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ABSTRACT

The extracellular matrix (ECM) plays an important role in regulating a number of 

cellular properties and functions like cell differentiation, cell synthesis and degradation, 

cell viability and proliferation, cell function, and cell aging. Surface modification of 

planar substrates with self-assembled monolayers (SAMs) is a promising technique to 

achieve stable ECMs.

In this work, substrates such as silicon (Si), gallium arsenide (GaAs) and indium 

tin oxide (ITO) substrates were modified with SAMS containing amino (-NH 2), methyl 

(-CH 3), thiol (-SH) and carboxylic (-COOH) end groups and characterized using contact 

angle measurements, surface infrared (IR) spectroscopy and atomic force microscopy 

(AFM). Different cell types such as human dermal fibroblasts (HDFs), mouse stromal 

mesenchymal stem cells (MSCs), rat brain neurons (RBN), and rat hepatocytes were 

cultured on these surfaces to develop stable and standard cell culture platforms (CCPs).

Contact angle measurements showed that surfaces modified with SAMs 

containing amino and carboxylic end groups are hydrophilic, methyl terminal group is 

hydrophobic, and SAM containing thiol end group has an intermediate property. 

Reflection absorption infrared spectroscopy (RAIRS) and attenuated total reflectance ER 

(ATR/IR) confirmed the presence o f respective SAMs on surfaces. AFM data show that 

SAMs with methyl and carboxylic group modified surfaces present an average

iii
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roughness o f 1.51 and 2.67 nm, which are higher than 1.01 and 1.1 nm obtained for 

SAMs containing amino and thiol end groups.

For cell culture studies on SAM-modified surfaces, viability was assessed using 

the LIVE/DEAD® assay, proliferation by the MTT assay, while phenotypic maintenance 

was monitored by immuohi stochemical detection of Type I collagen. Morphological 

responses o f the cells were studied using phase contrast and fluorescence imaging to 

document changes in cell shape and properties. Based on their viability, proliferation and 

phenotype, HDF cells preferred the substrates in the following order: ITO-ODT > Si- 

APTES > ITO > Si > GaAs-ODT > GaAs. MSCs grew well on all SAM-modified 

surfaces with highest proliferation observed on thiol (-SH) terminated ITO substrates. 

For neuronal cells, addition o f 1% serum initially to the cell suspension maintained their 

viability on methyl and amino modified ITO substrates by neutralizing the effects of 

dimethyl sulfoxide (DMSO). Neurons preferred amino over methyl terminated SAMs on 

ITO. For hepatocytes cultured on SAM-modified substrates, cellular responses revealed 

that charge on the amino group enhanced hepatocyte attachment, while addition o f L- 

Glutamine caused the proliferation. Lower lactate dehydrogenase (LDH) activity and 

higher protein synthesis are consistent with better cell growth o f hepatocytes on SAMs 

with positively charged amino (-NH3+) groups under physiological conditions.

The results obtained from these 2D modified surfaces were incorporated to 

develop a SAM-modified silicon-based 3D cell-based bioreactor. Physiologically based 

pharmacokinetic (PBPK) model was used to design the reactor and CoventorWare™ was 

used to simulate the fluid flow. The reactor was fabricated using photolithography and 

packaged for cell culture studies. The reactor consisted o f fluidic network o f channels (50
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V

fim  width and 1 0 0  jum depth) to mimic the circulatory system and a chamber containing 

HDF cells. The LDH analysis showed that the SAM-modified-3D system enhanced the 

performance of the cells and could be used for other cell types, such as hepatocytes for 

drug toxicity screening.
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CHAPTER 1 

INTRODUCTION

1.1 Cell Culture Platforms (CCPs)

Cells play a major role in building tissues and maintaining tissue function in their 

own unique microenvironments. However, after cells are removed from their 

microenvironment and placed within an in vitro environment, they typically lose some or 

all o f their normal in vivo behavior. 1 Cellular microenvironments play a crucial role in 

stem cell differentiation, cell synthesis and degradation, cell function, and cell aging. A 

principal objective o f cell and tissue engineering, therefore, is to reach a fundamental 

understanding of the factors in the cellular microenvironment that control and regulate 

cell behavior and function. Efforts to understand the interaction o f cells in culture with 

their environment could benefit from a more detailed understanding of the molecular 

stmcture of the surface to which the cells are attached .2,3 Thus, the development o f cell 

culture platforms (CCPs), using an in vitro animal or human surrogate based on 

micro/nanofabrication technologies, is a promising area o f research. CCPs should be 

extremely useful in the fields o f toxicology and drug testing because they can increase the 

accuracy o f in vitro predictions, simplify testing procedures, and reduce the costs o f such 

tests.

1
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The extracellular matrix (ECM) plays an important role in the development of 

CCPs as they regulate a number o f cellular properties and functions like cell viability, 

proliferation and differentiation .4 The ECM is made up of a complex mixture o f structural 

proteins (collagen, elastin), specialized proteins (fibrin, laminin) and proteoglycans. Each 

of these components has its own specialized function contributing to the entirety o f the 

EC M 4 Significant advances in cell and tissue engineering have been made to the 

successful recreation of this cellular microenvironment in vitro.

Development o f in vitro models o f the ECM or CCPs is challenging because they 

require several characteristics pertinent in cell biology. These models ought to present a 

homogenous environment of ligands on the surface for the attachment o f proteins and 

subsequently the cells, and also be able to resist nonspecific adsorption of proteins, which 

could render the ligand surface inactive .2 Also, the surface should be compatible with 

conditions o f the attached cell culture.5 Several studies have been carried out to study 

cell-cell, cell-ECM and cell-substrate interactions.3 They have provided inputs for the 

development o f microscale and nanoscale technologies, which define and control the in 

vitro cellular microenvironment. Extensive research is directed towards developing 

biomimetic surfaces, which exert control over spatial properties, defining the 

microenvironment for different cell types .6

CCPs have been developed to study cell interactions within their in vitro 

microenvironment. CCPs provide opportunities to obtain a thorough understanding of the 

properties o f the surface to which the cells are attached and also offer a valuable area of

. . .  7 . •
research for engineering biomedical devices. CCPs find their applications in many areas 

of tissue engineering like developing scaffolds for cell growth, construction o f cell-based

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

biosensors, biocompatible implants and in the fields o f toxicology and drug testing

7 8because they can reduce costs and simplify testing procedures. ’ Conventional 

biomaterial surfaces such as those formed by different biomedical polymers may have a 

large degree of surface heterogeneity with regard to the type and distribution o f 

functional groups, presence o f hydrophilic and hydrophobic domains, surface roughness, 

etc. Since all these parameters may contribute to cellular response, it is desirable to 

understand how surfaces should be composed to support attachment, growth and function 

o f the cells. Researchers have studied the use o f ECM proteins, 9 biodegradable 

polymers,5 hydrogels10 and nanofilms11 to develop CCPs. However, most of these 

methods provide poor control over the presentation o f active ligands to a cell thereby 

limiting prolonged cell viability and functionality.

A promising technique which could overcome some o f the above problems in 

surface modification is the use o f self-assembled monolayers (SAMs) for thin film 

deposition. SAMs are ordered molecular assemblies formed by the adsorption of an 

active surfactant onto a solid surface. SAMs are attractive because they are well packed, 

are homogeneous across the assembly, and can be reproducibly assembled and 

patterned .12 SAM patterned substrates provide a means to more precisely define and 

regulate surface chemistry and identify ideal surface properties that enhance or inhibit 

cell adhesion, cell migration and gene expression. Futhermore, SAMs provide a well- 

defined and synthetically flexible system which controls the properties o f surfaces that 

can be modified on demand . 13,14 As the surface properties o f a SAM are different from 

those o f the bulk substrate, surface modification methods permit development o f a more
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diverse set o f surface chemistries through chemically altering reactive terminal groups, 

thus permitting development o f substrates with diverse surface properties.

Growth o f cells on SAMs of alkanethiolates on gold (Au) surfaces has been 

studied extensively for the past decade.2,13' 16 Previous studies o f fibroblast cell growth on 

SAMs modified Au have indicated that carboxylic acid terminated SAMs are most

i n
favorable surfaces for cell attachment followed by methyl and hydroxyl groups. In the 

case o f osteoblasts, both carboxylic and hydroxyl terminated SAMs showed similar levels 

of attachment followed by methyl terminated SAMs. 16 Similarly, the effect o f alkyl chain 

length on cellular attachment has been studied, and it has been demonstrated that increase 

in chain length decreases the number o f cell attachment. 18 Thus, different cell types 

exhibit different responses to a specific surface.

However, in contrast to the tremendous amount of cell culture studies done on 

SAM-modified Au surfaces, 12' 24 very few studies have been directed on other surfaces of 

importance such as indium tin oxide (ITO), silicon (Si), and gallium arsenide (GaAs). 

ITO has been widely used as an electrode for studying electrochemistry of biomolecules25 

due to its transparent and conductive properties. This dual property and stability under

25 •physiological conditions make them ideal for tissue engineering. It has also been shown 

that acids, amine26 and proteins27 specifically adsorb on ITO. Interdigitated 

microelectrodes made o f ITO were also used for the synapse formation by neuronal 

differentiation of rat pheochromocytoma cells (PC 12) and blastocyst-derived murine

98embryonic stem cells (ES-J1).

Silicon is the most commonly used substrate in the semiconductor industry. The 

properties and fabrication techniques are known and well-established. SAMs of
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organosilanes on Si have been successfully used to tailor material surfaces to obtain 

control over the molecular composition and the resulting integral properties o f the

90surfaces. Recent studies have used SAMs to evaluate the effect o f surface charge, 

wettability and topography on protein adsorption and cell behavior using in vitro assay 

systems.30 More specifically, the strength o f cell adhesion and spreading on SAMs have 

been investigated. However, most o f the studies with SAMs did not provide a detailed 

characterization of the behavior o f cells from connective tissue in terms o f specific 

cellular functions.

Although silicon is widely used in the semiconductor industry, GaAs-also a 

semi conductor-has several advantages over silicon. In addition to its useful optoelectrical 

properties, it offers a higher mobility, which results in faster electronic circuits and 

switching times, as well as a lower energy dissipation at comparable powers and, 

therefore, a lower noise level. Although GaAs has found practical uses in many 

applications, chemical instability o f its surface and cytotoxicity creates problems for both

•39 11

in vivo and in vitro applications. ’ GaAs therefore needs to be coated with protective 

layers that provide biocompatible interfaces. Indeed, biocompatibility has recently led to 

the development of the first GaAs-based biosensor for direct detection of micromolar 

levels o f nitric oxide under physiological conditions.34 Thus, the self-assembly of 

alkanethiol monolayers, a process well studied on gold, has become an obvious strategy 

for the realization of ultra-thin surface coatings on GaAs.

This dissertation will show how SAMs with different end groups (amino-NH2, 

methyl-CH3, carboxylic-COOH, thiol-SH) SAMs influence or condition cellular (Human 

dermal fibroblasts (HDFs), Mesenchymal stem cells (MSCs), Rat brain cortical neurons’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

(RBNs), Hepatocytes’) response and how the cells proliferate on the SAM-substrates 

(ITO, Si, GaAs) and the resultant molecular assemblies and structures produced. Based 

on the results obtained from the 2D studies, a 3D SAM-based bioreactor containing 

micro fluidic channels was designed using CovnentorWare software and fabricated on Si 

using photolithography. The design was based on physiologically based pharmacokinetic 

(PBPK) model and LDH release was determined to assess the effect of SAM, 3D and 

dynamic flow on HDF response.The ultimate goal is development o f bioreactors capable 

of supporting growth and functional differentiation of other cell types in a well controlled 

manner and use these bioreactors for drug toxicity screening.

1.2 Organization of the Dissertation

This dissertation comprises 9 chapters including introduction, summary and future 

work. Chapter 2 presents a literature review o f SAMs on different surfaces (Au, Si, 

GaAs, Ag, Pd, Cu, ITO), their organization and advantages. It also describes different 

bioengineered surfaces used for cell culture studies leading to the importance o f SAMs 

for such studies. In Chapter 3, experimental details including the materials used, and 

SAM preparation and their characterization by different methods are discussed. Also the 

procedures used for cell culture studies are described in detail. Chapter 4 discusses results 

on human dermal fibroblast (HDF) cell viability and proliferation on different SAM- 

modified conducting (ITO) and semi-conducting (Si, GaAs) substrates. Chapter 5 focuses 

on mesenchymal stem cell (MSC) culture on four different SAM-modified ITO 

substrates. The viability and phenotype o f rat cortical neurons on two different SAM- 

modified ITO surfaces are discussed in Chapter 6 . Chapter 7 is the heart o f the 

dissertation, which presents proliferation along with the viability, phenotype and
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functionality o f primary isolated rat hepatocytes on three different SAM-modified 

substrates (ITO). Chapter 8  presents simulation and fabrication o f a SAM-modified 3D 

cell-based bioreactor and the analysis o f LDH leakage o f HDFs cultured in the reactor. 

Results are presented in each section with detailed discussion presented at the end of each 

chapter. Finally, Chapter 9 summarizes the entire work along with scope for future 

studies.
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CHAPTER 2

LITERATURE REVIEW

2.1 Self-Assembled Monolayers

2.1.1 Overview

Over past 20 years, the field o f self-assembled monolayers (SAMs) has 

experienced tremendous growth not only in synthetic sophistication but also in depth of 

characterization. 12,35 This field actually began in 1946 with Zisman and coworkers 

publishing the formation of a monolayer by adsorption of a surfactant on clean metal 

surface.36 This effort was followed by many other works, but the real interest in this field 

started with Nuzzo and Allara’s work, wherein alkanethiolates on gold were prepared by 

adsorption o f di-iz-alkyl disulfides from dilute solutions.37

It is imperative to know the procedure involved in the formation o f SAMs at this 

point. Figure 2.1 depicts the steps involved in the formation of SAMs on a planar solid 

surface. The simple process involved in the preparation makes SAMs inherently 

manufacturable and thus technologically attractive for building superlattices and for 

surface engineering. SAMs also help in understanding the fundamentals o f self- 

organization, structure-property relationships, and interfacial phenomena. The ability to 

tailor both head and tail groups o f the molecules makes SAMs an excellent system in 

understanding intermolecular, molecule-substrate and molecule-solvent interactions.

8
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Some of the properties like ordering, growth, wetting, adhesion, lubrication and corrosion 

have been studied previously. In addition, SAMs also provide necessary flexibility both 

at the molecular and at material level on the structure and stability o f two-dimensional 

assemblies which can be later applied to three-dimensional structures.

m  reuse
Adsorption

7  Si, GaAs, ITO

Molecular solution

n  Organization
\ " Stim

y j f

Self-assembled m onolayer (SAM) 

(!

Figure 2.1 Procedure for the formation o f SAMs (Adapted from38)

Furthermore, SAMs are also well-suited for studies in nanoscience and 

technology because ( 1 ) they are easy to prepare and do not require ultrahigh vacuum 

(UHV) or other specialized equipment (e.g., Langmuir-Blodgett (LB) troughs) in their 

preparation, (2 ) they form on surfaces o f all sizes and shapes and are critical components 

for stabilizing and adding function to nanometer-scale objects such as thin films, 

nanowires, colloids, and other nanostructures, (3) they can couple the external 

environment to the electronic (current-voltage responses, electrochemistry) and optical 

(local refractive index, surface plasmon frequency) properties o f metallic structures, and
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(4) they link molecular-level structures to macroscopic interfacial phenomena, such as

wetting, adhesion, and friction.

2.1.2 Monolayers of Organosilicon 
Derivatives

Organosilicon derivatives include alkylchlorosilanes, alkylalkoxysilanes, and 

alkylaminosilanes, are usually formed on hydroxylated surfaces o f Si. The in-situ 

formation o f polysiloxane, which is connected to surface silanol groups (-SiOH) via Si-0 

-Si bonds is considered to be the driving force for this self-assembly. The monolayers o f 

these derivatives have been successfully formed on silicon oxide,39' 43 aluminum 

oxide,44’45 indium tin oxide ,46’47 mica,48 quartz,49 zinc selenide, 50 and germanium oxide.50

SAMs of alkyltrichlorosilane derivatives are hard to prepare because they depend 

on the amount o f water present in the solution, the temperature at which the monolayer is 

formed and the time o f deposition. While incomplete layers are formed in the absence of 

water,40 excess water results in polymerization in water and siloxane deposition on the 

surface.51 The threshold temperature below which an ordered monolayer is formed was 

found to be a function of chain length (higher for octadecyl: 18 °C and lower for 

tetradecyl chain: 10 °C) . 52 Silberzan et al. also reported that 3 min is enough for the 

formation o f the monolayer; while Wasserman et al. suggested over 24 h for 

completion.53 Biembaum et al. showed that the adsorption mechanisms of trichlorosilane 

and trimethoxysilane are different with higher tilt angle o f chains in methoxysilanes. 

Also, the presence o f amino group at the chain terminal causes more disordered layer 

because o f acid-base interactions.54
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2.1.3 Monolayers of Organosulfur 
on Metal and Semiconductors

Sulfur and selenium compounds have a strong affinity to transition metal 

surfaces55’56 because o f the possibility to form multiple bonds with surface metal 

clusters.57 Many kinds o f SAMs have been formed on gold (Au (11l ) ) 58' 61 but the most 

studied and understood SAM is that o f alkanethiolates.

Kinetic studies o f alkanethiol adsorption onto Au (111) surfaces have shown that, 

at relatively dilute solutions (1 mM), two distinct adsorption kinetics can be observed: 62 

A very fast step which can be described as diffusion-controlled Langmuir adsorption. 

This step takes a few minutes, by the end o f which the contact angles are close to their 

limiting values and the thickness about 80-90% o f its maximum. The second step is a 

slow process described as the surface crystallization process, which lasts several h, at the 

end o f which the thickness and contact angles reach their final values. These have been 

confirmed by XPS measurements, 63 as well as near edge X-ray absorption fine structure 

(NEXAFS) studies.64

The adsorption or reaction o f alkanethiolates on gold is considered as an oxidative 

addition o f the S-H bond to the gold surface, followed by a reductive elimination o f the 

hydrogen. When a clean gold surface is used, the proton probably ends as a H2 molecule. 

To be more precise, the fate o f H2 is still not understood.

R -  S -  H  + Au°n R -  S '  A u +’ Au°n + Y 2 H 2 (2.1)

The release o f H2 is an important exothermic reaction in the overall chemisorption 

kinetics. It has been shown by XPS ,65 Fourier transform infrared (FTIR) spectroscopy,66
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electrochemistry,67 and Raman spectroscopy68 that the adsorbing species is the thiolate 

(RS-).

Early electron diffraction studies69,70 o f monolayers o f alkanethiolates on Au(l 11) 

surfaces show that the symmetry o f sulfur atoms is hexagonal with an S-S spacing of 4.97 

A, and calculated area per molecule is 21.4 A2. Helium diffraction71 and atomic force

• 72microscopy (AFM) studies confirmed that the structure formed by docosanethiol on 

A u ( l l l )  is proportionate with the underlying gold lattice and is a simple

V3 x sfSR 30° overlayer (Figure 2.2). FTIR studies also revealed that the alkyl chains in 

SAMs of thiolates on A u ( ll l )  usually are tilted -26-28° from the surface normal, and 

display -52-55° rotation about the molecular axis. This tilt is a result o f the chains 

reestablishing vanderwall contact in an assembly with -5  A S-S distance, larger than the 

distance of -4 .6  A, usually quoted for perpendicular alkyl chains in a close packed layer.

Figure 2.2 Hexagonal coverage scheme for alkanethiolates on Au(l 11). The open circles 
are gold atoms and the shaded circles are sulfur atoms.35

Although alkanethiolate SAMs have been investigated on gold and other surfaces 

such as copper and silver (See Section 2.1.5), studies on the construction of SAMs on 

GaAs surfaces are still limited. GaAs surface is known to have high densities of interface
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states compared to Si, mainly due to its stoichiometric deficits and surface defects such as

n ' t

oxides. Allara et al. succeeded in constructing SAMs on GaAs by using molten 

alkanethiol at higher temperatures.74 Ohno et al. prepared SAMs on GaAs surface in 

dilute thiol solution (1 mM) under mild conditions by cleaving the oxide on the surface.75 

However, all these preparation conditions are harsh and are not practical.

Baum et al. demonstrated a novel simple method for formation o f alkanethiol 

SAMs on the GaAs surface. The chemical inertness o f the oxide-covered GaAs was 

overcome by using a small amount o f ammonium hydroxide (NH4OH) in the thiol 

solution for providing fresh and oxide free GaAs during the modification process. X-ray 

photoelectron spectroscopy (XPS) characterization o f SAM of octadecanethiol (ODT) on 

GaAs by Ye et al. revealed the formation of S-As bond with the length o f molecule 

estimated to be 1.55 nm .77 This study gave a tilt angle o f 56° which is similar to that 

obtained from previous works for ODT SAMs on GaAs.74’78

2.1.4 Alkyl Monolayers on Silicon

Linford and Chidsey demonstrated first that robust monolayers can be prepared 

where the alkyl chains are covalently bound to a silicon substrate mainly by C-Si bonds .79 

They used hydrogen-terminated silicon (H -S i(lll)  and H-Si(lOO)), and diacetyl peroxide 

for the SAM deposition.79 The adsorption of alkyl chains was attributed to a series of 

free-radical reactions. Either the acyloxy or the alkyl radical abstracts hydrogen from the 

H-terminated silicon surface to yield a dangling bond:

R * + H  -  Si(l 11 /100) -> RH+'Si( 111 /100) (2.2)

Finally, this surface radical combines either with the alkyl or with the acyloxy radical to 

give the Si-R or S i-0(0)C R  species, respectively.
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2.1.5 SAMs on Other Substrates

Gold is the most preferred substrate because it forms good SAMs and has been 

extensively studied. Other materials offer similar properties, but the SAMs formed on 

these materials have been studied less than those on gold.

Silver is the most studied substrate for SAMs o f alkanethiolates next to gold, but 

it oxidizes readily in air and is toxic to cells.80 It does, however, give high-quality SAMs 

with a simpler structure than gold and bonding of the monolayer in the form o f a 

thiolate.81 Copper is interesting from a technological perspective because it is a common 

material for interconnects and seed layers for electroless deposits, but it is even more 

susceptible to oxidation than silver.81 The adsorption o f an organosulfur adlayer can 

overcome the tendencies o f copper to oxidize and strongly prevent adsorption of 

contaminants. The chemistry involved or the structures formed on this metal remain

01
incompletely understood.

Palladium has a number o f useful characteristics and seems to be a practical 

alternative to gold for some applications and is superior to gold for others. Some o f the 

properties such as: ( 1) smaller grain size in thin films compared with gold; this property 

is important for fabricating micro- and nanostructures with low density of defects and 

low edge roughness. 82 (2 ) compatible with complementary metal oxide semiconductor 

(CMOS) processing compared with gold83. Studies o f SAMs on palladium as supports for 

adherent cells indicate that the long-term stabilities o f these cell cultures are greater than 

those on gold.84 But the cost o f palladium make them less useful compared with gold.

ITO is o f considerable interest in SAM studies because monolayer formation on 

ITO has been relatively less investigated. ITO is a mixture o f indium (III) oxide [In20 3 ]
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and Tin (IV) Oxide [Sn0 2 ], typically 9:1 ratio by weight. The common applications of 

ITO are coatings for electronic displays, gas sensors, and anti-static windows. ITO is also 

used as an electrode for biochemical studies, due to its transparent and conductive 

nature . 85 Further investigations have shown specific adsorption o f amines and proteins on 

ITO coated surfaces.86’87 The transparency o f ITO makes it easier to observe and image 

cell attachment. The surface chemistry o f ITO is similar to that o f silicon; therefore, 

alkyloxysilanes are used for monolayer formation. Also, aliphatic and aromatic thiols

DO

with -COOH and -C H 3 end groups have been reported to form monolayers on ITO.

2.2 Bioengineered Surfaces

Mammalian cells are anchorage dependent, requiring an underlying matrix to

on
attach and carry out their regular metabolic, proliferative and differentiation functions. 

The attachment o f these cells on substrates forms an important prerequisite for the 

development of bio-implants, CCPs and cell colonization on tissue engineering 

scaffolds.90 Cellular attachment is a consequence o f protein adsorption on substrates, but 

how the cell receives information about the nature o f the substrate is still under 

investigation. It has been reported that the cellular microenvironment, i.e., the ECM plays 

a major role in controlling cell behavior in vivo, ensuring proper tissue function.90,91

Extensive research in the areas o f drug discovery and toxicity studies has led to 

the development o f CCPs which facilitate a thorough understanding of cell-substrate 

interactions.92 Cell culture platforms control cellular attachment and growth as a function 

o f space and time. They are incorporated in developing cell based biosensors, which 

monitor physiological change due to exposure to different antigens.92
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2.2.1 ECM Modified Surfaces

The ECM is made up of three classes o f macromolecules: glycosaminogens, 

polysaccharide chains covalently linked to proteins forming proteoglycans, and fibrous 

proteins. There are two functional types o f fibrous proteins: structural (collagen, elastin) 

and adhesive (laminin, fibronectin) . 4 The glycosaminoglycans intermesh and form a 

hydrated gel-like substance, in which the fibrous proteins are embedded 4 The collagen 

fiber provides strength to the matrix while the elastin fibers provide resilience. The 

adhesive proteins help the cells attach to the ECM. These proteins provide specific 

receptor surfaces and ligands, which are identified by the cell surface receptors. Without 

adhesion, cells enter into apoptosis, eventually causing cell death.

The need to recreate a suitable microenvironment for cell viability, growth and 

proliferation has resulted in the development o f a large number of bioengineered 

substrates. Almost all these surfaces have certain common properties like the ability to 

adsorb protein, uniformity, consistency in surface topography and minimal cytotoxic 

effect on cells. Cell attachment occurs due to the interaction o f cells with the ECM 

through specific interaction sites called focal adhesion sites. Cell surface receptors 

identify specific protein domains containing peptide sequences like RGD (arginine-

Q -J  t

glycine-aspartic acid) and bind to them. To mimic the ECM properties in-vitro, 

bioengineered surfaces coated with ECM components like collagen, fibronectin, 

vitronectin and fibrinogen have been developed to promote cell-surface interactions by 

spatially directing attachment o f specific cell lines to substrates.

Collagens are a significant component o f the ECM and collagen-coated surfaces 

support growth and viability o f different mammalian cell lines.94 Collagen surfaces are
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preferred due to their biocompatibility, biodegrability, mechanical integrity and 

widespread availability.94,95 Hepatocytes and epithelia cultured on collagen films 

expressed phenotypes similar to those observed in vivo .96 Osteoblast culture on patterned 

collagen films to study cellular alignment and viability showed a high degree of 

phenotypic expression and cellular viability when the surfaces were stabilized using

07calcium phosphate deposition.

Modification o f collagen films by cross-linking and blending with other polymer 

increase their mechanical stability upon cell culture. Collagen-chitosan matrices have 

been used to culture hepatocytes towards the development of artificial livers and shown 

to support hepatocyte adhesion and division over extended periods o f time .98 Collagen is 

a major component o f the hepatocyte basal membrane and promotes hepatocyte adhesion 

and growth.

2.2.2 Polvelectrolvte Multilayers

Polyelectrolytes are polymers with units containing an electrolyte group. These 

polymers dissociate in solution to produce charged species.99 Since polyelectrolytes are 

soluble in water, they are being investigated for a number o f biomedical applications like 

implant coatings, controlled drug release and biosensor fabrication. They are ideal 

candidates for biomaterial applications due to their biocompatibility and inert nature, 

ability to incorporate biological molecules and control film composition and thickness.

The ability o f these multilayers to be patterned effectively using microfabrication 

techniques like soft lithography and micropatteming gives rise to complex 3D surfaces 

for biomedical applications. 100 Cell interactions are influenced by the nature and charge 

o f the outermost layer, protein adsorption and thickness o f layers. 100 Chondrosarcomas
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cultured on alternating layers o f poly-L-lysine (PLL) and poly-glycolic acid (PGA) 

showed increased cellular adhesion on PLL ending films when compared with PGA 

ending films, upon measurement of the adhesive forces. 101

Primary hepatocytes, selective in their attachment in vitro, have been reported to 

attach, spread and exhibit differentiated functions on polyelectrolyte multilayers. 102 The 

PEM used were alternating layers o f poly (diallyldimethylammonium) chloride (PDDA) 

and poly (4-styrenesulfonic acid (PSS)). The hepatocytes exhibited characteristic cell 

patterns upon adhesion on PEM surfaces and showed increased urea and albumin

1 O')production which are indicators o f cellular viability.

2.2.3 Hydrogels

Hydrogels are networks o f water soluble polymer chains. They are present in the 

form o f colloidal gels having water as the dispersion medium. Hydrogels have been 

widely used for cell culture studies due to their high water content, pliability, and 

biocompatibility and easily controlled mass transfer properties. These properties of 

hydrogels resemble those o f biological tissue.

Polyethylene glycol (PEG) hydrogels have been used to encapsulate mammalian 

cells like rat osteoblasts, 103’104 rat cortical neurons, 105 and human hepatocytes. 106 These

1 (17 1 (18hydrogels can be microfabricated and modified using peptide sequences. ’ Rat 

hepatocytes encapsulated in PEG hydrogels maintained high cell viability indicated by 

increased protein production over a period of time. 106

2.2.4 SAMs as Model Biological 
Surfaces

A primary challenge in developing in vitro model surfaces is developing methods 

that will allow precise control o f the composition and structure o f  the surface while
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permitting natural biological interactions to occur. These interactions should be such that 

the results can be clearly interpreted and related to those in vivo.

SAM-modified surfaces are one o f the useful systems for studying these 

biological and biochemical processes because, like the biological surfaces, they are 

nanostructured and are formed by self-assembly. They also present a wide range of 

organic functionalities including functionality that can resist the adsorption of proteins. 

SAM functionalized with the large, delicate ligands needed for biological studies is easy 

to prepare just by either synthesizing molecules with the ligand attached to form the SAM 

or, more commonly, attaching the ligands to the surface o f a preformed, reactive SAM. 

These SAMs are also compatible with a number o f techniques such as surface plasmon 

resonance (SPR) spectroscopy, 109’110 optical ellipsometry, 111,112 RAIRS , 112 QCM , 113 and 

mass spectroscopy114 for analyzing the composition and mass coverage o f surfaces as 

well as the thermodynamics and kinetics o f binding events.

One disadvantage of SAMs is that the structure o f the SAM is essentially static. 

This characteristic differs from that o f biological membranes, which are fluid and 

rearrange dynamically. Langmuir-Blodgett (LB) films115 and bilayers of lipids on solid 

supports116 present two alternative technologies for creating dynamic models of 

biological surfaces. Instrument complexity and non-reproducibility makes this area o f 

studies limited. Studies have shown the patterning o f lipid regions on solid supports but,

117these are in their beginning stages.

The first method of attaching cells on surfaces is the use of mixed SAMs 

composed o f a ligand-presenting molecule and a second SAM-forming molecule, usually 

one terminated with functional groups that can resist protein adsorption. This variation in
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the type, density, and the accessibility helps in understanding the interactions taking place 

at the surface and the cell.20’118 Patterns o f SAMs generated by microcontact printing 

provide a second method for attaching cells on surfaces: hydrophobic SAMs are printed 

to define regions that allow cells to attach and subsequent immersion of the substrate into 

a solution containing a second thiol forms a SAM in the surrounding regions that resists 

the adsorption o f proteins (and cells) . 20,21 These patterned surfaces make it possible to 

study the biochemical response o f cells to mechanical stimuli. 119 Also electrochemical 

methods have been used to remove or modify the SAMs to release the cells from the 

confinement originally imposed by the pattern o f the SAM .24

The structure and properties o f SAMs immersed in solvents is less understood 

compared with that for SAMs in air or in a vacuum. The use o f SAMs as substrates for 

studies in biology requires extended contact between SAMs and an aqueous environment

containing a high concentration of salts and biomolecules (enzymes, extracellular matrix

12proteins, plasma components, sugars). The structure and dynamics o f the exposed 

surface of a SAM under these conditions have not been characterized completely. Grunze 

and co-workers have shown that the conformational changes at the exposed surface of

I  A A

SAMs terminated with PEG (45 EG subunits) upon exposure to water. Also the effect

o f physiological conditions on the long-term stability o f  SAMs is not understood. Langer

and co-workers have shown that SAMs terminated with EG develop substantial defects

121after immersion in phosphate buffer solution or in calf serum for 4-5 weeks. The 

presence o f cells at the surfaces also accelerates the process and the ability o f EG- 

terminated SAMs to prevent the adhesion of cells is compromised in ~ 7-14 days.
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The flexibility in using SAMs along with some o f the advantages makes them 

ideal to be used as model biological surfaces. Still, many factors have to be considered 

before the full potential o f SAMs can be used for tissue engineering.
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CHAPTER 3

EXPERIMENTAL

3.1 SAMs Used

In all the chapters described hereafter, four different kinds o f SAMs have been 

used on conducting and semi-conducting substrates. Figure 3.1 shows the molecular 

formulas and structures o f the SAMs used:

Figure 3.1 Molecular formula and structure o f different SAMs used in the research, (a) 1- 
octadecanethiol (ODT) (b) 3-(aminopropyl)triethoxysilane (APTES) (c) 3-
(mercaptopropyl)trimethoxysilane (MPS) and (d) 3-mercaptopropionic acid (MPA).

The molecules vary in their chain length and end groups. Each molecule presents a 

different moiety and modifies the surface in different ways depending upon the group 

that binds to the surface.

H5G20
OC2H5

ch3

22
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3.1.1 SAM Formation

3.1.1.1 1-OctadecanethioI (ODT)

The structural formula o f 1-octadecanethiol is CH3(CH2)i7SH. This molecule 

binds to the GaAs and ITO substrate by the formation o f sulphide bonds leaving the 

hydrocarbon end free, forming a hydrophobic surface. GaAs samples were cleaned in 

acetone followed by ethanol for 5 min by ultrasonic agitation. Just before surface 

derivatization, the GaAs samples were immersed in 37% HC1 for one min to remove 

oxide present on the surface, rinsed in deionized (DI) water and dried in N2 . SAM 

deposition on GaAs was performed in 5 mM ODT solutions with the addition o f 30% 

aqueous ammonia solution at 50 °C for 8  h after purging with N2 . Physisorbed ODT was 

removed by carefully rinsing with ethanol followed by rinsing in DI water and drying in 

N2.

ITO substrates were cleaned by sonication in toluene, acetone and ethanol for five 

minutes each and in DI water for 30 min to remove surface carbon contaminants which 

interfere with monolayer formation. The substrates were then rinsed, dried in N 2 and 

used. The substrates were immersed in a solution o f neat ODT for one hour at 50 °C 

followed by rinsing in ethanol, DI water and N2. The substrates were sterilized in 70% 

ethanol before use.

3.1.1.2 3-(Aminonropvlltricthoxv 
Silane (APTES1

APTES (Structural formula NH2-(CH2)3-Si (OC2H5)3) binds to Si and ITO by the 

formation of siloxane bonds leaving a free -N H 2 end group. This end group causes the 

SAM-coated surface to be hydrophilic. Si samples were cleaned by sonication in acetone 

followed by ethanol for 5 min and finally rinsed in DI water and dried in N2. The samples
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were then immersed in Nanostrip solution at 90 °C for 15 min, rinsed in DI water and 

dried in N2. SAMs of 3-APTES were formed by immersing the substrates in 1 mM of the 

SAM in ethanolic solution for 1-24 h, followed by rinse in ethanol and DI water and 

finally drying in N 2 .

The ITO substrates were cleaned by sonication in toluene, acetone and ethanol for 

five minutes each and 30 min in DI water. The substrates were dried using dry N2 gas and 

then were immersed in a 0.5-5 mM ethanol solution containing 3-APTES for 2-24 h 

followed by rinsing in ethanol and N 2 drying. The substrates were sterilized in 70% 

ethanol for a day prior to use.

3.1.1.3 3-(Mercaptopropvntrimethoxv 
Silane IMPS)

MPS (Structural formula SH-(CH2)3-Si (OCH3)3) binds to ITO by the formation 

o f siloxane bonds leaving a free -S H  end group. The cleaned substrates were immersed 

in a 0.5-5 mM ethanol solution containing MPS for 2-24 h followed by rinsing in ethanol 

and drying in N2. The substrates were sterilized in 70% ethanol for a day prior to use.

3.1.1.4 3-Mercaptopropionic Acid (MPA)

MPA (Structural formula: HSCH2CH2COOH) binds to ITO by the formation of 

sulphide bonds leaving the carboxylic end free. The cleaned substrates were immersed in 

a solution o f neat MPA for one hour followed by rinsing in ethanol, DI water and N2 . The 

substrates were sterilized in 70% ethanol before use.

3.2 SAMs Characterization

3.2.1 Contact Angle Measurements

It is necessary to characterize the molecule on different surfaces before their use 

for cell culture studies. The SAM on metal and semiconductor surfaces can be
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characterized by different techniques. Contact angles offer an easy-to-measure indication 

o f the modification of the uppermost surface layers o f a solid. The measurement 

determines wettability and adhesion and also allows prediction o f coating properties and 

detection o f trace surface contaminants. Contact angle is a physical manifestation o f the 

more fundamental concepts o f surface energy and surface tension. This technique is 

simple to determine the hydrophobic or hydrophilic property o f the SAM.

When a tangent line is drawn from the droplet to the touch o f the solid surface, 

the contact angle is the angle between the tangent line and the solid surface as shown in 

Figure 3.2. Its operation is simple: A droplet of liquid is dispensed onto the substrate 

surface (manually or automatically), and a CCD camera reveals the profile o f the droplet 

on the computer screen. Software calculates the tangent to the droplet shape and the 

contact angle. Data and the images are collected, analyzed, and stored in a computer.

Tangent to drop shape

Figure 3.2 Definition o f contact angle122

Figure 3.3 gives an illustration o f two different contact angles formed which 

determines the nature o f the surface. If  the angle made by the tangent 0  < 90°, the surface 

is considered as hydrophilic and for 0>9O° the surface is considered as hydrophobic.
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Figure 3.3 Nature o f the surface based on contact angle, (a) 0  > 90°: Hydrophobic 
surface (b) 0  < 90°: Hydrophilic surface.

Contact angle measurements were obtained using the sessile drop method on a 

Data Physics instrument contact angle goniometer. In this method, a drop o f water (0.5 

pL) was suspended from a microliter syringe positioned above the sample stage. The 

syringe was moved towards the sample so that the water droplet makes contact with it. 

The syringe was then retracted, leaving the sample on the substrate. The image was then 

recorded using a CCD camera and the contact angle measured using the software 

provided.

3.2.2 Infrared Spectroscopy

Infrared spectroscopy is a powerful tool for identifying types o f chemical bonds 

(functional groups). The wavelength of IR-light absorbed is characteristic o f the chemical 

bond. By interpreting the infrared absorption spectrum, the chemical bonds in a molecule 

can be inferred. IR spectra o f pure compounds are generally unique in that they behave 

like a molecular "fingerprint" o f the molecule. Figure 3.4 shows an illustration o f IR 

absorbance o f common organic functional groups.
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Figure 3.4 IR absorbance o f common organic functional groups.

Alcohols and amines display strong broad O-H and N-H stretching bands in the 

region 3400-3100 cm ' 1 as shown in Figure 3.4. Triple bond stretching absorptions occur 

in the region 2400-2200 cm '1. Absorptions from nitriles are generally o f medium 

intensity and are clearly defined. Alkynes absorb weakly in this region unless they are 

highly asymmetric; symmetrical alkynes do not show absorption bands. Carbonyl 

stretching bands occur in the region 1800-1700 cm '1. The bands are generally very strong 

and broad. Carbon-carbon double bond stretching occurs in the region around 1650-1600 

cm'1. The bands are generally sharp and o f medium intensity. Aromatic compounds will 

typically display a series o f sharp bands in this region. Carbon-oxygen single bonds 

display stretching bands in the region 1200-1100 cm'1. The bands are generally strong 

and broad.

3.2.2.1 RAIRS

RAIRS is an acronym of Reflection-Absorption Infrared Spectroscopy. It is also 

known as IRRAS: IR Reflection Absorption Spectroscopy. It is widely used to identify
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molecular adsorbates that form on metals and semiconductors in the course o f surface 

chemical reactions. As a molecule sits on a surface, it will vibrate. Such vibrations can be 

studied by directing infrared light on to the surface. If the molecule has a dipole moment 

(that is, one end o f the molecule has a positive charge and the other end a negative 

charge), then the molecule can absorb infrared light, but only at certain fixed frequencies. 

Hence, an infrared spectrum o f light reflected from the surface will show absorption 

peaks which are characteristic o f the molecule on the surface. Figure 3.5 shows the 

reflection geometry of the incident IR on a plane. The amplitude and phase changes 

experienced on reflection depend upon the direction o f the electric field vector o f the 

wavefronts. The direction of the electric field vector o f the wavefronts is resolved into 

components in the incident plane (P polarized) and normal to the incident plane (S 

polarized).

Figure 3.5 The reflection geometry showing the s and p  components o f the electric fields 
o f incident (E1) and reflected (Er) radiation.

Here it should be noted that certain selection rules apply in contribution o f 

absorption peaks, making it different from the regular IR technique. For a grazing angle
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of incidence, only the component o f the electric field vector perpendicular to the surface, 

can interact with the adsorbate oscillating dipole, and it is exclusively the p  

component o f the incident radiation which contributes to this being optimum at high 

angles of incidence. Further, the most highly reflecting metal surface will yield the 

highest absorbance.

3.2.2.2 ATR

Attenuated total reflectance infrared (ATR/IR) spectroscopy also known as 

Internal reflection spectrometry works on the principle that by pressing small pieces of 

membrane against an internal reflection element (IRE), e.g., zinc selenide (ZnSe) or 

germanium (Ge) mid-infrared spectra can be obtained. IR radiation is focused onto the 

end o f the IRE. Light enters the IRE and reflects down the length o f the crystal. At each 

internal reflection, the IR radiation actually penetrates a short distance (~1 mm) from the 

surface of the IRE into the polymer membrane. It is this unique physical phenomenon 

that enables one to obtain infrared spectra o f samples placed in contact with the IRE.

3.2.2.3 Methodology

RAIRS for SAMs on GaAs, ITO and Si were obtained from a Thermo Nicolet 

470 FT-IR spectrometer equipped with a Smart Saga accessory containing a MCT 

(mercury-cadmium-telluride) detector. The chamber of the instrument was purged with 

N2 and the detector was kept cold using liquid N2 . The spectra were recorded at a 

resolution of 4 cm '’(512 scans) and the base-line corrected. The observed peaks were 

assigned to vibrations according to published FTIR studies on these or similar 

compounds using the Smart Saga software. ATR spectra was obtained by using the Smart
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Miracle accessory, which is just plugged into the equipment. The spectra were recorded 

at a resolution o f 4 cm ' 1 (512 scans) and compared with the published data.

3.2.3 Atomic Force Microscopy

Atomic force microscope (AFM) was used to measure the roughness o f the SAM- 

modified ITO surfaces. The QUESANT AFM used for all experiments has a profiler unit, 

an electronics interface, computer to run the software and store the data, and a heating 

unit for the substrate. The probe has a silicon cantilever at its end, and the stylus tip is at 

the bottom of the cantilever. The profiler unit has a stepper motor for downward and 

upward movements. A feedback signal stops the unit from crashing onto the substrate at a 

minimum distance. The stylus moves from left to right laterally during scanning o f the 

sample. A laser in the profiler unit hits the cantilever and is reflected back. The profiler 

unit and the sample stage are placed in a vibration-free chamber.

For all samples the scan head o f imaging was initiated at the lowest 

magnification. The imaging was performed in the non-contact mode (or WaveMode) with 

a NSC 16 silicon cantilever. Initially, the scan head was brought down towards the sample 

and the region o f interest was brought into the camera view. Then the scan parameters 

were set using the SPM configuration menu. An integral gain o f  250 and a proportional 

gain o f 300 were used throughout the imaging process. For the initial scans, a scan size o f 

5/mi x 5/im, a scan rate of 3 Hz and a scan resolution of 500 lines/scan were used. Also, 

in the WaveMode setting, a minimum damping of 50% was selected. Once these large 

area scans were complete and the images stored, a smaller region o f interest was chosen 

with the previously scanned region using the hard zoom option. For the smaller region
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scans, lower scan frequencies o f 1 or 1.5 Hz and higher scan resolution o f 1000 lines/scan 

were used.

The roughness o f the samples were measured (using already stored image) using 

the Histogram Analysis Window in AFM. The height histogram shows the statistical 

distribution o f the Z-heights o f all the points in the image and, in addition, calculates 

several measures o f surface roughness and displays them in the surface characterization 

panel. We are concerned with the average roughness (Ra): average deviation from the 

mean surface plane.

1 n = N . __  __

Ra = — V  Z , - Z  ; Z = Average Roughness ; (3.3)

3.3 Cell Culture Studies

3.3.1 Cell Morphology

Morphological observations o f cell culture were performed using the phase 

contrast mode o f Nikon® inverted fluorescent microscope. The cells were observed 

periodically for any changes in morphology and visual indications o f cellular damage. 

Observations were recorded using the connected digital camera. The camera was turned 

on, and the objective was focused to obtain a clear image o f specimen being viewed. 

Both 10X and 40X was used in the experiments. Magnification was changed by rotating 

the lens. The images were later transferred to a computer attached to the microscope for 

image analysis.

3.3.2 Cell Viability

Cell viability was measured using the 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl- 

tetrazolium bromide (MTT) and LIVE\DEAD® assay. The MTT assay is based on the
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calorimetric conversion o f MTT into formazan by viable cells, while the LIVEYDEAD® 

assay simultaneously identifies live and dead cells in a population.

3.3.2.1 LIVE/DEAD® Assay

The LIVE/DEAD® (Molecular probes, kit no: L-3224) test is a fluorescence assay 

which serves an indicator o f cellular viability. This test uses two molecular probes which 

identify live and dead cells based on characteristic fluorescence emission, due to two 

specific indicators o f  cellular viability-intracellular esterase activity and cell membrane 

integration. The dyes used for this reaction are calcein AM and ethidium homodimer. 

Live cells exhibit intracellular esterase activity which converts the nonfluorescent Calcein 

AM to the fluorescent Calcein. This dye is contained in the cytoplasm and produces 

uniform green fluorescence (excitation\emission=495 nm\515 nm). Dead cells, on the 

other hand, are identified by a bright red fluorescence (excitation\emission =495 nm\635 

nm) emitted by the binding o f ethidium homodimer with the nucleic acids. This dye 

enters the dead cells through the broken cell membranes and undergoes a 40-fold 

magnification o f fluorescence upon binding to the DNA.

The experiment starts with the removal o f media from the well dishes and rinsing 

the substrates with phosphate buffer saline (PBS) or Hanks Balanced Salt Solution 

(HBSS) (without phenol red) twice and once with media. The working solution o f the 

reagent was prepared by adding 4 pL of 2 mM ethidium bromide and 1 pL o f 4 mM 

calcein AM to 2 mL o f D-PBS and vortexed vigorously to ensure complete mixing of the 

reagent. 50 pL o f this working solution is added to the substrates, and they are incubated 

for 45 min at room temperature. After incubation, the substrates are viewed using the 

fluorescent microscope using optical filter excitations o f 485+10 nm (fluorescein optical
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filter) for calcein and 530+12.5 nm (Rhodamine optical filter) for ethidium bromide. 

Images of live and dead cells are taken using the CCD camera attached to the Nikon® 

inverting microscope. All the experiments were done in triplicate.

3.3.2.2 MTT Assay

The MTT based cell growth determination kit (Sigma, St. Louis, MO, Stock no:

GCD1) was used to quantify the cellular viability and growth as a function o f the

mitochondrial activity. The mitochondrial dehydrogenase enzymes of viable cells cleave

the tetrazolium ring o f MTT to form purple MTT formazan crystals which are soluble in

IN HC1. The resulting purple solution can be spectrophotometrically analyzed. An

increase in absorbance is directly proportional to the amount o f formazan production and

hence, the number o f viable cells.

In this method, the cultured cells are rinsed with buffer and incubated with MTT

working solution for four hours. The formazan crystals formed on the surface are then

dissolved in IN  HC1 in isopropanol and their absorbance monitored at 595 nm using the

TECAN® plate reader with the reference set at 690 nm.

3.3.3 Cell Functionality

3.3.3.1 Measurement of Lactate 
Dehydrogenase (LDH) Release

LDH is a stable cytoplasmic enzyme present in most cell types. When cells are

damaged, there is rapid release o f LDH into the cell culture media through damaged cell

membranes. The LDH cytotoxicity kit (Thermo Electron Corporation, CO) was used to

measure LDH activity in the cell culture supernatant, which provides quantification o f

cell death and cytotoxicity. LDH activity was measured in an enzymatic reaction wherein
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LDH oxidizes lactate to pyruvate, reducing nicotinamide adenine dinucleotide (NAD) to 

NADH.

L -  Lactate + NAD — LDH-—> Pyruvate + NADH  (3.4)

The LDH reagent is prepared by adding 10 mL of DI water to the lyophilized 

powder of LDH-L reagent kit. 25 juL o f media is added to 1.5 mL o f the reagent in a 

cuvette and mixed well. The experiment is carried out at 37 °C with the help o f a water 

bath connected to the UV-vis spectrophotometer. UV-Vis spectrophotometer is set in the 

kinetics mode with the time set at 180 sec and wavelength set at X = 340 nm. The slope of 

the curve is then calculated and substituted in the equation below to obtain the LDH 

quantity:

Activity in U /L  = N ibs/m m  x Factor, /•-> ^

TV  xlOOO
Factor = ---------------- ,

6.3 x S V x P

where

TV= Total reaction volume in mL (1.525 mL)

SV=  Sample volume in mL (0.025 mL)

6.3 = mM absorption coefficient o f NADH at 340 nm

P = Cuvette pathlength in cm

3.3.3.2. Measurement of Total 
Protein Content

The measurement of total protein content is performed using the Bio-Rad protein 

assay. The assay, based on the method o f Bradford, is a simple and accurate procedure 

for determining concentration of solubilized protein. It involves the addition o f an acidic 

dye to protein solution, and subsequent measurement at 595 nm with a spectrophotometer
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or microplate reader. Comparison with a standard curve provides a relative measurement

of protein concentration.

The Bio-Rad Protein Assay is a dye-binding assay in which a differential color

change of a dye occurs in response to various concentrations o f protein. The absorbance

maximum for an acidic solution o f Coomassie® Brilliant Blue G-250 dye shifts from 465

1nm to 595 nm when binding to protein occurs. Beer’s law is applied for accurate 

quantitation of protein by selecting an appropriate ratio o f dye volume to sample 

concentration.

Bovine serum albumin (BSA) (Kit II, catalog number 500-0002) is used as the 

standard and is reconstituted by adding 20 mL DI water and mixed until it is dissolved. 

Protein Assay Dye Reagent Concentrate (catalog number 500-0006) contains 450 mL of 

solution containing dye, phosphoric acid, and methanol. Five dilutions o f BSA protein 

standard were prepared, and the linear range o f the assay for BSA which is 1.2 to 10.0 

pg/mL is determined. 800 pL o f each standard and sample solution is pippeted into a 

clean, dry cuvette. Protein solutions are assayed in triplicate. Then, 200 pL o f dye reagent 

concentrate is added to each tube and vortexed. The mixture is then incubated at room 

temperature for at least five minutes. Absorbance increases over time and the absorbance 

is measured at 595 nm using UV-Vis spectrophotometer in the spectrum mode. The 

protein content is then calculated using:

O.D 595 corrected fo r  blank. 1 .2 5 -1 0 fig/m L  x O.&mL = 1 - 8 fig protein (3.6)

3.3.4 Immunohistochemical Studies

Detection of Type I collagen was performed using the Vectastain ABC kit (Vector 

Laboratories, Burlingame, CA) and monoclonal antibodies raised against type I collagen
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(Chemicon, Temicula, USA). The cells on the substrates were fixed by placing them in a 

series o f gradient alcohol. 100% ethanol for three minutes, followed by 95% ethanol for 

three minutes, then in 75% ethanol for three minutes and finally in 50% ethanol for three 

minutes. Then the substrates were rinsed in PBS. Few drops o f DAKO peroxidase 

blocking reagent was then added for the removal o f endogeous peroxide and incubated 

for 30 minutes. Then the substrates were rinsed with PBS (three times for five minutes 

each). This rinsing was followed by removing excess PBS and adding non-immune 

blocking serum on the substrates and incubating for five minutes at room temperature. 

The blocking serum was then removed and primary antibody (anti collagen 600-401-1- 

4)1:99 ratio) is added and incubated overnight at 2-8 °C. The excess antibody was 

removed and stored for further use. Then the substrates were washed in PBS four times 

for five minutes each and incubated in secondary antibody for one hour. The substrates 

were then washed in PBS for four times, five minutes each and ABC reagent complex 

was added and incubated for 30 min. This process was followed by washing the 

substrates in PBS 4 times 5 minutes each. Finally, diaminobenzidine (DAB) substrate (to 

make DAB, add one silver and one gold tablet in 1 mL of tap water) was added on the 

substrates in dark and observed under the microscope for the formation o f brown 

reaction. The reaction was then terminated by washing with PBS.
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CHAPTER 4 

HUMAN DERMAL FIBROBLAST CELL 

CULTURE ON SAM SUBSTRATES

4.1 Human Dermal Fibroblasts

Engineered cell-tissue composites that mimic skin have been developed for use as 

an in vitro system in sensitivity assays for potential skin-irritant compounds, drug 

permeation studies, cytotoxicity tests, and detection o f chemical warfare threats.4’124,125 A 

major objective o f bioengineered skin mimics is the need to enhance functionality and 

responsiveness and to improve the methodology for irritant and toxic reactions, reduce

1O f  •the costs o f testing, and facilitate decision-making. Collagen and fibronectm can 

modulate several physiological and pathological processes including tissue repair and 

wound healing . 127 In addition, the organization o f fibronectin matrix, acting as an 

adhesive linker, regulates the composition and stability of the extracellular matrix.

Fibroblasts play a major role in building and maintaining the connective tissues in 

the dermis of adult skin. Fibroblasts are anchorage-dependent cells; hence it is very 

important that the surface on which they are cultured have properties that support 

attachment. 17 Adhesion o f cells to solid surfaces plays an integral role in several key 

cellular processes. 128 The initial attachment o f a cell to a surface is by receptors in the 

cell membrane associated with the cytoskeleton, o f which integrins are probably the most

37
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important. The attachment process depends on the nature and conformation o f adhesion 

proteins, such as fibronectin and vitronectin. Cell attachment is normally followed by 

reorganization o f cytoskeletal actin, resulting in flattening and spreading of the cell and 

formation of focal contacts, replete with clustered integrins, which participate in cell 

signaling events and in regulating cell behavior. 128 At each site of membrane-surface 

attachment, integrin receptors cluster and several intracellular signaling molecules are 

recruited. The signaling produced by integrin attachment to the ECM helps proteins in 

cell adhesion. 128 The adhesion o f cells to the ECM and a host o f subsequent signaling 

events are mediated by specific interactions between cell-surface receptors and ligands o f

1 * 1 2 9the matrix.

Matrix made o f organic polymers is less attractive for the culture o f these cells 

due to some o f the problems such as reorientation of surface on transfer to aqueous 

media, heterogeneous nature and difficulty in analyzing the morphological 

characteristics. 130' 132 Design o f surfaces to elicit specific cell responses has thus been 

delayed. In this regard, SAMs have the capability to produce well defined surfaces o f 

known structures and properties that may be carefully regulated and manipulated. It has 

been demonstrated that fibroblast cells attach more extensively to carboxylic acid 

terminated SAMs than to methyl terminated SAMs, with the cells spreading effectively 

on carboxylic end group . 16,17,133,134 While long chain methyl terminated SAMs exhibited 

lowest levels o f cell attachment, small chain methyl ones exhibited intermediate levels of 

attachment and growth . 17 Cell attachment may also be influenced by the increased 

absorption o f fibronectin on these SAMs or binding o f the protein in an orientation such

TOthat cell binding sites are accessible. Thus, the ability o f human fibroblasts to assemble
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their ECM is very important for cell growth. In addition, the organization o f fibronectin 

matrix regulates the composition and stability o f the ECM. We have used SAMs of 

methyl and amino end groups on Si, GaAs and ITO surfaces to understand the influence 

of both the nature o f the end group and the chain length on the cellular response. The 

objective o f this work in to identify ideal substrate properties that either enhances or 

inhibits cell adhesion, cell migration, or gene expression, as well as direct assembly o f an 

ECM or functional tissue.

4.2 Materials and Preparation & 
Characterization of SAMs 

4.2.1 Materials

Boron-doped (100) - oriented silicon wafers were purchased from Montco Silicon 

Technologies Inc., Semi-Insulating (100) - Undoped GaAs wafers were purchased from 

American Xtal Inc., ITO coated glass slides (2.5 cm x 2.5 cm x 0.1 cm) were purchased 

from Delta Technologies Ltd. All the substrates were diced into approx. 1 cm x 1cm 

samples.

Chemicals used were ODT (98%, Aldrich), APTES (99%, Aldrich) and Nanostrip 

(stabilized formulation o f sulfuric acid and hydrogen peroxide compounds, Cyantek 

Corp.). All chemicals were used as received. ODT and APTES were stored in inert 

atmosphere after use.

4.2.2 Methods

Si samples were cleaned by sonication in acetone followed by ethanol for 5 min 

and finally rinsed in DI water and dried in N2 . The samples were then immersed in 

Nanostrip solution at 90 °C for 15 min, rinsed in DI water and dried in N2 . SAMs of
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APTES were formed by immersing the substrates in 1 mM of the SAM in ethanolic 

solution for one hour, followed by rinse in ethanol and DI water and finally drying in N2 . 

GaAs samples were also cleaned in acetone followed by ethanol for five minutes by 

ultrasonic agitation. Just before surface derivatization, the GaAs samples were immersed 

in 37% HC1 for one minute to remove oxide present on the surface, rinsed in DI water 

and dried in N2 . SAM deposition on GaAs was performed in 5 mM ODT solutions with 

the addition o f 30% aqueous ammonia solution at 50 °C for 8  h after purging with N2 . 

Physisorbed ODT was removed by carefully rinsing with ethanol followed by rinsing in 

DI water and drying in N 2 . The ITO-coated slides were cleaned by sonication in toluene, 

acetone, ethanol each for five minutes and then in DI water for 30 min. The substrates 

were then rinsed, N 2-dried, and used. SAMs o f ODT were formed on ITO by immersing 

the samples in the neat liquid for one hour, followed by ultrasonic agitation in ethanol, 

then a rinse in ethanol, DI water and N 2-dried. All the samples were sterilized in 100% 

ethanol for one day before culturing cells.

4.2.3 Characterization

4.2.3.1 Contact Angle Measurements

Figure 4.1 shows the contact angle measurements o f different SAM-modified 

surfaces. An advancing contact angle in the range 22°-24° was observed for Si before 

SAM deposition, while an angle in the range 34°-36° was observed after SAM formation. 

This angle indicates the hydrophilic nature o f the SAM. Advancing contact angle in the 

range 75°-77° was observed for GaAs and 40°-45° for ITO, while contact angle in the 

range 102°-105° was observed after SAM deposition, indicating the hydrophobic nature 

of the SAMs.
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Figure 4.1 Contact angle measurements o f (a) Si (22-24°) (b) Si-APTES (34-36°) (c) 
GaAs (75-77°) (d) GaAs-ODT (102-105°) (e) ITO (40-45°) and (f) ITO-ODT (102-105°).

4.2.3.2 Reflection Absorption Infrared 
Spectroscopy (RA1RS)

The asymmetric and symmetric bands of methylene (CH2) stretches are observed 

at 2917 and 2850 cm ' 1 (Figure 4.2), while the asymmetric C-H stretching mode of CH3 is 

observed at 2964 cm ' 1 for GaAs and ITO. These IR (Table 4.1) and contact angle data are 

remarkably similar to alkanethiol SAMs formed on noble metals81 and suggest that ODT 

forms a close packed, crystalline monolayer on ITO and GaAs. For APTES on Si, strong 

primary amine band is observed at 1575 cm'1.
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Figure 4.2 RAIRS spectra o f (a) APTES (-NH2) on silicon (Si) (b) ODT (-CH3) on 
GaAs and (c) ODT (-CH3) on ITO
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Table 4.1 Comparison o f peak positions for ODT stretching modes in crystalline and 
liquid states at gold to ITO and GaAs.

Structural
group

C-H
Stretching

mode

Peak positions o f 
crystalline and liquid

01 1
states, cm'

Peak 
positions 
for ODT 
adsorbed 
at gold, 81 

cm ' 1

Peak 
positions 
for ODT 
adsorbed 
at ITO, 

cm ' 1

Peak 
positions 
for ODT 
adsorbed 
at GaAs, 

cm ' 1

Crystalline Liquid

-c h 2- va 2918 2924 2917 2917 2915
Vs 2851 2855 2850 2849 2850

c h 3- Va - - 2965 2964 2964

4.3 Cell Seeding and Morphology

4.3.1 Cell Seeding

HDFs were washed twice with HBSS and then trypsinized with IX trypsin (1 mL 

of trypsin and 99 mL of HBSS) and allowed to incubate for eight minutes. Once the 

HDFs detached from the bottom of the dish, the cells were placed in a 15 mL conical tube 

and centrifuged for seven minutes at 1620 rpm. The supernatant was poured off, and the 

pellet was washed with complete Dubelco’s modified eagle medium (DMEM) to remove 

any excess trypsin. Then, 400 /xL o f complete DMEM was added to the pellet and gently 

pipetted to disrupt the pellet. The substrates were then washed with DMEM three times 

and then 50 /xL o f cells (-400 cells: counted by hemacytometer) were added to each 

substrate. HDFs were allowed to incubate for one hour on the substrates and then two 

milliliters of complete DMEM was added to each of the dishes.

4.3.2 Cell Morphology

Figures 4.3-4.5 show the HDF morohology on different SAM-modified substrates 

after 48 h. It can be observed that on ITO and ITO modified with ODT (-CH 3) the nuclei, 

nucleoli, and cytoplasmic processes are very prominent compared with modified and
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unmodified Si and GaAs. The cells on Si, Si-APTES and GaAs-ODT appear with the 

nucleus (enclosing the nucleoli) while very few cells are observed on GaAs indicating 

cell death. Cellular processes showing cell flattening can be observed predominantly on 

modified and unmodified ITO substrates indicating the preference o f HDF for this 

substrate.

' “ 4  *

St* w B M Wisk.w-s

Figure 4.3 Phase contrast images o f HDFs on (a) Si and (b) Si-APTES (-N H 2 end group) 
after 48 h (Bar represents 10 pm).

a

Figure 4.4 Phase contrast images o f HDFs on (a) GaAs and (b) GaAs-ODT (-CH3 end 
group) after 48 h (Bar represents 10 pm).
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Figure 4.5 Phase contrast images o f  HDFs on (a) ITO and (b) ITO-ODT (-CH3 end 
group) after 48 h (Bar represents 10 pm).

4.4 Cell Viability

The viability o f HDFs cultured on SAM-modified substrates was assessed using 

two color Live/Dead® flouroscence assay following 48 h o f  seeding. ITO substrates were 

observed under the Nikon microscope while opaque substrates (Si, GaAs) were viewed 

using the optical microscope. Qualitative observations o f number o f viable cells were 

made by observing the flouroscent response. Live cells flouresce green but dead cells 

flouresce red as discussed in the experimental section.

Viability analysis performed on HDFs cultured on GaAs and GaAs modified with 

ODT showed extremely low cellular viability on GaAs (Figure. 4.6a) compared to GaAs- 

ODT (Figure. 4.6b). The low cellular viability is due to the arsenic leakage in the media 

during culture, which is toxic, causing cell death .32,33 The viability notably increased on 

ITO-ODT due to the presence o f  ODT monolayer which protects the surface and prevents 

arsenic leakage.
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Figure 4.6 Cellular viability observed by LIVE/DEAD® analysis on (a) GaAs and (b) 
GaAs-ODT (-CH3) after 48 h (Bar represents 10 pm).

Viability studies on Si and Si-APTES (Figure 4.7 (a,b)) indicate good cellular 

viability on both the surfaces, with Si-APTES showing a comparatively better response. 

This result indicates the cell supportive nature of Si. The amino (-NH 2) functionality 

provides better environment for cell growth.

Figure 4.7 Cellular viability observed by LTVE/DEAD® analysis on (a) Si and (b) Si- 
APTES (-NH2) after 48 h (Bar represents 10 pm).

Similar results were observed on ITO and ODT-modified ITO (Figures 4.8 and 

4.9). Cell spreading was the highest in the case o f ITO-ODT compared with all other 

substrates. Cell viability on all these substrates followed this trend: ITO-ODT>ITO>Si- 

APTES>Si>GaAs-ODT>GaAs.
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Figure 4.8 Cellular viability observed by LIVE/DEAD® analysis, (a) Live cells on ITO 
and (b) Dead cells on ITO after 48 h (Bar represents 10 pm).

Figure 4.9 Cellular viability observed by LTVE/DEAD® analysis.(a) Live cells on ITO- 
ODT and (b) Dead cells on ITO-ODT after 48 h (Bar represents 10 pm).

4.5 Cell Proliferation

Proliferation o f the cells was determined using MTT assay. Cells were seeded at a 

density o f 2,000 cells/cm2 and proliferation was determined after 3, 5 and 7 days o f 

culture. Figure 4.10 shows an increased absorbance at 570 nm after 5 DIV compared with 

3 DIV indicating the proliferation o f the cells. After 3 DIV, no cells were observed on 

GaAs surface indicating cell death due to arsenic leakage in the media. Proliferation was
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highest for SAM-modified surfaces compared to other surfaces after 5 and 7 DIV. High 

cell densities were observed on ODT modified ITO (ITO-CH3) followed by APTES 

modified Si (Si-NH2). Among the unmodified surfaces, proliferation was observed on 

both ITO and Si and there were not significantly different. Cell proliferation was least on 

ODT modified GaAs (GaAs-CH3). There was only small increase in cell density from 3 

DIV to 7 DIV. But, this result clearly shows that protection o f the GaAs surface by a 

monolayer of organic molecules does prevent arsenic leakage to a certain extent enabling 

the cells to attach and proliferate for a certain period of time (in this case, for seven days).
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Figure 4.10 Proliferation of HDFs on SAM-modified and unmodified Si, GaAs and ITO 
surfaces after 3, 5 and 7 DIV. Data represent the mean±S.D, n=3.
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4.6 Immunocvtochemical Analysis

Immunohistochemistry (IHC) analysis was conducted against Type-I collagen. 

Figures 4.11-4.13 illustrate HDFs on GaAs, GaAs-ODT, Si, Si-APTES, ITO and ITO- 

ODT respectively. The brown reaction indicates that an antigen antibody complex has 

formed a positive immunoreaction. The brown reaction (indicated by arrows) that 

occurred on all o f the substrates as a result o f  IHC analysis indicated that the HDFs did 

not lose their in vivo behavior in the in vitro environment. The cells maintained type-I 

collagen, which is needed for continuous growth of the cells. The brown reactions around 

the cytoplasm indicate the antigen-antibody complex.

The results indicate that HDF’s cultured on ITO, ITO-ODT, Si, Si-APTES and 

GaAs-ODT, with the exception o f GaAs, tested positive for Type I collagen, maintained 

their phenotype and were active.

Figure 4.11 Immunohistochemical detection o f Type-I Collagen after 48 h in culture, (a) 
GaAs and (b) GaAs-ODT (Bar represents 40 pm).
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Figure 4.12 Immunohistochemical detection o f Type-I Collagen after 48 h in culture, 
(a) Si and (b) Si-APTES (Bar represents 40 pm).

Figure 4.13 Immunohistochemical detection of Type-I Collagen after 48 h in culture.
(a) ITO (b) ITO-ODT (Bar represents 40 pm).

4.7 Discussions

Many approaches, such as those done by Mrksich et al., have been investigated to 

obtain predictable surface chemistries o f  biomaterials that either alter or inhibit specific
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cell functions. The strength of cell adhesion and spreading on SAMs has

-in
been especially studied.

The results from our cytotoxicity, proliferation and functionality studies indicate 

that HDFs proliferated well on all SAM substrates and exhibited the characteristic long 

spindle-shaped fibroblast morphology. The HDFs exhibited no visible signs of stress or 

cytoplasmic vacuolation. HDFs also maintained their phenotype, and were synthetically 

active. Table 4.2 shows the immunoreactivity o f different substrates used in this study 

based on optical images o f 4.11, 4.12 and 4.13. ITO-ODT presents the best surface 

wherein the HDFs maintain their best phenotype.

Table 4.2 Immunoreactivity o f both SAM-modified and unmodified ITO, Si and GaAs 
substrates

Substrate Immunoreacivity
Control +++
GaAs -

GaAs-ODT ++
Si +

Si-APTES +++
ITO ++

ITO-ODT +++

No immunoreactivity = - ;  Weak immunoreactivity = + ; Moderate immunoreactivity = ++; Strong 
immunoreactivity = +++.

The cell culture substrates used in this research encouraged HDFs to attach, grow, 

and maintain cell functionality. Initial adhesion o f proteins from the media on the SAMs 

is responsible for the cellular adhesion. In case o f ITO-ODT we assume that the 

hydrophobic end group (-CH 3) couples with the hydrophobic part of the unfolding 

protein releasing many hydrophobically structured water molecules and leading to the 

large entropy gain for the system . 135,136 It has been shown that HDFs translocate and
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organize their /3x integrin subunits preferably to -N H 2 and -COOH SAMs because o f the

1 -3*7 t i c

deposition o f fibronectin on these groups. ’ ’ This forms the basis for the cellular

attachment and subsequent proliferation.

The results from our studies also provide strong evidence that cellular attachment 

to surfaces is influenced by small changes in the substratum chemical composition and 

molecular structure. It has been demonstrated that HDFs exhibit different responses to 

specific surface chemistries when cultured under similar conditions and the length o f the 

alkyl chain has a significant influence over the outcome of cellular interactions with 

SAMs. The number o f attached cells decreased significantly with increasing alkyl chain 

length as shown by Cooper et al. 17 Also the influence o f the substrate alone revealed that 

the HDF cells attached better on indium tin oxide (Figure. 4.5a, 4.8a, 4.13a) substrates 

compared to all other unmodified substrates.

The significance o f this work was to determine right kind o f substrate and the 

SAM that encouraged human dermal fibroblast to attach, grow and preserve the cell 

functionality. It was determined that on ITO and SAM-modified ITO, the HDF viability, 

proliferation and functionality were higher compared to other surfaces. Based on these 

results, ITO has been used as the substrate for SAM modification in our cell culture 

studies using well-established cell lines such as hepatocytes or stem cells whose 

differentiation pathway can be directed, leading to the development of 

biosensors/bioreactors that can be used in cancer research.
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CHAPTER 5

MESENCHYMAL STEM CELLS ON SAM- 

MODIFIED ITO SUBSTRATES

5.1 Stem Cells

Stem cells are the precursor cells which have the ability to self renew and 

differentiate into multilineage cells in response to appropriate signals. 139,140 They are 

classified as either embryonic stem (ES) cells or tissue-specific stem cells. ES cells have 

varying degree o f potential ranging from totipotency (ability to form the embryo and the 

trophoblast o f the placenta o f the fertilised oocyte (the zygote)), to the pluripotency 

(ability to differentiate into almost all cells that arise from the three germ layers) o f ES 

cells. 141' 143 Tissue specific stem cells (adult stem cells) are unspecialized cells found in 

differentiated tissues which can renew for long periods of time and are multipotent 

(capable of producing a limited range o f differentiated cell lineages appropriate to their 

location). ES cells can be maintained in undifferentiated state indefinitely while adult 

stem cells can proliferate only for a limited number o f generations.

In this decade, isolation and expansion o f tissue-specific adult stem cells are 

concentrated more due to some o f the ethical debates surrounding the isolation o f ES 

cells. Adult stem cells (ASC) have been found to reside in a variety o f tissues including 

skin, 144 the central nervous system , 145 muscle, 146 bone marrow , 147 liver, 148 mammary

53
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gland, 149 and many others (Figure 5.1). The haematopoietic stem cell (HSC) resident in 

the bone marrow is the most described ASC because they are relatively easy to isolate. 

The multipotency and self-renewal capacity o f this population has been established by the 

ability o f single murine HSCs to engraft and repopulate both the myeloid and lymphoid 

blood lineages of a myeloablated host. 150

*.

V

Figure 5.1 Possible pathways o f differentiation in adult stem cells. 151

The recent discovery o f neural stem cells (NSCs) in the adult central nervous 

system (CNS) and their regenerative roles in brain damage opened new approaches for 

the treatment o f neurodegenerative disease and CNS injury. 152 The fact that the neural 

progenitors are restricted to generate specific types of CNS cells in vivo, can differentiate 

into all the three CNS cell types: neurons, astrocytes, oligodendrocytes, suggest that the
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environment (ECM) can influence the fate of these progenitors. 153 Multipotent 

mesenchymal cells (MSCs) can differentiate into a number o f nonhematopoietic cells 

such as osteoblasts, chondrocytes and adipocytes. It was shown that a mouse 

mesenchymal progenitor cell line C3H10T1/2 when induced with 3-aza-C, it 

differentiated into myoblasts, osteoblasts, adipocytes and chondrocytes. 154 Also 

chemicals like dexamethasone and ascorbic acid can induce osteogenesis or adipogenesis 

o f MSCs under carefully defined conditions. 155,156

It was a notion in developmental biology that tissue-specific stem cells are 

restricted to differentiating into cell types o f the tissue in which they reside. But recent 

studies have shown the in vivo plasticity o f the bone marrow-derived stem cells, which 

are mainly based on cell fusion events. 157' 160 However in some cases, tissue-specific stem 

cells have overcome their intrinsic lineage-restriction when exposed to a specific set of 

signals both in vitro161 and in vivo.162 The ability to dedifferentiate to multipotent 

progenitor cells might overcome many o f the obstacles associated with the ES cells and 

adult stem cells in clinical applications.

Many factors such as cell-cell contact, 157,163 extracellular materials164 and 

structural factors165 have a strong influence on stem cell differentiation. Extracellular 

matrix such as collagen has been used for the realization o f osteogenesis o f MSCs 

derived from human bone marrow cells, 166 and it was observed that formation o f 

mineralized bone was more under dynamic conditions compared with static culture 

conditions. Sawyer et al. showed that low RGD concentrations combined with pro

adhesive serum proteins stimulated MSCs attachment to the hydroxyapatite surfaces. 167 

MSCs on nanofibrous scaffolds made by electrospinning o f Poly(e-caprolactone) have
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also been shown to produce cartilage . 168 MSCs grown on some o f the nanostructured 

materials such as ion-beam deposited metalloceramic materials have also showed 

enhanced adhesion and spreading . 169 Many other surfaces such as silk biomaterials170, 

alginates171 have also been used. Howver, no systematic work has been done to fully 

understand the relation between surface properties and stem cell fate.

SAM-modified surfaces have not been used for MSC studies in vitro. The aim o f 

this work was to observe the morphology and proliferation o f MSCs on different SAM- 

modified ITO substrates, each presenting a different terminal group with different 

wetability and charge.

5.2 Surface Characterization

Four different SAM-modified ITO substrates were used: (1) ITO-APTES (-NH 2 

end group) (2) ITO-MPA (-COOH end group) (3) MPS (-SH  end group) and (4) ITO- 

ODT (-CH 3 end group). The surfaces were characterized for their wettability using 

contact angle measurements and roughness using AFM.

5.2.1 Contact Angle Measurements

Figure 5.2 indicates that the surfaces modified with amino (APTES) and 

carboxylic (MPA) end groups are hydrophilic, while surfaces with methyl (ODT) and 

thiol (MPS) end group are hydrophobic. Among the hydrophilic surfaces, carboxylic end 

(-COOH) group presents the least contact angle while methyl (-CH 3) end groups present 

the highest contact angle among the hydrophobic surfaces. Surface modified with thiol ( -  

SH) end group presents wettability intermediate between the hydrophilic and 

hydrophobic surface.
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Figure 5.2 Surface wettability o f the different SAM-modified substrates determined 
from contact angle measurements, (a) ITO-APTES (38°) (b) ITO-MPA (33°) (c) ITO- 
MPS (87-89°) and (d) ITO-ODT (103-105°)

5.2.2 AFM Analysis

A QUESANT Q-Scope 250 AFM was used to analyze the surface roughness. 

Figure 5.3 shows the 2D images o f different SAM-modified ITO surfaces along with 

unmodified ITO. From the tabulated (Table 5.1) roughness values it can be inferred that 

bare ITO presents a relatively smooth surface. The cleaning method employed in this 

research enabled to remove the surface contaminants making the surface smooth. When 

modified with different end group SAMs, the roughness o f  surfaces with -N H 2 and -SH  

was ~lnm. The -C H 3 group presented a rough surface compared to -N H 2 and -SH  but 

comparable with the values obtained by Perrin et al. on Si surfaces. 172 This roughness 

value indicates that the surface coverage is good with the presence o f a densely packed 

film. High surface roughness o f -COOH end group modified ITO surfaces may be 

attributed to the presence o f aggregates. The method o f using neat liquids o f ODT and 

MPA for SAM formation also probably leads to the formation o f aggregates.
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Figure 5.3 Average roughness (Ra) o f (a) ITO (b) ITO-APTES (c) ITO-ODT (d) ITO- 
MPS and (e) ITO-MPA

Table 5.1 Average roughness o f unmodified ITO and SAM-modified ITO surfaces

Ra (nm)*
ITO 0.93

ITO-NH2 1.01
ITO-CH3 1.51
ITO-SH 1.1

ITO-COOH 2.67
Values are the means of three independent measurements
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5.3 Cell Seeding and Morphology

5.3.1 Cell Seeding

MSCs o f passage four attached on TCP dish were washed twice with HBSS and 

then trypsinized with IX trypsin (1 mL o f trypsin and 99 mL of HBSS) and allowed to 

incubate for eight minutes. Once the MSCs detached from the bottom o f the dish, the 

cells were placed in a 15 mL conical tube and centrifuged for seven minutes at 1600 rpm. 

The supernatant was drained off and the pellet was washed with complete DMEM to 

remove any excess trypsin. Then 2 mL of complete DMEM was added to the pellet and 

gently pipetted to disrupt the pellet. The cell count was then established using a 

hemacytometer.

Both the bare ITO and TCP dish were used as control. The substrates were 

washed with HBSS twice and once with DMEM. Cells at a density o f 2000 cells/cm2 

(3820 cells per/well (area 1.91cm ) in a 24 well dish) were seeded on each substrate. 500 

pi o f media was added to each well containing the cells on substrates and incubated. The 

cells were observed over a period o f seven days for variations in cellular morphology and 

viability. Triplicate cultures were maintained. For quantification o f cell proliferation 

using MTT assay, substrates were placed in 12 well dishes and 1280 cells/cm (4900 cells 

per well (area 3.82 cm2)) were seeded. Triplicate cultures were maintained. A standard 

curve was determined by seeding known number o f cells and observing the absorbance. 

Cell numbers on substrates were determined using this standard graph.

5.3.2 Cell Morphology

The substrates were observed for a period o f seven days to assess cellular 

attachment and morphology under a Nikon microscope. Optical images were taken every
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24 h for seven days at two different magnifications (10X and 40X). Figure 5.4 shows the 

attachment and morphology o f MSCs on different SAM-modified ITO substrates after 24 

hours.

Figure 5.4 Morphology o f MSCs on different SAM-modified ITO substrates after 24 h. 
(a) Control (TCP) (b) ITO (c) ITO-APTES (d) ITO-COOH (e) ITO-ODT and (f) ITO- 
MPS (Bar represents 10 /tm).
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It can be observed from Figure 5.4, that most o f the adhered cells have already 

spreaded. There are few cells which are round in nature indicating that these cells can 

either spread or result in apoptosis. After 72 h, more number o f cells started spreading 

and proliferating (Figure 5.5).

Figure 5.5 Morphology of MSCs on different SAM-modified ITO substrates after 72 h. 
(a) Control (TCP) (b) ITO (c) ITO-APTES (d) ITO-COOH (e) ITO-ODT and (f) ITO- 
MPS (Bar represents 10 /tm).
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The rounded morphology of the cells started disappearing as the cells started 

spreading. All the substrates exhibited this nature. As the culture time increased, the cell 

density on all the substrates also started increasing. At the end o f seven days (Figure 5.6), 

all the cells exhibited spread morphology with no rounded cells.

Figure 5.6 Morphology of MSCs on different SAM-modified ITO substrates after 168 h. 
(a) Control (TCP) (b) ITO (c) ITO-APTES (d) ITO-COOH (e) ITO-ODT and (f) ITO- 
MPS (Bar represents 10 jU.m).
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The cells on all the substrates looked same without any significant difference in 

morphology. The cells did not show any preference for particular end group. The cells 

reached their confluence on all the surfaces. Quantification of the proliferation data is 

necessary to know the true preference o f the cells for the substrates. The morphology 

results just indicate the shape and spread o f the cells.

5.4 Cell Viability and Proliferation

The cytotoxicity o f the substrates on MSCs was studied using LIVE/DEAD® 

Cytotoxicity Kit. After 3 DIV, no or few cell death were observed on all the substrates. 

Figure 5.7 shows the cytotoxicity test performed on all SAM-modified ITO and the 

control substrates. More number o f live cells (green color) is observed. These results 

show that all substrates initially support the cell growth and do not produce any toxic 

effect to the attached cells.

After 7 DIV, it can be observed from Figure 5.8 that some o f the cells died (red 

color). The cell death was pronounced on control (both TCP and ITO) compared to 

SAM-modified ITO surfaces. More number o f dead cells were observed on ITO-MPS 

substrates. Cell viability was not significantly different on ITO-APTES, ITO-COOH and 

ITO-ODT surfaces. The results from LIVE/DEAD® assays give us only the qualitative 

information but more insight into the cell numbers can be obtained only by performing 

the MTT assay. There is considerable increase in the dead cells after 7 DIV when they 

are compared with cells after 3 DIV. This result indicates that along with cell 

proliferation, the process of cell apoptosis is going on simultaneously.
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Figure 5.7 Cell viability measured using LIVE/DEAD assay showing both live and 
dead MSCs after 3 DIV (10X) (a) Control (TCP) (b) ITO (c) ITO-APTES (d) ITO- 
COOH (e) ITO-ODT and (f) ITO-MPS (Bar represents 10 pm).
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Figure 5.8 Cell viability measured using LIVE/DEAD® assay showing both live and 
dead MSCs after 7 DIV (40X) (a) Control (TCP) (b) ITO (c) ITO-APTES (d) ITO- 
COOH (e) ITO-ODT and (f) ITO-MPS (Bar represents 40 pm).
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Figure 5.9 shows the plot o f proliferation o f MSCs on both SAM-modified ITO 

and unmodified ITO along with the control (TCP). It can be observed that at Day 1 and 

Day 3, the proliferation rate were slower compared with that on Day 7. After Day 1 and 

Day 3, there is nothing much to chose among the substrates. Proliferation is not 

significantly different. After 7th day, the proliferation rate tremendously increased on all 

the substrates, especially with -SH  modified ITO substrate producing higher cell 

numbers. Cell proliferation was not significantly different on ITO, TCP, ITO-APTES, 

ITO-COOH and ITO-ODT surfaces.
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Figure 5.9 MSCs cell proliferation on different SAM-modified ITO surfaces at 1,3 and 7 
days. Control: ITO and TCP also included. Data represent the mean±S.D, n=3.

5.5 Discussions

To the best o f our knowledge, there are very few studies on the culture and 

growth of MSCs on SAM-modified surfaces. Based on the results obtained in this study,
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some conclusions can be made. The morphology images indicate that the MSCs initially 

attached to all the surfaces with no specific preference. The viability results also showed 

that there is no cell death even after 3 DIV. This result indicates that all the surfaces 

presented an amicable environment for the MSCs to grow. After 7 DIV, the cell 

proliferation was very high indicating that the substrates used in this study enabled MSC 

proliferation.

The high cell proliferation observed in the case o f -SH  modified ITO substrates 

compared to other substrates can not be rationalized at present as it has been observed 

that in the case of HDFs (Chapter 4), neurons (Chapter 6 ) and hepatocytes (Chapter 7), 

the cells preferred methyl and amino groups. The charge on the surface and the 

preadsorption of proteins from the media played an important role in the initial cell 

attachment and the subsequent cell proliferation. But the enhanced MSCs proliferation on 

-SH  modified ITO substrate is difficult to account for. Perhaps stem cells prefer the thiol 

groups intermediate character in hydrophobicity and hydrophilicity. These surfaces were 

also used to determine the behavior and response o f neurons. The next chapter presents 

results o f our neuronal work.
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CHAPTER 6 

NEURONAL CELL CULTURE ON SAM- 

MODIFIED ITO SUBSTRATES

6.1 Neuronal Cells and Their Culture

The nervous system is classified into the central nervous system (CNS) and the

17Tperipheral nervous system (PNS). The CNS, which includes the brain, spinal cord, 

optic, olfactory and auditory systems, conducts and interprets signals as well as provides 

excitatory stimuli to the PNS. The PNS consists o f cranial nerves arising from the brain, 

spinal nerves arising from the spinal cord, and sensory nerve cell bodies (dorsal root 

ganglia) and their processes. The nervous system is composed o f two cell types: neurons 

and neuroglia. Neurons are the major cell type in the nervous system and consist o f a 

cell body (soma) and its extensions (axons and dendrites). Although neurons cannot 

divide, they can regenerate a severed portion or sprout new processes under certain 

conditions.

Injury and diseases o f the CNS, such as stroke, epilepsy, Parkinson’s, 

Huntington’s and Alzheimer’s disease, affect a substantial number o f people each year 

and often have long-term consequences for sufferers and their families. CNS diseases 

often lead to permanent loss o f functions (sensory, motor, reflex). These severe

68
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consequences result from the fact that CNS neurons, unlike most other cells in the body, 

lack the ability to spontaneously regenerate following injury. 174 Recent investigations 

into the repair o f CNS have led to the discovery o f neural stem cells and increased 

understanding o f factors that regulate neuron life and death, neurogenesis, neurite 

outgrowth, and synapse formation. 175 Likewise, organ-specific stem cells (SCs) are 

responsible for maintenance o f tissue homeostasis and tissue regeneration in adult 

organism by replacement o f dying cells by new ones. In the CNS, these functions are 

performed by neural SCs that can generate precursors o f neuronal, astroglial and 

oligodendroglial cells. Undifferentiated cells with such potential could be used for stem 

cells therapy to treat CNS diseases resulting from the loss o f neuronal or glial cells. 176

For CNS injury, clinical treatment is less promising, so the challenge has been to 

find an alternative to the autologous nerve graft, eliminating the need for two surgeries 

and the removal o f  tissue from the patient. Also, clinical functional recovery rates 

typically approach only 80% for nerve injuries treated using autologous nerve grafts. 

Thus, biomedical science strategies have focused on developing alternative treatments to 

the nerve graft, including use o f synthetic microfabricated substrates to culture neuronal 

cells.

The ultimate goal of these microfabricated substrates is to mimic the in vivo 

micro-environment present in the body, and to achieve this goal several issues need to be 

examined, including biocompatibility, cytotoxicity effects, cell phenotype, and cellular 

response in neurons after culture on microsubstrates. Recent studies have begun to 

examine these issues using several substrates. These substrates include (a) silicon

177 178dioxide (b) silicon dioxide coated with a matrix o f PA22-2 (c) thin films o f titanium

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

nitride (TiN) 179 (d) a thin layer o f silicon dioxide (Si0 2 ) on Si180 and (e) a silicon-based 

elastomer. 181 The silicon dioxide microsubstrate succeeded in having good growth of 

axons. 177 However, efforts to date have met with limited success largely because it is still 

unknown if  the geometry proposed is adequate for maintaining the cells in culture.

One of the first examples o f neuronal patterning was reported by Kleinfeld et al. 

in 1988,182 who used combinations o f photolithographic and chemical techniques to 

prepare biologically active substrates to guide the development o f neurons in culture.

1 81  1 8 4Later on, a number o f photochemical methods, ’ such as laser ablation o f self

assembled monolayers185 and microcontact printing , 186’187 were added as tools to create 

micronscale patterns o f adhesive molecules against a nonadhesive background. In one o f 

the recent studies on SAMs, DETA and 13F (tridecafluoro-1, 1, 2, 2-tetrahydroctyl- 1- 

trichlorosilane) in combination with deep UV photolithography was used to create 

surface patterns to determine neuronal cell attachment and dendritic/axonal growth. The 

cultured cells displayed a compliance o f more than 50% to the cell-adhesive pattern of 

DETA at 4-6 days in vitro. The neurons survived up to 35 days on the patterns. 188

Amino groups o f SAMs have been implicated in the promotion of cell attachment 

and growth. 189"191 Examination o f adherent cell lines like rat basophilic leukemia cells 

(RBL) and mouse embryonic carcinoma line (P I9) on SAMs terminated with the oligo 

(ethylene glycol) group (R = (0 CH2-C H 2)6 0 H, EGgOH) prevented attachment o f cells. 

The high resistance to adhesion provided by the EGeOH-terminated SAMs allowed 

people to study differential attachment in both complex (containing fetal bovine serum) 

and minimal (protein and serum free) media.
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Determination o f specific roles of functional groups involved in cell growth is 

difficult, and contradictory results have been reported. It has been shown that surface 

hydroxyl and methyl groups do not promote cell attachment or growth . 192,193 In another 

approach, neurite outgrowths o f embryonic chick dorsal root ganglia (DRG) neurons and 

PC 12 cells were investigated using a set o f chemically functionalized surfaces prepared 

by SAMs of alkanethiolates with R  = NH2, COOH, and CH3 on patterned gold surfaces. 

Neurons with neurite outgrowths were observed predominantly on a patterned SAM of 

long-chain alkanethiolates with amino groups. 194,195 Another observation has shown that 

the substrates patterned with amines had controlled growth o f neuroblastoma cells 

reflecting the underlying growth pattern, whereas random neuronal outgrowth was 

observed on uniform (unpattemed) substrates. 196

The discovery o f SAMs has essentially transformed surface chemistry and also 

opened a new area for physically oriented groups. It has brought together the study of 

well-defined inorganic surfaces and organic species, which from a physics perspective 

were previously often considered rather undefined. The great flexibility o f the concept of 

SAMs brought about by the wide choice o f endgroups which can be anchored to the 

substrate has led to a broad range of applications o f SAMs, including important 

developments in the area o f biotechnology. Also, the use o f ITO instead o f Au along with 

the properties mentioned in Chapter 4, allows for high resolution imaging o f neuron-to- 

electrode synapses by confocal fluorescence microscopy.

To develop cell culture platforms for applications such as drug screening, 

biosensors, neural prosthetic devices and bioreactors, it will be necessary to develop and 

characterize SAM-based platforms that provide an appropriate environment for cell
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1 0 7  1 OR •attachment, growth and functionality. ’ The advantage o f SAMs is the ability to make 

use o f the relatively easy and versatile chemistry for modifying the surface and 

additionally to be able to control the intrinsic and geometric properties o f surfaces in 

contact with cellular systems. 199 In this work, we have used different end groups of 

SAMs like -N H 2 , -C H 3 and -SH  on ITO substrates and assessed the biocompatibility, 

potential cytotoxic effects, cell longevity, preservation of cell phenotype and cellular 

response of rat brain cortical neuronal (RBNs).

6.1.1. Cell Culture

Based on the MSCs experimental results presented in Chapter 5, we reduced the 

number o f working substrates to ITO, SAM-coated ITO and PLL substrates. The end 

groups o f the SAMs were selected according to literature review o f neurons and SAMs 

interactions. It is known from the results reported by Yukie et al., that amino, methyl and 

-SH  groups had some success when modified with laminin . 195 Therefore, SAMs of 

APTES, ODT and 3-mercaptopropyl triethoxysilane (MPS) were selected containing 

amino, methyl and -S H  end groups, respectively.

Standard cell culture techniques were used to culture CNS-derived RBN cells 

purchased from QBM Cell Science (Pittsburgh, PA). Prior to each experiment, rat CNS 

neurons were cryopreserved in a liquid nitrogen storage tank. After removal from liquid 

nitrogen storage, each cryovial was placed in a water bath preheated to 37 °C and 

disinfected wiping the external surface with 70% ethanol. Cells were then resuspended in 

serum-free Neurobasal medium containing B27 supplement and 200 mM L-glutamine at 

37 °C in 95% humidified air and 5% CO2. The following protocol was used to culture 

neuronal cells on substrates.
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6.1.1.1 Protocol: 1

(1) Vial o f cells from liquid nitrogen were removed and placed in a water bath pre

heated to 37 °C.

(2) After three minutes, the vial was removed and disinfected outside by wiping with 

70% ethanol.

(3) Gently, 1 mL cells were transferred (concentration o f 1.5 million cells/mL) into a 

15 mL centrifuge tube and immediately 3 mL o f pre-warmed Neurobasal Medium 

supplemented with B-27 and L-glutamine was added dropwise onto the cells, 

while rotating the tube by hand.

(4) 100 pi of cell suspension (containing 37,500 cells) from 15 mL tube were 

transferred onto each o f 1 2  substrates placed in a 1 2 -well plate and also in control 

substrates, placed in 35 mm tissue culture dish.

(5) Cells were incubated for four hours in a 37 °C, 5% CO2 incubator.

(6 ) A fresh pre-warmed medium o f 1.9 mL was added onto all substrates after four 

hours.

(7) Cells were incubated at 37 °C with 5% CO2 and media change was done on day 4.

(8 ) After initial media change on day 4 or 5, 50% of the medium was replaced on the 

6 th and 7th days.

Further modification to the above experiment protocol was done by performing a 

quick experiment on collagen-coated 35 mm tissue culture dish by using the above 

protocol. Morphological observation was documented after 24 h. Immediately after 48 h, 

the live/dead assay was performed on the above culture. Results showed that almost all 

the cells were dead within 48 h. Through this experiment, change in experiment protocol
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was performed by adding 1% fetal bovine serum (FBS) to the cell suspension containing 

neurobasal medium. Addition o f FBS was done to neutralize the dimethyl sulfoxide 

(DMSO) present in the thawed cells, because no serum was used in the Neurobasal 

medium for the RBNs culture.200 It was assumed that one of the reasons for cell death 

was the presence o f DMSO in cell cultures.

6.1.1.2 Protocol: 2

(1) Vial o f cells from liquid nitrogen was removed and placed in a water bath pre

heated to 37 °C.

(2) After three minutes, vial was removed and disinfected outside by wiping with 

70% ethanol.

(3) Gently, 1 mL cells were transferred (concentration o f 1.5 million cells/mL) into a 

15 mL centrifuge tube and immediately 9.8 mL o f pre-warmed Neurobasal 

medium containing 1% FBS was added dropwise onto the cells, while rotating the 

tube by hand.

(4) 500 pL o f cell suspension (containing 70,000 cells) from 15 mL tube were 

transferred onto each of 24 substrates placed in 35 mm tissue culture dish.

(5) Cells were incubated for four hours in a 37 °C, 5% CO2 incubator.

(6 ) Fresh pre-warmed medium o f 1 mL was added onto all substrates after four hours.

(7) Cells were incubated at 37 °C with 5% CO2 and medium change was done on day 

2 .

(8 ) After initial media change on day 2, 50% of the medium was replaced on the 3Td, 

5th and 7th days. Morphological observations were documented on days 1, 3, 5, 

and 7.
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6.1.2 Cell Preparation for Viability Assay

Neuronal cells were seeded and grown in fresh Neurobasal/B27 media 

supplemented with 200 mM glutamine as described above in morphological observations. 

After an observation period of 1, 3, 5, and 7 days, selected cultures were prepared for the 

cell viability assay as described in earlier protocol for Live/Dead Assay. Observations 

were monitored using Nikon Eclipse TS100 inverted fluorescent microscope.

6.1.3 Immunofluorescence Studies 
on Neurons

To confirm morphological identification and to assess phenotypic preservation of 

RBNs, a molecular neural marker was used. Mouse monoclonal Neuron Specific Enolase 

(NSE), a monoclonal antibody (mAb) widely used (and recognized) as a marker of the 

neuronal phenotype, was used.

To identify all neurons on SAM-coated substrates using this anti-NSE mAb, the 

protocol described below was used. NSE is the cell-specific isoenzyme form of the 

glycolytic enzyme enolase [2-phospho-D-glycerate hydrolase], which is found only in 

neurons and neuroendocrine cells. NSE is a useful biochemical marker o f neuronal 

differentiation and their levels determine the neuronal differentiation process occurring in 

the in vitro cultures on the substrates. NSE is present in all neurons and not restricted to a 

specific subset, it can be useful as a general marker for differentiated neurons. Moreover, 

it also suggests that neurons maintained in vitro do develop in a manner similar to that in 

vivo. NSE containing cells visualized by IHC were fixed in a solution o f 4% buffered 

formaldehyde and stained using mouse-anti-NSE serum, secondary antibody, ABC 

reagent complex, and DAB substrate. IHC staining for NSE permitted visualization of 

individual nerve cells on all the substrates.
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6.1.3.1 Protocol for IHC on Neurons

(1) After 3 ,5 , and 7 days o f culture on substrates, cells were washed three times with 

lx  D-PBS and fixed using 4% buffered formalin.

(2) The fixed cells were then rinsed two times for five minutes in PBS buffer.

(3) Non-Immune blocking serum was added onto the substrates and excess was 

blotted after 30 min.

(4) Drops o f NSE primary antibody were added to cells and were incubated for one 

hour at room temperature.

(5) Cells were rinsed four times for five minutes in PBS buffer.

(6 ) Cells were incubated for 30 min in the secondary antibody.

(7) Cells were rinsed four times for five minutes in buffer.

(8 ) ABC reagent complex was added to cells and waited for 30 min.

(9) Cells were rinsed four times for five minutes in buffer.

(10) DAB substrate was added to the cells for about 2-10 min.

(11) Cells were washed with DI water.

For negative controls, the primary antibodies are omitted from the first incubation 

medium and the samples are incubated with normal serum in PBS.

6.2 Cell Morphology and Viability

6.2.1 Results from Protocol: 1

The effects o f specific chemical functionalities on the neurite outgrowths o f 

RBNs were investigated using a set o f chemically functionalized surfaces prepared by 

SAMs with end groups o f NH2, CH3, and SH. RBNs were cultured (37,500 cells/cm2) on
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untreated and SAM-coated ITO for seven days. Figure 6.1 shows the images o f RBNs on 

different SAM-modified ITO substrates after one week in culture.

Figure 6.1 Optical images of RBNs with neurite outgrowths on different SAM-coated 
ITO substrates after one week in culture using protocol 1. (a) ITO (b) ITO-ODT and (c) 
ITO-APTES (Bar represents 40 pm).

Figure 6.1 shows that neurite outgrowths were predominantly observed on cells 

cultured on NH2 (Figure 6.1b) and CH3 (Figure 6.1c) SAM-coated ITO surfaces. 

However, the -SH  modified ITO substrates did not promote cell attachment and neurite 

outgrowth. The results shown in Figure 6 .1 indicate a need to make some changes in the 

protocol in order to get sufficient number of cells to attach to the substrate. The arrows
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are pointing towards the neuron cells on all substrates. Each arrow in Figure 6 .1 points to 

the nucleus o f neurons with extended neurites on the substrates.

6.2.2 Results from Protocol: 2

The experimental protocol was revised by adding 1% FBS to the cell suspension 

containing neurobasal medium to neutralize the DMSO. It has been assumed that the 

DMSO present in thawed cells also contributes to the cell death. The cell density was also 

increased to 140,000 cells/cm2. After 3 DIV, cells had initial neurite outgrowth activity 

all around the cell body on all o f  the substrates which is indicated by the small arrows in 

Figure 6.2.

Figure 6.2 Optical images o f RBNs after 3 DIV on different SAM-coated ITO substrates 
using protocol 2. (a) ITO (b) ITO-APTES (c) ITO-ODT and (d) PLL (Bar represents 40 
\ m ) .
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The cells on SAM-coated substrates remained more active compared to that on 

the untreated ITO as indicated by the red fluorescent dead cells and green fluorescent live 

cells in Figure 6.3 (a,b,c).

Figure 6.3 Cell viability measured using LIVE/DEAD® assay showing both live and 
dead RBNs after 3 DIV using protocol 2. (a) ITO (b) ITO-APTES and (c) ITO-ODT (Bar 
represents 40 pm).

After 5 DIV, cells continued their cytoplasmic extensions on the SAM substrates 

compared to that on PLL and untreated ITO as indicated in Figure 6.4. Each large arrow 

in Figure 6.4 points towards the cell cytoplasmic extension. Even though there was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

neurite outgrowth activity on ODT (having CH3 end group) coated substrate, they seem 

to be dead by 5 DIV as indicated by small arrow in Figure 6.4c. But, in case o f  APTES 

(having NH2 end group) the neurite extension as indicated by small arrow on Figure 6.4b 

was still alive, emanating the green fluorescent color. After 5 DIV, the cells continued to 

remain active and alive on all the SAMs substrates as indicated in Figure 6.5.

Figure 6.4 Optical images o f RBNs after 5 DIV on different SAM-coated ITO substrates 
using protocol 2. (a) ITO (b) ITO-APTES (c) ITO-ODT and (d) PLL (Bar represents 40 
pm).
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Figure 6.5 Cell viability o f RBNs showing live cells after 5 DIV using protocol 2. (a) 
ITO (b) ITO-APTES and (c) ITO-ODT (Bar represents 40 pm).

After 7 DIV, cells further continued their cytoplasmic extensions on SAM-coated 

substrates compared to that on PLL and untreated ITO as indicated in Figure 6 .6 . Each 

large arrow in Figure 6 . 6  points towards the cell cytoplasmic extension. Neurite 

outgrowth activity on ODT seemed to be dead as indicated by the area where the small 

arrow in Figure 6 .6 c points. Neurite extension on APTES continued even after 7 DIV. 

The small arrow on Figure 6 b shows the neurite outgrowth on the APTES-coated 

substrate.
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Figure 6 . 6  Optical images o f RBNs after 7 DIV on different SAM-coated ITO substrates 
using protocol 2. (a) ITO (b) ITO-APTES (c) ITO-ODT and (d) PLL (Bar represents 40 
gm ).

After 7 DIV, the cells continued to remain active and live only on APTES-coated 

substrate compared to all other substrates. Figure 6.7b indicates green fluorescent color 

produced by the live cell on the APTES-coated substrate. Figure 6.7 (a,c,d) represents the 

dead cells on untreated ITO, ODT-ITO, and PLL respectively.
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Figure 6.7 Cell viability measured using LIVE/DEAD® assay showing both live and 
dead RBNs after 7 DIV on (a) ITO (b) ITO-APTES (c) ITO-ODT and (d) PLL using 
protocol 2 (Bar represents 40 pm).

6.3 Immunohistochemical Study

IHC analysis was conducted against NSE levels on cells cultured on all the 

substrates. Figure 6 .8 (a,b,c) illustrates RBNs on APTES coated ITO, ODT coated ITO, 

and PLL substrates respectively. The brown reaction indicates that an antigen antibody 

complex has formed a positive immunoreaction and the RBNs did not lose their in vivo 

behavior in this in vitro environment. The cells maintained their NSE levels which is
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needed for continuous outgrowth o f the cells. The arrows point the brown reactions 

indicating the formation o f an antigen-antibody complex.

Figure 6.8 Immunohistochemistry observations after 7 DIV on (a) ITO-APTES (b) ITO- 
ODT and (c) PLL using protocol 2 (Bar represents 10 pm).

6.4 Discussions

The results o f this study presented above provide strong evidence that cellular 

attachment to surfaces is influenced by small changes in the substratum chemical 

composition and molecular structure. In a study performed by Schaffner et al., 

hippocampal cells were grown in both serum containing and serum free media.201 The
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results suggested that in the absence of serum, the substrate plays a more dominant role in 

determining the nature o f the cell-surface interactions.

The results from our study performed on SAM-modified ITO substrates suggest 

that in the absence of serum, cell adhesion is rare. This result was unexpected, as George 

Whitesides group showed that cells plated from serum-free medium attached on both

909hydrophobic and hydrophilic areas. Another experiment was performed by our group 

under the same serum free medium to better understand the underlying mechanism. This 

time, the cell density was increased by two-fold and the medium was changed much 

sooner than the earlier experiment. No cells were observed till 5 DIV on substrates. After 

5 DIV, neuronal attachment o f RBNs was observed predominantly on substrates modified 

with amino and methyl groups rather than on -SH  group and control substrates. Similar 

results in adhesion were observed by Yukie et al., where nerve cell adhesion on different 

chemically functionalized surfaces prepared by SAMs o f alkanethiolates with NH2, 

COOH, and CH3 end groups on patterned gold surfaces were studied. 195 However, their 

results still indicated a need for a change in protocol in order to get sufficient number of 

cells to be attached to the substrate. The experimental protocol was changed by adding 

1% FBS to the cell suspension containing Neurobasal medium. Following the protocol 

modification, a dramatic increase in cell adhesion was observed, with cells remaining 

viable until one week in culture. Better cell adhesion was observed on SAM-modified 

ITO surface in comparison to the untreated ITO and PLL surfaces. Similar results in 

adhesion were observed by Yukie et al. 195 In our work we observed better cell adhesion 

on amino group compared to methyl group SAM.
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LIVE/DEAD® assay performed on the above substrates confirmed that the cells 

interacted more specifically to the amino end group o f SAM substrate. The results also 

suggest that the viability o f cells were found in this order: NH2 > CH3 > PLL > ITO when 

cultured over a period o f one week. Nerve cell phenotype was studied by performing IHC 

using the NSE antibody. A significant amount of immunopositive staining was observed 

on all SAM-coated ITO substrates followed by ITO and PLL substrates over a week in 

culture.

Overall, most o f the differences in cell-surface interactions on the different 

substrates were observed in the first 3-5 days o f cell culture. While adhesion was greatest 

on ITO-ODT, viability was found to be more prominent on both SAM-coated substrates. 

The differences in cell phenotype, between the experimental and the positive control 

surfaces diminished over time (seven days) in culture as the cell density decreased due to 

the cell death on all the substrates.

In summary, neurons adhered well to all SAM substrates during the one week 

observation. Neuronal cell viability analysis indicated that more cells grew well on SAM 

substrates than on ITO and PLL substrates. Better phenotype maintenance o f neurons 

were observed on the SAM-coated substrates than control substrates, and lastly, a 

decrease in cell density was noticed on all substrates from day one to day seven.
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CHAPTER 7

HEPATOCYTE CELLS ON SAM-MODIFIED 

ITO SUBSTRATES

7.1 Hepatocvtes and Their Culture

The liver is the primary organ involved in the metabolism of foreign compounds. 

It comprises o f a complex, metabolic array of vasculature, endothelial cells and 

parenchymal cells performing a multitude o f functions. Figure 7.1 depicts the cross 

section of adult form of the liver.203,204

Figure 7.1 Cross-section o f the adult liver showing differentiated hepatocytes.203

87
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It consists of differentiated hepatocytes (H) separated from a fenestrated 

endothelium (E) by the Space o f Disse. Lipocytes (stellate or Ito cells), which encircle the 

sinusoid are well-positioned for both communication with hepatocytes and have the 

potential to modify the extracellular space by secretion o f extracellular matrix. Biliary 

ductal cells contact hepatocytes toward the end of the hepatic sinusoid (not depicted) and 

Kupffer cells (the resident macrophage), and Pit cells (a type o f natural killer cell) are 

free to roam through the blood and tissue compartment. Thus, the adult liver provides a 

scaffold for many complex cell-cell interactions that allow for effective, coordinated 

organ function. The primary functions o f the liver is detoxification; provide metabolic 

activity, glycogen storage, urea production, and release o f  protein, carbohydrates and 

other metabolic wastes.205 Hepatocytes comprise about 60% of the liver and function to 

remove a number o f toxins from the body and produce proteins like albumin and 

transferins.206

Hepatocytes rapidly lose their liver specific functions when grown under standard 

in vitro conditions.207 Immortalized hepatocyte cell lines have been used for in vitro 

testing of drugs, but the lack o f phenotypic gene expression makes them useless. Also 

because of the limitations o f liver slices, such as short-term viability and diffusional 

barriers, primary cultures o f hepatocytes have become the “gold standard” for in vitro 

testing of drugs. Isolated hepatocytes have been used as models in various culture

systems for studying the toxicological response o f drugs, since they closely resemble the

208 211liver and provide a metabolic profile o f a drug in vitro, closest to that found in vivo. 

Unlike fibroblasts which can attach to a number o f surfaces due to their ability to secrete 

fibronectin and other ECM proteins, hepatocytes are extremely selective in their
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attachment. Further, hepatocytes are anchorage dependent and lose their functionality in 

suspension within h.

A variety o f culture methods have been developed to retain most o f the

212 213hepatocytic functions such as culture on or in basement membrane gels, ’ co-cultures

0 1 A. 0 1 ^with other liver-derived and nonliver cell types, ’ ’ culture in collagen gel

sandwiches210,216 and polymers .217,218 Collagen is an important component o f the 

hepatocyte basal membrane and promotes attachment o f hepatocytes in vitro. Cells 

cultured on collagen-coated surfaces showed increased urea production and low LDH 

release .210 Collagen was observed to provide the closest alternative to hepatocyte 

architecture in vitro. However, biodegradability and cross-link formation are some o f the 

limitations o f using ECM modified surfaces.

High molecular weight polymers like polyethylene glycol (PEG) , 219,220 

polyglycolic acid (PGA) 221 and polylactic acid (PLA) 219,222 were used to develop 

scaffolds for hepatocyte culture. However, these polymers lose their strength upon long 

culture periods. Primary rat hepatocyte culture on porous poly-tetraflouroethylene 

(PTFE) showed increased protein secretion and polygonal morphology over culture 

periods varying from 24-48 h. The lack o f stability o f polymer scaffolds over extended 

culture periods make them ineffective for cell culture.

Other alternatives used to increase hepatocyte viability include culture on 

polyelectrolyte multilayers, hydrogels, gold substrates and culture as spheroids. 

Primary rat hepatocytes cultured on polyelectrolyte multilayer films with poly (4- 

styrenesulfonic) acid as the topmost layer attached and spread on the PEM surface and 

liver specific functions like urea and albumin production showed an increase with
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duration in culture.224 Porcine hepatocytes immobilized on gold colloids showed 

increased protein and albumin production upon culture. The LDH release was minimal 

which indicated that the cells suffered limited damage upon culture.225 Murine 

hepatocytes entrapped within PEG hydrogels were assessed for cell viability and total 

protein production over a period o f seven days. The results indicated that the cellular 

viability was not affected by the hydrogel concentration, but total protein production 

decreased with increase in PEG concentration. 10 The use o f growth factors and cytokines 

like hepatocyte growth factor,227 epidermal growth factor, 228 transforming growth factor

‘7 9 0  7 9 0  791(TGF)-alpha and beta ’ and norephinephrine have been shown to promote cellular 

viability, but the cells eventually de-differentiate and lose their functionality.

Co-culturing o f hepatocytes with different cell types have been studied 

extensively within the fields o f toxicology as means o f maintaining specific hepatocyte 

functionality. Fibroblasts,215 stellate cells,203 liver endothelial cells,232 liver epithelial 

cells233 have been co-cultured with hepatocytes. Co-culture helps retain the polymeric 

shape o f isolated hepatocytes upon adherence. Hepatocyte co-cultures have been shown

7 0 9  7 1 4to express high levels o f liver specific proteins like albumin. ’ However, the exact 

mechanism of cell-cell interaction in these co-cultures is not yet understood and is being 

investigated by a number o f research groups. 3T3 fibroblasts were co-cultured with 

primary rat hepatocytes to study cellular functionality and viability. The co-cultures 

maintained over a period o f two weeks indicated high cell viability, maintenance o f liver 

specific functions like the secretion of albumin and P450 cytochrome activity.234 Cell

79S 7AOculture platforms are incorporated in designing cell-based bioreactors. ' These 

bioreactors sustain cellular viability without impeding nutrient and metabolite exchange.
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A suitable scaffold ensures successful cell culture and permits nutrient perfusion by 

enabling a homogenous distribution o f mass and flow transfer catering to the metabolic

9 -3 ^  9 9 0
requirements o f the cells. ’ However, most o f the methods described above have been 

limited in controlling prolonged cell viability and functionality.

SAMs o f alkanethiolates on noble metals form ordered and uniform monolayers 

and have been widely used as models for cell culture studies. Mammalian cell lines 

cultured on SAM-modified surfaces have indicated higher cell viability, maintenance o f 

functionality and expression o f cell specific functions.241,242 In this chapter, we have 

studied primary hepatocyte culture on different SAM-modified ITO substrates in an 

attempt to mimic the cellular microenvironment. Liver specific functions such as total 

protein synthesis and LDH leakage along with cell morphology, viability and 

proliferation (quantitatively) were determined. These studies would provide valuable 

resources for studying cell-substrate interactions and arrive at a suitable choice of 

substrate for the development o f stable SAM based cell culture platforms (SCCPs) for in 

vitro drug testing.

7.2 SAM Preparation and Characterization

7.2.1 Substrate and SAM Preparation

ITO-coated glass slides were cleaned by sonication in toluene, acetone, ethanol 

each for 5 min and then in DI water for 30 min. The substrates were then rinsed, N 2- 

dried, and used. SAMs of -C H 3 and -COOH end group were formed on ITO by 

immersing the samples in the neat liquid o f ODT and MPA for one hour, followed by 

rinse in ethanol and N2-dried. SAMs o f -SH  and -N H 2 end group were formed by 

immersing the substrates in 1 mM ethanolic solution o f MPS and APTES for 24 h,
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followed by rinse in ethanol and N 2-dried. All the samples were sterilized in 70% ethanol 

for one day before seeding the cells.

7.2.2 Characterization

7.2.2.1 Contact Angle Measurements

After the SAM deposition, the surface is first tested for the presence o f the 

molecule using the contact angle measurements. Figure 7.2 shows the contact angle 

measurements done on three different SAM substrates and bare ITO.

Figure 7.2 Contact angle measurements o f (a) ITO (45-48°) (b) ITO-APTES (35-38°) (c) 
ITO-MPS (89-91°) and (d) ITO-ODT (103-105°).

The contact angle measurements show that ITO modified with APTES presents a 

highly hydrophilic surface while that o f ODT modified substrates are highly 

hydrophobic. The substrates modified with MPS are intermediate between that o f 

hydrophilic and hydrophobic surfaces.
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1 .2 .2.2 RA1RS and ATR

To further confirm these findings, ATR was carried on all the substrates except on 

ITO-ODT (RAIRS used). Figure 7.3(a) shows the RAIR spectra o f ODT SAM on ITO. 

By analogy to that o f HDT on ITO243, the asymmetric and symmetric bands o f methylene 

(CH2) stretches are observed at 2917 and 2850 cm'1, while the asymmetric C-H stretching 

mode of CH3 is observed at 2964 c m 1 and can infer that ODT forms a close packed, 

stable monolayer structure on ITO. Figure 7.3 (b) shows the ATR spectra o f APTES on 

ITO in 1500-1800 cm ' 1 range. The strong to medium peaks at 1651 cm ' 1 and 1639 cm ' 1 

corresponds to the primary amine N-H bending. While the peak observed at -3400 cm ' 1 

in Figure 7.3 (c) corresponds to the primary amine N-H stretch. Figure 7.3 (d) illustrates 

the ATR spectra o f MPA on ITO. The peaks at 1708 cm ' 1 and 1718 cm ' 1 corresponds to 

the acyclic carboxylic group while the strong peak at 1653 cm ' 1 corresponds to the 

carboxylate anion. Figure 7.3 (e) shows the ATR spectra o f MPS on ITO. The peak at 

2605 cm ' 1 corresponds to the thiol S-H stretching.
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Figure 7.3 RAIR spectra o f (a) ODT on ITO and ATR spectra o f (b) APTES on ITO in 
the range 1500-1800 cm ' 1 (c) APTES on ITO in the range 3500-3300 cm ' 1 (d) MPA on 
ITO and (e) MPS on ITO
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7.3 Hepatocyte Isolation and Seeding

Primary cultures are derived directly from excised, normal animal tissue and 

cultured either as an explant culture or as a single cell suspension. The preparation of 

primary cultures is labor intensive, and they can be maintained in vitro for only a limited 

period o f time. During their relatively limited life span, primary cells usually retain many 

of the differentiated characteristics of the cell in vivo.

Hepatocytes were isolated from adult Sprague-Dawley rats, 6-8 weeks old 

weighing 250-300 g using the collagen perfusion technique.244 The animals were 

maintained in a standard controlled environment and the isolation performed as dictated 

by the Public Health Service Policy Human Care and Use o f Laboratory Animals 

administered by the Institutional Animal Care and Use Committee at the University o f

• • 2 d -Louisiana at Monroe. The liver was initially perfused with Ca -free Hank’s buffer and 

dissociated with collagenase type II (1 mg/mL: Sigma) in Hank’s buffer containing 5 

mmol/L CaCl2 . The isolated hepatocytes were resuspended in Hank’s buffer containing

1.2 mmol/L CaCb and 0.6 mmol/L MgSCL. The cells were then filtered through 90 pm 

nylon mesh (per-col gradient) and counted. Their viability was tested using tryphan blue 

exclusion test. A viability o f 95-99% was achieved in most cases. The cells were then 

suspended in Williams’ medium E (Invitrogen corporation) containing 2% L-glutamine, 

and 1% penicillin and streptomycin.

Cells in the density o f 1 x 105 cells were seeded on each substrates with 250 pi of 

media and incubated at 37 °C (5% CO2) for 4 h. After 4 h, remaining 750 pL media was 

added and the substrates incubated.
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7.4 Cell Morpholoev

Figure 7.4 shows the morphology o f the cells in the absence o f L-Glutamine in 

the media after 24 h. It can be observed that few numbers of cells have attached on the 

surface with no cell clustering. Much cell debris is observed on the surface o f the SAM- 

modified substrates indicating cell apoptosis. The initial attachment is attributed to the 

charge, in case o f  amino (-NH2) group, and hydrophobic nature in case of methyl (-CH3) 

and thiol (-SH) groups. The number o f attached cells on ITO and ITO-APTES are more 

compared to other substrates because o f the electrostatic interaction o f negatively charged 

hepatocytes with the positively charged -N H 2 groups (pKa of RNH3+ is ~ 9) at 

physiological conditions (pH ~7.4) wherein the other groups are neutral.

Figure 7.5 shows the phase contrast images o f  hepatocytes on different SAM- 

modified ITO substrates and also on bare ITO and tissue culture plastic (TCP) in the 

presence o f L-Glutamine in the media. Cells adhered to the surface showed round shapes 

with part o f the cells transformed into polygonal shape after 24 h. It was observed that on 

ITO modified with -N H 2 and -C H 3 end groups, the majority o f hepatocytes presented 

polygonal morphology similar to that observed on TCPs. Binuclei cells were observed in 

the majority o f hepatocytes and the boundary between hepatocytes was perfectly clear 

and bright, illustrating the formation and participation o f bile canaliculi. Their 

morphology changed from spherical to a monolayer flat polygon and was maintained till 

the end of the culture.
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Figure 7.4 Morphology of rat hepatocytes after 24 h in the absence o f L-Glutamine on 
(a) Control (TCP) (b) ITO (c) ITO-APTES (d) ITO-MPS and (e) ITO-ODT (Bar 
represents 40 pm).
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Figure 7.5 Morphology of rat hepatocytes after 24 h in the presesnce o f L-Glutamine on 
(a,b) Control (TCP) (c,d) ITO (e,f) ITO-APTES (g,h) ITO-MPS and (ij) ITO-ODT 
(Black bar represents 10 pm and white bar represesnts 40 pm).

7.5 Cell Viability

Figure 7.6 shows the LIVE/DEAD® response o f hepatocytes cultured on different 

SAM-modified ITO substrates. The cells exhibited clustering with the presence o f 

binucleate cells on all the SAM-modified ITO surfaces. The LIVE/DEAD® response o f 

hepatocytes seeded on ITO-APTES substrates indicated a higher degree o f  viability with 

a lower number o f dead cells. Cell attachment was uniform and clustering was observed. 

The LIVE/DEAD® response on ITO-MPS showed decreased hepatocyte viability on 

these substrates. This result is evident from the increased red fluorescence due to
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ethidium dibromide activity. Cell clustering is observed on these substrates also. A 

limited number o f viable cells were observed on ITO modified with ODT as seen in 

Figure 7.6. Random cell clustering was observed and there were a limited number o f 

binucleate cells.

Figure 7.6 Cell viability o f  hepatocytes assessed using LIVE/DEAD® assay on (a) ITO 
(b) ITO-APTES (c) ITO-MPS and (d) ITO-ODT after 48 h (Bar represents 40 pm).

The LIVE/DEAD® assay qualitatively assessed hepatocyte viability on SAM- 

modified ITO substrates. Common hepatocyte characteristics like cell clustering and 

binucleate cells were observed. The increased cell density enabled the visualization o f
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live and dead cells at the same wavelengths. Cell viability was visibly higher on ITO and 

ITO modified with APTES when compared with ITO-ODT and ITO-MPS.

7.6 Cell Proliferation

Hepatocyte viability was quantitatively evaluated using the MTT assay. The 

principle of the MTT assay is the conversion o f (3-(4,5-Dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide) to form purple formazan in the presence o f active 

mitochondrial reductase enzymes in viable cells. The amount of formazan produced is 

thus directly proportional to cell viability and can be measured spectrophotometrically 

using a spectrophotometer.

Hepatocytes were seeded with densities varying from 100,000-750,000 cells/ 

substrate. The cells were treated with the MTT reagent and incubated for four hours. The 

purple formazan crystals formed were dissolved using the MTT solvent and the 

absorbance was measured at 595 nm. MTT activity was measured after 24 and 48 h of 

seeding. The resultant absorbance was calculated and expressed as a function o f time of 

culture. A standard curve was established measuring MTT activity as a function o f cell 

density. Results were expressed as a mean o f triplicate experiments (j^error).

A calibration curve of variation in absorbance as a function o f cell density was 

first obtained. Figure 7.7 shows the plot of optical density versus hepatocyte density. The 

optical density increased with increase in cell density. The results were normalized using 

linear regression and a standard curve was obtained.
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Figure 7.7 Variation o f optical density as a function of hepatocyte density.

Hepatocyte viability was then evaluated by performing the MTT assay on cells 

seeded on different SAM-modified ITO substrates and control surfaces. Initially, a cell 

density of 100,000 cells/substrate was seeded on the substrates. The cells were 

maintained under normal humidified conditions for a period o f 48 h and the viability was 

assessed after 24 and 48 h o f culture. Figure 7.8 shows a plot o f cell density on SAM- 

modified ITO substrates as a function o f time in culture.

These cell densities were obtained by comparing the corresponding optical 

densities (mean o f 3 values) with the standard curve (Figure 7.7). After 24 h higher cell 

density was observed on ITO and ITO-APTES substrates compared to ITO-MPS and 

ITO-ODT. After 48 h, the cell density increased rapidly with increase in culture time with 

higher cell densities observed on ITO-APTES. Since the initial cell density was 100,000
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and after 24 and 48 h we observed cell densities > 100,000 we concluded that the cells 

proliferated on these substrates. This finding was in contradiction to the hypothesis that 

isolated hepatocytes do not proliferate. In general, the common trend observed in these 

experiments was that higher cell viability was seen on SAM-modified ITO compared to 

bare ITO surface.
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Figure 7.8 Hepatocyte cell proliferation on different SAM-modified ITO surfaces at 24 
and 48 h. Data represent the mean±S.D, n=3.

7.7 Immunohistochemical Detection of Collagen

Type I collagen is a predominant component o f bone and skin and is present as 

structural scaffolds in organs like the liver and tissue. Functional cells secrete Type I 

collagen in their cytoplasm, which can be immunohistochemically detected by employing 

suitable antibodies raised against it. The production of Type I collagen serves as a marker 

o f phenotypic maintanence o f hepatocytes cultured on SAM-modified surfaces.
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In our studies, hepatocyte functionality and phenotypic maintanence were 

qualitatively evaluated by using immunohistochemical techniques. The cells were 

incubated using a suitable primary antibody raised against Type I collagen. 

Immunolocalization o f the primary antibody was performed using the peroxidase- 

antiperoxidase technique (VECTASTAIN Elite ABC kit mouse, Vector Laboratories, 

Burlingame, CA).

Hepatocytes at densities o f 2000 cells/substrate were seeded on ITO and SAM- 

modifed ITO substrates. The lower cell density was chosen to permit proper visualization 

o f the cellular response. The presence o f Type I collagen in the cytoplasm is indicated by 

the formation o f a brown color. The intensity o f the brown reaction is directly 

proportional to the amount o f collagen produced by the cell. Minimal cell attachment was 

observed on ITO substrates (Figure 7.9). Visualization o f IHC response showed the 

formation of a brown color. Cell aggregation was minimal.

The IHC response o f hepatocytes cultured on ITO-APTES is shown in Figure 7.9 

(b). Microscopic observations showed an increased cell attachment on ITO-APTES. 

Visualization o f cell response using DAB substrates showed the formation o f an intense 

brown reaction. The cells also showed signs o f clustering. Figure 7.9 (c) shows the 

visualization of Type I collagen produced by hepatocytes cultured on ITO-MPS surfaces. 

A light brown reaction is observed. Cellular damage was observed on these surfaces. 

Figure 7.9 (d) shows Type I collagen response of hepatocytes cultured on ITO-ODT. 

Cellular attachment was observed to be minimal on these substrates and cellular 

disintegration was observed. The brown reaction observed was less intense 

comparatively.
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Figure 7.9 Immunohistochemical detection o f Type I collagen observed on (a) ITO (b) 
ITO-APTES (c) ITO-MPS and (c) ITO-ODT (Bar represents 40 pm).

Type I collagen is a marker o f cell phenotype and functionality. Functional 

hepatocytes produce Type I collagen in their cytoplasm. IHC techniques were used to 

measure the collagen content in the cellular cytoplasm. The collagen produced was 

visualized as a brown reaction. The intensity of the brown color produced in the 

cytoplasm of hepatocytes seeded on ITO-APTES was higher when compared to the other 

substrates. Cellular disintegration was observed on ITO-ODT and ITO-MPS. The most 

important observation made in these studies was the production o f collagen by
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hepatocytes on all the substrates which served as an indicator o f maintanence o f the 

hepatocyte phenotype.

7.8 Lactate Dehydrogenase Leakage

The substrates influence on cellular cytotoxicity is assessed by measuring the 

LDH release by dead or damaged cells. LDH is a stable cytoplasmic enzyme present in 

the cytoplasm of viable cells. When cell death occurs or when the cytoplasm is damaged , 

there is LDH leakage into the cell culture media. Thus a measure o f LDH release is an 

indicator of cellular cytotoxicity. Although the activity o f LDH can be measured utilizing 

pyruvate or lactate as a substrate, the LDH-L Reagent used in our studies uses lactate and 

is based on the recommendation o f the IFCC. LDH catalyses the oxidation of lactate to 

pyruvate reducing NAD to NADH. The activity o f LDH is determined by observing the 

absorbance at 340 nm.

Hepatocytes at densities o f 100,000 cells/substrate were seeded on ITO and SAM- 

modifed ITO substrates. The substrates were maintained at 95% O2 and 5% CO2 under 

normal humidified conditions. The media was removed after specific intervals o f time 

over a 48 h period and the LDH reagent was added to it. The LDH activity was measured 

using the spectrophotometer. LDH release (U/L) was measured as a function of duration 

in culture. The results obtained were expressed as mean o f three independent trials (+ 

standard deviation). Control cultures were established on tissue culture dishes and bare 

ITO surfaces. From the absorbance measurements, the LDH concentration was calculated 

using the Equation 3.5 given in Chapter 3.

Figure 7.10 shows LDH activity plots o f hepatocytes cultured on SAM-modified 

surfaces versus time in culture. The general trend observed was the decrease in LDH
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activity with increase in time in culture. Initial LDH activity from hepatocytes was 

observed to be high on bare ITO (93.05 U/L) and control (150.7 U/L) when compared to 

hepatocytes cultured on ITO-APTES, ITO-MPS and ITO-ODT. Among the SAM- 

modified surfaces, LDH release was higher on ITO-ODT (90.1 U/L) followed by ITO- 

MPS and minimal on ITO-APTES.
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Figure 7.10 LDH release by hepatocytes from different SAM-modified substrates 
following 12, 24 and 48 h after seeding. Data represent the mean±S.D, n=3.

LDH activity showed a rapid decline following 24 h o f culture on all the 

substrates. ITO showed a lower LDH release (19.366 U/L) compared to the other SAM- 

modified surfaces. LDH release from hepatocytes cultured on SAM-modified surfaces 

showed similar trends, with a large decrease in LDH activity with increase in culture 

time. After 48 h in culture, hepatocyte cultures showed further decrease in LDH activity
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on all the surfaces except on the control cultures which showed a slight increase in LDH 

release.

An increased concentration o f LDH in the cell culture supernatant, released by 

cell damage or death would increase its activity upon reaction with the LDH reagent. 

The above study o f LDH activity (Figure 7.10) indicated a decrease in LDH activity with 

increase in time in culture. LDH activity was higher initially due to cytotoxicity caused 

by placing cells in a foreign environment. Subsequent adaptation to the new environment 

resulted in decreased cytotoxicity and LDH activity.

7.9 Total Protein Synthesis

The total concentration o f accumulated protein in culture media was determined 

using Bradford assay. Viable cells are metabolically active and tend to discharge protein 

into the media. Maintanence o f protein production is a key indicator o f hepatocyte health 

and functionality. The serum free cell culture media was replaced after 12, 24 and 48 h of 

culture, stored at 4 °C and analyzed.

The amount of protein released by hepatocytes cultured on SAM-modified 

surfaces was determined by the addition of the protein assay to the culture media and 

measuring the absorbance. A standard curve for the protein samples was established 

using bovine serum albiumin (BSA) as a standard. Protein concentrations were reported 

in micrograms.

Figure 7.11 shows the standard curve obtained by measuring the absorbance for 

varying concentrations o f protein in solution. The results were normalized and linearly 

fitted. The absorbance increases with increase in protein concentration. The results are 

expressed as mean o f three separate experimental trials (±S.D)(n=3).
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Figure 7.11 Typical standard curve for bovine serum albumin. O.D.595 corrected for 
blank. 1.25-25 pg/mL x 0.8 mL = 1-20 pg protein.

Figure 7.12 shows the total protein produced by hepatocytes cultured on ITO and 

SAM-modified ITO surfaces measured at intervals o f 12, 24 and 48 h. The concentrations 

were determined by relating the measured absorbance to the corresponding protein 

concentration from the standard curve (Figure 7.11). The general trend observed is 

increased protein production by hepatocytes cultured on all the substrates with increase in 

time in culture. After 12 h, protein production by hepatocytes on SAM-modified ITO 

surfaces and bare ITO control was ~ 3 pg (n=3) with an increase in protein production 

following 24 h in culture. Hepatocytes cultured on ITO-APTES and ITO-ODT (~ 8  pg) 

produced identical amounts o f protein. After 48 h in culture, ITO-APTES showed an 

increased protein production (18.75 pg) compared to ITO-ODT (13.4 pg) and ITO-MPS 

(11.42 pg).
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Figure 7.12 Total protein synthesized by hepatocytes on SAM-modified ITO surfaces 
measured at intervals o f 12, 24 and 48 h. Data represent the mean±S.D, n=3.

The total protein production by hepatocytes seeded on SAM-modified surfaces 

provides a quantitative indication of cell viability and functionality since functional cells 

would only be able to carry out normal metabolic functions. The establishment o f a 

standard curve (Figure 7.11) and determining the absorbance for various protein 

concentration serves as a standard for comparing measured absorbance to determine the 

protein content produed by cultured hepatocytes. Protein production is characteristic of 

normal hepatocyte functionality and the results obtained from the total protein 

measurements provides a validation of the same.
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7.10 Discussions

Hepatocytes were isolated from adult male Sprague-Dawley rats (3-5 months old, 

150 g) using the collagen perfusion technique. High viability (90-95%) of isolated 

hepatocytes is obtained from these methods. Hepatocyte viability has been studied on 

various substrates like ECM components, hydrogels and PEMs but the culture o f 

hepatocytes on SAM-modified surfaces have not been investigated before.

In most cases, the presence o f serum in media causes protein adsorption onto 

SAM-modified surfaces regulating cellular adhesion. ’ ’ In our studies, we have used 

Williams E medium (Gibco® cell culture systems, Carlsbad, CA), a serum free medium 

supporting long-term culture o f isolated liver cells. Williams E medium contains 

additional amino acids including asparagine, cysteine, proline and glutamate which 

appears to be an essential component for DNA synthesis in rat hepatocytes.245 Isolated rat 

hepatocytes have been observed to express cell adhesion molecules like cadherins and 

integrins, which mediate cell-cell and cell-matrix interactions respectively. Molecular 

expression of cadherins and integrins increased upon culture on poly-A-p-vinylbenzyl-D- 

lactonamide (PVLA) surfaces in the presence o f serum free media .246

In our case we assume that the charge and the hydrophobic nature associated with 

the SAM had an influence on the initial hepatocyte adhesion. Hepatocytes, like many 

other cell types possess a negative surface charge. At a neutral pH, the -N H 2 end group 

o f APTES SAM is positively charged. The presence o f opposite charges on the 

hepatocytes and the SAM surface leads to the formation o f strong electrostatic forces o f 

attraction, which along with the expression o f adhesion molecules causes increased 

cellular attachment on ITO-APTES. ITO-ODT and ITO-MPS remain neutrally charged at
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pH 7; hence, there is an absence o f electrostatic forces between the SAMs and the cells 

and therefore exhibit comparatively weaker adhesion. In case o f ITO-ODT and ITO-MPS 

initial attachment o f hepatocytes is attributed to the tethering o f the hydrophobic groups 

(-CH 3 and -SH) to the hydrophobic groups present on the hepatocyte surface with the 

release o f several water molecules.

A study o f cellular morphology on SAM-modified surfaces showed initial cellular 

attachment on ITO-APTES followed by cellular clustering. Cells showed limited signs of 

stress, and there was a limited decrease in cell density. Hepatocyte cultures on ITO-ODT 

and ITO-MPS showed initial cell clustering but exhibited a rapid decrease in cell density 

with increase in culture period. There was good attachment o f hepatocytes on ITO 

substrates because o f the initial negative charge present on the surface.

Phase contrast images o f hepatocytes on ITO and SAM-modified ITO showed 

signs o f proliferation after 24 and 48 h. The proliferation was quantitatively validated by 

using MTT-based assay. The MTT assay measured the formazan activity produced by the 

conversion o f MTT by viable cells. Cell proliferation was observed on all these 

substrates. This finding is in contradiction to the hypothesis that isolated hepatocytes do

OAH OASinot proliferate in vitro. ’ However, Gu et al. have been able to create a hepatocyte/ 

colloid interface upon which cultured porcine hepatocytes showed increased cell number 

following 12 to 24 h in culture.

In our case, the proliferation of hepatocytes is attributed to the presence o f L- 

Glutamine in the media. It can be seen from Figure 7.4 that in the absence o f L- 

Glutamine there is no proliferation. It is reported that L-Glutamine causes proliferation in 

many cells including intestinal epithelial cell lines,249 porcine jejunal cell line (IPEC-
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J2) , 250 human histiocytic lymphoma cells,251 Caco-2 cell252 etc due to production of 

extracellular signal-regulated kinases (ERKs). In vivo studies done on rats with ligated 

common bile duct (CBD) suggested that incorporation o f glutamine attenuated or 

abolished hepatocyte apoptosis. Also glutamine incorporated in malnourished rats 

promoted growth o f the remnant liver, maintained cellular proliferation and hepatic 

morphology254 The exact mechanism of in vitro proliferation o f hepatocytes due to 

glutamine is not understood and needs to be investigated.

Hepatocyte functionality and phenotypic preservation was studied by measuring 

the ability o f hepatocytes to produce Type I collagen. Functional cells retain the ability to 

produce functional proteins like Type I collagen. The presence o f Type I collagen was 

detected using primary antibodies raised specifically against it. Antigen-antibody 

conjugates were visualized using suitable markers. Hepatocytes cultured on all the 

surfaces produced the brown color response, indicative o f their functionality. Cell 

spreading was observed on some o f the surfaces. Cell damage was seen, which could 

have occurred during the process o f fixing and staining.

Initial responses indicated increased cytotoxicity with increase in culture period 

on all the substrates. LDH release is higher because the hepatocytes take a longer time to 

adapt themselves to the substrates. After 24 and 48 h, the LDH release is minimal, which 

indicates much less cytotoxic damage to the cells. Protein production by functional 

hepatocytes is a key indicator o f cellular viability and health. They provide valuable 

information about the effects o f surface properties on the cellular response and vice- 

versa. The total protein content in solution released by cultured hepatocytes was
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measured using the method of Bradford. This method was independent o f interference 

from serum proteins since the serum free media was employed for cell culture.

In summary, these results provide experimental validation that cellular response is 

influenced by a number o f properties like nature o f the substrate and culture conditions. 

Since there is no previously established work studying hepatocyte culture on SAM- 

modified surfaces, further studies to study specific protein production, long term viability 

and biocompatibility could be performed to understand the cell-substrate interactions 

better. These results are extremely useful in the development o f biomedical devices like 

CCPs and bioreactors, which permit researchers to understand cell-biomaterial 

interactions better.
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CHAPTER 8 

THREE-DIMENSIONAL CELL-BASED 

BIOREACTORS

8.1 Cell-Based Bioreactors

In order to achieve physiologically meaningful functions in tissue engineering, it 

is necessary to culture cells at higher density and larger numbers.255,256 This objective can 

not be fully realized using 2D surfaces presented in previous chapters. Also continuous 

nutrition and oxygen supply and waste removal through the culture medium have to be 

ensured for proper growth.257 In conventional cell culture formats such as dishes and 

macroscale bioreactors, it is quite difficult to realize the delivery of a sufficient amount of 

those substances throughout the cultured tissue. This is due to the difficulty in designing 

and fabricating large complex bioreactors in which the cells are fed by a spatially 

homogeneous distribution o f the fluid flow. Microsystems technology enables us to 

realize microfluidic channels suitable for such oxygen and nutrition supply. ’ In this 

regards, new approaches to microfabricated bioreactors are more and more 

investigated.261 Two-and/or three-dimensional structures have been fabricated to cultivate 

various types o f mammalian cells with various materials, such as silicon, silicone 

elastomer, and biocompatible and biodegradable polymers. ' In particular, silicon-
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and silicone elastomer-based bioreactors have been developed for liver cell cultures in

'y'i’7 'yf.'i
perfusion circuits. ’

Cell-based bioreactors have also been used as biosensors to monitor physiological

' J /TQ  ' J ' J f i

changes induced by exposure to toxicants, pathogens, or other agents. ' Recent 

advancement in cell culture methods and micro fabrication technologies have contributed 

to the development of cell-based biosensors for the functional characterization and 

detection of drugs, pathogens, toxicants, odorants, and other chemicals. Electrically 

excitable cells such as neurons and cardiomyocytes are particularly useful in this regard 

as the activity o f  the cells can be monitored using microelectrodes.271 Many other non-

'j ' i h  " iqq  '7*7/7
excitable cells such as hepatocytes ’ and fibroblasts have also been used to assess 

and predict the effect o f toxicants.

In this research, we have tried to design and develop a SAM-based 3D system 

based on microfluidic channels for in vitro culture of mammalian cells. HDFs were used 

as the model cells. These devices find helpful in assessing different cell functions and can 

also be used for toxicological and pharmacological testing o f chemicals and 

pharmaceuticals. Our goal is to develop an in vitro model that can inexpensively and 

realistically test the response o f humans and animals to various chemicals. The design of 

the system is based on a physiologically based pharmacokinetic (PBPK) model. A PBPK 

model is a mathematical representation o f the body as interconnected organ 

compartments.273' 275 The requirements of the PBPK model are: (1) The ratio o f the 

chamber sizes and the liquid residence times in each compartment should be 

physiologically realistic ,275 (2) Each chamber should have a minimum o f 104 cells to 

facilitate analysis o f chemicals,275 (3) The hydrodynamic shear stress on the cells should
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be within physiological values (< 2 dyn/cm2) , 237 (4) The liquid-to-cell ratio should be 

close to the physiological value ( 1 :2 ) . 275

8.2 Simulation of Microfluidic Channels 
in the Bioreactor Using CoventorWare™

A single chamber/device containing microfluidic channels was simulated using

CoventorWare™ software. Residence time o f 25 sec, used for hepatocytes, and shear

stress were the two parameters that were considered for the simulation:

Reqtiired simulation time = 25 sec, (8.1)

Hydrodynamic stress - ( 2  —14) dyns I cm 2 -  (2 -1 4 ) jcIO-7M P a , (8.2)

Residence time = Vo,ume ° f  the reactor ra te  , (8.3)

25 = sec ( 8  4)

The steps involved in the simulation are as follows:

8.2.1 Design of Process File

Silicon was chosen as the substrate for the bioreactor. Etch depth based on shear 

stress, after repeated simulations, was fixed at 100 pm. The residence time and stress are 

calculated for the flow o f water. This process file is for a etch depth o f 20 pm (Figure 

8  .1). The next step was the design of the mask.

E'dt V»s<rt Hplp

f i i  f i k m
\ L ayer ! i

'-.tf-p ; Adwn t ype U VTtf \ Thcin . t. rAor Pfifwey <:•! t - rt Angfc ;
0 Base Substrate SMXOH 500 ■  uue o re
t Harmr WaJer WATES 200 yefto
2 Kch frori.L a^l ■  red Mask ♦ 200 0 0 SO
3 OapCtC flan* 04* tS G4.ASS 0 0 cjraesh

Figure 8.1 Design file o f CoventorWare™ software containing parameters for material, 
etch depth, and flow in the bioreactor.
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8.2.2 Design of M ask

The mask for patterning microfluidic channels with inlet and outlet ports was 

designed in the software itself (Figure 8.2). The dimensions o f the reactor are 1.25 cm x 2 

cm. The reactor has 120 channels with 50 gm width and 100 gm depths. The flow rate 

was calculated using the volume o f the reactor and the fixed residence time o f 25 sec. 

The mask was designed based on iterative simulations. After the end of the simulation, 

the mask was redrawn using L-Edit software. This mask was then generated using the 

pattern generator on a chrome mask.

Figure 8.2 Design o f the mask for a bioreactor containing channels with inlet and outlet 
ports (not to scale)

The dimensions o f the mask are as follows:

Length o f the channels = 10000 gm,

Width o f the channels = 50 gm,

Depth o f the channels =100 gm,
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Number of channels = 120

Volume o f  the reactor = 10000x50x100x120 = 60x10*(jLm)3 =6juL (8.5)

Using Equation 8.4, Volumetric flow rate Q = 24 x 107  (gm) 3 sec' 1 = 14.4 pL/min.

The next step after mask design was to create a mesh model for the reactor where 

the stress analysis can be done.

8.2.3 Mesh Model

Figure 8.3 shows the mesh model (Manhattan Bricks. X=50. Y=50. Z=5) 

generated from the mask. After the mesh was created, it was then analysed for fluid flow.

Figure 8.3 Mesh model generated from the mask (not to scale) for the bioreactor.

8.2.4 Analyzer

All the surfaces are defined as wall, except the input and output ports. The density 

model used was incompressible model with finite volume discretization and steady state 

time dependence. The flow rate used for the analysis was calculated using the volume of 

the reactor and the fixed residence time as presented before. Figure 8.4 shows the 

pressure drop o f water at different points on the surface o f the reactor. Within the
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channel, a pressure drop of ~10 ' 6 MPa is achieved, which is close to the hydrodynamic 

stress required.

COVENTOR

Figure 8.4 Analyzer showing different pressure drops on the surface o f the 
microchannels o f the bioreactor.

Based on these modeling results, the next step was to fabricate these reactors 

using photolithography.

8.3 Fabrication of the Proposed Bioreactor 
Using Photolithography

The mask was designed in L-Edit and reporduced on a chrome mask using a mask

generator. The fabrication steps are illustrated in Figure 8.5 and are as follows:

(1) Photoresist AZ9260 is spin coated at: 500 rpm for 10 sec and 900 rpm for 20 sec 

and the wafer is allowed to sit for five minutes

(2) The wafer is softbaked at 110 °C for five minutes and dried in vacuum oven for 10 

sec.
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(3) A second layer o f AZ9260 is spun at: 500 rpm for 10 sec and 900 rpm for 20 sec 

and the wafer is allowed to sit for five minutes.

(4) The wafer is softbaked at 110 °C for 5 min, and dried in vacuum oven for 10 sec.

(5) Exposed to UV for 175 sec.

(6 ) Developed in AZ400K (1:4 ratio with water) for 1-4 min with proper agitation. 

Control over developing time is important for small feature size devices.

(7) The wafer is then hard baked for 30-60 min at 160 °C. This step guarantees that 

the photoresist is free of bubbles during the dry etching process.

54 uni

i M t  tem&DQ of tt*se

SAM

64 um

C *.
ntfimmym
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Figure 8.5 Fabrication and process steps involved in the construction of the bioreactor.

The bioreactor fabrication involves three chrome photomasks for pattern transfer: 

microchannels, inlets and outlets, and for go-through vias. A front side alignment and a
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backside alignment were performed with the mask aligner tool. Two etching steps were 

performed using Inductively Coupled Plasma (ICP) etching. The front side alignment 

assured that the channels are well aligned with the inlets and outlets, and the backside 

alignment method assured that the go-through vias, which lead the fluids in and out, were 

etched completely (go-through) to make the connections with the inlets and outlets o f the 

microreactor. The frontside and backside misalignment is within 1-2 microns. The 

reactor is then immersed in a Nanostrip solution for 15 min at 90 °C to remove all the 

organic contaminants and provide uniform hydroxyl bonds on the walls o f the reactor. 

The open channels are then enclosed by anodic bonding of pyrex glass. Figure 8 . 6  shows 

the optical image of the reactor and the SEM image o f the cross section of the channels.

Figure 8 . 6  (a) Optical image o f the reactor and (b) SEM image o f 50 /tm (W) and 100 
[xm (L) straight channels inside the reactor.

The housing for the reactor was made using plexiglass (PMMA sheets). Two 

PMMA sheets were cut, slightly bigger than the dimensions o f the reactor to 

accommodate space for connecting tubes to the inlet/outlet ports. Recess is made on both 

the sheets to accommodate the reactor. Two more sheets o f the same dimensions are cut. 

One of the sheet is glued to the other two (with recess) sheets forming the bottom of the 

housing. Holes were drilled on the other sheet for inlet/outlet ports, and also on four
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comers of all the four sheets for tightening the housing using screws and nuts. A gasket 

with the same dimension o f the reactor is cut and placed in the recess. The reactor was 

then temporarily placed on the gasket and the sheet containing inlet/outlet ports is 

tightened with screws. Figure 8.7 shows the optical image of the housing with the the 

gasket and the reactor. A syringe pump was used for circulation o f the fluid with a flow 

rate calculated from the simulation o f the reactor. After the device was assembled, 

deionized water (DI) was pumped through the device for 10-20 min to make sure there is 

no leak. Then, oil was passed through the inlet port and the movement of oil-water 

interface through the channels was observed using a microscope and timed using a 

stopwatch to calculate residence time. The measurement was repeated atleast three times 

to obtain a residence time of~30±3 s.

Figure 8.7 Housing for the bioreactor with (a) gasket and (b) gasket and the reactor.

APTES SAMs (with amino (-NH2) end groups) were formed on the 

microchannels by circulating the organic solution containing SAM (5 mM) via the inlet 

port to the channels at a slow flow rate (2 pL/min) for 8  h. Then, ethanol was circulated 

at a flow rate o f 200 pL/min for 45 min to remove any physisorbed species present on the
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channels. The reactor inside the housing was sterilized for 2 h with 70% alcohol. Figure

8 . 8  shows the entire set-up used for the SAM deposition in the experiment.

i . J G U U U U  
i - U - U  : I I J  L J  i l J  □  C )  l:'J

ill
Figure 8.8 Setup used for the SAM deposition inside the microchannels.

8.4 HDF Cell Culture Studies

All the components used for cell culture studies were sterilized with 70% ethanol 

including the syringe pump before placing them in the hood. HBSS buffer was passed 

through the inlet port to remove any ethanol present in the microchannels at a flow rate of 

100 pL/min for 30 min. Then complete media is passed through the inlet at the same flow 

rate for 20 min. The media present in the connecting tubes including the channels was 

flushed out with air.

HDF cells were trypsinized from the TCP dish and counted using hemacytometer. 

They were then plated by circulating a cell suspension o f 610 pL (1.56 x 106 cells/mL) 

through the syringe pump in such a way that most o f the suspension was in the 

microchannels. The 610 pL media used for circulating was based on the following 

calculations:
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Length o f the tubing = 1 5  cm,

Diameter o f the tubing = 0.157 cm,

Therefore, Volume o f the tubing = H r2 h=  0.2968 cm3 = 296.8 pL,

Considering the two tubes used, Total volume = 593.6 pL.

Based on Equation 8.5, Volume o f the channels = 6  pL 

Considering the volume o f  the inlet and outlet subchannel as ~ 4 |jL 

Total volume required to plate the channels = 603.6 pL.

This volume gives us an approximate cell density o f  9400 cells in the channels. 

The chip was removed from the housing and placed in the incubator at 37 °C for the cells 

to attach to the channels. After 6  h, the chip was assembled back in the housing and the 

inlet/outlet ports are connected to the syringe pump containing 10 mL DMEM media. 

Figure 8.9 shows the reactor setup used for the culture o f HDFs inside the incubator.

Figure 8.9 Setup used for the HDF culture inside the incubator. (1) Syringe pump (2) 
Syringe tube containing media (3) Reactor with inlet/outlet ports connected to tubing and 
(4) Vial for collecting media from outlet.
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The media was circulated at a slow flow rate of ~14 /xL/min. A vial was 

connected to the outlet to collect the media. The entire setup was placed in the incubator 

with 95% O2 and 5% CO2 and maintained overnight. The same procedure was followed 

for the bioreactor without SAM-modified micorchannels. Basic cell functionality such as 

LDH leakage was analyzed after 12, 24 and 48 h.

8.5 Cell Response Based on LDH Leakage

Figure 8.10 shows a plot o f LDH leakage from HDFs (calculated using Equation 

3.5) after 12, 24 and 48 h culture duration in SAM-modified reactor and unmodified 

reactor. It can be observed that the LDH leakage decreased with culture time for both the 

reactors. But it was prominent in the case o f SAM modified reactor. For unmodified 

reactor, LDH quantity is >100 U/L indicating high cell death. These are preliminary 

results however, they indicate that modification o f surfaces with SAM does enhance the 

material’s properties even in the case o f 3D microstructures.

□  Without SAM 
With SAM

12hrs 36 hrs24hrs 
Culture Time (h)

Figure 8.10 LDH release by HDFs from SAM-modified and unmodified 3D bioreactor 
following 12, 24 and 48 h after seeding.
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CHAPTER 9 

SUMMARY AND RECOMMENDATIONS

9.1 Summary

In this work, SAMs were used to modify different conducting and semi

conducting substrates to realize stable CCPs. These platforms were used to culture and 

maintain different cell types such as HDFs, MSCs, RBNs and rat hepatocytes.

This work initially presents the results on HDF culture on amino (-N H 2) end 

group modified Si and methyl (-CH 3) modified GaAs and ITO substrates. Morphology of 

the cells from the phase contrast images indicated that the HDFs presented their 

characteristic spindle shape with no visible signs o f stress or cytoplasmic vacuolation on 

these surfaces. Cytotoxicity data from LIVE/DEAD® assay and proliferation from MTT 

assay indicated the preference o f HDFs towards different surfaces following the order: 

ITO-CH3 > Si-NH2 > ITO> Si > GaAs-CH3 . Immunohistochemical study o f HDFs 

indicated that the cells maintained their phenotype on all the surfaces except on GaAs, by 

producing Type-I collagen.

The attachment o f HDFs and their subsequent proliferation on these surfaces is 

due to the formation of a protein layer from the media on the surface o f the SAMs. 

Enhanced proliferation on ITO-CH3 is due to adsorption of high amounts o f protein on 

-CH3 end group compared to other surfaces. The hydrophobic end group (-CH3) couples 

with the hydrophobic part of the unfolding protein releasing many hydrophobically
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structured water molecules and also leading to the large entropy gain for the system . 135,136 

In the case of -N H 2 modified substrates, the attachment o f HDFs is due to the 

translocation and organization o f f t  integrin subunits to fibronectin deposited on NH2 end

1 A -I 1 TO __

group. ’ ’ This initial attachment then helps in the proliferation of these cells. It 

should be observed that SAM-modified GaAs surface supported HDF cell growth for a 

period o f seven days compared to bare GaAs, where cell death occurred within 6  h. This 

is a great achievement, as a nanometer thin layer ( ~ 2  nm) can prevent arsenic leakage 

into the media and the subsequent cell death.

This work has helped to determine the right kind of substrate and the SAM for 

HDF attachment, growth and preservation o f cell phenotype. Based on these findings, 

SAM-modified ITO was chosen as the best substrate for studying behavior o f different 

cell types. Furthermore, the properties o f ITO such as transparency and stability under 

physiological conditions enhance its significance. The behavior o f  stem cells, neurons 

and hepatocytes were studied to understand how different end group SAMs affect 

different cell types.

The MSCs grew well on all four different SAM-modified substrates along with 

unmodified ITO. LIVE/DEAD® analysis showed no cell death even after 3 DIV. Little 

cell death was observed after 5 and 7 DIV. Morphology images showed that the cell 

spreading started within 24 h o f culture and continued till the end o f the culture period (7 

DIV). Quantification of proliferation data by MTT assay revealed surprising results. High 

proliferation was observed on MPS (-SH) modified ITO substrates. There was no 

significant difference in the proliferation rate among other surfaces. The reason for this 

high proliferation is not understood and need to be investigated.
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The results from our study performed on neuronal culture on amino, methyl and 

thiol modified ITO substrates suggested that in the absence o f serum, cell adhesion was 

rare. To further confirm these results, the cell density was increased by two-fold and the 

medium changed every other day as compared to every third day in earlier experiment. 

No cells were observed till 5 DIV on substrates. After 5 DIV, neuronal attachment was 

observed predominantly on substrates modified with amino and methyl groups compared 

to thiol group and control substrates. The experimental protocol was further changed by 

adding 1% FBS to the cell suspension containing Neurobasal medium. This step was 

done to neutralize the DMSO present in the cell freezing medium. Following this 

protocol, a dramatic increase in cell adhesion was observed with cell viability maintained 

until one week in culture. Better cell adhesion was observed on SAM-modified ITO 

surface in comparison to the untreated ITO and PLL surfaces.

LIVE/DEAD® analysis performed on these substrates confirmed that the neuronal 

cells interacted specifically to the amino modified ITO substrate. The results also suggest 

that the cells preferred the substrates in the order: ITO-NH2 > ITO-CH3 > CS-PLL > ITO 

when cultured over a period o f one week. Adsorption o f protein layer from the media on 

the SAM-modified ITO substrates facilitates the initial adhesion o f neurons. Further, the 

addition o f B27 supplement in the media helps in maintaining the cells over long periods 

o f time. Nerve cell phenotype studied by performing IHC using the NSE antibody 

indicated that a significant amount o f immunopositive staining was observed on all SAM- 

coated ITO substrates followed by ITO and PLL.

Most differences in cell-surface interactions on different substrates were observed 

in the first 3-5 days o f cell culture. While adhesion was greatest on ITO-CH3, viability
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was found to be more prominent on both SAM-coated substrates. The differences in cell 

phenotype, between the experimental and the positive control surfaces diminished over 

time (seven days) in culture as the cell density decreased due to the cell death on all the 

substrates. The SAM-modified ITO substrates undeniably enhanced the viability o f 

neuron cells compared to their counterparts. They also helped in maintaining better 

neuron phenotype. And lastly, a decrease in cell density was noticed on all substrates as 

the culture time progressed (from day one to day seven).

Studies on hepatocyte cell behavior has been carried out on various substrates like 

ECM components, hydrogels and PEMs but SAM-modified surfaces have not been 

explored before. Rat hepatocytes were cultured on three (-NH2, -C H 3, -SH) different 

SAM-modified ITO surfaces. Isolated hepatocytes were used because they have been 

used as models in various culture systems for studying the toxicological response of 

drugs and also closely resemble the liver and provide a metabolic profile of a drug in 

vitro, closest to that found in vivo. Serum-free Williams E medium with the presence o f 2 

mM L-Glutamine was used as the culture media.

The charge and the hydrophobic nature associated with the SAM influenced the 

initial hepatocyte adhesion. Enhanced adhesion o f hepatocytes on ITO-NH2 is most likely 

due to the strong electrostatic attraction between oppositely charged hepatocytes (-ve) 

and -N H 3+ end group (+ve) at physiological conditions (~pH 7). On surfaces such as 

ITO-CH3 and ITO-SH, the initial attachment o f hepatocytes is attributed to the tethering 

o f these hydrophobic endgroups to the hydrophobic groups present on the hepatocyte 

surface with the release o f  several water molecules.
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Phase contrast images o f hepatocytes on ITO and SAM-modified ITO clearly 

indicated the cell clustering, which is the characteristic o f hepatocytes. Cells showed 

limited signs of stress and limited decrease in cell density. Cell viability, when 

quantitated using MTT-based assay, presented the proof o f cell proliferation on all these 

substrates. This result is quite remarkable because proliferation o f isolated rat hepatocytes 

is very difficult to realize. Considering all the possible cases and the importance o f all the 

components used in the experiments the proliferation o f hepatocytes was attributed to the 

presence o f L-Glutamine in the media. It has been reported that L-Glutamine causes 

proliferation in many types o f cells due to production o f extracellular signal-regulated 

kinases (ERKs). The exact mechanism for this in vitro proliferation of hepatocytes due to 

glutamine is not yet understood and needs to be investigated further.

IHC studies done by using primary antibodies raised specifically against Type-I 

collagen indicated the capability o f hepatocytes to synthesize collagen, an essential 

functional protein and preserve their phenotype. Higher LDH leakage was observed 

initially due to the cytotoxic response offered by the hepatocytes towards the surfaces. 

After 24 and 48 h, the LDH release reached minimal indicating the adaptation of 

hepatocytes on these surfaces. The total protein content in solution released by cultured 

hepatocytes on different substrates followed the order as shown: ITO-NH2 > ITO > ITO- 

CH3 > Control > ITO-SH. The HDF culture on 3D bioreactors showed that LDH release 

was low in the case of SAM-modified reactor compared to the unmodified one indicating 

the effect o f surface modification by SAMs on material’s properties.

In summary, these results provide experimental validation that cellular response is 

influenced by a number o f properties like nature o f the substrate and culture conditions.
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These results are extremely useful in the development o f CCPs and biomedical devices 

such as bioreactors and biosensors, which permit researchers to understand cell- 

biomaterial interactions better.

9.2 Recommendations for Future Work

The self-assembled monolayers formed on ITO are limited and there is much 

scope in using different kinds SAMs. The SAMs can be used as such or in combination 

with other end group SAMs (also called mixed SAMs). The characterization techniques 

used in this work such as contact angle, IR spectroscopy and AFM are good but are not 

enough to understand the chemisorption mechanism occurring at the SAM-ITO interface. 

Other characterization techniques such as XPS and NEXAFS should be used to determine 

whether the thiol molecules adsorb as thiolates or as unbound thiols. Also the thickness 

o f the monolayer films could not be calculated due to the limitations imposed by 

ellipsometry wherein transparent substrates cannot be used. XPS can be used in this 

regard to determine the thickness of the monolayer films.

Mixed SAMs containing two or more constituent molecules provide a practical 

experimental system with which model systems can be generated to study fundamental 

aspects o f the interactions of surfaces with bio-organic nanostructures, such as proteins, 

carbohydrates, and antibodies. One widely used system comprises an alkanethiol 

terminated with PEG groups and an alkanethiol terminated with either a biological ligand 

or a reactive site for linking to a biological ligand. PEG groups are known to resist 

nonspecific adsorption o f biomolecules and cells and are commonly called “inert 

surfaces”. These mixed SAMs can present ligands o f interest in a structurally well- 

defined manner against a background that is inert (Figure 9.1). It would be beneficial to
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develop such systems on ITO surface as it not only enhances the versatility o f the 

substrate but also helps in understanding the interactions taking place at the surface.

Hydrophobic
-Organic

Layer

7 v

Figure 9.1 Schematic illustration o f a mixed SAM consisting of PEG (inert) and ligand 
containing alkanethiol. 12

The other important aspect o f these studies is to understand the role o f adsorbed 

protein on cell growth. It is difficult to elucidate the role o f a single protein from the 

group of proteins that get adsorbed from the media on the SAMs that has a profound 

effect on the cell growth (HDFs, stem cells, neurons). Furthermore, the interaction o f the 

protein with the end group of the SAMs and with the cells is not easy to interpret. In 

order to explore this phenomenon, it would be beneficial to understand the effect of 

single proteins (fibronectin, vitronectin, fibrinogen) on the cell growth. This effect can be 

realized by adsorbing the known protein before the cell culture in a serum-free media. 

Some work has already been done in our group by adsorbing fibonectin on different end 

group SAMs (-NH 2 , -COOH, -C H 3, -SH) and culturing 3T3 fibroblasts on them. 

Contact angle measurements were made to detect the presence o f fibronectin, while
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impedance measurements were done on both the SAMs and fibronecin adsorbed SAMs to 

understand the properties and interactions with the cells (not yet analyzed). The cells 

grown on fibronecin adsorbed SAMs did not survive predominantly due to improper 

sterilization method used. Analyzing the impedance data and culturing o f cells on protein 

surfaces would be very helpful for developing better CCPs.

The cell culture experiments using HDFs in this work comprised o f determining 

viability, functionality (Type-I collagen synthesis) and proliferation o f cells. It would also 

be helpful to determine the relative rate o f collagen synthesis compared to its total 

synthesis. This rate could be estimated by counting the radioactivity found in the 

supernatant fraction containing collagenase sensitive material, and the radioactivity 

precipitated by collagenase resistant proteins. The effect o f serum on the cell behavior 

could also be carried out to understand the interactions between cells and the extracellular 

matrix. Cells can be seeded on SAM substrates in the presence o f DMEM containing 

reduced serum (1% FBS), normal serum (10% FBS) or enhanced serum (20% FBS). 

Presence and distribution o f proteins secreted onto or adsorbed by SAM substrates can 

then be assessed using a suite o f antibodies to ECM proteins, cytoskeletal and membrane 

proteins, and immunocytochemistry can be used to map the character and composition of 

SAM-modified surfaces. Also, the cytoskeletal, focal adhesion and integrin expression 

play an important role in signal transduction and integrin-mediated cell attachment. These 

can be determined by using fluorescent-labeled phalloidin, vinculin and integrin 

antibodies with a secondary antibody conjugated to fluorescein.

The other part o f this dissertation is comprised o f neuronal culture on SAMs 

modified platforms. Even though the viability o f cells was maintained for a period of
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seven days, the full potential o f neurons was not realized using the set o f SAMs used in 

this work. This work could be accomplished by incorporating a promising technique of 

covalently attaching protein-derived peptides such as the YIGSR and IKVAV sequences 

onto chemically modified ITO substrates because they have shown to promote better 

neural cell adhesion. Also, surfaces modified with the extended amino acid sequences 

such as CDPGYIGSR and CQAASIKVAV have been shown to have an improved 

cellular response, relative to shorter sequences of YIGSR and IKVAV. It would be of 

great importance to try some o f these peptides and also that modified with additional 

amino acid sequences.

Hepatocyte culture has not been studied on SAM-modified substrates previously; 

therefore, these studies could establish a foundation for further analyses of cellular 

response. This work primarily concentrated on the short-term cell response studies of 

hepatocyte culture on these substrates. Long-term responses o f hepatocyte 

biocompatibility, viability and phenotypic maintenance would provide further evidence 

of the substrate influence on cellular response. Variation o f the monolayer chain length 

has an influence of SAM properties and hence cellular attachment. Study o f hepatocyte 

response on molecules having identical end groups but varying chain lengths would 

permit us to reach a consensus on the choice o f an ideal monolayer having an end group 

and chain length which would facilitate optimal cellular response. Also the use of 

peptides which can specifically recognize the cell binding sites on the hepatocyte surface 

will greatly enhance the SAM technique. These peptides can be coupled to the SAM end 

group using basic chemistry. Some of the peptides that could be considered include RGD 

(Arg-Gly-Asp), YIGSR (Tyr-Ile-Gly-Ser-Arg), PHSRN (Pro-His-Ser-Arg-Asn). The
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tripeptide RGD, is present in all major extracellular matrix (ECM) proteins (fibronectin, 

collagen, laminin) and has been shown to enhance adhesion and spreading of fibroblasts, 

endothelial cells and smooth muscle cells. PHSRN, a cell binding sequence found only in 

fibronectin, has been known to act synergistically with RGD for cell adhesion. YIGSR, a 

peptide derived from the laminin B1 chain, interacts with the 67 k Da laminin binding 

protein and was found to promote adhesion and spreading of large number of cell types 

including endothelial cells, fibroblasts and smooth muscle cells. Another aspect which 

should be considered is the use o f co-cultures. Co-cultures o f hepatocytes with other cell 

types like fibroblasts, epithelial cells, nonparenchymal cells and also stem cells have been 

found to enhance the hepatocyte functionality. This could be established on SAM- 

modified surfaces to study cell-cell and cell-substrate interactions in detail at the 

molecular level.

The fabrication o f a 3D bioreactor was used to analyze the LDH leakage from the 

HDF cells. The same system can be used for other cell types, most importantly, 

hepatocytes, for drug toxicity screening, by analyzing the metabolites using high 

performance liquid chromatography (HPLC). Neurons can also be grown on these SAM- 

modified microchannels and the neurite outgrowth can be directed within the channels. 

Thus, there is much scope towards this research, which needs to be explored.
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