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ABSTRACT 

Tissue engineering could provide an alternative source of transplant tissue 

regardless of donor supply and with reduced risk of immune rejection. Engineered tissue 

requires three critical components for successful development: the cells, growth factors, 

and the scaffold on which they will initially grow. The scaffold acts as a temporary 

extracellular matrix (ECM) allowing cell attachment and acclimation to the environment 

prior to synthesis and construction of the cell's native ECM. Prior to cell seeding, the 

scaffold must be characterized to determine whether or not the pore geometry is 

conducive to cell implantation. Electrochemical impedance spectroscopy (EIS) provides 

a unique and effective tool for scaffold evaluation upon fabrication as well as following 

modification and cell seeding. Chitosan scaffolds were tested with EIS showing good 

comparative values to more common and proven characterization methods. 

In addition to characterization, modification may be necessary to improve the cell 

scaffold interaction. Previous attempts to modify chitosan scaffolds with microparticles 

during the fabrication have shown that these approaches compromise scaffold integrity; 

however, particles cannot be effectively forced into the scaffold without damaging it. In 

light of this difficult modification, electrophoretic particle treatment was implemented. 

Transport of iron oxide microparticles at low voltage was proven an effective 

modification method and might be capable of modifying a seeded scaffold. 
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Finally, it is necessary to not only evaluate the scaffold prior to cell seeding but 

also subsequent to cell seeding. Successful seeding should lead to cellular proliferation, 

gene expression, and ECM production. EIS has become a common tool for tissue 

characterization and can, in turn, be used as an evaluative approach for the assessment of 

engineered tissues. While cell response and volume exclusion requires a large quantity of 

cells, varying protein concentrations were notable in scaffolds saturated with complete 

cell media. In summary, electrokinetics has shown its potential for tissue engineering 

applications from scaffold fabrication to online monitoring. 
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CHAPTER 1 

INTRODUCTION 

The need for suitable organ and tissue donors in the United States far exceeds the 

number available for transplant [1]. Those who receive transplants are at significant risk 

of graft rejection depending on the source of the transplant as well as the health of the 

recipient [2]. The mechanism by which the body rejects the donor graft is through 

identification of the major histocompatibility complex (MHC) on the donor cell surface 

by the recipient's immune system. Consequently, the optimal donors for tissue are the 

recipients themselves, an immediate family member, or a donor with similar MHC. These 

types of grafts are known as autografts and allografts respectively. Alternatively, 

xenograft tissue could be acquired from another species. In the case of either an allograft 

or a xenograft, immunosuppressant drugs are given to the transplant recipient in order to 

prevent rejection. These drugs, which are intended to compromise the immune system, 

can leave the recipient susceptible to infection [3]. Because the benefits of autografts are 

substantial, an ideal strategy is to generate functional tissue from cells harvested from the 

patient. However, to promote the cells to interact properly and to express the correct 

phenotype, it is necessary to provide them with an appropriate chemical, geometrical and 

mechanical environment. Consequently, it is important to have techniques that can 

accurately evaluate the properties of materials (scaffolds) that support the cells during 
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their development. Therefore, this dissertation examines one such tool, electrokinetics, 

and evaluates its ability to characterize properties of a biomaterial scaffold. 

1.1 Tissue Engineering Requirements 

Due to the incredible need for donor organs and tissue as well as the difficulty in 

procurement and compatibility, an alternative source of organs or tissues must be 

identified. Tissue engineering could provide such an alternative source of transplant 

tissue regardless of donor supply and with reduced risk of immune rejection. 

Engineered tissue requires three critical components for successful development: 

cells, growth factors, and the scaffold on which they will initially grow. The acquisition 

of cells from the graft recipient allows for a small collection of cells to be cultured and 

proliferated. Also, the use of cells from the recipient reduces the risk of rejection to 

virtually zero [4]. Therefore, with the addition of an appropriate scaffold, engineered 

tissues from the recipient's cells remove both the compatibility issue as well as the need 

for external procurement. 

The scaffold acts as a temporary extracellular matrix (ECM) allowing cell 

attachment and acclimation to the environment prior to synthesis and construction of the 

cell's native ECM at which point the scaffold would either degrade or be removed. In 

order to accommodate its function, the scaffold must be biocompatible both as a whole 

and upon degradation. The internal pore geometry must be accessible for cell infiltration 

but each pore must be an appropriate compartment size adequately large enough for the 

cells to enter but small enough to retain cells in close enough proximity for 

communication. The scaffold pore interconnectivity must facilitate the flow of nutrients 

in and waste out without disrupting cell attachment. Also, the scaffold material must be 
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durable and flexible enough to both modify the shape for the application and also 

withstand the mechanics of the grafting position [5]. In light of these requirements for 

scaffold production, scaffold characterization, modification, and evaluation would be best 

fitted within the dictates of scaffold structure parameters as well. 

1.2 Scaffold Characterization 

For successful implementation of a tissue engineered scaffold, it is important that 

the pore geometry not only be appropriately designed but also characterized following 

fabrication. There are several commonly used tools for the characterization of pore 

structure and porosity such as scanning electron microscopy (SEM), mercury intrusion 

porosimetry (MIP), gas adsorption, magnetic resonance imaging (MRI), and X-ray 

microtomography (JICT) [6-8]. 

SEM provides a 2D visualization of the surface while MRI and uCT use stacked 

images to provide a 3D model of the scaffold. Of the three visual methods, uCT can be 

performed under the most physiologically reasonable condition since it can be performed 

at full saturation although radiation is required [9]. While qualitative evaluation through 

visualization of the pore structure is helpful for novel scaffold designs, quality assurance 

could be better met using a method that provides a quantitative porosity. 

Alternatively, the characterization data acquired from MIP utilizes non-wetting 

liquid mercury to fill the pore volume. MIP has demonstrated an effective detective of 

pore sizes in the range of approximately 3.6 nm to 200 um plus [10]. Previous use of 

MIP for the characterization of tissue engineering scaffolds required freeze drying prior 

to testing and the discarding of the scaffold due to the presence of heavy metal [10]. Gas 
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adsorption involves nonabsorbable gases such as helium and surface deposition to 

provide porosity and pore diameter values for the scaffold [9]. 

Both of these methods are effective determiners of porosity but they are also time 

consuming and result is destruction of the test scaffold. A more useful characterization 

would be one that provides information about the pore geometry non-destructively and in 

a faster paced time frame. A nondestructive porosity test similar to MIP without the toxic 

contamination utilizes nitrogen with saturated scaffolds. Nitrogen is incrementally 

introduced at ever increasing pressure while the nature and degree of bubbling can be 

interpreted as pore size [9], While this approach may provide data and still allow the 

reuse of the scaffold, the pressure applied would prohibit testing if particles or cells had 

been introduced into the system due to the potential for expulsion of these modifications 

under pressure. In lieu of the common characterization method limitations, the technique 

of electrochemical impedance spectroscopy (EIS), commonly used in geophysics and 

civil engineering, shall be compared to tested modes such as MIP. 

1.3 Scaffold Modification 

Scaffolds have been made of a variety of organic and inorganic materials with a 

range of properties that match the needs for engineered tissue [11, 12]. Some sample 

materials for scaffold fabrication include polylactic acid (PLA), polyglycolic acid (PGA), 

and collagen. Polymer based scaffolds have been generated from polymeric subunits 

which dictate subsequent scaffold strength and application. For polymer based scaffolds 

the degree of crosslinking determines the porosity and pore size as well as mechanical 

strength [13, 14]. Inorganic scaffolds for hard tissue replacement having been 

successfully generated with naturally occurring bone minerals such as hydroxyapatite via 
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electrodeposition [15]. Other hard tissues have been developed from ceramic scaffolds 

whose properties are determined upon manufacturing. 

Beyond the properties rendered during scaffold production, it may also be 

necessary to modify the scaffold in order to readily facilitate cellular adhesion, 

proliferation, and differentiation. Scaffolds may be coated with proteins or other growth 

factors to encourage cellular growth or for some scaffold materials incorporated during 

fabrication. Vascular endothelial growth factor has previously been incorporated into 

poly lactic-co-glycolic acid (PLGA) scaffolds effectively increasing proliferation [16]. 

Another modification during fabrication was the encasement of bone morphogenic 

protein into composite scaffolds resulting in cellular osteoinduction [17]. 

Unlike those previously discussed, some scaffolding materials will not properly 

form if its chemical bonding is prevented by the introduction of modifying substances. If 

the scaffold is stable under pressure, modifying particles can be introduced via solution 

forced under pressure. A somewhat less destructive method for modification is plasma 

surface modification which can include physical alteration as well as chemical alteration. 

Surface etching can provide physical guides for structured cell growth [18]. While 

plasma modification is less likely to damage the scaffold structurally, it can not be used 

once cells are seeded in the scaffold due to physiological limitations. 

Given the limitations of currently used methods, an alternative modification 

approach will be utilized for tissue engineering scaffolds. Once again, a technique more 

common to mechanical and civil engineering than tissue engineering will be attempted in 

order to modify the scaffold. Electrophoresis, a novel approach to scaffold modification, 
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will be used to incorporate particles into the porous substrate where their distribution will 

be qualitatively assessed. 

1.4 Cell Monitoring 

Once the cells have been incorporated into the scaffold, their distribution and 

status should be evaluated periodically to determine the functionality of the engineered 

tissue. The most common method for this evaluation is histological sampling of the 

engineered tissue. Slicing the sample and staining for both cell type and products of gene 

expression allows visualization of the tissue status [19, 20]. In PLGA scaffolds seeded 

with mesenchymal stem cells, staining for differentiated cells and for type II cartilage 

showed the cellular differentiation and tissue evolution over time [21]. Histological 

staining can also be accomplished with transmission electron microscopy [22]. While 

visual assessment of engineered tissues provides clear delineation among the cell types 

and expressed molecules, continuous non destructive evaluation throughout the life cycle 

of the graft is also necessary. On-line or continuous monitoring has been achieved with 

some engineered tissues using fluorescent indicators incorporated into the scaffold. As 

the scaffold degrades and the cells proliferate and the signal is muffled [23]. 

Microdialysis has also been used for on-line engineered tissue monitoring. Samples of 

the scaffold's physiological fluid are drawn through a capillary tube and sampled for 

molecules expressed from the cell [24]. Methods such as these are nondestructive but 

they do not truly provide information regarding cell number and distribution like the 

destructive histological analysis. Since EIS has previously been used in this experimental 

set for scaffold characterization, the approach will be used on seeded scaffolds as well. 
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The EIS technique has been chosen not only for its porous substrate characterization 

abilities but also its biological tissue characterization advantages. 

1.5 Electrokinetics in Tissue Engineering 

Characterization, modification, and evaluation of engineered tissues have often 

led to their destruction or reduced functionality. The goal of this experimental set was to 

demonstrate the effectiveness of EIS for characterizing pore geometry and chitosan 

scaffolds quickly and nondestructively. Additionally, the effectiveness of particle 

modification via electrophoresis was evaluated and finally EIS was once again utilized as 

an on-line monitoring application for scaffolds seeded with NIH 3T3 fibroblasts. The 

material chosen was chitosan, a naturally occurring polysaccharide that readily forms a 

regular porous matrix but is often unstable if modified during fabrication. Chitosan 

scaffolds are also flexible which makes chitosan a good choice for fitting into defects but 

not stable enough for excessive handling [25]. In total, an alternative non destructive 

approach for characterization, modification, and evaluation would be both necessary 

given its limitations and useful due to the vulnerability of the scaffold structures. The 

summation of the chitosan model experimental set should encapsulate the overall 

usefulness of electrokinetics in tissue engineering. 

Following this introductory chapter is Chapter 2 which covers the background and 

literature review of chitosan, EIS, current flow in a porous substrates, and electrical 

current effect on biological tissue. Chapter 3 discusses the experimental evaluation of 

EIS as a characterization method for chitosan scaffolds. In Chapter 4, the electrophoretic 

deposition of particles into chitosan scaffolds will be detailed and, in Chapter 5, EIS 

applications for seeded cell scaffolds will be discussed. In summary, Chapter 6 will 
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cover the significance of each of the three distinct experiments, how they relate to each 

other, and the future work associated with these results. 



CHAPTER 2 

BACKGROUND AND THEORY 

2.1 Chitosan 

Chitosan is the product of the deacetylation of the nonpolar glucose derivative 

chitin. The deacetylation converts the chitin non polar end group to an amino group 

which naturally has an acid dissociation constant around 6.5 (Figure 1). While the chain 

lengths are somewhat variable, the percentage of deacetylation has the greatest effect on 

crystallinity with increased deacetylation leading to a stronger structure in vivo [26]. 

These amino end groups provide a charge and allow for the dissolution of the chitosan in 

a neutral or slightly acidic aqueous solvent. For scaffold formation, the chitosan is 

dissolved in the solvent between 1% and 3% weight per volume (wt/vol) for practical 

tissue engineering applications. Scaffold properties and stability depend on the 

percentage used with increased percentage resulting in a decreased pore size [27]. 

o 
HOHsfi »Q. HM=C=CMs HOH,e HQ MM, 

pan ix*x*ftgim H0* fissi<*%<w 

CMfe CMtosaa 

Figure 1: Chemical structure of chitin and its deacetylation product, chitosan [26]. 

9 
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Once completely dissolved, the chitosan in solution is thoroughly frozen. The 

speed of the freezing has an effect on the chitosan properties. During freezing, 

microscopic ice crystals form and force the chitosan out. These micro sized ice crystals 

each become individually surrounded by the polar chitosan salt which forms a partial 

shell around the crystal. Thorough and even temperature freezing insures even crystal 

sizes throughout the scaffold and thus uniform pore sizes and distribution. Freeze drying 

the scaffold causes the ice crystals to sublimate leaving behind voids or pores in their 

place [28]. While kept dry, the scaffold is stable at room temperature. 

Previous characterizations of chitosan scaffolds have revealed an evenly 

distributed pore structure with pores ranging for 500 urn for low concentration scaffolds 

to 50 (am for higher concentrations. The degree of deacetylation has a significant effect 

on pore size as well solid scaffold volume. With deacetylation levels of 88% and higher, 

the resulting pore diameters are less than 100 urn and have low lateral pore connectivity. 

These variations are caused by the shift in chitosan molecule shapes due to the exposure 

of charged amino sites. With greater deacetylation, the charged groups cause the 

molecule to straighten [29, 30]. Microscopy of scaffold cross-sections has shown that 

pores are consistently spherical, so the number and size of the pores dictate the pore 

interconnectivity. 

Chitosan scaffolds have demonstrated great potential for tissue engineering 

because of their unique naturally occurring properties. Chitosan scaffolds implanted in 

mice show no sign of an inflammatory response. Neutrophil presence is detected in the 

early implantation stage but quickly fades over time. The natural antimicrobial nature of 

chitosan has shown that even in vivo infection is inhibited. Over time, connective tissue 
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from the recipient's body has shown infiltration into the scaffold which demonstrates not 

only biocompatibility but also bio-inertness. In addition to connective tissue, 

angiogenesis has been noted on the scaffold surface [31]. 

Studies of cell seeding in chitosan scaffolds have shown good retention rates. The 

surface charge of the scaffold encourages cellular attachment along the chitosan [32]. 

Previously presented data has suggested that - 3 1 % of chondrocytes introduced into the 

scaffold will successfully integrate into the scaffold. With pores in the 100-200 um 

range, cells were not only seeded throughout the scaffold but also produced extracellular 

matrix components which eventually replaced the scaffold as it degrades. Morphology 

and expression of the cells in chitosan scaffolds remains typical of the phenotype, further 

demonstrating its effectiveness as a tissue engineering scaffold [32]. Other studies have 

also shown the strong potential of chitosan for the development of cartilaginous tissue 

and hard tissue [33-35]. Finally, chitosan degradation rates correspond to both the 

original structure of the scaffold prior to implantation but also to the implantation site 

environment. The products of this degradation are sugars and can be easily removed by 

the body itself [36]. 

Many attempts to modify 2D chitosan films have been successful but 

modification of the 3D chitosan scaffolds has been less frequently documented. One 

example is the binding of RGD (Arg-Gly-Asp-Ser) for increased biocompatibility to 

chitosan scaffolds. In the case of small amino groups, the scaffold can be dipped into a 

suspension and the charges will initiate the immobilization [37]. Glycoconjugates have 

been immobilized by similar methods but as before the molecules are on the nanoscale 

[6]. Alternatively, composite scaffolds can be made by incorporating other structural 
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particles such as gelatin and cartilage during fabrication however this varies the 

mechanism of pore formation and the structures themselves [38]. In order to keep the 

same pore formation and regularity; modification must be made subsequent to 

lyophilization. Attempts to modify with nanoparticles have been successful as previously 

described but larger particles fail to infiltrate the inner areas of a complete scaffold 

without pressurization [39]. 

2.2 Electrochemical Impedance Spectroscopy (EIS) 

Electrical resistance is the resistance of current flow through a material described 

in Ohm's law as the voltage divided by the current. This simple equation only applies to 

direct current or to an ideal scenario when alternating currents are completely in phase. 

Realistically, materials with applied AC voltage will not have a simple resistance but 

rather complex impedance. Complex impedance (Z) can be defined as the drop in 

voltage over a current while taking into account the frequency response and the lag of the 

phase: 

Z = Zej\ [2.1] 

where Z is the ratio of the voltage difference to the current, 6 is the phase lag (Figure 2), 

and j is the imaginary unit. Alternatively, complex impedance can be viewed in terms of 

the real and imaginary components: 

Z = R + jX , [2.2] 

where the real component (R) is the resistance and the imaginary component (X) is the 

reactance resulting from the accumulation of electric fields which also inhibit current 

flow [40]. 
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Phase Shift 

Figure 2: Phase shift showing lag in the signal over time (x axis). 

In EIS, the real and imaginary components not only provide electrical information 

about the material in question but also about the geometric structures inside. EIS requires 

the use of two to four electrodes which transmit a weak current through the sample in 

question. As long as the sample is conductive, current will pass between the electrodes 

via the path of least resistance. In a nonconductive porous substrate, this path is through 

the conductive pore fluid. The input AC signal varies over a set frequency range from 

highest to lowest and the response to the test material is recorded at each frequency value. 

The complex impedance can be plotted as a vector product of both the real and imaginary 

components of impedance with the angle being the phase (Figure 3). 

0 
N 
& 

M 

js.eaiz. 

Figure 3: Complex impedance magnitude shown as a vector product of the real and 
imaginary impedance. 
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The vector relationship allows for data points from an EIS frequency sweep to be 

plotted as a Nyquist plot of the real and imaginary impedance as the X and Y values, 

respectively. The characteristic curve or curves are indicative of the resistance properties 

of the material. In order to note frequency response, Bode plots can also be constructed 

from EIS data as well. Bode plots can be created using the log of the impedance 

magnitude or the phase shift angle versus the log of the frequency. Both options denote 

frequency dependent changes and indicate whether or not the system has a single time 

constant. The use of Nyquist and Bode plots are common practice in EIS analysis and 

can be used to produce an equivalent circuit. 

Equivalent circuits are used to model the impedance values for a material using 

classical circuit elements. Of course, complex impedance necessitates a minimum of 

both a resistive element and a capacitive element but the total number and strength of 

each is based on the contributing factors in the modeled material. For example, a coated 

substrate would have a capacitor and a resistor associated with the substrate but also 

circuit elements associated with the coating. Resistor values can be estimated from 

Nyquist plots and the model values are typically tested with a circuit simulation program 

[41]. 

For a nonconductive porous substrate, the bulk resistivity as determined by the 

Nyquist plot is essentially the cumulative resistance to current flow through the 

conductive media. This resistance is the electrical analog to the physical resistance to 

flow within the system and can lead to the estimation of porosity. By taking the bulk 

resistivity and converting it to conductivity, the conductivity of the system is related to 
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the conductivity of the pore fluid based on the pore volume of the system and can be 

interpreted through Archie's Law as porosity 

<t» = log 
V C* J 

Im, [2.3] 

where O is the porosity, Ct is the substrate conductivity, Cw is the media conductivity, Sw 

is the unitless assessment of media saturation, m is the cementation exponent and n is the 

saturation exponent [42, 43]. The form of Archie's law will be discussed below in terms 

of individual applications. 

2.3 Charge Flow Through a Porous Substrate 

Current flows through a conductive media because charge carriers move under the 

motivation of an electric field. The charge carrier mobility (u) is the velocity of the 

particle divided by the electric field strength which causes it to move. In the context of a 

non conductive porous system filled with a conductive fluid, internal geometry must be 

taken into account when considering current flow through the system. By considering the 

charge carriers to be confined to a finite space such as a column, the current can be 

defined in terms of the space and charge carrier concentration [44]. 

A column has a volume (vol) which is the product of the length multiplied by the 

area (A) of its circular base. In this case, the base will be a set value and the length will 

be defined as the change in position. With a known average particle velocity (v), the 

position (AX) can be defined as the product of velocity and the change in time (AO 

vol = AvAt = AAX. [2.4] 

If that volume is assumed to contain a specific number of charge carriers (n) each with a 

uniform charge (q) then the charge per volume (Aq) can be established 
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Aq = AqnvAt = AqnAX. [2.5] 

Since current, I, can be designated as the flow of charge, current can be defined as: 

/ = — = Aqnv. [2.6] 

In turn, the current density, J, which will remain the same throughout the geometry is the 

current divided by area 

J = qnv. [2.7] 

In many porous systems, this model would apply directly; however, in a porous 

substrate with spherical pores, the volume can not be simply viewed as a cylinder with a 

standard cross sectional area but is rather dependent both on the pore diameter and 

porosity. Increased pore diameter does not necessarily mean increased charge carrier 

transport. Mobility inside the pores may be high but movement between the pores is 

limited by the diameter of the junction. With an increase in porosity comes an increase in 

pore connectivity. 

With a constant pore size, the pores become closer together as the porosity 

increases leading to the creation of connections with circular cross sections (Figure 4). 

The circular cross section diameter increases with increased porosity. With regular pore 

size and connectivity, the connections are also regular and charge carrier transport 

through the connections can be assessed as a series of tubes with diameters equivalent to 

pore overlap. It is important to note that the spherical pore structure will play an 

important role when defining the relationship between electrical information and scaffold 

structure [45]. 
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Increasing Porosity 

Increasing Connectivity 

Figure 4: Representation of pore connections based on uniform spherical pores with 
increasing porosity and increasing connectivity (pore connections denoted as 
grey dashed line). 

Electro-osmotic flow can be initiated in porous substrates with narrow pore 

networks. A double layer of ions from the solution forms along the walls in response to 

charge of the ions. The voltage potential across the substrate causes the positively 

charged ions to move in the direction of the negative electrode. As the positive ions 

move, they pull the water molecules with them. In a narrow tube, these pulled water 

molecules initiate a notable flow. In larger micron sized pore connections, the electro-

osmotic flow will be negligible [46]. 

The addition of charged particles in a suspension of fluid influenced by an electric 

field can initiate travel in those particles. Electrical opposites attract so negatively 

charged particles are drawn toward the positive electrode and vice versa. If the 

electrostatic pull on the particle exceeds the friction force on the particle surface, the 

particle moves toward the electrode by means of electrophoresis. When particles are 

allowed to collect on the electrode, the process is referred to as electrodeposition. Charge 

carrier mobility is denoted as the velocity over the electric field, the mobility of particles 
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in solution is as the particle velocity over the electric field. Alternatively, particle 

mobility was also defined in terms of the surrounding media 

jue=v/E = ^ , [2.8] 

V 

where e is the dielectric constant of the media, so is the permittivity of free space, r\ is the 

viscosity of the media, and {"is zeta potential [47]. 

2.4 Current Effect on Biological Elements 

Biological macromolecules and cellular components have unique and varying 

electrical properties. Tissue components can vary in response to electrical stimuli as a 

function of cell lineage, cell health, and even temperature [48]. Cell membranes are 

phospholipids bilayers which, by themselves, are electrically insulated. The integrated 

ion channels, which vary in number between cell types, add to the cells electrical 

properties by being gaps in the membrane insulation. In DC voltage, the bilayer can lead 

to flattening of the membrane as a result of increased hydrophobicity [49]. 

Intracellular components are also subject to electric field influence. Actin 

filaments and Golgi apparati have demonstrated elongation and movement along an 

electric field with the leading edge going toward the cathode. The applied voltage of 300 

mV/mm caused not only the Golgi polarization but also resulted in cellular migration in 

the direction of the electric field [50]. Outside of the cell, extracellular matrix materials 

are also subject to current induced changes. Collagen type I monomers have increased 

fibrillogenesis when subjected to a voltage potential [51]. All of these biological changes 

result from modification of inherent charges. 
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While DC voltage has a notable affect on biological macromolecules, the 

influence of frequency from AC is more varied and notable. For example, the insulative 

phospholipid bilayer surrounds a conductive fluid and exists inside a conductive fluid so 

applied current will often have a capacitor like effect on the cell [52]. There are three 

frequency ranges of biological influence known as the a, P, y dispersions (Table 1). 

Table 1: Dispersion Frquencies for Biological Tissues. 

Dispersion 
a 

P 
y 

Range 
<1000 Hz 

1000Hz<p< 100 kHz 
>100 kHz 

The a dispersion primarily affects the ionic diffusion as previously discussed. The p 

dispersion is of primary importance for both the individual cell and tissue as a whole 

because of the cells dielectric response. Prior to the lower P values, the resistance of the 

system as a whole dominates and prevents the current from charging the cellular 

capacitors. Frequencies above the P dispersion go beyond the capacitive cellular reaction 

and initiate dipolar moments in other biological macromolecules such as proteins [53]. 

The variable frequency response of biological molecules and cells makes the use 

of EIS in tissue an effective tool for cellular and tissue characterization. Cell membranes 

have previously been noted for having a capacitive effect but in EIS each cell can be 

viewed as a two capacitor element (Figure 5). 
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R extracelhilar i 
R. membrane 'membrane 

R. intracellular ' 

R. membrane. 'membrane 

Figure 5: Standard model circuit of tissue [54] 

A capacitor in circuit design is two parallel conductors separated by a non 

conductive dielectric. In cells, the phospholipid membrane is the non conductive 

dielectric. The membrane lies between the extracellular and intracellular fluid and, while 

different in ionic composition, both are conductive. This 

conductive/dielectric/conductive scenario accounts for the capacitive effect of the cell. In 

addition, the cell can be modeled as having two mirrored capacitors because of the 

parallel membrane sides. The integrated proteins which serve as ion channels can not be 

disregarded because these portals will allow the conduction of the current through the 

membrane so they must be counted as resistive elements [54]. Some cells have far more 

ion channels than others and the EIS data reflects this. 

Since it has previously been established that the extracellular fluid is conductive, 

it can be understood that at low frequencies current will not enter the cell but will rather 

go around the cell through the conductive fluid. In this case, EIS in the alpha range will 
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suggest that the cell is simply a non conductive barrier in a conductive solution. The 

results will then be indicative of a primarily resistive scenario. At higher frequencies in 

the P dispersion, the capacitive effect will be initiated and a secondary impedance data set 

can be collected. Both of these frequency sets provide information regarding the nature 

and well being of the tissue in question. 

In the a dispersion range, an increase in impedance over several days could be 

viewed as an increasing cellular population. As the number of cells increase, the volume 

of extracellular fluid accessible to the current would decrease. For clinical applications, 

an increase in impedance in lower frequencies is often indicative of ischemia where the 

cell membrane can't prevent the entrance of more fluid therefore causing an increased cell 

volume. Alternatively, a decrease in impedance can be seen as the compromising of the 

cell walls reducing the overall cell volume in the tissue and subtly increasing the 

extracellular volume. 

In the p dispersion, the current passes not only around the cells but also through 

them adding a capacitive effect to EIS data collected. While in the a dispersion range, 

variation in cell quantity can be noted, the P frequencies can elucidate the variations 

among cell membrane behavior and the amount of extracellular fluid [55]. Cells of 

different phenotypes will not only present different morphologies but also vary in the 

number of gap junctions and ion channels depending on function. For example, 

cardiomyocytes have a greater number of gap junctions on their membrane than lung 

epithelial cells. Even with an overall identical cell population volume they will present 

different impedance values in response to p dispersion stimuli. The development of a 

library of reference impedance data dependent on cell type and viability allows for the 
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assessment of tissue through EIS on a set frequency range [54]. Previous studies have 

demonstrated that the tissue characterization abilities of EIS have potential for evaluating 

engineered tissues as well [56-58]. 



CHAPTER 3 

PORE CHARACTERISTICS OF CHITOSAN SCAFFOLDS 
STUDIES BY ELECTROCHEMICAL 

IMPEDANCE SPECTROSCOPY 

Manuscript Submitted to Tissue Engineering: Part C 

3.1 Introduction 

In the United States, thousands of individuals are in critical need of an organ or 

tissue transplant and many of those will not be matched with a suitable donor [1, 59-61]. 

Due to the incredible need for donor organs and tissue as well as the difficulty in 

procurement and compatibility, tissue engineering could provide an alternative source of 

transplant tissue with reduced risk of immune rejection [59-61]. The engineering of 

tissue requires three critical components: the cells, growth factors, and the scaffold on 

which the cells will initially grow. The scaffold acts as a temporary extracellular matrix 

(ECM) allowing cell attachment and acclimation to the environment. In order to 

accommodate its function, the scaffold must have several standard characteristics 

including biocompatibility of the scaffold as a whole as well as degradation byproducts, 

regular and cell accessible pore structure, and finally a means of or a naturally occurring 

degradation at an appropriate length of time [5]. 

23 
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To accommodate the cell infiltration into the scaffolds, the pore diameter must be 

large enough for the cells to enter and to pass through. At the same time, the porosity and 

interconnectivity of the pores must be high enough that cells will be well distributed 

throughout the scaffold. However, the pore diameter can not be so great that fluid flow 

throughout the scaffold interrupts cell attachment [5]. 

Due to the pore requirements for the successful implementation of tissue 

engineered scaffold, it is important to not only appropriately design a scaffold but also 

evaluate its structure upon fabrication. There are several methods for determining pore 

structure and porosity such as scanning electron microscopy (SEM), mercury intrusion 

(MIP) [10], gas adsorption, and X-ray microtomography (|xCT) [9]; however, these 

methods all have distinctive drawbacks which can prevent continued evaluation of the 

scaffold. SEM can provide visualization of the pore geometry and allow for diameter 

determination but it also requires cutting of the dried sample, sputtering with gold, and 

exposure to high vacuum. Similarly, MIP can be used to determine porosity and interpret 

pore size. A vacuum operating condition is required in order to force mercury into the 

pores of the dried sample and therefore the sample is consumed. For gas adsorption, 

once again, vacuum condition is required while nitrogen adsorption throughout the 

sample is recorded. Finally, uCT can be performed on samples under aqueous conditions 

but requires radiation exposure [9, 62, 63]. Consequently, these methods are not useful 

as quality control methods for large scale scaffold production or for long-term in-situ 

monitoring. 

Electrical impedance spectroscopy (EIS) has been used to study the 

microstructural properties of a variety of porous materials ranging from cement to 
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ceramics while resulting in negligible damage to the sample [62, 63]. EIS allows for the 

study of the effects of various composites added to a central material as well as long term 

evaluation of material stability under different conditions [62, 63]. In addition to porous 

materials, EIS has also been used as an evaluation tool for tissues providing information 

regarding the status of the tissue over time [62, 64, 65] and tissue morphology [66]. 

EIS uses a two or four conductive probe set up in samples with conductive media. 

As alternating current passes between the probes through the sample, it travels the path of 

least resistance which is, in this case, the pores filled with conductive media. Because 

the source current is alternating, it can be sent over a specified frequency range. The 

resistance along the current path at each frequency is recorded as the complex impedance, 

which consists of both the real and imaginary components, as well as the phase shift 

which can be translated to porosity [62, 65]. Despite the introduction of small metal 

probes, EIS does not cause any immediate or long-term damage to the sample being 

tested as long as a relatively low current density is used. As a result of EIS's usefulness 

in studying porous structures, it was chosen as a method for the nondestructive evaluation 

of tissue engineering scaffolds. 

The model scaffold material chosen for evaluation is chitosan. Chitosan is 

produced through the deacetylation of chitin which is the naturally occurring 

polysaccharide comprising the exoskeletons of crustaceans. The resulting chitosan 

contains charged end groups which allow it to dissolve readily in weak organic acids and 

forms a regular structure of a porous sponge-like matrix upon redessication. Chitosan has 

demonstrated a high level of biocompatibility when used as implant material and is 

resistant to bacteria [67]. The pore structure of chitosan scaffolds has been shown to be 
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larger in diameter than that of the average cells [32]. Additionally, the chitosan scaffolds 

exhibit high porosity and well interconnected pore structure. The biocompatibility and 

pore characteristics both suggest that chitosan is an appropriate material for cell scaffolds 

[32] and therefore an ideal model scaffold for these experiments. 

Since the chitosan scaffold shows good potential as a tissue engineering scaffold, 

it now becomes necessary to nondestructively characterize and monitor the scaffold 

under in vivo conditions. In our studies, EIS was first used to characterize the pore 

geometry. The results were compared to the more common scaffold characterization 

methods of SEM and MIP in order to determine its viability as a nondestructive technique 

for evaluating porosity and pore interconnectivity. The overall goal of this comparison is 

to demonstrate that EIS is a comparable and effective method which can be used for both 

initial characterization and continued monitoring. 

3.2 Materials and Methods 

3.2.1 Scaffold Fabrication 

Chitosan scaffolds were fabricated by dissolving 2% weight per volume dry 

chitosan powder from crab shells in 2% volume per volume acetic acid (all from Sigma, 

St. Louis, MO) heated to 50°C. The chitosan solution was cast into a specimen container 

to an approximate fill level of 3 cm high and frozen at -20°C for 24 hours. Once 

thoroughly frozen, the scaffold was lyophilized for 24 to 36 hours resulting in a foam-like 

3D matrix. The sample was ensured to be completely dry by piercing the center of the 

scaffold with a 20 gauge needle in order to feel for irregularities indicative of insufficient 

freeze drying. A total of eight scaffolds were fabricated from separate batches in order 

to test the consistency of the results acquired from the EIS. 
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3.2.2 Characterization 

Scanning Electron Microscopy (SEM) 

In order to image the scaffold with SEM, a completely dry scaffold was removed 

from the lyophilizer and cut into wedges thereby exposing interior surfaces. The sample 

slices were kept with desiccant prior to sputter coating with gold. The sample was then 

imaged on a SEM (Amray 1830, Bedford, MA) using an accelerating current of 25 kV 

and recorded at resolutions of 60X to 200X. The obtained images were analyzed using 

the NIH Image J software. Each usable pore was outlined and the 2D area was 

determined by measuring at the same orientation across the visible pore diameters. 

Statistical analysis (average and standard deviation) was performed. 

Mercury Intrusion Porosimetry (MIP) 

Mercury intrusion determines pore geometry and pore volume by introducing 

mercury, which is a non wetting liquid, into the dry scaffold under pressurized 

conditions. Samples placed in a penetrometer are subjected to high vacuum. Once the 

minimal pressure is achieved inside the glass penetrometer, mercury flows, to 

surrounding the sample. This initial volume of mercury subtracted from the known 

volume of penetrometer provides the volume of the sample if it were completely solid. 

Pressure is then applied to the reservoir of mercury in the penetrometer stem at increasing 

incremental installments. With increased pressure, the mercury enters increasingly 

smaller pores. The total volume of mercury forced into the sample is used to determine 

the overall porosity while the mercury at each pressure interval allows for the estimation 

of pore size. 
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Three wedge portions were sliced from three separate chitosan scaffolds and 

analyzed with a mercury porosimeter (Micromeritics Autopore IV, Norcross, GA). First, 

a vacuum of 50 micrometers of mercury was pulled on each sample thereby completely 

removing the air from the sample. Mercury then surrounded the sample and was forced 

into the pores from large to small with increasing pressure from 0.22 psia up to 30 psia. 

The weight of the sample in the penetrometer was determined both prior to and following 

the introduction of mercury. The difference in weight divided by the density of mercury 

at room temperature gives the total volume used. By dividing the total pore volume by 

the external volume of the sample, porosity or percent pore volume was determined. The 

pore size was estimated using the Washburn equation: 

r = 2scos(e)/p, [3.1] 

where r is the pore radius, s is the surface tension of mercury, 0 is the contact angle of 

the mercury and p is the pressure applied. A built-in algorithm automatically calculated 

this value at each pressure interval and averages them after all points were taken. 

Electrical Impedance Spectroscopy (EIS) 

The electrical impedance spectrometer (Figure 6) consists of an AC generator, the 

left and right sample electrodes and the impedance analyzer which also inputs the signal 

into the computer for data collection. The AC generator operates at a constant current 

while sweeping across a predetermined frequency range starting with the highest to the 

lowest. At each frequency, the impedance analyzer measures the complex impedance. 

Each data point consists of the impedance magnitude, real and imaginary impedance, and 

phase shift. EIS was initially performed on two dry scaffold samples using 6A1 4V ELI 

medical grade titanium wire probes (Small Parts, Inc, Miramar, FL) attached to an 
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impedance analyzer (Solartron, 1260A, Hampshire, England). The sides and bottom of 

the scaffold were sealed with wax to prevent current leakage. 

out 

Figure 6: Electrochemical impedance spectroscopy setup showing parallel electrodes 
introducing a constant current of 0.1mA into the chitosan scaffold. 

A constant current of 0.1 mA was used for the evaluation and scanning was 

performed over the frequency range of 10"2 to 104 Hz. The scaffolds were then swelled 

with deionized water until reaching total saturation, followed by EIS using the same 

current and frequency range. Subsequently, phosphate buffered saline (PBS) was 

introduced into the scaffold at the increments of 20%, 29%, 50% and 100% with EIS 

performed at each increment with identical parametersT The five remaining scaffolds 

were each sealed with wax and swelled with non-diluted PBS. Each was evaluated with 

EIS with a constant current of 0.1 mA over the frequency range of 10"2 to 104 Hz. 
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3.2.3 Data Analysis 

The magnitude of impedance was plotted against the frequency. The impedance of 

the sample was observed over the frequency range and the effect of ionic composition on 

the shift of the impedance magnitude was examined. The tangent of this phase shift is 

the ratio of the imaginary permittivity (e") to the real permittivity (ey. 

tan(<D) = 4 - t3-2] 

s 

The imaginary permittivity is the loss permittivity relating to the resistive nature of the 

sample while the real permittivity is the storage permittivity relating to the capacitive 

nature. The tangent of the absolute value of phase shift was computed for the frequency 

range thereby providing the ratio of resistive to capacitive component. 

By plotting the real versus imaginary impedance in a Nyquist plot, the bulk 

resistance was acquired. Using a form of Archie's law, porosity was estimated from the 

bulk resistance by first calculating the effective conductivity: 

" * - & [ 3 3 1 

where a is the effective conductivity, R is the bulk resistivity, A is the cross sectional 
eff b 

area and 1 is the sample length. Archie's law was used to determine the porosity by the 

following equation: 

<r„=C<70OJ, [3.4] 

where a is the conductivity of saline which is known to be 1.2 S/m [68], <Do is the pore 

volume or porosity, C is the coefficient of saturation ranging from 0.1 and 1, and Mis 
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the cementation factor typically in the range of 1.5 to 4. Calculation details provided in 

Appendix B. 

Once the sample porosity was calculated, the pore connectivity was determined. 

There is a connectivity factor ((3P) for the pores as well as the solid material which are 

related to the effective conductivity of the saturated scaffold as seen in the following 

equation [63] 

where ceff is the effective conductivity; a, 0, and /? are the conductivity, volume fraction 

and connectivity factor with/? and s referring to the pores and scaffolds respectively. 

3.3 Results and Discussion 

Scanning electron microscope (SEM) analysis showed a consistent pore structure 

throughout the scaffold (Figure 7) except the slicing location. As a result of the cutting 

that compromises the region, it was eliminated from the data analysis. Regions in which 

pores were deemed to be completely intact were analyzed. Under the assumption that 

the pores are sectioned past the mid point the opening remains circular but decreases 

consistently in size (Figure 7), the diameters were determined for each pore. The average 

diameter was determined to be approximately 107.31 ± 24.05 (am and the median value 

was 119.45 urn. Pore diameters ranged from as low as 60.8 microns and as high as 

159.23 urn (Figure 7). Some aberrant larger pores were noted; however, these are likely 

the result of being on the uppermost surface during lyophilizing. Internal sections fall 

primarily within the aforementioned range. 
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Figure 7: A) SEM scan of chitosan scaffold at 25KV showing pores with average 
diameter of 107.31 ± 24.05 um. B) SEM scan of chitosan scaffold with 20 
KV showing consistent decreasing circular cross section. C) Distribution of 
pore sizes determined from image analysis. Scale bar =100 um (A) and 50 
um(B). 

For the four samples tested with a mercury contact angle of 130° and a density of 

15.534 g/ml, the average porosity was found to be 72.9 ± .49% using MIP. The average 

of the three samples gave a pore diameter average of 82.2 ± 4.79 um. These values are 

consistent with results in previous studies [32]. 

A sample plot of cumulative intrusion volume versus pore size was generated for 

one of the three samples (Figure 8). The steep drop and plateauing of the plot indicates 

that the pore diameter range is very narrow for the scaffold thereby further corroborating 

the SEM images. 
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Figure 8: Plot of cumulative intrusion volume per pore size from mercury intrusion 
porosity analysis of a sample chitosan scaffold. 

The first EIS test was run without the addition of any liquid and resulted in 

expected high impedance across the frequency (data not shown). The addition of DI 

water reduced the impedance values from the dry sample due to the presence of charged 

species from the dissociation of water molecules into hydronium and hydroxyl ions; 

however, the values were still high. With each increase in ionic strength, the overall 

impedance of the sample was reduced. The reduced impedance is a direct result of the 

increase in the number of ionic species in the solution. Altering the PBS concentration 

resulted in the shifts in impedance noted in five EIS data sets (Figure 9). 
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Figure 9: Impedance magnitude over the frequency range as determined by 
electrochemical impedance spectroscopy with titanium probes showing the 
decreasing magnitude with increasing ionic concentration. Inset: Close up 
view of frequency under 2 kHz (dry sample not shown). 

The data for the samples containing 100% PBS and DI water were also compared 

over the same frequency range for the phase shift. The phase shift is the change in phase 

angle between the input and output waveform. The signal is altered by the material the 

current passes through resulting in a phase shift from the emitted signal to the resultant 

signal. While no correlation could be made to the frequency, the distribution of the 

permittivity ratio showed considerably higher values between 0 and 1 for the 100% PBS 

sample as compared to the DI water (Figure 10). 
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Figure 10: The phase shift expressed as tangent (representing the ratio of the imaginary 
and real permittivity) over a frequency range for the scaffold with deionized 
water. Inset: Distribution of ratio values for the tangent of the phase shift. 

The values between 0 and 1 indicate that the resistivity of the sample is lower than 

the capacitance therefore the sample saturated with DI water is far more resistive than the 

PBS. Perhaps, the increase in ionic species in PBS lead it to act more like a capacitor 

where as DI water, due to the lack of ionic species, acts more like a non conductor. The 

next set of EIS data from five separate samples was collected and compared for 

consistency by two Bode plots. The Bode plots of the phase shift and the magnitude 

showed close grouping of the points indicating uniformity in both the sample and the 

testing method (Figure 11). 
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Figure 11: Bode plot of the impedance magnitude (left) and the phase shift (right) versus 
the frequency showing consistent behavior for all 5 samples. 

Additionally, the two Bode plots took on the standard curvature for EIS for a single time 

constant system [69]. All samples were run under the conditions stated previously with 

the exception of sample 5. After the previous four had been run, it became apparent that 

the Nyquist plot required further scanning of the lower frequency range. 

The Nyquist plots showing the real vs. imaginary impedance of the five sequential 

samples took on the characteristic semicircle shape for the lower frequency values 

(Figure 12). Given the normality of the shape, the bulk resistance (R ) can be estimated 
b 

as the point at which the semicircle crosses the X axis. Because only one of the samples 

was allowed to cross the X axis, the others were fitted to a semicircle in order to 

determine their approximate cross. In order to anticipate the X intercept of the Nyquist 
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plots, an approximate radius was estimated by taking the average of the real and 

imaginary impedance values at the visually observed center point, x = 5,300. 

0' 2 4 6 8 10 

Z 'x lO 3 

Figure 12: Nyquist plot of the real versus the imaginary impedance for 5 different 
chitosan scaffolds. Geometric projection of the semicircle (circle fit) 
indicates a bulk resistance value of 10,600 ohms. 

Different samples gave slightly different values (Table 2). The average of the values 

totaled approximately 5,300. Using 5,300 as the radius, a semicircle was plotted (Figure 

12) along with the impedance values showing a good fit which therefore suggests that the 

X intercept of the semicircle is approximately that of Nyquist plots: which is 10,600 
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ohms. As a result the new R was determined to be 10,600 ohms. A simple DC 
b 

resistance evaluation was performed confirming the EIS determined R (Data not shown). 

Table 2: Estimated radii of Nyquist plots for chitosan scaffolds from approximate center 
point of each arc (n=5). 

Sample 
1 
2 
3 
4 
5 

Average 

Estimated 
Radius 
103ohms 

5.20 
5.28 
5.19 
5.29 
5.53 

5.3 ±.14 

While the formulas and interpretations of Archie's law have been widely 

published for a number of different types of rocks [70], the use of EIS to characterize 

tissue scaffolds is novel. Consequently, the behavior of the scaffold must be taken into 

account in order to obtain the correct equation format. Because the scaffold becomes 

completely engorged with PBS, it can be assumed that C is at or near 1 due to the total 

saturation. The cementation factor is harder to estimate from physical observation. In 

1999, the results of a fused glass bead experiment were reported showing a relationship 

between porosity and the inverse of the formation factor (F) which is aeff I cr0. The 

experimental setup included the development and characterization of physical porosity 

models composed of three different sized glass beads. The data collected showed that the 

physical models fit the mathematical model proposed with the use of C=\ and m~2 [71]. 

This model also applies to physical systems with porosity in the anticipated range of the 
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chitosan scaffold so the values of C=l and m=2 are taken from this point forward in the 

characterization. 

Using the R determined from the Nyquist plot, the effective conductivity was 
b 

determined to be 0.605 S/m. Introducing the effective conductivity into Archie's law, the 

porosity was estimated to be 71.0%. The pore connectivity factor can not be determined 

from either of the previously discussed methods; however, evaluating the connectivity is 

important in order to assess fluid flow. When the scaffold is saturated with an 

electrolytic solution the contribution of the pore to the effective conductivity far exceeds 

the contribution of the solid components of the scaffold. As a consequence, the solid 

portion of the equation 3.5 can be considered null and the equation can be rewritten in the 

following format in order to solve for the connectivity 

The effective conductivity was once again used to determine the pore connectivity 

factor, which is 0.71, a reasonable number given the relationship between porosity and 

pore connectivity [63]. 

Based on physical observation of the scaffold prior to, during, and following the 

performance of EIS analysis, it became apparent that the physical damage from the 

testing was minimal. The purpose of the wax technique is solely to prevent current 

leakage. For use in vivo, this wax coating would not be necessary due to modification in 

the casting procedure. The ionic strength variation experiments resulted in the expected 

correlation of lowered resistance with increased ionic strength. The results of these 

findings include the assessment that the primary contributor to the EIS data is the fluid in 

the pores and that the testing can be optimally performed under subtly varying in vivo 
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conditions. The phase shift evaluation confirms once again the critical effect of the pore 

fluid as well as the overall slight capacitive nature of the scaffold when filled with PBS. 

Based on the testing parameters with PBS, the scaffold can be evaluated under in vivo 

conditions. 

The SEM data for pore diameter agrees with previously published data [32] and 

corresponds to the value of pore diameter provided by the MIP (Table 3). By comparing 

the visual data with the physical intrusion data, we can further legitimize the results of the 

MIP providing confidence in the value of 72.9% for porosity. The calculated value for 

porosity of 71.0% from EIS is therefore not only close to the value acquired from the 

proven method but also legitimate. The additional value of 0.71 for the pore connectivity 

factor provides characterization that heretofore was unattainable by the commonly used 

methods. This pore connectivity factor indicates a high level of connectivity that can be 

associated with softer flow of nutrients and waste to and from regions of the scaffold. 

Table 3: Pore size and porosity comparison for scanning electron microscopy, mercury 
intrusion porosimetry, and electrical impedance spectroscopy 

Method 

SEM 

MIP 

EIS 

Pore Diameter 
((am) 

107.31 ±24.05 

82.22 ± 4.79 

Porosity 

72.9 ± .49 % 

71.0% 

Comments 

Not tested for 
porosity 

Dry Sample in 
Vacuum 

Sample in Aqueous 
Conditions 
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3.4 Conclusions 

In summary, the data acquired and interpreted from the EIS compares favorably 

to the more commonly used characterization methods MIP which was visually confirmed 

by SEM. This comparison indicates that the EIS provides an effective nondestructive 

way of characterizing the pore properties of the chitosan scaffold. Furthermore, EIS 

provides the opportunity to monitor the scaffold long-term under in vivo conditions. 



CHAPTER 4 

ELECTROKINETIC PARTICLE TREATMENT 

4.1 Introduction 

While chitosan has been shown to be an effective material for tissue engineered 

scaffolds [27], chemical and physical modifications to the scaffold environment may 

increase the efficacy of the composite. Additions such as hyaluronic acid, growth factors 

in the form of proteins, and even ceramic particles have been used to alter everything 

from cellular differentiation to the mechanical strength [72, 73]. Often these 

modifications are introduced during the initial production of the scaffold and many 

polymer scaffold materials will permit this. Chitosan; however, organizes itself into a 

regular pore structure by charged end groups on the chitosan molecule and exclusion 

during micro ice crystal formation. 

The addition of particles during the fabrication stage of chitosan can disrupt the 

orientation of the charge groups and compromise not only the stability of the scaffold but 

also the shape and number of pores. It is this alteration in structure that prohibits this 

kind of modification to chitosan scaffolds during fabrication. Saturation of the chitosan 

scaffold in concentrated solution has resulted in modification without disrupting the 

structure [74] and small particles can be self incorporated if the scaffold is submerged 

42 



43 

in a suspension of the desired modifier. In order to accomplish this, the particle size must 

be considerable smaller than the pores themselves and the pore connectivity must be 

high. 

For tissue engineered scaffolds, it is not only desirable to alter the scaffold prior 

to the introduction of cells but also following their implantation. This need further 

requires that the modification be performed under conditions conducive to cell viability. 

In order to facilitate change without limiting functionality, electrokinetic treatment using 

a physiologically acceptable voltage range was implemented to effectively modify the 

chitosan scaffold. Three particles were chosen for this treatment protocol: hydroxyapatite 

nanoparticles, iron oxide microparticles, and hydroxyapatite microparticles. 

The goal of this treatment was not to reduce porosity. Reduction of porosity 

minimizes the pore volume that could be occupied by cells. The purpose of the particle 

introduction is to demonstrate that the scaffold chemical properties can be modified by 

this process. While iron oxide and hydroxyapatite were chosen primarily as model 

particles to witness the effectiveness of each size, all of the particles have potential 

applications in the scaffold environment. Hydroxyapatite has been shown to increase 

adhesion and proliferation of osteoblasts [75]. Iron oxide has demonstrated potential for 

increasing membrane permeability [76]. In order to evaluate the effectiveness of the 

electrokinetic treatment, the porosity will be measured simply as a means of determining 

the level of particle intrusion, however; all treatment protocols will also be evaluated 

visually in the event that the volume of particles is too low to detect a notable drop in 

porosity. 
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The application of a potential difference to a porous structure has frequently been 

used for biological molecules as a means of size differentiation. Gel electrophoresis is 

traditionally used to separate proteins and segments of nucleic acids by inducing travel 

through a gel matrix with the application of an electromotive force. The orientation of 

the electrodes to the sample well is chosen based on the natural charge of the material to 

undergo size exclusion. Negatively charged particles are drawn toward positive 

electrodes and vice versa. The gel formulation is chosen based on the anticipated particle 

size and the degree of crosslinking is adjusted to optimization the porosity for the 

application. A standard buffer provides the charge carrier for the facilitation of current 

carrying. Due to the macromolecule size difference, they travel at different rates with the 

smallest moving most readily through the porous gel matrix [46, 47]. 

Similar to gel electrophoresis, particles suspended in a solution can be used to 

modify a substrate using the same electric field. This technique has been used to alter 

everything from the substrate color to the enhancement of corrosion resistance in 

construction materials [77, 78]. The substrate to be modified is used as the electrode of 

opposite charge to the particle to be plated on the surface. The particles travel through 

the suspension fluid at a rate based on the particle size, charge and the viscosity of the of 

the suspension media. Contrary to gel electrophoresis, the particles will not be embedded 

in a matrix but simply deposited. Depending on the nature and charge of the particle, the 

deposition may be strongly attached or easily removed. 

A combination of the matrix mobility of electrophoresis and the modification 

abilities of electrodeposition results in the electrokinetic enhancement of porous 

substrates. For environmental applications, DC currents have been applied to 
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contaminated soil for electrokinetic remediation. The current causes the charged 

contaminants to travel by a means of both electrosmosis and electrophoresis. The 

remediation relies on the drawing out of particles; however, the reverse can be applied to 

incorporate particles into a porous substrate therefore reducing porosity, increasing 

mechanical strength or altering the internal environment [79]. The application of an 

electric field has been demonstrated to remove water from a hydrated porous system [80] 

and more recently an applied current has been shown to incorporate nanoparticles into 

hardened cement paste [77]. 

These afore mentioned applications primarily utilized the electro-osmotic effect 

causing water to flow between the electrodes. With heavier particles and larger pores, 

this electro-osmotic effect may not be enough to facilitate transport. The nature of the 

pore diameter and the high interconnectivity would reduce the necessary solid surface 

charge and result primarily in stationary sites inside the scaffold. The unlikeliness of a 

strong electroosmotic flow means that the effect has been deemed negligible in contrast 

to the electrophoretic forces on the particle and will not be considered in the treatment 

protocol. 

4.2 Materials and Methods 

4.2.1 Preliminary Experiments 

Performed with Rachel Gade 

Chitosan scaffolds were modified by adding an additional 0.5% wt/vol 15 urn iron 

oxide micro particles to the 2% chitosan scaffold by sonication after the entire allotment 

of chitosan had been dissolved at 50°C. The suspension of iron oxide in the chitosan 

solution was cast into a specimen container and frozen at -20°C for 24 hours. Once 
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thoroughly frozen, the scaffold was lyophilized for 24 hours. The resultant scaffold did 

not have the standard appearance of other 2% chitosan scaffolds. In addition to the grey 

color, the scaffold appeared to have a disordered fiber structure. The scaffold was sliced 

into wedges and analyzed by SEM {Amray 1830, Bedford, MA). 

4.2.2 Scaffold Fabrication 

Chitosan scaffolds were fabricated by dissolving 2% weight per volume dry 

chitosan powder from crab shells in 2% volume per volume acetic acid (all from Sigma, 

St. Louis, MO) heated to 50°C. The chitosan solution was cast into a 3 cm diameter 

specimen container to an approximate fill level of 3 cm high and frozen at -20°C for 24 

hours. Once thoroughly frozen, the scaffold was lyophilized for 24 to 36 hours resulting 

in a foam-like 3D matrix with a slightly reduced radius. The sample was ensured to be 

completely dry by piercing the center of the scaffold with a 20 gauge needle in order to 

feel for irregularities indicative of insufficient freeze drying. A total of nine scaffolds 

were fabricated from separate batches in order to test the three particle sizes chosen for 

intrusion. Each individual scaffold was split at half height providing a sample portion for 

the electrical stimulation and a control to remain uninfluenced in the particle solution for 

the duration of the stimulation. Prior to use, all scaffolds were kept dry with desiccant. 

4.2.3 Intrusion Solutions and Suspensions 

First, a suspension was made by adding 2% wt/vol iron(III) oxide to PBS (both 

from Sigma Aldrich, St Louis, MO) and ultrasonic agitation. Characterization data 

provided by the manufacturer indicates the particle size is approximately 15 urn and it 

was understood that the particles exhibited a negative charge [81]. The particle size 

required frequent resuspension via aspiration during the electrokinetic intrusion. The 
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second suspension generated was a 2% (wt/vol) of hydroxyapatite microparticles 

(Berkeley Advanced Biomaterials, Berkeley, CA) once again in PBS using ultrasonic 

agitation. The manufacturer provided a size characterization range of 100- 300 urn and 

an implicit weak positive charge [82, 83]. The final particle suspension in PBS was made 

with 200 nm nanoparticle hydroxyapatite (Sigma Aldrich, St Louis, MO) to a 

concentration of 0.5% (wt/vol) once again with an understood positive particle charge 

[82, 83]. 

4.2.4 Electrokinetic Treatment 

Plexiglass cubes were constructed and sealed to waterproof tightness on five 

sides. The lid portion of the cube was drilled at four locations: two for the electrodes 

located one electrode radius apart and two to vent any byproducts of electrolysis. A pair 

of radial electrodes was fabricated from medical grade titanium (Small Parts, Inc, 

Miramar, FL). The outer electrode was a ring with a diameter slightly greater than the 

scaffold while the inner electrode was straight (Figure 13). Electric field lines can be 

estimated based on the equality of the charges when connected to a DC voltage source 

(Figure 14). 
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Radial 
Electrode 

Figure 13: Electrokinetic particle treatment chamber with reversible radial electrode 
potential. 

Figure 14: Electrical field lines for the hydroxyapatite (left) and iron oxide (right) 
electrokinetic set-ups. 

The laterally sliced scaffold halves were coated on bottom with paraffin wax and 

attached to the bottoms of two electrokinetic set-ups. The paraffin assures that current 

will not leak under the scaffold and must flow through the scaffold. The center 

electrodes were inserted into the scaffolds and the outer circular electrode was placed 
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around the circumference of the scaffolds. The design of the outer electrode insures that 

it remains in close proximity to but not touching the outer walls of the scaffold. To 

prevent total dissolution of the scaffold, PBS was added in ml increments over several 

minutes directly to the scaffold. This also insures that the scaffold is pre wetted and that 

the particles could not be drawn in by the initial hydrophilic draw of the scaffold. 

Once the scaffold was saturated, the particle suspension was added to each set-up 

and filled to level with the top of the scaffolds. Immediately following the introduction 

of the particle suspension, one of the two set-ups was attached to the DC power source at 

4 V. This voltage was chosen based on previous cellular electrokinetics experiments 

which reported no effect on differentiated cells [50]. For the iron oxide suspension, the 

central electrode was the positive electrode and the outer ring was negative based on 

published data which indicates that in a solution of pH 7 such as PBS iron oxide particles 

exhibit a negative potential [81]. For both hydroxyapatite suspensions, the central 

electrode was negative with a positive outer electrode due to hydroxyapatite weak 

positive potential when unaltered and at neutral pH [82, 83]. Both the set-ups were 

maintained at the same ambient temperature and aspirated as needed to maintain the 

suspension. 

Due to the application of current to water, the possibility of electrolysis always 

exists. While current used for the electrokinetic set up is very low, water will under go a 

redox reaction 

4H+ + 4e' -> 2H2 [4.1] 

20~2 -+4e~+02. [4.2] 
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The pH changes associated with the electrolysis might be of concern in the electrokinetic 

particle treatment; however, the buffer elements of PBS should negate any potential 

effects. 

The duration of the electrokinetic intrusion and control was dependent on particle 

size (Figure 15) and charge. The electrophoretic velocity through the scaffold was 

roughly estimated by using a modified version of the of the equation for electrophoretic 

velocity (v) in a suspension for electrodeposition 

- ^ - . [43] 
47WTJ 

where Q and r represent the approximate particle charge and radius. E is the voltage 

applied and rj is the suspension viscosity [84, 85]. 
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Figure 15: Diameter comparison of particles for electrophoretic transport against the 
average pore diameter ~100 urn. 

In order to consider this equation for electrokinetic intrusion velocity, it must first 

be assumed that the distance between the outer electrode and scaffold is minimal as 

compared to the space between the outer electrode and the inner electrode so the primary 
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material that the particle will be traveling through is PBS swelled chitosan scaffold. 

Since information regarding engorged chitosan viscosity is not readily available, the 

projected viscosity for a 2% (wt/vol) agarose gel of approximately lOkPas will be used 

which is considerably more viscous than water but less viscous than a solid structure 

[86]. The 2% (wt/vol) agarose is an appropriate model because of its physiological 

buffer component and its reported pore diameter of -100 urn [87]. Previous 

characterization of chitosan scaffolds has provided a pore diameter of approximately 100 

um as well. Particle charge was estimated by the charge per gram of each substance and 

the approximate number of particles per gram. All values for electrokinetic run time 

were rounded and based on travel from the outer edge of the scaffold to the center 

electrode (Table 4). 

Table 4: Approximate treatment time determined by electrodeposistion rate (Equation 
4.3) based on particle size and media viscosity. 

Particle 
Hydroxyapatite 
Iron Oxide 
Hydroxyapatite 

diameter 
200 nm 
15um 
100-200 nm 

approximate run time 
0.66 hours 
6 hours 
43 hours 
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4.2.5 Characterization 

Optical Evaluation 

All scaffolds were sliced latitudinally prior to all subsequent characterization and 

observed under 10 X and 40 X magnifications with an upright microscope and the 

particle presence was qualitatively assessed. 

Scanning Electron Microscopy (SEM) 

The iron oxide electrokinetically treated scaffold was evaluated using SEM. This 

scaffold was chosen as a representative due to its median particle size in order to observe 

the pore incorporation of particle. In order to image the scaffold with SEM, it was frozen 

immediately following particle intrusion and lyophilized as if the scaffold were newly 

made. Once completely dry, the scaffold was removed from the lyophilizer and cut into 

wedges thereby exposing interior surfaces. The sample slices were kept with desiccant 

prior to sputter coating with gold. The sample was then imaged on a SEM (Amray 1830, 

Bedford, MA) using an accelerating current of 25 kV. The obtained images were 

qualitatively observed in order to note presence of particles in the pores. SEM (Hitachi 

S4800, Berkshire, UK) and energy dispersive spectrometer (EDS) were performed on 

both the electrokinetically treated and passive nano hydroxyapatite samples. 

Mercury Intrusion Porosimetry (MIP) 

Representative wedge portions were sliced from 3 electrokinetically treated 

chitosan scaffolds as well as 3 control scaffolds. Each scaffold had been desiccated as 

previously discussed for SEM and maintained desiccated prior to analysis with a mercury 

porosimeter (Micromeritics Autopore IV, Norcross, GA). First, a vacuum of 50 

micrometers of mercury was pulled on each sample thereby completely removing the air 
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from the sample. Mercury then surrounded the sample and was forced into the pores 

from large to small with increasing pressure from 0.22 psia up to 30 psia. The weight of 

the sample in the penetrometer was determined both prior to and following the 

introduction of mercury. The difference in weight divided by the density of mercury at 

room temperature gives the total volume used. By dividing the total pore volume by the 

external volume of the sample, porosity or percent pore volume was determined. The 

pore size was estimated using the Washburn equation: 

r = 2scos(Q)/p, [18] 

where r is the pore radius, s is the surface tension of mercury, & is the contact angle of 

the mercury and p is the pressure applied. A built-in algorithm automatically calculated 

this value at each pressure interval and averaged them after all points were taken. 

Previously acquired base line values for pore size and porosity of chitosan scaffolds were 

used for comparative purposes. 

Electrical Impedance Spectroscopy (EIS) 

Significant portions of the 3 treated/ control pairs were frozen and lyophilized as 

before and coated in paraffin wax on the sides and bottom when necessary to prevent 

current leakage. All scaffolds were swelled with PBS in order to fill the pores with an 

electrically conductive medium, EIS was performed on the scaffold samples using 6A1 

4V ELI medical grade titanium straight wire probes (Small Parts, Inc, Miramar, FL) 

attached to an impedance analyzer (Solartron, 1260A, Hampshire, England). A constant 

current of 0.1 mA was used for the evaluation and scanning was performed over the 

-4 3 

frequency range of 10 to 10 Hz. This approach has previously been used to 
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characterize chitosan scaffolds and has been shown to be effective and non destructive. 

Appendix A provides elaboration and details for the chitosan fabrication, MIP, and EIS. 

4.2.6 Data Analysis 

By plotting the real versus imaginary impedance values acquired for all samples 

in a Nyquist plot, the bulk resistance was determined. Using a form of Archie's law, 

porosity was estimated from the bulk resistance by first calculating the effective 

conductivity: 

where aeff is the effective conductivity, Rb is the bulk resistivity, A is the cross sectional 

area and 1 is the sample length. Archie's law was used to determine the porosity by the 

following equation: 

creff=Ca0^, [4.5] 

where a0 is the conductivity of saline which is known to be 1.2 S/m [68], @0 is the pore 

volume or porosity, C is the coefficient of saturation ranging from 0.1 and 1, and M is 

the cementation factor typically in the range of 1.5 to 4. Porosity values acquired were 

compared to the previously acquired values for chitosan scaffolds. Appendix B shows 

the details for the porosity calculations. 

4.3 Results and Discussion 

Preliminary experiments with suspended iron oxide microparticle scaffolds were 

not as physically strong as standard 2% chitosan scaffolds and, upon slicing for SEM, 

partially degraded. The intact regions were imaged with SEM showing an irregular pore 
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structure uncharacteristic of chitosan scaffolds (Figure 16). These results confirm that 

the chitosan structure is compromised with the addition of microparticles. 

Figure 16: Scanning electron microscope image showing compromised pore structure 
created with iron oxide modification during the scaffold fabrication process. 

Microscopic observation of the treated and control sample indicated the presence 

of both iron oxide and the nano hydroxyapatite particles. The nano hydroxyapatite was 

only visible as clumps of powder at optical magnification. The latitudinal slice for the 

iron oxide treated sample indicated a good distribution throughout the cross sectional area 

while the control had very little particle concentration in the central area but still 

noticeable presence in the outermost regions of the scaffold. The nano hydroxyapatite 

particles were difficult to characterize based on their size and lack of contrast with the 

scaffold itself; however, it was apparent that the particles were present in both the treated 
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and untreated scaffolds. The micro hydroxyapatite was visible but impossible to quantify 

based on the lack of contrast with the scaffold. Lack of particles inside both the treated 

and untreated was obvious. Few particles were present on the outsides of both scaffolds. 

SEM scans of the electrokinetically modified iron oxide scaffold showed that the 

standard 100 um pore structure was not altered by the particle intrusion (Figure 17). 

Figure 17: Scanning electron microscope image of iron oxide treated scaffold showing 
particles in relation to the pore. 

Images of the center portions confirmed the optical microscopy findings that 

particles were present in the interior. Following the second desiccation of the scaffold for 

SEM scanning, particles appear to have localized themselves along the solid regions of 

the scaffold and appear to be somewhat attached. The iron oxide particles appear to 

clump around the pore openings while remaining relatively evenly distributed elsewhere. 
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This effect might be a result of the particles in the fluid volume of the pores that under go 

localized agglomerations during the desiccation. 

SEM analysis of two nano hydroxyapatite modified scaffolds showed both a 

normal pore structure for the chitosan scaffold and large deposits of nanoparticles (Figure 

18). The nanoparticles are not visible at the magnification which permits pore viewing. 

Consequently, magnifications of the regions have been provided next to the 

corresponding pore images. EDS (Figure 19 and Figure 20) confirmed that the 

nanoparticles contained calcium and phosphorous which are not present natively in the 

scaffold but are found in large proportions in the hydroxyapatite. 
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Figure 18: Scanning electron microscope images of the nano hydroxyapatite 
electrokinetically treated chitosan scaffolds showing normal pore structure 
(top left) and nanopatrticles (top right). The pore structure of the 
nonelectrokinetically treated scaffold was consistent (bottom left) and 
nanoparticles were also present (bottom right). 
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Figure 19: Energy dispersive spectrometer results showing peaks indicating the presence 
of calcium and phosphorous therefore confirming that the nanoparticles are 
hydroxyapatite in the electrokinetically treated scaffold. 
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Figure 20: Electron dispersion spectra for particles present in the control nanoparticle 
sample indicating that they are in fact hydroxyapatite due to the presence of 
calcium and phosphorous. 

MIP analysis of the treated and control iron oxide samples indicated a decrease in 

porosity from a completely unmodified chitosan scaffolds with a slightly more significant 

drop for the electrokinetically treated scaffold (Table 5). These drops in porosity 

correspond to the notable presence of iron oxide microparticles which contribute to the 

solid scaffold volume. 
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Table 5: Mercury intrusion porosimetry porosity values for the treated and untreated 
scaffolds. 

Particle 
Modification 
Iron Oxide 

Hydroxyapatite 
Hydroxyapatite 

None 

Particle Size 
-15 um 
~0.2 um 
-200 um 

-

Porosity 
71.98 ±.36% 
72.88 ± .13% 
73.01 ± .24% 
72.9 ± .49% 

Since the degree of attachment of the particles is unknown, the pore diameters reported 

from MIP may be compromised due to the possible dislodging of particles and 

accumulation in the pores during the pressurized intrusion. Regardless of whether or not 

the particles would be moved or extruded during the MIP procedure, the solid volume 

will remain constant in the results and is therefore legitimate. The standard MIP 

intrusion volume curve further indicates a smooth intrusion typical of successful testing 

(Figure 21). 
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Figure 21: Cummulative intrusion curve for mercury porosimetry of iron oxide 
electrokinetically treated chitosan scaffold. 

Analysis of variance (Table 6) performed on the iron oxide and control samples 

showed a significant difference between the porosity of modified and unmodified 

scaffolds. 

Table 6: Analysis of variance for iron oxide and control scaffolds. 

ANOVA 

Source 
Factor 
Error 
Total 

DF 
1 
5 
6 

SS 
1.56 
0.99 
2.55 

MS 
1.56 

0.198 

F 
7.88 

MIP analysis of the nano hydroxyapatite indicated a very subtle increase in 

porosity for both the electrokinetically treated scaffold and the control scaffold as 

compared to previously obtained data for unmodified scaffolds. The porosity values for 
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the treated and control scaffolds were insignificantly different (Table 5) (ANOVA not 

shown). The intrusion of nano hydroxyapatite particles with and without applied voltage 

is likely due to the size of the particles and their ease of movement through pores which 

are on average 200 times greater in diameter. The low charge present on the particle 

itself also contributes to the amount of electrokinetic treatment. Modification of the nano 

hydroxyapatite's surface area to increase the magnitude of charge might increase the 

volume of particles introduced due to increased electrophoretic activity. 

The final scaffold treated with micro hydroxyapatite particles was analyzed with 

MIP and resulted in data indicating the pore size and porosity was not decreased from the 

unmodified chitosan scaffold. This lack of change corresponds to the microscopic 

observations indicating a lack of particles introduced into the scaffold. Previously 

reported and confirmed values for the average pore diameter of chitosan scaffolds agree 

that the pores are approximately -100 um across which is smaller than average micro 

hydroxyapatite particle diameter. The control sample demonstrated the hypothesized 

result that the micro particles would not flow into a pre-swelled scaffold. It is possible 

that the electrokinetic treatment may have been more successful if the charge on the 

hydroxyapatite had been modified and increased; however, it is unlikely that particles in 

the lOOum or greater diameter range would be usable at low voltage levels due to the 

prohibitively long treatment time and pore size. 

EIS analysis of all of the samples both modified and provided the standard 

Nyquist plot curves but the changes in porosity were so small for the hydroxyapatite 

scaffolds that it was not possible to successfully distinguish them from curves generated 

from unmodified scaffolds (Figure 22). The iron oxide Nyquist plot showed an increase 
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in bulk resistance (Figure 23) which was applied to Archie's law in order to obtain a 

porosity of 70.2% which is a decrease from the previously determined unmodified value 

of 71.0% with EIS evaluation. This decrease in porosity corresponds to the decrease seen 

with MIP and corroborates the presence of iron oxide particles inside of the scaffold. 

6000 

5000 H 

4000 

N 3000 

2000 H 

1000 

—«— Unmodified Scaffold 
Model 

-•— Micro Hydroxyapatite 
Modified 

2000 4000 6000 8000 10000 

Figure 22: Nyquist plot of hydroxyapatite microparticle treated scaffold compared to the 
semi circular model for unmodified scaffolds. 

If a double curve had been apparent in the Nyquist plot, it would have been 

indicative of a second resistive effect. The standard curvature of the plots did indicate 

that the charges of the particles did not really affect or react to the current used for EIS. 

Long term exposure to the EIS might have an electrokinetic effect on the particles but 

normal protocols do not. With the low current of 0.1 mA and a maximum duration of 1 

hour the electrokinetic effect is minimal. If a higher concentration of the particles or 
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increased particle charge were used, the conductivity of the PBS would need to be 

modified when using EIS and Archie's Law as an evaluation technique. 
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Figure 23: Nyquist plot of iron oxide microparticle treated scaffold compared to the semi 
circular model for unmodified scaffolds. 

4.4 Conclusions 

Optical and porosity evaluation techniques have shown electrokinetic intrusion to 

be successful for the modification of chitosan scaffolds when the particles are in the 15 

um arena as compared to simple exposure to the particle suspension without the potential 

difference. Larger particles in the same diameter range as the pores were realistically 

unable to be electrophoretically transported into the scaffold while particles in the 

nanometer range flowed freely both with and without the potential difference. The 

results of the particle diameter range under physiologically tolerable conditions have 
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shown potential for the electrokinetic treatment as a modification method both for 

acellular and cellular scaffolds when using particles in the 10 to 20 urn range. 



CHAPTER 5 

EVALUATION OF SEEDED CHITOSAN 
SCAFFOLDS WITH EIS 

5.1 Introduction 

Bioimpedance has been successfully used as a characterization technique for 

tissues. The dielectric effect produced by the cell membranes as well as the polarization 

of proteins at limited frequency allows for comparison between tissues through plot 

comparison or model circuits. Biological impedance response to AC stimuli fits into 

three distinct regions (Figure 24) [54]. 
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Figure 24: a, P, y dispersion for impedance spectroscopy of tissue Chart from [54] 

In the a dispersion, the primary effect of current stimulation in tissue is the 

diffusion of ions in the extracellular environment. If cellular gap junctions are open, 
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current can pass into and out of the cell as well but this effect will be minimal. In the |3 

dispersion, the cell membrane can be bypassed and a capacitive effect will take place. In 

the upper P lower y frequencies, proteins are polarized which can provide additional data 

points if the protein concentration is great (Figure 25) [54]. 

& = Cell with dielectric response 
* = Cell 

Q l = Scaffold Pore 

Figure 25: Long and short wavelength interaction inside a seeded scaffold. 

Engineered tissues are essentially the same as naturally occurring tissue except for 

the artificial ECM and the cellular density. With a nonconductive or minimally 

conductive scaffold, EIS on engineered tissues should be equivalent to EIS on excised 

tissue samples. Impedance analysis of tissue accounts for current travel through the 

extracellular fluid and the cells. Likewise, engineered tissue EIS will account for the cell 

suspension media, physiologically similar to the extracellular media, accept for newly 

seeded scaffolds the current passage will meet less resistance. 

Impedance spectroscopy has already been used as an on line monitoring solution 

for seeded scaffolds. The faradic and non-faradic charge transfer mechanisms in 
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cardiomyocytes were assessed by EIS. In this case, EIS was used to evaluate the 

functionality of the cells, which, if in working condition, have a varying potential [88]. 

EIS can also be used to evaluate cellular differentiation. As mesenchymal stem cells 

(MSCs) differentiate, their morphology shifts accordingly. By removing background 

data, the differences from cell type can be noted. In addition to variations in cell 

morphology, changes in cell volume can be reasonably assessed by EIS as confirmed by 

a DNA assay. Produced proteins for the newly developing ECM can be accounted for 

both as a change in volume and from the polarization of the macromolecules [58, 89]. 

The goal of this experimental set is to demonstrate the effectiveness of EIS for 

determining cell and protein inside of chitosan scaffolds nondestructively. 

5.2 Materials and Methods 

5.2.1 Preliminary Testing and 
Design Performed with 
Laura Place 

Preparation of Chitosan Scaffold 

2% (wt/vol) chitosan scaffolds were prepared under the standard protocol as 

previously described and cast into a 4 cm specimen container. 

Testing Chitosan Scaffold for Media Uptake and Particle Accumulation 

Previously weighed scaffolds were soaked in complete media until saturated. 

Half of the scaffolds were kept saturated for 6 hours without current and the second half 

were treated with current. The scaffolds were weighed after the treatment and then re-

lyophilized. The dry samples were then examined with SEM. 
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Cell Culture 

Established fibrochondrocytes (ATCC, Manassas, VA) were cultured under 

standard conditions using Dulbeccos Modified Eagles Medium (DMEM) supplemented 

with 10% fetal bovine serum (FBS), 1% 4mM L-glutamine, and 1% pen strep antibiotics. 

Each culture was maintained in an incubator at 37°C at 5% CO2. 

Seeding Cells onto the Scaffold 

The scaffold was sealed and attached to the bottom of the plexiglass box used for 

the particle treatment protocol. All equipment was then placed under UV light to 

sterilize. After sterilization, the scaffold was swelled incrementally with media. Cell 

suspension from a passage of the fibrochondrocytes was then placed onto the top of the 

scaffold. The plexiglass box and scaffold was put into a sterile plastic zippered bag and 

incubated overnight. After 18 hours, the chamber was moved from the incubator and 

placed in the cell culture hood. Prior to electrical treatment ~20 ml of fresh media was 

added. 

Electrical Treatment 

The same radial electrode set up used for the particle treatment was used on half 

of the scaffolds submerged in complete media. All set ups were maintained at 37° C in a 

water bath under the hood. The three experimental setups were: No current, positive on 

the inside with negative on the outside, and negative on the inside with positive on the 

outside. A DC power source was run at 4 V and monitored with a digital multimeter for 6 

hours and a current of .015 mA. The system was then run at these conditions for 6 h. 
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Pico Green DNA Assay 

The treated scaffold was cut into three layers and three segments of each layer in 

order to distinguish between the top, middle, bottom, left, right, and center. Each of the 

nine pieces of scaffold was stained with pico green, a DNA only stain, and placed on a 

slide for viewing. Pico green was chosen for its DNA exclusive binding which would 

prevent possible background staining of the scaffold. The samples were then observed 

under a fluorescence microscope and a picture was taken using Rincon software. The 

cells in each image were then counted and averaged. This assay was performed on all 

three experimental setups and on a control scaffold with no cells. 

5.2.2 Scaffold Fabrication 

Chitosan scaffolds were fabricated by dissolving 2 % (wt/vol) chitosan powder 

from crab shells in 2 % (vol/vol) acetic acid (all from Sigma, St. Louis, MO) heated to 

50°C. This procedure was repeated from previous protocols which resulted in well 

characterized scaffolds. The chitosan solution was cast into a polyethylene specimen 

container to an approximate fill level of 3 cm high and frozen at -20°C for 24 hours. Once 

thoroughly frozen, the scaffold was lyophilized for 24 to 36 hours resulting in a foam-like 

3D matrix. The sample was ensured to be completely dry by piercing the center of the 

scaffold with a 20 gauge needle in order to feel for irregularities indicative of insufficient 

freeze drying. A total of six scaffolds were fabricated from three separate batches 

allowing for up to 6 seedings and subsequent evaluation. Each individual scaffold was 

maintained in its cast shape and unaltered prior to seeding as well as stored with 

desiccant. Immediately prior to cell seeding, the bottom and sides were coated in paraffin 
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to prevent current leakage during later EIS testing. The wax coating had to be performed 

prior to the introduction of media but is apparently unharmful to the process. 

5.2.3 Cell Culture 

3T3 fibroblasts (ATCC) were thawed using the manufacturer's instructions and 

cultured in 25 cc culture flasks with 90% Dulbecos modified eagle media (DMEM)/ 10% 

fetal calf serum (FCS) (both from ATCC). Fibroblasts were chosen as the model cell due 

to their durability, adhesion dependence, and rapid proliferation. All flasks were 

maintained in the incubator at 37° C and 5% CO2. Each flask was fed every 2 to 3 days 

and at approximately 75% confluency the cells were passaged. During passaging, the 

media was removed and the flask rinsed with PBS. The cells were trypsinized with 0.2% 

trypsin and a portion of the cell suspension was placed in a new flask along with fresh 

media to proliferate. Cells were passaged every 4 to 5 days until the cells demonstrated 

good morphology. On passages 3 and 4, a portion of the subculture cell suspension was 

retained for seeding purposes. 

5.2.4 Cell Seeding 

Four scaffolds, only two from the same batch, with partial wax coating were 

sealed to the bottom of a modified sample container with additional wax and placed 

under UV light for 2 hours in order to sterilize the set up. Complete media was added 

incrementally to the scaffold allowing it to swell until reaching full saturation at 

approximately 10 ml over 10 minutes time. A portion of the cell suspension acquired by 

subculture of the flask was added to the exposed top of the scaffold making sure to 

distribute the suspension evenly. Approximately lxl06, counted with a hemacytometer, 

cells were used for each scaffold. The seeded scaffold and set up were placed inside of a 
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sterilized zipper bag and placed inside of the 37° C/ 5% CO2 incubator for 12 to 16 hours. 

Upon complete seeding, the scaffold could be removed entirely from the set up or the set 

up could be modified for the testing. 

5.2.5 Electrical Impedance Spectroscopy (EIS) 

The four scaffolds which had previously been coated in wax and implanted with 

cells were first run at 0.1mA from 10" to 10 Hz. Following the initial data set, each was 

subsequently run from 10 to 10 Hz and finally to the limitations of the impedance 

device, 10". EIS was performed on the scaffold samples using 6A1 4V ELI medical 

grade titanium straight wire probes (Small Parts, Inc, Miramar, FL) attached to an 

impedance analyzer (Solartron, 1260A, Hampshire, England). This approach has 

previously been used to characterize chitosan scaffolds and has been shown to be 

effective and non destructive. The two remaining scaffold were swollen with complete 

media and used as background for comparison with the seeded scaffolds. Each of the 

background scaffolds were run with the same current and frequency sets as the seeded. 

To test the strength of the protein response, FBS was added to one of the background 

scaffolds following initial testing in increasing increments of 10% (vol/vol) to a total of 

50%. 

5.2.6 Data Analysis 

By plotting the real versus imaginary impedance values acquired for all samples 

in a Nyquist plot the impedance values were compared. Bode plots were also created for 

all samples in order to determine a frequency response. 
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5.3 Results and Discussion 

Preliminary Results Acquired with Laura Place 

Elemental analysis from the SEM showed that in addition to the carbon and 

oxygen found natively in the scaffold the complete media left traces of sodium, chlorine, 

and calcium. The concentrations of the trace elements were consistent for both the 

electrically treated and nontreated scaffolds. This consistency indicates that the electrical 

treatment is not causing an increased concentration of minerals inside the scaffold due to 

the application of current. 

The pico green assay (Figure 26) showed the averages of the cell counts (Figure 

27) from each of the segments were evenly distributed and maintained following both 

current protocols. All experiments yielded a similar numbers of cells in each scaffold as 

well as showing consistent seeding behavior. The consistent distribution indicates that the 

current didn't influence cellular migration. 

Figure 26: Representative images from fluorescence microscopy of pico green assay on 
seeded chitosan scaffolds (both images from middle portions of the scaffold) at 
40X magnification. 
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This distribution most likely occurred because an electric field of 2.67 V/cm was 

used to treat these scaffolds, and in previous experiments cells were not seen to migrate 

with preference for the cathode until the field reached 5 V/cm [90]. There is also no 

negative effect on cell population when the electrical treatment is used, thus the field may 

be used for other purposes without fear of damaging the cells. 
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Figure 27: Average cell count per regional sectioning of a chitosan scaffold 18 hours after 
seeding (n=8). 

Bode plots showed the typical signal time constant formation. In the a dispersion, 

the Nyquist plots of the unseeded scaffolds showed very similar curvature and resistance 

to the previously reported values for unmodified scaffolds saturated with PBS. This 

correspondence is reasonable since both the PBS and the media have very similar ionic 

concentration and the lower frequency ranges primarily affect ion transport. When the 

seeded scaffold were plotted along side the unseeded scaffold in the a dispersion, there 

was no notable difference between them. This result may be an indication that the total 

cell volume contained within the scaffold was not enough to impede current in the 
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scaffold. The single semi circle likely indicates that there is not a significant contribution 

from the gap junctions on the fibroblasts (Figure 28). 
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Figure 28: Nyquist plot of the real vs. imaginary impedance of seeded scaffolds (Sample 
1-3) and the background scaffold (sample 4) tested in the a dispersion. 

Once analyzed in the p dispersion, the unseeded scaffold showed a small cluster 

of points associated with the highest frequencies on the cusp of the y dispersion. Upon 

isolation the high frequency points (Figure 29), may be an indicator of protein 

polarization. The high frequency values increased with an addition of 30% more vol/ vol 

fetal bovine serum. The seeded scaffold showed a corresponding cluster at high 

frequencies but no pattern for the impedance could be associated with the cells. It is 
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possible that the quantity of cells was insufficient to see a significant difference as 

compared to the volume of media present. 

10 20 30 40 80 90 

Figure 29: Subset Nyquist plot from the P and y dispersion cusp showing protein 
response from the addition of fetal bovine serum. 

5.4 Conclusions 

Positive results from the pico green assay show that the cell seeding procedure 

works for chitosan scaffolds; however, the P dispersion data did not indicate a cellular 

capacitive effect and the a dispersion did not show a change in scaffold porosity from the 

cell volume. Reasonably, the capacitor effect from the cells may be masked by the 

overall impedance of the engineered tissue as a whole. In regards to the standard model 

circuit (Figure 30), reasonable comparative values can be assigned to the circuit 

components. The extracellular resistance will remain low on newly seeded scaffolds. 
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With an average cell diameter of 10 um and a chitosan pore size of approximately 100 

urn, the volume difference between cell volume and the pore volume is substantial so the 

number of cells required to increase the impedance of the system in the a dispersion will 

either require an initially prohibitive cell seeding population or time for the cells to 

proliferate. Also, if the cells had failed to attach to the scaffold, lack of adhesion leads to 

a round profile which minimizes the accessible surface area seen by the directional 

electric field. The circuit elements associated with the cells will be masked by the 

background resistor until the cell population is once again quite large. In regards to the 

circuit as a whole, current introduced into the scaffold will initially by pass the cell 

components because of their inherent high resistance and the extracellular fluid, the 

media, will be the path of least resistance. 
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Figure 30: Model circuit for electrochemical impedance spectroscopy in tissue with cell 
related components in light grey box. 
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It is possible that an increase in cell population might deliver a stronger signal. 

The small but notable reaction of the protein to high frequency stimulation is further 

validated by the increase in magnitude with the increase in protein concentration. This 

result suggests that a correlation between impedance values and protein concentration 

could be established as an evaluation protocol at minimum for the increase in protein 

concentration associated with ECM production and gene expression. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Characterization 

In comparison to the more commonly used characterization techniques for tissue 

engineering scaffolds, the data acquired and interpreted from the EIS compares favorably 

with the added benefit of maintaining the physical and chemical parameters of the 

scaffold. Porosity and pore connectivity values are critical assessments to judge both the 

quantity and evenness in pore structure. In scaffolds with traditionally regular pore 

structure, subtle variations can be detected with EIS testing. Unlike other 

characterization methods, EIS not only does not damage the scaffold but also maintains 

the pore fluid presence. By not displacing or modifying the pore fluid, modifications 

made to the scaffold can also be evaluated without removal, a benefit over other practiced 

nondestructive approaches. Additionally, EIS can be performed in a short period of time. 

With most porosity measurements taking less than an hour in total, EIS has the strong 

possibility of being an efficient evaluation technique in a mass production style setting. 

In all, the comparison performed indicates that the EIS provides an effective non

destructive way of characterizing the physical properties of the chitosan scaffold under 

physiologically relevant conditions. 
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6.2 Modification 

The electrokinetic intrusion was determined to be successful for the modification 

of chitosan scaffolds when the particles are in the 15 (am arena as compared to simple 

exposure to the particle suspension without the potential difference. Previous attempts at 

scaffold modification with micron sized particles showed that their incorporation during 

the fabrication stage resulted in compromised structure which then leads to compromised 

scaffold functionality. While the passive incorporation of nanoparticles has been 

effectively demonstrated, the interaction between cells and influential materials has been 

shown to be size dependent [91]. This size dependence necessitates modification with 

micron size particles. 

Larger particles in the -100 um range proved less successful with electrokinetic 

modification and the length of time required is prohibitive. Past the nanoscale, particles 

will not be incorporated into the cell. Instead, the surface area of the particle is the 

source of interaction. Therefore, the larger particles can be partially disregarded because 

their effect will be the same as smaller microparticles due to their size comparison to 

cells. The successful electrokinetic incorporation of the 10 to 20 um particle range at low 

voltage, within physiologically acceptable parameters, showed that the desired 

modification could be achieved subsequent to cell seeding. Also, evaluation of the 

modified scaffold with EIS showed potential for characterization without altering the 

modification. 
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6.3 Cell Monitoring 

The final stage in the construction of an engineered tissue is the assessment of 

tissue viability which is not only the viability and expression of the cells but also the 

development of a natural ECM and the removal of the scaffold. Engineered tissue 

assessment is often done in the same manner as normal tissue histology where excised 

segments are stained for each component. This kind of staining prohibits the use of the 

tissue and can only be performed once which prohibits the observation of remodeling. 

EIS has been effectively used for tissue characterization and, in limited cases, for cell 

characterization in engineered tissues. With a proven cell seeding protocol, it seems 

likely that a volume and cell capacitor response could be acquired in an established cell 

embedded scaffolds. Once the cells are established, the capacitor effect from the cells 

should be notable. An increase in cell population should not only deliver a stronger 

capacitor signal but also leader to a greater protein concentration which has already been 

identified in chitosan scaffolds. The change in protein concentration and variation in 

extracellular resistance, based on volume and composition, are both indicative of 

remodeling within the engineered scaffold. By combining these electrical responses, EIS 

has potential for characterizing and online monitoring of engineered tissues. 

6.4 Summation 

Completion of the three experimental sets suggested a positive correlation 

between the techniques implemented and intended results. EIS was cable of assessing the 

engineered tissue from construction of the scaffold, following modification, and 

subsequent to cell seeding without destroying of altering the tissue components. 
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Additionally, the electrokinetic incorporation demonstrates the capability of the approach 

for modification with charged particles without damaging the scaffold or compromising 

functionality both prior to and following cell seeding. Overall, there is potential for 

electrokinetics in the characterization, modification, and long-term evaluation of 

scaffolds for tissue engineering. 

6.5 Future Work 

6.5.1 Characterization 

To further validate the results of the characterization experiments, scaffolds of 

varying composition and porosity should be tested with EIS. For large scale production, 

designing a testing container that would prevent current leakage without modifying the 

scaffold at all could increase the rate of testing. 

6.5.2 Modification 

By varying the size of the particles within the range from 1 um to 50 um, the size 

limitations of the electrophoretic technique can be more clearly determined. Expansion 

on the size range and charge of particles will also allow for better modeling of 

electrophoretic rate and mass transported. Modification of charge on uniformed sized 

particles will help facilitate this modeling and potentially improve the motility of the 

particles. Once a true size range has been determined, nonmodifying particles should be 

coated with growth factors and then electrophoretically transported. Finally, particles 

should be eletrophoretically transported into cell seeded scaffolds to confirm that 

modifications can be made in the presence of cells. 
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6.5.3 Online Monitoring 

Increasing the number of cells implanted will be the first step in identifying the 

most usable frequency range to balance exposure time with usable data. Subsequent, cell 

experiments should be performed with cells of different phenotypes to determine working 

parameters of long term engineered tissue evaluation. Upon completion of the alternate 

phenotype EIS evaluations, average resistance and capacitance values can be determined 

based on cell number. From these values, model circuits can be made and confirmed for 

each cell type therefore providing a method for determining ideal results and comparing 

them to acquired values over time. 



APPENDIX A 

PROCEDURES FOR SCAFFOLD FABRICATION, 
MERCURY INTRUSION POROSIMETRY, AND 

ELECTROCHEMICAL IMPEDANCE 
SPECTROSCOPY 
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Chitosan Scaffold Fabrication 

1. Create a 2% (vol/vol) solution of acetic acid in deionized water, approximately 30 
ml per scaffold 

2. Weigh out 2% (wt/ vol) chitosan powder (sigma Aldrich, St. Louis, MO) for the 
intended volume. 

3. Heat the dilute acetic acid to 50 C with a watch glass covering to prevent loss due 
to evaporation. 

4. While magnetically stirring, slowly add the chitosan to the acetic acid solution 
waiting in between allotments for the powder to dissolve. 

5. Stirring should be done at the lowest reasonable speed to prevent the generation 
of air bubbles. The rate will have to be increased as the amount of chitosan in 
solution increases and the solution becomes more viscous. 

6. Once all of the chitosan has been dissolved the stir bar can be removed, and the 
solution poured into the casting containers, approximately 20 to 25 ml total. 

7. Each container of chitosan solution is frozen at -20 C for a minimum of 12 hours. 

8. The containers of frozen solution are removed and a lid with a ~ 5mm hole is 
placed on top prior to their placement in the lyophilizer. 

9. All frozen solutions are lyophilized for 24 to 36 hours and pierced with a 22 
gauge needle upon removal to insure thorough freeze drying. 

10. Complete scaffolds are stored on desiccant to prevent their decay prior to use. 



Mercury intrusion Porosimetry 

1. A desiccated sample was weighed and placed inside of a powder sample 
penetrometer (Micromeritics Autopore IV, Norcross, GA). 

2. The cap was sealed with vacuum grease and the penetrometer placed in the low 
pressure portal of the porosimeter (Micromeritics Autopore IV, Norcross, GA). 

3. The weight of the sample was entered into the Autopore program as well as the 
contact angle and surface tension of the mercury to be used. 

4. Using the automatic macropore setting provided by the manufacturer, low 
pressure analysis was performed resulting in an approximated pore diameter 
provided by the software. 

5. The penetrometer is removed and weighed. Because the weight of the empty 
penetrometer and dry sample are known, the difference in weight is attributed to 
the mercury. By dividing the weight of the mercury by it's density at room 
temperature, the volume can be determined. The volume of the penetrometer is 
known, so the difference between the volume without the scaffold and the volume 
containing the scaffold is the total volume of the solid component of the scaffold. 
The software determines the total intrusion volume per gram of the sample which 
can then be multiplied by the weight of the original sample to determine the 
scaffold pore volume. 

6. The scaffold pore volume (volin) over the solid volume (volscJ) plus the pore 
volume yields the porosity (<£) 

volin+volscf' 
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Electrochemical Impedance Spectroscopy 

1. Scaffolds were coated on the bottom and sides with a layer of paraffin wax and 
sealed inside the original casting container. The wax seal prevents current 
leakage. 

2. Two titanium wire probes were inserted at ~1 cm (later measured with a 
micrometer) and maintained at that distance by drilling corresponding holes in the 
lid. 

3. Each scaffold was swollen with PBS in increments of 1 ml per minute until totally 
saturated. 

4. Alligator clips were used to attach to impedance analyzer (Solartron, 1260A, 
Hampshire, England) leads to the titanium probes. 

5. In the provided Z Plot software, a constant current of 0.1 mA was set. The desired 
frequency set was input at which point the impedance analysis began at each point 
of the sweep. 

6. Output was provided in terms of the real impedance, imaginary impedance, the 
impedance magnitude, and the phase shift for each frequency value. 



APPENDIX B 

CALCULATION OF POROSITY FROM ELECTROCHEMICAL 
IMPEDANCE SPECTROSCOPY NYQUIST PLOT 
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Bulk resistance (i?j) was approximated to be 10,600 ohms from the Nyquist Plots 

generated from EIS of the 5 unmodified scaffolds. Titanium electrodes with outer 

diameters (d) of 1.27x10"4 m were used and the surface area (5) calculated using the 

inserted height (h) of 8.60x 10"3 m 

S = ^ r . & = (1.27xl0~4;r)-8.60xl0~3=3.4295xl0-6/w2. [A.B.I] 

The entire surface area of the electrode does not contribute to the electric field between 

the electrodes (Figure 31). 

Figure 31: Electric field paths for 0.1mA current applied to parallel electrodes ~1 cm in a 
cylindrical sample container. 

Consequently, the effective surface area (A) was approximated to be half of the total 

surface area 

,4 = 0.5-S = 0.5-3.4295xl0~6=1.7148xl0-6m2. [A.B.2] 
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With each electrode separated by a length (/) of 1.10x10-2, the effective conductivity 

(aef) was determined 

aeff = 
I l . lOxlO2 

RbA 10,600-1.7148x10" 
.6055m"1. 

[A.B.3] 

The previously reported and confirmed value for the conductivity of PBS (ao), 1.2 

Sm"1, was used to determine porosity (0) via Archie's law where the saturation constant 

( Q and the cementation factor (m) implemented 

$ 0 = 

f ~ \ 

\C(T0j 

.605 

1-1.2 
= .7102 = 71.02%«71.0%. [A.B.4] 

Calculations for the porosity of the iron oxide treated samples were based on an estimated 

Rb of 10,850 ohms with the same geometric values. Effective conductivity was 

determined 

/ 
<7eff = 

1.10x10 2 

RbA 10,850-1.7148x10" 
= .59lSm'\ 

[A.B.5] 

From the determined effective conductivity, the porosity was calculated 

O r 

VCcroy 

.591 
\-\2) 

= . 7017 = 70.17% » 70.2%. [A.B.6] 
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