Shape reconstruction and classification using the response matrix

Wei Wang

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations
Part of the Applied Mathematics Commons, and the Computer Sciences Commons

SHAPE RECONSTRUCTION AND CLASSIFICATION USING THE RESPONSE MATRIX

by

Weı Wang, B S, M S

A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree
 Doctor of Phılosophy

COLLEGE OF ENGINEERING AND SCIENCE LOUISIANA TECH UNIVERSITY

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted Also, if material had to be removed, a note will indicate the deletion

UMI 3459550
Copyright 2011 by ProQuest LLC All rights reserved This edition of the work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC
789 East Eisenhower Parkway
PO Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

04/07/2011
We hereby recommend that the dissertation prepared under our supervision
Wei Wang
entuled
Shape Reconstruction and Classification using the Response Matrix Wei Wang
entutled \qquad
Shape Reconstruction and Classification using the Response Matrix
be accepted in partial fulfillment of the requirements for the Degree of Ph D in Computational Analysis and Modeling

Department

Approved

Abstract

This dissertation presents a novel method for the inverse scattering problem for extended target The acoustic or electromagnetic wave is scattered by the target and received by all the transducers around the target The scattered field on all the transducers forms the response matrix which contains the information of the geometry of the target The objective of the inverse scattering problem is to reconstruct the shape of the scatter using the Response Matrix

There are two types of numerical methods for solving the inverse problem the direct imaging method and the iterative method Two direct maging methods, MUSIC method and Multi-tone method, are introduced in this dissertation The direct imaging method generates the image, which contains the shape of the target, by defining the mage function using the response matrix Numerical examples show that the two direct maging methods are efficient and robust, and the Multi-tone method can be used in synthetic aperture

The iterative method described in this dissertation achieves better accuracy than the direct imaging method The result of the direct imaging method of the inverse problem is used as an initial estimation for this iterative method One forward problem and one adjoint problem is solved in each iteration step Numerical results show that the residual vanishes at a fixed wave number The final result after iterations is more accurate than the result from the direct imaging method

This dissertation also introduces the application of the inverse problem shape identification and classification The response matrix used in shape classification can be generated by the forward solver or Born approximation The distance function designed using a response matrix or its SVD information is effective and robust to noise The classification method using the response matrix is tested on a large data set and compared with other classification algorithms on the retrieval accuracy

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to reproduce, by appropriate methods, upon request, any or all portions of this Dissertation It is understood that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction is for his personal use and that subsequent reproduction will not occur without written approval of the author of this Dissertation Further, any portions of the Dissertation used in books, papers, and other works must be appropriately referenced to this Dissertation

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at any time, any or all portions of this Dissertation

Author
Wang War

Date 05/03/2011

DEDICATION

This dissertation is dedıcated to my parents for their unconditional love and support all the way in my life

TABLE OF CONTENTS

ABSTRACT 111
LIST OF FIGURES 1X
NOMENCLATURE xil
ACKNOWLEDGEMENTS xv
CHAPTER 1 INTRODUCTION 1
11 The Dırect Scatterıng Problem 1
12 The Inverse Scattering Problem 3
13 Research Objectıves 7
14 Organization of the Dissertation 7
CHAPTER 2 FORWARD PROBLEM 9
21 Basıc Conceptıon 9
22 The Helmholtz Equation 10
23 Scattering from an Obstacle 13
24 Numerical Solution in \mathbb{R}^{2} 16
25 Numerıcal Experıments 20
26 Summary for Forward Solver 23
CHAPTER 3 DIRECT METHOD FOR INVERSE PROBLEM 24
31 Introduction of Inverse Problem 24
32 Property of the Response Matrix 25
33 The MUSIC (MUltıple SIgnal Classsfication) Algorithm 28
34 Examples for MUSIC method 30
35 Direct Imaging Method using Multı-frequency Data 31
36 Summary for Direct Imaging 33
CHAPTER 4 ITERATIVE METHOD FOR INVERSE PROBLEM 34
41 Image Processing and the Level Set Representation 34
42 Recursive Linearızation 37
43 Iteratıve Algorıthm 40
44 Numerical Experıments 42
45 Summary for Iterative Imaging 48
CHAPTER 5 SHAPE CLASSIFICATION 49
51 Basıc Concepts 49
52 Response Matrix and Singular Value Decomposition 50
53 Algorithms for Shape Classification 52
54 Response Matrıx by Forward Solver using Nystrom Method 53
55 Response Matrıx by Born Approxımatıon 64
56 Frequency Filterıng 69
57 Face Recognition 73
58 Retrieval Rate on the MPEG-7 Shape Data Set 73
59 Summary for Shape Classification 76
CHAPTER 6 CONCLUSIONS 77
BIBLIOGRAPHY 78

LIST OF FIGURES

Figure 21 Generatıng the response matrix 9
Figure 22 Flower shape 20
Figure 23 Convergence of the Nystrom method 21
Figure 24 Two arbitrary shapes 22
Figure 31 Full aperture and limited/synthetic aperture 25
Figure 32 Resolution vs target size Point target 27
Figure 33 Resolution v s target size Small target 27
Figure 34 Resolution vs target slze Extended target 27
Figure 35 Imaging extended target with Dirichlet BC 30
Figure 36 Multı-tone method on synthetic aperture 32
Figure 41 Flow diagram of the iterative method 41
Figure 42 Iteratıve method experıment Flower, imitial 42
Figure 43 Iteratıve method experıment Flower, middle 43
Figure 44 Iterative method experıment Flower, final 43
Figure 45 Iterative method experıment for two flowers (a) 44
Figure 46 Iterative method experiment for two flowers (b) 45
Figure 47 Iterative method experiment for two flowers (c) 45
Figure 48 Iterative method experıment for two flowers (d) 46
Figure 49 Iterative method experıment for two flowers (e) 46
Figure 410 Iteratıve method experıment for two flowers (f) 47
Figure 51 Chinese character comparıson 54
Figure 52 Chinese character comparison, matched case 55
Figure 53 Chinese character comparison, different fonts 55
Figure 54 Chinese character comparıson, different characters 56
Figure 55 Curve comparısons 56
Figure 56 Long curve vs long curve 57
Figure 57 Long curve vs short curve 57
Figure 58 Search "Wang" in library, no noise 58
Figure 59 Search "Wang" in library, no noise 59
Figure 510 Search "Wang" in library with 50% noise, part 1 60
Figure 511 Search "Wang" in library with 50% noise, part 2 61
Figure 512 Search "Wang" in library with 50% biased noise, part 1 62
Figure 513 Search "Wang" in library with 50% biased noise, part 2 63
Figure 514 Reference shape "apple-1" 65
Figure 515 Reference shape "bat-1" 66
Figure 516 Reference shape "lizard-1" 67
Figure 517 Reference shape Chınese characters 68
Figure 518 Frequency distrıbution 69
Figure 519 Five classes Orıginal 70
Figure 520 Five classes using distance function d_{1} 71
Figure 521 Five classes using distance function d_{2} 72
Figure 522 Face recognition 73

Figure 523 MPEG-7 comparison for "apple-1" 75

NOMENCLATURE

u the total field
u^{2} the incident field
$u^{s} \quad$ the scattered field
$P \quad$ the response matrix
k the wave number
c the speed of sound
$r \quad$ the distance
D the impenetrable obstacle
$\Omega \quad$ the medium region
$\mathbb{R} \quad$ the real space
\mathbb{C} the complex space
2 the imaginary unit
$\nu \quad$ the unit outward normal
$v \quad$ the velocity field
$\rho \quad$ the density
$p \quad$ the pressure
$\omega \quad$ the wave frequency
$\Phi \quad$ the fundamental solution of Helmholtz equation
$\varphi \quad$ the density function
$\psi \quad$ the discrete density function
$S \quad$ the single-layer operator
K the double-layer operator
$\eta \quad$ the coupling parameter
$K^{\prime}, T \quad$ the normal derivative operator
$L, M \quad$ the integral kernel
$n() \quad$ the index of refraction
$G($,$) \quad the Green's function$
$G_{0}($,$) \quad the homogeneous Green's function$
$G_{D}($,$) \quad the inhomogeneous Green's function$
$\vec{g}_{0}() \quad$ the homogeneous illumination vector
$\vec{g}_{D}() \quad$ the inhomogeneous illumination vector
$V_{S} \quad$ the signal space
$P_{V_{S}} \quad$ the projection operator
$I \quad$ the identity operator
$I^{M}() \quad$ the imaging function
$\Gamma_{k} \quad$ the scatter at wave number k
\mathcal{M} the measurement operator
$\mathcal{F} \quad$ the forward scattering operator
\mathcal{R} the residual operator
a the velocity vector
$\beta \quad$ the positive relaxation parameter
$\delta() \quad$ the delta function
$\phi \quad$ the level set function
Δ the Laplace operator
∇ the gradient operator
w the solution of adjoint problem

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr Songming Hou, for his guidance and coordination during my Ph D program As a mentor and a friend, Dr Hou gave me generous help and precious advice in my life and research

I thank the professors of my academic committee, Dr Weızhong Dai, Dr Don Liu, Dr Andreı Paun, and Dr Mihaela Paun, for their valuable feedbacks about this dissertation

I am also grateful to the professors of Loussiana Tech, who gave me comprehensive knowledge during the past three academic years I have benefited so much from their courses and constant encouragement

Many thanks to my colleagues at Loursiana Tech Liqun Wang gave me a lot of help in my dally life and course work We cooperated on many projects and shared the happiness of research I also thank Lisa Kuhn for her help and encouragement Finally, my gratitude goes to all of my friends in Ruston for therr constant support and concern

CHAPTER 1

INTRODUCTION

11 The Direct Scattering Problem

Scattering theory has played a central role in twentreth century mathematical physics The incoming acoustic or electromagnetic wave can be scattered by the target in the center of the domain and received by the transducers around the object Let u be the total field, u^{2} be the incident field coming from one position or one direction, and u^{s} be the scattered field The total field u can be viewed as the summation of u^{2} and u^{s} such that

$$
\begin{equation*}
u=u^{2}+u^{s} \tag{array}
\end{equation*}
$$

The direct scattering problem is to determine u^{s} from a knowledge of u^{2}, the shape information of the target, and the differential equation governing the wave motion, see $[5,11,20,29,30,33,34,39,44]$

The two basic problems in classical scattering theory are the scattering of time-harmonic acoustic or electromagnetic waves by a penetrable inhomogeneous medium of compact support and by a bounded impenetrable obstacle

Considering the case of time-harmonic acoustic waves, assume the incident field is given by the time-harmonic acoustic plane wave

$$
\begin{equation*}
u^{\imath}(x, t)=e^{\imath(k x d-\omega t)} \tag{12}
\end{equation*}
$$

where $k=\omega / c_{0}$ is the wave number, ω the frequency, c_{0} the speed of sound, and d the direction of propagation

Then the scattering problem for the case of an mhomogeneous medium is to find the total field u such that

$$
\begin{array}{r}
\Delta u+k^{2} n(x) u=0 \quad \text { in } \mathbb{R}^{3} \\
u(x)=e^{\imath k x d}+u^{s}(x) \\
\lim _{r \rightarrow \infty} r\left(\frac{\partial u^{s}}{\partial r}-\imath k u^{s}\right)=0 \tag{15}
\end{array}
$$

where $r=\|x\|, n=c_{0}^{2} / c^{2}$ is the refractive index given by the ratio of the square of the sound speed c, which satisfies that $c=c_{0}$ in the homogeneous host medıum and $c=c(x)$ in the inhomogeneous medium It is assumed that $1-n$ has compact support Equation (15) is called the Sommerfeld Radiation Condition which guarantees that the scattered wave is outgoing

For the case of scatterıng by an impenetrable obstacle D, the sımplest scattering problem is to find the total field u such that

$$
\begin{array}{r}
\Delta u+k^{2} n(x) u=0 \quad \text { in } \mathbb{R}^{3} \backslash \bar{D} \\
u(x)=e^{\imath k x d}+u^{s}(x) \\
u=0 \quad \text { on } \partial D \\
\lim _{r \rightarrow \infty} r\left(\frac{\partial u^{s}}{\partial r}-\imath k u^{s}\right)=0 \tag{19}
\end{array}
$$

where the Equation (16) is the Helmholtz equation and the boundary condition, Equation (18), corresponds to a sound-soft obstacle The boundary condition can
also be considered for the Neumann or sound-hard boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial D \tag{array}
\end{equation*}
$$

where ν is the unit outward normal to ∂D
Problems from Equation (13)-(15) and Equation (16)-(19) are the simplest examples of physically realistic problems in acoustic scattering theory More details about the scattering theory can be found in [12] This dissertation is primarily concerned with the inverse scattering problems associated with the direct scattering problems formulated above However, before the inverse problems can be considered, more about the direct problems must be studied Chapter 2 focuses on the detals of direct scattering problems and introduces the numerical method for solving direct scattering problems in \mathbb{R}^{2}, which will be used in the iterative method of inverse problems

12 The Inverse Scattering Problem

For the inverse scattering problem, the refractive index $n(x)$ or the geometry of target D is unknown The information of incident waves is given and the scattered waves is recorded by the transducers The objective is to find the location and geometry of the targets, which is determined by $n(x)$ or D, using the the relation between incident waves and scattered outgoing waves

The inverse scattering problems is widely used in industry such as
1 underground mine detection
2 detection of defects in nondestructive testing,
3 target detection using radar or a sonar system,

4 ultrasound imaging in medical applications,
5 reflection seismology
The inverse problem is in general an ill-posed (non-linear) problem Recovering the $n(x)$ in the whole domain is a challenging work If the target medium is homogeneous the $n(x)$ is a constant inside the target, then the inverse problem can be turned into a geometric problem, which is to reconstruct the shape of the target D

There are essentially two types of numerical methods for the inverse problem the direct imaging method and the iterative method The direct method gives a characterization of the geometry of the target by designing an maging function based on the response matrix that peaks near the target boundary Iterative methods update the boundary of the target to minımize the residual of the scattered field It is a nonlinear optimization process

Based on the relation between the resolution and the size of the target, there are two different cases point target and extended target The MUltıple SIgnal Classification (MUSIC) method in $[13,15,22,37,40]$ can be used to locate small target (point target) The authors in $[38,36,42,43,21]$ use iterated time reversal to recover small target The MUSIC algorithm is generalized to applied on extended targets for near field data in [18], and for far field data in [19]

The MUSIC method is efficient and robust It, however, cannot generate good result for limited or synthetic aperture since it uses single frequency to capture the shape and the projection process loses the phase information of the response matrix In [16], the author proposed a Multi-tone maging algorithm that uses both phase and space information of the response matrix, and utılizes multiple frequency waves

The linear sampling method, [10], is another direct imaging algorithm for the inverse scattering problem The method is based on a characterization of the range of the scattering operator, which is presented in [24] Recent development of the linear sampling method is introduced in $[4,9]$ There are two main differences between the MUSIC method and the lnear sampling method

1 The MUSIC method is based on a different factorization
2 The MUSIC method uses the resolution based thresholding for regularization More detals about the relation between the MUSIC method and the linear sampling method can be found in $[7,25]$

The iterative method for the inverse problem is the man purpose of this dissertation The iterative method is a non-lnear optimization approach It has the advantage of accuracy compared to the direct imaging method Moreover, the iterative method can easly utilize multı-frequency date to capture multi-level detalls of the object Using the forward solver, each iteration step contains a forward scattering problem and an adjoint problem The forward solver can be parallelized to increase the iteration speed In Chapter 4, the iterative method will be demonstrated starting from the mitial data, which is obtained by the direct maging method The shape of the object converges to the real shape after a series of iterations of solving adjoint forward problems and adjusting the boundary

Shape identification and classification using scattered field data is an application of the inverse problem Shape classification and similarity are important topics in computer vision In [45], the author presented a skeleton graph matching method based on critical points using path sımılarity This method uses information from
critical points of the skeleton graph of shapes, then does merge and cut operations Good results are achieved on two shape data-sets Another method to generate the response matrix is using the Poisson Equation [14] The authors use the information from the sllhouette for shape recogntion and classification by computing properties of a silhouette such as the part structure, the rough skeleton and the local orientation In [1], the author provided a distance function by using the shortest paths or distances between the known shapes and their query, and ignoring less relevant shape differences between the known shapes and them query

The current method for shape classification uses the response matrix generated by the Nystrom method of forward solver or Born approximation Shape space is geometric and has infinite dimensions Moreover, a shape may have different representation or appearance due to translation, rotation, scaling and parametrization It is very desirable to find intrinsic characterization that are invariant under translation, rotation, scaling, and parametrization with certain robustness, especially with respect to noise In practice, it is necessary to characterize a shape using finite dimensional vectors that have the above desired properties In this dissertation, a novel method is proposed that uses the scattering relation and the response matrix This method has the advantage of robustness against noise and dealing with shape rotation and scaling The storage need for this method is small as well The detalls of our method on shape identification and classification will be discussed in Chapter 5

13 Research Objectıves

The objective of this dissertation is to develop an iterative method for inverse scattering problem and to study the property of the response matrix, and the relation between the response matrix and the geometry of the target

In detall, research objectives of this dissertation include
1 To implement the forward solver for the forward scattering problem on Dirıchlet and Neumann boundary condition using the Nystrom method,

2 To introduce the direct imaging method for inverse scattering problem,
3 To develop the iterative method for inverse scattering problem,
(a) To convert the result of direct imaging method into the imitial guess for the iterative method,
(b) To solve forward problem and adjoint problem in each iteration,

4 To represent shapes using the response matrix and to study the application of response matrix in shape classification

14 Organızation of the Dissertation

In Chapter 1, we will provide the general overview, research objectives, and organization of the dissertation

In Chapter 2, we will introduce the basic background of scattering theory and discuss the forward scattering problem, including the partial differential equation of the waves and numerical solution on \mathbb{R}^{2} The forward solver will be implemented using Nystrom method and will be used in each iteration of the iterative method for inverse problem

In Chapter 3, we will introduce two direct imaging methods for inverse scattering problem the MUSIC method and the Multi-tone method Numerical results will be shown and will be used as the initial guess of the iterative method for inverse problem

In Chapter 4, we will develop the iterative method for the inverse scattering problem We will use actıve contour method to convert the image, which is the result of the direct amaging method, into level set function and capture the boundary of the target We will show that the result of adjoint problem will be the velocity vector of the sample points on the boundary We will solve one forward problem and one adjoint problem in each iteration We will show that the boundary converges to the real shape after several iterations

In Chapter 5, we will discuss the relation between response matrix and the geometry of the target We will define a distance function based on the response matrix to compare shapes We will study the property of the response matrix under different wave frequencies We will also apply our distance function on large data set to obtain the retrieval rate

In Chapter 6, we will provide a conclusion for this dissertation

CHAPTER 2

FORWARD PROBLEM

In this chapter, we will introduce the basic background of scattering theory and discuss the forward scattering problem, including the partial differential equation of the waves and numerical solution on \mathbb{R}^{2} The forward solver will be implemented using Nystrom method for 2D scatterıng problem

21 Basıc Conception

The target object is located in the center and is surrounded by an array of transducers, see Figure 21

Figure 21 Generating the response matrix

Each transducer can emit acoustic/electromagnetic wave and receive scattered wave

Definition 211 The matrix $P=\left(P_{\imath \jmath}\right)_{N \times N}$ is called a Response Matrix if and only if $P_{\imath \jmath}$ is the received signal at \jmath-th transducer for an incident plane wave sent from the \imath-th direction or an incident wave sent by the \imath-th transducer and N is the number of transducers

In general P may not be a square matrix There are two ways to obtain the response matrix P

1 Physical experıments and measurements
2 Numerical generations for solving the Helmholtz equation
In the iterative method for inverse scattering problem, we will solve the forward problem in each iteration step Therefore, the forward solver will be used on arbitrary shapes and the numerical solution is the only way to obtain the response matrix

22 The Helmholtz Equation

The Helmholtz Equation which governs the wave motion in forward solver is obtaned from wave equation [12] Consider the propagation of sound waves of small amplitude in a homogeneous isotropic medium in \mathbb{R}^{3} viewed as an inviscid fluid The wave motion is governed by Euler's equation

$$
\frac{\partial v}{\partial t}+\left(\begin{array}{ll}
v & \nabla) v+\frac{1}{\rho} \nabla p=0, ~ \tag{array}
\end{array}\right.
$$

the equation of continuity

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \quad(\rho v)=0 \tag{array}
\end{equation*}
$$

the state equation

$$
\begin{equation*}
p=f(\rho, S) \tag{23}
\end{equation*}
$$

and the adiabatic hypothesis

$$
\begin{equation*}
\frac{\partial S}{\partial t}+v \quad \nabla S=0 \tag{24}
\end{equation*}
$$

where $v=v(x, t)$ is the velocity field, $p=p(x, t)$ is the pressure, $\rho=\rho(x, t)$ is the density, $S=S(x, t)$ is the entropy, and f is a function depending on the nature of the flund

For simplicity, the linearized Euler equation can be obtained by assuming that v, p, ρ and S are small perturbations of the static state $v_{0}=0, p_{0}=\mathrm{constant}$, $\rho_{0}=$ constant,$S_{0}=$ constant

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\frac{1}{\rho_{0}} \nabla p=0 \tag{25}
\end{equation*}
$$

the linearized equation of continuity

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\rho_{0} \nabla \quad v=0 \tag{26}
\end{equation*}
$$

the linearized state equation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=\frac{\partial f}{\partial \rho}\left(\rho_{0}, S_{0}\right) \frac{\partial \rho}{\partial t} \tag{27}
\end{equation*}
$$

From the linearızed Equation (25)-(2 7) the wave equation is obtained

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}=\Delta p \tag{28}
\end{equation*}
$$

where the speed of sound c is defined by

$$
\begin{equation*}
c^{2}=\frac{\partial f}{\partial \rho}\left(\rho_{0}, S_{0}\right) \tag{29}
\end{equation*}
$$

From the linearized Euler equation, it is observed that there exists a velocity potential $U=U(x, t)$ such that

$$
\begin{equation*}
v=\frac{1}{\rho_{0}} \nabla u \tag{210}
\end{equation*}
$$

and

$$
\begin{equation*}
p=-\frac{\partial U}{\partial t} \tag{211}
\end{equation*}
$$

Clearly, the velocity potential also satısfied the wave equation

$$
\begin{equation*}
\frac{1}{c^{2}} \frac{\partial^{2} U}{\partial t^{2}}=\triangle U \tag{212}
\end{equation*}
$$

For time-harmonic acoustic waves of the form

$$
\begin{equation*}
U(x, t)=\operatorname{Re}\left\{u(x) e^{-w t}\right\}, \tag{213}
\end{equation*}
$$

with frequency $\omega>0$, the complex valued space dependent part u satisfies the Helmholtz equation

$$
\begin{equation*}
\triangle u+k^{2} u=0 \tag{214}
\end{equation*}
$$

where the wave number k is given by the positive constant $k=\omega / c$
In obstacle scattering there are two cases of impenetrable and penetrable objects the sound-soft object and the sound-hard object For a sound-soft object, the pressure of the total wave vanıshes on the boundary, and the total wave u satisfies the wave equation in the exterior $\mathbb{R}^{3} \backslash \bar{D}$ of D with a Dirichlet boundary condition $u=0$ on ∂D

Simılarly, for a sound-hard object, the pressure satisfies the Neumann boundary condition $\partial u / \partial \nu=0$ on ∂D where ν is the unit outward normal vector on the boundary ∂D The normal velocity of the total wave vanishes on the boundary

The solution of the Helmholtz equation (2 14) with positive wave number k can be deduced from the fundamental solution

$$
\begin{equation*}
\Phi(x, y)=\frac{1}{4 \pi} \frac{e^{\imath k\|x-y\|}}{\|x-y\|}, x \neq y \tag{215}
\end{equation*}
$$

For a fixed $y \in \mathbb{R}^{3}$, the fundamental solution (2 15) satisfies the Helmholtz equation (2 14) in $\mathbb{R}^{3} \backslash\{y\}$

The layer approach defines the single-layer and double-layer potentials

Definition 221 Acoustic Single-layer Potential Given any integral function φ, define the integral u such that

$$
\begin{equation*}
u(x)=\int_{\partial D} \varphi(y) \Phi(x, y) \mathrm{d} s(y) \tag{216}
\end{equation*}
$$

where $\Phi(x, y)$ is the fundamental solution in (215) $u(x)$ is called the acoustic single-layer potential with density φ

Definition 222 Acoustic Double-layer Potential Given any integral function φ, define the integral v such that

$$
\begin{equation*}
v(x)=\int_{\partial D} \varphi(y) \frac{\partial \Phi(x, y)}{\partial \nu(y)} \mathrm{d} s(y) \tag{2}
\end{equation*}
$$

where $\Phi(x, y)$ is the fundamental solution in Equation (2 15) $v(x)$ is called the acoustıc double-layer potential with density φ
u and v are solutions to the Helmholtz equation (214) in D and in $\mathbb{R}^{3} \backslash \bar{D}$ Any solution to the Helmholtz equation can be represented as a combination of single-layer and double-layer potentials

23 Scattering from an Obstacle

The scattering of time-harmonic acoustic waves by sound-soft obstacles leads to the following problems

Definition 231 Direct Acoustic Obstacle Scatterıng Problem Given an entire solution u^{2} to the Helmholtz equation representing an incident field, find a solution

$$
\begin{equation*}
u=u^{2}+u^{s}, \tag{218}
\end{equation*}
$$

to the Helmholtz equation in $\mathbb{R}^{3} \backslash \bar{D}$ such that the scattered field u^{s} satisfies the Sommerfeld radiation condition and the total field u satisfies the boundary condition

$$
\begin{equation*}
u=0 \text { on } \partial D \tag{219}
\end{equation*}
$$

This direct scattering problem is a special case of the following Dirichlet problem Definition 232 Exterıor Dirıchlet Problem Given a continuous function f on ∂D, find a radiating solution $u \in C^{2}\left(\mathbb{R}^{3} \backslash \bar{D}\right) \bigcap C\left(\mathbb{R}^{3} \backslash D\right)$ to the Helmholtz equation

$$
\begin{equation*}
\triangle u+k^{2} u=0 \text { in } \mathbb{R}^{3} \backslash \bar{D} \tag{220}
\end{equation*}
$$

which satısfies the boundary condition

$$
\begin{equation*}
u=f \text { on } \partial D \tag{221}
\end{equation*}
$$

The objective is to obtain the solution in the form of a combined acoustic single-layer and double-layer potentials, see [12]

The following theorem provides the solution of the Exterior Dirichlet Problem
Theorem 233 Define the potential $u(x)$ satisfying

$$
\begin{equation*}
u(x)=\int_{\partial D}\left\{\frac{\partial \Phi(x, y)}{\partial \nu(y)}-\imath \eta \Phi(x, y)\right\} \varphi(y) \mathrm{d} s(y) \tag{222}
\end{equation*}
$$

with a density $\varphi \in C(\partial D)$ and a real coupling parameter $\eta \neq 0$ Then the potential u given by Equation (2 22) in $\mathbb{R}^{3} \backslash \bar{D}$ solves the Exterıor Dirichlet Problem if and only

If the density is a solution of the integral equation

$$
\begin{equation*}
\varphi+K \varphi-\imath \eta S \varphi=2 f \tag{223}
\end{equation*}
$$

where $S C(\partial D) \rightarrow C(\partial D)$ is the single-layer operator defined by

$$
\begin{equation*}
(S \varphi)(x)=2 \int_{\partial D} \Phi(x, y) \varphi(y) \mathrm{d} s(y), x \in \partial D \tag{224}
\end{equation*}
$$

and $K \quad C(\partial D) \rightarrow C(\partial D)$ is the double-layer operator defined by

$$
\begin{equation*}
(K \varphi)(x)=2 \int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu(y)} \varphi(y) \mathrm{d} s(y), x \in \partial D \tag{225}
\end{equation*}
$$

The acoustic scattering from a sound-hard obstacle should follow the Exterior Neumann Problem

Definition 234 Exterior Neumann Problem Given a continuous function g on ∂D, find a radıating solution $u \in C^{2}\left(\mathbb{R}^{3} \backslash \bar{D}\right) \bigcap C\left(\mathbb{R}^{3} \backslash D\right)$ to the Helmholtz equation

$$
\begin{equation*}
\triangle u+k^{2} u=0 \mathrm{n} \mathbb{R}^{3} \backslash \bar{D}, \tag{226}
\end{equation*}
$$

which satisfies the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}=g \text { on } \partial D \tag{227}
\end{equation*}
$$

Similarly, the following theorem provides the solution of the Exterior Neumann Problem

Theorem 235 Define the potential $u(x)$ satisfyıng

$$
\begin{equation*}
u(x)=\int_{\partial D}\left\{\Phi(x, y) \varphi(y)+\imath \eta \frac{\partial \Phi(x, y)}{\partial \nu(y)}\left(S_{0}^{2} \varphi\right)(y)\right\} \mathrm{d} s(y) \tag{228}
\end{equation*}
$$

with contınuous density φ and a real coupling parameter $\eta \neq 0 \quad S_{0}$ in Equation (2 28) denotes the single-layer operator S in Equation (2 24) in the potential theoretic limit case $k=0$

Equation (2 28) solves the Exterior Neumann Problem if and only if the density is a solution of the integral equation

$$
\begin{equation*}
\varphi-K^{\prime} \varphi-\imath \eta T S_{0}^{2} \varphi=-2 g \tag{229}
\end{equation*}
$$

where K^{\prime} and T are the normal derivative operators given by

$$
\begin{equation*}
\left(K^{\prime} \varphi\right)(x)=2 \int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu(x)} \varphi(y) \mathrm{d} s(y), x \in \partial D \tag{230}
\end{equation*}
$$

and

$$
\begin{equation*}
(T \varphi)(x)=2 \frac{\partial}{\partial \nu(x)} \int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu(y)} \varphi(y) \mathrm{d} s(y), x \in \partial D \tag{231}
\end{equation*}
$$

24 Numerical Solution in \mathbb{R}^{2}

This section studies the numerical solution of the Helmholtz equation in \mathbb{R}^{2} using the Nystrom method, which is based on appropriately weıghted numerical quadratures on an equidistant mesh Therefore, the necessary parametrization of the integral equation in the two-dimensional case will be described It is assumed that the boundary curve ∂D possesses a regular analytic and 2π-perıodic parametric representation of the form

$$
\begin{equation*}
x(t)=\left(x_{1}(t), x_{2}(t)\right), \quad 0 \leq t \leq 2 \pi \tag{232}
\end{equation*}
$$

in counterclockwise orientation satısfying $\left[x_{1}^{\prime}(t)\right]^{2}+\left[x_{2}^{\prime}(t)\right]^{2}>0$ for all t
For the exterıor Dırıchlet problem, Equation (223) is transformed into the parametric form

$$
\begin{equation*}
\psi(t)-\int_{0}^{2 \pi}[L(t, \tau)+\imath \eta M(t, \tau)] \psi(\tau) \mathrm{d} \tau=g(t), 0 \leq t \leq 2 \pi \tag{233}
\end{equation*}
$$

where $\psi(t)=\varphi(x(t)), g(t)=2 f(x(t))$ and the kernels are given by

$$
\begin{align*}
L(t, \tau) & =\frac{\imath k}{2}\left\{x_{2}^{\prime}(\tau)\left[x_{1}(\tau)-x_{1}(t)\right]-x_{1}^{\prime}(\tau)\left[x_{2}(\tau)-x_{2}(t)\right]\right\} \frac{H_{1}^{(1)}(k r(t, \tau))}{r(t, \tau)} \tag{234}\\
M(t, \tau) & =\frac{\imath}{2} H_{0}^{(1)}(k r(t, \tau))\left\{\left[x_{1}^{\prime}(\tau)\right]^{2}+\left[x_{2}^{\prime}(\tau)\right]^{2}\right\}^{1 / 2} \tag{235}
\end{align*}
$$

for $t \neq \tau$ Here, let

$$
\begin{equation*}
r(t, \tau)=\left\{\left[x_{1}(t)-x_{1}(\tau)\right]^{2}+\left[x_{2}(t)-x_{2}(\tau)\right]^{2}\right\}^{1 / 2} \tag{236}
\end{equation*}
$$

Note that the kernels L and M have logarithmic singularities at $t=\tau$ Hence, using the numerical method introduced in [26], the kernels are split into

$$
\begin{align*}
L(t, \tau) & =L_{1}(t, \tau) \ln \left(4 \sin ^{2} \frac{t-\tau}{2}\right)+L_{2}(t, \tau) \tag{237}\\
M(t, \tau) & =M_{1}(t, \tau) \ln \left(4 \sin ^{2} \frac{t-\tau}{2}\right)+M_{2}(t, \tau) \tag{238}
\end{align*}
$$

where

$$
\begin{align*}
L_{1}(t, \tau) & =\frac{k}{2 \pi}\left\{x_{2}^{\prime}(\tau)\left[x_{1}(t)-x_{1}(\tau)\right]-x_{1}^{\prime}(\tau)\left[x_{2}(t)-x_{2}(\tau)\right]\right\} \frac{J_{1}(k r(t, \tau))}{r(t, \tau)} \tag{239}\\
L_{2}(t, \tau) & =L(t, \tau)-L_{1}(t, \tau) \ln \left(4 \sin ^{2} \frac{t-\tau}{2}\right) \tag{240}\\
M_{1}(t, \tau) & =-\frac{1}{2 \pi} J_{0}(k r(t, \tau))\left\{\left[x_{1}^{\prime}(\tau)\right]^{2}+\left[x_{2}^{\prime}(\tau)\right]^{2}\right\}^{1 / 2} \tag{241}\\
M_{2}(t, \tau) & =M(t, \tau)-M_{1}(t, \tau) \ln \left(4 \sin ^{2} \frac{t-\tau}{2}\right) \tag{242}
\end{align*}
$$

The kernels L_{1}, L_{2}, M_{1}, and M_{2} turn out to be analytic
In particular, for the $t=\tau$ terms, there are

$$
\begin{equation*}
L_{2}(t, t)=L(t, t)=\frac{1}{2 \pi} \frac{x_{1}^{\prime}(t) x_{2}^{\prime \prime}(t)-x_{2}^{\prime}(t) x_{1}^{\prime \prime}(t)}{\left[x_{1}^{\prime}(t)\right]^{2}+\left[x_{2}^{\prime}(t)\right]^{2}} \tag{243}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}(t, t)=\left\{\frac{2}{2}-\frac{C}{\pi}-\frac{1}{2 \pi} \ln \left(\frac{k^{2}}{4}\left\{\left[x_{1}^{\prime}(t)\right]^{2}+\left[x_{2}^{\prime}(t)\right]^{2}\right\}\right)\right\}\left\{\left[x_{1}^{\prime}(t)\right]^{2}+\left[x_{2}^{\prime}(t)\right]^{2}\right\}^{1 / 2} \tag{244}
\end{equation*}
$$

for $0 \leq t \leq 2 \pi$

Hence, it is necessary to numerically solve the integral equation of the form

$$
\begin{equation*}
\varphi(t)-\int_{0}^{2 \pi} K(t, \tau) \varphi(\tau) \mathrm{d} \tau=g(t), \quad 0 \leq t \leq 2 \pi \tag{245}
\end{equation*}
$$

where the kernel K can be written as

$$
\begin{equation*}
K(t, \tau)=K_{1}(t, \tau) \ln \left(4 \sin ^{2} \frac{t-\tau}{2}\right)+K_{2}(t, \tau) \tag{246}
\end{equation*}
$$

with analytic functions K_{1} and K_{2} and with an analytic right hand side g
Here it is necessary to point out that it is essential to split off the logarithmic singularity in a fashion which preserves the 2π-periodicity for the kernels K_{1} and K_{2} This treatment guarantees the exponential convergence of the numerical solution, which will be demonstrated in the numerical experıments

The Nystrom method uses a straightforward approximation of the integrals by quadrature formulas In this case, since the boundary of the target ∂D is a 2π-perıodic form, an equidıstant set of knots $t_{\jmath}=\pi \jmath / n, \jmath=0, \quad, 2 n-1$ were chosen, and use the quadrature rule

$$
\begin{equation*}
\int_{0}^{2 \pi} \ln \left(4 \sin ^{2} \frac{t-\tau}{2}\right) f(\tau) \mathrm{d} \tau \approx \sum_{j=1}^{2 n-1} R_{j}^{(n)}(t) f\left(t_{j}\right), \quad 0 \leq t \leq 2 \pi \tag{247}
\end{equation*}
$$

with the quadrature weights given by

$$
\begin{equation*}
R_{\jmath}^{(n)}(t)=-\frac{2 \pi}{n} \sum_{m=1}^{n-1} \frac{1}{m} \cos m\left(t-t_{\jmath}\right)-\frac{\pi}{n^{2}} \cos n\left(t-t_{\jmath}\right), \quad \jmath=0, \quad, 2 n-1,(\tag{248}
\end{equation*}
$$

and the trapezordal rule

$$
\begin{equation*}
\int_{0}^{2 \pi} f(\tau) \mathrm{d} \tau \approx \frac{\pi}{n} \sum_{\jmath=0}^{2 n-1} f\left(t_{\jmath}\right) \tag{249}
\end{equation*}
$$

where the function f can represent any integration kernel The numerical integrations are obtained from integrating exactly

In the Nystrom method, the integral in Equation (245) is replaced by the finite summation, and yields

$$
\begin{equation*}
\psi^{(n)}(t)-\sum_{j=0}^{2 n-1}\left\{R_{j}^{(n)}(t) K_{1}\left(t, t_{\jmath}\right)+\frac{\pi}{n} K_{2}\left(t, t_{\jmath}\right)\right\} \psi^{(n)}\left(t_{\jmath}\right)=g(t) \tag{250}
\end{equation*}
$$

for $0 \leq t \leq 2 \pi$
Equation (250) is obtaned from Equation (245) by applying the quadrature rule, Equation (2 47), to $f=K_{1}(t,) \psi$, and trapezordal rule, Equation (2 49), to $f=K_{2}(t,) \psi$ The solution of Equation (250) reduces to solving a finite dimensional lnear system

In particular, for any solution of Equation (250) the values

$$
\begin{equation*}
\psi_{\imath}^{(n)}=\psi^{(n)}\left(t_{\imath}\right), \quad \imath=0, \quad, 2 n-1, \tag{251}
\end{equation*}
$$

satisfy the linear system

$$
\begin{equation*}
\psi_{\imath}^{(n)}-\sum_{\jmath=0}^{2 n-1}\left\{R_{|\imath-\jmath|}^{(n)} K_{1}\left(t_{\imath}, t_{\jmath}\right)+\frac{\pi}{n} K_{2}\left(t_{\imath}, t_{\jmath}\right)\right\} \psi_{\jmath}^{(n)}=g\left(t_{\imath}\right) \tag{252}
\end{equation*}
$$

for $\imath=0, \quad, 2 n-1$, where

$$
\begin{equation*}
R_{\jmath}^{(n)}=R_{\jmath}^{(n)}(0)=-\frac{2 \pi}{n} \sum_{m=1}^{n-1} \frac{1}{m} \cos \frac{m \jmath \pi}{n}-\frac{(-1)^{\jmath} \pi}{n^{2}}, \quad \jmath=0, \quad, 2 n-1 \tag{253}
\end{equation*}
$$

Conversely, given a solution $\psi_{\imath}^{(n)}, \imath=0, \quad, 2 n-1$ of the linear system of Equation (252), the function $\psi^{(n)}$ defined by

$$
\begin{equation*}
\psi^{(n)}(t)=\sum_{\jmath=0}^{2 n-1}\left\{R_{\jmath}^{(n)}(t) K_{1}\left(t, t_{\jmath}\right)+\frac{\pi}{n} K_{2}\left(t, t_{\jmath}\right)\right\} \psi^{(n)}\left(t_{\jmath}\right)+g(t) \tag{254}
\end{equation*}
$$

for $0 \leq t \leq 2 \pi$ satısfies the approximating Equation (250)
Once the density function ψ is obtained, the total field u can be determined using Theorem 233 since ψ is the discrete form of φ

The Nystrom method for Neumann boundary condition is simılar to but more complicated than the Dirichlet boundary condition [27] The Exterıor Neumann Problem solver will be used in the adjoint problem in the iterative method of inverse problem

25 Numerical Experıments

The forward solvers for Exterıor Dırıchlet problem and Exterıor Neumann problem are implemented First place four transducers around the target, which is a flower shape in Figure 22

Figure 22 Flower shape

The flower shape has following analytic presentation

$$
\begin{equation*}
x(t)=(1+05 \cos (3 t)) * \cos (t) \tag{255}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)=(1+05 \cos (3 t)) * \sin (t) \tag{256}
\end{equation*}
$$

The location of four transducers are $l_{1}=(5,0), l_{2}=(0,5), l_{3}=(-5,0)$, and $l_{4}=(0,-5)$ Let n be the number of sample points on the boundary of the target,
and k be the wave number The response matrix generated by Exterior Dirıchlet forward solver at $k=1, n=64$ is

$$
P=\left(\begin{array}{cccc}
-0093+0198 \imath & -0084+0194 \imath & -0075+0189 \imath & -0084+0194 \imath \tag{257}\\
-0084+0194 \imath & -0093+0198 \imath & -0084+0194 \imath & -0075+0190 \imath \\
-0075+0190 \imath & -0084+0194 \imath & -0093+0198 \imath & -0084+0194 \imath \\
-0084+0194 \imath & -0075+0190 \imath & -0084+0194 \imath & -0093+0198 \imath
\end{array}\right)
$$

If the scatter field incident from l_{1} and received by l_{2} is taken, and consider the change of n, the $P_{2,1}$ term of response matrix P will be

$$
\begin{array}{ll}
n=16, & P_{2,1}=-0084642954035770+0193994448938375 \imath, \\
n=32, & P_{2,1}=-0084642528632574+0194003759720873 \imath, \\
n=64, & P_{2,1}=-0084642633363342+0194003674480984 \imath, \\
n=128, & P_{2,1}=-0084642633328078+0194003674511525 \imath, \\
n=256, & P_{2,1}=-0084642633328085+0194003674511490 \imath
\end{array}
$$

Numerical result shows that the forward solver converges with the number of sample points on the target boundary Figure 23 shows the convergence rate

Figure 23 Convergence of the Nystrom method

In Figure $23, P^{(320)}$ is used to approximate the real response matrix at $n=320$, and consider the error $\operatorname{err}^{(n)}$ such that

$$
\begin{equation*}
e r r^{(n)}=\max _{1 \leq \imath \leq 4,1 \leq \jmath \leq 4}\left|P_{\imath, j}^{(n)}-P_{\imath, j}^{(320)}\right| \tag{258}
\end{equation*}
$$

The left picture in Figure 23 is $e r r^{(n)}$, the right one is $\log \left(e r r^{(n)}\right)$, and here n goes from 20 to 120 From Figure 23 it can be seen that the result of the Nystrom method has the exponential convergence

$$
\begin{equation*}
e r r^{(n)} \leq C e^{-\sigma n} \tag{259}
\end{equation*}
$$

For this example, if $C \approx 34 \times 10^{-4}$ and $\sigma \approx 003$, the Equation (259) holds for large enough n

The Nystrom method can be also applied on multiple arbitrary targets In Figure 24 , two targets are placed in the domain

Figure 24 Two arbitrary shapes

The number sample points on the left target, n_{1}, is twice as the right one, n_{2}, since the left one is more complicated in the geometry than the right one The far field pattern is used this time, 4 transducers are place at infinity so the coming wave can be viewed as a plain wave, and $P_{4,2}$ term has the following result

$$
\begin{gathered}
n_{1}=20, n_{2}=10, P_{4,2}=0861545181700902+0768278897453679 \imath, \\
n_{1}=40, n_{2}=20, P_{4,2}=0558175744822589+0326216480242953 \imath, \\
n_{1}=80, n_{2}=40, P_{4,2}=0598846321309680+0344732099974921 \imath, \\
n_{1}=160, n_{2}=80, P_{4,2}=0603846677808666+0343570140247151 \imath, \\
n_{1}=320, n_{2}=160, P_{4,2}=0606402604809483+0342939623306911 \imath
\end{gathered}
$$

The response matrix also converges when $n_{1} \rightarrow \infty$ and $n_{2} \rightarrow \infty$

26 Summary for Forward Solver

The forward solver presented in this chapter will be used in the iterative method for inverse problem The Nystrom method is used to obtain the scattered field The Nystrom method requires the least computational effort comparing to the Galerkin method, since only two one-dimensional integral equations needed to be computed The error between numerical result and the real data converges exponentially with respect to the number of sample points on the boundary of the target Each column of the response matrix is the scattered field coming from one transducer Every column is independent of each other in the response matrix Therefore, when the number of transducers is large, the forward solver can be parallelized easily each processor deals with the wave coming from one transducer and computes one column of the response matrix

CHAPTER 3

DIRECT METHOD FOR INVERSE PROBLEM

In this chapter, two direct imaging methods will be introduced The MUSIC method is a projection method that can be applied on full aperture, the Multı-tone method utilizes the phase information of the response matrix and multi-frequency wave that can be applied on limited or synthetic aperture

31 Introduction of Inverse Problem

Recall the definition of the Response Matrix $P=\left\{P_{\imath \jmath}\right\}_{N \times N}$, where $P_{\imath \jmath}$ is the recerved signal at \jmath-th transducer for an incident plane wave sent from the \imath-th direction and N is the number of transducers In general P may not be a square matrix

The medium properties will be probed from a scattered wave field The time harmonic wave field $u(x)$ satisfies

$$
\begin{equation*}
\Delta u(x)+k^{2} n(x) u=f(x) \tag{31}
\end{equation*}
$$

where k is the wave number, $n(x)$ is the index of refraction, and $f(x)$ is the source
The general inverse problem is to find $n(x)$ inside the interested region If $n(x)$ 1s plecewise constant, the objective is simplified to find the boundaries where $n(x)$ jumps Therefore, the inverse scattering problem is reduced to determine the boundary
of a target The inverse problem is widely used in industry, such as in medical imaging, underwater acoustics, and non-destructive detection

32 Property of the Response Matrix

Let L be the distance between the transducer and the target, a be the length of the array of transducers Figure 31 shows the full aperture and limited/synthetic aperture

Figure 31 Full aperture and limited/synthetic aperture

Define R to be the resolution of the array

$$
\begin{equation*}
R=\frac{\lambda L}{a} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{2 \pi}{k} \tag{33}
\end{equation*}
$$

Let S be the size of the target There are three different cases

1 Point target $(S \ll R)$
(a) The rank of the response matrix is equal to the number of targets
(b) Only location information of the targets can be recovered
(c) The singular values of the response matrix is shown in the left picture of Figure 32

2 Small target ($S<R$)
(a) The response matrix has a discrete spectrum
(b) Both location and size (moment) information of the targets can be recovered
(c) The response matrix has grouped singular values, see the middle picture of Figure 33

3 Extended target ($S \geq R$)
(a) The response matrix has a continuous spectrum
(b) Both location and geometry information of the targets can be recovered
(c) The number of significant singular values and singular vectors of the response matrix is $\propto S / R$, see the right picture of Figure 34

This chapter focuses on the third case since the objective is to reconstruct the shape of the target The wave number k should be large enough to capture the shape information of the target

Figure 32 Resolution vs target size Point target

Figure 33 Resolution vs target size Small target

Figure 34 Resolution vs target size Extended target

33 The MUSIC (MUltıple SIgnal Classıficatıon) Algorıthm

The MUltiple SIgnal Classification (MUSIC) method is one of the direct imaging methods There are several advantages to the MUSIC method

1 No iteration or forward problem solver is needed
2 This method works for both near field and far field data

3 Materıal property can be embedded into the imaging function

4 Resolution based thresholding is quite robust with noise
The MUSIC method for point target and small target is discussed in [15] For the extended target of Drichlet boundary condition, let Ω denote the target The scattered field u^{s} satisfies

$$
\begin{cases}\Delta u^{s}(x)+k^{2} u^{s}(x)=0 & x \in \Omega^{c} \subset R^{d} \tag{34}\\ u^{s}(x)=-u^{2}(x) & x \in \partial \Omega\end{cases}
$$

and the Sommerfeld Radiation Condition (15), where u^{2} is the incident field
Let $G_{D}(x, y)$ be the Green's function that satisfies

$$
\left\{\begin{array}{ll}
\Delta G_{D}(x)+k^{2} G_{D}(x)=\delta(x-y) & x, y \in \Omega^{c} \subset R^{d} \tag{35}\\
G_{D}(x, y)=0 & x \in \partial \Omega
\end{array},\right.
$$

and the Sommerfeld Radiation Condition (15)
Hence, the scattered field u^{s} can be written as

$$
\begin{equation*}
u^{s}(x)=\int_{\partial \Omega} u^{\imath}(y) \frac{\partial G_{D}(x, y)}{\partial \nu} d y \tag{36}
\end{equation*}
$$

The scattered field u^{s} is factorized into two parts
1 Unknown part the Green's function $G_{D}(x, y)$ which depends on the shape of the unknown target

2 Known part u^{2} is the illumination wave field that can be controlled
The key point to determine the boundary of the target is to define the illumination vector and signal space

Definition 331 Illumination Vector Let $G_{0}($,$) and G_{D}($,$) be the homogeneous$ and inhomogeneous Green's function, respectively Define

$$
\begin{array}{cc}
\vec{g}_{0}(x)=\left[G_{0}\left(x_{1}, x\right), G_{0}\left(x_{2}, x\right),\right. & \left., G_{0}\left(x_{N}, x\right)\right]^{T} \\
\vec{g}_{D}(x)=\left[G_{D}\left(x_{1}, x\right), G_{D}\left(x_{2}, x\right),\right. & \left., G_{D}\left(x_{N}, x\right)\right]^{T} \tag{38}
\end{array}
$$

where $x_{1}, x_{2}, \quad, x_{N}$ are the locations of N transducers Then $\vec{g}_{0}(x)$ and $\vec{g}_{D}(x)$ are called the illumination vectors

If a point source wave is emitted at \imath-th transducer and the scattered field is received by the \jmath-th transducer, the $P_{\imath \jmath}$ term of the response matrix is

$$
\begin{equation*}
P_{\imath \jmath}=\int_{\partial \Omega} \frac{\partial G_{D}\left(x_{\jmath}, y\right)}{\partial \nu} G_{0}\left(x_{\imath}, y\right) d y \tag{39}
\end{equation*}
$$

In matrix form the response matrix can be factorızed as

$$
\begin{equation*}
P=\int_{\partial \Omega} \vec{g}_{0}(y)\left[\frac{\partial \vec{g}_{D}(y)}{\partial \nu}\right]^{T} d y \tag{310}
\end{equation*}
$$

Definition 332 Signal Space Let \vec{u}_{\imath} be the singular vectors with singular values σ_{\imath} of the response matrix P Define the signal space

$$
\begin{equation*}
V_{s}=\operatorname{span}\left\{\vec{u}_{\imath} \mid \imath \leq n\right\} \tag{311}
\end{equation*}
$$

where n is a threshold depending on the resolution of the array and the noise level
The threshold parameter n in Equation (311) can be determined using the resolution analysis which is introduced in [18]

Then the imaging function I^{M} can be defined as

$$
I^{M}(x)=\left\|\left(I-P_{V_{s}}\right) \vec{g}_{0}(x)\right\|^{-1}
$$

where $P_{V_{S}}$ is a projection operator projecting the homogeneous illumination vector $\vec{g}_{0}(x)$ into the signal space

Then, when x get close to the boundary $\partial D, \vec{g}_{0}(x)$ should be in signal space The $I-P_{V_{S}}$ is a projection operator which project the illumination vector into the noise space Therefore, $\left(I-P_{V_{S}}\right) \vec{g}_{0}(x)$ should be small when x goes to ∂D, and $I^{M}(x)$ will peak at the boundary

The MUSIC method is a direct approach for the inverse scattering problem It is efficient and robust since no inverse operation or iteration is needed

34 Examples for MUSIC method

The MUSIC method can be applied on single or multiple targets with Dirichlet Boundary Condition, see Figure 35

Figure 35 Imaging extended target with Dirıchlet BC

More results of MUSIC method on an extended target can be found in [18] The ımage of MUSIC method provides a rough picture of the geometry of the target Chapter 4 will show how to start with the image of MUSIC method and use the iterative method to obtain more accurate results

35 Direct Imaging Method using Multı-frequency Data

The MUSIC method uses a single frequency and cannot be applied on limited or synthetic aperture The MUSIC method is essentially a projection method which drops the phase information when projecting to the signal space Using the multi-frequency data and phase information, provides better results for limited or synthetic data

For the limited or synthetic aperture, there are two cases
1 The emitters and receivers coincide
2 The emitters and receivers do not comcide

In the first case, the response matrix P is complex symmetric Then P can be written as $P=U \Sigma U^{T}$ This unique factorization (up to a sıgn) helps to eliminate the arbitrary phase generated by MATLAB when taking the singular value decomposition The imaging function is defined as

$$
\begin{equation*}
I^{M}(x)=\sum_{\omega} \alpha(\omega) \sum_{m=1}^{M^{\omega}}\left[\hat{g}^{H}(x, \omega) u_{m}^{\omega}\right]^{2} \tag{313}
\end{equation*}
$$

where \hat{g} is the normalized illumination vector from the transducers to a search point x, u_{m} is the m-th row of the matrix U, α is the weight for multi-spectrum, M^{ω} is a threshold

In the second case, suppose that there are s transmitters located at ξ_{1}, \quad, ξ_{s} and there are r receivers located at $\eta_{1}, \quad, \eta_{r}$, the response matrix P has the dimension
$s \times r \quad P_{\imath \jmath}$ records the signal received by the \jmath-th receiver at η_{\jmath} when the wave comes from the \imath-th emitter at ξ_{2}

At this time the illumination vectors need to be redefined with respect to the receiver array and emitter array, respectively, as

$$
\begin{equation*}
g_{r}(x)=\left[G_{0}\left(\eta_{1}, x\right), G_{0}\left(\eta_{2}, x\right), \quad, G_{0}\left(\eta_{r}, x\right)\right]^{T} \tag{314}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{s}(x)=\left[G_{0}\left(\xi_{1}, x\right), G_{0}\left(\xi_{2}, x\right), \quad, G_{0}\left(\xi_{s}, x\right)\right]^{T} \tag{315}
\end{equation*}
$$

Then the imaging function is

$$
\begin{equation*}
I^{M}(x)=\sum_{\omega} \alpha(\omega) \sum_{m=1}^{M^{\omega}}\left[\hat{g}_{r}^{H}(x, \omega) u_{m}^{\omega}\right]\left[\hat{g}_{s}^{H}(x, \omega) \bar{v}_{m}^{\omega}\right] \tag{316}
\end{equation*}
$$

When providing limite/synthetic aperture, Figure 36 shows that good results can still be obtained using Multı-frequency method

Figure 36 Multi-tone method on synthetic aperture

In Figure 36 , the left image is imaging using synthetic aperture data with 10% multiplicative noise, the right one is imaging using synthetic aperture data in a weakly mhomogeneous medıum More results of Multi-tone method can be found in [16]

36 Summary for Direct Imaging

The direct imaging method is computationally efficient compared to the iterative method The MUSIC and Multı-frequency methods both work for near field and far field data, and can incorporate material properties (corresponding to different boundary conditions) Since each of the two methods apply thresholding based on SVD and physical scales, the results are robust with respect to noisy data Furthermore, Multı-frequency data can be used to obtain an ideal result under limited or synthetic aperture

CHAPTER 4

ITERATIVE METHOD FOR INVERSE PROBLEM

In this chapter, we will develop the iterative method for the inverse scattering problem The main idea is to an optımization problem Simılar approach is used in [17] and [2] We will use active contour method to convert the amage, which is the result of the direct imaging method, into level set function and capture the boundary of the target We will show that the result of adjoint problem will be the velocity vector of the sample points on the boundary We will solve one forward problem and one adjoint problem in each iteration Finally, we will demonstrate that the boundary converges to the real shape after several iterations

41 Image Processing and the Level Set Representation

The result of the direct imaging method is used as the initial guess of the iterative method The output of direct imaging method is an image of the whole domain and the value peak at the boundary of the object The first thing needs to be done is to locate the boundary from the image and transform it into parameter representation which can be used as the input of the forward problem

The gradient flow method and active contour method can both be used to capture convex envelope of the boundary of the object The main idea is to transform the ımage into a level set function The gradient flow method is outlined as follows

1 Input the MUSIC imaging function $I(x)$
2 Apply a threshold to the MUSIC imaging function
3 Consider the cost functional to be mınımızed

$$
\begin{equation*}
C(\partial \Omega)=\int_{\partial \Omega} f(x) d s \tag{array}
\end{equation*}
$$

where

$$
f(x)= \begin{cases}1, & I(x)>M \tag{42}\\ 100, & I(x) \leq M\end{cases}
$$

and $I(x)$ is the image function, M is the constant representing the threshold
4 Rewrite the cost functional using the level set representation

$$
\begin{equation*}
C(\partial \Omega)=W(\phi)=\int_{R^{2}} f(x) \delta(\phi)|\nabla \phi| d x \tag{43}
\end{equation*}
$$

5 Take derivative with respect to the evolution time t and derive the gradient flow equation

$$
\begin{equation*}
\phi_{t}=|\nabla \phi| \nabla \quad\left(f(x) \frac{\nabla \phi}{|\nabla \phi|}\right) \tag{44}
\end{equation*}
$$

6 Calculate the level set representation for the initial guess
The method above is simple and easy to implement The drawback is that it can only capture the convex envelop

The software motivated by the active contour method [6] and developed for [35] is used here to generate the level set function representing the object

The forward solver using the Nystrom method for the obstacle problem with Dirichlet boundary condition needs not only the coordinates of the sample points $\left(x\left(t_{\imath}\right), y\left(t_{\imath}\right)\right)$ but also the first and second derivatives $\left(x^{\prime}\left(t_{\imath}\right), y^{\prime}\left(t_{\imath}\right)\right),\left(x^{\prime \prime}\left(t_{\imath}\right), y^{\prime \prime}\left(t_{\imath}\right)\right)$

Trigonometric interpolation is used to convert a set of sample points to a pair of analytic functions $(x(t), y(t))$

$$
\begin{align*}
& x(t)=\sum_{n=1}^{N}\left(a_{n} \cos (n t)+b_{n} \sin (n t)\right) \tag{45}\\
& y(t)=\sum_{n=1}^{N}\left(c_{n} \cos (n t)+d_{n} \sin (n t)\right) \tag{46}
\end{align*}
$$

where the coefficients $\left\{a_{n}\right\}_{n=1}^{N},\left\{b_{n}\right\}_{n=1}^{N},\left\{c_{n}\right\}_{n=1}^{N},\left\{d_{n}\right\}_{n=1}^{N}$ are determined by the sample points $\left\{\left(x\left(t_{\imath}\right), y\left(t_{\imath}\right)\right)\right\}_{n=1}^{m}$ separately to achieve the least square distance

Note that the order of the interpolation N should be less than $m / 2$ The dummy parameter d is generated to be equally distributed between 0 and 2π by $d_{\imath}=2 \pi \imath / m$, $\imath=0,1, \quad, m-1$, and define matrix A such that

$$
\begin{align*}
A_{2 \jmath, 2 k} & =\sum_{\imath=0}^{m-1} \cos \left(\jmath d_{\imath}\right) \cos \left(k d_{\imath}\right), \tag{47}\\
A_{2 \jmath+1,2 k+1} & =\sum_{\imath=0}^{m-1} \sin \left(\jmath d_{\imath}\right) \sin \left(k d_{\imath}\right), \tag{48}\\
A_{2 \jmath, 2 k+1} & =\sum_{\imath=0}^{m-1} \cos \left(\jmath d_{\imath}\right) \sin \left(k d_{\imath}\right), \tag{49}\\
A_{2 \jmath+1,2 k} & =\sum_{\imath=0}^{m-1} \sin \left(\jmath d_{\imath}\right) \cos \left(k d_{\imath}\right) \tag{410}\\
A_{1,2 \jmath} & =A_{2 \jmath, 1}=\sum_{\imath=0}^{m-1} \cos \left(\jmath d_{\imath}\right) \tag{411}\\
A_{1,2 \jmath+1} & =A_{2 \jmath+1,1}=\sum_{\imath=0}^{m-1} \sin \left(\jmath d_{\imath}\right), \tag{412}
\end{align*}
$$

for $\jmath, k=1,2, \quad, m$, and vector b_{x}, b_{y} such that

$$
\begin{align*}
b_{2 \jmath} & =\sum_{\imath=0}^{m-1} \cos \left(\jmath d_{\imath}\right), \tag{4}\\
b_{2 \jmath+1} & =\sum_{\imath=0}^{m-1} \sin \left(\jmath d_{\imath}\right) \tag{414}
\end{align*}
$$

The interpolation coefficients $\left\{a_{n}\right\}_{n=1}^{N},\left\{b_{n}\right\}_{n=1}^{N},\left\{c_{n}\right\}_{n=1}^{N},\left\{d_{n}\right\}_{n=1}^{N}$ can be obtained from A and b

Then, the boundary of the shape is re-sampled after each iteration and the first and second derıvatıves can be easıly obtained

42 Recursive Linearızation

The 1 terative method starts from the intial guess with initial wave number k_{0} Suppose that after several iterations the boundary $\Gamma_{\tilde{k}}$ has been recovered at some wave number \tilde{k} using the forward solver in Chapter 2, and that the next step wave number is k such that $k>\tilde{k}$ The objective is to determine Γ_{k},

$$
\begin{equation*}
\Gamma_{k}=\left\{x+a(x) \quad x \in \Gamma_{\tilde{k}}\right\} \tag{4}
\end{equation*}
$$

Here the new boundary Γ_{k} can be viewed as an updating from the boundary $\Gamma_{\tilde{k}}$ on previous step Since $\Gamma_{\tilde{k}}$ is know, the objective is to determine the perturbation a, which is also called the velocity vector of the sample points on the boundary

The reconstructed boundary $\Gamma_{\tilde{k}}$ is solved at the wave number k from the forward scatterıng problem

$$
\begin{align*}
\Delta \tilde{u}+k^{2} \tilde{u} & =0 \text { n } \Omega_{\tilde{k}}^{e} \tag{416}\\
\tilde{u} & =0 \text { on } \Gamma_{\bar{k}} \tag{417}
\end{align*}
$$

with a scattered field satısfying the Sommerfeld Radıation Condition (15)
For the boundary Ω_{k}, there is

$$
\begin{align*}
\Delta u+k^{2} u & =0 \text { in } \Omega_{k}^{e} \tag{418}\\
u & =0 \text { on } \Gamma_{k} \tag{419}
\end{align*}
$$

Given a solution u in Equation (418), the corresponding scattered field u^{s} can be obtamed and the measurement \mathcal{M} can be defined

$$
\begin{equation*}
\mathcal{M} u^{s}(x)=\left[u^{s}\left(\mathbf{x}_{1}\right), \quad, u^{s}\left(\mathbf{x}_{m}\right)\right]^{T} \tag{420}
\end{equation*}
$$

where the operator \mathcal{M} maps the scattered fields to a vector of complex numbers in \mathbb{C}^{m}

For the boundary Γ_{k}, the forward scattering operator is defined

$$
\begin{equation*}
\mathcal{F}\left(\Gamma_{k}\right)=\mathcal{M} u^{s} \tag{421}
\end{equation*}
$$

Now the Fréchet derıvatıve of \mathcal{F} at $\Gamma_{\tilde{k}}$ is $\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)$ which satısfies

$$
\begin{equation*}
\mathcal{F}\left(\Gamma_{k}\right)=\mathcal{F}\left(\Gamma_{\tilde{k}}\right)+\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right) a+o\left(\|a\|_{1, \infty}\right) \text { as }\|a\|_{1, \infty} \rightarrow 0 \tag{422}
\end{equation*}
$$

where $\|a\|_{1, \infty}=\max _{x \in \Gamma}|a(x)|+\max _{x \in \Gamma} \sum_{\jmath=1}^{2}\left|\nabla a_{\jmath}(x)\right|$ with surface gradient $\nabla a_{\jmath}(x)$ of the \jmath-th component of a The Fréchet derivative of the forward scattering operator is given by Theorem 21 m [23]

In order to compute the velocity vector a, the following theorem is needed Theorem 421 Let $\Gamma_{\tilde{k}} \in C^{2}, a \in C^{2}\left(\Gamma_{\tilde{k}}, \mathrm{R}^{2}\right)$ and \tilde{u} be the solution of the scattering problem in Equation (416)-(417) Then the Fréchet derıvatıve of $\mathcal{F}\left(\Gamma_{\tilde{k}}\right)$ satısfies $\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right) a=\mathcal{M} v$, where v solves the following boundary value problem

$$
\begin{align*}
\Delta v+k^{2} v & =0 \text { in } \Omega_{\tilde{k}}^{e} \tag{423}\\
v & =-a n \frac{\partial \tilde{u}}{\partial n} \text { on } \Gamma_{\tilde{k}} \tag{424}
\end{align*}
$$

with radiation condition, where n is the unit outward normal vector on $\Gamma_{\tilde{k}}$
Denote the residual operator as

$$
\begin{equation*}
\mathcal{R}\left(\Gamma_{\tilde{k}}\right)=\mathcal{M} u^{s}-\mathcal{F}\left(\Gamma_{\tilde{k}}\right) \tag{425}
\end{equation*}
$$

The linearized version of Equation (421) it is obtained such that

$$
\begin{equation*}
\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right) a=\mathcal{R}\left(\Gamma_{\tilde{k}}\right) \tag{426}
\end{equation*}
$$

Applying the Landweber iteration to the linearızed equation (4 26) yields

$$
\begin{equation*}
a=\beta \mathcal{F}^{\prime}\left(\Gamma_{\bar{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\bar{k}}\right), \tag{427}
\end{equation*}
$$

where $\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)^{*}$ is the adjoint operator of $\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)$ and β is a positive relaxation parameter
Since a depends on $\mathcal{F}^{\prime}\left(\Gamma_{\bar{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\tilde{k}}\right)$ by Equation (427), it is necessary to find the value of $\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\tilde{k}}\right) \quad$ However, it is difficult to compute $\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\tilde{k}}\right)$ directly The adjoint problem is introduced to solve this problem

Let $\mathcal{R}\left(\Gamma_{\bar{k}}\right)=\left[\xi_{1}, \quad, \xi_{m}\right]^{T} \in \mathbb{C}^{m}$ Consider the adjoint problem

$$
\begin{align*}
\Delta w+k^{2} w & =-\sum_{\jmath=1}^{m} \xi_{\jmath} \delta\left(x-x_{\jmath}\right) \text { in } \Omega_{\tilde{k}}^{e} \tag{428}\\
w & =0 \text { on } \Gamma_{\tilde{k}} \tag{429}
\end{align*}
$$

with the Sommerfeld Radiation Condition (15)
Multıplying \bar{w} to the Equation (423) and integrating over $\Omega_{\tilde{k}}^{e}$ on both sides yıelds the following result

$$
\begin{equation*}
\int_{\Omega_{\bar{k}}^{e}}\left(\Delta v+k^{2} v\right) \bar{w} \mathrm{~d} x=0 \tag{430}
\end{equation*}
$$

where \bar{w} is the complex conjugate of w
Using the Green's formula, there is

$$
\begin{equation*}
\int_{\Omega_{\bar{k}}^{e}}\left(\Delta \bar{w}+k^{2} \bar{w}\right) v \mathrm{~d} x=\int_{\Gamma_{\bar{k}}}\left(\frac{\partial v}{\partial n} \bar{w}-\frac{\partial \bar{w}}{\partial n} v\right) \mathrm{d} s \tag{431}
\end{equation*}
$$

It follows from the adjoint equation (428) and the boundary condition (424) that

$$
\begin{equation*}
\sum_{\jmath=1}^{m} v\left(x_{\jmath}\right) \bar{\xi}_{\jmath}=-\int_{\Gamma_{\bar{k}}} \frac{\partial \bar{w}}{\partial n} \frac{\partial u}{\partial n} a n \mathrm{~d} s \tag{432}
\end{equation*}
$$

Noting Equation (420), Equation (425), and Theorem 4 1, the left-hand side of Equation (4 32) can be reduced

$$
\begin{align*}
\sum_{j=1}^{m} v\left(x_{j}\right) \bar{\xi}_{j} & =<\mathcal{M} v, \mathcal{R}\left(\Gamma_{\tilde{k}}\right)>_{\mathbb{C}^{m}} \\
& =<\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right) a, \mathcal{R}\left(\Gamma_{\tilde{k}}\right)>_{\mathbb{C}^{m}} \\
& =<a, \mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\tilde{k}}\right)>_{L^{2}(\Gamma)} \\
& =\int_{\Gamma_{\bar{k}}} a \overline{\mathcal{F}^{\prime}\left(\Gamma_{\tilde{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\bar{k}}\right)} \mathrm{d} s \tag{433}
\end{align*}
$$

Combining Equation (432) and Equation (433) yıelds

$$
\begin{equation*}
\int_{\Gamma_{\tilde{k}}} a \overline{\mathcal{F}^{\prime}\left(\Gamma_{\bar{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\tilde{k}}\right)} \mathrm{d} s=-\int_{\Gamma_{\tilde{k}}} a\left(\frac{\partial \bar{w}}{\partial n} \frac{\partial u}{\partial n} n\right) \mathrm{d} s \tag{434}
\end{equation*}
$$

which holds for any a Therefore, it follows that

$$
\begin{equation*}
\mathcal{F}^{\prime}\left(\Gamma_{\bar{k}}\right)^{*} \mathcal{R}\left(\Gamma_{\bar{k}}\right)=-\frac{\partial w}{\partial n} \frac{\partial \bar{u}}{\partial n} n \tag{435}
\end{equation*}
$$

Using the result of Equation (435), the Equation (427) can be written as

$$
\begin{equation*}
a=-\beta \frac{\partial w}{\partial n} \frac{\partial \bar{u}}{\partial n} n \tag{436}
\end{equation*}
$$

Thus, for each iteration, one forward problem from Equation (4 16)-(4 17) and one adjoint problem from Equation (428)-(429) are solved Once a is determined, $\Gamma_{\bar{k}}$ is updated by $x+a$ using Equation (418)

43 Iteratıve Algorıthm

The algorithm of iterative method is as follows
1 Input the real shape and intital guess
2 Set numerical shape to be inttral guess
3 Solve forward problem at wave number k to obtain the
(a) real shape response matrix P_{k}
(b) numerical shape response matrix Q_{k}

4 Find the residual between P_{k} and Q_{k}
5 Use the residual to solve the adjoint problem
6 Obtain the velocity vector
7 Use the velocity vector to update the numerical shape
8 Repeat Steps 2-7 untıl residual is sufficiently small
9 Depending on the detall level of the object, increase k to a correspondıng level
Figure 41 shows the flow diagram of the iterative method

Figure 41 Flow diagram of the iterative method

44 Numerical Experıments

In the numerical experiments, the solid line is the real shape and the line with crosses is the numerical shape Each cross is a sample point on the boundary and the numerical boundary is obtained by trigonometric interpolation

For the first example, the real shape is a flower with three leaves Figure 42 is the initial state, the residual is 00088 at $k=1$ Figure 43 is the middle state after 64 iterations, the residual is 00031 at $k=1$ Figure 44 is the final state after 128 iterations, the residual is 00005 at $k=1$

Figure 42 Iterative method experıment Flower, initial

Figure 43 Iterative method experıment Flower, middle

Figure 44 Iterative method experıment Flower, final

In the second example, two flowers are placed in the same doman to test the iteratıve algorithm on multıple targets

Figure 45 is the initial state, the residual is 00147 at $k=1 \quad$ Figure 46 is the state at Step 30, the residual is 00147 at $k=1$ Figure 47 is the state at Step 60, the residual is 00143 at $k=1$ Figure 48 is the state at Step 75 , the residual is 00324 at $k=2$ Figure 49 is the state at Step 78 , the residual is 00216 at $k=2$ Figure 410 is the state at Step 81 , the residual is 00127 at $k=2$

Figure 45 Iterative method experiment for two flowers (a)

Figure 46 Iterative method experıment for two flowers (b)

Figure 47 Iterative method experıment for two flowers (c)

Figure 48 Iterative method experiment for two flowers (d)

Figure 49 Iterative method experiment for two flowers (e)

Figure 410 Iteratıve method experıment for two flowers (f)

It can be seen that in the second example the residual converges slow at wave number $k=1$ and sufficiently fast at $k=2$, which means that $k=1$ can not capture the detals of the boundary Wave frequency needs to be increased to guarantee convergence

45 Summary for Iteratıve Imaging

The iterative method is based on MUSIC algorithm for the initial guess to guarantee convergence Image processing is used for converting the MUSIC imaging function into a level set representation for the initial guess and feeding it to the forward solver The recursive linearization solves one forward and one adjoint problems in each iteration step and it is always started from the low-frequency number k and increased k in iteration to capture more details of the boundary of the object The final result is more accurate than just using the direct imaging method The iterative method needs more computation but the forward solver can be parallelized to increase speed

CHAPTER 5

SHAPE CLASSIFICATION

Shape identification and classification has wide applications The crucial thing is to characterize a shape using finitely many numbers In this chapter, we will discuss the relation between response matrix and the geometry of the target A novel method will be proposed that uses the scattering relation and the response matrix We will define a distance function based on the response matrix to compare shapes, study the property of the response matrix under different wave frequency, and apply our distance function on large data set to obtain the retrieval rate

51 Basıc Concepts

By sending a plane wave from different angles and recording the far field data in different angles, the response matrix is formed The Nystrom method can be used to generate the response matrix by solving the Helmholtz equation In [14], an algorithm for shape classification is proposed using the Poisson equation The method is capable of classifying shapes with some rare mistakes However, unlıke the Helmholtz equation, the Poisson equation does not have scaling information

In this chapter, two kinds of objects are used the opaque object and the transparent object For an opaque object, only the boundary of the object is considered The Dirichlet boundary condition is used on the boundary of the object For a transparent
object, the whole region of the object is considered The born-approximation method is used to generate the response matrix

The outline of this chapter is as follows Section 52 explains how the response matrix is generated and describes the properties of the singular value decomposition of the response matrıx Sectıon 5 3, proposes different algorıthms for shape classification Numerical experiments are presented in Section 54-5 8

52 Response Matrix and Singular Value Decomposition

As input, some type of characterization of a shape is needed One way is to give the coordinates of a set of sample points on the boundary of a shape Another way is to give a picture (eg, a "* bmp" file), and ımage processing can also be used to generate the coordinates of a set of sample points on the boundary

The active contour method developed by Tony Chan et al [6] solves an optimization problem and evolves a curve using the level set method to generate a level set function that has the boundary of the shape as the zero level set Based on this function, a MATLAB command, "coutourc", can be used to generate a set of sample points on the boundary of the shape The trigonometric interpolation, which is introduced in Chapter 4, will be also used here to generate the first and second derivatives

A source at the \imath-th transducer generates a scattered field that is recorded at the \jmath-th transducer to form one element of the response matrix Changing \imath, \jmath generates the response matrix The forward solver in Chapter 2 can be used here to generate the response matrix for any shapes

In the numerical experiments, far field data is used instead of near field, that is,
to send plane wave from the \imath-th direction and record far field pattern at the \jmath-th direction to obtain an element of the response matrix The advantage of using far field data is that the location of the array of transducers does not need to be considered and it is easier to compute the far field data

Another method to get the response matrix is born approximation This method can be used on transparent objects, 1 e , photo images First, the image which contains the object should be represented as a matrix Each pixel in the image is mapped to a corresponding value in the matrix to represent the brightness of that pixel Then, the integration of the product of two Green's functions generates one element of the response matrix

For the near field pattern, the response matrix P is obtained by

$$
\begin{equation*}
P_{\imath \jmath}=\int_{D} \sigma(y) G\left(x_{\imath}, y\right) G\left(x_{\jmath}, y\right) d y \tag{51}
\end{equation*}
$$

where x_{i} is the location of the source of coming wave, and x_{j} is the location of the receiver of the scattering wave $G(x, y)$ is Green's function In two-dimensional case

$$
\begin{equation*}
G(x, y)=\frac{\imath}{4} H_{0}^{1}(k\|x-y\|) \tag{52}
\end{equation*}
$$

and in three-dimensional model

$$
\begin{equation*}
G(x, y)=\frac{e^{\imath k\|x-y\|}}{4 \pi\|x-y\|} \tag{53}
\end{equation*}
$$

The $\sigma(y)$ is an arbitrary function $\sigma \quad D \rightarrow \mathbb{R}$, eg $\sigma \quad D \rightarrow[0,255]$ can be defined to indicate the contrast of a image

For far field pattern, the response matrix P is obtaned by

$$
\begin{equation*}
P_{\imath \jmath}=\int_{D} \sigma(y) e^{\imath k y d_{\imath}} e^{\imath k y d_{\jmath}} d y \tag{54}
\end{equation*}
$$

where d_{\imath} is the direction (unit vector) of incident wave, and d_{\jmath} is the direction of scatterıng wave

Born approximation is faster than the Nystrom method since the Hankel function does not need to be computed in the formula of born approximation

The shape information is embedded in the response matrix The dominant information is embedded in the first few singular vectors of the response matrix To reduce storage from $O\left(n^{2}\right)$ to $O(n)$, only the first few singular values or vectors are stored Now each shape is encoded by $O(n)$ numbers, where n is the number of angles

53 Algorıthms for Shape Classıfication

The basic algorithm for shape classification using response matrix information is as follows

1 Input image file
2 Take the imaging processing to obtain a level set function
3 Generate sample points on the boundary
4 Interpolate using trigonometric functions to generate locations and first and second order derivatives

5 Compute the perımeter and rescale it
6 Find the center of mass of the shape and relocate
7 Find the minimal sample points on the boundary that guarantee the accuracy of the forward problem

8 Compute the response matrix (might add noise)
9 Use SVD for shape classification

To take care of a shift, the centroid of the shape is computed using the sample points on the boundary This can be done by viewing the shape as a combination of signed triangles formed by neighboring sample points and a fixed reference point since the centroid of a triangle can be easily computed

To take care of a scaling, the perımeter of the shape is computed and normalized For the Born Approximation problem, the area of the shape is computed and normalized

To take care of a rotation, essentially a shift of the index is done for the response matrix The simplest idea is to search among all possible shifts and compute a norm of the difference between the matrix of the reference shape and the matrix after the mdex shift of the shape to be tested However, this method has two disadvantages first, it is not robust, second, it needs a storage of $O\left(n^{2}\right)$ If only the singular value is used to compare, the shifting is not needed since the singular value of a matrix is identical while shifting the row and column

To take care of contrast varıance, the $\sigma(x)$ is normalized using Frobenius-norm

54 Response Matrix by Forward Solver using Nystrom Method

First, examples where the shapes are generated from a pıcture are considered, for example, a bmp file for a solid simply connected region The procedure described in Section 52 is used to generate sample points on the boundary and the first and second derivatives The Nystrom method is used to obtain the response matrices for these shapes

The reference shape is set as a Chinese character "Wang" with bold font Shape 1 to be tested is the same shape with scaling and rotation Shape 2 is the same Chinese
character "Wang" with another font (Songtı) Shape 3 is a Chinese character "Zheng" with bold font The results in Figures 5 1-54 show that Shape 1 is the only correct shape

Figure 51 Chınese character comparison

Figure 52 Chinese character comparıson, matched case

Figure 53 Chinese character comparison, different fonts

Figure 54 Chinese character comparison, different characters

Next, the reference shape is set to be a spiral curve, see Figure 55 Shape 1 is the same shape with a rotation of 03937 (radian measure) and a scaling of 05 Shape 2 is a shorter spiral that matches with the reference shape except at the tip Again, the result in Figure 56 and Figure 57 show that the correct shape could be identıfied

Figure 55 Curve comparisons

Figure 56 Long curve vs long curve

Figure 57 Long curve vs short curve

Next, a library was buld to contain the shape information of a group of reference shapes For each reference shape, only the first five eigenvalues of the corresponding response matrix was stored Given a reference shape, users can go through the library to find the same shape

Figure 58 and Figure 59 show a search for the bold font Chinese character "Wang" in the library The sixth comparison in Figure 58 is a correct match with a peak value 157 , which is much larger than other peak values

Fıgure 58 Search "Wang" in library, no noise

Figure 59 Search "Wang" in library, no noise

The advantage of using the SVD method to compare is robust Figure 510 and Figure 511 show the result of adding 50% noise The sixth comparison in Figure 510 is a correct match with a peak value 90 , which is much larger than other peak values

Figure 510 Search "Wang" in library with 50% noise, part 1

Figure 511 Search "Wang" in library with 50% noise, part 2

Then, the noise is set to be biased norse Figure 512 and 513 show the result The sixth comparison in Figure 512 is a correct match with a peak value 237, which is much larger than other peak values

Figure 512 Search "Wang" in library with 50% biased noise, part 1

Figure 513 Search "Wang" in library with 50% blased noise, part 2

55 Response Matrix by Born Approximation

This section shows the results of shape classification using response matrices based on Born approximation

First the response matrices were generated using Born approximation for the data set at wave frequency $k=20$ For example five different classes of shapes are used "apple", "bat", "bırd", 'cup", "Heart", each class contains five shapes "apple-1" was used as a reference shape and compared the distance between every shape and "apple-1"

The distance function is

$$
\begin{equation*}
d_{1}\left(s_{1}, s_{2}\right)=\left\|\operatorname{svd}\left(r\left(s_{1}\right)\right)-\operatorname{svd}\left(r\left(s_{2}\right)\right)\right\|_{2} \tag{55}
\end{equation*}
$$

where $r()$ is the response matrix generated by born approximation, and $\operatorname{svd}()$ gets the singular values of a matrix

The results are shown in Figure 514 All the figures are listed in an increasing distance order Five apples are in the top five The other four classes are grouped together

Figure 514 Reference shape "apple-1"

If "bat-1" is taken as reference shape, the results are shown in Figure 515 Although "cup-2" is mixed with "Heart-4", the five bats are still in the top five

Figure 515 Reference shape "bat-1"

Figure 516 uses "lizard-1" as a reference shape All five lizards are in the top five

Although the "snake" shape is similar to the "lizard" shape, the current method can
still distinguish them

Figure 516 Reference shape "lizard-1"

Figure 517 shows the result of comparing different Chinese characters in different
fonts The same characters to the reference character are in the top five

Figure 517 Reference shape Chnese characters

56 Frequency Filterıng

The born approximation is simılar to fourier transformation The geometric domain is mapped to the frequency domain Figure 518 shows the frequency distribution

Figure 518 Frequency distribution

The dots with cross in Figure 518 form one column of the orıginal matrix The low frequency part is in the center and vice versa The low frequency part or high frequency part can be truncated based on the demands Then, the response matrix can be reformed by the increased or decreased frequency order to get a better result

A data set of different kinds of flower shapes is considered, as shown in Figure 519 There are five classes in the data set, and each class contans five shapes Shapes in this data set are classified by the number of leaves

Figure 519 Five classes Orıginal

Figure 520 shows the results using distance function d_{1} The distance function d_{1} farled on this data set

Figure 520 Five classes using distance function d_{1}

In Figure 5 20, "device0-1", "device1-1", "device2-1", "device5-1", "device7-1" is taken as the reference shape separately, compared with other shapes in the set The top eight matches are shown The shape which is in a different class as the reference shape will be marked with a ${ }^{* *}$ on the top The result is not as good as in the previous examples Therefore, another metric needs to be found to measure the distance between two shapes, which is introduced by distance function d_{2}

Let s_{1}, s_{2} be two shapes in the data set r_{\imath} is the response matrix of $s_{\imath}, \imath=1,2$ Take the singular value decomposition $r_{i}=U \Sigma V^{H}$, where $\left\{u_{\jmath}^{(2)}\right\}_{\jmath=1}^{n}$ and $\left\{v_{j}^{(2)}\right\}_{\jmath=1}^{n}$ are
the singular vectors obtained from U and V Then, the distance between s_{1} and s_{2} is defined as below

$$
\begin{equation*}
d_{2}\left(s_{1}, s_{2}\right)=\sum_{\imath=1}^{n}\left|\left(u_{\imath}^{(1)} u_{\imath}^{(2)}\right) \overline{\left(v_{\imath}^{(1)} v_{\imath}^{(2)}\right)}\right| \tag{56}
\end{equation*}
$$

Here $n=5$ is set to ignore noise Figure 521 shows the result using metric d_{2}, which is much better than using metric d_{1}

Figure 521 Five classes using distance function d_{2}

57 Face Recognition

This section introduces contrast information to a two-dimensional object to represent a gray image, and classification method is applied to identıfy faces Figure 522 shows the result of face recognition using the current distance function based on the response matrix generated by Born approximation The picture of one person is used as a reference shape and compared to all the other pictures The results are placed in a decreasing order The five pictures of the same person are in the top five

Figure 522 Face recognition

58 Retrieval Rate on the MPEG-7 Shape Data Set

The MPEG-7 Shape is a standard testing data set of non-rigid shapes with a single closed contour It consists of 70 different classes of shapes and each class contans 20 different shapes The introduction of MPEG-7 Shape data set can be found in [28] The MPEG-7 Shape data set is tested on many classification algorithms
to obtain the shape retrieval rate Most of those shape classification method are based on the property of the shapes However, the classification method presented in this chapter is based on the response matrix generated by the shape using the Helmholtz equation Therefore, before computing the shape retrieval rate, the Born approximation is applied on all the shapes in order to obtain the response matrix

In the numerical experıment, we set the wave number k to be $k=20$ and the number of transducers N to be $N=64$ Hence, the response matrix P is of 64×64 dimension

The retrieval rate is computed by the so called Bull's eye score
1 Every shape in the database is compared to all other shapes There are totally 1960000 comparisons

2 The number of shapes from the same class among the 40 most sımılar shapes is reported For this experiment, the reported number is 18569

3 Ratio of the total number of shapes from the same class to the highest possible number is computed as the retrieval rate For this experıment, the highest possible number is $1400 \times 20=28000$ Hence

$$
\text { ratıo }=18569 / 28000 \approx 6632 \%
$$

Figure 523 is the example of the 40 most simılar shapes for the "apple-1"

Figure 523 MPEG-7 comparıson for "apple-1"

The Skeleton DAG method [31] has the retrieval rate of 60% The Wavelet method [8] has the retrieval rate of 6776% The Curvature scale space method [32] has the retrieval rate of 7544% The Shape contexts method [3] has the retrieval rate of 7651% The Curve edit dıstance method [41] has the retrieval rate of 7817%

Most of the algorithms are based on the shape information Our method, instead, is based on the response matrix information There are several advantages using response matrix to classify shapes

1 No special treatment needed for shape scaling and rotation
2 The storage is efficient since the forward solver or the Born approximation maps the shape from the shape space, which is a infinite dimension space, into a complex matrix space, which is a finite dimension space

3 When the shapes cannot be visualized, the physical measurements lead to the scattered field information of the shape Our response matrix generated by solving the Helmholtz equation is accurate comparing to the response matrix obtaned from physical measurement Therefore, the scattered field data can be directly fed to our algorithm to compute for the retrieval rate The shape-based algorithms need the shape information which can be only obtained by solving the inverse problem Our method is much faster in this case

59 Summary for Shape Classıfication

Using the response matrix or its singular values and vectors to represent shape is storage efficient This study shows that only the first few singular values and vectors need to be stored and used to characterize the shape The storage is reduced from $O\left(n^{2}\right)$ to $O(n)$ Therefore, a shape can be characterized and a shape library can be bult using the least amount of data Shape rotation and scaling can be easily dealt with in the response matrix The wave frequency can be filtered to focus on different detall levels in classfication Moreover, the SVD method used is robust to noise The retrieval rate is obtanned on MPEG-7 Shape data set

CHAPTER 6

CONCLUSIONS

This dissertation proposed an effective iterative method for inverse problem based on the forward solver for iteration and direct imaging result for the initial guess The Nystrom method is used in the forward solver and adjoint problem The response matrix generated by the Nystrom method converges exponentially with respect to the number of sample points on the boundary of the target Image processing was used for converting the MUSIC imaging function into a level set representation for the initial guess, and was then fed to the forward solver The recursive linearization solves one forward problem and one adjoint problem in each iteration step The process always starts from low-frequency number k and increase k in iteration to capture more details of the boundary of the object Numerical examples show that this method can be applied on single or multiple targets, and the residual of the final state is less than the residual of the initial guess, which means that the result of this iterative algorithm is more accurate than the result of the direct imaging method

The inverse problem was applied to shape identification and classification since there is a relation between the shape itself and the response matrix obtained from the shape The distance function was designed based on the response matrix or its SVD information Index shifting of the response matrix was used to represent the
shape rotation Numerical examples shows that the SVD method used is robust to noise Filtering is used to control the detal level of the shapes and is tested on the classification example The classification algorithm is fast, using Born Approxımation, and storage efficient, using the distance function on SVD of the response matrix The classification method based on the response matrix is tested on a large data-set (MPEG 7 Shape) and the retrieval rate is computed The method will be also combined with machine learning techniques to improve the retrieval rate in the future

BIBLIOGRAPHY

[1] X Baı, X Yang, L J Lateckı, W Liu, and Z Tu Learnıng context-sensıtıve shape sımılarity by graph transduction IEEE Trans on Pattern Analysis and Machine Intelligence, 32(5) 861-874, 2010
[2] G Bao, S Hou, and P Li Imaging scattering by a continuation method with initial guesses from a direct maging algorithm J Comp Phys, 227(1) 755-762, 2007
[3] S Belongıe, J Malık, and J Puzıcha Shape matching and object recognition using shape contexts IEEE Transactions on Pattern Analysıs and Machine Intellıgence, 24(4) 509-522, 2002
[4] F Cakonı and D Colton Qualitatıve Methods in Inverse Scattering Theory An introduction Berlın Sprınger, 2005
[5] K Chadan and P C Sabatier Inverse Problems in Quantum Scattering Theory Berlın Sprınger-Verlag, 1989
[6] T F Chan Active contours without edges IEEE Transactions on Image Processing, 10(2) 266-277, 2001
[7] M Cheney The linear sampling method and the music algorithm Inverse Problems, 17 591-595, 2001
[8] G C -H Chuang and C-C J Kuo Wavelet descrıptor of planar curves Theory and applıcations IEEE Transactions on Signal Processing, 5(1) 56-70, 1996
[9] D Colton, J Coyle, and P Monk Recent developments in inverse acoustic scatterıng theory $S I R E V, 42$ 369-414, 2000
[10] D Colton and A Kırsch A simple method for solving inverse scatterıng problems in the resonance region Inverse Problems, 12 383-393, 1996
[11] D Colton and R Kress Integral Equation Methods in Scattering Theory New York Wıley-Interscience Publication, 1993
[12] D Colton and R Kress Inverse Acoustic and Electromagnetic Scattering Theory Berlin Springer, 1998
[13] A J Devaney Super-resolution processing of multı-static data using tıme-reversal and music to appear in J Acoust Soc Am
[14] L Gorelıck, M Galun, E Sharon, R Basrı, and A Brandt Shape representation and classification using the porsson equation $A C C V, 28$ 1991-2005, 2006
[15] F K Gruber, E A Marengo, and A J Devaney Time-reversal imaging with multiplesignal classification considering multiple scattering between the targets J Acoust Soc Am, 115 3042-3047, 2004
[16] S Hou, K Huang, K Solna, and H -K Zhao A space and phase coherent direct 1maging method J Acoust Soc Am, 125(1) 227-238, 2009
[17] S Hou, K Solna, and H -K Zhao Imaging of location and geometry for extended targets using the response matrix J Comp Phys, 199(1) 317-338, 2004
[18] S Hou, K Solna, and H-K Zhao A dırect ımaging algorıthm for extended target Inverse Problems, 22 1151-1178, 2006
[19] S Hou, K Solna, and H -K Zhao A dırect maging method for far field data Inverse Problems, 23 1533-1546, 2007
[20] D S Jones Acoustıc and Electromagnetıc Waves Oxford Clarendon Press, 1986
[21] E Kerbrat, C Prada, D Cassereau, , and M Fink Ultrasonic nondestructıve testing of scattering media using the decomposition of the time reversal operator IEEE Trans Ultrason, Ferroelec, Freq Contr, 49(8), 2002
[22] E Kerbrat, C Prada, and M Fink Imaging in the presence of grain noise using the decomposition of the time reversal operator J Acoust Soc $A m$, 113(3) 1230-1240, 2003
[23] A Kırsch The domain derıvative and two applications in iverse scattering theory Inverse Problems, 9 81-96, 1993
[24] A Kirsch Charactorization of the shape of a scattering obstacle using the spactral data of the far-field operator Inverse Problems, 14 1489-1512, 1998
[25] A Kirsch The music algorithm and the factorization method in inverse scatterıng theory for inhomogenıus medıa Inverse Problems, 18 1025-1040, 2002
[26] R Kress Integral equation methods in inverse obstacle scattering Engineering Analysis with Boundary Elements, 15(2) 171-179, 1995
[27] R Kress On the numerical solution of a hypersingular integral equation in scattering theory Journal of Computational and Applied Mathematics, 61 345-360, 1995
[28] L J Lateckı, R Lakamper, and U Eckhardt Shape descrıptors for non-rıg1d shapes with a single closed contour IEEE Conf on Computer Vision and Pattern Recognitıon, 15(2) 424-429, 2000
[29] P D Lax and R S Phıllıps Scattering Theory New York Academic Press, 1967
[30] R Leis Inıtıal Boundary Value Problems in Mathematıcal Physıcs New York John Wıley, 1986
[31] I -J Lin and S Y Kung Coding and comparıson of dags as a novel neural structure with application to on-line handwritten recognition $I E E E$ Transactions on Signal Processing, 45(11) 2701-2708, 1997
[32] F Mokhtarian, S Abbası, and J Kıttler Efficient and robust retrieval by shape content through curvature scale space Image Databases and Multı-Medıa Search, 151-58, 1997
[33] C Muller Foundations of the Mathematzcal Theory of Electromagnetic Waves Berln Herdelberg New York Sprınger-Verlag, 1969
[34] R G Newton Scattering Theory of Waves and Partıcles Berln Heldelberg New York Sprınger-Verlag, 1982
[35] S Nı, P Wang, M Paun, W Daı, and A Paun Spotted cdna mıcroarray ımage segmentation using acwe Romanıan Journal of Information Science and Technology, 12 249-263, 2009
[36] C Prada, S Manneville, D Spoliansky, and M Fink Decomposition of the time reversal operator Detection and selective focusing on two scatterers J Acoust Soc Am, 99 2067-2076, 1996
[37] C Prada and J-L Thomas Experımental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix J Acoust Soc Am, 114(1) 235-243, 2003
[38] C Prada, J -L Thomas, and M Fınk The iteratıve time reversal process Analysis of the convergence J Acoust Soc Am, 97(1) 62-71, 1995
[39] M Reed Scattering Theory New York Academıc Press, 1979
[40] R O Schmıdt Multiple emitter location and sıgnal parameter estımation IEEE Trans Antennas Propagation, 34(3) 276-280, 1986
[41] T Sebastıan, P Kleın, and B Kımıa On alıgnıng curves IEEE Transactions on Pattern Analysıs and Machine Intellıgence, 25(1) 116-125, 2003
[42] M Tanter and M Fink Real time inverse filter focusing by iterative time reversal J Acoust Soc Am, 115 768-775, 2004
[43] M Tanter and M Fink Revisiting iterative time reversal processing Application to detection of multıple targets J Acoust Soc Am, 115 776-784, 2004
[44] C H Wilcox Scattering Theory for the d'Alembert Equation in Exterior Domains Berln Heldelberg New York Springer-Verlag Lecture Notes in Mathematics 442, 1975
[45] Y Xu, B Wang, W Liu, and X Baı Skeleton graph matching based on critical points using path sımılarity $A C C V, 3456-465,2009$

