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ABSTRACT

This dissertation is concerned with mathematical and empirical m odeling to 

simulate three important chemical reactions (cyclohexene hydrogenation and 

dehydrogenation, preferential oxidation o f carbon monoxide, and the Fischer-Tropsch (F- 

T) synthesis in a microreaction system.

Empirical m odeling and optimization techniques based on experimental design 

(Central Composite Design (CCD)) and response surface m ethodology were applied to 

these three chemical reactions. Regression models were built, and the operating 

conditions (such as temperature, the ratio o f the reactants, and total flow rate) which 

maximize reactant conversion and product selectivity were determined for each reaction.

A probability model for predicting the probability that a certain species 

undergoing reaction inside a microreactor exits the reactor by a certain time T was 

applied to cyclohexene hydrogenation and dehydrogenation reaction and the F-T 

synthesis reaction. The probability is estimated by the partial pressure o f  the reactant in 

the exit stream divided by the base partial pressure without the reaction (pp/base). 

Parameters o f  the residence time distribution and the reaction rate were estimated for 

these chemical reactions. Lastly, the activation energy o f  these reactions was estimated, 

and the flow behavior o f the reactant gas inside the microreactor was characterized from 

the residence time distribution.

Ill
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IV

A stochastic Markov chain approach was used to simulate cyclohexene 

hydrogenation and dehydrogenation reaction, and preferential oxidation o f carbon 

monoxide reaction in a fuel cell. Simulation results from the stochastic approach were 

presented. Simulation results were in qualitative agreement with experimental results.
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CHAPTER ONE

INTRODUCTION

1 ■ 1 General Overview

Microreactors are devices that behave as continuous flow systems whose 

dimensions are in the sub-millimeter range. Microreactors are well suited as laboratory 

reactors because o f the many advantages they possess, mostly because o f  their small size 

[Besser 2001].

There are several advantages o f microreactors, including high surface-to-volume 

ratio, better heat transfer, flexibility over wide operation range, minimum inventory, and 

on-site production. The most important advantages o f  chemical process miniaturization 

(CPM) are the safety and environmental benefits o f handling smaller quantities o f 

materials, especially hazardous chemicals. All these advantages give rise to research 

interests in this area. As a result, the “Lab-on-a-Chip” concept has been successfully 

applied to many problems in biochemistry and in biomedicine.

Several reaction systems have been extensively explored recently in 

microreactors. One such system is cyclohexene hydrogenation and dehydrogenation, a 

popular model for many chemical reaction systems in the petroleum refining industries
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[Segal 1978] [Davis 1980] [Xu 1994] [Chen 1996] [Su 1999]. In this research, the 

hydrogenation and dehydrogenation o f cyclohexene over a platinum catalyst was studied.

Fuel cells have emerged as alternatives to combustion engines because o f  their 

potential in reducing adverse environmental effects as well as the dependence on fossil 

fuels [Sossina 2003]. Fuel cells will play an essential role in any future hydrogen fuel 

economy, and they are attractive for their modular and distributed nature, zero noise 

pollution, and high efficiency and low emissions [Sossina 2003]. Therefore, preferential 

oxidation for carbon monoxide amelioration in hydrogen fuel cells with platinum as a 

catalyst was explored.

As the global reserves o f oil are being consumed, Fischer-Tropsch (F-T) synthesis 

becomes an important route for the production o f fuels and chemicals. F-T synthesis 

involves the conversion o f carbon monoxide and hydrogen to higher molecular weight 

hydrocarbons [Liu 2001]. In this study, combined catalysts o f  iron/cobalt supported by 

aluminum oxide for syn-gas reactions were investigated.

1.2 Research Objectives

Silicon microreactors have been shown to be a useful tool for fast catalyst 

discovery and chemical process optimization. Accurate and precise quantitative analysis 

o f the chemical information is particularly important for both o f  these purposes. A mass 

spectrometer (MS) is used as the chemical information analyzer because o f  its fast 

response and economy. However, as MS sensitivity changes with different gas species 

and with different gas compositions, especially in the presence o f hydrogen gas, 

statistical analysis methods were introduced for calibration. Therefore, one o f the
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objectives is to develop a statistical model for the MS measurements depending on 

different known gas compositions.

The second objective o f this research is to develop an empirical model, based on 

experimental design and response surface methodology, for optimizing the cyclohexene 

hydrogenation and dehydrogenation reaction scheme. From this empirical model, one can 

determine the factor combination which gives the maximum yield/selectivity o f 

cyclohexane or benzene, and the maximum conversion o f cyclohexene.

The third objective o f this research is to apply empirical m odeling and 

optimization, based on experimental design and response surface methodology 

techniques, to fuel cell experiments for building a numerical model to maximize 

conversion o f  CO  and selectivity o f CO2 .

The fourth objective o f this research is to apply empirical m odeling and 

optimization, based on experimental design and response surface methodology 

techniques, to F-T synthesis experiment in order to maximize conversion o f  CO  and 

selectivity o f higher alkanes (C^H^).

The residence time distribution (RTD) o f a reactor is a reflection o f  the mixing 

that occurs inside the reactor; hence, the residence time exhibited by a certain chemical 

reactor is one o f the most informative characterizations concerning its performance and 

efficiency. Therefore, the fifth objective o f this research is to build a continuous time and 

discrete state compartmental model, utilizing residence time distribution coupled with 

cyclohexene hydrogenation and dehydrogenation reactions and preferential F-T synthesis 

reaction, for predicting conversion and selectivity o f the chemical reaction under 

consideration.
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The last objective o f this research is to use Markov chain techniques to 

characterize a catalytic reaction scheme in order to predict conversion and selectivity.

1.3 Organization o f  this Dissertation

Chapter One, as an introduction, generally describes a m icroreactor, introduces 

the reactions that have been modeled, and states the goals o f this dissertation. Chapter 

Two provides a literature review o f the three chemical reactions utilized in the 

m icroreactor experiments. Chapter Three describes the theories behind the mathematical 

and empirical modeling, including optimization based on experimental design and 

response surface methodology, and continuous time and discrete state compartmental 

modeling utilizing residence time distribution coupled with chemical reactions. Chapter 

Four introduces the experimental equipment and procedure, including the structure o f the 

m icroreactor and the whole microreaction system. Chapter Five describes the calibration 

o f the mass spectrometer (MS), the experimental design, experimental results, and the 

empirical model for each o f the hydrogenation and dehydrogenation o f cyclohexene 

reaction, preferential oxidation o f carbon monoxide reaction, and the Fischer-Tropsch 

synthesis reaction. Chapter Six presents mathematical modeling and a stochastic Markov 

chain approach to cyclohexene hydrogenation and dehydrogenation reactions and to 

preferential oxidation o f  carbon monoxide amelioration in a hydrogenation fuel cell 

reaction. Conclusions and future studies are addressed in Chapter Seven.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Chemical M icroreactors

M icroreactors used in this study are chip-scale microfabricated reactors, 

comprised o f channels etched in the silicon substrate using the well-known silicon bulk 

m icromachining techniques involving photolithography and etching techniques [Low 

1999] [Kovacs 1998]. There are many materials, such as metal, glass, or silicon, that 

could be used as substrates o f the microreactors; however, silicon is chosen as the 

substrate for this research since there are well-developed photolithography and etching 

techniques for it in the microelectronic industry.

M icroreactors, because o f their small dimensions (in the order o f  micrometers), 

have many advantages over the conventional lab-scaled reactors. They consume less 

space, materials, and energy; have shorter response times; and have more information 

gained per unit and space. They have exceedingly low volumes o f  reaction and high 

aspect ratios, which allow reactions in extreme temperature and pressure regimes with 

little or no danger o f explosion [Ehrfeld 2000] [Jensen 2000]. M icroreactors have very 

good heat and mass transfer properties, which include uniform flow and temperature 

distributions, no dead zones, and fast response times caused by low volume. 

M icroreactors offer great potential when used in large numbers for on-site and on-
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demand synthesis o f chemicals and also for studies in heterogeneous catalysis for rapid 

catalyst evaluation and development [Srinivasan 1997] [Senkan 1999]. M icroreactors 

also produce negligible chemical waste and allow easy integration with other devices and 

easy control o f reaction parameters because o f small volume. All these performance 

benefits o f  microreactors make them very important in the biochemistry and biomedicine 

fields.

2.2 Chemical Reactions

The chemical reactions under consideration in this study are cyclohexene 

hydrogenation and dehydrogenation, preferential oxidation for carbon monoxide 

amelioration in hydrogen fuel cells, and the Fischer-Tropsch synthesis.

2.2.1 Cvclohexene Hvdroeenation and 
Dehvdrogenation Reactions

The reaction o f  cyclohexene and hydrogen over a platinum catalyst has

been investigated in recent years by a number o f  groups using a variety o f surface 

analytical techniques [Segal 1978] [Davis 1980] [Xu 1994] [Chen 1996] [Su 1999]. 

Study o f  this reaction at the micro scale was conducted by a num ber o f  research groups 

[Roberts 1990] [Hassan 1995] [Hunka 1997] [Surangalikar 2003] including the Institute 

o f M anufacturing (IfM) at Louisiana Tech University [Ouyang 2003]. This reaction 

system is a popular model for many similar systems ubiquitous in the chemical process 

and petroleum refining industries, including (a) hydrotreating [Rase 2000] for aromatics 

reduction, desulfurization, and denitrogenation; (b) reforming for aromatics reduction and
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dehydrocyclization [Gary 2001] [Weissermei 1997]; and (c) fuel processing o f  liquid 

hydrocarbons for the generation o f hydrogen feed for fuel cells [Sandestede 2000]. 

Previous results on Ft (111) revealed that cyclohexene underwent selective 

dehydrogenation to form benzene, with the selectivity to gas-phase benzene being 

approximately 75% [Chen 1996] [Henn 1992].

Cyclohexene could react selectively, with the help o f a platinum catalyst, to give 

two products, cyclohexane ( C^H 2̂ ) or benzene ( ) .  The reactions are given as

+ (2 . 1) 

(2 .2)

The hydrogenation reaction (Eq. (2.1)) gives cyclohexane as a product and is 

favored at low temperatures. On the other hand, the dehydrogenation reaction (Eq. (2.2)) 

produces benzene and is favored at high temperatures.

2.2.2 Preferential Oxidation o f Carbon 
Monoxide Reaction

During the last decade, worldwide concern regarding both the release o f 

greenhouse gases into the atmosphere and poor air quality in many o f  the w orld’s 

metropolitan areas has significantly increased [Cowan 1996] [Lloyd 2000]. The internal 

combustion engine is known as a major source o f  noxious gaseous emissions. Against 

such a backdrop o f  environmental and health concerns, fuel cells have emerged as 

alternatives to combustion engines because o f their potential in reducing the 

environmental impact and in reducing the dependence on fossil fuels [Sossina 2003]. A 

fuel cell is a battery in which a fuel, usually hydrogen or methanol, reacts at the anode
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and oxygen reacts at the cathode. However, unlike a normal battery, fuel cell electrodes 

are not consumed, but only the fuel is consumed [Burstein 1998]. The choice o f fuel for 

the fuel cell stacks is the key issue. Pure hydrogen is the ideal fuel used in the present 

generation o f fuel cells because it simplifies system integration, maximizes system 

efficiency, and provides zero emissions [Dicks 1996].

The liberation o f hydrogen from natural gas, methane, or methanol produces 

carbon dioxide and carbon monoxide. The presence o f  carbon m onoxide in the hydrogen- 

rich feed gas to fuel cells can poison the platinum anode electrode and dramatically 

reduce the power output [Manasilp 2002]. Many other studies also showed the negative 

effect o f  CO  on the performance o f fuel cells [Rohland 1999] [Gotz 1998]. Therefore, 

carbon monoxide clean-up and amelioration is very important for fuel cell technology. 

Palladium-based membrane purification, catalytic methanation, and selective catalytic 

CO oxidation are methods o f  reducing the CO  in the feed to 10 ppm  or less, necessary for 

operation o f  the fuel cell, with minimal loss o f hydrogen. O f these three methods, 

selective CO oxidation is the most promising and lowest cost approach.

Many catalysts were investigated for removal o f CO  contained in hydrogen. 

Oxidative removal o f  a small quantity o f  CO  from a hydrogen atmosphere was examined 

by using catalysts containing 3d transition metal oxides. The oxidation o f CO  takes place 

in preference to that o f H2 on catalysts containing Co or Mn in a temperature range from 

323-423 K. Best performance was achieved by the catalyst with the ratio o f  Pt/Ru =1 for 

both and Hj  + CO  in the oxidation kinetics investigation o f  H2  and H2 + 100 ppm CO

in Italy. Denis in 1999 showed that a 2% Pt/alumina sol-gel catalyst can selectively
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oxidize CO  down to a few ppm with constant selectivity and high space velocity [Denis 

1999]. In this regard, the preferred catalyst is platinum.

Research at Louisiana Tech University has focused on preferential oxidation o f  

CO using a microreactor with platinum as the catalyst. The two competitive reactions that 

take place are shown below:

2 C 0  + 0 , - ^ 2 C 0 ,  (2.3)

2 H , + 0 , - 2 1 ^ 2 H , 0  (2.4)

High conversion o f CO  is required to reduce the CO concentration to a level that 

is not detrimental to a PEM -based fuel cell. However, hydrogen oxidation competes with 

CO oxidation leading to a loss o f fuel efficiency. Therefore, in the conversion o f CO, 

high selectivity o f CO2 is desired.

2.2.3 Fischer-Tropsch Svnthesis Reaction

Fischer-Tropsch (F-T) synthesis, being the technology for conversion o f  natural

gas to liquid and an attractive alternative for bringing static gas resources to market,

becomes an important route for the production o f fuels and chemicals. The conversion o f 

CO and H2  to methane was first investigated by Sabatier and Senderens in 1902. More 

than two decades later, Fischer and Tropsch described their catalyst development efforts, 

which included the synthesis o f higher hydrocarbons over nickel- and cobalt-based 

catalysts.

F-T synthesis involves the conversion o f carbon monoxide and hydrogen to 

higher molecular weight hydrocarbons. The reaction mechanism o f  F-T synthesis remains 

uncertain despite tremendous efforts devoted to this process in the last 70 years. With
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extensive Density Functional Theory (DPT) studies on F-T reactions, Liu obtained 

relative stabilities o f  many key intermediates and compared quantitatively several C/C 

coupling mechanisms as shown below [Liu 2001]:

C + H - ^ C H ,  CH + H - ^ C H ^ ,  C H ^ + H ^ C H ,  , (2.5)

wherein the first step o f  the F-T synthesis is the CO  and dissociations, followed by

the hydrogenation process. Then, the CH^ species (x=0, 1, 2) couple with each other

(C/C coupling) to form higher-weight hydrocarbons.

F-T synthesis has been re-visited by several corporations, including Exxon, 

Mobil, Rentech, Sasol, Shell, Synthroleum, and commercialized by Shell, and Sasol. 

Among these companies and other research groups, extensive interest has been focused 

on finding a better catalyst to increase productivity, control hydrocarbon product 

distribution, and lengthen the catalyst life [Roberts 1990] [Hunka 1997]. Cobalt-based 

catalysts and iron-based catalysts have been investigated in F-T synthesis reaction by 

some research groups [Hassan 1996] [Linda 1993]. Linda shows that cobalt-based 

catalysts have lower water-gas shift activity than iron-based ones [Linda 1993].

In on-going research at Louisiana Tech University, combined catalysts o f 

iron/cobalt supported by aluminum oxide for syn-gas reactions are being used.

A relationship between the physical parameters o f  a reaction and yield is 

important for optimizing the reaction, and one common engineering approach in 

optimization is to change one parameter at a time while keeping the others fixed. This 

procedure is repeated until all the parameters are changed. This method is, o f  course, time 

consuming and costly. To make the process efficient, experimental design and response 

surface m ethodology were introduced to determine the relation between several
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independent variables (such as temperature, reactants ratio, and total flow rate) and the 

dependent variables (such as yield or selectivity), and to optimize the reaction yield and 

product selectivity.

Response surface methodology was developed by Box and W ilson in 1951 [Box 

and W ilson 1951] to aid the improvement o f  m anufacturing processes in the chemical 

industry. The purpose was to optimize chemical reactions to obtain high yield and purity 

at low cost. This optimization was accomplished through the use o f sequential 

experimentation involving factors such as temperature, pressure, duration o f  reaction, and 

proportion o f reactants. The same methodology can be used to optimize any response that 

is affected by the levels o f one or more quantitative factors [Angela 1999]. The Central 

Composite Design (CCD) [Box and Draper 1987] is widely used in response surface 

methodology for process optimization. Details o f response surface m ethodology and 

central composite design are shown in Chapter Three.

2.3 Markov Chain Approach

Chou et al. [Chou 1988] presented a Markov chain approach to simulate complex 

chemical reactions. Because the states o f the Markov chain need to be properly identified, 

two ways to identify these states in order to simulate the dynamics o f  a chemical reaction 

system were identified. One is the number o f molecules o f the chemical species 

participating in the reactions, and the other is to appropriately select the chemical species 

participating in the reactions. The selection o f  these species needs to be subject to the 

stoichiometric constraint based on atomic balance.
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A molecule o f  type Ay was regarded as the “entity” at level j ,  and any reaction 

involving it was viewed as a transition o f this “entity” from this level to another. The 

collection o f all transitions involving the “entity” forms a M arkov chain. P ,y (/w , m +\)  is 

the one-step transition probability that the “entity” at level i at time m At will be at level j  

at time (m+\)  At inside the reactor. The one-step transition probabilities o f the Markov 

chain are given by Eq. (3) in the article. The fiJirn, w + l) is the transition probability that 

the “entity” at level i at time m A/will be discharged to the surrounding environment 

(dead or absorbing state) from the reactor at time {m +\ )A t .  In this article, Eqs. (4)-(10) 

gave the probability distributions o f the “entity” among the selected / levels and the dead 

state after m-step transitions. The mean number o f molecules o f any type A, in the well 

mixed reactor at time {m+\)A t  is obtained by applying the chemical reaction to Eq. (2.6).

E{Nj {m + \)\ A, (w) = rt, (m), X, (m) = x, (m), i = 1,2,..., J ]

= £ £ A ^ ( m ,m  + l)] + £ [X /m )]
/=!

^  (2 .6)
= ^  E[N ĵ (m, m + l)] + Xj (m)

/=!
/

= ^  {m)p.j {m,m + \) + x. (m), J = 1,2,..., I
(=1

In Too et al. [Too 1983] a stochastic approach, namely a M arkov chain, was used 

to simulate numerically the dynamics o f complex reactions in a flow chemical reactor 

without either solving directly the deterministic differential equations governing the 

performance o f the reactor or obtaining a closed form solution to such equations. A basic 

reason for formulating classical chemical kinetics in a stochastic fram ework is that a 

chemical reaction is probabilistic in nature.
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Results o f the simulation using a Markov chain were in good agreement with the 

known deterministic solutions which shows the Markov chain as an effective tool for 

simulating the dynamics o f complex chemical reactions in a reactor, flow, or batch. The 

Markov chain technique used in Too et al. [Too 1983] can be applied to a variety o f flow 

reactors with complex chemical reactions whose governing equation cannot be easily 

solved by a deterministic approach.

In this study, the stochastic modeling approaches used by Too et al. [Too 1983] 

and Chou et al. [Chou 1988] are extended to model catalytic chemical reactions in a 

microreactor.
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CHAPTER THREE

MATHEMATICAL AND EMPIRICAL MODELING

In this study, the m icroreactor modeling approach employs empirical modeling 

and optimization based on experimental design and response surface m ethodology and 

continuous time and discrete state compartmental modeling utilizing residence time 

distribution coupled with chemical reactions. The methodology behind these two 

approaches will be described in detail in this chapter.

3.1 Response Surface Methodology

Response surface methodology, developed by Box and W ilson [1951], is widely 

used for m odeling or optimizing any response affected by the levels o f one or more 

quantitative factors. The purpose in this study is to optimize the microreactor chemical 

reaction process in order to obtain high yield and selectivity. For the reaction scheme 

under consideration, the quantitative continuous variable (e.g., yield or selectivity) is 

called the response, and a smooth but unknown function o f the levels o f the three factors 

(e.g., temperature, mole flow rate, and CO: O2 ratio), is the expected response. Plotting 

the expected response as a function o f the factor combinations, one obtains the response 

surface in four dimensions.

14
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The objectives o f a response surface are (1) to locate a feasible factor combination 

for which the mean response is optimum (e.g., maximum, minimum, or equal to a 

specific target value); and (2 ) to estimate the response surface in the vicinity o f  this factor 

combination (or location) in order to better understand the effects o f the factors on the 

mean response.

Figure 3.1 shows a response surface for two factors, temperature and CO: O2  ratio 

for 0 . 2  seem total flow rate for preferential oxidation o f a carbon monoxide experiment. 

The response surface is generated from fitting a second order regression model to the 

experimental data. The levels at which the observations were taken are marked on the 

plot. It is seen from this figure that the response surface is more sensitive to changes in 

the CO: O 2 ratio (stoichiometry) than to changes in temperature. Also, the CO  response is 

maximum for a temperature o f about 175.9 °C and a CO: O2 ratio o f  about 1.31.

0 . 8
Conversion

0

Ratio

Figure 3.1: Response surface (conversion o f CO)  for two factors, temperature and 
CO: O2 ratio for 0.2 seem total flow rate.
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Let x̂  denote the temperature level, and Xj denote the ratio level. Let x  = (XpXj) 

denote a treatm ent (or factor) combination, and rĵ  -  E[Y  ̂] denote the mean response at 

X . The response surface model is expressed as

Y . - V . + s .  ( 3 . 1)

where is a random error variable, normally distributed with zero mean and variance cr^.

In order to attain the two aforementioned objectives, data collection from 

experiments is needed. However, collecting all observations at each location on a grid o f 

treatment combinations spanning the entire experimental region o f interest can be time 

consuming and costly. A more efficient approach is to conduct a sequence o f small, local 

experiments in order to locate the region o f optimum mean response (maximum response, 

in this case) and then to study this region for locating the factor combination where the 

mean response is optimum.

In order to search for the location o f  the peak (or maximum) mean response on a 

response surface, a local experiment will be run first, utilizing a first-order design, and a 

first-order model will be fitted to the data collected on this local experiment.

For p  factors in general, the standard first-order model is a first-order polynomial 

regression model expressed as

Yx,t ~ P\^\ +  +  ••• +  Pp^p ’ ( 3 .2 )

w h e r e i n d i c a t e s  the tth  observation at treatment combination x = (x ,,x 2 ,...x^), and 

is random error. The random errors are assumed to be independent with a normal 

distribution o f mean zero and variance cr .̂ The parameter (5̂  denotes a m easure o f the

local partial effect o f the i th  factor when the other factors are held constant ( /  = 1 , 2 ,.../? ).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

If still far from the peak, this first-order model is often adequate. The fitted first-order 

model is a plane from which the direction or path o f  steepest ascent is easily determined. 

The path is followed as long as the response continues to increase. When the response 

stops increasing, another local experiment can be conducted to determine a new path o f 

steepest ascent. This procedure can be iterated until the first-order model no longer 

adequately describes the local true surface. At that point, a large num ber o f observations 

are needed to fit a higher-order model with which to locate the peak or optimum. 

Normally, a second-order model is satisfactory.

For p  factors, the standard second-order model is

Y,, = A + S  + Z  + Z1=1 (=1 i<i

where denotes the t th  response observed at treatm ent combination x = (x ,,x 2 ,...x^), 

and are assumed to be independent random errors with a 7V^(0,cr^) distribution. The 

parameter /?, denotes the partial effect o f the / th factor , represents the partial 

quadratic effect o f  the i th factor, and represents the partial interaction effect between 

the i th and j  th factors.

3.2 Test for Lack-Of-Fit

Lack-of-fit o f  the linear model in Eq. (3.2) to response data can occur when the 

local response surface is no longer a plane, but exhibits curvature caused by quadratic 

effects. In this case, a second-order model would provide an adequate approximation to 

the local response surface. An effective way to test for lack-of-fit caused by quadratic
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effects is to compare the mean response at the center o f the design region with the mean

response at the factorial points by including multiple center points zq = (0 , 0 ) in the

first-order design. With respect to the coded factor levels, the standard second-order 

model for p factors is

= r o + S  + Z  + Z  ’ (3 -4)
i i i<j

The quadratic-effect parameters are aliased with one another, and their sum can

be estimated as in Eq. (3.5).

E { Y j - Y , ] ^ Y r ,  (3.5)
/=1

with

V a r { Y . - Y , ) ^ { —  + — )(X^^ —  CT̂  (3.6)
Hj tij-riQ

where Ŷ  and Tg denote the average o f the factorial points and the average o f  the

«g center points, respectively. Equation (3.7) gives the sum o f  squares with one degree o f

freedom for testing whether or not the sum o f  the quadratic parameters in Eq. (3.5) is zero.

riMn —  — ,
ssQ = ^ { Y ^ - Y , f  (3.7)

n

The mean squares for pure error, with -1  degrees o f freedom, can be calculated 

based on the «gcenter points responses, f'g ( /=  l,2 ,...«g). This mean squares for pure 

error can be expressed as

"o

/=imsPE = 2-----  (3.8)
« o - l
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The ratio ssQImsPE  is used to test the null hypothesis o f  no quadratic effects. 

The null hypothesis is rejected at level a  if this ratio exceeds TJ „ ^ .

3.3 Central Composite Design

The Central Composite Design, CCD [Box and Draper 1987], is widely used in response 

surface methodology for process optimization. The design contains a standard first-order 

design with orthogonal factorial points and center points, augmented by “axial

points.” Here, if  there are p factors, then there are = 2 '’ factorial points, which have 

coded levels ± 1 for each factor and distinct axial points. The axial points ( a ’s) are 

points located at a specified distance from the design center in each direction on each axis 

defined by the coded factor levels. The choice o f a  depends on the properties required o f 

the design. A popular choice o f a  which gives a rotatable design (a design with equal 

variance o f  prediction at equal distances from the center point) is a  = (rij Figure 3.2

shows the central composite designs for p  = 3 factors.

Figure 3.2; The central composite designs for /? = 3 factors.
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3.4 Residence Time Distribution

A simple, yet realistic first approach to modeling the residence time distribution is 

to divide the reactor in the flow direction into n arbitrary compartments where each 

compartment is perfectly mixed as in a continuous stirred tank reactor (CSTR). Using 

cyclohexene hydrogenation and dehydrogenation reaction (as an example in the 

following sections), consider a cyclohexene molecule which enters the reactor in 

compartment 1 and exits from compartment n. Because o f the ideal mixing in a 

compartment, the probability that a molecule in compartment j - 1  exits to com partm ent) 

0= 2 ,3 ,..., n+1, where n+1 is the exit stream) during the infinitesimal time interval t, t+ 8 t 

is equal to X.t +o(t).

As such, it can be readily seen that the residence time distribution in any 

compartment is exponential with probability density function (PDF) A,e' '̂. Considering 

that a moleeule enters compartment 1 and exits compartment n, the time it takes the 

molecule to exit the reactor is the sum o f  n exponential random variables and is given by 

the Gamma distribution

;ie-̂ '(AO"'Vr(n) (3.9)

The Gamma distribution (Eq. (3.9)) can be used to characterize the RTD o f a 

chemical reactor by running experiments where the input is either pulse or continuous 

feed. In this research, continuous feed cyclohexene hydrogenation and dehydrogenation 

experiments and Fischer-Tropsch (F-T) synthesis experiments were run, and the partial 

pressure o f  cyclohexene or carbon monoxide (PR) in the exit stream was measured. The 

ratio P P /P P b a s e  at time T is an estimate o f the probability that a cyclohexene molecule, 

entering the reactor at tim er , exits the reactor by tim eT - r  , where PPbase is the partial
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pressure o f  the reactant (in this study, it is cyclohexene or carbon m onoxide) in the exit 

stream when there is no reaction. This probability is given by the integral o f

{X{T -  r))"-' / r (« )  (3.10)

between zero and T.

Fitting the model to the experimental observations P P /P P b a s e  over time, one can 

estimate X and n for a given microreactor and flow system.

3.5 Chemical Kinetics

When a reaction occurs, it is assumed that in the infinitesimal time interval t, t+5t 

the probability that a cyclohexene molecule in compartment j - 1  reacts is pt + 0 (t), (a 

reasonable assumption in that with a microreactor, one can safely ignore the mass transfer 

effect or the diffusion effect when considering the catalytic reaction occurring on the 

walls o f the reactor). On the other hand, the probability that the cyclohexene molecule 

exits to compartment j is A.t +o(t). Under continuous feed, the probability that a 

cyclohexene molecule ( Q /f ,o )  entering the reactor at time x exits by time T (T > x) is 

given by

P [ exits the reactor at time 7]

= P [Cg/7 , 0  exiting at time 7j Q // |o  did not react by time 7] *P[Cg77|g did not 

react by time 7] =

( 3 ,1 )
Jo F(«)
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The probability o f exiting the reactor by time T can be evaluated from Eq. (3.11)

to give

X ’T n r p ( n —2)

r(«)(T + //)  T ( n - \ ) { X  + juy (T + //) («-l)
,-U+mYI' + ( l - e

r
(3.12)

As T approaches infinity, Eq. (3.12) reduces to

(3.12a)
{X + fj)"

For characterizing the microreaetor, we fitted the above model to cyclohexene 

P P /P P b a s e  data over time and to F-T synthesis data over time in the exit stream in order to 

estimate X and p and n. Note that the rate o f the reactant conversion is 1 - ( P P / P P b a s e  )•

For a heterogeneous catalytic reaction at equilibrium (such as the cyclohexene or 

F-T reactions), it can be shown [Fogler 1999] that the rates o f each o f the three reaction 

steps (adsorption, surface reaction, and desorption) are equal. For instanee, considering 

the surface reaction rate o f the dehydrogenation reaction in Eq. (2.2), one may show that 

the parameter p  in Eq. (3.12) can be expressed as

(3.13)

where /c, is the ratio o f  the forward reaction constant (ks ) to the backward reaction

constant (k.s ) in Eq. (2.2). Q  is the concentration o f cyclohexene on the surface o f the

catalyst, C a .s  is the concentration o f the adsorbed benzene reaction product, and Ph is the 

partial pressure o f hydrogen. Similarly, for the hydrogenation reaction in Eq. (2.1), one 

may show, assuming that the reaction is between the adsorbed cyclohexene molecule and 

hydrogen in the gas phase, that

M = k , { C , , P „ - { C , j K , ) )  (3.14)
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where Cb.s is the concentration o f  cyclohexane adsorbed on the catalyst. On the other 

hand, if adsorbed cyclohexene reacts with adsorbed hydrogen, then Ph in Eq. (3.14) is 

replaced by Ch.s, the concentration o f  hydrogen on the catalyst.

Since, the concentrations on the catalyst o f cyclohexene, cyclohexane, benzene, 

and hydrogen are proportional to the surface area o f the catalyst, p, is also proportional to 

the surface area o f the catalyst.

The model in Eq. (3.12) can be used to characterize a flow chemical reactor with 

regard to yield or conversion concerning the different reaction schemes being 

investigated. When /a. and X are not necessarily constant over compartments, the above 

model can be readily generalized, using continuous time and discrete state (compartments) 

Markov chains techniques to obtain the cumulative probability o f exiting the 

microreactor.

3.6 Markov Chain Approach

The theory o f  Markov chains, which is a special case o f  Markov processes, is 

named after A. A. Markov who, in 1906, introduced the concept o f chains with a discrete 

parameter and finite number o f  states [Chiang 1975].

A formal definition o f Markov chains is presented as follows: a sequence o f 

random variables = 0,1,...} is called a Markov chain if, for every collection o f

integers («= 0 , 1 ,...) , the conditional distribution o f satisfies the relation

Pr{A„„ = / 1 2fo,2r,..., A J  = Pr{X„„ = / 1 X„}. (3.15)
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Where ?r{X^^^=i\X^,X^,.. . ,X^}  represents the probability o f  the future state 

given all states {Xa,X^, . . . ,XJ  before state ( ), and Pr{X„^, -  / 1 X J

represents the probability o f  the future state = / given the previous state ( X „). Thus, 

given the knowledge o f  a present state (X „), the outcome in the future = / ) is no 

longer dependent upon the past (X q,X |,...,X „_,) [Chiang 1975].

Therefore, a Markov chain is a sequence o f random variables such that for a given 

X ^, X^^i is conditionally independent o f X ,,X 2 ,...,X„,_,.

In a Markov chain, if the outcome at the mth trial is E-, and the outcome at the 

m +lth  trial is Ej,  this indicates that the chain has made a transition from E.to Ej at the 

mth trial or step. The one-step transition probability o f  this event is expressed as

P r [X ,„ ,.= £ J X „ ,= :£ ,]  = p J m  + l) (3.16)

where the direction o f  the transition is denoted by the order o f  the subscripts in Z’ (m + V).

A Markov chain is characterized by its stochastic matrix (transition probability matrix) 

with the transition probabilities as its elements. In matrix form, the transition

probabilities o f  a Markov chain are expressed as

;?„(m + l) P iJ m  + l) ... p„(m  + l) 

P2,(w + 1) P22im + \) ... P2,im + \)
(3.17)

Pn(m + \) p,2(m + \) ... pJm  + 1)

Note that all the elements in the transition matrix are non-negative, and the elements in 

each row sum to unity, i.e.,

^ p , J w  + l) = l, / = 1,2,...,/. (3.18)
y=i
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Let P(0) denote the initial distribution vector,

P(0) = [a (0)/?,(0).../7,(0)]. (3.19)

The distribution after one transition is given by

Py(l) = ZA(0)Ay(l) (3.20)
/=1

Since the probability that the chain is in state E. is p.{G) initially and the probability o f a

transition from state to state Ej is /?,. (1) ,  p  ̂(\)is  the result o f  all transitions leading to

state . Thus, in matrix form, Eq. (3.21) can be expressed as

P(1) = P(0)P(1) (3.21)

Similarly,

and in general.

P(2) = P(l) P(2) = P(0) P(l) P(2) (3.22)

P(m) = P (0)f[P (A :) (3.23)
k=]

Equation (3.23) indicates that the process is completely determined once the initial 

distribution and the transition probability matrix for each step are specified.

In this study, a time homogeneous finite Markov chain was used in which the 

transition probabilities

= = (3.24)

are independent o f time (tn ) and there are a finite number o f  states. The transition

probability matrix for the time homogeneous Markov chain can then be written as
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P -

^ P u  P m  • • •  P u ^

P i \  P 2 2  • • •  P21 (3.25)

. P n  P12  P i i .

The corresponding probability vector at any time stage m, P(m), in Eq. (3.23) reduces to

P(w) = P(0)P '” . (3.26)

There are many ways to classify the states o f  a Markov chain. State X j  is

accessible from state X, if state X j  can be reached from state X, in a finite number o f

transitions. Two states are said to communicate if they are accessible to each other. 

Further, a Markov chain is irreducible if  all states communicate with each other. A non­

empty set o f  states is said to be closed if  no states outside the set are accessible from any 

state inside the set. A single state forming a closed set is an absorbing state. A Markov 

chain that has one or more absorbing states is said to be an absorbing Markov chain, and, 

once the chain enters any o f  the absorbing states (a closed set), it will remain there. There 

are absorbing Markov chains, regular Markov chains, and ergodic M arkov chains. In this 

study, an absorbing M arkov chain was used.

In an irreducible Markov chain, all states belong to the same class; therefore, they 

are all recurrent states. The following theorem exists for this special class.

Theorem: If a Markov chain with finitely many states is irreducible and aperiodic, then

7T = lim p  (m); j  = 1,2,.../, (3.27)■' m̂ co ■'

and the unique limiting probability vector, n , o f  the Markov chain is given by solving 

the system o f  linear equations

;r = ;rP  , (3.28)
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where

X ^ = l .  (3.29)
y=i

A Markov chain approach [Too 1983] was used to model the dynamics o f 

chemical reactions. Consider a flow chemical reactor initially containing «,(0) molecules

o f type M olecules o f this type enter the reactor at a rate o f

x, (w) molecules per unit time. Each molecule o f any type will reside in the flow reactor 

for a random length o f time before it reacts in it or exits from it. The type o f  molecules, 

, are considered as different transient states o f the system. The exit stream is

considered as an absorbing state (state o f death); it is designed as state D. Once a 

molecule enters state D, it will never return to any o f the transient states. Then, 

P.j{m-^\) represents the probability that a molecule in state 4  ^  will be in state

4  at time {m+\).  The probability that a molecule in state 4  will remain unchanged at

time (ffj+1) is then 7], + 0  • Let 7]̂  (w +1) denote the probability that a molecule will

exit from the reactor during this transition. As such,

Y,Pij{m + \) + p. j {m + \) = \. (3.30)
y=i

As an example, consider a very simple chemical reaction

4 — (3. 31)  

and let n^{m) and n^im) be the numbers o f molecules o f type 4  ^^d 4  In the reactor at 

time m, respectively. The transition matrix for this reaction is
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Al A2 D

Al

?{m + l) = A2 

D

^Pu Pm Pm^

Pi I  P22 Pn

P̂ \ P32 P 33

(3.32)

With the aid o f  a computer, the number o f  molecules o f each type, «, or « 2  > in the reactor 

at any moment can be estimated by iterating over the following equations:

«|(m  + l) = n^{m)p^^{m + l) + n2im)p2^im + l) + x^(m + l) (3.33)

and

r̂ 2 {m + l ) - p { m ) p ^ 2 {m + l) + n2 {m)p 2 2 iln + l) + X2 {m + l), m = 0,l,2,. . .  (3.34)

where x^{m + l) and X2 (m + 1) are the number o f molecules o f  types Â  and A2 , 

respectively, fed in the reactor during the time interval {m, m + 1).

A M arkov chain approach to simulate complex chemical reactions was presented 

by Chou et al. [Chou 1988]. By presenting a method to properly identify the states o f  the 

chain, Chou rendered the Markov chain approach in Too’s method more specific to 

complex chemical reactions. In Chou’s approach, a molecule is viewed as an “object,” 

“entity,” or system. The transformation o f  the molecule from one species to another is 

visualized as the transition o f this “entity” from one form to another. The selection o f 

such species is subject to the stoichiometric constraint based on atomic balance.

Consider a chemical reaction system containing a mixture o f  chemical species, 

y = 1,2,..., J .  A chemical reaction involving induces a change in the state o f the

mixture o f the system. A molecule o f type Â  is regarded as the “entity” at level j ,  and 

any reaction involving it is viewed as a transition o f  this “entity” from this level to
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another, or vice versa. Thus, the collection o f all transitions involving the “entity” forms 

a Markov chain.

Let the level o f the “entity” o f  the state o f the system at time mAt be the random 

variable Y(m),  and p.j{m,m + \) be the one-step transition probability that the “entity” at 

level i at time mAt will be at level j  at time (w + l)At inside the reactor. Furthermore, let 

/?.^(ff7 ,w  + l)denote the transition probability that the “entity” at level / at time wAt will

be discharged to the surrounding environment (dead or absorbing state) from the reactor 

at time {m + l)A t. Thus, the one-step transition probabilities o f this Markov chain in the 

form of a matrix are shown below:

j?,2 (m,m + l) . . p„(m ,m  + l) p^j(m,m + \ y

p^^{m,m + \) ^ 2 2 (m,m + l) . . p2,im,m + \)

p,y(m,m + \) p,^{m,m + \) . . p„(m,m + \) Pij{m,m + \)

[  0 0 0 1 J

(3.35)

where /(/ < J )  is the total number o f the entity levels serving as the states o f  the Markov 

chain. Note that all elements in this matrix are non-negative and elements o f  each row 

sum to unity.

According to the properties o f a Markov chain shown in Eqs. (3.20)- (3.23), the 

corresponding probability vector at any time stage m +1, P*(m + 1), in matrix form, is 

shown as

P* (m +1) = P* (m) P(m, m + 1). (3.36)

or

(3.37)
/=1
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Assume that «.(0) molecules o f type 4  are initially in the reactor. M oreover, let the 

random variable A, (m) be the number o f molecules o f type A. entering the reactor during 

the time interval [mAt,(m + ])At],  and let the random variable A ,(m )denote the number 

o f molecules o f type A. in the reactor at time w A t; x ,(m )and n^(m) are the realizations 

o f A ,(w ) and N.{m),  respectively. Furthermore, let the random variable 

N-j{m,m + \) represent the number o f “entities” at level j  inside the reactor at 

tim e(w  + l)A t, which have come from the n^{m) “entities” at level i at time m ^ t , 

resulting from the transition o f these “entities” from level i to level j .  Also, let the random 

variable A,^(ff7,w + 1) represent the number o f these n^{m) “entities” discharged into the 

surrounding environm ent (dead state) from the reactor during the time 

interval[mAt,(m + 1)At]. If  these n.{m) “entities” transform among the selected / levels 

or exit from the reactor independently during the time interval [mAt,(m + l)A t], then each 

o f these “entities” must be at one o f  the / levels, e.g., level j ,  inside the reactor with a 

probability p^j{m,m + \) or outside the reactor with probability p^^{m,m + \) at time

(m + 1)A/. Therefore, these «, (m )’’entities” will have a multinomial distribution over the 

states 1 ,2 , . . . / and fif, with parameters « ,(m ), p.^(m,m + l), + +

/?^j(m,m + l)a t  time (m +1)At [Rohatgi 1976]. As such, we have

«, ("J) = S  , 7 = h 2,..., / (3.38)
/= !

and

E[Nij(m,m + \)] = p(m)p^j(m,m + \), / = 1,2,...,/; J = \,2,. .. ,l ,d  (3.39)
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Note that

I
Nj(m + \) = '^ N y {m ,m  + \) + Xj{m) ,  j  =\ ,2, . . . l  (3.40)

/=!

and the random variables N^j{m,m + \),Ni^j{m,m + V) and X j {m ) , i  ^ k, axe independent. 

Thus, the conditional mean o f Nj{m + \), given that N.{m) -  n.{m) and 

X- (m) = X-(m), i = 1,2,..., J, are expressed as [Rohatgi 1976]

E[Nj(m + \) I NXm) = nXm),XXm) -  x.{m),i - 1 ,2 ,...,/]

= E[ j^N,.{m,m + X)\ + E{X.{m)\
/=!

^  (3.41)
= 2  ̂E{Nij (777, m + 1)] + Xj {m)

i=\

I
=  X  P i j  + 1 )  +  ( ' ” )> 7  =  1 , 2 , . . . , /

/= !

In this present study, we extend these two modeling approaches to model catalytic 

reactions by considering the m icroreactor as composed o f two phases, the solid phase and 

the flow or gas phase. Details are shown in Chapter Seven.
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CHAPTER FOUR

EXPERIMENTAL EQUIPMENT AND PROCEDURE

In this chapter, the structure o f the m icroreactor and the design o f  the 

microreaction system used for the experiments are described.

4.1 The M icroreactor

In this study, a microreactor made from a double-sided polished, ( lOI)  - silicon 

orientation wafer (four-inch in diameter, and 500 thick) was used. As shown in Fig 

4.1, the microreactor is 1.6cm x3.1cm  in size, with 1.2cmx 1.34cm for the micro 

channels. It is composed o f an inlet-via (a hole through the wafer) to allow gas to flow 

into the microreactor, inlet channel, manifold, reaction zone, outlet channel, and a outlet- 

via to allow gas to flow out o f the reactor. The reaction zone is made o f  599, 5 //  m wide 

and 100// m high, waved channels deposited with a catalyst.

Figure 4.1 M icroreactor and inside structure.

32
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To increase the residence time o f the reactant in the reaction area, the structures o f 

the microchannels are designed to be zigzagged (see Figure 4.2). The reactant gas flows 

through the inlet-via into the m icroreactor and into the inlet channels. After entering the 

inlet channel, the chemical species mix in the manifold area and then flow into the 

reaction zone which is composed o f  599 microchannels. Once the reaction is complete, 

the effluent o f the microreactor moves out o f the reactor through the outlet channel and 

outlet-via. Then, the effluent is sent to a mass spectrometer for chemical information 

analysis.

I

Figure 4.2 The structure o f the microchannels o f the microreactor.

The microreactor is fabricated using a lithography-based process and dry etching 

method. The lithography process used to make the m icroreactor is much like the one used 

in the integrated circuit (IC) industry [Okuzaki 2000]. After the m icroreactor is 

fabricated, the catalyst needs to be deposited on the walls and bottom o f  the 

microchannels. Two methods are used to deposit the catalyst in the reaction zone: 

physical, chemical. The physical method is sputtering deposition to coat the platinum, 

cobalt, or iron into the m icroreactor channels, which includes channel sidewall, and 

bottom. The chemical method is the sol-gel method, ion impregnation, or a combination 

o f both.
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After the microreactor fabrication and catalyst coating, the reactor is covered on 

top with the same size, 5 0 0 / /m thick, Pyrex glass 7740 using anodic bonding [Zhao 

2003],

4.2 Experimental Setup

In this work, the microreaction system is a gas-phase system (Figure 4.3). It 

consists o f the following three subsystems: reaction system, data acquisition interface 

system, and Quadrupole Mass Spectrometer (QMS) [Lichtman 1984] [Dawson 1995]. 

The reaction system is composed o f a mounting (heating) block, integrated with an air­

tight tubing system, a gas source cylinder, mass flow controllers, pressure transducers, 

and a vacuum pump. The data acquisition system consists o f a computer with the control 

software LabView for computerized control o f temperature, gas flows, and pressure o f 

the chemical reactions. As the chemical information analyzer, the QMS is used for 

qualitative and quantitative analysis o f  the reaction products.

Figure 4.3 Experimental setup for the microreaction system.
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The microreactor was mounted on a specially designed steel heating block, which 

has the inlet and outlet connections to the outer 1/16 in (1.59 m m )-diameter stainless steel 

tubing with the help o f  Swagelok fitting. The block has resistive heating elements and a 

thermocouple for temperature control. The inlet and outlet vias o f  the microreactor were 

connected to the corresponding holes in the block and compression-sealed using 0 -rings. 

The seal was checked by evacuating the tubing system using a vacuum pump. The reactor 

temperature was controlled with the help o f solid-state-relay driven cartridges and a 

thermocouple. The reactant gases that come from a source gas cylinder are fed to the 

block by mass flow controllers, used to monitor the flow o f  the reactant gases. Digital 

pressure sensors are situated in the inlet and outlet streams to monitor pressure drop. The 

instantaneous values o f  the reaction temperature, flows, and pressure are monitored and 

controlled by the data acquisition software interface system, a PC running LabView 

software. Figure 4.4 shows the LabView data control interface. The reactant gas reacts in 

the microchannels o f the microreactor. The outlet stream for the experiments was at 

atmospheric pressure. The microreactor effluents were continuously sampled and 

monitored for composition using a Stanford Research Systems mass spectrometer having 

its own PC for acquisition and control. The partial pressures o f  all the species present in 

the effluent stream were measured. The effluent stream in these experiments varied 

between approximately 0.2 seem (standard cubic centimeter per m inute) and 5 seem. 

Since very low flow rates are involved in these experiments, the effluent stream was 

diluted with helium gas to ensure a minimum required flow rate o f  the effluent sample for 

the QMS and to prevent the pumping system in the QMS from adversely affeeting the 

operating pressure in the experimental setup at the same time. For the experiments, argon
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Figure 4.4 LabView data control interface, 

as a carrier gas was bubbled into the reactant reservoir which contained liquid 

cyclohexene at ambient conditions, so that the carrier gas was saturated with the reactant 

vapor which formed the feed gas to the microreator. Gas lines downstream o f  the bubbler 

were heated to a few degrees above room temperature to prevent condensation o f 

reactants or products.

For quantitative analysis o f the effluents, the mass spectrometer, with ambient air 

as a standard, was calibrated first for establishing its sensitivity to nitrogen. Then, pure 

reactant and products were fed in the reactor in combination with nitrogen in order to 

determine their sensitivity factors. Finally, the calibrated mass spectrometer was used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

record continuous partial-pressure-data during the course o f  the experiments where 

conditions o f temperature and reactant flow rates varied.

For each o f the three experiments presented in this dissertation, a new 

microreactor was prepared for reaction by mounting it onto a heating block and by 

positioning it precisely on the o-rings to make an air-tight seal for the reactor. In order to 

eliminate leaks, testing involving evacuating the reactor, isolating the pumping system, 

and determining the rate o f  pressure increase was done. The system was then evacuated 

for an extended period (30 min or more) to remove any traces o f  gaseous impurities so 

that a standard background could be established in the QMS before the start o f  the actual 

reaction. With the system still isolated, hydrogen was introduced into the system. Once 

the pressure reached 1 atm, the outlet was opened to the atmosphere.

For the cyclohexene hydrogenation and dehydrogenation experiments, hydrogen 

flow continued at room temperature for at least one hour as a m ethod o f  pre-treatm ent o f 

the Pt catalyst. Because o f  liquid cylohexene under ambient condition, argon as a carrier 

gas equilibrated the cylohexene and was fed to the microreactor. Pure hydrogen was the 

other reactant gas used for this reaction. Platinum (Pt) was used as the catalyst, and 

sputtering deposition was the method used for a uniform Pt coating inside the 

microchannels o f the microreactor.

For preferential oxidation o f carbon monoxide amelioration in a hydrogen fuel 

cell experiment, mixed gas ordered from Nextair was used. The concentration o f  the 

mixed gas was 70% hydrogen, 2% carbon monoxide, and 28%  argon as a balance gas. 

This composition is the same as in the fuel cell feed-in gas in the industry. Pure oxygen 

from Nextair was used to oxidize carbon monoxide. The existence o f water and carbon
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dioxide will affect the conversion o f carbon monoxide and selectivity o f carbon 

monoxide to carbon dioxide or water. Platinum (Pt) was used as the catalyst in this 

reaction, and the so-gel method was used to deposit Pt on the walls and bottom o f the 

microchannels o f the microreactor.

For the Fischer-Tropsch experiments, pure hydrogen from N extair and carbon 

monoxide from Aldrich were the reactants mixed together before being fed into the 

microreactor. Iron was used as the catalyst in this reaction, and the so-gel method was 

used to deposit iron/cobalt on the walls and bottom o f the m icrochannels o f  the 

microreactor.
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CHAPTER FIVE

EXPERIMENTAL DESIGN AND CALIBRATION RESULTS

5.1 Mass Spectrometer Calibration for the Cyclohexene 

Hydrogenation and Dehvdrogenation Experiments

In our chemical microsystem, a mass spectrometer (MS) was applied as the main 

gas analyzer because o f its fast response time and ease o f  use. Qualitative analysis 

becomes possible with the basic knowledge in analytical mass spectrometry. Precise 

quantitative analysis, however, had been difficult in that MS sensitivity changes with 

different gas species and different concentrations. It has been popular to use GC/MS for 

precise quantitative analysis, but not much literature explored precise quantitative 

analysis with MS. The common MS quantitative analysis involves only calibration o f 

different gas species. We have developed a calibration method to compensate for both 

gas species and concentration variations by using statistical analysis methods.

The type o f MS we used is the Residual Gas Analyzer (RGA), which is very 

compact with the state-of-the-art pumps and electronics and is, thereby, ideal for on-line 

analysis because o f its continuous sampling from the gas system. RGA can be operated 

under different modes, including continuous spectrum scan and partial pressures vs. time. 

After understanding the reaction mechanism, the most commonly used mode is the partial

39
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pressures vs. time mode. Partial pressures were given according to the initial calibration 

and basic recalibration from the response current in the ion detector, stated below.

Initial calibration was performed to build up a rough relationship between the ion 

current and gas pressure. It is done by introducing air to RGA, and a partial pressure 

sensitivity factor was calculated according to the concentration and the fragmentation 

pattern o f nitrogen in air. In the basic recalibration, with the initial calibration completed, 

each gas species o f interest was then introduced with nitrogen at a 1:1 molar ratio. As 

such, the partial pressure sensitivity factor for this specific gas species was established. 

Details o f  the initial calibration and basic recalibration can be found in the literature 

[QMS 100] [Mao 1987].

Further calibration is crucial for quantitative analysis because the overall 

sensitivity o f MS is influenced by different gas concentrations. For example, the 

existence o f  species (such as hydrogen) with low ionization energy in the gas mixture 

will enhance sensitivities for all gases at different levels, resulting in inaccurate partial 

pressure readings. The source o f the enhancements is believed to stem from hydrogen 

addition which increases the kinetic energy o f the ions and enhances transmission 

through the ion lenses [Venable 2000]. In order to obtain accurate m olar flow rates in a 

flow system for the purpose o f calculating conversion and selectivity in a chemical 

reaction, a complete calibration o f the MS with all gases o f  interest at different 

concentrations is necessary. The ultimate goal is then to be able to calculate the true 

molar flow rates at the microreactor outlet from the partial pressure data recorded by a 

calibrated MS instrument. By knowing both inlet and outlet m olar flow rates for all gas 

components, quantitative analysis (conversion, selectivity, etc.) can be achieved.
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In our chemical microsystem, mass flow controllers (MFC 1, 2, 3) are used for 

precise flow control o f different gas components (Fig. 5.1) so that both inlet and outlet

Gas 
Tank 1

MFC1 PTransducG fl

f \

Gas 
Tank 2

MFC 2 PTrans(

P T ransducer 3

i__\ □
□

Li

MFC 3-C em erG as

Q Q a  T °  spectrom eter/
g a s  cfiromatograptt

Inlet
Outlet

Figure 5.1. M icroreaction setup, 

flow rates are known when there is no reaction in the system. This inlet or outlet flow rate 

is attained by using a m icroreactor without a catalyst at low tem perature hence equaling 

the inlet and outlet composition in the system. With known flow rates, we recorded the 

partial pressure signals for all gas species. A functional relationship between molar flow 

rates o f all gas species and partial pressure signals in the mass spectrometer was then 

developed as follows:

Consider the function

where PP̂  is the measured partial pressure for gas species i from the mass spectrometer

after initial and basic calibration, rij is the molar flow rate for gas species j , and

/ ( i ) is a gas species in the effluent.

By varying the molar ratios o f all gas species and using statistical methods, a 

mathematical model was developed for the gas components o f interest. The model 

comprises / nonlinear equations. In a catalytic reaction experiment with partial pressures
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and only inlet flow rates known (Flowjniet ^  Flowoutiet), a backward iteration using these 

equations can be used to calculate the true outlet flow rates for the different species in the 

experiment from the partial pressure data. With both inlet and outlet flow rates o f all 

species known, conversions and selectivities can be accurately calculated.

In order to calibrate the mass spectrometer used in measuring partial pressures o f 

different gases in the exit stream, factorial experiments (without a catalyst) were run 

using the second order central composite design [Box and Draper 1987]. Temperature, 

mole flow rates o f hydrogen ( / / j ) ,  helium ( E e \  and cyclohexene were used as

regressors or independent variables and the base partial pressure o f  cyclohexene in the 

exit stream as the dependent variable. The second-order regression model developed for 

predicting the base partial pressure o f  cyclohexene ( Q / / ,o )  w ithout a catalytic reaction is

given by

= 2.928 + 0.001«^ +4426.169n/,-33137«,. +464150«o, + 0 .0 0 0 0 0 2 « /

-338049791V  +90027466«f.^ + 14311798856«„,^-20.507365«^«/, 

-16.368«^«(. +448.68«^«y, +195329649«^«(.-1183919728«g«/j, (5.1)

-1821459351«f.«o,

where and«^, are the temperature and the mole flow rates o f hydrogen,

helium, and cyclohexene (or argon as carrier gas), respectively. This model, when applied 

to an independent data set, predicted the cyclohexene base partial pressure (PPbase) with 

high accuracy (R^ = 0.95) and was used for measuring base pressure and conversion o f 

cyclohexene in the presence o f the catalyst. Conversion is m easured as (PPbase -P P )/ 

PPbase, where PP is the partial pressure o f cyclohexene in the exit stream under catalytic 

reactions.
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Similarly, base level experiments for cyclohexane and benzene

were run. The second-order regression model developed for predicting the base partial 

pressure o f  cyclohexane ) without a catalytic reaction is given by

= 0 .378+ 0.000774«^ +735.761«;j-4146«^ + 81102«^2-0-0000001«/

-5 5 4 6 6 4 6 6 « / + 13598517«,.' +3005106895«2j2^-0.561«^n«-4.989«^«f. (5.2)

-23.123«^T7y2'662734«g«f. + 1 0 3 1882048«g«y2 "3084111 Ibw .̂Wyj

where f^P^csents the mole flow rate o f  cyclohexane.

The seeond-order regression model developed for predicting the base partial pressure o f 

benzene (C^H^) without a catalytic reaction is given by

= 2.373-0.001«^-19376n^-26304n^. +487940«„3 + 0 .0 0 0 0 0 3 « /

-1503465« / +80433971«,7 +10826606095n„3' +7.693«^««-9.746«^n,, ( 5  3 ) 

+480.43«^«/23 + 21 1474634«/j«f.-2127211448«g«Q3-2560095855«(.«/j3

where represents the mole flow rate o f benzene.

Figure 5.2 presents partial pressure measurements plotted against experiment run 

number. A total o f nine different lines are in this plot. The first three lines at the top are

the partial pressures o f helium measured in the cyclohexene, cyclohexane, and benzene

experiments, respectively. These three lines are almost the same and seem to coincide. 

The three lines between 1 .OOE+02 and 1 .OOE+03 are the partial pressures o f hydrogen 

obtained from the cyclohexene, cyclohexane, and benzene experiments, respectively. 

These three lines are also the same. The measurements o f  partial pressure o f  cyclohexene, 

benzene, and cyclohexane are shown in the three lines at the bottom o f  Fig. 5.2. Since the 

partial pressures o f hydrogen and helium in these three different hydrocarbon base level
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Figure 5.2 Experimental results o f base level partial pressures (PP) fo rQ // ,o  , Q / / , 2 , and

experiments are almost the same, this indicates that the effect o f  the hydrocarbons 

( Q / / , o ,Q / / , 2 ,and Q / /g )  on the sensitivity o f the MS is very small. Hence, for

predicting the partial pressure for hydrogen and helium, we used only results from the 

cyclohexene experiment to obtain the regression models.

Therefore, a full second-order regression model to predict the partial pressure o f 

hydrogen is given by

= 308.90 l+0.052«^+20439923«^-3732279«f.-l 8691374«„,-0.00012 9 « /

-6677012 0 8 7 2 « /+10772892951 -468017400000«„,^ +1583.811

-210.575«^«f.+1879.23«^«/j,-62218940289«^«,.-118558800000«^«„i (5-4)
+140364161224«,.n,j,.

Also, a full second-order regression model to predict the partial pressure o f  helium is 

given by
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= 769.983+0.051 -8706225«g +4226627«,. -68984875«/„ -0 .000223« /

+601713 2 0 2 4 5 « / -11663066160«^^ +4289545500000«„,^ -1295.85 5«^«^

-227.877«^«f.+13269n^«oi+ 15829571415«g«f.-l 14106000000«^«y, (5.5)

+167731110378«(,«^,.

For a given experiment, temperature {n^) is constant, the partial pressure o f  hydrogen 

), the partial pressure o f helium ), the partial pressure o f  cyclohexene ),

the partial pressure o f cyclohexane )’ the partial pressure o f  benzene )

can be read from the MS. By solving the inverse equation system Eqs. (5.1)- (5.5), one 

can calculate the mole flow rate o f hydrogen («^), the mole flow rate o f  helium (n^.), the

mole flow rate o f cyclohexene («y ,), the mole flow rate o f  cyclohexane the

mole flow rate o f benzene (w^a) th® outlet stream o f the microreactor. Then, the

conversion o f cyclohexene ) can be easily calculated as

CO«W.„ =t'6̂ 10 yj  ̂ '
inlet

Also, the selectivity o f  cyclohexane {Sele^,^ ) is given by

Selec^Mn = -------------------  ’ (5.7)
D̂lomlet m̂oullel

and the selectivity o f  benzene ( Sele^ f̂j^) can be expressed as

Sele,.^ = \ -S e le , .^  = ---------------  . (5.8)
6  6  6  12 „  - I -  f 7'̂ Dloullet ~ '̂■D̂outlet
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5.2 Cyclohexene Hydrogenation and Dehvdrogenation Experiments

With cyclohexene base pressure measurement in place, the central composite 

design was used to run experiments in the presence o f  the catalyst in order to optimize or 

maximize the conversion rate o f cyclohexene. In developing the experimental design for 

cyclohexene hydrogenation and dehydrogenation experiments, three factors were used: 

temperature ( x , ), the flow rate o f hydrogen (Xj), and the flow rate o f argon (Xj). The

conversion o f ( T ) is considered as the dependent variable or response. The

purpose o f using experimental design is to find the treatment combination x=(x,,X 2 ,X3 ) 

for which the conversion o f Q //,o  is maximized.

Because the hydrogenation reaction gives cyclohexane as a product and is favored 

at low temperatures, and the dehydrogenation reaction produces benzene and is favored 

at high temperatures, two experimental designs were performed, one at a low temperature 

and the other at a high temperature.

The first-order, cube plus center points, part o f  the central composite design was 

run first using the temperature range 25~180°C, the flow rate o f  hydrogen range 0.1~1,

and the flow rate o f argon range 0.1-1 seem. This design involved 8  factorial points 

{rif-%) o f  a single-replicate, augmented by = 4 center points. Here, the center points

are needed to provide error degrees o f freedom for testing model lack-of-fit. Table 5.1 

presents the design for coded and real values o f  the three factors (temperature x , , the flow 

rate o f  hydrogen, Xj, and the flow rate o f cyclohexene, Xj, as m easured by the flow rate 

o f argon (Ar) used as a carrier gas) with a center point (x,=102.5°C, X2 = 0 .5 5 sccm, and
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X3 = 0 .5 5 sccm). At this low temperature range, cyclohexene hydrogenation is the favored

reaction.

conversion rate o f  in theTable 5.1 Central composite design used to study the 

cyclohexene hydrogenation reaction with three factors (temperature: x , , flow rate o f Hy. 

Xj,and flow rate o f Ar. Xj) with a center point (X| = 1 0 2 .5 °C,X2 = 0.55 seem, and Xj =

Run Design 
order Num

Temperature
X, C o

Flow 
Rate o f
H2 : Xj

(seem)

Flow 
Rate of 

Ar X3 

(seem) -^1 (°C)

Coded 
Value 

Xj (seem) X3 (seem)

Cehio
Conversion

Y(% )
3 1 56.37 0.28 0.28 - 1 - 1 0.9072
7 2 56.37 0.28 0.82 - 1 - 1 1 0.7453
1 3 56.37 0.82 0.28 - 1 1 - 1 0.8854
9 4 56.37 0.82 0.82 - 1 1 1 0.7472
5 5 148.63 0.28 0.28 1 - 1 - 1 0.9229
2 6 148.63 0.28 0.82 1 - 1 1 0.8706
8 7 148.63 0.82 0.28 1 1 - 1 0.8559

1 1 8 148.63 0.82 0.82 1 1 1 0.8263
6 9 102.5 0.55 0.55 0 0 0 0.8603

1 0 1 0 102.5 0.55 0.55 0 0 0 0.8208
4 1 1 102.5 0.55 0.55 0 0 0 0.8600

1 2 1 2 102.5 0.55 0.55 0 0 0 0.8237

Table 5.2 First-order cyclohexene hydrogenation model for conversion with

parameter estimates for the three factors, temperature (x ,) , the flow rate o f /f? (X j), and 

the flow rate of  Ar  (X j) with a center point (X |= 102.5°C, x^= 0.55 seem, and Xj= 0.55

Variable OF

Parameter

Estimate

Standard

Error t Value Pr > ]t]

Intercept 1 0.922 0.044 21.06 < . 0 0 0 1

X, 1 0.000517 0.000253 2.04 0.076

X2 1 -0.061 0.044 -1.40 0.198

X3 1 -0.178 0.044 -4.08 0.004
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In applying the central composite design and response surface methodology, 

experiments are first run utilizing the linear or first-order part o f  the design with center 

points (Table 5.1). Fitting a linear regression model to the first-order design, using SAS, 

gave the model in Table 5.2

7  = 0.922+0.000517X|-0.061^2-0.17 8 x3 , (5.9)

where, x, represents temperature, Xj the hydrogen flow rate, and X3 the argon flow rate.

Results o f the analysis using the F-test in Eq. (3.8) did not show any significant lack-of- 

fit which indicated that the linear model was adequate for describing the conversion rate 

in the experimental region. In order to determine if  improvements can still be made, we 

pursued the path o f steepest ascent in order to determine a new center point around which 

another first-order experiment will be run. The path o f steepest ascent was determined by 

increasing temperature (x ,)  and decreasing the flow rate o f hydrogen (X j) and the flow

rate o f  argon (Xj) proportional to their partial regression coefficients with constraints on

the maximum or minimum values that can be attained.

Along this path, experiments will be run to determine the temperature and flow 

rates combination that gives maximum conversion. Table 5.3 presents the design for 

coded and real values o f the three factors (temperature, x , , the flow rate o f  hydrogen, Xj,

and the flow rate o f cyclohexene, X3 , as measured by the flow rate o f  argon (Ar) used as 

a carrier gas) at a new center point (x, =150°C, X2=0.28sccm, and X3 =0.28sccm). This 

design used the temperature range 116.4-183.6°C, the flow rate o f  hydrogen range 

0 .1-0 .46 seem, and the flow rate o f argon range 0 .1-0 .46 seem.
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Table 5.3 Central composite design used to study the conversion rate o f  in the

cyclohexene hydrogenation reaction with three factors (temperature: x , , flow rate o f  H2  : 

Xj ,and flow rate o f  Ar. Xj) with a new center point ( x, = 150°C, Xj = 0.28 seem, and X3 = 
0.28 seem).

Ture Value 

flowrate flowrate 
Design Run Temp o fH 2  o fA r 

Num Num x, (OC) X2 (seem) Xj (seem)

Coded Value Observed

Conversion

(C 6hl0)

Y{% )

1 1 170 0.39 0.39 - 1 - 1 - 1 0.9263

2 1 2 170 0.39 0.17 - 1 - 1 1 0.9230

3 2 170 0.17 0.39 - 1 1 - 1 0.9296

4 1 0 170 0.17 0.17 - 1 1 1 0.9180

5 9 130 0.39 0.39 1 - 1 - 1 0.9331

6 7 130 0.39 0.17 1 - 1 1 0.9265

7 1 1 130 0.17 0.39 1 1 - 1 0.9343

8 4 130 0.17 0.17 1 1 1 0.9310

9 6 150 0.28 0.28 0 0 0 0.9120

1 0 5 150 0.28 0.28 0 0 0 0.9107

1 1 3 150 0.28 0.28 0 0 0 0.9111

1 2 8 150 0.28 0.28 0 0 0 0.9355

In applying the central composite design and response surface methodology, 

experiments were first run utilizing the linear or first-order part o f  the design with center 

points (Table 5.3). Fitting a linear regression model to the first-order design gave the 

model in Table 5.4.

3= 0 .9 4 4 -0 .0 0 0 1 7 5 x ,- 0 .0 0 5 x2 + 0 .0 2 8 x3 , (5.10)

where, x, represents temperature, Xj is the hydrogen flow rate, and X3 is the argon flow 

rate. Results o f the analysis using the F-test in Eq. (3.8) did not show any significant lack 

o f  fit which indicates that the linear model was adequate for describing the conversion 

rate in the experimental region. The conversion rate o f Cg//,odid increase in this new
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range. All the above analyses show that within the limit o f the physical parameters in the 

microsystem, the conversion rate o f is planar in the cyclohexene hydrogenation

reaction and can be described by a linear model (Eq. (5.10)).

Table 5.4 First-order cyclohexene hydrogenation model for conversion with

parameter estimates for the three factors, temperature ( x^), the flow rate o f  H2  ( Xj), and 

the flow rate o f Ar (x^) with a center point (x ,=  150°C, X2 =  0.28 seem, and Xj= 0.28

Variable DF

Parameter

Estimate

Standard

Error t Value Pr > |tl

Intercept 1 0.944 0.029 32.85 < . 0 0 0 1

T 1 -0.000175 0.000172 - 1 . 0 2 0.338

FI 1 -0.005 0.031 -0.15 0.887

F2 1 0.028 0.031 0.90 0.393

We have conducted similar experiments at higher temperatures for optimizing the 

conversion rate o f cyclohexene where the dehydrogenation reaction is favored. Table 5.5 

presents the design for coded and real values o f  the three factors (temperature x , , the flow 

rate o f  hydrogen, x^, and the flow rate o f  cyclohexene, X3 , as measured by the flow rate 

o f argon (Ar) used as a carrier gas) with a center point (x,=270°C, 0.55 seem, and

Xj= 0.55 seem). This design was in the temperature range 130-410°C, the flow rate o f

hydrogen range 0 . 1 - 1  seem, and the flow rate o f argon range 0 . 1 - 1  seem.

Fitting a linear regression model to the first order design, using SAS, gave the 

model in Table 5.6

T = 0.92152+0.00005X,-0.0132x2+0.03848x3 , (5.11)

where, x, represents temperature, Xj is the hydrogen flow rate, and Xj is the argon flow
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Table 5.5 Central composite design used to study the conversion rate o f C^/Zio in the 

cyclohexene dehydrogenation reaction with three factors (temperature: x , , flow rate o f 

//^iX j.and flow rate o f  Ar:x^) with a center point (x ,=  270°C, Xj= 0.55 seem, and x̂  = 
0.55 seem). ______________________ _______________________

True Value 

FlowRateof FlowRateof

Coded Value Observed

conversion

DesignTemp 

Num ( C)
H2 Ar ^ 2  

X2 (seem) X3 (seem) x, ( C) (gccm)

o f  Q //,o  

X3 (seem) T(o/o)

1 186.7 0.282 0.282 - 1 - 1 -1 0.93693

2 186.7 0.282 0.818 - 1 - 1 1 0.96213

3 186.7 0.818 0.282 - 1 1 -1 0.93045

4 186.7 0.818 0.818 - 1 1 1 0.94257

5 353.3 0.282 0.282 1 - 1 -1 0.94171

6  353.3 0.282 0.818 1 - 1 1 0.96365

7 353.3 0.818 0.282 1 1 -1 0.93996

8  353.3 0.818 0.818 1 1 1 0.96316

9 270 0.55 0.55 0 0 0 0.95301

10 270 0.55 0.55 0 0 0 0.95703

11 270 0.55 0.55 0 0 0 0.95493

12 270 0.55 0.55 0 0 0 0.95649

Table 5.6 First-order cyclohexene dehydrogenation model for conversion with

param eter estimates for the three factors, temperature (x ,) , the flow rate o f H2 (x^), and

the flow rate o f  Ar  (X j) with a center point (x ,=  270°C, x2 = 0.55 seem, and X3 = 0.55
seem).

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.922 0.009 97.21 < . 0 0 0 1

X, 1 0.000055 0.000026 2 . 1 2 0.066

X2 1 -0.013 0.008 -1.65 0.137

X3 1 0.038 0.008 4.81 0 . 0 0 1
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rate. Results o f the analysis using the F-test in Eq. (3.8) did not show any significant 

lack-of-fit which indicated that the linear model was adequate for describing the 

conversion rate in the experimental region. conversion was up to 96% in this

region o f the experiments, which is quite high, This analysis result indicates that, within 

the limit o f the physical parameters in the microsystem, the conversion rate o f  Q //,o  is 

planar for cyclohexene dehydrogenation reaction and can be described by a linear model 

(Eq. (5.11)). One reason for that may be the fact that the experiment was already at or 

close to the peak o f  the response surface.

In designing the experiment for cyclohexene hydrogenation and dehydrogenation 

reaction, we did not consider residence time and stoichiometry which are important 

factors that affect the yield or selectivity o f a chemical reaction. Therefore, in the 

following fuel cell and syn-gas experiments, residence time and stoichimetry will be 

considered in the design.

5.3 Preferential Oxidation for Carbon M onoxide 

Amelioration in Hvdrogen Fuel Cell

5.3.1 Experimental Design and Procedure

In running fuel cell experiments, the three factors that were considered were 

temperature, flow rate o f CO, and flow rate o f O2 . It would seem natural, at first, to use 

these factors in setting up the design. To have done so, however, would have ignored two 

important factors with regard to conversion and selectivity, namely the ratio o f  CO  to O2
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(which affect the stoichiometry o f the reaction) and the total flow rate (which determine 

the residence time).

Hence, in developing the experimental design for the preferential oxidation o f CO  

in fuel cells, the three factors that were used were temperature (x ,) , CO '.Ô TdXxo (x^),

and the total flow rate (Xj). The conversion o f CO  ( ) and the selectivity o f COj{ Yj)

are considered as the dependent variables or response. The purpose o f  using experimental 

design is to find the treatment combination x=(x,,X 2 ,X3 ) for which the conversion o f  CO

and the selectivity o f COj are maximized.

The first-order, cube plus center points, part o f the central composite design was 

run first in the temperature range 120~220°C, the C O : Oj ratio range 0 .25-4 , and the total

flow rate range 0.2-1 seem. This design involved 8  factorial points ( « ^ = 8 ) o f a single-

replicate, augmented by «o = 4 center points. Here, the center points are needed to 

provide error degrees o f freedom for testing model lack-of-fit. The first 12 runs in Table 

5.7 represent the first-order design for coded and real values o f  the three factors 

(temperature, CO ratio, and the total flow rate). A linear m ultiple regression (Eq.

(3.2) with p =3) was fitted to the first-order design. Results o f the analysis using the F- 

test in Eq. (3.8) showed a quadratic lack-of-fit o f  the linear model. This indicated that the 

surface in that region o f the experiment was not planer, but showed curvature. As a result, 

a second-order regression (Eq. (3.3) for p = 3) was fitted to the second-order central 

composite design in Table 5.7, obtained by augmenting the cube by the six axial points 

(a= ± 1 .6 8 ).
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Table 5.7 Central composite design used to study the conversion rate o f  CO  and the 
selectivity o f CO^ in the preferential oxidation o f  CO  in fuel cells with three factors

(temperature, C O : Ô  ratio, and total flow rate).

Design Run Temperature C 0 :0 ^ TotalFlow Coded Conversion Selectivity
Ratio Rate Values

Num Order x ,(«C ) ^ 2 (seem) X, X2 X3 o f  CO, o f CO2 , Tj

1 13 140.24 1 . 0 1 0.36 - 1 - 1 - 1 0.596 0.727
2 18 140.24 1 . 0 1 0.84 - 1 - 1 1 0.375 0.338
3 7 140.24 3.24 0.36 - 1 1 - 1 0.535 0.857
4 2 140.24 3.24 0.84 - 1 1 1 0.371 0.511
5 14 199.76 1 . 0 1 0.36 1 - 1 - 1 0.577 0.748
6 8 199.76 1 . 0 1 0.84 1 - 1 1 0.319 0.327
7 5 199.76 3.24 0.36 1 1 - 1 0.507 0.635
8 1 1 199.76 3.24 0.84 1 1 1 0.367 0.441
9 1 170.00 2.13 0.60 0 0 0 0.401 0.534

1 0 16 170.00 2.13 0.60 0 0 0 0.390 0.386
1 1 6 170.00 2.13 0.60 0 0 0 0.392 0.559
1 2 9 170.00 2.13 0.60 0 0 0 0.441 0.468
13 1 2 1 2 0 . 0 0 2.13 0.60 - 1 . 6 8 0 0 0.474 0.584
14 3 2 2 0 . 0 0 2.13 0.60 1 . 6 8 0 0 0.423 0.599
15 4 170.00 0.25 0.60 0 - 1 . 6 8 0 0.423 0.539
16 1 0 170.00 4.00 0.60 0 1 . 6 8 0 0.451 0.543
17 15 170.00 2.13 0 . 2 0 0 0 -1 . 6 8 0.702 0.874
18 17 170.00 2.13 1 . 0 0 0 0 1 . 6 8 0.338 0.261

5.3.2 Results and Discussion

Data analysis was performed using SAS (1990). Tables 5.8 and 5.9 present the 

second-order regression model obtained by fitting to data from the second-order central 

composite design (Table 5.4) for the cases o f yield and selectivity. Tables 5.10 and 5.11 

give the predicted responses for yield and selectivity obtained from the quadratic 

regression models in Tables 5.8 and 5.9.

From Table 5.8, it is seen that the second-order regression model for CO  

conversion based on the true values o f the factors is
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}; = 1.508 -  0.005X, -  0.104x2 -1 -33 IXj + 0.000013x,' + 0.000162x̂ x̂

+ 0 .0 0 6 X2  ̂ - 0.000243X|X3 + 0 .0 8 2 X2 X3 + 0 .6 4 3 X3  ̂ (5.12)

The second regression model for CO  conversion based on the coded factor values is

Y,= 0.407-0.014x,-0 .0 0 3 x2 -0.10 2 x3 +0.01 Ix,^+0.007x2^
(5.12a)

+0.037xj +0.005X|X2 -0.002x,Xj + 0 .0 2 2 X3X3

Also, from Table 5.9, the second-order regression model for the selectivity o f  CO^ based 

on the true values o f the factors is given by

T2 = 2.419 -  0.014x, + 0.073X2 - 1 . 9 5 9 x3 + 0 .0 0 0 0 4 2 x -  0 .00 \x.x,'  1 2  3 1 1 2
+  0.016X2^ + 0 .002x,Xj +0.126X3X3 +0.507X3^

The second regression model for COj selectivity based on the coded factor values is 

T, = 0.487-0.019x,+0.023x2-0.17 4 x3+0.037X,'+0.019x2''  1 2  3 1 2
+ 0 .0 2 9 X3  ̂-0.03 8x,X2 +0.01 5X|X3 + 0 .0 3 4 X3 X3 

The coefficients in Eq. (5.12a) and Eq. (5.13a) show that total flow rate (X3 ) has the 

largest and dominant effect on the conversion o f CO  and selectivity ofCO^. It is seen that 

the partial regression coefficient for Xj is negative implying that smaller flow rate or 

larger residence time increases both CO  conversion and CO 3 selectivity. Predicted 

responses. Table 5.10, from the second-order model o f CO  conversion in Eq. (5.12) show 

that temperature, C O : Ô  ratio, and total flow rate combination at the point (166.67, 1.77,

0.21) gave maximum conversion o f CO  (68.77%). From Table 5.11, the second-order 

model for selectivity o f COj (Eq. (5.13)) shows that temperature, C O : Ô  ratio, and total

flow rate combination at the point (158.14, 1.99, 0.21) gave maximum selectivity o f CO2

(87.06%). The Spearman correlation coefficient between the conversion o f  CO  and
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Table 5.8 Second-order fuel cell model on CO  conversion with param eter estimates for

Parameter DF Estimate Standard Errort Value Pr > |t|
Intercept 1 1.508 0.288 5.240 0 . 0 0 1

X, 1 -0.005 0.003 -1.770 0.115

^ 2 1 -0.104 0.054 -1.920 0.091

1 -1.331 0.262 -5.080 0 . 0 0 1

1 0.000013 0.000008 1.620 0.143
X|X2 1 0.000162 0.000260 0.620 0.550
Xĵ 1 0.006 0.006 1.050 0.325
X,Xj 1 -0.000243 0 . 0 0 1 -0 . 2 0 0 0.845
XjXs 1 0.082 0.032 2.540 0.035
X3 ' 1 0.643 0 . 1 2 1 5.330 0 . 0 0 1

Table 5.9 Second-order fuel cell model on CO  ̂ selectivity with param eter estimates for

Parameter DF Estimate Standard Error t Value Pr > |t|

Intercept 1 2.419 0.754 3.210 0.013
X, 1 -0.014 0.007 -1.880 0.097
Xj 1 0.073 0.141 0.510 0.621

3̂ 1 -1.959 0 . 6 8 6 -2.850 0 . 0 2 1

1 0.000042 0 . 0 0 0 0 2 0 2.070 0.072
XjXj 1 -0 . 0 0 1 0 . 0 0 1 -1.670 0.133
x,^ 1 0.016 0.014 1.080 0.311
XIX3 1 0 . 0 0 2 0.003 0.660 0.529
X2 X3 1 0.126 0.084 1.490 0.176
X3 ' 1 0.507 0.316 1.600 0.147

selectivity o f COj is 0.90299. Because o f this high positive correlation, it would seem 

possible to locate a factor combination that would optimize both conversion and 

selectivity simultaneously. In fact, the three factor combination at the point (158.13, 1.77, 

0.21) used in the second-order model for CO  conversion (Eq. (5.12)) and the second-
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order model for CO^ selectivity (Eq. (5.13)), predicted a CO  conversion o f  69.31% and 

aCOj selectivity o f 88.08%.

Table 5.10 Predicted response for the conversion o f CO  for three factors, temperature 
(xi), ratio (X2 ), and total flow rate (X3 ).

Factor Values Predicted Standard
x l x2 x3 Response Error

170.000 2.125 0.600 0.407 0.012
169.374 2.114 0.560 0.425 0.012
168.856 2.094 0.521 0.446 0.012
168.423 2.066 0.481 0.468 0.012
168.056 2.034 0.442 0.493 0.011
167.742 1.997 0.403 0.520 0.011
167.469 1.956 0.364 0.549 0.012
167.231 1.913 0.325 0.580 0.013
167.021 1.868 0.286 0.614 0.014
166.834 1.822 0.247 0.650 0.016
166.667 1.774 0.208 0.688 0.019

Table 5.11 Predicted response for the selectivity o f CO^ for three factors, temperature

Factor Values Predicted Standard
xl x2 x3 Response Error

170.000 2.125 0.600 0.487 0.032
169.365 2.144 0.561 0.517 0.032
168.548 2.153 0.521 0.549 0.031
167.574 2.153 0.482 0.583 0.031
166.469 2.146 0.443 0.618 0.030
165.255 2.132 0.404 0.655 0.030
163.950 2.111 0.365 0.694 0.031
162.573 2.086 0.327 0.735 0.033
161.137 2.057 0.288 0.779 0.037
159.655 2.023 0.250 0.824 0.042
158.137 1.986 0.213 0.871 0.050

It is clear from the results in Tables 5.10 and 5.11 that the predicted response for 

conversion and selectivity was maximum when the total flow rate was set at a minimum 

value o f about 0.2 seem. As a result, we ran a new round of experiments setting the total 

flow rate at 0.2 seem (the minimum flow rate the microreactor setup can accommodate)
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and varying the temperature and CO: O2  ratio first according to a two-level factorial 

design with center points, later augmented to a second-order central composite design 

(CCD). The design (first-order, 8 cube points plus 4 center points, with augmentation, 

±1.414 points, to seeond-order) and experimental results on selectivity and conversion 

are shown in Table 5.12.

Table 5.12 Central composite design used to study the conversion rate o f CO  and the 
selectivity o f CO^ in the preferential oxidation o f  CO  in fuel cells with two factors

(temperature and CO .0.  ̂ratio).

True Value Coded Value 
RunNum DesNum Temp Conversion of Selectivity to

X, • ^  CO Y, C 02

2 1 131.71 0.70 -1 -1 0.794 0.653
8 2 131.71 2.90 -1 1 0.525 0.597

10 3 188.29 0.70 1 -1 0.901 0.865
16 4 188.29 2.90 1 1 0.586 0.576
9 5 160.00 1.80 0 0 0.921 0.896
1 6 160.00 1.80 0 0 0.915 0.888
7 7 160.00 1.80 0 0 0.909 0.867

12 8 160.00 1.80 0 0 0.926 0.898
13 9 160.00 1.80 0 0 0.914 0.859
15 10 160.00 1.80 0 0 0.901 0.865
11 11 160.00 1.80 0 0 0.922 0.834
6 12 160.00 1.80 0 0 0.902 0.851
5 13 120.00 1.80 - 1 1.414 0 0.895 0.877
3 14 200.00 1.80 11.414 0 0.903 0.823
4 15 160.00 0.25 0 -1.414 0.764 0.763

14 16 160.00 3.35 0 1.414 0.453 0.643

Analysis based on a linear regression model fit to the data corresponding to the 

first-order design in Table 5.12 using the F-test in Eq. (2.8) showed a quadratic lack o f fit 

for the linear regression model. This result led to fitting a second-order or quadratic 

regression model to the data for the second-order design in Table 5.12. From the analysis 

in Table 5.13, it is seen that the second-order regression model for CO  conversion based 

on the true values o f the factors is given by
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-0 .2  + 0.0 Ix ,+ 0 .4 3 8 X2 

- 0 .1 3 8 X2 ' -0.00037X,

-0.000025X ,'

X2

(5.14)

The second regression model for CO conversion based on the coded factor values is

0 .914+0.022X,-0.12 8 x2

-0 .16 6 X2 ' - 0 . 0  1 2 X|X2

-0 .0 2 x,'
(5.14a)

Table 5.13 Second-order regression model on CO conversion with param eter estimates 
for the two factors, temperature (xi) and C O : Oj ratio (X2 ).

ParameterDF Estimate Standard Error t Value Pr > |t|
Intercept 1 -0 . 2 0.414 -0.48 0.639
X, 1 0 . 0 1 0 0.005 1.940 0.081
X2 1 0.438 0.095 4.640 0 . 0 0 1

X,' 1 -0.000025 0.000015 -1.690 0.123
X2 '  1 -0.138 0 . 0 1 0 -13.880 < . 0 0 0 1

x,X2 1 -0.000370 0 . 0 0 1 -0.680 0.511

Table 5.14 Second-order regression model on CO.̂  selectivity with param eter estimates

for the two factors, temperature (xi) and C O : O2 ratio (xi).

Parameter DF Estimate Standard Error t Value Pr > |t|
Intercept 1 -1.079 0.751 -1.440 0.181
X, 1 0.018 0.009 2.040 0.068
X2 1 0.568 0.171 3.320 0.008
X,' 1 -0.000045 0.000027 -1.640 0.131
X2 '  1 -0.091 0.018 -5.060 0 . 0 0 1

X|X2 1 -0 . 0 0 2 0 . 0 0 1 -1.900 0.086

A similar analysis for CO  ̂ selectivity (Table 5.14) gave the second-order model based on 

the true values o f the factors

T2 = -1 .0 7 9 +  0.018x, + 0 .5 6 8 X2 -0.000045X,' 

-  0.09 IXĵ  -  0.002x,X2 .
(5.15)

The second regression model for CO  ̂selectivity based on the coded factor values is
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K =0.87+0.014x, -0.064X, -0.036x'  1 2  1

-0.109x2^-0.058X|X2

With the total flow rate fixed, the coefficients in Eq. (5.14a) and Eq. (5.15a) show that 

C O ; C>2 •’atio (stoichiometry) has more effect than temperature on the conversion o f CO

and COj selectivity. From results in Table 5.15, the second-order model for CO  

conversion shows that temperature, CO'.O^ratio combination at the point (179.03, 1.35) 

gave maximum conversion o f CO  (94.75%). Also from Table 5.16, the second-order 

model for the selectivity o f COj  shows that temperature, C O : Ô  ratio combination at the

point (175.9, 1.31) gave maximum selectivity o f  CO^ (88.81%). These results indicate 

that practically the same factor combination gave both maximum conversion and 

maximum selectivity. This indication can be explained by the conversion and selectivity 

being highly positively correlated.

Table 5.15 Statistical analysis o f the predicted response for the conversion o f  CO  for two 
factors, temperature (xi) and C O : Ô  ratio (X2 ).

Factor Values Predicted Standard
Temperature C O : O2 ratio Response Error

160.000 1.800 0.914 0 . 0 1 2

161.046 1.650 0.929 0 . 0 1 2

163.370 1.519 0.938 0 . 0 1 2

167.388 1.434 0.944 0 . 0 1 2

171.981 1.390 0.946 0.013

176.510 1.363 0.947 0.013

180.916 1.344 0.947 0.015

185.228 1.329 0.947 0.017

189.472 1.317 0.945 0.019

193.669 1.306 0.942 0.023

197.829 1.296 0.939 0.027
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Table 5.16 Statistical analysis o f  the predicted response for the selectivity o f CO^ for two 

factors, temperature (xi) and C O : ratio (X2 ).

Factor Values Predicted Standard
Temperature C O : Oj ratio Response Error

160.000 1.800 0.870 0 . 0 2 2

161.638 1.657 0.877 0 . 0 2 2

164.595 1.546 0.882 0 . 0 2 2

168.145 1.459 0 . 8 8 6 0 . 0 2 2

171.878 1.385 0.887 0.023

175.665 1.312 0 . 8 8 8 0.024

179.469 1.256 0 . 8 8 8 0.027

183.276 1.197 0 . 8 8 6 0.030

187.083 1.140 0.883 0.035

190.888 1.083 0.880 0.041

194.690 1.028 0.875 0.048

To verify the predicted maxima from the quadratic models for conversion and

selectivity, experiments were run for these two treatment or factor combinations. Results

from these experiments, presented in Table 5.17, gave close agreement between predicted

Table 5.17 Experimental results verifying the predicted results on CO  conversion and
CO2 selectivity.

Predicted Experimental Experimental
cxpcririiciUai

Temperature CO .O 2  Values:
0  1 re s u lt : result:

CO  conv CO  conv selec o f  CO 2

179 1.35 1 94.70% 94.34% 87.53%

2 94.70% 95.17% 87.94%

3 94.70% 94.27% 88.32%

Experimental Experimental
CApvrilTlCnial

Temperature CO.'O2  CO^SelecD 11«̂ result: result:

CO  conv selec o f  CO2

175.9 1.31 1 88.80% 94.29% 89.13%

2 88.80% 93.91% 89.32%

3 88.80% 92.65% 88.54%
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and observed conversion and selectivity. Further, it is shown that, in fact, one factor 

combination o f  temperature, CO : 0 2  ratio, and total flow at the point (175.9, 1.31 and 

0.2) can be used to maximize CO conversion and CO^ selectivity.

5.4 Fischer-Tropsch Svnthesis

5.4.1 Experimental D esisn and Procedure

In this study, the Fischer-Tropsch (F-T) synthesis experiment focused on the 

reaction o f carbon monoxide and hydrogen to produce propane. Therefore, the purpose in 

this study was to optimize the m icroreactor chemical reaction process in order to obtain 

high CO  conversion and propane (C^H^) selectivity.

Three independent variables or factors were considered important for this reaction 

process, the total flow rate (x ,), : CO ratio (^ 2 ), and temperature (Xj). The conversion

o f CO ( ), and the selectivity o f C-^Ĥ { Y )̂ were considered as the dependent

variables. The purpose o f using experimental design was to find the treatment 

combination x=(x,,X 2 ,X3 ) for which the conversion o f CO and the selectivity o f Cj/Zg 

are maximized.

The first-order, cube plus center points, part o f the central composite design was 

run first in the total flow rate range 0.5-1.1 seem, the /Z j : CO ratio range 2 -4 , and the 

temperature range 180-260^^0. This design involved 8  factorial points 8 ) o f a

single-replicate, augmented by «o = 6  center points. Here, the center points are needed to 

provide error degrees o f freedom for testing model lack o f fit. Because o f  the limitation
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resulting from the length o f time the catalyst remain active, a first-order design was run in 

two days using two different microreactors as two blocks. The first 14 runs in Table 5.18 

represent the first-order design for coded and real values o f the three factors (total flow 

rate, : CO ratio, and temperature). Linear multiple regressions (Eq. (5.16) and (5.17)

Table 5.18 Central composite design used to study the conversion rate o f CO  and the 
selectivity o f in the Fischer-Tropsch (F-T) synthesis experiment with three factors

(total flow rate: x ,, H^'. CO  ratio: Xj , and temperature: x , ).

Coded Value True Value 
Total 
Flow 
Rate H2 :C0  Temp

Selectivity

Cone. Of

De
um Block X, X2 3̂

X,

(seem)

Ratio
Xj

Xj

(‘̂ C)

CO M ethane

i^ (% ) 1^2 (%)
Ethane Propane
T3(%)

1 1 - 1 - 1 - 1 0.5 2 180 59.75% 10.36% 11.49% 78.15%
2 2 - 1 - 1 1 0.5 2 260 54.54% 5.06% 17.52% 77.42%
3 2 - 1 1 - 1 0.5 4 180 65.28% 5.71% 12.72% 81.57%
4 1 - 1 1 1 0.5 4 260 70.97% 0.50% 7.55% 91.95%
5 2 1 - 1 - 1 1 . 1 2 180 67.10% 10.52% 22.73% 66.75%
6 1 1 - 1 1 1 . 1 2 260 61.32% 0.25% 20.32% 79.43%
7 1 1 1 - 1 1 . 1 4 180 61.28% 3.99% 8.62% 87.39%
8 2 1 1 1 1 . 1 4 260 61.39% 7.91% 11.99% 80.10%
9 1 0 0 0 0 . 8 3 2 2 0 61.78% 7.04% 8.35% 84.61%

1 0 1 0 0 0 0 . 8 3 2 2 0 62.64% 4.01% 9.00% 86.99%
1 1 1 0 0 0 0 . 8 3 2 2 0 62.64% 5.24% 7.99% 86.77%
1 2 2 0 0 0 0 . 8 3 2 2 0 61.21% 6.49% 1 0 .0 0 % 83.51%
13 2 0 0 0 0 . 8 3 2 2 0 62.36% 5.82% 7.87% 86.31%
14 2 0 0 0 0 . 8 3 2 2 0 62.64% 6.24% 8.14% 85.62%
15 3 -1.69 0 0 0.293 3 2 2 0 71.48% 6.45% 9.50% 84.05%
16 3 1.69 0 0 1.307 3 2 2 0 55.39% 8.57% 9.43% 82.00%
17 3 0 ■1.69 0 0 . 8 1.3 2 2 0 53.30% 13.34% 10.34% 76.32%
18 3 0 1.69 0 0 . 8 4.7 2 2 0 58.34% 5.68% 8.64% 85.68%
19 3 0 0 -1.69 0 . 8 3 152.4 61.48% 7.45% 15.79% 76.76%
2 0 3 0 0 1.69 0 . 8 3 287.6 59.72% 6.79% 16.68% 76.53%
2 1 3 0 0 0 0 . 8 3 2 2 0 63.53% 6.34% 9.11% 84.55%
2 2 3 0 0 0 0 . 8 3 2 2 0 61.95% 5.93% 8.34% 85.73%
23 3 0 0 0 0 . 8 3 2 2 0 63.23% 6.49% 1 2 .2 0 % 81.31%
24 3 0 0 0 0 . 8 3 2 2 0 62.45% 7.34% 10.23% 82.43%
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with p =3) were fitted to the first-order design. Results o f the analysis showed no 

quadratic lack-of-fit for the linear model in Eq. (5.16), but did show a quadratic lack-of- 

fit for the linear model in Eq. (5.17). This analysis result indicated that the surface o f  CO  

conversion is planar, but the surface o f selectivity o f propane in that region o f  the

experiment was not planer. As a result, a second-order regression (Eq. (5.18) for p = 3) 

was fitted to the second-order central composite design in Table5.18, obtained by 

augmenting the cube by the six axial points ( a  =±1.69) with four center points.

5.4.2 Experimental Results and Statistical Analvsis

From Table 5.19, the first-order regression model for CO  conversion based on the 

true values o f the factors is given by

= 0 .5 9 8 ±0.002x, ±0.02^2 -0.00162x3 (5.16)

From Table 5.20, the first-order regression model for propane selectivity based on the 

true factor values is given by

Y, = 0.651-0.049Bl-0.064x,+ 0.049x2 ±0.00047x3. (5.17)

and from Table 5.21, the second-order regression model for propane selectivity based on

the true values o f the factors is given by

=-0.52±0.035B L,-0.014 BL 2 ±0.106x, ±0.165x2 

± 0 .0 1 x3 -0 .0 6 x,^-0 .0 1 3 x2 ^-0 .0 0 0 0 1 7 x3^

± 0 .0 1  4X|X2 -0 .0 0 0 4 4 4 x ,Xj -0 .0 0 0 2 7 7 x2X3.

The second-order regression model for propane selectivity based on the coded values o f 

the factors is
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7̂  =0.841+0.035BL,-0.014BL2-0.014 jc,+0.04x2 

+ 0 .0 1  1x3-0.005x,^ -0.013x2^ -0.028x3^ 

+ 0.004X |X 2 -O.OOSxjXj-0 .0 1 1 X2X3

(5.18a)

The coefficients in Eq. (5.18a) show that '.CO ratio (stoichiometry) has the largest 

effect on propane selectivity. From Table 5.22, canonical analysis, using SAS, the 

second-order model o f propane selectivity shows that the total flow rate, H j : CO  ratio, 

and temperature combination at the point (0.60, 4.51, and 218.16) gave a maximum 

selectivity o f propane (C^H^) equal to 88.25%.

Table 5.19 First-order F-T synthesis model on CO conversion with param eter estimates 
for the three factors, total flow rate ( x ,), H^-.CO ratio ( ), and tem perature ( Xj).

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 0.598 0.091 6.56 < . 0 0 0 1

X, 1 0 . 0 0 2 0.044 0.05 0.960

X2 1 0 . 0 2 0 0.013 1.52 0.159

X3 1 -0.000162 0.000333 -0.49 0.636

Table 5.20 First-order F-T synthesis model on C^H  ̂ selectivity with param eter estimates

for the three factors, total flow rate ( x ,), / / j : CO  ratio ( Xj), and temperature ( X3 ).

Parameter Standard

Variable DF Estimate Error t Value Pr > lt|

Intercept 1 0.651 0 . 1 0 2 6.40 0 . 0 0 0 1

block 1 -0.049 0 . 0 2 2 -2.18 0.057
X, 1 -0.064 0.049 -1.31 0.224

X2 1 0.049 0.015 3.33 0.009

X3 1 0.00047 0.00037 1.27 0.235
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Table 5.21 Second-order F-T synthesis 

estimates for the three factors, total flow

(X3 ).

model on selectivity with parameter

rate (x ,), : CO ratio (X j), and temperature

Parameter Standard
Variable DF Estimate Error t Value Pr > Itl
Intercept 1 -0.520 0.328 -1.59 0.139
6 , 1 0.035 0.014 2.50 0.028

1 -0.014 0.014 -0.96 0.355

X, 1 0.106 0.246 0.43 0.673

Xj 1 0.165 0.075 2 . 2 0 0.048

X3  1 0 . 0 1 0 0 . 0 0 2 4.15 0 . 0 0 1

x,  ̂ 1 -0.060 0.078 -0.77 0.454

X2  ̂ 1 -0.013 0.007 -1.78 0 . 0 1 0

Xĵ  I -0.000017 0.0000044 -3.96 0 . 0 0 2

XjXj 1 0.014 0.034 0.42 0.684

X,Xj 1 -0.000444 0.000840 -0.53 0.607

X2 X3 1 -0.000277 0.000252 - 1 . 1 0 0.293

Table5.22: Canonica 

data.

analysis o f response surface selectivity o f  propane based on coded

Factor

Critical Value

Coded Uncoded

-0.390178

0.895127

-0.027242

0.602180

4.512765

218.15843

Predicted selectivity: 88.25%
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CHAPTER SIX 

PROBABILITY AND STOCHASTIC MODELING

6.1 Probabilistic M odeling

In Chapter Three, we presented the methodology o f  a mathematical model for 

predicting the probability that a certain species undergoing reaction inside a microreactor 

exits the reactor by a certain time T. From the model, we can show that the probability 

( P ) o f  exiting the reactor by time T is

^  T(«)

In deriving Eq. (6.1), it was assumed, in general, that the microchannel is composed o f  n 

compartments in series. In order to fit the model to experimental data, one may evaluate 

Eq. (6.1), for different n values. This is given below for n = 1, 2 ,..., 6 . 

n =  1 ,

P =  ^ ri-g-(wi
A + //L  J ’ (6.2)

n = 2 ,

P ,  (6.3)
X \  fx (̂ X + //)

n = 3,

67
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P =
A T a t

2(A + yt/) (A + //)^
+ ( l - e -(A+/OT A'

(A + p f
(6.4)

n = 4.

n = 5,

F =

F =
AT^ A T ' A T

6(A + / i)  2(A + jU) (A + /i) {A + fX) 4  ’
(6.5)

5rri4A T 5'p3A T 5rp2A T A T

2A{A + /X) 6{A + T f  2{A + T f  + T ) {A + T)
- , (6 .6)

and n = 6 ,

F =
A T ' AT^ A T ' A T ' A T

+ ( l - e

\2%A + /u) 2A{A + /Xf 6{A + /Xf 2{A + n )  {A + f i f

Â
(6.7)

-a+fi)r
{A + fj.)6  *

The probability o f  exiting the reactor by time T is estimated by the partial pressure o f  the 

reactant in the exit stream divided by the base partial pressure without the reaction 

(pp/base). Here, n and A are parameters o f the residence time distribution, and p (the 

reaction rate) is proportional to the surface area o f the catalyst.

The model for different n values was fitted to data on pp/base over time in order 

to estimate A, and p. In the following section, this mathematical modeling approach was 

applied to the cyclohexene hydrogenation and dehydrogenation experiments and to the 

Fischer-Tropsch synthesis experiment.
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6.1.1 Cyclohexene Hydrogenation Reaction

In the case o f  the cyclohexene hydrogenation experiment, the probability in Eq.

(3.11) is the conversion rate o f at time T for the case o f  an open flow involving

Cg//io and Hi. This probability as a function o f time was compared to the observed 

Cg//|Q conversion from cyclohexene hydrogenation experiments in order to estimate 

model parameters. From these parameters, we estimated the reaction rate (and hence the 

activation energy o f the reaction, E^) and characterized the flow behavior from the 

residence time distribution.

The data in Table 6.1 were used for estimating A, / / ,  and n for a cyclohexene 

hydrogenation experiment under the operating condition, temperature = 56.37°C, flow 

rate o f  hydrogen = 0.28 seem, and flow rate o f  Argon = 0.82 seem.

The SAS software was used to fit the data in Table 6.1 to the model Eqs. (6.2)- 

(6.4) for different n values. Figures 6.1 to 6.4 show the observed values o f  PP/Base vs 

time for in the exit stream and the predicted values from Eqs. (6.2) to (6.4). It is 

clear that the predicted values give the best fit to the observed values when n = 1 (Fig. 

6.1). The SSE (sum o f squared errors) o f 0.0657 is minimal for n = 1. The lack-of-fit was 

even worse for higher n values. This result indicates that the microchannel behaves as 

one compartment, implying that the flow is well mixed and is time homogeneous, in 

which case, each molecule in the reactor has the same exit intensity (or rate) A. The 

estimated values for A and p were 0.0252/min and 0.0793 / M«min , respectively.
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Table 6.1: Cyclohexene hydrogenation experimental data, under the operating condition 
(temp = 56.37°C, flow rate o f / /? =  0.28 seem, and flow rate o f  Ar = 0.82 seem), used to 
estimate X, p., and n. _______________ ___________________________________

Tim e(m in)C6Hio:p.p/base Tim e(m in) C6Hio:p.p/base Tim e(m in)C6Hio:p.p/base
0.0000 0.1010 28.0053 0.2004 56.0107 0.2395
0.6668 0.0971 28.6721 0.2052 56.6774 0.2355
1.3336 0.1124 29.3389 0.2162 57.3442 0.2612
2.0007 0.1069 30.0057 0.2028 58.0113 0.2553
2.6673 0.1207 30.6728 0.2170 58.6781 0.2501
3.3340 0.1140 31.3397 0.2182 59.3447 0.2545
4.0009 0.1168 32.0065 0.2134 60.0115 0.2359
4.6681 0.1262 32.6732 0.2229 60.6781 0.2521
5.3345 0.1416 33.3398 0.2217 61.3449 0.2493
6.0015 0.1452 34.0064 0.2099 62.0119 0.2497
6.6681 0.1401 34.6732 0.2115 62.6788 0.2584
7.3347 0.1586 35.3403 0.2059 63.3456 0.2533
8.0017 0.1641 36.0071 0.2225 64.0121 0.2351
8.6686 0.1479 36.6738 0.2249 64.6790 0.2387
9.3353 0.1547 37.3404 0.2178 65.3457 0.2564

10.0022 0.1558 38.0073 0.2044 66.0125 0.2631
10.6689 0.1649 38.6740 0.2288 66.6792 0.2545
11.3357 0.1767 39.3408 0.2182 67.3460 0.2442
12.0024 0.1732 40.0076 0.2328 68.0133 0.2643
12.6692 0.1720 40.6745 0.2237 68.6798 0.2414
13.3359 0.1602 41.3416 0.2304 69.3464 0.2608
14.0027 0.1795 42.0081 0.2367 70.0132 0.2635
14.6696 0.1685 42.6747 0.2355 70.6800 0.2647
15.3366 0.1791 43.3415 0.2395 71.3470 0.2422
16.0032 0.1965 44.0083 0.2253 72.0138 0.2620
16.6698 0.1886 44.6751 0.2340 72.6804 0.2442
17.3366 0.1945 45.3419 0.2355 73.3472 0.2533
18.0037 0.1819 46.0088 0.2249 74.0139 0.2549
18.6702 0.1842 46.6757 0.2363 74.6807 0.2474
19.3372 0.1969 47.3423 0.2324 75.3477 0.2588
20.0040 0.2024 48.0091 0.2422 76.0150 0.2517
20.6707 0.1973 48.6762 0.2501 76.6815 0.2584
21.3374 0.1988 49.3431 0.2418 77.3481 0.2568
22.0045 0.2036 50.0098 0.2383 78.0149 0.2533
22.6714 0.2012 50.6764 0.2399 78.6817 0.2624
23.3382 0.2075 51.3431 0.2430 79.3485 0.2411
24.0049 0.1945 52.0098 0.2418 80.0153 0.2596
24.6715 0.1981 52.6766 0.2371 80.6820 0.2572
25.3381 0.2016 53.3434 0.2466 81.3486 0.2545
26.0049 0.2067 54.0102 0.2347 82.0154 0.2572
26.6717 0.1969 54.6771 0.2462 82.6822 0.2466
27.3385 0.2099 55.3438 0.2545 83.3490 0.2829

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

O b s e r v e d  v s  t i m e .  S y m b o l  u s e d  i s  ' a ' .
p p / b a s e  P r e d i c t e d  v s  t i m e  S y m b o l  u s e d  i s  ' p ' .  n=1 S S E = 0 . 0 6 5 7

0 . 3  ■

a

a  a  a  a a a  a a a a  a

a a a a a a  a a a a  a a  a a a a a a a a a

p p p p p p p p p a a a a a a a p a p a a a a p a p p a p p a p p p p p p p a p p p

p p p p p a  a a a a a a  a  a

0 . 2  • a a p a a a a a a a a  a  a

a p a a a a

a a a a a a

a  a a
a a a p

a a a p p

0 . 1  ■- a a  p p

P
P

P

P

P
0 . 0  ■• P

1 1 1 1 1 11 . 1 , 1 , 1 1 

0  2 0  4 0  6 0  8 0  1 0 0

Figure 6.1 Plot o f the observed PP/Base (for CsHw)  and predicted value by fitting the
data in Table 6.1 to Eq. (6.2).
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Figure 6.2 Plot o f the observed PP/Base (for CqH io) and predicted value by 
fitting the data in Table 6.1 to Eq. (6.3).
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Figure 6.3 Plot o f  the observed PP/Base (for C6H/o) and predicted value by fitting the
data in Table 6.1 to Eq. (6.4).

The data in Table 6.2 were used for estimating X, fJ,, and n for a cyclohexene 

hydrogenation experiment under the operating condition, temperature = 102.5°C, flow 

rate o f  hydrogen = 0.55 seem, and flow rate o f Argon = 0.55 seem.

The SAS software was again used to fit the data in Table 6.2 to the model Eqs.

(6.2)-(6.4) for different n values. Figures 6.4 to 6 . 6  show the observed values o f PPc/Base 

for Cg//,Q over time and the predicted values from Eqs. (6.2) to (6.4). It is clear that the 

predicted values give the best fit to the observed values when n = 1 (Fig. 6.4). The SSE 

(sum o f squared errors) o f 0.0162 is minimal for n = 1. The lack-of-fit was once more 

worse for higher n values. This result indicates that the m icrochannel behaves as one
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compartment, implying that the flow is well mixed and is time homogeneous. The 

estimated values for A, and p. were 0.0454/min and 0.2935 /M »m in, respectively.

Table 6.2: Cyclohexene hydrogenation experimental data, under the operating condition 
(temp = 102.5°C, flow rate o f H2 = 0.55 seem, and flow rate o f  Ar -  0.55 seem), used to 
estimate X, p, and n.

Time(min) CeHio ip.p/base Time(min) CeHio :p.p/base Time(min) CeHio :p.p/base
0 . 0 0 0 0 0.0626 21.3375 0.1296 42.6749 0.1393
0.6673 0.0404 22.0042 0.1242 43.3417 0.1417
1.3338 0.0699 22.6711 0.1368 44.0088 0.1320
2.0004 0.0903 23.3377 0.1276 44.6754 0.1378
2.6672 0.0859 24.0047 0.1271 45.3419 0.1364
3.3340 0.0903 24.6715 0.1378 46.0088 0.1252
4.0008 0.0815 25.3381 0.1504 46.6756 0.1533
4.6676 0.0985 26.0049 0.1368 47.3424 0.1475
5.3344 0.0951 26.6719 0.1378 48.0092 0.1349
6 . 0 0 1 2 0.0815 27.3387 0.1334 48.6759 0.1291
6.6681 0.1019 28.0056 0.1368 49.3426 0.1364
7.3351 0.1136 28.6722 0.1402 50.0094 0.1451
8 . 0 0 2 0 0.0888 29.3390 0.1271 50.6764 0.1301
8.6690 0.1126 30.0057 0.1388 51.3432 0.1339
9.3355 0.1145 30.6724 0.1252 52.0098 0.1446

1 0 . 0 0 2 1 0.1068 31.3392 0.1354 52.6766 0.1344
10.6687 0.1087 32.0062 0.1368 53.3437 0.1281
11.3355 0.1136 32.6730 0.1305 54.0105 0.1475
12.0025 0.1140 33.3396 0.1470 54.6771 0.1655
12.6692 0.1242 34.0066 0.1325 55.3438 0.1422
13.3359 0.1228 34.6737 0.1301 56.0106 0.1334
14.0026 0.1296 35.3407 0.1334 56.6774 0.1301
14.6694 0 . 1 1 2 1 36.0068 0.1398 57.3445 0.1529
15.3364 0.1315 36.6739 0.1354 58.0111 0.1373
16.0032 0.1432 37.3405 0.1291 58.6779 0.1461
16.6698 0.1368 38.0073 0.1373 59.3447 0.1373
17.3368 0.1368 38.6740 0.1325 60.0115 0.1432
18.0036 0.1368 39.3407 0.1548 60.6783 0.1393
18.6704 0.1271 40.0076 0.1291 61.3454 0.1364
19.3370 0.1237 40.6743 0.1490 62.0122 0.1373
20.0040 0.1063 41.3411 0.1436 62.6787 0.1378
20.6707 0.1179 42.0079 0.1339 63.3454

64.0122
0.1291
0.1213
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Figure 6.4 Plot o f  the observed PP/Base (for QiZ/o) and predicted value by fitting the
data in Table 6.2 to Eq. (6.2).
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Figure 6.5 Plot o f the observed PP/Base (for Q/Z/o) and predicted 
value by fitting the data in Table 6.2 to Eq. (6.3).
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Figure 6 . 6  Plot o f the observed PP/Base (for Cg/Z/o) and predicted value by fitting the
data in Table 6.2 to Eq. (6.4).

The reaction rate p is the rate at which reacts with hydrogen to give the

cyclohexane by-product. It is known that this rate is a function o f temperature, best 

described by the Arrhenius equation

M = k , e ^  . (6 .8 )

This relationship allows us to estimate the activation energy {E^) o f  the reaction from 

knowledge o f estimates o f p  at different temperatures. By solving the following system

M\ ~

El = K e
RTy

(6.9)
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the activation energy ( )  o f the cyclohexene hydrogenation reaction can be calculated

as

In

£ , = ------1 I (6 . 1 0 )
(— ^ + — )

RT, RT^

where = 8.314J/w o/*7Cand temperature has K as the unit. Applying the estimated 

values //, =0.0793/M »m in , =0.2935 / M»min , Ti=56.37“C, and T 2 = 1 0 2 .5 °C to Eq.

(6 . 1 0 ), the activation energy (£'^) o f the cyclohexene hydrogenation reaction is calculated 

to be 29195.22 J /  m o l . Using this value in Eq. (6 .8 ), the value for the cyclohexene 

hydrogenation reaction is 3368.14.

6.1.2 Cvclohexene Dehvdrogenation Reaction

In the case o f  the cyclohexene dehydrogenation experiment, the probability in Eq.

(3.11) is the same as that for the cyclohexene hydrogenation experiment. It is the 

conversion rate o f  Q77|q at time T for the case o f  an open flow involving and H2 .

The probability as a function o f time was compared to the observed Q // ,o  conversion,

from the cyclohexene dehydrogenation experiments, in order to estimate model 

parameters.

The data in Table 6.3 were used for estimating X, f i ,  and n for a cyclohexene 

dehydrogenation experiment under the operating condition, tem perature = 186.67°C, flow 

rate o f hydrogen = 0.28 seem, and flow rate o f Argon = 0.82 seem.
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Table 6.3: Cyclohexene dehydrogenation experimental data, under the operating 
condition (temp = 186.67°C, flow rate o f H2 =  0.28 seem, and flow rate o f  Ar = 0.82 
seem), used to estimate X, p, and n.

Tim e(m in)p.pe6 h 10/base Time(min) p.pe6 h 10/base Time(min) p.pe6 h 10/base
0 . 0 0 0 0 0.0130 26.0044 0.0446 52.0095 0.0442
0.6667 0.0152 26.6710 0.0519 52.6764 0.0384
1.3335 0.0130 27.3380 0.0340 53.3432 0.0464
1.9997 0.0145 28.0046 0.0497 54.0102 0.0464
2.6667 0.0219 28.6714 0.0439 54.6764 0.0584
3.3339 0.0161 29.3385 0.0504 55.3432 0.0533
4.0016 0.0238 30.0055 0.0464 56.0100 0.0453
4.6675 0.0256 30.6721 0.0475 56.6770 0.0544
5.3343 0.0166 31.3391 0.0432 57.3440 0.0508
6 . 0 0 1 1 0.0275 32.0058 0.0417 58.0114 0.0504
6.6682 0.0283 32.6723 0.0410 58.6770 0.0555
7.3357 0.0319 33.3391 0.0609 59.3438 0.0464
8 . 0 0 1 1 0.0176 34.0059 0.0457 60.0108 0.0395
8.6680 0.0343 34.6727 0.0435 60.6777 0.0508
9.3349 0 . 0 2 2 0 35.3397 0.0482 61.3447 0.0471

10.0015 0.0276 36.0066 0.0453 62.0115 0.0468
10.6695 0.0347 36.6729 0.0464 62.6785 0.0406
11.3351 0.0281 37.3404 0.0529 63.3447 0.0515
1 2 . 0 0 2 2 0.0388 38.0082 0.0471 64.0119 0.0584
12.6684 0.0360 38.6736 0.0446 64.6781 0.0537
13.3353 0.0304 39.3402 0.0511 65.3449 0.0493
14.0024 0.0326 40.0069 0.0504 66.0117 0.0435
14.6689 0.0403 40.6736 0.0424 66.6792 0.0421
15.3359 0.0406 41.3408 0.0479 67.3462 0.0569
16.0030 0.0435 42.0076 0.0573 68.0133 0.0519
16.6693 0.0370 42.6745 0.0410 68.6792 0.0558
17.3371 0.0417 43.3415 0.0457 69.3458 0.0558
18.0027 0.0345 44.0084 0.0544 70.0130 0.0490
18.6697 0.0428 44.6744 0.0475 70.6800 0.0504
19.3366 0.0515 45.3412 0.0421 71.3474 0.0526
20.0033 0.0381 46.0080 0.0508 72.0136 0.0475
20.6701 0.0522 46.6751 0.0606 72.6800 0.0511
21.3367 0.0334 47.3421 0.0584 73.3466 0.0504
22.0039 0.0388 48.0090 0.0573 74.0136 0.0363
22.6708 0.0442 48.6751 0.0555 74.6811 0.0439
23.3382 0.0439 49.3428 0.0617 75.3468 0.0551
24.0040 0.0428 50.0102 0.0519 76.0136 0.0617
24.6711 0.0580 50.6757 0.0439 76.6807 0.0457
25.3376 0.0526 51.3429 0.0457 77.3473 0.0573
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Figure 6.7 Plot o f the observed PP/Base (for CsHjo) and predicted value by fitting the
data in Table 6.3 to Eq. (6.2).
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Figure 6 . 8  Plot o f the observed PP/Base (for CeHio) and predicted value by fitting
the data in Table 6.3 to Eq. (6.3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

p p / b a s e

0 . 0 6  --

0 . 0 4  --

0 .02  - ■

O b s e r v e d  v s  t i m e .  S y m b o l  u s e d  I s  a ' .

P r e d i c t e d  v s  t i m e .  S y m b o l  u s e d  i s  ' p ' .  n = 3  S S E =  0 . 0 0 6 1 1

a  a

a  a a  a  a

a  a  a a  a  a  a  a a

a a a  a  a  a a a  a a a

a  a a  a a  a  a a  a  a  a  a a  a a  a

p p p p p p p p p p p p p p a a p p a p a a p a p p a p p a a p p p p p p a p p a p p a p p a p a a p p p p p p p p p p a p p p p a p p  

p p p a a  a a a a a a a a a a a  a a  a  a
a p p a a  a  

p p a  a  a  
a  a p a  a  a  a  

P  a  
a  a  p p a a  

a a  p a  

P
a  a  a p  a  

a a a  p 

P

P

P
0 . 0 0  -l-ppp

a a a a  a

a

10 20 3 0 4 0 5 0 6 0 7 0 8 0

Figure 6.9 Plot o f  the observed PP/Base (for Q /f/o ) and predicted value by fitting the
data in Table 6.3 to Eq. (6.4).
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Figure 6.10 Plot o f the observed PP/Base (for Q /f/o ) and predicted value by fitting the
data in Table 6.3 to Eq. (6.5).
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The SAS software was used to fit the data in Table 6.3 to the model Eqs. (6.2)-(6.4) for 

different n values. Figures 6.7 to 6.10 show the observed values o f PP/Base for Cg//,Q

over time and the predicted values from Eqs. (6.2) - (6.5). It is clear that the predicted 

values give the best fit to the observed values when n = 1 (Fig. 6.7). The SSE (sum of 

squared errors) o f 0.00434 is minimal for n = 1. The lack-of-fit was even worse for higher 

n values. This result indicates that the microchannel behaves as one compartment, 

implying that the flow is well mixed and is time homogeneous, in which case, each 

molecule in the reactor has the same exit intensity (or rate) X. The estimated values for X 

and p were 0.00506 /min and 0.0966/min, respectively.

The data in Table 6.4 were used for estimating A, /z and n for a cyclohexene 

dehydrogenation experiment under the operating condition, temperature = 353.33°C, flow 

rate o f  hydrogen = 0.28 seem, and flow rate o f Argon = 0.82 seem.

The SAS software was then used to fit the data in Table 6.4 to the model Eqs.

(6.2)-(6.4) for different n values. Figures 6.11 to 6.13 show the observed values o f 

PP/Base for over time and the predicted values from Eqs. (6.2) to (6.4). It is clear

that the predicted values give the best fit to the observed values when n = 1 (Fig. 6.11). 

The SSE (sum o f squared errors) o f 0.00539 is minimal for n = I. The lack-of-fit was 

worse for higher n values. This result indicates that the microchannel behaves as one 

compartment, implying that the flow is well mixed and is time homogeneous, in which 

case each molecule in the reactor has the same exit intensity (or rate) X. The estimated 

values for X and p were 0.00569 /min and 0.0996/min, respectively.
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Table 6.4: Cyclohexene dehydrogenation experimental data, under the operating 
condition (temp = 353.33°C, flow rate o f H2 = 0.28 seem, and flow rate o f Ar  = 0.82 
seem), used to estimate p, and n.

T im e(m in)C 6 Hio:p.p/base Tim e(m in)C 6 Hio:p.p/base Tim e(m in)C 6 Hio:p.p/base
0 . 0 0 0 0 0.0156 23.3384 0.0477 46.6755 0.0592
0 . 6 6 6 8 0.0225 24.0047 0.0432 47.3426 0.0505
1.3337 0.0323 24.6722 0.0509 48.0094 0.0592
2.0005 0.0284 25.3391 0.0550 48.6770 0.0573
2.6673 0.0264 26.0052 0.0566 49.3427 0.0566
3.3341 0.0279 26.6723 0.0518 50.0095 0.0576
4.0013 0.0243 27.3393 0.0397 50.6762 0.0614
4.6677 0.0267 28.0063 0.0502 51.3432 0.0422
5.3344 0.0276 28.6722 0.0473 52.0100 0.0528
6.0013 0.0296 29.3391 0.0438 52.6768 0.0477
6.6681 0.0293 30.0058 0.0553 53.3441 0.0454
7.3350 0.0333 30.6729 0.0473 54.0110 0.0637
8.0026 0.0365 31.3399 0.0378 54.6772 0.0486
8 . 6 6 8 8 0.0352 32.0067 0.0537 55.3440 0.0646
9.3365 0.0426 32.6736 0.0457 56.0114 0.0592

1 0 . 0 0 2 0 0.0249 33.3406 0.0438 56.6782 0.0566
10.6690 0.0339 34.0067 0.0528 57.3448 0.0595
11.3355 0.0400 34.6734 0.0515 58.0111 0.0573
12.0023 0.0336 35.3402 0.0515 58.6777 0.0496
12.6695 0.0429 36.0073 0.0528 59.3457 0.0627
13.3367 0.0358 36.6746 0.0454 60.0115 0.0525
14.0039 0.0346 37.3406 0.0553 60.6783 0.0518
14.6696 0.0416 38.0080 0.0470 61.3453 0.0515
15.3365 0.0330 38.6745 0.0585 62.0122 0.0521
16.0033 0.0336 39.3414 0.0493 62.6791 0.0569
16.6705 0.0384 40.0082 0.0566 63.3463 0.0537
17.3368 0.0309 40.6755 0.0563 64.0126 0.0560
18.0036 0.0509 41.3412 0.0630 64.6789 0.0585
18.6704 0.0461 42.0080 0.0512 65.3457 0.0534
19.3373 0.0438 42.6747 0.0483 66.0124 0.0710
20.0039 0.0448 43.3420 0.0461 66.6792 0.0531
20.6707 0.0585 44.0085 0.0582 67.3460 0.0573
21.3377 0.0422 44.6754 0.0547 68.0135 0.0592
22.0048 0.0413 45.3427 0.0528 68.6804 0.0576
22.6713 0.0515 46.0097 0.0499 69.3471 0.0617
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Figure 6.11 Plot o f the observed PP/Base (for CeHio) and predicted value by fitting the
data in Table 6.4 to Eq. (6.2).
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Figure 6.12 Plot o f  the observed PP/Base (for CoHw) and predicted value by fitting
the data in Table 6.4 to Eq. (6.3).
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Figure 6.13 Plot o f the observed PP/Base (for Q/Z/o) and predicted value by fitting the
data in Table 6.4 to Eq. (6.4).

The reaction rate p  for cyclohexene dehydrogenation reaction is the rate at which

Cshio reacts to give the benzene by-product. Appling the estimated value

= 0 .0966/m in , / / 2  = 0 .0 9 9 6 /m in , Ti=186.6TC, and T2= 3 5 3 .3 3 °C to Eq. (6.10), the

activation energy (£ ^ )  o f  the cyclohexene dehydrogenation reaction was calculated to be

439.5 J / m o l . Using this value in Eq. (6 .8 ), the value for the cyclohexene

dehydrogenation reaction is found to be 0.108.

6.1.3 Svn-Gas Experiment

In the case o f  the syn-gas experiment, the probability in Eq. (6.1) gives the 

conversion rate o f  CO  at time T for the case o f an open flow involving CO  and H2 . The
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probability as a function o f time was compared to observed CO  conversion from syn-gas 

experiments in order to estimate model parameters. From these parameters, we estimated 

the reaction rate (and hence the activation energy o f the reaction) and characterized the 

flow behavior from the residence time distribution.

The data in Table 6.5 were used for estimating A , ji and n for a Syn-gas

experiment under the operating condition, temperature = 250°C, total flow rate = 0.8

seem, and H2:C0  ratio = 3:1 (where the flow rate o f  H2 is 0.6 seem, and the flow rate o f

CO is 0.2 seem).

Table 6.5: Syn-gas experimental data used to estimate A, |x and n. 

time(min) CO:PP/Base time(min) CO:PP/Base time(m in) PPCQ/BaseCO
0 . 0 0 0 0 0.0363 14.6667 0.3579 29.3333 0.4888
0.6667 0.0531 15.3333 0.3351 30.0000 0.5213
1.3333 0.0436 16.0000 0.3819 30.6667 0.4912
2 . 0 0 0 0 0.0680 16.6667 0.2955 31.3333 0.4732
2.6667 0.1345 17.3333 0.2798 32.0000 0.4984
3.3333 0.1125 18.0000 0.3555 32.6667 0.4564
4.0000 0.1050 18.6667 0.3639 33.3333 0.4432
4.6667 0.1297 19.3333 0.3663 34.0000 0.5201
5.3333 0.1417 2 0 . 0 0 0 0 0.3423 34.6667 0.5068
6 . 0 0 0 0 0.1249 20.6667 0.3723 35.3333 0.4828
6.6667 0.1597 21.3333 0.4192 36.0000 0.4396
7.3333 0 . 2 2 2 2 2 2 . 0 0 0 0 0.4348 36.6667 0.5537
8 . 0 0 0 0 0.2270 22.6667 0.4396 37.3333 0.4864
8.6667 0.1850 23.3333 0.4192 38.0000 0.4936
9.3333 0.1525 24.0000 0.4108 38.6667 0.5141

1 0 . 0 0 0 0 0.2570 24.6667 0.4456 39.3333 0.5080
10.6667 0.2270 25.3333 0.4180 40.0000 0.5777
11.3333 0.2991 26.0000 0.4108 40.6667 0.4816
1 2 . 0 0 0 0 0.2402 26.6667 0.4204 41.3333 0.4492
12.6667 0.2606 27.3333 0.4768 42.0000 0.5333
13.3333 0.2750 28.0000 0.4432 42.6667 0.4912
14.0000 0.2883 28.6667 0.5261 43.3333 0.5297

The SAS software was used to fit the data in Table 6.5 to the model Eqs. (6.2)- 

(6.7) for different n values. Figures 6.14 to 6.19 show the observed values o f  PP/Base for
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in Table 6.5 to Eq. (6.2).
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Figure 6.16 Plot o f the observed PP/Base (for CO)  and predicted value by fitting the data
in Table 6.5 to Eq. (6.4).
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Figure 6.17 Plot o f the observed PP/Base (for CO) and predicted value by fitting the
data in Table 6.5 to Eq. (6.5).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

p p / b a s e O b s e r v e d  v s  t i m e . S y m b o l  u s e d  i s  ' s ' .

0 . 6  ■ P r e d i c t e d  v s  t i m e S y m b o l  u s e d  i s  ' p ' .  n = 5  S S E =  0 . 2 2 8 8

a a

a  a  a a a

a a a  a a a a  a  a

p  p p p  p p p  a p p  p p p  a p a  p p p  a p p P P P  p p a  PP P P

P PPP a a a  a a a a a  a  a a

0 . 4 P PP a  a
a  p a  a a  a  a

p p  a  a
a  p p a  a

a  p a  a  a
a a a  p a

0 . 2  ■ a PP
a a

a a  a a P
a a PP

a a PP
a a P P

0 . 0  ■■PP

1

PP P PP

1 1 1 1 1 1 1
1

0
1
5

1 1 1 
1 0  1 5  2 0

1 1 1 
2 5  3 0  3 5 4 0  4 5

t

Figure 6.18 Plot o f the observed PP/Base (for CO) and predicted value by fitting the data
in Table 6.5 to Eq. (6 .6 ).
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Figure 6.19 Plot o f  the observed PP/Base (for CO) and predicted value by fitting the
data in Table 6.5 to Eq. (6.7).
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CO  over time and the predicted values from Eqs. (6.2) to (6.7). It is clear that the 

predicted values give the best fit to the observed values when n = 1 (Fig. 6.14). The SSE 

(sum o f  squared errors) o f 0.0708 is minimal for n = 1. The lack-of-fit was worse for 

higher n values, not presented here. This result indicates again that the microchannel 

behaves as one compartment, implying that the flow is well m ixed and is time 

homogeneous, in which case each molecule in the reactor has the same exit intensity (or 

rate) The estimated values for X, and p were 0.0305/min and 0.0213/min, respectively.

The above analysis demonstrates how the model may be used to characterize the 

flow and kinetic o f  the chemical reaction. The inference obtained from such a model is o f 

course influenced by experimental conditions. In this case, for instance, one is not certain 

that the microreactor flow is well mixed, as represented by one compartment, without 

further experimentation. This is so since in the experimental setup, the volume o f the 

space between the exit to the microreactor and the mass spectrometer reading was large 

as compared to that o f the microreactor. As such, in fitting the model to the experimental 

data (measured by the mass spectrometer), one may be characterizing the flow in the exit 

stream (between microreactor and mass spectrometer) and not in the microreactor. 

Further data should be gathered at the exit to the microreactor in order to clarify this 

problem.

6.2 Stochastic M odeling: A Markov Chain Approach

6.2.1 Model Formulation

In this section, we extend the modeling approaches o f Too et al. [Too 1983] and
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Chou et al. [Chou 1988] to model cyclohexene hydrogenation and dehydrogenatlon 

reactions and the Fischer-Tropsch (F-T) synthesis reaction by considering the 

microreactor as composed o f  two phases, the solid phase and the flow or gas phase.

For the cyclohexene hydrogenation, the reaction scheme is

. (6 .11)

For the cyclohexene dehydrogenation, the reaction scheme is

^ ^ 4 + 2 4  . ( 6 . 1 2 )

Here, A^,A^,A^, and ̂ 4 represent cyclohexene (C g//,,,), hydrogen cyclohexane

(C g //|2 ), and benzene on the catalyst (solid phase), respectively. Let

,4,*, ytj* ,andyl/represent cyclohexene hydrogen ( / f j ) ’ cyclohexane

(C g //,2 ), and benzene in the gas phase, respectively. A:, is the rate constant for

the cyclohexene hydrogenation reaction, and k2 is the rate constant for the cyclohexene 

dehydrogenation reaction. Let «.(»7) ( /=  l,2 ,3 ,4 )b e  the number o f  m olecules o f type 

4  (/ = 1,2,3,4) in the m icroreactor at time m. The stochastic model o f  these reactions is 

then completely defined under the following assumptions.

(1) The probability that a molecule in state 4  at time m will be in state 4 c a u se d  

by the first reaction at time (w + 1 ) is

/»l3(ffj+ 1) = f ,« 2 («^) (6-13)

where
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(2) The probability that a molecule in state at time m will be in state and 

state caused by the second reaction at time (w + l) is

2 1
p,^{m + \) = -£^ \  + (6.15)

where

S2=kjl^t  (6.16)

(3) Any molecule o f ty p c 4 ( /  = 1,2,3,4) cannot exit from the microreactor unless 

it transfers to the gas phase 4 * (̂  ^ 1 ,2 ,3 ,4 ) . Thus, the probability that a 

molecule in state 4 (^  -  f  2 ,3 ,4 )a t time m will be in the absorbing state D  at 

time (w + 1 ) is

p „ (m  + l) = 0 (6.17)

(4) The probability that a molecule o f type A*{i  = 1,2,3,4) in the microreactor at

time m, will exit from it at tim e(m +l) is

p,^{m + \) = p  / = 1,2,3,4 (6.18)

(5) The probability that a molecule in state 4  at time m will be in state 4  caused

by the first reaction at time (m +l) is

Pj^{m + \) = e^n^{m) (6.19)

(6 ) Let a  be the adsorption rate, which is the probability that a gas type 

molecule 4 * (i = L 2 ,3 ,4) at time m will be in the solid phase 

state 4  (̂  = 1 , 2 ,3 ,4) at time (step) m + \ ,  and P  be the desorption rate, which
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is the probability that a solid type molecules A.(i = 1 ,2,3,4) at time m will be 

in gas phase state A*(/ = 1,2,3,4) at time m + l .

(7) Once a molecule enters state D  at time m, it will not be able to return to the 

microreactor. Therefore, the probability that a molecule in state D at time m 

will be in any state of  A (̂i = 1 , 2 ,3 ,4 ) and 4 * (? = 1 , 2 ,3 ,4 ) in the microreactor at 

time (m+l)  is

p j m  + l) = 0 / = l ,2 ,3 ,4 , r ,2 ‘ ,3*,4* (6.20)

and

p ,,(m  + l) = l (6 .2 1 )

Assumptions (l)-(3 ) and (6 ), (7) imply that the probability for a molecule o f  type 4  to 

remain in the same state during the transition is

p, i(m + l) = 1 - j0 - £ 2 - e , n 2 ( m ) . (6 .22)

Similarly, assumptions (5), (6 ), (7), and (8 ) imply that

P22(fn + l) = l - /0 -S jn j ( fn )  (6.23)

/?3 3 (m + l) = /?4 4 (m + l) = l - / ?  (6.24)

p,.[. (m + l) = P 2»2* (/« +1) = Py-i* (m + \ ) ^  P 4 .4 . (m +1) = 1 -  a  -  (6.25)

Therefore, the transition probability matrix for the cyclohexene hydrogenation

and dehydrogenation in a CSTR can be expressed as
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P(m + 1) =

A A A A A A A A D

A P-E^n^{m)

-£i
2 /3 f j f,«2(w) l /3 f j P 0 0 0

N
0

A 0 f,H,(m) 0 0 P 0 0 0

A 0 0 \ - p 0 0 0 p 0 0

A 0 0 0 \ - p 0 0 0 p 0

A' a 0 0 0 \ - a - p 0 0 0 p
A' 0 a 0 0 0 \ - a - p 0 0 p
A' 0 0 a 0 0 0 \ - a - p 0 p

A' 0 0 0 a 0 0 0 \ - a - p p
D V 0 0 0

(6.26)
0 0 0 0 0 h

jU = — A t.
V

(6.27)

and

(w + 1) = ^  rij (m)Pj! {m + \) + x, {m + 1), / = 1 , 2 ,3 ,4; w = 0 , 1 , 2 ... (6.28)
j

where is expressed per (tim e)'’(m olecule)'', is per (tim e)'', and x,(/w + l) is the 

number o f molecules o f type entering the microreactor in the time interval (m,m + \ ) .

Similarly, applying the same modeling approach to the following preferential 

oxidation for carbon monoxide in hydrogen fuel cell experiments

2 y 4 | +  Aj  ■ ->2 A

2A,+A,—^ 2 A , ,

occu rrin g  in a C S T R , o n e  ob ta in s the tran sition  p rob ab ility  m atrix

(6.29)

Let q be the volumetric flow rate o f the feed and out-flow stream and V be the volume of 

the microreactor. Because the microreactor is completely mixed, we have
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P(m+1) =

4 A A A A 4* K 4* K 4 ’ D

4 ' \ -  P-e^nAm) 0 sMm) 0 0 P 0 0 0 0 O'

A
0

\-p-e^i\{m)
-e^nAm)

0 ê nAm) 0 P 0 0 0 0

A 0 0 \ -p 0 0 0 0 P 0 0 0
A 0 0 0 l-P-s^n^im) 0 0 0 P 0 0
A 0 0 0 0 \ -p 0 0 0 0 P 0
4* a 0 0 0 0 \-a~n 0 0 0 0 t ‘
A’ 0 a 0 0 0 0 \ - a -n 0 0 0 P-
A' 0 0 a 0 0 0 0 l - a - / / 0 0

A' 0 0 0 a 0 0 0 0 X-a-jj 0 H
4* 0 0 0 0 a 0 0 0 0 X-a-fj
D 0 0 0 0

(6.30)
0 0 0 0 0 0 ij

where A,, A2 ,A^, A ,̂ a n d ^ 5  represent carbon monoxide, oxygen, carbon dioxide,

hydrogen, and water in the solid phase, respectively, and A*(i = r,2*,3*,4*,5*) represents

carbon monoxide, oxygen, carbon dioxide, hydrogen, and water in the gas phase.

Here,

s .=k^At i = l ,2 .  (6.31)

Thus, the number o f molecules o f type A.(i = 1,2,...,5) in the CSTR can be obtained by

iterating the following sequence.

5

«,(w + l) = '^kn^(m)pj i(m + \) + x^{m + i) i = 1,2,...,5; m = 0,1,2,...
j=i (6.32)

k - \ o r 2  depending on the initial state.

Next, we extend the modeling approach o f  Chou et al. [Chou 1988] to model 

cyclohexene hydrogenation and dehydrogenation reactions and the preferential oxidation 

o f carbon m onoxide in hydrogen fuel cell experiments in a m icroreactor. Both reaction 

systems are completely mixed and contain initially « ,(0 )molecules o f  type A.. Let the 

number o f  molecules o f this type entering the m icroreactor during the time interval
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[mM,{m + \)At] be x, (w ), and the intensity o f each molecule o f  any type exiting from it 

at any time be ju .

Therefore, for the cyclohexene hydrogenation and dehydrogenation reaction 

system in Eq. (6.11), the transition probability matrix in Eq. (6.27) with (m) “entities” 

at level i, i.e., n, (w) molecules o f type 4  existing in the reactor at time m A t , is 

expressed as

P(m,m+l) =

4 4 4 4* 4 ‘ 4 ‘ D

4 '\-pA t
"Szlst

-£i«2(m)At
f,«2(m)At ê At pAt 0 0 0

4 0 0 0 pAt 0 0

4 0 0 l-jUSt 0 0 PAt 0

4* oAt 0 0 \-o A t-p A t 0 0 pAt

4* 0 oAt 0 0 \-oA t-pAit 0 pAt

4 ' 0 0 oAt 0 0 \-a A t-p A t pAt
D 0 0 0 0 0 0 1 .

(6.33)

Thus, we have

E[Nj  (w +1) 1 (m) = n, (m), (m) = x, (m), / = 1,3,4, T , 3*, 4* ]

= J ] nXm)p,j{m,m + l) + Xj{m + \), ;  =1,3,4,1*,3*,4*.
'=1,3,4 

I* .3* ,4*

(6.34)

Provided that n,(w) molecules o f type 4 ( '  = 1,3,4,1*,3*,4*) exist inside the microreactor 

at time mAt  and Xj (m +1) molecules o f type 4  ®nter the m icroreactor during the time 

interval [mAt, (m + l) At], the conditional mean number o f  chemical species 4  inside the 

microreactor at time (m + l)At is obtained through the stoichiometric constraint as

E\A!  ̂(m +1) I N, (m) = «.(m), X, (m) = x, (m), / = 1,3,4,1*, 3*, 4* ]

= n2{m)(\-pAt)-n^{m)p^^{m,m + \) + 2n^{m)p^^{m,m + \) + n j { m ) a A t ,
(6.35)
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and

E[N^. (m + \)\ Ni (m) = (m), (m) = x, (m), / = 1,3,4,1*, 3*, 4* ]

= ('w)O “  ocAt -  juAt) + « 2  (w) fiAt + x̂ . ( m ) .
(6.36)

Since the microreactor initially contains /r, (0) m olecules o f  ty p e4 (^ '=  U 3 ,4 ,r,3* ,4* ), 

where riy(0) = n îO) = n^(0) = 0,  the mean number o f molecules o f  any type 4 1 *̂ the 

CSTR at time (m + l)At can be obtained by iterating the sequence in Eqs. (6.33)-(6.35).

Applying the same method to the preferential oxidation o f  carbon monoxide in 

hydrogen fuel cell experiments in a microreactor, the transition probability matrix in Eq. 

(6.29) with « .('” ) “®*itities” at level i, i.e., «,(w) molecules o f type 4  existing in the 

reactor at time m A t , is expressed as

P(«,/M  +  l) =

4 4 4 4 ‘ 4 ' 4 ' D

4 ' \ -  PAt-£^n^{m)ht 
-£^n^(m)At

£̂ n̂ {m)At £.̂ n̂ (m)At PtAt 0 0 0

4 0 0 0 PAt 0 0

4 0 0 l-fiA t 0 0 pAt 0

4 ‘ oAt 0 0 \-o A t-p A t 0 0 pAt

4* 0 oAt 0 0 \-a A t-p A l 0 pM

4 ’ 0 0 aAt 0 0 \-o A t-p A t pAt
D 0 0 0 0 0 0 1

(6.37)

Thus, we have

E[N^ (m + \ ) \N .  (m) = (m), X, (m) = (m), i -  2 ,3,5,2*, 3*, 5* ]

(6.38)= ^  kn^{m)p^j(m,m + l) + Xj(m), y = 2,3,5,2*,3‘,5 ’ ;
'=2,3,5

2’ ,3‘ ,5'

k = \ o r  2 depending on the initial state.

Provided that «,(m) molecules o f type 4 0  = 2,3,5,2*,3*,5*) exist inside the m icroreactor 

at time mAt and x^w ) molecules o f type 4  s'lter the m icroreactor during the time
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interval [wA^,(w + l)A /], the conditional mean number o f  chemical species Â . inside the 

microreactor at time (m + l)At is obtained through the stoichiometric constraint as

(6.39)
E[N^.(m + l) I N^(m) = n^(m),X/(m) = = 2 ,3 ,5 ,2 *,3*,5*]

= (m)(l -  crAt -  //At) + (m)

Similarly, for chemical species A^., A^, and Â  we have

E{N^. (m +1) 1Â , (m) = n, (m), X, (m) = x, (m), i = 2,3,5,2*, 3*, 5* ] 

= n̂ . (m)(l -  aXt -  juAt) + x .̂ (m)

E[N, (m +1) I X, (m) = «, (m), X, (m) = x, (m), / = 2 ,3 ,5 ,2 ’ , 3*, 5*] 

= «, (m)(l -  j3At) -  2 « 2  (/«) / ? 2 3  w +1) + «,* {m)aAt

(6.40)

(6.41)

and

E[N^ (m +1) 1X, (m) = (m), X, (m) = x, (m), i = 2,3,5,2*, 3*, 5* ] 

-- (m)(l -  /3At) -  ( m ) ( m ,  m +1) + «4* {m)aAt
(6.42)

Since the m icroreactor initially contains «,.(0)molecules o f ty p e4 (^ ’= 2,3,5,2*,3*,5*), 

where n2 {Q) = n̂ {Qi) = n^{0) = Q, the mean number o f  molecules o f  any type Â 'm the 

CSTR at time (m + l)At can be obtained by iterating the sequence in Eqs. (6.37)-(6.41).

6.2.2 Markov Chain Simulation Results

Cyclohexene hydrogenation and dehydrogenation reactions are simulated in terms 

o f temporal variation o f  concentrations o f the reactants and products. As an example, we 

considered three situations { { a  -  P  -  k, a  P  = QAk, a  = P  -  lOA:). The results obtained 

with the present approach (with At =0.1 min) are presented in Figs (6.20) -  (6.26).

Coefficients used in the simulation o f results in Figs (6.20)-(6.26) are presented in 

Table 6 .6 .
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Table 6 . 6  Coefficients used in the simulation o f  results in Figs. (6.20)-(6.26).

coefficients Figs (6.20)-(6.22) Figs (6.23-6.26)* * * *
E/Ort=l ,1 ,3 A ) 0 0

C ;7(M ) 0.00304 0.008064
c / 4 M) 0.00218 0.0062
Q  KM ) 0 0

q V m ) 0 0

<7 (L/min) 0 . 0 0 0 1 1 0 . 0 0 0 1 1

F (L ) 4.01 4.01
kj* (/M • min) 0.0793 0

^2 *(/min) 0 0.0966
No 6 .0 2 x 1 0 ” 6 .0 2 x 1 0 ”
At (min) 1 1

In this table, C,o represents the initial molar concentration o f chemical species 4  the 

microreactor, C,/ represents molar concentration o f chemical species 4  the feed 

stream, q is the volumetric flow rate, V is the volume o f the reacting mixture in the 

microreactor, k* is the reaction rate constant, and No is the Avogadro number. Because 

the cyclohexene hydrogenation reaction is a second-order reaction, the value o f k\ in Eq. 

(6 .11) is obtained by dividing k\ by the product o f the volume o f  the reacting mixture, V, 

and the Avogadro number. No- ki in Eq. (6.12) is equal to k2 as the cyclohexene 

dehydrogenation is a first-order reaction.

Figures (6.20)-(6.22) present the simulation results o f  the cyclohexene 

hydrogenation reaction for different values o f the absorption ( a  ) and desorption { P )  

rates. There are six different lines in every plot. Form top to bottom, in Fig. (6.20), these 

six lines present the m olar concentration o f ^ * . A*, A ,̂ Â , A ,̂ and A^ in a microreactor, 

respectively. In Fig (6.21) and Fig (6.22), the six lines represent the m olar concentration 

of4*> 4 * ’ 4> 4 ’ A* in a microreactor, respectively. The m olar concentration o f
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cyclohexene ( A *) is almost the same in these three plots. The concentration difference 

between the solid phase (A.)  and the gas phase (A.')  o f  a chemical species decreases with

an increase in the absorption rate and the desorption rate. As expected, the molar 

concentration o f any species increases with time until it reaches steady state.

c
0>uco
o

1.00E-02
1.00E-04
1.00E-06
i.OOE-08
1.00E-10
1.00E-12
1.00E-14
1.00E-16
1.00E-18
1.00E-20

50 100 150 200 250

Time (min)
300 350 400

Figure 6.20 Temporal variations o f concentrations o f  the reactants and products as 
functions o f time for the cyclohexene hydrogenation reaction in a m icroreactor with 

initial condition C,o=0, (/=1 , 2 , 3 , 4 ) ,  and a  = = OAk,.

1.00E-03

1.00E-05

1,00E-07

« 1.00E-0

o>ocoo

1.00E-11

1.00E-1

1.00E-15

1.00E-
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■Cl
-02
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■ 01 *

■ 02 *
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Figure 6.21 Temporal variations o f  concentrations o f  the reactants and products as 
functions o f  time for the cyclohexene hydrogenation reaction in a m icroreactor with

 ̂ S|C 4̂
initial condition C,o=0, (/=1 , 2 , 3 , 4 ) ,  and a  = P  = k̂ .
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Figure 6.22 Temporal variations o f  concentrations o f  the reactants and products as 
functions o f  time for the cyclohexene hydrogenation reaction in a microreactor with

initial condition Cio=0, (/=! , 2*, 3 , 4*), and a  = P  = \Qk .̂

Figures (6.23)-(6.25) present the simulation results o f  the cyclohexene 

dehydrogenation reaction for different values o f absorption { a )  and desorption (yff) 

rates. From top to bottom, in Fig. (6.23), the six lines represent the molar concentration 

ofA 2*,A,*,A2 ,Ai ,A^,  and A /  in a microreactor, respectively. In Fig. (6.24) and Fig.

(6.25), the six lines present the molar concentration ofA^*, A ,̂ A*, A^,A^, and A /  in a 

microreactor, respectively. From these three figures, the concentration difference between 

the solid phase ( 4 )  and the gas phase (A*)  o f  a chemical species decreased with an 

increase in the values o f the absorption and desorption rates. The m olar concentration o f 

cyclohexene ( A *) also decreased with an increase in the absorption and the desorption 

rates.
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Figure 6.23 Temporal variations o f  concentrations o f  the reactants and products as 
functions o f time for the cyclohexene dehydrogenation reaction in a m icroreactor with 

initial condition C,o=0, (/=1 , 2 , 3  , 4 ), and a - P - 0 . \ k 2 .
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Figure 6.24 Temporal variations o f  concentrations o f  the reactants and products as 
functions o f time for the cyclohexene dehydrogenation reaction in a m icroreactor with 

initial condition C,o=0, (/=1 , 2 , 3  , 4 ), and a  = J3 = k2 .
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Figure 6.25 Temporal variations o f  concentrations o f  the reactants and products as 
functions o f time for the cyclohexene dehydrogenation reaction in a m icroreactor with 

initial condition C,o=0, (/=1 , 2 , 3 , 4*), and a  = /3 = \Qk2 -

Figure (6.26) shows temporal variation o f concentrations o f  the reactants and 

products as functions o f time for the cyclohexene dehydrogenation reaction in the exit 

stream o f a microreactor with initial condition C,o=0, (/-I* , 2*, 3*, 4*) and 

a  = P  = The three lines are the molar concentration o f , A[ , and A ^ .

1 .OOE-06

1 .OOE-07

“  1.00E-08
 Cl*
 0 2 *

 04*

■■5 1 .OOE-09 -

c  1.00E-10

= 1.00E-11

1.00E-12

1.00E-13
1 0 0 200

Time(min)

300 400

Figure 6.26 Temporal variations o f concentrations o f the reactants and products as 
functions o f time for the cyclohexene dehydrogenation reaction in the exit stream o f a 

microreactor with initial condition C,o=0, (/=1 , 2 , 3 , 4 ) ,  and a  = =
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By considering the number o f molecules in the exit stream with and without a 

catalyst, one may calculate the conversion rate. For instance, if we let n^{t) represent the 

predicted number o f  molecules o f  cyclohexene in the exit stream with a catalyst (or 

reaction) and n^g{t) the predicted number o f molecules without a catalyst (no reaction), 

then the conversion rate {CR) is

CR = (6.43)
Koit)

Based on Eq. (6.43), the conversion rate (for a  = f3 = k2 =0.0966/min) was 0.94 

which is in qualitative agreement with the experimental results used to estimate the 

reaction rate, , utilized in the simulation.

In reality, one may estimate the parameters { a , p , k ) o i the M arkov chain model 

by fitting Eq. (6.43) to observed experimental data.
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CHAPTER SEVEN

CONCLUSIONS AND FUTURE STUDIES

7.1 Conclusions

In this study, the box central composite design in conjunction with response 

surface methodology was used in order to determine the levels o f the parameters o f the 

chemical reactions that maximized reactant conversion and desired product selectivity for 

cyclohexene hydrogenation and dehydrogenation reactions, preferential oxidation o f 

carbon monoxide reactions, and the Fischer-Tropsch synthesis reaction.

For cyclohexene hydrogenation and dehydrogenation reactions, the analysis 

showed that the response surface for conversion o f  C^T/io was planar in both

hydrogenation and dehydrogenation reactions. The conversion rate o f Q // ,q  is up to 

93.6% in the hydrogenation reaction and 96.4% in the dehydrogenation reaction. For the 

preferential oxidation o f carbon monoxide reactions, a temperature, C O : Oj ratio, and 

total flow rate combination o f  175.9°C, 1.31, and 0.2 seem, respectively, was found to 

give the highest CO conversion (94%) and COj selectivity (88%). For the Fischer- 

Tropsch synthesis reaction, a temperature, : CO  ratio, and total flow rate combination 

o f 218.2°C, 4.51, and 0.6 seem, respectively, was found to give the highest propane

103
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selectivity (88.25%). This study demonstrates how experimental design and response 

surface methodology can be used to efficiently optimize a process.

The probability modeling approach was applied to the cyclohexene hydrogenation 

and dehydrogenation experiments and to the Fischer-Tropsch synthesis experiment. 

Results from this approach indicate that the microchannel behaves as one compartment, 

implying that the flow is well mixed and is time homogeneous, in which case each 

molecule in the reactor has the same exit intensity (or rate) X.

For the cyclohexene hydrogenation reaction, the estimated values for X and p 

were 0.0252/min and 0.0793/M »m in, respectively, for the case where temperature = 

56.37°C, flow rate o f hydrogen = 0.28 seem, and flow rate o f argon = 0.82 seem. Also, 

the estimated values for X and p were 0.0454/min and 0.2935/M*min for the case where 

temperature = 102.5°C, flow rate o f hydrogen = 0.55 seem, and flow rate o f  argon = 0.55

seem. The activation energy (£ ^ )  o f the cyclohexene hydrogenation reaction is calculated

to be 29195.22 J / mol, and the reaction constant for the cyclohexene hydrogenation

reaction is found to be 3368.14.

For the cyclohexene dehydrogenation reaction, the estimated values for X and p 

were 0.00506 /min and 0.0966/min, respectively, under the operating condition o f 

temperature = 186.67°C, flow rate o f hydrogen = 0.28sccm, and flow rate o f  argon = 0.82

seem. The estimated values for X and p were 0.00569/min and 0.0996/min, respectively 

under the eondition that temperature = 353.33°C, flow rate o f hydrogen = 0.28 seem, and

flow rate o f argon = 0.82 seem. The activation energy (E^) o f  the cyclohexene
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dehydrogenation reaction is found to be A39.5J I mol, and the reaction constant for

the cyclohexene dehydrogenation reaction is 0.108.

For the Fischer-Tropsch synthesis reaction, the estimated values for X and p were 

0.0305/min and 0.0213/min, respectively when the temperature = 250°C, total flow rate =

0. 8  seem, and .C O  ratio = 3:1 (where flow rate o f H2 is 0.6 seem, and flow rate o f

CO is 0.2 seem).

In this study, a Markov chain approach was applied also to model cylohexene 

hydrogenation and dehydrogenation reactions and preferential oxidation o f carbon 

monoxide in fuel cell reaction by considering the microreactor as composed o f two 

phases, the solid phase and the flow or gas phase. Simulation results were in qualitative 

agreement with experimental results.

7.2 Future Studies

In future work, a Fischer-Tropsch synthesis reaction experiment needs to be run at 

a temperature, Hj '.CO ratio, and total flow rate combination o f 218.2°C, 4.51, and 0.6

seem to verify the predicted maxima from the quadratic model for propane selectivity. 

Furthermore, it would be useful to extend the Markov chain approach in order to predict 

the conversion rate for the Fischer-Tropsch synthesis reaction involving adsorption, 

surface reaction, desorption, and exit from the reactor, as well as shed light on the nature 

o f  the catalytic reaction scheme for each o f  the three reactions that were studied.
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In addition, it would be useful to investigate an inverse problem solution to Eqs. 

(5.1)-(5.5) in order to predict the number o f  molecules o f  different chemical species from 

partial pressures.
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107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

1 . 2 "‘*-order regression model for base level partial pressure o f  Cehe, CeHio, CeHii, H2 , 
and He.

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
DATA ONE;
INPUT RUNNUM T N I N2 N3 PC6H6; 
XT'~T'*T'’
N I1=N I*N I;
N22=N2*N2 
N33=N3*N3 
TN1=T*NI 
TN2=T*N2 
TN3=T*N3 
NI2=NI*N2  
NI3=NI*N3  
N23=N2*N3 
CARDS;
(DATA)

PROC PRINT;
PROC REG;
M ODELPC6H6=TNI N2 N3 TT N11 N22 N33 TNI TN2 TN3 N I2 NI3 N 23/P  R CLM CLI COVB; 
PROC REG;
MODEL PC6H6=N2 N3 N22 TN3 N I2 N23/P R CLM CLI COVB ;
PROC REG;
MODEL PC6H6=N3 TNI N23/P R CLM CLI COVB;

2. Analysis o f the cyclohexene hydrogenation reaction

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
DATA ONE;
INPUT RUNNUM T FI F2 CONC6HIO;
CARDS;

3 56.36904762 0.817857143 0.282142857 0.88535443
6 148.6309524 0.282142857 0.8I7857I43 0.87063744
I 56.36904762 0.282142857 0.282142857 0.907I52I9

11 102.5 0.55 0.55 0.85997697
5 148.6309524 0.282142857 0.282142857 0.9229I7I8
9 102.5 0.55 0.55 0.86028578
2 56.36904762 0.282142857 0.8I7857I43 0.74531682
7 148.6309524 0.8I7857I43 0.282142857 0.8558649
4 56.36904762 0.8I7857I43 0.817857143 0.74723613

10 102.5 0.55 0.55 0.82075817
8 148.6309524 0.8I7857I43 0.817857143 0.82634915

12 102.5 0.55 0.55 0.82371392
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PROC PRINT;
PROC REG;
MODEL CONC6H10= F2/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR STUDENT=SR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/12;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+’;
PLOT RS * YHAT='*';
PLOT RS * RUNNUM='+’;
DATA THREE;
INPUT XCONC6H10;
CARDS;
1 0.885354432
2 0.87063744
3 0.907I52I92  
9 0.859976972
4 0.9229I7I8I 
9 0.860285781
5 0.745316821
6 0.8558649
7 0.747236128 
9 0.820758171
8 0.826349148
9 0.823713919

PROC GLM;
CLASSES X;
MODEL CONC6HIO = X;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'LINEA PART OF LOWER TEMP RANGE';
DATA ONE;
INPUT RUNNUM T FI F2 CONC6HIO;
CARDS;
I 170 0.39 0.39 0.926348106
2 170 0.17 0.39 0.929566169
3 150 0.28 0.28 0.911149205
4 130 0.17 0.17 0.931023059
5 150 0.28 0.28 0.910726681
6 150 0.28 0.28 0.911994254
7 130 0.39 0.17 0.926500356
8 150 0.28 0.28 0.935456417
9 130 0.39 0.39 0.933056903
10 170 0.17 0.17 0.9I8004I34
II 130 0.17 0.39 0.934319893
12 170 0.39 0.17 0.922954682
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PROC PRINT;
RUN;
PROC REG;
MODEL CONC6H10= T FI F2/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR STUDENT=SR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/12;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PLOT RS * RUNNUM=’+’;
RUN;
DATA THREE;
INPUT X CONC6HIO;
CARDS;
I 0.926348106
2 0.929566169
3 0.931023059
4 0.926500356
5 0.933056903
6 0.9I8004I34
7 0.934319893
8 0.922954682
9 0.911149205
9 0.910726681
9 0.911994254
9 0.935456417

PROC GLM;
CLASSES X;
MODEL CONC6HIO = X;
RUN;

3. Analysis o f the cyclohexene dehydrogenation reaction

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'LINEA PART OF HIGH TEMP RANGE 11403(REPEAT2)'; 
DATA ONE;
INPUT RUNNUM T FI F2 CONC6H10;
CARDS;
1 353.3333333 0.817857143 0.282142857 0.939960525
2 186.6666667 0.817857143 0.282142857 0.930450179
3 270 0.55 0.55 0.957027883
4 186.6666667 0.282142857 0.282142857 0.936934111
5 270 0.55 0.55 0.95648972
6 353.3333333 0.282142857 0.282142857 0.941705278
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7 186.6666667 0.282142857 0.817857143 0.962133026
8 353.3333333 0.817857143 0.817857143 0.9631623
9 270 0.55 0.55 0.954927834
10 353.3333333 0.282142857 0.8I7857I43 0.963650324
II 186.6666667 0.8I7857I43 0.8I7857I43 0.942565541
12 270 0.55 0,55 0.953005823

PROC PRINT;
RUN;
PROC REG;
MODEL CONC6H10= T FI F2/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR STUDENT=SR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS; 
l=(RR-0.5)/12;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS ♦ PRO 
PLOT RS * YHAT='*';
PLOT RS * RUNNUM=’+';
RUN;
DATA THREE;
INPUT X CONC6H10;
CARDS;
1 0.936934111
2 0.962133026
3 0.930450179
4 0.942565541
5 0.941705278
6 0.963650324
7 0.939960525
8 0.9631623
9 0.953005823
9 0.957027883
9 0.954927834
9 0.95648972

PROC GLM;
CLASSES X;
MODEL CONC6H10 = X; 
RUN;

4. Randomization

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
DATA DESIGN;
INPUT TREATMENT @@; 
RANNO=RANUNI(0);
LINES;
1 2 3  4 5  6 7  8 9  10 II 12 13 14 15 16 17 18
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PROC PRINT; 
RUN;
PROC SORT; 
BY RANNO; 
RUN;
PROC PRINT; 
RUN;

5. Analysis o f the Fuel Cell reaction

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE T ST ORDER MODEL OF CO CONVERTION USING PURE 02';
DATA ONE;
INPUT RUNNUM XI X2 X3 Y;
/* XI IS TEMPERATURE, X2 IS THE C 0 :0 2  RATIO, X3 IS THE TOTAL FLOW RATE 
AND Y IS THE CONVERTION OF CO
*1
CARDS;
13 140.24 I.Ol 0.36 0.5956
18 140.24 I.Ol 0.84 0.3749
7 140.24 3.24 0.36 0.5346
2 140.24 3.24 0.84 0.3712
14 199.76 I.Ol 0.36 0.5765
8 199.76 I.Ol 0.84 0.3186
5 199.76 3.24 0.36 0.5068
11 199.76 3.24 0.84 0.3667
I 170.00 2.13 0.60 0.4010
16 170.00 2.13 0.60 0.3901
6 170.00 2.13 0.60 0.3923
9 170.00 2.13 0.60 0.4410

PROC PRINT; 
PROC GLM;
CLASS XI X2 X3;
MODEL Y=XI X2 X3;
PROC REG;
MODEL Y= XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/12;
PRO=PROBIT(I):
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PLOT RS * RUNNUM='+';
DATA THREE;
INPUT X Y;
CARDS;
I 0.5956
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2 0.3749
3 0.5346
4 0.3712
5 0.5765
6 0.3186
7 0.5068
8 0.3667
9 0.4010
9 0.3901
9 0.3923
9 0.4410

PROC GLM;
CLASSES X;
MODEL Y = X;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE T ST ORDER MODEL OF C 02 SELECTIVITY USING PURE 0 2  (FUELCELL)'; 
DATA ONE;
INPUT RUNNUM XI X2 X3 Y;
/* XI IS TEMPERATURE, X2 IS THE C 0 :0 2  RATIO, X3 IS THE TOTAL FLOW RATE 
AND Y IS THE SELECTIVITY OF C02.
*/

CARDS;
13 140.24 1.01 0.36 0.7265
18 140.24 l.OI 0.84 0.3383
7 140.24 3.24 0.36 0.8569
2 140.24 3.24 0.84 0.5113
14 199.76 I.Ol 0.36 0.7477
8 199.76 I.Ol 0.84 0.3272
5 199.76 3.24 0.36 0.6348
11 199.76 3.24 0.84 0.4406
1 170.00 2.13 0.60 0.5338
16 170.00 2.13 0.60 0.3862
6 170.00 2.13 0.60 0.5594
9 170.00 2.13 0.60 0.4680
19 158.13 1.77 0.21

PROC PRINT; 
PROC REG;
MODEL Y= XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/I2;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS YHAT="^';
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PLOT RS * RUNNUM='+'; 
DATA THREE;
INPUT X Y;
CARDS;
I 0.7265
2 0.3383
3 0.8569
4 0.5113
5 0.7477
6 0.3272
7 0.6348
8 0.4406
9 0.5338
9 0.3862
9 0.5594
9 0.4680

PROC GLM;
CLASSES X;
MODEL Y = X;
RUN;

// EXEC SAS 
//SAS.SYSIN DD ♦
OPTIONS NOCENTER;
TITLE 'AGURMENT FUELCELL EXPRIMENT (PURE 0 2  42303) CO CONVERSION'; 
DATA ONE;
INPUT RUNNUM XI X2 X3 Y;
/* XI IS THE TEMPERATURE, X2 IS THE C 0;02  RATIO, X3 IS 
THE TOTAL FLOW RATE. Y IS THE CONVERSION OF THE CO.
*/
XI1=X1*X1 
X22=X2'^X2 
X33=X3*X3 
X12=XI*X2 
X13=X1*X3 
X23=X2*X3 
CARDS;
13 140.24 1.01 0.36 0.5956
18 140.24 1.01 0.84 0.3749
7 140.24 3.24 0.36 0.5346
2 140.24 3.24 0.84 0.3712
14 199.76 1.01 0.36 0.5765
8 199.76 1.01 0.84 0.3186
5 199.76 3.24 0.36 0.5068
11 199.76 3.24 0.84 0.3667
1 170.00 2.13 0.60 0.4010
16 170.00 2.13 0.60 0.3901
6 170.00 2.13 0.60 0.3923
9 170.00 2.13 0.60 0.4410
12 120.00 2.13 0.60 0.4735
3 220 2.125 0.6 0.4225
4 170.00 0.25 0.60 0.4226
10 170.00 4.00 0.60 0.4512
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15 170.00 2.13 0.20 0.7017
17 170.00 2.13 1.00 0.3375
19 158.13 1.77 0.21

PROC PRINT;
PROC REG;
MODEL Y=X1 X2 X3 X I 1 X22 X33 X12 X13 X23/P R;
PROC RSREG;
MODEL Y=X1 X2 X3/LACKF1T;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF C 02 SELECTIVITY USING PURE 02(FUELCELL)'; 
DATA ONE;
INPUT RUNNUM XI X2 X3 Y;
/* XI IS TEMPERATURE, X2 IS THE C 0:02  RATIO, X3 IS THE TOTAL FLOW RATE 
AND Y IS THE SELECTIVITY OF C 02.
*/
CARDS;
13 140.24 1.01 0.36 0.7265
18 140.24 1.01 0.84 0.3383
7 140.24 3.24 0.36 0.8569
2 140.24 3.24 0.84 0.5113
14 199.76 1.01 0.36 0.7477
8 199.76 1.01 0.84 0.3272
5 199.76 3.24 0.36 0.6348
11 199.76 3.24 0.84 0.4406
1 170.00 2.13 0.60 0.5338
16 170.00 2.13 0.60 0.3862
6 170.00 2.13 0.60 0.5594
9 170.00 2.13 0.60 0.4680
19 158.13 1.77 0.21

PROC PRINT;
PROC REG;
MODEL Y= XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/12;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PLOT RS * RUNNUM='+';
DATA THREE;
INPUT X Y;
CARDS;
1 0.7265
2 0.3383
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3 0.8569
4 0.5II3
5 0.7477
6 0.3272
7 0.6348
8 0.4406
9 0.5338
9 0.3862
9 0.5594
9 0.4680

PROC GLM; 
CLASSES X; 
MODEL Y = X; 
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF CO CONVERTION USING PURE 0 2  USING EXPERIMENT 
RESULT 62603';
DATA ONE;
INPUT RUNNUM XI X2 Y;
/* XI IS TEMPERATURE, X2 IS THE C 0:02  RATIO, THE TOTAL FLOW RATE IS ALWAYS 0.2 
SCCM
AND Y IS THE CONVERSION OF CO
*1
CARDS;
2 131.71 0.70 0.794
8 131.71 2.90 0.525
10 188.29 0.70 0.901
16 188.29 2.90 0.586
9 160.00 1.80 0.921
I 160.00 1.80 0.915
7 160.00 1.80 0.909
12 160.00 1.80 0.926
13 160.00 1.80 0.914
15 160.00 1.80 0.901
II 160.00 1.80 0.922
6 160.00 1.80 0.902

PROC PRINT;
PROC GLM;
CLASS XI X2 ;
MODEL Y=XI X2 ;
PROC REG;
MODEL Y =X1 X2 /P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/I2;
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PRO=PROBIT(I);
PROC PLOT DATA=TWO; 
PLOT RS * PRO 
PLOT RS * YHAT='*'; 
PLOT RS * RUNNUM='+'; 
DATA THREE;
INPUT X Y;
CARDS;
1 0.794
2 0.525
3 0.901
4 0.586
5 0.921
5 0.915
5 0.909
5 0.926
5 0.914
5 0.901
5 0.922
5 0.902

PROC GLM;
CLASSES X;
MODEL Y = X;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF C 02 SELECTIVITY USING PURE 0 2  USING EXPERIMENT 
RESULT 62603';
DATA ONE;
INPUT RUNNUM XI X2 Y;
/* XI IS TEMPERATURE, X2 IS THE C 0:02  RATIO, THE TOTAL FLOW RATE IS ALWAYS 0.2 
SCCM
AND Y IS THE SELECTIVITY OF C 02  
*1
CARDS;
2 131.71 0.70 0.653
8 131.71 2.90 0.597
10 188.29 0.70 0.865
16 188.29 2.90 0.576
9 160.00 1.80 0.896
I 160.00 1.80 0.888
7 160.00 1.80 0.867
12 160.00 1.80 0.898
13 160.00 1.80 0.859
15 160.00 1.80 0.865
11 160.00 1.80 0.834
6 160.00 1.80 0.851

PROC PRINT; 
PROC GLM; 
CLASS XI X2 ; 
MODEL Y=X1 X 2 ;
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PROC REG;
MODEL Y= XI X2 /?  R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/12;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PLOT RS * RUNNUM='+';
DATA THREE;
INPUT X Y;
CARDS;

0.653
0.597
0.865
0.576
0.896
0.888
0.867
0.898
0.859
0.865
0.834
0.851

PROC GLM;
CLASSES X;
MODEL Y = X;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'AGURMENT FUELCELL EXPRIMENT(PURE 0 2  62603)CO CONVERSION'; 
DATA ONE;
INPUT RUNNUM XI X2 Y;
/■» X U S  THE TEMPERATURE, X2 IS THE C 0 :0 2  RATIO,
THE TOTAL FLOW RATE IS ALWAYS 0.2SCCM. Y IS THE CONVERSION OF THE CO. 
*1
X11=X1*X1 
X22=X2*X2 
X12=X1*X2 
CARDS;
2 131.71 0.70 0.794
8 131.71 2.90 0.525
to 188.29 0.70 0.901
16 188.29 2.90 0.586
9 160.00 1.80 0.921
1 160.00 1.80 0.915
7 160.00 1.80 0.909

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

12 160.00 1.80 0.926
13 160.00 1.80 0.914
15 160.00 1.80 0.901
11 160.00 1.80 0.922
6 160.00 1.80 0.902
5 120.00 1.80 0.895
3 200.00 1.80 0.903
4 160.00 0.25 0.764
14 160.00 3.35 0.453

PROC PRINT;
PROC REG;
MODEL Y=X1 X2X11 X 22X 12
PROC RSREG;
MODEL Y=X1 X2/LACKFIT;
RIDGE MAX;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'AGURMENT FUELCELL EXPRIMENT(PURE 0 2  62603)002  SELECTIVITY'; 
DATA ONE;
INPUT RUNNUM XI X2 Y;
/* X IIS  THE TEMPERATURE, X2 IS THE C 0:02  RATIO,
THE TOTAL FLOW RATE IS ALWAYS 0.2SCCM, Y IS THE SELECTIVITY OF THE C 02. 
*/
XI1=X1*X1;
X22=X2*X2;
X12=X1*X2;
CARDS;
2 131.71 0.70 0.653
8 131.71 2.90 0.597
10 188.29 0.70 0.865
16 188.29 2.90 0.576
9 160.00 1.80 0.896
1 160.00 1.80 0.888
7 160.00 1.80 0.867
12 160.00 1.80 0.898
13 160.00 1.80 0.859
15 160.00 1.80 0.865
11 160.00 1.80 0.834
6 160.00 1.80 0.851
5 120.00 1.80 0.877
3 200.00 1.80 0.823
4 160.00 0.25 0.763
14 160.00 3.35 0.643

PROC PRINT;
PROC REG;
MODEL Y=X1 X2 X I 1 X22 X12 /P R; 
PROC RSREG;
MODEL Y=X1 X2/LACKFIT;
RIDGE MAX;
RUN;
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6 . Analysis o f the syn-gas reaction

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF CO CONVERSION IN SYN-GAS 90203DATA’;
DATA ONE;
INPUT BLOCK XI X2 X3 Y;
/* XI IS THE TOTAL FLOW RATE, X2 IS THE H2;C0 RATIO, X3 IS THE TEMPERATURE 
AND Y IS THE CONVERSION OF CO IN SYN-GAS EXPERIMENT 
*/
CARDS;
0 0.5 2 180 0.5975
1 0.5 2 260 0.5454
1 0.5 4 180 0.6528
0 0.5 4 260 0.7097
1 1.1 2 180 0.6710
0 1.1 2 260 0.6132
0 1.1 4 180 0.6128
1 1.1 4 260 0.6139
0 0.8 3 220 0.6178
0 0.8 3 220 0.6264
0 0.8 3 220 0.6264
1 0.8 3 220 0.6121
1 0.8 3 220 0.6236
I 0.8 3 220 0.6264

PROC PRINT;
PROC REG;
MODEL Y=X1 X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/I4;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PROC REG;
MODEL Y=BLOCK XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA THREE;
SET RANKS;
I=(RR-0.5)/14;
PRO=PROBIT(I);
PROC PLOT DATA=THREE;
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PLOT RS * PRO 
PLOT RS ♦ YHAT='*';
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF SELECTIVITY TO METHANE IN SYN-GAS 90203DATA'; 
DATA ONE;
INPUT BLOCK XI X2 X3 Y;
/* XI IS THE TOTAL FLOW RATE, X2 IS THE H2:CO RATIO, X3 IS THE TEMPERATURE 
AND Y IS THE CONVERSION OF CO IN SYN-GAS EXPERIMENT 
*1
CARDS;
0 0.5 2 180 0.1036
1 0.5 2 260 0.0506
1 0.5 4 180 0.0571
0 0.5 4 260 0.005
1 1.1 2 180 0.1052
0 1.1 2 260 0.0025
0 1.1 4 180 0.0399
1 1.1 4 260 0.0791
0 0.8 3 220 0.0704
0 0.8 3 220 0.0401
0 0.8 3 220 0.0524
1 0.8 3 220 0.0649
1 0.8 3 220 0.0582
1 0.8 3 220 0.0624

PROC PRINT;
PROC REG;
MODEL Y= XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/14;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PROC REG;
MODEL Y=BLOCK XI X2 X3/P R;
OUTPUT OUT=NEW PRED1CTED=YHAT1 RESIDUAL=RS1 PRESS=PR1; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RSI;
RANKS RR;
DATA THREE;
SET RANKS;
I=(RR-0.5)/14;
PR01=PROBIT(I);
PROC PLOT DATA=THREE;
PLOT RSI * PROl ='+';
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PLOT RSI * YHAT1='*';
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF SELECTIVITY TO ETHANE IN SYN-GAS 90203DATA'; 
DATA ONE;
INPUT BLOCK XI X2 X3 Y;
/* XI IS THE TOTAL FLOW RATE, X2 IS THE H2:C0 RATIO, X3 IS THE TEMPERATURE 
AND Y IS THE CONVERSION OF CO IN SYN-GAS EXPERIMENT
*/
CARDS;
0 0.5 2 180 0.1149
1 0.5 2 260 0.1752
1 0.5 4 180 0.1272
0 0.5 4 260 0.0755
1 1.1 2 180 0.2273
0 1.1 2 260 0.2032
0 1.1 4 180 0.0862
1 1.1 4 260 0.1199
0 0.8 3 220 0.0835
0 0.8 3 220 0.09
0 0.8 3 220 0.0799
1 0.8 3 220 0.1
1 0.8 3 220 0.0787
1 0.8 3 220 0.0814

PROC PRINT;
PROC REG;
MODEL Y= XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/14;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS * YHAT='*';
PROC REG;
MODEL Y=BLOCK XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT1 RESIDUAL=RS1 PRESS=PR1; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RSI;
RANKS RR;
DATA THREE;
SET RANKS;
I=(RR-0.5)/14;
PR01=PR0BIT(I);
PROC PLOT DATA=THREE;
PLOT RSI * PROl ='+';
PLOT RSI * YHAT1='*';
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RUN;

11 EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE '1ST ORDER MODEL OF SELECTIVITY TO PROPANE IN SYN-GAS 90203DATA'; 
DATA ONE;
INPUT BLOCK XI X2 X3 Y;
/♦ XI IS THE TOTAL FLOW RATE, X2 IS THE H2:C0 RATIO, X3 IS THE TEMPERATURE 
AND Y IS THE CONVERSION OF CO IN SYN-GAS EXPERIMENT 
*/
CARDS;
0 0.5 2 180 0.7815
I 0.5 2 260 0.7742
I 0.5 4 180 0.8157
0 0.5 4 260 0.9195
I 1.1 2 180 0.6675
0 1.1 2 260 0.7943
0 I.l 4 180 0.8739
I 1.1 4 260 0.801
0 0.8 3 220 0.8461
0 0.8 3 220 0.8699
0 0.8 3 220 0.8677
1 0.8 3 220 0.8351
1 0.8 3 220 0.8631
I 0.8 3 220 0.8562

PROC PRINT;
PROC REG;
MODEL Y= XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHAT RESIDUAL=RS PRESS=PR; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RS;
RANKS RR;
DATA TWO;
SET RANKS;
I=(RR-0.5)/I4;
PRO=PROBIT(I);
PROC PLOT DATA=TWO;
PLOT RS * PRO ='+';
PLOT RS ♦ YHAT='*';
PROC REG;
MODEL Y=BLOCK XI X2 X3/P R;
OUTPUT OUT=NEW PREDICTED=YHATI RESIDUAL=RSI PRESS=PRI; 
PROC RANK DATA=NEW OUT=RANKS;
VAR RSI;
RANKS RR;
DATA THREE;
SET RANKS;
I=(RR-0.5)/I4;
PROI=PROBIT(I);
PROC PLOT DATA=THREE;
PLOT RSI * PROl 
PLOT RSI * YHATI='*';
RUN;
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// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'AGURMENT SYNGAS EXPRIMENT90203 PROPANE SELECTIVITY WITH BLOCK'; 
DATA ONE;
INPUT 81 8 2  XI X2 X3 Y;
I* XI IS THE TOTAL FLOW RATE, X2 IS THE H2:C0 RATIO,
X3 IS TEMPERATURE. Y IS THE SELECTIVITY OF THE PROPANE.
*!
x n = x i * x i  
X22=X2'^X2 
X33=X3*X3 
X12=X1*X2 
X13=X1’̂ X3 
X23=X2*X3 
CARDS;
1 0 0.5 2 180 0.7815
0 1 0.5 2 260 0.7742
0 1 0.5 4 180 0.8157
1 0 0.5 4 260 0.9195
0 1 1.1 2 180 0.6675
1 0 1.1 2 260 0.7943
1 0 1.1 4 180 0.8739
0 1 1.1 4 260 0.8010
1 0 0.8 3 220 0.8461
1 0 0.8 3 220 0.8699
1 0 0.8 3 220 0.8677
0 1 0.8 3 220 0.8351
0 1 0.8 3 220 0.8631
0 1 0.8 3 220 0.8562
0 0 0.293 3 220 0.8405
0 0 1.307 3 220 0.8200
0 0 0.8 1.31 220 0.7632
0 0 0.8 4.69 220 0.8568
0 0 0.8 3 152.4 0.7676
0 0 0.8 3 287.6 0.7653
0 0 0.8 3 220 0.8455
0 0 0.8 3 220 0.8573
0 0 0.8 3 220 0.8131
0 0 0.8 3 220 0.8243

PROC PRINT;
PROC REG;
MODEL Y=81 8 2  XI X2 X3 XI 1 X22 X33 X12 X I3 X23 /P R;
PROC RSREG;
MODEL Y=81 8 2  XI X2 X3/COVAR=2 LACKFIT;
RIDGE MAX;
RUN;

7. Estimating X |x and n for the cycohexene hydrogenation and dehydrogenation reactions 
and for the syn-gas reaction
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// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE -NWGATIVE EXPONENTIAL: Y=(R/(R+U))*(1-EXP(-(R+U)*T)) T IN MINITE'; 
DATA A;
INPUT T Y;
CARDS;

0 0.0363
0.66667 0.0531
1.33333 0.0436

2 0.068
2.66667 0.1345
3.33333 0.1125

4 0.105
4.66667 0.1297
5.33333 0.1417

6 0.1249
6.66667 0.1597
7.33333 0.2222

8 0.227
8.66667 0.185
9.33333 0.1525

10 0.257
10.6667 0.227
11.3333 0.2991

12 0.2402
12.6667 0.2606
13.3333 0.275

14 0.2883
14.6667 0.3579
15.3333 0.3351

16 0.3819
16.6667 0.2955
17.3333 0.2798

18 0.3555
18.6667 0.3639
19.3333 0.3663

20 0.3423
20.6667 0.3723
21.3333 0.4192

22 0.4348
22.6667 0.4396
23.3333 0.4192

24 0.4108
24.6667 0.4456
25.3333 0.418

26 0.4108
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26.6667 0.4204
27.3333 0.4768

28 0.4432
28.6667 0.5261
29.3333 0.4888

30 0.5213
30.6667 0.4912
31.3333 0.4732

32 0.4984
32.6667 0.4564
33.3333 0.4432

34 0.5201
34.6667 0.5068
35.3333 0.4828

36 0.4396
36.6667 0.5537
37.3333 0.4864

38 0.4936
38.6667 0.5I4I
39.3333 0.508

40 0.5777
40.6667 0.4816
41.3333 0.4492

42 0.5333
42.6667 0.4912
43.3333 0.5297

PROC NLIN BEST=10 METHOD=DUD;
FARMS R=0 TO 2 BY .1 U=0 TO 3 BY .1;
BOUNDS R>0,U>0;
MODEL Y=(R/(R+U))*(1-EXP(-(R+U)*T));
OUTPUT OUT=B P=YHAT R=YRESID;
RUN;
PROC PLOT DATA=B;
PLOT Y*T='A' YHAT*T='P' /OVERLAY VPOS=20 HPOS=90;
PLOT YRESID*T / VREF=0 VPOS=25;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'NWGATIVE EXPONENTIAL: Y=((-T*R**2)/(R+U))*EXP(-(R+U)*T)+((R*R)/(R+U)**2)*(I- 
EXP(-(R+U)*T)) T IN MINITE';
DATA A;
INPUT T Y;
CARDS;
(DATA)

PROC NLIN BEST=IO METHOD=DUD; 
FARMS R=0 TO 2 BY .1 U=0 TO 3 BY .1;
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BOUNDS R>0,U>0;
MODEL Y=((-T*R**2)/(R+U))*EXP(-(R+U)*T)+((R*R)/(R+U)**2)*(1-EXP(-(R+U)*T)); 
OUTPUT OUT=B P=YHAT R=YRES1D;
RUN;
PROC PLOT DATA=B;
PLOT Y*T='A' YHAT*T=’P' /OVERLAY VPOS=25;
PLOT YRESID*T / VREF=0 VPOS=25;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'NWGATIVE EXPONENTIAL; Y=(-(R*'^3*T’̂ *2)/(2*(R+U))-(T*R**3)/(R+U)**2)*EXP(- 
(R+U)*T)+(R/(R+U))**3*(1-EXP(-(R+U)*T)) T IN MINITE';
DATA A;
INPUT T Y;
CARDS;
(DATA)

PROC NLIN BEST=10 METHOD=DUD;
PARMS R=0 TO 2 BY .1 U=0 TO 3 BY .1;
BOUNDS R>0,U>0;
MODEL Y=(-(R*'^3*T'^’*2)/(2*(R+U))-(T’̂ R*’»3)/(R+U)’̂ '^2)*EXP(-(R+U)'^T)+(R/(R+U))'»’̂ 3'^(1-EXP(- 
(R+U)'^T));
OUTPUT OUT=B P=YHAT R=YRESID;
RUN;
PROC PLOT DATA=B;
PLOT Y'^T='A' YHAT*T='P' /OVERLAY VPOS=25;
PLOT YRESID'^T / VREF=0 VPOS=25;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'NWGATIVE EXPONENTIAL: Y=(-(R**4*T**3)/(6*(R+U))-(R’̂ '̂ 4’̂ T'̂ ’̂ 2)/(2'»(R+U)'^'^2)- 
(r **4*X)/(r +U)**3)*EXP(-(R+U)*T)+(R/(R+U))’"'4*(1 -EXP(-(R+U)*T))T IN MINITE';
DATA A;
INPUT T Y;
CARDS;
(DATA)

PROC NLIN BEST=10 METHOD=DUD;
PARMS R=0 TO 2 BY .1 U=0 TO 3 BY .1;
BOUNDS R>0,U>0;
MODEL Y=(-(R*'^4*T'^*3)/(6'*(R+U))-(R*'^4*T=^*2)/(2'*(R+U)**2)-(R*M*T)/(R+U)'*'^3)'^EXP(- 
(R+U)’̂ T)+(R/(R+U))''’'4*(1-EXP(-(R+U)'*T));
OUTPUT OUT=B P=YHAT R=YRESID;
RUN;
PROC PLOT DATA=B;
PLOT Y*T='A' YHAT*T='P' /OVERLAY VPOS=25;
PLOT YRESID*T / VREF=0 VPOS=25;
RUN;
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// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'NWGATIVE EXPONENTIAL: Y=(-(R**5*T**4)/(24*(R+U))-(R**5*T**3)/(6*(R+U)**2)- 
(R**5*T**2)/(2*(R+U)**3)-(R**5*T)/(R+U)**4)*EXP(-(R+U)*T)+(R/(R+U))**5*(1-EXP(-(R+U)*T))T 
IN MINITE';
DATA A;
INPUT T Y;
CARDS;
(DATA)

PROC NLIN BEST=10 METHOD=DUD;
PARMS R=0 TO 2 BY .1 U=0 TO 3 BY .1;
BOUNDS R>0,U>0;
MODEL Y=(-(R**5*T**4)/(24*(R+U))-(R**5*T**3)/(6*(R+U)**2)-(R**5*T**2)/(2*(R+U)**3)- 
(R* * 5*T)/(R+U)* *4)*EXP(-(R+U)*T)+(R/(R+U))* * 5 *( 1 -EXP(-(R+U)*T));
OUTPUT OUT=B P=YHAT R=YRESID;
RUN;
PROC PLOT DATA=B;
PLOT Y*T='A' YHAT*T='P' /OVERLAY VPOS=25;
PLOT YRESID*T / VREF=0 VPOS=25;
RUN;

// EXEC SAS 
//SAS.SYSIN DD *
OPTIONS NOCENTER;
TITLE 'NWGATIVE EXPONENTIAL; Y=(-(R**6*T**5)/(120*(R+U))-(R**6'^T**4)/(24'»(R+U)’»*2)- 
(R**6*T**3)/(6*(R+U)**3)-(R**6*T**2)/(2*(R+U)**4)-(R**6*T)/(R+U)''*5)*EXP(- 
(R+U)*T)+(R/(R+U))**6*(1-EXP(-(R+U)*T))T IN MINITE';
DATA A;
INPUT T Y;
CARDS;
(DATA)

PROC NLIN BEST=10 METHOD=DUD;
PARMS R=0 TO 2 BY .1 U=0 TO 3 BY .1;
BOUNDS R>0,U>0;
MODEL Y=(-(R**6*T**5)/(120*(R+U))-(R**6*T**4)/(24*(R+U)**2)-(R**6*T**3)/(6*(R+U)**3)- 
(r **6*X**2)/(2*(R+U)**4)-(R**6*T)/(R+U)**5)*EXP(-(R+U)*T)+(R/(R+U))**6*(1-EXP(-(R+U)''‘T)); 
OUTPUT OUT=B P=YHAT R=YRESID;
RUN;
PROC PLOT DATA=B;
PLOT Y*T='A' YHAT*T='P' /OVERLAY VPOS=25;
PLOT YRESID»T / VREF=0 VPOS=25;
RUN;

8 . Source code for Markov chain apporach

// This program simulate a markov chain modeling approach for cyclohexene hydrogenation 
// and dehydrogenation reaction in a microreactor.
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11 with Cio=0.i=l,2,...8. where Cio is initial molar concentration o f  chemical species i 
11 in the microreactor, i=l,2,3,4 represents the solide phase and i=5,6,7,8(where i=l *,2*,
// 3* and 4* in chapter 6) represents the liquid phase o f chemical species A 1,A2, A3 and A4.
// The operating condition is: temperature= 186.67 C, FlowRateH2=0.28sccm, FlowrateAr=0.82sccm.

#include <iostream.h>
#include <fstream.h>

void main()
{

// Constants
const int T=361; // 360 mins for simulation
const int Nr=9; // Total 4 reactants and products both in solid phase and liquid phase

//, because 0 is not used for C here 
const double NO = 6.02E+23 ; // Arvgadro constant 
const double V= 4.01; // V is the volume o f the microreactor

const double q = 0.0011; // q is 0.0011 L/min for the velocity o f feeding
const double deltaT=l .0; // time interval 1 minute

const double kl 1=0.0; // kl is 0/min for the c6hl0 hydrogenation reation rate
const double k22=0.0966; // k2 is 0.0966/min for the c6h 10 dehydrogenation reaction rate

//const double 010=0.5; // intial concentration o f  identity 1 
//const double 040=1.0;
const double 05f=0.00218; //inital feed concentration 
const double O6f=0.00620;

double x[Nr]; // xi the number o f molecule i feeding into the reactor 
double n[Nr][T]; // n[i][t] the number o f molecule i inside the reactor at time t 
double 0[Nr][T]; // 0  is concentration o f  molecule in mole/L 
double P[Nr][Nr]; // markov chain matrix
double Conout[Nr][T]; // Conout is the concentration in the out stream o f the reactor.

//double sumCon; //sumCon is used for Calculating Concout

double alpha, beta,kl,k2,mu ; // mu is the probability o f  exiting the microreactor,
// alpha is the absorption rate, beta is the desorption rate.

int i,j, k;

//sumCon=0.0;

//open a file
ofstream fout("dehyoutreactor-lKc.txt",ios;:out);

// intial calculations 
mu= q/V;

k l = k l l ; 
k2=k22;

alpha=k2;
beta=alpha;

//initilize the x, feeding matrix
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for( i=0; i<Nr; i++ )
{

x[i]=0;
n[i][0]=0;

}
x[5]=C 5fq*N 0; // calculate feeding number o f molecule 1 
x[6]=C6Pq*N0;

// initialization o f  the Makov Chain matrix 
for( i=l; i<=Nr; i++)
{

for(j=l; j<=Nr; j++)
{

P[i][j]=0;
}

}
// Now iterate for T minutes and record the concentrations at each step

for( k=l; k<T; k++ ) //total 360 minutes 
{

// calculate P matrix first
P[l][l]=l-beta*deltaT-kl*n[2][k-l]*deltaT-k2*deltaT;
P[l][3]=kl ♦n[2][k-l]*deltaT;
P[l][4]=k2*deltaT;
P[1 ][5]=beta*deltaT;
//3ed row
P[3][3]=l-beta*deltaT;
P[3][7]=beta*deltaT;

//4th row
P[4][4]=l-beta*deltaT;
P[4][8]=beta*deltaT;

//5th row
P[5][ 1 ]=alpha*deltaT;
P[5][5]=l-alpha*deltaT-mu*deltaT;
P[5][9]=mu*deltaT;

//7th row
P[7][3]=alpha*deltaT;
P[7][7]=l-alpha*deltaT-mu’'‘deltaT;
P[7][9]=mu*deltaT;

//8th row
P[8][4]=alpha*deltaT;
P[8][8]=l-alpha* deltaT-mu*deltaT;
P[8][9]=mu*deltaT;

//9th row 
P[9][9]=l;

//now calculate n[l][k] to n[8][k] 
for(j= l;j< = 8;j+ + )
{
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double sum = 0; 
for( i=l;i<=8; i + + )
{

sum+=n[i][k-l]*P[i][j];
}
n[j][k]=sum+x[j];

}

//now calculate n[2][k], n[6][k]
n[2][k]=n[2][k-l]*(l -beta*deltaT)-n[l][k-l]*P[l][3]+2*n[l][k-l]*P[l][4]+n[6][k-l]*alpha*deltaT; 
n[6][k]=n[6][k-l]*(l-alpha*deltaT-mu*deltaT )+n[2][k-l]*beta*deltaT+x[6];

c o u t « k « "
f o u t « k « "

// now calculate the molar concentration out o f  the reactor 
for(i=5; i<Nr; i + + )
{ C[i][k]= n[i][k]/(NO*V );// molar concentration in the reactor

Conout[i][k]=C[i][k]*mu*deltaT);// molar concentration in the out stream o f the reactor

cou t«C onout[i][k ]«"
fout«C onou t[i][k ]«"

}
cout«endl;
fout«endl;

}
fout.close();

}
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