 4∘, green curve is for 𝜙0 = 6
∘,  and red curve is for 𝜙0 = 8∘. The dashed line 

represents the imaginary part and the solid line represents the real part. 

From Figure 2-7, we observe susceptibility in the frequency ranging between 1.8 

eV up to 3.2 eV. The maximum negative magnetic response is obtained for bowtie angle 

𝜙0 = 8∘and at 2.7 eV. In the next section, we derive an explicit relationship for the 

magnetic resonance frequency.  

2.3.2 Magnetic Resonance Frequency 

The magnetic susceptibility of the bowtie metamaterial Eq. (2-27) has a resonant 

behavior when  

 𝜔0
2 (1 +

𝜀𝑠
𝜀𝑚
(
𝜋 − 2𝜙0
2𝜙0

)) − 𝜔2 = 0 . Eq. 2-30 

Using the Drude model to describe the metal permittivity, we can write  

 
𝜀𝑠
𝜀𝑚

=
𝜀𝑠
𝜀𝑏

𝜔2(𝜔2 − �̃�𝑝
2)

(�̃�𝑝2 − 𝜔2)
2  , Eq. 2-31 

and if �̃�𝑝
2 = 𝜔𝑝

2/ 𝜖𝑏 is the renormalized plasma frequency, then we can write Eq. 2-30 as  
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 (𝜔0
2 − 𝜔2)(�̃�𝑝

2 − 𝜔2)
2
+ (𝑘 − 1)𝜔0

2𝜔2(𝜔2 − �̃�𝑝
2) = 0 , Eq. 2-32 

where  𝑘 − 1 = 𝜀𝑠(𝜋 − 2𝜙0)/(2𝜙0𝜀𝑏). Solving Eq. (3-32) for the resonance frequency by 

assuming the following condition 𝜈 = 𝜔2/�̃�𝑝
2  and  𝜈0 = 𝜔0

2/�̃�𝑝
2, we obtain the 

characteristic equation 

 𝜈2 − (𝑘𝜈0 + 1)𝜈 + 𝜈0 = 0 , Eq. 2-33 

and the resonance frequency follows 

 𝜈 =
1 + 𝑘𝜈0 −√(1 + 𝑘𝜈0)2 − 4𝜈0

2
  . Eq. 2-34 

Reversing to dimensional units, we arrive at the close form solution  

 𝜔𝑟 = √
�̃�𝑝2 + 𝑘𝜔0

2

2
 (1 − √1 − (

2𝜔0�̃�𝑝

�̃�𝑝2 + 𝑘𝜔0
2)

2

)   . Eq. 2-35 

For small resonators, the resonance frequency saturates at 

 
𝜔𝑠 →

�̃�𝑝

√𝑘
=

�̃�𝑝

√1 + (
𝜋 − 2𝜙0
2𝜙0

) (
𝜀𝑠
𝜖𝑏
)

  . 
Eq. 2-36 

2.3.3 Numerical Simulation Based on Full- Wave Finite Difference Frequency 

Domain (FDFD)  

To check the analytical theory and illustrate the effective magnetic response of the 

bowtie metamaterials, we have performed numerical simulations using COMSOL 

Multiphysics software based. The problem we consider is a free standing bowtie resonator 

placed in the vacuum with scattering boundary conditions applied at the domain 

boundaries. In the simulations, we consider an incident transfer magnetic (TM) wave 

propagating in the +z direction. The polarization current approach from Eq. 2-22 is used to 

extract the magnetic susceptibility. 
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The numerical results are shown in Figure 2-8 for a bowtie with radius 𝑎 =

37.2 nm and spacer’s angle 𝜙0 = 6∘. Figure 2-8(a) presents a real and imaginary parts of 

the magnetic susceptibility revealing a diamagnetic response within the frequency range 

from 2.0 eV to 2.3 eV. Figure 2-8(b) shows the local magnetic field profile at the resonance 

frequency 2.031 eV. The excited local magnetic field is opposite in polarization compared 

to the incident field demonstrating diamagnetism. The magnetic susceptibility and 

magnetic plasmon frequency of our structure can be varied by altering the geometrical sizes 

of the resonators. A comprehensive parametric study of the size dependencies is performed 

in the next section. 

 

 

Figure 2-8: Magnetic response of bowtie MMs: (a) The real and imaginary parts of 

the numerical magnetic susceptibility in the near and far- infrared spectral range. (b) 

Surface plot of the local magnetic field at the magnetic resonance frequency (2.031 

eV). 

2.3.4 Saturation of Magnetic Plasmon Frequency Based on the Scaling Structural 

Sizes of the Bowtie resonators  

In Figure 2-9, we show the numerical results for the magnetic plasmon resonance 

frequency together with the analytical results based on the LZ circuit model Eq. 2-35 versus 
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the inverse radius 1/𝑎.  These results were obtained by scaling the geometrical sizes of the 

bowtie resonators for three different dielectric spacer’s angle fixed at (𝜙0 = 4∘ , 6∘and 8∘).  

 

Figure 2-9: Analytical and numerical results for the magnetic resonance frequency as 

a function of the inverse radius of the bowtie structure for three different angles. The 

solid lines represent the analytical results and the dots represent the numerical results. 

The colors corresponds to the bowtie angles 𝜙0 = 4
∘ (blue), 𝜙0 = 6∘ (red), and 𝜙0 =

8∘ (black). The dashed black lines represent the analytically obtained saturation 

frequency. 

From Figure 2-9, we observe that for large bowtie resonators, the resonance 

frequency scales linearly with the inverse resonator’s radius. The linear behavior follows 

closely the analytical result Eq. 2-29 and breaks down as we further decrease the radius of 

the structure to less than 100 nm. Furthermore, the resonance frequency saturates when 

the radius of the bowtie reaches very small values, i.e. for 𝑎 = 10 nm.   

The saturation frequency calculated analytically using Eq. 2-36 was compared to 

the numerical resonance frequency represented with (dots) in Figure 2-9, showing good 

agreement. A maximum saturation frequency of 𝜔 = 2.6 eV is obtained for spacer’s angle 

𝜙0 = 8∘. Clearly, the larger the bowtie angle the higher the magnetic resonance frequency. 
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In the next section, we provide a comprehensive study of the magnetic frequency resonance 

for a fixed radius but changing spacer’s angle.  

2.3.5 Tuning Magnetic Plasmon Frequency through Varying the Spacer’s Angle of 

Bowtie Resonators  

Here, we fix the radius of the bowtie structure at 𝑎 = 30 nm, and study the 

magnetic resonance frequency by varying the spacer’s angle from 𝜙0 = 0∘ to 𝜙0 = 20
∘.  

In Figure 2-10, we present both the numerical and analytical results. The resonance 

frequency is observed to increase as 𝜔𝑟 ≈ 𝜔𝑝√
2𝜙0

𝜋
  flowing closely the saturation 

frequency Eq. 2-36. The analytical result is nearly identical with that obtained from 

COMSOL for angles 𝜙0 < 10∘.  For the large bowtie angles, we observe a discrepancy 

between the theoretical and numerical resonance frequencies which can be explained by 

the fringe effects that are not taken into account in the theory. As a result, at large angles, 

the magnetic resonance frequency predicted by the theory saturates at �̃�𝑝 while the actual 

saturation value corresponds to the plasmon frequency �̃�𝑝/√2.  
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Figure 2-10: The magnetic resonance frequencies obtained numerically (dots) and 

using the analytical theory (solid lines) versus the dielectric spacer’s angle 𝜙0 for a 

fixed radius 𝑎 = 30 nm. 
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CHAPTER 3 

 

NEGATIVE INDEX OF REFRACTION IN MMS 
 

3.1 Index of Refraction 

The index of refraction is one of the most important optical characteristic of any 

material and it provides a measure of the speed of an electromagnetic wave as it propagates 

within a material. In addition, the refractive index also provides a measure of bending a 

beam of light as it crosses the interface between two different materials. The quantitative 

measure of this bending is given by Snell’s law, (𝑛1sin 𝜃1 = 𝑛2sin 𝜃2), where 𝑛1and 𝑛2 

are the refractive index of the first and second media, respectively, 𝜃1 and 𝜃2 are the angles 

which the light ray makes with the surface normal of each material. For passive medium, 

the index of refraction is written as 𝑛 = 𝑛′ + 𝑖𝑛′′, where 𝑛′ and 𝑛′′ are the real and 

imaginary part of the refractive index. In ordinary materials, the refractive index 𝑛′ is 

assumed to be positive and the optical refractive indices has a limited value, typically 

between 1 and 3. However, it was shown by Veselago that a negative refractive index does 

not violet any fundamental laws of physics [23, 39, 49]. In such materials, Snell’s law 

predicts a rather different behavior of the light rays who will bend to the left of the normal 

as shown in Figure 3-1, hence left-handed materials.  
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Figure 3-1: Bending of light in ordinary and negative index materials [50]. 

The refractive index depends on the product of a material’s electrical and magnetic 

responses to an electromagnetic field and is formally written as 𝑛 = ±√𝜀𝜇, where 𝜀 and 𝜇 

are the complex permittivity and permeability that are written as 𝜀 = 𝜀′ + 𝑖𝜀′′ and 𝜇 =

𝜇′ + 𝑖𝜇′′. For ordinary optical materials, both 𝜀′ and  𝜇′ are positive; therefore, the 

refraction index is a positive number. However, when 𝜀′ and 𝜇′ are simultaneously 

negative, as shown by Veselago, a negative refractive index material is formed [10, 23]. In 

the presence of losses, a more general condition for negative refraction 𝜀′′𝜇′ + 𝜇′′𝜀′ < 0 

can be derived, and this indicates that  𝑛′ < 0 cannot occur in a passive material which has 

permeability 𝜇 = 1 + 0𝑖 [51]. Therefore, the magnetic response to electromagnetic wave 

is essential in negative index materials (NIMs). There is no natural material exhibiting a 

magnetic response at optical frequencies; hence, to demonstrate NIM, it is crucial to 

engineer and fabricate materials that have strong diamagnetic response at high frequencies. 

Artificial magnetic response was achieved in metamaterials as discussed in details in 

Chapter 2. Based on the general condition for achieving negative refraction, we can classify 

all negative index materials in two types.  
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1- A double-negative NIM (DN-NIM) is a metamaterial with 𝜇′ < 0 and 𝜀′ < 0 at the 

same frequency range. 

2- A single-negative NIM (SN-NIM) which has a negative index with either 𝜇′ < 0 

or 𝜀′ < 0 (but not both) [49]. 

3.1.1 Electromagnetic Responses in Materials 

In Chapter 2, we have explained how the magnetic response occurs in a magnetic 

metamaterial (i.e. SRR structure) and how a negative permeability is obtained as a response 

to an applied magnetic field through excitation of local currents driven by the electromotive 

forces. However, it is also important to understand how materials respond to the electric 

field in order to provide a negative permittivity at a given frequency. In general, materials 

are classified based on their electric properties as conductors, semiconductors and 

insulators. For any conductor materials such as noble metals including silver, gold, 

aluminum and copper, their permittivity is negative below the plasma frequency. Bulk 

metals are not the only materials that demonstrate negative permittivity. Additional classes 

of materials are the distributed array of conductors and wires as well as gratings and 

photonic crystals. Many decades ago, researchers fabricated structures, which show 𝜀′ < 0 

using arrays of metallic wires and recently various structures were used to provide negative 

permittivity including cut wire segments, loop wires and straight wires [27, 39]. 

Additionally, there have been advances in developing electrical MMs to show negative 

permittivity. The general form for the frequency dependent permittivity of a material is 

given by the Lorentz-Drude model as 

 𝜀𝑟(𝜔) = 𝜀∞ −
𝜔𝑝
2

𝜔2 − 𝜔0
2 + 𝑖𝜔𝜔𝑡

 , Eq. 3-1 
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where 𝜔𝑝 is the plasma frequency 𝜔𝑝 = √𝑛𝑒2/𝜀0𝑚𝑒𝑓𝑓 ,where 𝑛 is the carrier density of 

electron, 𝑒 is the electron charge, 𝜀0 is the permittivity of free space and 𝑚𝑒𝑓𝑓 is the 

effective electron mass, 𝜔𝜏 is the damping factor, 𝜔0 is the resonance frequency, and 𝜀∞ 

is the lattice dielectric constant [29]. 

The Lorentz-Drude model of a material conceptually replaces the atoms and 

molecules of a real material by a set of harmonically bound electron oscillators, resonant 

at some frequency 𝜔0. At frequencies below the resonance frequency, the applied electric 

field displaces the electrons from the positive core and induces a polarization parallel to 

the applied electric field. At frequencies near the resonance, the induced polarization 

becomes very large; however, as the frequency swept through the resonance, the 

polarization flips from in phase to out of phase with the applied field and the material shows 

the negative permittivity [41, 29].  

For both types of NIMs, the figure of merit (FOM) is commonly used because the 

low loss NIMs are desired and it is written as 

 𝐹𝑂𝑀 = −
𝑛′

𝑛′′ 
  . Eq. 3-2 

From this definition, we conclude that DN-NIMs is better than SN-NIMs with the same 

value of the real index of refraction because DN-NIMs have lower imaginary part of the 

index of refraction than SN-NIMs [10, 49]. 

In this chapter, we design and simulate NIM by using Comsol Multiphysics 

software. The electromagnetic properties of the metamaterial are studied using two 

different approaches which are commonly used to extract the electrical and magnetic 

responses of composite materials. These two approaches are (a) the local field averaging 

method and (b) the inverse method. 
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3.2 Effective Medium Theory: Local Field Averaging Method 

Many effective medium theories have been proposed to determine the effective 

permittivity/ permeability of composite materials such as metamaterials. The most popular 

and effective medium theories that used mean field approximations to estimate 

electromagnetic (electrical) properties are Maxwell-Garnett Theory (MGT) and 

Bruggeman Effective Medium Theory (EMT) [52]. The required condition to apply MGT 

and EMT is that the size of the inclusions as well as the spacing between the inclusions in 

the host material must be smaller than the excitation wavelength (quasi-static limit).  

Maxwell-Garnet Theory (MGT): The MGT is derived from the Clausius-Mossotti 

formula, which relates the effective permittivity of the composite to that of the constituent 

inclusions and the host medium. This implies that higher order multi-pole interactions 

between the inclusions are not considered; hence, the theory is valid only for small volume 

fraction of the inclusions usually less than 10% and using higher volume fractions may not 

provide accurate results [52] 

Bruggeman Theory (EMT): This method is widely used homogenization mixing 

formula to find the effective permittivity of a composite. It considers the polarization 

effects from nearby inclusions and therefore is valid for higher volume fractions of 

inclusions compared to MG theory. The maximum concentration of the inclusion can be 

used for this method is 63%. For higher fraction volume of the inclusions, the system 

becomes highly complex and may reach the percolation threshold, and therefore there is 

no analytical model that accurately provides permittivity of the composite medium [53].     

          Therefore, in this thesis, we solve the composite system numerically by using the 

COMSOL Multiphysics software. For homogenization purposes, we consider inclusions 
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with sizes much smaller than the incident wavelength. The numerical approach for 

homogenization of composite materials with any type of the inclusions is viable and it 

overcomes the limitations associated with the analytical homogenizations methods. In this 

section, we introduce the local field averaging method which can be used to estimate the 

effective magnetic and electrical responses for periodic array of metamaterial structure. 

Local Field Averaging Method: If the optical, and geometrical properties of all 

constituents which make up the composites (i.e. MMs) are known, then to extract the 

effective optical properties of the composite, we used spatial and ensemble averaging of 

the local fields within the system. In this method, direct numerical calculations of 

Maxwell’s curl equations are performed 

 ∇⃗⃗ × �⃗� = −
𝜕�⃗� 

𝜕𝑡
 , ∇⃗⃗ × �⃗⃗� = −

𝜕�⃗⃗� 

𝜕𝑡
 .  Eq. 3-3 

The local fields are then used to determine the effective permittivity 𝜀𝑒𝑓𝑓 and 

permeability 𝜇𝑒𝑓𝑓 through the spatial averaging over the unit cell [54], and the effective 

permittivity and permeability of the system are defined as  

 〈�⃗⃗� (𝑟 )〉 = 𝜀𝑒𝑓𝑓〈�⃗� 0〉,    〈�⃗� (𝑟 )〉 = 𝜇𝑒𝑓𝑓〈�⃗⃗� 0〉 , Eq. 3-4 

where the average electric displacement and magnetic flux density over the unit cell 

volume 𝑉 are given as 

 

〈�⃗⃗� (𝑟 )〉 =
1

𝑉
∫ �⃗⃗� (𝑟 )𝑑𝑉 =

1

𝑉
∫𝜀𝑟(𝑟 )�⃗� (𝑟 )𝑑𝑉,

〈�⃗� (𝑟 )〉 =
1

𝑉
∫ �⃗� (𝑟 )𝑑𝑉 =

1

𝑉
∫𝜇𝑟(𝑟 )�⃗⃗� (𝑟 )𝑑𝑉. 

 Eq. 3-5 

For a fixed polarization, we can find the effective permittivity and permeability of the 

composite as follows  
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 𝜀𝑒𝑓𝑓 =
1

𝑉
∫
𝜀𝑟(𝑟 ) 𝐸(𝑟 )

𝐸0
𝑑𝑉  ,    𝜇𝑒𝑓𝑓 =

1

𝑉
∫
𝜇𝑟(𝑟 ) 𝐻(𝑟 )

𝐻0
𝑑𝑉 ,  Eq. 3-6 

where 𝐸0  and 𝐻0 are the external electric field and magnetic field, respectively. 

           Clearly, to be able to use the local field averaging method, first one needs to 

calculate exactly the local filed profiles, hence the need for the use of numerical codes such 

as COMSOL Multiphysics. Historically, this method has been utilized to calculate the 

effective magnetic and electric response of periodic array of parallel microstrips MMs, 

random metal-dielectric composites and other complex geometries. 

3.2.1 Local Field Averaging Method for Periodic Array of Parallel Microstrips 

Metamaterials 

As we mentioned before, the effective optical properties of composite materials can 

be defined only if the unit cell of the periodic structure is much smaller in size than the 

incident wavelength of electromagnetic radiation. The proposed MMs is a two-dimensional 

periodic array of parallel microstrips immersed in a dielectric material. The geometrical 

outline of the unit cell is schematically shown in Figure 3-2. The length of the microstrips 

is 2𝑎, the thickness is 𝑏 and the gap between the microstrips is 𝑑. To extract the effective 

permittivity and permeability of the system’s numerical calculations are performed 

utilizing Comsol Multiphysics software. The most attractive aspect of metamaterials is that 

the effective magnetic permeability and permittivity can be controlled by changing the 

sizes of the unit cell. The majority of designed optical metamaterials rely on metal and 

dielectric composites to provide effective electric and magnetic responses. However, the 

MMs can also be designed by invoking highly doped n-type semiconductors, so the 

magnetic and electric response of metamaterials can be tuned by altering the doping 

concentration as well. 
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 In this section, we study the magnetic and electric responses for two dimensional 

metamaterial consisting of silver microstrips immersed in dielectric material (i.e. glass) 

and these results are compared to similar systems but consisting of n-GaAs microstrips. 

 

 

Figure 3-2: Geometrical outlines of the unit cell consisting of two parallel (metallic/ 

semiconductor) microstrips within a host dielectric material (i.e. glass). 

For incident transfer magnetic (TM) wave propagating along the +x axis, the 

response of the system is calculated using local field averaging method for two- 

dimensional structure where the magnetic permeability is 

 𝜇𝑒(𝜔)𝐻𝑧,0 =
1

𝑆
∫𝜇𝑟(𝜔, 𝑥, 𝑦)𝐻𝑧(𝑥, 𝑦) 𝑑𝑆 , Eq. 3-7 

where 𝐻𝑧 and 𝐻𝑧0 are the induced local and incident magnetic fields, respectively, and 𝑆 

is the area of the unit cell. The electric permittivity is calculated similarly as 

 𝜀𝑒(𝜔)𝐸𝑦,0 =
1

𝑆
∫𝜀𝑟(𝜔, 𝑥, 𝑦) 𝐸𝑦 (𝑥, 𝑦)𝑑𝑆,  Eq. 3-8 

where 𝐸𝑦 and 𝐸𝑦0 are the induced local and incident electric fields, respectively. 
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To demonstrate the effective magnetic and electric properties of the parallel silver 

microstrips separated by a glass, we fix the thickness and the gap between the strips at 𝑏 =

0.35 μm and 𝑑 = 0.8 μm, and we vary the length of microstrips from 2𝑎 = 15 μm to 2𝑎 =

19 μm. Identically, we attain the magnetic and electric responses of the n-GaAs microstrips 

separated by a glass for the similar structural sizes and by considering the maximum 

practical doping concentration 𝑛 = 6 × 1025 m−3. 

The effective permeability for silver and n-GaAs microstrips immersed in a glass 

are illustrated in Figure 3-3. The negative permeability is observed for both systems; 

however, the silver resonators show higher resonance frequency compared to the n-GaAs 

resonators. Although the bandwidth for silver resonators is narrower in comparison to n-

GaAs which exhibit a better response to the magnetic field, obtaining negative magnetic 

response by utilizing n-GaAs provide a material which can be used to fabricate 

semiconductor devices including THz sensors, transistors, and also it can be used for the 

applications of negative index materials.  
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Figure 3-3: Effective permeability versus frequency for three different sizes of the (a) 

silver and (b) n-GaAs microstrips metamaterial. The real and imaginary parts of the 

effective permeability are shown with solid and dashed lines, respectively. 2𝑎 =
19 𝜇𝑚 (blue and black), 2𝑎 = 17𝜇𝑚 (red and orange), and 2𝑎 = 15 𝜇𝑚 (green and 

magenta).  

Using Eq. 3-8, we have also calculated the effective permittivity of our structure 

which is shown in Figure 3-4.  For the three different lengths of parallel silver microstrips 

resonators, we observe distinct resonances in the permittivity at low frequencies and 

asymptotic behavior at large frequencies with 𝜀𝑒 → 1 as it should be. A negative real part 

of permeability is observed only for the larger size resonator (2𝑎 = 19 𝜇𝑚). Compared to 
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Figure 3-3, it is clear that using silver strips resonators we can obtain double negative index 

material within a narrow frequency domain 4.8 THz < 𝑓 < 5.2 THz.  

However, for the three different lengths of the parallel (n-GaAs) microstrips 

resonators under investigation, the effective permittivity is predominantly positive except 

for 2𝑎 = 19 𝜇𝑚, the real part of the permeability approaches unity at large frequencies. 

Despite this deficiency due to the intrinsic loss in the semiconductor, the condition for 

obtaining a single-negative NIM which has negative index with 𝜇′ < 0  but 𝜀′ > 0 is still 

satisfied. 
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Figure 3-4: Effective permittivity of (a) silver and (b) n-GaAs microstrip resonators 

as a function of frequency and different microstrips sizes.  The colors correspond to 

the same sizes used in Figure 3-3. 

Having obtained both the effective permittivity and permeability of our unit cell, 

then we study the effective refractive index presented in Figure 3-5.  
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Figure 3-5: Index of refraction as a function of frequency for three different lengths 

of the microstrips resonators (a) for silver resonators and (b) for n-GaAs resonators. 

The colors corresponding to the same sizes in which are in Figure 3-3. 

We have obtained a negative index of refraction for the investigated sizes of parallel 

(silver/n-GaAs) microstrips resonators. The highest value of the negative index of 

refraction is -4.2 at resonance frequency 4.8 THz for silver slabs resonators, while the 

highest value of semiconductor metamaterials is -2.1 at resonance frequency 4.2 THz. To 

obtain negative index material at higher frequency, we need to decrease the length of 

microstrips further; however, to obtain double negative index material, we have to increase 

the length of the microstrips. To study the performance of negative index material based 
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on silver and semiconductor, we utilize the figure of merit (FOM) defined in Eq. 3-2. The 

highest figure of merit shows the lowest losses in the metamaterial [55]. The FOM as a 

function of frequency is depicted in Figure 3-6. 

 

Figure 3-6: Figure of merit as a function of frequency for three different lengths of 

the microstrips resonators (a) for silver resonators and (b) for n-GaAs resonators. The 

colors corresponding to the same sizes in which are in Figure 3-3. 

In case of silver slab resonators, the maximum FOM of -0.9 is reached within the 

frequency range from 5.5 THz to 7.5 THz and that is for double negative index material. 
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For NIM based on semiconductor, the highest FOM obtained was also for the larger slab’s 

length and the highest value is -0.5 at frequency ranges of 4.5 to 5.4 THz. 

To check our results for the field averaging method, we utilized a commonly used 

method that calculates the optical properties of metamaterials by employing the reflection 

and transmission coefficients. 

3.3 The Inverse Method 

The inverse method also known as retrieval method is a second practical approach 

used to extract the effective electromagnetic properties of metamaterials. This method is 

based on measuring or simulating the reflection and transmission coefficients for a 

transverse electromagnetic (TEM) wave normally incidents on the slab of metamaterials. 

In this procedure, we assume the material to be a homogenous and isotropic with 

dimensions of the unit cell much smaller than the incident wavelength; hence, the wave in 

the structure is dominantly characterized by refractive phenomena rather than diffraction 

or scattering phenomena [56]. Under this condition, the refractive index n and impedance 

z are obtained by inverting the reflection and transmission coefficients of the metamaterial 

slab.  

Then, we can calculate the effective optical response for a homogenous medium 

(i.e. metamaterials) represented by electric permittivity 𝜖 and magnetic permeability 𝜇 [56, 

57].  In this section, we introduce the extraction method of the material constants for a 

TEM incident normally on the homogenous slab. In order to obtain the electromagnetic 

properties of metamaterials, we have also used Comsol Multiphysics software to extract 

the reflection and transmission coefficients for two types of structures: (1) periodic array 

of thin slab, (2) parallel slabs of (silver or n-GaAs) immersed in dielectric material.  
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3.3.1 Inverse Method for a normally Incident TM wave  

Consider a transverse magnetic (TM) wave propagating in the 𝑥-direction and 

normally incident as shown in Figure 3-7. Region I and Region III are air and Region II is 

unknown magneto-dielectric material with thickness d. 

 

 

Figure 3-7: Dielectric slab placed in vacuum. 

The magnetic field in the three regions can be written as follows 

 

�⃗⃗� 1 = (𝐻1
+𝑒−𝑖𝑘𝑛1𝑥 + 𝐻1

−𝑒𝑖𝑘𝑛1𝑥)�̂�    (𝑎)

 �⃗⃗� 2 = (𝐻2
+𝑒−𝑖𝑘𝑛2𝑥 + 𝐻2

−𝑒𝑖𝑘𝑛2𝑥)�̂�     (𝑏) 

�⃗⃗� 3 = 𝐻3
+𝑒−𝑖𝑘𝑛3𝑥�̂�                                (𝑐) 

 } . Eq. 3-9 

Introducing the reflection, transmission and mixed coefficients 𝑟 = 𝐻1
−/𝐻1

+, 𝐴 = 𝐻2
+/𝐻1

+, 

𝐵 = 𝐻2
−/𝐻1

+, 𝑡 = 𝐻3
+/𝐻1

+, we can recast the magnetic field as  

 

�⃗⃗� 1 = (𝑒
−𝑖𝑘𝑛1𝑥 + 𝑟𝑒𝑖𝑘𝑛1𝑥)�̂�   

�⃗⃗� 2 = (𝐴𝑒
−𝑖𝑘𝑛2𝑥 + 𝐵𝑒𝑖𝑘𝑛2𝑥)�̂�

�⃗⃗� 3 = 𝑡𝑒−𝑖𝑘𝑛3𝑥�̂�                          

 ,  
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where 𝑛2 = ±√𝜖𝑠𝜇𝑠 is the unknown refractive index of the metamaterial slab, and 𝑘 =

𝜔/𝑐, and these parameters defined as the following 𝑟 is the reflection coefficients, 𝐴 and 

𝐵 are constants, 𝑡 is the reflection coefficients, 𝑛𝑠 is the index of refraction of the medium, 

and 𝑘 is the wave vector of free space. We can find the electric field in the three regions 

by using Maxwell’s equation for Ampere’s law where we should choose the positive sign 

inside the exponential +𝑖𝜔𝑡 to be consistent with Comsol software which is used to 

simulate the electromagnetic responses of MMs. Then the electric field in the three regions 

is 

 

�⃗� 𝑠 = −
1

𝑖𝜔𝜖0𝜖𝑠

𝑑𝐻𝑠(𝑥)

𝑑𝑥
�̂�

= ± �̂� 𝑧0 {

𝑧1(𝑒
−𝑖𝑘𝑛1𝑥 − 𝑟𝑒𝑖𝑘𝑛1𝑥)

  𝑧2(𝐴𝑒
−𝑖𝑘𝑛2𝑥 − 𝐵𝑒𝑖𝑘𝑛2𝑥)

𝑧3𝑡𝑒
−𝑖𝑘𝑛3𝑥

 , 

Eq. 3-10 

where 𝑧0 = √𝜇0/𝜀0 is the impedance of free space and we have defined the relative 

impedance 𝑧𝑠 = 𝑛𝑠/𝜀𝑠 of the metamaterial slab. Enforcing the continuity of the electric 

and magnetic fields at the boundaries, we obtain 

 

1 − 𝑟 =
𝑧2
𝑧1
(𝐴 − 𝐵) ,

1 + 𝑟 = 𝐴 + 𝐵 ,

𝐴𝑒−𝑖𝑘𝑛2𝑑 − 𝐵𝑒𝑖𝑘𝑛2𝑑 =
𝑧3
𝑧2
 𝑡𝑒−𝑖𝑘𝑛3d ,

𝐴𝑒−𝑖𝑘𝑛2𝑑 + 𝐵𝑒𝑖𝑘𝑛2𝑑 = 𝑡𝑒−𝑖𝑘𝑛3d .

 Eq. 3-11 

Solving Eq. 3-11 for the reflection and transmission coefficients, we get 

 

𝑟 =
(𝑧1 + 𝑧2)(𝑧2 − 𝑧3) + 𝑒

2𝑖𝑘𝑛2d(𝑧1 − 𝑧2)(𝑧2 + 𝑧3)

(𝑧1 − 𝑧2)(𝑧2 − 𝑧3) + 𝑒2𝑖𝑘𝑛2d(𝑧1 + 𝑧2)(𝑧2 + 𝑧3)
 ,

𝑡 =
4𝑒𝑖𝑘(𝑛2+𝑛3)d𝑧1𝑧2

(𝑧1 − 𝑧2)(𝑧2 − 𝑧3) + 𝑒2𝑖𝑘𝑛2d(𝑧1 + 𝑧2)(𝑧2 + 𝑧3)
 .
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In the special case where 𝑛1 = 𝑛3 and 𝑧1 = 𝑧3, we can simplify the reflection and 

transmission coefficients as 

 

𝑟 = −𝑟12
1 − 𝑒−2𝑖𝑘𝑛2d

1 − 𝑟12
2 𝑒−2𝑖𝑘𝑛2d

𝑡 = (1 − 𝑟12
2 )

𝑒−𝑖𝑘(𝑛2−𝑛3)d

1 − 𝑟12
2 𝑒−2𝑖𝑘𝑛2d

 , Eq. 3-12 

where 𝑟12 = (𝑧2 − 𝑧1)/(𝑧2 + 𝑧1). Finally, introducing the normalized transmission 

coefficient 𝑡 ′ = 𝑡𝑒−𝑖𝑑𝑘𝑛3 , we obtain the impedance of the slab as follows 

 𝑧 = 𝑧2 = ±√
(1 − 𝑟)2 − 𝑡′2

(1 + 𝑟)2 − 𝑡′2
                    Eq. 3-13 

Furthermore, from Eq. 3-12, we obtain the following relationships 

 

1

𝑡′
= cos(𝑛2𝑘𝑑) +

𝑖

2
 (𝑧 +

1

𝑧
) sin (𝑛2𝑘𝑑)

𝑟

𝑡′
= −

𝑖

2
 (𝑧 −

1

𝑧
) sin (𝑛2𝑘𝑑) .

   

Substituting sin (𝑛2𝑘𝑑) from the second equation in the first we obtain 

 cos(𝑛2𝑘𝑑) =
1

𝑡′
[1 + 𝑟 (

𝑧2 + 1

𝑧2 − 1
)] =

1 − 𝑟2 + 𝑡′2

2𝑡′
  .  

Using cos(𝑑𝑘𝑛2) = cos(±𝑑𝑘𝑛2) = cos(±(𝑑𝑘𝑛2 − 2𝜋𝑚)), we can invert to obtain the 

index of refraction of the dielectric slab as 

 𝑛2 = ±
1

𝑘𝑑
cos−1 (

1 − 𝑟2 + 𝑡′2

2𝑡′
) +

2𝜋𝑚

𝑘𝑑
, Im(𝑛2) > 0 ,  Eq. 3-14 

where 𝑚 is an integer number. In the extraction procedure, the sign choice is fixed 

independently by enforcing the conditions Re(𝑧) > 0 and Im(𝑛2) > 0. A major issue in 

the extraction method is selecting a correct sign for Re (𝑛2) and a proper branch cut given 
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by the integer number 𝑚. Finally, using Eq. 3-13 and Eq. 3-14 we can find the permittivity 

and permeability of the slab as 

 𝜀 = 𝑛/𝑧, 𝜇 = 𝑧𝑛 . Eq. 3-15 

3.3.2 Extraction of Material Constants of a Homogeneous Slab Using Full Wave 

Calculations  

To demonstrate the validity of the retrieval method, we first study a unit cell of a 

slab of material placed in vacuum. Figure 3-8 reveals the simulation scheme for extracting 

of the reflection and transmission coefficients for a transverse magnetic (TM) wave that 

impinges 2-dimensional slab with given constant permittivity and permeability. Using the 

extracted reflection and transmission coefficients, we calculate the permittivity and 

permeability of the slab using the inverse method. When performing the calculations, a 

periodic boundary conditions are applied to the upper and bottom phases of the simulation 

domain. The incident p-polarized magnetic wave enters the simulation domain at x = x0 

and exits at x = xL . The length and the width of the slab are L and d, respectively. 

 

 

Figure 3-8: Simulation domain for extracting the reflection and transmission 

coefficients of a slab of given material placed in vacuum. 
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The reflection and transmission coefficients can be calculated numerically by 

integrating the local magnetic field at the front and back sides of the simulation domain 

using the following equations 

 

𝑟 =
1

𝐿
∫𝐻𝑧(𝑥0, 𝑦)(𝑒

−𝑖𝑘𝑥𝑥0 − 𝑒−2𝑖𝑘𝑥𝑥0) 𝑑𝑦 ,

𝑡 =
1

𝐿
∫𝐻𝑧(𝑥0, 𝑦)𝑒

𝑖𝑘𝑥𝑥𝐿 𝑑𝑦 .                           

 Eq. 3-16 

The numerically obtained transmission and reflection coefficients are then used to 

extract the impedance and the index of refraction (Eq. 3-13 and 3-14) of the slab as well as 

the effective permittivity and permeability utilizing Eq. 3-15. 

We apply this inverse method for three types of structures: a medium consists of a 

nondispersive slab, a medium composed of a dispersive slab, and a medium comprised of 

periodic array parallel microstrips immersed in a host material.  

3.3.2.1 Inverse Method - non-dispersive slab of material  

Here, we consider a rectangular slab of nondispersive medium where the index of 

refraction is fixed and independent of frequency.  The width and the length of the slab are 

fixed at 𝑑 = 1.5 𝜇𝑚 and 𝐿 = 20 𝜇𝑚 and the permittivity and permeability of the slab are 

set at 𝜀 = 3 and 𝜇 = 1. The numerically obtained reflection and transmission coefficients 

are shown in Figure 3-9 and found to be consistent with the analytical results using Eq. 

3.12. This validates the extraction formulas Eq. 3-16 which will be used extensively below.  
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Figure 3-9: Reflection and transmission coefficients versus frequency. The real part 

(red) and imaginary part (green) of (a) the reflection coefficients and (b) 

transmission coefficients for nondispersive medium are calculated using 

Comsol software and are compared the analytical results (dashed lines).  

The recovered impedance Eq. 3-13 and index of refraction Eq. 3-14 were calculated 

based on the simulated data of the extracted transmission and reflection coeffcients are 

shown in Figure 3-10.  
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Figure 3-10: Extracted index of refraction (blue color) and impedance (red color) as a 

function of frequency. Solid lines represent the real parts and dashed lines 

are the imaginary parts. 

As we can observe from the figure, the retrieved refractive index and impedenace 

are independent of frequency, as they should. The real part of the index of refraction (solid 

blue line)  and the real part of the impedance were in good agreement with the theoretical 

results calculated respectively as 𝑛 = √𝜀𝜇 = 1.73 and 𝑧 = √𝜇/√𝜀 = 0.577. The 

imaginary part for the index of refraction and impedance is zero as expected and they are 

shown with dashed lines in Figure 3-10. Finally, we calculate the permittivity and 

permeability of nondispersive slab using Eq. 3-15 based on the numerical index of 

refraction and impedance. The obtained results are demonstrated in Figure 3-11 where the 

green color represnts the retrieved permittivity and the permeability is shown by the 

magenta color. 
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Figure 3-11: Retrieved permittivity (a) and permeability (b) versus frequency. The real 

and imaginary parts are represented with solid and dashed lines, 

respectively. 

We notice from Figure 3-11 that the recovered permittivity and permeability of the 

nondispersive medium calculated utilizing the simulated reflection and transmission 

coefficients exactly match to the input permittivity and permeability, which verifies the 

retrieval procedure. In the next section, we consider a slab of dispersive material. 



60 

3.3.2.2 Inverse Method - dispersive slab of material  

Here, we consider a slab of a dispersive material. In this case, the inverse method 

is used to retrieve the material constants of a Lorentz dielectric material where the 

permittivity of the slab is frequency dependent and given by Eq. 3-1 while the permeability 

is unity. In this example, we set the parameters of the Lorentz’s material as plasma 

frequency 𝑓𝑝 = 10 THz, relaxation frequency 𝑓𝑡 = 2 THz, and resonance frequency  𝑓0 =

6 THz. The Comsol Multiphysics software is used again to extract the reflection and 

transmission coefficients shown in Figure 3-12.   

 

Figure 3-12: Calculated real (red color) and imaginary (green color) parts of (a) 

reflection coefficients and (b) transmission coefficients as a function of frequency for 

slab of dispersive material. The solid lines correspond to the numerical simulations 

while the dashed curves are the analytical results. 

From Figure 3-12, we recognize that again the theoretical results were in good 

match with the simulated reflection and transmission coefficients for the dispersive 

medium. Hence, we next proceed to calculate the impedance and index of refraction (Eq. 

3-15) using the numerically obtained reflection and transmission coefficients and compare 

our results with the slab’s actual impedance and index of refraction. The results for the 
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impedance and index of refraction versus frequency are shown in Figure 3-13 and in Figure 

3-14, respectively. 

 

 

Figure 3-13: Real and imaginary parts of impedance as a function of frequency for a 

dispersive slab. The theoretical results are represented with dashed line while the 

numerical results are represented with the red color.  

 

Figure 3-14: Real and imaginary parts of the refractive index as a function of frequency 

for a dispersive slab. The theoretical results are represented with dashed line while the 

numerical results are represented with the blue color. 
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We observe from Figure 3-13 and Figure 3-14 that the extracted impedance and 

index of refraction are in excellent agreement with the pre-set values, again validating the 

inverse method. Finally, we proceed with the extraction of the permittivity and 

permeability of the slab using Eq. 3-15. The extracted data is compared to the pre-set 

permittivity given by the Lorentz’s model in Figure 3.15.  

 

 

Figure 3-15: Plot of the real and imaginary part of permittivity (a) and permeability (b) 

versus the frequency. 
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The numerically retrieved permittivity and permeability are shown to be consistent 

with the pre-set Lorentz model and unit permeability. The performed investigations of the 

inverse method have thus verified its accuracy and indicates that this method is well 

applicable for the extraction of the electromagnetic responses of slab materials described 

by homogeneous, isotropic and dispersive electric permittivity and permeability. 

Therefore, we proceed by applying the inverse method to more complicated, 

inhomogeneous parallel slabs’ metamaterial structures. 

3.3.2.3 Inverse Method – parallel microstrip metamaterials 

Here, we consider a periodic array of metamaterial where the unit cell consists of 

two-dimensional parallel microstrips immersed in a dielectric host material. The 

geometrical properties of the structure under consideration are similar to the metamaterials 

studied with the field averaging method (see Figure 3-2, Section 3.2.1). The goal of this 

investigation is to extract the permittivity and permeability of the parallel slabs (using silver 

and n-GaAs) metamaterial using inverse method and compare these results to those based 

on the local field averaging. Such comparison between the methods will provide a pathway 

for designing metamaterial structures. We follow the same procedure of the inverse method 

by considering the identical structural sizes for the glass, which is considered as a host 

material and the parallel microstrips immersed in the glass. The thickness of the considered 

microstrip is fixed as well as the size of the glass slab, however the length of the microstrips 

are varied as 2𝑎 = 15 𝜇𝑚, 2𝑎 = 17 𝜇𝑚, 2𝑎 = 19 𝜇𝑚. The extracted impedance for Ag-

glass system and n-GaAs-glass system is demonstrated in Figure 3-16. 
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Figure 3-16: Real and imaginary part of the impedance of (a) silver on glass and (b) 

n-GaAs on glass microstrip resonators versus the frequency. The solid lines 

corresponding to the real part while the dashed lines represent the imaginary part. In 

the calculations we consider three resonator sizes  2𝑎 = 19 𝜇𝑚 (blue and black 

lines), 2𝑎 = 17 𝜇𝑚 (red and orange lines), and 2𝑎 = 15 𝜇𝑚 (green and magenta 

lines). 

We notice from Figure 3-16 that by decreasing the size of the resonators, we obtain 

higher impedance for both resonator systems (silver-glass, and n-GaAs-glass). 

Additionally, the silver-glass system shows higher resonance frequency for the considered 

length of the resonators and for 2𝑎 = 15 𝜇𝑚, there is a discontinuity for the imaginary part 

of impedance in the frequency range between 7.1 to 7.9 THz. To resolve this problem, we 
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have selected the negative solution for imaginary part of the impedance Eq. 3-13. The 

extracted index of refraction for both systems is shown in Figure 3.17. 

 

 

Figure 3-17: Index of refraction as a function of frequency for (a) silver on glass and 

(b) n-GaAs on glass microstrip resonators. The solid lines corresponding to the real part 

while the dashed lines represent the imaginary part. In the calculations, we consider 

three resonator sizes  2𝑎 = 19 𝜇𝑚 (blue and black lines), 2𝑎 = 17 𝜇𝑚 (red and orange 

lines), and 2𝑎 = 15 𝜇𝑚 (green and magenta lines). 

Figure 3-17 shows that the real part of the index of refraction decreases as the length 

of (silver/ n-GaAs) decreases and the maximum resonance frequency obtained is 6.6 THz 

for the silver-glass system which exhibits zero index of refraction. Therefore, from this 

demonstration, we can conclude that for obtaining negative index material used, we have 
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to further decrease the microstrips’ length and for realizing the low losses for negative 

index materials, the n-GaAs is the preferred material for the microstrips. Finally, using the 

extracted index of refraction and impedance, we retrieve the magnetic permeability and 

electric permittivity and the results are depicted in Figure 3-18 and Figure 3-19, 

correspondingly.  

 

 

Figure 3-18: Real and imaginary part of magnetic permeability for (a) silver on glass 

(b) n-GaAs on glass microstrip resonators versus the frequency. The solid lines 

corresponding to the real part while the dashed lines represent the imaginary part. In 

the calculations we consider three resonator sizes 2𝑎 = 19 𝜇𝑚 (blue and black 

lines), 2𝑎 = 17 𝜇𝑚 (red and orange lines), and 2𝑎 = 15 𝜇𝑚 (green and magenta lines).  
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We observe from Figure 3-18 that the magnetic permeability decreases as we scale 

down the length of the microstrips, and it shows the maximum negative permeability at 

higher frequencies. For the n-GaAs on glass resonators, the maximum negative 

permeability is -2.3 at frequency equals to 5.4 THz, and the length of the resonators is 2𝑎 =

15 𝜇𝑚. 

 

 

Figure 3-19: Real and imaginary part of electric permittivity for (a) silver on glass (b) 

n-GaAs on glass microstrip resonators versus the frequency. The solid lines 

corresponding to the real part while the dashed lines represent the imaginary part. In 

the calculations we consider three resonator sizes  2𝑎 = 19 𝜇𝑚 (blue and black 

lines), 2𝑎 = 17 𝜇𝑚 (red and orange lines), and 2𝑎 = 15 𝜇𝑚 (green and magenta lines).   
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Figure 3-19 illustrates the parallel microstrips permittivity, showing distinct 

electrical resonances for all sizes of the resonators. We notice that the retrieved 

permeability and permittivity show a discontinuity region for microstrips of length 2𝑎 =

15 𝜇𝑚 in frequencies ranging between 7.1 to 7.9 THz. In this region, a second branch cut 

must be chosen. 

Comparing the local field averaging method with the inverse method, we notice 

that all resonance frequencies pertaining to the index of refraction agrees well between the 

methods. The magnetic resonance frequencies also match in both methods; however, we 

observe opposite behaviors. For the field averaging method, as the length of the resonators 

decreases, we notice a decrease in the strength of the magnetic response. However, the 

inverse shows that decreasing the length of microstrips increases the magnetic response. 

Additionally, the extracted permittivity by the inverse method demonstrates opposite 

behavior as compared to the field averaging method.  

To summarize, our results show that both extraction methods predict identical 

magnetic susceptibilities, but under resonance conditions they can deviate when extracting 

the electric response of the system. This should serve as a point of caution for the 

community since both methods are widely used in the literature with little or no attention 

paid to possible inconsistencies.    



 

  69 

 

CHAPTER 4 

 

NOX SENSOR 
 

4.1 Introduction to NOx Sensors 

Diesel engines produce much higher particulates and NOx exhaust gas compared to 

gasoline engines. NOx is used to represent nitric oxide (NO) and nitrogen dioxide (NO2), 

which can cause many health problems, as well as smog and acid rain. In order to reduce 

and limit the emission of NOx gases as required by many governments, NOx gas sensors 

were developed for automotive and trucking applications [58, 59].  

The US Environmental Protection Agency (EPA) has proposed regulations which 

require NOx sensors to monitor NOx in diesel vehicles [60, 61]. In order for NOx sensors 

to remain effective, it is necessary to improve the sensitivity, selectivity, stability, response 

time, and accuracy [58]. 

 NOx sensors are a type of electrochemical cell consisting of electrolyte and 

electrode. Platinum is typically used as the electrode material in NOx sensors. As for the 

electrolyte material, conventional NOx sensors are based on a zirconia ZrO2 electrolyte due 

to its high conductivity, which promotes NOx sensitivity. In addition, ZrO2 compatible at 

elevated tailpipe temperatures of 400℃ and above. Furthermore, ZrO2 is chemically stable 

in both reducing and oxidizing atmospheres [59, 62]. Conventional NOx sensors consist of 

a dense electrolyte and porous electrodes. Porous electrodes allow gas diffusion to the triple 



70 

phase boundary (TPB) where the gas, electrode and electrolyte come into contact, thereby 

enabling charge transfer (i.e. reduction or oxidation) reactions effecting sensitivity to NOx. 

Even though porous electrodes support diffusing the gases, they can also reduce the 

concentration of NOx at TPBs, since they enable heterogeneous catalysis. This negatively 

impacts sensor accuracy [58]. To address this problem, dense electrodes have been 

proposed. Many studies reveal that sensors with the dense electrode were less prone to 

heterogeneous catalysis and more sensitive to NO [63, 64]. This new sensor design 

incorporates porous electrolytes to enable gas diffusion to TPBs. Highly porous 

electrolytes can promote a rapid sensing response, yet the high porosity results in fewer 

sites for NOx reactions, thereby limiting NOx sensitivity. On the other hand, electrolytes of 

limited porosity have resulted in high NOx sensitivity, but are accompanied with a slow 

sensing response. The slow response is due to limited gas diffusion rates. Thus, a practical 

sensor must have a microstructure that strikes a balance between promoting gas diffusion 

and ionic transport through the electrolyte bulk [58]. 

Impedancemetric gas sensors promise more accurate NOx detection at the single 

ppm level. In this method, an alternating voltage is applied at a specific frequency resulting 

in an electrical response. Then, the impedance is calculated as a ratio of signal voltage over 

the current. The resulting AC impedance phase angle can be used to measure the NOx 

response with a very high stability, accuracy, and sensitivity, in comparison to the 

conventional amperometric gas sensing method. Given the benefits of this approach 

impedancemetric NOx sensors were evaluated was used in this work [58, 60].  

Studying the porosity of the sensor electrolyte is very important, as the electrolyte 

microstructure affects the impedancemetric NOx sensing response. Such a study will help 
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the development of NOx sensors as optimization of the microstructure and morphology can 

improve sensor performance. The Archimedes method is one means for obtaining 

measurements of the electrolyte porosity. Coupling this method with scanning electron 

microscopy will enable the electrolyte porosity to be evaluated with respect to the 

electrolyte morphology (i.e., particle size, tortuosity, and particle connectivity).  

In this chapter, experimental work is presented for fabricating yttria stabilized 

zirconia (YSZ) electrolyte pellets and varying the porosity by fabricating the pellets at 

temperatures ranging from 1050℃ -1350℃. YSZ was selected as the electrolyte material 

as the yttria doping contributes to the ionic conductivity of the electrolyte, which promotes 

sensitivity to NOx. 

4.2 Experimental Work 

4.2.1 Fabrication of YSZ Electrolyte Pellets 

Yttria stabilized zirconia (YSZ) pellets were fabricated by making a slurry 

consisting of 8 mol % Y2O3- ZrO2 powder, polyvinyl butyral binder, and ethanol. Then the 

slurry was ball milled over night to get homogenous mixture. The slurry was dried on the 

hot plate, then ground using a mortar and pestle. After the grinding process, the processed 

powder was pressed at 200 MPa into pellets with the diameter of 1 cm. The pellets were 

fired at temperatures of 1050-1350℃ for 1 hour. Scanning electron microscopy was used 

to observe the morphology and microstructure, while Archimedes measurements were 

performed to determine the porosity. An impedance spectroscopy was carried out to 

evaluate the electrical response and sensing characteristics.  

4.2.2 Archimedes Measurement  

The porosity of the pellet is theoretically calculated as   
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𝜙 = (

𝑉𝑝

𝑉𝑏
) × 100% =

𝑉𝑏 − 𝑉𝑚
𝑉𝑏

× 100% , Eq. 4-1 

where 𝑉𝑏 is the bulk volume of the pellet, 𝑉𝑚 is the matrix volume, and 𝑉𝑝 is the pore 

volume. However, we measured the porosity of our sample (i.e. pellet) experimentally by 

using Archimedes method [65], which, based on the weight of the pellets, and it is defined 

as  

 
𝜙 =

𝑉𝑏 − 𝑉𝑚
𝑉𝑏

=
𝑊𝑠𝑎𝑡 −𝑊𝑑𝑟𝑦

𝑊𝑠𝑎𝑡 −𝑊𝑠𝑢𝑏
 , Eq. 4-2 

where the bulk volume and matrix volume expressed in terms of weight of the dry, 

saturated and submerge YSZ pellet as 𝑉𝑏 = (𝑊𝑠𝑎𝑡 −𝑊𝑠𝑢𝑏)/𝜌𝑓𝑙𝑢𝑖𝑑 and 𝑉𝑚 = (𝑊𝑑𝑟𝑦 −

𝑊𝑠𝑢𝑏)/𝜌𝑓𝑙𝑢𝑖𝑑, where 𝜌𝑓𝑙𝑢𝑖𝑑 is the density of fluid, 𝑊𝑠𝑎𝑡 is the weight of the saturated pellet, 

𝑊𝑑𝑟𝑦 is the weight of the dry pellet and 𝑊𝑠𝑢𝑏 is the weight of submerge pellet. The 

measurement was done three times for each sample, and then the average porosity and the 

standard deviation were calculated in Table 4-1. The plot of the average porosity as a 

function of temperature is shown in Figure 4-1. 
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Table 4-1: Measuring the average porosity for YSZ electrolytes at various firing 

temperatures.  

T (oC) Ave Porosity 

% 

Standard 

deviation of the 

measurement 

1050 43.73 0.058 

1100 42.7 0.14 

1150 37.72 0.032 

1200 35.9 0.97 

1250 22.64 0.056 

1300 9.44 0.15 

1350 3.35 0.099 

 

 

 

 

 

Figure 4-1: Plot of the average porosity as a function of the temperature (red dots) 

compared to the average porosity of the other study given in ref [66]. 
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In Figure 4-1, the average porosity calculated using Archimedes measurement for 

YSZ pellets by varying the temperature (see Table 4-1). The red dots show experimental 

data, and the green dots are comparison data from another study [66]. We can observe from 

Figure 4-1 that the porosity decreases by increasing the temperature, which comparable 

with the average porosity calculated in [66] at low firing temperature. However, as the 

firing temperature exceeded 1150℃, we can see a clear discrepancy between our data and 

the data measured in ref [66]. This discrepancy is related to the firing time of YSZ 

electrolyte where in the other study, the firing time of YSZ electrolyte was longer (i.e., 2 

hours) which made the electrolyte to be denser and the pore size to be smaller in 

comparison to our data for YSZ pellets fired for one hour. 

4.2.3 Scanning Electron Microscopy (SEM)  

 SEM Images of YSZ electrolyte pellets fired at 1050oC, 1100oC, 1150oC, 1200oC, 

1250oC, 1300oC, and 1350oC are shown in Figure 4-2. We can notice from the images that 

the particle sizes and pore structure alters with changes in the firing temperature. At lower 

temperatures, the pore size was 43.73%, and as the temperature increased, the pore size 

decreased and the particle coalesced at 1350oC. The connectivity between the particles 

increased with firing temperature. For YSZ pellets fired at 1350oC, the structure became 

denser and few open pores remained as indicated by the low porosity of 3.35% as 

determined by Archimedes method.  

 The goal of this study is to fabricate sensors containing a porous electrolyte and 

dense electrode. In the following section, fabrication of porous NOx sensors is discussed. 
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Figure 4-2: SEM images for the YSZ pellets fired at varying temperature from  
T = 1050℃ to T = 1350℃. 
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4.3 Fabrication of NOx Sensor 

The YSZ pellets were fabricated into NOx sensors by attaching symmetric gold 

(Au) wires to serve as the counter and sensing electrodes. The gold wire were 0.2 mm in 

diameter and the distance d between the gold wires was 0.5 cm as shown in Figure 4-3(a). 

YSZ slurry remaining from the process described in Section 4.2.1 was applied over the Au 

wires in order to embed the electrodes within the sensor electrolyte. Several coats of the 

slurry were applied to sufficiently embed the electrodes. The coating process is shown in 

Figure 4-3(b). The sensors were allowed to dry at room temperature while the slurry 

coating was applied. This step was repeated until the final structure of NOx sensor was 

formed, see Figure 4-3(c). In Figure 4-3(c), the gold wires were also coated in order to 

protect them during firing. Au melts at approximately 1060oC. The coating enables the Au 

to remain intact during firing at T > 1050oC. This coating was removed from the Au wires 

after firing in order to connect the sensor to the impedance analyzer for electrochemical 

evaluation.  
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Figure 4-3: Fabrication of NOx sensor. (a) The YSZ electrolyte with the parallel gold 

wire where d is the distance between the wires, (b) image of YSZ coating and the 

attached gold wires and (c) The final NOx sensor with embedded gold wires. 

4.3.1 Electrochemical Impedance Spectroscopy (EIS)   

The sensors were loaded into a quartz tube and placed in a furnace for analysis by 

electrochemical impedance spectroscopy (EIS). The gold wire electrodes from the sensor 

were connected to a Gamry Reference 600. A standard gas handling system was used to 

introduce dry mixtures of N2, O2, NO and NO2. The experiments were performed 0-100 

ppm NO and NO2 at a flow rate of 100 sccm (standard cubic centimeters per minute) with 

O2 concentrations ranging from (1-18%). The measurements were collected at operating 

temperatures of 600-700℃. Impedance measurement were collected for a frequency range 

between 1 MHz to 1 Hz at ten steps per decade where the excitation amplitude was 50 mV. 

The goal of this work was to observe how impedance response under various operating 
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conditions was impacted by the different electrolyte microstructures. Moreover, the sensor 

microstructure on sensor sensitivity and selectivity would contribute to understanding of 

the feasibility of the NOx sensor design.   

4.3.2 Results of Electrochemical Impedance Spectroscopy (EIS)   

Presented here are the results of NOx sensors operated using the impedancemetric 

method. The Nyquist plots demonstrate the impedance response for various conditions. 

4.3.2.1 Nyquist Plot  

Typical Nyquist plots of the impedance spectrum for two sensors fired at 1050℃ 

and 1100℃ are shown in Figure 4-4 and Figure 4-5, respectively, in the presence of 10.5% 

with N2 as the balance. In both figures, the impedance measurement varied based on 

changing the operating temperature ranging from 600℃ to 700℃. These were taken 

without presence of the NO gas. In the Nyquist plot, two arcs were present.  The large arc 

to the right represented the low frequency region, while the smaller arc to the left 

represented the high frequency region. The low frequency region described the mass 

transfer or interfacial processes. The diameter of the arc represents the resistance associated 

with the process. The impedance arcs decreased as the temperature increased and these arcs 

became smaller as the YSZ porosity decreased. Similar behavior occurred for sensors fired 

at 1100℃, and the results are shown in Figure 4-5. 
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Figure 4-4: Nyquist plot of NOx sensor fired at 1050℃ without NO and by varying the 

temperature from 600℃ to 700℃. 

 

Figure 4-5: Nyquist plot of NOx sensor fire at 1100℃ without NO and by varying the 

temperature from 600℃ to 700℃. 

Comparing Figure 4-5 to Figure 4-4, we notice that the impedance decreases as the 

temperature increases, and each curve in Figure 4-5 shows smaller impedance in 

comparison to the impedance arcs for a sensor fired at 1050℃. The porosity in general 
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decreased as the firing temperature of the sensor increased and there is a direct relation 

between the porosity and the impedance of the sensor. Porosity impedes ionic transport as 

it creates a longer path for the oxygen ions to travel.  

Also shown are Nyquist plots with 18% oxygen for the two sensors where the 

measurements were taken at an operating temperature of 650℃ and (with/without NO) as 

in Figure 4-6.  

The Nyquist plot reveals again by decreasing the porosity of the YSZ by firing the 

sensor at higher temperature and in our case, the sensor which fire at 1100℃ exhibit lower 

impedance for both high frequency and low frequency arc and that is with and without NO. 

 

Figure 4-6: Nyquist plots of sensors fired at 1050℃ (blue without No and green with 

NO) and 1100℃ (Red without NO and black with NO) while operating at 18% O2 and 

650℃. 

Moreover, we can see from the figure that the higher oxygen concentration in the 

background seems to limit the change in the impedance response to NO. Also, applying 
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NO to the sensors fired at 1050℃ and 1100℃ decreases the impedance of the lower 

frequency arc by 3 kΩ. 

 

 

Figure 4-7: Nyquist plot of NOx sensor fired at 1050℃ and at operating temperature 

625℃ and with 100 ppm NO (red curve) and without NO (blue curve). 

In Figure 4-7, we did not notice any change for the impedance of high frequency 

arc. However, the low frequency arc of the impedance is decreased by applying 100 ppm 

of NO in comparison to the impedance of the sensor without any flow of NO. 
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Figure 4-8: Nyquist plot of NOx sensor fired at 1100℃ and at operating temperature 

625℃ and with 100 ppm NO (red) and without NO (blue). 

Also Figure 4-8 demonstrates similar results to Figure 4-7 in which the impedance 

decreases about 7% with a flow of 100 ppm through the sensor compared to the impedance 

of the sensor without NO in the low frequency arc region.  

In comparing Figure 4-8 to Figure 4-7, the impedance is lower for the sensor with 

the electrolyte fired at higher temperature because the contact between the particles is 

greater allowing for Oxygen ion conductivity to the triple phase boundary (TPB). 

The relative effect of oxygen concentration was investigated on the performance of 

NOx sensors fired at 1100℃. The oxygen concentration was varied from 5% to 18%, and 

the effect on the NOx sensors represented by the Nyquist plot in Figure 4-9. The increasing 

of O2 concentration reduces the size of the low frequency and large frequency. The low 

frequency arc represents a rate limiting transport process associated with O2 reduction. This 

cross sensitivity to O2 means that NOx reduction is an intermediate step of the NOx sensing 

mechanism [60]. 
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Figure 4-9: Nyquist plot of NOx sensor fired at T=1100℃ by varying the O2 

concertation from 5% to 18% and without adding NO. The flow rate is 100 sccm.  

 To measure the sensitivity of NOx and O2 in the gas sensor, the phase angle can be 

used.  

4.3.2.1 Phase Angle Plot  

Phase angle θ or 𝑍Phz is the quantity which represents the lag or the lead of the 

current response at a specific frequency. The impedance is a complex quantity given as 

𝑍(𝜔) = 𝑍real + 𝑖𝑍imag, which results from the division of alternating voltage V(t) =

V sin(ωt) over the current response I(t) = I sin(ωt + θ). So, from the complex plane of 

the impedance and by using the trigonometry, the phase angle can be defined as follows 

 
θ = 𝑍Phz = tan

−1 (
𝑍imag 

𝑍real 
) Eq. 4-3 

The phase angle can be used to measure sensitivity, and it tends to produce a more 

stable response for detecting NOx in comparison to monitoring outer impedance 

components [67], [68]. Oxygen is important for the reaction of NOx to occur, but there is 
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often unwanted cross sensitivity of O2 generated from parallel reactions. Figure 4-10 shows 

the phase angle as a function of the oxygen concentration at sensor operating frequency of 

40 Hz and 20 Hz for a sensor fired at 1100℃. At 40 Hz, the data obtain was similar to the 

previous work in ref [58]. The oxygen dependence appeared to be similar for the 20 Hz 

and 40 Hz measurements except for the data collected with 1 to 5% of oxygen. Finally, the 

data showed that the porous microstructure did not affect the oxygen dependence of the 

sensor’s electrolyte. 

 

  

Figure 4-10: Oxygen dependence of sensor fired at 1100℃ measured at two operating 

frequency 40 Hz and 20 Hz. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 

Metamaterials are artificial materials designed to provide unique optical properties 

not found in nature such as magnetism at high frequencies and negative index of refraction. 

In this thesis, we present comprehensive studies of the magnetic response for two classes 

of metamaterials (MMs) based on a metallic pair of strips and bowtie resonators immersed 

in dielectric host material. 

To describe the metamaterial designs, analytical theory has developed based on the 

transmission line and LZ-circuit models. The analytical theory provides an easy to use and 

clear description of the MMs, revealing the physical mechanism behind the observed 

magnetic response saturation at high frequencies.  While the saturation effects has been 

known for more than a decade, here we show for the first time that it is a direct consequence 

of the metal to dielectric transition of the electric response of metals at high frequencies. 

The theoretical predictions were compared to exact numerical calculations based on the 

Finite Difference Frequency Domain (FDFD) method revealing an excellent match. The 

saturation behavior in the magnetic response, occurring within the infrared and optical 

frequency ranges, and resonators with small (tents of nanometers) sizes is shown to be due 
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to the capacitive elements. This is contrary to the explanations reported in the literature 

that rely on empirical modifications of the resonators’ inductances.  

To map the magnetic resonance saturation, we extensively studied various 

resonator sizes and configurations. For the microstrip resonators, we found that saturation 

occurs for resonators with sizes less than 100 nm. Under these conditions, the excitation of 

magnetic resonances is precluded for frequencies higher than the surface plasma frequency 

of the system. A similar behavior is observed for the bowtie resonator. However, in this 

second structure, additional dependencies are manifested and specifically as a function of 

the slit angle 𝜙0. While an excellent match between the proposed analytical theory and 

numerical simulations is observed for   𝜙0 < 10∘, further increase of the slit angle is found 

to result in discrepancies due to fringe effects. 

The metallic and semiconductor based pair of strips resonators were implemented 

in the design of a negative index metamaterials and their optical response was extracted 

using two commonly used but competing methods: (a) the field averaging method (FAM) 

and (b) the inverse method (IM).  It was shown that negative permeability can be achieved 

for all microstrip sizes and for both systems under consideration (silver on glass and n-

GaAs on glass resonators). However, negative permittivity was obtained only for the silver 

on glass system and a preset microstrip length. The highest figure of merit (FOM) of -0.9 

for the DN-NIM silver on glass system occurred within the frequency range from 5.5 to 

7.5 THz. For the metamaterial consisting of n-GaAs on glass microstrip resonators, the 

highest recorded FOM was -0.5 and within the frequency ranging from 4.5 to 5.4 THz.  

     Overall, our results show that both extraction methods predict identical magnetic 

susceptibilities, but under resonance conditions they can deviate when extracting the 
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electric response of the system. This should serve as a point of caution for the community 

since both methods are widely used in the literature with little or no attention paid to 

possible inconsistencies.  

For the final project, NOx sensors were fabricated using a YSZ electrolyte with gold 

electrodes. The porosity of YSZ electrolyte pellets was studied using two complementary 

methods, Archimedes measurements and scanning electron microscopy. Both methods 

verified that the pore size of the electrolyte decreased as the fabrication temperature 

increased. The range of firing temperature which was used to examine the porosity was 

(1050℃-1350℃) and was sampled in increments of 50℃.  

The next step was to fabricate NOx sensors by attaching embedded Au electrodes 

into YSZ electrolytes. Two sensors were fired at 1050℃ and 1100℃ and their performance 

studied based on the Electrochemical Impedance Spectroscopy (EIS). Nyquist plots were 

used to examine the influence of the temperature and gas concentration. All of these plots 

prove that increasing the temperature and O2 concentration, decreased the impedance as 

the porosity decreased, and in the case of oxygen, it indicated that the charge of oxygen 

transported faster which is a necessary step for the NO sensor. However, changing the 

concentration of NO has an effect only to reduce the impedance of the low frequency arc. 

Finally, the phase angle at specific frequency (i.e. 40 Hz or 20 Hz) based on the changing 

of the oxygen concentration was studied for sensor fired at 1100℃. The results show that 

the sensor is more sensitive to NO in comparison to oxygen. 

5.2 Future Work 

As a future work, antisymmetric metamaterial designs can be studied including split 

ring with only one cut or a V-shape designs. In these systems, the quadrupole dipole and 



88 

magnetic moments are expected to be suppressed. These moments lead to bi-anisotropic 

constituent relationships and may be the reason why the inverse and local field averaging 

methods have diverged for the symmetric metamaterials studied in this thesis.  

As future work related to the NOx sensor, it is desirable to fabricate the NOx sensor 

by further increasing the firing temperature which may lead to improved performance. 

Additionally, we would like to develop a numerical model of the NOx using the Comsol 

Multiphysics software and compare the simulation results with the experimental results. 

Such a study may lead to further optimization of the sensor.



 

  89 

 

APPENDIX A  

 

CALCULATING INDUCTANCE, IMPEDANCE, AND 

CAPACITANCE OF PARALLEL STRIPS AND BOWTIE MMS 
 

 Parallel Strips MMs 

In Section 2.2.1, we require the complex impedance 𝑍𝑚 , capacitance 𝐶  and 

inductance 𝐿 of the parallel strips system. To calculate the impedance 𝑍𝑚  under the 

assumption 2𝑎 ≫ 𝑑 = 𝑏, we consider the inhomogeneous current in the metallic strips 

due to the skin depth. The electric field in the metal strips is written as 

 �⃗� = �̂�(𝐴𝑒𝑖𝑘𝑚𝑥 + 𝐵𝑒−𝑖𝑘𝑚𝑥) , Eq. A-1 

where 𝑘𝑚 = 𝑘0√𝜖𝑚 is the wave vector in the metal. Then the current density is obtained 

by forcing symmetric boundary conditions at the strips’ surfaces leading to  

 

𝑗 = 𝑖𝜔𝜖0𝜖𝑚�⃗� 

= 𝑖𝜔𝜖0𝜖𝑚𝐸0sec(𝑘𝑚𝑏)�̂� {
−cos[𝑘𝑚(𝑏 + 𝑑 + 𝑥)], −2𝑏 − 𝑑 ≤ 𝑥 ≤ −𝑑

cos[𝑘𝑚(𝑏 + 𝑑 − 𝑥)],  𝑑 ≤ 𝑥 ≤ 2𝑏 + 𝑑
 . 

Eq. A-2 

Solving for the total current 𝐼 = ∫ 𝑗𝑑𝑎 flowing through the strips we obtain   

 𝐼 = 𝑖𝜔𝜖0𝜖𝑚2𝑏𝑙𝑧𝐸0tanc(𝑘𝑚𝑏) . Eq. A-3 

Using Eq. (A-3), we write the current density through the total current as 
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𝑗 = 𝑗�̂�

=
𝐼

2𝑏𝑙𝑧sinc(𝑘𝑚𝑏)
�̂�  {
−cos[𝑘𝑚(𝑏 + 𝑑 + 𝑥)], −2𝑏 − 𝑑 ≤ 𝑥 ≤ −𝑑

cos[𝑘𝑚(𝑏 + 𝑑 − 𝑥)],  𝑑 ≤ 𝑥 ≤ 2𝑏 + 𝑑
 . 

 

Eq. A-4 

In the transmission line theory, the current is related to the voltage drop 𝑉 = 2𝑎𝐸0 

along the strips through its admittance 𝑌𝑚 as 𝐼 = 𝑌𝑚𝑉,. Using Eq. (A-3), we obtain the 

complex valued admittance as 

 𝑌𝑚 =
1

𝑍𝑚
=

1

𝑅𝑚 − 𝑖𝑋𝑚
= 𝑖𝜔𝜖0𝜖𝑚 (

2𝑏𝑙𝑧
2𝑎

) tanc(𝑘𝑚𝑏) Eq. A-5 

where 𝑍𝑚 is the complex impedance, 𝑅𝑚 is the real valued resistance and 𝑋𝑚 is the real 

valued reactance. For thin strips 𝑘𝑚𝑏 ≤ 1 , we have 𝑌𝑚 → 𝑖𝜔𝜖0𝜖𝑚𝑏𝑙𝑧/𝑎 as it should be. 

Finally, the impedance per unit length of the parallel strips system is  

 𝑍𝑚 =
1

1/𝑖𝜔𝜖0 𝜖𝑚𝑏𝑙𝑧
 . Eq. A-6 

At low frequencies 𝜖𝑚 → 𝑖𝜖𝑚
′′ , we recover the classical result 

 𝑌𝑚 → −𝜔𝜖0𝜖𝑚
′′
𝑏𝑙𝑧
𝑎
= 𝜎𝑚

2𝑏𝑙𝑧
2𝑎

= 𝜎𝑚
𝐴

𝑙
  

where 𝐴 is the cross sectional of the strip. The capacitance of the parallel strips resonators 

is also derived using the inhomogeneous electric field profile in the strips Eq. A-1, matched 

at the boundary with the spacer layer 

 

�⃗� 

= �̂� {

𝐸1sec(𝑘𝑚𝑏)cos[𝑘𝑚(𝑏 + 𝑑 + 𝑥)], −2𝑏 − 𝑑 ≤ 𝑥 ≤ −𝑑
𝐸2, −𝑑 ≤ 𝑥 ≤ 𝑑

𝐸1sec(𝑘𝑚𝑏)cos[𝑘𝑚(𝑏 + 𝑑 − 𝑥)], 𝑑 ≤ 𝑥 ≤ 2𝑏 + 𝑑
 . 

Eq. A-7 
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Enforcing the boundary conditions (with the field outside being zero), we have 

𝐸1 = 𝐸3 = 𝜎/𝜀𝑚𝜀0 and  𝐸2 = 𝜀𝑠𝜀0, where 𝜎 is the surface charge density of the strip. Then 

the electrical field for the system is written as 

 �⃗� = �̂�
𝜎

𝜖0𝜖𝑚

{
  
 

  
 
cos[𝑘𝑚(𝑏 + 𝑑 + 𝑥)]

cos(𝑘𝑚𝑏)
, −2𝑏 − 𝑑 ≤ 𝑥 ≤ −𝑑

𝜖𝑚
𝜖𝑠
, −𝑑 ≤ 𝑥 ≤ 𝑑

cos[𝑘𝑚(𝑏 + 𝑑 − 𝑥)]

cos(𝑘𝑚𝑏)
, 𝑑 ≤ 𝑥 ≤ 2𝑏 + 𝑑

 Eq. A-8 

and the total potential drop through the system is 

 

𝑉 = ∫ |�⃗� |𝑑𝑥
𝑑+2𝑏

−𝑑−2𝑏

= (
𝑑

𝜖0𝜖𝑠𝑎𝑙𝑧
+

2𝑏

𝜖0𝜖𝑚𝑎𝑙𝑧
tanc(𝑘𝑚𝑏))𝑄

= (
1

𝐶𝑠
+
1

𝐶𝑚
)𝑄 . 

Eq. A-9 

Then, using the relationship 𝑄 = 𝐶𝑉 we obtain the total capacitance of the parallel plates 

resonators as 

 𝐶 =
𝐶𝑠𝐶𝑚
𝐶𝑠 + 𝐶𝑚

= 𝜖0𝜖𝑠
𝑎𝑙𝑧
𝑑
(1 +

2𝑏𝜖𝑠
𝑑𝜖𝑚

tanc(𝑘𝑚𝑏))

−1

. Eq. A-10 

For thin strips 𝑘𝑚𝑏 ≤ 1, the capacitance can be simplified as 

 𝐶 = 𝜖0𝜖𝑠
𝑎𝑙𝑧
𝑑
(1 +

2𝑏𝜖𝑠
𝑑𝜖𝑚

)
−1

. Eq. A-11 

The inductance 𝐿 of the parallel strips can be obtained from the current density 

Eq. A-2 which sets the induced local magnetic field in the system. For TM polarization 

�⃗⃗� = �̂�𝐻(𝑥, 𝑦), the Amperes’ law reads 

 ∇ × �⃗⃗� = −�̂�
𝜕𝐻

𝜕𝑥
= 𝑗   . Eq. A-12 
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Substituting the current density from Eq. A-4 and enforcing the boundary conditions 

𝐻(−𝑑 − 2𝑏) = 𝐻(𝑑 + 2𝑏) = 0, we obtain 𝐻(𝑥, 𝑦) field across the structure as  

 

�⃗� (𝑥)

=
𝜇0𝐼

2𝑙𝑧
�̂�

{
 
 

 
 1 +

sin[𝑘𝑚(𝑏 + 𝑑 + 𝑥)]

sin[𝑘𝑚𝑏]
, −2𝑏 − 𝑑 ≤ 𝑥 ≤ −𝑑

2, −𝑑 ≤ 𝑥 ≤ 𝑑

1 +
sin[𝑘𝑚(𝑏 + 𝑑 − 𝑥)]

sin[𝑘𝑚𝑏]
, 𝑑 ≤ 𝑥 ≤ 2𝑏 + 𝑑

 .  
Eq. A-13 

The magnetic flux then follows 

 𝜙 = 2𝑎∫ 𝐵(𝑥)𝑑𝑥
2𝑏+𝑑

−2𝑏−𝑑

= 𝜇0
4𝑎(𝑏 + 𝑑)𝐼

𝑙𝑧
 ,  

from which the inductance per unit length is obtained  

 𝐿 =
𝜙

𝐼
= 𝜇0

2(𝑏 + 𝑑)

𝑙𝑧
 . Eq. A-14 

 Bowtie MMs 

In Section 2.3.1, we used the complex impedance 𝑍𝐵𝑇, and inductance 𝐿 of the 

bowtie system. To calculate the impedance 𝑍𝐵𝑇, we write the electric field inside the 

metallic elements and the gap in the form of 

 𝐸𝜙𝑚(𝑟) = (
𝜀𝑠

𝜀𝑚
) 𝐴𝑠𝑟 and 𝐸𝜙𝑠(𝑟) = 𝐴𝑠𝑟 ,  Eq. A-15 

where we have enforced the discontinuity of the electric field at the interface. The potential 

drop on the external surface of the bowtie structure is then obtained as 

 𝑉 = ∫ 𝐸𝜙𝑚𝑎𝑑𝜙
2𝜋−4𝜙0

0

+∫ 𝐸𝜙𝑠𝑎𝑑𝜙
2𝜙0

−2𝜙0

 , Eq. A-16 

giving 
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 𝑉 = 4𝜙0𝑎
2𝐴𝑠 (1 +

𝜀𝑠
𝜀𝑚
(
𝜋 − 2𝜙0
2𝜙0

)) . Eq. A-17 

The total current in the gap is  

 𝐼 = ∫ 𝑑𝑧∫ 𝑗𝑑(𝑟)𝑑𝑟
𝑎

0

𝑙𝑧

0

= 𝑖𝜔𝜖0𝜖𝑠𝑙𝑧𝐴𝑠
𝑎2

2
  ,  Eq. A-18 

where the current density is 𝑗𝑑(𝑟) = 𝑖𝜔𝜖0𝜖𝑠𝐸𝜙𝑠, Using Eq. A-17 and Eq. A-18, we obtain 

the impedance as 

 𝑍𝑏𝑜𝑤𝑡𝑖𝑒 =
𝑉

𝐼
=

8𝜙0
𝑖𝜔𝜀0𝜀𝑠𝑙𝑧

(1 +
𝜀𝑠
𝜀𝑚
(
𝜋 − 2𝜙0
2𝜙0

)) . Eq. A-19 

The inductance of the bowtie resonators is derived from the Ampere’s law which 

for TM polarization reads 

 ∇ × �⃗⃗� = −
𝜕𝐻

𝜕𝑟
�̂� = 𝑗𝑑(𝑟)�̂� . Eq. A-20 

Then, the magnetic field intensity can be obtained as  

 𝐻(𝑟) = −∫ 𝑗𝑑(𝑟) 𝑑𝑟 = −
𝐼

𝑙𝑧
(
𝑟

𝑎
)
2

 .  Eq. A-21 

To obtain the inductance, we then calculate the magnetic flux  

 𝜙𝐵 = 𝜇0∫𝐻(𝑟) 𝑑𝑎 = −
𝜋𝜇0𝐼

2𝑙𝑧
𝑎2 . Eq. A-22 

Finally, the inductance is 

 𝐿 =
|𝜙𝐵|

𝐼
=
𝜋𝜇0
2𝑙𝑧

𝑎2 . Eq. A-23 
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