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ABSTRACT 

For persons with severe disabilities, a brain computer interface (BCI) may be a viable 

means of communication, with scalp-recorded electroencephalogram (EEG) being the 

most common signal employed in the operation of a BCI. Various electrode 

configurations can be used for EEG recording, one of which was a set of concentric rings 

that was referred to as a Laplacian electrode. It has been shown that Lapalacian EEG 

could improve classification in EEG recognition, but the complete advantages of this 

configuration have not been established. 

This project included two parts. First, a modeling study was performed using 

Independent Component Analysis (ICA) to prove that tripolar electrodes could provide 

better EEG signal for BCI. Next, human experiments were performed to study the 

application of tripolar electrodes in a BCI model to show that the application of tripolar 

electrodes and data-segment related parameter selection can improve EEG classification 

ratio for BCI. 

In the first part of work, an improved four-layer anisotropic concentric spherical head 

computer model was programmed, then four configurations of time-varying dipole 

signals were used to generate the scalp surface signals that would be obtained with 

tripolar and disc electrodes. Four important EEG artifacts were tested: eye blinking, 

cheek movements, jaw movements and talking. Finally, a fast fixed-point algorithm was 

used for signal-independent component analysis (ICA). The results showed that signals 
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from tripolar electrodes generated better ICA separation than signals from disc electrodes 

for EEG signals, suggesting that tripolar electrodes could provide better EEG signal for 

BCI. 

The human experiments were divided into three parts: improvement of the data 

acquirement system by application of tripolar concentric electrodes and related circuit; 

development of pre-feature selection algorithm to improve BCI EEG signal classification; 

and an autoregressive (AR) model and Mahalanobis distance-based linear classifier for 

BCI classification. In the work, tripolar electrodes and corresponding data acquisition 

system were developed. Two sets of left/right hand motor imagery EEG signals were 

acquired. Then the effectiveness of signals from tripolar concentric electrodes and disc 

electrodes were compared for use as a BCI. The pre-feature selection methods were 

developed and applied to four data segment-related parameters: the length of the data 

segment in each trial (LDS), its starting position (SPD), the number of trials (NT) and the 

AR model order (AR Order). The study showed that, compared to the classification ratio 

(CR) without parameter selection, the CR was significantly different with an increase by 

20% to 30% with proper selection of these data-segment-related parameter values and 

that the optimum parameter values were subject-dependent, which suggests that the data-

segment-related parameters should be individualized when building models for BCI. The 

experiments also showed that that tripolar concentric electrodes generated significantly 

higher classification accuracy than disc electrodes. 

Keywords: Brain-computer interface (BCI), electroencephalogram (EEG) 

classification, Laplacian estimation, parameter selection, tripolar electrode. 
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CHAPTER 1 

INTRODUCTION 

1.1 Functional Structure and Classification of BCI 

A brain-computer interface (BCI), sometimes called a direct neural interface or a 

brain-machine interface, was a communication system that was aimed at assisting, 

augmenting or repairing human cognitive or sensory-motor functions without requiring 

any peripheral muscular activity (Wolpaw, et al., 2002). For persons with severe 

disabilities (e.g., spinal cord injury, amyotrophic lateral sclerosis, brainstem stroke, etc.), 

a brain-computer interface (BCI) may be the only feasible method for communicating 

with others and for environmental control (Wolpaw, et al., 2000, 2002). 

Research on BCIs began in the 1970s at the University of California Los Angeles 

(UCLA) under a grant from the National Science Foundation followed by a contract from 

Defense Advanced Research Projects Agency DARPA (Vidal, 1973, 1977). Many 

experiments on BCI have been conducted since, mostly toward neuroprosthetics 

applications that aim to restore damaged hearing, sight and movement. Thanks to the 

remarkable cortical plasticity of the brain, signals from implanted prostheses can, after 

adaptation, be handled by the brain, like natural sensor or effector channels (Levine, et al., 

2000). 

1 



1.1.1 Functional Structure of a BCI 

A typical functional structure of a human BCI was shown in Figure 1.1. The figure 

shows that BCI function was divided into three parts: the first was signal acquisition, the 

second was signal processing and classification/translation and the third was BCI. 

application The works of this paper was mainly focused on the first two parts of the BCI. 

Signal 
Acquisition 1 ^ 

4 

Signal Processing 

Feature : 

Extraction: Translation 

Com mands 

Figure 1.1 A typical functional structure of a human BCI 

1.1.2 Classification of BCIs 

Human BCIs can be categorized into three classes, according to the positions at 

which they were implanted: Invasive BCIs, Partial invasive BCIs and Non-invasive BCIs. 

The first kind of BCIs was Invasive BCIs. The purpose of this kind of BCI research 

was to repair the damaged site and provide new functionality to persons with paralysis. 

During neurosurgery, invasive BCIs were implanted directly into the grey matter of the 

brain, which was a major component of the central nervous system, consisting of 

neuronal cell bodies, neuropil (dendrites and both unmyelinated axons and myelinated 
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axons), glial cells (astroglia and oligodendrocytes) and capillaries. As invasive BCIs rest 

in the grey matter that was the source of the signal or was near the source of signal, they 

produce the highest quality signals of BCI devices but the signals become weak or were 

even lost as a result of scare-tissue buildup as the body reacts to the implant as a foreign 

object in the brain (Lai, et al., 2005). 

In vision science, direct brain implants have been used to treat non-congenital 

(acquired) blindness. One of the first scientists to construct a working brain interface to 

restore sight was private researcher William Dobelle. BCIs focusing on motor 

neuroprosthetics aim to either restore movement in individuals with paralysis or provide 

devices to assist them, such as interfaces with computers or robot arms. Researchers at 

Emory University in Atlanta led by Philip Kennedy and Bakay were the first to install a 

brain implant in a human that produced signals of high enough quality to simulate 

movement. Their patient, Johnny Ray, suffered from 'locked-in syndrome' after suffering 

a brain-stem stroke. Ray's implant was installed in 1998 and he lived long enough to start 

working with the implant, eventually learning to control a computer cursor (Kennedy and 

Bakay, 1998). 

Tetraplegic Matt Nagle became the first person to control an artificial hand using a 

BCI in 2005 as part of the first nine-month human trial of Cyberkinetics 

Neurotechnology's BrainGate chip-implant. Implanted in Nagle's right precentral gyrus 

(area of the motor cortex for arm movement), the 96-electrode BrainGate implant 

allowed Nagle to control a robotic arm by thinking about moving his hand as well as a 

computer cursor, lights and TV (Leigh, et al., 2006). 
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The second kind of BCIs was partially invasive BCIs. This kind of BCI devices 

(Serruya and Donoghue, 2003; Hill, et al., 2006) could provide better resolution signals 

than non-invasive BCIs since they were implanted inside the skull and not affected by the 

bone tissue which deflects and deforms signals. Also, compared to fully-invasive BCIs, 

partially invasive BCIs have a lower risk of forming scar-tissue in the brain since they 

stay out of the brain. 

Electrocorticography (ECoG) measures the electrical activity of the brain taken from 

beneath the skull in a similar way to non-invasive electroencephalography, but the 

electrodes were embedded in a thin plastic pad that was placed above the cortex, beneath 

the dura mater (Hill, et al., 2006). Eric Leuthardt and Daniel Moran from Washington 

University in St Louis first tried ECoG technologies in humans in 2004. 

ECoG was a promising intermediate BCI modality because it has higher spatial 

resolution, better signal-to-noise ratio, wider frequency range and less training 

requirements than scalp-recorded EEG. It also has lower technical difficulty, lower 

clinical risk and probably superior long-term stability than intracortical single-neuron 

recording (Serruya and Donoghue, 2003; Hill, et al., 2006). 

The third kind of BCIs was Non-invasive BCIs. This kind of BCIs uses 

neuroimaging technology-based interfaces that have been developed during the past years. 

The most common signal employed for this kind of BCIs has been the scalp-recorded 

electroencephalogram (EEG) (Wolpaw, et al., 2000; Pfurtscheller, et al., 2000). 

Unfortunately, the EEG lacks high spatial resolution, primarily due to the blurring effects 

of the volume conductor with disc electrodes. It has also been shown that conventional 

EEG signals recorded with disc electrodes have reference electrode problems as idealized 
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references were not available with EEG (Nune, et al., 1994). A common average 

reference and concentric electrodes have been proposed to resolve the reference electrode 

problems as discussed by Nunez, since concentric electrodes act like closely spaced 

bipolar recordings (Nune, et al., 1994). However, in the common average reference 

recordings, components present in most of the electrodes, but absent or minimal in the 

electrode of interest, may appear as "ghost potentials" (Desmedt, Chalklin and Tomberg, 

1990). 

1.2 Research Objectives and Contents of the Dissertation 

1.2.1 Objectives of the Work 

In this work, the objective was divided into two parts that focus on the first two parts 

of a functional BCI (see Figure 1.1). The first part of the objective was to prove that 

tripolar electrodes could provide a better EEG signal for BCI; the second part of the 

objective was to prove that the application of tripolar EEG and data-segment related 

parameter selection could improve the EEG classification ratio for BCI. 

To achieve the objective, two parts of the work were done accordingly: Firstly, a 

numerical modeling study was conducted, applying Independent Component Analysis 

(ICA) on tripolar EEG signals and disc EEG signals, which were simulated from a 

concentric four-layer head model to prove that tripolar electrodes could provide better 

EEG signals for BCI. Secondly, human experiments using a BCI model to show that the 

application of tripolar EEG and data-segment-related parameter selection could improve 

the EEG classification ratio for BCI. 
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1.2.2 Works Included 

The work contained in the dissertation included: 

1. Development of an improved four-layer anisotropic concentric spherical computer 

head model. 

2. Development of a PCA and ICA model for EEG signal separation. 

3. Comparison of the ICA of signals from tripolar electrodes signals and disc electrodes 

with four important EEG artifacts: eye blinking, cheek movements, jaw movements 

and talking. 

4. Improvement of ICA separation of dipole sources by Laplacian estimation using 

tripolar concentric electrodes in signal processing. 

5. Development of tripolar concentric electrodes and related circuit that provided high 

spatial resolution and better SNR EEG signal. 

6. Design of an EEG signal collection system for brain computer interface (BCI) 

7. Development of an autoregressive (AR) model and Mahalanobis distance-based 

classifier. 

8. Development of a pre-feature selection algorithm for BCI. 

9. An increase in the classification ratio of left/right hand motor imagery EEG signals 

up to 84% (we did improved the CR, the average was 78.73 and highest was 84%). 

The creative points of the work included: 

1. An improved four-layer anisotropic concentric spherical head model that generate 

tripolar Laplacian estimation and traditional disc electrodes surface EEG signals 

simultaneously; Generate potentials such that the dipole sources could be placed at 

any position within the head with the dipole sources' moments oriented in any 
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direction; Use a newly-established database for the head model that increased the 

numerical calculation speed by thousands of times. 

2. An improved fast calculation algorithm for the ICA model by embedding PC A into it 

which makes it faster and more stable. 

3. Application of tripolar electrodes in BCI, which was proved to generate better signal 

classification results for BCI. 

4. Development of a pre-feature selection algorithm in EEG classification for BCI, 

which proved to be beneficial for BCI signal classification. 

1.3 Organization of the Dissertation 

In Chapter 1, a general review of the brain computer interface was given, including 

the classification and functional structure of BCI. The objective of the dissertation and 

the creative points of the works were given. 

Chapter 2 provides some background for this research, including concepts and 

recent development of tripolar concentric ring electrodes and Laplacian estimation, 

independent component analysis for EEG in BCI and methods for EEG classification in 

BCI. 

In Chapter 3, a numerical model, including four-layer head model and ICA model, 

was given for the test of the application of tripolar electrodes estimated Laplacian EEG in 

to the ICA. Comparison between tripolar electrodes and traditional disc electrodes were 

conducted and results were discussed. 

Chapter 4 gives the human experiment for BCI. It was the main part of the 

dissertation. Content in this chapter includes EEG data acquisition and signal pre

processing, pre-feature selection algorithm development, feature selection for BCI (AR 
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model) and EEG signal classification for BCI. Tripolar Electrodes and traditional disc 

electrodes were also compared and the results were discussed. Conclusions about the 

application of tripolar EEG and pre-feature selection on BCI were drawn. 

Chapter 5 provides the conclusions of our work and suggestions for future research. 



CHAPTER 2 

BACKGROUND 

2.1 EEG Classification in BCI 

To compare the effect of the tripolar electrodes and disc electrodes in the application 

of BCI, we designed a signal classification system for the BCI, which included signal 

acquisition, signal pre-feature selection, feature selection and signal classification. A 

brain-computer interfaces (BCI) could be seen as a pattern recognition system and its 

performance depends on both the feature extraction algorithm and the classification 

algorithm employed (Lotte, et al., 2007). 

2.1.1 Feature Extraction for BCI 

The first step of a pattern recognition was the feature selection, including what 

features were used, what their properties were and how they were used. Many features of 

EEG signals have been used in the design of BCIs, such as amplitude values (Kaper, et al., 

2004), band powers (BP) (Pfurtscheller, et al., 1997), power spectral density (PSD) 

values (Millan and Mourino, 2003), autoregressive (AR) and adaptive autoregressive 

(AAR) parameters (Penny, et al., 2000; Pfurtscheller, et al., 1998), time-frequency 

features (Wang, Deng and He, 2004) and inverse model-based features (Qin, Ding and He, 

2004; Kamousi, Liu and He, 2005; Congedo,Lotte and Lecuyer, 2006). In this work, we 

used AR model features and BP model features for feature selection in the human BCI 

experiments. 

9 
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2.1.2 Classification Algorithms 

Many feature extraction methods and classification algorithms have been applied to 

BCIs. Classification algorithms were divided into five categories: linear classifiers, neural 

networks, nonlinear Bayesian classifiers, nearest neighbor classifiers and combinations of 

classifiers (Lotte, et al., 2007). Among those classification algorithms, linear classifiers 

were probably the most popular for BCI applications. Linear classifiers were discriminant 

algorithms that use linear functions to distinguish classes. The two main kinds of linear 

classifiers that have been used in BCI design were linear discriminant analysis (LDA) 

and support vector machine (SVM). The current work uses the LDA method for EEG 

classification in the human BCI experiments. 

2.2 Tripolar Concentric Ring Electrodes 
and Laplacian Estimation 

2.2.1 Laplacian EEG 

Recently, the application of surface Laplacian electrodes to EEG was introduced to 

help alleviate the blurring effects. Surface Laplacian mapping has been shown to enhance 

the high spatial frequency components and spatial selectivity of the electrical activity 

located close to the observation point (He, 1999). The Laplacian was the second spatial 

derivative of the potentials on the body surface which reduces the blurring effect. The 

application of the Laplacian method to EEG began with Hjorth (Hjorth, 1975) using a 

five-point method (FPM). He (He, 1999) performed the surface Laplacian with Hjorth's 

technique derived from an array of disc electrodes measuring surface potentials. Several 

other approaches have been shown to perform well, including a) the spline Laplacian 

algorithm (Perri, Bertrand and Pernier, 1987), b) the ellipsoidal spline Laplacian 
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algorithm (Law, Nunez and Wijesinghe, 1993), c) realistic Laplacian estimation 

techniques (Babiloni et al., 1995, 1996) and d) realistic geometry Laplacian algorithms 

(He, LianandLi,2001). 

2.2.2 Tripolar Concentric Electrodes 
and Laplacian Estimation 

However, the gains from the above-mentioned application of the Laplacian depend 

on conventional disc electrodes, which were based on the same technology Hans Burger 

used in 1924. There has been little effort to improve the electrodes. To our knowledge, 

Fattorusso and Tilmant (Fattoruss and Tilmant, 1949) were the first to report the use of 

concentric electrodes. Figure 2.1 shows the typical structure of a tripolar electrode. 

2mm 2mm 2mm 

Figure 2.1 Typical structure of a tripolar electrode 

Concentric electrodes were symmetrical, alleviating electrode orientation problems 

(Farino and Cescon, 2001). They act as high-pass spatial filters reducing the low spatial 

frequencies, accentuating localized activity increasing the spatial selectivity (He, 1999). 

Concentric electrodes outperform disc electrodes with higher signal-to-noise ratio (SNR), 

higher spatial selectivity and lower mutual information (MI) which should be beneficial 

for the field of EEG (He, 1999; Farino and Cescon, 2001; Koka and Besio, 2007). Further, 
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McFarland, et al. concluded that the common average and the Laplacian derivative yield 

good performance on EEG classification (McFarland, et al., 2007). Babiloni, et al. 

demonstrated that surface Laplacian transformation of EEG signals could improve the 

recognition scores of imagined motor activity (Babiloni, et al., 2000). Besio, et al. 

developed Laplacian estimation using tripolar electrodes (Besio et al., 2006b) and 

showed that the tripolar electrode generated significantly higher classification accuracy 

than disc electrodes (Besio, Cao and Zhou, 2008). Equations (2.1) was the Laplacian 

estimation that was developed by Besio, et al., where S was the estimated Laplacian 

signal, Px, P2, P3 were the potentials from the outer ring, medium ring and center of the 

tripolar electrode. 

S = \6(P2-P3)-(P]-Pi) (2.1) 

2.2.3 Tripolar Electrodes vs. 
Disc Electrodes 

Since the tripolar concentric electrode has significant advantages over disc 

electrodes, in this paper a comparison of the classification of left/right hand imagery was 

performed between signals from disc electrodes and tripolar concentric electrodes. Two 

bipolar signals were acquired from each tripolar concentric electrode and then combined 

to estimate the Laplacian (Besio et al., 2006 b). An autoregressive (AR) model (Penny, et 

al., 2000) for feature extraction was built. A Mahalanobis distance-based linear classifier 

(Mahalanobis, 1936) was used for classification, which was previously established for 

BCI classification (Cincotti, et al., 2002). 

To compare the two electrode configurations fairly, the maximum classification ratio 

was searched for each data set. An exhaustive search algorithm was utilized to find the 
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best factors for each subject that generated the highest classification ratio. The results 

showed that signals from tripolar concentric electrodes generated significantly higher 

classification ratios than did signals from disc electrodes (Besio, Cao and Zhou, 2008). 

2.3 Independent Component Analysis for EEG in BCI 

Independent component analysis (ICA) was a computational method for separating a 

multivariate signal into additive subcomponents, assuming there was mutual statistical 

independence of the non-Gaussian source signals (James, 2005). To the best of our 

knowledge, ICA was first applied to encephalography (EEG) by (Makeig, et al., 2002) 

and was now widely accepted in the EEG research community, most often to detect and 

remove stereotyped eye, muscle and line noise artifacts (Jung, et al., 1999, 2000). 

Ventoura, et al. used ICA for reconstructing averaged event-related potentials (ERPs) in 

the time window of the P600 component, selecting a subset of independent components' 

projections to the original electrode recording positions (Ventouras, et al., 2004). 

Basically, Ventoura, et al. used ICA as a filter. 

However, ICA also has been used to separate biologically plausible brain sources 

whose activity patterns were distinctly linked to behavioral phenomena (Delorme, et al., 

2006). Many of the biologically plausible sources ICA identifies in EEG data have scalp 

maps nearly fitting the projection of a single equivalent current dipole (Jung, et al., 2001; 

Makeig, et al., 2002) and were, therefore, compatible with the projection to the scalp 

electrodes of synchronous local field activity within a connected patch of cortex. 
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Fast ICA was an efficient and popular algorithm invented by Aapo Hyvarinen at 

Helsinki University of Technology (Aapo and Erkki, 1997). The algorithm has cubic 

convergence speed and does not require parameter adjustment. 



CHAPTER 3 

A MODEL STUDY 

3.1 Four-Layer Anisotropic Concentric Head Model 

3.1.1 Structure of the Head Model 
and Its Application 

The computation of the electric potential generated by current density sources in the 

brain was the so-called EEG forward problem (Vatta, Bruno and Inchingolo, 2005). In 

order to obtain an accurate solution of the brain tissues, it was necessary to correctly 

model the shape of the head and the electrical conductivity. A mathematical dipole was 

commonly used to describe the source. This function provides an adequate description 

because, if the recorded potentials were caused by an extended source, the error so 

induced was small (Zhou and Van, 1992). The head was generally described as a volume 

conductor with piecewise constant conductivity to mimic the different conductivities in 

different parts of the head. Several versions have been reported: the homogeneous sphere, 

the three-sphere and four-sphere models, the homogeneous spheroid and the so-called 

realistic models (De Munck, 1988 ). Atypical layered head model structure was shown as 

Figure 3.1. For this chapter, a Four-Layer Anisotropic Concentric Head Model was 

developed for the study (De Munck, 1988). 

15 
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Figure 3.1 Structure of layered head model 

3.1.2 Numerical Calculation Algorithm 
for the Head Model 

A modified expression for computing the potential distribution on the exterior 

surface of a four-layer anisotropic spherical volume conductor, with the dipole lying 

within the center of innermost sphere was shown in Equations (3.1) (Zhou and Van, 

1992): 

*+ =linn + ^ 2"' + 1 e'"T"e" { A V , - r (c°s*) + M,v4>J(cosfl)cosri (3.!) 
4£f(2v4+l)/?4 ^ £>„/-, 

and the parameters were calculated using Equation (3.2) to Equation (3.7). 
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See Appendix A, function FixPointAlgor() for Matlab programs that implement the 

algorithm. 

3.2 Improvement of the Head Model 

The algorithm proposed above has two major problems. First, it calculates the 

potential generated by a unit dipole only if the moment of the dipole was on a positive 

z-axis direction. However, we need to calculate multi dipoles placed at any position 

within the innermost layer, with arbitrary dipole moment directions. Second, the 

calculation speed was really slowing since a large number of integrations were needed, as 

was shown in Equations (3.6) and (3.7). In order to solve these problems, the Coordinate 

Rotating Method and Database Method were introduced into the algorithm. 

3.2.1 Theory of Coordinate Change 

For 3D rotation, there was a 3x3 matrix for rotation about each principal axis. The 

direction of positive rotation was determined by the right-hand rule, as shown in Figure 

3.2. 

Figure 3.2 The positive rotation of each axis 
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Let [px,pv,pz] and [px ,p ,pz ] denote the coordinates of a point in the original 
x ?ry ~ r z 

coordinate system and in the coordinates system after rotation, respectively. The relation 

between these two coordinates can be expressed by Equation 3.8. 

P: 

P'y 

P\. 

P'/ 

P'y 
t 

Pz_ 

~p'x~ 

P'y 
f 

Pz 

= 

= 

= 

cos# -s in# 0 

sin# cos# 0 

0 0 1 

" 1 0 0 

0 cos 6 - sin 6 

0 sin 9 cos 6 

cos 6 0 sin 0 

0 1 0 

-s in# 0 cos# 

Px 

Py 

-Pz 

P. 

Py 

_Pz 

~P* 

Py 

_Pz 

Z-axis: 

X-axis: \ p'v = 0 cos6 - s in# p (3.8) 

Y-axis: 

where 6 was the counterclockwise angle of rotation about the given axis. These 

Equations allow the dipole to be rotated to any arbitrary angle. 

3.2.2 Method for Coordinate Change 

As shown in Figure 3.3, the moment of the dipole was pointing to a location point 

on the brain surface with the spherical coordinates (R, 6, <fi). It was a straightforward 

exercise to easily obtain the corresponding Cartesian coordinates (x, y, z). In order to 

rotate the z-axis to this electrode and realize the coordinate calculation, the coordinate 

system was rotated in two steps. The first was a rotation of +0 about the z-axis. The 

second was a rotation of +<fi about the new y-axis. The center of the electrode was placed 

on the z-axis. These rotations were repeated for each electrode and the potential of each 

electrode was then calculated under the new coordinate system. See Appendix A, function 

ChangeCordinates for Matlab programs in realizing the algorithm. Note: In Matlab, the 

rotation function was (X,Y,Z) = SPH2CART(TH,PHI,R), where TH was the 



20 

counterclockwise angle in the x-y plane measured from the positive x axis. PHI was the 

elevation angle from the x-y plane, which differs from (f> in Figure 3.3. 

x 

Figure 3.3. The spherical coordinate system 

3.2.3 Database Method for Calculation 
Speed Improvement 

As was shown in Equations (3.1; 3.6) and (3.7), to calculate a dipole's potential on 

each point of the electrodes (the potential of the electrode rings were calculated by 

averaging N point potential on the ring), 2N symbol integrations need to be calculated. 

Consider Nl points on each electrode to be computed, with N2 electrodes and N3 dipoles, 

the total number of integrations will be 2NN]N2N3 « 7200. This number of integrations 

will be computationally expensive. For example, if we calculate the potentials for a single 

dipole on six electrodes, several hours were required to reach the results with satisfactory 

precision. 

However, it was noticed that in Equations (3.1), for a given calculation precision, N 

was limited and, for each n in Equations (3.6) and (3.7), the symbol integration results 
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will be same. Thus, a database that contains high enough order (n ^ N) integration results 

could be built and used repeatedly in the algorithm instead of calculating the integration 

each time. Compared to the original method, the computation, after using the database 

method,decreased the computation time by more than three orders of magnitude, making 

the computation time effectively negligible. 

3.2.4 Disc-Electrode and Ring-Electrode 
Potentials Generation 

For tripolar ring electrodes, N (usually set at 50) points of potential on each ring 

were calculated and the average of those potential values was taken as the potential on 

the ring. The Laplacian estimation was performed using Equation (3.9) to get the final 

tripolar signal: 

S ,=16( i> - i> ) - ( /> - /> ) , (3.9) 

where St was the tripolar signal and Px, P2 and P3 were the signals from the outer ring, 

middle ring and center disc, respectively. 

For disc electrodes, the potentials of the three rings were averaged using Equations 

(3.10) to get the virtual disc electrodes signal Sd : 

Sd=(P1+P2+P3)/3 ( 3 1 0 ) 

3.3 Independent Component Analysis Model 

In the work of Chapter 3, a fast fixed-point ICA algorithm was developed and 

typical source signals were simulated as dipole moments. Then, potentials from those 

dipole sources were collected using tripolar electrodes and disc electrodes, respectively. 

After that, ICA was applied using signals from tripolar and disc electrodes. 
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3.3.1 Improved Fast Algorithm for ICA 

The improved fast fixed point algorithm (Aapo and Erkki, 1997) used in this study 

has cubic convergence speed, has no learning rate or other adjustable parameters and 

calculates the components of both the negative kurtosis and the positive kurtosis. In 

addition, it solved the problem present in the original algorithm that a blind number of 

sources must be set at the beginning of the ICA. The following gives its algorithm: 

1. Original data transform using equation (3.11): 

x = Mv (3.11) 

where x = (xj,x2,...,xn)rwas the transformed signal which will be used as the input of 

the ICA. Its elements, x., were mutually uncorrected and all have unit variance, which 

means its correlation matrix equals unity: E{xxT} = I. The vector v = (v,,v2,...,vn)r was 

the observed signals from each electrode, v. was the signal from the i'h electrode. M 

was the transform matrix, defined as Equation (3.12): 

M = DPr, (3.12) 

where P was the vector of the principal components of v, which was an orthonormal 

transformation matrix and D was calculated using Equation (3.13): 

D = diag(D,,D2,...,Dn) = \f Vcov(.y) , (3.13) 

y = PTv, (3.14) 

where y in Equation (3.14) was the projected vectors, the covariance matrix of which was 

a diagonal matrix and D was a diagonal matrix. 

2. Independent component separation: 

The independent components can be expressed by Equation (3.15): 



23 

{S = BTx 
T , (3-15) 

where S = {si,..,si,...,sn} was the independent component and B = {b1,...,bi,...,bn} was 

its corresponding transform matrix, which can be obtained by the following steps: 

i) Take a random initial vector, B° = {b°,b°,—,b°}, with a norm of 1. Let k=l; 

ii) Let*,.* = E{x(bk~] x)3}-3b,k~l . where E{*} was the expectation, which 

could be estimated from a large sample; 

hi) Orthogonalize the projection bk=bk-BBTbk , where 

B = (6j ,b2 ,...*,._,) were the transform matrix previously found; 

iv) Divide bk by its norm; 

v) If | bi bt ~ | was not close enough to 1, let k = k + 1 and go back to step 2. 

Otherwise, output the vector bt = bt . bi , which was the transform vector that 

was found for the ith independent component. 

The transform matrix B found by this algorithm was an orthogonal unit matrix, 

which means BBT = I. The algorithm will separate, as much as possible, independent 

sources as long as the number of collected signal channels (electrodes) was not less than 

the number of sources. 

3.3.2 Data Sources Simulation 

The first step was dipole signal sources simulation. Sine waves with different 

frequency, rectangular signals, rising cosine signals and Gaussian white noise signals, 

were used for the dipole sources, where sine waves were sub-Gaussian signals and 

rectangular signals and rising cosine signals were super-Gaussian signals. The signals 

were generated with different frequencies (from 1 to 100 Hz) that covered the frequency 

range of EEG signals with typical noises. The sampling frequency for each signal was set 
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at 200 Hz, which was the sample rate for EEG signals that were obtained under clinically 

real conditions (Kees, et al., 1994). 

The second step was typical EEG artifact sources simulation. Four artifacts were 

recorded from human experiments (Kakkeri, 2005): eye blinking, cheek movements, jaw 

movements and talking. Their waveforms were used for the simulation of EEG artifact 

with the amplitude modified according to the SNR in the human experiments condition: 

snrt = (13,18,23,28); (3.16) 

snr_d=(-28, -17, -13, -7); (3.17) 

SNR(dB) = 20 log10 (_iSfL). (3.18) 
noise 

where snr _t and snr _d were the SNR of the tripolar and disc electrodes respectively, 

which have different SNR in the real condition. Asi , and Anoise were the amplitudes of 

the signal and noise, respectively. Figure 3.4 shows the waveforms of those signals. 
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Figure 3.4 Artifact waveforms of (a) eye blinking, (b) cheek movements, (c) jaw 
movements and (d) talking 

The amplitude modification was processed as follows: in the four layer head model, 

suppose the amplitude of the EEG potential generated by the dipole sources at an 

electrode was Asj , and the SNR for given kind of noise was snr. From the definition of 

SNR (Equation (3.18)), the amplitude of the noise Anoise was calculated use Equation 

(3.19). 

'^loise 

signal 

10 snr120 
(3.19) 

The third step was electrode distribution and number of electrodes design. For the 

model, the electrodes can be at any position on the surface of the scalp and the number of 

electrodes should not be less than the number of sources. In real conditions, the number 
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of electrodes should be more than the desired independent components. The five 

electrodes in the model were placed at C3, C4, Cz, T3, though T4 (see Figure 3.5) and 

other positions where a number of electrodes from 4 to 10 were tested. Electrodes for the 

artifacts recorded by (Kakkeri, 2005) were placed at C3, C4 and Cz. 

Front , Vertex 

Figure 3.5 International Electrode Placement System 

3.4 ICA Result 

3.4.1 Higher Spatial Sensitivity of 
Tripolar Electrodes 

Figure 3.6 shows the potentials produced by a vertically oriented unit dipole located 

at (58,0,0) mm. Those potentials were recorded by a disc and a tripolar electrode located 

at the surface of the sphere at different angular positions from (/> = 0 ("north pole" of the 

sphere, (75, 0, 0)) to </>= n("south pole", (75, 0, n)). Because the signal from the tripolar 

electrode was a difference of potentials, the magnitude was approximately 2 to 3 orders 

of magnitude below that of the disc electrode. And, due to the high spatial sensitivity of 

the tripolar electrodes, it gave better ICA results, which was shown later. 
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Figure 3.6 Calculated signals from (a) tripolar and (b) disc electrodes with no added noise. 

3.4.2 Influence of Electrode Number 
and Source Number on ICA 

Experiments show that the number of electrodes should be no less than the number 

of source dipoles to fully recover the independent sources. On the other hand, many more 

electrodes than sources will not improve the ICA results much, which could be seen from 

Figure 3.12. Figure 3.7 through Figure 3.11 shows the ICA results when there were four 

dipole sources (ring cosine, rectangular, sine and Gaussian white noise) with 20, 10, 6, 5, 

4 and 3 electrodes that were distributed evenly along Cz-C3-T3-Al line, as shown in 

Figure 3.5. The ICA were taken with artifact noise added to the electrodes, with SNR of 

28 dB and -7 dB, respectively. Table 3.1 shows ICA results of four dipole sources with 

different numbers of electrodes, in which the 'ICA Cov' states the normalized covariance 

of the ICA results and the original signal. The closer this value was to 1, the better was 

the ICA result. 



28 

0.5 

0 

-0.5 

*w-V^f1 * _ 

50 100 

50 100 

50 100 50 100 

Figure 3.7 Four signal dipoles with twenty electrodes. The first row was the original 
source signals. The second row was the ICA results with the tripolar electode signals and 
the third row was the ICA results with the disc electode signals. Figure 3.7 to Figure 3.10 

have the same layout 

0 50 100 0 50 100 0 60 100 0 50 100 

Figure 3.8 Four signal dipoles with ten electrodes 
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Figure 3.9 Four signal dipoles with six electrodes 

50 100 0 50 100 0 50 100 0 50 

Figure 3.10 Four signal dipoles with four electrodes 
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50 100 0 50 100 0 50 

Figure 3.11 Four signal dipoles with three electrodes 

Table 3.1 ICA result of four dipole sources with different electrodes number 

ICA Cov ^Sources 

Electrode NoT~~ —-~\^ 

Tripolar 
electrodes 

Disc 
electrodes 

20 

10 
6 

5 
4 

3 
20 

10 
6 

5 
4 

3 

Rising 
Cosine 

0.9712 

0.9618 
0.9738 

0.9680 
0.9660 

0.8449 
0.3042 

0.3010 
0.2469 

0.2402 
0.1710 

0.1313 

Rectangular 

0.9998 

0.9998 
0.9998 

0.9998 
0.9998 

0.9992 
0.9888 

0.9933 
0.9921 

0.9889 
0.9809 

0.6647 

Sine 

0.9847 

0.9846 
0.9864 

0.9847 
0.9822 

0.9875 
0.9803 

0.9863 
0.9843 

0.9472 
0.9697 

0.6990 

White 
noise 

0.9806 

0.9963 
0.9898 

0.9896 
0.9873 

0.9717 

0.9603 
0.9693 

0.9497 
0.9472 
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Figure 3.12 Relation between ICA results and electrode numbers, the y-axis was the 
averaged cross-covariance between the ICA separated signals and the original signals 

3.4.3 Relation Between Independence 
of Sources and ICA Results 

Figure 3.12 demonstrates that too many electrodes does not substantially improve 

ICA separation. However, the experiment also showed that as long as there were enough 

electrodes (not less than the independent sources) the independent sources would be fully 

recovered. Dependent sources will not appear in the ICA results. In other words, if there 

were signals that were controlled by other sources, even if they were located at different 

places, they will not be found in the ICA results. A dependent signal was one that was 

produced by the same sources and function without being controlled by other signal 

sources. They could be collected from different locations ( e.g., ECG could be collected 

from the chest as well as from forehead ), but those signals will still be taken as one 

separate signal. Figure 3.13 and Figure 3.14 show the ICA results with one and two 

dependent sources. 
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Figure 3.13 Five dipole sources with the fourth source = (source 1 + source 2)/2 
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Figure 3.14 Five dipole sources with the fourth source = (source 1 + source 2)/2 and the 
fifth source = (source 2 +3 x source 3)/4 
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' However, if the sources were from different sources, even if they were in the same 

kind of waveform, they will still be considered as different sources and be separated into 

the ICA results. The conditions used to generate Figure 3.14 were nearly identical to 

those used to generate Figure 3.13 except that the first point of the fourth signal, which 

depends on source 1 and source 2 in the conditions used for Figure 3.14, was moved to 

the end of the signal, which made it independent from source 1 and source 2. Though the 

waveform was nearly unchanged, it was considered to be one independent component 

and was separated into the ICA results. This effect was clearer in Figure 3.16, where there 

were two sine waves with the same frequency and same amplitude, but different time 

series. These signals were considered to be two independent signals and were separated 

in ICA results. 

Figure 3.15 Five dipole sources with the fourth source(2:N) = (source 1(1:N-1) + source 
2(l:N-l))/2 and fourth source(l) = (source 1(N) + source 2(N))/2 
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Figure 3.16 Five dipole sources with two sine waves of same frequency and amplitude, 
but different time series 

3.4.4 Tripolar Electrodes vs. Disc 
Electrodes for ICA 

Sections 3.3.2 and 3.3.3 demonstrated that if independent sources (function 

independently at different locations) generated signals on the electrodes, given enough 

electrodes, ICA could separate out all the independent components. However, signals 

with common mode noises will give poor ICA results. 

Tripolar Electrodes have been shown to have less mutual information and higher 

spatial resolution compared to disc electrodes (Koka and Besio, 2007). These advantages 

gave tripolar signals higher separation ability for ICA and greater common mode noise 

rejection, which could be seen in Equation (3.9). Further discussion about why tripolar 

electrodes give better ICA results was made in Section 3.5. 

Figure 3.17 was the ICA results for 10 electrodes, including artifacts, under the same 

conditions as in Figure 3.18 el and e2. Figure 3.15 shows the wave forms of the dipoles 

100 0 100 0 
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(row a), the ICA results of signals from tripolar electrodes (row xl) and the ICA results of 

the signal from disc electrodes (row x2), where x was from b to e, with respect to the 

electrode potentials with four artifacts: (b) eye blinking, (c) cheek movements, (d) jaw 

movements and (e) talking. Table 3.2 gives the normalized covariance for the ICA 

separation results and the source signals. 

(a) 

(e1) 

(e2) 

1 

0.5 

0 

•0.5 

1 

0.5 

0 

-0.5 

1 

0 

-1 

-2 

L~~-J 

-1 
50 100 0 50 100 0 50 100 0 50 100 

0 50 100 0 50 100 0 50 100 0 50 100 

Figure 3.17 ICA Separation results using 10 electrodes with talking artifacts (a) dipole 
source waves;(el) Tripolar electrode ICA results; (e2) Disc electrode ICA results 
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5 0 1 0 0 SO 1 0 0 

Figure 3.18 ICA results from electrodes potentials with four artifacts (a) dipole source 
waves;(xl) ICA results from the tripolar electrode signals;(x2) ICA results from the disc 

electrode signals, x was from b to e, with respect to the four artifacts: (b) eye blinking, (c) 
cheek movements, (d) jaw movements and (e) talking. (Vertical axis - arbitrary units, 

horizontal axis - time in ms.) 
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Table 3.2 Normalized covariance of the IC A results and the source signals 

N V Dipol 
\ . sourc 

IC ^ \ 
Co ^ v 

Eye 

blink 

Cheek 

move 

Jaw 

move 

talk 

Tripolar 

Disc 

Tripolar 

Disc 

Tripolar 

Disc 

Tripolar 

Disc 

Rising 

cosine 

signal 

0.636 

0.231 

0.846 

0.231 

0.942 

0.237 

0.966 

0.393 

Rectangular 

signal 

0.996 

0.993 

0.998 

0.985 

0.999 

0.989 

0.999 

0.993 

Sine 

wave 

signal 

0.985 

0.966 

0.987 

0.980 

0.997 

0.977 

0.992 

0.985 

White 

noise 

0.976 

0.962 

0.973 

0.972 

0.974 

0.960 

0.942 

0.907 

3.4.5 Signal Strength Affects ICA 

Signal strength strongly influences ICA results. Figure 3.19 was the ICA results with 

all source signals set to 1, while the in Figure 3.20 and Figure 3.21, the rising cosine 

wave and the rectangular wave were increased in amplitude. In the ICA results for these 

conditions, the corresponding independent component improved greatly. 
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Table 3.3 ICA result of four dipole sources with different numbers of electrodes 

ICA Cov\Sources 

Electrode~K5r—-~____\. 

Tripolar 
Electrodes 

Disc 
Electrodes 

All unity 

Rising 
cosine (10) 
Rectangular 

(10) 
All unity 

Rising 
cosine (10) 
Rectangular 

(10) 

Rising 

Cosine 

Signal 

0.9405 

0.9978 

0.9683 

0.2307 

0.9636 

0.2297 
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Figure 3.19 ICA results with unity amplitude source signals 
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3.5 Conclusions and Discussion 

3.5.1 Conclusion 

In this chapter, an improved four-layer anisotropic concentric head model was 

developed, which could calculate tripolar and disc head surface potentials generated by 

dipoles placed at arbitrary positions within the inner most layer and with arbitrary dipole 

moments. Then, an ICA analyses model was developed with an improved fast calculation 

algorithm. Four signals (sine wave signals, rectangular signals, rising cosine signals and 

Gaussian white noise signals) were simulated as the dipole sources, among which there 

was one kind of sub-Gaussian signals (sine waves) and there were two kinds of super-

Gaussian signals (rectangular signals, rising cosine signals). The ICA results from the 

tripolar and disc electrodes were compared. Two more interesting points were studied: 

the influence of the number of electrodes and the number of dipole sources, the relation 

between the independence/dependence of the sources and the ICA results. 

We draw conclusions as follows and then give further discussion: 

1. Tripolar Electrodes generate better separation results. This improvement may be due 

to the tripolar electrodes having higher spatial resolution, thus they were more 

sensitive to the source spatial distribution and provide more uncorrected signals for 

ICA. The improvement may also be due to the higher common mode noise rejection 

of the tripolar electrodes compared to disc electrodes. 

2. The number of independent sources that could be found for the ICA algorithm 

developed in this chapter was no more than the number of electrodes used in the ICA. 

3. More electrodes will help slightly in the separation results when the number of 

electrodes was greater than or equal to the number of sources. 
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4. The necessary number of electrodes should not be less than the number of sources. 

5. The number of electrodes should keep increasing if the number of independent 

components was equal to the number of electrodes. In this way, the independent 

sources could also be found, which was the maximum number of independent 

components found. 

6. The number of electrodes should be slightly higher than the number of independent 

sources. 

7. Source signals that function dependently (differ in time series) will be considered as 

independent source signals and will be separated into the ICA results, even if they 

were the same kind of signals with the same frequency and amplitude. 

8. Signals with exactly the same time series wave pattern (only differ in amplitude) will 

be considered to be the same signal patterns, no mater how many they were and 

where they originate from. 

9. Signals that depend on other sources (linearly composed of other sources) will not be 

found. 

10. Common mode noises could not be separated, since they do not have spatial 

difference. Thus, they will be the main noises in the signal for ICA separation. 

11. Noises from a single source could be seen as independent sources. Thus, an ICA 

process does not consider the pathway through which the signal was produced on the 

electrodes. 

12. Sources with relatively strong signal amplitude will allow ICA to more readily 

separate the corresponding independent components. 
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3.5.2 Further Discussion on Three 
Interesting Facts of ICA 

The work of this chapter provided answers to three interesting questions related to 

the ICA. First, what kind of sources could be separated? Second, what advantages do 

using tripolar electrodes provide? Third, how many electrodes should be used? Now we 

give further discussion about those facts. 

For the first question, what were the expected separation sources? The work of this 

chapter showed that sources with the following characters would be or would not be 

separated in the ICA results: 

1. Sources function independently, having no relation with other function sources. 

2. Sources giving the same potentials/signal on all electrodes could not be separated. 

These sources include common mode noises, which could not be seen as coming 

from one single source and could not be found. 

3. Sources with same time series in waveform, despite their different amplitude and 

locations, will be considered to be one independent source. 

4. Sources with different time series in waveform, despite their same amplitude, same 

locations and same waveform, will be considered to be different independent 

sources, as shown in Figure 3.13. 

5. Sources with strong signals/amplitudes, will generate relatively better corresponding 

independent components. 

From above we can see that for a source to be separated by ICA, it must have three 

properties: 
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1. They have spatial difference, that was, they give different signals to spatially 

different distributed electrodes. The higher the spatial difference, the better the ICA 

results. 

2. It must have a time sequence that differs from the other signals. 

3. They must have sufficiently high amplitude to be separated. 

From above discussion we conclude that: 

1. Common mode noises were not separable, since they do not have spatial differences. 

Thus, they will be main noises in the signal for ICA separation. 

2. Noises from a single source could be seen as independent sources. Thus, the ICA 

process does not consider the pathway through which the signal was generated on the 

electrodes. 

3. Sources with relatively strong signals/amplitudes will help in ICA for the separation 

of their corresponding independent components. 

However, why tripolar electrodes give better ICA? From Table 3.1 and Table 3.2, 

the ICA results from tripolar signals were always better than the disc electrode signals, 

collected under the same conditions. This result could also be seen from Figure 3.6 to 

Figure 3.19, where all the independent components of the results of the ICA process were 

taken under the same conditions. In those figures, ICA results from the tripolar signals 

could find all the independent components with high similarity, while ICA from the disc 

electrodes give relatively poor independent component separation. This result may be 

caused by the following advantages of the tripolar electrodes: 

1. Higher signal to noise ratio (SNR); 

2. Especially higher common mode noise rejection; 
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3. Higher spatial sensitivity; 

4. Less mutual information. 

These characteristics, together with the conclusions under the heading 'Expected 

separation sources,' can affect the ICA process, as discussed below. 

ICA was mainly used for separating linearly combined signals, which serves as a 

filter. A combined signal P that was acquired from an electrode can be expressed by 

Pi = axsx + a2s2 +... + ansn , (3.20) 

where sl were the uncorrelated, zero-mean, unit variance signals. Thus the weighted 

coefficients at can be seen as the amplitude of the source signal. The greater the 

difference between at, the better the results of ICA filtering (separating). For tripolar 

electrodes, since they have a high signal to noise ratio (SNR), the signal amplitudes will 

be relatively higher, which will help in ICA (see Figure 3.16-3.18). Further explanations 

of the influence of this high SNR of the tripolar electrodes on ICA were provided in 

Conclusion 3 of the 'Expected separation sources' Section. 

Since tripolar electrodes have higher spatial resolution (as was shown in Fig 3.4) and 

lower mutual information, they will give greater differences of coefficients a, for each 

electrode, thus lead to better ICA filtering results, which can be seen from Figure 3.15. In 

Figure 3.15, under the same conditions, the ICA results of the tripolar electrode signals 

extracted all the independent components with high similarity (see Table 1), while the 

ICA results of the disc electrodes caused inaccuracy in each independent component 

extracted. In particular, a rising cosine component was not recognizable in the results 

from the disc electrodes (Fig 3.15 b2-e2 1st column). This improved separation with the 
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tripolar electrodes could be further explained by property 1 of the separable sources in 

'Expected separation sources' Section. 

The higher fidelity of the tripolar electrodes may also be caused by their high 

rejection of common mode noise, which can be seen from the tripolar potential 

calculation Equations (3.9) (Besio et al., 2006b): 

PL=16(PMiddle-Pc)-(Pouter-Pc), ( 3 . 9 ) 

where PMiddle, POuter and Pc were potentials from the middle ring, the outer ring and 

the center disc, respectively. Since those three electrode elements were close to each other, 

they have nearly the same common mode noise, which becomes sharply attenuated when 

Equations (3.9) was used in the estimation of the Laplacian tripolar potential PL. When 

we consider sources, such as the AC wall mains, which were generally distant from the 

electrodes compared to the signal source in the brain, the common mode noise rejection 

of the tripolar concentric electrode was beneficial. Further explainaion about this 

influence of common mode noise rejection to ICA could be seen in conclusion 1 of 

'Expected separation sources' Section. 

In the study, we noticed that the number electrodes to be used in ICA should be 

selected correctly. Large increases in the number of electrodes beyond the number of 

sources does not improve the ICA separation of the signal sources and causes 

unnecessary additional calculations. In contrast, too few electrodes, especially if the 

number was less than the number of sources, will cause inaccurate ICA separation, as 

could be seen from Section 3.3.2, 'Influence of Electrode Number and Source Number on 

ICA'. From Figure 3.6 through Figure 3.10 and Table 3.1, with the increase of electrode 

numbers from 5 to 20 for the separation of four sources, the ICA separation accuracy did 
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not greatly increase. But, if the electrode number fell below the number of sources, the 

ICA could hardly gave a correct separation result. This gave the first rule of electrode 

number selection: the number of electrodes must not be less than the independent source 

numbers. 

However, we do not generally know a priori how many independent sources will be 

present. But, from part 3.3.3, 'Relation Between Independence of Sources and ICA 

Results', Figure 3.11 and Figure 3.12, we could see that if the source signals were not 

independent of others, they will not be found. Also from part 3.3.2, 'Influence of 

Electrode Number and Source Number on ICA', Figure 3.6 through Figure 3.9, even if 

there were more electrodes than independent sources, the ICA results contain no more 

independent components than the number of independent sources. Thus, we get the 

second rule of electrode number selection: The number of electrodes should be increased 

until the number of independent components in the ICA results does not increase. 

In addition, from Table 3.1 and comparing Figure 6 through Figure 9 (20 electrodes 

to 4 electrodes), using more electrodes than the number of sources did help somewhat, 

which suggested that more electrodes than the minimum number (the number of sources) 

should be used for ICA. 

In conclusion, three rules should be followed in selecting the number of electrodes 

for ICA: 

1. The number of electrodes should not be less than the number of sources. 

2. The number of electrodes should be increased if the number of independent 

components was equal to the number of electrodes. In this way, the number of 
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independent sources could also be found, which was the maximum number of the 

found independent components. 

3. The number of electrodes should be slightly greater than the number of independent 

sources. 

3.5.3 Further Discussion on Four-Layer 
Head Model and Fast 
ICA Algorithm 

First, there were some improvement in four-layer anisotropic concentric head model 

that worth mention. To get an accurate solution in an EEG forward problem, it was 

necessary to correctly and effectively model the shape of the head and tissues electrical 

conductivity and dipole distribution (Vatta, Bruno and Inchingolo, 2005). The improved 

four-layer anisotropic concentric head model developed in this work allows the user not 

only to set the radial conductivity and the tangential conductivity of each layer, but also 

to set the number, position, moment direction of the dipole sources. The potential 

generated on the surface of the head could be calculated for both tripolar and disc 

electrodes with arbitrary positions. For tripolar electrodes, Laplacian estimation was also 

given according to the tripolar Laplacian EEG Equations (3.9). In addition, the numerical 

calculation speed of the model was increased by thousands of times by the introduction of 

the integration database method. 

Secondly, the fast ICA algorithm developed in this study not only has the high 

convergence speed (cubic), but also was stable and simple, requiring no parameter 

adjustment. In addition, this study shows that the number of blind independent sources 

could be determined, which solved the problem in the original algorithm that the blind 

number sources must be set at the beginning of the ICA. 



CHAPTER 4 

HUMAN EXPERIMENT 

4.1 Structure of the BCI 

As we described in Chapter 1, a typical functional structure of a human BCI could 

be shown as in Figure 4.1. From the figure it can be seen that BCI function was divided 

into three parts: the first was signal acquisition, the second was signal processing and 

classification/translation and the third was BCI Application. This paper focuses on the 

first two parts of the Hardware and Software description BCI. 

Signal 
Acquisition 

Digitized 
SignaF 

* 

Signal Processing 

Feature 
Extraction ^ r i l s i W d f t 

L 
, . „ „ . - : „ ' ! — , . ; „ . , „ . , . . . 
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Figure 4.1 Atypical functional structure of a human BCI 

48 
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Figure 4.2 gives the structure of the work of this chapter. First, we design a data 

acquisition system, which includes electrode design, hardware design and data 

acquisition protocol and software design. Then, we pre-processed the EEG data, 

including data filtering, removing eye-blink noise, etc. After that, we studied the data 

segment-related parameter selection and developed a fast search algorithm to find the 

best object-specific data segment related parameters for the BCI. In the following, we 

developed an autoregressive (AR) model for feature extraction and a Mahalanobis 

distance-based linear classifier for classification. Finally, we compared the results of 

using tripolar and disc electrodes with the BCI. Conclusions and discussion for the work 

were provided at the end of this Chapter. 

EEG Data 
Acquirement 

Signal Pre
processing 

Pre-feature 
selection 

feature 
selection 

i ' 

Classifier design and 
classification 

Figure 4.2 Structure of the work of BCI research 

4.2 EEG Data Acquirement and Signal 
Pre-Processing 

EEG signals from twelve healthy subjects (females=3, aged from 23 to 30) were 

recorded using two tripolar concentric electrodes (Figure 4.3) and two virtual disc 

electrodes (described later), resulting in two data sets. Then four parameters (described 

later in the Exhaustive Search Algorithm for Parameter Selection section) were studied. 
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Figure 4.3 Configuration and dimensions of a tripolar concentric electrode (a), electrode 
positions (b) and 10/20 International Electrode Placement System(c) 

4.2.1 Data Acquisition and 
Hardware Description 

All experiments were conducted in accordance with the Institutional Review Board 

approved protocol (Wolpaw, et al., 2000 a). Two sets of signals from each subject were 

recorded with tripolar concentric electrodes (Figure 4.3. (b)). Approximately 1.0 mm of 

10-20 electrode paste (D.O. Weaver & Co., Aurora, CO) was applied to each electrode 

prior to placing it on the scalp at C3 and C4 of the 10-20 International Electrode 

Placement System, as shown in Figure 4.3. (b). Those positions were used in the two 

channels used for feature extraction. Custom built pre-amplifiers (gain 10) along with a 

Grass 15LT Bipolar Portable Physiodata Amplifier System with 15A54 AC amplifiers 

were used for a total gain of 100 K. The filters were set from 0.5 Hz to 30 Hz with the 60 

Hz notch filter on. The data were acquired (14 bit) using a DI-720 data acquisition system 

(DataQ Instruments, Akron, Ohio) with a sampling rate of 125 samples/second per 

channel. 

For signal Data Set 1, two bipolar signals were recorded from each electrode (P1-P3 

and P2-P3, where Pi, P2, Pi were the signals from the outer ring, middle ring and center 
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disc, respectively). For signal Data Set 2, the outer ring, middle ring and center disc of 

the electrodes were shorted to make a virtual disc electrode and one signal was recorded 

from each virtual disc electrode with respect to the reference electrode on the forehead. 

4.2.2 Data Acquisition Protocol 
and Software description 

Figure 4.4 was a timing diagram of the protocol followed for acquiring trials of the 

signals. Each trial started with a visual fixation on a cross displayed on a computer 

monitor directly in front of the subjects. The cross was displayed for two seconds and 

then a short warning beep was sounded to alert the subject that a cue was about to be 

presented. At the third second, a cue was given that lasted for one second. After the cue 

the subject was required to imagine a left/right hand-lifting movement according to the 

cue. A random pause was selected such that the length of each trial was between 8 and 9 

seconds. For each subject, 480 trials were recorded, approximately 240 each of left and 

right hand related signals. Half of the signals were used as training data and the other half 

was used for testing. 

Fixation 
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Beep Cue 

r 
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U 

Pause 
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Trial n 

+h 
Fixation 
cross 

Trial n + i 

Random(8s-9s) 

Figure 4.4. Timing diagram of the events during the experimental protocol 
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The software was developed under a Visual C++ platform using a graphical user 

interface (GUI). Figure 4.5 gives the structure of the software. It includes the Data 

Acquisition hardware control, screen display control, timer control, sound control, etc. 

The user could control the start and end of the program through the GUI. 

Start 
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Initial DataAcq 
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Set Waiting Timer 

of4~5s 

Figure 4.5 Software structure for the data acquisition 
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4.2.3 Data Pre-processing 

The data pre-processing included two parts of work. The first one was the filter 

design and data filtering. Digital band-pass Butterworth filters were designed for multi

channel EEG signals and the pass band was set from 0.2 Hz to 35 Hz. See attached 

Matlab program BandEEG() for details. 

The second part of the data pre-processing was removal of electrooculogram (EOG) 

noise. An important noise source in the BCI system was electrooculogram (EOG), which 

was caused by eye movement and blinking. This signal was much stronger than the EEG 

signal. It was usually removed by hand. In this work, a threshold filtering method was 

developed which could remove the eye-blink noises automatically. The threshold was set 

at 10 times the average of the signal amplitude. The trials containing EOG will be 

discarded. 

4.3 Individualization of Data-Segment-Related Parameters 

4.3.1 Introduction 

The recognition procedure of EEG signals includes three steps: feature extraction, 

feature selection and classification. Previously the improvements of the parametric 

modeling techniques have mostly focused on developing more effective feature 

extraction and selection methods (Wolpaw, et al., 2000; Pfurtscheller, et al., 2000; 

Jonathan, et al., 2002; Wang, McFarland and Vaughan, 2000; Pardey, Roberts and 

Tarassenko, 1996; Burke, et al. 2005; Schroder, Bogdan and Rosenstiel, 2003). However, 

there were also works concerned with data segment/channel selection (Stastny, Sovka and 

Stancak, 2003; Burke, et al. 2005; Jiruska, et al., 2005; Palaniappan, 2006; Ince, Arica 

and Tewfik, 2006). For example, Burke, et al. stated that there might be another data 
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segment length employed providing better classification and that the order of ARX model 

needs to change according to different waveforms (Burke, et al., 2005); also Schroder, et 

al. showed that the 'all channel choice' for feature selection and classification in BCI was 

not the best choice (Schroder, Bogdan and Rosenstiel, 2003). Further, Jiruska, et al. 

showed that longer signal segments brought comparably better results and that the best 

results were obtained with a fixed AR model order, not the automatically chosen order by 

the auto order selection algorithms, such as MDL and AIC (Jiruska, et al., 2005). 

Analysis of learned EEG patterns confirms that for a subject to operate satisfactorily 

his/her personal BCI, the personal BCI must fit the individual features of the subject 

(Millan, et al., 2002a, 2002b). However, no report was published for systematic analysis 

of the influence of data segment selection on BCI classification. In this work, the 

necessity of data segment selection was proven and an auto selection method was 

developed, which greatly increased the signal classification in BCI. In the work presented 

in this paper, the length of the data segment in each trial (LDS), along with its starting 

position (SPD) were studied. Since the 'all channel choice' was not the optimum choice 

(Schroder, Bogdan and Rosenstiel, 2003), it was possible that not using all trials in each 

channel may generate better results. As a matter of fact, in all the available trials, it was 

most likely that not all of them provide a 'good pattern' for the action-related EEG signal 

due to the changing conditions of the subjects over time. For example, when a left-cue 

was given, the subject was supposed to think about lifting their left hand but, if they did 

not focus during that time and did not think about moving the left arm/hand or thought 

about something else, there would not be a 'good pattern.' Thus, this trial to the observer 

may look appropriate, but it was not suitable to be used in the assembly of the signal 
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processing model. Trials like that should be deleted. The algorithm was simple: if adding 

a trial into the model building can increase the classification ratio, keep the trial; 

otherwise, delete it. Thus, the number of trials (NT) that were used to build the model 

was also analyzed. 

What's more, an AR model was used for feature extraction (Ben, Bourne and James, 

1981; Penny, et al., 2000; Burke, et al., 2005) and a Mahalanobis distance-based linear 

classifier was used for classification (Mahalanobis, 1936). Thus, selection of the model 

order (AR Order) was also analyzed. Since all four parameters mentioned above were 

within a known range, an exhaustive search algorithm was employed on each subject's 

EEG data to find the best value of these four parameters for EEG based BCI 

classification. The results showed that the four parameters had a great influence on the 

classification accuracy and that proper selection of those parameters' values produced a 

significantly better classification ratio (CR) when compared with the results without the 

selection process. The results also showed that the optimum value of those four 

parameters were subject-dependent, which suggests that parameters should be 

individualized for each subject. 

4.3.2 Auto Search Algorithm 
for Parameter Selection 

In this work, four data-segment-related parameters were studied and an auto search 

algorithm was developed. The four data-segment-related parameters were the length of 

the data segment in each trial (LDS), with its starting position (SPD), the number of trials 

(NT) and the AR model order (AR Order). Since all the parameters were within a known 

range, an auto search algorithm was used to select the best values of the parameters for 

the highest classification, which was an improved exhaustive search method. The key 
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was to select the proper search step length, such that the total range was covered 

effectively using the least amount of time. The rules for the selective-search algorithm 

were: 

1. Set the search range equal to the total possible range of the parameters, (see Table 1 

for each parameters' search range). 

2. Set the step length to one-fifth the search range and find and record the best 

parameters' values. 

3. Reduce the search length to be 2/5ths of the last search length, centered at the best 

parameters' values, then repeat Step 2. 

4. Repeat Step 3 until the optimum parameters' values do not change or until the step 

length was smaller than 1/100th of the total possible search length. Record the 

optimum parameters' value. 

In each searching round of step 2 and 3, the classification results were recorded and 

the best parameters were those that generated the highest classification ratio (CR). The 

following was the example for the search process of LDS (other parameters were 

searched simultaneously with LDS). In step 1 and step 2, the initial search range of LDS 

was set at 0.1 to 3 s with a length of 2.9s. The searching step was then set as 2.9/5=0.58s. 

Thus, LDS values of 0.1, 0.68, 1.26, 1.84, 2.42 and 3.00s were used. In step 3, suppose 

that the LDS of 1.26s was the best, then, the search length was reset to 2(2.9/5) = 1.16s, 

which centered at 1.26s, leading the range to be 0.68 to 1.84s. Then, Step 2 was repeated 

until the search step was smaller than 1/100th of the total possible search length of 2.9s. 

For the auto search algorithm developed in this work, it was necessary to only set 

the possible search ranges. The system would then automatically decide which of the set 
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parameters was the optimum one. The criterion was giving the highest classification ratio 

(CR) that was defined by Equations (4.1). 

„„ Correctly recognized trials ,A ^ 
CR = , (4.1) 

Total trials recognized 

where the total trials recognized were approximately 160 to 200 for each subject. Table 

4.1 gives the initial search algorithm for each of the parameters studied in this work. 

Further discussion was added in section 4.7. 

Table 4.1 Range of each parameter tested 

Parameter 

LDS(s) 

SPD(s) 

NT 

AR Order 

Range 

0.1-3 

4.5-7.4 

0.3-1.0 

3-15 

ANOVA was performed to compare the CRs for the signals generated from the tripolar 

concentric electrodes and virtual disc electrodes. Statistics were reported as mean ± 

standard deviation with P-values designated to test significance. 

4.3.3 Results and Discussion for 
Data-Segment-Related 
Parameters Selection 

The experiment showed that the LDS, SPD, AR Order and NT significantly 

influenced the CR for the EEG data recorded from the 12 subjects. For these data, the 

optimal values of these parameters to generate the highest CR in EEG-based BCI did 

exist. A selective searching algorithm was capable of finding the optimum values. Our 

results also show that the optimum values of these four parameters were subject-
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dependent, which suggests that, when constructing a model for BCI EEG analysis, 

subject variances should be considered and the parameters should be individually 

customized. 

Though the conclusions were based on the model analyzed for this work, all the 

parameters discussed, other than AR Order, were subject specific. Therefore, it may be 

possible that our conclusions were suitable for other models as well. 

Detailed results and conclusions were provided in Section 4.7, where they were 

discussed together with the BCI classification results. 

4.4 Feature Selection for BCI 

4.4.1 Introduction on Feature 
Selection for BCI 

The first step of pattern recognition was the feature selection, including what 

features were used, what their properties were and how they were used. There were many 

kinds of features that have been attempted to design BCI, such as amplitude values of 

EEG signals (Kaper, et al., 2004), BP (Pfurtscheller, et al., 1997), PSD values (Millan and 

Mourino, 2003), autoregressive (AR) and adaptive autoregressive (AAR) parameters 

(Penny, et al., 2000; Pfurtscheller, et al., 1998), time frequency features (Wang, Deng and 

He, 2004) and inverse model-based features (Qin, Ding and He, 2004; Kamousi, Liu and 

He, 2005; Congedo, Lotte and Lecuyer, 2006). In this work, we used AR model 

parameters, PSD values and BP values for feature selection in the human BCI 

experiments. 
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4.4.2 Feature Selection Using an AR Model 

In statistics and signal processing, an autoregressive (AR) model was a type of 

random process which was often used to model and predict various types of natural 

phenomena. The parameters of an AR model could be used as features for the data it 

models. 

An AR(p) model was defined as Equation (4.2; The notation AR(p) refers to the 

autoregressive model of order p), 

X, =0 + ̂ X^+8,, (4.2) 

where q>x,...q> were the parameters of the model, c was a constant andet was white 

noise. The constant term was often omitted for simplicity. An autoregressive model was 

essentially an all-pole infinite impulse response filter with some additional interpretation 

placed on it. Some constraints were necessary on the values of the parameters of this 

model in order that the model remains stationary. For example, processes in the AR(1) 

model with |cpl| > 1 were not stationary. 

The calculation of the AR parameters was based on parameters^, where i = 1,..., p. 

There was a direct correspondence between these parameters and the covariance function 

of the process and this correspondence can be inverted to determine the parameters from 

the autocorrelation function (which was itself obtained from the covariance). This was 

done using the Yule-Walker Equations (Ben, Bourne and James, 1981; Penny, et al., 2000; 

Burke, et al. 2005): 

p 

Ym=Y,(PkYm-k+^2eSm, (4.3) 
k=\ 
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where m = 0, 1,..., p, yielding p + 1 Equations. ym was the autocorrelation function ofX, 

<7£ was the standard deviation of the input noise process and 8m was the Kronecker delta 

function. Because the last part of the Equation was non-zero only if m = 0, the Equation 

was usually solved by representing it as a matrix for m > 0, thus getting Equations (4.4): 

Yi 

Yl 

Then solve for all <f'. For m = 0, Equation (4.3) turn into Equation (4.5), 

p 

r0
=1Z<pkr-k+<Tl> (4-5) 

k=X 

which allows us to solve for a] . 

Equations (4.3) to (4.5; the Yule-Walker Equations) provide one route to estimating 

the parameters of an AR(p) model, by replacing the theoretical covariance with estimated 

values. One way of specifying the estimated covariance was equivalent to a calculation 

using least squares regression of values Xt on the p previous values of the same series. 

The order of an AR model was essential when using AR model parameter as features 

in the classification. As one can surmise, the AR model can be any order as desired. 

However, it should be as accurate as possible in terms of signal representation. Intuitively, 

it was known that a model order, which was too small, will not represent the properties of 

the signal, where as, a model order which was too high will also represent noise and 

inaccuracies and thus, will not be a reliable representation of the true signal. Therefore, 

methods that will determine the appropriate model order must be used and this problem 

has produced many published works (Akaike, 1974; Parzen, 1974; Rissanen, 1978; 

Yx Y xYx 

Yi Yx Yx 

Yz Yx Yx 

<Px 

(4.4) 
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Hannan and Quinn, 1979; Aufrichtig and Pederson, 1992; Wear, Wagner and Garra, 1995; 

Palaniappan, 2006). 

There were many criteria in the literature for determining the AR Order. Some of 

these were the Akaike Information Criterion (AIC) and Final Prediction Error (FPE) 

(Akaike, 1974) pioneered by Akaike. Other commonly used criteria were the Minimum 

Description Length (MDL), suggested by Rissanen (Rissanen, 1978), Criterion 

Autoregressive Transfer (CAT) by Parzen (Parzen, 1974) and Residual Variance (Wear, 

Wagner and Garra, 1995). The Hannan and Quinn (HQ) (Hannan and Quinn, 1979) 

criterion increases the penalty for large order models to counteract the overfitting 

tendency of AIC. Aufrichtig and Pederson (Aufrichtig and Pederson, 1992) have studied 

AIC, while Palaniappan proposed a genetic algorithm (GA) method (Palaniappan, 2006). 

These methods did not cover all of the AR model order selection problems for the vast 

amount of applications of the AR models. However, they illustrate the importance and the 

necessity for appropriate selection of the AR model. 

In the work of this study, the auto-search algorithm was developed also for AR 

Order selection (see Section 4.3), which showed that for the EEG-based classification, 

AR Order was also subject specific and yet could be set automatically. Additional 

discussion will be conducted in Section 4.6 for the AR model order selection. 

4.4.3 Feature Selection Using 
Spectrum Characters 

The EEG was typically described in terms of (1) rhythmic activity and (2) transients. 

The rhythmic activity was divided into bands by frequency. To some degree, these 

frequency bands were a matter of nomenclature (i.e., any rhythmic activity between 8-12 

Hz can be described as "alpha"), but these designations arose because rhythmic activity 
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within a certain frequency range was noted to have a certain distribution over the scalp or 

a certain biological significance. 

Most of the cerebral signal observed in the scalp EEG falls in the range of 1-20 Hz 

(activity below or above this range was likely to be artifactual, under standard clinical 

recording techniques). Table 4.2 gives the comparison of EEG bands. 

Since different EEG bands were associated with certain mental activities and our 

BCI was based on the analysis of EEG signals associated with the imagination of left-

right hand movements, BP (Pfurtscheller, et al., 1997) and PSD values (Millan and 

Mourino, 2003) maybe suitable for use as features for BCI classification. Figure 4.6 gives 

an example of PSD (a) and BP (b) of left/right hand imaged movement related EEG. The 

figures were generated use 60 trials from one subject and for each trial, the signals 

segment was from 0.5s after stimuli to 3s after stimuli. The spectra were averaged by the 

trial numbers that were used to generate them. In Figure 4.6 (b), The five bands were 10-

12 Hz, 13-14 Hz, 15-20 Hz, 21-24 Hz and 25-28 Hz respectively and shows the plot of 

six channels for each band, with right hand related EEG band power at the top and left 

hand related EEG band power at the bottom. However, they did not yield as good results 

as the AR model. Further discussion presented in Section 4.7, the discussion part of this 

chapter. 
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• Red- Left Hand EEG Spectrum 

• Blue- Right Hand EEG Spectrum 
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Figure 4.6 PSD (a) and BP (b) of left/right hand imaged-movement-related EEG 



Table 4.2 Comparison of EEG bands 
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Type r e 5 ^ D C y Location Normally Pathologically 

Delta up to 4 

frontally in 
adults, 
posteriorly in 
children; 
high 
amplitude 
waves 

• adults slow wave 
sleep 

• in babies 

subcortical lesions 
diffuse lesions 
metabolic 
encephalopathy 
hydrocephalus 
deep midline 
lesions. 

Theta 4 - 7 Hz 

young children 
drowsiness or 
arousal in older 
children and adults 
idling 

focal subcortical 
lesions 
metabolic 
encephalopathy 
deep midline 
disorders 
some instances of 
hydrocephalus 

Alpha :8:- 12 Hz 

Beta 12-30 Hz 

posterior 
regions of : 
head, both 
sides, higher 
in amplitude 
on dominant 
side. Central 
sites (63-c4) 
at rest: 
both sides, 
symmetrical 
distribution, 
most evident 
frontally; 
lowamplitude 

relaxed/teflecting 
closingthe eyes 

:Gamma30—100 + 

alert/working :'"/•• 
active, busy or 
anxious thinking, 
active concentration 

certain cognitive or 
motor functions 

coma 

benzodiazepines 



65 

4.5 EEG Signal Classifier for BCI 

4.5.1 Introduction on EEG 
Signal Classification 
for BCI 

Just as there were many feature extraction methods, there were also many 

classification algorithms that developed for the BCIs, which were divided into five 

categories: linear classifiers, neural networks, nonlinear Bayesian classifiers, nearest 

neighbor classifiers and combinations of classifiers (Lotte, et al., 2007). Among those 

classification algorithms, linear classifiers were probably the most popular algorithms for 

BCI applications. Linear classifiers were discriminant algorithms that use linear functions 

to distinguish classes. Two main kinds of linear classifiers have been used for BCI design, 

namely, linear discriminant analysis (LDA) and support vector machine (SVM). In this 

work, LDA and SVM methods and Mahalanobis distance based classifiers were 

employed for the EEG classification in the human BCI experiments. 

The aim of LDA (also known as Fisher's LDA) was to use hyper planes to separate 

the data representing the different classes (Fukunaga, 1990). For a two-class problem, 

the class of a feature vector depends on which side of the hyperplane the vector was 

located (see Figure 4.7). 
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Figure 4.7 Structure of a Linear Discriminant Analysis 

LDA assumes normal distribution of the data, with equal covariance matrix for both 

classes. The separating hyperplane was obtained by seeking the projection that maximize 

the distance between the means of the two classes and minimize the interclass variance 

(Fukunaga, 1990). 

This technique has a very low computational requirement which makes it suitable 

for online BCI system. Moreover this classifier was simple to use and generally provides 

good results. Consequently, LDA has been used with success in a great number of BCI 

systems, such as motor imagery based BCI (Pfurtscheller and Lopes, 1999), P300 speller 

(Bostanov,, 2004), multi-class (Garrett, et al., 2003) or asynchronous (Scherer, et al., 

2004) BCI. The main drawback of LDA was its linearity requirement that can provide 

poor results on complex nonlinear EEG data (Garcia, Ebrahimi and Vesin, 2003). 

A support vector machine (SVM) also uses a discriminante hyperplane to identify 

classes (Burges, 1998; Bennett and Campbell, 2001). However, concerning SVM, the 

selected hyper-plane was the one that maximizes the margins, i.e., the distance from the 
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nearest training points (see Figure 4.8). Maximizing the margins was known to increase 

the generalization capabilities (Burges, 1998; Bennett and Campbell, 2001). An SVM 

uses a regularization parameter C that enables accommodation to outliers and allows 

errors on the training set. 

O . . j -

support vecior / 

non-optimal 
y hyperplaiie 

x 

x 

/• support vector 

Figure 4.8 Structure of a Support Vector Machine 

Such a SVM enables classification using linear decision boundaries and was known 

as linear SVM. This classifier has been applied, always with success, to a relatively large 

number of synchronous BCI problems (Blankertz, Curio and Muller, 2002; Garrett, et al., 

2003). However, it was possible to create nonlinear decision boundaries, with only a 

small increase in the classifier's complexity, by using the "kernel trick" which consists in 

implicitly mapping the data to another space, generally of much higher dimensionality, 

using a kernel function K(x; y). The kernel generally used in BCI research was the 

Gaussian or Radial Basis Function (RBF) kernel: 



K(x,y) = exp 
( ii n2 A 

- p - y\ 
2a2 
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(4.6) 

The corresponding SVM was known as a Gaussian SVM or RBF SVM (Burges, 

1998; Bennett and Campbell, 2001) RBF SVM have also given very good results for BCI 

applications (Kaper, et al., 2004; Garrett, et al., 2003). As LDA, SVM has been applied to 

multiclass BCI problems using the OVR strategy (Schlogl, et al., 2005). SVM have 

several advantages. Actually, thanks to the margin maximization and the regularization 

term, SVM were known to have good generalization properties (Garrett, et al., 2003; Jain, 

Duin and Mao, 2000), to be insensitive to overtraining (Jain, Duin and Mao, 2000) and to 

the curse-of-dimensionality (Blankertz, Curio and Muller, 2002; Garrett, et al., 2003). 

Finally, SVM have a few hyperparameters that need to be defined by hand, namely, the 

regularization parameter C and the RBF width - if using kernel 2. These advantages were 

gained at the expense of a low execution speed. 

4.5.2 Mahalanobis Distance 
Based Classifier 

Mahalanobis distance based classifiers assume a Gaussian distribution N(uc,Mc) 

for each prototype of the class c . If a matrix X = (x1,x2,...,xN) was defined as the 

feature matrix of N trials, where xt was the feature vector of the ith trial, the 

Mahalanobis distance (Mahalanobis, 1936; Cincotti, et al., 2002, 2003) of a feature 

vector x to X was defined by equation (4.7): 
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where x was the feature vector given in Equations (2), fj, = X =—^xi was the mean 

of X and Mc = E^X - ju\X - juf j was the covariance matrix of X. 

From Equations (4.7) the Mahalanobis distance of x to the left hand related group 

XL and the Mahalanobis distance to the right hand related group XR were determined. 

Then x was classified by the following rules: 

[X, > X „ => right - handed 
L R . (4.8) 

\XL < XR => left - handed 

The Mahalanobis distance based classifier was a simple yet robust classifier and has 

been proven to be suitable for multiclass (Schlogl, et al., 2005) or asynchronous BCI 

systems (Cincotti, et al., 2003). 

4.6 BCI Classification Results 

This work focused on the influence of two main factors in BCI classification. The 

first was the application of a pre-feature selection algorithm. The second was the 

application of tripolar electrodes. 

4.6.1 Influence of Pre-Feature 
Selection Algorithm 

The pre-feature selection algorithm improved the CR by parameter individualization. 

To illustrate the reliance of the CR on the data-segment-related parameters, CRs 

with/without parameter individualization were shown in Figure 4.9. 

The values of the parameters without individualization were LDS = 1.2 s, SPD = 1 s, 

AR Order = 11 s and NT = 1, as recommended by previous works (Palaniappan, 2006; 

Jiruska, et al., 2005; Schroder, Bogdan and Rosenstiel, 2003). The value NT = 1 

represents all of the available data. The averages of CRs with/without parameter 
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individualization were 78.73 ± 3.30 and 57.68 ± 14.99, respectively, as was shown in 

Table 4.3. 

Data set 1 

V \ / — With 
\ / — Without 

W 

U 

1 2 3 4 5 6 7 

Subjects 
9 10 11 12 

Data set 2 

.,---" 

\..~~-**" 
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\ , — -

V 

\ 
\ / 
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/ y """- -~^ 
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/ 
'- f 

10 11 IE 
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Figure 4.9 CR for Data set 1 and 2 with/without parameter individualization 

Table 4.3 CR of the two data sets with/without parameter individualization 

CR Avg. 

CR Std. 

P value 

Data Set 1 

Without 

57.68 

14.99 

With 

78.73 

3.30 

8.7xl0"5 

Data Set 2 

Without 

47.60 

7.68 

With 

68.01 

4.97 

l.OxlO"7 

Another noticeable phnominon in the pre-feature selection is the influence of LDS, 

SPD, AR Order and NT on CR Figure 4.10 shows the influence of LDS (a), SPD (b), AR 

Order (c) and NT (d) on the CR for subject 1, which was indicative of all the subjects. In 

each of the figures, five points around the optimum parameter setting were selected. As 

was shown in 4.10, given (LDS, SPD, AR Order, NT) as (0.3, 0.9, 11, 0.52), respectively, 

a maximum CR of 81.43% was achieved by Data Set 1 (tripolar) and 69.84% was 

achieved by Data Set 2 (virtual disc). However, even if only one of the parameters was 

changed, the CR changed greatly. For example, if LDS was changed (see Figure 4.10 (a)), 

the CR could decrease to as low as 58.1% (Data Set 1) and 58.9% (Data Set 2). 
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(c) Influence of AR Order (d) Influence of NT 

Figure 4.10. The influence of LDS, SPD, Ar Order and NT on CR. The solid traces were 
from Data Set 1 (tripolar) and the dashed traces were from Data Set 2 (virtual disc). 

Another noticeable phenomenon in the pre-feature selection is the subject-

dependency of parameters. As was shown in Table 4.4, each subject achieved their 

highest CR at different LDS, SPD, AR Order and NT, which suggests that the optimum 

parameters were subject-dependent. In Table 4.3, CR1 and CR2 were the CRs for Data 

Set 1 and Data Set 2, respectively. The relative variation (RV) for each of the parameters 

in Table 4.4 was defined by Equations (4.9) 



RV=-^—-xlOO%. 
Mean 

Table 4.4 The subject-dependency of the optimum parameter value 

SubJ 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

CR1 

81.43 

73.89 

80.18 

80.16 

84.23 

77.60 

75.77 

73.49 

79.88 

82.48 

77.87 

77.75 

CR2 

69.84 

59.23 

61.09 

70.06 

72.45 

60.05 

71.23 

69.01 

73.34 

71.39 

70.13 
68.32 

Mean of parameter 

STD. Of parameter 

Relative Variation% 

LDS 

0.30 

1.70 

2.50 

0.70 

1.70 

2.30 

2.0 

2.0 

2.3 

1.9 

1.7 

0.9 

1.6667 

0.69 

41.40 

SPD 

0.90 

2.70 

0.70 

2.30 

0.90 

1.3 

1.9 
2.2 

1.4 

1.0 
0.75 

1.6 

1.47 

0.67 

45.58 

AR Order 

11 

13 

13 

13 

12 

10 

11 

11 

13 

12 

13 

12 

12 

1.04 

8.67 

NT 

0.73 

1.00 

0.94 

1.00 

0.93 

1.00 

0.98 

0.94 

0.94 

1.00 

1.00 

0.97 

0.95 

0.08 

8.42 

4.6.2 Influence of the Application 
of Tripolar Electrodes 

For this work the CR of the two sets of signals from the tripolar concentric 

electrodes and virtual disc electrodes was compared and the auto search algorithm was 

performed for LOD, SPD and AR Order to find the factors that generated the highest CR 

for each data set. 

From Table 4.3, the CR for Data Set 1 (tripolar) was 78.7±3.3% and the CR for 

Data Set 2 (virtual disc) was 68.0 ± 5.0%. There was a significant difference between the 

CR of Data Set 1 using the signals from tripolar concentric electrodes compared to the 

CR of Data Set 2 using signals from the virtual disc electrodes (P = 2.9x10 ) jfcs 
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(4.9) 
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difference could also be seen from Figure 4.10, where the solid traces (from Data Set 

1-tripolar electrodes data) were always higher than the dashed traces (from Data Set 

2-virtual disc data). 

4.7 Conclusion and Discussion 

4.7.1 Improved BCI Classification 
by Pre-Feature Selection 

Just as Millan, et al. reported that there was a set of relevant EEG features that best 

differentiate spontaneous motor-related mental tasks (Millan, et al., 2002a), the present 

study showed that there was a set of data-segment-related parameters that achieved the 

best CR for each subject (Cao, Besio and Jones, 2009b). Figure 4.10 shows that the data-

segment-related parameters LDS, SPD, AR Order and NT strongly influenced CR. A 

slight change of these parameter values might generate a great change in CR. Accordingly, 

proper selection of the four segment-related parameter values generated significantly 

higher CR (Table 4.2). The average CR generated from Data Set 1 with the 

individualization of the four data-segment-related parameters was 78.73 ±3.3%, which 

was comparable to the improved ARX model which was 79.10 ±3.9% (Burke, et al., 

2005). However, this significant improvement was achieved without increasing the 

complexity of the AR model or classification algorithms. It should still be possible to 

increase the complexity of the signal processing algorithms and further improve the CR. 

Furthermore, Table 4.4shows that the parameters concerned with segments of data 

were best for the recognition were subject-dependent. This dependence may be caused by 

variations in reaction rates, concentration and motor imaging capabilities from subject to 

subject. In Table 4.4, the RV of LDS and SPD were very high, which suggests that those 
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two parameters were strongly subject-dependent. The RV of the AR Order was relatively 

small, which may be due to the AR Order partial dependence on the complexity of the 

waveform (Burke, et al., 2005). Experiments also showed that the AR Order may depend 

on the number of trials and the length of the data segment that were used to construct the 

model. Usually, the larger the number of trials and segment length, the higher the AR 

model order. The low RV of NT can be explained in the following ways. The optimum 

value of NT depends on two factors. First, how many trials were available and second, 

how many suitable trials were available. Due to the limited number of trials in the model 

construction (only 240 for each subject), the selective-search algorithm has difficulty 

finding the upper limit of NT. However, for seven of the subjects, less than the maximum 

trials available (1.00) were used, suggesting that the selection of NT was necessary. 

Since the value of LDS, SPD, AR Order and NT were all within a limited range, the 

selective-search algorithm approach was suitable to find the best data-segment-related 

parameter values for the BCI classification system. However, the segments of the data 

selected were continuous. If the selected data segments were discontinuous, there might 

have been a better selection of features and a further affect on the CR. 

In this work, we also tested the features of BP (Pfurtscheller, et al., 1997) and PSD 

(Millan and Mourino, 2003). The results using those features in this work gave similar or 

even slightly lower CR (averaged 75.5 and 68.0 for Data Set 1 (tripolar) and Data Set 2 

(disc) respectively) compared with the AR model results. Therefore, it appears that using 

AR model coefficients as features was more appropriate for our data. However, no matter 

which method we used for feature extraction, the data segment selection still greatly 

influenced the CR. 



75 

In conclusion it was found that the LDS, SPD, AR Order and NT had significant 

influence on CR for the EEG data recorded from the 12 subjects. On this data, the 

optimal values of these parameters to generate the highest CR in EEG-based BCI did 

exist. An auto selective searching algorithm was suitable for finding the optimum values. 

Our results showed that the optimum values of these four parameters were subject-

dependent, which suggests that when constructing a model for BCI EEG analysis, subject 

variances should be considered and the parameters should be individually customized. 

Though the conclusions were based on the model analyzed for this work, all the 

parameters discussed were subject specific. Therefore, our conclusions may be suitable 

for other models as well. The study also shows that signals from concentric tripolar 

electrodes generate significantly higher CR than signals from conventional disc 

electrodes. More subjects should be analyzed in the future to see if the same conclusions 

were valid. Nonconsecutive data segments should also be analyzed. 

Due to time constraints, the length of the segments of data to search was limited. If 

the incremental step were decreased further the results may change. Moreover, the order 

in which the data were recorded from the subjects was always the same. Four 120-trial 

recordings were performed first with the tripolar concentric electrodes and then repeated 

with the virtual disc electrodes. For future work, signals from more subjects will be 

recorded with the order in which the electrodes were used randomized. 

4.7.2 Improved BCI Classification 
by Application of Tripolar 
Electrodes 

A noticeable phenomenon was that while using the same processing methods, the 

CRs of Data Set 1 were significantly higher than those from Data Set 2 (Table 4.2). This 
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difference may be due to the high signal-to-noise ratio and better spatial resolution of the 

tripolar electrodes that were used for the EEG signal acquisition of Data Set 1 (Besio et 

al., 2006b). 

Tripolar concentric electrodes have been shown to possess significantly higher 

signal-to-noise ratio, spatial resolution and less mutual information than conventional 

electrodes and can realize the Laplacian method from each single electrode (Besio et al., 

2006b; Koka and Besio, 2007; Besio, Cao and Zhou, 2008; Cao, Besio and Jones, 2009a, 

2009b). It was beneficial that there was a significant improvement in CR between the two 

data sets - the difference was 10.7 + 4.7%. The CR of the signals from the tripolar 

concentric electrodes was significantly better than the signals from the virtual disc 

electrodes (P = 2.9 xlO"6). 

Using the Laplacian of the potentials has been shown to be effective in EEG 

classification (Babiloni, et al., 2000; McFarland, et al., 1997). To carry out the surface 

Laplacian, interpolation must be performed on the scalp surface potentials and then the 

second spatial derivative of the interpolated potentials must be calculated. Performing the 

interpolation of the potentials and the second spatial derivative of the potentials may be 

taxing for real-time processing of EEG for BCI applications. Since the tripolar concentric 

electrodes directly acquire Laplacian potentials and were easily combined with simple 

math (Eq. 3.9) they may be suitable for use in real-time BCI applications. However, twice 

as many amplifiers were needed for tripolar concentric electrodes than for disc electrodes. 

For this work, only two sensing electrodes were used to acquire the EEG. With what 

might be termed basic signal processing, CRs comparable to those produced with more 

complex signal processing were achieved (Penny, et al., 2000). Because signal sources 
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for imagery were primarily localized to the sensorimotor cortex, clustering concentric 

electrodes around those areas may produce more useful features and higher CR. It was 

also possible to perform more complex signal processing on the signals from the tripolar 

concentric electrodes to increase the CR. 

There was evidence that not all of the imagery signals come from a single area 

(Roland, Larsen and Lassen, 1980). Recently Wang, et al. reported methodology that 

included coactivated areas of the brain during imagery (Wang, Hong and Gao, 2007). 

They found that a three conventional electrode configuration over C3, FCz and C4 

outperformed a conventional 30 electrode system. They suggest that the signals at FCz 

act as a reference to derive stronger differences in the left and right signals from C3 and 

C4. The coactivated areas may have been one reason why McFarland, et al. found that a 

larger Hjorth-type Laplacian performed better than a smaller configuration. The 

coactivated area may have been outside of the surface area of the smaller Laplacian 

configuration. Tripolar concentric electrodes could also be placed over the coactivated 

areas, as was performed by Wang, et al. to acquire signals from coactivated areas 

To sum up, the application of tripolar electrodes in BCI has following influence: 

1. The CR, using tripolar concentric electrodes signals, was significantly better than 

that from virtual disc electrode signals. 

2. Improvements in CR comparable to those obtained by Burke, et al. were achieved 

without performing complex feature extraction and classification algorithms. 

3. Each individual had a specific LOD, SPD and AR Order, which gave the best 

classification accuracy. 
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4. When building the BCI model for analysis of EEG, it may be beneficial to consider 

subject variances, with the factors individually customized before feature extraction. 



CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusions of the Work 

5.1.1 Application of Tripolar 
Electrodes 

Tripolar concentric ring electrodes were found to have the following fundamental 

advantages, compared to disc electrodes 

1. Higher signal to noise ratio (SNR); 

2. In particular, higher common mode noise rejection; 

3. Higher spatial sensitivity; 

4. Less mutual information. 

Tripolar Electrodes were found to have better separation results over disc electrodes 

when applied to ICA for EEG signal separation, in terms of both the fidelity of the signals 

recovered and the CR. This advantage may be a result of several factors: 

1. The higher spatial resolution causes the ICA results to be more sensitive to the source 

spatial distribution and it provides more uncorrelated/less mutual information signals 

for ICA. 
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2. The higher signal to noise ratio (SNR), especially higher common mode noise 

rejection of tripolar electrodes, compared to disc electrodes, reduces the effects of 

noise. 

For a more detailed description, see section 3.4.2, 'Why tripolar electrodes give 

better IC A'. 

The application of tripolar electrodes to BCI for EEG classification demonstrated 

the following results and advantages over disc electrodes: 

1. The CRs from tripolar concentric electrodes signals were significantly larger than 

those from virtual disc electrode signals. 

2. Improvements in CR comparable to those achieved by Burke, et al. were obtained, 

without performing complex feature extraction and classification algorithms. 

For a more detailed description, please see section 4.7.2 'Improved BCI 

Classification by Application of Tripolar Electrodes.' 

5.1.2 Conclusions for ICA 

The ICA studies revealed several guidelines for the selection of the number of 

electrodes when using EEG signals for signal separation: 

1. The number of independent sources recoverable by the ICA algorithm developed 

in this chapter was no more than the number of electrodes used in ICA. 

2. More electrodes will slightly improve the separation results when the number of 

electrodes was greater than or equal to the number of sources, thus the work 

suggested that the number of electrodes should be one greater than the expected 

number of independent source signals when processing ICA. 

3. The number of electrodes should not be less than the number of sources. 
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4. Because the number of independent components was not known a priori, the 

number of electrodes should be increased if the number of independent 

components was equal to the number of electrodes. Otherwise, it was not 

possible to know whether the number of independent components obtained by 

the ICA was limited by the number of electrodes or by the number of 

components in the EEG. 

5. The number of electrodes should be slightly larger than the number of 

independent sources. 

The ICA studies revealed that the separated components had the following features: 

1. Source signals that function independently (not being controlled by other source 

signals) will be considered as independent source signals and will be separated 

as ICA components, even if they were the same kind of signals with the same 

frequency and amplitude. 

2. Signals with exactly the same time series wave pattern, differing only in 

amplitude, will be considered as identical signal patterns, regardless of how 

many were present and where they were located. 

3. Signals that depend on other sources (i.e. that were linear combinations of other 

sources) will not be found. 

4. Sources with relatively strong signal/amplitude were more readily separated by 

ICA. 

The ICA results demonstrated the following factors related to the effect of signal-to-

noise ratio: 

1. Common mode noises could not be separated, since they do did not differ 
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spatially. Thus, they have the strongest negative impact on ICA separation. 

2. Noises from a single source can be seen as an independent source. Thus the ICA 

process does not depend on the pathway through which the signal was produced 

on the electrodes. 

5.1.3 Improved Four-Layer 
head model 

In this work, an improved four-layer anisotropic concentric head model was 

developed. The following was a summary of this four-layer head model: 

1. It can calculate the dipole-simulated sources with electrodes (tripolar or disc) placed 

at any position on the surface of the head. 

2. It can calculate the head surface EEG and Laplacian EEG (LEEG) with high speed. 

3. The dipole sources could be placed at arbitrary positions within the inner most layer 

of the head model. 

4. The vector moments of the dipole sources can be oriented in any direction with 

arbitrary amplitude. 

5. The radial and tangential conductivity of each layer can be set to adjust for different 

in vivo conditions. 

5.1.4 Pre-feature Selection 
Method for BCI 

Pre-feature selection was the data-segment related parameter selection. The study of 

this work showed that the pre-feature selection was as important as feature extraction and 

feature selection. The following conclusions can be made about pre-feature selection: 

1. The LDS, SPD, AR Order and NT significantly influenced CR for the EEG data 

recorded from the 12 subjects; 
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2. For these data, optimal values of these parameters to generate the highest CR in EEG 

based BCI did exist; 

3. Since all the data-segment-related parameters were within a limited range, an auto 

selective searching algorithm was suitable for finding the optimum values; 

4. Our results showed that the optimum values of these four parameters were subject-

dependent; 

5. As a consequence of conclusion 4, when constructing a model for BCI EEG analysis, 

subject variances should be considered and the parameters should be individually 

customized; 

6. Although the conclusions were based on the model analyzed for this work, all the 

parameters discussed were subject-specific. Therefore, when building the BCI model 

for analysis of EEG, it may be beneficial to consider subject variances, with the 

factors individually customized before feature extraction. 

5.2 Future Work 

This dissertation lays a foundation for the application of tripolar electrodes to a BCI. 

Further work will be necessary to implement this application, to further study the effects 

of different electrode types and to further improve the overall functionality. Some of this 

work was described in this section. 

5.2.1 Improvement of Tripolar 
Electrodes 

The electrode size and ring distribution could be better designed. As was shown in 

Figure 4.3, the diameter of the tripolar electrodes used in the study of BCI classification 

was 10 mm, while the width of each ring of the electrodes was 1 mm. In the development 
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of the tripolar rings (Besio, et al., 2006a, 2006b), (Koka and Besio, 2007), the outer 

concentric ring ranged from 5 to 36 mm in diameter, with the disc and middle ring sized 

proportionally from 0.4 to 5mm and 2.5 to 10 mm, respectively. These were tested and 

shown to yield different results. Thus, if more electrode sizes and different ring 

distributions were tried, the resulting EEG classification might generate better results. 

The placement of the electrode positions could also be better designed. In the BCI 

study in this work, only two electrodes were placed at positions C3 and C4, as shown in 

Figure 4.3. (b). However, not all the internal activities of the brain were reflected in those 

two positions, thus, more electrodes with reasonable positions could be tested that may 

generate better EEG classification. 

5.2.2 More on BCI 

More feature extraction methods could be studied and employed. In the BCI study in 

this work, AR model parameters, PSD values and BP values for feature selection were 

studied. However, many other features have been studied for BCI design, such as 

amplitude values of the EEG signals, adaptive autoregressive (AAR) parameters, time 

frequency features and inverse model-based features. A subset of these features may be 

able to generate better EEG-based BCI classification results. 

More classification methods should be tried. Since only two classification tasks were 

considered in this BCI study, linear discriminant analysis (LDA) and support vector 

machine (SVM) method and Mahalanobis distance-based non-linear classifiers were used. 

Many other classifiers could be considered, such as neural networks, nonlinear Bayesian 

classifiers, nearest neighbor classifiers and combinations of classifiers. Those methods all 

have their specific advantages over each other. For example, the neural networks were 
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more suitable for the non-linear complicated EEG signals. Thus, more classification 

methods should be tried for multi-tasked EEG based BCIs. 

Hardware of BCI application should be designed. As described in the beginning of 

Chapter 4, BCI functions were divided into three parts, signal acquisition, signal 

processing and classification/translation and the BCI application. This dissertation 

focuses mainly on the first two parts of the Hardware and Software description BCI. To 

fully test the BCI, the hardware of the BCI application should also be developed and 

tested in combination with the former two functional parts. 

5.2.3 Improvement of 
Pre-Feature 
Selection 

Firstly, the pre-feature selection could be applied in other parameter selections. In 

the study of this BCI concept, it was shown that the pre-feature selection was as 

important as feature extraction and feature selection. However, due to the feature 

extraction method and classification algorithm used in this EEG-based BCI, only four 

data segment related parameters were tested: LDS, SPD, NT and AR Order. If other 

feature extraction methods and classification algorithms were used, it may be useful to 

incorporate new data segment-related parameters into the pre-feature selection. 

Secondly, the search algorithm for pre-features selection could be improved. Though 

the auto-searching algorithm developed in this work can automatically search for 

optimum parameters for the BCI and was easy to use, the length of the searching steps 

and searching speed were inversely related. Thus, a shorter length of searching steps and 

high searching speed could not be achieved simultaneously. Better and more complicated 

algorithms could be developed to achieve faster searching speed and higher accuracy. 



APPENDIX 

MATLAB CODE FOR ICA AND COMPUTER HEAD MODEL 

• function Cnew,rz,ry]=ChangeCordinates(Cold,Cc,bCold,bCc,bInverse) 

%this function rotates the coordiantes system around z axis by positive thita=Cc(l), 

%then continues to rotate the system around y axis positive phi=Cc(2), 

%by doing those two steps changing the original coordinates to the new 

%coordinates such that the Z axis pass the point Cc. 

%blnverse do the rotation mentioned above inversely, which change the new 

%coordinates back to the old ones. 

%Cold and Cc could be in spheric or 

%cartesian coordinates, which was defind by bCold and bCc respectively.pheric 

coordinate^ 1,default) or in Cartesian coordinate(=0) 

%Cold=[n*3] were the coodinates of the points in the original system 

%Cnew=[n*3] were the coodinates of the points in the new system 

%rz,ry were the rotation matrix around z and y direction seperately. 

if nargin<5 

blnverse=0;%the default was in the forward rotation, that was, from old to new 

coordinates 

end 

ifnargin<4 
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bCc=l; 

end 

ifnargin<3 

bCold=l; 

end 

ifbCold==l 

Cold(:,2)=pi/2-Cold(:,2);% PHI was the elevation angle from the xy plane, change it to 

from z axis 

[Cold(:,l),Cold(:,2),Cold(:,3)]=sph2cart(Cold(:,l),Cold(:,2),Cold(:,3)); 

end 

if blnverse % see if it was the backward rotation 

%set the change matrix for the rotation of z axis 

ra=-Cc(l); 

rz=[cos(ra) -sin(ra) 0 

sin(ra) cos(ra) 0 

0 0 1]; 

%set the change matrix for the rotation of y axis 

ra=-Cc(2); 

ry=[cos(ra) 0 sin(ra) 

0 1 0 

-sin(ra) 0 cos(ra)]; 
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n=size(Cold,l); 

Cnew=zeros(n,3); 

for i=l:n 

%rotation around y axis 

Cnew(i,:)=(ry*(Cold(i,:)'))'; 

%rotation around z axis 

Cnew(i,:)=(rz*(Cnew(i,:)'))'; 

end 

else% if blnverse 

%set the change matrix for the rotation of z axis 

ra=Cc(l); 

rz=[cos(ra) -sin(ra) 0 

sin(ra) cos(ra) 0 

0 0 1]; 

%set the change matrix for the rotation of y axis 

ra=Cc(2); 

ry=[cos(ra) 0 sin(ra) 

0 1 0 

-sin(ra) 0 cos(ra)]; 

n=size(Cold,l); 
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Cnew=zeros(n,3); 

for i=l:n 

%rotation around z axis 

Cnew(i,:)=(rz*(Cold(i,:)*))'; 

%rotation around y axis 

Cnew(i,:)=(ry*(Cnew(i,:)'))'; 

end 

end% if blnverse 

%%if the to be changed points were given in spheric coordinates, then the 

%%return points should also in spheric coordinates 

ifbCold=l 

[Cnew(:,l),Cnew(:,2),Cnew(:,3)]=cart2sph(Cnew(:,l),Cnew(:,2),Cnew(:,3)); 

Cnew(:,2)=pi/2-Cnew(:,2);% PHI was the elevation angle from the xy plane, change it 

to from z axis 

end 

% %set the thita in (-pi,pi) 

% n=size(Cnew,l); 

%fori=l:n 

% thita=Cnew(i,l); 



% ifthita>pi 

% Cnew(i,l)=Cnew(i,l)-2*pi; 

% end 

% if thita<-pi 

% Cnew(i,l)=Cnew(i,l)+2*pi; 

% end 

% end 

• function (W,S,Erro,iterN)=FixPointAlgor(x,tol,MaxIterN) 

%for a random vector x=(xl,x2,...,xn)',xi were mutually uncorrelated and all have unit 

variance==>E(x * x')=I 

%The program was used to get W=(wl,w2,...wn), which si=(wi)'*x was one of the 

seperated 

%source, while W=(wl,w2,...,wn) was an orthogonal matrix 

%MaxIterN was presetted max number of iteration,default value was 100 

%tol was the erro 

%S=(sl,s2,....) were the seperated coponents 

%get the size and initial wO so that norm(w0)=l 

(n,m)=size(x); 

w0=zeros(n,l); 

w0(l)=l; 

%decide the size of W 

W=zeros(n,n); 



Erro=zeros(n,l); 

iterN=zeros(n,l); 

fori=l:n 

wO^zerosfn,!); 

wO(l)=l; 

B=W(:,l:i); 

ifi>l% 

wO=wO-B*B'*wO; 

end 

while iterN(i)<MaxIterN 

wl=kurt(x,wO); 

if i> 1 &&iterN(i)< 10 

wl=wl-B*B'*wl; 

end 

w 1 =w 1/norm(w 1); 

Erro(i)=abs(abs(wl '* wO)-1); 

ifErro(i)<tol 

break; 

end 

wO=wl; 

iterN(i)=iterN(i)+l; 

end% while iterN<MaxIterN 

W(:,i)=wl; 



end%for i=l:n 

S=W**x/2; 

• function 

(PL,PDisc,Pc,PMiddle,POut)=FourLayerHeadModel(DipPos,DipMPos,Ec,r,Layer, 

ps,yita,Er,bEc,np) 

%This function get the Laplacian electrode and disc electrode Potential 

%generated by a unit bipolar source inside the four layer concentric spher 

%head model.The dipole moment can be in any direction 

%DipPos was the dipole center coordinates, in spheric 

%coordinates(theta,phi,r) 

%DipMPos was the dipole moment vector, it was from the center of the dipole to the 

positive of the dipole 

%Ec was the center coordinates vector of the electrodes, was n*3 

% r was the radius of the rings(rout,rmid), r=0 when it was a disc electrode. 

% Layer=(75,71,65,63);%the thickness of each layer,from outer to inner 

% eps=(0.33,0.0042,l,0.33);%the radial conductivity of each layer 

% yita=(0.44,0.0084,l ,0.33);%the tangential conductivity of each layer 

%Er was the accuracy that needed 

%bEc specify if the electrode position were given in pheric coordinate(=l,default) or in 

Cartesian coordinate(=0) 

% np was the number of points that was going to be used for the points on each 

electrode,default n=60 



% PL was the Laplacian Potential for tripolar electrodes, 

% PDisc was potential for disc electrode. 

%Pc,PMiddle,POut were the center, middle ring, outer ring potential 

dm=(DipMPos(l)A2+DipMPos(2)A2+DipMPos(3)A2)A0.5;%Get the dipole 

value, 

%default n=60 

if nargin<10 

np=60; 

end 

%default electrode position were given in pheric coordinate 

if nargin<9 

bEc=l; 

end 

%default accuracy that needed 

if nargin<8 

Er=10A(-3); 

end 

%default tangential conductivity of each layer 

if nargin<7&&nargin>5 

yita=eps; 

end 

%defaultradial conductivity of each layer 

if nargin<6 



94 

eps=(0.33,0.0042,l,0.33); 

yita=eps; 

end 

if nargin<5 

Layer=(75,71,65,63);%the thickness of each layer 

end 

if nargin<4 

r=(0.9,0.5);%set the tripolar electrodes radius 

end 

%test if the electrode was tripolar or bipolar 

rl=length(r); 

if rl==2%tripolar 

rl=r(l);%outer ring 

r2=r(2);%middle ring 

end 

%get the number of the electrodes 

nElectrode=size(Ec,l); 

nTotalPoints=nElectrode * (2 *np+1); 

Pr=zeros(nTotalPoints,l);%fhe four layer scalp potential of dl dipole-mement values on 

2*n+l points 

SurPos=zeros(nTotalPoints,3);%positions of 2*n+l points 

%get the coordinate of the points on the electrode rings 
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for i=l :nElectrode 

SurPos((2*np+l)*(i-l)+l:(2*np+l)*(i-

l)+np,:)=GetElectrodePoints(Ec(i,:),rl,l,np);%the ourter ring points 

SurPos((2*np+l)*(i-l)+np+l:(2*np+l)*(i-

l)+2*np,:)=GetElectrodePoints(Ec(i,:),r2,l,np);%the middle ring points 

SurPos((2*np+l)*(i-l)+2*np+l,:)=Ec(i,:);%the disc position 

end 

%change the coordinates of the points according to the dipole position 

SurPos=ChangeCordinates(SurPos,DipPos,l,l); 

%get the new coordinates of the dipole moment 

DipPosCar=DipPos;%get the Cartician coordinates of the Dip 

DipPosCar(:,2)=pi/2-DipPosCar(:,2);% PHI was the elevation angle from the xy plane, 

change it to from z axis 

(DipPosCar(l),DipPosCar(2),DipPosCar(3))=sph2cart(DipPosCar(l),DipPosCar(2),DipP 

osCar(3)); 

DipMPos=DipMPos+DipPosCar; 

(DipMPos(l),DipMPos(2),DipMPos(3))=cart2sph(DipMPos(l),DipMPos(2),DipMPos(3) 

); 

DipMPos(:,2)=pi/2-DipMPos(:,2);% PHI was the elevation angle from the xy plane, 

change it to from z axis 

DipMPos=ChangeCordinates(DipMPos,DipPos); 



%change the coordinate system such that the dipole moment will be in the 

%x=0 plan 

RotAngle(l)=-(pi/2-DipMPos(l));%rotate the coordiantes system around z axis by 

thita=RotAngle(l) 

RotAngle(2)=0;%no rotation around y axis 

RotAngle(3)=l; 

SurPos=ChangeCordinates(SurPos,RotAngle); 

DipMPos=ChangeCordinates(DipMPos,RotAngle); 

%get the tangential and radial components of the dipole source 

DipM(l)=DipMPos(3)*cos(DipMPos(2))-DipPos(3);%the radial component 

DipM(2)=DipMPos(3)*sin(DipMPos(2));%the tangential component 

%DipM(l)=l; 

% DipM(2)=0; 

% DipM=DipM 

%set the position of the dipole to be on the z axis 

DipPos(l)=0; 

DipPos(2)=0; 

%get the potential of the dipole on every points of the ring 

Pr=GetFourLayerDP(DipPos,DipM,SurPos,Layer,eps,yita,Er); 

for i=l :nElectrode 

POut(i)=mean(Pr((2*np+l)*(i-l)+l:(2*np+l)*(i-l)+np));%get the potential of the 

outer ring 
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PMiddle(i)=mean(Pr((2*np+l)*(i-l)+np+l :(2*np+l)*(i-l)+2*np));%get the potential 

of the middle ring 

Pc(i)=Pr((2*np+l)*(i-l)+2*np+l);%get the potential of the center 

end 

%calculate the Laplacian potential 

for i=l :nElectrode 

PL(i)=16*(PMiddle(i)-Pc(i))-(POut(i)-Pc(i)); 

PDisc(i)=mean(Pr((2*np+l)*(i-l)+l:(2*np+l)*i)); 

end 

• function (S,Y,covY,RankS,wO,wl ,w2,erro)=ICA(x,TolC,TolF,NF) 

%this function seperate x(n,m)=(xl,x2,....)' to S(l,m)=(sl,s2,...)' 

%where n was the number of signals, m was the length of each signal 

%x must be uncorrelated, contain at most one Gauss signal and linearly 

%sythesization of si 

%TolC was the tolerance of the PCA to determine the rank of the S 

%TolF and NF were the tolerance and max iteration number use in the FixPoint 

algorithm 

%Y was the PCA of x 

%covY was the covariance of Y 

%RankS was the number of necessary principle components 

%wO,wl,w2,Y,RankS were used in x=wO*wl'*(S*w2,Y(RnkS+l:n,:))'; 

%erro was the erro returned in the ICA calculation, if too big, method failed 
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ifnargin<4 

NF=100; 

end 

if nargin<3 

TolF=10A(-5); 

end 

if nargin<2 

TolC=l ;%default was all possible numbers 

end 

copn=size(x,l);%the number of the signals 

meanx=mean(x');%The mean of the received signal has to be zero, 

for i=l:copn 

x(i,:)=x(i,:)-meanx(i); 

end 

%use PCA to get Y 

(wO,z,lt)=princomp(x');%x here was x=(xl,x2,...,xn)'; 

Y=wO'*x; 

covY=cov(Y'); 

DCY=diag(covY); 

wc=length(wO); 

wl=zeros(wc); 

for i=l:wc 



99 

wl(i,i)=l/sqrt(DCY(i)); 

end 

Y=wl*Y;%variance of Y should be 1, but mean should not be zero. 

% wl=wl 

% varY=var(Y') 

% covY=cov(Y') 

% meanY=mean(Y') 

%calculate the rank of the S 

RankS=0; 

Pvalue=0; 

TotalValue=TolC*sum(DCY); 

while Pvalue<TotalValue 

Pvalue=Pvalue+DCY(RankS+l); 

RankS=RankS+l; 

ifRankS==copn 

Pvalue=Pvalue; 

break; 

end 

end 

Yl=Y(l:RankS,:); 



(w2,S,erro,N)=FixPointAlgor(Yl,TolF,NF); 

S=-S; 

% %calculate the transform matrix A, S=Ax 

% copn=copn 

% ERanks=zeros(RankS,copn); 

%fori=l:RankS 

% ERanks(i,i)=l 

% end 

% RankS=RankS 

% wO=wO 

% wl=wl 

% w2=w2 

% 

% A=w2'*ERanks*wl*wO' 
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