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ABSTRACT 

The goal of this dissertation is to build a better segmentation method for DNA 

microarray image processing. Segmentation is a partitioning process used to separate a 

spot area from a non-spot area in DNA microarrays. It directly affects the accuracy of 

gene expression analysis in the data mining process that follows. A number of DNA 

microarray segmentation methods have been proposed in the area, but even modern 

segmentation methods seem to have accuracy problems. In this dissertation, I will present 

a segmentation method based on the Active Contours Without Edges (ACWE) algorithm 

and apply it to two types of DNA microarrays, complementary DNA (cDNA) and 

Affymetrix GeneChip. Several adjustments will be applied to the original ACWE method 

to use it more efficiently in the microarray processing area. 

As a secondary research objective, I will improve the ACWE method by using 

higher order schemes in finite difference method for solving the partial differential 

equation (PDE). The original ACWE method used the associated Euler-Lagrange partial 

differential equation for the Lipschitz function 0. It used the lower order finite difference 

schemes to solve the PDE. The improved ACWE method defines the higher order finite 

difference schemes to increase the accuracy of segmentation. 

Various experimental results will be presented to show that the ACWE method is 

more efficient than other DNA microarray image segmentation methods. 

iii 
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Statistical analysis is performed to compare the newly proposed method with the 

previously best methods in this area. Experimental results will also be presented to show 

that the improved ACWE method has more accurate segmentation results than the ACWE 

method. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Overview 

A DNA microarray is an array of DNA spots. DNA strands are fastened at fixed 

spots on glass or plastic slides or silicon chips. A DNA microarray is a useful tool for 

analyzing gene expression based on the samples of genes in the spots aligned in a regular 

pattern. DNA microarrays provide a new technology for doing scientific experiments 

simultaneously with thousands of genes or entire genomes. This approach is much more 

efficient than the traditional experiment method which only focuses on a few genes at one 

time. A critical part in the gene analysis process is the effectiveness of image 

segmentation analysis. There are two different types of DNA microarray: complementary 

DNA (cDNA) microarray and Affymetrix GeneChip. 

For the cDNA microarray there are four types of segmentation methods described 

in [1]: fixed circle segmentation, adaptive circle segmentation, adaptive shape 

segmentation and histogram segmentation. Some cDNA microarrays segmentation 

software have been developed based on the four types of segmentation methods. 

ScanAlyze [2] developed by Eisen in 1999 is based on the fixed circle segmentation 

method. This method assumes that the spot has a perfect circle shape and all spots have 

the same size. GenePix [3] developed by Axon Instruments Inc. in 1999 uses an adaptive 

circle segmentation method. This method assumes as well that the spot has a circular 

1 
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shape but also allows for adjusting the size of each spot. It provides more accurate results 

than the fixed circle method. QuantArray [4] software developed by the GSI Lumonics 

Corporation in 1999 gives the histogram segmentation for using the mean intensity values 

of pixels between the 5th and 20th percentile as the background and the mean between the 

80th and 95th percentile as the foreground. Most of the histogram segmentation algorithms 

neglect the spatial information of pixels. The histogram segmentation algorithms also 

need to pre-define the threshold for the segmentation. SPOT [5] is a software developed 

by Y.H. Yang, M. J. Buckley, and T. P. Speed in 2002 and described in [1] and applied 

the adaptive shape segmentation. The software provides two types of adaptive 

segmentation methods. One is the Seeded Region Growing (SRG) first described in [6] 

and the other is the Globally Optimal Geodesic Active Contours (GOGAC) first 

described in [7]. The adaptive shape segmentation methods assume that the spot is 

adaptive in size and can be of irregular shape. Affymetrix GeneChip [8] segmentation 

uses a 75 percentile intensity value of each probe cell as the segmentation result for each 

probe cell. 

Since DNA microarray segmentation is an important step in microarray image 

processing and current DNA microarray segmentation methods have not provided the 

most accurate results [1], a more accurate DNA microarray segmentation method is 

needed for DNA microarray data analysis. The motivation of my dissertation is to find 

out the most accurate ACWE segmentation method to apply it in DNA microarray and 

make improvements to the ACWE method to get even better segmentation results. 
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1.2 Research Objects 

The objective of my dissertation is to build a better segmentation method for 

DNA microarray image processing. 

Segmentation is a partitioning process used to separate a spot area from a 

non-spot area in DNA microarrays. It directly affects the accuracy of gene expression 

analysis in the data mining process that follows. A number of DNA microarray 

segmentation methods have been proposed in the area, but even modern segmentation 

methods have accuracy problems. 

We present a segmentation method based on the Active Contours Without Edges 

(ACWE) algorithm and we apply it in two types of DNA microarrays: complementary 

DNA (cDNA) and Affymetrix GeneChip. 

We performed several adjustments to the original ACWE method to use it more 

efficiently in the microarray processing area. We also improved the ACWE method to get 

more accuracy segmentation results. 

We will present various experimental results to show that the ACWE method is 

better than the other DNA microarray image segmentation methods in finding out the 

DNA spots' boundaries. We will apply statistical tools to compare and contrast the newly 

proposed method with the previously best methods in this area. 

1.3 Organization of the Dissertation 

Chapter 1 introduces our research work and gives contents for the remaining 

chapters. 

Chapter 2 reviews some background of the biological knowledge of DNA and 

DNA microarrays. Some previous work about cDNA Microarray Image Analysis 
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Methods, Adaptive Shape Segmentation Method, and the segmentation method for 

Affymetrix GeneChip are discussed in this chapter. 

Chapter 3 presents the ACWE theory and its advantages compared to the 

previously introduced methods. In this chapter, we make the modifications to the ACWE 

method and develop the process to apply the ACWE method in the DNA microarray 

segmentation field. Also, the improvement for the ACWE method is proposed. 

In Chapter 4, the experimental results of which ACWE is compared with the other 

methods discussed. 

Finally, in Chapter 5, the improved ACWE method is shown to be much more 

efficient than the ACWE method itself and the other methods discussed. 



CHAPTER 2 

) 

BACKGROUND AND PREVIOUS WORK 

2.1 Introduction of DNA and DNA Microarray 

This section provides an introduction into the molecular biology with the purpose 

of understanding the DNA microarray segmentation problem. In what follows, we will 

present history, structure and some properties of the DNA strands and the DNA 

microarrays. 

2.1.1 DNA 

DNA is the abbreviation of deoxyribonucleic acid and contains important 

inheritance information. DNA structure is stable and the genetic information can carry on 

from one generation to the next. It encodes all genetic information of an organism and all 

instructions needed for the functioning of that organism. 

According to [9], in 1869, Friedrich Miescher first discovered the nucleic acid. 

During his experiment, Miescher found that a material had different properties from the 

protein component of the material. Since this material was separated from the cell 

nucleus, Miescher named it "nuclein", which is now called nucleic acid. In 1919, 

Phoebus Levene in [10] found the nucleic acid bases in the yeast nucleic acid through the 

experiment involving hydrolysis. He named these four substances Adenosinphosphoric 

acid, Uridinphosphoric acid, Guanosinphosphoric acid, and Cytidinphosphoric acid. Now 

we know these 4 bases are from the ribonucleic acid (RNA) and now are called adenine 

5 
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(A), uracil (U), guanine (G) and cytosine (C). In 1952, Alfred Hershey and Martha Chase 

proved that DNA was the genetic material [11]. In their experiments they used a 

bacteriophage (phage) which was a virus to invade (infect) an E. Coli bacterium. By 

using the radioactive markers on DNA materials inside the phage's shell and the proteins 

constructing the phage's shell, they found that the real part which infected the bacteria 

was the DNA. Only the DNA could get into the bacterium to replicate and reconstruct 

multiple copies of the phage inside the bacterium cell, and the original phage shell could 

not enter into the bacterium cell, (since the radioactive marker for the protein in the shell 

could not be found inside the bacterium cell). This proved that DNA was the genetic 

material. In 1953, James D. Watson and Francis Crick [12] presented the first accurate 

DNA structure model, the double helix. This three dimensional DNA model gave a solid 

foundation for the subsequent research on DNA. 

The DNA direction is from 5' -end to 3' -end (5 or 3 means carbon atoms in the 

deoxyribose). The enzyme named DNA polymerase adds complementary nucleotides to a 

single stranded DNA molecule to form a double stranded DNA molecule. DNA is found 

in the nucleus (in eukaryotes cells). It encodes and transmits genetic information to 

Messenger Ribonucleic Acid (mRNA) which passes the encoded instructions of making 

protein. 

Ribonucleic acid (RNA) [13] is another type of nucleic acid found in the 

cytoplasm. RNA is similar to DNA with some important differences: 

1. RNA is single stranded in the cell. 

2. RNA contains ribose rather than deoxyribose. 

3. RNA has base uracil (U) in place of thymine (T). 
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4. In RNA there are also four bases: A, U, C and G. 

DNA has genetic information and controls the production of proteins in a cell. 

DNA is able to replicate and also able to mutate. Messenger RNA (mRNA) is the 

template working between DNA and the proteins. The information from a particular gene 

is transferred from a strand of DNA by forming a complementary strand of RNA. This 

process is called gene transcription. It transcribes a strand of DNA to a strand of 

complementary mRNA. A codon [14] is a triplet of nucleotides in mRNA. Transfer RNA 

(tRNA), which belongs to specific amino acids, match up the codons of mRNA to order 

the amino acids to form protein molecules in a process called translation. 

There are a total of 64 RNA codons [14]. AUG is the start codon whereas the stop 

codons areTJAA, UAG, or UGA. The mRNA sequence base between a start codon and a 

stop codon is called an Open Reading Frame (ORF). 

The central dogma of molecular biology is described in [15]. The central dogma 

shows the genetic information pass from DNA through RNA to the proteins. 

The replication process is for the DNA to make a copy of itself. During the 

process the base pairs of the two DNA strands open and each DNA strand acts as a 

template. Two complement strands are reproduced which achieve the DNA duplication 

process. The transcription process is for the DNA to make a copy for one of its strands. 

The transcription is a synthesis process for RNA to produce the messenger RNA (mRNA) 

which will be used in the translation process to create proteins. The translation process is 

for protein synthesis. The bases of mRNA are formed with a set of codons. The genetic 

information from the codons is translated into proteins. 
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Gene [16] is a segment of a long strand of DNA. Gene expression [17] is the 

process in which genetic information pass from a gene (DNA sequence) into mRNA or 

protein. DNA microarray is an effective tool which can be used to monitor many genes 

expressions at the same time. 

2.1.2 DNA Microarray 

A DNA microarray is an array of DNA spots. DNA strands are fastened at fixed 

spots on glass, plastic slides or silicon chips. In [18] a DNA microarray is a useful tool 

for analyzing gene expression based on the samples of genes in the spots aligned in a 

regular pattern. DNA microarrays provide new technology for doing scientific 

experiments simultaneously with thousands of genes or entire genomes. It is much more 

efficient than the traditional experimental method which only focuses on a few genes at a 

time. According to [19] the first DNA microarray prototype was created in 1989 by 

Stephen P. A. Fodor, who is the founder and executive chairman of Affymetrix Inc., and 

his colleagues. 

In 1995, the first DNA microarray in gene expression analysis is proposed [20]. 

Microarrays were used to find out the overexpression of genes. The experiment from [20] 

used the plant Arabidopsis thaliana as a study object. By using complementary DNA 

(cDNA) microarrays, one gene named "HAT4" was figured out to be much more 

overexpressed than the other genes. Their experiment showed that a DNA microarray 

could be used to monitor gene expression faster and more effectively. 

Typically with the manufacturing method, there are two types of DNA microarray: 

spotted and oligonucleotide. Spotted microarrays are cheap and the polymerase chain 

reaction (PCR) method is used to produce the sequences on the array spots. The probes in 
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the arrays are long sequences. Oligonucleotide microarrays are expensive and the spots 

are made of oligonucleotides. The probes in the arrays are short sequences. 

For the spotted array, the DNA sequence may or may not be known and there is 

little control of the amount of DNA in a spot. For the oligonucleotide array, the DNA 

sequence is known as a perfect match (PM) and mismatch (MM). PM and MM are paired 

and used as controls of DNA. Since an oligonucleotide array has more probe controls in 

the microarray than that of the spotted array, the oligonucleotide microarray is more 

efficient than the spotted microarray; this is the same reason that makes the 

oligonucleotide microarray more expensive than the spotted array. 

Typically a complementary DNA (cDNA) microarray experiment [21] includes 

the following 6 steps: 

• In the sample preparation step, two samples are selected. For example, one is a 

normal sample, the other a disease sample. 

• In the nucleic acid isolation and purification step, the mRNA of the two samples 

are extracted. 

• In the reverse transcription step, mRNA is transcribed to cDNA. 

• In the hybridization step, the cDNA is tagged with fluorescent dye. Tagged 

cDNA sequence is hybridized to a microarray. The excess tag cDNA is washed 

away from a microarray. 

• Next follows the laser scanning step. 

• And last is the analysis step. In this step, data is extracted from the microarray. 

For a cDNA microarray, the gene expression is checked between a control sample 

(normal sample) and an experimental sample (disease sample). These samples are labeled 



10 

with the fluorescent dyes Cy3 (control) and Cy5 (experimental). Cy3 is for the green 

channel and has a wavelength of about 530 nm. Cy5 is for the red channel and has a 

wavelength of about 630 nm [1]. The tagged samples are targets and hybridized to 

microarray a substrate that contains probes. After washing the excess tagged tissues from 

the microarray, the microarray is scanned by a laser scanner at different wavelengths 

related to the green and red dyes. The outputs are two digital pixel intensity images stored 

in Tagged Image File Format (TIFF). One is a 16-bit image in Cy3 channel and the other 

is in the Cy5 channel. A spot represents a particular gene. 

According to [22] an Affymetrix Gene Chip microarray experiment includes the 

following steps: 

1. Sample preparation, where only one sample is selected from one GeneChip 

microarray. 

2. Isolation and Purification, where mRNA is isolated and purified. 

3. Reverse transcription, where mRNA is transcribed to cDNA. 

4. In Vitro Transcription (IVT), where cDNA is transcribed to complementary 

RNA (cRNA) and cRNA is labeled. 

5. Fragment, where cRNA is fragmented to short pieces. 

6. Hybridization, where cRNA is hybridized onto microarray. 

7. The laser scanning step. 

8. And the analysis step, where data is extracted from the microarray. 

For the Affymetrix GeneChip, after choosing a sample, the mRNA is isolated and 

purified from the sample. Then the mRNA follows a reverse transcription to cNDA and 

cDNA is labeled using In Vitro Transcription (IVT) or alternative labeling methods. After 
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labeling, the cRNA is obtained from cDNA and hybridized to GeneChip microarray. Then 

the excess cRNA is washed away. After scanning with a laser scanner, the microarray will 

produce a 16-bit gray scale TIFF image. The last process is the data analysis for the gene 

expression. 

There are two types of DNA microarray experiment devices. Affymetrix 

GeneChip experiment devices are much more expensive than those of the cDNA 

microarray. 

2.2 Introduction of cDNA Microarray Image Analysis 

Methods 

This section introduces the DNA microarray image analysis methods. Especially 

for the DNA microarray image segmentation, different methods are introduced and 

comparison results among these methods are also discussed in this section. 

2.2.1 cDNA Microarray Image 
Analysis Methods 

In [1], there are three steps for microarray image analysis: addressing (or 

gridding), segmentation, and information extraction. Addressing is the method of 

arranging each spot to a grid. Segmentation is the process of discriminating the spot out 

of the background. Information extraction is the way of computing the intensity of each 

spot, background intensity, etc. Image addressing is important since it provides the spot 

or probe cell location. Image segmentation is even more important, as it separates the 

spot from the background. The exact intensity value of the spot or probed cell can be 

accomplished in the information extraction step. 

The goal of addressing (gridding) is to reliably compute the intensity of the spots 

(probe cells) according to the microarray layout design. It provides the geometric location 
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of each spot or probe cell. Each spot sits in a patch which is a square or rectangle. The 

center of the patch in an ideal spot center and the region between the center and the 

boundary of the patch is used for finding out the boundary of each spot. However, in 

reality, some items may influence the accuracy of the geometric location for spots and 

probe cells. For example, the location of the grid may change between slides, the array 

image may rotate, the sub-array location of the image may shift, the microarray image 

may be contaminated, and the signal of some spots or probe cells may be weak. These 

situations will be addressed in the image analysis process. 

Addressing methods can be divided into three main categories: (1) manual (2) 

semi-automated, and (3) automated. Manual and semi-automated methods require user 

input or adjustment. Automated methods still need user defined parameters or give out 

the threshold for refining the intensities. SpotSegmentation developed by Q.H. Li and C. 

Fraley [23] in 2005 is one of the software programs that claims to provide robust gridding 

processes. Figure 2.1 is the output of spot segmentation gridding. It shows the inaccuracy 

of the automated addressing method since some of the spots in the bottom left of the 

image are not in the grid. Until now, researches mostly focused on automated addressing 

methods for more accurate results. A complete automated addressing method has not 

been found yet. 
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Figure 2.1 Gridding output of spot segmentation. 

2.2.2 cDNA Microarray Image 
Segmentation Methods 

Segmentation is a partition process used to separate a spot area from a non-spot 

area. The spot area is called foreground and the non-spot area is called background. 

In [1], there are four types of segmentation methods: fixed circle segmentation, 

adaptive circle segmentation, adaptive shape segmentation and histogram segmentation. 

Fixed Circle Segmentation Method is an ideal method. It assumes that each spot 

has the same size of circle shape. It was first used in [2] by ScanAlyze which is an image 

segmentation software developed by Eisen Lab. All spots have a round shape and the 

same size with the same radius (R) in the microarray image. It is easy to implement this 

segmentation method but the disadvantage is that the real spots may not be the circular 

shape or the same size. It is observed that all the spots in the figure actually have the size 

slightly smaller than the size of the fixed circle. Most of the time, the fixed circle 

segmentation cannot provide the exact spot boundary or accurate spot intensity. 

The Adaptive Circle Segmentation Method is the evolution of the fixed circle 

segmentation method. It allows the diameter of each spot circle to be adjusted separately. 
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It is better than the fixed circle, since it considers that spots may have different sizes. But 

the disadvantage of adaptive circle still exists since the spots shape may not be circles. It 

is observed from the figure that if the spot size is close to circular shape, it will get pretty 

good segmentation results. But still for some spots in the figure which have a square 

shape, the segmentation result is not accurate. The adaptive circle method may figure out 

the similar size of the spot, but it cannot provide the accurate boundary of the spot since 

most spots do not have a regular circle shape. Therefore, it cannot give the spots' correct 

intensities either. 

The Histogram Segmentation Method uses the normal distribution of the pixels' 

intensity percentiles around and inside each spot to segment the spot from the 

background. Obviously, this method neglects the particular pixels' locations. It will not 

give the accurate spot intensity but only the trend. For example, in [4] the Quant Array 

software developed by the GSI Lumonics Corporation in 1999 gives the histogram 

segmentation for using the mean intensity values of pixels between the 54 and 201 

percentile as the background and the mean between the 80' and 95th percentile as the 

foreground. In [23], the spot Segmentation software also uses the histogram segmentation 

method. Figure 2.2 presents the output with the histogram segmentation method using the 

spot segmentation software. From the figure some of the spots (gray) have been 

segmented out (the spots that have been segmented are colored black) by the histogram 

segmentation method. Since the spot's actual geometric location was not taken care of, 

the output only gave the distribution range. The threshold of the percentile can be chosen 

differently among different implementation software. It cannot find the exact boundary of 

the spot. 
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Figure 2.2 Histogram segmentation. 

The Adaptive Shape Segmentation Method is designed to improve the accuracy of 

the segmentation process. It tries to find out the real spot boundary which separates the 

spot with the background. The adaptive shape segmentation is better than the other three 

segmentation methods, since it corrects the weaknesses of the other three methods. 

Seeded Region Growing (SRG) and Globally Optimal Geodesic Active Contours 

(GOGAC) are the two algorithms applied in the adaptive shape segmentation method. 

Figure 2.3 is an example of adaptive shape segmentation implemented in Spot software 

(developed by Y.H. Yang, M.J. Buckley and T. P. Speed in 2002) [5] using the GOGAC 

algorithm. The figure shows that the segmentation is based on the changing of shape of 

each spot. But it still shows that some of the spots' boundaries are inaccurate. 
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Figure 2.3 Adaptive shape segmentation using GOGAC. 

2.2.3 cDNA Microarray Image 
Information Extraction 

After the segmentation step, we can get the foreground and the background 

intensity values of each spot in the information extraction step. 

In [1] each pixel within the foreground area of a spot patch is counted and the 

mean and median intensity values of the spot area are computed. The mean and median 

intensity values of the background are also computed. 

In cDNA microarray, the ratio between the red and green channel is often used to 

represent gene expression. The ratio can be computed as follows in Equation 2.1: 

Chi CH2I-CH2B 
ratio = 

CM CHU-CHIB 
(2.1) 

where Chi represents the green dye channel ,Ch2 represents the red dye channel ,CH\I is 
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the mean intensity value for the spot foreground of the green channel , CH\B is the 

median intensity value for the spot background of the green channel , CH2I represents the 

mean intensity value for the spot foreground of the red channel , and CH1B represents the 

median intensity value for the spot background of the red channel. 

Information extraction step also collects the information for quality measurement. 

For example, the spot size is calculated by measuring how many pixels are in a 

spot area. If a spot only contains 1 pixel, it may not be qualified for the further DNA data 

analysis. 

2.2.4 cDNA Microarray Image 
Data Normalization 

In [24], normalization is used to reduce the variation created by the cDNA 

microarray processing technology. The main reasons caused the variation are as follows: 

labeling efficiencies, different scanner settings and difference between print tips. 

All these may cause the gene expressions' imbalance between the red and green 

channels. 

M = log2i?-log2G, (2.2) 

^ = (log2i? + log2G)/2, (2.3) 

where M is the intensity ratio, A is the average intensity, R is the background-corrected 

intensity value for each spot from the red channel, and G is the background-corrected 

intensity value for each spot from the green channel. 

Equation 2.2 represents the log ratio of gene expression, and Equation 2.3 

represents the average of log intensity. A plot is formed by using M as Y-axis and A as 



18 

X-axis, which we call an MA-plot. Such a plot can be used as a monitor for the 

imbalance gene expression between the red and green channels based on the intensity 

values. 

According to [24], there are several normalization methods for cDNA microarray 

data. The first is the print tip loess normalization. The second is the composite loess 

normalization. The third is between array normalization. 

Loess is a modern regression model different from linear regression and 

non-linear least square regression. In [25], loess regression is defined as locally weighted 

scatterplot smoothing. 

For the print tip loess normalization in [24], there are three normalization 

methods: 

1. The global loess normalization can be described as follows in Equation 2.4: 

N = M-loess{A), (2.4) 

where N is the normalized log ratio, M is the log ratio, and loess(A) is the global loess 

regression curve. 

2. The two-dimensional loess normalization is as follows in Equation 2.5: 

N = M-loess(r,c)-loess(A), (2.5) 

where N represents the normalized log ratio, M represents the log ratio, Loess(A) 

represents the global loess regression curve, and Loess(r,c) represents a two-dimensional 

loess regression curve, where r and c represent the row and column of the spot. 

3. Standardize the N values in Equation 2.6: 

Ns = N/madt (2.6) 

where N represents the normalized log ratio, madj is the median absolute deviation of JV 
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in the zth tip group, and Ns represents the scale-normalized log ratio. 

For the composite loess normalization in [24] is as follow in Equation 2.7: 

N = M- p(A)loesSMSP (A) - {1 - p(A)}loess, (A) (2.7) 

where loessmP(A) is the loess regression curve through the microarray sample 

pool (MSP) spots, andp(A) is the probability of spots whose A values are less than A. 

For the between array normalization, scale normalization is a useful tool. Scale 

normalization adjusts the data range and makes the data comparable among the arrays. 

Through normalization non-biological variations can be reduced and gene 

expression can be compared easily among the microarrays by using the same scale. 

2.2.5 cDNA Microarray Image Data Analysis 

According to [26], the main purpose for data analysis is to find out which genes 

are differentially expressed and also to figure out the differentially expressed genes 

between two samples. 

In [26] t-test is used in Equation 2.8 for finding the differentially expressed genes. 

,=^r <2.8) 
s/yjn 

where M is the mean of the log ratio, s is the standard deviation of M, n is the 

replication numbers, and t is for t-test. 

To figure out the differentially expressed gene between sample A and B [26], a 

two sample t-statistic can be used as follows in Equation 2.9: 

,= J'-W' . (2.9) 
s yjl I nA +1 / nB 

where s* = y]a + s2 , MA and MB are the mean log ratios from two samples, nA and HB 
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* 

are the replication numbers from two samples, s is the penalized pooled sample 

standard deviation of M, s is the standard deviation of M, a is the penalty, and t is for the 

two sample t-test. cDNA microarray data analysis uses t-test as an important tool for 

ranking the genes based on their expression differences. 

Another approach of cDNA microarray data analysis is classification [26]. 

Classification is used to find the gene expression level similarity or dissimilarity among 

the samples. 

In [26], two types of methods are mentioned as the tools for classification. 

First, there are the cluster methods. K-mean clustering [27] is one of the cluster 

methods, which can classify different genes into different clusters (groups) based on their 

gene expression level similarity. 

Second, there are the discrimination methods. Support Vector Machines (SVM) 

[28] is one of the discrimination methods and is an important data mining tool which is 

used to classify cDNA microarray gene data. 

Sections 2.2.1 to 2.2.5 show the entire picture for cDNA microarray image data 

processing steps. Section 2.1.2 introduces how to produce the cDNA microarray images. 

These sections (2.2.1-2.2.5 and 2.1.2) show how to get the useful gene expression 

information from these cDNA microarray images and these gene expression values are 

much more helpful in the cluster analysis, function prediction for future analysis. 

Another type of DNA microarray (Affymetrix GeneChip) will be discussed in 

Section 2.4. 
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2.3 Adaptive Shape Segmentation Methods 

In this section we will describe the adaptive shape segmentation concept and 

present different methods of this type of segmentation. Adaptive shape segmentation will 

provide more accurate results than those of the fixed circle, adaptive circle and histogram 

segmentation methods. The most popular adaptive shape segmentation methods are the 

Watershed Method, the Seeded Region Growing (SRG) Method and the Globally 

Optimal Geodesic Active Contours (GOGAC) Method. 

2.3.1 Watershed Method 

The Watershed Segmentation Method treats an image as a topographic surface. 

When the water enters from the minima it will flood the surface. The only visible surface 

after the flood is called the watershed lines. The areas segmented by the watershed lines 

are different catchment basins. Watershed segmentation has the weakness of 

over-segmenting the original image. In [29] watershed was first applied to detect and 

image objects contours. The watershed lines were used as an object's contours while 

using the variation function g. Equation 2.10 proposed in [29] has the following 

definition: 

lim % y g ) [ / 1 - / ^ ) [ / 1 ; ( 2 1 0 ) 

where/is the grey function of an image, SupB(x e)[f] is the maximum value of/within a 

ball of radius s and centered in x, and InfB(x e)[f] is the minimum value off in a space 

centered in x with radius e. 

Matlab was used in [30] to provide an implementation of watershed algorithm. 

The reason for the over-segmentation problem of the watershed segmentation was also 
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mentioned in [30] as being caused by every regional minimum that would tend to create 

its own catchment basin. Figure 2.4 is an example of applying the watershed 

segmentation method on a cDNA microarray image using Matlab implemented in the 

watershed algorithm. 

Figure 2.4 Watershed segmentation. 

The result from Figure 2.4 shows that the watershed segmentation would not give 

the accurate segmentation to each spot in the cDNA microarray image. The 

over-segmentation problem was still there and also some spots had been overlooked 

using this method. To overcome the over-segmentation problem, some markers can be 

applied to some minimum local catch basins of the image. Even so, some segments do 

not relate to any geometric region. 

2.3.2 Seeded Region Growing Method 

Seeded Region Growing (SRG) Segmentation Method starts with some seeds 

(starting points). Then it includes the neighboring pixels and checks if they have the same 
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intensity. This process will continue until all the pixels have been checked and each pixel 

will be put in the region that belongs to one of the seeds. The formed regions are 

connected and homogeneous. Based on the given seeds' properties, a region is defined 

from the difference between this region and its neighborhoods. Each region competes 

with other regions and grows. When growing is finished, the segmentation is also 

finished. 

In [6] the Seeded Region Growing (SRG) Algorithm was proposed. At the 

beginning there were n groups of seeds, named A\,A2,...yAn. Pixel x was unassigned to the 

groups (A1,A2,...,An), but at least one of the neighbor pixels of pixel x had been assigned 

to these groups. All pixels with the same property (itself has not been allocated, but at 

least one of its neighbors has been) as pixel x was put in the set named T. T is defined as 

n n 

r={xg!J4 I MX)nU4 ^ 0 } , where N(x) collects all the neighboring pixels of pixel x. 
i=i /=i 

If for a pixel x, x was not assigned to any one of the groups (^41^2,^3,..., A) , only 

one of pixel x's neighbors has been assigned to (Ai^iiA^—^j), then ;(x)e{l,2,...,«} is 

used as the index so that N(x) f] Al(x) * 0 . The difference between pixel x and its 

neighboring pixel was defined as S(x)=\g(x)-mean[g(y)]\, where g(x) is the intensity 

value of pixel x. 

If the difference is less than a tolerance value, then pixel x will be assigned to the 

same group of its neighbor pixels which has already been assigned. 

If for a pixel x, x was not assigned to any one of the groups (Ai^i2,--,An), at least 

two of pixel x's neighbors have been assigned to (Ai^i2,--,An), then i(x) will have the 

value as follows: i(x) = {i\ N(x)C\Ai ^ 0 A £ ( X ) is minimized}, where i(x) uses i as 
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its value so that N(x) fl 4(x) * 0 and chooses the minimum of the differences between 

pixel x and its neighboring pixels (those assigned to (A 1^2,—,An)). 

If the difference is less than a tolerance value, then pixel x will be assigned to the 

same group of its neighboring pixel which has already been assigned and has the 

minimum difference. 

The SRG algorithm was provided in [6] as follows: 

Step 1. Mark seed pixels based on their initial grouping 

Step 2. Add neighbor pixels of seed pixels (the initial 7) in the SSL (Sequentially 

Sorted List). 

Step 3. While the SSL is not empty, 

Step 4. Take out the first pixel y from SSL 

Step 5. Check the neighbors of_y 

{ 

Step 6. If all neighbors (are marked but not marked with the boundary mark) oiy 

have the same mark, 

Step 7. Set y to this mark 

Step 8. Change running mean of related region 

Step 9. Put neighbors (not marked or not in the SSL) of y to the SSL by their S 

value. 

Step 10. Else 

Step 11. Mark;/ with the boundary mark. 

} 

The S value in the algorithm was defined as follows: 
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If the noise in each region has the equal variance, then£(x) =| g(x) - mean[g(y)] \ 
^ % w 

or 6{X): 
g(x)-mean e Ai(x)[g(y)] 

SDysAJg(y)] 
, otherwise, SD is the standard deviation. 

The weakness of the seeds' region growing is that if the seeds are chosen 

improperly, the segmentation result would not be accurate. Figure 2.5 presents the SRG 

segmentation method implemented in [5] with Spot software applied on a cDNA image. 

The figure shows that some spots were not correctly segmented. For example, the yellow 

arrow in the image point out one spot which is not correctly segmented. 
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Figure 2.5 Seeded region growing segmentation. 
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2.3.3 Globally Optimal Geodesic 
Active Contours Method 

Globally Optimal Geodesic Active Contours (GOGAC) was first proposed in [7]. 

The GOGAC segmentation method searches the geodesic active contours with globally 

minimal energy containing an internal point />jnt. 

In [7] a general algorithm of Globally Optimal Geodesic Active Contours is 

presented with the following steps: 

1. Initialization: 

• Assign the root search cut node R (P™°') with oo as lower bound 

•Mark P™ as open 

• Enqueue R 

2. Priority First Search (infinite loop): 

• Delete the search cut node n of least lower bound from the priority queue 

• If n is marked as closed: 

- Assign the minimal closed geodesic corresponding to n 

Halt 

• Else 

- Calculate the surface of minimal action U in the helical surface space S 

from the start set of n. 

- Halt the calculation early when at least one element of each end set of %x 

and Xi n a s been checked 

- Find out the end of the geodesic: pend = axgmt{U (p end) \ pend e Pend) 

- Obtain the minimal geodesic Cmjn and the start point pstart for n by gradient 

descent from pe„d to pstart 
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- For each child/ of the search tree: 

• Assign Pstart, Pend be the start set and end set of / 

•Let/ be a lower bound mm{U(pend) \ pend e Pend} 

• Mark/ as closed if Pstart and Pena- are both located i n / and are 

connected in the discrete grid 

• Enqueue / 

The proposed GOGAC algorithm was implemented in Spot software [5]. The 

weakness of this method is that it prefers to produce circles, it cannot prevent overlap, 

and it is slower than SRG. Figure 2.6 shows the GOGAC segmentation method using the 

Spot software. We used the same original cDNA microarray image in Figure 2.5 and 

Figure 2.6. In Figure 2.6 the spot (the same spot pointed at by a yellow arrow in Figure 

2.5) indicated by a yellow arrow showed it was not correctly segmented either. 

Figure 2.6 GOGAC segmentation using Spot. 
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2.4 Affymetrix GeneChip and Affymetrix 
Segmentation Method 

In this section, the oligonucleotide microarray, especially Affymetrix GeneChip, 

is introduced. The image segementation method of Affymetrix GeneChip is also 

discussed. 

2.4.1 Affymetrix GeneChip 

The GeneChip is a microarray of short oligonucleotide sequcences created by 

Affymetrix Inc. In the GeneChip, the gene expression sequence is represented by 11-20 

unique probe pairs (probe set). Each probe cell has a 25 mers base length. Each probe 

pair has a perfect match (PM) probe cell and a mismatch (MM) probe cell. The difference 

between MM and PM probes is on the 13th base location. Figure 2.16 is an example of a 

probe pair. In Figure 2.7 the perfect match probe cell has 25 mers bases in length. The 

mismatch probe cell has the same length. The difference between the PM cell and the 

MM cell was the 13th base location (PM was ' C , MM was 'G'). The 13th base of MM 

was the complement of the 13th base of PM. 

Perfect m atch (P M) A A G A AT C T AT G C G AG TAGT G AT CTA 
MismatchVMMi AAGAATCTATGCGAGTAGTCATCTA 

Figure 2.7 Probe pair. 

According to [31] and [32], the database which are used for Affymetrix GeneChip 

image segmentation include seven different types. 

For the human experiment, there are two types of GeneChip. One is HgU95Av2, 

the other is HgU133plus2. 

HgU95Av2 contains 12,625 probe sets. Each probe set has 16 probe pairs and 

each probe cell has 25 mers base length. 
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HgU133plus2 has 54,675 probe sets. Each probe set contains 16 probe pairs and 

each probe cell has the base length of 25 mers. 

There are four types of GeneChip in the mouse experiment. They are MgU74A, 

MgU74Av2, Mg430 2.0, and Mullk Set. 

MgU74A includes 12,654 probe sets. Sixteen probe pairs form a probe set. The 

base length for each probe cell is 25 mers. 

There are 12,488 probe sets in MgU74Av2. The base length for each probe cell is 

25 mers and each probe set has 16 probe pairs. 

Mg430 2.0 holds 45,101 probe sets. Each probe set has 11 probe pairs. Each 

probe cell has a 25 mers base length. 

Mullk Set has 2 subtype: MullkSubA and MullkSubB. MullkSubA has 6,584 

probe sets. Twenty probe pairs are in each probe set. Base length for each probe cell is 25 

mers. MullkSubB contains 6,595 probe sets. Probe pairs in each probe set and base 

length of each probe cell are the same as those in Mul IkSubA. 

There is only one type for a rat model. It is RgU34A. 

RgU34A has 8,799 probe sets. Each probe set contains 16 probe pairs and each 

probe cell has a 25 mers base length. 

2.4.2 Affymetrix GeneChip 
Segmentation Method 

In the Affymetrix GeneChip image, each probe cell (each PM and MM cell) is 

constructed with n*n pixels. When Affymetrix method is segmentating the image for the 

spot intensity, it uses the inner (n-2)*(n-2) pixels. The outer boundary of 4*(n-l) pixels 

are excluded. The average intensity of the probe cell (spot) is computed by using the 75 

percentile of the (n-2)*(n-2) pixels. Figure 2.8 is the example of the Affymetrix 
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segmentation method of a probe cell, when n is 6. The outer 20 pixels are not included in 

the segmentation. The 75 percentile intensity value of the inner 16 pixels is used as the 

mean intensity by Affymetrix. 

Figure 2.8 Affymetrix probe cell (spot) and segmentation area (red area). 

There are different Affymetrix GeneChip file types. Some important types will be 

introduced since they are used in the ACWE image segmentation method. 

A .DAT file is the scanned image file. A .CEL file is the cell file including the 

intensities and locations of the probe cells. The .CEL intensity values are calculated from 

the .DAT file. These two files can be used as the data source for further study. Affymetrix 

also provides a .CDF file which is a library file that defines the probe set and probe pairs. 

The .CDF file contains the maps between features, probe pairs, probe sets, and genes. 

The .DAT file contains the information of the number of pixels of each row in the 

image, number of rows in the image, pixel coordinates of the image, the image array, etc. 
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The .CEL file contains the information of the cell array. It includes the 

coordinates of the cell, the intensity value of the cell, the standard deviation of intensity 

value, number of pixels in the cell, etc. 

The .CDF file contains the information of gene probes. It gives out the number of 

probe sets, the probe sets' names, each probe pairs coordinated of a probe set, etc. 

These files need to be used in the following ACWE segmentation. 



CHAPTER 3 

ACTIVE CONTOURS WITHOUT 
EDGES SEGMENTATION 

METHOD 

In this chapter, Active Contours Without Edges Segmentation method will be 

discussed. 

3.1 Active Contours Without Edges (ACWE) Algorithm 

The segmentation I implemented was based on Active Contours Without Edges 

(ACWE) method, which was proposed by Tony F. Chan and Luminita A. Vese in [33]. 

The Chan and Vese (C-V) model segments an image by detecting the different objects 

boundaries through evolving a curve. The authors assumed an image was formed by two 

regions within and outside the objects. Their model can find objects within an image 

without any definition of gradient. [33] gives an algorithm as follows: 

1. Initialize 0° by </>0, n=0 

2. Compute c,(^") and c2(<j)") by 

f u0 (x, y)H{(f>{x, y))dxdy f u0 (x, y)(l - H((f>(x, y)))dxdy 
c,(0) = -s and c2(0) = -^ 

J[ H(</>(x, y))dxdy £ (1 - H(#(x, y)))dxdy 

3. Solve the PDE in ^ from 

dt 
= 0 (3.1) 

32 
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in(0,oo)xQ, j(0,x,y) = fo(x,y) in Q, -f^—t = 0 on dQ 
\V<f>\ dn 

where n is the exterior normal to the boundary 3Q, and d<j>jdn is the 

normal derivative of ^ at the boundary. 

4. Reinitialize <j> locally to the signed distance function to the curve (optional) 

5. Check whether the solution is stationary. If not, n=n+l and repeat 

This algorithm can be explained as follows: 

In Step 1, an evolving curve is initialized. 

Step 2, compute the average energy inside and outside the evolving curve. 

In Step 3, find out the exact evolving curve location depending on time t by 

solving the Partial Differential Equation. 

Step 4, an optional step for reinitializing the evolving curve. 

In Step 5, check whether the solution of the evolving curve is stationary or not. 

If not, go to Step 2 for iteration. 

C-V model was implemented using finite differences equations as [33]: 

t,"+1 <h". 

At 8„{KJ) 

t* 

+ ^ A ; 

A x i n + \ 

r Wl 

- v - X,{u0,_. - c , ( ^ " ) ) 2 + A2(u0ij - cM"))2 

(3.2) 

Equation 3.2 is the finite different scheme of Equation 3.1. 

The C-V method is the minimization of an energy based segmentation. For 

example, an image denotes u 0 and the boundary denotes C0. 
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The image u0 can be divided by two regions: one that is inside the objects is 

denoted by u'0 and the other outside the objects is denoted by u°. Inside the objects 

there exists u0« u'0 (or inside(C0)) and outside the objects there exists u0&uo
0 (or 

outside(C0)). The fitting function is as follows: 

Fl (C) + F2 (C) = \mside{C) |«o (x, y)-c§ dxdy + \outside{C) \u0 (x, y) - c2 f dxdy, 

where C is the variable curve, and cx c2 are the constants depending on C. 

C0 is the minimum of the fitting function as follow: 

inf{F1(C) + ̂ 2(C)}*0*JF;(C0) + F2(C0). 

In the C-V model the fitting function is minimized and some more terms are 

added like the length of the curve and the area inside the C. The energy function 

F(cx,c2,C) is defined as follows: 

F(c1,c2,C) = /j.Length(C) + v.Area(inside(C)) 

+xi\ j,r, k (x> y) - c\ f dxdy+K [ .. „, |«0 (*> y) - ci t dxdy> 

where ^i>0,v>0,Al,l2>0 are constants. In the later experiment, \=?i2=\ and 

v = 0 are chosen. In this case, u is the approximate value of u0 

f average (u0) inside C 
where u=\ . 

[average(u0) outside C 

And this particular minimization case can be handled with the level set method. 

C = da> = {{x,y)en:j(x,y) = 0}, C c Q 

inside{C) = co = {(x,y)eQ: fa, y)>0}, where C ' 

outside{C) = co = \(x,y) e Q : (Z)(x,ĵ j< 0), 

In the level set method C is replaced by </>. 
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By using the Heaviside function H and Dirac function So as follows: 

f 1, if z > 0, d 
H(z) = < £0(z) = —H( z) > t n e terms in energy function F(cx,c2,C) can be 

[0, if z<0, dz 

rewritten as follows: 

Length^ = 0}= [JVH(0(x,y))\dxdy = ^{^x^p^x^dxdy, 

Area{(j)>Q}= \nH(<f>(x,y))dxdy, 

jt>o\uo(x>y)-ci\2 dxdy = Jn \uo(x>y)-ci\2 H((f>(x,y))dxdy, 

\+<o\i'o(x>y)-c2\2dxtty= \n\uo(x^y)-ci\ {\-H{(j)(x,y)))dxdy. 

F(c,,c2,0) is as follows: 

F(cx ,c2,<f>) = ju jnS(<f>(x, y)) \V<f>(x, y)\ dxdy + v J n H(0(x, y))dxdy 

+A ln\uo(x>y)-cif H{(j){x,y))dxdy + X2 \^u0(x,y)-c2\ (1-H(<f>(x,y)))dxdy. 

The approximate value of uQ is 

u(x, y) = cxH(</>(x, y)) + c2 (1 - H((j)(x, y))\ (x, .y) e Q. 

3.2 Weakness of Current Segmentation Methods 
in DNA Microarrays 

Segmentation is a partitioning process used to separate a spot area from a 

non-spot area. The spot area is called foreground and the non-spot area is called 

background. In [1], there are four types of segmentation methods: fixed circle 

segmentation, adaptive circle segmentation, adaptive shape segmentation and histogram 

segmentation. 



36 

The fixed circle segmentation is an ideal method; it assumes that each spot has the 

same size of circle shape. It is easy to implement this segmentation method but the 

disadvantages are that the real spots may not be the circular shape and may not have the 

same size. The fixed circle segmentation cannot provide the exact spot boundary and the 

accurate spot intensity most of the time. 

The adaptive circle segmentation method is the evolution of the fixed circle 

segmentation method. It allows the diameter of each circle to be adjusted separately. It is 

better than the fixed circle, since it considers that spots may have different sizes. But the 

disadvantage of adaptive circle is that since the spots' shape could be different than 

circles. Adaptive circle method may figure out the similar size of the spot, but it cannot 

provide the accurate boundary of the spot since most spots do not have the regular 

circular shape. Therefore, it cannot give out the correct spots' intensities either. 

The histogram segmentation method uses the normal distribution of the pixels' 

intensity percentiles around and inside each spot to segment the spot from the 

background. Obviously, this method neglects the particular pixels' locations. It will not 

give out the accurate spot intensity but only return the trend. Another problem of the 

histogram segmentation is that it is difficult to preset the threshold of the percentile. 

Therefore it cannot find the exact boundary of the spot. 

The adaptive shape segmentation method is designed to improve the accuracy of 

the segmentation process. It tries to find out the real spot boundary which separates the 

spot with the background. The adaptive shape segmentation is better than the previous 

three segmentation methods. Seeded Region Growing (SRG) and Globally Optimal 

Geodesic Active Contours (GOGAC) are the two algorithms applied in the adaptive 
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segmentation method. We note that when we check the segmentation result, we observe 

that even with these methods, some of the spots' boundaries are not accurately computed. 

3.3 Weaknesses of Level Sets Method and Active 
Contours Method 

The Active Contours Without Edges method is based on the active contours 

model and the level sets image segmentation method. ACWE is much better than the 

original active contours and level sets methods. 

3.3.1 Original Level Sets 
Method Weaknesses 

A level set is a set of function g with n variablesg(yi,...yn) = c, where c is a 

constant. If n=2, g(y\,yi)=c is a level curve in a 2 D surface. When c=0, function g is the 

zero level set. For a curve C in boundary Q , there exists 

C = {(y1,y2)eQ.: g(y],y2) = 0}. C is the zero level set of a 2D function g; g is a level 

set function. The value of g is positive inside the closed curve C and negative outside the 

curve C. 

In the level sets method, when using the finite difference method to solve the 

evolved curve equation, there are several weaknesses: 

1. Time step should be very small, otherwise the algorithm will be unstable. 

2. Without curvature constrains, the evolving curve will find the boundaries 

which have singularities. 

3. The evolving curve cannot handle moving boundaries; additional steps should 

be added for inspection and handle curve combinations and separation. 

4. If the evolving curve needs to be applied to 3-D images, the functions need a 

lot of modifications. 
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3.3.2 Original Active Contours 
Method Weaknesses 

The active contours method is focused on finding the boundary of an object, 

which is different from the background. The idea of this method is to initialize a curve in 

an image and let the curve be driven by the internal and external forces to the contours of 

the object. 

In [33] an original Snakes model is discussed for a curve C; the energy out of the 

curve C is defined as external energy Eext(C) = [| Vu0(C(s)) fds .The energy inside the 

curve is defined as internal energy Einl (C) = a f | C \s) |2 ds + /? [ | C "(s) \2 ds. 

The total energy to minimize is as follows: E(C) = Eim(C) + XE^ (C). 

In the Snakes model, when the initial curve is far from the boundary of the object, 

the evolution curve will lead to the local minimal energy, and the boundary of the object 

cannot be detected correctly. A new force (balloon force) is introduced into the Snakes 

model. The modified Snakes model of minimum energy is as follows: 

E(C) = a[\C \s) |2 ds + p J[ | C \s) |2 ds+X^\ Vw0 (C(s)) fds +v \^dxdy. 

The modified Snakes model reduced the sensitivity of initial curve and noise of 

the image, but it is needed to adjust manually for the balloon force. The geodesic active 

contour (GAC) model is proposed to partly solve the disadvantages of the Snakes model. 

It chooses /? =0, so 

E(C) = EM (C) + XEea (C) = a[ \C\sfds +X [ w\Vu0 (C(s)f ds, 

where w(0) = 1 and lim^^ w(x) = 0 

file:///C/sfds
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The purpose of the GAC model is to find the object edge, at which w(x) = 0. But 

the weakness of the GAC model is that in the real image somehow the object's edge does 

not always havew(x) = 0, the evolving curve will pass through the object's boundaries. 

The GOGAC method is based on the original GAC model. It inherits the same weakness 

which will not give out the more correct boundary of objects compared with ACWE 

segmentation method. 

3.4 Advantages of Active Contours Without 
Edges Method 

According to [33], ACWE segmentation method does not use the edge function to 

determine the curve evolving to stop at the boundaries. ACWE does not rely on the edge 

function and it can avoid the evolving curve passing through the object's boundaries' 

problem. 

The initial curve of the ACWE method can locate at any position within an image. 

But in the original Active Contours method the initial curve need to be surrounded with 

the objects. 

For the level sets method, the image needs to be smoothed if it is noisy. But the 

ACWE method can detect the boundaries of objects in a very noisy image. 

Compared with the current segmentation methods in DNA microarray 

segmentation, the ACWE segmentation method has more advantages to use. 
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3.5 Active Contours Without Edges (ACWE) Method 
Application in DNA Microarrays Segmentation 

This section will describe how the ACWE method can apply to DNA microarrays 

segmentation. 

3.5.1 Adjustments for ACWE Method 

In order to apply the ACWE method to DNA microarray segmentation, some 

adjustments must be done. 

• First, we used the ACWE to segment each spot patch one at a time. Since the 

large DNA microarray may contain half a million spots, if we would apply 

the ACWE method to the whole image at once, it would not give out the 

correct segmentation result and it uses a lot of memory. Also, since the 

ACWE will segment all the spots as a whole region, it is very difficult to 

extract each spot intensity value if using the whole image for segmentation. 

• Second, we use the grid file as input which gives the approximate spots 

locations. This will help to save some computation time, since some areas in 

the image will be neglect since there are no spot in these areas. 

• Third, we decreased the number of iterations and made computing fast. 

• Fourth, we adjusted the // value and found more tiny spots. 

3.5.2 The Databases for Experiments in 
Applying ACWE on DNA 
Microarrays 

There are two databases used for the experiments in applying ACWE method on 

DNA microarrays. 
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3.5.2.1 The Databases for cDNA 
Microarrays 

The database we used is from the Stanford University Yeast Cell Cycle Analysis 

Project [34]. This database provides the original two-channel 16-bit gray scale TIFF 

images and data files generated from these two-channel TIFF files. There are four 

experiments in the database as follows: 

1. Cln/Clb Experiments 

2. Pheromone Experiments 

3. cdc 15 Experiments 

4. Elutriation Experiments 

Another database we tested is from the Stanford Microarray Database (SMD). Its 

webpage is http://smd.stanford.edu. We used public login to get the original TIFF image 

files. There are a lot of different experiments in the Stanford database. 

We used the TIFF images from these databases to segment using the ACWE 

method and other current cDNA microarray segmentation methods, especially the 

adaptive shape segmentation methods. The adaptive shape segmentation methods are the 

most accurate segmentation method we could get before we applied the ACWE method. 

We compared the differences between different methods, and we found that 

ACWE would provide more accurate segmentation results. 

3.5.2.2 The Databases for 
Affymetrix GeneChip 

The Affymetrix segmentation method is considered so far to be the best method 

for Affymetrix GeneChip microarray. In all the Affymetrix Genechip file formats, 

the .DAT file is the scanned image file. The .CEL file is the cell file including the 

http://smd.stanford.edu
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intensities and locations of all the probe cells. The .CEL intensities' values are calculated 

from .DAT file. Affymetrix also provides the .CDF file which is a library file that defines 

the probe set and probe pairs. The .CDF file contains the maps between features, probe 

pairs, probe sets and genes. 

The database we used was from Harvard Medical School. These datasets belong 

to the CardioGenomics Programs for Genomic Applications. From [31] the Affymetrix 

GeneChip microarray images were from the mouse model, rat model and human model. 

The mouse models from Harvard Medical School have the following 10 experiments: 

1. C57BL/6 Benchmark Set for Early Cardiac Development 

2. Cardiac Hypertrophy Related to the Phosphoinositide 3-Kinase Signaling 

Pathway 

3. Cardiac Hypertrophy Induced by the Insulin-like Growth Factor 1 Receptor 

4. Congenital Heart Disease in Csx/Nkx2.5 mutant embryos 

5. Deletion of the Nk2 specific domain of the Nkx2.5 

6. Exercise Induced Hypertrophy 

7. FVB Benchmark Data Set and Sex Comparison 

8. Myocardial Infarction 

9. Overexpression of dn-p21ras as a model system for severe dilated car

diomyopathy 

10. Pressure-overload induced Cardiac Hypertrophy. 

The rat model from Harvard Medical School has one experiment: 

Hypertrophy and Heart Failure Through High Salt Diet and Exercise. 

The human models from Harvard Medical School have the following eight 

experiments: 
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1. Aortic Stenosis, Congestive Cardiomyopathy and Normal Left Ventricular 

Function 

2. Idiopathic Cardiomyopathy 

3. Ischemic Cardiomyopathy 

4. Non-failing "Normal" Patient 

5. Familial Cardiomyopathy Dataset 

6. Hypertrophic Cardiomyopathy 

7. Post-Partum Cardiomyopathy 

8. Viral Cardiomyopathy 

According to [31], the rat model accomplished two objectives: 

It found the genes related to physiologic hypertrophy caused by exercise, which 

would not cause heart failure, and found the genes related to pathologic hypertrophy, 

caused by a high sodium diet, which would cause heart failure. The mouse model gave 

out the genes related to physiology hypertrophy, pathologic hypertrophy and heart failure. 

It cataloged different types of subsets for different causes for hypertrophy. 

The human model provided genes related to different types of heart diseases. It 

also provided genes with normal (healthy) heart tissues for comparison. 

3.5.3 The Process of Applying ACWE 
for cDNA Microarrays 

The cDNA spotted arrays are two-channel microarrays. The microarray is 

hybridized with cDNA from two channels: Cy3 and Cy5. After the scanning process the 

microarray generates two 16 bit gray scale TIFF images for the above two channels. The 

process required to generate ACWE segmentation for cDNA microarrays is as follows: 
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1. Download two 16-bit gray scale TIFF images from online database. There 

are many free online cDNA image databases which provide images for analysis. The 

major database we use for experimenting is [34], which is a website of Stanford 

University Yeast Cell Cycle Analysis Project. This website provides the original 

two-channels TIFF files and a data file generated from these two TIFF files. We use these 

original files for our experiment and analysis. The other database we test with the ACWE 

method is from Stanford Microarray Database(SMD, http://smd.stanford.edu/). In SMD, 

use public login to get the original two-channel TIFF image files. 

2. Generate a grid file. The data files in the database provide the grid 

information and this information needs to be extracted to create a grid file. 

3. Create a batch file. This batch file includes all the TIFF images and 

corresponding grid files. The batch file is for handling all the image files automatically. 

4. Apply the ACWE image segmentation. The ACWE segmentation algorithm 

is implemented in JAVA under Windows XP, the codes have been transformed to be used 

under Linux and Unix. It has been working on Louisiana Optical Network Initiative 

(LONI) computers under Linux and Unix operating systems. Before segmenting, the 

users need to choose the batch file name for the input. 

5. Create an output file. The output files include two types. One is a text file 

which includes the foreground and background intensities of each spot. When computing 

the intensity values, mean and median intensity values of all pixels in each spot are 

computed. The other type is an image file which gives out the segmentation result (the 

boundary of each spot). 

http://smd.stanford.edu/
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To compare the ACWE segmentation results with those of other cDNA 

microarray segmentation method, these software programs are needed for computing the 

same image files used in ACWE segmentation. 

ScanAlyze - ScanAlyze was developed by Eisen in 1999. We use it to compute 

the spot intensity with the fixed circle segmentation method. 

GenePix - GenePix was developed by Axon Instruments Inc. in 1999. It is used 

for computing the spot intensity with the adaptive circle segmentation method. 

SpotSegmentation - SpotSegmentation was developed by Q.H. Li and C. Fraley 

in 2005. This software was used to figure out the spot intensity using the modified 

histogram segmentation method. 

Spot - Spot was developed by Y.H. Yang, M.J. Buckley and T. P. Speed in 2002. 

In this software, the adaptive shape segmentation method was implemented. It provides 

two algorithms. One is the Seeded Region Growing (SRG) and the other is the Globally 

Optimal Geodesic Active Contours (GOGAC). 

After using these software programs on the same images used by ACWE, a text 

file is created for each cDNA microarray image with the spots intensity values gotten 

from different method. MATLAB codes can be applied on the text file for comparison of 

the different segmentation methods results. For example, gene expression level (log ratio 

of two cDNA channels) can be computed to show which segmentation method is best. 

3.5.4 The Process of Applying ACWE 
for Affymetrix GeneChip 

Affymetrix GeneChip is different from cDNA spotted microarray. After the 

scanning process the microarray will generate only one 16 bit gray scale TIFF image. The 

process to generate ACWE segmentation for Affymetrix GeneChip is as follows: 
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1. Download the Affymetrix GeneChip image and data files. The database we 

use is from [31] Harvard Medical School CardioGenomics Programs for Application. 

These microarray images belong to 3 models: mouse model, rat model and human model. 

This database provides Affymatrix GeneChip image (.DAT) files and cell information 

(.CEL) files. Affymetrix Inc. provides some example images and cell information files on 

its own webpage. That is another database we used in the experiments. 

2. Convert a .DAT file to a .TIFF file. Since .DAT file is created by Affymetrix 

Inc., it can only be read using Affymetrix authorized software. For example, if using 

JAVA, it cannot open the .DAT file. So some preprocessing must be done. MATLAB 

which is a software developed by Math Works provides a Bioinformatics Toolbox. Using 

the Bioinformatics Toolbox, a .DAT image file can be converted to a 16-bit gray 

scale .TIFF image file which can be read by JAVA or other image processing software. 

3. Generate a grid file. Grid information can be extracted from .DAT and .CEL 

files to generate a grid file. 

4. Create a batch file. A batch file needs to be created for automatically 

segmenting all of the Affymetrix GeneChip image files. The batch file includes the 

converted .TIFF image file and the grid file for each Affymetrix GeneChip microarray. 

5. Apply the AC WE segmentation. The segmentation program takes the batch 

file as input and automatically segments each probe cell in all the Affymetrix GeneChip 

microarray image files. 

6. Create an output file. A text file with an intensity value of each probe cell and 

an image file for the segmentation result are generated for each Affymetrix GeneChip 

microarray. 
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To compare the ACWE segmentation results with that of Affymetrix GeneChip 

microarray segmentation method, these steps are needed : 

Step 1. Import both ACWE segmentation results and Affymetrix GeneChip results 

(from .CEL file) to Microsoft Access database. 

Step 2. Use MATLAB to read out the probe cell name, probe cell location and probe cell 

type from the .CDF file and output to a text file. 

Step 3. Import the output text file in Step 2 into Microsoft Access database. 

Step 4. Link both probe cell intensity values from ACWE method and Affymetrix method 

with the probe cell name, location and type from the output text file. 

Step 5. Create an output file lists for the fields as follows: 

Affy (probe cell intensity value from Affymetrix segmentation method) 

ACWE (probe cell intensity value from ACWE segmentation method) 

Gene Name (the gene name of the probe cell) 

X (probe cell location in X-axis) 

Y (probe cell location in Y-axis) 

Probe Type (the probe type of probe cell, 'PM' or 'MM') 

Step 6. Import the output file in Step 5 and search out all the records related to the control 

genes. 

Step 7. Compute both the Average Differences (AD) of the Affymetrix Segmentation 

method and the ACWE method with the control genes. 

Step 8. Compute both the Sum Square Error (SSE) of the concentration values of the 

Affymetrix segmentation method and ACWE segmentation method with the 

control genes. 
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Step 9. Compare the two SSE, and choose the smaller SSE to be the best segmentation 

result. After all these steps, we can find out which method is better. 

3.6 Improvements for Active Contours Without 
Edge (ACWE) Method Application in 

DNA Microarrays Segmentation 

3.6.1 The Improvement by Reducing 
the Length Constraint in ACWE 

In order to reduce the segmentation time, we also test the possibility of a term 

reduction in the Chan-Vese model. We simplified the Equation 3.1 to 

d(j) 
= S£(<f>)[\(u0-c1)

2+A2(u0-c2)
2] = 0 (3.3) 

dt 

we also chose to use dE{(j)) -1 for simplicity. The finite differences Equation 3.2 in [33] 

was simplified to 

jn+\ in 

A " = [ -4 ( *o I J -c l ( f ))2 + K(«,/ j - c 2 ( f ))2] 
At L J 

= 2 ( C l ( f ) - c 2 ( f ))(u0lJ -(c,(f ) + c2(f ) ) /2 ) . ( 3 A ) 

The length term in the Chan-Vese model is for the smoothing of the curve C; during the 

test we neglect the length term and this may cause a reduction in the accuracy of the 

boundary, but it will reduce the computational time because of the drop of finite 

difference terms in the equation. We use S-ACWE to represent this method. 

3.6.2 The Improvement by Using 
a Fast Algorithm in ACWE 

In [35], a fast algorithm was proposed to increase the segmentation speed of 

ACWE method. We implemented this fast algorithm and named it as the F-ACWE 

method. 
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The algorithm for F-ACWE is described as follows: 

1 . Use an initial curve to partition the image into two parts. In one part <f>=\, 

in the other part <f> = - 1 . 

2 . For a pixel x with intensity value y, c\ is the average intensity value of the 

pixels with </>=\; c2 is the average intensity value of the pixels with <f> = - 1 ; 

m is the number of the pixels with <p=\; and n is the number of the pixels 

with </> = - 1 . 

If 0(x) =1, then compute 

AFn=(y-c2)
2-~-(y-Cl)

2 -. (3.5) 
n + \ m-\ 

If Afj2<0,then </> =-\. 

If ^ = - 1 , then compute 

AF21 =(y-c1)
2-^--(y-c2f

J1-. (3.6) 
m + l n-\ 

If AF21<0,then <p(x)=l. 

If the length term is considered, the change of the length can be added as a 

term to the right hand side of AFU and AF21. 

3 . Repeat step 2 until F(cvc2,<fi) remains stable. 

The main purpose of this algorithm is directly computing the energy. If a pixel 

changed from inside the curve region to outside the curve region or the opposite, the 

difference of the energy of both regions would be computed. Since the ACWE method 

supposed that the energy inside the curve was positive and the energy outside was 
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negative, if the pixel was inside the region and the difference was negative, then update 

the pixel into the outside region. It was similar for a pixel changing position from the 

outside to the inside region. Each pixel in the image will be swept and the iteration 

number for sweeping will terminate until the energy remains stable. 

3.6.3 The Improvements by Providing a 
More Accurate Segmentation 
Method Than the ACWE 
Method 

According to [36], when we proposed a method using high order finite difference 

scheme, it will provide a more accurate segmentation result than the ACWE method. We 

proposed and implemented the improved segmentation method called the I-ACWE 

method. 

In the ACWE method, the central finite difference schemes were as follows: 

^MlA±L} (3.7) 
2h 

and 

rtj+i ~ <Pij-\ 

2h • ( 3 - 8 ) 

In I-ACWE method, the central finite difference schemes would be changed from 

Formula 3.7 to 

12ft ' l ^ 

and Formula 3.8 to 

8(^."/+1 - <t>l}_x) - (ffy+2 - C - 2 ) ' (3 1Q) 

12// 

Based on the improvement on the central finite difference schemes, we improved 

the forward finite difference schemes from 



6" .-6". 

to 

-C2J+4CU-3C 
2h 

and from 

C + i _ C 

to 

- C + 2 + 4 C + l - 3 C 

2h 

We also improved the backward finite difference schemes from 

to 

and from 

C2,,-4Cu+3C 
2h 

6" -6".. 
Y',J T,J-\ 

to 

C-2-4C- i + 3 €; 
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(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
2h 

We called this improved segmentation method the I2-ACWE method. The spot 

patch size of DNA microarray is very small. Higher order schemes larger than the fourth 

order in central schemes will have the problem of the mesh size exceeding the spot patch 
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boundary. The same problem happens to the forward and backward schemes when the 

order is higher than the second order. In the implementation of I2-ACWE method, we 

choose the fourth order for central schemes and the second order for forward and 

backward schemes. 

3.6.4 Hybrid Methods for ACWE 

In order to improve the accuracy of the segmentation methods, we also proposed a 

hybrid method for the Affymetrix DNA microarray image segmentation. We combined 

the ACWE method with the Affymetirx segmentation method. 

We calculated the sum of square error (SSE) for Minimum, Average and 

Maximum of the two values of concentration obtained by the ACWE and Affymetrix 

methods. We observed that the Maximum gives a smaller sum of square error for the 

control genes, therefore a better fit. 

When the Affymetrix segmentation method is a better fit (smaller SSE) than the 

ACWE method, we compare the Affymetrix method with the Maxium. 

In Chapter 5, the experimental results will present that hybrid method has a 

better fit; therefore, it is a better segmentation method than the Affymetrix method. 



CHAPTER 4 

EXPERIMENTAL RESULTS OF DNA 
MICROARRAYS SEGMENTATION 

BASED ON THE ACWE 
METHOD 

The ACWE method uses the C-V model. Normally, the ACWE can partition an 

image into several parts, but when applying it in the microarray, it needs to be partitioned 

into exactly two parts: intensity and background. 

The C-V model has some limitations. For example, it cannot detect the texture of 

the image when the average intensity inside the object's boundary is the same as the 

average intensity outside the boundary. These limitations have no effect on applying the 

C-V model to the DNA microarrays' images segmentation since the intensities of spots 

and background are different in the microarray. We use the C-V method to compute the 

exact boundary of the spot. We can get the exact location of each spot before hand by 

using the grid file from the database. The grid file gives the location of each spot that 

wants to be printed on the microarray during the printing process. We use the spot patch 

which is the location (rectangle or square) of each spot as a sub image. Since the patch 

outside of every spot is the same, we only need to set up the initial function and other 

parameters once for PDE equations. After solving the equations we will get the exact 

boundary of the spot and the intensity value of that spot. To compute the background 

intensity value, we use the local background. The background area lies outside the 
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boundary of the spot and inside the boundary of the spot patch. Figure 4.1 is the output of 

the ACWE for cDNA microarray. Figure 4.2 is the output of ACWE for Affymetrix 

GeneChip. 

Figure 4.1 ACWE segmentation for the cDNA microarray 

Figure 4.2 ACWE segmentation for the Affymetrix GeneChip 
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In the segmentation of the DNA microarray, some parameters are set as follows: 

\ = ^ = 1, v = 0, h = \, At = 0.1. There are two types of microarrays which are chosen 

for the ACWE segmentation. The other parameters need adjusting based on the spot size 

of these two different microarrays. For example, since the Affymetrix GeneChip spots are 

smaller than those of cDNA microarray, smaller JX, (f>0 are chosen for the Affymetrix 

GeneChip spots. Once these parameters are set in the program, there is no need to adjust 

the parameters during computing, since the spot's size for an image are the same based on 

the grid file. 

4.1 Experimental Result for cDNA Microarray 

We use real cDNA microarray images from [34] for segmentation. The 

experiment results show that ACWE is the best accurate segmentation method. We will 

argue this point through this section. Figure 4.3 represents an original 16-bit Tagged 

Image File Format (TIFF) file of a cDNA microarray image. 

Figure 4.3 Original cDNA .TIFF file 
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In Figure 4.4 we present a segmentation result image using the AC WE 

segmentation method. The red curves around each spot represent the boundaries of the 

spots. The boundary of each spot in Figure 4.4 using the ACWE method gives nearly the 

actual boundary which can be checked by visual inspection. 
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Figure 4.4 Image after segmentation using ACWE. 

Figure 4.5 presents the segmentation result image obtained by using the GOGAC 

segmentation method. The red curve around each spot is the boundary of the spot. 

Spot 1 is at the top left corner with a red line boundary. 
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Figure 4.5 Segmentation using GOGAC. 
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Figure 4.6 presents the segmentation result image using the SRG segmentation 

method. The red curve around each spot is the boundary of the spot. Spot 1 is at top left 

corner with a red line boundary. 

Figure 4.6 Segmentation using SRG 

Comparing Figure 4.4 with Figures 4.5 and 4.6 we observe that the ACWE 

method gives the more accurate boundary than the previous two methods mentioned. In 

Figure 4.7, a segmentation image was provided by using ACWE for only one spot (Spot 

1). In Figure 4.8, we provide a segmentation image using the spotSegmentation for only 

one spot (Spot 1). The spotSegmentation is based on histogram segmentation. Comparing 

Figure 4.7 and Figure 4.8, we visually observe that the ACWE method gives out a more 

accurate boundary than the spotSegmentation method. These two methods were 

segmenting the same spot from the same original image. The same spot (Spot 1) can also 

be found in Figure 4.5 and 4.6 at the top left corner of the images. 

For more detail, we focus on one spot to analyze. Spot 1 (shown in Figure 4.7 and 

Figure 4.8) was chosen for analyzing the accuracy of ACWE compared to other 

segmentation methods. 
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Figure 4.7 Segmentation for Spot 1 using ACWE 

spot image after clustering 

after CC thresholding final labeling 

Figure 4.8 Segmentation using spotSegmentation for Spot 1 

Table 4.1 shows the pixels' intensities for Spot 1. The 10 columns by 10 rows 

square is the patch for Spot 1. After segmentation using ACWE, the area with 5 pixels 

(yellow part) is the exact as Spot 1. The red figures are the boundary which separates the 
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Spot 1 with the background. Based on Table 7.1, the mean intensity value for Spot 1 was 

calculated: (2576+1648+1640+2456+1896)/5=2043. 

Table 4.1 Patch outside Spot 1 with intensity values. Yellow area is 
the spot area. Red figures are the boundary found by ACWE. 
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The actual mean intensity value of Spot 1 was computed by different methods and 

the result is as follows in Table 4.2: 

Table 4.2 Spot 1 mean intensity value using different methods and software. 

SPOT 
1 

ACWE 
2043 

SRG 
1352 

GOGAC 
784 

FIXED-Circle 
414 

spotSegmentation 

1279 

spotfinder 

304 
imagene 

306 

This shows that the ACWE gave more precise mean intensity values than the rest 

of the methods and software. 

In Figure 4.9, the 3D visualization picture of Table 4.1 was presented. The 

intensity value of each pixel was used as Z-axis. The 5 pixels with extreme high 

intensities were partitioned as the spot's foreground. 
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Figure 4.9 3D graphic for square outside Spot 1 with intensity value. Z-axis is 
the intensity value. Five pixels with extreme high intensity 

are partitioned to the same spot foreground. 

In what follows we will perform a linear regression analysis in order to 

investigate the relation between the ACWE method and the SRG, GOGAC and Fixed 

circle methods. The same microarray image was segmented using these different methods, 

the spots' intensities were calculated using each of the methods. Then the linear model 

was determined for each case. Figure 4.10 presents the linear regression line and the 

model equation that explains the relation between the ACWE and SRG methods. We 

observe that R2 =0.9714. 
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Figure 4.10 The linear regression between the SRG and ACWE methods. 

Figure 4.11 presents the linear regression line and the model equation that 

explains the relation between the ACWE and GOGAC methods. We observe that 

R2 =0.9662. Similarly, Figure 4.12 presents the linear regression line and the model 

equation that explains the relation between the ACWE and the Fixed circle methods. We 

observe that R2 =0.6494. 

Therefore, observing the regression lines in Figures 4.10-4.12 we conclude that 

ACWE was highly correlated with SRG and GOGAC and least correlated with the Fixed 

circle methods. Method ACWE is the most accurate method in determining the boundary 

of the spots. 
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Figure 4.11 The linear regression between GOGAC and AC WE methods. 
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Figure 4.12 The linear regression between FIXED circle and AC WE methods. 
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Figure 4.13 presents the comparison between control spots and spots with the 

same gene. LAMBDA was a control spot and YBR145W was a gene spot (with gene 

named "ADH5"). For the two gene spots (Spot 2055 and Spot 3687), ACWE has less 

differences between them. For the two control spots (Spot 1941 and Spot 5813), the 

ACWE method showed more differences between the two controls. 
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HYBR145W Spot3687 

DLAMBDA Spot 1941 

D LAMBDA Spot 5813 

FIXED CIRCLE 

Figure 4.13 LAMBDA is a control spot and YBR145W is a gene spot. The trend 
is the result of intensity of the spots using different methods. 

Figure 4.14 presents a boxplot for control spots named LAMBDA and the gene 

spots named YBR145W. It was based on different segmentation methods and software. It 

compared the inter-quantile range (IQR, which is the distance between 25 percentile and 

75 percentile) of normalized intensity values of spots (using z-score). IQR used the 

middle 50% data and was not affected by the outliers. In [37], the z-score normalization 

X —X 
rule is defined as follows: Zn = — , Z is a z-score, Xg is the mean of the 

gth observation, and s is the standard deviation of the gth observation. 
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The result showed that the ACWE method had the smallest inter-quantile range 

and it was the best segmentation method for cDNA microarray segmentation. 
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Figure 4.14 Boxplot for z-score normalization for spots in Figure 4.13. 

The gth spot pixel intensity of Cy3 channel (Green) is denoted as Xg . Yg 

denotes the gth spot pixel intensity of Cy5 channel (Red). The ratio R is equal to 

Y IX . This ratio represents the DNA folder change. Logarithms of this ratio is log2 R . 

Using logarithmic transformation reduces the skewness of the distribution and improves 

the variance estimation. In Figure 4.15 we present the box plot of the log ratio on the 

spots named "LAMBDA". The inter-quantile range (IQR) presented method ACWE is 

smaller than the ones provided by the SRG and GOGAC methods, since it showed less 

range which meant less gene expression difference for the control spot. 
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Figure 4.15 Boxplot of z-score normalization of 
log ratio using different methods. 

In [38], the author proposed a more precise relative difference (RelDiff) 

calculation for cDNA microarray analysis. The relative difference was more stable than 

log ratio. 

R — C 

Relative difference is defined as follows: RelDiff=2 , where R is the Cy5 

R + G 

(red) intensity with background adjustment and G is the Cy3 (Green) intensity with 

background adjustment. 

Figure 4.16 is the box plot for relative difference on spots named "LAMBDA". 

The inter-quantile range (IQR) showed that the ACWE method was the best. 
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Figure 4.16 Boxplot of the z-score normalization of relative 
difference using different methods. 

Each pair of microarrays corresponds to a single mRNA sample. The two 

microarrays in each pair are technical replicates as they are exposed to the same 

biological samples. Microarrays from different mRNA samples are biological replicates. 

In the experiments, we used 3 biological replicate samples, each of which has two 

technical replicates from two channels. The control spot named "LAMBDA" is chosen 

for the test. Figure 4.17 showed the "LAMBDA" control spot that expressed less 

difference should have a smaller inter-quantile range (IQR). There should be less 
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difference between replicates. The figure showed that ACWE was a better method than 

the other two. 

x 1 0 4 

ACWE 

Figure 4.17 Boxplot of spot intensity of LAMBDA with 
different segmentation methods. 

The log ratio (R/G) of the LAMBDA control spots was computed for each array 

in a serial of 18 microarrays of a yeast experiment. The result was shown in Figure 4.18. 

Since LAMBDA was a control spot with less expression difference, the range of log ratio 

{R/G) is less than 2 using ACWE segmentation method. This showed the computed result 

had the biological meanings. 
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Figure 4.18 Log ratio (R/G) of LABMDA of 18 
microarrays using ACWE method. 

Figure 4.19 is the copy of Figure 4 (printed with the permission of the owner) 

from [39]. It showed the gene clusters with the cell cycle-regulated. Figure 4.20 is 

extracted from Figure 4.19. Figure 4.20 shows the gene clusters with cell cycle-regulated 

and the histone (key protein component) cluster under the alpha factor experiment. Figure 

4.20 was presented as an array with 9 rows and 18 columns. Each row represents a gene 

and each column represents a microarray image. Histone genes show periodical 

regulation. It has 9 genes in Figure 4.20. Only eight genes were used in the experimental 

data sets which were "HTB2, HTA2, HHF1, HHF2, HHT2, HTB1, HHT1 and HTA1". A 

total of 18 microarray images were used in the alpha factor experiment. Each image was 
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taken every 7 minutes in a time serial. Figure 4.20 showed a clear cell cycle in the Alpha 

Factor section under cluster histone. It showed "Green Red Green Red" cycle. 

Approximately, at minutes 0, 7, and 14, it showed green. At minutes 28, 35 and 42, it 

showed red. At minutes 63 and 70, it showed green again. At minutes 84, 91 and 98, it 

showed red again. Red showed the DNA expression was increased, black showed the 

DNA expression was stable. Green represented that the DNA expression was decreased. 

The biological cycle was based on the experiments depending on time repeated 

every 7 minutes. In that experiment a total of 18 microarrays were used. This is why each 

row in Figure 4.20 had 18 elements. 

Figure 4.19 Gene clusters with cell cycle-regulation. 
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Figure 4.20 Histone genes under yeast alpha factor experiment. 

Figure 4.21 shows the "Green Red Green Red" cycle which was the same as in 

Figure 4.20. The ratio R is equal to Y IXg . This ratio represents the DNA folder 

change (DNA expression difference). X denotes the gth spot pixel intensity of Cy3 

channel (Green). Yg denotes the gth spot pixel intensity of Cy5 channel (Red). 

Logarithms of this ratio is l o g / . Using the logarithmic transformation reduces the 

skewness of the distribution and improves the variance estimation. Log ratio of intensities 

from Red and Green channel was computed to represent histone genes expression in 

alpha factor using the ACWE method. 

In Figure 4.22, the log ratio of intensities from the Red and Green channel was 

computed to represent the histone gene expression in the alpha factor using the SRG 

method. At minute 70, it showed red. This is different from Figure 4.20. 

In Figure 4.23, the log ratio of intensities from the Red and Green channel was 

computed to represent the histone genes expression in the alpha factor using the GOGAC 

method. At minute 70, it showed red. This is different from Figure 4.20. 

Therefore, we can conclude that ACWE is a better segmentation method than both 

the SRG and GOGAC methods since it matched the exact biological cell cycle. 
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Figure 4.21 Log ratio (R/G) of the histone genes in alpha factor using AC WE method. 
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Figure 4.22 Log ratio (R/G) of histone genes in alpha factor using SRG method. 
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Figure 4.23 Log ratio (R/G) of histone genes in alpha factor using GOGAC method. 

4.2 Experimental Result for Affymetrix GeneChip 

Before the ACWE segmenting, the Affymatrix GeneChip .DAT file needs to be 

converted to a .TIFF file which can be processed by our ACWE segmentation software. 

The .DAT file also needs to adjust since the .DAT image might rotate a little bit. All the 

converting and adjusting can be done with our program which was written using Matlab 

with the Bioinformatics Toolbox. 

We used real Affymetrix GeneChip microarray images from [31] for segmentation. 

The experimental results show that ACWE is the most accurate segmentation method. 

In Figure 4.24 a segmentation image was provided by using ACWE for an 

Affymetrix GeneChip image. 



73 

Figure 4.24 Segmentation for Affymetrix GeneChip image using ACWE 

Figure 4.25 is the linear correlation between ACWE and Affymetrix segmentation 

method using the sample .DAT file from Affymetrix website [31] named 

"arabidopsisathl". These two methods are highly correlated and the linear correlation 

coefficient R was 0.99172. In Figure 4.25, all the cells' intensities are used for 

comparison. 

x 104 arabidopsisalh! R=0.99172 

Figure 4.25 Linear Correlation between ACWE and Affymetrix 
segmentation method 

The expression of gene in Affemetrix GeneChip can be used as the following 

methods according to [37]. 
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5g is the Average Difference signal value. Yg represents the difference of each probe pair. 

mg is the number of the probe pairs in one probe set. PMg gives the intensity of the 

Perfect Match probe cell and MMg shows the intensity of the Mismatch probe cell. 

The second method is a Weighted Average Difference. S = exp(Tbjwt({Xgt})), 

Ym°w.x. 
where71, .({X./H = =x

m
 s' s' , X$ = log<Yg(), Sgis the Weighted Average Difference 

Z
m * w • 
1=1 g' 

signal value, Ygi represents the difference of each probe pair, wgi is the weight using the 

bi-weight weighting function: w(u) = (1 - u2)2 if |«|<1 and w(u)=0 if \u\ > 1, and mg is 

the number of the probe pairs in one probe set. 

The third method is the Perfect Match Only, s = exp 
rTZlo*PM*f 

m„ 

where 5^ is the signal value. PMgi gives the intensity of the Perfect Match probe cell. 

There are two groups of control genes that can be used in comparison of which 

the segmentation method is better. 

In [40], Affymetrix gave one group of spike control genes named Hybridization 

Controls; it contained BioB, BioC, BioD, and Cre for four genes. The concentrations for 

these genes were 1.5 pM, 5 pM, 25 pM, and 100 pM. The average difference signals of 

these four genes should be linearly correlated with these four concentrations with a 

linear coefficient of R=l in theory. 

The other group of control genes Affymetrix provided in [41] was Labeling 

Control. There are four genes in that group: Lys, Phe, Thr, and Dap. Respectively, they 
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have the concentration as follows: 1:100000, 1:50000, 1:25000, and 1:6667. In theory, 

the average difference signals of these four genes should be highly correlated given their 

concentrations with a linear correlation coefficient R equal to 1. 

Combining these two groups of control genes into one large group, linear 

regression was performed using these eight control genes. Using the concentration for 

control genes we fitted two regression lines for the Affymetrix segmentation method and 

the AC WE method. We calculated SSE1 (Sum Square Error for the Affymetrix 

segmentation method), SSE2 (Sum Square Error for ACWE method) to determine 

which method was better. 

Figure 4.26 and Figure 4.27 showed different segmentation methods applied on 

the same image file named "Nk2-sd_null_8b". By comparing the linear coefficient R in 

both figures, we found the intensity values from the ACWE method had a higher 

correlation with the concentration of the control genes. R square in Figure 4.26 

(Affymetrix method) was 0.9019 and 0.9949 in Figure 4.27 (ACWE method). 

The value of R should be 1: the closer the better. 
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Figure 4.26 Linear regression line between intensity values using 
Affymetrix method and the concentration of control genes. 
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Figure 4.27 Linear regression line between intensity values using ACWE 
method and the concentration of control genes. 

Table 4.3 provides the result of Sum Square Error (SSE) of concentration from the 

Affymetrix method (SSE1=923.3815536) and ACWE method (SSE2=43.19708603) for 

one image named "Nk2-sd_null_8b". By comparing the SSE1 and SSE2 values, we 

observe that ACWE has a smaller SSE value than that of the Affymetrix method. The 

result shown in the ACWE had a smaller SSE, which means the ACWE method was the 

better segmentation method. 

Table 4.3 Sum Square Error of concentration between Affymetrix 
and ACWE methods for one image. 

Gene Name 
bioB 

bioC 

bioD 
ere 
lys 
phe 
thr 
dap 

Concentration 

1.5 
5 

25 
100 

0.00001 
0.00002 

0.00004 
0.000149993 

Affymetrix 

2127.017 
5874.585 

13143.08 
24181.82 

•6.74 

60.81667 
•65.225 

•224.675 

ACWE 

1025.717 

1024.775 
3378.275 

12628.05 
-23.4333 

53.06667 
11.11667 

-132.533 

CI 
1.8181 

17.43037 
47.71071 

93.69778 

-7.07107 
-6.78963 

•7.31472 
•7.97898 

C2 
6.653165 

6.645613 
25.52194 

99.71006 

•1.76158 

-1.14801 
-1.48447 
-2.63662 

C-C1 

-0.3181 
-12.4304 

-22.7107 

6.30222 
7.071081 

6.789652 
7.314758 

7.979133 

C-C2 

-5.15317 
-1.64561 
-0.52194 

0.289942 

1.761586 
1.148026 

1.484507 
2.636766 

0.101187 

154.514 
515.7766 

39.71798 
50.00019 

46.09938 
53.50569 

63.66656 

26.55511 

2.708041 

0.272417 
0.084067 

3.103186 
1.317963 

2.203761 
6.952537 

SSE1 (Affymetrix) 

923.3815536 

SSE2(ACWE) 

43.19708603 

76 
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Table 4.4 presents a table of comparing the results of SSE between the Affymetrix 

method and the ACWE method for a group of images from one experiment. SSE1 was for 

Affymetrix and SSE2 was for ACWE. For a group of images in the same experiment 

named "Non-failing Normal Patient", of all the 14 images, 12 of them showed the ACWE 

method has a smaller SSE than Affymetrix and therefore is a better choice for a 

segmentation method. 

Table 4.4 All images in one experiment SSE comparison result. 

Experiment name 
Non- fa i l ins "Normal" Pa t i en t 
Non-fail i n s "Normal' Pa t i en t 
Non-fai l ing "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non-fa i l ing "Normal" Pa t i en t 
Non-fai l ing "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non- fa i l ins "Normal" Pa t i en t 
Non-fai l ing "Normal" Pa t i en t 
Non-fai l ing "Normal" Pa t i en t 

Picture Name 
PAN 2 
PAN 3 
PAN 5 
PAN 112-1 
PAN 118 
PAN 148 
PAN 200 
PAN 249 
PAN 291 
PAN 294 
PAN 300 
PAN 322 
PAN 325 
PAN 326 

SSE1 (Affymetrix) 
38. 27691209 
36. 28320103 
46. 88678481 
48.38131101 
75.10650964 
78. 74727054 
93. 21929361 
67.01296917 

36. 5763059 
61.48699358 
55.08412502 
90.12749255 
52.89713986 
88. 25998143 

SSE2 (M-ACWE) 
32. 77832087 
35. 96082502 
45.15868231 
45. 45383283 
69. 26868915 
54. 61473739 
92.14273772 
62. 05873328 
29. 09979072 
66. 08901362 
44. 49878051 
86. 26224659 
55.28467159 
76.74630714 

S S E 1 > S S E 2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 

Table 4.5 shows all the experiments in the database ([31]). There were a total of 

19 experiments on that website and a total of 377 images were segmented using both the 

Affymetrix segmentation and ACWE methods. The results show that 189 out of 377 

images (more than half of the images) proved that the ACWE method was better. Also 

considering the experiment dependent effect, we checked by individual experiment. 

Eleven out of 19 experiments showed that the ACWE method was better and 1 of 19 

experiments showed these two methods were a tie. 
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Table 4.5 All experiments SSE comparison result. 

Experiment number 

1 

2 

3 

4 

5 

6 
7 
8 

g 
10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

Experiment name 
Aortic Stenosis, Congestive Cardiomyopathy 
and Normal Left Ventricular Function 
Idiopathic Cardiomyopathy 
Cardiac Hypertrophy Induced by the Insulin
like Growth Factor 1 Receptor 
C57BL/6 Benchmark Set for Early Cardiac 
Development 
Post-Partum Cardiomyopathy 
Familial Cardiomyopathy 
Hypertrophic Cardiomyopathy 
Viral Cardiomyopathy 
Non-failing "Normal" Patient 
Ischemic Cardiomyopathy 
Cardiac hypertrophy related to the PI3 
Kinase Signaling Pathway (v2) 
Myocardial Infarction 
Congenital Heart Disease in Csx/Nkx2.5 
mutant embryos 
Deletion of the Nk2 specific domain of the 
Mkx2.5 
FVB Benchmark and Sex Comparison 
Pressure-overload induced cardiac 
hypertrophy in FVB mice 
Exercised Induced Hypertrophy 
Mice over-expressing dn-p21ras as a model 
system for severe dilated cardiomyopathy 
Hypertrophy and Heart Failure Through High 
Salt Diet and Exercise 

Images in experiment 

16 
25 

9 

38 

4 

S 
5 
6 

14 
30 

9 

59 

18 

24 

24 

36 
30 

3 

24 
377 

Images showed M-ACWE 
method was better than 
Affymetrix 

11 

8 

5 

20 

2 

3 
3 
2 

12 
13 

S 

35 

10 

11 

11 

15 
17 

2 

4 

189 

Ratio 

68.75% 
32.00% 

55.56% 

55.56% 
50.00% 
60.00% 
60.00% 
33.33% 
85.71 % 
43.33% 

55.56% 
59.32% 

55.56% 

45.83% 
45.83% 

41 .67% 
56.67% 

66.67% 

16.67% 
50.13% 

In Table 4.6, 2 out of 3 experiment model types showed that the ACWE method 

was better. In the human model, 4 out of 8 experiments showed ACWE was better and 1 

of 8 experiments showed ACWE was equal to the Affymetrix method. In the mouse 

model, 7 out of 10 experiments showed that the ACWE method was better. In the rat 

model, only 1 experiment was in the model; it didn't prefer to ACWE. The mouse model 

and the human model are the main models that Harvard Medical School uses in the 

projects. In the mouse model the ACWE method shows the significant advantage over the 

Affymetrix method. Also in the human model, the ACWE method is still better than 

Affymetrix. 

Table 4.6 Type of experiments and comparison among methods 

Experiment model 
Human 
House 
Rat 

Total experiments 
8 
10 
1 

Experiments showed M-ACTJE method was better 
4 (1 more experiment showed M-ACWE was the same as Affymetrix method) 
7 
0 
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Table 4.7 showed there were a total of seven Affymetrix GeneChip templates 

used for the total nineteen experiments of Harvard Medical School datasets. Three out of 

7 templates showed the ACWE method was better than the Affymetrix method. Three out 

of 7 templates showed ACWE was the same as that of the Affymetrix method. Only 1 

template showed the ACWE method was worse. 

Table 4.7 Affymetrix GeneChip template type SSE comparison results 

Affymetrix GeneChip Template Type 
M95Av2 
HgU133plus2 
M l k Set 
M 7 4 A 
M74Av2 
Mg430 2.0 
M 3 4 A 

Total experiments 
1 
7 
2 
4 
3 
1 
1 

Experiments showed S-ACWE method was better 
1 
3 (1 more experiment showed S-ACWE was the same as Affymetrix method) 
1 
2 
3 
1 
0 

Therefore, we can conclude that the ACWE method is better than the Affymetrix 

segmentation method since it has less SSE in concentration of control genes. 



CHAPTER 5 

EXPERIMENTAL RESULTS OF DNA MICROARRAYS 
SEGMENTATION BASED ON THE 

IMPROVED ACWE 
METHOD 

In the previous chapters, we have already shown that the ACWE method is a 

better method when compared to the current DNA microarray segmentation methods. In 

this chapter, we will discuss the improvements we made to let the original ACWE 

segmentation method be more accurate or faster. 

5.1 Experimental Results of Simplified ACWE 
(S-ACWE) Method 

In Section 3.6.1, the S-ACWE method is discussed. In this section the results of 

the S-ACWE method are analyzed. 

During the experiment, we still used the same database as in Chapter 4. We 

compared the sum squared errors of the Affymetrix method and the S-ACWE method. 

Table 5.1 shows all of the experiments in the database [31]. There were a total of 

19 experiments in that website and a total of 377 images were segmented using both the 

Affymetrix segmentation and S-ACWE methods. 

The results showed that 163 out of the 377 images (less than half of the images) 

conclude that the S-ACWE method was better. Also, considering the experiment 

dependent effect we checked by individual experiments. 

80 
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Six out of 19 experiments showed S-ACWE method was better and 3 of 19 

experiments showed these two methods were a tie. 

Table 5.1 All experiments SSE comparison result. 

Experiment number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Experiment name 
Aortic Stenosis, Congestive Cardiomyopathy 
and Normal Left Ventricular Function 

Idiopathic Cardiomyopathy 
Cardiac Hypertrophy Induced by the Insul in
like Growth Factor 1 Receptor 
C57BL/6 Benchmark Set for Early Cardiac 
Development 

Post-Partum Cardiomyopathy 

Familial Cardiomyopathy 

Hypertrophic Cardiomyopathy 

Viral Cardiomyopathy 

Non-failing "Normal" Patient 

Ischemic Cardiomyopathy 
Cardiac hypertrophy related to the PI3 
Kinase Signaling Pathway (v2) 

Myocardial Infarct ion 
Congenital Heart Disease in Csx/Nkx2,5 
mutant embryos 
Deletion of the Nk2 specific domain of the 
Nkx2.5 

FVB Benchmark and Sex Comparison 
Pressure-overload induced cardiac 
hypertrophy in FVB mice 

Exercised Induced Hypertrophy 
Mice over-expressing dn-p21ras as a model 
system for severe dilated cardiomyopathy 
Hypertrophy and Heart Failure Through High 
Salt Diet and Exercise 

Images in experiment 

16 

25 

9 

36 

4 

5 

5 

6 

14 

30 

9 

59 

18 

24 

24 

36 

30 

3 

24 

377 

Images showed S-ACWE 
method was better than 
Affymetrix 

7 

4 

4 

18 

2 

3 

3 

2 

11 

11 

5 

30 

10 

10 

12 

13 

14 

1 

3 

163 

Ratio 

43.75% 

16.00% 

44.44% 

50.00% 

50.00% 

60.00% 

60.00% 

33.33% 

78.57% 

36.67% 

55.56% 

50.85% 

55.56% 

41.67% 

50.00% 

36.11% 

46.67% 

33.33% 

12.50% 

43.24% 

In Table 5.2, 0 out of 3 experiment model types showed that the S-ACWE method 

was better. In the human model, 3 out of 8 experiments showed S-ACWE was better and 

1 of 8 experiments showed S-ACWE was equal to Affymetrix method. In the mouse 

model, 3 out of 10 experiments showed S-ACWE method was better and 2 of 8 

experiments showed S-ACWE was equal to the Affymetrix method. In the rat model, 0 

out of 1 experiment model types showed that the S-ACWE method was better. S-ACWE 

method was not accurate in all the 3 experiment models compared with the Affymetrix 

segmentation method. 
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Table 5.2 Type of experiments and comparison among methods 

Experiment model 
Human 
House 
Rat 

Total experiments 
8 
10 
1 

Experiments showed S-ACWE method was better 
3 (1 more experiment showed S-ACWE was the same as Affymetrix method) 
3 (2 more experiment showed S-ACWE was the same as Affymetrix method) 
0 

Table 5.3 showed there were a total of seven Affymetrix GeneChip templates used 

for the nineteen experiments in Harvard Medical School datasets. One out of 7 templates 

showed the S-ACWE method was better than the Affymetrix method. One out of 7 

templates showed S-ACWE was the same as that of the Affymetrix method. Five 

templates showed that the S-ACWE method was worse. 

Table 5.3 Affymetrix GeneChip template type SSE comparison result 

Affymetrix GeneChip Template Type 
M95Av2 

M133plus2 
Iu l lk Set 
M74A 

M74Av2 
km 2. o 
RRU34A 

Total experiments 
1 
7 
2 
4 
3 
1 
1 

Experiments showed S-ACWE method was bet ter 
0 
3 (l more experiment showed S-ACWE was the same as Affymetrix method) 
1 
0 (1 more experiment showed S-ACWE was the same as Affymetrix method) 
2 
0 (l more experiment showed S-ACWE was the same as Affymetrix method) 
0 

Through the experimental results, we found that the S-ACWE did not provide the 

accuracy we were looking for. It also means that the length constraint in the ACWE 

method is highly related with the segmentation accuracy. 

5.2 Experimental Results of a Fast ACWE 
(F-ACWE) Method 

In Section 3.6.2, the F-ACWE method is presented. After using all the same 19 

experiments for testing by the F-ACWE method, we got the following results. 

Table 5.4 showed all the experiments in the database [31]. There were a total of 

19 experiments in that website and a total of 377 images were segmented using both 
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Affymetrix segmentation and F-ACWE methods. The results showed 195 out of 377 

images (more than 51.72% of the images) showed the F-ACWE method was better. Also 

considering the experiment dependent effect, we checked by individual experiment. Nine 

out of 19 experiments showed the F-ACWE method was better and 3 of 19 experiments 

showed these two methods were a tie. 

Table 5.4 All experiments SSE comparison results 

Experiment number 

1 

2 

3 

4 

5 
6 

7 
8 

9 
10 

11 
12 

13 

14 

15 

16 

17 

18 

19 

Experiment name 
Aortic Stenosis, Congestive Cardiomyopathy 
and Normal Left Ventricular Function 
Idiopathic Cardiomyopathy 
Cardiac Hypertrophy Induced by the Insul in
like Growth Factor 1 Receptor 
C57BL/6 Benchmark Set fo r Early Cardiac 
Development 
Post-Partum Cardiomyopathy 

Familial Cardiomyopathy 
Hypertrophic Cardiomyopathy 

Viral Cardiomyopathy 
Non-failing "Normal" Patient 

Ischemic Cardiomyopathy 
Cardiac hypertrophy related to the PI3 
Kinase Signaling Pathway (v2) 

Myocardial Infarct ion 
Congenital Heart Disease in Csx/Nkx2.5 
mutant embryos 
Deletion of the Nk2 specific domain of the 
Nkx2.5 

FVB Benchmark and Sex Comparison 
Pressure-overload induced cardiac 
hypertrophy in FVB mice 

Exercised Induced Hypertrophy 
Mice over-expressing dn-p21ras as a model 
system for severe dilated cardiomyopathy 
Hypertrophy and Heart Failure Through High 
Salt Diet and Exercise 

Images in experiment 

16 
25 

9 

36 
4 

5 
5 

6 
14 

30 

9 

59 

18 

24 
24 

36 

30 

3 

24 
377 

Images showed F-ACWE 
method was better than 
Affymetrix 

8 
7 

5 

20 

1 
3 
4 

3 
12 

15 

6 
38 

10 

10 
11 

17 

18 

1 

6 
195 

Ratio 

50.00% 
28.00% 

55.56% 

55.56% 

25.00% 

60.00% 
80.00% 

50.00% 
85.71 % 
50.00% 

66.67% 

64.41% 

55.56% 

41.67% 

45.83% 

47.22% 

60.00% 

33.33% 

25.00% 
51.72% 

In Table 5.5, 2 out of 3 experiment model types showed that the F-ACWE method 

was better. In the human model, 3 out of 8 experiments showed F-ACWE was better and 

3 of 8 experiments showed that F-ACWE was equal to the Affymetrix method. In the 

mouse model, 6 out of 10 experiments showed that the F-ACWE method was better. In 

the rat model, since only 1 experiment was in the model, it did not prefer to the F-ACWE. 
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The mouse model and the human model are the main models that Harvard Medical 

School uses in these projects. In the mouse model, the F-ACWE method shows the 

significant advantage over the Affymetrix method. Also in the human model, the 

F-ACWE method is still better than Affymetrix. 

Table 5.5 Type of experiments and comparison among methods 

Experiment model 
Human 

Total experiments 
8 

House 10 
Rat ll 

Experiments showed F-ACWE method was better 
3 (3 more experiment showed F-ACWE was the same as Affymetrix method) 
6 
0 

Table 5.6 showed there were a total of seven Affymetrix GeneChip templates used 

for the total nineteen experiments of Harvard Medical School datasets. Three out of 7 

templates showed F-ACWE method was better than the Affymetrix method. One out of 7 

templates showed F-ACWE was the same as that of the Affymetrix method. Three 

templates showed that the F-ACWE method was worse. 

Table 5.6 Affymetrix GeneChip template type SSE comparison result 

Affymetrix GeneChip Template Type 
HRU95AV2 

M133plus2 

Iul lk Set 

wm 
feU74Av2 
1*430 2.0 
M34A 

Total experiments 
1 
7 
2 
4 
3 
1 
1 

Experiments showed F-ACWE method was bet ter 
0 
3 (2 more experiment showed F-ACWE was the same as Affymetrix method) 
1 
1 
3 
1 
0 

Overall, the F-ACWE method can provide an accurate segmentation result and 

can significantly reduce the segmentation speed since we do not need to solve the partial 

differential equations like we did using the ACWE method. It can replace the ACWE 

method when large Affymetrix images need to be segmented. 
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5.3 Experimental Results of Improving ACWE 
Methods (I-ACWE, I2-ACWE) 

In Section 3.6.3,1-ACWE and 12-ACWE methods are proposed by using the high 

order finite different schemes. 

After using the same Harvard Medical School database for experiments, we got 

the results as follows: 

Table 5.7 showed all the experiments in the database ([31]). There were a total of 

19 experiments in that website and a total of 377 images were segmented both using the 

Affymetrix segmentation and I-ACWE methods. From the results, 229 out of 377 images 

(more than 60 percent of the images) showed that the I-ACWE method was better. Also 

considering the experiment dependent effect, we checked by individual experiments. 

Fourteen out of 19 experiments showed I-ACWE method was better and 1 of 19 

experiments showed these two methods were a tie. 

Table 5.7 All experiments SSE comparison result for I-ACWE 

Experiment number 

1 
2 

3 

4 

S 
6 
7 

8 

9 
10 

11 
12 

13 

14 

15 

16 
17 

18 

19 

Experiment name 
Aortic Stenosis, Congestive Cardiomyopathy 
and Normal Left Ventricular Function 
Idiopathic Cardiomyopathy 
Cardiac Hypertrophy Induced by the Insul in
like Growth Factor 1 Receptor 
C57BL/6 Benchmark Set for Early Cardiac 
Development 
Post-Parturn Cardiomyopathy 
Familial Cardiomyopathy 
Hypertrophic Cardiomyopathy 
Viral Card iomyopathy 
Non-fail ing "Normal" Patient 
Ischemic Cardiomyopathy 
Cardiac hypert rophy related to the PI3 
Kinase Signaling Pathway (v2) 
Myocardial Infarct ion 
Congenital Heart Disease in Csx/Nkx2.5 
mutant embryos 
Deletion of the Nk2 specific domain of the 
Nkx2,5 
FVB Benchmark and Sex Comparison 
pressure-over load induced cardiac 
hypert rophy in FVB mice 
Exercised Induced Hypertrophy 
Mice over-expressing dn-p21ras as a model 
system for severe dilated cardiomyopathy 
Hypertrophy and Heart Failure Through High 
Salt Diet and Exercise 

Images in experiment 

16 
25 

9 

36 
4 

5 
5 

6 
14 
30 

9 

59 

18 

24 
24 

36 

30 

3 

24 
377 

Images showed l-ACWE 
method was better than 
Affymetrix 

11 
14 

5 

17 

3 

3 
2 
3 

12 
16 

6 
41 

7 

10 
18 

28 
17 

3 

13 
229 

Ratio 

68.75% 
56.00% 

55.56% 

47.22% 
75.00% 
60.00% 
40.00% 
50.00% 
85.71% 
53.33% 

66.67% 
69.49% 

38.89% 

41 67% 
75.00% 

77.78% 
56.67% 

100.00% 

54.17% 
60.74% 
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In Table 5.8, 3 out of 3 experiment model types showed that the I-AC WE method 

was better. In the human model, 6 out of 8 experiments showed I-ACWE was better and 

1 of 8 experiments showed I-ACWE was equal to Affymetrix method. In the mouse 

model, 7 out of 10 experiments showed that the I-ACWE method was better. For the rat 

model, I-ACWE gave better results. 

Table 5.8 Types of experiments and comparison among methods for I-ACWE 

Experiment model 
Human 

louse 

Rat 

Total experiments 

8 
10 
1 

Experiments showed I-ACHE method was bet ter 

6 (l more experiment showed I-ACWE was the same as Affymetrix method) 

7 
1 

Table 5.9 showed there were a total of seven Affymetrix GeneChip templates 

used for the nineteen experiments of Harvard Medical School datasets. Five out of 7 

templates showed that the I-ACWE method was better than the Affymetrix method. 

Table 5.9 Affymetrix GeneChip template type SSE comparison result for I-ACWE 

Affymetrix GeneChip Template Type 

HgU95Av2 

HgU133plus2 

l u l l k Set 

I&U74A 
M74Av2 

fc430 2.0 

RgU34A 

Total experiments 

1 
7 
2 
4 
3 
1 
1 

Experiments showed I-ACWE method was be t te r 

1 
5 (1 more experiment showed I-ACWE was the same as Affymetrix method) 

0 
4 
3 
0 
1 

By far, the improved ACWE (I-ACWE) method is even more accurate in 

segmenting than the ACWE method. 

For I2-ACWE method, after experimenting with the Harvard datasets, we got the 

results as follows: 



87 

Table 5.10 showed all the experiments in the database ([31]). There was a total of 

19 experiments in that website and a total of 377 images were segmented both using 

Affymetrix segmentation and I2-ACWE methods. From the results, 229 out of 377 

images (more than 60 percent of the images) showed I2-ACWE method was better. Also 

considering the experiment dependent effect, we checked by individual experiment 

showed these two methods were tie. 

Table 5.10 All experiments SSE comparison result for I2-ACWE 

Experiment number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Experiment name 

Aortic Stenosis, Congestive Cardiomyopathy 

and Normal Left Ventricular Function 

Idiopathic Cardiomyopathy 

Cardiac Hypertrophy Induced by the Insulin

like Growth Factor 1 Receptor 

C57BL/6 Benchmark Set for Early Cardiac 

Development 

Post-Partum Cardiomyopathy 

Familial Cardiomyopathy 

Hypertrophic Cardiomyopathy 

Viral Cardiomyopathy 

Non-failing "Normal" Patient 

Ischemic Cardiomyopathy 

Cardiac hypertrophy related to the PI3 

Kinase Signaling Pathway (v2) 

Myocardial Infarction 

Congenital Heart Disease in Csx/Nkx2,5 

mutant embryos 

Deletion of the Nk2 specific domain of the 

Nkx2,5 

FVB Benchmark and Sex Comparison 

Pressure-overload induced cardiac 

hypertrophy in FVB mice 

Exercised Induced Hypertrophy 

Mice over-expressing dn-p21ras as a model 

system for severe dilated cardiomyopathy 

Hypertrophy and Heart Failure Through High 

Salt Diet and Exercise 

Images in experiment 

16 

25 

9 

36 

4 

5 

5 

6 

14 

30 

9 

59 

18 

24 

24 

36 

30 

3 

24 

377 

Images showed I2-ACWE 

method was better than 

Affymetrix 

11 

14 

5 

17 

3 

3 

3 

3 

12 

17 

6 

41 

6 

10 

17 

28 

17 

3 

13 

229 

Ratio 

68.75% 

56.00% 

55.56% 

47.22% 

75.00% 

60.00% 

60.00% 

50.00% 

85.71% 

56.67% 

66.67% 

69.49% 

33.33% 

41.67% 

70.83% 

77.78% 

56.67% 

100.00% 

54.17% 

60.74% 
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In Table 5.11, 3 out of 3 experiment model types showed that the I2-ACWE 

method was better. In the human model, 7 out of 8 experiments showed that the 

I2-ACWE was better and 1 of 8 experiments showed that the I2-ACWE was equal to 

Affymetrix method. In the mouse model, 7 out of 10 experiments showed that the 

I2-ACWE method was better. For the rat model, I2-ACWE was better. 

Table 5.11 Type of experiments and comparison among methods for 12-AC WE 

Experiment model 
Human 
Mouse 
Rat 

Total experiments 
8 
10 
1 

Experiments showed I2-ACWE method was better 
7 (1 more experiment showed I2-ACWE was the same as Affymetrix method) 
7 
1 

Table 5.12 shows that there were seven Affymetrix GeneChip templates used for 

the total nineteen experiments out of the Harvard Medical School datasets. Five out of 7 

templates showed that the I2-ACWE method was better than the Affymetrix method. 

Table 5.12 Affymetrix GeneChip template type SSE comparison result for I2-ACWE 

Affymetrix GeneChip Template Type 
HgU95Av2 
HgU133plus2 
lu l lk Set 
M74A 
M74Av2 
Ig430 2.0 
RgU34A 

Total experiments 
1 
7 
2 
4 
3 
1 
1 

Experiments showed I2-ACWE method was bet ter 
1 
6 (l more experiment showed I2-ACWE was the same as Affymetrix method) 
0 
4 
3 
0 
1 

The comparison results showed that the I2-ACWE method is even more accurate 

in segmenting than the I-ACWE method. The accurate intensity data provided are much 

more helpful in the cluster analysis function prediction of the data mining for future 

analysis. 
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5.4 Experimental Results of Hybrid Methods for ACWE 

Section 3.6.4 presents hybrid methods for ACWE. 

In order to improve the accuracy of the segmentation methods, we also proposed a 

hybrid method for the Affymetrix DNA microarray image segmentation. We combined 

the ACWE method with the Affymetirx segmentation method. 

We calculated the sum of square error for Minimum, Average and Maximum of 

the two values of concentration obtained by the ACWE and Affymetrix methods. We 

observed that the maximum gives a smaller sum of square error, therefore a better fit. 

Two hundred forty-three out of 377 (64.46%) showed that the maximum had a better fit 

than the Affymetrix method. 

We calculated the sum of square error for Minimum, Average and Maximum of 

the two values of concentration obtained by the F-ACWE and Affymetrix methods. We 

observed that the Maximum gives a smaller sum of square error, therefore a better fit. 

Two hundred twenty-three out of 377 (59.15%) showed Maximum had a better fit than 

the Affymetrix method. 

We calculated the sum of square error for Minimum, Average and Maximum of 

the two values of concentration obtained by the I-ACWE and Affymetrix methods. We 

observed that the Maximum gives a smaller sum of square error, therefore a better fit. 

Two hundred eighty-two out of 377 (74.8%) showed Maximum had a better fit than the 

Affymetrix method. 

We calculated the sum of square error for Minimum, Average and Maximum of 

the two values of concentration obtained by the I2-ACWE and Affymetrix methods. We 

observed that the Maximum gives a smaller sum of square error, therefore a better fit. 
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Two hundred eighty-two out of 377 (74.8%) showed Maximum had a better fit than the 

Affymetrix method. 

Therefore, we can conclude that the ACWE, F-ACWE, I-ACWE and I2-ACWE 

methods are better than the Affymetrix segmentation method since they have less sum of 

square error in concentration of control genes. By using the hybrid methods, the more 

accurate segmentation results can be obtained. 

5.5 Improved ACWE (I2-ACWE) Method Shows 
Accurate Gene Expressions at 

the Biological Level 

The Harvard Medical School Cardio Genomics program published some research 

results related to some high expressed genes. In [42], the authors presented that some 

genes were highly correlated with heart weight to body weight ratio (HW/BW). These 

results were obtained from the mouse experiment. HW/BW uses mg/g as a unit. During 

the experiment, HW/BW ratio was recorded for each mouse. The genes highly correlated 

with HW/BW ratio were presented by the authors. 

Table 5.13 showed that 10 genes were highly positively correlated with the 

HW/BW ratio. R was the linear coefficient between the gene and HW/BW ratio. The 

genes expression values were computed based on different segmentation methods 

(Affymetrix method and I2-ACWE method). The comparison results showed that 

I2-ACWE method yielded more accurate R values than those of the Affymetrix method. 

Six out of 10 genes showed that the 12-ACWE method gave higher positive correlation 

coefficient values. 
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Table 5.13 Genes positive correlated with HW/BW ratio in mouse experiment. 

Gene 

IGFBP-5 

Glucokinase 

Serine proteinase inhibitor, clade Fl 

lie, alkali, fast skeletal muscle 

Calsequestrin 1 

Procollagen, type 8, alpha 1 

P4ha2 

HsplOB 

Lectin, galactose binding, soluble 1 

Clusterin, Clu 

R of Iffm (Affymetrix) 

0.7792 

0.8226 

0.7355 

0.8519 

0.8261 

0.7238 

0.7367 

0.8241 

0.7288 
0.7729 

R of ffl/BW (I2-MJE) 

0.7848 

0 
0 
0 
0 
0 
0 
0 
0 
0 

7947 

7517 

8521 

8228 

7326 

6851 

8246 

7304 
7669 

R (I2-ACWE>Affvmetrix) 

1 
0 
1 
1 
0 
1 
0 
1 
1 
0 

Some genes were negatively correlated with the HW/BW ratio. In the mouse 

experiment, there were 3 genes highly negative correlated with HW/BW. Table 8.14 

showed 2 out of 3 genes presented higher linear coefficient R values using I2-ACWE 

method than the Affymetrix method. 

Table 5.14 Genes negative correlated with HW/BW ratio in mouse experiment. 

Gene 
Hypothetical protein KC37568 
Prkabl 
Pah 

R of ffl/BW (Affymetrix) 
-0. 9303 
-0. 9141 
-0. 8394 

R of HW/BW (I2-ACWE) 
-0.9338 
-0.8397 
-0.8527 

R (I2-ACWE>Affymetrix) 
1 
0 
1 

IGFBP-5 is one of the genes which were positively correlated with the HW/BW 

ratio. In Figure 5.1, a linear regression analysis was done, the gene IGFBP-5 expression 

value that was obtained by the 12-AC WE method was highly positively correlated with 

the HW/BW ratio. 

In Figure 5.2, a linear regression analysis was performed; the gene IGFBP-5 

expression value obtained by the Affymetrix method was highly positively correlated 

with the HW/BW ratio. 
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Figure 5.1 Gene IGFBP-5 positive correlated with HW/BW ratio in the 
mouse experiment using the I2-ACWE method. 
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Figure 5.2 Gene IGFBP-5 positive correlated with HW/BW ratio 
in the mouse experiment using affymetrix method. 
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By comparing the two linear regression coefficients, the I2-ACWE method 

provides more accuracy in this case, since the R square of the I2-ACWE method is larger 

than that of the Affymetrix method. 

PAH is one of the genes which are negatively correlated with the HW/BW ratio. 

In Figure 5.3, a linear regression analysis was done. The gene pah expression value 

obtained by the I2-ACWE method was highly negatively correlated with the HW/BW 

ratio. 

In Figure 5.4, a linear regression analysis was done. The gene pah expression 

value obtained by the Affymetrix method and was highly negatively correlated with the 

HW/BW ratio. 
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Figure 5.3 Gene path negatively correlated with the HW/BW ratio 
in the mouse experiment using the I2-ACWE method. 
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Figure 5.4 Gene pah negatively correlated with the HW/BW ratio 
in the mouse experiment using the Affymetrix method. 

Comparing the R square value in Figures 5.3 and 5.4, it shows I2-ACWE method 

has a larger R square value than the Affymetrix method. 

We conclude that in the mouse experiment, the I2-ACWE method provides more 

accurate segmentation results than the Affymetrix method. 

For the human experiment, Left Ventricular Ejection Fraction (LVEF) is used as a 

marker of left ventricular systolic function. Heart diseases will reduce the value of LVEF. 

In [43,44,45,46,47], some genes were presented in correlation with LVEF. 

Chemokine receptor 1 (CCR1), chemokine ligand 3 (CCL3), chemokine ligand 4 

(CCL4), chemokine receptor 4 (CXCR4), glycogen synthase kinase 3 beta (GSK3B), 

matrix metallopeptidase 3 (MMP3), natriuretic peptide precursor B (NPPB), and 

natriuretic peptide precursor A (NPPA) were genes correlated with LVEF. 

In Table 5.15, there were 8 genes correlated with LVEF based on the research 

results from [43-47]. Four genes were positively correlated with LVEF and other 4 genes 

pah, HW/BW cori-el:atlon 

94 

: • •-•'•- ' ! ! H ! ! T ! 

.::.::*
:- ". ; = . "'~H?^<i^ * 

/ 

WBiSl:2 v WM^~§Mfi:: % 
. >.-;:-

: • • • • • ' • 

20on. ; ; 125:0:. 
pahfAffymettix;) 



95 

were negatively correlated with LVEF. In the positive correlated genes, 4 out of 4 showed 

that the I2-ACWE method gave a higher correlation. In the negatively correlated genes, 3 

out of 4 showed that the I2-ACWE method gave a higher correlation. Therefore, we 

could conclude that the I2-ACWE method would provide more accurate segmentation 

results. 

Table 5.15 Genes correlated with LVEF in the human experiment. 

Gene 
CCR1 
CXCR4 
NPPB 
NPPA 
CCL3 
CCL4 
GSK3B 
MMP3 

R of LVEF (Affyrnetrix) 
-0. 1913 
-0.0447 
-0.1353 
-0.1237 
0.1587 
0. 0332 
0. 2681 
0. 0825 

R of LVEF (I2-ACWE) 
-0. 2254 
-0.1466 
-0.2159 
-0.2126 
0.1597 
0.0346 
0. 2498 
0. 3317 

R (I2-AC»E>Affvmetrix) 
1 
1 
1 
1 
1 
1 
0 
1 

By comparing Figures 5.5 and 5.6, the I2-ACWE method gave the higher positive 

correlation coefficient. 
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Figure 5.5 Gene MMP3 positively correlated with LVEF 
in the human experiment using the I2-ACWE method. 
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Figure 5.6 Gene MMP3 positively correlated with LVEF 
in the human experiment using Affymetrix method. 

Figures 5.7 and 5.8 showed that NPPA was negatively correlated with LVEF. The 

correlation coefficient of the I2-ACWE was better than that of the Affymetrix. 
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Figure 5.7 Gene NPPA negatively correlated with LVEF 
in the human experiment using I2-ACWE method. 
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Figure 5.8 Gene NPPA negatively correlated with LVEF 
in the human experiment using Affymetrix method. 

Therefore, the I2-ACWE showed more accurate results in the human experiment. 

Glyceraldehyde-3-phosphate dehydrogenase catalyzes (GAPDH) is a house 

keeping gene. As a house keeping gene the range of expression of GAPDH should be 

small and GAPDH should be relatively stable in the changing of gene expression. 
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Figure 5.9 Boxplot of the gene GAPDH expression one 
of the experiments of human model. 
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Figure 5.9 showed the different GAPDH expression ranges obtained from the 

Affymetrix method and the I2-ACWE. In this example, we found I2-ACWE gave the 

more accurate segmentation result, since the inter-quantile range of GAPDH using the 

I2-ACWE method is smaller than that of Affymetrix method. 

In Table 5.16, the GAPDH expression data range was computed by using every 

image in each experiment. Each experiment has two GAPDH expression range values 

using the Affymetrix method and I2-ACWE method. In a total of 19 experiments, 11 of 

19 showed that the data range values obtained by the I2-ACWE method had smaller 

values, which meant the I2-ACWE method had accurate segmentation results. Eight of 19 

showed that the Affymetrix method had smaller range values. By comparison, we 

conclude that the I2-ACWE method has better segmentation results. 

Table 5.16 Gene GAPDH expression range in all the experiments. 

Experiment number 

1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Experiment name 
Aort ic Stenosis, Congest ive Card iomyopa thy 
and Normal Left Ventr icular Function 
Id iopath ic Card iomyopa thy 
Card iac Hyper t rophy Induced by the Insu l in
like Growth Factor 1 Receptor 
C57BL/6 Benchmark Set fo r Early Card iac 
Deve lopmen t 
Post-Partum Card iomyopa thy 
Familial Card iomyopa thy 
Hyper t roph ic Card iomyopa thy 
Viral Card iomyopa thy 
Non-fai l ing "Norma l " Patient 
I schemic Card iomyopa thy 
Card iac hyper t rophy re lated to the PI3 
Kinase Signal ing Pathway (v2) 
Myocardial In farc t ion 
Congeni ta l Heart Disease in Csx /Nkx2 .5 
mu tan t embryos 
Delet ion of the Nk2 specif ic domain of the 
Nkx2.5 
FVB Benchmark and Sex Compar ison 
Pressure-over load induced cardiac 
hyper t rophy in FVB mice 
Exercised Induced Hyper t rophy 
Mice ove r -exp ress ing dn-p21ras as a model 
sys tem fo r severe di lated card iomyopathy 
Hyper t rophy and Heart Failure Through High 
Salt Diet and Exercise 

Affymetrix has 
smaller GAPDH data 

range 

J 

J 
J 

•J 

J 

J 

J 

J 

8 

12-ACWE has 
smaller GAPDH 

data range 

J 

J 

J 

J 
•J 

J 

-I 
J 

V 

J 
J 

11 
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Based on Table 5.17, 3 out of 7 templates showed I2-ACWE gave smaller range 

values, 2 out of 7 showed I2-ACWE and Affymetrix were a tie. Only 2 out of 7 showed 

that the I2-ACWE method was worse. By comparison, I2-ACWE method was better than 

Affymetrix method based on GeneChip templates. 

Table 5.17 GAPDH expression range values based on different 
GeneChip template types. 

Affymetrix GeneChip Template Type 
M95Av2 
HsU133plus2 
M l k Set 
M74A 

M74Av2 
fe430 2.0 

R&U34A 

Total experiments 
1 
T 
2 
4 
3 
1 
1 

Experiments showed I2-ACSE method had smal ler GAPDH express ion range 
0 
4 
1 
2 
3 
1 
0 

By analyzing Table 5.18, I2-ACWE was better in the mouse model. I2-ACWE 

was the same as Affymetrix in the human model. I2-ACWE was worse in the rat model, 

but there was only one experiment in the rat model. I2-ACWE was better than Affymetrix 

based on the experimental models. 

Table 5.18 GAPDH expression range values based on different 
experimental models. 

Experiment model 
Human 
Mouse 
Rat 

Total experiments 
8 
10 
1 

Experiments showed I2-ACWE method had smaller GAPDH range 
4 
7 
0 

In conclusion, I2-ACWE could provide more accurate segmentation results in the 

biology gene expression level. 
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5.6 Improved ACWE (I2-ACWE) Method Shows 
Accurate Gene Expressions Using Rank Sum. 

A rank sum is to compare variability of the gene expression values obtained from 

12-ACWE and Affymetrix methods. 

These eight control genes ( BioB, BioC, BioD, Cre, Lys, Phe, Thr, and Dap) are 

used in comparison. 

We first compute [yf - mean(y)]2 using the gene expression values from the 

Affymetrix method. The index i is from 1 to 8 and yt represents the gene expression value 

of each control gene. Mean(y) is the average gene expression value of all the eight 

control genes. 

Then we compute [x, - mean(x)f using the gene expression values from 

I2-ACWE method. The index i is from 1 to 8 and x, represents the gene expression value 

of each control gene. Mean(x) is the average gene expression value of all the eight 

control genes. 

After that, we compared the value of [yt - mean(y)]2 with that of 

[x, - mean(x)]2. If [y, -mean(y)]2>[xj -mean(x)]2, we assign rank value 2 to ith gene 

in the Affymetrix group and rank value 1 to ith gene in the I2-ACWE group. If 

[yt - mean(y)]2 < [x. - mean(x)f,. we assign rank 1 to ith gene in the Affymetrix group 

and rank value 2 to ith gene in the I2-ACWE group. 

If all eight control genes are finished for the comparison and rank assignment, the 

sum of rank values are computed base on Affymetrix and 12-AC WE groups. 

The larger sum of rank values means the gene expression values are not closer to 

the mean gene expression values. The smaller sum of rank values should be better. 
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Table 5.19 showed all the experiments in the database ([31]). There were totally 

19 experiments in that website and a total of 377 images were segmented both using 

Affymetrix segmentation and I2-ACWE methods. From the results, 271 out of 377 

images (more than 70 percent of the images) showed 12-ACWE method has smaller sum 

of rank. Also considering the experiment dependent effect, we checked by individual 

experiment showed these two methods were tie. 

Table 5.19 All experiments Sum of rank comparison result for 12-AC WE 

Experiment 
number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1Q 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Experiment name 
Aortic Stenosis, Congestive Cardiomyopathy 
and Normal Left Ventricular Function 
Idiopathic Cardiomyopathy 
Cardiac Hypertrophy Induced by the Insulin-
iike Growth Factor 1 Receptor 
C57BL/6 Benchmark Set for Early Cardiac 
Development 
Post-Partum Cardiomyopathy 
Familial Cardiomyopathy 
Hypertrophic Cardiomyopathy 
Viral Cardiomyopathy 
Non-failing "Normal" Patient 
Ischemic Cardiomyopathy 
Cardiac hypertrophy related to the PI3 
Kinase Signaling Pathway (v2) 
Myocardial Infarction 
Congenital Heart Disease in Csx/Nkx2.5 
mutant embryos 
Deletion of the Nk2 specific domain of the 
Nkx2.5 
FVB Benchmark and Sex Comparison 
Pressure-overload induced cardiac 
hypertrophy in FVB mice 
Exercised Induced Hypertrophy 
Mice over-expressing dn-p21ras as a model 
system for severe dilated cardiomyopathy 
Hypertrophy and Heart Failure Through High 
Salt Diet and Exercise 

Images in 
experiment 

16 

25 

9 

36 

4 

5 

5 

6 

14 

30 

9 

59 

18 

24 

24 

36 

30 

3 

24 

377 

Sum of rank I2-ACWE 
> Affymetrix 

12 

20 

9 

27 

4 

5 

5 

5 

12 

27 

9 

57 

3 

9 

17 

19 

30 

1 

0 

271 

Sum of rank I2-ACWE 
= Affymetrix 

2 

3 

0 

4 

0 

0 

0 

0 

1 

0 

0 

2 

0 

0 

2 

3 

0 

1 

0 

18 

Sum of rank I2-ACWE 
< Affymetrix 

2 

2 

0 

5 

0 

0 

0 

1 

1 

3 

0 

0 

15 

15 

5 

14 

D 

1 

24 

88 

Ratio 

75.00% 
80.00% 

100.00% 

75.00% 
100.00% 
100.00% 
100.00% 
83.33% 
85.71% 
90.00% 

100.00% 
96.61% 

16.67% 

37.50% 
70.83% 

52.76% 
100.00% 

33.33% 

0.00% 
71.88% 

In Table 5.20, 2 out of 3 experiment model types showed that the 12-ACWE 

method was better of having smaller sum of rank. In the human model, 8 out of 8 

experiments showed that the I2-ACWE was better. In the mouse model, 7 out of 10 

experiments showed that the I2-ACWE method was better and 1 of 10 experiments 

showed that the I2-ACWE was equal to the Affymetrix method. For the rat model, the 

Affymtrix method was better. 
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Table 5.20 Type of experiments and comparison among methods 
for I2-ACWE with sum of rank 

Experiment model 
Human 
Mouse 

Rat 

Total experiments 
8 

10 
1 

Experiments showed I2-ACWE method had smaller sum of rank 
8 

7 (1 more showed I2-ACWE was the same as Affymetrix) 

0 

Table 5.21 shows that there were seven Affymetrix GeneChip templates used for all 

nineteen experiments out of the Harvard Medical School datasets. Five out of 7 templates 

showed that the I2-ACWE method was better than the Affymetrix method by having a 

smaller sum of rank. 

Table 5.21 Affymetrix GeneChip template type sum of rank 
comparison result for I2-ACWE 

Affymetrix GeneChip Template Type 
HgU95Av2 
HgU133plus2 
Mullk Set 
MgU74A 
MgU74Av2 
Mg430 2.0 
RgU34A 

Total experiments 
1 
7 
2 
4 
3 
1 
1 

Experiments showed I2-ACWE method had smaller sum of rank 
1 
7 
0 
3 (1 more showed I2-ACWE was the same as Affymetrix) 
3 
1 
0 

The comparison results showed that the I2-ACWE method is more accurate in 

segmenting than the Affymetrix method. 



CHAPTER 6 

CONCLUSIONS 

As described in Chapter 3 the ACWE method in theory can provide more accurate 

segmentation results than the current segmentation methods applied in the DNA 

microarray segmentation field. ACWE method has not been successfully applied to large 

DNA microarray segmentation processes. We applied the algorithm in the DNA 

microarray field and experimented with the cDNA microarray and the Affymetrix 

GeneChip. In these two types of microarrays in Chapter 4, we showed that the ACWE 

method was more accurate than the currently existing cDNA microarray segmentation 

methods such as SRG , GOGAC, etc. ACWE was also more accurate than the Affymetrix 

segmentation method, the details of the experiments' results were provided in Chapter 4. 

In Chapter 5, we proposed several improvement methods based on ACWE. We 

used experiments to show that the improved ACWE method (I2-ACWE) was much more 

accurate than the ACWE method. I2-ACWE was also better than the current cDNA 

microarray segmentation methods and the Affymetrix method. 

We also did the experiment using a Hybrid method to improve the accuracy of the 

segmentation. For example, in Chapter 4, 189 out of 377 (over half of the total images) 

images showed that the ACWE was better than the Affymetrix method. The 188 images 

show that the Affymetrix is better. We calculated the sum of square error for minimum, 

average and maximum values of the two concentration values obtained by the ACWE 
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and Affymetrix methods. We observed that the maximum value gives a smaller sum of 

square error, and therefore a better fit. Two hundred forty-three out of 377 (64.46%) 

showed the maximum had a better fit than the Affymetrix method. This example showed 

that by hybridizing the ACWE and Affymetrix methods, we got a new segmentation 

method and it would provide more accurate segmentation results. 

In the dissertation, it can be concluded that the ACWE method is more efficient 

than the current cDNA microarray segmentation methods and the Affymetrix GeneChip 

segmentation method. The ACWE method can be improved by utilizing higher order 

terms and hybridization with other methods to provide more accurate segmentation 

results. 

Although the ACWE and improved ACWE segmentation methods cost more 

computing time, they provide more accurate segmentation results than the other DNA 

microarray segmentation methods. These DNA microarray images only need to be 

segmented once and put in the database, only if these images have the most accurate 

segmentation results. Since these are biological experiments with application in medicine, 

even a small gain in accuracy is important, and more important than adding more time. 



APPENDIX A 

SOURCE CODE FOR IMPROVED ACWE 
(I2-ACWE) SEGMENTATION 

METHOD 

/*This program is improvement of Active Contours Without Edges (I2-ACWE) 
segmentation method by using higher order finite different schemes. 
Proposed and implemented by Shenghua Ni. 

*/ 
class segment 
{ 

// initial variables 
int xpels, ypels ; 
int startx, starty ; 
int lastx, lasty ; 
double cl, c2 ; 
int n_toreinit, ndoreinit; 
double [t] sign_d ; 
double [t] areamapping; 
double [t] gridcombine_mapping ; 
double [t] forw_dx, backdx, forw_dy, back_dy, centdx, cent_dy ; 
double [t] intensity ; 
double h ; 
double dt; 
double e ; 
double w ; 
// The Dirac delta funtion 
double dirac(double d) 
{ 

double result=l/(Math.PI*e*(l+(d/e)*(d/e))); 
return result; 

} 
void initsigned_dist(double h,int m,int n,int a) 
{ 

double [t] center; 
center = new double [8]; 
double r ; 
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int i,j ; 
center[t0]=0; 
center[12]=0; 
center[t0]=Math.floor(rn/2*h); 
center[12]=Math.floor(n/2*h); 
r=Math.min((m*h-center[tO]-a*h),(n*h-center[12]-a*h)); 
r=Math.max(r,0); 
for(j=0;j<ypels;j++) 

for (i=0;i<xpels;i++) 
sign_d[ti+xpels*j]=r-Math.sqrt(Math.pow((center[tO]-i!|sh),2)+Math.pow((center[12]-

j*h),2)); 

} 
//compute cl,c2 value using average 
voidmeancl_c2() 
{ 

int i ,j , counter; 
double suml, sum2 ; 
sum 1=0; 
sum2=0; 
counter=0; 
for 0=0;j<ypels;j++) 

for (i=0;i<xpels;i++) 
{ 

if (sign_d[ti+xpels*j] >= 0) 
{ 
counter=counter+l; 
sum 1 =sum 1 +intensity [ti+xpels*j]; 
} 

else 
sum2=sum2+intensity[ti+xpels*j]; 

} 
if (counter != 0) 

cl=suml /counter; 
if ((xpels*ypels-counter) != 0) 

c2=sum2/(xpels*ypels-counter); 
} 
void get_diff_results() 
{ 

int i, j ; 
for(j=2;j<ypels-2;j++) 

for (i=2;i<xpels-2;i++) 
{ 
//forw_dx [ti+xpels *j ]=(sign_d[ti+1 +xpels *j ] -sign_d [ti+xpels *j ] )/h; 
//if (forw_dx[ti+xpels*j] == 0) 
// forw_dx[ti+xpels*j]=Math.pow(2,-23); 
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forw_dx[ti+xpels*j]=(4*sign_d[ti+l+xpels!|cj]-3*sign_d[ti+xpels:,:j]-sign_d[ti+2+xpelsHsj] 
)/(2*h); 

if (forw_dx[ti+xpels*j] == 0) 
forw_dx [ti+xpels * j ]=Math.pow(2 ,-2 3); 

^ack_dx[ti+xpels*j]=(sign_d[ti+xpels*j]-sign_d[ti-l+xpels*j])/h; 
//if (back_dx[ti+xpels*j] == 0) 
// back_dx[ti+xpels*j]=Math.pow(2,-23); 

back_dx[ti+xpels*j]=(3*sign_d[ti+xpels*j]-4*sign_d[ti-l+xpels*j]+sign_d[ti-2+xpels*j]) 
/(2*h); 

if (back_dx[ti+xpels*j] == 0) 
back_dx[ti+xpels*j]=Math.pow(2,-23); 

//cent_dx[ti+xpels*j]=(sign_d[ti+l+xpels*j]-sign_d[ti-l+xpels*j])/(2Hsh); 
//if (cent_dx[ti+xpels*j] = 0) 
// cent_dx[ti+xpels*j]=Math.pow(2,-23); 

cent_dx[ti+xpels*j]=(8*(sign_d[ti+l+xpels*j]-sign_d[ti-l+xpels*j])-(sign_d[ti+2+xpels* 
j]-sign_d[ti-2+xpels*j]))/(12*h); 

if (cent_dx[ti+xpels*j] == 0) 
cent_dx[ti+xpels*j]=Math.pow(2,-23); 

//forw_dy[ti+xpels*j]=(sign_d[ti+xpels*(i+l)]-sign_d[ti+xpels*j])/h; 
//if (forw_dy[ti+xpels*j] == 0) 
// forw_dy[ti+xpels*j]=Math.pow(2,-23); 

forw_dy[ti+xpels*j]=(4*sign_d[ti+xpels*(j+l)]-3*sign_d[ti+xpels*j]-sign_d[ti+xpels*(j+ 
2)])/(2*h); 

if (forw_dy[ti+xpels*j] — 0) 
forw_dy[ti+xpels*j]=Math.pow(2,-23); 

//back_dy[ti+xpelsHsj]=(sign_d[ti+xpels*j]-sign_d[ti+xpels*(j-l)])/h; 
//if (back_dy[ti+xpels*j] == 0) 
// back_dy[ti+xpels*j]=Math.pow(2,-23); 

back_dy[ti+xpels*j]=(3*sign_d[ti+xpels*j]-4*sign_d[ti+xpels*(j-l)]+sign_d[ti+xpelssl!(j-
2)])/(2*h); 

if (back_dy[ti+xpels*j] == 0) 
back_dy[ti+xpels*j]=Math.pow(2,-23); 

//cent_dy[ti+xpels*j]=(sign_d[ti+xpels*(j+l)]-sign_d[ti+xpels*0-l)])/(2*h); 
//if (cent_dy[ti+xpels*j] == 0) 
// cent_dy[ti+xpels*j]=Math.pow(2,-23); 

cent_dy[ti+xpels*j]=(8*(sign_d[ti+xpels*(j+l)]-sign_d[ti+xpels*(i-l)])-(sign_d[ti+xpels 
*G+2)]-sign_d[ti+xpels*(j-2)]))/(12*h); 

if (cent_dy[ti+xpels*j] == 0) 
cent_dy[ti+xpels*j]=Math.pow(2,-23); 

} 
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} 
void set_dt_e_w(double p_dt,double p_e,double p_w) 
{ 

dt=p_dt; 
e=p_e; 
w=p_w*255*255; 

} 
void set_init_curve(int a) 
{ 

initsigned_dist(h,xpels,ypels,a); 
} 
void create(int x, int y,int sxl,int syl,int sx2,int sy2,double [t] data_intensity) 
{ 

int i, j ; 
dt=0.1; 
e=l; 
w=0.01*255*255; 
h=l; 
n_toreinit=40; 
n_doreinit=8; 
xpels=x; 
ypels=y; 
startx=sxl; 
starty=syl; 
lastx=sx2; 
lasty=sy2; 

area_mapping=newdouble[txpels*ypels]; 
sign_d=new double[txpels*ypels]; 
forw_dx=new double[txpels*ypels]; 
forw_dy=new double[txpels*ypels]; 
back_dx=new double[txpels*ypels]; 
back_dy=new double[txpels*ypels]; 
cent_dx=new double[txpels*ypels]; 
cent_dy=new double [txpels*ypels]; 
intensity=new double [txpels*ypels]; 
initsigned_dist(h,xpels,ypels,4); 
for G=0;j<ypels;j++) 

for (i=0;i<xpels;i++) 
intensity [ti+xpel s * j ]=data_intensity [ti+xpels * j ]; 

} 
void segment() 

{ 
int i, j ; 
double t ; 
double[t] ea, fa, ga, ha ; 
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int t_max=10; 
ea = new double[txpels*ypels]; 
fa = new double[txpels*ypels]; 
ga = new double [txpels*ypels]; 
ha = new double[txpels*ypels]; 

//sign_d = new double[txpels*ypels]; 
t=0; 

while (t <= tmax) 
{ 
meancl_c2(); 
get_diff_results(); 
for (j=2;j<ypels-2;j++) 
for (i=2;i<xpels-2;i++) 

{ 

ea[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(h*h*Math.sqrt(forw_dx[ti+xpelsHcj]*forw 
_dx[ti+xpels*j]+cent_dy[ti+xpels*j]*cent_dy[ti+xpels*j])); 

fa[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(hHch!|cMath.sqrt(back_dx[ti+xpels!,cj]*back 
_dx[ti+xpels*j]+cent_dy[ti+xpels*j]*cent_dy[ti+xpels*j])); 

ga[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(h*h*Math.sqrt(forw_dy[ti+xpels*j]*forw 
_dy[ti+xpels*j]+cent_dx[ti+xpels*j]*cent_dx[ti+xpels*j])); 

ha[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(h*h*Math.sqrt(back_dy[ti+xpels*j]:,:back 
_dy[ti+xpels*j]+cent_dx[ti+xpels*j]*cent_dx[ti+xpels*j])); 

} 
for (j=2;j<ypels-2;j++) 
for (i=2;i<xpels-2;i++) 
{ 

sign_d[ti+xpels*j]=(sign_d[ti+xpels*j]+ea[ti+xpels*j]*sign_d[ti+l+xpels*j] 
+fa[ti+xpels*j]*sign_d[ti-l+xpels*j]+ga[ti+xpels*j]*sign_d[ti+xpels*(j+l)] 
+ha[ti+xpels*j]*sign_d[ti+xpels*(j-l)]+dt*dirac(sign_d[ti+xpels*j]) 

*(-(intensity[ti+xpels*j]-cl)*(intensity[ti+xpels*j]-cl)+(intensity[ti+xpels*j]-c2)*(intensi 
ty[ti+xpels*j]-c2))) 

/(l+ea[ti+xpels*j]+fa[ti+xpels*j]+ga[ti+xpels*j]+ha[ti+xpels*j]); 
} 

/* 
for (i=l;i<xpels-l;i++) 

{ 
sign_d[txpels+i]=sign_d[ti+2*xpels]; 

sign_d[ti+xpels*(ypels-2)]=sign_d[ti+xpels*(ypels-3)]; 
} 
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for(j=l;j<ypels-l;j++) 
{ 
sign_d[tl+xpels*j]=sign_d[t2+xpels*j]; 

sign_d[txpels-2+xpels*j]=sign_d[txpels-3+xpels*j]; 
} 

*/ 

for (i=0;i<xpels;i++) 
{ 
sign_d[ti]=sign_d[ti+xpels]; 

sign_d[ti+xpels*(ypels-1 )]=sign_d[ti+xpels*(ypels-2)]; 
} 

for (j=0;j<ypels;j++) 
{ 
sign_d[tO+xpels*j]=sign_d[tl+xpels*j]; 

sign_d[txpels-l+xpels*j]=sign_d[txpels-2+xpels*j]; 
} 

// if((Math.floor(t/dt)%n_toreinit==0)&&(t != 0)) 
// reinitial(n_doreinit); 

t=t+dt; 
} 

for (j=0;j<ypels;j++) 
for (i=0;i<xpels;i++) 

area_mapping[ti+xpels*j]=sign_d[ti+xpels*j]; 
ea=null; 
fa=null; 
ga=null; 
ha=null; 

} 
void reinitial(int n) 
{ 

int i , j ,k ; 
double [t] grad_d; 

gradd = new double [txpels*ypels]; 
for(k=l;k<n+l;k++) 

forG=l;j<ypels-l;j++) 
for (i=l ;i<xpels-1 ;i++) 
{ 

grad_d[ti+xpels*j]=Math.sqrt(((sign_d[ti+l+xpels*j]-sign_d[ti-l+xpels*j])/(2*h))*(( 
sign_d[ti+l+xpels*j]-sign_d[ti-l+xpels*j])/(2*h))+((sign_d[ti+xpels*(i+l)]-sign_d[ti+xp 
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els*G-l)])/(2*h))*((sign_d[ti+xpels*G+l)]-sign_d[ti+xpels*0'-l)])/(2*h))); 

sign_d[ti+xpels*j]=sign_d[ti+xpelsHcj]+dt*(sign(sign_d[ti+xpels*j])*(l-grad_d[ti+xp 
els*j])); 

} 
} 

double sign(double argl) 
{ 
double result; 
if(argKO) 
result = -1; 
else if (argl > 0) 

result = 1.0; 
else 

result = 0.0; 
return result; 

} 

void adjust_boundary(int direct,double step,int sel_startx,int sel_starty,int 
sel_lastx,int sellasty) 

{ 
int i, j ; 
int x, y ; 
int xl ,x2, y l , y 2 ; 
if ((selstartx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((sel_lastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sellasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-x2+l; 
y=y2-yl+l; 
for (j=0;j<ypels;j++) 

for (i=0;i<xpels;i++) 
area_mapping[fi+xpels*j]=sign_d[tO]; 



if (direct== -1) 
{ 

forG=0;j<y;j++) 
for (i=0;i<x;i++) 
{ 
if (sign_d[ti+xl-startx+xpels*(]+yl-starty)] < step) 

area_mapping [ti+x 1 -startx+xpel s * (j +y 1 - starty)]=-1; 
else 

area_mapping [ti+x 1 -startx+xpels * (j+y 1 -starty)]=1; 
} 

} 
else if (direct == 1) 

for G=0;j<y;j++) 
for (i=0;i<x;i++) 

if (sign_d[ti+xl-startx+xpels*(j+yl -starty)] > step) 
area_mapping [ti+x 1 -startx+xpels * (j+yl -starty)]=1; 

else 
area_mapping [ti+x 1 -startx+xpels* (j+y 1 -starty)]=-1; 

} 
double areainfo(int selstartx, int selstarty, int sel_lastx, int sellasty) 
{ 

double result; 
int i,j ; 
int x, y ; 
int xl,x2, y l , y 2 ; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((selstarty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((sel_lastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sellasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-xl+l; 
y=y2-yl+l; 
result=0; 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 
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{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 
result=Math.round(result+l); 

} 
return result; 

} 
double area_intensitymean(int selstartx, int sel_starty, int sellastx, int seMasty) 
{ 

double result; 
int i, j ; 
int x, y ; 
int xl ,x2, y l , y 2 ; 
int n ; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((selstarty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((sellastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((seMasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-xl+l; 
y=y2-yl+l; 
result=0; 
n=0; 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 

{ 
result=result+intensity[ti+xl -startx+xpels*(j+yl -starty)]; 

n=n+l; 
} 

} 
if(n != 0) 

result=Math.round(result/n); 
return result; 
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} 
void initialize(int x, int y, int sxl, int syl, int sx2, int sy2,double [t] 

dataintensity) 
{ 

int i, j ; 
dt=0.1; 
e=l; 
w=0.025*255*255; 
h=l; 
n_toreinit=40; 
n_doreinit=8; 

xpels=x; 
ypels=y; 
startx=sxl; 
starty=syl; 
lastx=sx2; 
lasty=sy2; 

area_mapping = new double[txpels*ypels]; 
sign_d=new double[txpels*ypels]; 
forw_dx=new double[txpels*ypels]; 
forw_dy=new double[txpels*ypels]; 
back_dx=new double[txpels*ypels]; 
back_dy=new double[txpels*ypels]; 
cent_dx=new double[txpels*ypels]; 
cent_dy=new double[txpels*ypels]; 
intensity=newdouble[txpels*ypels]; 
initsigned_dist(h,xpels,ypels,4); 
for(j=0;j<ypels;j++) 

for (i=0; i<xpels;i++) 
intensity[ti+xpels*j]=data_intensity[ti+xpels*j]; 

} 
double area_intensity_75pvalue(int sel_startx,int sel_starty,int sel_lastx,int 

sellasty) 
{ 

double result; 
int i,j,k; 
int x,y; 
intxl,x2,yl,y2; 
int n; 
double [t] data; 
if ((selstartx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
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else 
yl=starty; 

if ((sellastx < lastx)) 
x2=sel_lastx; 

else 
x2=lastx; 

if ((sellasty < lasty)) 
y2=sel_lasty; 

else 
y2=lasty; 

x=x2-xl+l; 
y=y2-yl+l; 
n=0; 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 
n=n+l; 
} 

k=0; 
if(n != 0) 

{ 
data=new double [tn]; 
for G=0;j<y;j++) 
for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 
{ 
data[tk]=intensity [ti+x 1 -startx+xpels* (j +y 1 -starty)]; 
k=k+l; 
} 

} 
quicksort(data); 
result=data[t(int)Math.round(n*0.75)-l]; 
} 

else 
{ 
data=ne w double [tx * y]; 
for 0=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 
data[tk]=intensity[ti+xl-startx+xpels*(j+yl-starty)]; 
k=k+l; 
} 

quicksort(data); 
result=data[t(int)Math.round(x*y*0.75)-l]; 



} 

} 
return result; 

} 
public static void quicksort(double[t] a) { 

shuffle(a); // to guard against worst-case 
quicksort(a, 0, a.length - 1); 

// quicksort a[tleft] to a[tright] 
public static void quicksort(double[t] a, int left, int right) { 

if (right <= left) return; 
int i = partition(a, left, right); 
quicksort(a, left, i-1); 
quicksort(a, i+1, right); 

} 

// partition a[tleft] to a[tright], assumes left < right 
private static int partition(double[t] a, int left, int right) { 

int i = left-1; 
intj = right; 
while (true) { 

while (a[t++i]<a[tright]) // find item on left to swap 
; // a[tright] acts as sentinel 

while (a[tright]<a[t—j]) // find item on right to swap 
if (j == left) break; // don't go out-of-bounds 

if (i >= j) break; // check if pointers cross 
exch(a, i, j); // swap two elements into place 

} 
exch(a, i, right); // swap with partition element 
return i; 

} 

// exchange a[ti] and a[tj] 
private static void exch(double[t] a, int i, intj) { 

double swap = a[ti]; 
a[ti] = a[tj]; 
a[tj] = swap; 

} 

// shuffle the array a[t] 
private static void shuffle(double[t] a) { 

int N = a.length; 
for (int i = 0; i < N; i++) { 

int r = i + (int) (Math.random() * (N-i)); // between i and N-l 
exch(a, i, r); 

} 
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} 
double background_intensitymedian(int sel_startx,int sel_starty,int 

sel_lastx,int sel_lasty) 
{ 
double result; 
int i,j,k; 
int x,y; 
intxl,x2,yl,y2; 
int n; 
double [t] data; 
if ((selstartx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((seMastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sel_lasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-xl+l; 
y=y2-yl+l; 
result=0; 
n=0; 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
n=n+l; 

} 
k=0; 
if(n != 0) 

{ 
data=new double [tn]; 
forG=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 
if (sign(area_mapping[ti+xl-startx+xpels*(j+yl -starty)]) <= 0) 

{ 
data[tk]=intensity[ti+xl-startx+xpels*(j+yl-starty)]; 
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k=k+l; 
} 

} 
quicksort(data); 
if((n%2) = 0) 

result=Math.round(data[tn/2]); 
else 

result=Math.round((data[tMath.round(n/2)]+data[t(n-1 )/2])/2); 

} 
return result; 

} 
double background_intensity_75pvalue(int sel_startx,int sel_starty,int 

sel_lastx,int sellasty) 
{ 

double result; 
int i,j,k; 
int x,y; 
int xl,x2,yl,y2; 
int n; 
double [t] data; 
if ((selstartx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((seMastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sel_lasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-xl+l; 
y=y2-yl+l; 
n=0; 
for (]=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
n=n+l; 
} 

k=0; 



if(n != 0) 
{ 
data=new double [tn]; 
for G=0;j<y;j++) 
for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
{ 
data[tk]=intensity[ti+xl-startx+xpels*(j+yl-starty)]; 
k=k+l; 
} 

} 
quicksort(data); 

result=data[t(int)Math.round(n*0.75)-l]; 
} 

else 
{ 
data=new double[tx*y]; 

for G=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 
data[tk]=intensity[ti+x 1 -startx+xpels* (j+y 1 -starty)]; 
k=k+l; 
} 

quicksort(data); 
result=data[t(int)Math.round(x*y*0.75)-l]; 

} 
return result; 

} 



APPENDIX B 

SOURCE CODE FOR ACWE 
SEGMENTATION 

METHOD 

/*This program is the implementation of Active Contours Without Edges (ACWE) 
segmentation method proposed by Tony F. Chan and Luminita A. Vese. 
Modified and implemented by Shenghua Ni. 

*/ 

class segment 
{ 

// initial variables 
int xpels, ypels ; 
int startx, starty; 
int lastx, lasty; 
doubled, c2 ; 
int n_toreinit, ndoreinit; 
double [t] sign_d; 
double [t] areamapping; 
double [t] gridcombine_mapping ; 
double [t] forwdx, back_dx, forwdy, back_dy, centdx, cent_dy ; 
double [t] intensity ; 
double h ; 
double dt; 
double e ; 
double w ; 

// The Dirac delta funtion 
double dirac(double d) 
{ 

double result=l/(Math.PI*e*(l+(d/e)*(d/e))); 
return result; 

} 

void initsigned_dist(double h,int m,int n,int a) 
{ 

double [t] center; 

120 



center = new double[8]; 
double r ; 
int i, j ; 
center[tO]=0; 
center[12]=0; 
center[tO]=Math.floor(m/2*h); 
center[12]=Math.floor(n/2*h); 
r=Math.min((m*h-center[tO]-a*h),(n*h-center[12]-a*h)); 
r=Math.max(r,0); 

for(j=0;j<ypels;j++) 
for (i=0;i<xpels;i++) 

sign_d[ti+xpels*j]=r-Math.sqrt(Math.pow((center[tO]-i*h),2)+Math.pow((center[12]-j*h) 
,2)); 

} 
//compute cl,c2 value using average 
void meancl_c2() 
{ 

int i ,j , counter; 
double suml, sum2 ; 
sum 1=0; 
sum2=0; 
counter=0; 

for (j=0;j<ypels;j++) 
for (i=0;i<xpels;i++) 
{ 

if (sign_d[ti+xpels*j] >= 0) 
{ 
counter=counter+l; 
sum 1 =suml +intensity[ti+xpels*j]; 

} 
else 

sum2=sum2+intensity[ti+xpels*j]; 
} 

if (counter != 0) 
c 1 =sum 1/counter; 

if ((xpels*ypels-counter) != 0) 
c2=sum2/(xpels * ypels-counter); 

} 
void get_diff_results() 
{ 

int i , j ; 
for (j=1; j <ypels-1 ;j ++) 

for (i=l ;i<xpels-l ;i++) 
{ 



forw_dx[ti+xpels*j]=(sign_d[ti+l+xpelss|tj]-sign_d[ti+xpels*j])/h; 
if (forw_dx[ti+xpels*j] == 0) 

forw_dx[ti+xpels*j]=Math.pow(2,-23); 
back_dx[ti+xpels*j]=(sign_d[ti+xpels*j]-sign_d[ti-l+xpels*j])/h; 
if (back_dx[ti+xpels*j] == 0) 

back_dx [ti+xpels * j ]=Math.po w(2 ,-2 3); 

cent_dx[ti+xpels*j]=(sign_d[ti+l+xpels*j]-sign_d[ti-l+xpelsHcj])/(2*h); 
if (cent_dx[ti+xpels*j] == 0) 

cent_dx[ti+xpels*j]=Math.pow(2,-23); 
forw_dy[ti+xpels*j]=(sign_d[ti+xpels*(j+l)]-sign_d[ti+xpels*j])/h; 
if (forw_dy[ti+xpels*j] == 0) 

forw_dy [ti+xpel s *j ]=Math.po w(2 ,-2 3 ); 
back_dy[ti+xpels*j]=(sign_d[ti+xpels*j]-sign_d[ti+xpels!|c(j-l)])/h; 
if (back_dy[ti+xpels*j] == 0) 

back_dy[ti+xpels*j]=Math.pow(2,-23); 

cent_dy[ti+xpels*j]=(sign_d[ti+xpels*(j+l)]-sign_d[ti+xpels*(j-l)])/(2*h); 
if (cent_dy[ti+xpels*j] == 0) 

cent_dy[ti+xpels*j]=Math.pow(2,-23); 
} 

} 
void set_dt_e_w(double p_dt,double p_e,double p_w) 
{ 

dt=p_dt; 
e=p_e; 
w=p_w*255*255; 

} 
void set_init_curve(int a) 
{ 

initsigned_dist(h,xpels,ypels,a); 
} 
void create(int x, int y,int sxl,int syl,int sx2,int sy2,double [t] data_intensity) 
{ 

int i,j ; 
dt=0.1; 
e=l; 
w=0.01*255*255; 
h=l; 
n_toreinit=40; 
n_doreinit=8; 
xpels=x; 
ypels=y; 
startx=sxl; 
starty=syl; 
lastx=sx2; 
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lasty=sy2; 
area_mapping=new double[txpels*ypels]; 
sign_d=new double[txpels*ypels]; 
forw_dx=new double[txpels*ypels]; 
forw_dy=new double[txpels*ypels]; 
back_dx=new double[txpels*ypels]; 
back_dy=new double[txpels*ypels]; 
cent_dx=new double[txpels*ypels]; 
cent_dy=new double[txpels*ypels]; 
intensity=newdouble[txpels*ypels]; 
initsigned_dist(h,xpels,ypels,4); 
for (j=0;j<ypels;j++) 

for (i=0;i<xpels;i++) 
intensity[ti+xpels*j]=data_intensity[ti+xpels*j]; 

} 
void segment() 

{ 
int i, j ; 
double t ; 
double [t] ea, fa, ga, ha ; 
int t_max=10 ; 
ea = new double[txpels*ypels]; 
fa = new double[txpels*ypels]; 
ga = new double[txpels*ypels]; 
ha = new double[txpels*ypels]; 

//signd = new double[txpels*ypels]; 
t=0; 
while (t <= t_max) 

{ 
meancl_c2(); 
get_diff_results(); 

for(j=lu<ypels-ly++) 
for (i=l ;i<xpels-l ;i++) 

{ 
ea[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(h*h*Math.sqrt(forw_dx[ti+xpels*j]*forw 
_dx [ti+xpels * j ]+cent_dy [ti+xpels* j ] * cent_dy [ti+xpels * j ])); 
fa[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])!,!w/(h*h*Math.sqrt(back_dx[ti+xpels*j]*back 
_dx[ti+xpels*j]+cent_dy[ti+xpels*j]*cent_dy[ti+xpels*j])); 
ga[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(h*h*Math.sqrt(forw_dy[ti+xpels*j]*forw 
_dy[ti+xpels*j]+cent_dx[ti+xpels*j]*cent_dx[ti+xpels*j])); 
ha[ti+xpels*j]=dt*dirac(sign_d[ti+xpels*j])*w/(h*h*Math.sqrt(back_dy[ti+xpels*j]*back 
_dy[ti+xpels*j]+cent_dx[ti+xpels*j]*cent_dx[ti+xpels*j])); 

} 
forG=l;j<ypels-l;j++) 
for (i= 1 ;i<xpels-1 ;i++) 
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{ 

sign_d[ti+xpels*j]=(sign_d[ti+xpels*j]+ea[ti+xpels*j]*sign_d[ti+l+xpels*j] 
+fa[ti+xpels*j]*sign_d[ti-l+xpels*j]+ga[ti+xpels*j]H!sign_d[ti+xpels*(j+l)] 
+ha[ti+xpels*j]*sign_d[ti+xpels*(j-l)]+dt*dirac(sign_d[ti+xpels*j]) 

*(-(intensity[ti+xpels*j]-cl)*(intensity[ti+xpels*j]-cl)+(intensity[ti+xpels*j]-c2)*(intensi 
ty[ti+xpels*j]-c2))) 

/(l+ea[ti+xpels*j]+fa[ti+xpels*j]+ga[ti+xpels*j]+ha[ti+xpels*j]); 
} 

for (i=0;i<xpels;i++) 
{ 
sign_d[ti]=sign_d[ti+xpels]; 

sign_d[ti+xpels*(ypels-l)]=sign_d[ti+xpels*(ypels-2)]; 
} 

for G=0;j<ypels;j++) 
{ 
sign_d[tO+xpels*j]=sign_d[tl+xpels*j]; 

sign_d[txpels-l+xpels*j]=sign_d[txpels-2+xpels*j]; 
} 

if ((Math.floor(t/dt)%n_toreinit = 0) && (t != 0)) 
reinitial(n_doreinit); 

t=t+dt; 
} 

for (j=0;j<ypels;j++) 
for (i=0;i<xpels;i++) 

area_mapping[ti+xpels*j]=sign_d[ti+xpels*j]; 
ea=null; 
fa=null; 
ga=null; 
ha=null; 

} 
void reinitial(int n) 
{ 

int i , j ,k ; 
double[t] g radd ; 

gradd = new double[txpels*ypels]; 
for(k=l;k<n+l;k++) 

for(j=l;j<ypels-l;j++) 
for (i=l ;i<xpels-l ;i++) 
{ 

grad_d[ti+xpels*j]=Math.sqrt(((sign_d[ti+l+xpels*j]-sign_d[ti-l+xpels*j])/(2*h))*(( 
sign_d[ti+l+xpels*j]-sign_d[ti-l+xpels*j])/(2*h))+((sign_d[ti+xpels!t:()+l)]-sign_d[ti+xp 
els*G-l)])/(2*h))*((sign_d[ti+xpels*G+l)]-sign_d[ti+xpels*G-l)])/(2Hch))); 

sign_d[ti+xpels*j]=sign_d[ti+xpels*j]+dt*(sign(sign_d[ti+xpels*j])*(l-grad_d[ti+xp 
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els*j])); 
} 

} 
double sign(double argl) 
{ 
double result; 
if (argl <0) 
result = -1; 
else if (argl > 0) 

result = 1.0; 
else 

result = 0.0; 
return result; 

} 
void adjust_boundary(int direct,double step,int sel_startx,int sel_starty,int 

sel_lastx,int sel_lasty) 

{ 
int i j ; 
int x, y ; 
int xl ,x2, y l , y 2 ; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((selstarty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((seMastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sellasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-x2+l; 
y=y2-yl+l; 
for G=0;j<ypels;j++) 

for (i=0;i<xpels;i++) 
area_mapping[ti+xpels*j]=sign_d[tO]; 

if(direct==-l) 
{ 

for (j=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 



if (sign_d[ti+xl-startx+xpels*(j+yl-starty)] < step) 
area_mapping [ti+x 1 -startx+xpels* (j +y 1 -starty)]=-1; 

else 
area_mapping [ti+x 1 -startx+xpels* (j +y 1 -starty)]=1; 

} 
} 

else if (direct == 1) 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 

if (sign_d[ti+xl-startx+xpels*(j+yl-starty)] > step) 
area_mapping[ti+xl-startx+xpels*(j+yl-starty)]=l; 

else 
area_mapping[ti+xl-startx+xpels*(j+yl-starty)]=-l; 

} 
double areainfo(int selstartx, int sel_starty, int sellastx, int sel_lasty) 
{ 

double result; 
int i, j ; 
int x, y ; 
int xl ,x2, y l , y 2 ; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((sellastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sellasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-xl+l; 
y=y2-yl+l; 
result=0; 
for (j=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 
if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 

result=Math.round(result+l); 
} 
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return result; 
} 
double area_intensitymean(int selstartx, int sel_starty, int sellastx, int sellasty) 
{ 

double result; 
int i , j ; 
int x, y ; 
int xl ,x2, y l , y 2 ; 
int n ; 
if ((selstartx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((sel_lastx < lastx)) 

x2=sel_lastx; 
else 

x2=lastx; 
if ((sel_lasty < lasty)) 

y2=sel_lasty; 
else 

y2=lasty; 
x=x2-xl+l; 
y=y2-yl+l; 
result=0; 
n=0; 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 

{ 
result=result+intensity [ti+x 1 -startx+xpels* (j +y 1 -starty)]; 

n=n+l; 
} 

} 
if(n != 0) 

result=Math.round(result/n); 
return result; 

} 
void initialize(int x, int y, int sxl, int syl, int sx2, int sy2,double [t] 

data_intensity) 
{ 

int i, j ; 
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dt=0.1; 
e=l; 
w=0.025*255*255; 
h=l; 
n_toreinit=40; 
n_doreinit=8; 

xpels=x; 
ypels=y; 
startx=sxl; 
starty=syl; 
lastx=sx2; 
lasty=sy2; 
areamapping = new double[txpels*ypels]; 
sign_d=new double [txpels*ypels]; 
forw_dx=new double[txpels*ypels]; 
forw_dy=new double[txpels*ypels]; 
back_dx=new double[txpels*ypels]; 
back_dy=new double[txpels*ypels]; 
cent_dx=new double[txpels*ypels]; 
cent_dy=new double[txpels*ypels]; 
intensity=new double[txpels*ypels]; 
initsigned_dist(h,xpels,ypels,4); 
for(j=0;j<ypels;j++) 

for (i=0; i<xpels;i++) 
intensity[ti+xpels*j]=data_intensity[ti+xpels*j]; 

} 

double area_intensity_75pvalue(int sel_startx,int sel_starty,int sel_lastx,int 
sel_lasty) 

{ 
double result; 
inti,j,k; 
int x,y; 
intxl,x2,yl,y2; 
int n; 
double [t] data; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else 

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else 

yl=starty; 
if ((sellastx < lastx)) 

x2=sel_lastx; 



else 
x2=lastx; 

if ((sellasty < lasty)) 
y2=sel_lasty; 

else 
y2=lasty; 

x=x2-xl+l; 
y=y2-yl+l; 
n=0; 
for (j=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 
n=n+l; 
} 

k=0; 
if(n != 0) 

{ 
data=new double [tn]; 

for G=0;j<y;j++) 
for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) > 0) 
{ 
data[tk]=intensity[ti+xl-startx+xpels*(j+yl-starty)]; 
k=k+l; 
} 

} 
quicksort(data); 
result=data[t(int)Math.round(n*0.75)-l]; 
} 

else 
{ 
data=new double [tx * y]; 
for G=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 
data[tk]=intensity[ti+xl-startx+xpels*(j+yl-starty)]; 
k=k+l; 
} 

quicksort(data); 
result=data[t(int)Math.round(x*y*0.75)-l]; 

} 
return result; 



public static void quicksort(double[t] a) { 
shuffle(a); // to guard against worst-case 
quicksort(a, 0, a.length - 1); 

} 
// quicksort a[tleft] to a[tright] 
public static void quicksort(double[t] a, int left, int right) { 

if (right <= left) return; 
int i = partition(a, left, right); 
quicksort(a, left, i-1); 
quicksort(a, i+1, right); 

} 

// partition a[tleft] to a[tright], assumes left < right 
private static int partition(double[t] a, int left, int right) { 

int i = left - 1; 
int j = right; 
while (true) { 

while (a[t++i]<a[tright]) // find item on left to swap 
; // affright] acts as sentinel 

while (a[tright]<a[t~j]) // find item on right to swap 
if (j == left) break; // don't go out-of-bounds 

if (i >= j) break; // check if pointers cross 
exch(a, i, j); // swap two elements into place 

} 
exch(a, i, right); // swap with partition element 
return i; 

// exchange a[ti] and a[tj] 
private static void exch(double[t] a, int i, int j) { 

double swap = a[ti]; 
a[ti] = a[tj]; 
a[tj] = swap; 

} 

// shuffle the array a[t] 
private static void shuffle(double[t] a) { 

int N = a.length; 
for (int i = 0; i < N; i++) { 

int r = i + (int) (Math.random() * (N-i)); // between i and N-l 
exch(a, i, r); 

} 
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} 

double background_intensitymedian(int sel_startx,int sel_starty,int 
sel_lastx,int sel_lasty) 

{ 
double result; 
int i j ,k; 
int x,y; 
intxl,x2,yl,y2; 
int n; 
double [t] data; 

if ((selstartx > startx)) 
xl=sel_startx; 

else 
xl=startx; 

if ((sel_starty > starty)) 
yl=sel_starty; 

else 
yl=starty; 

if ((sellastx < lastx)) 
x2=sel_lastx; 

else 
x2=lastx; 

if ((sel_lasty < lasty)) 
y2=sel_lasty; 

else 
y2=lasty; 

x=x2-xl+l; 
y=y2-yl+l; 

result=0; 
n=0; 
for 0=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
n=n+l; 

} 

k=0; 
if(n != 0) 

{ 
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data=new double [tn]; 
for G=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
{ 
data[tk]=intensity[ti+xl-startx+xpels*(j+yl-starty)]; 
k=k+l; 

} 
} 

quicksort(data); 
if((n%2) = 0) 

result=Math.round(data[tn/2]); 
else 

result=Math.round((data[tMath.round(n/2)]+data[t(n-1 )/2])/2); 
} 

return result; 
} 

double background_intensity_75pvalue(int sel_startx,int sel_starty,int 
sel_lastx,int sel_lasty) 

{ 

double result; 
int i,j,k; 
int x,y; 
intxl,x2,yl,y2; 
int n; 
double [t] data; 

if ((sel_startx > startx)) 
xl=sel_startx; 

else 
xl=startx; 

if ((sel_starty > starty)) 
yl=sel_starty; 

else 
yl=starty; 

if ((sel_lastx < lastx)) 
x2=sel_lastx; 

else 
x2=lastx; 

if ((sellasty < lasty)) 
y2=sel_lasty; 



else 
y2=lasty; 

x=x2-xl+l; 
y=y2-yl+l; 

n=0; 
for G=0;j<y;j++) 

for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
n=n+l; 
} 

k=0; 
if(n != 0) 

{ 
data=new double [tn]; 

for(j=0;j<y;j++) 
for (i=0;i<x;i++) 
{ 

if (sign(area_mapping[ti+xl-startx+xpels*(j+yl-starty)]) <= 0) 
{ 
data[tk]=intensity[ti+xl -startx+xpels*(j+y 1 -starty)]; 
k=k+l; 
} 

} 
quicksort(data); 

result=data[t(int)Math.round(n*0.75)-l]; 
} 

else 
{ 
data=new double[tx*y]; 
for (j=0;j<y;j++) 
for (i=0;i<x;i++) 

{ 
data [tk]=intensity [ti+x 1 -startx+xpels * (j +y 1 -starty)]; 
k=k+l; 
} 

quicksort(data); 
result=data[t(int)Math.round(x*y*0.75)-l]; 

} 
return result; 

} 
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