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ABSTRACT

Multi-layer thin films are important components in many micro-electronic 

devices. These films are often used when a single film layer is insufficient to meet 

devices specifications. The continued reduction in component size has the side effect of 

increasing the thermal stress on these films and consequently the devices they comprise. 

Understanding the transfer of heat-energy at the micro-scale is important for thermal 

processing using a pulse-laser. Often, micro-voids may be found in processed devices. 

This is due to thermal expansion. Such defects may cause an amplification of 

neighboring defects resulting in severe damage and consequently the failure of the 

device. Thus a complete understanding of thermal dissipation and defects is necessary to 

avoid damage and to increase the efficiency of thermal processing.

A hybrid finite element - finite difference (FE-FD) method has been developed 

for solving three dimensional parabolic two-step heat transport in irregular double

layered thin film exposed to ultrashort pulsed lasers. This scheme first discretizes the 

thin film system along the xy-plane by a finite element method. Then the z-direction is 

discretized via a weighted finite difference scheme. The two are combined into a 

numerical scheme which is then coded into a computer simulation. It is shown that the 

scheme is unconditionally stable with respect to the initial condition and the heat source. 

Three distinct numerical examples are studied. The first being a 0.05 pm gold thin film 

disk, with 1 mm diameter, atop a same-dimensioned chromium padding layer. This disk 

is exposed to an ultra-fast laser burst and the thermal properties are demonstrated.

iii
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Secondly, the same thin-film disk array is exposed to a double burst laser pulse and the 

thermal properties examined. Finally the ultrashort laser is moved in a complete circle 

about the center of the double-layered thin disk and the thermal properties are examined.

The outcome of this study provides an efficient and reliable numerical method for 

solving micro-scale heat transport equations, and gives a better understanding of the 

nature of heat transport in such a system. Also, the hybridization procedure offers a new 

way to examine three dimensional heat transport systems -  one that utilizes the strengths 

of both the finite element and the finite difference methodologies. The research results 

have a significant impact on the development of short-pulse laser applications in 

structural monitoring of thin metal films, laser patterning of such films and laser 

synthesis and processing of thin film deposition.
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NOMENCLATURE

A coefficient for numerical scheme

B coefficient for numerical scheme

c specific heat per unit mass, J/kg-K

c constant

C (e,D volumetric heat capacity of electron gas (e) and metal lattice (1), J/m3'K

cp volumetric heat capacity, J/m 'K

CT thermal wave speed, m/s

dm element mass, kg

E energy stored in element, J

G electron phonon coupling factor, W/m3'K

h Planck’s constant, J-s

J laser influence, J/m2

k Boltzmann constant, J/K

K conductance matrix in FEM

M capacitance matrix in FEM

me electron mass, kg

N number of elemental nodal points

n outward pointing normal vector

na atomic number density per unit volume, m'3

ne number density per unit volume, m 3

xi
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ps picosecond

Q heat flux, w

R reflectivity

R(x,y, z, t) residual function

rz change in time divided by change in direction squared,
Az

S source term, W/m

t physical time, s

T temperature function, K

To initial temperature, K

tp laser pulse duration,/?

u generalized expression for the actual solution to PDE system

U generalized expression for estimation of PDE system solution

V generalized expression for estimation of PDE system solution

vs speed of sound, m/s

w weight function

W work function, J

Greek Symbols

central difference-in-space operator

V delta operator (first order derivative)

Kronecker delta

V2 Laplace operator (second order derivative)

At time increment
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Az z-axis space increment

Q area of triangular element, m2

a thermal diffusivity, m2/s

ap generalized coordinates

5 laser penetration depth, nm

s difference values between proposed solutions to system of equations

(f>p eigen vector

Y specific heat coefficient, J/m3-K2

9 basis and weighting function designation

K thermal conductivity, W/m-K

Xp eigen value

p density, kg/m3

X relaxation time, s

Subscripts and Superscripts

0 initial value at t = 0

Au gold

Cr chromium

D Debye Temperature, K

E energy norm

e electron

k index along z-plane

L final value in system

I lattice
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CHAPTER ONE

INTRODUCTION

1.1 Overview

Multi-layer thin films are important components in many micro-electronic device. 

These films are often used when a single film layer is insufficient to meet devices 

specifications. The continued reduction in component size has the side effect of 

increasing the thermal stress on these films and consequently the devices they comprise. 

Thus the transportation of heat energy through thin films is of vital importance in micro- 

technological applications.

Understanding the transfer of heat-energy at the micro-scale is important for the 

thermal processing using a pulse-laser [Qui 1993a]. Often, microvoids may be found in 

processed devices. This is due to thermal expansion. Such defects may cause an 

amplification of neighboring defects resulting in severe damage and, consequently, the 

failure of the desired device. Thus a complete understanding of thermal dissipation and 

defects is necessary to avoid damage and to increase the efficiency of thermal processing.

Micro-scale heat transfer differs from macro-scale heat transfer in some important 

ways. On the micro-scale, energy transport is governed by phonon-electron interaction in 

metallic films. Macroscopic energy transport relies upon a heat diffusion model based on 

Fourier’s law. This law loses accuracy on a micro-scale because of its emphasis on 

averaged behavior over many grains. Research has resulted in an energy equation which

1
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2

captures both the classical heat equation and thermal waves in the same framework [Qui 

1993 a], [Tzou 1996]. When the heating time from the pulse-laser is greater than the 

relaxation time of the metallic film, the energy transfer formulation takes the form of a 

parabolic two-phase partial differential equation system [Qui 1993a]. It is expressed

C , ^  = t f % - G ( T , - T l ) + S  (1.1)

c ' i t r =G(T‘ - T‘ ) (1'2)

where Te is electron temperature and 7) is lattice temperature; k is the thermal 

conductivity; Ce and C/ are the volumetric electron heat capacity and the volumetric 

lattice heat capacity respectively; G is the electron-lattice coupling factor and S is the 

strength of the laser heating source. The details of which are discussed in chapter two. 

The standard notation V2 is the Laplace operator.

In classical (macro scale) heat transfer, the electron and lattice temperatures are 

assumed to be equal. Thus this system reduces to the classical model when such an 

assumption is made. However, for sub-picosecond pulses and sub-microscale, the laser 

energy is absorbed primarily by free electrons confined within the thin material layer. 

This energy is then transferred to the lattice resulting in a lag between the excitement of 

the electrons and the transfer of energy to the lattice. As the duration of the laser pulse is

short, the source of heat is turned off before thermal equilibrium between electrons and

lattice is reached. This necessitates a two step model for describing energy transfer in 

such a situation. Equations (1.1) and (1.2) and their consideration over classical energy 

transfer models have been discussed in [Tzou 1996].
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1.2 Objective of Research

The objective of this research is to develop a hybrid scheme for solving the 

parabolic two-phase heat equation in an irregular shaped double layer thin film. The 

finite element methodology is implemented as well as the finite difference methodology. 

The benefits of both methods are utilized while minimizing their draw backs by 

hybridizing them.

To achieve this objective, the following development is pursued:

1. Develop a finite element scheme for an irregularly shaped geometry in the x-y 

dimensions which will generate the matrix coefficients for the hybridized 

method.

2. Develop a finite difference scheme for the z-axis, (depth plane) and time level 

for the hybridized method. This scheme has at least a second order accuracy 

in time and space.

3. Combine these two methodologies to formulate the hybridized method.

4. Analyze stability and accuracy for the hybridized method.

5. Apply the hybridized method to the investigation of temperature rise of a 

gold/chromium layered disk system subjected to short-pulse laser irradiation 

on the surface.

The outcome of this study will provide an efficient and reliable numerical method 

for solving micro-scale heat transport equations, and give a better understanding of the 

nature of heat transport in such a system. Also, the hybridization procedure offers a new 

way to examine three dimensional heat transport systems -  one that utilizes the strengths 

of both the finite element and the finite difference methodologies. The research results
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have a significant impact on the development of short-pulse laser applications in 

structural monitoring of thin metal films, laser patterning of such films and laser 

synthesis and processing of thin film deposition.

1.3 Organization of the Dissertation

The dissertation is organized in the following manner. Chapter Two introduces 

the process of micro-scale heat transfer by phonon-electron interaction model, the dual

phase-lagging behavior, and a review of previous research. Chapter Three introduces the 

proposed model for solving the dual-phase heat equation in three dimensions. A hybrid 

method is described which combines the benefits of the finite element scheme for an 

irregularly shaped planar surface and the finite difference scheme to describe the depth 

and time dimensions. To show the applicability for this scheme, we examine a specific 

case in Chapter Four. Temperature change and distribution in a two layered disk (gold- 

chromium), subjected to pulse laser irradiation is modeled. The stability and accuracy of 

this scheme is examined. Chapter Five examines the modeled results for three distinct 

cases. Finally, conclusions are drawn and possible future study is examined in Chapter 

Six.
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CHAPTER TWO

BACKGROUND AND PREVIOUS WORK

2.1 General Heat Transfer Model

The heat transfer model attempts to predict the energy transfer which may take 

place between and within materials as a result of a temperature difference. Heat transfer

rules which may be used to establish energy-transfer rates” [Holman 1997, pg. 1]. 

Classically, there are three basic heat transfer situations -  conduction, convection and 

radiation [Holman 1997]. When a temperature gradient exists, there is an energy transfer 

from the high-temperature region to the low-temperature region. This reality describes 

the conduction type of heat transfer.

If we consider an element in a Cartesian coordinate system as described in Figure 

2.1, we can illustrate a general (macro-scale) heat transfer model.

supplements the first and second principles of thermodynamics by providing additional

y>

X

Figure 2.1 An example element in three dimensions

5
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The First Law of Thermodynamics, also known as the Energy Conservation 

Principle, may be understood as follows [Holman 1997]

G „ - « L , = A £  (2.1)

where Qnel represents the net energy transfer as heat in the system, Wnel represents the net 

energy transfer as work and AE represents the change in energy stored within the 

element.

The heat transfer into the element, along one spatial direction, may be determined 

from the Fourier rate equation for conduction. It is represented

Qx,m = ~KdA  = -Kdydz . (2.2)
ox ox

The quantity k  is the thermal conductivity of the material, T is the temperature at a 

particular location and time t. This above example is along the x-direction. However 

similar procedures can be followed for the y- and z-directions.

The heat conducted out of the element, again in one direction, may be written

= Q x j n ~ \  K ^A d xd yd z  (2.3)
OX o x \  o x )x .o u t  z - ' x j n

Combining (2.2) and (2.3) yields the net heat transfer rate

Q ,„ ,= Q ,.„ - Q ,^ = ^ : ( x ^ - )d x d y d z  (2.4)
OX ox J

The work transfer rate may be written in the general form in terms of the rate of energy 

dissipation per unit volume, S. It is also considered the “source” term. The net work 

transfer rate for the element is

W nei = -Sdxdydz (2.5)

Also, the rate of change of energy stored in the element is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

AE = dm c —  = (pdxdydz)c —  -  pc —  dxdydz = C —  dxdydz (2.6)
dt dt dt dt

The quantity dm is the element mass, p  is the density of the material and c is the specific 

heat per unit mass. Cp is the product of p  and c and represents the specific heat per unit 

volume.

Making substitutions from Equations (2.4), (2.5) and (2.6), including the y- and z- 

directions, we obtain

8_
dx

f  dT \  
K -----

dx
+  -

8 r 8T
d y \?  dy ,

We may define the Laplacian operator applied to the variable u as

d2u d2u d2u
— r  “I------r  H----
dx dy dz

Applying the Laplacian operator to the notation of equation (2.7) yields the 

general formulation for the heat transfer equation

c p^  = V ( k%t ) + s  (2.9)

8 
+ — 

dz
f  8T '

K -----
dz

+ S = Cp—  (2.7)
p 8t

If we consider the thermal conductivity, k, as constant, we obtain

Cp —  = k572T + S  (2.10)

2.2 Microscale Heat Transfer 

2.2.1 Differences with Macroscale Heat Transfer

While the conventional, (macroscale) model is widely used to understand the 

transfer of heat energy, it is often not physically realistic. Equation (2.10) is a parabolic 

equation. As a result, any temperature disturbance will propagate at an infinite speed. 

This is physically unrealizable [Herwig 2000].

Because Fourier’s law does not predict finite wave speeds, the law does not 

accurately approximate the heat transfer in certain cases. The assumption of
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instantaneous energy transmission fails during a short duration of initial transient, or 

when the thermal propagation speed is not high, such as in low temperatures [Barron 

1985]. In other words* Fourier’s law breaks down at temperatures near absolute zero or 

when the observation time is extremely small during a transient. For these cases, the 

wave nature of thermal transport becomes dominant, rendering Fourier’s law incomplete

as an approximation for these cases [Glass 1985]. Specific to this work, Fourier’s law

• • -12 does not accurately predict the transient temperature during microscale (<10' s) laser

heating of thin metal films (<10"6m) [Qui 1993c].

2.2.2 Wave Nature of Microscale 
Heat Transfer

In solids that are not good electrical conductors, the principal mode of conduction 

heat transfer is that of vibrational energy transfer from one atom to its neighbors. Atoms 

in solids are constantly vibrating at very high frequencies and with relatively small 

amplitudes. The atomic vibrations of adjacent atoms are coupled through atomic 

bonding. These vibrations are coordinated in such a way that traveling lattice waves are 

produced, which propagate through the lattice at the speed of sound. A single quantum 

of vibrational energy is called a phonon.

However, in metals, the free electron mechanism of heat transport is much more 

efficient than the phonon mechanism, because phonons are more easily scattered than 

free electrons and because electrons have higher velocities. Figure 2.2 illustrates the 

different mechanisms by which electrons can be scattered. All of these mechanisms are 

important in the study of microscale heat transfer [Smith 2004].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

Electron-electron scattering Boundary scattering

(O) (ouo) (OM'duai 
(O) (bffd) to) (O) (O)

4  Defect

( O )  ( O ) )  ( O )  ( 0 ) _ < f f ( 0 )

(O f( oT (D)) (of)' (D)) To)
Electron-lattice scattering Defect scattering

( O )  Lattice vibrations •  Freeelectr 

Figure 2.2 Primary scattering mechanisms of free electrons within a metal

The mean free path of an electron in a bulk material is typically on the order of 10 

to 30 nm, where electron lattice scattering is dominant. However, when the film 

thickness is on the order of the mean free path, boundary scattering becomes important 

[Tzou 1996]. Thin films are manufactured using a number of methods and a wide 

variety of conditions. The manufacturing method and environmental conditions during 

manufacture can have serious influence on the microstructure of the film, which in turn 

influences defect and grain boundary scattering. Also, when heated by ultrashort pulses, 

the electron system becomes so hot that electron-electron scattering can become 

significant. Thus, microscale heat transfer requires consideration of the microscopic 

energy carriers and the full range of possible scattering mechanisms.

2.3 Dual Phase Lagging Behavior

2.3.1 Phase Lag

Qui and others have proposed a phase lag model to explain the wave-like 

propagation of heat on a microscale. This model expresses two primary phases for heat
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conduction. The first involves the deposition of energy on electrons while the second 

involves the transfer of this energy from electrons to the lattice of the material. As early 

as 1957, Kaganov et at proposed that free electrons can be heated to a temperature that is 

much higher than the lattice temperature in certain situations [Kaganov 1957]. This high 

heating results in a double phase heating of the material. According to Qui, there exist 

two characteristic times for the transfer of heat: thermalization time and relaxation time. 

[Qui 1993c], Thermalization time represents the time for electrons and the lattice to 

reach thermal equilibrium. It represents the time necessary to convert heat energy to the 

internal lattice. Relaxation time represents the time for electrons to change their states.

During a relatively slow heating process, the thermalization time can be thought 

of as instantaneous. This is modeled well by a Fourier’s law model. However, for very 

short laser-pulse heating, these assumptions are subject to question [Qui 1993c]. In fact, 

because the physical dimension in microscale heat transfer is of the same order of 

magnitude as the electron free path, the response time is of this same magnitude. This 

indicates that the temperature gradient is not descriptive for a thin film of the same 

thickness as the mean free path [Tzou 1996].

2.3.2 Model Formulation

The model in Equation (2.10) can be described to as a parabolic one-step 

equation. This is due to the assumptions it makes. These being that heat energy is 

converted to lattice energy instantaneously and that heat energy is assumed to be a 

diffusive process [Qui 1993c]. Other, non-Fourier models have been proposed to deal 

with the failings of the Fourier model on a microscale. One model is based on the 

modified flux law [Tzou 1993]
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0  + r ^  = -x V r (2.11)
dt

Where x is the relaxation time and Q is the heat flux. The heat flux vector in this case 

maintains a memory of the time-history of the temperature gradient. Relaxation time is 

the effective mean free path I, divided by the phonon speed vs. Mathematically r  = l/v.

In the absence of relaxation time (or r  =0), which implies a mathematical idealization 

from either a zero mean free path (/ = 0) or an infinite phonon speed ( v -> oo) for phonon 

collisions, then Equation (2.11) reduces to the classical Fourier rate equation. Therefore, 

an infinite speed of heat propagation is an assumption made in the classical theory of 

diffusion utilizing Fourier’s law [Tzou 1993].

When Equation (2.11) is combined with Equation (2.10), we obtain the hyperbolic 

heat equation

(2.12)
= o

dt

This equation is known as a hyperbolic equation because of the additional term 

that modifies the parabolic Fourier heat Equation (2.10) [Tang 1996]. The double 

derivative terms are the wave terms. This modification predicts a finite speed of heat 

propagation because of the relaxation time x, associated with heat transfer. Typical wave 

speeds in metals are on the order of 105 m/s [Ozisik 1994].

While the hyperbolic model answers some issues arising from a microscale 

examination of heat transfer, it still leaves questions. It is not based on the details of 

energy transport in the material, such as the interaction of electrons and phonons [Qui 

1993a]. Also, material properties may not be able to be regarded as constant. The
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relaxation time and thermal conductivity are generally temperature-dependent [Tzou 

1993]. In addition, the value of thermal conductivity depends on processing parameters 

such as laser pulse duration and intensity, during short-pulse laser heating [Qui 1993b].

These considerations have led to the dual-phase lag equation. This equation is 

derived from the lag equation which holds a lag in heat flux behind the temperature 

gradient. Compared to the hyperbolic heat equation, this model has an additional mixed 

derivative term. Now, as with the hyperbolic model, the time lag associated with heat 

flux causes wavelike behavior. However, the additional time lag creates a mixed 

derivative term that smoothes the sharp wave fronts caused by the first lag term. The 

mixed derivative term renders the equation in the form of a parabolic equation. This 

parabolic dual phase equation is modeled thus

C.<X.)^- = y ^ T . ) - G ( T . - T , )  + S (2.13a)

C|<7' ) ^ '  = G ( 7‘ “ 7' )  (1 1 3 b )

Here, Ce and C/ are the volumetric electron heat capacity and the volumetric lattice heat 

capacity respectively, and G is the electron-lattice coupling factor. The coupling factor 

will be described in detail later.

Qui and Tien [Qui 1993a] derived a model described as the hyperbolic two step 

model from the Boltzmann transport for electrons. Each of these models have 

functionality. Each is, however, contingent upon the interrelatedness of thermalization 

time and relaxation time. Figure 2.3 illustrates the applicability stemming from these 

relationships.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

Heating Tim 
Thermalizati

Hyperbolic Two-Step
,T ‘ ngTime • 

cation Time

| Hyperbolic One-Step Parabolic Two-Step

Heating Ti 
Relaxation

Heating Tim e» 
Thennalization T ime

Parabolic One-Step 
(Fourier Model)

Figure 2.3 Interrelationship between laser heating models [Qui 1993a]

The complexity of solutions for Equation (2.13) lies in the temperature-dependent 

heat capacity of the electron gas. Tzou argues that for an electron gas temperature lower 

than the Fermi temperature, (of the order of 104 K), the electron heat capacity (Ce), is 

proportional to the electron temperature [Tzou 1996]. This makes the equation non

linear. In metals, the specific heat can be given by [Barron 1985]

Where ye is known as the electron specific heat coefficient and is experimentally 

obtainable.

In the parabolic dual-phase model, the energy exchange between phonons and 

electrons is characterized by the phonon-electron coupling factor G [Kaganov 1957]

where me represents the electron mass, ne the number density (concentration) of electrons 

per unit volume, and vs the speed of sound

(2.14)

G = * e e s for T » T , (2.15)

(2.16)
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with the quantity h being Planck’s constant, k being Boltzmann constant, na being the 

atomic number density per unit volume, and TD representing the Debye temperature. The 

electron temperature ( Te) is much higher than the lattice temperature (7/) in the early time 

response. The condition Te» T i  in Equation (2.15) for the applicability of G is thus valid 

in the fast-transient process of electron-phonon dynamics. Within the limits of 

Wiedemann-Frenz’s law, which states that for metals at moderate temperatures 

(7)>0.487d), the ratio of the thermal conductivity to the electrical conductivity is 

proportional to the temperature and the constant of proportionality is independent of 

particular metal, the electron thermal conductivity can be expressed

7t2n k 2rT„
3 me

Or simply

(2.17)

n_\ J S tX  (2>18)

Substituting (2.18) into (2.15) for the electron mass yields

a  = (2.19)
18*r

This coupling factor is dependent upon the thermal conductivity, (k) and the number 

density of the electron gas. The coupling factor does not show a strong dependence on 

temperature and is not effected by relaxation time [Tzou 1996].

In order to estimate the value of G, the number density of the electron gas is a key

quantity. Qui and Tien assumed one free electron per atom for noble metals and

employed the s-band approximation for the valence electrons in transition metals [Qui 

1993c]. Thus the value for number density of the electron gas is chosen as a fraction of
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the valence electrons. The phonon-electron coupling factor is calculated, and 

experimentally measured values are listed in Table 2.1 for comparison.

Table 2.1 Phonon-electron coupling factor (G), for some noble and transition metals 
[Tzou 1996]

Metal Calculated, x 1016 W/mJK Measured, x 1016 W/mJK

Cu 14 4.8 ± 0.7 (Brorson et al., 1990) 
10 (Elsayed-Ali et al., 1987)

Ag 3.1 2.8 (Groeneveld et al., 1990)

Au 2.6 2.8 ± 0.5 (Brorson et al. 1990)

Cr 45 (ne/na = 0.5) 42 ± 5 (Brorson et al. 1990)

W 27(ne/na=1.0) 26 ± 3 (Brorson et al. 1990)

V 648 (ne/na = 2.0) 523 ± 37 (Brorson et al. 1990)

Nb 138(ne/na = 2.0) 387 ± 36 (Brorson et al. 1990)

Ti 202 (ne/n,, = 1.0) 185 ± 16 (Brorson et al. 1990)

Pb 62 12.4 ± 1.4 (Brorson et al. 1990)

Equation (2.13a) is governed by diffusion in the electron gas and heat is 

transferred to the lattice in a lumped capacity sense through the coupling factor, G. In 

other words, the rate of energy increase in the metal lattice is proportional to the 

temperature difference between the metal lattice and the electrons. By eliminating the 

electron gas temperature, Te from Equation (2.13) for constant thermal properties, one 

can show that

\_dTj 1 d T, 2 a ê d_/ 2 s (220)
y fit r  2 fit2 l + \ ^ - ZV)a T dt CT dt CT dt
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Where Oe is the thermal diffusivity of the electron gas and ar is the equivalent thermal 

diffusivity represented by

Ct is the thermal wave speed and is represented by

However, for simplicity of discussion and ease of numerical analysis, this single 

equation form is seldom utilized. In this work, Equation (2.13) is used.

Researchers determined the parabolic two-step model to be a good estimate [Qui

1992]. To compare experimental results with a numerical model, the normalized 

temperature change in the electron gas is identical to the normalized reflectivity change 

on the film surface

where R denotes the reflectivity. The left side of Equation (2.23) can be measured by the 

front-surface-pump and back-surface-probe technique [Tzou 1996]. The right hand side 

of Equation (2.23) represents the solution to the numerical model for estimating heat 

propagation.

Figure 2.4 shows the resulting applicability of the parabolic two step model. The 

predicted temperature change at the surface of a thin gold film is compared with the 

experimental data collected.

(2.22)

AR AT (2.23)
(AR)max (A Telmax
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Figure 2.4 Normalized temperature change (reflectivity change) in gold film predicted 
by dual-phase-lag model [Tzou 1996]

There are many numerical solutions to the various forms of the microscale heat 

equation, [Tzou 1994,1995a, 1995b, 1995c, 1995d, 1996,1999,2000a, 2000b, 2001, 

2002] [Ozisik 1994] [Chiffell 1994] [Wang 2000, 2001a, 2001b, 2002] [Antaki 1998, 

2000, 2002] [Dai 1999, 2000a, 2000b, 2000c, 2001a, 2001b, 2004a, 2004b] [Qui 1992, 

1993,1994a, 1994b] [Joshi 1993] [Chen 1999a, 1999b, 2000a, 2000b, 2001a, 2001b, 

2001c, 2003] [Al-Nimr 1997a, 1997b, 1999, 2000a, 2000b, 2000c, 2001, 2003] [Tang 

1996,1999] [Lin 1997][Ho 1995, 2003] [Tsai 2003][Shen 2003]. Among these Tzou and 

Ozisik [Tzou 1994] considered the heat equation in only one dimension. They studied 

the lagging behavior by solving over a semi-infinite interval. Their solutions were 

obtained using the Laplace transform method and the Reimann-sum approximation for 

the inversion.

2.4 Previous Work
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Ozisik’s [Ozisik 1994] work gives a thorough overview of the thermal wave 

theory emphasizing its applications in the field of engineering applications. Special 

features in thermal wave propagation such as the sharp wavefront and rate effects, the 

thermal shock phenomenon, the thermal resonance phenomenon, and reflections of 

thermal waves across a material interface were discussed. Joshi and Majumdar [Joshi

1993] obtained numerical solutions using the explicit upstream difference method.

Antaki and others [Antaki 1998, 2000, 2002] investigated the heat conduction in a semi

infinite slab. Tang and Araki [Tang 1999] derived an analytic solution in finite rigid 

slabs by using Green’s function and a finite integral transform technique. Ho and 

colleagues [Ho 1995, 2003] studied heat transfer in a multilayered structure using the 

lattice Boltzmann method. Tsai and Hung [Tsi 2003] studied thermal wave propagation 

in a bi-layered composite sphere using the dual-phase-lag heat transport equation. 

Recently, Dai and Nassar [Dai 2004b] have developed a finite difference scheme for 

solving the parabolic two-step heat transport equations in a 3D double-layered 

rectangular thin film. Tzou and Chiu studied thermal lagging in ultra-fast laser heating 

[Tzou 2001]. This was implemented to describe the experimental data of femtosecond 

(fs) laser heating of gold films. An explicit finite difference scheme was developed. It 

was found that the lag model including temperature-dependant thermal properties yields 

numerical values that are consistent with the experimental data for ultra-fast heating on 

gold films. Wang and associates [Wang 2001b] showed that the dual-phase heat 

conduction equation is well-posed in a finite region under Dirichlet, Neumann or Robin 

boundary conditions. Later, Wang [Wang2002] showed the dual-phase heat conduction 

equation offers a unique solution under these same boundary conditions. Tang and Araki
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[Tang 1999] introduced a generalized macroscopic model in treating the transient heat 

conduction problem in finite rigid slabs irradiated by short-pulse lasers. The analytical 

solution is derived from Green’s function method and a finite integral transform 

technique. Energy transfer features such as wave, wavelike and diffusion behaviors were 

exhibited by adjusting the relaxation parameters. Their numerical methods were 

compared with experimental data and showed agreement. Lin and associates [Lin 1997] 

obtained an analytic solution using Fourier series. An exact solution, using a separation 

of variables technique, to the universal equation between heat flux and the temperature 

gradient for the one dimensional case was considered. Al-Nimr and Arpaci [Al-Nimr 

1997a, 1997b, 1999, 2000a, 2000b, 2001, 2003] proposed an approach based on the 

physical decoupling of the hyperbolic two-step model, to describe the thermal behavior 

of a thin metal film exposed to picosecond thermal pulse. This approach was based upon 

the assumption that the metal film thermal behavior occurs in two distinct stages. In the 

first phase, the electron gas transmits its energy to the lattice through electron-phonon 

coupling. In the second phase, the electron gas and lattice are at thermal equilibrium. In 

this phase diffusion dominates the transfer of energy within the system. This method, 

which eliminates the coupling of energy equations to simplify the system, applies to

QjJ
metal films with the parameter much less than one. Chen and Beraun [Chen 1999a,

Ke

1999b, 2000a, 2000b, 2001a, 2001b, 2001c, 2003] used a corrective smoothed particle 

method to find a numerical solution to the interaction of short laser bursts and thin 

metallic films. Dai and Nassar [Dai 1999, 2001, 2002, 2004] and associates have 

developed many finite difference models for examining a numerical solution for a dual 

thin film system irradiated by an ultrashort laser burst.
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Thus there is considerable research covering the dual-phase model for heat 

conduction. Research has supported the fact that the dual-phase model is applicable in 

this case. The model is well-posed, it produces a unique solution, and the numerical 

results accurately describe experimental results. However, research concerning 

numerical solutions to this dual-phase equation has been bounded. In the case of 

analytical methodologies, single dimensional systems are the primary consideration. The 

numerical methodologies concentrate on finite difference models for specific geometries. 

These utilize many different methodologies for the specific situation. They include 

modified Crank-Nicholson schemes, alternating direction implicit schemes, and three 

level finite difference scheme in spherical coordinates.

There is a need for a generalized numerical solution to this model -  one that is 

flexible for many geometries and dimensionalities. This work extends the body of 

research to the case that the double-layered thin film is irregular in the planar direction 

and develops an unconditionally stable FE-FD hybrid scheme for solving the parabolic 

two-step model.
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CHAPTER THREE

MATHEMATICAL MODEL

3.1 Problem Description

In this dissertation, we consider an irregularly shaped double-layer thin film 

exposed to ultrashort-pulse lasers as shown in Figure 3.1. We will determine the 

temperature rise in the thin-film.

Laser Pulse

0.05\lm  
0.05 [Im

Figure 3.1 Graphical Representation of Modeled Example

The mathematical model which governs the heat transfer on the double-layered 

thin film exposed to ultrashort-pulse laser can be described by adding layer information 

to Equation (2.13).

21
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It is expressed

OT'(m)
Q(m) e _ — (TmT — + S *'m') (3.1a)

(3.1b)

where Ce =yTe, and Ce° initially and here m=l,2 and represents the two layers of the

system.

In this problem, we consider the case in which the temperature of the electrons 

and the temperature of the lattice are initially uniform and equal to To before the laser 

pulse is applied. Thus, the initial conditions are as follows

where tp indicates the laser pulse duration. At the top of the gold layer, (z = 0), and at the 

bottom of the chromium layer, (z = L), the heat transfer rate is generally very small. In 

this problem, the heat transfer rate at these two interfaces is considered to be zero. Thus, 

the Neumann boundary conditions exist

The temperature of the gold layer and the temperature of the chromium layer are 

equal at the interface between the two layers. This indicates that there is no “temperature 

jump” between the two layers due to the bonding of the layers. Thus, at the gold- 

chromium boundary, the following condition exists

TL = TL  and TL = T\cr (3-4)

In addition, the heat conducted through the gold-chromium interface from the 

gold is equal to the heat conducted into the chromium. Thus, at the gold-chromium 

interface, the additional condition arises

Te (x, y, z, -2  tp ) = Tt(x,y ,z,  -2  tp ) -  T0 (3.2)

(3.3)
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The source term is defined as
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(3.5)

_ 0.94 ' l - R  ̂

k *p S j

Jexp _ t _ 2.7 7 ( i^ ) (3.6)

and R is given as 0.93, and 5  =15.3nm. ./represents the total energy carried by laser 

pulse divided by the laser spot cross section tp=100 fs and represents the full-width-at- 

half-maximum (FWHM) duration of laser pulse time, (to), or t = 0, is when laser arrives 

at metal surface [Tzou 1996]. Figure 3.2 gives an example with J  =13.4 J/m .

0.004

0.003

0.002

0.001

500 1000 1500 2000

Time in Picoseconds 

Figure 3.2 Plot of laser heat source

It is difficult to obtain an analytic solution for this problem due to the complex 

geometry and nonlinear coefficients. Therefore a numerical solution is sought in this 

study.

3.2 General Procedure

3.2.1 Approach Described

The following procedure in the numerical method will be used:
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1) Since the thin film is irregular in shape with respect to the xy-directions, we 

first discretize the Equation (3.1) in the xy-direction using the finite element 

method. To this end, we set up global finite element formulation using a 

modified Galerkin Weighted Residual method. The matrix coefficients (in the 

x-y plane) are assembled yielding a system of parabolic partial differential 

equations in one direction (z-axis).

2) Utilize the finite difference method to discretize this PDE system in the z- 

direction.

3.2.2 Reasoning Behind Hybrid Approach

While there are many different means by which partial differential equation 

systems can be solved, many situations make the use of analytical methods which are 

laborious and difficult to use. One of the most powerful methods for obtaining a 

numerical solution is the finite element method. The basic ideas behind this methodology 

date back to the early 1940’s, however it’s principles came together during the 1960’s 

and have grown to a better applicability due to the advent of faster computers [Comini 

1996],

The finite element methodology is based on three ideas [Gockenbach 2002]:

1. The problem is written in its weak or variational form, which expresses the 

problem as infinitely many scalar equations. In this form, we have the 

boundary conditions given implicitly.

2. A descritation method (in our situation, the Galerkin Weighted Residual), is 

applied to solve the above equation on a finite-dimensional subspace. This 

results in a linear system of equations which must be solved.
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3. A basis of piecewise polynomials is chosen for the finite-dimensional 

subspace so that the matrix system will be sparse and thus easier to solve.

Because of the broad choice of weighting functions, there are many residual 

methods by which we can apply the finite element methodology. We choose a common 

method known as the Galerkin Weighted Residual method [Comini 1996], According to 

this method, the weighting functions are chosen to be the same as the approximating 

functions (basis functions). This has several advantages:

1. The avoidance of manipulating two sets of functions -  one for the basis and 

another for the weighting function.

2. The general property of the shape functions offers a naturally sparse matrix 

system.

3. This method leads to symmetric matrices.

4. According to Gockenbach, “the Galerkin approximation is a best 

approximation to the true solution,” [Gockenbach 2002, pg. 181].

Perhaps of equal importance is that the finite element methodology is well suited 

for oddly shaped or irregularly shaped objects. The mesh generated can be done so as to 

minimize the unallocated space on the boundaries. The elements do not have to have a 

uniform shape and can thusly be “adapted” to fit the irregular geometry.

However, the finite element system is computationally intense. Also, the more 

dimensions, or axis, that are added, the more complicated the methodology becomes. It 

is also difficult to combine both a spatial and time level estimation with the finite element 

methodology. Often a finite difference methodology is preferred for regular or non

curved geometries or time-dependant systems.
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The approach is to combine the strengths of the finite element methodology 

(accuracy, irregular geometry considerations, sparse matrix system generation) while 

avoiding the before-mentioned drawbacks. One way to do this is by taking the finite 

element method in two spatial dimensions while holding the third spatial dimension and 

time dimension to be estimated through a finite difference scheme. This is possible, 

even preferred, if the third dimension is a regular, non-curved geometry. This is the aim 

of this work.
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CHAPTER FOUR

NUMERICAL METHOD

4.1 Finite Element Method 

4.1.1 Modified Galerkin Weighted Residual Approach

Utilizing a modified Galerkin residual finite element approach entails establishing 

a residual function. This residual is then multiplied by a weighting function and then 

made to be, on average, zero. After this weak formulation is pronounced, the weighting 

and basis functions are established. These will be used to formulate the matrix 

coefficients for a system of partial differential equations. Derivatives with respect to time 

and the z-axis are deliberately carried. These quantities will be determined by the finite 

difference method. After the basis and weighting functions have been formulated, a 

triangular mesh is used to assemble the matrix system and solve the finite element portion 

of the scheme.

4.1.2 Formulation

For the heating of the electron gas, our residual function is described thus

R(x,y ,z ,t)  = Ce- 1L-K*72Te +G(Te - T [ ) - S  
dt

2 r p  ~ , 2 r n  ( A  1  )

= Ce^ - K ^ f - K ^ f - K ^ f  + G(Te - T l) - S  
e dt dx2 dy2 dz2 K e "

In this system, Ce is a function of time and space. It is represented as

27
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(4.2)

where Tp will be defined later.

This residual is multiplied by a weighting function and set to be, on average zero. 

It is expressed

= 0 (4.3)

where w is the weighting function. By substitution, we obtain

11

■ d2 d2 ^  

e ~ d tW ~ KI k 2' W ~ K W ~ K~dz?w + G(Te - Ti)w ~ Sw dxdy = 0 (4.4)

\ \Ĉ wdxdy~KW

-  ^Swcbcdy = 0

d2T d2T A
a?~ + l y

w dxdy -  k wdxdy + G JJ[(T, -  7] )w] dxdy
dz (4.5)

or simply

CeT, J]wdxdy -  k  [[[(7^ + Tyy) w jk d y  -  kT1z \\wdxdy + G(Te -  Tt) \\wdxdy 

- S  jjwdxdy = 0

Taking the second term, - k +Tyy) w^dxdy only we note (wTx) x= wxTx + wTx

and wTxx -  (w T x)x - w xTx. Hence we obtain

- k  JJ[(w r x)x + iyvT y)y y x d y  + k  Jj[wxZ; + wyTy ̂ x d y  

=  ~ K \§ w T xnx + wTyny ]d s  + k  J f w X  + wyTy ]dxdy

(4.6)

(4.7)

As w(Txnx + Tyny) = w r f fT , this term is expressed

-  k <||h77V7’J a  + k  + wyTy ]dxdy
S D

(4.8)

The weak formulation is therefore
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dT dw dT dw 
dx dx dy dy

dxdy -  k y- ^wdxdy
dz

Ce ||wdxdy -  k  +  k  | |
dt dD
+ G(Te -  7)) \\wdxdy -  S \\wdxdy = 0 

The term, -  k <|[wmV T jofr, contains the information from the boundary conditions.

(4.9)

3D

Next the test function is defined as

Th (x, y ,z ,t)  = Y j T (z, t)<pp (x, y)
P=i

(4.10)

where <pp(x,y)  is a basis function, and N is the number of points in our x-y cross section.

The source term is defined to be

s„
P = 1

The weighting function, w -(p q (x, y ) . Therefore, we obtain

) {tufy] + t , G (rp - Ti)[  J J (? W ) ^ y ]  (4-12)
p =1 U Z p =1p =1

N

E s [ f f ( v 9) ^ ] = °
P=1

(4.11)

Setting mqp = §{<pp<pq)dxdy and kqp = k J | d<PP d<Pq | d<PP
dx dx dy dy

dxdy a matrix

formulation is obtained

P>’T'    fj^T________ _ _
C M — -  + kK T  - kM — r  ̂+ G M f l -T ,)  = M S  

e dt e dz2 1 e '>

Repeating this process for the lattice equation yields

(4.13)

R,(x,y,z,t)  = C , ^ - G ( T , - T , )
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\{R,w]dxdy => | |  C , -G {T e-T,) wdxdy = 0

~ \rp

=* | |  C , - ^ w  d x d y-G \§ {T e-T l)w yxdy = 0 (4.14)

N

If Th{x,y,z,t) = Y JT{z,t)(pp{x,y) and w = cpq{x,y)

£ ' C' IT  [ W ^ d x d y ] -  £ ' G (7, -:7))[ JJW d*rfy] = 0 (4.15)
p=l 0* p=l

Letting = Q<pp(pqdxdy we have

c m — - G M ( r e - r , )  = o 
' a t  v ;

(4.16)

Therefore, the matrix system resulting from the Finite Element Methodology is

4.1.3 Establishing a Triangular Mesh

A triangular mesh is chosen for the system. This information is used to create the 

matrix coefficient system. Figure 4.1 indicates the triangular mesh created for the case 

presented herein. For linear triangle elements, we can write the element expansion in the 

form

C M  + kKT, - kM + G M (fr-T ,)  = MS
e dt e dz2 V e

(4.17a)

(4.17b)

Adding layer information, we obtain

C<m)M
dt dz'

) = M S (m) (4.18a)

(4.18b)
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r ; = r > ; + r > 2‘ + r > :ene (4.19)

where (p = ae + bex + cey .

Figure 4.1 Triangular mesh for x-y plane.

After algebraic manipulation, we obtain [Comini 1996]

k  = f | +
qp dx dx dy dy dxdy = - ~ ( P lPJ + rlrJ) (4.20)

and

(4.21)

where Q ,= ~ PiYi) is the area of the triangular element and StJ is the Kronecker

delta (StJ= 1 for i = j  and S  =0 for i * j ) .  Also, f f  = y e2-  y%, -  y ‘ ,

P l= y \  - f 2 and y { = x l - x \ ,  y \ = x [ - x 3e, f 3 = xe2 -x,e.
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This mesh enables the determination of exact values for the nodes in our mesh.

This makes matrix assembly easier and helps keep track of our nodal points for the finite 

difference methodology to be implemented later.

The first step is to find the elemental capacitance (M) and elemental conductance 

(K). This is done by following the steps in Equation (4.19) and following.

At this point, the mesh is labeled by element and node. Each elemental matrix is 

assembled into a global matrix, (one for conductance and one for capacitance). Appendix 

B contains the source code for this generation. Upon completion of this assembly the 

Finite Element portion is complete and we move to the z-axis to formulate our 

temperature distribution over time.

4.2 Modified Weighted Average Finite Difference Scheme

4.2.1 Finite Difference Method Outline

A modified weighted average Finite Difference Method is used to approximate 

Equation (4.18). The scheme is an implicit scheme which takes three levels in time and 

space to obtain a higher degree of accuracy for the overall methodology. This is 

accomplished by averaging each point from three space levels (weighting the central 

point). Also, the time derivative shall be an averaging of three the time levels 

surrounding the current time level.

4.2.2 Notation

The previously described scheme results in the following notations

“ «+l  ̂ —w—1
f e *  Te + 2 T e + T * (4 _22)
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—n+l
-  T i  + 27/ +7/7/ « --------------------- (4.23)

^ —* —;«+! —n-1
5 7  T e  — T e

dt 2 At

d %  
dz2

—"+l —;«-l
T e  4- 2 T  e ~%~Te

(4.24)

(4.25)

—«+l —w+1 — n —n-1 z^n-l
7 e(Jk-l) — 27 e ( i)  +  7 «(t+ l) 7 e ( t - l )  — 27 e(*) +  7 e(i+ l) 7 e(* -l)  ~  27 e ( i)  +  7 e(fc+l)

H ---------------------------- ; ---------------------1------------------------------------------------- ( 4 . 2 0 )
4Az 2Az2

^ —• ;̂«+l —;m-1
5 7  7/ - 7 /
5f 2A t

4Az

(4.27)

4.3 Combined Hybrid Scheme

4.3.1 Formulation

Combining the two methods yields

Ce(7/)M
—-w+1 — n~\
Te ~Te + kK

-~t7+l —“/7-1
Te + 2T e +  T e - kM .S'2

( "S Te + 27 e + Te

1 to >

1

4 ° z 4v J

C,M

+ GM
—;«+l —;fj-l —‘«+l * w —~«-l
T e  + 2 T  e +  T e  T ,  + 27/ + 7/ = MS"

_
4 4

1
H

I
*-■ 

a +
1 H

I
*-■ 

a i l

-G M
-^«+ l ^  —*«-! —;«+l _ — —-a?-1
T e  +  2 T e  +  T e  T l  +  27/ + 7/

2  At 4 4

(4.28a)

=  0 (4.28b)

where 8] is the central difference-in-space operator.

The procedure for formulation of the combined computational scheme is as 

follows:

1) Set up global finite element formulation using a modified Galerkin 

Weighted Residual method.
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2) Assemble the matrix coefficients (in the x-y plane) yielding a system 

of parabolic partial differential equations in one direction (z-axis).

3) Utilize Finite Difference scheme to solve this PDE system.

4) Formulate the algorithm to solve the system.

5) Implement the algorithm computationally.

4.3.2 Implementation of Scheme

Implementing the modified weighted average Finite Difference Method to 

approximate the PDE system yields a basic formulation:

™ < » >  
1  e f

2A t
+  K (m) K

K(m)M

+ G(m)M

■ M S

( f r f  + ( ? : f  ( f r f + 2 ( t T )” + ( f r f 1

(4.29a)

C,M
2At

G(m)M

= 0 (4.29b)

where m=l,2 and depict the gold and chromium layers respectively of the system.

At the boundary between the gold and the chromium layers, the discrete interfacial 

equation is
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K A u

-(» 
1  e f - ( t T )

*+i v  i

n \  r

k

Az
K,Cr

C ' L
Az

v

n \

(4.30)

Taking the second equation to solve for the third time step for the lattice temperature

C, G(m) "1
— -  +-----
2A t 4

■— ( f !"1
C, G
- J -  +  —

( c '

Q ( m )  N-1
+ + ------

l^2Af 4 ; I  4

v
vn+l

2 At 4
T,

(5

(4.31)

In the above equation, the subscript (k) is omitted, but is implied throughout. 

Equation (4.29a), yields

+ km  K
( T T f { f T f

2A t

4Az 2Az

+

+ G(m)M

= M S

r ^ r r  +(fri
4Az2

\«+l /-(m)\”-'

r
/ k +1

(4.32)

+(r:f (rrf+2[ts-'J+(fr)""

For simplicity, we shall indicate Ce((re(m))")as Ce. 

Multiplying by 2At gives

CM
* T - ( * T

AtK(m) T,  +  K
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= 2AtMS” (4.33)

Combining terms yields

2Az
M

K(m)At
Az2

M (r ." ’L +
k m) At 
2Az2

n+1

k~\

+

+

^  Atfc(m) K(m)A f__ G(m)At -C M +  K + -----— M + ----:---- M

AtK(m)K  +

2 Az

2jc(m)At

W

Az2
M + G(m)AtM ( T r ) .

+

+

C.M +
v
 ̂ K(m)At

Atk ( m )

-K +
K{m)At 

2 Az2
\

M +
G(m)At

M (r w )'n+l

M
v 2Azl j

( j.,. ,) n - l

k+\

+
K(m)At

Az2 

G(m)At

M (r.("’L +
K{m)At 
2Az2

n+l

i t+1

M
n - l

it
= 2AtMS (4.34)

Putting known values to the left and unknowns to the right, multiplying by M '1 yields
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V m)A;

v  2 A z  J
- c . ,+

K(m)At M~'K +
K(m)Af G(m)At (r,wr' +

+

2 Az2 2

M K + + G(m)Af 1 (l?">)" + f ^
Az2 V ,k Az2

/  K u,,) At 
2Az2

n ( m )

7;(m))

)"/ * + l

n-l

G{m)At G(m)Af
*+ l 2

n( m) \«+ l _ - n
) + 2AtS

K(m)AtV  
2Az2 /  e

\ rt+1 (
L , +  c < +

Af/c. ( » )

-M-1K +
K(m)At G(m)A ^

Az2
-  +  ■

( j.,.,) n+l

k

V " 0’AM /rW xn+1
2Az2 r  e

)\n+1
/ i+ 1

(4.35)

from Equation (4.31) is substituted from the second equation. This yields

. ( « )K im ) r/*-!

/ K(m)Af

+
2Az2 e ’

r Q +  2V 2 
V m)A ^

M _1K +
K(m)At G{m)At At2(G(m))2 ^

- +
Az2 2 4C,+2AtG(m)

(r,w )
n -l

>k+1
V Az2 ( ^ L

A/Jc(m)M _1K + 2y(- J^. + G(m)A/ -  A/ (G< )"
a ~ 2  . a  + r : ( « )  V e  A

+
tc{m)At 

Az2 ( r > L -

Az2 ' 2C, + ArG(m)* ✓

f  G(m)At AtG(m) ( 2C, -  AtG(m) V
v V2C,+AtG(m) j )

n-l

-G (m)At +
At2{G(m)f  ^ 

2Cl +AtGim)
(T,{m))n +2 At s"

K(m)At 
2Az2

n+1

k-l
+

V

^  , MK(m) , Kim)lAt , G (W)A / A t \ G {m)f
c e + - — M  A ?  2 4C.+2A/C?")

«+l

^V>r+1
2Az2 ' e /*+i

( l™ )

(4.36)

Letting

/c(m)At 
2Az2 V

At G(m)At At2{G(m)f  ^
 1— *"Az 2 4C, + 2AtG(m)

The following scheme is obtained

(4.37)
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-  K 4"

+

2 M -'K  + B j ^ r X  + { A ) ( r r )

(:2A)[T(em))” t + 2B){T (em))” + (2^)(7;(m))"

n-i
*+i

/*-1
G(m)At AtG(m) ( 2C, -A tG {m) ^

*+i

2C; + AtG (m)
( r - r + G(m)A t -

At2(G(m])2 ^ 
2C, + AtG(m) (rr'l

+ 2A tS

= ( - A)(Tt " Z , + c  +
Atk (m)

M~'K + B I(re(m))”+1 ~(A)(Te(m)))n+1

k+l
(4 .38 )

4.4 Stability of Model

The stability of the above scheme is now analyzed with respect to the source term. 

The system produced is

—»(m )
r dTe

- —»(w)
d2T\

+ k m)K T 7 "  -  k m)m ^ r -  + G im)M ( T (em) -  T ™ )  = M S  
dt dz

and

—* -(m )

Cjm)M —  G im)( r l m) - T ) m)) = Q
dt

(4.39)

(4.40)

where M and K are the capacitance and conductance matrices, respectively.

Equations (4.39) and (4.40) are then discretized using the finite difference method 

as follows

r -  [Te r ;  + 21 t \  + \ T \
\  I k  +  j . - W k  \  >k V h  \  I,

2A t

n- 1 

k

-  K im)M S 2

+ G{m) M

n - \ \  

k

J
■*(w) ,

Te I + 2 7
k v n

n+i /-(»>) r  /-(«)'"■'
+ 2 7’) +  Ti
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Te j is the approximation of Te (kAz,nAt) , k  = 0,1, ... Nz+1, and Sz2 is the

second-order central difference operator. The interfacial equations are discretized as 

follows

(ri0)" - p ’V (f<2)V - ( f '2)y
.̂(i) t Jn,+i \ In, _ k(2) \ /i v /o /q

Az Az

(f i0)" = (f(e2)V (4.44)\ / N z +1 V / o

The initial condition is

(rim)) ° ^ r l m))°=:r0 (4.45)

The boundary conditions are assumed to be

( * > ) ; .( * * > ) ; ,  (?!” );=(?!■’)’ . (Tn : A f r ' L  <4-46>

To this end, we consider the following eigenvalue problem

K ^ - A ,M ^ = 0  (4.47)

where Xp is the eigen value corresponding to the eigenvector </> . Since K and M are

symmetric positive definite, we assume that the eigenvectors are orthonormalized with 

respect to the capacitance matrix M such that

# M  </>p =Spj (4.48)
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where Sa is 1 if p  = j  and 0 if p  * j. Then multiplying Equation (4.47) by (j>] and using 

Equation (4.48) yields

# K 4 , - V * = 0  (4-49)

implying that the eigenvectors are also orthogonal with respect to the matrix K. Further, 

Xp >0 since K is positive definite. As the eigenvectors form a basis for the semi discrete

system in our system, the solution T<m) may be represented as a linear combination of the 

eigenvectors

■* {JW) ■ ■' « , , ■* (/w) 7 _ v
Te (x,y,z,t)  = Y , ( a em)(z,t))p<l>p(x,y) ,  Ti (x,y,z,t) = Y j ( a i ( z >0)J> /* > ) 9  (4.50a)

s V  =YdS^\z,t)(j>p{x,y) (4.50b)

where (a*"0) and (a 'm)) are the generalized electron and lattice coordinates

respectively. Substituting Equation (4.50) to Equations. (4.39) and (4.40), pre

multiplying by $ ,  and using the orthogonal properties in Equations. (4.47) and (4.48) 

leads to the result

d2(a(m))
(4 5 1 )

and

or

d(alm)) S2(alm)) , ,
C )-  - ^ JL + (alm) XpK(m) -  K(m) V 2 + G(m) )p -  (a\m) )p j = ^ m) (4.53)
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and

d(a(m))
Cjm) lg--— - G(m)((al"'>)p (4.54)

Using a similar argument, we obtain from Equations (4.41) -  (4.46)

C.
- K " )

n-l

p i

2 At
+ Xpk ( m)

\ n +1 \  

/  p k

J

K(m)

4Az2
G(m)

)w+l
Pk (4.55)

- X X X M X - ( a? X H s X

C(m)

; ( m )

tf-1 v\ 
p k

2A t

X X  M X  M X  M X  ~ M - %  M X ) - 0 <4-56>

(a '1')" -(a™)" (a® )' - ( a ® ) ’
,(1) '  f p N , * \  V e I p N ,  _  „ (2 ) '  e )  p \  '  'PO

—  AC

Az Az
U X  = ( a X n
V e / p N , + 1 V e  '  pO

(4.57a)

(4.57b)

and

M X M X ’

( X M l ' X

p N z
{a[m)) \  =(alm))n
V '  p N , + 1 V > p

« > ) "  = (a(w )"
V '  J p N z +1 v  7

(4.58)

(4.59a)

(4.59b)

for any time level n. Hence, the analysis of the stability of the scheme, Equations (4.41)- 

(4.46), can be switched to analyze the stability of the scheme Equations (4.55)-(4.59).

We now employ the discrete energy method [Lees 1961], to analyze the stability of 

the above scheme with respect to the source term.
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Let Sh be a set of \un = {u"pk}, with u”p0 = unp] and unpNi = unpN̂ }. For any u", v" e Sh ,

the inner products and norms are defined as

Nj N,
(un,v n) = AzYJY ju"pkv"pk , ||w"||

p=l k=1

I v v ^ f v v . v v ^ A z X K v ^ )

(4.60a)

(4.60b)
p=\ k=\

We also define V 2Uk = Uk+i -  Ul and V-U = Uk -  f/t_,, the forward difference and 

backward difference operators respectively. It can also been seen that the central 

difference operator satisfies 8 \U  k = VzV-C/t .

Proof.

Lemma 1. For any un <=Sh,

+2“i + < ] [ < - < ; ' ] = [ < - [ » ; +»;;'T

= [ < T + « - [ « ? ' ]

= [ <  r + + [ » ; T -  { [« ;T + K ”? 1 + F ;;1 T

= [ mm 1+ “j* ] _ [u^ + “p.1 ]

Lemma 2. If (ccm)^ ,m  = 1,2, are the solutions of Equations (4.55)-(4.59), then

k= 1

- V f ( v ; r ( « « r + 2 K « ) -  + ( « r )

n-l

Pk

r

(4.61)

(4.62)

and
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ripkk o ;  +k o :  • K ’f ; ♦ w )A=1 L-

+ * » > * £ *  [(« :«)•; + 2 ( . f  ) > K ’) ; ; ] { ( “ :!’) ;  +(<f )
A=1 L ' J *-

*=l ' L

- ^ A , £ ] v : r K > r + 2 ( a r ) ; + K ' ) '

n-l

p*
(4.63)

rV

r

Proof. Equation (4.62) can be obtained through summation by parts and substitution of 

Equation (4.59). We can write

+2W ' i + (“ :->) ; ,} [ t e ' >)’;  +2K % + ( ° r )
k=\ L

r'  pk
as

^ Y ^ S 2z{upk)-upk by letting upk= \ { a [ m)V + l ( a <? ))npk+ ( a (-em))
k=1 L

f . Therefore

A=l s t  ( “ * * )  • u Pk = ^ X 1 k **=i

= Az ^ ( V - mm +1- V - mm ) mp,

= Az J  ( (  V -mm+1 )Mpt)  -  £  ( ( V - ) * y  )
k=l  k = 1

=  Az £  (('V; mm ) m/*_, )  -  J  ( ( V ;MP* ) mp* )
k= 2 k = 1

N z +\ N t +\

= A zY i ((V-upk)upk_l)-(V-Up{)up0 -  £((V-wM)wM) + (V-V!+1)MpW!+
A=1 A=l

N t + 1

=  A Z  J  ( ( « | * - 1  -  V ) V A * ) ~ ( V ; M P 1 ) M P 0  + ( V - V , J V l t l

Substituting Equation (4.59), we obtain

N , + 1

^ Y u S ) { u p k ) - U p k  = - A z £ ( ( « pt - “ p t - i )v i « p t )

A=1
A/,+1

= ~ A z ' £ V - ( u pk)V-(upk)
A=1

A=1
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[(„:» r ; + 2 ( a f ) ;+(«i3');;]r(“-2>);;' ̂ k o x ^ j

^ v,i’4z£ ( v ; [ K ' ) ” l + 2 K >)' + K 1)'

M-l
/J*

r' pk

(4.63)

r
' pk

Proof. Equation (4.62) can be obtained through summation by parts and substitution of 

Equation (4.59). We can write

J pk
as

4rS ‘5--, “, b y  letting u„ = - 2(<'"'fp,+{aT ')r . Therefore

N z N z

^ Y , sl i uPk)-uPk = ^ Y J( y y - u pk)upk
k=\ k=1

= A z£(V -M p4+1 - V - U pk)upk
1

-  A z f ;  ((V -Mp, +1 ) « „ )  -  X  ((V -Mp, )ttpt)
k=1 £=1

= Az £  ((V-mm )«pjM) -  Y X { ^ - u pk )upk)
k=2 A=1

Nz +1 Nz +1

= ^ Y J({^-upk)upk_x)-(V-UpX)up0- Y j {(y-upk)upk) + {V-UpN^)u
k=1 i=l
Nz+l

= ((mM-, - V ) V;mm) - ( V-zmpi)V  +(V^ +i) V !+>

/>NZ+1

Substituting Equation (4.59), we obtain

N z + 1

A=1
= -A z J ]  ((w,* -  upk_} )V-upk)

k=1 
Nz + 1

v j(v )v ẑ )/t=i

*=1
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To obtain Equation (4.63), we let upk = and

V  = (“ f ’)”!' + 2(a «2))"* + (a «2))V ' suc^’ ^  ^an<̂  s^ e (LHS) of the equation can 

be expressed

LHS = v (1) A z £  8 2 [ upk ]  • [upk ]  +  k (2) A z £ X  [ v pk ]  • [ v pk ]
4=1 *=1

N z

= /c0)A2 ^ [ ( w m+i -  upk) - (upk - upk̂ ) J • upk
4=1

Nz r
+ v (2)A z £ |_ ( V +1 - vpk) - ( V  -  VM _ , ) J • vpk

=k0) j ** Z  [(“*  -  upk~ i)] • upk-1 -  ̂ Z K ^ *  -  uPk-.)] • mp* [
4 = 2  4=1 J

+* <2) j ^ Z K v  -  V - > ) ] ’VP*-. - - ■ V- . ) ] -  v

Based on Equation (4.59b), the above LHS can be further written

Nz + 1

L / / S  = K m \  A * Z [ (  V  -  * V - i ) ]  ■ V - 1  -  ^  Z  [ ( “ p *  -  V - 1 ) ]  • “
4=1 4=1

+ k {2) j Az X  [(v  -  V _ ,)] • Vp*., Az £  [ ( v p,  -  Vp*_,)]
^  4=1 4=1

+ /c(1)Az • - V ; ) • upK+x -  v (2)Az • ( v „  -  Vp0) ■ vp0

-v (1)Az.(W/)1 - v (2)Az-(vp̂ +1 - v̂ ) - v̂ +1

Note that v(1)Az • (m ^  - u pK)-upN;+1 -K (2)Az-(vpl -v p0)-vp0= 0 by equation (4.57) and 

v(1)Az• {upX - u p0)-up0 - k(2)Az • (vpNt+x - vpK)• vpK+x = 0 by Equation (4.59a). Thus

LHS  =  v (1) Az X  V-upk • W-upk + Az X  V -v pt ■ V -V  ,
4 = 1 4=1

which is the RHS of Equation (4.63).
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Theorem. Suppose that )”̂  and , (k/"0)^ and are solutions of the

proposed scheme in Equations (4.55)-(4.59) with the same initial and boundary 

conditions but with different source terms. We represent ~ (f/e(m)) k an<̂

(£im))nk =({7/<m))”t -(F,(m))"4, m = 1,2. Then for any n in 0<nAt<to, and

m -  1,2

F(n)<e4'"F(0) + 2toe4'" m a x  M l  + I M I
1< 4Sn K

(4.64)

where

F(n) = 2Ce(1) (e™ f  + (e? )" + 2C,(,) (s,(n f '  + (f/<1))”

+ 2 C ( 2)

(4.65)

and em(g), m = 1,2 are the difference of corresponding source terms in layers 1 and 2 

respectively. Hence, this scheme is unconditionally stable with respect to the initial value 

and the source terms.

Proof. It can been seen from Equations (4.55) and (4.56) that (s (em))”pk and (£,(m))pk, m = 
1,2, satisfy

2 c;( m ) n-\

pk

)«+1
pk

Kim)U
I F '

)«+!
pk

- G {m)At 

+ 4A tem(n)pk
(4.66)

and
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2 C(«) n - l

n - l rn

pt

and also Equations (4.57)-(4.59). Multiplying Equation (4.66) with m = 1 by

Az

Az

(fe0))"t' +'2-{se))"k + (£rr ))"̂ ' Equation (4.66) with m = 2 by

(£«2))V  + 2 (£*2))"* + (£’*2))”r  ’ sum m ing o v e rP’ k  fro m P = •••< ^  = j

respectively, and combining them together yields

2c;» ((,«')■*' - (* « > )- ,(£« > r  +2(* :"y + (£i " f )

+ 2C“  , (£f  >)“ ' + 2(««' )■+(*«' f

[ w r + 2 ( * r ) ’ ^ r } ^ r ^ r +w  

~ > ( w " r + z w " ) ’ + l t 1 . w t

- r * (2) £2 (,f>)”+1+ 2 ( ^ y + ( , f > ) - ] ,  ( ^ r + 2(^> )n+ ( ^ f '

- ^ A / ^ r + 2 ( ^ > ) - + (^ 2)r , ,w 2)r i+ 2 W 2))"+ K >r )

+ AfG(1) (*:»)“ + 2(*:")’ + (£» ' f  | + &<G<» (««>)” '+ 2(ef> )-+ ( „ f  f

= A(G|n ((«<")” ' + 2(e >'>)- + (s,mr  + 2 w ° ) ' + w t 1)

+ A ,G « '( (s f)“  + 2(fi®)’ + ( * r f  ,(**» )**’ +2(£f  )■ +(*“ )" ')

+ 4A((el(n),(c;l))" ' +2(s"’) ' + (s"’) ' '

+ 4At(e2(n),[sl2)y +i + 2 (^ 2))” + (^ 2))”

where r At
Az 2 ’

By Lemmas 1 and 2, we obtain

2C,( i )

+ 2C(2)

-2C. 
2

0)
W T + W 0)"

•2C‘2) (^ )" +w 2)r
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+ rzK(l) V 

+ r K m  IIV-

(s f  )■*' +2(s<")- , ( e ? ) ~ '  j [  + V ' H M ' ’)'' + 2(*'")’ + (‘ - T  |

+ ArG«'L;")“ + 2 ( ^ 1)' + (*»’)■ +A(Gi!I

= A,G<" ((,;")•* '+ 2(,;'>)- + 2 ( ^ ) " +(*"')“

+ A,G'” ((£)>')“  + 2(£,“ )- +( ^ T ' ^ T i+ 2 ( ^ T  + (£? ’) 

+ 4A/|e,(n),(«!l,)“  +2(«JI>)" +(«.(l>)

H-l

+ 4Ar (4.69)

+2W°)" + (*<»)' andWe now multiply Equation (4.67) with m -  1 by Az

Equation (4.67) with m = 2 by Az ( ^ 2))" ' + 2 (f‘2))" + (^ 2))"+1 , sum over p, k fvom p = 1, 

... , Np, k = 1, ... , Nz, respectively, and then combine them together. This yields

2 C;(1)

+ AtG{]) {S">) +2(s':>)' +(e<‘>) |  +A,Gm  (««>)“  +2(«,ra)' +(£<21)-

=a,g>'>((£: " ) " + 2(£:,>)-+ (£«>)-",(£;,,)'‘, + 2(£;,>')’ +(*,« T ' )  

+A/Gla ((£ f) '* V 2 (£ m )% (£f 1)" '\(£ ;!l)"*l +2(£,l!>)'+(£,m)"'1) (4.70)

By Lemma 1, we obtain

2 C\X) + 2C,(2) ( s f  )” '+(£«>)• -2C,la ( s f 1 )"+(£«>)
vM-1

+ AtG(l) (*,<”) + 2 ( ^ ) "  + W 0) + ̂ (2> | p r  + 2 (^ ) *  + ( ^ ) -

: + 2 ( ^ ) -  +( e ^ \ ( s ^ f l + 2 ( ^ ) "  + ( ^ r )

+AtG(2> ( ( ^ ) n+' +2(ff<2>)" + ( ^ 2))"_1 ,(s<2>)"+1 + 2(*<2>)" + ( ^ 2>)"‘ (4.71)

Adding both Equations (4.68) and (4.70) we have

2C,( i )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Since

and

2 C<2) 

2Ce(,)

2 c !2)

+ r.K-

+ ApK^At

+ r,K

w 2,r + w 2,)"| - 2 c ^ y +]+( ^ r  

( ^ r + ^ r f + ^ i ^ j v ^ r  

( ^ 2)) -+ (^ 2)r ,f+ 2c< 2)|( ^ 2>)"+(^2>>

w r ^ w + w r

K > r +2K>)-+(.o>)-

( ^ r + 2 w a,) ' + w 2>)'

V

+ A, G<" {||(£:")“ + 2(£; ") -+ | | \  [(,«>)•*'+ 2 ( ,;" ) -+ (,)")•■'

-2 ((£;" ) '* '+ 2(c«>)" +k T  +2(£"’)"+ ( * : T )}

+ a ig >» ||(£;»)” 1 + 2(s«>)"♦f a f f + | | ( £;2>)'*'+ 2 ( 4 2')"+(^<2>)'

-2((«p>r+2(£-,!>) '+(£'rar '  • K ,r +2(*:j>r

= 4A<(el(n),(£!11)” 1 t 2(A.!i)" +(A")"

+4A,(ei(n),(£f)"* , + 2( ^ 2’) ' + (£" >)'

+2(£,,)- + (£,1,)- '|| + |(£;i))” ' + 2(£<..)- + (e<»)-

- 2 ( ( s; " r + 2(£«>)-+ (,<")-!, + 2(e?>)-+ ( ^ > r ) >

(*“ )"*'+ 2 ( ^ ’)‘ +(*:2ir '  + ( ,;2> r + 2(£- y  

-  2((£-2') “ ' + 2(,<2') " + (,;■>)-' ,(* » )“ + 2(£;2>)- + (S;2>)-1 >0

(4.72)

(4.73)

(4.74)

Dropping out the last six terms on the left-hand side of Equation (4.72) the following is 

obtained
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2 C.0) w ’r + w ) " ! 2+ 2c?,)|( ^ i,r + w*)"

*2C™ ||(* f )"'■ + (^ 2,)"|f+2C,l2’H(^2>r l +(*:a )'|

2 c : ' ' i k ') " + ( ^ i,r r ^ c < '>  („;'>)•+ (£- '> r | !

2 r (2) («“ )"+(*!” ) +2c™|(*,ra) ' +(*;■>)'

<4i/(e|(n),(£:,,r , +2W“)"+(s!'')'

+ 4A/(e2(ji),(£‘3')"+l +2(e™ )‘ + ( s “ )

By the generalized Cauchy-Schwarz’s inequality, we have

2At(ei(«),(^,))"+1+2(£'1))"+ (^ 1))”

<2 C,0)

and

s 2 c ;= > L « 'r '+(«“>)’ + 2 C'2)

Substituting the above inequalities, we have

2C<°

+ 2Ce(2) 

2C.0)

( ^ > r + ( T  + 2c/2) isn  + (£\2))n

( 1)

2 C.( 2 ) (2 )

< 2Af

+ 2A t

w t +w t  +2c'

(*‘a,)’ + W T  + 2 c ;

2 ^  w « r +w ,,r

2C„(2> (^ 2>)"+,+(fi<2>)" "+2C<2>

+ 2C0 )

(*<3>y+(*?>} 

W ,))"+ W ,))' +^ o iiei(”)ir

w 2))"+w2>r ,2+ ^ w «C ( 2 ) l

(4-75)

(4.76)

(4.77)

\
2 (4.78)
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Using the notation F(n) as defined in Equation (4.65), the above inequality is 

simplified as

(1 -  2At)F{n) < (1 + 2At)F{n +1) + 2cAt(||e, (n)||2 + \\e2 («)jf) (4.79)

where c = max-i 1 1
C(1)’C(2)e e

— >. Hence when 1 -  2At > f , we have

F{n)<
\

1 + 2A t 
1-2A t

F ( n - 1) + 2cAt 
1-2A t

(|e,(n)||2 +||e2(«)||2) (4.80)

Therefore

. (1 + 2At) „r .. 2cAtF{n)<----------F{n-\)  + -
(1 -  2 At) 
(1 + 2At)

(1 -  2 At) (h (« ) |f+ h (" ) |f )

(1 -  2At)
(1 + 2 At) 
(1 -  2At)

F(n-2) + 2cAt 
(1 -  2Ar)

+  -
2cAt

(1-2A0
( h i n t - h i n f )

1 + 2A tX
1-2A t J 

2cAt

F( 0)

(1-2A0
1 +

/ \ + 2A F  r

1 + 2A/V 
1-2A t )

F(0) +

1-2A t

2cAt

1 + 2A t
j  V1 — 2 At

+
\2

/
1 + 2A/ 
l-2A f

N«-l
max
0  <4<n

(1-2A0

1- 1 + 2A t 
1-2A t

\ n

1- l + 2Af 
1-2A t

max
0  S | < n {lk (£ )|M h (£)f

( \  + 2 At) n
n / A ,  C rl + 2AfYlF(0) + - 1- --------U-2Ar J 2 (1-2A t )

max
0

V

1 + 2A; 
l-2Ar

F(0) + c r a  |||e, (£)||2 + \e2 (£)||2 j (4.81)

Using the inequalities, (\ + x)n <em x>0, and (l-x)~ <e2x whenx<U and letting x = 2At

and At be sufficiently small, we see f 1 + ^ 0  < < ge«A/ an(j ]jence
l l -2Ar J
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F(n)<ebn* F m  + c e ^  max{|e,(^)||2 +||e2(^)||2}

<e6'" |f (0 )  + c  max{||e,(^)|2+||e2(^)f}) (4.82)

which completes the proof.

4.5 Algorithm for Solution.

The algorithm will consist of the following main blocks:

1) Establish the coefficient sparse matrices M and K.

2) Assume f T  = f T  and find T? ) . This is possible because of the lag in energy

exchange.

3) Use this information to solve the system, dealing with layer boundaries as they

arrive.

4) Repeat until desired time has been met and record the results for evaluation.

4.5.1 Computational Algorithms

Taking the initial conditions for both the lattice and electron temperatures, the 

lattice temperature for first time step (7](m))*+l is determined from the Equation (4.31) 

This value is then substituted into Equation (4.38) and implicitly solved for the electron 

temperature at the next time step (P m))l+' . This process is repeated, and the results are 

plotted, until the desired time is achieved. At the beginning of each time-step iteration, 

the non-linear term Ce is recalculated and applied to the system. A conjugant-gradient 

method is employed to solve the linear system. The interface equations are incorporated 

into the global matrix system of equations. However, it is possible to form a parallel 

implementation of this algorithm and therefore increase efficiency. This is accomplished 

by implicitly solving the gold layer (top layer) with one CPU performing the operations,
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and the chromium layer (padding layer) with another CPU. These two then feed 

information to a CPU which combines them with the interface equations to arrive at the 

new time step temperature values. Mathematica was chosen as the software in which the 

algorithm was coded.

4.5.2 Mathematica as a Programming Language

For this problem, we will implement the computational power of the program 

suite Mathematica. Mathematica is a computer-based software system for doing 

mathematics (symbolic calculations), numerical analysis, and visualizing and plotting 

data. In the December 17, 1999, issue of Science, the excitement and possibilities of 

Mathematica were captured in John Wass's review of Mathematica 4.0. In that review he 

states: "It is hard to imagine a scientific software tool that is equally useful to a math 

professor, a cardiologist, a protein chemist, a population biologist, a civil engineer, an 

architect, and an atmospheric scientist. Mathematica is just such a program....With a 

powerful programming language and a dizzying array of functions, the program can be 

adapted to perform diverse calculations for almost any scientific need."

Data elements in Mathematica are strongly typed, but the language system 

performs many types of automatic conversion, especially on numbers. All numbers in 

Mathematica are unlimited precision: integers, reals, rationals, and complex. 

Programmers define their own data types, after a fashion. In a sense, Mathematica has 

only one non-primitive data type: the "basic form." All aggregate data and symbolic 

expressions in Mathematica are internally stored as a head and a body, where the head 

defines the data type. Programmers can create their own head types, and do, and in that 

sense they are defining new data types.
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When input is made into Mathematica, a data structure is created in the memory 

of the computer to represent the expression entered. In general, different pieces of the 

expression will be stored at different places in memory. Thus, for example, for a list such 

as {2, x , y + z } the “backbone” of the list will be stored at one place, while each of 

the actual elements will be stored at a different place. The backbone of the list then 

consists just of three “pointers” that specify the addresses in computer memory at which 

the actual expressions that form the elements of the list are to be found. These 

expressions then in turn contain pointers to their subexpressions. The chain of pointers 

ends when one reaches an object such as a number or a string, which is stored directly as 

a pattern of bits in computer memory.

Crucial to the operation of Mathematica is the notion of symbols such as x. 

Whenever x appears in an expression, Mathematica represents it by a pointer. But the 

pointer is always to the same place in computer memory—an entry in a central table of 

all symbols defined in your Mathematica session. This table is a repository of all 

information about each symbol. It contains a pointer to a string giving the symbol's 

name, as well as pointers to expressions which give rules for evaluating the symbol.

Every piece of memory used by Mathematica maintains a count of how many 

pointers currently point to it. When this count drops to zero, Mathematica knows that the 

piece of memory is no longer being referenced, and immediately makes the piece of 

memory available for something new. This strategy essentially ensures that no memory 

is ever wasted, and that any piece of memory that Mathematica uses is actually storing 

data that you need to access in your Mathematica session. [Wolfram 1999]
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Within the front end of Mathematica, the labor is divided into three groups: 

Packages, Notebooks and Cells. The packages are much like object oriented designed 

packages in that they can contain many sub units which form a total “program.” The 

“code” is created in notebooks. These ASCII based text documents are subdivided into 

cells which block, or partition the code in the notebook.

Mathematica is built on the powerfully unifying idea that everything can be 

represented as a symbolic expression. Mathematica handles many different kinds of 

things: mathematical formulas, lists and graphics, etc. Although they are different in 

appearance, all of these are handled in one uniform way. They are all expressions.

Each expression takes the form of h[ei, e2, ... ej]. Here, h refers to a head which 

contains a listing of expressions. Mathematica takes a string typed in its interface and 

converts it to a standard form. Everything in Mathematica is treated as an expression to 

be evaluated. [Wolfram 1999].

At the heart of Mathematica is a simple procedure known as the evaluator, which 

takes every function that appears in an expression and evaluates that function. When the 

function is one of the thousand or so that are built into Mathematica, the evaluator 

executes directly the internal code in the Mathematica system. This code is set up to 

perform the operations corresponding to the function, and then builds a new expression 

representing the result.

A crucial feature of the built-in functions in Mathematica is that they support 

universal computation. Universal Computation indicates that out of the many functions, 

programs may be constructed that perform various operations possible for a computer. In 

fact, small subsets of Mathematical built-in functions would be sufficient to support
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universal computation. But having the whole collection of functions makes it in practice 

easier to construct the programs one needs. The underlying point, however, is that 

because Mathematica supports universal computation the built-in functions do not have 

to be modified. A combination of functions in an appropriate way is what is necessary to 

perform a particular task.

Universal computation is the basis for all standard computer languages. But many 

of these languages rely on the idea of compilation. In C or Fortran, for example, the 

program must first be written, then compiled to generate machine code that can actually 

be executed on your computer. Mathematica does not require the compilation step.

Once input an expression has been typed, the functions in the expression can immediately 

be executed.

The source code for the kernel, save a fraction of a percent, is identical for all 

computer systems on which Mathematica runs. For the front end, however, a significant 

amount of specialized code is needed to support each different type of user interface 

environment. The front end contains about 600,000 lines of system-independent C 

source code, of which roughly 150,000 lines are concerned with expression formatting. 

Then there are between 50,000 and 100,000 lines of specific code customized for each 

user interface environment.

Mathematica uses a client-server model of computing. The front end and kernel 

are connected via MathLink—the same system as is used to communicate with other 

programs. Within the C code portion of the Mathematica kernel, modularity and 

consistency are achieved by having different parts communicate primarily by exchanging 

complete Mathematica expressions.
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There are many detailed differences between different kinds of computer systems. 

But one of the important features of Mathematica is that it allows you to work and create 

material without being concerned about such differences.

The commands that are given to the Mathematica kernel, for example, are 

absolutely identical on every computer system. This means that when a program is 

written using these commands, it can be run on any computer that supports Mathematica.

The structure of Mathematica notebooks is also the same on all computer 

systems. And as a result, if a notebook is created on one computer system, it can be used 

on any other system.
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CHAPTER FIVE

NUMERICAL EXAMPLES

5.1 Description

Three different examples are chosen to demonstrate the applicability of the 

scheme. Initial and boundary conditions as discussed in section 3.1.1 are chosen for all 

examples. The first case examines a disk radiated by a short pulse laser only at the center 

of the top surface of the disk. Secondly, the laser is pulsed twice over the same center 

point on the disk. Finally, the laser is pulsed at various positions on the surface of the 

disk.

Table 5.1 indicates the known parameters for the given system. These values 

have been garnered experimentally and reported in several sources [Qui 1993a] [Tzou 

1996] [Barron 1985],

Table 5.1 Known parameters for the system

Gold Chromium
To 300 K 300 K
K 315 W/mK 94 W/mK

70 J/mJK2 193.33 J/nfK^
Ce° 2.1xl04 J/mJK 5.8x104 J/nfK
Cl 2.5xlOb J/nfK 3.3x106 J/mJK
G 2.6x1016 W/mJK 42x10lb W/mJK

57
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5.2 Case One -  Base Case

For this case, a two-layered thin film disk is irradiated by a picosecond laser as 

illustrated in Figure 5.1.

Laser Pulse

Chromium

1.0 mm

0.05\Xm
0 .0 5 (lm

Figure 5.1 Schematic representation for case one

Three different x-y  planar meshes were chosen -  these being planar meshes with 

thirty-three nodes, one with sixty-five nodes and a final mesh with one hundred twenty- 

nine nodes. A /-directional grid size of 10'6 microns was chosen and a time step of 0.001 

picoseconds. Qualities for the Gold and Chromium were chosen from Table 4.1. The 

laser source was assumed to be the same as in equation (3.6) [Qui 1994], Figures 5.2 

and 5.3 give the normalized temperature profiles at the surface directly beneath the heat 

source. Figure 5.2 depicts the normalized electron temperature on the surface over time. 

The maximum temperature of Te on the surface was roughly 1100 Kelvin. Evident are 

three distinct intervals for this plot. In the first time interval (0.0 - 0.25 ps), there is a 

very fast rise of the electron temperature, up to the maximum temperature. In the second 

interval (0.26 -1.5 ps), thermal equilibrium is quickly reached within the electrons 

causing the temperature to drop quickly. It is during this time that heat energy is being
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transferred to the lattice through lattice-electron coupling. In the final interval (1.6 -  2.0 

ps), the electron temperature is roughly uniform as thermal equilibrium is being reached 

with the lattice.

XCO

I—

■

• 129 x-y nodes 
.. 65 x-y nodes 

33 x-y nodes0.8

.5 1.0 1.5
Time (ps)

Figure 5.2 Normalized electron temperature change on surface

2.0

This plot shows good agreement with the one obtained by [Tzou 1996]. The results also 

show good agreement with Dai and Nassar [Dai 2000a].

In that work

L(lle[(T C ] ('+,)
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and

IY7’(Oy>+11(0 _ 7’» (0
) ^ ] (0-^ {  ;feA/----- — ~ J ^ U j ( S' +S2y M T {,))%,]{i)- (T {l)YJkm)

P

K(,) J  i - (/)
2p(/)C^Az2 2 Ar 2 A/

„(0 i T(') i r (0
-(T + -rr)"1(T— T7)[(r(,)) ^ +. - 2 ( r (/))"fc„ + (7’('))”fe,_1)]2p(/)Cp)Az2 2 Ar 2 Ar

1 1 f  '  1 '  1 i

'[1 + ( r+  T - ) ' (~ H—7~)] [(^(/))/a™ ~ W ))nikm- J  TKTmkQjiA }>2 p(/)Cp > Az 2 A; 2 A? ^  W

1=1,2, i=0,l,2, ... (5.1)

1 r(,) *■(') 1 r(0
v2 At Az 2 At-  ( f + ( - — (« + -rr)[(r(0) ^  -  ( r (0) i : ,  ])

1 r(/)
+ ( 2 + A7 )[(r<,)>^  _ (r( ,))^ - ,] / = i ’2’ (5‘2)

There is only slight variation between the x-y mesh sizes which is a further 

indicator of stability. The results shown in Figure 5.3 depict the normalized lattice 

temperature profiles at the surface directly beneath the heat source. The maximum 

temperature rise of 7/ was roughly 10.99 Kelvin which is again in good agreement with 

other numerical studies. The three time intervals are also evident. The first interval (0.0 

- 0.25ps), shows little or no increase in heat energy for the lattice due to the quick 

electron excitement with little transfer to the lattice. In the second interval (0.26 - 1.5 ps), 

the metal lattice temperature starts to rise quickly as the electron-lattice coupling begins. 

In the final domain (1.6 -  2.0 ps), the lattice temperature is leveling showing the
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approach of equilibrium with the electrons. Again, mesh size in the x-y plane shows little 

impact on the results implying stability in the scheme.

X
0 3

I—

- 129 x-y nodes
65 x-y nodes 
33 x-y nodes

.5 1.0 1.5 2.0
Time (ps)

Figure 5.3 Normalized lattice temperature change on surface

Figures 5.4 and 5.5 give the change for both electron and lattice temperatures 

along the z axis for time t = 0.2ps, t=0.25 ps, and t=0.5 ps. Results are shown and are in 

good agreement with numerical studies.
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1200 0.20 ps 
0.25 ps 
0.50 ps1100

1000

800
<D

700

400

2.5E-050 5E-05 7.5E-05 0.0001

Depth Z(mm)
Figure 5.4 Electron temperature profile (z-direction)
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Figures 5.6 and 5.7 give contour plots at time 0.2 ps, t=0.25 ps, and t=0.5 ps 

for the electron and lattice temperatures respectively along the x-z plane.
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Figure 5.5 Lattice temperature profile (z-direction)
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x-axis direction (mm)
(a) t = 0.2 ps

c/>
C

x-axis direction (mm)
(b) t = 0.25 ps

x-axis direction (mm)
(c) t = 0.5 ps

Figure 5.6 Electron temperature distribution in the x-z plane
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o 0,0

x-axis direction (mm)
(a) t -  0.2 ps

2 0.0

6 0.1

x-axis direction (mm)
(b)  ̂= 0.25 ps

2 0.0

0 0.1

311.0  K

300.0  K

311.0  K

300 .0  K

311 .0  K

300.0  K

x-axis direction (mm)
(c) t = 0.5 ps

Figure 5.7 Lattice temperature distribution in the x-z plane

Figure 5.8 shows a comparison of the surface contours for both the electron and 

lattice temperatures at time t=0.25 ps. This time interval represents the peak electron 

heating. The lag in coupling electron and lattice energy exchange is evident. This 

contour comparison reveals a high electron temperature and only a slight variation in the 

lattice/bulk temperature at the close of the first time interval (0.0 - 0.25ps).
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electron x-y surface contour tim e = .25 ps

1,0

0 .0  0 .5  1.0

x-axis direction (mm)

(a)

la ttice  x-y su rfa c e  c o n to u r tim e =  .25 ps

x-axis d irection  (mm)

Figure 5.8 Electron and lattice temperature distribution in the x-y plane (0.25 ps)
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5.3 Case Two -  Double Pulse Heat Source

The second case represents a double pulse of the laser heat source. The same 

center section is irradiated. The heat source for this case is chosen to be

Sp = 0.94 J ( i - r ) _X -2.n{^A2 -2.n{'̂ pL\ 
e ' p ' +e ’ '  ’e * ■

I v O
(5.3)

where J=13.4 J/m2, R is given to be 0.93, tp=100 fs, and 8 -15.3nm. The dense mesh of 

the finite element representation was chosen for highest accuracy and the same time and 

z-directional (depth) values as in Case One were chosen. Figure 5.9 shows the 

normalized change in electron temperature (ATe/(ATe)max) on the surface of the 

gold/chromium disk.

.5 2.01.0 1.5
Time (ps)

Figure 5.9 Normalized electron temperature change on surface (double pulse)
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It can be seen from Figure 5.9 that there are two peaks in electron temperature due 

to the two laser pulses. Figure 5.10 gives the normalized temperature distribution for the 

lattice.

1.0 

0.8
X  
CT3

P? 0.6
<3.

0.4 

0.2

.5 1.0 1.5 2.0
Time (ps)

Figure 5.10 Normalized lattice temperature change on surface (double pulse)

A slight bend is evident at time t=0.5 ps, as the second electron temperature peak 

begins to transfer energy to the lattice. Figure 5.11 demonstrates the temperature 

distribution through the disk along the z-direction through the film. The same three times 

as in case one were chosen (t=0.2 ps, t=0.25ps and t=0.5ps).
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Figure 5.11 Electron temperature distribution (double pulse)

This figure shows a peak temperature at time t=0.5ps of nearly 1400 Kelvin. 

Figure 5.12 demonstrated the lattice temperature distribution through the film in the 

direction.
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Figure 5.12 Lattice temperature distribution (double pulse)

Again, the temperature profile is similar to the ones in case one, except that the 

peak is higher due to the second pulse of the laser.

5.4 Case Three -  Moving Heat Source

This case demonstrates a moving source. The laser is pulsed five times at even 

time intervals about the center of the disk. The first pulse is focused on the center of the 

disk. The second pulse moves along the x-axis in the positive direction. The third pulse 

is located the same distance from the center along the positive direction of the y-axis.

The fourth and fifth pulses are located likewise along the negative directions of the x- and 

y-axis respectively. Figure 5.13 gives a graphical representation.

0.25 ps
0.50 ps
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Figure 5.13 Graphical representation of pulsed laser on thin film surface

Figure 5.14 demonstrates the normalized electron temperature change for the 

central point of the top of the thin film’s surface. The distinct laser pulses are evident as 

the electron temperature rises sharply with each pulse.
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Figure 5.14 Normalized electron temperature distribution center surface of disk (moving 
source)

Figure 5.15 demonstrates the normalized lattice temperature for the same point. 

Again, a steady climb is evident with changes caused by each pulse as the energy is 

transferred from the electron cloud to the lattice.
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Figure 5.15 Normalized lattice temperature distribution center surface of disk (moving 
source)

Contours for the electron temperature distribution through the thin films are 

shown in Figure 5.16. The first contour is after time t=0.25 ps. This is at the peak 

electron temperature profile for the first laser pulse. The second contour demonstrates 

the temperature distribution through the thin films after time t=0.75 ps. This represents 

the peak electron temperature rise for the second pulse. It is evident that the temperature 

distribution moves slightly toward the positive x-direction. The final contour 

demonstrates the electron temperature distribution through the thin films after time 

t=l. 75 ps. This represents the peak electron temperature rise for the fourth laser pulse. 

This pulse is located along the negative x-axis. A shift in temperature toward that point is 

evident in this contour. Figures 5.17, 5.18 and 5.19 show the temperature distribution 

profile on the surface (xy-plane) at time t=0.25 ps, t=0.75 ps and t=l. 75 ps respectively. 

The heat propagation from the moving source is evident in these figures.
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x-axis direction (mm)

(a) t = 0.25 ps

x-axis d irection  (mm) 

(a) t = 0.75 ps

CO

x-axis direction  (m m )

(a) t = 1.75 ps

Figure 5.16 Contour electron temperature distributions for moving source case
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electron x-y surface contour time = 0.25 ps

1.0 '

0.0 0.5 1.0

x-axis direction (mm)

(a)

lattice  x-y su rface  con tour tim e =  0 .25  ps

0 .0  0.5 1.0

x-axis direction (mm)

(b)

Figure 5.17 Electron and lattice temperature distribution in the x-y plane (0.25 ps)
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electron x-y surface contour time = 0.75 ps

0.0 0.5 1.0

x-axis direction (mm) 

(a)

lattice x-y su rface  con tour tim e =  0.75 ps

0.0 0.5 1.0

x-axis direction (mm)

(b)

Figure 5.18 Electron and lattice temperature distribution in the x-y plane (0.75 ps)
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electron x-y surface contour tim e = 1.75 ps

x-axis d irection  (mm)

lattice  x-y su rface  con tour tim e =  1.75 ps

0,0 0.5 1.0

x-axis direction (mm)

(b)

Figure 5.19 Electron and lattice temperature distribution in the x-y plane (1.75 ps)
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CHAPTER SIX

CONCLUSION AND FUTURE RESEARCH

6.1 CONCLUSIONS

This dissertation has reviewed the fundamentals of heat transfer at both the macro 

and micro scale along with the dual-phase-lagging model for examining micro scale heat 

transfer. The dual-phase-lagging heat conduction equation originates from the first law 

of thermodynamics and heat flux density. It is developed through the examination of 

energy transport of the high-rate heating in which the non-equilibrium thermodynamic 

transition and microstructural effect become important associated with shortening of the 

response time.

A hybrid finite element-finite difference method has been developed for solving 

this parabolic two-step micro heat transport equations in a three dimensional double

layered thin film exposed to ultrashort pulsed lasers. First the geometry was discretized 

along the xy-direction using a finite element method to generate matrix coefficients for 

the system of equations. Secondly, the z-direction was discretized using a weighted 

average finite difference method. The system was encoded using Mathematica software 

and the results were examined. It was shown that the scheme is unconditionally stable 

with respect to the initial condition and the heat source. Numerical results for thermal 

analysis of a gold layer on a chromium padding layer are obtained. These results are 

examined for three distinct cases. The first case examined the thermal properties of a thin

78
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double-layered disk exposed to a single ultrashort laser pulse. Secondly, this disk 

apparatus was exposed to an ultrashort double-pulse laser and the thermal properties 

examined. Finally, the ultrashort laser heat source was moved about the central point of 

the double-layered thin disk and the thermal properties examined. The method derived 

can be readily applied to multiple layers and irregularly shaped geometries.

6.2 Future Work

The future work related to this research may involve the development of an 

unconditionally stable scheme for thin films with varying interstitial conditions. This 

dissertation accounted for a perfect conduction between the gold and chromium layers. 

Future work should consider imperfect interstitial conditions or the thermal contact 

resistance between the layers. Another area for future research would be the addition of 

stress between the two layers. This work examines the heat distribution only. It is 

possible, albeit complicated, to consider tensile and compressive stresses caused by such 

a temperature variation. Such an examination would offer a more complete 

understanding of microscale heat transfer for thin films irradiated by short-pulsed-high- 

intensity lasers.
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APPENDIX A

POSITIVE EIGENVALUES

Enclosed is a table indicating the eigenvalues of and a representation of the 

conductance and capacitance matrices.

80
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APPENDIX B 

SOURCE CODE
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(* Barabolic Two step Madel Two Layers *)

(* ajMwnhlm: Bartim *) 
ltoadb[,nwak'GtocnaitzY'Zcian9l«',n ;
(• Binding ctynrtiTMttaa /  nods poaiticna *) 
Ooa«t[k]; Lhaaftfm]; Ctaaet[t] ;

p t e = J b s [ ( ^ * C o .[ |] ) ] ;  

ptn= ;

(* vaziabla taoas £ar eleamfc a lia s  — hcadcat notation:

* 11,1

m , i
X [2 ,l 

* [2 , 1  

X [3,1 

* [3 ,1  

X[4, 1 

*[ 4, 1 
X [5 ,l

* [5 ,1
* [5 ,3
X[6,

* [6 , 1

X[7, 1

* [7 ,1

X[8, 1

*[8,
*[8 ,
X[9,

*[9,
*[9,

= 0; X [l, 2] = —  ; X [l, 3] = pta;
16

= 0; Y [l, 2] =0; Y [l, 3] aptfc;
1

= —  ; X[2, 2] = 2pta; X[2, 3] *pta; 
16

= 0 ;  Y [2, 2] s 2pt±>; Y [2 , 3] ap tto ;

-  ^  r X[3, 2] s —  / X[3, 3] = 2pta;

a 0; Y[3f 2] a 0; *[3, 3] = 2ptt>;
2= —  ; X[4, 2] = 3pta; X[4, 3] = 2pta; 

16
= 0; Y[4, 2] = 3ptb; Y[4, 3] = 2pt±j; 

a —  ; X[5, 2] = — ; X[5, 3] a 3pta;

a 0 ;  Y [5, 2] = 0 ;  
a 3 pUtt;

= ^  ; X[6, 2] = 4pta; X[6, 3] = 3pta; 
16

a 0 ;  Y [6 , 2] = 4pt±>; Y [6f 3] a 3pt±>;

= ^  ; XI7, 2] = ^  ; X[7, 3] = 4pta;

a 0; Y[7, 2] = 0; Y[7, 3] =4ptib;
4a —  ; X[8, 2] a 5pta; Xt8, 3] a 4pta; 

16
a 0 ;Y [8 ,  2] a 5 p t b ;  
a 4 p tb ;

a -A ; X[9, 2 ] a l ;  X[9, 3] a 5pta; 
16 16

a O ;Y [9 , 2] = 0 ;
a 5p t± j;

[elmant. nuribar,alamaat nods] *)
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X[10,1] a — ; X[10, 2] = 6pta; X[10, 3] =5pta;
16

Y [10,1] = 0; Y[10, 2] = 6pt±>;
Y[10, 3] = 5ptt>;
Y [ll, 1] * 0? Y [ll, 2] =0; Y [ll, 31 = 6ptb;

6X [12,1] a — ; X[12, 2] a 8pta; X[12, 3] a 6pta;
16

Y [12,1] a 0; Y[12, 21 = 8ptt>; Y[12, 3l a 6ptb;

X[13,1] = ^ ; X113, 21 = A  ; x tl3 , 31 = 8pta;

Y [13,1] a 0; Y[13, 2l = 0;
Y[13, 3] a 8ptib;

Sbr(za 1, z s  13, z++, 
o, = toaat t {X[z, 11, Y[z, I ] } ,  {X[z, 2], Y[z, 2 ]} , {X[z, 31, Y[z, 3]l > ] ; 
(*Print[nQ[",k,"]=",£!*] ;*>
/8[z, 1] a Y[Z, 2] - Y[z, 3];
0[z, 2] = Y[z, 3] -Y [z, 11; 
j3[z, 3] = Y[z, 1] -Y [z ,2 ];  
ganma[z, 1] = X[z, 3] -  X[z, 2] ; 
gamna[z, 21 a X[z, 1] - X[z, 31 ; 
garaoa[z, 3] a X[z, 2] - X[z, 1];

] ;

(• Iterating far elemental matrices — z indicates alanent, i  indicates saw, 
j  indicates mltmn *)

E b r[z a  1, z s  13, z++,
®oe[j  = 1# j  * 3, j++, 

lb r [ ia  1, i s  3, i++,

k*[ i ' 33 = 11 *j3[Z' ^  +9aBB|a[!Ef i]  *gaama[z, j ] ) ;

I f [ i  = j ,  6a 1, 5 = 0]; 

i* [ i , j]  *(1 + 6);

]'*
]'*
(* Creating elemental matrices *)

M l ,  1] k*[l, 2] k ,[ l ,  3] m,[l,  1] m.[l, 2] ^ [ 1 ,  3]
k[z] = k ,[ 2 ,1] k ,[2 , 2] k ,[2, 3]; m[z] = w,[2, 1] i%[2, 2] i*[2 , 3] ;

k*[3, 1] k ,[3 , 2] k ,[3 , 3] nfc[3, 1] J*[3, 2] m,[3, 3]

Print [” "];
PrintC"k[", z , "]=", k[z] / /  MatrixEtorm]; P d n t[nm[”, z , m[z] / /  MZtrudfaam];

]'•
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(« ELanaot Relationship for 208 Elamants •)

(* W— St  hfiri«m »»l (tija i ti - rrnnrl u p rn a l fh ifin iH m  *)

t[16] = {{113, 112, 97}}; 
t[32] = {{112, 81, 97}}; 
t[48] = {{112, 96, 81}> ; 
t[64] = {{86, 65, 81}}; 
t[80] = {{96, 80, 65}}; 
t[96] = {{80, 49, 65}}; 
t[112] * {{80, 64,49}}; 
t[128] = {{64 , 33, 49}}; 
t[144] = {{64 ,48 ,33}}; 
t[160] = {{48,17, 33}}; 
t[176] = {{48 ,32 ,17}};  
t[192] = {{32, 1 ,17}};  
t[208] = {{32, 16, 1}};

(* Iterating far  other elemental mlatlmwhipB *)
Ebr[i = 1, i s  15, i++, 
t [ i ]  = {{113, 96 + i ,  97+i}}; 
t[16+ i] = {{96+ i ,  81 + i ,  97 + i} } ;  
t[32+ i] = {{96+ i, 80 + i ,  81 + i} } ;  
t(48+ i] ={{80 + i ,  65+i ,  81 + i} } ;  
t[64+ i] = {{80 + i ,  64 + i ,  65 + i} } ;  
t[80+ i] = {{64 + i ,  49+ i ,  65 + i} } ;  
t[96+ i] = {{64 + i ,  48+ i ,  49 +i} } ;  
t[112+i] = {{48 + i ,  33 + i ,  49 + i} } ;  
t[128+i] = {{48 + i ,  32+ i ,  33 + i} } ;  
t[144+i] ={{32 + i ,  17 + i ,  33 + i} } ;  
t[160+ i]  = {{32 +i ,  1 6 + i, 17 + i} } ;  
t[176+i] = {{16+ i, 1 + i ,  17 + i} } ;  
t[192+i] = {{16+ i, i ,  i  + 1}};

]
Sbr[i = 1, i s  208, i++,

PESat["tlw, i ,  "]=", t{ i]  ];
];

(* Assenblar Etorticn •)
(* Sat Up Blank tfctrioas •)
K= Eahle[ 0 .,  { i ,  113}, { j ,  113} ] ;
M= Thble[ 0, { i ,  113}, { j ,  113} ] ;
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(* M in Iteration *)
Par[l = 1, I s  208, 1++,
Ete[j = l ,  j s  3, j++,

Itar[i = 1, i s  3, i++,
I f  [ I s  16, alaa= 1] ;
If[16< I s  32, alam= 2] ;
I f [32< I s  48, alam= 3];
If[48< I s  64, alam= 4] ;
If[64< I s  80, elam= 5];
If[80< I s  96, elaa= 6] ;
If[96< I s  112, elam= 7] ;
If[144< I s  160, e lan s 8];

I f [160< I s  176, aLaa* 9] ;
I f [176< I s  192, eLan= 10] ;
I f [192< I s  208, aLsm= 11] ;

u [ l, j] = E xt*act[t[l], {1, j } ] ; 
u [l, i]  = E xtcact[t[l], (1 , i } ] ; 
vk[j, i]  = Ejctract[k[elem], { j , i} ] ;
■wa[j, i] s Extract[m[slsm], { j , i>] ;

(* K Matrix *)
peeirs Esctract[K, {u [l, j ] , u [ l, i]  >] ;
K* BepLaoaaart[K, peer+'uk[j, i ] , {u [l, j ] , u [ l ,  i ] } ] ;

(* M Matrix *)
peers E&ctract[M, {u [l, j ] , u [ l, i]} ]  ;
Ms RaplaoeBart[M, peer+-unit j ,  i ] , {u [l, j ] , u [ l ,  i]} ]  ; 
];

];
];

(* Print Basalts *)
P E ±nt["K = "( K / /  M atxucEbrm] ;

Print["M=", M// MtrixEbaa];
MKs :tawsEse[M| .K ;
Rant["MKs", MK// MtruOtem];
3bc[is 1, i s  208, ,

Bbaat[t[i]] ;
];
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(* m m nxG  torineess *)
(* SMDPMB* ( \ s =2000 *)

' At '  0.001 ps

(* Tr I Tbtad. Otstano* In s dtraotion >Tl i  KT* »  -1QQ *\ 
' as ’ 1.0.1D-6 mi “

(* p indtcataa nodal nuntw *)

t  = 0.001; (* tina step At *)
ms 1; (* gold/Ghrrnriim layer index *)
z=0.10*l(T6; (* az value *)
P* 208 ; (* Unfair o f Nbdna *)
L= 100; (* Total Itapth Stops •)
SKDQMBa 3000; (* Total Time Stap *)
□UMKX= 0; (* OOtta *)
OQEMOCa 0;

MDZ= Tablet 0 . ,  { x, P>, { j , P } ] ;
Citl] =2.5*10'3; (* Ia ttiaa  Heat Gap — gold *) 
Ci[2] =3.3* 10'3; (* Lattice Baat Gap - -  d u o  *) 
y [l]  = 70* 10"9; (* gamma — gold *) 
y[2] * 193.33333* 10‘9; (* gamna — chro *)
G[l] a 2.6«10*5; (* Cmpling factor gold *)
G[2] = 42. *10~5; (* Onpling Efector chmnrriim •) 
x [l]  a 315* 10*15; (* gold *) 
x[2] a 94*10'15; (• *)

(* CCBETTCIQBS SCR SXS3SM *) 
^ ; x [1] * t  \
M - w - ) -

^  \ 2*z? I
£ s ( t *<3E1] _________ t?*(G [l])2________ + x [ l ] * t  ̂ t
l = l 2 '  (4*(C i[l])) + ((G[l]) *2 * t) + a* / '

)'

(4*(C i[l])) + ( (G[l]) *2*t)
/ t*G[2]  t?* (G[2])2________ x[2] * t
t 2 " (4* (Ci[2])) + <(G[2]) *2* t) +

£  [1] a L is t[]; 
f[2] = L is t[]; 
h[l] a L ia t[]; 
h[2] = L ia t[];
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BtactP* 1 / p i  P , P++, 
f [ l]  =^BpendSto[f[l], fi] ; 
f t 2] = *EpandDo(f[2l, f2] ; 
h[l] s ̂ npandlb th c l], hjj ; 
h[2] * Jnpanctlb[h[2], he] ;

];
f  [1] a Diagpnattfeta±x[f [1] ];  
f  [2] » niagcnaOMB.trix[£[2] ];

h[2] a Diagcnal&fetr±x[h[2] ] ; 
o a Zaixtfctr±x[P];
(* Setting In it ia l Ccnditicns *)
Bbrtp=l, p s ? ,  p++,
Star [k  a 0 ,  k *  L , k++,

U [p, k ,  -2 ]  a 300;
U [p , k ,  -1 ]  = 300;
U [p f k ,  0] a 300;

(* Setting In itia l Conditiona *)
I b r t p a  1 , p *  P , p + + ,

E b r[k a  0 , k *  L , k++,
U [p , k ,  -2 ]  a 300;
<JtP, k ,  -1 ]  a 300;
U [p , k ,  0] a 300;
Ol[P /  k ,  -2 ]  » 300;
H £ P , k ,  -1 ]  a 300;
H i p ,  k ,  0] = 300;
T *[p, k ,  1] a 300;

];
] ;

(* Defining VSactora *)
Etar[n= -2 , n s l ,  n++,

Sbr[k= 0, k* L, k++, 
tB,[k, n] = I ia t[]  ;
Ti[k, n] = L ist[] ;
2tar[p  = 1 / P i  P / P++/
T,[k, n] aAgpendDo[3«[k, n ], {tJ[p, k, n]}] ; 
li[k , n] =ippandlto[TL[k, n ], { l ltp , k, n]}] ; 

1;
];

];
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(* L ist Csaation fa r  Final Results Plots *)
pLotSaat2s L ist[] ;
plotHaat25 = L ist[] ;
piLotHBat5= L is t [ ] ;
plotJTaatDB = L is t [ ] ;
plntTTssfflgS = L is t [ ] ;
pLotHsatD5= L ist[] ;
p lo tO sn b a ra  L ia t [ ]  ;
pLotELectrana L is t [ ] ;
pLotSourae = L ist[] ;

(* Start M in Iteration *)
Etar[n= 0, a s  ENDTIME, n++,
If[M3d[n, 500] = 0, Eant["a=", n]] ; 
b[n] s L is t[];

Etar[ka 1, Its ( L - l ) , k++,

I f [k i ^  , m= 2, m = l ] ;

(* Sauraa F ile  fa r  Case One*)
, 07*13 4 i (-(__*** Wz.77.f (D,t>~(0-2> 12USn = 0.94 (——— ——) *«' '15 .3 *10 -6 ' V \ 0.1 ;
' 0 .1*15 .3 '

(* Sauraa F ile  fo r  Double Pulse *)

f c . o. 9.  f 07- 13-4 ) .
'0 .1 * 1 5 .3 ' (

(* Sauraa ‘Vector *)
S[n, k] s L ist[];
P orlp a l, p sP , p++,

X£[p* 180, a * 0, s= So];
S[n, k] = AppendDto[S[n, k ], {s}] ; 

] ;
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(» Saucoa F ile  far Bouncing Sourae *) 
If[n< 500,

SnsO.94 ( .  
I 0.1*15.3 I

S[n, k] * I i s t [ ] ;
B brtpal, p s P , p++,
I f[p s  32, S3 0, S3 Sn] ;
S[n, k] * £ppsnd9b[S[n, k ] , {s>] ;

] ; 
b

I f  [500 s n< 1000,

' 0.1*15.3 1 ( j

S[n, k] 3 L is t [ ] ;
B brtpal, p s P - l ,  p++,
If[P =  17, s  a Sn, s  a 0] ;
S[n, k] 3 «pp8ndBb[S[n, k ], {a}] ; 

];
S[n, 33] 3 AgpoadDo[S[n, k ] , {Sn}] ;

b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

I f  [1000 s n< 1500,

^ . o . s t  ( )2)); 
' 0 .1*15.3 I

S[n, k] = Iiartt] ;
Ebc[p* 1, p* P - l ,  p++,
I f  [pa  21, a* Sn, s  * 0];
S[n, k] = AEP«2Eb[S[n, k ] , {s}] ;

] ;
S[n, 33] = i£pancBb[S[n., k ] , {Sn}]; 

]*

I f  [1500 i  n< 2000,

Sn*0.94 ( ■:°7 *13-4- 2 -6 \ # )2));
' 0 .1*15.3 I

S[n, k] = L is t [ ] ;
Sbr[p* 1, p i  P - l ,  p++,
If[p =  25, s  = Sn, s  = 0] ;
S[n, k] = JppendTb[S[n, k ], {s}] ;

];
S[n, 33] * JK*ttflb[S[n, k ] , {Sn}];

V

I f  [2000 i  n< 2500,

Sna 0.94 . . H l E & l ) - ^ [ SSsSB^ d S A )i ) ) .
1 0 .1*15.3 I

S[n, k] = I is t [ ]  ;
Bbr[p= 1, p i  P - l ,  p++,
I f  [pa 29, s  -  Sn, s  = 0];
S[n, k] = appsncflb[S[n, k ], {s}] ;

];
S[n, 33] * J |p « n b [S [n , k ], {Sn}] ; 

]'•

I f  [n.2: 2500,

S^O .94
\ 0 .1*15.3 I

S[n, k] = L ist[] ;
Bbc[p= 1, p s  P, p++,
I f  [p i 32, s*  0, s*  S j  ;
Sm. kl * AcoendDorsrn. k i. rail ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

(* Nan, Linear hast capacity *)
C.£k, a] = l i s t [ ] ;
Ib r [p = l, p sP , p++,

C«£k, n] = ABpaneflb[Q.[k, n ], r[m] *U[p, k, n] ] ;
];

C.[k, a] 3 Diagcna2*fetrix[C.[k> a] ];

(* Big£t Band Matrix System Bqpnw ntaticp  *)

bk = (h[m] .T .C k-1 , a - 1 ]) - ( (-C.[k, a] + ( «Mt) + f[m i) .^ [k , a - 1 ]) +

(h[m ].!U k+l, a -1 ])  + (2* (h[m] .5 » [k -l, a])) -  (<((t*x£m]) *MK) + (2*f[m ])) .O^k, a]) + 

X. „ „ *  ( ( - f « .  ( - f f i - .  ( £ | £ £ g ) ) ) . - » )  *

((t *atml - i )) • nl) » 12- t - 3[n- *>'

(* Left Band Matrix System Ppppeeontaticn *) 

stock, 1 , 1] -  ( (q.fk, ai + (—* ? [1] *l«) + f [1 ]) - h [ l]) ;

abCk, 1, 2] = (c.[k, a] ♦ ( *i *j  + f [ i ] ) ;

* C k ,l ,  3! = ( j ( c . t l c , n l . ( ^  .Mt) -h [ l ] ) ;

ato[k, 2 ,1 ] = ( (C.[k, a] + ( fc* * [2] *mc) + f [2]) - h[2]) ; 

ato[k, 2, 2] = (C.[k, a] + ( - * * [2] *MC) + ££2]);

* [ k ,  2, 3, - (((<yk , n , .  .w )  .£ [2 ,)  .  ))  - h « )  ;

rtXk, 2, 4] = .h t2 ]);

^ 1'« 4 ( ;5 ^ ^ S h 3 ^ ) • ,,m ) '

] ; (* B D Q T Z  D3BECOCNKL (K) 1CCSP *)
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(* OBKQNS THE "B" CF A*»B •)
Bbr[k= 1, ks ( L - l ) , k++,

Btar[p = 1, p s  P, p++,
Aspeafflotbin], {Betracttbk, {p, 1}]}] ;

];
];

(* CSENEH93 DE "A" <X AxsB •)

(* Setting ip  zero porticna *)
ZBRO[l] a o;
5tar[i= 1, i s  L - l ,  i++,

Htr[j = 1, j<  i ,  j++,
ZOIO[i] = JgpaodEtows[ZgC[i - 1 ] ,  o] ;

];
]; (* Left Bedding *)

r [l] = JBpBoc*toi«[ab[l, 1 , 1 ] ,  -hcl]] ;
Bbr[k= 3, k s L - l ,  k++, 

r[l] = JBpaacgcw a[r[l], o] ;
] ;  (• F irst Bern Complete *)

r[2] = Apparx*oi«[-hCl], *>[2, 1, 2 ], -h [l]] ; 
itar[i= 4, i s  L - l ,  i++, 

r[2] =%pendtoes[r[2], o] ;
];

A[n] = JppendCdlumns[r[l], r[2] ] ;

(* Getting to  the middle o f  the matrix *)

Bbr[k= 3, k s  , k++,

r[k] =fl$pendRcwe[aS0[k-2], - h [ l ] , sb[k, 1, 2 ], -h [ l ] , ZSO[L- (k + 2) ] ] 
A[n] a JppmriCr>hinns[A{n3, r[k] ] ;

] '

(* Interst i t i a l  Layer
r[ j ] =Jfpent*ciifs[ZHO[|-2] ,-h [l] ,a b [ | , l ,2 ]  ,-h [l] ,ZHO[L-(-|+2)]] ;

Ain] =app«ndColmans [A(n] ,r [- | ] ];
E [ |+l]«*ppanc»oes[ZHO[|-l] ,-h[2] ,sb[-*+1,2,2] ,-h[2] ,srao[L-(-§ +3)]] 
A[n]sAppendColuni3s[A(n] ,r [- |+ l]] ;

*)
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(* Getting to  the end a£ the mwfxix •) 

lbc[k= + l ) ,  k* L-3 ,  k++,

r[k] = JBpendEtone [ZBBO[k-2 ], -h (2 ], ab[k, 2, 2 ], -h [2], ZBRD[L- (k+2)]] 
A(n] = #BpendD3luma[A[n], r[k] ] ;

b

(* Second to  Last Bow *)

r[L-2] aJepancBcws[ZBO[L- 4 ], -h [2 ], gb[L-2, 2, 2 ], -h [2 ]]; 
A[n] a ̂ flpendColnmns [A(n], r [ L - 2 ] ] ;

(* Last Bow *)
r [L -1] aAgpaadR0MS[ZBRD[L-3], -h [2 ], sb [L -l, 2 ,1 ] ]  ;
A[n] aJigpendColunns[A[n], r [ L - l ] ] ;

(* salving far a l l  values o f  T.[k,rul] *)

Q[n] a L is t [ ] ;
Q[n] a LineazSolve[A(n], b[n] ] ;
Ebr[ka 1, k s  ( L - l ) , k++,

Bbc[p=l, p *P ,  p++,
Utp, k, n + 1] a &xtcact[Q[n], { (p+ ( k - 1) * (P)), 1}] ;

];
] ;

(* Defining 3^[k,n*l] vectors  *)
lbr[ka 1, k s ( L - l ) , k++,

0^[kr n + 1] a l i s t [ ]  ;
TL[k, n+ 1] a L ist[];
Btac[pa 1, p i  P, p++/
3«[k, n + 1] a jppsndDo[Xi[k, n+1],  (Dtp, k ,n + l ] } ] ;
TL[k, n + 1] aaHpencBfoCTUk, n+1],  (UiCp, k, n +1]}] ;

] /
];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(* Setting the values a t  t±e surface and bottan *) 
T.[L, n+1] = L ist[] ;
T.[0, n+1] = L ist[] ;
Ti[L , n + 1 ] a L istn  ;
Ti[0 , n + 1 ] = L istn  ;
Star[p= 1, p s  P, p++, 

l^[Lf n+ 1] = «HpandBb[^[L, n+1],  (G[p, L - 1, n+ 1]}] ; 
!B.[0,n+l] ajH«dDto[^[Of n+ 1] , (U[p, 1, n+1]}];  
T l [ L ,  n+1] aABpandBb[TL[L, n+1],  {Ol[p , L - l , n  + l ] } ] ;  
Ty;0,n+1] a Jnantfflb[Ti.[0, n+1] , {H [p , 1, n+l]>] ;

];

(* SBOCBD EQQKdCN T|.[k,n+1] *)

n a  1;
Ebr[k = 1, k s ( L - l ) , k++,

Xf[k2 , Ba 2, a  a 1] ;

Qi[n] a L istn  ;

M  .  ( I - ------ 5 ^ --------- W ,  » - ! ] )  .  ( ( -------- -------------------- \ . w ,
U (2*Ci[n]) + (t*G[m]) I / U <2*Ci[m]) + (t*G[m]) /

( f - -------„ ) .T.!k, n+1]] + ([ - (* .■ * -» '
u  (2*Ci(m]) + (t*G[m]) }  }  [ {  (2*Ci[m]) + (t*G[m]) J
((---------------------------- W ,  „ , ] ;
U (4*Ci[m]> + (2*t*G[m]) /  V

Bbc[pal, psP, p++,
Ui(p, k, n+1] a actract[QL[n], {p, 1}]

3;

TL[k, n+ 1] a L is t [ ]»'
B a c [ p a l ,p s P ,  p++,
Oi[k, n + 1] a^HpsncBtotOilk, n+ 1] , {TJilp, k, n + 1] }J ; 

];
]'•

(* end o f Tl loqp •)
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(* Gatting DIMX *)
If[ (U[P, 1, n] - 300) > DCMMC, DUMAX= (U[P, 1, n] - 300) ] ;
D0[n] = <U[P, 1, n] - 300) ;
If[ (t&[P, 1, n] - 300) > EOMOC, DUMNCa (0i.[P, 1, n] - 300) ] ;
D0L[n] * (Oi[P, 1, n] - 300) ;

(* Slotting tiaxp cnar tana*)
J^pndlbtplotElactzm, (n, U[P, 1, n]}] ;
^ppaodlbCplotSouEoa, {n, Sn) ] ;

If[n== 200,
Bbc[ka 1, k s ( L - l ) , k++,
Jppandlto[plotHBat2, (k, H.[P, k, 200])]

]
] ;

If[n== 250,
Star[ka 1, k i  ( L - l ) , k++,
Jnpanftno[plotnnat?5, (k, Ul[P, k, 250]}]

]
];

If[n=  200,
0on200a L is t[];
Etxr[i = L - l ,  i * 1, x—,
Qop200 = JnanriTV>[Oaa200, (U[3, i ,  200], U[5, i ,  200], U [l, i ,  200]}];

J;
OanL200a List[] ;
Ebc[is L - l ,  i 21 ,  i —,
CcpL200 a JftMnrttY>[Ootfl£00, (t^.[3, i ,  200], I%.[5, i ,  200], Ul[1, i ,  200]}];
];

];
If[n=i 250,

0an250= L ia t[];
5br[i= L - l ,  i f c l ,  i —,
Oqd250 a JppancEEb[Ccn250, {U[3, i ,  250], U[5, i ,  250], U [l, i ,  250]}];

I ;
CoriL250= Liat[] ;
Par[ia L - l ,  i i  1, i —,
GcciI250aAgpendEb[Gcnl250, {Ul[3, i ,  250], Ul[5, i ,  250], Ul[1 , i ,  250]}]; 

];
] ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I f[n =  500,
OenSOQs List[] ;
Etac[i= L - l ,  i  * 1, i —,
a3c500 = afpeneflb[Ccn500, {U[3, i ,  500], U[5, i ,  500], U[l, i ,  500]}] ;

] ;
ConL500 = L ia t[];
E\ar[i = L - 1, ± * 1, i —,
OcnliSOO = ^pendCo[CanL500, {Ul[3, i ,  500], Ul[5, i ,  500], TJtfl, i ,  500]}] 

];
] ;

If[n =  500,
Ebr[ks 1, k s ( L - l ) , k++,
JnwnrflV>[plotgBa.t 5 , {k, H.[P, k, 500]}]

]
];

I f  [n== 200,
3bc[ks 1, k i  ( L - l ) , k++, 
jtrercflto[plotHoatn?, {k, U[P, k, 200]}]

]
] ;

If[n== 250,
Btar(k = 1, k s ( L - l ) , k++,

|̂3p»=nrnb(pIotnontTJ7’5, {k, U[P, k, 250]}]
]

] ;

If[n =  500,
Kaorlks 1, ks ( L - l ) , k++,
J;pmrfIb[plotHaatP5, {k, U[P, k, 500]}]

]
];

(* CUwring Mammy *)
U >a«t[b[n] ] ; 
tihaoit[A[n] ] ; 
titasst[Q[n] ];
Obaet[Qi[n] ] ;
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itor[k= 1, k s  L - l ,  k++, 
aMet[C.[k, n ] ] ; 
tJhset[S[n, k] ];  
aaset[S.[k, n - 1 ] ] ;
Ooa«t[TL[k, n - 1 ] ] ;  
ab[k, 1, 1];
* [k , 1, 2] ; 
ab[k, 2, 1]; 
sb[k, 2, 2] ;
Par]p= l r P, p++, 
t la e tm ip , k, n - 1 ] ] ;
Ttoaat[U]pf k, n - 1] ];

];
]; (* end memory clearing •)

]; (* end o f  tame (n) locp *)

Pont] "Electron Centaur a t 200"]; ListPlat3D[Con200, MaSh-* Ifclse]; 
IastCcntourELot [Ccn200, Centaurs-> 15, Ccn.tonrT.inww-» Palse] ; 
ListCcntouKELat[Oon200, Contours-* 15, ContourShsriing-* Palse]; 
Print] "Lattxae Centaur a t  200"]; LiatELot3D[ConL200, Maah-» Ifelae] ; 
ListContourPLot[GcnL200, Contours-* 15, Qonbmn-T.inew-» Palse]; 
IdstGantcux£Lot[GcriL200, Contours-* 15, ContourSftading-* Palse]; 
Print] "Electron Centaur  a t  250"]; LiatPLot33]Gcn250, Mash-* Paisa]; 
IastiVntourELat[Ccn250, Contours-* 15, CcntauzLines-* Ehlae]; 
LiatCantoiirPIot[Ccn250, Contours-* 15, CcntoucShading-* Ifclae]; 
Print] "Lattiiaa Contour a t  250"]; ListPLot33[GQnL250, Maah-* Palse] ; 
T.istOontourPLot[OcnT250, Contours-* 15, CcntouzLines-* Ehlae] ; 
t.i«m-*Tt-r»rrPiorf-[nrrvr̂ n̂t Gcntours-* 15, ContourSiadijng-* Palse] ; 
Print] "Eflactrcn Contour a t  500"]; ListPLot35[Ccn500, Mash-* P slse]; 
Ii.atDcntourElat [ConSOO, Contours-* 15, GontourLinee-* Ehlae]; 
ListCcntourELat[Con500, Gcntours-* 15, GcntourShading-* Ehlae] ; 
Print] "Lattice Contour a t 500"]; LiatPLot3}[ConL500, Mash-* Paisa] ; 
LiatCQntouzE!Lot[GanIi500, Contours-* 15, ContourTiinaw-* Paisa]; 
listOcnftougglot[ConT500, Contours-* 15, GontouxSiadiag-* Paisa];

Print] "IXM«=", COAX];
Print] "DGEMK&", DQQfflX] ;

pLoOXMXs L is t ] ] ; 
plot£MKX= List]] ;
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Ebr[n= 1, ns BKDE1ME, n++, 
j£pand3b[pd0t£MNC, {n, (DO[n] /DtMO)}] ;
J(paacDto[paotDQ«X, {n, (EJQL[n] / DQCMflC)} ];

];

(* Plotting Grqpha *)
List£lofc[plotSauxaa, PlntJbinadU True, PLotRanga-* A ll] ; Print[ "Laser Heat Sauraa"] ; 
LiatPLot[plot3Q«ctxm , PlotJaLnad-» True, PLotRanga-» M l]; Prxnt[ "airfiana Haat"]; 
listE 3ot[plotXXAXr PLobJbinad-» True, SLotSnga-* A ll] ; Print ["EI>®X Plot"]; 
ldatB3nt[plotntMMC, PlotJbdned-* True, PLatSange-* A ll]; Print['TOQ^X Plot"] ;

«  4 -ip l « » g lo it-’

MiH-ipiar.-iatmiat[pi -rHT—1-9 f piotHaat25, plotHeat5 , SynbolfSiapa-► {Balsa},
PLotPanga-> A ll, PlotJbinBd-+ {True, True, True), PLcrtLagand-> {"2 pa", ”2.5  pa", ”5 pa"}] 

M i t - H p i a T . - i e#atm*rr>s pLotHaatD25 , plotHoatP5 , Sjgnbo1S2iqpa-> {Bfelse},
ELotSanga-* A ll, PlotJbinad-* {True, Trua, True}, PLotLagecxi-» {"2 pa", "2.5  pa", "5 pa"}]
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