
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2006

Measuring inequality: Statistical inference theory
with applications
Mihaela Paun
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Statistical Theory Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Paun, Mihaela, "" (2006). Dissertation. 563.
https://digitalcommons.latech.edu/dissertations/563

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.latech.edu%2Fdissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/563?utm_source=digitalcommons.latech.edu%2Fdissertations%2F563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu


MEASURING INEQUALITY: STATISTICAL INFERENCE 

THEORY WITH APPLICATIONS

by

Mihaela M. Paun, B.S., M.S.

A Dissertation Presented in Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 

LOUISIANA TECH UNIVERSITY

May 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3218989

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3218989 

Copyright 2006 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

March 23, 2006
Date

We hereby recommend that the dissertation prepared under our supervision

by Mihaela M. Paun____________________________________________________________

entitled MEASURING INEQUALITY: STATISTICAL INFERENCE THEORY WITH____________

APPLICATIONS

be accepted in partial fulfillment o f the requirements for the Degree of 

Doctor of Philosophy_____________________________________________________________________

Supervisor o f  Dissertation Research

Co-supervisrfLpf Dissertation Research

o f  Department

Recommendation/concurredin: Department

Advisory Committee

Approved:

Dean o f  the Graduate SchoolDirector o f  Graduate Studies

Dean

OS Form 13 
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTR ACT

In this dissertation we develop statistical inference for the Atkinson index, one of 

the measures of inequality used in studying economic inequality.

Specifically, we construct empirical estimators for the Atkinson index, both in the 

parametric and nonparametric case, and derive formulas for the asymptotic variances 

for the estimators. These statistics are used for testing hypothesis and constructing 

confidence intervals for the Atkinson index. We test the validity and the robustness 

of the asymptotic theory, by simulations (using R, a language and environment for 

statistical computing and graphics), in the case of one and two populations. In 

addition to proving asymptotic normality for the theory, we develop a nonparametric 

bootstrap theory, as an alternative to the asymptotic theory, and present some of the 

advantages for this method.

It is natural, when studying income inequality, to analyze the distributions of the 

da ta  sets and make statistical inference about various parameters of interest, such 

as means, medians, variances, etc. In trying to condense the information into a few 

parameters, one certainly faces a problem of constructing measures or indices tha t 

would give a proper idea about what happens in the society under consideration. 

The mean, as a statistical measures of distribution is useful in some instances, but 

not particularly relevant when, for example, we have outliers and/or skewed distri

butions. In addition, the mean does not tell us if inequality changes by transfers of

iii
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wealth from the rich to the poor or from the poor to the rich. Hence, the need for 

constructing measures with various properties like transfer sensitivity, scale and/or 

location invariance.

Indeed, some measures, like the Gini index, are not sensitive to the transfers at the 

lower and upper ends of the distribution, whereas other measures like the Atkinson 

index are more sensitive to such transfers. In this dissertation we have chosen to work 

w ith the Atkinson index because of its econometric properties described in Chapter 1 

and the lack of inferential statistics results in the literature pertaining to this index.

Keywords: Economic inequality, Gini index, Atkinson index, consistency, asymp

totic normality, bootstrap, confidence intervals.
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C H A PTER  1 

OVERVIEW OF THE LITERATURE

1.1 In trodu ction

The Atkinson index, was introduced by Sir Anthony Atkinson in 1970 to study 

income distribution, see [Atkinson, 1970]. However, its use was hampered by the lack 

of any methodology for estimation and hypothesis testing. In the present dissertation 

we fill this gap by developing statistical methodology for making inference concerning 

this index.

One of the most attractive feature the Atkinson index has is tha t it allows one to 

specify the social welfare function which characterizes the income distribution. By 

specifying the welfare function for the Atkinson index, the researcher may choose to 

emphasize the lower, middle or upper end of the income distribution. The Atkinson 

index parameter a, with (0 <  a <  1), determines the level of income inequality in the 

population. The lower the value of a the more society is concerned about inequality.

In this dissertation, inferential statistics (namely, test statistics and confidence 

intervals) were developed for the Atkinson index in the case of large samples (asymp

totic results). This was done in the parametric case where the income distribution was 

specified. Also, the same inferential statistics were developed in the nonparametric 

or distribution free case using the bootstrap method.

1
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2

In the param etric case, three distributions have been considered: Pareto, Expo

nential and Lognormal distribution and for each parametric family we have derived 

the estimators for the Atkinson index, as well as for the variances. These expressions 

are needed when testing hypothesis and setting up confidence limits.

The bootstrap approach is a resampling procedure th a t employs simulation m eth

ods to evaluate a parameter estimate. This approach requires no theoretical calcu

lations, applies the same to any inequality measure th a t we use, and it is available 

no m atter how mathematically complicated the parameter estim ate or its asymptotic 

standard error may be. Monte Carlo simulation was performed to check on the ade

quacy and robustness of the asymptotic results for relatively small sample size. The 

simulation was done using R, a language and environment for statistical computing 

and graphics, and the code for the programs is provided in Appendix B. Results from 

simulation (parametric and nonparametric) showed tha t the asymptotic theory was 

adequate for sample size as small as 100. The parametric results were more efficient 

than  the nonparametric results.

The dissertation is structured as follows:

In Chapter 1 we give the main definitions and notations used in subsequent chap

ters and we define a number of known measures (indices) of income inequality. We 

discuss the properties of these indices from the economics point of view, as well as 

the statistics point of view. We introduce the Atkinson index and discuss special 

properties tha t this index possesses which make it a better index to use than  the 

currently used Gini index.

In Chapter 2 we investigate the theoretical Atkinson index, introduce its empirical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

estimator, and prove its consistency.

In Chapter 3 we present a large sample statistical inference theory for the Atkin

son index in the case of one population (parametric and nonparam etric). Bootstrap 

approximations are also presented. The bootstrap approximations are of particular 

interest when it is not easy to derive and /or estimate the true asymptotic variance of 

the index estimate.

Chapter 4 presents a simulation study for the theory presented in Chapter 3. The 

chosen distributions for modelling income are the Pareto, Exponential, and Lognormal 

distribution.

In Chapter 5 we extend the theory presented in Chapter 3 to two populations. 

We consider the cases of independent and paired samples. The theory for indepen

dent samples is applicable when one compares Atkinson indices for the incomes of 

two populations A and B. The case of paired samples is applicable when comparing 

Atkinson indices for the same population but over two time periods. For example, 

one might be interested in comparing the Atkinson indices for university A salaries 

in 1990 and 2005.

Chapter 6 presents a simulation study for the theory presented in Chapter 5.

Chapter 7 concludes the dissertation and presents future problems of interest, 

such as comparing Atkinson indices for more than two populations.

1.2 Incom e Inequality Indices - E conom ics P oint o f V iew

W hen one considers income inequality and indices of income inequality, several 

questions come to mind: “W hat is inequality?” “How can one measure inequality?”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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“Is there one measure of inequality th a t is be tter than other measures?” These ques

tions will be answered in this chapter.

W hen considering two societies, one with perfect equality and the other w ith an 

unequal distribution of incomes, it is easy to distinguish which one has the bigger 

inequality. However, when both societies are unequal, it is hard to decide which one 

has a more unequal distribution.

There are several known measures of inequality and researchers have used them 

based on convenience and/or familiarity.

For the rest of this section we suppose th a t we have a population of n  individuals 

where each individual receives an annual income x.j, with % =  1, 2 , . . .  n. We assume 

th a t the incomes are arranged in ascending order. Therefore, we have x i <  xq, < 

■ ■ ■ < x n. We need one measure of inequality th a t can characterize every possible set 

Xi with regard to inequality.

The measures th a t we are looking for should have some properties. For instance, 

they should be zero when all individuals have the same income and positive when 

there are at least two different incomes.

At this point, all common measures of inequality, including the dispersion mea

sures (variance, standard deviation) satisfy these conditions. The measures th a t are 

considered for measuring income inequality are the following:

- Variance

- Standard Deviation

- Coefficient of Variation

- The Gini Index
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- The Theil Index

- The Atkinson Index

Measures th a t are scale invariant but not location invariant are desirable. As will

be seen, not all these measures satisfy these properties. We remind the reader, th a t

the income inequality measures are techniques used by economists to measure the

distribution of income among members of a society. In particular these techniques

are used to measure the inequality, or equality of income within an economy. 

D efin ition  1.2.1 An inequality measure I is location in va ria n t if  for  any scalar

a >  0 we have I ( x ) =  I{x  +  a).

The measures of inequality discussed above are not location invariant.

To explain this property, we consider four individuals with incomes of $5,000, 

$20,000, $50,000 and $80,000. We can see a big difference in these incomes. However, 

if we add $500,000 to each one of the four incomes, the individuals will have the 

following incomes: $505,000, $520,000, $550,000 and $580,000. It is easy to see tha t 

the difference in incomes is now almost negligible and we can conclude th a t the 

inequality declined. After this argument, one can eliminate the standard deviation 

because it will stay exactly the same, and we have made the argument th a t it should 

decrease.

One quantity, known as the M ean G ini difference, is a location invariant sta

tistic. This quantity is given as

The second property th a t the measures need to satisfy is the scale invariance 

principle. The Principle of scale invariance requires the inequality measure to be

G M D
n n
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invariant to proportional changes. If each individual’s income changes by the same 

proportion (as it happens, for example, when changing the currency unit), then the 

inequality should not change.

Formally, this principle is stated  as follows:

D efin ition  1.2.2 A n inequality metric I is scale in va ria n t i f  for  any scalar A > 0 

we have I(x)  = / ( Xx).

We verify this principle for the following measures:

- Variance

- Coefficient of Variation

- The Gini Index

- The Theil Index

- The Atkinson Index

This rule eliminates the variance, because if a person’s income is doubled, then the 

variance becomes now four times greater than  before. Formally, Var(Xx) = \ 2Var(x), 

for any scalar A. Therefore the variance does not satisfy the scale invariance principle.

The measures th a t satisfy this criterion also satisfy the rule th a t if we change the 

unit in which the incomes are measured (for example we change U.S. dollars to Euros), 

then the distribution of the incomes does not change. We say th a t the measure is 

invariant to such changes.

To convert a measure of dispersion into a scale invariant measure of inequality, we 

have to  divide it by the mean or a function of the mean. Therefore, we will consider 

the measures defined below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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T h e coefficient o f variation  V  is defined as the standard deviation divided by 

the mean:

Vn
\ i = 1

X

One can verify th a t this measure is scale invariant using the rule in Def. (1.2.2) for 

the coefficient of variation

K(Ax) \
N

i = 1

AX
Vn(x).

The most common used measure of inequality, th e  G ini in d ex  G , is defined in terms 

of the Lorenz curve. This is a measure of dispersion divided by twice the mean. The 

empirical Gini index is defined below,

n 2
Xi  ~  X j

Gn = = 1 .7 =  1

2X

To calculate the Gini index, we take the average of all absolute differences between 

all pairs of incomes and divide it by twice the mean of the incomes.

We can verify using Def. (1-2.2) th a t the Gini index is satisfying the scale invari

ance principle, because Gn(Xx) = Gn(x).

Gn{ Xx) —
n2 IlI Y I

i — 1 j  =  1
X i  ~  X i

j=l 3 =  1

2X
n n

EE
1 = 1  3  =  1

2AX

2AX

Xi -  Xi

Gn(x)
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One other measure used in the literature is the T h eil in d ex , T, defined as 

follows:

n XjlogXj — X lo g X
rji __ i —1
i n -  =  ■

We can verify using Def. (1.2.2) th a t the Theil index is satisfying the scale invariance 

principle, because Tn(Xx) = Tn(x).

n

^ XxilogXxi — XXlogXX

Tn(Xx) =  = ----------
AX

n \  n

n '^2tXjl ° 9 Xi ~  X X logX  — XXlogX
  i = 1 / —I __

n i  n

1 " 
n

n i  n

y y  XjlogXj  H—  XjlogX — X l o g X  — X l o g X
n

i= 1 i = 1

\L
n

n x d ° 9 x i +  XlogX — X lo g X  — XlogX  

— -------------------- f ---------------------------- =  Tn{x).

The A tkinson ind ex, A  is defined as follows:

One can verify using Def. (1.2.2) th a t the Atkinson index is satisfying the scale 

invariance principle, because A n(Xx) = A n(x).
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So which one of these four measures would one choose when studying the in

come inequality? To answer this question we will apply what the literature calls th e  

transfer principle. [Dalton, 1920] made the argument th a t if we transfer income 

from a poorer individual to a richer individual (regardless of how poor or how rich 

the individuals are, or of the amount tha t we are transferring), then the measures of 

inequality should increase in this case. This argument is intuitively correct, since one 

individual becomes poorer and the other richer.

D efin ition  1.2.3 We consider the vector x' which is the transformation of the vector

x  obtained by a transfer of a positive amount 'a' from  ay to Xj, where Xj > x l and

X j + a  >  X j  — a. Then the tran sfer  p rin cip le  is satisfied i f  and only i f  I  (xl) > I(x) .

This means that because we transfer from a poor individual to a richer individual the

income inequality m,easure I  rises. AlternaMvely. i f  we transfer an amount 'a' from a

richer individual to a pooper individual, the inequality measure falls.

We verify this principle for the following measures:

- Coefficient of Variation

- The Gini Index

- The Theil Index
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- The Atkinson Index

Subsequent studies indicate th a t this principle is used when one discusses the 

Lorenz curve or the inequality measures th a t use social welfare functions (like the 

Atkinson index).

All the measures defined above satisfy the principle of transfer. However, some 

differences exists in the sensitivity of transfers at different points on the scale, ac

cording to [Atkinson, 1970]. Consider two individuals from a given society w ith n 

individuals, with incomes X{ and Xj, w ith Xi < x,j. We wish to transfer an amount 'a' 

only from the i th individual to the j th individual in the population.

The coefficients of variations are V\ before the transfer and V2 after the transfer. 

From [Dalton, 1920] one can see th a t

l/22 — V:2 = ca(xj  — x ^  +  ca2, 

where c is positive and depends only on the mean and number of observations.

We can interpret this result as follows: The coefficient of variation V  is equally 

sensitive to transfers at all income levels. Therefore, if one transfers $100 from a 

person who has an income of $10,000 to a person who has an income of $11,000 one 

will have the same impact as if one transfers the $100 from a person who has an 

income of $60,000 to a person who has an income of $61,000.

N o te  1.2.4 The coefficient o f  va r ia tio n  attaches equal weight, to transfers any

where in the distribution.

It is of interest to determine how the Gini index behaves when one transfers income.
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The Gini coefficients are G\ before the transfer and G2 after the transfer. To 

check the transfer sensitivity, we use an equivalent formula of the Gini index, given by 

[Dasgupta et ah, 1973]

One immediate observation is th a t the sensitivity of transfer depends not on the

with income ay, and j  is the rank of individual with income ay).

In other words, the change in the Gini index depends on the number of individuals 

with incomes lower than Xj and higher than ay. Today, the U.S. has more individuals 

with incomes in the $30,000 - $35,000 interval than in the $90,000 - $95,000 interval. 

Therefore, a transfer from an individual earning $30,000 to another earning $35,000 

will affect the Gini coefficient more than if we transfer an equal amount from an 

individual earning $90,000 to another earning $95,000. We also have less individuals 

with incomes in the interval $5,000 - $10,000.

Thus we can conclude th a t the Gini index is more sensitive to transfers around 

the middle of the distribution (middle class) and less sensitive to transfers among 

very poor or very rich individuals.

N o te  1.2.5 The G in i index attaches more weight to transfers at, the middle of the 

distribution than in the tails.

Therefore, one can show that

G2 — G1 = c'a(j -  i)

where c! =  is positive and depends only on the mean and number of observations.

value of the incomes, but on the ranks of the individuals (i is the rank of individual
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For the Theil index we have, using the above definition, th a t for T\ before the 

transfer and T2 after the transfer:

T2 - T i = -L= 
n X

. Xj +  a , Xj +  a xt — a
X j l o g — h a ■ l o g — h x g o g -----------

Xj Xi — a Xi

From the above expression, the effect of a transfer on the Theil’s index is not very 

clear. Since a can be any amount, for any value of a the effect should be the same. 

We consider a to be very small and we use a limiting argument. We now have th a t the 

change in the Theil’s index resulting from a transfer from x,; to Xj is of the following 

form:

T2 - r 1 =  ^ % ^ .  
n X  Xi

In other words for the Theil index the change in incomes depends on the ratio of 

the incomes. Therefore, one can conclude tha t transferring $500 from an individual 

th a t earns $20,000 to an individual th a t earns $30,000 has almost the same effect 

on the Theil index as a transfer of still $500 from an individual th a t earns $60,000 

to an individual th a t earns $90,000. However, this change in the Theil index is 

approximatively 24 times larger than  the change in the Theil index th a t happens 

when we transfer $500 from an individual earning $60,000 to an individual earning 

$61,000. We can conclude tha t the lower the level of income, the more sensitive the 

Theil index is to transfers.

The sensitivity of Atkinson index depends on how we choose the welfare function. 

We may choose to emphasize the lower, middle or upper end of the distribution. In 

the next section we will discuss at large the properties th a t the Atkinson index has.
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After discussing each index and highlighting their behavior, we were left with the 

of whether we now had a criterion for choosing among the indices.

The answer is th a t it depends on the assumption th a t we make when we start 

analyzing our data. Let us also remember th a t the Gini index depends on the shape 

of the frequency distribution. Since most distributions are bell-shaped, the Gini index 

will be most sensitive in the middle of the distribution. The index of choice is Gini if 

changes among middle class individuals are of interest to the researcher.

In his well-known paper, [Atkinson, 1970] compared income inequality among 12 

different countries. He concluded th a t measures which were more sensitive in the 

lower range of the incomes show relatively less inequality in developing countries and 

more inequality in developed countries. Atkinson’s explanation was due to the fact 

th a t developing nations have a large number of poor individuals and also a great 

inequality among the rich individuals.

For an hypothetical case when one individual has everything and the rest of the 

population has nothing, the coefficient of variation goes to oc, the Theil index goes 

to oo and the Gini index is 1.

One can use these indices for a number of situations such as measuring the inequal

ity of incomes, the difference in age for a given population, the inequality in students 

grades of a school. One can also measure the inequality for two distributions.

As we have mentioned above, the Gini index is usually defined in terms of the 

Lorenz curve. Actually, all invariant-scale measures of inequality can relate to the 

Lorenz curve, which allows us to formulate a rule for greater or lesser inequality.
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In what follows we try  to explain how to obtain the Lorenz curve. We have, 

as before, a population of n  individuals and we rank their incomes from lowest to 

highest. For each rank we calculate the proportion of the population at th a t rank or 

below the rank, and we construct a vector 'a' w ith these values. We also calculate 

the proportion of incomes at th a t rank or below the rank and we construct a vector 

'b' w ith these values. If one plots all the pairs (a, b) for every rank, one obtains the 

Lorenz curve.

The Gini index is equal to twice the area between the Lorenz curve and the 

egalitarian line (the line of perfect equality, plotted as the diagonal). Consider the 

following problem: Given a fixed to tal income tha t one wishes to distribute among n 

individuals, we assume that IT is a number for every possible distribution of incomes 

th a t will indicate the preference for th a t distribution. This IT is called the social 

welfare function.

In [Atkinson, 1970] this approach was adopted and it was proved th a t if one places 

some constraints on IT one will obtain an im portant relationship between IT and the 

Lorenz curve and as well as between IT and the principle of transfers. If we define the 

utility function of an income to be U (ay) then we can say th a t the welfare function 

IT is
n

W  = Y , U ( , r<).
i = 1

Atkinson also assumed that the utility function is the same for all individuals and it 

is a concave and increasing function. The im portant idea Atkinson presented in his 

paper was tha t a ranking of the Lorenz curves implies a ranking of social welfare.
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For example, if we have two distributions X  and Y  and the Lorenz curve for X  is 

somewhere above the Lorenz curve for Y  but never below, then the welfare function 

W { X )  is greater than  the welfare function W (Y ) .  We can say th a t the distribution 

X  is preferable to the distribution Y.

Atkinson has chosen an additive separable, symmetric and concave welfare func

tion and defined the following measure of inequality:

where a > 0. The param eter a reflects the strength of society’s preference for equality 

and can take values ranging from zero to infinity. As 'a! increases, 'A' becomes more 

sensitive to transfers at the lower end of the distribution (lower incomes) and less 

sensitive to transfers among larger incomes. W hat is im portant about the Atkinson 

index is th a t we can choose a to follow one’s decision about what portions of the 

distribution are more relevant to the analysis.

In conclusion, when measuring inequality one can choose one of the three measures 

of inequality discussed: Gini, Theil or the coefficient of variation. However, if one 

wants to incorporate judgements about social welfare, then one should choose the 

Atkinson index.

In [Atkinson, 1970] it was argued tha t the Atkinson index should be used in place 

of the conventional indices (Gini, Theil or the coefficient of variation). He presented 

some of the strengths of the Atkinson index. One cannot reach a complete ranking of 

distributions without specifying the form of the social welfare function. If we examine 

the implicit welfare functions of these measures, we see th a t in a number of cases they
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have properties th a t sometimes are not in accord with the social values.

1.3 Incom e Inequality  Indices - S ta tistics  P o in t o f  V iew

Inequality indices embody explicitly or implicitly social values on income distrib

utions. So it is common for those who are concerned with comparing distributional 

changes over time to draw conclusions from comparisons of estimates of mean income 

and inequality.

One of the problems is to compare two frequency distributions F\ and F2. The

conventional approach in nearly all empirical work is to adopt some summary statistic

of inequality such as the variance, the coefficient of variation or the Gini coefficient.

We define below some of the inequality measures used by the economists, starting 

with the conventional statistic formulas.

D efin ition  1.3.1 The variance of a random variable X  is denoted by Va r ( X )  and 

is defined by

Var { X)  = E [ { X - E [ X ] ) 2}. (1.1)

D efin ition  1.3.2 A measure of the relative variability, that is, variability relative to 

the magnitude of data, is the coefficient o f variation, CO V and it is the ratio of 

the sample standard deviation to the mean.

C O V  = ~. (1.2)
h

In 1905, Max O tto Lorenz suggested a method based on a convex function th a t has 

been widely used in comparing distributions of incomes. The Lorenz curve was de

veloped as a graphical representation of an income distribution. It portrays observed 

income distributions and compares the results to a state of perfect income equality.
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Suppose one is interested in the distribution of income in a society. One randomly 

selects n  individuals from the society and records their incomes: A% X 2, ...Xn. The 

incomes can be negative (if the individuals selected are in debt) or they can be non

negative incomes.

One wishes to determine the inequality among the n  incomes. We assume without 

the loss of generality tha t all incomes are positive. For our discussion, we would like 

these incomes to be ordered in ascending order: X 1:„ <  X 2.n <  ■ • • <  X n:n. If 

all incomes are equal, there is no inequality among the incomes. If one assumes 

all incomes are equal with a constant c, then X\-n =  X 2.n • • • =  X n:n = c. Using 

the Lorenz curve, one can dem onstrate graphically the distribution of income in a 

population. If each person in a country earns c per year, this means th a t the income 

is evenly distributed.

As shown in Fig. (1.1), the plot is a 45 degree line. On the y — axis  one has 

the percent income. On the x  — axis  we have the population also expressed as a 

percentage. Obviously, the upper limits of each scale must equal 100. One hundred 

percent of the population earns 100 percent of the income. Similarly, zero percent 

of the population earn zero percent of the income. If income is distributed so tha t 

everyone earns the same, then 20% of the population earns 20% of the income, 40% 

of the households earn 40% of the income, and so on. This is called the line o f  

absolu te  equality  (egalitarian line).
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Figure 1.1 Lorenz curve - equal incomes

If the incomes are not equal, given the ordered values previously obtained, we 

calculate, for any k = 0 , 1 , . . .  ,n , the proportion of income th a t the least fortunate 

(k / n ) x 100% individuals possess.

Mathematically, we can represent these proportions as follows:

lk,n : =  ,fc =  0 , l , . . . n.
J =i , i = l

We assume th a t the denominator in the above expression is different from zero. We
k

note th a t when k = 0 the sum is empty; therefore, Z0,n =  0. Also, when
i = l

k = n, we have ln .n = 1.

For a better understanding, we plot the points (k /n , lk,n), k =  0 ,1 , . . .  n  on a real 

plane and connect them. W hat one obtains is the empirical Lorenz curve, L n. This 

curve, as one can see in Fig. (1.2), is well-defined on the entire interval [0,1] and 

Ln(0) =  0,L„( l )  =  l.
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Figure 1.2 Empirical Lorenz curve

As can be seen, when all the incomes are equal, they are plotted on the diagonal

I. The diagonal is also an empirical Lorenz curve known as the “egalitarian” Lorenz 

curve, as one can see in Fig. (1.3). The empirical Lorenz curve, L n is either below or 

above the diagonal.

W hen incomes are not equal, the case of perfect inequality would be the case when 

all n — 1 individuals have 0 income and the n th individual has all the wealth.

I p -------------    ,-    ,----    ,-----------       , *  ,
s

s

0 . 3 -

0 . 6  ■

s

0 . 4 -  ^  ^
ss

s
0.Z ■ s ’*

_ s

0 0 . 2  0 . 4  0 . 6  O. S 1

Figure 1.3 Egalitarian Lorenz curve

Thus we define the empirical Lorenz curve as follows:

£„(«) =  -  f ‘ F ~ \ s ) d s .  ( 1 .3 )
A4 J o
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We can write the Lorenz curve as a sum of n integrals, defined on smaller intervals 

as follows:

M « )  =  T  ( f a " ‘ +  L t  K - ' ( s ) d s  +  • • • +  F - ' { s )dS]

~  1  (W™ + 1 A’2:" H----- h + (* “ ? )  V[„il+1:„

where X  =  Xl+X2+ - x ” .
n

Therefore, L n can be rewritten as follows:

M n(t)/(rix) 0 <  t < 1,
Ln(t) = j

t = 1

where
[fen]

^ n { t )  ■ ^  ̂X j : n  +  (tfl [ ^ ] ) 3 ' [ t n ]  +  l : n ,

?:= l

with [fn] denoting the largest integer less than  or equal to tn.

After comparing this formula with the proportions defined previously, we see tha t 

Ln(k/n)  = lKn, for any k =  0 ,1 , . . . ,  n.

Note tha t we have

f l 10 <  /  (t -  L n(t))dt < - .  (1.4)
Jo *

In [Gastwirth, 2002] we find the most general definition of the Lorenz curve, which 

we will present below.

D efin ition  1.3.3 Let X  be a random, variable and F(x)  its cumulative distribution 

function. Let p — F(x) .  The Lorenz curve L(p) is the graph of L(p) against p, 

where

=  e \x ] J q

F ~ l (s) =  i n f { u  : F(u)  < 5}, and 0 < s < 1 is the quantile function of F.
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R em ark. In discussions of personal income, we frequently make statem ents such 

as, “the bottom  twenty five percent of all households have ten percent of the total 

income.” The Lorenz curve is based on such statements; every point on the curve 

represents one such statement. A perfectly equal income distribution in a society 

would be one in which every person has the same income.

The next plot in Fig. (1.4) shows the Lorenz curve, for a Pareto distribution.

0 . 4

0 . 2 0 . 6 10 0 . 8
P

Figure 1.4 Lorenz curve - Pareto distribution

The horizontal axis plots the cumulative percentage of the population whose in

equality is under consideration, starting from the poorest and ending with the richest. 

The vertical axis plots the cumulative percentage of income (or expenditure) asso

ciated w ith the units on the horizontal axis. If the inequality between incomes is 

higher, then the Lorenz curve will look similar to the plot in Fig. (1.5).
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Figure 1.5 Lorenz curve - Pareto distribution

Note tha t the more evenly spread incomes are, the closer the Lorenz curve will 

look like th a t in Fig. (1.1) (the line of equal distribution). The more uneven the 

distribution of incomes are, the more the curve will look like the one in Fig. (1.5).

We will present below an example obtained from a study conducted by the World 

Bank. “In Brazil and Hungary, for example, Gross National Product per capita 

levels are quite comparable, but the incidence of poverty in Brazil is much higher. In 

Hungary the richest 20 percent (quantile) of the population receives about 4 times 

more than  the poorest quantile, while in Brazil the richest quantile receives at least 30 

times more than the poorest quantile” (World Development Index 2002, The World 

Bank). One may conclude that the Gini index for Hungary is smaller than  the Gini 

index in Brazil.

Figure (1.6) shows tha t one Lorenz curve deviates from the hypothetical line of 

absolute equality much more than th a t of the other Lorenz curve. This means th a t 

the h rst has the highest income inequality.

/
/

/
/

/

i// Lorens/
c n r v e

0 0.Z 0 . 4  0 . 6  0 . 8
P
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Figure 1.6 Lorenz curves - two countries A and B

In 1912, Corrado Gini made far-reaching contributions to the area by suggesting 

an index th a t -  just like the Lorenz curve -  has been widely used in comparing 

economic inequality. Intuitively, the Gini index is the ratio of the area between the 

Lorenz curve L(p) and the diagonal line I  , to the area under the diagonal I  (which 

is 1/2). Thus the classical Gini index is twice the area between I  and L(p)

Gf := 2 f  (t — L(t))dt. (1.6)
Jo

If one wishes to obtain a measure of the amount of inequality in the income distrib

ution, one may use the Gini index.

To compute the Gini coefficient, we first measure the area between the Lorenz 

curve and the 45 degree equality line. For a perfectly equal distribution, there would 

be no area between the 45 degree line and the Lorenz curve -  this would have a Gini 

coefficient of zero. For complete inequality, in which only one person has any income 

(if th a t were possible), the Lorenz curve would coincide with the straight lines at the
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lower and right boundaries of the curve; thus, the Gini coefficient would be one. 

D efin itio n  1.3.4 The G in i in d e x  G is a a measure of inequality in a population, 

and is computed by the following formula:

G f = -*-E (|X i -  X 2|) = ± -  f  f  |xi -  x 2\d F (X l )d F (X 2), (1.7)
2h 2/i J R J R

where X i  and X 2 are independent random variables.

We can derive from the formula above, the empirical Gini coefficient:

Gn =  - =  f  f  \ x -  y\dFn(x)dFn(y)
I X  JR JR,

1 71 n

2n 2X  . t ,
1 = 1  3  =  1

where

1 "
Fn(x) =  -  <  x).

n
i = 1

Several other variants of the Gini index were introduced in the literature. In 

[Donaldson, 1980] the Extended Gini index was introduced, E -G in i in d ex , defined 

as follows:

GF,a = 2 ^ j \ t - L F(t))adt^ '  , (1.8)

where a  > 1 and L F is the Lorenz curve.

The empirical E-Gini estimator formulated [Chakravarty, 1988] is of the form:

Gn,a : = 2 ^ j \ t - L n(t))ad t j  . (1.9)

Note th a t when a  =  1, the empirical Grha is the classical Gini coefficient, Gn.
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A year later the Generalized Gini Index, S -G in i, was introduced in [Weymark, 1981] 

and is defined as follows:

i F,u ■= i  -  -  [  F - 1(t)(i -  t y - ldt, ( i.io )
F Jo

where u > 0 is a parameter.

W hen 0 <  u <  1 (equality aversion), the S-Gini index Ip^  is well-defined given 

th a t E ( \X \r) is finite for some r  >  \ j v .  W hen v — 1 (equality neutrality), then 

IpjU is identically 0. W hen p > 1 (inequality aversion) the S-Gini index IpjU is also 

well-defined.

The empirical S-Gini estimator is defined as follows:

In,u := 1 -  —  [  (1.11)AG Jo

In the above formula, F ~ l denotes the empirical quantile function based on indepen

dent random variables X i ,  X 2 , . . . ,  X n, each having the same cumulative distribution 

function as X ,  and fin is the sample mean of these n random variables. Note tha t 

I n^  can be expressed by the following formula:

=  1 - — E  f ( i  -  — r  -  (1 -  b d  w „, (1.12)AG V n  n  )

which is the formula of choice in the econometric literature.

As mentioned above, the Gini index can be used in different areas. We would like 

to mention below some of the advantages and disadvantages the Gini index presents,

from the economist’s point of view, tha t the statisticians keep in mind when devel

oping the theoretical framework:
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1. The main advantage of the Gini coefficient is th a t it is a measure of inequality, 

not a measure of average income or some other variable which is unrepresentative of 

most of the population, such as gross domestic product.

2. The Gini index can be used to compare income distributions across different 

population sectors as well as countries. For example, the Gini index value for urban 

areas differs from tha t of rural areas in many countries.

3. The Gini coefficient is sufficiently simple th a t it can be compared across coun

tries and be easily interpreted.

4. We can use the Gini coefficient to indicate how the distribution of income has 

changed within a country over a period of time.

5. The Gini coefficient satisfies four im portant principles:

•  it does not m atter who the high and low earners are.

• the Gini coefficient does not consider the size of the economy, the way it is 

measured, or whether it is a rich or poor country on average.

• it does not m atter how large the population of the country is.

• if we transfer income from a rich person to a poor person, the resulting distrib

ution is more equal.

The disadvantages of the Gini coefficient as a measure of inequality are listed 

below:

1. If the Gini coefficient is measured for a large geographically diverse region, 

then the result is a much higher coefficient than th a t of each of its composing regions 

has. For this reason, the scores calculated for individual countries within the E.U. 

are difficult to compare with the score of the entire U.S.
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2. It may be difficult to compare income distributions among countries because the 

benefit systems may be different in different countries. For example, some countries 

give benefits in the form of money, others use food stamps, which may or may not 

be counted as income in the Lorenz curve and therefore are not taken into account 

in the Gini coefficient.

3. If we apply the Gini index to individuals instead of households, then we get 

different results. W hen different populations are not measured with consistent defin

itions, comparison is not meaningful.

4. It is claimed th a t the Gini coefficient is more sensitive to the income of the 

middle classes than to th a t of the extremes.

A large number of papers analyze the indices of economic inequality, especially 

the Gini indices, from a mathematical point of view. Asymptotic consistency and 

normality of the classical Gini coefficient can be found in [Hoeffding, 1948], whereas 

in [Barrett and Donald, 2001] the empirical and quantile processes point of view was 

employed and obtained desired asymptotic results for a large class of indices, includ

ing the S-and E-Gini indices. W orth mentioning is the work of [Gastwirth, 2002], 

[Zitikis, 2002] and [Zitikis, 2003] concerning asymptotic results on indices under min

imal assumptions on the cumulative distribution function F. [Gastwirth, 2002] and 

[Zitikis, 2002] proved, for example, th a t the theory of L-statistics is a most natural 

tool for investigating the S-Gini index.

Studies dealing with the Gini index are extensive and the index is one of the 

principal inequality measure used in economics. However, in reality no explicit reason 

is given for preferring one measure of inequality over another. As such, we focus our
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attention next on the Atkinson index.

1.4 A tk in so n  In d e x  A m o n g  O th e r  In d ice s

[Dalton, 1920] suggested th a t when approaching the question of comparing the 

distributions (which an economist refers to as income), one should consider directly 

the form of the welfare function W( U)  to be employed.

N o te  1.4.1 The welfare function is used to measure poverty/wealth using inequality 

measures. It is an absolute equality measure. The inequality is shown as a number, 

not a percentage. Inequality indices are relative inequality measures. They show 

inequality in percentages.

To obtain a specific inequality measure one needs to impose more structure on the 

welfare function. In [Atkinson, 1970], some assumptions about this welfare function 

are made before ranking the distributions. It was assumed that this function will be 

an additively separable and symmetric function (see definitions below) of individual 

incomes.

D e fin itio n  1.4.2 A function U : X  —» 5ft is a u t i l i ty  fu n c tio n  representing prefer

ence relation y  if, for all x, y £ X ,

x t: V ^4 U(x) > U(y).

We note th a t y  is the highest observed income and F(y)  is the distribution function.

The welfare function relates to the utility derived by an individual or a group to 

the goods and services that it consumes.

N o te  1.4.3 The extent to which a dollar is deemed to be worth more to a poorer- 

individual that a richer individual depends on the utility and the welfare function  

W(U).
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Economists employ different utility functions. Some examples are as follows. In

portfolio problems the utility functions used are 

E xam ple 1.4 .4  Ui(x) = 1 — e~kx and U2(x) = logx.

In the first example it is very common to consider k = 1. We will see later in this 

section th a t the welfare function th a t Atkinson chose, when discussing the Atkinson 

index, is of the form U (x ) =  x a, with 0 <  a < 1. When we plot the three functions 

mentioned above, we see th a t the Atkinson’s utility function lies in between the 

previous two.

D efin ition  1.4.5 An utility function U(x) is add itively  separable i f  it has the

form U(x) — T.iUi(xi), where Ui = U f X i ) is the utility of the Ith person.

D efin ition  1.4.6 A symmetric function on n variables is a function that is un

changed by any permutation of its variables.

Choosing the welfare function, the ranking of the distributions is done according to

D efin ition  1.4.7 A decision maker is risk averse i f  for any cumulative distribution 

function F(-), the degenerate distribution function F*(-) that yields the mean g = 

f  xdF(x)  with certainty is at least as good as the distribution function F(-) itself. 

This means th a t a person with concave utility function U is risk averse.

It follows from the definition of risk aversion tha t the decision maker is risk averse if 

and only if the inequality

Wv ) d F ( y ) (1.13)
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holds for all distribution functions F , provided th a t the utility function U is a concave 

function.

In [Dalton, 1920], the author suggested using as a measure of inequality the ratio 

of the actual level of social welfare to th a t which would be achieved if income were 

equally distributed:

1 f°° I f 1
W ) L  ^ v )  = W ) l u ( F - \ y ) ) * ,

It is seen th a t this formula is not invariant with respect to linear transformations 

of the function U(y). For example, in the case of the logarithmic utility function, 

U(y) = log(fi) + c, D alton’s measure is

1 f v
]— / r~  /  log(y) f{y)dy + c, 
log (lb +  c Jo

the value of which depends on c.

Using the equally distributed equivalent level of income, in [Atkinson, 1970] a new

welfare index is defined. In the case of discrete distributions, this new measure of

inequality becomes

W ithout using discrete random variables, this could be generally rewritten as

1 = 1  -  - ( E ( U a) ) - .  
d
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The Atkinson index is especially useful for confronting the distributional impact of 

inflation. By setting the social welfare function for the Atkinson index, the researcher 

may choose to emphasize the lower, middle, or upper end of the income distribution. 

The Atkinson index’s social welfare function, which may be interpreted as the level 

of inequality aversion, depends on a param eter between 0 and 1. As the param eter 

approaches its lower limit (i.e., as aversion declines), the index gives more weight 

to the upper end of the income distribution. However, as the param eter approaches 

its upper limit, the index measure gives more weight to the lower end of the income 

distribution.

From [Atkinson, 1970] we obtain the following definition.

-D efin itio n  1.4.8 The A tk in so n  in d e x  is of the form A Fa =  1 — ^ ( E ( y a) )n .

The utility function used by Atkinson in defining his measure is of the form U(x) — 

x a. Note th a t the Atkinson’s index is 0 when incomes are equally distributed and 

converges to 1 as inequality increases. The index increases in a.

The distinguishing feature of the Atkinson index is its ability to measure move

ments in different segments of the income distribution. Researchers can place greater 

weight on changes in a given portion of the income distribution by adjusting the a, 

parameter.

All the measures mentioned in this chapter are sensitive to transfers at all in

come levels. In what follows, we would like to briefly summarize the most im portant 

characteristics of each measure, from the economic point of view, in what follows. 

N o te  1.4.9 For the A tkinson  index the larger a is, the more weight the index 

attaches to transfers at the low end of the distribution. As a result., less weight is
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attached to transfers at the high end of the distribution.

In the extreme case where a —> oo, transfers at the lowest end dominate. W hen a = 1, 

the utility function is linear in income and the distribution of income does not affect 

the welfare index (1 = 0 for any income vector).

We note th a t the sampling distributions of some inequality indices, such as the 

Gini coefficient are known. However, some researchers may prefer the Atkinson index, 

because of its properties. The Atkinson index has seen increased applications in 

empirical analysis of income distributions.

[Ravallion, 1997] modelled the impact of growth and inequality on carbon emis

sions, using the Atkinson index.

In [Gusenleitner et al., 1998] the author analyzed the distribution of earnings in 

Austria, over almost three decades. They compared various inequality measures and 

looked at the trends they uncovered. Authors analyzed trends among various groups 

of workers and changes over time in the distribution, using both Gini and Atkinson 

indices. Similar analysis was conducted in [Atkinson, 1970] concerning the income 

inequality in the U.K.

In [Mayer, 2000] the Gini index was used to estimate the effects income inequality 

has on mean educational attainm ent and on the difference in educational attainm ent 

between rich and poor children. As an alternative inequality measure the author 

suggested the Atkinson index.

In [Golan et ah, 2001] the minimum wage discussed (which unlike most govern

ment transfer programs, lowered welfare in the 1980s and 1990s) is measured by 

commonly used welfare or inequality measures, including various indices, the Atkin
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son index, the Gini index, the standard deviation of logarithms, and others. The 

authors were interested in demonstrating th a t the minimum wage -  in contrast to 

most government transfer programs -  lowers welfare. The Atkinson welfare index 

has some desirable properties. It is derived as a weighted combination of average 

income changes and distributional changes. First, the Atkinson welfare index has a 

dollar-denominated interpretation. Second, the measure for the entire population can 

be decomposed into within-group and between-group welfare measures for subgroups 

of the population. Third, changing the single param eter of the Atkinson index, one 

changes the weight the welfare index places on relative increases of wealth at the lower 

end of the income distribution. Thus, by varying this parameter, one can examine 

the effects of government policies over a range of social welfare functions.

In [Lovell, 1998] the author looked a t both within country and among country 

inequalities. In the spirit of [Dalton, 1920] and [Atkinson, 1970] this paper reports 

estimates of the welfare loss arising from inequality.

In [Londoo, 2000] the changes in aggregate poverty was assessed and inequality 

th a t have taken place in Latin America during the past 26 years. W ith this objective, 

they examined the income distribution for the region for the period from 1970 - 1995. 

In their analysis they suggest, following [Atkinson, 1970], th a t different inequality 

measures give different weight to different sections of the distribution. As such, it is 

possible to check on the validity of the results and on the choice of the index.

A large body of literature is devoted to the measurement of income inequality, yet 

little attention is given to the question ‘"Why measure inequality?” In [Kaplow, 2005] 

the author considered measures of poverty and emphasized the importance of inequal
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ity indices, especially the Atkinson index.

The aim of this study is to develop estim ators of the Atkinson index and investi

gate their asymptotic distributions for hypotheses testing and for building confidence 

intervals. Also, for application purposes, a check of robustness of the asymptotic 

theory for finite samples will be investigated by simulation.
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C H A PTE R  2 

EMPIRICAL ATKINSON ESTIM ATOR

2.1 T h e o re tic a l  A tk in so n  In d e x

Let X be a non-negative random variable with distribution function F , and let 

F " 1 quantile function be defined as

F “ 1(t) =  inf{x : F(x)  > t}, 0 <  t  < 1.

In [Atkinson, 1970] the following measure of economic inequality was proposed:

where a > 0 is a parameter, and fi is the mean of X .  Here,

0 <  fj, < oo. (2.2)

Recall th a t the Atkinson index A F can be rewritten in the following form:

A f = l - - ( E ( X a))«. (2.3)
h

From Eq. (2.3) it is obvious tha t the Atkinson index A Fa is well-defined if, in addition 

to Eq. (2.2), we also have that

E (X a) < oo. (2.4)

The Atkinson index Ap  can be negative, zero, or positive depending on the param eter 

a.

35
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< 0 when a >  1

A f — = 0  when a = 1

> 0 when 0 <  a < 1.
V

Therefore, we can conclude the following:

(1) When 0 < a <  1, then E ( X a) < fja which, in turn, implies th a t A F > 0.

(2) Obviously, when a = 1, then A F = 0.

(3) When a > 1, then fi < ( E ( X a) ) ° , and we thus have th a t A F < 0.

Since in the m ajority of individuals in a population are risk averse, we will consider

only the last case in our simulation, th a t is 0 <  a < 1.

In this section, we discuss the empirical estimator for the Atkinson index A F, 

where F refers to  a nonparametric distribution or a parametric one. In the case of a 

parametric distribution, we consider the Pareto, the Exponential and the Log-normal 

distributions.

index Ap  is to replace /x and F in Eq. (2.1) by their empirical estimators. Let 

X\ ,  X 2, . . .  X n be independent and identically distributed random variables. Let X  

be the sample mean of Xi ,  X 2, . . .  X n, tha t is,

2.2 E m p iric a l A tk in so n  In d e x

One of the most natural ways to obtain an empirical estim ator for the Atkinson’s

i =  1

and let Fn be the empirical distribution function. Then, it is seen tha t

1 n

i=1
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where —oo <  x  <  oo.

The corresponding empirical quantile fnnction is defined as

F ~ l (t) = inf{x : Fn(x) > t}.

Hence, the empirical Atkinson’s index is defined as follows:

a „ = i -  ~  ( j \ F; H t ) y d t y . (2 .5 )

We shall now rewrite A n in a slightly different way, which will be more com putation

ally convenient. For this reason, we first note th a t F ^ 1 allows the following explicit 

representation:

Frf 1(t) = X l:n, (2.6)
n n

for any i = 1, . . .  n, where X\-n < X 2:n < ■■■ < X n:n are the order statistics of

X i ,  X 2, . . .  X n. Introducing Eq. (2.6) into Eq. (2.5) one obtains

(2 .7 )
i=i

2.2.1 C on sisten cy  o f th e  E stim ator

D efin ition  2.2.1 Let X \ , X 2 ■ ■ ■ and X n be random, variables on a probability space 

(11, A , P). We say that X n converges in probability  to X  i f  for any e > 0

lim P(|A"„ — X \ < e) = 1.

This is written as X n ~^p X .

D efin ition  2.2.2 Let and be random variables on a probability space

(12, A , P). We say that f n converges w ith  probability  1 to f  if

P ( l im S n  =  0  =  l- (2.8)
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This is written as

Note tha t Eq. (2 .8) means th a t there exists a set fl0 C such th a t P(f2o) =  1 ,

lim £n(tj )  = £(tu) for every w G f!0.
n — * 0 0

D efin ition  2.2 .3  An estimator 9 of Y  is a strong con sisten t estim ator  if  it be

comes almost certain that the value of 9 gets closer to the value of Y  as the sample 

size increases. We can formalize this as follows: For almost every elem,enta,ry event 

oj £ Q we have

|E(a>) — 9\ —» 0 as n —>■ oo,

where n is the sample size.

D efin ition  2 .2 .4  An estimator 8 of Y  is a w eakly con sisten t estim ator  i f  for

any e > 0 , P ( |E  — 9\ > e) —> 0 , when n  —>• oo.

T heorem  2.2 .5  X  and - f ^ X f  converge (strongly and weakly) to fi and E (X Q), 

respectively. Under the assumptions in Eqs. (2.2) and (2.4), A n is a (strongly and 

weakly) consistent estimator of A F.

Proof:

It is enough to prove only th a t A n is a strong consistent estim ator of A F, because 

weak consistency follows from the strong one. T hat is, we want to prove th a t there

exists a set Q hi such th a t P(fio) =  1 and

A n(w) -  A F -> 0,

for every u  £ fi. We proceed with the representation:

A ( \ A ( X a  P'a”' ^
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1 1

I .  (2.9)x  \ x  n ,

Note tha t by The Strong Law of Large Numbers, we have the following two state

ments:

(1) There exists a set fh  C Q such th a t P (f ii)  =  1 and

X ( w ) -* fi, (2.10)

for every u  £ fli.

(2) There exists a set fl2 C 12 such th a t P(f22) =  1 and

1 n
-  ^  E ( X “) =  f t , ,  (2 .11)
n L '

i = i

for every u> £  ff2.

Let us define

if o =  hi fl2 •

For every cu £  ST0, we have both Eqs. (2.10) and (2.11). By Eq. (2.11),

1

* ( < ’ =  ( j; = e ( X“)(

for every u  £  Oo, which gives

V(w)a:  -  H
x £ )

Furthermore, by Eq. (2.10),

X ( u )  -> /I,

for every lu £ Qq which gives

0 . (2 .12)

l‘J  ( - d - r  - - ) - * ■  o. (2.13)
,X{cv) n ,
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By Eqs. (2.9), (2.12), (2.13) it is seen tha t

A n(w) -  A f  —>• 0 ,

for every u  G flo- Consequently, we have shown tha t A nA is a strongly consistent 

estim ator of A F̂a, provided th a t P ( f l o )  =  1. To prove the latter, one may show that 

P( f2 o )  =  0. It can be seen tha t

fig =  Hi n  id2 — U f l2.

Note tha t P ( f i i )  =  0 and P ( f i 2) =  0 since P ( f i i )  =  1 and P ( f l 2) =  1- Therefore,

p ( f i 0) =  P(fii u  n 2) <  p(fix) +  p ( n 2) =  o.

This proves th a t P (O q) =  C and thus Theorem (2.2.5) as well. ■
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C H A PTER  3 

EM PIRICAL ATKINSON INDEX: ONE POPULATION

3.1 A sy m p to tic  N orm ality

3.1.1 N onparam etric C ase

Let us define again the Atkinson index A F =  1 — ^ ( E ( X a))« and denote /iQ =  

E ( X a). Hence, A F can be expressed as

1 . . i
A f = 1  (fj.a) a,

where fia = E ( X a).

We construct the nonparametric Atkinson estimator by replacing F ~ l by F ~ x. 

Using Eq. (2.5) and the representation of F ~ l (t) = X i:n, ~  < t < we obtain the 

following expression:

. M y  =  i  -  i  , (3 .D

with X 1;n < X 2:n < ■ ■ ■ < X n:n denoting the order statistics of X i ,  X 2. . . . ,  X n. W ith
n

X a — £ A f, Eq. (3.1) becomes
i— 1

A„[X] =  1 -  = ( X „ ) - .

The asymptotic normality of the appropriately centered and normalized A n[X] is 

obtained in the following theorem.

41
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T heorem  3.1.1 Under the assumptions (2.2), (2.4) and also assuming that

E (X 2) < oo, E (A 2a) < oo, (3.2)

the asymptotic distribution of y /n (A n[X] — A F) is normal with mean zero and variance

2
1 2 _ 2  2 2 _ i

°F,a = ^ r U l l“ ( h Z a - u l )  3 / la (ha+1 ~  TTa) +  (//2 “  ^ ) • (3-3)
(Z Ct fXi jJj

Proof:

To prove Theorem (3.1.1) one needs to make use of the Taylor expansion along with 

the Delta Method. These are stated  below.

T heorem  3.1.2 (Taylor expansion) I f  a function f  has continuous derivatives up 

to the (n +  l ) th order, then this function can be expanded in the following manner:

f ( x  +  h) =  f ( x )  +  h f ' l ( x )  +  h2F M  +  • • • +  +  R

where the remainder term is

R =  r x+h f ^ \ t ) ( x  + h ~ t ) kdt 

J  X

T heorem  3.1.3 (D elta  M eth od) Let Yn be a sequence of random variables that 

satisfy y/n(Yn — 0) —> n (0, a 2) in distribution. For a given function g of Yn and a 

specific value of 6, suppose that g'{0) exists and is not 0. Then

y/n[g(Yn) — g(9)] —>■ n(0, cr2[(/(#)]2) in distribution.

Consider the function h(x, y) = 1 — \ y 1̂ a. From Eqs. (2.3) and (2.7) we have tha t 

A f = h(n, Pa) and A n = h { X , X a).

Applying the Delta Method, we want to show that

y/n (An -  A F) n(0, a 2Fa).
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But y / n  ( A n —  A f ) =  y / n  ( h ( H , H a )  — h ( X , X a)), therefore we have

y/n (h{fi ,  H a ) )  -  h(X , X a) = y/n ( t i x { ( H Ha)(X -  h )  +  h'y( X a -  H a )  +  ■ • •)

Therefore one obtains

Let

(3.4)

Hence the random variables Y i ,Y 2l. . .  ,Y n are independent, identically distributed,

cally normal w ith mean 0 and finite variance E(Y ,]2), by the Central Limit Theorem. 

We can easily see tha t

3 .1 .2  P a ra m e tr ic  C ase

For the param etric discussion we consider tha t income follows one of the three 

param etric families: Pareto, Exponential and Lognormal. We construct confidence 

intervals by applying standard asymptotic theory for the maximum likelihood esti

mators.

For the P a re to  d is tr ib u tio n , the cumulative distribution function is

n

with means zero and variance defined in Eq. (3.3). Therefore ^  1S asymptoti-

which gives us the formula from Theorem (3.1.1).
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The maximum likelihood estim ator for A is

A =
n

(3.5)

From Appendix A, the Atkinson index for the Pareto distribution is

Hence, the empirical Atkinson index for the Pareto distribution is

t  , 1 v , A . 1
AF =  1 -  (1 -  = ) ( =------)■.

A A — a

T h e o re m  3 .1 .4  Assuming that E ( X 2) <  oo and E ( X 2a) < oo, the asymptotic dis

tribution of \ fri(Ap — Ap) is normal with mean zero and variance

(7 TP —
(1 — a)2A" 

(A — a) 7+2

P ro o f:

Define the theoretical and the empirical Atkinson indices as a function h of A and A, 

respectively. Hence Ap  =  h (A) and Ap = h .

From Eq. (3.5), we have A =  A ^  log ■ Let Z  as follows, Z  = log
i—i \  /

n

therefore |  — y Z t, and
i = i

\ /n (A p  — Ap) — \ fn = Wn
2 =  1

A
. (3.6)

=  1 - e/o'9VAb it is seen th a t for

? — \ z

Since F(x)  =  1 — ( ^ )  =  1 -

2) =  log j  the distribution function for 2 is F(z) = 1 — e 

Hence, the expected value and the variance for Z  are A and respectively.
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i=1
By the Law of Large Numbers, we have A =  ^ ^  Z t -A? — =  A7[AT]. 

Also,

i=1 ■ L A * )

which by the Central Limit Theorem has a limiting normal distribution. 

Expanding Eq. (3.6) using the Taylor series around j  we obtain

\ /n (A p  — A_p) — \ fn h! ( v  ) | A ^  Z, -  -  1 +  -h "
i=i

i  . 1
A / 2 n XA /  \ n i=i

(3.7)

where the first and the second derivative for the h function are

and

(3.8)

1 \  ( l - a ) ( A  +  l)(A)1+1/a
h" -  = (3.9)

XJ  (A — a)2+1/a

As shown in Chapter 2, the second term in Eq. (3.7) (the remainder) converges in 

probability to 0. Therefore a/n (A F — A F) converges to a normal distribution with 

mean 0 and variance

2 M - \2 \ — —2
S ! = ( * ( ) ) )  V ar(Z )  =  ^ (3.10)

Hence,

\ /n ( A F -  Ap) 

\ / ( h'{-x))2 y a r (z )

N (  0,1).

For the E x p o n e n tia l d is tr ib u tio n , the cumulative distribution function is

F(x) = 1 — e'
X  —  X Q  

0
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with x > xq and 6 > 0. Here, the param eter x$ is known, and can be equated to  the 

basic income, or social support income. The param eter 6 is unknown.

The maximum likelihood estim ator for 9 is

From Appendix A, we have th a t the Atkinson index for the Exponential distribution 

is

It is interesting to observe th a t for the exponential distribution, the Atkinson index 

does not depend on the param eter A.

Since the Atkinson index for the exponential distribution is a constant, one is 

interested in determining if the Exponential distribution is valid.

This can be tested by the following null and alternative hypothesis:

H a : Ap ^  c.

For the L o g n o rm al d is tr ib u tio n , the cumulative distribution function is

F(x) = $  (log(x -  x 0) -  p ) , 

with x > xq and —oo < p < oo. The parameter a is considered to be 1. We 

consider the param eter x0 to be known and we can interpret this param eter as basic 

income, or social support income. The param eter p is unknown. In the case of 

Lognormal distribution without the location parameter x 0, the ath moment about

a2
x,q is E[{X  — A 0)a] =  ea/i+^ \  In the case of Lognormal distribution with location

(3-11)

A p^  — 1 — T(a +  1)" — c. (3.12)

Ho ■ A p  — c;

vs
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parameters, the moments are calculated using the the moments presented above and 

Newton’s Binomial theorem.

Therefore, the expected value in the Lognormal with x 0 case is E{X] — x 0 +  eZ+2 . 

The second moment is E [X 2} = 2x0ell+% +  e2,'+2 — x%. The third moment is E [ X 3] =  

x l  — 3xle^+  ̂+ 3 x 0e2/t+2 +  e3/i+t . The fourth moment is E [X 4] =  4x ^ e ^ ^  — 6x'oe2M+2 +

4x0e3At+2 +  — Xq.

The maximum likelihood estim ator for p  is

1 ”
p  = -  log (x % -  x o) • (3.13)

i= i

From Appendix A, the Atkinson index for the Lognormal distribution is

(x0 + ea^+3̂ )«
A F — 1

Xq +  eM+ 2

Hence, the empirical Atkinson index for the Lognormal distribution is

(xq +  ea/i+V ) a
A F — 1 —

X q  +  eA+ 2S'O

T h e o re m  3.1.5 Assuming that the E ( X 2) <  oo, E ( X 2a) < oo, the asymptotic dis

tribution of y /n (A F — A f ) is normal with mean zero and variance

(x 0 +  ea/t+IV)
(JF  =

1 2  
a ~  \  a

1
X q +  e a ' l + V  /  X o  +  c T + 2

P ro o f:

We define the theoretical and the empirical Atkinson indices as a function h of p 

and p, respectively. Therefore A F = /i(p) and A F = h(ji).

We also define the random variable Z  such tha t Zi — log(xt — x 0). Therefore,
n

from Eq. (3.13) p =  n ^ 2 Zi' exPect e<3 value is E[Z] = p  and the variance is
i =  1

V a r(Z )  =  a2.
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Hence,

y/n(AF -  A f ) =  sfn [h(Ji) -  /?,(//)] =  \ fn h [ - Y , Z i ) ~ h ^ L]
2 =  1

(3 .14)

By the Law of Large Numbers, we have p =  ^ Z,; —d9 p =  E[ z j ] ,

Also,
i = i

i = 1
=  v n

1
p

i = 1

1 E <z- -■
which by the Central Limit Theorem converges to N ( 0, Var(Z)) .

Expanding Eq. (3.14) using the Taylor series, around p, one obtains

>/n(AF — Ap) — \ fu . (3 .15)

By calculating the first and second derivatives for the h function we obtain

h' (p)  =  1 -
Xq +  ea/i+ a2

2

X q +  e a > l+ S 2 Xq +  &

and

h" (p)
(a — 1) ( xq +  eap+a2

^-2
-  r 0 t e ap+4

X q + 6 /4+ 7

(3 .16)

(3 .17)

The second term  in Eq. (3.15) converges in probability to 0. Therefore, we can 

conclude th a t \ /n ( A F — A F) converges to a normal distribution with mean 0 and

variance

XF = {ti (p))2 Var(z) 1 -

+  eaM+ °2 ^

X q +  e
n 2 (1/1+ ~p X q + e ++§

(3 .18)
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Hence,

M a f - a f ) _^d N { Q i y

y ( h' iv>))2 Var{z)

m

3.2 A sym p totic  V ariance and its E stim ation

To obtain an estim ator for the asymptotic variance we replace //,, /xa , /.i2a! a n d  /ra+i 

in Theorem (3.1.1) by their corresponding estimates.

Therefore, the estimator for the asymptotic variance is

2

1 - —2 2 - — I fia
= {ha  -  fil) -  (pa+l - / i p a) +  ^ - ( / i 2 - p 2). (3.19)

azh  a h  h

The estimator converges in probability to the asymptotic variance cr2Fa.

A simulation study will be undertaken in order to determine the validity and 

robustness of the asymptotic results for finite samples.

3.3 Sim ulation  Studies

Simulation of the Atkinson index were be run for different distributions (Pareto, 

Exponential and Lognormal) with sample sizes, n — 100, n  =  500, n  =1,000 and 

n  =10,000 and m  =1,000 replications.

We are interested in calculating 95% confidence intervals and in determining the 

coverage probabilities for the different sample sizes. The coverage probability is cal

culated as (Number of Cl that cover the theoretical index)/(to).

W hen to is very large the coverage probability should be approximately 0.95.
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3.3.1 C onfidence Intervals: N onp aram etric  Case

For . . .  X n independent and identically distributed random variables

A n ~ Ap  AT(Q, 1).

V n

T heorem  3.3.1 (S L U T S K Y ’S  Theorem) Let X n and Yn be sequences of random 

variables. Suppose X n converges to X  in distribution, and Yn converges to the constant 

b in probability. Then

1. X n +  Yn converges to X  + b in distribution.

2. X n * Yn converges to bX in distribution.

3. - f -  converges to — in distribution.
* n 0

Using Slutsky’s argument we can conclude th a t the following result is true:

iV(0,l).  (3.20)
A„ ~  A f d

n

Equation (3.20) can be used to construct confidence intervals. A 100(1 — «)%  asymp

totic confidence interval is given by

I a 2
A n  ± Za / 2 \  — ■

V n

For constructing a bootstrap confidence interval, one starts with the original sample 

X i,  X 2 . ■. X n and calculates the empirical Atkinson index An[AT]. Next, a random 

sample with replacement will be drawn from the original sample to obtain a new 

sample X^, X | . . .  X*. Then the Atkinson index An[X*] and the expression

yfti\An[X*] -  A n[X]\ (3.21)
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are calculated. This procedure is repeated m  times to obtain m  values of expression

(3.21).

Then we define z* as the smallest value of z such th a t at least 100(1 — a)%  values 

of expression (3.21) are at or below z.

As such, the bootstrap confidence interval for the nonparametric bootstrap is 

given by

3.3 .2  C onfidence Intervals: Param etric C ase

To construct parametric confidence intervals based on maximum likelihood esti

mators, one uses the same idea as in the previous section.

As such, a 100(1 — a)% asymptotic confidence interval is given by

i  Za/2

For constructing a bootstrap confidence interval, one starts with an original sample 

Xi ,  X 2 . . .  X n from one of the param etric distributions. The probability density func

tion for the distribution considered is of the form f (X\ 9) ,  where 9 is the param eter of 

the distribution. Let 9 be the maximum likelihood estimator of 9 and let X \ , X 2 ■. ■ X n 

be a random sample from f (X\9) .

A new random sample will be drawn, -with replacement, from X^,  X 2 ■ ■ ■ X n to 

obtain a new sample Xj , X% ■ ■. X*.  Then, the Atkinson index An[X*] and the ex

pression

y/7i\An[ X * } ~ A n[X]\ (3.22)

are calculated. This procedure is repeated m  times and rn values of the expression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

(3.22) are obtained. We define 2* as the smallest 2 such th a t a t least 100(1 — a)%  

values of the quantity — An[X]] are a t or below 2 .

As such, a 100(1 — a)%  bootstrap confidence interval for the param etric bootstrap 

is given by
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C H A PTER  4 

SIMULATION STUDIES I

4.1 P areto  D istr ib u tion

In this section we generated 1,000 Pareto samples of different sizes, n = 100, n = 

500, ?7. =  1,000 and n — 10,000 and calculated the Atkinson index for each sample 

in order to compare the empirical estimators and the 95% confidence intervals or 

coverage probabilities to the theoretical Atkinson index and asymptotic confidence 

interval, respectively. The Pareto random variable may be considered as representing 

salary distribution. The param eter of the Pareto distribution is A =  3 and the 

Atkinson param eter is a =  0.2. Of interest is calculating the 95% confidence interval 

or coverage probability for the Atkinson index. In this case the expected a  is 0.05.

Results for the nonparametric case show th a t for sample size n  =  100 with m  =

1,000 replicates there were 25 intervals not covering the theoretical Atkinson (14 

smaller th a t the lower limit and 11 greater than the upper limit). For the param etric 

case there were 59 intervals not covering the theoretical Atkinson (2 smaller th a t the 

lower limit and 57 greater than the upper limit).

For the sample size n =  500, with rn — 1,000 replicates there were 34 intervals not 

covering the theoretical Atkinson (25 smaller th a t the lower limit and 9 greater than 

the upper limit) in the nonparametric case, and there were 56 intervals not covering

53
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the theoretical Atkinson (12 smaller th a t the lower limit and 44 greater than  the 

upper limit) for the param etric case.

For the sample size n  =  1,000, with m  — 1,000 replicates there were 46 intervals 

not covering the theoretical Atkinson (31 smaller th a t the lower limit and 15 greater 

than the upper limit) in the nonparametric case, and there were 57 intervals not 

covering the theoretical Atkinson (20 smaller th a t the lower limit and 37 greater than 

the upper limit) for the parametric case.

For the sample size n  =  10,000, with m  =  1,000 replicates there were 50 intervals 

not covering the theoretical Atkinson (35 smaller th a t the left lower and 15 greater 

than the upper limit) in the nonparametric case, and there were 48 intervals not 

covering the theoretical Atkinson (18 smaller th a t the lower limit and 30 greater than 

the upper limit) for the parametric case. We summarize these results in Table 4.1.

Table 4.1 Coverage probability of the Atkinson index from simulation using the Pareto 
distribution with 1,000 replicates

Sample size Proportion Nonparametric Proportion Param etric

p II i—
' o o 0.975 0.941

n=500 0.966 0.944

n=l,000 0.954 0.943

n=10,000 0.95 0.952

From results in Table 4.1 for a  — 0.05, one concludes th a t as the sample size 

increases, the coverage (1 — a) converges to 0.95 or the type I error (a) converges to 

0.05.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

In practice, some populations, such as salaries at institutions, may be relatively 

small, in which case results for n  =  100 or n = 500 would be relevant. In such case, 

results in Table 4.1 show the 1 — a  level to be somewhat larger than 0.95 for the 

nonparametric case, but close to 0.95 in the param etric case. These deviations from 

expected (1 — a = 0.05) are deemed acceptable for application purposes.

Appendix B, presents the program code for the simulation, in the case of n =

10.000, using R. The random variables generated represent incomes at a scale of 

1:30,000. Therefore, the minimum income in the income vector was Income,nm =  

$30,000.26 and the maximum income Incomemox =  $659,758.90 with the mean in

come being $44,979.13. In what follows, the theoretical Atkinson index is A Fa =  

0.05870694, the vector Atkinsonn[k] represents the nonparametric Atkinson esti

mates for m  = 1,000 replicates, and the vector Atkinsonj)e[k] represents the para

metric Atkinson estimates for rn =  1,000 replicates. The param etric variance is 

a 2F =  0.0180823, and the vector a F represents the parametric estimates for m  =

10,000 replicates. The nonparametric variance is o 2n — 0.0807779, and the vector a \  

represents the nonparametric estimates for m  — 1,000 replicates.

The plot in Fig. (4.1) represents a histogram of the incomes for sample size 10,000 

from the Pareto distribution. It is seen, as expected, tha t the empirical distribution 

agrees with the theoretical Pareto distribution.

Figure (4.2) represents a scatter plot of the 1,000 nonparametric estimates of the 

Atkinson index for n =  10,000 incomes following a Pareto distribution.

Figure (4.3) represents a plot of the 1,000 parametric Atkinson indices for n =

10 .000 .
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Figure 4.1 Income distribution over 1,000 replications for a sample size of 10,000 from 
the Pareto distribution
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Figure 4.2 Scatter plot of nonparametric Atkinson estimates for sample size 10,000 
from the Pareto distribution
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Figure 4.3 Scatter plot of the parametric Atkinson estimates for sample size 10,000 
from the Pareto distribution
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It is seen from the Figs. (4.2) and (4.3) th a t the spread of variance is consider

ably smaller for the parametric than  for the nonparametric estimator. This result 

implies th a t the parametric estim ator of the Atkinson index is more efficient than  

the nonparametric estimator. The empirical mean of the nonparametric estimates is 

0.05856107, and the parametric mean is 0.0586206. The two means are close to the 

theoretical Atkinson index A Fâ =  0.05870694, implying th a t the param etric as well 

as the nonparametric estimates are unbiased.

The plot in Fig. (4.4) represents a histogram of the 1,000 nonparam etric variance 

estimates.
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Figure 4.4 Histogram of nonparametric variance estimates for sample size 10,000 from 
the Pareto distribution
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The plot in Fig. (4.5) represents a histogram of the 1,000 param etric variance

estimates.
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Figure 4.5 Histogram of parametric variance estimates for sample size 10,000 from 
the Pareto distribution

Both distributions are alike. The means over 1,000 replications for the non

parametric and parametric estimates is 0.0805688 and 0.018037, respectively. Com

pared to the nonparametric variance a \  =  0.0807779 and param etric variance a \  = 

0.0180823, both nonparametric and parametric estimates are unbiased.

4.2 E xponentia l D istribution

In the Exponential case, we have simulated 1,000 samples of size n  =  1,000 fol

lowing an Exponential distribution with parameter 9 = 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

For each sample, the theoretical Atkinson index and its nonparametric estimates 

were calculated.

As we have seen in Eq. (3.12), the Atkinson index does not depend on the para

meter of the distribution. Therefore, one cannot calculate the param etric asymptotic 

variance and its estimates. For this situation, a bootstrap m ethod should be used, 

since it does not require the practitioner to know the form of the variance.

The mean of the nonparametric Atkinson estimates is 0.3468753, which is very 

close to the theoretical Atkinson index of Ap  =  0.347459, implying th a t the nonpara

metric estimates are unbiased.

A scatter plot of the 1,000 nonparametric Atkinson estimates is presented in Fig.

(4.6).

Figure (4.7) represents a histogram of the nonparametric Atkinson estimates, for

1,000 incomes tha t follow an Exponential distribution.
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Figure 4.6 Scatter plot of the Atkinson index estimates for sample size 1,000 in the 
exponential case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

>>oc
CDzscr
CD

oo  —i CNJ

o
LO

oo

o
LO

195

123 121

77

43

0
18

159

125

70

45

I I I I I I I

0.32 0.33 0.34 0.35 0.36 0.37 0.38

Atkinson index

Figure 4.7 Histogram of the Atkinson index estimates for sample size 1,000 in the 
exponential case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

4.3 L ognorm al D istr ib u tion

In what follows we present the simulations for a data  set following a Lognormal 

distribution with mean fi =  0.5 variance a 2 — 1 and location param eter x 0 — 0.01. 

The Atkinson param eter considered is a =  0.2.

We generated 1,000 samples of different sizes, n  =  100, n  =  500, n  =  1,000 and 

n  =  10,000 and calculated the Atkinson index for each sample in order to compare the 

empirical 95% confidence interval or coverage probability to the asym ptotic confidence 

interval for the Atkinson index.

Results for the nonparametric case, for the four sample sizes mentioned above are 

summarized in the Table (4.2).

Table 4.2 Coverage probability of the Atkinson index from simulation using the Log
normal distribution with 1,000 replicates

Sample size Proportion Nonparametric

n=100 0.898

n=500 0.916

n=l,000 0.927

n=10,000 0.943

One can conclude th a t as the sample size increases, the coverage (1 — a) converges 

to 0.95 or the type I error (a) converges to 0.05. However, the convergence is slower 

for the Lognormal distribution than it is for the the Pareto distribution.

In practice, some populations, such as salaries at institutions, may be relatively 

small, in which case results for n  =  100 or n — 500 would be relevant. In such a
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case, results in Table 4.2 show the 1 — a  level to  be somewhat less than 0.95 for the 

nonparametric case, but close to 0.95 in the param etric case. These derivations from 

expected (1 — a = 0.95) are deemed acceptable for applications purposes.

The random variables generated represent incomes at a scale of 1:20,000. There

fore, the minimum income in the income vector was Incomemm =  $1,212.68 and the 

maximum income Incomemax =  $965,479.93 with the mean income being $ 34,256.56.

The theoretical Atkinson index is A ^ a = 0.3019898, the vector Atkinsonn[k]  

represents the nonparametric Atkinson estimates for m  — 1,000 replicates, and the 

vector Atkinsonpe[k] represents the param etric Atkinson estimates the m  = 1,000 

replicates. The parametric variance is aF =  0.007118831, and the vector a 2F represents 

the parametric estimates for m  = 10,000 replicates.

The plot in Fig. (4.8) represents a histogram of the incomes for sample size 1,000 

from the Lognormal distribution. It is seen from the histograms th a t about 87% of 

the incomes are around the mean income.

Figure (4.9) represents a plot of the 1,000 nonparametric Atkinson indices for 

n = 1,000 and Fig. (4.10) represents a plot of the 1,000 parametric Atkinson in

dices for n = 1,000. It is seen from these two figures tha t the spread of variance is 

considerably smaller for the parametric than for the nonparametric estimator. This 

result implies th a t parametric estim ator of the Atkinson index is more efficient than 

the nonparametric estimator. The empirical mean of the nonparametric estimates is 

0.3257333, the parametric mean is 0.3019916, and the theoretical Atkinson index is 

0.3019898. The two means are close to the theoretical Atkinson index, implying th a t 

the param etric as well as the nonparametric estimators are close to being unbiased.
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Figure 4.8 Income distribution over 1,000 replications for a sample size of 1,000 from 
the Lognormal distribution

The plot in Fig. (4.11) represents a histogram of the 1,000 param etric variance 

estimates. The mean of the parametric estimates is 0.00715778. The parametric 

variance crF =  0.007118831 implies tha t the parametric estimates are unbiased.
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Figure 4.9 Scatter plot of nonparametric Atkinson index estimates for sample size
1,000 from the Lognormal distribution
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Figure 4.10 Scatter plot of parametric Atkinson index estimates for sample size 1,000 
from the Lognormal distribution
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4 .4  B o o tstrap  M ethod

In this section, we generated 1,000 Pareto samples of different sizes, n = 100, n = 

500, n  =  1,000 and n  =  10,000. We then calculated the Atkinson index for each sample 

in order to compare the empirical estimators and the 95% confidence intervals, or 

coverage probabilities, to the theoretical Atkinson index and the bootstrap confidence 

interval for the Atkinson index, respectively. In order to generate the bootstrap 

Atkinson index, we sampled with replacement from the original sample, and for each 

sample the bootstrap Atkinson index was calculated.

The param eter of the Pareto distribution is A =  3 and the Atkinson param eter 

is a =  0.2. Of interest is calculating 95% bootstrap confidence interval or coverage 

probability for the Atkinson index. In this case the expected a  is 0.05. The algorithm 

used for calculating the bootstrap confidence intervals is described in Subsections 3.3.1 

and 3.3.2.

The coverage probability was replicated ten times in order to determine the mag

nitude of fluctuations in the simulation results.

Results for the nonparametric case with m  =  1,000, k = 10 gave the following 

probabilities summarized in Table 4.3.

Results for the parametric case with m  =  1,000, k =  10 gave the following prob

abilities summarized in Table 4.4.

In Table 4.5 we summarize the results of the mean of the 10 probabilities presented 

in Table 4.3 and Table 4.4 for the nonparametric and parametric case. We have taken 

a  =  0.05, and we observe th a t as n increases, the values converge to 1 — a  =  0.95 as 

expected.
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Table 4.3 Pareto nonparametric bootstrap coverage probabilities

Sample size Proportion Nonparametric

P I—1 O o 0.953 0.941 0.962 0.947 0.953 0.944 0.951 0.946 0.945 0.932

n=500 0.956 0.937 0.956 0.956 0.942 0.944 0.942 0.947 0.956 0.937

n=l,000 0.937 0.957 0.939 0.961 0.934 0.950 0.933 0.937 0.957 0.970

n=10,000 0.951 0.930 0.954 0.952 0.953 0.947 0.948 0.961 0.951 0.945

Table 4.4 Pareto parametric bootstrap coverage probabilities

Sample size Proportion Parametric

II i—1 o o 0.963 0.960 0.949 0.951 0.948 0.963 0.965 0.971 0.963 0.949

ss II Cn O o 0.950 0.961 0.956 0.934 0.963 0.966 0.962 0.951 0.945 0.940

n= l,000 0.942 0.932 0.948 0.949 0.941 0.942 0.970 0.956 0.943 0.949

d II i—* o o o o 0.950 0.925 0.950 0.958 0.953 0.968 0.949 0.957 0.952 0.963

One can conclude from Table 4.5 tha t as the sample size increases, the coverage 

(1—a ) converges to 0.95 or the type I error (a) converges to 0.05 for the nonparametric 

case. In the parametric case the convergence is about 0.95 for all the sample sizes 

considered.

In practice, some populations, such as salaries at institutions, may be relatively 

small, in which case results for n  =  100 or n — 500 would be relevant. In such a case, 

results in Table 4.5 show that the bootstrap method gives better convergence than 

the asymptotic method, as shown in Table 4.1.
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Table 4.5 Coverage probability of the bootstrap Atkinson index from simulation using 
the Pareto distribution with 1,000 replicates

Sample size Proportion Nonparametric Proportion Param etric

n=100 0.9474 0.9582

n=500 0.9473 0.9528

n = 1,000 0.9475 0.9472

n=10,000 0.9492 0.9525

The theoretical Atkinson index is A Fa = 0.05870694. The vector Atkinsonn[k] 

represents the nonparametric Atkinson estimates for m  =  1,000 replicates and has 

the mean 0.05877483. The vector Atkinsonnboot[k] represents the nonparametric 

bootstrap Atkinson estimates for m  =  1,000 replicates and has the mean 0.05876312. 

The vector AtMnsonpe[k\ represents the parametric Atkinson estimates for m  =1,000 

replicates and has the mean 0.05869812 and the vector Atkinsonpeboot\k\ represents 

the parametric bootstrap Atkinson estimates for m  — 1,000 replicates and has the 

mean 0.05868551.

N o te  4.4.1 For the nonparametric case, the bootstrap estimates have the m,ean closer 

to the theoretical Atkinson index than the asymptotic estimates have. For the para

metric case, the asymptotic estimates have the mean closer to the theoretical Atkinson  

index than the bootstrap estimates.

From the scatter plots in Figs. (4.12) (4.15), it is seen th a t the bootstrap esti

mates have a larger variance than the asymptotic estimates. Also, the nonparametric 

estimates have a smaller variance than the parametric estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



At
kin

so
n 

In
de

x

73

in
o  -  
o

o  -H

S AO — !--------------------- 1--------------------- 1--------------------- 1----------------------1--------------------- 1

0 200 400 600 800 1000

ID

Figure 4.12 Scatter plot of the nonparametric asymptotic Atkinson estimates for 
sample size 10,000
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Figure 4.13 Scatter plot of the nonparametric bootstrap Atkinson estimates for sample 
size 10,000
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Figure 4.14 Scatter plot of the parametric asymptotic Atkinson estim ates for sample 
size 10,000
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Figure 4.15 Scatter plot of the parametric bootstrap Atkinson estimates for sample 
size 10,000
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In the Exponential case, we simulated 1,000 samples of size n = 1,000, following 

an Exponential distribution with param eter 6 = 2. For each sample, the param etric 

Atkinson index was calculated. As we have seen in Eq. (3.12), the Atkinson index 

does not depend on the param eter of the distribution.

We are calculating the coverage probability for the nonparametric case and we 

replicate the calculation of the coverage probability k = 10 times in order to see how 

the results fluctuate in our simulation.

Results for the nonparametric case with m  = 1,000, k = 10 gave the following 

probabilities summarized in Table 4.6.

Table 4.6 Exponential nonparam etric bootstrap coverage probabilities

Sample size Proportion Nonparametric

n=100 0.938 0.939 0.966 0.952 0.944 0.941 0.966 0.961 0.939 0.921
ooL

OII£ 0.938 0.962 0.945 0.954 0.940 0.946 0.937 0.943 0.943 0.958

ts II I—1 o o o 0.935 0.958 0.956 0.935 0.957 0.942 0.966 0.956 0.948 0.937

£3 II I—1 o o o o 0.961 0.946 0.945 0.959 0.946 0.928 0.963 0.956 0.947 0.953

In Table 4.7 we summarize the results of the mean of the 10 probabilities presented 

in Table 4.6 for the nonparametric. We have taken a = 0.05, and we observe th a t as n 

increases, the values converge to 1 — a = 0.95 as expected. The theoretical Atkinson 

index is A Fa = 0.3474519. The vector Atkinsonn[k] represents the nonparametric 

Atkinson estimates for m  = 1,000 replicates and has the mean 0.3473711. The vector 

Atkinsonnboot[k] represents the nonparametric bootstrap Atkinson estimates for m  =
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Table 4.7 Coverage probability of the Atkinson index from simulation using the Ex
ponential distribution with 1,000 replicates

Sample size Proportion Nonparametric

n=100 0.9467

n=500 0.9466

n=l,000 0.9490

oooo
'

1—1 0.9504

1,000 replicates and has the mean 0.3471849.

From the scatter plots in Figs. (4.16) and (4.17) it is seen th a t the nonparametric 

bootstrap estim ator has a larger spread (less efficient) than  the asymptotic nonpara

metric estimator. The mean of the asymptotic estimators is closest to the theoretical 

Atkinson index, than the mean of the bootstrap estimators.

N o te  4 .4 .2  We have seen in the previous chapter that fo r some distributions, like 

the Exponential or Lognormal it is very hard to see how the variance looks like or 

even to estimate it. In cases like this, the bootstrap method is more usefid since one 

does not need to estimate the variances in order to construct confidence intervals and 

study the coverage probabilities.
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Figure 4.16 Scatter plot of the nonparametric Atkinson estimates for sample size 
10,000
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Figure 4.17 Scatter plot of the nonparametric bootstrap Atkinson estimates for sample 
size 10,000
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4.5 C ase S tudy

In this case study, we present incomes from the Louisiana Tech University, for 

the year 2005-2006. We wish to calculate the two Atkinson indices and see how the 

salaries differ between 12 months group and the 9 months group. An Atkinson index 

close to zero implies th a t there is little inequality in incomes. W hen the Atkinson 

index is zero, one has a state of perfect equality. When the Atkinson index is one, 

one has perfect inequality.

4.5.1 12 M onth s Incom es

The first part of the study deals with a sample of n  =  558 salaries for the 12 

months employees. A plot of these salaries is shown in Fig. (4.18). The minimum 

income in the sample is $1,252 per year, the maximum is $200,020 per year, and the 

mean salary is mean $35,283.60 per year.

To observe better how the incomes are spread in our data  set, we present a his

togram of the incomes in Fig. (4.19).

It is seen tha t 372 employees earn less than  the mean in a year and 186 employees 

earn more than the mean. The income extremes and the quartiles are as follows:

0% 25% 50% 75% 100%

1252.00 19474.75 27458.00 40875.00 200020.00

The annual to tal income for the 12 months employees is $19,688,247 and the top 

25% of the incomes has an annual to tal of $10,091,524. Therefore, the top 25% of 

the incomes represent more than 50% of the total annual income.
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Figure 4.18 Plot of the yearly incomes for the 12 months employees at Louisiana Tech 
University
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Based on these incomes we assumed th a t the population is risk averse and 

calculated the empirical Atkinson index for a =  0.1. This was found to be 0.1952934.

The plot in Fig. (4.20) represents the plot of the empirical distribution function 

for the income.

ecdf(x)

O ---

00O

CO
©

O

CMO

OO

2000000 50000 100000 150000

x

Figure 4.20 Plot of the empirical distribution function for income of 12 months em
ployees at Louisiana Tech University

Based on this plot we conclude th a t the data fits a Lognormal distribution and 

using the maximum likelihood estimates, we determined the parameters of the distri

bution. In this case the mean variance a 2 and location param eter x0 for the fitted 

Lognormal are 10.21529, 0.5787538 and 0.001, respectively. The plot of the fitted
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distribution function is given in Fig. (4.21). Based on this Lognormal parameters, 

the Atkinson index was calculated to be 0.2061501 in agreement with the empirical 

index 0.1952934 obtained from the sample.

ecdf(y)

o

ooo

CD

o

oo

0 50000 100000 150000 200000 250000 300000

x

Figure 4.21 Plot of the Lognormal distribution function for /x =  10.21529, a  =  
0.7607587 and x 0 =  0.001

4.5 .2  9 M onths Incom es

The second part of the study deals with a sample of n = 336 salaries for the 

9 months employees. The minimum income in the sample is $4,990 per year, the 

maximum is $129,289 per year, and the mean salary is $51,452.94 per year.
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Figures (4.22) and (4.23) are plots of the yearly incomes of the 9 months employees 

in the sample.
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Figure 4.22 Plot of yearly incomes for the 9 months employees at Louisiana Tech 
University

To observe better how the incomes are spread in our data set, we present a his

togram of the incomes.

It is seen from Fig. (4.23) tha t 135 employees earn less than the mean and 201 

employees earn more than the mean. The income extremes and the quartiles are as 

follows:

0% 257. 507. 757. 1007.

4990 39703 47419 60363 129288
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The annual total income for the 9 months employees is $17,288,187 and the top 

25% of the incomes has an annual to tal of $6,504,277. Therefore, the top 25% of the 

incomes represent only about 38% of the annual income. We calculate the empirical 

Atkinson index for a =  0.1, which assumes th a t the population is risk averse, and 

obtained a value of 0.06714808.

The plot in Fig. (4.24) is the plot of the empirical distribution function for our 

incomes.

ecdf(x)
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Figure 4.24 Plot of the empirical distribution function of the salaries for the 9 months 
employees at Louisiana Tech University

Based on this plot we conclude th a t the data  fits a Lognormal distribution and us

ing the maximum likelihood estimates, we determine the param eters of the
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distribution. In this case the mean /r, variance a 2 and location param eter Xo for 

the fitted Lognormal are 10.78023, 0.145943 and 0.001. The plot of the fitted dis

tribution function is given in Fig. (4.25). Based on this Lognormal, the Atkinson 

index was calculated to be 0.06037529 in agreement with 0.05914808 obtained from 

the sample.

ecdf(y)
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Figure 4.25 Plot of the Lognormal distribution function for /j = 10.78023, a = 
0.0382025 and x0 = 0.001

We can test the null hypothesis that, the Atkinson index for the 12 months employ

ees is equal to the Atkinson index for the 9 months employees, against the one-sided 

alternative th a t the Atkinson index for the 12 months employees is greater th a t the
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Atkinson index for the 9 months employees.

H q : A\2 ~  Ag = 0

vs

H a '■ A12 — A q 0.

N o te  4.5.1 Examining only the mean of the two samples we cannot tell anything 

about the inequality between the salaries. The 12 months employees have a mean of  

35,283.6 and the 9 months employees hare a mean of 51,452.9f.

Therefore, we test the above hypothesis. Since a =  0.1 we are sensitive to  inequality, 

and we want to emphasize the poor individuals (lower end of the distribution). The 

Z  test statistics is 2.962127.

We consider different levels of significance.

At 5%, we reject the null hypothesis because \Z\ > 20.025 =  1-96. There are more 

poor people in the 12 months employees. The bottom  5% of the incomes for the 12 

months employees is in the interval (1,252, 10,000) and for the 9 months employees 

is in the interval (4,990, 27,000).

At 10% significance level, we reject the null hypothesis if \Z\ > 20.05 =  1.645. 

The bottom  10% of the incomes for 12 months employees is in the interval (1,252, 

15,000) and for 9 months employees is in the interval (4,990, 30,000).

At 20% significance level, we reject the null hypothesis if \Z\ > 2O.I =  1.282. The 

bottom  20% of the incomes for 12 months employees is in the interval (1,252, 20,000) 

and for 9 months employees is in the interval (4,990, 35,000).
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We reject the null hypothesis for all three levels of significance. After calculating 

the two corresponding Atkinson indices, the 12 months Atkinson index is 0.1812934 

and the 9 months Atkinson index 0.05914808 one can conclude th a t the 9 months 

employees have less income inequality than  the 12 months employees. The 9 months 

employees have their incomes around the middle of the distribution, and the Atkinson 

index is close to zero, a state of equality, whereas the 12 months employees have 

greater income inequality and with more incomes at the lower end.
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C H A PT E R  5 

ATKINSON INDEX: TW O POPULATIONS

5.1 A sy m p to tic  N orm ality  M ethod

5.1.1 N onparam etric C ase

For this chapter, we are interested in comparing two indices, say A p  and Ac,  

corresponding to two populations of incomes, with distribution functions F  and G. 

In the literature, we find this comparison done in terms of comparing distribution 

functions F  and G. or their integrals. This procedures require testing for stochas

tic dominance and verifying the conditions imposed, see [Horvath et ah, 2005]. A 

different approach was chosen in the previous chapter.

The aim is to construct direct (parametric and nonparametric) tests that, given 

empirical evidence, would allow the practitioner to decide (at a prescribed confidence 

or significance level) whether Ap  and A q are equal or not under various alternatives, 

and to also construct confidence intervals for the difference Ap  — A C-

Assume we have m  individuals from one society with incomes X \ , X 2 . .. X rn and 

another n individuals from another society with incomes Yi, Y2 . . .  Yn. All random 

variables in the set of incomes are ind ep en dent and distribution free.

The Atkinson index A m is a consistent and asymptotically normally distributed 

estim ator of Ap,  and A n is a consistent and asymptotically normally distributed 

estim ator of Ac-

92
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For the first population, the Atkinson index A F measures the inequality of the 

incomes X \ , X 2 ■.. X m and for the second population, the Atkinson index A q measures 

the inequality of the incomes . ¥■> . . .  Yn. We wish to determine the m agnitude of 

the difference between the two indices.

Through the rest of the thesis we will assume, following [Zitikis, 2003], tha t

A ssu m p tio n  5.1.1 There exists a function f>(s) which is continuous on (0,1) and 

satisfies the bound

|^ (s) | <  csa_1(l -  s)0_1,O < s < 1, 

for  some a, (3 > 1 /2  and c < oo. Fwrtherm,ore,

E[\X\^} + E[ \Y f ]  < oo 

for some 7  such that 7  > l / ( a  — 1/2) and 7  > 1/(13 — 1/2).

Also, let

/ oo roo

/ ( P r { X  < x , Y  < y }  -  F(x)G(y))i j(F(x))f j(G(ij))dxdiy,  (5.1)

OO J —  OO

and

/
OO POO

/  (F(x  A y ) -  F(x)G(y))i>(F(x))il}(G(y))dxdy,  (5.2)

-OO J — OO

where x  A y = minfx ,  y).

T h e o re m  5.1.2 Under the assumptions made above, when X t and Y-i are indepen

dent, then

(.4m[X] -  A ,[y]) -  (,4f  -  Ag)  n  (5
y V m i A ^ X ]  -  A„[Y\)
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as m  and n converge to infinity in such a way that the ratio n / ( m  +  n) converges to 

a constant r; 6 (0,1).

We have proved in Chapter 3, section 3.2 th a t for one population,

In this chapter, we will discuss the case when the sample sizes are equal (rn = n) and 

the case when the sample sizes are not equal (m n).

Before starting our proof, we would like to state the Slutsky’s theorem, th a t will 

be referenced in our argument.

T heorem  5.1 .3  Let X n —̂  X  and Yn —>p c, where c is a finite constant. Then

(5.4)

and

(i) X n + Yn ^ d X  + c

(it) X nYn -V  cX

(in) ^  ~>d — , i / c /  0.
r  n  C

Proof:

W hen m  = n  we have

^ f i ( A n[X} -  An [Y\) -  y /n(AF -  Ac)  
^ /V a r (A n[X] -  A n[Y})

Since X  and Y  are independent,

V a r (A n[x] -  An[y]) =  Var(An[X)) + V a r (A n[Y}) = ~  + ° f
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Therefore, we have

(An[X] -  A n[Y]) -  (Ap -  A g ) (An [X] -  Ap) -  {An[Y] -  A c ) 
y / V a r ( A n[ X ] - A n[Y}) ^ / V a r ( A n[X] -  A n[Y})

A n[ X ] - A F y / V a r ( A n[X})
X

^ / V a r ( A n[X}) ^ V a r ( A n[X}) + Var ( An [Y})

A n [ X ] - A F y j V a r ( A n[Y])
X

y / V a r ( A n[Y]) y / V a r ( A n[X]) + Var ( An[Y})'

Since

y / V a r ( A n[X]) a 2F/ n
yJVar(An{X]) + Va r ( An[Y]) V 4 /™  +  a 2G/ n

la 2G/ n  + a 2F/ n -  a 2G/ n  _  a 2cJ n
o \ j  n + cr2G/ n  V a 2G/ n  +  4 / n

and

yJVar(An{Y\) _  / a 2G/n
^ V a r ( A n[X}) + Var ( An[Y]) y 4 4  +  4 / n

one has

(A JX ] -  Af ) -  (An[Y] -  A G) An[X] -  A F
^ / V a r ( A n[X]) + Var ( An{Y]) yJVar(An[X\)

y /Var {An{Y])

where

a 2G/n  +  aF/ n '
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By Slutsky’s Theorem, and from Eq. (5.4) we can see th a t the first term  in 

the right-hand side of the equality converges in distribution to  a standard normal, 

and from Eq. (5.5) the second term  in the right hand side of the equality in the 

last expression converges in distribution to a standard normal. Let Z x and Z 2 be 

two independent standard normal variables. Therefore, by Slutsky’s Theorem, the 

expression

(Tn[X] -  A f ) -  (An[Y] -  Ag)  
^ V a r ( A n[X]) + V a r (A n[Y})

converges in distribution to Z X\J1 — f3 + Z 2\ffi. Let Z  — Z\ \ / l  — (3 +  Z 2^/li.

Therefore,

E\Z\  =  E[ZX + z 2y ^ }  = ^ f l ^ p E [ Z i ]  +  V ^ E [ Z 2\ = 0.

We also have

Var{Z) = V a r (Z iy/ l ^ P  + Z 2y/(3) = ( x/ T ^ 7 ) 2Eor(Z1) +  {y /p)2V a r{Z 2)

= (1 ~  P) +  P = 1-

Hence, Z  converges in distribution to a standard normal distribution, which implies 

th a t for m  =  n

(An[X] -  A n[Y]) -  ( A f  -  A g )

y/VariAnlX]  -  A n[Y]) 

has a standard normal distribution.

If m  ^  n  we have to prove the asymptotic normality for

(Am[X] -  H„[T]) -  ( Af -  A g ) 
^ V a r ( A m[X}) + V a r (A n[Y]) '

We rewrite the above expression as follows:

(5.6)

(5.7)

(Am[X\ -  A f ) -  (An[Y] -  A G) A m[X] -  A F / Va r( Am[X}) 
y /Va r (A m[X}) +  V ar ( An[Y]) y / Va r (A m[X]) \  Var {Am[X)) +  V a r {An[Y\)
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M Y ]  ~  A o x
V a r ( An{Y])

y / Va r (A n\Y]) y V o r (A m[X]) +  V a r (A n[Y])

Consequently,

v ' y a r ( A n [Y]) +  y a r ( A m [X]) \

O,G
 n_
a% o F \  

m. \

m  + n 9 
---------Onn

m  + n 2 m  +  n
-Orn m 4

n  m

We have assumed th a t the sizes of the two samples m  and n  converge to infinity

77, 77,
in such a way th a t 0 <  --------- <  1. Let rj = ---------with rj C (0,1).

n  +  rn

Therefore,

\

n
a G | a F
n m \

-o,G
Vs.

-Or
1 — 1]

' O r

Similarly,

V V a r ( Am[X])
^ V a r ( A n[Y]) + Var ( Am[X]) 

Therefore,

o z
m

n rn

m  +  n
' O r

rn
m  + n 2 m  + n

-o,
n G O r

rn

\

O r

m
2 2

4  +  °_F_
n m \

1 —  7]
-aF

1
- O , G 1 —  7]

'Or

Since from Eq. (5.4) and Eq. (5.5), Z\  and Z2 are two standard normal indepen

dent variables, we have tha t

(Am[ X ] - A n[ Y ] ) - ( A F - A G)  ̂ v R-----  ̂ 7 rx
-— — converges to Z ] \ / l  — o + Z 2\  o.
y / Va r (A m[X]) + Var ( An[Y})

Let Z  =  Z \ \ / l  — 8 +  Z 2V~S ■ Hence,

E [ Z \  =  E [ Z l V Y r S + Z 2V~S\ = V l ^ S E [ Z , }  +  V S E [ Z 2\ = 0.
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We also have

Var(Z) = Var(Z1V l ZrS + Z2V8) = ( V T ^ V a r ^ )  +  {VS)2Var(Z2)

( 1 - 5 ) +  8 = 1.

Therefore, from Theorem (4.1.2), the asymptotic distribution of

(Am[ X } - A n{ Y ] ) - ( A F - A G) 

y / V a r ( A m[X] -  A n[Y])

is standard normal.

In the case of p a ire d  ra n d o m  variables, we consider two populations of incomes, 

the first population with incomes Xi ,  X 2 . . .  X n following a distribution F,  and a 

second population with incomes Yj, Y2, .. , Yn following a distribution G. It is assumed 

th a t the pairs (W, 1)), i = 1 , . . . ,  n, are independent, and there is correlation between 

Xi  and Y,.

In practice, one is interested in comparing the Atkinson indices for the two pop

ulations at two different times. We have already proved in Chapter 3, th a t for one 

sample

are asymptotically standard normal.

In this section, we will investigate the case of two samples th a t are not indepen

dent. Using the Taylor series expansion, we have

y/n,(An[x] -  A F) ~  A?)

1 n
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and

V n ( A n[Y] — Ac)  =  —7= h (Y i) + -R„,y, 
v n i=i

where h{Xt) =  [h'x{n, n a){Xl -  n) +  h'y(fit , t-ta) ( X f  -  jLta)] and h(Yi) is defined similarly 

for the second sample. The two remainders R n x̂ and R niV converge to 0.

In order to obtain the desired asymptotic results for the difference of measures 

concerning X  and Y,  we shall now look at the the following:

M A n[X\ -  A n[Y}) -  M A f ~  A g )

=  M M X ]  -  A f ) -  M A n [ Y ]  - A g ) =  - ^ J 2  -  h W  +  ~  RV n  .v i=±

Let Zi = h(Xi) — h(Yi) and R n = R n x̂ — R n)V. Therefore, we have

1 "
V n ( A n [ X \  — A i[X I) — y / n ( A p  — A c )  =  — 7= Z i  +  R n —>d A (0, a 2). 

V n i=i

From Chapter 2, using Slutsky’s Theorem we can conclude th a t R n converges in 

probability to 0 and we know th a t E[Zj] =  E[h(Xi)  — h(Yi)] =  E[h(Xi)] — E[h(Yi)] =  0. 

Therefore y/n(An[X] — — y/n(Ap — A G) converges to a normal distribution,

with mean zero and variance a 2 , where

a2 =  Var(Zi)  =  Var(h(Xj)  — h(Yi)) 

=  E[(h(Xi) -  HYi) )2} = E[h(Xt)}2 -  2E[h(Xi)h(Yi)] +  E[h(Y,)]2.

Hence,

-  V  h{Xtf  -  2 -  V  h ( x t)h(Y) +  -  V  h ( Y ) \  (5.9)a 2 — —
n  ' ' n  ' - - //

i= 1 i = l  ?=1

which by the Law of Large Numbers converges to a2.

In summary, using the Slutsky’s argument, we have the asymptotic result:

((An[X] -  H„[F]) -  (A~ A)) m  1}_ (5_10)
' a 2
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5.1.2 Param etric C ase

In the previous chapter, we discussed the one-sample param etric Atkinson index. 

Here, we consider th a t all the random variables in the set { X i , . . .  , X n, h i , . . . ,  Y„} 

are independent.

The parametric families under consideration are the Pareto, Exponential, and 

Lognormal distributions:

In this study, we are interested the following pairs of distributions: Pareto-Pareto, 

Lognormal-Lognormal, and Pareto-Lognormal.

We assume first th a t the random variables Xi  and Y% follow a Pareto distribution 

with cumulative distribution functions F  and G and parameters A and 0, respectively. 

The X{ and Yi are independent variables. From Chapter 2, we know that

(5.11)

F 2(x ) =  1 -  e - {x~xo)/0, X >  x Q, 9 >  0, (5.12)

and

F 3(x ) =  d} ( l og( x  — x 0) — //., x  >  xq , —oo <  p  <  oo. (5 .13)

(5.14)

and

(5.15)
^Var(Ac )

Hence, we want to show that

(Af -  A g ) -  (Af -  A g ) ^

j var{AF) | Var('AG)
(5.16)

n m
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as n and m  converge to infinity in such a way th a t the ratio n / ( n  +  m)  converges to 

a constant a  E (0,1).

It is seen that.

(AF — Ag)  -  (A f — Ag)  

Jv ar(Ap) V  ar(Ac)

Ap  — A F

n m
'Var (Aj

n

x

\

V a r ( A I
n

V a r ( A F) | V a r ( A G]
n m

A c  — A q x
V a r ( A tg )

m \

Var(Ac)
m

V  ar (AF) V a r ( A G)
n m

Since we already know from Eq. (4.14) and Eq. (4.15) th a t each of the first terms 

in the sum on the right side of the above formula are asymptotically normal, we are 

now interested in the remaining two terms.

It follows tha t

\

Var(Aj
n

V  ar (AF) Var(Ac)
n m \

1
-CFin

1 . 1 -~:2- a F  aG
n m \

m  +
 a 2F

n
m  +  n rn +  n ̂ 2 ’

-a (J,
n rn G

where a 2F =  p- (h! ( | ) )  and o'c = (h! (y))  as in the previous chapter.

 ̂ jji -|- fi 1 yyi -j- j},
We let rj = n / ( n  + m),  therefore, we have -  =  a n d  — --------- ,

rj n 1 — rj m

the previous equality becomes

Hence,

\

V  ar(A F
n

Var ( AF) V  ar(Ac)
n m \

—cr i
=  v ^ (5.17)

- o .
1 — rj G
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and similarly

\

Var ( Aa )
m

V a r ( A F) V a r ( A G)
n rn \

1 -  rj-< y i

1 Jl x 1 Ji
~ ° F  +  1  ° G  7] 1 —7]

= V l ^ 5 . (5.18)

Since, from Eq. (4.4) and Eq. (4.5) Z\  and Z2 are two standard normal independent 

variables, we have tha t

(Ap -  A G) — (Af — A g ) r ---- - pz
—======= ======== converges to ZiV 1 — o + z 2v o.

'Var(Ap)  V a r ( A G)
n m

Let Z =  Z \\J  1 — 5 + Z 2\ //S, and E( Z)  =  0, Var(Z)  =  1, respectively. Therefore, 

from Theorem (5.1.2) the asymptotic distribution of

(Ap  — A g ) — (AF — A g ) 

^Var(Ap) Va r (A G)
(5.19)

m

is standard normal, IV(0,1).

The same asymptotic results are obtained for F  denoting a Pareto distribution 

and G denoting a Lognormal distribution or for F  and G denoting Lognormal distri

butions.

In the parametric case for the p a ire d  random variables we have to show, analo

gous, to Eq. (5.10), the following asymptotic result:

\ f n  ( (AF -  A G) -  (Ap  -  A a )
1V(0,1), (5.20)

where the denominator on the left-hand side of the above formula is the asymptotic 

standard deviation of y/n(AF — A G).
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Depending on the distribution of F  and G, the formulae for Ap  and A c  are of the 

form

^  ^  i 1 -  { )  ■ (5-2i)

Ap2 = 1 -  r ( a  +  1)” , (5.22)

,4 fi =  1 - ^  +  ^ ) ^  (5 23)
X q  +  e / l i _ 2

with the corresponding parametric empirical estimators

*•■ =  ■ (B-24)

Ap2 = 1 -  T(a +  1)», (5.25)

M  =  l - (X° + e ^ >- . (5-26)
X q  +  e x  ^  2

5.2 A sym p totic  V ariance and its E stim ation

Having proved in Section 5.1 the asymptotic normality for the nonparametric 

case and independent samples, we can continue by constructing consistent empirical 

estimators for the variances.

Using the aforementioned indices, we have tha t

Var ( Am{X) -  A,[V']) =  {5.27)
m  n

where Q f,f {iP) and Q g,g(u) are given by Eq. (5.2).
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[Jones and Zitikis, 2003] provided the following estimator for Q FF(a, b), w ith th a t 

for Qc,G(aib) defined analogously:

Q „ [ x m  -  y 1 Y d  - A -  -  ~  W - W - )  -  w u
n  n n  / W  \ n  J

(5.28)

It is proved in [Zitikis, 2002] th a t under Assumption (5.1.1), Q n[X\(ijj) is a consistent 

estim ator of Q F,F(h’)- Again, using Slutsky’s argument we have the following result

(Am[ X ] - A n[ Y ] ) - ( A F ~ A G) d

lQ m [ x m  | Qn[Y](il>)
N(  0,1). (5.29)

V m  n

One can use this result to test the null hypothesis H0 : A F = A q against any

(one-sided or two-sided) alternative and construct asymptotic confidence intervals, as

is seen in the following section.

In the param etric case, we have the following asymptotic result:

(Af — A g) — (AF — A g) d
N(  0,1). (5.30)

m  n

Param etric estimators for the quantities used in the above result are obtained by 

replacing the parameters of the distributions by their corresponding maximum likeli

hood estimators.

Therefore, for the Exponential and Pareto distributions

Q f u f M  =  (5 '31)

and

<5-32)
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In the case of a paired sample, we have the following nonparametric asym ptotic result:

(An[X\ -  A n[Y]) -  (A f -  A g )

y/Qn[X](l l>) + Q n [ Y ] W  -  2Q n [ X ,  Y ) { 4 -) 

The estim ator Q n [ X , Y ]  is defined as follows:

N ( 0 , 1) (5.33)

Q „ l x , Y m  =
z — ' z — '  \  n n n  \ n  J \ nj = i  k = i  v  /  \  /  \

^ Xj-n)(Yk-\-i-,n Yfan),

3

where en(j,k)  =  ^ 1  {Y™d<Yk.„} and are the induced order statistics, as shown
i = i

in [Zitikis, 2002],

5.3 C onfidence Intervals and Sim ulation  S tu d ies

5.3.1 N onparam etric C ase

For two independent samples, a nonparametric asymptotic 100(1 — a)% confidence 

interval is given by

' Q" l m )rn n

where za is the 100(1 — a)% quantile of the standard normal distribution.

To construct nonparametric bootstrap approximations we reformulate the asymp

totic result in Eq. (5.29) as follows:

l j ™  A f - A g )) -+d A r(0 ,(l-77)gF>F(^ )+ r/Q G,G(V-’)), (5.34)
Y m  +  n

where 77 is the limit of rn/(m  +  n ) when both m  and n  approach infinity. From the 

left-hand side of Eq. (5.34) we see th a t the bootstrap critical value z*a in the following 

100(1 — 0:)% confidence interval

( M X ]  -  A , m  ±  (5-35)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

for the difference A F — A q , which can be constructed as follows: First, we sample

with replacement m  values X*, X£ , . . .  X*  from the original sample X i, X 2 ■.. X n and

we calculate the corresponding income measure, which we denote by A m{X*\. In the

same manner, we obtain An\Y*\ from the sample Yi, Y2, . ■., Yn.

Then, we calculate the values of

/ _ m r ^  _  ^
\  m  + n

The above procedure is repeated k times to obtain k values for the expression in Eq. 

(•5.36). Now one can define z*a in Eq. (5.35) as the smallest value of z such th a t at 

least 100(1 — a)% of the values of the expression in Eq. (5.36) are at or below z.

In the case of paired samples, with equal sample size, the nonparametric asymp

totic confidence interval for the difference A F—A G is given by the following expression.

An[X] -  A n[Y] ±  za/2- ^ ^ Q n[X](^)  +  Qn[Y](ip) -  2Qn[X, Y](0). (5.37)
v n

For a bootstrap nonparametric confidence interval, for the difference A F — A c  in the 

case of the paired samples, we start with the original pairs (Xi, Y ) , . . . ,  (Xn, Yn) and 

calculate the empirical measures ^4„[X] and A JY ].

We will continue our procedure by sampling with replacement from the origi

nal sample to obtain a new sample (X*, Y* ) , . . . ,  (X*, Y*) and calculate An[X*] and 

A V\Y * \ as well as

V^KAJX*] -  A n[Y*]) -  (An[X] -  A n[Y})\. (5.38)

The above procedure is repeated k times to obtain k values of the expression in Eq.

(5.38). Now, one can define 2* as the smallest value of z such th a t at least 100(1 — a)% 

of the values of the expression in Eq. (-5.38) are at or below z.
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Hence, the desired confidence interval for A F — A G is

K [ X ]  -  A n{Y] ±  z*a
1

(5.39)

5.3.2 P aram etric C ase

To construct asymptotic param etric confidence intervals and tests of hypotheses 

for the case of independent samples, we apply the following asymptotic result:

To construct parametric bootstrap confidence intervals, we assume parametric 

families for X  and Y.  The statistics A F and A G can be estimated as discussed earlier, 

when F  and G are distribution functions from the three distributions considered in

are defined in Eqs. (5.31) and (5.32), respectively.

Since we have the maximum likelihood estimators of the parameters, one can draw 

simple random samples from the three distributions using the bootstrap technique and 

obtain new samples (X]",. . . ,  X^J  and (Iq*,. . . ,  Y*) using the bootstrap technique.

Using the new samples, we calculate again the maximum likelihood estim ators for 

the three distributions and formulate the expression

(AF -  A g ) -  ( Af -  Ag)  _^d ^

I Q f ,f (4)) | Q g , g { U)/
(5.40)

m n

Therefore, a 100(1 — a)% asymptotic confidence interval is given by

(5.41)

this thesis, Pareto, Exponential, and Lognormal. The quantities Qf , f ( ^ )  and Q g ,g ( 4 !)

(5.42)
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The above procedure is repeated k times to obtain k values for the expression in Eq.

(5.42). We define z* as the smallest value of z such th a t at least 100(1 — a)% of the 

values of Eq. (5.42) are at or below z.

Therefore, the corresponding param etric bootstrap based 100(1 — a)% interval for 

A p  — A q  is

(■A f - A g ) ± z * J (5.43)
V ran

Also, the asymptotic parametric confidence interval for the difference A p  — A G in the 

paired sample case is given by

— A n \Y ]  ±  zaj2—j = J Qf,f (4!) +  (3g,,g(V;) ~  2Qf,g (^)- (5.44)\Jn  v
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CHAPTER 6 

SIMULATION STUDIES II

In this chapter we are interested in verifying the consistency of the estimators for 

the variance of the difference of two indices and studying the coverage probability.

The first study is the asymptotic param etric case for two independent populations 

of the same size, and we consider two sets of incomes, following the Pareto distribu

tion, with \ m =  8 and Xn =  10. The two populations are assumed to  be independent 

and the samples have the same size m  =  n. We construct confidence intervals based 

on Eq. (5.41) with the quantities Q f ,f {'4’ ) i Q g .gX ^ )  defined in Eqs. (5.31) and (5.32), 

respectively.

We have used the function 'ift(s) = g'(l — s), where g(s) = sr and r =  1 — a. For the 

asymptotic conditions to be satisfied, we take r > 0.5, which means th a t we are only 

interested in the cases where the Atkinson parameter ‘a ’ is 0 <  a < 0.5. Appendix 

B presents the program code in R  for the simulation for the case m  =10,000 and 

n  =10,000.

The sample in the first population has a theoretical Atkinson index A tk in so n m = 

0.03073342 and the sample in the second population has a theoretical Atkinson index 

A tk in so n n =  0.01885358. The horizontal line in Figs. (6.1) and (6.2) represents the 

value of the theoretical Atkinson index.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

w 
CD -*—» 
CO

E
-4—*(n HI
o
CD
ECOi-_
CO

CL

cocoo

CM
COO

COo
a  o

o
COo

05
CMO

°o
O O © o o  0(§D

O

fb

o°o o Q0° °n% oCPGD %>o r

><§>£

O o o o0o w °&>00^°  o 0  & °  oOq O

(3D

200 400 600 800 1000

ID

Figure 6.1 Scatter plot of parametric Atkinson estimates for sample size 10,000 in the 
first population

The mean of the parametric Atkinson estimates for the first sample is 0.03070846, 

and the mean of the parametric Atkinson estimates for the second sample is 0.01884488. 

These means are very close to the theoretical means. Figures (6.1) and (6.2) show 

tha t the scatter of the estimates is larger in the first population than  it is in the 

second population.

The plot in Fig. (6.3) represents a scatter plot of the 1,000 parametric variance 

estim ates for the first sample. The parametric variance for the first population is
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Figure 6.2 Scatter plot of parametric Atkinson estimates for sample size 10,000 in the 
second population

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

) % ^ 0 o °  o & ^ J r
°  O  °  r©  ®  ^  C

0 200 400 600 800 1000

ID

Figure 6.3 Scatter plot of parametric variance estimates for sample size 10,000 in the 
first population
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0.4371286, and the mean of the variance estimates is 0.4366905.

The plot in Fig. (6.4) represents a scatter plot of the 1,000 param etric variance es

tim ates for the second population. The param etric variance for the second population 

is 0.1975309 and the mean of the variance estimates is 0.1974422.

0 200 400 600 800 1000

ID

Figure 6.4 Scatter plot of parametric variance estimates for sample size 10,000 in the 
second population

The previous two figures indicate tha t the spread of variance estimates in the 

second sample is considerably smaller than the spread of the variance estimates in 

the first sample.
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Also, from the plots of the param etric Atkinson estimates, we observe th a t the 

second sample has more equality than  the first sample and the theoretical Atkinson 

index for the second sample is smaller th a t the theoretical Atkinson index for the first 

sample.

The approximate 95 percent confidence intervals for the difference of two Atkinson 

indices using the parametric estimation w ith asymptotic intervals are presented in 

Table 6.1.

Table 6.1 Coverage probability of the difference of two Atkinson indices from simula
tion using the Pareto distribution with 1,000 replicates.

Sample size Proportion Parametric

n=100 0.951

n=500 0.948

n=  1,000 0.943

n=10,000 0.939

We observe th a t the parametric approach gives very good coverage for small sam

ple size, mainly due to the fact th a t the correct distributions were fitted.

The second study is the nonparametric bootstrap case for two independent pop

ulations with different sample sizes. We consider two sets of incomes, following a 

Pareto and an Exponential distribution, with A =  3 and 7  =  5. The two popula

tions are independent, and the samples have different sizes (rn ^  n). We construct 

confidence intervals based on Eqs. (5.35) and (5.36).
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In some cases one doesn’t know how the variance looks like or how to estim ate 

the variance, as we have seen in Chapter 3 for the Exponential distribution.

In cases like this, we use the sampling distribution of the statistic to calculate the 

critical values. We consider th a t the sample is the new population and we resample 

from this new population. The variance of the new population is very close to the 

variance of the old population and the critical values th a t we obtain for the test are 

similar to the critical values of the initial population.

The Pareto sample has an Atkinson index of 0.05870694 and the mean of the 

nonparametric estimates is 0.05867414. The Exponential sample has an Atkinson 

index of 0.3474519 and the mean of the nonparametric estimates is 0.3468081. As 

expected, the means from simulation are very close in value to the theoretical means.

We are interested in testing the null hypothesis H 0 : A F =  A c  against the the 

alternative alternative H a : A F < A c  and in constructing confidence intervals for the 

difference A F — Ac-

The difference between the two Atkinson indices to be A F — A c  =  —0.288745. 

Figure (6.5) is a scatter plot of the differences between the nonparam etric estimates 

of the two Atkinson indices.

We reject the null hypothesis in favor of the alternative hypothesis. The approxi

mate 95 percent confidence intervals for the difference of two Atkinson indices using 

the nonparametric estimation with bootstrap intervals are presented in Table 6.2.
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Figure 6.5 Scatter plot of the differences of two Atkinson index estimates over 1,000 
replicates.
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Table 6.2 Coverage probability of the difference of two Atkinson indices from simula
tion using the nonparametric bootstrap method.

Sample size Proportion Nonparametric Bootstrap

n=100, m=120 0.978

n=5001 m=510 0.971

n= l,000, m = 1,050 0.964

It is seen tha t these intervals are close to 95%, the expected confidence interval. 

Also, as the sample size increases, the intervals approaches 95% consistently.
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C H A PTER  7 

CONCLUSIONS A N D  FUTURE W ORK

In this dissertation, we obtained parametric and nonparametric empirical estima

tors of the Atkinson index and developed the asymptotic and bootstrap inference 

for these estimators. Specifically, A n denotes the classical empirical estim ator of the 

theoretical Atkinson index A ^ a and Ap  is the parametric estim ator of the parametric 

Atkinson index A F, see Eqs. (2.3) and (2.5).

An advantage of using nonparametric empirical estimation is th a t it allows the 

practitioner to estimate the index value from a random sample without first fitting a 

parametric model to the data. However, we do not want to imply th a t the nonpara

metric methods should be preferred to the parametric ones: The methods complement 

each other and experimentation with simulated data could be used to determine when 

it is preferable to use one method or the other in practice.

In some cases, one may be interested in comparing the Atkinson index for two 

or more unknown distributions. Chapter 4 of this dissertation addresses the two 

distribution case.

For example, the Atkinson index may differ for different periods of time. It is of 

interest to understand how the Atkinson index values differ. One way to understand 

the relationship between the Atkinson index values is to perform a test of hypothesis 

where the values are equal versus various alternative hypotheses. Here, we examined

118
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empirical tests in the case where only two Atkinson indices are being compared.

We plan to pursue this idea further and develop hypothesis tests for equality of 

more than two Atkinson indices. It should be mentioned th a t constructing tests 

for the equality of three or more Atkinson indices values is not a straightforward 

generalization of the case of two Atkinson indices discussed in Chapter 4. It is a 

very interesting problem from the theoretical point of view and is very im portant for 

practical purposes.

Several papers in the literature, ([Puri, 1965], [Shorack, 1967], to mention only 

a few) address testing hypotheses about the equality of k distribution functions, 

F i, F2, ..., Fk against various alternatives.

We assume k populations with independent samples from each population. For 

each ith population construct the corresponding empirical distribution function and 

the empirical Atkinson index.

One can test the null hypothesis tha t the Atkinson index values are equal to some 

known value A 0 against the one-sided alternative in which the Atkinson index values 

for several groups are no less than the specified A 0 with at least one group having an 

Atkinson index value th a t is strictly greater.

As such,

H0 : Ai =  A 0 for all i = 1, 2...k;

vs

H a ■ A  > A  for all i = 1, 2...k — 1: 

and there exists an i0 such th a t A io > An with 1 < i0 < k.
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We can also test the following hypothesis:

H0 : A t =  Aq for all i = 1 ,2...A;;

vs

H a : there exists an ia such th a t A lo ^  Aq.

In this case the Atkinson index values associated with a number of groups are equal to 

some known value against the alternative hypothesis tha t at least one of the Atkinson 

index values differs from the specified value.

One other possible scenario may suggest some natural ordering of several groups 

of incomes and the economist may be interested in whether the Atkinson index val

ues corresponding to these groups should be ordered in a manner consistent with 

this natural ordering. For example, incomes in highly industrialized areas (high-tech 

companies, etc.) have greater income than  other areas. Another scenario is where 

an economist may be interested in whether or not the Atkinson index value for some 

group of incomes has increased over time as a result of inflation. In this case, on may 

wish to test the following hypothesis:

H q : A t =  A 0 = ■ ■ ■ =  Ak\

vs

Ha '■ A \ <  A i <  • • • <  Ak\ 

with at least one strict inequality.

Several other possible scenarios can be tested following real life situations. Many 

statistical methods can be used to make inferences about populations and their various 

parameters. Since no single method is best for every situation, all these methods are 

interesting and would help an economist in understanding the problem on hand.
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A P P E N D IX  A 

FORM ULAS

In this dissertation we consider three distributions: Pareto, Exponential and Log

normal distributions. In what follows we will present the formulas for the Gini and 

the Atkinson indices for each of the above distributions.

For the Pareto distribution, the probability density function is of the form

./ (•'■) =  ./■ A ‘W .

where A > 0 and xq > 0. Therefore, the cumulative distribution function is of the 

form

F (x ) =  i - 0 y

The Lorenz curve for the Pareto distribution is of the form

L(p)  =  1 -  (1 - p ) (A" 1)/A.

The S-Gini index has the form

IF = l
Fu ( f A - 1 ) ’

and the Atkinson index is

A

A/  \A  — a /

For the exponential distribution the probability density function

e a
f i x )  = A ’

121
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where x  > 0 and A > 0. The cumulative distribution function is

F(x)  =  1 -  e~

Lorenz curve for the exponential distribution is of the following form

L(p) = p +  (1 +  Ax0)_1(l -  p)ln( 1 -  p).

The S-Gini index has the form

I  -  , J~ 1J-F, v  ~ u( l  +  Ax0) ’ 

and the Atkinson index has the form

A p , a  = 1 — T(a + 1)«.

The standard Lognormal distribution has the probability density function

1  (!n .( .r)--x 0 )2

f (X) =  F T  e 2" ’\ /  ITXO'X

where x  > x0 >  0 and a >  0. The cumulative distribution function is of the form

ln{x — x'o) — /A
F(x)  = <L

a

The Lorenz curve for the Lognormal distribution is

I  x f [ X U l x  =  $ ( //': a

The S-Gini index has the form

IF,V = 2 T (a /\/2 )  -  1, 

and the Atkinson index has the form

(x0 + ea"+°2 )i
A F,a ~  t -----------------—T----

Xq +  e' + 2
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APPENDIX B 

SIMULATIONS CODE USING R

The simulations for this dissertation are done using R. R is a language and envi

ronment for statistical computing and graphics. It is similar to the S language and 

environment which was developed a t Bell Laboratories (formerly A T& T, now Lucent 

Technologies) by John Chambers and colleagues. R can be considered as a different 

implementation of S. R has some im portant differences, but much of the code written 

for S runs unaltered under R. One of R ’s strengths is the ease with which well-designed 

publication-quality plots can be produced, including mathem atical symbols and for

mulas where needed. Great care has been taken over the defaults for the minor design 

choices in graphics, but the user retains full control. It is a free software and runs on 

a wide variety of UNIX platforms and similar systems, including FreeBSD and Linux, 

Windows and MacOS. The current R is the result of a collaborative effort with con

tributions from all over the world. R was initially written by Robert Gentleman and 

Ross Ihakaalso known as “ HA: R" of the Statistics Department of the University of 

Auckland.
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###1. PARETO DISTRIBUTION - ASYMPTOTIC THEORY -ONE POPULATION 
#Initialize the array’s 

AtkinsomK-array (0,1000); Atkinsonpe<-array (0,1000) ; 
sigma2ne<-array(0,1000); sigma2Fhat<-array(0,1000); 
nlimitl<-array(0,1000); nlimitr<-array(0,1000); 
plimitK-array (0,1000); plimitr<-array(0,1000) ;

#Initialize the variables
ncv=0; pcv=0; ncvl=0; ncvr=0; pcvl=0;
pcvr=0; m=1000; zalpha=l.959964; n=10000; lambda=3;

for(k in 1:1000) {

X<-array((1/(1-runif(10000)))~(1/lambda), 10000); 
a=0.2; med=0;
for(i in 1 :n){med=med+X[i]}; med=med/n; mede=0;

for(i in 1 :n){mede=mede+X[i]“a}; mede=mede/n;

#Atkinson Empirical
Atkinsonn[k]=l-(l/med)*(mede)~(1/a);

#AtkinsonParametric Pareto Atkinsonp=0;
Atkinsonp=l-(l-(1/lambda))*(lambda/(lambda-a))~(1/a); 
sum=0;

for(i in 1 :n){sum=sum+log(X[i])}; lambdahat=n/sum;
#Atkinson,estimator of the parametric 
Atkinsonpe[k]=l-(l-(l/lambdahat))*
(lambdahat/(lambdahat-a))~(1/a);

muhat=(lambdahat)/(lambdahat-l); 
muhata=(lambdahat)/ (lambdahat-a); 
muhat2a=(lambdahat)/(lambdahat-2*a); 
muhatal=(lambdahat)/(lambdahat-a-1);
muhat2=(lambdahat)/(lambdahat-2); mu=(lambda)/(lambda-1); 
mua=(lambda)/ (lambda-a); mu2a=(lambda)/(lambda-2*a); 
mual=(lambda)/(lambda-a-1); mu2=(lambda)/ (lambda-2);

#Variance for Nonparametric Cl
sigma2n=(l/(a~2*mu~2))*(mua~((2-2*a)/a))* (mu2a-mua~2) - 
2*((mua"((2-a)/a))/(a*nnr3))*(mual-mu*mua)
+ ((mua^ (2/a)) / (mu''4)) * (mu2-mu"2) ;
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#Variance for Nonparametric Cl
sigma2ne[k]=(1/(a~2*muhat~2))*(muhata~((2-2*a)/a))
* (muhat2a-muhata~2)-2* ((muhata~ ((2-a) /a)) / (a*muhat~3))
* (muhatal-muhat*muhata)
+((muhata~ (2/a))/(muhat~4))*(muhat2-muhat"2) ;

#variance of the parametric Cl sigma2F=0; 
sigma2F=((1-a)~2*lambda~((2-2*a)/a))
/((lambda-a)**((2*a+2)/a));

sigma2Fhat [k] = ( (1-a) ~2*lambdahat'' ((2-2*a) /a))
/((lambdahat-a)~((2*a+2)/a));

#confidence intervals nonparametric

nlimitl[k]=Atkinsonn[k] -zalpha*sqrt(sigma2ne[k]/n); 
nlimitr[k]=Atkinsonn[k] +zalpha*sqrt(sigma2ne[k]/n ) ;

#confidence intervals parametric

plimitl[k]=Atkinsonpe[k] -zalpha*sqrt(sigma2Fhat[k]/n); 
plimitr[k]=Atkinsonpe[k] +zalpha*sqrt(sigma2Fhat[k]/n);

if(nlimitl[k]<Atkinsonp)
{ if(nlimitr[k]>Atkinsonp) ncv=ncv+l else 
ncvr=ncvr+l} else ncvl=ncvl+l;

if(plimitl[k]<Atkinsonp)
{ if(plimitr[k]>Atkinsonp) pcv=pcv+l 
else pcvr=pcvr+l} else pcvl=pcvl+l; }

c(mean(Atkinsonn),var(Atkinsonn)) 
c(mean(Atkinsonpe),var(Atkinsonpe))

ncv=ncv/m; pcv=pcv/m; }
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###2. EXPONENTIAL DISTRIBUTION - ASYMPTOTIC THEORY

Atkinsonn<-array(0,1000);

m=1000; alpha<-0.05; zalpha<-qnorm(l-alpha/2);

a=0.2; n=1000; b=0; theta=2; for(k in 1:1000) { 
y<-rep(n,0); 
y<-rexp(n,theta);
med=0; for(i in 1:n){med=med+y[i]}; 
med=med/n; mede=0;
for(i in 1 :n){mede=mede+y[i] "a}; mede=mede/n;

#Atkinson Empirical 
Atkinsonn[k]=l-(l/med)*(mede)"(1/a); 
#AtkinsonParametric Exponential Atkinsonp=0; b=a+l; 
Atkinsonp=l-(gamma(b))~(1/a); }
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#3.LOGNORMAL DISTRIBUTION-ASYMPTOTIC THEORY-ONE POPULATION 
#Initialize the array’s

Atkinsonn<-array(0,1000); AtkinsonpF<-array(0,1000); 
sigma2ne<-array(0,1000); sigma2Fhat<-array(0,1000); 
nlimitl<-array(0,1000); nlimitr<-array(0,1000); 
plimitl<-array(0,1000); plimitr<-array(0,1000);

ncv=0; m=1000; alpha<-0.05; zalpha<-qnorm(l-alpha/2);

a=0.2; n=1000;
mun<-0.5; sigma<-l locat=0.01; 

for(k in 1:1000) {
y<-rep(n,0); y<-rnorm(n,mun,sigma); Z<-exp(y); 
X<-locat+exp(y);

med=0; for(i in 1 :n){med=med+X [i]}; med=med/n; mede=0; 

for(i in :n){mede=mede+X[i] "'a}; mede=mede/n;

#Atkinson Empirical
Atkinsonn[k]=1— (1/med)* (mede)~(1/a); suml=0; 
f o r d  in 1 :n){suml=suml+log(Z[i])}; munhat=suml/n;

#Atkinson, estimator of the parametric
AtkinsonpF[k]=l-((locat+exp(a*munhat + (a"2/2)))~(1/a))
/ (locat+exp(munhat+l/2));

#Atkinson Parametric LOGNORMAL 
Atkinsonp=0;

Atkinsonp=l-( (locat+exp(a*mun+(a''2/2) ))~(l/a))
/ (locat+exp(mun+l/2));

ml=0; ml=med; m2=0;
for(i in 1:n){m2=m2+X[i]"2}; m2=m2/n; ma=0; 
for(i in 1 :n){ma=ma+X[i]~a}; ma=ma/n; mal=0;

for(i in 1 :n){mal=mal+X[i]'"{a+l}}; mal=mal/n;

m2a=0; for(i in 1:n){m2a=m2a+X[i]"{2*a}}; m2a=m2a/n;
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#Variance for Nonparametric Cl

sigma2ne[k]=(1/(a~2*ml~2))* (ma~((2-2*a)/a))* 
(m2a-ma~2) -2*((ma~((2-a)/a))/(a*ml~3))* 
(mal-ml*ma)+((ma~(2/a))/(ml“4))*(m2-ml~2);

#variance of the parametric Cl 
sigma2F=0;

sigma2F=((l- (l)/(locat+ exp(a*mun+ (a~2)/2)))~2) 
* (((locat + exp(a*mun+ (a~2)/2)) ~ (1/a))/ 
(locat+exp(mun+1/2)))"2;

sigma2Fhat[k]=((1- (l)/(locat+ exp(a*munhat+ (a~2)/2)))~2)* 
(((locat + exp(a*munhat+
(a~2)/2))~(1/a))/(locat+exp(munhat+1/2)))~2;

#confidence intervals nonparametric 

nlimitl[k]=Atkinsonn[k]-zalpha*sqrt(sigma2ne[k]/n); 

nlimitr[k]=Atkinsonn[k]+zalpha*sqrt(sigma2ne[k]/n); 

if((nlimitl[k]<Atkinsonp)&(Atkinsonp < nlimitr[k])) 

ncv=ncv+l else ncv=ncv; ncv=ncv/m; }
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###4. PARETO DISTRIBUTION - NONPARAMETRIC BOOTSTRAP METHOD 
alpha<-0.05 
Nc-10000 
R<-1000 
T<-10 
lambda<-3 
a<-0.2

propl<-rep(0,R)

Atkinsonn<-rep(0, R)
Atkinsonnboot<-rep(0,R)
Quant<-rep(0,R)

CILL<-rep(0,R)
CIRR<-rep(0,R)

prop<-0
pp<-rep(0,T)

for(t in 1:T) ################ Begin T loop 
{

for(r in 1:R) ################ Begin R loop
{
X<— (1/(1-runif(N)))~(1/lambda) 

med=0;
for(i in 1 :N){med=med+X[i]}; 
med=med/N; 
mede=0;
for(i in 1 :N){mede=mede+X[i]~a}; mede=mede/N;

#Atkinson Pareto 
Atkinsonp=0;
Atkinsonp=l-(l-(1/lambda))*(lambda/(lambda-a))~(1/a); 

#Atkinson index
Atkinsonn[r]=l-(l/med)*(mede)~(1/a); 

index<-sample(1: N , N ,replace=TRUE) X_boot<-X[index] 

medb=0;
for(i in 1 :N){medb=medb+X_boot[i]};
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medb=medb/N; 
medeb=0;
for(i in 1 :N){medeb=medeb+X_boot[i]~a>; 
medeb=medeb/N;

#Atkinson index bootstrap
Atkinsonnboot[r]=l-(l/medb)*(medeb)~(1/a);

Quant[r]<-sqrt(N)* abs(Atkinsonnboot[r]-Atkinsonn[r])
}
############################ End R loop

Ord_Quant<-sort(Quant)
Ord_alpha<-trunc((1-alpha)*R)

criticalval<-Ord_Quant[0rd_alpha]
Q<-R

for(q in 1:Q) ################ Begin Q loop 
{

CILL[q]<-Atkinsonn[q] - criticalval/sqrt(N)

CIRR[q]<-Atkinsonn[q] + criticalval/sqrt(N)

if((Atkinsonp>CILL[q])& (Atkinsonp<CIRR[q])) prop=prop+l
}################ End Q loop
pp[t]<-prop/Q prop<-0
}################ End T loop
mu<-mean(pp)
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###5. PARETO DISTRIBUTION - NONPARAMETRIC BOOTSTRAP METHOD

alpha<-0.05
N<-10000
T<-10
R<-1000
lambda<-3
a<-0.2
propl<-rep(0,R)
Atkinsonpe<-rep(0,R)
Atkinsonpeboot<-rep(0,R)
Quant<-rep(0,R)

CILL<-rep(0,R)
CIRR<-rep(0,R) 
prop<-0
pp<-rep(0,T)

f or (t in 1 :T) ################ Begin T loop
{

for(r in 1:R) ################ Begin R loop {
X<— (1/(1-runif(N)))~(1/lambda)

#Atkinson Parametric Pareto 
Atkinsonp=0;
Atkinsonp=l-(1-(1/lambda))*(lambda/(lambda-a))~(1/a); 

sum=0;
f o r d  in 1 :N){sum=sum+log(X[i])}; 
lambdahat=N/sum;

#Atkinson, estimator of the parametric 
Atkinsonpe[r]=l-(l-(l/lambdahat))*
(lambdahat/(lambdahat-a))“(1/a);

index<-sample(1:N ,N ,replace=TRUE) X_boot<-X[index] 
sum=0;
for(i in 1 :N){sum=sum+log(X_boot[i])}; 
lambdahatboot=N/sum;

#Atkinson index bootstrap 
Atkinsonpeboot[r]=l-(l-(l/lambdahatboot))*
(lambdahatboot/(lambdahatboot-a))~(1/a);
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Quant[r]<-sqrt(N)* abs(Atkinsonpeboot[r]-Atkinsonpe[r])

} ############################ End R loop

Ord_Quant<-sort(Quant)
Ord_alpha<-trunc((1-alpha)*R)

criticalval<-Ord_Quant[Ord_alpha]
Q<-R
for(q in 1:Q)
################ Begin Q loop 
{

CILL[q]<-Atkinsonpe[q] - criticalval/sqrt(N)
CIRR[q]<-Atkinsonpe[q] + criticalval/sqrt(N)

if((Atkinsonp>CILL[q])& (Atkinsonp<CIRR[q])) prop=prop+l 
}############################ End Q loop 
pp[t]<-prop/Q prop<-0

> ################ End T loop 
mu<-mean(pp)
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###6. EXPONENTIAL DISTRIBUTION-NONPARAMETRIC BOOTSTRAP METHOD 
alpha<-0.05 N<-10000 R<-1000 T<-10 theta<-2 a<-0.2 b<-0 
propl<-rep(0,R)

Atkinsonn<-rep(0,R)
Atkinsonnboot<-rep(0,R)
Quant<-rep(0,R)

CILL<-rep(0,R)
CIRR<-rep(0,R)

prop<-0
pp<-rep(0,T)

for(t in 1 :T) ################ Begin T loop
{

for(r in 1:R) ################ Begin R loop
{
X<-rexp(N,theta); 

med=0;
for(i in 1 :N){med=med+X[i] >; 
med=med/N; 
mede=0;
for(i ini: N) {mede=mede+X[i]''a}; 
mede=mede/N;

#Atkinson Parametric Pareto 
Atkinsonp=0; 
b=a+l;
Atkinsonp= 1 -(gamma(b))"(1/a);

#Atkinson index
Atkinsonn[r]=l-(l/med)*(mede)~(1/a);

index<-sample(1:N ,N ,replace=TRUE) X_boot<-X[index]

medb=0; for(i in 1:N){medb=medb+X_boot[i]}; 
medb=medb/N; 
medeb=0;
for(i in 1 :N){medeb=medeb+X_boot [i] '"a}; 
medeb=medeb/N;
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#Atkinson index bootstrap
Atkinsonnboot[r]=l-(l/medb)*(medeb)'(1/a);

Quant[r]<-sqrt(N)* abs(Atkinsonnboot[r]-Atkinsonn[r])

} ############################ End R loop

Ord_Quant<-sort(Quant)
Ord_alpha<-trunc((1-alpha)*R) 
criticalval<-Ord_Quant[Ord_alpha]

Q<-R
for(q in 1:Q) ################ Begin Q loop
■C

CILL[q]<-Atkinsonn[q] - criticalval/sqrt(N)

CIRR[q]<-Atkinsonn[q] + criticalval/sqrt(N)

if((Atkinsonp>CILL[q] )& (Atkinsonp<CIRR[q])) prop=prop+l 
}################ End Q loop

pp[t]<-prop/Q prop<-0 } ################ End T loop 

mu<-mean(pp)
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###7. Two independent samples, same size, 
asymptotic parametric, Pareto and Pareto

#Initialize the variables 
P<-1000 Q<-1000 
T<-5 m<-P n<-P mu<-0

alpha<-0.05
lambda_m<-8 lambda_n<-10

a<-0.3 zalpha<-qnorm(l-alpha/2)

#Initialize the indices 
Atknpe_n <-rep(0,Q)
Atkpe_n <-rep(0,Q)

Atknpe_m <-rep(0,Q)
Atkpe_m <-rep(0,Q)

#Initialize the confidence limits 
nlimitlc-rep(0,Q) 
nlimitr<-rep(0,Q) 
plimitl<-rep(0,Q) 
plimitr<-rep(0,Q)

#Initialize the variances 
sigma2n_m<-0 sigma2n_n<-0 
sigma2ne_m<-rep(0,Q) 
sigma2ne_n <-rep(0,Q)

sigma2F_m<-0 sigma2F_n<-0 
sigma2Fm<-rep(0,Q) sigma2Fn<-rep(0,Q)

prop<-0 pp<-rep(0,T)

for(t in 1 :T) ################ Begin T loop {

for(q in 1:Q)################## Begin Q loop {

############Population XI, X2, ...Xm 
X<-array((1/(1-runif(P)))~(l/lambda_m), P)

medm=0; f o r d  in 1 :P){medm=medm+X[i]}; 
medm=medm/P; medem=0;
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f o r d  in 1 :P){medem=medem+X[i] ~a}; medem=medem/P;

############Population Yl, Y2, ...Yn 
Y<-array((1/(1-runif(P)))~(l/lambda_n), P)

medn=0; for(i in l:P){medn=medn+Y[i]}; medn=medn/P;

meden=0; for(i in 1 :P){meden=meden+Y[i]~a}; meden=meden/P;

#Nonparametric Atkinson Estimator 
Atknpe_m[q]=l-(l/medm)*(medem)~(1/a); 
Atknpe_n[q]=l-(l/medn)*(meden)~(1/a);

#Parametric Atkinson Index and MLE 
Atkinsonpm=0;

Atkinsonpm=l-(l-(l/lambda_m))*(lambda_m/(lambda_m-a))~(1/a); 
summ=0;
for(i in 1 :P){summ=summ+log(X[i])}; lambdabatm=P/summ; 

Atkinsonpn=0;
Atkinsonpn=l-(l-(l/lambda_n))*(lambda_n/(lambda_n-a))~(1/a); 
sumn=0;
f o r d  in l:P){sumn=sumn+log(Y[i])}; lambdahatn=P/sumn;

#Parametric Atkinson estimator

Atkpe _m [q]=1-(1-(1/lambdahatm))*
(lambdahatm/(lambdakatm-a))~(1/a);

Atkpe_n[q]=1-(1-(1/lambdahatn))*
(lambdahatn/(lambdahatn-a))“(1/a);

####################### Population X and Y Asymptotic

#variance of the parametric Cl sigma2F

sigma2F_m= ((l-a)"2 * lambda_m) /
(((1+ lambda_m*a - lambda_m)~2)
* (lambda_m-2*lambda_m*a-2));

sigma2Fm[q]=((1-a)"2 * lambdahatm) /
(((1+ lambdahatm*a - lambdahatm)~2) * 
(lambdahatm-2*lambdahatm*a-2));
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sigma2F_n=((1-a)"2 * lambda_n) /
((1+ lambda_n*a - lambda_n)'"2) 

*(lambda_n-2*lambda_n*a-2));

sigma2Fn[q]=((1-a)"2 * lambdahatn) /
(((1+ lambdahatn*a - lambdahatn)~2) * 
(lambdahatn-2*lambdahatn*a-2));

##### Parametric Asymptotic Confidence Intervals 
for independent populations

nlimitl[q]= Atkpe_m[q] - Atkpe_n[q] - 
zalpha* sqrt (sigma2Fm[q]/m + sigma2Fn[q]/n);

nlimitr[q]= Atkpe_m[q] - Atkpe_n[q] + 
zalpha* sqrt (sigma2Fm[q]/m + sigma2Fn[q]/n);

if(((Atkinsonpm-Atkinsonpn) >nlimitl[q]) &
((Atkinsonpm-Atkinsonpn) < nlimitr[q])) prop=prop+l

}###################End loop Q 
pp [t]<-prop/Q prop<-0

} ################ End T loop 
mu<-mean(pp)
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###8. Two independent samples of different size, 
nonparametric bootstrap, Pareto and Exponential

alpha<-0.05 N<-1000 M<-1050 T<-10 R<-1000

lambda<-3 theta<-5 a<-0.2

Atkinsonnl<-rep(0,R) Atkinsonnbootl<-rep(0,R) 
Quant<-rep(0,R)

Atkinsonn2<-rep(0,R) Atkinsonnboot2<-rep(0,R) 
Quant2<-rep(0,R)

prop<-0 pp<-rep(0,T)

CILL<-rep(0,R) CIRR<-rep(0,R)

for(t in 1:T) ################ Begin T loop {

for(r in 1:R) ################ Begin R loop {

X<-(1/(1-runif(N)))~(1/lambda);
### X follows a Pareto(3)

Y<-rexp(M,theta);
### Y follows an Exponential(5)

#Theoretic Atkinson Pareto Atkinsonpl=0; 
Atkinsonpl=l-(l-(1/lambda))*(lambda/(lambda-a))~(1/a);

#Theoretic Atkinson Exponential

Atkinsonp2=0; b=a+l; Atkinsonp2= 1 -(gamma(b))"(1/a);

####Nonparametric Atkinson estimates, for population X 
med=0;

for(i in 1 :N){med=med+X[i]}; med=med/N; mede=0; 

for(i in 1 :N){mede=mede+X[i]~a}; mede=mede/N; 

Atkinsonnl[r]=l-(l/med)*(mede)~(l/a);

####Nonparametric Atkinson estimates, for population Y 
med=0;
for(i in 1 :M){med=med+Y[i]}; med=med/M; mede=0;
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f o r d  in 1 :M){mede=mede+Y[i] ~a}; mede=mede/M;

Atkinsonn2[r]=l-(l/med)*(mede)“ (1/a);

indexl<-sample(1:N ,N ,replace=TRUE) X_boot<-X[indexl] 
index2<-sample(1:M ,M,replace=TRUE) Y_boot<-Y[index2]

##Nonparametric Atkinson Estimates, bootstrap, population X 
med=0;
f o r d  in 1: N){med=med+X_boot [i] }; med=med/N; mede=0; 

for(i in 1:N){mede=mede+X_boot[i]"a}; mede=mede/N; 

Atkinsonnbootl [r]=l-(l/med)*(mede)~(l/a) ;

##Nonparametric Atkinson Estimates, bootstrap, population Y 
med=0;
for(i in 1 :M){med=med+Y_boot[i]}; med=med/M; mede=0;

for(i in 1 :M){mede=mede+Y_boot[i]"a}; mede=mede/M;

Atkinsonnboot2[r]=l-(l/med)*(mede)~(1/a);

Quant[r]<-sqrt((N+M)/ (N*M))*
abs((Atkinsonnboot1 [r]-Atkinsonnboot2 [r])-
(Atkinsonnl[r]-Atkinsonn2[r]))

} ############################ End R loop

Ord_Quant<-sort(Quant)
Ord_alpha<-trunc((1-alpha)*R) 
criticalval<-Ord_Quant[Ord_alpha]

Q<—R

for(q in 1:Q) ################ Begin Q loop {

CILL[q]<-(Atkinsonnl[q] - Atkinsonn2[q])- 
criticalval*sqrt((N+M)/ (N*M))

CIRR[q]<-(Atkinsonnl[q] - Atkinsonn2[q]) + 
criticalval*sqrt((N+M)/(N*M))

if( ((Atkinsonpl -Atkinsonp2) >CILL[q]) &
((Atkinsonpl-Atkinsonp2) < CIRRtql) ) prop=prop+l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



140

}############################ End Q loop 

pp [t]<-prop/Q prop<-0 

} ################ End T loop 

mu<-mean(pp)

11
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