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ABSTRACT 

The manuscript presented herein is based on the investigation of the mechanical 

properties of fly ash-based geopolymer concrete and their link to fly ash (FA) 

characteristics. A database of 32 FA samples was created. Each FA sample was analyzed 

in terms of chemical composition, crystallographic properties and particle size 

distribution. The mechanical performance of geopolymer concrete (GPC) made from 

each FA sample was evaluated in terms of density, setting time, compressive and flexural 

strength, static elastic modulus and Poisson's ratio. It is worth mentioning that the author 

has already published preliminary results of this study (Diaz and Allouche, 2010; Diaz et 

al. 2010) in peer-reviewed journals. The database was randomly divided into two sets; 

one consisting of 24 FA samples for model building using linear regression and another 

consisting of eight FA samples for validation. The first set was analyzed to detect 

correlations between fly ash characteristics and mechanical properties of GPC. 

Correlations within the elastic modulus, the compressive and flexural strengths of GPC 

were also sought and correlations were developed. These equations were tested on the 

second set of eight FA samples that were not included during the model building process. 

The results show that the elastic modulus, as well as the compressive and flexural 

strengths of GPC can be predicted with reasonable accuracy by analyzing the chemical, 

physical and crystallographic properties of a given FA and following the steps presented 

in this study. 
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Additionally, it was also found that the mechanical behavior of GPC is similar to 

that of ordinary Portland cement (OPC) concrete, suggesting that equations, akin to those 

given by the American Concrete Institute's Building Code (ACI 318, 2008), could be 

applied for GPC to determine its flexural strength and static elastic modulus. 
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CHAPTER 1 

INTRODUCTION 

1.1. General Introduction 

According to the most recent survey released by the American Coal Ash 

Association (2011), the U.S. produced approximately 135 million tons (MT) of coal 

combustion products (CCPs) in 2009 making it the second largest by-product stream in 

the US. The main types of CCPs are fly ash (FA), bottom ash, boiler slag and flue gas 

desulfurization material (FGD). FA occupies over 45% of the total CCP production with 

approximately 63 MT per year. FA is composed of fine spherical particles that rise with 

the flue gases during the combustion of coal which then are captured by pollution control 

devices. Although 25 of the 63 MT of FA were used beneficially in 2009, 38 MT were 

disposed in landfills and storage lagoons at a significant cost and posing a potential risk 

to local aquifers due to possible leaching of heavy metals. However, an imminent change 

to the current amount of FA used in beneficial applications is expected to happen in the 

near future. The US Environmental Protection Agency (EPA) is currently developing 

new regulations with which many of the current beneficial applications of FA, such as 

soil stabilization and mine reclamation that are considered "un-encapsulated" may be 

banned allowing only the recycling of FA in encapsulated applications, namely, concrete. 

In addition, the cost of landfilling operations is expected to increase due to new stricter 

1 



2 

requirements (liners, groundwater monitoring, etc.) derived from the new regulations 

(EPA, 2011) 

While FA has been used in ordinary concrete as a "supplementary cementitious 

material" for many years to improve its rheology in the fresh mix and durability of the 

hardened product, it typically occupies up to 20% of the total mix. However, FA alone is 

capable of producing a strong cementitious binder when activated under highly alkaline 

conditions. This binder, often called geopolymer, does not require the presence of 

ordinary Portland cement (OPC) to harden or gain strength (Davidovits, 1991). 

Geopolymers are typically synthesized from materials of geological origin (e.g., 

metakaolin) or byproducts such as FA that are rich in silica and alumina. Geopolymer 

binders result from a chemical reaction where silica and alumina molecules contained in 

an active pozzolanic material (i.e., FA) react under highly alkaline conditions, typically 

provided by a sodium (or potassium) hydroxide solution and an alkaline silicate (e.g., 

sodium or potassium silicate). Many researchers agree that the outcome of this reaction is 

an amorphous 3D network of silicon and aluminum atoms linked by oxygen atoms in a 

four-fold coordination similar to the one exhibited by zeolites (Fernandez-Jimenez and 

Palomo, 2004; Davidovits, 1991). The positive ion (Na+ or K+) provided by the activator 

solution serves to balance the negative charge generated by having Al atoms in a four

fold coordination. This, gives geopolymer a set of mechanical and chemical properties 

that are equivalent, or even superior to those of OPC concrete (Provis and van Deventer, 

2007; De Silva et al., 2007). 

One of the main challenges for a widespread use of FA-based geopolymer 

concrete (GPC) is the significant variability of FA. Its chemical properties depend on the 
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type, size and composition of its precursor coal. Silica and alumina molecules contained 

in the FA are the main components of the geopolymer network thus the amount and ratio 

of these influence the resulting mechanical properties of geopolymer. However, even 

though silica and alumina are the main precursors for the geopolymeric reaction, other 

factors also play a significant role in the mechanical behavior of geopolymer. Impurities, 

such as CaO, have a positive impact in geopolymer but cause shorter setting times as they 

create nucleation sites (Temuujin et al., 2009). Another important factor is the fly ash's 

crystallographic properties (i.e., the way the molecules are arranged within the FA). Since 

amorphous compounds are easier to dissolve than crystalline compounds during the first 

step of geopolymerization (dissolution of species), they yield higher amounts of reactive 

Si02 and AI2O3 to combine during the transportation/coagulation phase of the 

geopolymeric reaction, resulting in a higher degree of geopolymerization and 

consequently higher mechanical strength. The physical properties are mainly a result of 

the degree of pulverization of the precursor coal, since a significant part of the reaction 

occurs at the particle-liquid interface, the finer the particles the greater is the surface area 

and the more reactive is the FA. A second physical factor is the burning efficiency, since 

a poor burning process yields unburned coal in the FA (quantified as Loss on Ignition, 

LOI). High content of unburned carbon with high surface area could adversely impact the 

behavior of the fresh mixture, thereby creating a demand for the addition of activator 

solution well beyond what is needed to activate the source material, to obtain a workable 

mixture (Diaz et al., 2010). 

This study attempts to provide a series of linear regression models derived from a 

database of 32 FA stockpiles. Each FA sample was examined in terms of chemical 
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composition, particle size distribution and crystallographic characteristics. In addition, 

GPC made from each FA was evaluated in terms of density, setting time, compressive 

and flexural strength, elastic modulus and Poisson's ratio. The models are an 

approximation of the true underlying relationship between the aforementioned FA 

characteristics and the mechanical properties of GPC. It is worth to mention that although 

the Poisson's ratio was measured for all the samples it was not used in the calculations, 

since the Poisson's ratio and the elastic modulus are both indicators of the stiffness of the 

material only one of them was used for the regression modeling; the elastic modulus. 

1.2. Research Framework 

A significant number of researchers have dedicated efforts to study the chemistry 

behind geopolymer binders to provide an insight to geopolymerization kinetics. These 

studies are typically performed using a highly pure source of silica and alumina, such as 

metakaolin (Provis and van Deventer, 2007; De Silva et al., 2007; Provis et al., 2005). 

However, FA exhibits a significantly different particle morphology which impacts the 

mechanical properties of the resulting geopolymer (Provis et al , 2010) and typically 

contains impurities that fluctuate from one FA source to another, thus they hardly ever 

extrapolate accurately to FA-based geopolymer. Research efforts have also been made to 

identify the characteristics inherent to the FA that impact its potential as source material 

for geopolymerization (Fernandez-Jimenez and Palomo, 2003; van Jaarsveld et al., 2003; 

Diaz et al. 2010). Although a good approach, it falls short to quantify the tendencies 

found during the investigations. While the premise "FA with relatively high fineness will 

produce geopolymer with higher compressive strength" is true and it is indeed useful 

information, it does not provide specific optimum values or ranges nor takes into account 
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the interaction of this factor with others that may also affect the mechanical strength of 

geopolymer. 

Other studies have focused on investigations that promote the use of geopolymer 

highlighting the environmental benefits of recycling FA into geopolymer concrete (van 

Deventer et al., 2010; Weil et al., 2007). However, these studies fail to solve some of the 

fundamental issues that prevent GPC from being commercially available in the market. 

Also, several researchers have studied the mechanical properties of GPC focusing 

on the effects that mix proportion, activator solution concentrations, curing conditions, 

etc. pose on the mechanical properties of GPC (Sofi et al, 2007; Fernandez-Jimenez et al., 

2006; Hardjito et al., 2004). To date limited attention was given to evaluating tendencies 

and correlations within the mechanical properties of GPC for a wide range of FA sources. 

A key contribution of the proposed research work is the capturing of the 

variability posed by using FA stockpiles with a wide range of chemical, crystallographic 

and physical characteristics as source materials to manufacture geopolymer concrete. 

1.3. Objective 

The main objective of this research project is to provide an approximation to the 

true functional relationship between FA characteristics and mechanical properties of GPC 

through the development of empirical models. These models are aimed at predicting the 

properties of fresh and hardened GPC using chemical, crystallographic and physical 

characteristics of FA. In addition, this study attempts to develop linear regression models 

that capture the mechanical behavior of GPC monoliths. 
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1.4. Limitations 

The present research does not attempt to classify geopolymer with respect to their 

molecular structures nor attempts to study the kinetics of geopolymerization and 

chemical reaction products. Instead, it attempts to provide practical forecasting tools that 

use FA characteristics as input to predict the potential mechanical properties of GPC. 

Moreover, it attempts to provide empirical equations that explain key relationships that 

exist within its mechanical attributes. 

1.5. Engineering Significance 

This study will help to gain better understanding of FA as raw material for GPC 

by analyzing several FA stockpiles with distinct characteristics and correlating those 

characteristics with the mechanical properties of GPC. Discerning the relationship 

between the physical, chemical and crystallographic characteristics of FA and the 

mechanical properties of GPC is an important step towards producing large quantities of 

GPC with reasonably consistent and predictive engineering properties. 

Another important challenge for the widespread use of GPC is the lack of design 

equations that represent the correlations and tendencies among its mechanical properties. 

This study will also attempt to get a better understanding of the mechanical behavior of 

GPC, based on the effects posed by using different sources of FA. Given that FA 

stockpiles that possess optimum characteristics will have better geopolymerization 

potential, thus better mechanical properties compared to others, it is very beneficial to 

evaluate and compare a statistically meaningful FA database. 



CHAPTER 2 

LITERATURE REVIEW 

2.1. Fly Ash 

The combustion of finely ground coal to produce electricity typically leaves 

behind two main waste streams: (1) bottom ash, composed of particles of sizes ranging 

from 63 to 1000 um many times fused together that drop to the bottom of the boiler, 

hence the term bottom ash; and (2) FA, which is transported along with the flue gases and 

then captured by pollution control devices namely, electrostatic precipitators or 

baghouses and occasionally by scrubber systems. Physically, FA is a very fine and 

powdery material composed mainly of spherically shaped particles that range in size from 

a few microns to over 100 um. The chemical composition of FA is very similar to that of 

volcanic ash having as main components: silica, alumina, iron oxide and calcium oxide in 

some cases. Typically, a small portion of the chemical components is arranged in a 

crystalline form (mainly quartz and mullite, but lime, magnetite and traces of others are 

present in some cases) with the rest being amorphous with no particular arrangement due 

to its rapid cooling after leaving the boiler (Diaz et al., 2010). 

FA is also considered a pozzolan, i.e., a material that will react with calcium 

hydroxide in the presence of water and create cementitious compounds. Therefore, more 

than half of the concrete produced in the US uses FA as a partial substitute for OPC in 

7 
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concrete mixes (Kosmatka et al. 2009). FA is classified, according to ASTM standard C 

618, into three different groups: 

> Class F. - This type of ash typically results from the burning of anthracite or 

bituminous coal. However, it can also be produced from burning lignite or 

subbituminous coal. The sum of its silicon, aluminum and iron oxides must be a 

minimum of 70% and it must have an LOI of no more than 6%. Its maximum 

calcium oxide content is set at 10%. 

> Class C. - In addition to its pozzolanic properties this type of FA also exhibits 

some cementitious properties. It is typically derived from lignite and 

subbituminous coal. However, it can also be the result of burning anthracite and 

bituminous coal. Its content of silicon, aluminum and iron oxide must add to a 

minimum of 50% and must have a maximum of 6% LOI. Its calcium oxide 

content is set to be higher than 10%. 

> Class N. - This type of FA groups raw or calcined natural pozzolans such as 

opaline cherts, shales, volcanic ashes, pumicites and various materials with 

minimum sum of 70% of silicon, aluminum and iron oxide. It must also have a 

maximum of 10% LOI among other chemical and physical requirements. 

2.2. Cement Footprint 

According to a report released in 2009 by the World Business Council for 

Sustainable Development (WBCSD) the production of OPC is currently responsible for 

approximately 5% of the total man-made CO2 emissions in the world, almost equivalent 

to the amount of CO2 emitted by all motor vehicles worldwide. OPC is the binder that 

holds together the second most consumed material (by volume) next to water; ordinary 
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concrete. The emissions associated with the production of OPC can be divided into two 

categories: combustion and calcination. Combustion is associated with the fact that the 

production of cement requires temperatures of approximately 1440°C inside a rotator 

kiln, consuming significant amounts of energy. Fossil fuels are commonly used to reach 

such temperatures. The burning of fossil fuels accounts for 40% of the total CO2 emitted 

in a cement production process while the remaining 60%) is attributed to the calcination 

process. The calcination of cement's main raw materials to produce clinker releases CO2, 

mainly due to the decomposition of CaC03 into CaO and CO2. However, it has been 

suggested that as concrete ages it absorbs back a portion of the CO2 released during the 

manufacturing process through its carbonation. It is estimated that, with good recycling 

practices, 57% of the CO2 can be reabsorbed through concrete carbonation after 100 

years (WBCSD, 2009; Pade and Guimaraes, 2007). 

The pollutant nature of cement's production creates an imperative need to develop 

new construction materials that reduce the human footprint. Furthermore, it presents the 

opportunity to search for materials that can be recycled to create a strong binder like 

cement. A great candidate for this is FA. In comparison, the production of one ton of 

geopolymer binder results in the release of less than 0.2 ton of CO2. 

2.3. Geopolymer 

2.3.1. Geopolymer Chemistry 

The process through which geopolymers harden is typically referred to as 

geopolymerization and is carried out by putting FA in contact with an alkaline activator 

solution, which results in the formation of polymeric chains due to the polycondensation 

of ortho-sialate ions. While the exact reaction mechanism is not yet understood, it is 
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commonly assumed that the synthesis is carried out by means of oligomers (a polymer 

that consist of two, three, or four monomers; e.g., dimmers or trimmers), which provide 

the unitary structures of the tri-dimensional macromolecular net. Geopolymers based on 

alumino-silicates are called poly-sialates, or (-Si-0-Al"0")n, with the n denoting the 

degree of polymerization. The sialate net consists of Si04 and AIO4 thetahedra linked 

together by shared oxygen atoms. Inside the cavities of the net, positive ions (Na+, K+, 

Li+, Ca*4", Ba++, NH4+, HiO+) are present to balance the charge of Al3+, allowing it to be 

linked to four oxygen atoms. A structural model proposed by Davidovits (1993) is 

presented in Figure 1. The empirical formula developed by Davidovits (1993) for 

polysialates can be written as: Mn(-(Si02)z-A102)n, where M is any of the above 

mentioned cations, and n is the degree of polymerization. The letter z represents 1, 2 or 3, 

determining the resulting geopolymer net. For the case of z = 1 the net will be of the 

polysialate type, if z = 2 the net will be a poly(sialate-siloxo), and if z = 3, the net will be 

a poly(sialate-disiloxo). 

SiQ4(3Al) SiQ4(lAl) 

n , *JTK $l~°~h> */r? 
-*T?V M ; p-°-^x P~%< 

s/-o-sf I si-0-̂ 1 si-y^i s,. 
I 

AlQ4(4Si) 
\ 

SiQ4(2Al) 

Figure 1 Structural model of geopolymer proposed by J. Davidovits (1993) 
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Xu and van Denter (2000) proposed that the geopolymerization reaction can be 

divided into three steps: 

1. Dissolution of silicon and aluminum species from the source material through the 

action of the highly alkaline solution. 

2. Transportation of species and formation of monomers (coagulation/gelation). 

3. Polycondensation and growth of polymeric structures resulting in the hardening of 

the material. 

However, these steps typically overlap each other under thermal curing and are 

hard to isolate (Palomo et al., 1999). In addition, some impurities in FA can cause 

hydration reactions that many times impact the kinetics of geopolymerization. Therefore, 

since pure geopolymers rarely occur, especially when using FA as source material, many 

authors refer to geopolymer as Inorganic Polymer Concrete, alkaline cements or Alkaline 

Activated FA (Fernandez-Jimenez and Palomo, 2004; Sofi et al., 2007). Although some 

details are still debated, many researchers agree that paralleled to the formation of 

geopolymer gel, calcium in the mixture reacts with silicate and aluminate monomers 

dissolved from the source material, forming calcium silicate hydrates (CSH) and calcium 

aluminosilicate hydrates (CASH). The hydration of these compounds leads to water 

deficiency and thus raise the alkalinity of the mixture. The increase in alkalinity promotes 

higher and faster dissolution of silicate and aluminate species from the source material, 

increasing the rate of poly-condensation/geopolymerization. Thus, the presence of 

calcium contributes to mechanical strength of the resulting hardened matrix not only by 

forming CSH and CASH, but also by enhancing the geopolymerization process (Diaz et 

al., 2010; Temuujin et al., 2009). 



12 

2.3.2. Fresh Mix Properties 

While OPC is activated with the simple addition of water, FA is activated with a 

highly alkaline solution in combination with a dense silicate and as a result, GPC fresh 

mix is typically more viscous than ordinary concrete. Therefore, the use of a water 

reducer or superplastisizer is recommended to improve the workability of GPC. Figure 2 

shows the appearance of a typical GPC fresh mix. 

Figure 2 GPC fresh mix 

Previous research published by Diaz et al. (2010) proposed that the setting time of 

geopolymers is highly correlated with the analytical calcium oxide content in FA, stating 



13 

that it increases exponentially as the calcium oxide content decreases below 20%. 

However recent studies have suggested that this relationship may be more complex and 

require the inclusion of more variables in order to efficiently explain the hardening times 

of GPC (Chindraprasirt et al., 2011). 

2.3.3. Curing 

Although some researchers have reported the formation of geopolymer at room 

temperature (Davidovits, 1999) in order to attain its maximum potential in terms of 

strength, geopolymer is typically cured under slightly elevated temperature (up to 60°C). 

Temperature acts as a catalyst accelerating the formation of geopolymer binder and 

therefore increasing the strength of the resulting concrete. A study performed by Hardjito 

et al. (2004) showed that the significant maximum compressive strength of GPC can be 

reached after 48 to 96 hours of curing at 60°C. Conversely, van Jaarsvel et al. (1999) 

concluded that while mild thermal curing improves the mechanical strength of 

geopolymer, more aggressive thermal curing (above 70 or 80°C) can be detrimental. This 

phenomenon is attributed to an excessive loss of water during geopolymerization that 

compromises the structural integrity causing cracking and shrinkage. 

2.3.4. Properties 

> Mechanical Properties 

Many studies have reported that GPC possesses mechanical strength that can be 

similar or even greater than that of ordinary concrete. Sofi et al. (2006) performed a 

thorough study on the engineering properties of GPC and concluded that its properties are 

similar to those of ordinary concrete and they have the potential to be predicted by the 

corresponding Australian Standards. Fernandez-Jimenez et al. (2007) also presented a 
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study of the mechanical properties of GPC including compressive and flexural strength, 

modulus of elasticity, bond strength and shrinkage, also with very positive results. The 

consensus among researchers seems to be that the mechanical behavior of GPC is similar 

to that of ordinary concrete with flexural strength that correlates to compressive strength 

in a similar way as it does in OPC-based concretes. Also, the modulus of elasticity and 

Poisson's ratio values are related to the compressive strength in a similar way as in 

ordinary concrete. 

> Thermal properties 

Geopolymers are particularly resilient in thermal related applications. Research 

developed by Zuda & Cerny (2009) demonstrated that geopolymers exhibit excellent 

thermal properties in the range of 20 to 1000°C compared to cement composites at 

equivalent temperatures. This makes geopolymers exceptionally adequate for 

applications where high thermal resistivity (R) values are required. 

> Corrosion resistance 

The corrosion resistance of geopolymers presents another advantage. As their 

strength is not based on calcium aluminates that are susceptible to sulfate attack, these 

materials are practically inert to sulfate induced corrosion. Geopolymer binders are based 

in an alkaline silicate network, and therefore are inert to the alkali-aggregate reaction 

which is a relatively common occurrence in ordinary concrete (Allouche et al., 2008). 

The corrosion resistance capabilities of GPC are illustrated in Figure 3. Here, the results 

of a test where two geopolymer and two OPC grout samples were submerged in sulfuric 

acid for eight weeks performed by Allouche et al. (2008) are presented. As seen in the 
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graph, the GPC samples (especially the class F FA-based geopolymer) performed 

significantly better than the OPC grout. 

REMAINING COMPRESSIVE STRENGTH 
after sulfuric acid immersion test (pH = 0.6) 

-Class F fly ash 
based 
geopolymer 
Class C fly ash-
based 
geopolymer 
OPC 

Figure 3 Geopolymer grout corrosion tests performed by Allouche et al. (2008) 

2.3.5. Environmental Benefits 

One of the main reasons for the growing interest in GPC is its greenhouse gas 

(GHG) reduction potential The production of Portland cement is responsible for 

approximately 5% of the total global man-made CO2 emissions to the atmosphere 

(WBCSD, 2009). Unlike Portland cement, which requires calcite (CaCOs) as its main 

raw material, geopolymer could rely on FA. Thus, geopolymers are considered eco-

friendly construction materials in two distinct ways: a) reducing the need for Portland 

cement, and the associated CO2 emissions; and b) converting CCPs into beneficial 

construction materials, thus reducing landfill and disposal facility requirements 
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The development of GPC could contribute to reducing the level of CO2 emissions 

with no economic sacrifices, while at the same time converting a potentially hazardous 

by-product to a valuable construction material. An added benefit is the conservation of 

landfill space and reduced requirements for storage lagoons, such as the one that failed in 

Kingston, Tennessee on Dec. 22, 2008 releasing 4.1 million m3 of FA slurry into the 

Emory River flooding 12 homes and causing a train wreck (Dewan, 2008). 

2.4. Statistical Modeling 

Multivariate analysis is a technique often used when studying the effect of more 

than one variable or regressor in a particular response or set of responses. Amid the 

multivariate analysis methods, multiple linear regression offers the tools to model the 

changes of a dependent variable or response when independent variables or regressors 

fluctuate and the power to predict future responses. The multiple linear regression model 

is represented by Eq. (1): 

y = P0+P1x1 + p2x2 + - + pkxk + e, (1) 

where y is the response and e represents the error of the model. The parameters PP 

7=0,1,...,k, are the regression coefficients and x, are the regressors. The parameter /?y 

corresponds to the expected change in the response y per unit change in JC, when the rest 

of the regressors are kept constant. Eq. (1) represents a linear function of the regression 

parameters, hence the term linear. More information about the fundamentals of multiple 

linear regression can be found in Montgomery et al. (2006). This method is expected to 

be a good candidate to analyze the information obtained during this study, discern the 

complexity of the existing relationships and provide an empirical approximation of the 
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true underlying mechanisms of FA activation and GPC behavior. However, the 

coefficients /3, are unknown and have to be estimated. 

2.4.1. Ordinary Least Squares 
(OLS) 

OLS is a common technique to estimate the regression coefficients. This 

technique is based on m inimizing the sum of the square differences between the 

observations yt and a straight line i.e. the residual squared error. However, OLS has some 

drawbacks, as its estimates typically have low bias but large variance, which can result in 

poor prediction accuracy, and it lacks variable selection capabilities, as in many cases, 

when there are a large number of regressors often it is desired to keep only the regressors 

that have the most significant impact in the response and drop the ones that have low 

impact, which facilitates the interpretation of relationship being modeled (Tibshirani, 

1996). 

The most noticeable attempts to improve OLS have been the development of 

subset selection methods and Ridge regression. Subset selection, as the name implies, 

helps to select the best subsets of a given dataset. However, it is a discrete process where 

regressors are either retained or dropped from the model depending on their influence. 

Small changes in the data can produced significantly different models, thus it can be 

highly variable (Breiman, 1996). On the other hand, in Ridge regression the coefficients 

are continuously shrunk through a tuning parameter or penalization, thus a more stable 

process, but variables cannot be set to zero, i.e., all the variables are always kept in the 

model. For this reason Ridge regression produces models that are hard to interpret (Hoerl 

andKennard, 1970). 
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2.4.2. Least Angle Shrinkage and 
Selection Operator (LASSO) 

The LASSO method for estimating the regression coefficients in linear regression 

models was introduced by Tibshirani (1996) to improve the prediction accuracy and 

interpretation of the OLS technique. It is a penalized least squares method that has the 

capability to shrink coefficients and set others to zero depending on their effect on the 

response. Instead of focusing on subsets, LASSO defines a continuous shrinking 

operation that selects the best predicting subsets and optimizes its coefficients at the same 

time. Tibshirani (1996) demonstrated that this technique outperforms Ridge regression 

and subset selection, especially for data with a small to moderate number of moderate-

sized effects. 

Although the LASSO method has shown success in many situations, it is limited 

in the following cases: (1) the number of regressors p is greater than the number of 

observations n. This method can select at most n variables before it saturates; (2) there is 

a group structure among the predictors with high pairwise correlation. In this case 

LASSO arbitrarily chooses one variable from the group and drops the rest (3) the 

regressors are highly correlated. In the presence of multicolinearity the accuracy of the 

model can be considerably reduced (Zou and Hasti, 2005; Li and Lin, 2010). 

2.4.3. Elastic Net 

Recently a new regularization technique called Elastic Net (EN) was introduced 

by Zou and Hasti (2005). EN like LASSO performs variable selection and shrinks the 

regression coefficients simultaneously through penalized least squares, combining the 

tuning parameters from Ridge regression and LASSO. 11 was demonstrated that EN 

performs as well as the LASSO whenever this one does its best and overcomes the 
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limitations that were described above. Simulations and biological data examples were 

used to show that EN does well in the aforementioned scenarios: (1), (2) and (3). Due to 

the nature of the data presented in this study, case (3) could be present during the 

analysis; thus, it should be carefully monitored. 



CHAPTER 3 

PRELIMINARY EXPERIMENTS 

3.1. Overview 

This preliminary study was aimed at gaining better understanding of FA as 

geopolymer precursor by analyzing five FA stockpiles with distinct characteristics and 

correlating them with the properties of the resulting geopolymers. Identifying which 

physical, chemical and crystallographic factors of the FA impact the properties GPC is 

the cornerstone of this study as this allows focusing on variables that truly impact the end 

product and disregard those have little or no effect. 

3.2. Procedures and Equipment 

The preliminary study was performed using two class F FA stockpiles and three 

class C obtained from power plants around the US as potential source material for GPC. 

Chemical, X-ray diffraction (XRD), scanning electron microscopy (SEM), and particle 

size distribution (PSD) analyses were performed on the FA samples. Geopolymer paste 

was analyzed using XRD and Raman spectroscopy. In addition, setting time and 

compressive strength tests were performed on GPC monoliths. 

Four of the five FA samples were collected from lignite-fired power plants 

located in the Louisiana/Eastern Texas area. The class F FA obtained from Dolet Hills 

Power Generating Station (PGS) in Mansfield, Louisiana is designated herein as DH; the 

20 
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class C FA from Monticello PGS in Mount Pleasant, Texas as MO; the class C FA from 

Martin Lake PGS in Tatum, Texas as ML, and the class C recovered from Rodemacher 

PGS in Boyce, Louisiana, is referred to as BY. An additional class F FA sample (OH) 

was collected from a bituminous coal-burning PGS in Avon Lake, Ohio. 

Chemical analysis of the FA stockpiles was performed via X-ray Fluorescence 

(XRF) following ASTM standard D-4326. PSD analysis was conducted using a Microtrac 

S3500 laser-based equipment with a measuring range between 0.024 um and 2816 um. 

Samples were suspended in Isopropyl alcohol and went through the necessary cycles of 

reading and dispersing using ultrasound, to obtain a realistic analysis. 

XRD data was obtained using a Bragg-Brentano geometry powder diffractometer 

using a copper anode at 40 kV. Data was collected between 10° and 65° of two theta 

angles, with a step size of 0.05° and a count time of 5 s per step. Samples were further 

analyzed using the Rietveld phase quantification method to determine the amount of 

crystalline and amorphous components. 

SEM micrographs of untreated and treated samples were taken using Hitachi S-

4800 scanning electron microscope. SEM was performed to show the ash particles before 

and after the geopolymerization process. 

Geopolymer paste samples were also analyzed using Raman spectroscopy. 

Spectra from 200 to 2700 cm'1 were collected on an R-3000-HR Raman spectrometer 

from Raman Systems using a 785 nm diode laser operating at 290 mW through a fiber 

optic probe. 

The mix design for the concrete specimens is presented in Table 1. It was 

established using the absolute volume method proposed by the Portland Cement 
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Association (Kosmatka et al., 2009). It is worth mentioning that the quantities provided in 

Table 1 are estimates since there were small variations as the activator solution to FA 

ratio was adjusted depending on the liquid demand of each FA stockpile to obtain a 

slump of 10 to 15 cm, i.e., the amount of FA, sand and gravel in the mixture varied 

slightly as more or less activator solution was added to obtain the desired slump value. 

The activator solution used was composed of a 14 M NaOH solution and Sodium Silicate 

type "D" from PQ Corporation (45% by weight and Si02 to Na20 ratio of 2:1). Tap water 

was used throughout the experiments in an attempt to mimic field conditions. The two 

solutions were mixed in a 1:1 ratio by weight. Well graded sand with a bulk density of 

1680 kg/m3 (100 lb/ft3), a specific gravity of 2.63 and a fineness modulus of 2.4 served as 

fine aggregate. "Pea gravel" (1 cm or 3/8 in. diameter) with a bulk density of 1934 kg/m3 

(115 lb/ft3) and specific gravity of 2.70 acted as coarse aggregate. In order to improve the 

workability of fresh GPC, the superplastisizer Glenium 7101® (manufactured by BASF) 

was incorporated 60 s before the end of the mixing cycle. The ingredients were mixed in 

a vertical mixer with planetary action (beater rotates in its axis in opposite directions as it 

moves around the bowl). In order to promote the first phase of geopolymerization, 

dissolution of silicate and aluminate species, the following mixing procedure was 

utilized: (1) FA and NaOH solution were mixed for 30 s; (2) sodium silicate was added 

and mixed for 30 s; (3) sand was added and mixed for 60 s; and finally, (4) gravel was 

added and mixed for an extra 120 s (Glenium was added 60 s before the end of the 

mixing cycle). Due to BY's short setting time, mixing times were shortened enough to 

cast and form the specimens. The samples were poured into 75x150 mm cylinders and 

their compressive strength was determined following ASTM standard C-39. Setting time 
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measurements of fresh geopolymer paste were taken using a standard Vicat needle. All 

samples were stripped from the mold after 24 hrs, cured for three days at 60°C, taken out 

of the oven and let to cool down at room temperature for 24 hrs prior to testing. 

Table 1 Mix proportions for the concrete samples* 

Material 

Fly Ash 

Sand 

Gravel 

Activator Solution 

Superplastisizer 

Quantity (kg/m3) 

494 

691 

858 

198-464 

15 

* Values will vary depending on the activator solution demand 

3.3. Results of Preliminary Study 

3.3.1. Fly Ash Chemical 
Composition 

The chemical composition of the FA samples is summarized in Table 2. It is 

important to mention that the values reported in Table 2 are equivalents in their 

respective oxide form, as these may be combined in more complex crystalline or 

amorphous phases. The chemical composition is given in equivalents throughout this 

manuscript, this helps to simplify the analysis and have a better perspective of the 

chemical composition. 
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Table 2 Preliminary XRF results 

Type 
Si02 

A1203 

Si02/Al203 

Si02+Al203 

CaO 
Fe203 

MgO 
S03 

Na20 
K20 
Mca 

LOIb 

Total 

BY 

(%) 
C 

37.77 
19.13 
1.97 
56.9 

22.45 
7.33 
4.81 
1.56 
1.8 
-

0.12 
0.17 
93.05 

MO 

(%) 
C 

55.61 
19.87 
2.8 

75.48 
12.93 
4.52 
2.49 
0.49 
0.67 
0.86 
0.02 
0.22 
95.91 

DH 

(%) 
F 

58.52 
20.61 
2.84 
79.13 

5 
9.43 
1.86 
0.49 
0.52 

-

0.14 
0.05 

96.43 

ML 

(%) 
C 

48.7 
16.6 
2.93 
65.3 
18.72 
6.93 
3.91 
0.85 

-

-

0.12 
0.49 
95.71 

OH 

(%) 
F 

55.07 
28.61 
1.92 

83.68 
1.97 
6.22 
1.08 
0.19 
0.38 
2.63 
0.12 
1.82 

96.15 

aMc=Moisture Content 
bLOI=Loss on Ignition 

The Si02/Al203 ratio ranges between 1.92 and 2.93 and the silica plus alumina 

content ranges from 56.90% and 83.68%, with BY having the lowest concentration and 

OH the highest. These are the basic ingredients of the geopolymeric reaction and they are 

within the range of values reported by others (Davidovits, 199; Palomo et al., 1999). 

CaO, in the case of BY, MO and ML, is the third most abundant oxide in the FA samples 

ranging from 12.93% to 22.45%. Smaller amounts were found for OH and DH (1.97% 

and 5.00%, respectively). Calcium content has been reported to have significant influence 

on the properties of the fresh mixture as well as the properties of the final hardened 

product (Temuujin et al., 2009). Fe203 is the fourth most important compound ranging 

from 4.52%, in the case of MO, to 9.43% in the case of DH. LOI for the BY, MO, DH 

and ML samples was below 0.50%, while a value of 1.82%) was found in the case of OH. 
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LOI is a critical factor when assessing the geopolymerization potential for a given FA. 

Unburned carbon absorbs the activator solution, and thus obtaining a workable mixture 

requires a volume of activator solution well beyond that needed to merely activate the 

source material. This results in lower mechanical strength and higher costs. 

3.3.2. Fly Ash PSD 

PSD curves showing cumulative values for the five FA samples are presented in 

Figure 4. The BY sample had the greatest percentage of particles passing 45 um followed 

by DH, OH, ML and MO. ML and BY FA samples were found to contain a significant 

amount of particles below 1 um (around 34%). OH, MO and DH were found to have 

lower fraction of extra fine particles, however, this was compensated by a larger fraction 

of particles ranging from 4 to 20 um. PSD is among the most important physical 

properties impacting the reactivity of FA and the resulting geopolymer product (van 

Jaarsveld et al., 2003). Because a significant part of the reaction occurs at the particle-

liquid interface, the finer the particles, the greater the surface area and the more reactive 

is the FA. 
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Figure 4 Particle size distribution curves 

3.3.3. SEM Analysis 

Figure 5 shows SEM micrographs of FA before geopolymerization (left) and after 

(right). The morphology of FA particles is predominantly spherical. The role of particle 

morphology has been emphasized by many authors for its significant impact on the 

resulting geopolymer (Provis et al., 2010; Hunger and Brouwers, 2009). The image 

showing FA after the activation process clearly shows the formation of geopolymer gel 

and also suggests that larger particles (>20 um) do not react chemically, but become 

physically embedded in the reacted binder. 

•-mi 

mm 
Figure 5 SEM micrographs of FA before geopolymerization (left) and after (right) 
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3.3.4. XRD Analysis 

Figure 6 shows XRD patterns for FA and hardened geopolymer paste (GPP). The 

samples are mostly composed by a vitreous phase. Quartz is found in small amounts and 

in some cases mullite, merwinite, calcite and traces of other crystalline phases are found 

as well. The patterns also show that crystalline phases still remain after the 

geopolymerization, although in smaller amounts. An important crystallographic factor to 

consider when working with relatively high calcium FA is the location of the glass 

diffraction maximum (GDM), a broad elevation in the X-ray pattern forming a bump 

instead of a normal sharp peak. Previous studies have shown that the location of the 

GDM in FA stockpiles containing up to about 20% analytical CaO is typical of a 

siliceous glass structure (20 values of 22.7° to 27.5°). For FA stockpiles with analytical 

CaO contents above 20% the location of the GDM remains around 32° 29, a value typical 

of calcium aluminate glass structure that is significantly more reactive with water 

compared with the siliceous glass structure (Diamond, 1983). This leads to the formation 

of calcium silicate hydrate compounds additional to the geopolymerization products, 

augmenting the mechanical strength of the hardened matrix. 
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Figure 6 XRD patterns for FA and hardened geopolymer paste (GPP) 

3.3.5. Raman Spectroscopy 
Analysis 

Raman patterns for GPP are shown in Figure 7. Broad Raman shifts can be 

detected peaking around 355 cm"1 for GPPs prepared using BY, ML, DH and MO FA 

stockpiles. For GPPs made with BY and ML ashes an additional shift can be detected at 

1000 cm"1. OH shows no Raman shifts at 355 cm'1 on the analysis. The formation of 

calcium hydroxide can be monitored using Raman spectroscopy due to hydroxide 

vibration observed around 355 cm"1 (Potgieter-Vermaak, 2006, Diaz et al., 2010). Raman 

Spectroscopy was introduced to this research as a useful method for detecting Calcium 

activity in geopolymer paste samples and as a mean of corroborating the calcium content 

reported by the chemical and XRD analyses. 
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Figure 7 Raman spectroscopy patterns for hardened geopolymer paste 

3.3.6. Setting Time and 
Compressive Strength 

Table 3 summarizes the mechanical properties of the resulting geopolymer 

concretes. BY had the shortest setting time with only 1.5 min., followed by ML with 17 

min. and MO with 25 min. DH set after 3 hrs and OH did not set after 5 hrs at room 

temperature, thus a slight increase in temperature was required to kick start the 

geopolymerization reaction. The compressive strength tests also revealed a wide range of 

performance from 40 MPa (DH) to 80 MPa (ML). It is worth noting that typical 

construction applications require a 28-day compressive strength of 25 MPa to 40 MPa. 
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Table 3 Summary of results and factors that influence the compressive strength 

Compressive strength (MPa) 
Setting time (min) 

CaO 
Total glass 

Particles passing 45 u 
Total 

ML 
80 
17 
2 
2 
4 
8 

BY 
60 
1.5 
1 
4 
1 
6 

MO 
56 
25 
3 
1 
5 
9 

OH 
47 
300 
5 
3 
3 
11 

DH 
40 
180 
4 
5 
2 
11 

1= Highest content relative to the rest of the fly ashes 
5= Lowest content relative to the rest of the fly ashes 

3.4. Summary of Preliminary Testing 

Although there are several mix design parameters that can be modified to increase 

or decrease the mechanical strength of geopolymer such as NaOH/Na2Si03 ratio and 

activator solution to FA ratio, there are many others that are inherent to the FA precursor 

that dictate the behavior of the fresh mixture and the resultant mechanical properties of 

the hardened matrix. The main three are the chemical, crystallographic and physical 

properties of the FA. 

Although silica and alumina are the main precursors for the geopolymeric 

reaction, other factors seem to also play a significant role in the resultant compressive 

strength. For example, OH has the greatest amount of silica + alumina (83.68%), 

however, it yielded the second lowest compressive strength. BY and ML have the lowest 

silica + alumina contents, but exhibited the highest compressive strengths. This can be 

attributed to the high CaO content and high percentage of fine particles below 5 um. The 

calcium activity is corroborated by the RAMAN Spectroscopy analysis. An examination 

of Figure 7 reveals that BY, ML, MO and DH show a broad peak at 355 cm"1, 



31 

characteristic of calcium hydroxide activity, whereas OH showed little disturbance in the 

spectrum, which correlates well with low calcium content. 

The location of the GDM for different FA stockpiles is shown in Figure 8. For 

OH, DH, ML, and MO FA sources , the GDM is characteristic of a siliceous glass 

structure, although allowing some calcium silicate glass in the system. Despite migration 

of the GDM to the right as calcium content increases, the structure remains primarily 

siliceous glass. Conversely, the BY stockpile shows a GDM indicative of a dominant 

calcium silicate glass structure, which is more reactive with water and tend to form 

calcium silicate hydrated compounds that boost the mechanical strength values of the 

resultant geopolymer. Although the analytical CaO content does not represent all of the 

CaO in the glass phase (a small amount of calcium is contained in the crystalline phases), 

there is a strong correlation between the analytical CaO content and the location of the 

GDM. Figure 9 shows this correlation, and to support its validity for other FA sources 

data reported by Diamond S. (1983) from 16 FA stockpiles was also included. 
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Figure 8 Location of the GDM 
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Figure 9 Correlation between analytical CaO% and the location of the GDM 

The setting time of GPC seems to be governed by the type of glass structure 

prevailing in the FA. Given the higher reactivity of calcium silicate glass with water 

compared to siliceous glass, it is expected that as the fraction of calcium silicate glass 

increases the setting time decreases, and at the same time the compressive strength 

increases. This correlation, presented in terms of analytical CaO content versus setting 

time and compressive strength is shown in Figure 10. 
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geopolymer concrete 
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Although increasing CaO content in FA seems to have a positive influence on the 

compressive strength of the resulting geopolymer, FA stockpiles with analytical CaO 

content higher than 20% will exhibit very rapid setting (less than 3 min.), thus they are 

not recommended as source material for geopolymer. 

The total amount of glass phase is closely related to the cooling rate of FA after 

the combustion process. Slow cooling rates will allow higher degree of crystal formation, 

resulting in less glass phase and vice versa. The total glass phase in the FA is also a factor 

affecting geopolymerization since glass phase is easier to dissolve by the alkaline 

activator, therefore releasing more geopolymer precursor species into the system. Figure 

11 shows the distribution of glass and crystalline phases in the FA and the resultant 

geopolymer. It can be seen that in all cases the amount of glass phase is higher in the 

geopolymer than in its FA precursor, however, the change in glass phase between the FA 

precursor and the resultant geopolymer paste varies significantly among the different 

stockpiles. This could be attributed to the fraction of crystalline phases dissolved during 

the activation process and transformed to amorphous geopolymer. 

Figure 11 Total glass phase for fly ash stockpiles and hardened geopolymer paste 
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The relatively high LOI (indicating mainly unburned coal) of OH stockpile 

resulted in a more hygroscopic mixture, thus additional activator solution was needed to 

obtain the desired consistency. The lower compressive strength of the OH geopolymer 

could be attributed to this factor. 

Table 3 presents a summary of the factors inherent to the FA, that affect the 

mechanical strength of the resultant geopolymer. Values one to five were assigned to the 

FA stockpiles for each factor, i.e., one indicates the highest rank with respect to the value 

of a particular factor (e.g. CaO content) compared with those of the fly ashes and five the 

lowest. The ranks of each FA precursor for these three categories were summed to give 

an overall score. It can be seen that a correlation exists between the FA precursor CaO 

content, PSD and percentage of total glass phase and the compressive strength of the 

resulting geopolymer. 

3.5. Lessons Learned from Preliminary Tests 

Factors inherent to the FA stockpiles tested during this investigation that have 

more pronounced effects on the mechanical strength of the hardened paste and behavior 

of the fresh mixture are the location of the GDM (which is related to the analytical CaO 

content), the total glass phase content in the FA and the particle size distribution. The 

setting time increases exponentially as the CaO content decreases below 20%, however 

the decrease in CaO was accompanied by a decline in the compressive strength of the 

resulting geopolymer. Based on the FA stockpiles tested in this work a CaO content 

range of 5% to 15% might be considered desirable for many applications. Additionally, 

this overrules the threshold of 10% analytical CaO set by ASTM C 618 for class C and F 
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FA for use in concrete. For geopolymer manufacturing there is a clear threshold at 20% 

of analytical CaO related to the dominant amorphous phase and setting time. 

The degree of vitrification during the cooling of FA plays an important role in 

geopolymerization. FA with high content of glass phase will lead to higher degree of 

geopolymerization, therefore, higher compressive strength. This parameter can be 

controlled at the power plant, increasing the suitability of the FA to geopolymerization. 

Particle size distribution has a significant impact in the reactivity of FA. Higher amount 

of fine particles will result in higher surface area, and therefore higher reactivity, 

resulting in higher compressive strength. Thus, grinding of FA might be under-taken to 

enhance its suitability to geopolymerization. 

The presence of unburned coal in FA, even in relatively small amounts, will 

require higher activator solution to FA ratio, which results in an adverse effect on the 

compressive strength of the hardened geopolymer paste as well as economic 

disadvantage in the manufacturing of the geopolymer concrete (i.e., activator solution 

represents a major cost item in the production of geopolymer concrete). 



CHAPTER 4 

MATERIALS AND METHODS 

4.1. Materials 

This study was based on the analysis of 32 FA samples (including the ones from 

the preliminary experiments) collected from power generating stations around the US. 

The database of FA samples was partitioned into two individual sets: the first consisting 

of 24 samples for data analysis and model building, and the second consisting of the eight 

remaining samples for validation purposes. The first set has 14 samples that are classified 

as type F and 10 as type C according to ASTM specification C 618. The second set has 

five type F and three type C. 

The testing was performed under the same conditions and using the same sand, 

gravel, sodium silicate, sodium hydroxide and superplastisizer with the same 

concentration, and in the same ratio of materials as in the preliminary experiments. For a 

full description of these, please refer to Chapter 3. 

4.2. Methods 

4.2.1. Characterization of FA, GPP 
and GPC 

The 32 samples were analyzed via XRF and XRD to obtain their chemical and 

crystallographic composition. PSD was also obtained to monitor the physical 

characteristics. In addition, hardened geopolymer paste was also analyzed via XRD. 

36 



37 

According to the preliminary experiments, these characterization methods would be the 

most significant to create a regression model. The XRD, XRF and PSD were performed 

in the same manner, using the same equipment and following the same ASTM standards 

as stated in Section 3 2. The mix design from the preliminary tests (shown in Table 1) 

was adopted for the rest of the study with the same provision, i.e., the quantities 

stipulated in Table 1 are estimates given that the activator solution to FA ratio will vary 

depending on the FA. The same planetary mixer and mixing sequence used in the 

preliminary experiments was used throughout the rest of the study. 

The fresh mixture was cast into 15x30 cm cylindrical molds to be tested as per 

ASTM standard C 39 for compressive strength and ASTM C 469 for static elastic 

modulus and Poisson's ratio (Figure 12). 

Figure 12 Testing static elastic modulus of GPC 
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GPC mixture was also cast into 10x10x40 cm rectangular prism molds for 

flexural strength testing (third-point loading) as per ASTM standard C 78 (Figure 13). 

Concrete density measurements were taken following ASTM C 138. Setting time 

measurements were taken on geopolymer paste using a standard Vicat needle. Each data 

point presented in this study is an average of three measurements with less than 8% 

variation or two measurements with less than 6% variation. All samples were stripped 

from the mold after 24 hrs, cured at 60°C for 72 hrs, and then cooled down for 24 hrs 

prior to testing. It is worth noting that the significant maximum (90 to 95%) cylinder 

compressive strength and flexural strength of GPC is commonly achieved within three to 

five days depending on the curing effort applied (Hardjito et al., 2004). 

Figure 13 Testing flexural strength of GPC 
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4.2.2. Statistical Tools 

> R software 

R is a computer software and language designed for statistical computing and 

graphing. It was developed in Bell Laboratories (formerly AT&T, now Lucent 

Technologies). R offers a wide range of capabilities, including multiple regression 

analysis, non-linear modeling, clustering and many more. It is also able to generate 

publication-quality graphs and although R is an open source program, it is well 

established and accepted by the scientific community. One example of the use of this 

software is to support toxicity assessment for acute inhalation exposure by the EPA's 

National Center for Environmental Assessment (NCEA). A screenshot of "R" is shown in 

Figure 14. 
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Figure 14 Screenshot of software "R" 
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> LEAPS package 

LEAPS is a package contained in R for subset selection in multiple linear 

regression. It performs an exhaustive search of the best subsets of regressors for 

predicting a particular response. It uses a branch and bound algorithm and OLS to select 

the most influential regressors and the optimum number of these to predict a response. 

The output is the best combination of predictors at all the possible degrees of freedom for 

predicting the response, i.e., the outcome includes the best predictor for a model with 

only one variable, the best predictors for a two variable model, and so on until all the 

possible predictors are included in the model. Adjusted R2 or Mallow's Cp values are 

available in the output to assess the fit of the subsets (Lumley, 2009). 

> LARS package 

LARS was released in 2007 as a tool to perform LASSO, least angle and forward 

stagewise regression. It provides efficient procedures to fit an entire LASSO sequence by 

shrinking coefficients, and selecting variables simultaneously, and it has the capability to 

compute the k-fold cross-validated mean squared error, plot and predict new 

observations. The output includes plots, entire paths of solutions or solutions at a 

particular point along the path for coefficients and fitted values and an analysis of 

variance-type summary. The Mallow's Cp values, residual sum of squares and the 

degrees of freedom are also available to assess the models (Hasti and Efron, 2007). 

> GLMNETpackage 

This package was incorporated into the R database in early 2011 as an efficient 

tool to select and estimate regression coefficients using the EN algorithm. GLMNET 

provides the necessary procedures to fit an entire EN regularization path for linear 
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regression using cyclical coordinate descent in a pathwise fashion. Similar to LARS, it 

has the capability to compute a k-fold cross-validation, plot and predict new observations 

either throughout entire paths of solutions or at a particular point. The output includes the 

optimum parameters to fit a regression model with the EN algorithm. 



CHAPTER 5 

RESULTS 

5.1. Fly Ash 

5.1.1. Chemical Composition 

Table A.l shows the chemical composition of the FA samples used in the 

statistical analysis. Silica and alumina are the basic ingredients of the geopolymeric 

reaction and they were found to be within the range of values reported by others 

(Davidovits, 1999; Palomo et al., 1999). Calcium oxide is also present in all FA samples 

at different extents and should be carefully monitored during the analysis given that is 

one of the impurities in FA that has a significant impact on the characteristics of the 

resulting geopolymer due to its tendency to form hydration products and modify the 

conditions of the geopolymerization reaction (Temuujin et al., 2009). LOI was found in 

the majority of the samples. Its presence is believed to have a significant influence on the 

hygroscopic characteristics of the FA, as the highly porous unburned coal tends to absorb 

the activator solution, and thus the mixture requires a volume of solution well beyond 

that needed to merely activate the FA (Diaz et al., 2010). 

5.1.2. Crystallographic Analysis 

Table A.2. shows a list of the crystalline phases found in the samples with a letter 

or set of letters assigned to each phase to facilitate calculations presented later in this 

report. The results of the XRD quantitative analysis for each FA stoc kpile and the 
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resulting GPP are presented in Tables A.3. through A.9. All samples are predominantly 

amorphous, containing relatively small amounts of quartz and nearly all samples contain 

mullite. Traces of other crystalline phases can also be found. Amorphous compounds are 

easier to dissolve than crystalline compounds during the first step of geopolymerization 

(dissolution of species), yielding higher amounts of reactive Si02 and AI2O3 to combine 

during the transportation/coagulation phase of the geopolymeric reaction, therefore 

resulting in a higher degree of geopolymerization and consequently higher mechanical 

strength (Fernandez-Jimenez and Palomo, 2003; van Jaarsveld et al., 2003). 

5.1.3. Particle Size Distribution 
and Specific Surface Area 

The particle size distribution curves of selected samples are shown in Figure 15. 

Also, a summary of the physical properties of the FA samples including specific surface 

area and mean particle size is given in Table A.9. PSD is among the most important 

physical properties impacting the reactivity of FA and the resulting geopolymer product 

(Palomo et al., 1999). Geopolymeric reaction, like hydration in cement, occurs mostly at 

the surface of the particles; smaller particles will result in greater surface area, and 

therefore higher reactivity in the FA. Researchers (Hunger et al., 2009; Martin et al., 

2009) have highlighted the importance of powder PSD with respect to their application in 

concrete. The powder in a concrete mix provides by far the highest percentage of surface 

area with respect to the other solids (sand and gravel) in the mix. Therefore, its packing 

characteristics have a significant impact in the workability of fresh concrete and the water 

it demands. In many occasions, it also dominates the physical properties of the hardened 

product such as strength and durability. 
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Figure 15 Particle size distribution curves of selected FA samples 

5.2. Fresh Mix and Mechanical Properties of GPC 

A summary of the fresh mix and mechanical properties measured for each of the 

GPC samples is presented in Table A. 10. Density values ranged from 1,890 to 2,371 

kg/m3. The cylinder compressive strength ranged from 5.53 to 64.68 MPa, while the 

flexural strength ranged from 1.15 to 6.31 MPa. The flexural strength was between 8% 

and 26% of the compressive strength, compared to a range of 9 to 12% typically cited for 

OPC concrete (Macgregor and Wight, 2005). The static elastic modulus varied from 

4,619 to 42,878 MPa. Separate values for the class C and class F FA-based GPC are also 

given in Table A.l l . Poisson's ratio exhibited values ranging from 0.08 to 0.22. These 

appear to reside towards the low end of the range typically cited for OPC concrete (0.15 

to 0.22) (Macgregor and Wight, 2005). Setting time values ranged from 2 to 480 min. 

Images showing the mechanical testing can be found in Figure C.l of Appendix C. 



CHAPTER 6 

ANALYSIS OF RESULTS AND DISCUSSION 

6.1. Evaluating the Impact of FA Characteristics in the 
Resulting GPC 

The attributes of GPC that are considerably influenced by FA characteristics are 

the density of the fresh mix, the setting time and the overall mechanical properties. As 

expected, the density of the fresh mix is influenced mainly by the physical characteristics 

of FA, i.e., specific gravity, particle size, etc. This can be attributed to the varying 

interstice systems that can be present in the FA samples. The setting time is influenced 

mainly by the CaO content in FA as proposed in the preliminary study. In the case of the 

mechanical properties, in order to reduce the number of dependant variables, only the 

compressive strength values were used as response to perform the evaluation. However, 

the flexural strength and elastic modulus can be obtained using the compressive strength 

as shown in later sections. The compressive strength of GPC is dependent on a complex 

fusion of physical, chemical and crystallographic factors of FA. 

6.1.1. Preparing the Data for 
Statistical Analysis 

Although silica and alumina are the main precursors for the formation of the 

geopolymer network and calcium oxide has significant influence in the chemical 

structure of the binder, these values cannot be taken from the XRF analysis without 

taking into consideration their crystalline arrangement since they represent absolute totals 
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regardless of their reactivity. The preliminary studies showed that the crystalline part of 

FA stays nearly inert while the amorphous component is the reactive one throughout the 

geopolymerization reaction. Therefore, the amount of silica, alumina and calcium oxide 

in a crystalline arrangement was not taken into account in the analysis and it was 

assumed that only the amorphous components participate in the geopolymerization 

reaction. In addition, given that the total silica, alumina, lime and LOI are calculated as 

percentages of the same analysis, potential multicolinearity problems could be avoided by 

incorporating the crystalline distribution results to the chemical analysis. 

Each crystalline phase is composed of one or more elements in the form of 

oxides, e.g., Mullite is composed of 71.79% AI2O3 and 28.21% Si02. The chemical 

composition of each crystalline phase containing silica, alumina and calcium oxide in the 

FA samples is shown in Table A. 12. Using these values, the crystalline components 

obtained by XRD were be subtracted from the total values obtained by XRF. To illustrate 

this process, sample one is used as an example: 

Step 1. - Crystalline phases in the FA sample containing silica, alumina or 

calcium oxide are identified using Tables A.3 through A.9. For sample 1, these are phases 

Lime, Merwinite and Quartz (R, U and AF as categorized in Table A.2.). 

Step 2. - The chemical composition of the crystalline phases is identified (from 

Table A.l 1). AF contains 100% Si02. U contains 36.56% Si02, 51.18% CaO and 12.26% 

MgO. R contains 100% CaO. 

Step 3. - The total content of non-reactive silica, alumina and calcium oxide 

(labeled as NRSi02, NRAI2O3 and NRCaO) is calculated in the following manner: 

AF * 100 + U * 36.56 23.10 * 100 + 9.60 * 36.56 
NRSW2 = — = — = 26.61% 

1 100 100 
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NRA1203 =0 

U * 51.18 + R * 100 9.60 * 51.18 + 0.30 * 100 
N f i C a 0 loo 100 = 5 2 1 % 

Step 4. - The non-reactive silica, alumina and calcium oxide is subtracted from 

the total to obtain the reactive components labeled as RSi02, RAI2O3 and RCaO: 

RSi02 = Si02 - NRSi02 = 37.77 - 26.61 = 11.16% 

RA1203 = Al203 - NRA1203 = 19.13 - 0 = 19.13% 

RCaO = CaO - NRCaO = 22.45 - 5.21 = 17.24% 

Table A. 13 shows the values of RSi02, RAI2O3 and RCaO for all the samples. The 

use of these values instead of the total values obtained from the XRF is expected to 

increase the accuracy of the model. 

6.1.2. Relationship Between FA 
Characteristics and 
Compressive Strength of 
GPC 

The values of RSi02, RAI2O3, RCaO, LOI, mean particle size in um (d50), and 

specific surface area (SSA) were used as regressors and the compressive strength values 

as response. Three approaches were taken to develop the regression model: in the first 

approach the package LEAPS was used to perform subset selection; in the second 

approach the package LARS was used for simultaneous subset selection and coefficient 

optimization using the LASSO algorithm; and in the third approach the package 

GLMNET was used for subset selection and coefficient optimization using the EN 

algorithm. The models were built using 24 samples and validated with the remaining 

eight samples. LEAPS and LARS yielded similar values for the regression coefficients. 

However, the paths followed to choose the models were different. The values for the 
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coefficients given by the GLMNET package resulted in a model with a slightly higher 

mean square error than the first two and a slightly larger and variable departure from 

normality. An additional approach that attempted to simplify the input for the model was 

included. This "practical" model used of Si02, AI2O3 and CaO instead of RS1O2, RAI2O3, 

RCaO in an attempt to avoid the use of XRD analysis and simplify the process for GPC 

practitioners. However, the model showed low accuracy and poor sensitivity to changes 

in FA characteristics. 

> Approach 1 (Using LEAPS) 

LEAPS performed an exhaustive search of the best subsets of FA characteristics 

to predict the compressive strength. The results showed that d50 was the best regressor 

for a one variable model, RAI2O3 and d50 were the best regressors for a two variable 

model and RSi02, RAI2O3, and d50 for a three variable model. The best four-variable 

model did not include SSA and RCaO and for the best five-variable model SSA was 

dropped. 

The proposed subsets were evaluated in terms of: (1) adjusted R2, which is 

typically preferred over the typical R2 when comparing various models due to the fact 

that it penalizes models that have more regressors than they actually need, thus avoiding 

"over-fitting the model"; (2) variance inflation factor (VIF), a mean to quantify 

multicolinearity between variables. Regressors that exhibit VIF values greater than 10 are 

considered to be highly correlated, this can cause the model to give misleading results; 

and (3) mean squared error (MSE), a parameter that is generally regarded as a measure of 

the adequacy of the model, particularly useful in model building. A small MSE value is 

always preferred (Montgomery et al., 2006). 
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The model with the best adjusted R2 value was the five-variable model where SSA 

was not included; it was labeled as Eq. (2): 

f'c = -3.68 + 0.59 * RSi02 + 3.35 * RA1203 (2) 

-0.49 * RCaO - 0.74 * d50 - 4.40 * LOI (MPa), 

where/'c is the compressive strength of GPC after three days of thermal curing at 60°C. 

Eq. (2) had an adjusted R of 0.72, an R value of 0.78. Given the number of samples and 

regressors the R2 value has a 95% confidence interval of 0.66 >R2> 0.90. The MSE was 

75.18 and the VIF values of the regressors were less than three; hence it was assumed 

there were no multicolinearity problems. The adequacy of Eq. (2) was analyzed using k-

fold cross-validation where data is partitioned into k number of folds, k - 1 is used to 

create the model while the data in the remaining fold is used for validation, and the 

process is repeated k times with each fold being used once as the validation set. For 

example, in a three-fold cross-validation, two thirds of the total sample size (folds one 

and two) is used to create the model while the remaining third is used for validation (fold 

three); then folds two and three are used to create the model and fold one is used for 

validation; and finally folds one and three are used to create the model and fold two is 

used for validation. Figure 16 shows the cross-validation of Eq. (2) using two, three, four 

and five folds. 
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Figure 16 Cross-validation of Eq. (2) using two, three, four and five folds 

The adequacy of Eq. (2) was further analyzed through residual analysis. Residual 

e, refers to the difference between the fitted value y, and the corresponding observation or 

experimental valuey„ i- 1,2,..., n. Plotting residuals versus fitted values Montgomery et 

al. (2006) identified four cases that help to detect deficiencies in a regression model. 

Figure 17 shows residual vs. Fitted plots: (a) Satisfactory; (b) Funnel; (c) Double bow 

and (d) Nonlinear. Case (a) is the ideal where there are no evident defects in the model; 
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cases (b) and (c) indicate that the variance of the errors is not constant, which can be a 

problem since OLS works under the assumption of constant variance; and (d) suggests 

that the model is nonlinear and that the assumed relationship between the regressors and 

the response is not correct. In cases (b), (c) and (d) a transformation should be 

considered. 

Figure 17 Residual vs. Fitted plots: (a) Satisfactory; (b) Funnel; (c) Double bow and (d) 
Nonlinear (Montgomery et al., 2006) 

Figure 18 shows the analysis of Eq. (2) Residual vs. Fitted (top left), normal 

probability plot (bottom left), error of the model (top right) and validation using new data 

(bottom right). The residuals vs. Fitted values plot indicate that the double bow shape, 

case (c), could be present. This could be attributed to the nature of the collected data set 

where there are only six responses with values less than 35 MPa with the rest clustered 

towards the high end of the range. Hence, the weighted least squares technique and a 



52 

transformation of the regressors or the response are recommended in future work to 

improve the distribution of the residuals. 

Figure 18 Analysis of Eq. (2) Residual vs. Fitted (top left), normal probability plot 
(bottom left), error of the model (top right) and validation using new data (bottom right) 

Another assumption of the least squares technique is normality, the prediction and 

confidence intervals depend on this assumption. A normal probability plot (show in the 
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bottom left of Figure 18) was used to evaluate the normality of Eq. (2) by comparing its 

distribution with that of the dataset. In this plot the standardized residuals are plotted 

against the theoretical quantiles where in the ideal case of perfect normality the errors 

would lie along the dotted strait line. 

The plot shows that the error distribution is slightly tailed indicating a small 

departure from normality. However, slight non-normality does not affect the model 

greatly (Montgomery et al., 2006). The top right of Figure 18 shows a graph of the 

predicted or fitted values vs. the observed compressive strength data. In this graph, as in 

the residuals plots, the eighth observation appears to have the largest error 

(approximately 19 MPa). The model predicts a value close to 28 MPa while the actual 

observation is 47 MPa. Three other observations had errors between 10 and 14 MPa and 

the rest less than 10 MPa, the average error was approximately 6 MPa. 

Eq. (2) was validated using the remaining eight observations that were not used 

during the model building process. The bottom right of Figure 18 shows a plot of the 

predicted values versus the new compressive strength observations. In this case, the sixth 

observation was over-predicted by 23 MPa and the fourth observation was under-

predicted by 10 MPa approximately. The rest of the observations had errors of less than 

10 MPa. The error of Eq. (2) in the new dataset averaged 6 MPa approximately. The R 

code showing the model building process using LEAPS can be found in Appendix B. 

> Approach 2 (Using LARS) 

The LARS package performed variable selection and shrinkage simultaneously 

using the LASSO algorithm. The results showed nine steps where regressors were 

selected and their coefficients were shrunk. The subsets proposed in each of the nine 
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steps were evaluated in terms of residual sum of squares and Mallow's Cp. The model 

that exhibited the lowest Cp was found in the seventh step and similar to the model 

obtained by LEAPS kept all the variables except SSA. Herein, we refer to this model as 

Eq. (3): 

f'c = -3.62 + 0.59 * RSi02 + 3.35 * RA1203 (3) 

-0.48 * RCaO - 0.74 * d50 - 4.39 * LOI (MPa). 

Eq. (3) exhibited very similar coefficients as Eq. (2) with a Cp of 5.00 and MSE of 75.18. 

The R2 of this model (0.78) was equal to the one obtained by LEAPS. However, the 

adjusted R2 was 0.73, slightly higher than Eq. (2). Given the number of samples and 

regressors the R2 value has a 95% confidence interval of 0.66 > R2 > 0.90. The VIF 

values were all below five. The adequacy of the model was analyzed through residual 

analysis. Figure 19 shows the analysis of Eq. (3): Linearization (top left), Validation 

using new data (bottom left), Residual vs. Fitted (top right), and Normal Probability plot 

(bottom right). The Residuals vs. Fitted plot appears to exhibit the "double-bow" shape as 

in case (c) of Figure 17. As stated before, this could be attributed to the nature of the 

collected data where there are very few data points in the low end of the compressive 

strength range. A transformation or the weighted least squares technique is recommended 

to verify the adequacy of Eq. (3). The normal probability plot appears to adhere well to 

normality and no evident problems can be identified from this graph. 
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Figure 19 Analysis of Eq. (3) Linearization (top left), Validation using new data (bottom 
left), Residual vs. Fitted (top right) and Normal Probability plot (bottom right) 

The coefficients of Eqs. (2) and (3) are very similar and therefore the error 

distribution is almost identical. Observation eight had the largest error, predicting 

approximately 19 MPa less than the actual value of 47 MPa. Another three observations 
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had errors between 10 and 14 MPa, the rest of the samples had errors of less than 10 

MPa. The average error of Eq. (3) was 6 MPa approximately. 

Eq. (3) was validated by using the remaining eight observations that were not 

used during the model building process. These results are presented in the bottom left of 

Figure 19. The sixth observation had the largest error (23 MPa approximately.), the 

fourth observation had an error of 10 MPa while the rest of the observations exhibited 

errors of less than 4 MPa approximately. The validation set had an average error of 6 

MPa. The R code showing the model building process using LARS can be found in 

Appendix B. 

> Approach 3 (Using GLMNET) 

The package GLMNET performed variable selection and coefficient shrinking 

simultaneously using the EN algorithm which has two tuning parameters. The values for 

the tuning parameters were estimated through cross-validation to obtain the best 

performing model. The model obtained from using the best performing tuning 

parameters, like Eqs. (2) and (3), did not include the SSA variable and it was labeled as 

Eq. (4): 

f'c = 9.51 + 0.52 * RSi02 + 2.16 * RA1203 (4) 

-0.066* RCaO - 0.69 * d50 - 1.70 * LOI (MPa). 

The MSE for Eq. (4) was 89.73, and the R2 and adjusted R2 values were 0.65 and 

0.57, respectively, considerably less than Eqs. (2) and (3). Given the number of samples 

and regressors the R2 value has a 95% confidence interval of 0.48 > R2 > 0.82. The VIF 

values were less than three indicating no signs of multicolinearity. The fit of Eq. (4) was 

assessed using residual analysis. Figure 20 shows the analysis of Eq. (4) Linearization 

(top left), Validation using new data (bottom left), Residual vs. Fitted (top right) and 
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Normal probability plot (bottom right). The residuals vs. fitted values graph shows a 

good distribution of the error variances, similar to case (a) of Figure 17. The normal 

probability plot shows a slight, but fluctuating departure from normality. Overall, there 

are no indications of deficiencies in the model. 
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Figure 20 Analysis of Eq. (4) Linearization (top left), Validation using new data (bottom 
left), Residual vs. Fitted (top right) and Normal probability plot (bottom right) 
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As opposed to Eqs. (2) and (3), the largest error of Eq. (4) was 14 MPa, found in 

observations eight and 13. Observation eight exhibited a fitted value of 36 MPa and an 

experimental value close to 50 MPa and observation 13 showed a fitted value of 53 MPa 

and experimental value of 39 MPa approximately. Although, Eq. (4) had an average error 

of approximately 7 MPa, it exhibited a narrower error range (28 MPa) than the error 

range of 33 MPa found in these two approaches. 

The validation of Eq. (4) using a new set of data shows that the largest error 

(found in the sixth observation) was 18 MPa over the actual experimental value. The fifth 

observation was also over-predicted by 11 MPa, while the rest of the observations had 

errors of less than 10 MPa. The average error of the validation dataset was 6 MPa 

approximately. The R code showing the model building process using GLMNET can be 

found in Appendix B. 

> Discussion of approaches one, two and three 

As stated above, LEAPS and LARS yielded very similar models with MSE of 

75.18 MPa. However, LARS produced a model with slightly higher adjusted R2 than 

LEAPS. Eqs. (2) and (3) presented acceptable distribution of residuals and no major 

departures from normality. GLMNET produced a model with higher MSE (89.73 MPa), 

lower R2 and adjusted R2 and its residual analysis showed no apparent deficiencies. 

Although the MSE of Eqs. (2) and (3) was smaller than the one of Eq. (4), the largest 

error of the first two was 19 MPa while in Eq. (4) the largest error was of 14 MPa. This 

shows that Eqs. (2) and (3) had larger errors but more observations were predicted on or 

close to the target, as opposed to Eq. (4) where the error span was smaller but the 

predictions had less accuracy. Given that the EN algorithm of GLMNET is believed to 
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perform well or better than the LASSO when the regressors are highly correlated, it was 

used due to potential multicolinearity in the dataset. However, the results from 

approaches one and two showed that there are no signs of multicolinearity between the 

regressors. In addition, GLMNET produced a model with less accuracy than the first two, 

thus it was not used in further analysis throughout this study. Packages LEAPS and 

LARS produced similar models, but due to its ease of use, LARS was chosen to perform 

the rest of the multiple regression analysis in this study. 

The three approaches showed that d50 had the strongest influence in the 

compressive strength of GPC followed by RAI2O3, LOI, RSi02 and finally RCaO. The 

three techniques discarded SSA during the model building process. The analysis of 

variance (ANOVA) of Eq. (3) is presented in Table 4 to illustrate how the statistical 

significance of each regressor was determined. The P-value was the parameter used to 

test the statistical significance of the regressors; the regressor with the lowest P-value 

(d50) is the most significant and the one with the highest value (RCaO) was the least 

significant. The parameters d50 and SSA both describe physical characteristics of FA, in 

particular the packing of the particles. However, d50 resulted highly influential, to the 

point that it may have hindered the impact that SSA exerts in the compressive strength. 

The parameters RSi02, RAI2O3 and RCaO were expected to have a positive sign in the 

equation since reactive silica and alumina are the main ingredients for the formation of 

geopolymer binder and it has been demonstrated that calcium also contributes to the 

compressive strength (Temuujin et al., 2009). A positive sign indicates that increasing 

these parameters would result in a direct increase in the compressive strength. However, 

while RAI2O3 exhibited a positive sign in the three models, RSi02 had a positive sign in 
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Eqs. (2) and (3) but not in Eq. (4). This can be attributed to one or more coefficients in 

Eq. (4) being calculated over their optimum values forcing RSi02 to drop its sign below 

zero to compensate for it. Similarly, RCaO presented an unexpected negative sign in Eqs. 

(2), (3) and (4), most likely caused by the same phenomenon. 

Table 4 ANOVA table of Eq. (3) 

Parameter 

RSi02 

RAI2O3 
RCaO 
d50 
LOI 
Residuals 

Degrees of 
Freedom 

18 

Sum of 
Squares 

444.91 
1567.32 

0.88 
2282.85 

539.24 
1353.29 

Mean 
Square 

444.91 
1567.32 

0.88 
2282.85 

539.24 
75.18 

F value 

5.9177 
20.8467 

0.0118 
30.3638 
7.1700 

P 

0.02564700 
0.00024000 
0.91482600 
3.12 xlO"05 

0.01534800 

The parameter d50 exhibited a negative sign in Eqs. (2), (3) and (4), and had the 

most significant impact in the compressive strength. This is in good agreement with 

research previously published by the author (Diaz et al., 2010; Diaz and Allouche 2010). 

Since the formation of geopolymer binder occurs only at the surface of the FA particles, 

FA with larger d50 provide less reaction surface and thus produce GPC with smaller 

compressive strength values. 

The parameter LOI had a strong influence in the compressive strength exhibiting a 

negative sign throughout the three approaches. LOI is a measure of unburned carbon in 

FA, which has been demonstrated to cause problems in OPC-based concrete (Gao et al., 

1997) as in GPC (Diaz et al., 2010). Although, the impact of unburned carbon in ordinary 

concrete is mainly in air entrainment while in GPC is in the liquid demand, recent studies 

performed by Hill and Folliard (2006) have shown that LOI may be inaccurate to quantify 
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the impact of carbon in concrete mixtures. The study showed that FA with low LOI in the 

form of fine carbon may have a greater impact in concrete than FA with high LOI in the 

form of larger carbon particles and/or perhaps with some of the carbon partially 

encapsulated in glass, yet this still has to be proven for GPC. This phenomenon was 

observed during this investigation as some FA samples, in spite of having high LOI 

contents, exhibited low liquid demands and average compressive strength. 

> A practical and economical approach 

A potential application of this study can be the use of the proposed equations for 

quality assurance and control in commercial production of GPC. The quality of FA for 

GPC production can be monitored by determining the LOI, mean particle size, reactive 

silica, alumina and calcium oxides and plugging them into Eq. (3) to calculate its 

potential compressive strength. Variability of FA characteristics and its resulting impact 

in the potential compressive strength of GPC can be quantified following this procedure. 

However, the qualitative and quantitative analysis through X-ray diffraction can be a 

complex process, many times dependant on the criteria of the technician performing the 

analysis for the indexation of phases and as a consequence it may not be practical for 

monitoring commercial production. Furthermore, the determination of reactive silica, 

alumina and calcium oxides can be a tedious and somewhat time-consuming process. 

Therefore, a model that uses the total silica, alumina and calcium oxides from the 

chemical analysis rather than its reactive components determined by X-ray diffraction 

was developed: 

f'c = 16.22 + 1.33 * Si02 - 0.78 * Al203 + (5) 

0.71 * CaO - 0.90 * d50 (MPa). 
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The adjusted R value of this model was 0.63 and the R value 0.70, considerably 

less than Eq. (3). Given the number of samples and regressors the R2 value has a 95% 

confidence interval of 0.54 > R2 > 0.86. The VIF values of Si02 and CaO were 5.74 and 

5.39; slightly higher than the recommended range of zero to five (Montgomery et al., 

2007) indicating that Si02 and CaO may be moderately correlated. Conversely, Kutner et 

al. (2004) proposed a maximum value of 10 instead of five to detect multicolinearity 

problems. The VIF values obtained for this model fall within the acceptable range of the 

latter. It is worth noting that the coefficient for AI2O3 appears with a negative sign in the 

equation implying that it was detrimental to the compressive strength of GPC. This 

premise is contrary to the theoretical chemistry fundamentals behind the regression 

model where alumina plays an essential role in the formation of geopolymer gel, thus it is 

assumed to have a positive effect. This can be an indication that one or more of the rest of 

the coefficients are larger than their optimum value and the coefficient of AI2O3 decreases 

its value in an attempt to compensate for it. 

Figure 21 shows the analysis of Eq. (5): Residual vs. Fitted (top left), normal 

probability plot (bottom left), linearization (top right), and validation using new data 

(bottom right). The residual vs. fitted plot showed that the variance of the residuals 

appears to have the double-bow shape as case (c) of Figure 17, indicating that the 

assumption of constant variance might be compromised. However, as stated before, this 

deficiency could be a result of the nature of the collected data where there are few 

samples in the low end of the compressive strength range and the remaining samples are 

clustered in the mid to high end of the range. 
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Figure 21 Analysis of Eq. (5) Residual vs. Fitted (top left), Normal Probability plot 
(bottom left), Linearization (top right), and Validation using new data (bottom right) 

The normal probability plot shows that that the model adheres well to normality. 

The graph showing the error of the model is indicative that although, Eq. (5) is more 

practical and applicable than Eq. (3), it has less accuracy. The maximum error found for 

this model was 22 MPa, four observations had errors between 11 and 14 MPa and the rest 
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of them presented errors of less than 10 MPa. The average error for the 24 observations 

was of 8 MPa approximately. 

The model was validated using eight new observations; the results are shown in 

the bottom right of Figure 21. The regression model predicted the compressive strength 

of the validation set with an average error of 10 MPa, and with a maximum error of 18 

MPa approximately. The regressors on which this model is based, particularly Si02, 

AI2O3 and CaO, serve to represent the true underlying chemical and physical interactions 

in a rather crude manner as it is known that only a part of them is reactive while the rest 

stays inert throughout the reaction and this reactive material varies depending on the 

amorphous-crystalline ratio and type of crystalline phases present in FA. Therefore, the 

reduced accuracy of the Eq. (5) concurs well with the chemical and crystallographic 

fundamentals behind the regression models. The R code showing the model building 

process for Eq. (5) can be found in Appendix B. 

6.1.3. FA Characteristics vs. 
Density of GPC 

The physical characteristics of FA were compared against the density of GPC to 

identify any possible correlations. It was found that the specific gravity of FA had the 

strongest correlation with the resulting concrete density. The regression model obtained 

from the analysis was: 

w = 2649 - 1979 * ~ (kg/m3), (6) 

where w represents the density of GPC as per ASTM standard C 138 and SG is the 

specific gravity of FA determined following ASTM standard C 188. Eq. (6) had an R 

value of 0.76 with a 95% confidence interval of 0.61 > R2 > 0.91. A plot of SG vs. w that 

includes a graphical representation of the equation is presented in Figure 22. 
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Figure 22 Regression model of FA specific gravity vs. density of GPC 

The residuals of Eq. (6) were analyzed and no major deficiencies were found. The 

model converged well with normality and the residuals showed no apparent defects. The 

largest error was 231 kg/m3 over the value of its corresponding observation. Eq. (6) 

predicted an average of 55 kg/m3 off target. In general terms, Eq. (6) tended to over-

predict at low specific gravity values and under-predict at the higher end of the values. 

However, the prediction accuracy seems to increase at higher SG values. This could be an 

indication that another variable was needed in order to predict GPC density more 

accurately. As in Section 6.1.2., the model was built using 24 observations and validated 
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with the remaining eight; the results of the validation of the regression model of FA 

specific gravity vs. density of GPC are shown in Figure 23. The average error was 

approximately 31 kg/m3 indicating that the fitted values laid close to their corresponding 

observation. 
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Figure 23 Validation of the regression model of FA specific gravity vs. density of GPC 

It can be presumed that the relationship between the density of GPC and the 

specific gravity of FA is merely physical. As opposed to OPC concrete, GPC cannot 

convert water into a solid and reduce the pore volume through the hardening process 

(Provis et al, 2010). Therefore, the packing characteristics of FA have a direct and 
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significant impact in the liquid demand of GPC. FA with low specific gravity values 

demands more liquid to fill larger voids caused by poor packing resulting in a higher pore 

volume and thus lowers density in fresh GPC. Ultimately, the pore volume and density of 

GPC are expected to impact the stiffness of the material. 

6.1.4. FA Characteristics vs. 
Setting Time of GPC 

The preliminary tests presented in Chapter 3 showed that setting time of GPC is 

strongly influenced by the calcium content in FA. This premise remained true throughout 

the rest of this study, as samples were added into the database they followed the same 

trend. A scatter plot of setting time vs. reactive calcium oxide is shown in Figure 24. It 

can be seen that the setting time decreases as the RCaO content increases in a manner 

somewhat similar to an exponential decay curve. This can be attributed to the calcium in 

the mixture reacting with the silicate and aluminates monomers dissolved from the source 

material, forming CSH and CASH. The hydration of these compounds results in water 

deficiency and thus raises the alkalinity of the mixture. The increase in alkalinity 

promotes higher and faster dissolution of silicate and aluminate species from the source 

material, and consequently an increased rate of polycondensation/geopolymerization. 

Thus, the presence of calcium contributes to the mechanical strength of geopolymer 

concrete not only by forming CSH and CASH, but also via the enhancement of the 

geopolymerization process. However, the "enhanced geopolymerization" and the 

nucleation sites created by the precipitated CSH and CASH lower the setting time 

(Temuujin et al., 2009). 
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Figure 24 Scatter plot of GPC setting time vs. reactive CaO content 

Despite the evident relationship between RCaO and the setting time of GPC it 

was not possible to propose a regression model that captures this interaction due to an 

excessive dispersion of some points between 0 and 12% RCaO. For example, several 

observations that had approximately 5% RCaO, yet exhibited setting times ranging from 

25 to 480 minutes. This can be an indication that although RCaO and setting time are 

inversely related, their interaction may be more complex and possibly other factors that 

impact the setting time were not taken into account. 
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6.2. Analysis of the Mechanical Properties of GPC 

6.2.1. Compressive vs. Flexural 
Strength 

Figure 25 shows a scatter plot of the compressive versus the flexural strengths as 

well as a regression model representing the relationship between the two variables. The 

proposed regression model is: 

fr = 0.68 JFTWPa), (7) 

where f is the flexural strength and f'c is the compressive strength after three days of 

thermal curing at 60°C. The model, labeled as Eq. (7), presented an R2 value of 0.72 with 

a 95% confidence interval of 0.55 > R2 > 0.89, was obtained using the least squares 

technique and was found to best "fit" the experimental data after analyzing residuals and 

R2 values of several different regression models. Eq. (7) seems to accurately predict the 

flexural strength using the compressive strength values despite the fact that the 

observations were recorded from different batches. To support the validity of the model, 

data reported by Fernandez-Jimenez et al. (2006) and Sofi et al. (2007) was also included. 

It is worth noting that this experimental model for GPC is similar to the equation given 

by the American Concrete Institute in the Building Code 318-08 in Section 8.5.2.3 to 

estimate the modulus of rupture for use in calculating deflections (ACI, 2008): 

fr = 0.62 JFc(MPa), (8) 

where f is the tensile flexural strength and f'c is the compressive strength of OPC 

concrete after 28 days of curing. 
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Figure 25 Flexural vs. compressive strength 

The adequacy of Eq. (7) was assessed by analyzing the residuals. They seemed to 

adhere well to case (a) of Figure 17 indicating a constant variance of the errors and the 

normal probability plot showed no signs of normality problems. The largest error was 

1.66 MPa, with the model predicting a value of 4.65 MPa, but the corresponding 

observation having a value of 6.31 MPa. The rest of the observations yielded errors of 

less than 1 MPa. The fitted values had an average error of 0.47 MPa. Eq. (7) was further 

evaluated using eight new observations; the results are presented in Figure 26. Eq. (7) 
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predicted the flexural strength as a function of the compressive strength with less than 1 

MPa of error and an average of 0.6 MPa. 

Figure 26 Validation of the compressive vs. flexural strength regression model 

6.2.2. Compressive vs. Static 
Elastic Modulus 

A regression model representing the correlation between static elastic modulus 

and compressive strength is presented in Figure 27. The equation obtained from the 

analysis is: 
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Ec = 580/'c (MPa), (9) 

where Ec is the static elastic modulus and/'c is the compressive strength. The R2 value for 

this model, which was labeled as Eq. (9), was 0.81 and had 95% confidence interval of 

0.68 >R2> 0.94. To support the validity of the proposed regression model data reported 

by Fernandez-Jimenez et al. (2006) and Sofi et al. (2007) was also included. ACI 318 

(2008) in Section 8.5.1. suggests the following expression for computing the modulus of 

elasticity for normal weight concrete as: 

Ec = 4733 J p " (MPa). (10) 
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Figure 27 Static elastic modulus vs. compressive strength 
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However, the GPC samples tested during this study exhibited a wide range of 

density values and most concrete professionals are familiar with a square-root functional 

form to represent this relationship, thus another regression model, labeled as Eq. (11), 

was derived using compressive strength and density of GPC as predictors of elastic 

modulus: 

Ec = 0.037(w)1-5V77T(MPa), (11) 

where w is the density of GPC in kg/m and the f'c values are expressed in MPa. This 

model exhibited an R2 value of 0.83 with a 95% confidence interval of 0.72 > R2 > 0.94 

suggesting that the inclusion of density in the prediction model helps in capturing the 

variability of the elastic modulus of GPC. Eq. (11) was found to predict the elastic 

modulus using the density and compressive strength values with reasonable accuracy 

despite the fact that some of the density values were recorded from a different batch. In 

addition the model presented in Eq. (11) adhered closer to normality and had a better 

distribution of residuals than the model presented in Eq. (9). The applicability of the 

model was supported by including data previously reported by Sofi et al. (2007). A 

similar equation is given in ACI 318 (2008) Section 8.5.1, which was derived from short-

term tests of OPC concrete ranging in density from 1,442 to 2,483 kg/m3: 

Ec = 0.043(w)1-5
A//7^ (MPa). (12) 

Figure 28 shows a plot comparing Eq. (11) and (12). An outlier seems to be 

present in the regression model given in Eq. (11); an observation with an error of 

approximately 13,000 MPa while the rest of the observations yielded residuals of less 

than 6,000 MPa approximately. The average error was 2,869 MPa. Eq. (11) was 

validated, as the rest of the models developed during this study, using the eight 
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observations that were not included in the model building process. Here, it was observed 

that the model tends to slightly over-predict at low elastic modulus values and to under-

predict at higher values. However, this conjecture may be premature since the validation 

set is relatively small, and to confirm it more observations would be required. 

Figure 28 Elastic modulus as a function of density and compressive strength 

6.2.3. Discussion of the Mechanical 
Properties 

This study proved that relationships exist among the compressive strength, 

density, elastic modulus and flexural tensile strength of GPC that are similar to those 

observed for ordinary concrete. It can be inferred from Eq. (6) that as the compressive 

strength increases so does the flexural strength; however the ratio of flexural to 

compressive strength decreases as the compressive strength increases. Eq. (6) is 

comparable to Eq. (7) from ACI 318 (2008) Section 8.5.2.3 for OPC concrete, except the 

expected values of the flexural strength are slightly higher than those obtained for OPC as 
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can be seen in Figure 25. From Figure 25 it can also be appreciated that the vast majority 

of data points previously reported by Fernandez-Jimenez et al. (2006) and Sofi et al. 

(2007) adhere well to Eq. (7) increasing its reliability. 

Similarly to ordinary concrete, the elastic modulus of GPC is influenced by the 

elastic modulus of the geopolymer paste and the elastic modulus of the aggregate. 

Increasing the activator solution to FA ratio increases the porosity of the paste and 

consequently decreases the elastic modulus and strength of the GPC. Since the aggregates 

and the mix design were kept constant for all specimens, variations in the elastic modulus 

of the aggregates can be considered to have negligible effect on the elastic modulus of the 

resulting geopolymer concrete. Therefore, variations in the elastic modulus of GPC can 

be attributed mainly to variations in the elastic modulus of the geopolymer paste. Eq. (9) 

explains the relationship between the elastic modulus and the compressive strength, 

which follows a positive linear relation. The equation that ACI 318-08 puts forward to 

express the variation of the elastic modulus of ordinary concrete as a function of the 

compressive strength for normal weight concrete, namely Eq. (10), follows a similar 

pattern, however the elastic modulus to compressive strength ratio decreases as the 

compressive strength increases, while in GPC this ratio remains constant. The data 

reported by Fernandez-Jimenez et al. (2006) and Sofi et al. (2007), as can be seen in 

Figure 27, follows the same trend as Eq. (9). Given that the density values of the GPC 

samples varied depending on the FA's physical characteristics, Eq. (11) was found to be a 

statistically valid method for determining the elastic modulus as a function of 

compressive strength and density of the GPC. When compared with Eq. (12) from ACI 

318 (2008) for ordinary concrete, there is a striking similarity between the two 
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expressions. In Figure 28 it can be seen that the elastic modulus values increase as the 

density increases. High density values are indicative of low porosity and thus a reduced 

void system in the concrete which increases the stiffness of the material. 

Poisson's ratio values of ordinary concrete can range from 0.11 to 0.21 but 

usually fall in the range from 0.15 to 0.20 (MacGregor and Wight, 2005). Values 

obtained for the GPC samples, which averaged 0.14, tend to populate the lower end of 

this range. However, considering that the compressive strength of the majority of GPC 

samples surpasses 41 MPa, the lower limit defining "high strength concrete" (MacGregor 

and Wight, 2005), Poisson's ratio values of GPC are in good agreement with values 

expected for high strength concrete. 

6.3. Testing the Models 

The accuracy of the overall statistical analysis was further evaluated by using the 

optimum model to predict compressive strength, which was Eq. (3), Eq. (6) to predict 

density of GPC, and then using this predicted values to calculate the flexural strength and 

the elastic modulus using Eqs. (7) and (11) as proposed in Sections 6.2.1. and 6.2.2. In 

other words, using the chemical, crystallographic and physical characteristics of the FA, 

the potential compressive strength, density, flexural strength and elastic modulus of GPC 

were predicted using the equations proposed in this study. The results are summarized in 

Table 5. The errors associated with the density and compressive strength are dependant of 

the accuracy of the models. However, the flexural strength, and elastic modulus values 

were calculated using the predicted density and compressive strength values, i.e., they are 

subject to the error related to the prediction of density and compressive strength and the 
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error related to equations used to predict flexural strength and elastic modulus. Yet, the 

predictions are fairly accurate. 

Table 5 Summary of statistical results 1 

Sample 

3 
6 
17 
13 
12 
28 
31 
29 

AvgE 

H> (kg/m3) 

O 
2291 

2307 

2307 

1986 

1970 

2083 

2163 

2195 

P 
2300 

2272 

2335 

2052 

1988 

2089 

2204 

2238 

E 
9 
35 
28 
66 
18 
6 
41 
43 

30.75 

/'c(MPa) 

O 
55.89 

46.69 

61.38 

20.68 

12.82 

32.45 

36.24 

23.36 

P 
53.01 

50.45 

61.01 

10.46 

14.47 

55.23 

39.17 

22.79 

E 
2.88 

3.76 

0.37 

10.22 

1.65 

22.78 

2.93 

0.57 

5.645 

/r(MPa) 

O 
4.3 
5.3 
6.23 

3.5 
2.38 

4.38 

3.25 

2.52 

P 
4.95 

4.83 

5.31 

2.2 
2.59 

5.05 

4.26 

3.25 

E 
0.65 

0.47 

0.92 

1.3 
0.21 

0.67 

1.01 

0.73 

0.745 

£c(MPa) 

O 
37108 

29358 

31447 

7960 

6812 

22808 

21456 

13176 

P 
29706 

28454 

32605 

11121 

12471 

26255 

23969 

18705 

E 
7402 

904 
1158 

3161 

5659 

3447 

2513 

5529 

3722 

O = Observed Value E = Error 
P = Predicted Value 

Table 6 shows a similar summary but the predictions are based on the Eq. (5). As 

discussed before Eq. (5) is much less sensitive to changes of FA characteristics and tends 

to over predict most of the validation values. Comparing Tables 5 and 6, it can be seen 

that the average prediction error of Eq. (5) is approximately three times greater than the 

one exhibited by Eq. (3). The same tendency applies for the prediction errors of the 

elastic modulus and the flexural strength where the average errors of Eq. (5) are 

significantly greater than those of Eq. (3). Thus, Eq. (5) cannot be recommended to 

evaluate the potential of FA as source material for GPC. 
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Table 6 Summary of statistical results 2 

Sample 

3 
6 
17 
13 
12 
28 
31 
29 

AvgE 

w (kg/m3) 

O 
2291 

2307 

2307 

1986 

1970 

2083 

2163 

2195 

P 
2300 

2272 

2335 

2052 

1988 

2089 

2204 

2238 

E 
9 
35 
28 
66 
18 
6 
41 
43 

30.75 

/'c(MPa) 

O 
55.89 

46.69 

61.38 

20.68 

12.82 

32.45 

36.24 

23.36 

P 
65.08 

64.25 

57.99 

40.82 

42.09 

56.09 

61.72 

46.54 

E 
9.19 

17.56 

3.39 

20.14 

29.27 

23.64 

25.48 

23.18 

18.98 

/r(MPa) 

O 
4.3 
5.3 
6.23 

3.5 
2.38 

4.38 

3.25 

2.52 

P 
5.49 

5.45 

5.18 

4.34 

4.41 

5.09 

5.34 

4.64 

E 
1.19 

0.15 

1.05 

0.84 

2.03 

0.71 

2.09 

2.12 

1.27 

£c(MPa) 

O 
37108 

29358 

31447 

7960 

6812 

22808 

21456 

13176 

P 
32916 

32110 

31788 

21966 

21275 

26459 

30087 

26729 

E 
4192 

2752 

341 
14006 

14463 

3651 

8631 

13553 

7699 

O = Observed Value E = Error 
P = Predicted Value 



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1. Conclusions 

This manuscript puts forward a database of XRD analysis, chemical composition 

and particle size distribution performed on 32 FA stockpiles collected from different 

coal-fired power generating stations around the US. The potential for GPC production 

from each FA stockpile was compared and a statistical analysis was performed to identify 

and quantify the major causes of variation that impact the mechanical properties of FA-

based geopolymer concrete, namely; silica, alumina, calcium and LOI as well as the 

amorphous content and fineness. As the true reaction mechanism through which 

geopolymer binders are formed is still debated and not well understood, a set of 

regression models that attempt to explain the true underlying mechanism are put forward. 

Eq. (3) was found to be the best regression model to predict the compressive strength of 

GPC, it uses reactive silica, alumina and calcium oxide (as determined in Section 6.1.1.) 

as well as LOI and the mean particle size as regressors. It showed to be the best fit by 

predicting compressive strength with an average accuracy of ± 6 MPa, having an adjusted 

R2 value of 0.73 and an R2 of 0.78. 

Eq. (5), an alternative model to predict the compressive strength, was tested in an 

attempt to simplify the input of the model for GPC practitioners and avoid the calculation 

of reactive silica, alumina and calcium oxide. For Eq. (5), the totals were used instead of 

79 
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the reactive components. The resulting model predicted the compressive strength with an 

average accuracy of 8 MPa. However, the errors were significantly dispersed and it 

showed reduced sensitivity to changes in FA characteristics. This was confirmed in its 

poor performance to predict the compressive strength values of the validation data (Table 

5). 

The chemical rationale behind the aforementioned models is that silica and 

alumina are the main precursors for geopolymer binder formation and these are assumed 

to dissolve from FA in a highly alkaline solution and then recombine using sodium as a 

charge-balancing agent to form geopolymer gel (Davidovits, 1993). Calcium in FA is 

believed to enhance the mechanical strength not only by forming hydration products in 

parallel to geopolymer but also by raising the alkalinity as water is consumed by the 

hydration reactions (Temuujin et al., 2009; Diaz et al., 2010). However, not all silica, 

alumina and calcium participate in this reactions as some are typically combined in a 

quasi-inert crystalline arrangement. Therefore, in Eq. (3) the molecules combined in a 

crystalline form were assumed to be inert and only the reactive components were taken 

into account for the calculations. Conversely, Eq. (5) used the total silica, alumina and 

calcium oxide for the calculations. The relatively high prediction accuracy of Eq. (3) 

compared to Eq. (5) can be attributed to this difference. 

The LOI content and the mean particle size were also found to influence the 

compressive strength. Their influence can be attributed to physical interactions that affect 

the reaction kinetics. LOI (unburned carbon) was found to have an adverse effect in the 

mechanical strength of GPC due to its hygroscopic nature that causes a higher liquid 

demand. However, its effect on GPC may vary depending on its fineness and reactivity. 
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For example, a small amount of highly fine carbon may have a more pronounced effect 

than a high amount of coarser carbon. The influence of the mean particle size in the 

compressive strength of GPC can be attributed to the rate of dissolution of silicon, 

aluminum and calcium species from the FA. Since it is believed that the 

geopolymerization reaction occurs only at the particle-liquid interface (Diaz et al., 2010), 

FA with a smaller mean particle size is expected to provide more surface area that will 

lead to a higher dissolution rate of the main precursors. Consequently, more chemical 

species will be available to form geopolymer and thus the compressive strength will be 

higher. 

The density of GPC was found to be strongly influenced by the specific gravity of 

the FA. A regression model that explains this correlation is put forward in Section 6.1.3. 

The relationship between the two variables can be considered to be merely physical and 

attributed to the packing characteristics of FA. Changes in the void content (quantified as 

SG) will cause variation in the water demand to fill these voids. 

The calcium content in FA is not only believed to enhance the mechanical 

strength but it also has a strong effect on the setting time of GPC. As it was proven by 

Temuujin et al. (2009) that calcium forms hydrated calcium products parallel to the 

formation of geopolymer. The decrease in setting time can be attributed to two 

mechanisms: (1) the hydrated products act as nucleation sites that accelerate the setting; 

and (2) the hydration of calcium consumes water, that raises the concentration of the 

activator solution and consequently accelerates the reaction. Although the correlation 

between calcium and setting time is clear, a regression model with fair accuracy could 

not be proposed as high variability in the setting time was encountered at low RCaO 
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values. Conversely, at moderate to high RCaO values the variability in the setting time is 

reduced and the correlation becomes more evident. This suggests that an additional 

parameter, which was not taken into account, may play an important role in the setting 

time of GPC, particularly for FA samples with low calcium content. 

Geopolymer concrete seems to possess a similar mechanical behavior to that of 

ordinary Portland cement concrete. The relationship between flexural and the 

compressive strengths of GPC can be expressed using a statistically derived equation that 

resemble that given by ACI 318-08 for ordinary concrete. The relationship between 

elastic modulus and compressive strength of GPC is similar to that of ordinary concrete; 

however, their relationship is linear while for ordinary concrete it follows a power curve. 

The elastic modulus of GPC may be better expressed as function of both density and 

compressive strength. 

7.2. Recommendations for Future Work 

The residual analysis of Eq. (3) suggested non-constant variance of the residuals, 

which could be a cause of concern. However, this was attributed to the fact that the 

majority of the compressive strength values for GPC laid in the mid to high end of the 

range while only a few samples exhibited mid to low values. Therefore, it is 

recommended that more samples that lie in the mid to low range of the compressive 

strength are added to the database. Alternatively, the weighted least squares technique is 

typically recommended to solve non-constant variance problems thus the data could be 

analyzed using this technique instead of OLS. 

The output of Eq. (3) could be simplified by classifying FA stockpiles in a score 

system according to how they compare to each other in terms of potential strength of 
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GPC rather than predicting single values of compressive strength. This would not only 

simplify the output, but it would also eliminate the need to follow the same procedures 

and mix design to produce GPC that matches the prediction since the potential of a FA 

stockpile will compare to another in the same way regardless of the mix design. 

An additional line of research that could improve the accuracy of Eq. (3) is the 

dissolution rate of crystalline phases during geopolymerization. This work was performed 

under the assumption that the molecules in a crystalline arrangement are inert. However, 

a small percentage of the crystalline phases are dissolved at different rates during the 

activation process, potentially forming more geopolymer. A regression model that 

explains the dissolution rate of crystalline phases in FA during geopolymerization could 

enhance the accuracy of Eq. (3). 
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Table A. 1 Chemical composition of fly ash samples 

FA 
class 

C 
C 

c 
F 
F 
F 
F 
F 
C 
F 
F 
F 
F 
F 
F 
F 
C 
C 
F 
C 
C 
C 
C 
C 
C 
F 
F 
F 
F 
F 
C 
F 

F 

C 

FA 
sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

MIN 
MAX 
AVG 
MIN 
MAX 
AVG 

Si02 

37.77 
32.41 
55.61 
58.52 
61.01 
61.23 
62.12 
59.32 
48.70 
55.07 
56.22 
56.39 
57.11 
57.35 
40.75 
66.5 
39.25 
33.02 
59.25 
56.42 
27.15 
31.26 
30.85 
49.9 
55.15 
52.81 
45.65 
58.04 
51.46 
51.69 
57.55 
52.57 
40.75 
66.50 
55.95 
27.15 
57.55 
42.70 

A1203 

19.13 
18.40 
19.87 
20.61 
20.06 
19.20 
19.59 
19.72 
16.60 
28.61 
27.15 
27.36 
28.18 
27.78 
22.79 
18.8 

21.09 
19.82 
18.43 
17.63 
17.57 
19.76 
17.07 
19.32 
23.55 
20.83 
20.37 
28.15 
28.04 
21.37 
19.84 
25.22 
18.43 
28.61 
23.28 
16.60 
23.55 
19.20 

Si02/Al203 

1.97 
1.76 
2.80 
2.84 
3.04 
3.19 
3.17 
3.01 
2.93 
1.92 
2.07 
2.06 
2.03 
2.06 
1.79 
3.54 
1.86 
1.67 
3.21 
3.20 
1.55 
1.58 
1.81 
2.58 
2.34 
2.54 
2.24 
2.06 
1.84 
2.42 
2.90 
2.08 
1.79 
3.54 
2.48 
1.55 
3.20 
2.23 

Si02+Al203 

56.90 
57.90 
75.48 
79.13 
81.07 
80.43 
81.71 
79.04 
65.30 
83.68 
83.37 
83.75 
85.29 
85.13 
63.54 
85.30 
60.34 
52.84 
77.68 
74.05 
44.72 
51.02 
47.92 
69.22 
78.70 
73.64 
66.02 
86.19 
79.50 
73.06 
77.39 
77.79 
63.54 
86.19 
79.23 
44.72 
78.70 
62.44 

CaO 

22.45 
28.07 
12.93 
5.00 
5.48 
5.64 
5.01 
6.90 
18.72 
1.97 
5.43 
4.69 
5.18 
5.57 
4.64 
4.91 
23.53 
26.19 
9.23 
11.66 
33.39 
28.53 
28.47 
15.22 
10.60 
0.98 
6.23 
4.24 
2.96 
3.10 
10.25 
5.10 
0.98 
9.23 
4.86 
10.25 
33.39 
20.77 

Fe203 

7.33 
7.17 
4.52 
9.43 
7.00 
7.27 
6.88 
7.22 
6.93 
6.22 
3.73 
3.34 
4.00 
3.65 
17.76 
1.95 
4.99 
6.75 
5.61 
5.74 
6.08 
6.47 
6.79 
7.63 
4.63 
13.05 
19.43 
3.29 
10.34 
8.28 
5.08 
7.76 
1.95 

19.43 
7.70 
4.52 
7.63 
6.16 

LOI 

0.17 
0.38 
0.23 
0.05 
0.08 
0.06 
0.10 
0.15 
0.49 
1.82 
2.69 
3.41 
0.44 
0.83 
5.72 
0.26 
0.11 
0.16 
0.04 
0.00 
0.00 
0.00 
0.00 
0.09 
0.31 
0.19 
0.20 
0.07 
0.03 
0.22 
0.07 
0.13 
0.03 
5.72 
0.87 
0.00 
0.49 
0.15 
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Table A. 2 Nomenclature of crystalline phases 

Crystalline Phase 
Albite( NaAlSi308) 
Allophane(A1203-(Si02),.3-2:((H20))2.5.3) 
Anhydrite CaS04 

Anorthite CaAl2Si208 

Calcite (CaC03) 
Calcium Catena Silicate Ca(Si03) 
Cristoballite (Si02) 
Dicalcium Silicate Ca2Si04 
Diopside CaMgSi206 
Dolomite (CaMg(C03)2) 
Gehlenite Ca2Al2Si07 

Grossular (Ca3Al2(Si04)3 
Gypsum(CaS042(H20)) 
Hematite (Fe203) 
Hydrogamet (CaO)3(Al203)i+x(H20)6-3x 
Illmenite FeTi03 
Jadeite NaAlSi206 

Lime (CaO) 
Magnesite (MgCOs) 
Magnetite (Fe304) 
Merwinite (Ca3Mg(Si04)2) 
Mullite (Al4.5Si1.5O9.75) 
Nosean Na8Al6Si6024(S04) 
Olympite Na3P04 

Periclase (MgO) 
Perovskite CaFe(Ti206) 
Pseudobrookite ((Fe+++,Fe++)2(Ti,Fe++)05) 
Pyrite (FeS2) 
Spinel MgAl204 
Thermonatrite (Na2C03oH20) 
Thenardite Na2(S04) 
Quartz (Si02) 
ZnO 
Amorphous 

Designation 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 

AA 
AB 
AC 
AD 
AE 
AF 
AG 
AH 

http://Al4.5Si1.5O9.75
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Table A. 3 Crystallographic analysis (samples 1-5) 

Phase 

A 
B 
C 
F 
H 
I 
J 
K 
L 
N 
R 
T 
U 
V 
W 
Y 

z 
AA 
AF 
AH 

FA 

0.30 
0.30 
0.40 
9.60 

3.20 

4.20 
23.10 
58.90 

GP 

0.30 
0.10 
0.10 
5.80 

0.20 

1.40 
18.30 
73.80 

2 
FA 

1.70 
0.40 
3.30 

1.20 

0.90 

1.40 

1.80 
7.90 

5.10 
76.20 

GP 

0.30 
3.00 
1.50 

0.60 
0.60 

0.20 
2.20 
1.10 
3.60 

2.50 
84.40 

3 
FA 
0.10 

0.40 

0.30 

0.60 

1.30 

0.40 

28.30 
69.30 

GP 

2.10 

0.50 

17.30 
80.10 

4 
FA 

1.30 

6.70 

2.10 

37.00 
52.90 

GP 

9.30 

1.30 

7.30 

2.00 

24.80 
55.30 

5 
FA 

1.90 

0.50 

10.60 

14.90 
72.10 

GP 

1.90 

1.40 

5.80 

17.00 
73.90 

Table A. 4 Crystallographic analysis (samples 6-10) 

Phase 

E 
J 

M 
N 
S 
T 
V 
Y 

AB 
AD 
AF 
AG 
AH 

6 
FA 

0.20 

0.20 
5.30 

19.20 

75.10 

GP 

0.00 

0.10 
2.90 

10.20 

86.80 

7 
FA 

0.90 
6.20 

22.30 

70.60 

GP 

0.60 
3.70 

9.30 
9.90 

76.50 

c 

FA 

1.00 
5.20 

20.70 

73.10 

i 
GP 

0.20 

0.80 
4.80 

12.20 

82.00 

9 
FA 
1.60 
0.20 
1.30 

0.90 

0.10 
0.65 

28.10 
0.10 

67.05 

GP 
2.70 
0.30 

1.50 

0.10 
0.20 

11.60 
0.10 

83.50 

10 
FA 

25.27 

10.33 

64.40 

GP 

14.62 

5.58 

79.80 
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Table A. 5 Crystallographic analysis (samples 11-15) 

Phase 

C 
N 
R 
T 
V 

AC 
AD 
AE 
AF 
AH 

11 
FA 

2.10 

17.90 

22.10 
57.90 

GP 

0.10 

15.70 

3.70 

5.10 
75.30 

12 
FA 

1.10 

22.70 

10.50 
65.70 

GP 

0.10 

18.80 

4.80 

6.30 
69.90 

13 
FA 

1.10 

30.10 

9.40 
59.40 

GP 

0.10 

21.40 

3.10 

8.50 
66.80 

14 
FA 

0.80 
0.10 

22.00 

7.90 
69.20 

GP 

0.10 

17.70 

3.90 

6.60 
71.60 

15 
FA 
0.90 
2.40 

3.70 

6.10 

0.80 
86.10 

GP 

1.60 

3.20 

6.20 

3.70 
1.10 

84.20 

Table A. 6 Crystallographic analysis (samples 16-20) 

Phase 

A 
C 
G 
K 
L 
P 
T 
V 
Y 
Z 

AD 
AF 
AH 

16 
FA 
2.10 
0.30 
0.90 

0.90 
7.60 

5.30 
82.90 

GP 
2.80 
0.20 

0.80 
4.00 

3.90 
3.70 

84.60 

17 
FA 

0.30 

1.50 
0.80 
2.50 

9.00 
85.90 

GP 

1.00 
1.00 
1.00 

4.60 
92.20 

18 
FA 

1.00 

3.20 
0.40 
5.80 
0.40 
0.60 
2.80 
6.00 

5.60 
74.20 

GP 

1.70 
0.20 
0.20 
0.60 
0.40 
1.10 
1.40 

3.10 
91.30 

19 
FA 

0.40 

1.10 
4.80 

20.90 
72.80 

GP 

0.30 

0.70 
3.80 

1.50 
13.40 
79.90 

20 
FA 

0.30 

0.30 
2.30 

12.20 
84.90 

GP 

0.20 
1.70 

7.90 
90.20 
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Table A. 7 Crystallographic analysis (samples 21-25) 

Phase 

C 
D 
I 
K 
N 
0 
Q 
R 
T 
V 
W 
X 
Y 

z 
AF 
AH 

21 
FA 
2.10 
1.50 

1.80 

0.70 

1.30 
1.20 
9.10 
3.00 

79.30 

GP 

0.80 

9.30 
3.50 

1.50 
2.30 
0.70 
0.80 
3.20 

77.90 

22 
FA 
1.40 

2.00 

0.50 
0.50 

1.20 
5.10 
3.50 

85.80 

GP 

0.80 

5.40 
2.20 
0.40 

1.20 
0.40 
0.60 
1.50 
3.10 

84.40 

23 
FA 
2.30 

3.80 

1.20 
0.40 

2.00 
6.30 
4.90 

78.90 

GP 

1.20 

1.00 
2.30 
0.10 

0.80 

0.90 
2.40 
2.90 

88.40 

24 
FA 
0.20 

0.50 

0.10 

2.00 

0.20 

10.30 
86.20 

GP 
0.30 

2.30 

0.30 

0.30 
1.60 

0.40 

6.00 
88.40 

25 
FA 

0.20 

0.20 
0.40 
7.10 

8.00 
84.10 

GP 

0.20 

0.10 
0.40 
7.40 

9.20 
82.70 

Table A. 8 Crystallographic analysis (samples 26-30) 

Phase 

A 
C 
E 
I 
K 
N 
Q 
R 
S 
T 
V 
Y 

AE 
AF 
AH 

26 
FA 
0.60 

1.20 

13.70 

15.40 
69.10 

GP 

2.30 

0.40 

11.50 

9.70 
76.10 

27 
FA 
0.40 
0.80 
0.20 
2.50 

2.40 

4.30 
5.40 
0.40 

5.20 
78.40 

GP 

3.90 

2.00 

3.60 
5.30 
0.30 
0.30 
3.90 

80.70 

28 
FA 

0.30 

0.80 

18.70 

7.70 
72.50 

GP 

0.50 

5.50 

9.40 

3.50 
81.10 

29 
FA 

2.70 
29.30 

10.00 
58.00 

GP 

2.90 
21.40 

6.00 
69.70 

30 
FA 

0.40 

0.70 

0.40 

2.50 
13.20 
0.40 

11.70 
70.00 

GP 

0.40 

2.40 
8.90 
0.40 

6.70 
81.20 
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Table A. 9 Crystallographic analysis (samples 31 and 32) 

Phase 

A 
E 
I 
N 
R 
T 
V 

AF 
AH 

31 
FA 

2.30 

0.70 
0.90 

10.60 
12.40 
73.10 

GP 

0.80 
9.80 
9.80 

79.60 

32 

FA 
0.60 

1.20 

13.70 
15.40 
69.10 

GP 

2.30 
0.40 

11.50 
9.70 

76.10 
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Table A. 10 Summary of physical properties 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Particles 
<45 fim 

(%) 

83.01 
83.80 
68.75 
63.50 
66.17 
63.75 
61.66 
62.97 
74.24 
71.26 
55.39 
58.19 
58.02 
43.31 
87.50 
30.28 
84.27 
85.68 
63.24 
67.33 
80.91 
85.86 
81.23 
84.23 
63.10 
60.20 
76.06 
76.15 
73.11 
60.02 
65.18 
75.22 

Calculated 
surface 
(mW) 

2.92 
2.58 
1.33 
0.57 
1.25 
1.10 
0.98 
1.12 
2.00 
1.08 
0.49 

0.795 
0.59 
0.23 
2.95 
0.14 
2.45 
2.49 
1.18 
0.57 
3.13 
3.14 
2.79 
1.58 
1.40 
0.53 
0.55 
1.07 
1.58 
1.12 
1.06 
1.80 

Mean 
particle 

size (urn) 

11.36 
12.31 
20.87 
27.52 
22.68 
24.93 
28.31 
29.96 
15.17 
22.30 
40.03 
34.57 
36.73 
51.11 
6.62 
92.41 
11.88 
11.32 
30.38 
25.93 
10.38 
6.71 
12.16 
11.95 
30.15 
33.31 
21.00 
20.42 
20.39 
32.64 
25.38 
18.41 

Specific 
gravity 

2.50 
2.53 
2.38 
2.32 
2.27 
2.29 
2.27 
2.23 
2.47 
2.17 
1.78 
1.73 
1.82 
1.81 
2.52 
1.47 
2.51 
2.7 

2.18 
2.27 
2.67 
2.55 
2.61 
2.41 
2.05 
2.03 
2.50 
1.88 
2.19 
2.04 
2.11 

2.263 

Specific 
surface 

area 
(m2/g) 

1.17 
1.02 
0.56 
0.25 
0.55 
0.48 
0.43 
0.50 
0.81 
0.50 
0.28 
0.46 
0.32 
0.13 
1.17 
0.10 
0.98 
0.92 
0.54 
0.25 
1.17 
1.23 
1.07 
0.66 
0.68 
0.26 
0.22 
0.57 
0.72 
0.55 
0.50 
0.79 



Table A. 11 Summary of fresh mix and mechanical properties of GPC samples 

Fly 
Ash 
Type 

C 
C 
c 
F 
F 
F 
F 
F 
C 
F 
F 
F 
F 
F 
F 
F 
C 
C 
F 
C 
C 
c 
c 
c 
c 
F 
F 
F 
F 
F 
C 
F 

F 

C 

Sample 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

MINIMUM 
MAXIMUM 
AVERAGE 
MINIMUM 
MAXIMUM 
AVERAGE 

w 
(kg/m3) 

2323 
2323 
2291 
2307 
2291 
2307 
2307 
2291 
2339 
2243 
1986 
1970 
1986 
1890 
2371 
1810 
2307 
2323 
2291 
2371 
2323 
2323 
2339 
2355 
2355 
1938 
2339 
2083 
2195 
2131 
2163 
2243 
1810 
2371 
2157 
2163 
2371 
2318 

fc 
(MPa) 

59.50 
52.28 
55.89 
40.35 
47.55 
46.69 
46.79 
46.11 
52.81 
47.44 
12.20 
12.82 

20.68 
10.34 
46.56 
5.53 
61.38 
39.19 
43.38 
53.70 
36.54 
57.18 
42.81 
64.68 
62.19 
20.16 
52.57 
32.45 
23.36 
22.68 
36.24 
36.80 
5.53 
52.57 
32.34 
36.24 
64.68 
51.88 

fr 
(MPa) 

4.48 
4.72 
4.30 
4.14 
5.58 
5.30 
4.61 
4.71 
5.27 
5.12 
2.24 
2.38 
3.50 
2.74 
6.31 
1.15 
6.23 
4.19 
4.24 

4.43 
3.58 
5.27 
5.18 
4.90 
4.83 
2.79 
4.17 
4.38 
2.52 
3.94 
3.25 

4.56 
1.15 
6.31 
3.91 
3.25 
6.23 
4.66 

Ec 

(MPa) 

33633 
34377 
37108 
28599 
29475 
29358 
28517 
26455 
42878 
25635 
7040 
6812 

7960 
7460 
28744 
4619 
31447 
19064 
25607 
28910 
26972 
29448 
22567 
30806 
29896 
11273 
28089 
22808 
13176 
12314 
21456 
24725 
4619 
29475 
19403 
19064 
42878 
29889 

Poisson's 
Ratio 

0.12 
0.12 
0.17 
0.14 
0.16 
0.14 
0.13 
0.12 
0.13 
0.14 
0.17 
0.10 
0.08 
0.10 
0.15 
0.12 
0.18 
0.22 
0.13 
0.15 
0.13 
0.19 
0.22 
0.15 
0.14 
0.14 
0.14 
0.13 
0.12 
0.14 
0.14 
0.14 
0.08 
0.17 
0.13 
0.12 
0.22 
0.16 

Setting 
Time 
(min) 

1.5 
2 
25 
180 
350 
320 
240 
400 
17 
480 
140 
60 
70 
25 
480 
25 
8 
6 
45 
285 
4 
2 
3 
18 
55 
16 
20 
46 
75 
11 
17 
47 
11 
480 
159 
2 
285 
34 
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Table A. 12 Chemical composition of crystalline phases 

Crystalline phase 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
T 
U 
V 

w 
z 

AA 
AC 
AF 

SiOz 

67.39 
34.7 

-

44.4 
-

51.72 
100.00 

31.5 
55.49 

-

21.91 
40.02 

-
-

21.75 
-

58.61 
-
-

36.56 
28.21 
35.61 

-
-
-

100 

A1203 

20.35 
45.29 

-

35.84 
-
-
-

2.1 
-
-

37.18 
22.64 

-
-

24.61 
-

22.38 
-
-
-

71.79 
30.21 

-
-

71.67 
-

CaO 
1.07 

-

41.19 
19.2 

56.03 
48.28 

-

63.5 
25.9 

30.41 
40.9 

37.35 
32.57 

-

40.6 
-
-

100.00 
-

51.18 
-
-

41.25 
-
-

-

Fe203 

-
-
-
-
-
-
-

0.9 
-
-
-
-
-

100 
-

47.35 
3.89 

-

100 
-
-
-
-

69.83 
-

-



Table A. 13 Reactive content in fly ash samples 

Class 
C 
C 

c 
F 
F 
F 
F 
F 
C 
F 
F 
F 
F 
F 
F 
F 
C 
C 
F 
C 
C 

c 
c 
c 
c 
F 
F 
F 
F 
F 
C 
F 

Sample 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

RSi02 

11.16 
25.19 
26.88 
19.63 
43.12 
40.53 
38.07 
37.15 
20.60 
37.61 
29.07 
39.49 
39.22 
43.24 
39.95 
56.74 
29.83 
26.39 
37.00 
43.57 
23.09 
27.03 
24.41 
39.04 
45.10 
33.14 
37.27 
45.06 
33.19 
36.27 
42.16 
32.90 

RA1203 

19.13 
17.05 
18.92 
15.80 
12.45 
15.40 
15.14 
15.99 
16.60 
10.47 
14.30 
11.06 
6.57 

11.99 
18.42 
12.92 
20.01 
18.11 
14.98 
15.98 
16.36 
18.90 
15.39 
17.88 
18.38 
10.87 
16.41 
14.73 
7.01 

11.89 
12.23 
15.26 

RCaO 
17.24 
21.37 
12.81 
4.13 
5.48 
5.64 
5.01 
6.90 

17.34 
1.97 
3.33 
3.59 
4.08 
4.77 
4.27 
4.76 

22.38 
21.84 

9.07 
11.54 
27.05 
24.53 
22.97 
15.04 
10.32 
0.97 
5.14 
3.44 
2.96 
2.54 
8.26 
5.09 



APPENDIX B 

STATISTICAL PROGRAMMING 



R code of approach one 

# LEAPS 

data(gpcfinal) 
gpcfinal 
attach(gpcfinal) 
x<-as.matrix(gpcfinal[,c(6:9,12,14)]) 
y<-as.matrix(gpcfinal[,c( 16)]) 
library(leaps) 
leaps( x, y, names=colnames(x),nbest=l, method-'adjr2") 
model 1 <- lm(fc~RSiO2+RA12O3+RCaO+d50+LOI) 
summary(model 1) 
anova(modell) 
library (car) 
vif(modell) 
library(MPV) 
PRESS(modell) 

opar <- par() 
par(mfcol = c(2,2)) 
windowsFonts(A=windowsFont("Times New Roman")) 
plot(modell, which= 1, 
main="Residual analysis and Normal probability plot of model 1",family-'A") 
plot(modell, which= 2,family="A") 

windowsFonts(A=windowsFont("Times New Roman")) 
plot(fitted(modell),fc,ylab="Experimental compressive strength (MPa)", 
xlab="Predicted compressive strength (MPa)", xlim=c(0,70), ylim=c(0,70), 
main="Error of model l",family="A") 
segments(0,0,70,70) 
MSE=sum((as.matrix(fc)-fitted(model 1 ))A2)/18 
MSE 

#Validation using new data 

data(gpcvalid) 
gpcvalid 
attach(gpcvalid) 
predict. lm(model 1 ,gpcvalid) 
validation<-predict.lm(model 1 ,gpcvalid) 

windowsFonts(A=windowsFont("Times New Roman")) 
plot(validation, fc, ylab="Experimental compressive strength (MPa)", 
xlab="Predicted compressive strength (MPa)", xlim=c(0,70), ylim=c(0,70), 
main="Validation of model 1 using new data",family-'A") 



segments(0,0,70,70) 
detach(gpcvalid) 

#Cross-Validation 

library(DAAG) 
windows() 
opar <- par() 
par(mfcol = c(2,2)) 
windowsFonts(A=windowsFont("Times New Roman")) 
main=" Cross-Validation of Model 1" 
CVlm( df=gpcfinal, model 1, 2) 
CVlm( df=gpcfinal, model 1, 3) 
CVlm( df=gpcfinal, model 1,4) 
CVlm( df=gpcfinal, model 1, 5) 

R code of approach two 

# LASSO 

data(gpcfinal) 
gpcfinal 
attach(gpcfinal) 
library(lars) 
trnx<-as.matrix(gpcfinal [,c(6:9,12,14)]) 
trny<-as.matrix(gpcfinal[,c(16)]) 

library(lars) 
model2<-lars(trnx,trny, normalize=F,intercept=TRUE,trace=TRUE) 
summary(model2) 
coef(model2, intercept=TRUE, mode-'step") 
coef(model2,s=8,intercept=TRUE,model="step") 
predict.lars(model2, newx=trnx, s=8,type = c("fit"), intercept=TRUE, mode= 

data(lassofit) 
lassofit 
attach(lassofit) 
MSE=sum((as.matrix(lassofit)-trny)A2)/18 
MSE 
windows() 
opar <- par() 
par(mfcol = c(2,2)) 
windowsFonts(A=windowsFont("Times New Roman")) 
plot(as.matrix(lassofif), trny,main="Linearization of model 2", 
xlab-'Predicted compressive strength (MPa)", 
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ylab="Experimental compressive strength (MPa)", 
xlim=c(0,70), ylim=c(0,70),family="A") 
segments(0,0,70,70) 

# Validating using new data 

data(gpcvalid) 
gpcvalid 
attach(gpcvalid) 
tstx<-as.matrix(gpcvalid[,c(6:9,12,14)]) 
tsty<-as.matrix(gpcvalid[,c( 16)]) 
predict.lars(model2, newx=tstx, s=8,type = c("fit"), intercept=TRUE, mode-'step") 
data(lassopredicted) 
lassopredicted 
attach(lassopredicted) 
plot(as.matrix(lassopredicted), tsty,main="Validation of model 2 using new data", 
xlab="Predicted compressive strength (MPa)", 
ylab-'Experimental compressive strength (MPa)", 
xlim=c(0,70),ylim=c(0,70),family="A") 
segments(0,0,70,70) 

RES=trny-as.matrix(lassofit) 
plot(as.matrix(lassofit),RES,main="Residual vs. Fitted", 
xlab="Fitted values",ylab="Residuals", 
xlim=c(0,70), ylim=c(-20,20),family="A") 
segments(0,0,70,0,lty=2) 

SRES=RES/sqrt(MSE) 
qqnorm(SRES,xlab="Theoreticalquantiles",ylab="Standardizedresiduales",family="A") 
segments(-2,-2,2,2, lty=2) 

R code of approach three 

#ELASTIC NET 

data(gpcfinal) 
attach(gpcfinal) 
trnx<-as.matrix(gpcfinal[,c(6:9,12,14)]) 
trny<-as.matrix(gpcfinal[,c(16)]) 
library(glmnet) 
lmbda=seq(900, 0.01, length.out= 10000) 
fitl=cv.glmnet(trnx, trny, standardize=F, 
lambda=lmbda , nfolds=6, dfmax=10, alpha=.9) 
coef(fitl ,lambda="lambda.min") 

data(gpcvalid) 
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attach(gpcvalid) 
tstx<-as.matrix(gpcvalid[,c(6:9,12,14)]) 
tsty<-as.matrix(gpcvalid[,c(16)]) 

windows() 
opar <- par() 
par(mfcol = c(2,2)) 
windowsFonts(A=windowsFont("Times New Roman")) 

MSE=sum((trny-as.matrix(predict(fitl,newx=trnx,lambda="lambda.min")))A2)/18 
MSE 
plot(predict(fitl ,newx=trnx,lambda="lambda.min"), trny, 
main="Linearization of model 3", 
xlab="Predicted compressive strength (MPa)", 
ylab="Experimental compressive strength (MPa)", 
xlim=c(0,70),ylim=c(0,70),family="A") 
segments(0,0,70,70) 
plot(predict(fitl,newx=tstx,lambda="lambda.min"), 
tsty, main-' Validation of model 3 using new data", 
xlab-'Predicted compressive strength (MPa)", 
ylab-'Experimental compressive strength (MPa)", 
xlim=c(0,70),ylim=c(0,70),family="A") 
segments(0,0,70,70) 

RES=trny-predict(fitl,newx=trnx,lambda="lambda.min") 
plot(predict(fit 1 ,newx=trnx,lambda=" lambda.min"), 
RES,main="Residual vs. Fitted", xlab="Fitted values",ylab="Residuals", 
xlim=c(0,70), ylim=c(-20,20),family="A") 
segments(0,0,70,0,lty=2) 

SRES=RES/sqrt(MSE) 
qqnorm(SRES,xlab="Theoretical quantiles",ylab="Standardized residuales") 
segments(-2,-2,2,2, lty=2) 

R code for the practical approach 

data(gpcfinal) 
gpcfinal 
attach(gpcfinal) 
library(lars) 
trnx<-as.matrix(gpcfinal[,c(2:4,6,12,14)]) 
trny<-as.matrix(gpcfinal[,c(16)]) 
library(HH) 
vif(gpcfinal[,c(2:4,6,12,14)]) 

library(lars) 



model2<-lars(trnx,trny, normalize=:F,intercept=TRUE,trace=TRUE) 
summary(model2) 
coef(model2, intercept=TRUE, mode-'step") 
coef(model2,s=5,intercept=TRUE,model="step") 
predict.lars(model2, newx=trnx, s=4,type = c("fit"), intercept=TRUE, mode-'step") 

ft<-data.frame(predict.lars(model2, newx=trnx, s=5,type = c("fit"), 
intercept=TRUE, mode="step")) 
lassofit<-ft[,c(4)] 

MSE=sum((as.matrix(lassofit)-trny)A2)/18 
MSE 
windows() 
opar <- par() 
par(mfcol = c(2,2)) 
windowsFonts(A=windowsFont("Times New Roman")) 
plot(as.matrix(lassofit), trny,main="Linearization of model 2", 
xlab="Predicted compressive strength (MPa)", 
ylab-'Experimental compressive strength (MPa)", 
xlim=c(0,70), ylim=c(0,70),family="A") 
segments(0,0,70,70) 

data(gpcvalid) 
gpcvalid 
attach(gpcvalid) 
tstx<-as.matrix(gpcvalid[,c(2:4,6,12,14)]) 
tsty<-as.matrix(gpcvalid[,c(16)]) 
predict.lars(model2, newx=tstx, s=5,type = c("fit"), intercept=TRUE, mode-'step") 

ft2<-data.frame(predict.lars(model2, newx=tstx, s=5,type = c("fit"), 
intercept=TRUE, mode="step")) 
lassopredicted<-ft2 [,c(4)] 

plot(as.matrix(lassopredicted), tsty,main="Validation of model 2 using new data", 
xlab="Predicted compressive strength (MPa)", 
ylab-'Experimental compressive strength (MPa)", 
xlim=c(0,70), ylim=c(0,70),family="A") 
segments(0,0,70,70) 

RES=trny-as.matrix(lassofit) 
plot(as.matrix(lassofit),RES,main="Residual vs. Fitted", 
xlab="Fittedvalues",ylab="Residuals", 
xlim=c(0,70),ylim=c(-20,20),family="A") 
segments(0,0,70,0,lty=2) 
data.fr ame(trny,lassofit,RES) 
RESP=tsty-as.matrix(lassopredicted) 

http://data.fr
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data.frame(tsty, lassopredicted, RESP) 
SRES=RES/sqrt(MSE) 
qqnorm(SRES,xlab="Theoretical quantiles",ylab~'Standardized residuales",family-'A") 
segments(-2,-2,2,2, lty=2) 
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IMAGES OF MECHANICAL TESTING 
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Figure C.l Images of the mechanical testing 
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