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ABSTRACT

Heat transfer in living tissue has become more and more attention for researchers,
because high thermal radiation produced by intense fire, such as wild fires, chemical
fires, accidents, warfare, terrorism, etc, is often encountered in human’s daily life.
Living tissue is a heterogeneous organ consisting of cellular tissue and blood vessels,
and heat transfer in cellular tissue and blood vessel is quite different, because the blood
vessels provide channels for fast heat transfer. The metabolic heat generation, heat
conduction and blood perfusion in soft tissue, convection and perfusion of the arterial-
venous blood through the capillary, and interaction with the environment should be also
considered in heat transfer in living tissue. To understand the effect of high thermal
radiation on biological tissues, specifically, thermo-mechanical damage to the tissue, a
mathematical model for skin injury induced by radiation heating has been developed by
W. Dai et al. in 2008 [19], where the skin was considered to be a 3D triple-layered
structure with an embedded three-level dendritic countercurrent vascular network.

Since there are up to seven layers of blood vessels in the skin tissues [25], the
motivation of this dissertation research is to extend the mathematical model developed
by W. Dai et al. in 2008 [19] to the case that considers a seven-level dendritic
countercurrent vascular network, where the dimensions and blood flow of the blood
vessels are determined based on the constructal theory of multi-scale tree-shaped heat

exchangers. As such, the number of the blood vessels is increased from eight to one

ii
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hundred and twenty eight. This makes the computation much more complicated. To this
end, blood flow oriented coordinates system was first designed, so that a simple energy
equation in blood vessels can be obtained and solved using the fourth-order Runge-Kutta
method. Coupled with the mathematical model and numerical schemes developed in W.
Dai’s paper [19], the temperature distribution in a living skin tissue embedded with a
seven layered dendritic countercurrent vascular network is able to be predicted, and
hence the skin burn injury induced by radiation heating can also be predicted.
Furthermore, the numerical scheme is proved to be unconditional stable and the
Preconditioned Richardson iteration developed for the computation is convergent.
Unconditional stable scheme (no restriction on mesh ratio) is particularly important in
this research since the thickness of the first layer of the skin structure is small and hence
the grid size in the thickness direction can be very small. The developed Precondition
Richardson iteration allows us to transform a complicated solution system to a
tridiagonal linear system, so that the conventional Thomas Algorithm can be easily used,
and hence the computation cost can be reduced.

Numerical results show that there is no difference between the current study and
the previous study regarding the area of the high degree burn injury. However, the areas
of the first and second degree burn injury are different from those obtained in W. Dai’s
paper [19], because of the more complex countercurrent vascular network that is used in
the present model. The obtained model and numerical method in this dissertation could
be used in future studies: e.g., by considering a larger area of skin structure with
complicated dendritic countercurrent multi-level blood vessels, as well as modeling such

well documented effects of thermal damage as skin wrinkles and tissue shrinkage.
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CHAPTER ONE

INTRODUCTION

1.1 General Overview

Heat transfer in living tissue has become more and more attention for researchers,
because high thermal radiation produced by intense fire, such as wild fires, chemical
fires, accidents, warfare, terrorism, etc, is often encountered in human’s daily life.
Living tissue is a heterogeneous organ consisting of cellular tissue and blood vessels,
and heat transfer cellular tissue and blood vessel is quite different, because the blood
vessels provide channels for fast heat transfer. The metabolic heat generation, heat
conduction and blood perfusion in soft tissue, convection and perfusion of the arterial-
venous blood through the capillary, and interaction with the environment should be also
considered in heat transfer in living tissue.

Recently, a mathematical model for skin injury induced by radiation heating has
been developed by W. Dai et al. [19]. The model was obtained by modifying the Pennes
equation [41] and by taking into account the thermal relaxation time of biological tissue,
where the skin was considered to be a 3D triple-layered structure with embedded three-
level dendritic countercurrent vascular network. The Fourier’s Law and the governing

equation of heat transfer in biological tissue are stated as follows:

4 =—kVI, (1.1



Pl = —kV - G+ WyCy(T, — T) + Q, (1.2)
where §, T and k denote the thermal flux vector, tissue temperature and thermal
conductivity, respectively, W, is the blood perfusion rate; C, is the specific heat of
blood; T}, is the blood temperature; and Q is the volumetric heat.

After replacing ¢ in Eq. (1.2) with Eq. (1.1), the Pennes equation [41] is
obtained and now is widely known as the conventional bio-heat transfer equation,

pC = kAT + WyCy(Tp — T) + Q. (1.3)

As pointed out by Dai and his colleagues in their paper [19], as early as in1990s,
scientists discovered that living tissue along with a number of other common materials,
exhibited a relatively long thermal relaxation (or lag) time (denoted by 7). Quantitatively,
once a temperature gradient has been imposed across a material volume element, 7,
which could range up to 100 s, represents the time required to establish steady thermal
conduction in the domain considered. The implication of such large values of 7 is that
Fourier’s law is generally not used to describe the heat conduction in organic media, the

classic expression for the thermal flux vector g, instead the Maxwell-Cattaneo flux law,
(I+e)d =~k VT, (1.4)

is widely used [8]. By substituting ¢ into Eq. (1.2), it obtains the modified Pennes

equation as the governing equation of heat transfer in living tissue,

2
pC (32 +120) + TW, Gy 3 = KAT + Wy Cy (T, — T) + Q, (1.5)
which is a hyperbolic type partial differential equation. Thus, Eq. (1.4) —(1.5) predict
that heat conduction in such media occurs in a wave-like manner, a phenomena now is

known as “second sound” [11], and not by diffusion.



In Dai et al’s paper [19], the skin was considered to be a 3D triple-layered
structure embedded with three level dendrical countercurrent vascular network, where
the dimensions and blood flow rates of the multi-level blood vessels were determined
based on the recently developed constructal theory of multi-scale tree-shaped heat

exchangers [2], [3], [43], [4].

1.2 Research Objectives

Since there are up to seven levels of blood vessels in the skin tissue pointed out
by R. B. Roemer and his colleagues in 1996 [42], the objective of this dissertation is to
extend the mathematical and its numerical scheme developed by Dai and his colleagues
in 2008 [19] to a more complex architecture consisting of a hierarchical seven-level
countercurrent vascular network embedded in a 3D triple-layered skin tissue. The seven-
level countercurrent vascular network proposed in this dissertation is different from the
one considered in R. B. Roemer’s paper [42], because the dimensions and blood flow
rates of the multi-level blood vessels are determined (predicted) based on the constructal
theory of multi-scale tree-shaped heat exchangers [2], [3], [43], [4].

To achieve this objective, the following steps will be followed:

Step 1. Consider a 3D triple-layered skin tissue structure in Cartesian coordinates
domain, and design the diameters and lengths of the seven level of
countercurrent blood vessels, arteries and veins, which is based on the
constructal theory of multi-scale tree-shaped heat exchangers.

Step 2. Set up the governing equations, including Maxwell-Cattaneo flux law which
takes into account the thermal relaxation time of biological tissue, the modified

Pennes equation for skin tissue coupled with the fourth power law for radiation



heating and the energy equation for blood flow which obtains the temperature
distribution in the 3D triple-layered skin structure, and the equation for
predicting thermal damage of the skin exposed to high thermal radiation on the
triple-layered skin structure embedded with seven layers of countercurrent of
blood vessels.

Step 3. Develop a numerical method for solving the established mathematical model. To
this end, the finite difference method will be used for solving the modified
Pennes equation and the fourth-order Runge-Kutta method will be employed for
obtaining the blood temperature. The numerical scheme will be then solved by a
preconditioned Richardson iteration in order to accelerate the convergence of
the solution, and hence to reduce the computational cost. Based on the obtained
temperature distribution, the skin burn injury will be calculated. Furthermore,
the finite difference scheme will be proved to be unconditionally stable, and the
Preconditioned Richardson iteration will be shown to be convergent.

Step 4. Test the established mathematical model and the obtained numerical method by
considering a 3D triple-layered skin tissue with size of 1.62 cm by 1.62 cm by
1.542 cm, and a seven-level of countercurrent blood vessel network. Various

meshes will be employed to this study.



1.3 Organization

Chapter One gives a general description of the research objectives in this
dissertation.

Chapter Two introduces the main literature regarding the heat transfer in living
tissues, particular models that represent the skin tissue, constructal theory of multi-scale
tree-shape heat exchangers and previous work on heat transfer in 3D triple-layered skin
structure embedded with three levels of blood vessels.

Chapter Three sets up the bio-heat transfer model of the 3D ftriple-layered skin
structure embedded with seven-levels of countercurrent blood vessels, arteries and veins.
which is based on the constructal theory.

Chapter Four gives the numerical method used in this research for solving the
governing equations set up in Chapter Three.

Chapter Five tests the mathematical model and its numerical method in a 3D
triple-layered skin tissue embedded with a seven-level of countercurrent network. Based
on the obtained temperature distribution, skin burn injury will be calculated.

Finally, Chapter Six summarizes this dissertation research and suggests some

possible future works to further the research.



CHAPTER TWO

LITERATURE REVIEW AND PREVIOUS WORK

Chapter Two will review the main literature related to the bio-heat transfer,
including vascular countercurrent net work, constructal theory of multi-scale tree-shaped
heat exchangers, and the previous work on the bio-heat transfer in skin tissue.

2.1 Hierarchical Branching Network and Constructal Theory
of Multi-scale Tree-shape Heat Exchangers

It shall point out that this section cites some results from previous literatures
[42], [34], [35]. [3], [43]. Heat transfer in living tissue is a complex process, which
involves a great number of hierarchy levels from bio-macromolecules up to total
organisms functioning as a whole. A microscopic view of living tissue considers the
living tissue as consisting of two subsystems: the cellular tissue and a highly branching
hierarchical vascular network involving arterial and venous beds. Blood flow through
arteries supplies the cellular tissue with oxygen, nutrition products, etc. and controls heat
balance in the system. The venous bed blood flow withdraws products resulting from life
activity of the cellular tissue. The vascular network is embedded into cellular tissue. In
spite of its small relative volume, the vascular network mainly determines heat and mass
propagation. This is the case due to the fast convection transport with blood flow in

vessels.



Blood vessels make up a complex network, which is practically a fractal. The
larger a vessel, the faster the blood motion in it and, so, the stronger the effect of blood
flow in the given vessel on heat transfer. Blood flow in capillaries practically does not
affect heat propagation whereas blood inside large vessels moves so fast that its heat
interaction with the surrounding cellular tissue is negligible.

As is known, several geometric models have been developed to simulate the
vascular countercurrent network [42], [35]. In particular, H.W. Huang and R.B. Roemer
[42] proposed a vascular countercurrent network as shown in Figure 2.1, which was

plotted based on the figure in R.B.Roemer’s paper as shown in Figure 2.2.
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Figure 2.1 A proposed geometric model used consists of a regular, branching
seven level of blood vessels of network of arteries (black) and veins (gray) that is
embedded in a cubic control volume.



Figure 2.2 A figure showing the location of a subset of the vessels in the
whole control volume. All of the level one, two, three and four vessels
are shown, but only two sets of the connected level five-six-seven
vessels are shown. A total of 64 such sets are used in the model, and
they are regularly and uniformly spaced in the control volume [42].

In Figure 2.2, all vessels are designed to lie along the coordinates. There are up
to seven levels of arteries and veins, beginning with the main artery and vein (level one),
the biggest ones, where the diameter of the arteries (the same as veins) are decreased by

a constant ratio y between successive levels of branched vessels,

y =2t @2.1)

Here D;,, and D; are the diameters of two successive levels of branching arteries. When

two successive levels of numbered vessels do not branch but only change direction (i.e.,

levels six and seven in this model), the vessel diameter does not change, as shown in
Figure 2.2.

It can be seen from Figure 2.2 that the artery network consists of the large central

vessel (level one) running lengthwise (x) along the control volume. This vessel has two

pairs of symmetric, vertical (z) vessels (level two) branching from it, one pair just inside

the beginning of the cube (x=0) and one pair at the central plane (x=L/2). The mass flow



rate in the main arterial vessel decreases in a stepwise manner at both of those locations
due to the blood removed by the second level vessels. In all cases studied in this paper,
the level one artery is assumed to terminate at the central plane where the second set of
level two vessels branch off of it. Each of the second level vessels branches into two
level three vessels, which run crosswise (y). Each level three vessel feeds into a level
four vessel which runs lengthwise (x), with each level four vessel extending (almost)
one-half of the control volume length. Each of these level four vessels has four pairs of
vertical (z) level five vessels periodically branching off of it, including the pairs at the
corners where vessel levels three and four meet. Each level five vessel branches into two
level six vessels which run crosswise (y). Each level six vessel then changes direction
and becomes a level seven vessel which runs lengthwise (x). All vessels parallel to the x
direction (i.e. the level one, four, and seven vessels) have been symmetrically located
within the y, z planes, i.e. the level one artery is in the y, z center of the control volume,
the level four vessels are located at centers of the four y, z quadrants of the control
volume, and the level seven vessels are located at centers of the 16 squares that regularly
divide up any y, z plane of the control volume. Similarly, the vessels parallel to the y,
and z directions are uniformly spaced in the x direction.

In 2002, A. Lubashevsky and V. V. Gafiychuk [35] considered the living tissue
to be a heterogeneous medium. They think that blood flow in capillaries practically does
not affect heat propagation, whereas blood inside large vessels moves so fast that its heat
interaction with the surrounding cellular tissue is negligible. They believe that there
should be vessels of a certain length €, that are the smallest ones among the vessels

wherein blood flow affects heat transfer remarkably.
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The value of €, can be estimated as:

’ D
‘gv ~ jan 3 (22)

where D = k/(cp) is the temperature diffusivity of the cellular tissue determined by its

thermal conductivity k, specific heat ¢, and density p, the value j is the blood perfusion
rate (the volume of blood going through tissue region of unit volume per unit time), and
the factor L,, ~ In(l/a) is a logarithm of the mean ratio of the individual length to
radius of blood vessels forming peripheral circulation. For the vascular networks, made
up of the paired artery and vein trees where all the vessels are grouped into the pairs of
the closely-spaced arteries and veins with opposite blood currents, the coefficient f ~
L;l/ 2 accounts for the counter-current effect.

In the mean-field approximation the effect of blood flow on heat transfer is

reduced to the renormalization of the temperature diffusivity, D — D, and the

appearance of the effective heat sink £ in the bio-heat equation:

o = V(DegVT) = fi(T = To) + qr - 2.3)

Here T is the tissue temperature field averaged over scales about £,,, the parameter T, is
the blood temperature inside the systemic circulation arteries, and the summand ¢
called below the temperature generation rate is specified by the heat generation rate g as
qr = q/(cp). The renormalization of the temperature diffusivity is mainly determined by
the blood vessels of lengths about £, and, due to the fractal structure of vascular
networks, the renormalization coefficient F' = D, /D is practically a constant of unity
order, F 21. In their research, they proposed two types of blood vessel networks as

shown in Figure 2.3 obtained from A. Lubashevsky’s book published in 2002 [35].
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Figure 2.3 Models of the peripheral artery network embedding into the

cellular tissue, (a) four-fold node model and (b) a more realistic dichotomic

artery tree uniformly embedded into a cellular tissue domain. In the qualitative

description of heat transfer both the models lead to the same result [35].

Figure 2.3a shows a simplified model for the vascular network, where the vessel
lengths [, and [, , of the neighboring hierarchy levels n and n+1 are related as I, =
2l,41. Figure 2.3b demonstrates a more adequate model for the peripheral artery tree
which, within the framework of the present qualitative analysis, may be reduced to the
former one by combining three sequent two-fold nodes into one effective four-fold node
at all the levels. In this case, the cubic domain of volume I3 falls per each artery of level
n.

Recently, A. Bejan has proposed a new geometric model, which is called “The
Constructal Theory of Multi-scale Tree-shape Heat Exchangers” [3], [43]. In the

constructal theory, they pointed out that the lengths of blood vessels follow an optical

relationship as

Lp=2Lpny, m=1,.,n 2.4)
While the number of blood vessels, Ny, , in each level is given by

N,=2™1 m=1,..,n (2.5)

Furthermore, the ratio of the flow rates, m;, satisfies
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m=2"'r,, i=1,..,n (2.6)

The ratio of diameters of the blood vessels satisfies:

Diyy 1 .
—D—‘;1~2 3, i=1,2,..,n .7

2.2 Bio-heat Transfer Review

This review section is based on X. Tang’s dissertation [46]. From her dissertation,
it is known that the most utilized model for hyperthermia treatment planning involves
the Pennes bio-heat transfer model (BHTE), in which the heat transfer between the blood
vessels and tissue is assumed to occur mainly across the capillaries when the blood
velocity is low [41]. The blood in the capillary bed instantly thermally equilibrates with
the temperature of the surrounding tissue and enters the venous circulation at the local
tissue temperature. Therefore, the contribution of the blood flow was modeled as a heat
sink whose magnitude is proportional to the difference between the arterial supply
temperature and the local tissue temperature.

As Tang pointed out, there are many numerical and experimental methods
developed based on the Pennes bio-heat transfer model. Among them, Clegg and
Roemer [10] performed hyperthermia sessions on a normal canine thigh to test the
ability of a state and parameter estimation method to accurately predict the complete
three-dimensional temperature distribution in experimental situations. They employed
the Pennes equation as the system model and an optimization algorithm, which is based
on a least squares error objective function, used for predicting certain unknown model
parameters, such as the blood perfusion and the power deposition. Martin and Bowman
[37] presented the exact steady state and transient solutions for the temperature

distribution in laser irradiated and perfused tissue using the Pennes equation in
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cylindrical coordinates. The obtained solutions were used to evaluate the significance of
blood perfusion during continuous wave laser heating. Liauh and Roemer [27] presented
a semilinear state and parameter estimation algorithm that decreases the total
computational time required to accurately reconstruct complete hyperthermia
temperature fields, since the relationship between the temperature and the blood
perfusion based on the Pennes bio-heat transfer equation is generally nonlinear in the
hyperthermia temperature estimation problem.

Using the automatic mesh generation capabilities of the software package
ANSYS, Chatterjee and Adams [9] generated a 2D finite element thermal model of the
prostate region of the human body based on the Pennes equation. The results show how
selective heating can be obtained in the tumor region and what the effects of varying
blood flow rates are.

Huang [24] considered the heat transfer within a perfused tissue in the presence
of a vessel.The Pennes bio-heat transfer equation was used for the perfused tissue, and a
lumped capacitance analysis was used for the convection in the vessel with a constant
Nusselt number. Analytical solutions of the Pennes equation with a blood vessel were
obtained. Payne [40] derived a design of the phantom from a combination of the
convective fin equation and the Pennes BHTE, and developed a phantom model using an
inverse technique applied to experimental data from a thin layer phantom to determine
model parameters. Majchrzak and Mochnacki [36] considered the thermal processes
proceeding within a perfused tissue in the presence of a vessel. The Pennes bio-heat
transfer equation governs the steady state temperature field in the tissue sub-domain,

while the ordinary differential equation resulting from the energy balance describes the
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change of blood temperature along the vessel. The problem was solved using the
combined numerical algorithm, in particular the boundary element method (for the tissue
sub-domain) and the finite difference method (for the blood vessel sub-domain).

Liu and his co-workers [28], [29], [30] introduced a general form of the thermal
wave model of Pennes bio-heat transfer in living tissues. The model was obtained based
on a modified unsteady conduction equation (the CV equation). A general heat flux
criterion was established to determine when the thermal wave propagation dominates the
principal heat transfer process. This model can be used for tissue temperature prediction.
Liu and Lu [31], [33] also used the dual reciprocity boundary element method to solve
the integral inverse or direct bio-heat transfer problems.

Zhou and Liu [51] calculated temperature distributions based on the continuity,
momentum and energy equations used in the fluid dynamics. Dai [15], [16] developed a
domain decomposition method for solving the 3D Pennes bio-heat transfer equation in a
triple-layered skin structure. Recently, Dai and Zhang [17] developed a numerical
method for obtaining an optimal temperature distribution in a triple-layered cylindrical
skin structure. It is the first time that the triple-layered skin structure, composed of
epidermis, dermis and subcutaneous, was considered in the numerical model for the
laser-induced hyperthermia. The method proved to be useful in optimizing laser power
for a given laser irradiation pattern. However, the influence of blood vessels in the study
was ignored. The presence of thermally significant vessels can have a dramatic impact

on the temperature distribution in hyperthermia applications [26].
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2.3 Previous Work on Skin Burn Injury by Radiation Heating

W. Dai and his colleagues in 2008 developed a mathematical model for skin burn
injury in a triple-layered skin structure embedded with three-levels of countercurrent
blood vessels with radiation heating [19]. The 3D triple-layered skin structure is shown
in Figure 2.4, which is copied from Figure 2 in W. Dai’s paper [19] with the author’s

permission.

Radiation Heating

Figure 2.4 A three-dimensional triple-layered skin structure
embedded with countercurrent vasculature [19].
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In their model, the dimensions and blood flow rates of the multi-level blood
vessels were determined based on A. Bejan’s constructal theory of multi-scale tree-
shaped heat exchangers [2], [3], [43], [4].

Figure 2.4, shows the basic arterial model consisting of the large central vessel
(level 1) running lengthwise (in the z-direction) along the control volume. This vessel
has a horizontal (in the x-direction) vessel (level 2) branching from it. The second vessel
goes to third vessel (level 3) which runs again lengthwise (in the z-direction). The
second vessel does not branch into two third vessels, and the diameters of these are also
the same as suggested in [25]. In their vascular countercurrent network, these vessels are
modeled as slim cuboids for simplicity.

To reduce the computational cost, they considered the target region to be a
rectangular structure embedded with two countercurrent multi-level blood vessels that
cross through the subcutaneous layer from the bottom to the top.

In their model, the Maxwell-Cattaneo flux law [8] was used to replace the

Fourier’s law, namely

(1 +¢%) § = —kVT,

(2.8)
where ¢ is the thermal flux vector, £ and T denote the thermal conductivity and tissue
temperature, respectively. The 7 represents the time required to establish steady thermal
conduction in a material volume element once a temperature gradient has been imposed
across it, which could range up to 100 s (see [1]). Together with the Eq. (1.2), a modified
(i.e., hyperbolic) form of the Pennes equation is obtained as the partial differential

equation, which governs bio-heat transport.
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where T; is the temperature of the /th tissue layer; T, is the blood temperature at exit or
entrance of the third level vessel for the artery or vein; p;, C;,, and k; denote the density,
specific heat, and thermal conductivity of the /th tissue layer, respectively; 7 is the
thermal relaxation time; C}, is the specific heat of blood; and W} is the blood perfusion
rate. From Eq. (2.9), one may see that when 7 is zero, Eq. (2.9) reduces to the Pennes
equation [41], Eq. (1.3).

To test their model, they considered a 3D composite skin structure with the
dimensions of 1 cm X 1 cm X 1.208 cm, where the values of the physical parameters
used are given in Table 1. In their computation, they considered a heat transfer by
convection from the skin’s surface with the convection coefficient h = 0.001 W/cm?,
where the surface is exposed to an ambient temperature of 200 °C as the radiation
heating. In addition, the thermal relaxation time and emissivity were taken to be =20 s
[29] and € = 0.9 [20], respectively. Three meshes of 50 x 50 x 1208, 50 x 100 x 1208,
and 100 x 100 x 1208 were chosen in order to test the convergence of the solution.
Other thermal parameters used in the computation are listed in Tables 2 and 3. Because
the results from this dissertation will be compared with their results, particularly their
numerical results and Figure 2.4-2.13 from W. Dai’s article in [19] are copied with the
author’s permission.

Figure 2.5 shows the temperature profiles at t = 200 s along the lines (a) y = 0.5

cm and (b) x = 0.5 cm on the skin surface, and (c) along the depth (the z-direction) at the
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center of the skin surface, respectively, as well as (d) the temperature profiles over time
at the point, where x = 0.5 cm, y = 0.5 cm, and z = 0.1 cm. It can be seen from this figure
that there are no significant differences in the solutions obtained based on these three
meshes, implying the solution is independent of the mesh size.

Figure 2.6 shows the contours of the temperature distributionsin these xz -cross-
sections at y = 0.40 cm, where theartery is located, at various times (a) t= 100 s, (b) t =
200 s, (c) t =300 s, and (d) t = 400 s. Figure 2.7 shows the contours of the temperature
distributions in the xz-crosssection at y = 0.5 cm at various times (a) t = 100 s, (b) t =
200 s, (c) t = 300 s, and (d) t = 400 s. Figure 2.8 shows the contours of the temperature
distributions at y = 0.56 cm, where the vein is located, at various times (a) t =100 s, (b) t
=200 s, (c) t=300 s, and (d) t = 400 s. Figure 2.9 shows the contours of the temperature
distributions at the yz-cross-section at x = 0.5 cm, at various times (a) t = 100 s, (b) t =
200 s, (¢) t = 300 s, and (d) t = 400 s. It can be seen from these figures that the
temperature profiles are symmetric in the xz-cross-section at y = 0.5 cm, and the
temperature elevations around the region where the vein is located are higher than those
around the region where the artery is located. This implies that the vein is carrying the
heat out, away from the heated area, and into the body core.

Figures 2.10-2.13 show the contours of the damage corresponding to Figures
2.5-2.9 showing the temperature distributions. Since values of x = 0.53, 1.0, 104
correspond to the first, second, and third degree burn injuries, respectively [20], one may
see from these figures that the skin appears to be second degree burns at t =200 s, and

the third degree burn at t = 300 s and t =400 s.
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Figure 2.5 Profiles of temperature at t = 200 s along lines: (a) at y = 0.5 cm, (b) at x =
0.5 cm, on the skin surface, and (c) along the depth (the z-direction) at the center of the
skin surface, as well as (d) at the point with x = 0.5 cm, y = 0.5 cm, and z = 0.1 cm over
time [19].
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Although W. Dai and his colleagues have developed a very promising
mathematical model for skin burn injury induced by radiation heating, the considered
vascular countercurrent network is only three-level of vessels. As pointed out by R.B.
Roemer and his colleagues in 1996, the vascular countercurrent network could be up to
seven-levels of vessels. This will increase the complex of the model and its
computational cost. Thus, the purpose of this dissertation is to extend their research to
the case that considers a 3D triple-layer skin structure embedded with a seven-level
countercurrent vascular network and induced by radiation heating, and to develop a
model and its numerical method that may be more accurate in predicting the skin burn

injury induced by radiation heating.



CHAPTER THREE

BIO-HEAT TRANSFER MODEL

This chapter considers a 3D triple-layered skin structure consisting of epidermis,
dermis and subcutaneous layer, where a dendritic seven level countercurrent vascular
network is embedded. The governing equations for obtaining the temperature
distribution in the skin structure are then set up, which will predict the skin burn injury

induced by radiation heating.

3.1 Skin Structure and Vascular Network

This dissertation research considers a 3D triple-layered skin structure consisting
of epidermis, dermis and subcutaneous layer as shown in Figure 3.1. Here a dendritic
seven level countercurrent vascular network is embedded in the subcutaneous layer, here
the blood vessels are considered as slim cuboids for simplicity. It should be noted that
only large blood vessels can be seen in the subcutaneous tissue, because the dermis is
very sparingly supplied with capillaries, and the capillary beds of skin lie immediately
below the epidermis [23], and thus, the contribution of these small vessels to the heat

transfer can be ignored [36], [44].

21
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Figure 3.1 A 3D triple-layered skin structure embedded
with seven levels of countercurrent vasculature network.

In Figure 3.1, the dark black color vessels is used to represent the artery dendritic
network and the gray color vessels for the vein dendritic network. Levels of arteries are
designed such that the first-level artery comes from right to left, running lengthwise in
the y-coordinate along the skin structure, the second-level artery branches from the left
end of the first-level artery running lengthwise in the x-coordinate, and the third-level
artery has two vessels branching from the two ends of the second-level artery running
lengthwise in the z-coordinate. There are four fourth-level arteries branching from the
four ends of the third-level arteries running lengthwise in the y-coordinate. The fifth-
level artery has eight arteries branching from the eight ends of fourth-level arteries

running lengthwise in the x-direction. There are sixteen vessels in the sixth-level artery
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running length wise in z-direction, and, finally, there are 32 vessels in the seventh-level
artery running length wise in the x-direction.

The venous network is assumed to be similar to the arterial network, except that
the blood flow direction in each vein is opposite of that in the artery; i.e., counter current
flow occurs in these two kinds of vessels (see Figure 3.1). Symmetrically, the vein
network has the same number of blood vessels as its counterpart artery in corresponding
levels. As such, there are 128 blood vessels in total in the considered skin structure.

It should be pointed out that the above geometric structure of the dendric seven-
level countercurrent vascular network is designed based on the suggestions by . A.
Lubashevsky [35] and R.B. Roemer [42]. However, the dimension and blood flow rates
of the multi-level vessels, which will be determined based on the constructal theory of
multi-scale tree-shaped heat exchangers [2], [3], [43], 4], are different from those used in
[42].

Based on the constractal theory, the diameters of arteries satisfy an optimal rule
and are assumed to be decreasing by a constant ratio y between successive levels of

branched vessels:

1

m+1 m+1
NLp —_— NWp =2 3, m=1,2,...,6, (31)

NLE Nt

'y:

where NLT! and NW};" are the length and width of the cross section of a blood vessel in
level m, respectively, while the length of blood vessel is assumed to be double after two

consecutive construction steps, which can be expressed as

1
m= 2L, m=12,..,6, (3.2)
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where LT is the length of the blood vessel in level m. Furthermore, the mass flow of
blood in the mth level vessel, M,,= v, F,, is assumed to satisfy
M, = 2M, 41 m=1,2,...,6, 3.3)
where vy, is the blood flow velocity and F,, (= NL'xNW,") is the area of the cross-
section in the mth level vessel.
Likewise, the diameter ratio, length ratio, and mass flow ratio between the
successive levels of the branched blood as described in equations (3.1)-(3.3) can be used

for veins.

3.2 Governing Equations

To obtain accurately the temperature distribution in the Figure 3.1 skin tissue
structure, the thermal relaxation time of biological tissue in the skin tissue during the
radiation heating will first be considered. As such, the Maxwell-Cattaneo flux law [8] is

employed

(1 + 79-) § = —kVT,

at (3.4

where § represents the thermal flux vector, T is the tissue temperature and & denote the
thermal conductivity of the tissue, 7 is the thermal relaxation (or lag) time [Mitra 1995],
which represents the time required to establish steady thermal conduction in the
considering domain when a temperature gradient is imposed across a material volume
element. Coupling Eq. (3.4) with the governing equation of heat transfer in biological

tissue, Eq. (1.2),
pCE = —kV - § + WyCy(T, —T) +Q,

and to eliminate the flux vector g, then a modified Pennes equation is obtained as follow
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az
pC (S +T22) + TW,Cp 38 = KAT + W, (T, — T) + Q, (3.5)

where T}, is the blood temperature; p and C denote the density, specific heat of the tissue,
respectively; @ is the volumetric heat; C, is the specific heat of blood; and W, is the
blood perfusion rate. The above modified Pennes equation (3.5) is then applied to the 3D
triple-layered skin structure shown in Figure 3.1 and can be written as follows [19], [29],

[30], [45):
67‘, 0 Tz aTI
”’C’(az a2)+ W
T, dr, T
= kl[ L4 ﬁyz, + I] 'Cé(Touz -TH+0Q,

1=1,2,3, (3.6)

where T is the temperature of the /th skin tissue layer; T,,,, is the blood temperature at
exit or entrance of the seventh level vessel for the artery or vein; p,C; and k;denote the
density, specific heat, and thermal conductivity of the /th skin tissue layer, respectively;
1 is the thermal relaxation time; C} is the specific heat of blood; and W} is the blood
perfusion rate. Because in this model only radiation heating is considered, all other
internal heat sources Q, are assumed negligible.

The blood temperature in the cross-section of a vessel is assumed to be uniform.
Thus, the steady-state energy balance in the blood vessel can be reached because the
length of the considered blood vessel is relatively short, and the blood velocity is
relatively high. However, one may use a transient heat transfer equation for a more
accurate solution. Hence, the convective energy balance equations, which are used to
calculate the artery (levels 1 through 6) blood temperatures, can be expressed as [18],

[19], [23], {36], [49], [50], [46].



26

CoMy 52 — Py (T} - T3) =0, (3.72)
CaM 2 — aPy(T2 —T2) = 0, (3.7b)
CoMs 2 — aPy(T3 —T3) = 0 (3.7¢)
CaM, ‘;—’f —aP(TE-TE) =0, (3.7d)
CpMs -"-’;'75 —aPs(T; —T5) =0, (3.7¢)
CaMe 22 — aPs(TS —Tf) = 0, (.79

where Cp is the heat capacity of blood, M, is the mass flow in the blood, (/ is 1 to 7)
and a is the heat transfer coefficient between blood and tissue, and B, is the vessel
perimeter. In addition, T,;* and T;" are the wall temperature and the blood temperature in
the mth level vessel. For the smallest, terminal arterial vessels (level 7), a decreased
blood flow rate (P) is included in the energy balance equation [19], [23], [36], [49], [50],
[18], [46].
CBM7%—7;”’7 — aPy(T] = T]) — PCyF,T] = 0. (3.8)
The convective energy balance equations (3.7)-(3.8) used to calculate the blood
temperature in the artery domain is applied to the vein domain at the corresponding
levels.
Assume that exchange on the surface of the skin with the surroundings includes

the heat loss from convection, and radiation [44], [48], and is expressed as follows:

D Ty +ao(ri - 1Y), 2=0, (3.9)

where 4 is the convective heat transfer coefficient, T, is the ambient temperature, o is the

Stefan-Boltzmann constant, and ¢ is the emissivity. Because radiation heating (such as
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T, =200 °C) is considered, the ambient temperature T, is much higher than T, it can be
further assumed that the heat flux approaches zero as the tissue depth increases, which is
realistic for a biological body [29]. For other boundaries, there is no heat loss is assumed,

which gives the boundary condition:
=0 (3.10)

where 71 is the unit outward normal vector on the boundary. At the entrance to the first
level vessel is
T =T, (3.11)
where T;, is the blood temperature at the entrance of the artery. At the exit of the artery,
the blood temperature is equal to the surrounding tissue temperature
T, = Toue - (3.12)
The continuity of the heat transfer between the lateral blood vessel and the

tissues can be expressed as follows [19], [24]:

Ty

L= BT — Ty, m=1,2,3,..,7. (3.13)

The interfacial conditions between skin layers are assumed to be perfectly

thermal contact and are given by [19]

T,=Ty, kSi=k22, z=1,, (3.14)
Ty =Ty kyS2=ksS2, 2= Li+1,. (3.15)

Because the blood flow in the vein is oriented against the arterial flow, the
entrance of the blood to the vein is located at the seventh level, and the blood
temperature is equal to the surrounding tissue temperature. The initial conditions of skin

temperature are assumed to be
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=T, t=0,1=1,2,3, (3.16)

where Ty, T, and T3 are the tissue temperature in skin layer one, two and three,
respectively, and Ty is the initial temperature in the tissue. The above equations, Egs.
(3.6) - (3.16), will give the temperature solution in the skin tissue domain. Once the
temperature distribution is obtained, as suggested by Henriques and Mortiz [22], a

quantitative description of thermal damage to skin, £, can be written as

2 =Cexp ("RA:‘, , 1=123, (3.17)
where (' is the frequency factor, AE is the activation energy controlling the development

of tissue injury (the quantities of { and AFE are stated in Table 3). R (= 8.314 J K™ mol ™)
is the gas constant. The temperature T; denotes the temperature at layer £. As suggested

by Diller in 1992 [20] that Q = 0.53, 1.0, 10* are corresponding to the first, second, and

third degree burn injuries, respectively.

It can be seen that finding an analytical solution of Egs. (3.6)-(3.16) is very
difficult because of the complicated system and the nonlinear equation (see Eq. (3.9)).

Thus, a numerical method for solving the above governing equations is necessary, in

order to obtain the temperature distribution in the skin tissue structure.



CHAPTER FOUR

NUMERICAL METHODS

This chapter will develop a numerical method, which including a Crank-Nicolson
type of finite difference scheme for solving the modified Pennes equation, and the fourth
order Runge-Kutta method for obtaining the temperature of the blood vessels. The
stability of the finite difference scheme will be proved based on the idea of W. Dai [12].
Then a preconditioned Richardson iteration for the numerical method is developed so
that the solution system can be reduced to a tridiagonal linear system. The

preconditioned Richardson iteration will be proved to be convergent.

4.1 Finite Difference Scheme

To develop a numerical method for obtaining the temperature distribution,
(w7 and u,, are denoted to be the numerical approximations of (T;)(idx ,jdy, kdz, nAt)
and T, where 4x,4y,4z, and At are the spatial and temporal mesh sizes, and ij,k are
integers with 0<i<N,, 0</<N,, 0<k<N{, so that Ny4x=NX, N, 4y=NY, and N7 4z=L,
I=1,2,3. In this mesh, it is assumed that (u3);’=(up")ijx When the grid point (i,/,4) is in
the mth level blood vessel.

Since Eqgs. (3.7)-(3.8) are first-order ordinary differential equations once T} is
determined, they can be solved by using the fourth-order Runge-Kutta method [7]. For

example, the Runge-Kutta scheme for equation (3.7a) can be written as:

29
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(Ty)j+1 = (Tp); +%(K1 + 2K, + 2K; + K,),

K, = apl AJ’[(Tl); (Tbl)j] s

Ky = o2 Ay [(T); - (T); - 3K

1
Ks = 728y [(T8); - (1)) - 3 Ko »

K, = Cc:;;l Ay[(Tull)j - (Tz})j - K3] s

where @, p;, Cg, M, are the heat transfer coefficient between blood and tissue, the
vessel perimeters of level one, heat capacity of blood and the mass flow of blood in level
one respectively, (Tp); is blood temperature of level one at point j, (T;;); is wall
temperature of blood of level one at point j. Other equations in Eq. (3.7) and Eq. (3.8)
are similar to apply.

Eq. (3.6) is solved by an approach developed in W. Dai’s papers [12], [14].
Introducing

WyCh

s,=(1+r )T, aTt @4.1)

Then Eq. (3.6) becomes

627'1 621‘, 32T
dx2 6

i)
PGSt =k [ ]+ WECH (Toue =T - 42)

Using the modified Euler method, Eq. (4.1) is discretized as

ST+
2

= (1 +1 szd;) (ul)?j-;;1+(ul)ﬁ'k +7 (ul)z}?_(ul)z}k

piCy 2 At (4.3)

For Eq. (4.2), the Crank-Nicolson method is employed and discretized as
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el eh) @)l + @l
prC—L e+ Wy | — (up) .,
(u )n+1+(u )n
= k(87 + 03 + 87)—L—2k | 1=1,2,3. (4.4)

Here (s;);)x is the numerical approximation of (S;)(idx, jdy, k4z, nAf) defined by Eq.
4.1), 6§u,jk = A—;; (Wis 1k — 2uyyi + U4 ji) is a second-order central difference, and

so on for the y and z directions.
It can be seen that the truncate error of Eqgs. (4.3) and (4.4) are the order of
At? + Ax? + Ay? + Az2. For the interfacial equations, Egs. (3.14) and (3.15), the first-

order forward and backward finite differences are used and discretized as

(u2);; — W2) g
Az ’

n n
(iynz — (W ypr g
1 Az

(u1):;1vf = (U2)7j0 » (4.5a)

k2

and where the grid point (i) is in the tissue,

n . n n n
(2)ynz — (M2)ypx 1 K (u3) ;1 — (U3)0
2 Az 3 Az ’

(u2)ijnz = (3o - (4.5b)

Similarly, the interfacial condition, Eq. (3.13), between the tissue and the lateral
blood vessel is discretized as follows:

n+1 n+i
(U3)iv1jr+Bi-Bx(Uz),—yjx

n+l — 4.6a
(u3 tjk 1+Bi-Ax ’ ( )
+ +
(u3)"4! = e QT (4.6b)
3 ljk - 1+Bl'Ay ’ )
(U3)ijk 1 +Bi-Az(uz) ks
W)k = ULLcRR, LA (4.6¢)

1+B,-Az ’
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where the grid point (i, j ,&) is on the lateral walls of the blood vessel in the x, y, z
directions, respectively.
To discretize the surface boundary condition, Eq. (3.9), the fourth power term is
factored into
(Tg —TH
= (T + TH(TE — T
= (g + TH)(Ta + T (T = T, (4.7a)
and then is discretize as

+1
(ul)uj_ _(ul)':ljo

k1 Az
= W)t = Tair] + €0 {TZ + [w) o)’}

X [Ta + @)ol[Ta = @] (4.7b)
for any time level n.

Once the temperature distribution is obtained, the thermal damage of skin is then
calculated by discretizing Eq. (3.17) as follows:

n
'Q 'Quk
At

Zexp| — ——a . (4.8)

R(Tz)g‘,?ﬂm?jk
2

In order to reduce the computational cost, the solution method developed by Dai

and his colleague [19] is further followed to solve for (.s*l)g-',*(1 from Eq. (4.3), then

substitute it into Eq. (4.4) to obtain an equation without the unknown (s, 37{1 :

p,Ci wict 2zt wick 2t
P (1472 1 28) a3 o+ (14 72858 — 25) ) — 2500
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+1
+wick Ui +( z),,k

( )out

= k(62 + 62 + 62)———‘)”" +

b4

1=1,2,3. (4.9)

It is noted that there are seven unknown (y, Z’,:l in Eq. (4.9), which needs to solve

iteratively. Here, a preconditioned Richardson iteration will be employed and described

as follows:

Multiplying Eq. (4.9) by %, choosing the coefficient of the each term

(ul)?ﬁcl, and double those related to x and y to give preconditioner

wick L= wiclat + thAt( 1 1 )_ kAt
Cy At

Lye=1+r —
pre 2010 PG 2piC; 2

ey (4.10)

Then applying it to the Richardson Iteration method, XU+ = X®) — o(AX®D — b) for

-

AX = b, one may obtain a preconditioned Richardson iteration method as:
(I+1)
Llpre [(ul)?;l-cl]

ON wict | 2 O
= L[] - o f(1 4 7225 4 2) [

pc

wicl 2
# (147 2% - 2) w) — 2050

- (ul)out

)
wiciat [(ul)ﬁ‘;cl] +(u)iji
+
PiC

0]
[of] +@df

(62 + 83+62) - , (4.11)

klAt

where 0 < w< 1 is the relaxation factor. It can be seen that
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(I+ 1)
Lyre[u)ii] 7 =

{1+ w,,c,,+ +w,,c,,At+2k,At( 1, 1) _ kst g }[( pYs! (1+1)

piCp At 2p1Cy piCr \AxZ = Ay2? 2piC; % ijk

which represents a tri-diagonal matrix. In fact, let

W C W C At 2k;At 1 1
R R = ( ):
At 2piC piC1 \Ax2 ~ Ay?
kAt
2piC;

Thus,
(1+1) (+1) (+1)
Lore[ (w7 Pl(uDi! — QaZ[w)i!

— (I+1) (1+1)
=Pl — QUufit, — 2wt + (u)iid ]

(+1)
= [-Qu)fiel, + (P + 2Q(w)fi! — QCu)iitt,

I+1)
= [, + bt — cdfkia] s
where a = Q, b =P+2Q, ¢ = Q. There are three unknowns in the z-direction, which gives

a tridiagonal linear system for solving (u,)7ik2,, (w)P!, and (w)fh ..

If (u3){jx=(up")ijk is denoted where the grid point (i ,j, k) is in the mth level
blood vessel, then the Thomas algorithm can be used line by line along the z-direction.

From the knowledge of numerical solutions for partial differential equations, if a
finite difference scheme is consistent (implying that the truncation error goes to zero
when the grid size tends to zero) and stable (small changing the initial data, cause only a
small changing the numerical result), then the numerical solution obtained based on the
finite difference scheme is convergent to the exact solution of the partial different

equation.
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As pointed out in the previous section, development of an unconditionally stable
finite difference scheme is particularly important for this research, since the first layer of
the skin tissue is very small. The next section shows that the finite difference scheme, Eq.
(4.3) and (4.4), is unconditionally stable. Furthermore, it will prove the preconditioned

Richardson iteration, Eq. (4.11), will be proved to be convergent.

4.2 Stability

To show the stability of the obtained finite difference scheme, Eqs. (4.3) and
(4.4), the idea in W. Dai’s paper published in 1999 is followed [12]. For simplicity, only

one-dimensional case is considered. Notations, inner products, and norms are introduced

as follows:
vl = “7*A—;“7 (4.12a)
S2ul = — (Wfyy — 2ul +ulby), (4.12b)
@",v") = Ax T uf v, (4.12¢)
lu™ll? = ™, u™), (4.12d)
IV u™ I = (Vou®, Vau™)y = AxZNL (Vo) (4.12¢)

It can be seen that for any mesh functions, u}', v}, with ug = uf, uy =uy_,, vg = v7
and vy = V-1 »
(62u?,v™) = —(V,u™, V,v™); (4.129)
The proof of Eq. (4.12f) can be seen in [12].
It can be seen that Eq. (4.3) and Eq. (4.4) in one-dimensional case can be

rewritten as:



36

n+1 n+1 n+1 n

+S Wi C +u? U; —Uj

5j =(1 b b\ J J J ]
. A+r= 5+t (4.13a)
S;'l+1 n + Wbe n+1+u (u ) _ k 62 u;l+1+u;} 4 13b
At pC 2 bJout| — pC X 2 ’ “. )

where j=1, 2, ..., N-1. Assume that {(sl)}’, (ul)}‘} and {(sz)}', (uz)}’} are two solutions
of equation (4.13a) and (4.13b) with different initial conditions, but the same boundary
conditions. Let w;* = (51)} — (s2)} and v]' = (u1)7—(u,)} . It can be obtained from

Eq. (4.13a) and (4.13b)

phti_,n WeC phtiy v- w"+1+w-
] ] b“b J J ]
T = -1+ ) > , (4.13¢c)
n+1_ n n+1 n+1
wW; Wi C +v +v
J blb 2 J
o L+ C [ > ] 6 — (4.13d)

Then multiply Eq. (4.13d) by Ax( an+1 + w;") and summing j from 1 to N.

pC [wn*1 z—uwnuz w,C
T" "At b b((vn+1 +vn) (Wn+1 +Wn))

= PN, 82 (vt + uP) (Wit + W) (4.13¢)
On the other hand, multiply Eq. (4.13¢c) by Ax(v}“'1 + /") , and sum j from 1 to N.

This gives

((Wn+1+wn)'(vn+1+vn)) _
2

”vn+1”2_”vn"2

At

(4.13f)

Wbcb [+t +07)°
+(1+7 ) >
Substituting é((w"“ + wh), (W + v™)) in Eq. (4.13f) into Eq. (4.13€) obtains

pC [w [ —wiz
k At k At

2 2
n+101° _ 141112 W.C W.C n+1+vn
WyCpt [y 1w + 7‘ b(1+7 pb ) lv . I
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A
=X 82 (W + v (Wit + W) (4.13g)
Furthermore, multiplying Eq. (4.13c) by Ax6Z(v]'** + v]*) and summing j from 1 to N
gives

(5§(vn+1+vn )'(vn+1_vn) )
T
At

+ 20+ T2 (53 + o), (v + ™)
- %29’:1 8 (it + v (Wit + wt). (4.130)

Based on Eq. (4.12¢) and Eq. (4.12f), the above equation can be simplified to

Vo™ 22 =IVaw™I2 1 WyC
- e -s(1+ Tﬁ)(llvx(v"“ +vMID)

A .
= ?" T 82+ v (W W) (4.13i)

Subtracting Eq. (4.13i) from Eq. (4.13g) gives

2 2
pC W™ P =lw™iz | WyCpt [ —Iv™I2 | WhCp WpCpy v +i+vm|
k At Tk At += A+ =70 2
R W WC .
e BT 1 2 (14 2 222) (v, + w1 = 0. (4.13)

Note that ||v"+1 + vn"2 >0, ||v,(v™! + v")||? = 0, one may drop them out from Eq.

(4.13j) and obtain

2
pC w1 I* = wni2 + WhCpt o+ —tvm2 +Tllvxv"“llf—tlvxv"u%

- v K AT A7 <0 (4.13k)

This indicates that
pClw™|IZ + W, Cprllv™ HI? + kelIV o™ I1E
< pClIw™ |12 + Wy Cptllv™II? + kelIV,v™ I
< pClw™ |2 + Wy Cptllv™ 1% + kel V™I

< eee

< pC|[WO||* + W, Cytl|[o?]|” + kellV,v0l2 (4.131)
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which indicates further that [[w™*||? | ||[v™*}||% and ||V, v"*1||? are controlled by the

initial differences ||w°||?, [v°||? and ||V, v°||? , implying that the scheme is stable. Since
A
there is no restriction on the mesh ratio, — v , in the proof, the finite difference scheme is

unconditionally stable.

4.3 Convergence of the Preconditioned
Richardson Iteration

To solve iteratively a linear system, Al = b, one may employ the Richardson
ul*D =y — Aau® —b). 1=0,1,2,3, ... (4.14)
where w is a relaxation factor. However, the iteration may not be convergent for all

cascs.

To overcome this difficulty, one often introduces a matrix L to the Richardson
iteration as

Lul*D = Lu® — u(4u® - b), (4.15)
where L is chosen so that the system (4.15) is convergent and is easily computed. Such a
L is called a preconditioner.

The preconditioned Richardson iteration, Eq. (4.11), will be shown to be

convergence. To this end, A,, A, and A, matrices and (u)™*? vector are introduced as

follows:
1 _ _ kAt 52 +1
(Ax ()™ Dijie = =5, 6:(u Dijk >
1 _ kidt oo +1
(Ay(u)™ Nijue = — 5= Sy Wi »

— szt +1
(A )™ Nijre = =5 = 62 (T »
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and write system (4.11) in vector form as:
Lyre[(u)™1]0+D

wicl N 2t WbeAt
PG At 2p,C,

= Lpre[(uD™]V — {1+

(™ 1®

+(Ax + Ay + A)[(u)™]® + £}, (4.16)

where the preconditioner is written as

wich 2t , WhClat | 2k,At
L [1 rWals bCh ! (
pre =1+ pCh +At+ 2p,C; t p,C; \Ax? A;y2

]I +A,
and

Wbe

Oije= A+T2"— A—t)( Dk = 200w

wiciat [(uz)ﬁ-k
piCy

— (wy out]

klAt(62+62 52) ik l)uk (4.16b)

Eq. (4.16a) can be further written as
[(ul)n+1](l+1) = R[(ul)n+1](l) —w L;}e —’, 4.17)

where R is an iteration matrix:

_ - whcl w ciat
R= 1oLyl [(1+c D04 2 A 14 (4, 44, + 4,)]. 4.18)
From the numerical linear algebra [7], it is known that the iteration in (4.17) converges if
the iteration matrix R has a spectral radius p(R) < 1. It can be seen that the eigenvalues

of
1 wich WbeAt
Lo |1+ T 1 22y MG 4 (4, 14y 4+ 4,)]

have the form:
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__ A+rysin?(imbx/2)+rysin® (jnby/2)+1,sin? (kmAz/2)

Aiin =
Uk A+ry+1y+155in2(kmdz/2) ’ (4.19)
wich | 2t | wiclae 2k At 2iiAt 2k;At
where A =1+ 122+ — 22— =—— 1= and 1, =—"—.
PG At 2pCp T Ax2piCy Y Ay2picy Z azZpiC

Since the numerator is smaller than the denominator in Eq. (4.19), then it obtains

0 < Ajjx < 1. If one chooses the relaxation parameter w to be 1, then from Eq. (4.17),
the spectral p(R) = 1 — @ min (ﬂi jk) <1, imply that the iteration method (4.17) is

convergent when w = 1.

4.4 The Computation

Based on the obtained numerical scheme in the previous section, one may obtain
the temperature distribution in a 3D triple-layered skin structure embedded with a seven-
level of vascular countercurrent network, which is exposed to the radiation heating, and
hence predict the skin burning. The detailed computations can be described into several
steps as follows:

Step 1. Initiate the temperature of the tissue u, the blood uj and the wall of blood up*.
Obtain the blood temperature u}',by solving Eqgs. (3.7)-(3.8) using the fourth-
order Runge Kutta method. It should be pointed out that at each program loop,
the temperature of each level of blood vessel must first be calculated, where the
coordinates of blood vessels are independent of the coordinates of consideration
of skin domain.

Step 2. Update the wall temperature of the blood vessel uj; by Eqgs. (4.6a)- (4.6¢).

Step 3. Obtain the temperature distribution « in the entire 3D skin structure except for

the area of blood vessels, by solving Egs. (4.3) and (4.11) coupled with the
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interfacial equations, Egs. (4.5a) and (4.5b), and the initial and boundary
conditions.

Step 4. Repeat steps 1 through 3 until a convergent solution, # , at time level n+1 is
obtained.

Step 5. Calculate the damage function Q by using Eq. (4.8).



The flow chart of the computation can be plotted as follows:

C START )
v

u" e (@M WO —— W WP —— @p)°.

+

) 4

Obtain (uf*)"*?! by solving Egs. (3.7)-(3.8) using the fourth-

order Runge Kutta method.

Update (u2)™*! by Egs. (4.6a)- (4.6¢).

‘

Obtain 4u™*! in the entire 3D skin structure except for the area of
blood vessels, by solving Eqs. (4.3) and (4.11) coupled with the
interfacial equations, Eqs. (4.5a) and (4.5b), and the initial and
boundary conditions.

U u™; (W) e )"
WP)" « Ui+ | If the
converged u™*? is obtained, and t

= Teotia » then go down to exit,
otherwise go lef to repeat.

Obtain 2 by using Eq. (4.8).

+

C  sor )
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In the computation, the temperature of blood vessels is first obtained, then the

wall temperature of the blood vessel uj; is updated, and the tissue temperature of the 3D

domain is calculated. In particular, the coordinates of the blood vessels is independent on

the coordinates of the tissue domain. Moreover, the direction of the coordinates of blood
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vessels are chosen to coincide with the direction of the blood flow. As such, for the first
level artery, its coordinate coincide with the opposite of the y direction of the tissue
domain. The second level branches into two vessels. One is along the x direction, the
other is opposite to the x direction. The level three artery consists four parts, with two
parts run lengthwise with the z direction, and the other two run opposite of the z
direction. There are eight parts in a level four artery, with four parts running lengthwise
with the y direction, and the other four running opposite of the y direction. Level five
has sixteen parts. There are eight parts running lengthwise with the x direction, and the
other eight run opposite of the x direction. The level six has thirty-two parts: sixteen of
them run lengthwise with the z direction, the other sixteen run opposite of the z direction.
The seven level artery has sixty-four parts, with thirty-two running lengthwise with the y
direction, and the other thirty-two run opposite of the y direction.

The coordinates of the veins are similar with corresponding level of arteries,

except that the direction is the opposite.



CHAPTER FIVE

NUMERICAL EXAMPLE

This chapter will test the applicability of the model and its numerical scheme by
considering a 3D triple-layered skin structure embedded with a seven-level dendritic
countercurrent vascular network, as shown in Figure 3.1. Results will be discussed and

compared with the previous work in W. Dai’s paper [19].

5.1 Example Description

First, a 3D skin structure is chosen to be 1.62 ¢m X1.62 cm X1.542 ¢m in
dimensions, where the thickness of layer one, two and three are 0.008 cm, 0.2 cm and
1.334 cm, respectively. The size of blood vessels at each level are listed in Table 1. Here,
a larger dimensions of the 3D skin structure than the one (1 cm X 1 cm X 1.208 cm) in
W. Dai’s paper [19] was chosen, so that the seven-level dendritic countercurrent
vascular network could be embedded completely into the 3D skin structure. In the
computation, heat convection occurring on the skin's surface was considered (where the
convection coefficient h=0.001 W/cm? [25]), and the surface is exposed to an ambient
temperature of 200 °C as the radiation heating. The thermal relaxation time and
emissivity for radiation heating were taken to be 7=20 s [29] and £=0.9 [20], respectively.
Three meshes of 162 x 162 x 771, 162 x324x771, and 162 x162x1542 were chosen in

order to test the grid independence and the convergence of the numerical solution.

44
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Other thermal parameters used in the computation are listed in Tables 2 and 3.
The criterion of convergence at each time step was chosen to be |[TeW) — T(Id)| <
1073. The computer codes were written in C++ format which can be seen in Appendix B,

and were run in a supercomputer in Louisiana Optical Network Initiative (LONI).

5.2 Results and Discussion

Figure 5.1 shows the temperature profiles at t=200 s in the case of (a) y=0.81 cm
(along the central line on the skin surface as shown on (e)), (b) x=0.81 cm on the skin
surface (along the central line as shown on (f)), and (¢) along the depth of z-direction at
the center of skin surface as shown on (g), as well as (d) the temperature profiles over
time at the point as shown on (h) (where x=0.81cm, y=0.81 cm and z=0.1 cm). The
numerical results were obtained based on three different meshes of 162 X 162 X 1542,
162 x 162 x 771, 162 x 324 x 771. It can be seen from these figures that there are no
significant differences in the solutions obtained based on these three meshes, implying
that the solution is independent on the mesh size. Because of symmetry, Figure 5.1(a)
and 5.1(b) show an uniform temperature distribution with 66 °C. Figure 5.1(d) indicates
that the temperature at the central point of skin surface is 62 °C . Compared with Figure
2.5 in Chapter Two, which were obtained by W. Dai in [19], one may see that numerical
results in Figure 5.1(a), 5.1(b) and 5.1(d) are not different from those corresponding
results in Figure 2.5. However, the curve in Figure 5.1(c) is slightly different when z =
0.5 cm. This is probably because the main artery is placed in a different location in this

case.
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Figure 5.1 Temperature profile at t = 200 s along lines (a) at y = 0.81 cm,
(b) at x = 0.81 cm on the surface of skin , and (c) along the z direction from
the top to bottom at the central point of skin surface, and (d) at the point
with x = 0.81cm, y = 0.81cm and z = 0.1 cm over time.
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Figures 5.2-5.9 show contours of the temperature distribution of the skin
structure with embedded seven-level dendritic countercurrent vascular network at t=0,
200, 300 and 400 seconds, respectively. In particular, Figure 5.2 shows the xy cross-
sections at z = 1.025 cm as shown in (e) where levels 1, 2 and 3 of the artery and levels 4,
5 and 6 of the vein appear. From Figure 5.2, one may see that at t = 0, the blood
temperature is 37 °C, which is hotter than the tissue With time increase, the skin tissue is
exposed to the radiation. The heat transfers into the tissue, and increases the tissue
temperature. At t = 400 s, the tissue is hotter than the blood. Part of level 6 blood vessels
are also heat up. Figure 5.3 shows the xy cross-sections at z = (0.725 cm as shown in (¢),
where levels 4, 5 and 6 of the artery and levels 1, 2 and 3 of the vein appear. Similar
results are obtained.

Figure 5.4 shows the xz cross-sections at y=0.54 ¢cm as shown in (e¢), where
levels 2, 3 and 4 of the artery appear. Figure 5.5 shows the xz cross-sections at y=0.92
cm as shown in (e), where level 1 of the artery and levels 2, 3 and 4 of the vein appear.
Figure 5.6 shows the yz cross-sections at x=0.39 cm as shown in (¢), where levels 3, 4
and 5 of the artery and levels 3, 4 and 5 of the vein appear. Figure 5.7 shows the yz
cross-sections at x=0.55 cm as shown in (e), where levels 2, 6 and 7 of the artery and
levels 2, 6 and 7 of the vein appear. Figure 5.8 shows the xz cross-sections at y=0.76 cm
as shown in (€), where levels 1, 5, 6 and 7 of the artery and levels 4 and 7 of the vein
appear. Figure 5.9 shows the xy cross-section at y=0.7 cm as shown in (e), where levels
1, 4 and 7 of the artery and levels 5, 6 and 7 of the vein appear. It can be seen from these
figures that the temperature distributions are symmetric if the blood vessels appear to be

symmetric in the cross-section. If the temperature of the artery is higher than the
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temperature of the surrounding tissue, then the heat will transfer from the artery to the
skin tissue. On the other hand, if the temperature of the artery is lower than the
temperature of the surrounding tissue, then the blood in the artery will cool the tissue. In
addition, the vein is carrying the heat out, away from the heated area, and into the body
core. From Figures 5.4-5.9, one may see that the top potion of tissue is exposed to the
radiation heating and is gradually heated up with time increase. At = 400 s, the hottest
temperature reaches 80 °C, which is in the bright area. This may cause skin burning. By
comparing with Figures 2.6 - 2.9, it can be seen that Figures 5.4 — 5.9 show a similar
hottest portion. Due to the complex vascular network, the temperature distribution in the

blood vessel area cannot be seen as clearly as these in Figures 2.6 -2.9.
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Figure 5.2 Contours of temperature distribution in the xy cross-section at z = 1.025 cm
as shown on (¢), when (a) t=0s, (b)t=200s, (c) t =300 s, and (d) t =400 s.
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Figures 5.10-5.13 show the contours of the skin burning distributions. Noted that
values of Q = 0.53, 1.0, 10* are corresponding to the first, second, and third degree burn
injuries, respectively [20], one may see from these figures that the skin appears to be a
second degree burn at t = 200 s. With time increase, the tissue temperature increase, and
the skin appears to be a third degree burning at t = 300 s and t =400 s from skin surface.
This indicates that if the tissue temperature reaches 74 °C as shown in Figures 5.4 — 5.9,
the skin will then appear to be a third degree burning. Comparing with Figures 2.10 —
2.13, one may see that there is no difference between these two results regarding the area
of the third degree burn injury. However, the areas of the first and second degree burn
injuries are different from those obtained in [19] because of a more complex

countercurrent vascular network in the case of this research.
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Figure 5.10 Contours of the skin burn distribution in the yz cross-section at x = 0.81 cm
as shown in (e), when (a) t =100 s, (b) t =200 s, (c) t =300 s, and (d) t = 400 s.
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Figure 5.13 Contours of the skin burn distribution in the xz cross-section at y =
0.7 cm as shown in (), where levels 1, 4 and 7 of arteries and levels 5, 6 and 7 of
veins appear, when (a) t =100 s, (b) t =200 s, (¢) t =300 s, and (d) t = 400 s.



CHAPTER SIX

CONCLUSION AND FUTURE WORK

This dissertation has developed a bio-heat transfer model for obtaining the
temperature distribution and hence predicting thermal skin burning because of radiation
heating. The skin tissue is considered to be a 3D triple-layer, consisting of epidermis,
dermis and subcutaneous layers. A dendritic countercurrent vascular network is designed
to embed into the subcutaneous layer, where the dimensions and blood flow rates are
determined based on the constructal theory of multi-scale tree-shaped heat exchangers.
The model takes into account the relatively large thermal relaxation time of biological
tissue and the effects of high thermal radiation on such tissue using the Maxwell-
Cattaneo thermal flux law in conjunction with the fourth power law. A finite difference
scheme, together with the fourth-order Runge-Kutta method, is employed to solve the
bio-heat transfer model, and hence to predict thermal damage in the skin structure. The
finite difference scheme is proved to be unconditionally stable. The solution system is
then solved by a preconditioned Richardson iteration, that is proved to be convergent.
The bio-heat transfer model and its numerical method are then tested by a size of 1.62
cm by 1.62 cm by 1.542 cm skin tissue embedded with a seven-level countercurrent
vascular network. As compared with the previous results in [19], the present results

show that there is no difference between those found earlier regarding the area of the
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third degree burn injury. However, the areas of the first and second degree burn injury
are different from those obtained in W. Dai’s paper [19], because of the more complex
countercurrent vascular network that is used in the present model.

The numerical results show that heat transfer in living tissue is a highly
heterogeneous and hierarchically organized medium. The blood vessels, arteries and
vein played important roles in the distribution of heat transfer. These results can be used
to explain live phenomena in humans. The exploratory approach developed in this
dissertation could be used in future studies, for example, by considering a larger area of
skin structure, or a tissue with tumors, as well as modeling such well documented effects
of thermal damage as skin wrinkles and tissue shrinkage.

Table 1 and Table 2 show parameters of nomenclature on Appendix A. On Table

1, L, (I=1, 2, 3.) are the thickness of skin layer /. L}} (m = 1,2, ...,7.) are the length of
the blood vessel in level m along the flowing direction of blood. NL}' and NW,™ (m =1,
2,..,7.) are the length and width of the cross-section of the mth level blood vessel. On
Table 2, C; and C} (I =1, 2, 3.) are the specific heat of tissue and blood in skin layer /. k;
(I =1, 2, 3.) are the heat conductivity of skin layer /. p; (! = 1, 2, 3.) are the density of
skin layer . W (1 =1, 2, 3.) are the blood perfusion rate in skin layer /. Table 3 shows

the parameters used in Eq. 4.8, based on Takata’s mode [20].



Table 1. Physical parameters used in computation.
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Parameters Values Parameters Values
L,(cm) 0.008 NZ (cm) 1.542
Ly(cm) 0.2 NLL,NWl(cm) |[0.2
L3(cm) 1.334 NLZ,NWZ(cm) |[0.16
Ly (cm) 1.0 NL3,NW3(cm) |0.12
L3 (cm) 0.72 NL:, NW2(cm) | 0.1
L} (cm) 0.5 NL3, NWZ(cm) |0.08
Ly (cm) 0.36 NLS,NWS(cm) |0.06
L3 (cm) 0.26 NL},NW/](cm) |0.04
LS (cm) 0.18 Ax(cm) 0.01, 0.005
L} (cm) 0.14 Ay(cm) 0.01, 0.005

NX, NY (cm) 1.62 Az(cm) 0.001, 0.002




Table 2. Thermal parameters for a 3D skin

structure [19], [29], [25], [18], [46]

65

Parameters Values Parameters Values
a (W/°C - cm?) 0.2 ® 1.0
Bi=a/k; 95.23 P(1/s) 0.5x 1073
C1J/g-°C) 3.6 p1 (g/cm?) 1.2
C;(J/g-°C) 3.4 p2 (g/cm3) 1.2
C3J/g-°C) 3.06 p3 (g/cm3) 1.0
CyU/g-°C) |00 a(W/m2K*) | 5.669x 107®
CiJ/g-°C) |42 (s) 20
C3J/g-°C) |42 To(°C) 34
Cs 4.134 T,(°C) 200
e 09 Tin(°C) 37
hW /cm -%) 0.001 v, (m/s) 0.08
ky(W/cm-°C) |0.0026 Wl(g/cm?-s) 0.0
ka(W/em-°C) | 0.0052 W2(g/cm3-s) |0.0005
k3(W/cem-°C) | 0.0021 W2(g/cm3?-s) |0.0005




Table 3. Parameters used in Eq. (4.8) based

on Takata’s mode [20]
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Temperature range Activation energy AE Scaling factor ¢
O J/K - mol) (1/s)
T< 50 4.18x 108 4.322% 10%*
> 50 6.69x 108 6.69x 10104
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NOMENCLATURE
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B et et en Biot number
o T 0 SO specific heat of tissue and blood in layer /
CB ettt ettt et ae b n s re b heat capacity of blood
B s area of cross-section in the mth level vessel
Pttt ettt sn e heat convection coefficient
B ettt heat conductivity of layer /
Lottt ettt e p s thickness of layer /
LT e, length of the blood vessel in level m along the flowing direction of blood
Mig ottt ens main flow of blood in the kth level vessel
Ny, Ny N oo numbers of grid points in the x, y, z directions, respectively
NX, NY, NZ.......un.... lengths of the skin structure in the x, y, z directions, respectively
NLG, NWE e length and width of the cross-section of the mth level vessel
P ot et s et s b s n e vessel periphery
Pttt Rt s A et a et blood flow rate
(S1){jierreensresrersrseensermenmsssisssisessiss s ss s ssssisens numerical solution of function S,
Tt Ty y Tyt e temperatures in blood, tissue, and vessel wall, respectively
Tin s Toyt ceeeveeeeeerenemnenenencncsnceienns temperatures of blood at entrance and exit, respectively
T ettt bR ambient temperature
b ettt et e b et R bR eSS SRRSO RS S AR SR s bbb b time
UJjk veerersrmssssmsssesasescassasanssassensissatsasssssanssssssnsssssssses numerical solution of temperature of tissue
U oeerenenernseemenesesinsons numerical solution of temperature of blood in the mth level vessel
Vg eeseeessesesssssssssneesenssssossenssssessenssssessssissnenssasass velocity of blood flow in the mth level vessel

Wik b et blood perfusion rate in layer /
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Xy Py Z coveeeereneesaeetsnes et ae ettt et e e st te st s e s et e b e e e ea R e e e b e bereneran Cartesian coordinates
O vttt et nenes heat transfer coefficient between blood and tissue
82,02, 87 i second-order finite difference (FD) operators
Al sre st st see et e sesnases time increment used in calculating heat transfer

Adx, Ay, Az... mesh sizes of FD scheme for bio-heat transfer model in the x ,y, z directions

Eleeurrerer et r ettt et e e bR ARttt e e eae Rt e e s eae bbb eberasanesans emissivity
(D «eeveeeereteseseeseesese e s e e e e e et e et Re s et e b e b et e Ae e At et e b e R et eResRa s eR et enseneesttetentenesanes relaxation factor
Pleceereraisismmssestsssastatisisesestssesesssasas ettt s s e s s b e et s b b e e b a e density of layer /
O ceveverereneesesesesests e te e b e s s e b s ettt R s A e At bR et A et A e a s aen e e s neaeree Stefan-Boltzmann constant
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Figure 2.6.a Contours of the temperature distributions in the xz-cross-section at y = 0.4
cm, where the artery is located, at various times: (a) t =100 s [19].
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Figure 2.6.b Contours of the temperature distributions in the xz-cross-section at y = 0.4

cm, where the artery is located, at various times: (b) t =200 s [19].
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Figure 2.6.c Contours of the temperature distributions in the xz-cross-section at y=04

cm, where the artery is located, at various times: (c) t = 300 s [19].
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Figure 2.6.d Contours of the temperature distributions in the xz-cross-section at y=0.4
cm, where the artery is located, at various times: (d) t = 400 s [19].
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Figure 2.7.a Contours of the temperature distributions in the xz-cross-section at y = 0.5

cm at various times: (a) t = 100 s [19].
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Figure 2.7.b Contours of the temperature distributions in the xz-cross-section at y = 0.5
cm at various times. (b) t = 200 s [19].
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Figure 2.7.c Contours of the temperature distributions in the xz-cross-section at y = 0.5
cm at various times: (c) t = 300 s [19].
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Figure 2.7.d Contours of the temperature distributions in the xz-cross-section at y=0.5

cm at various times: (d) t =400 s [19].
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Figure 2.8.a Contours of the temperature distributions in the xz-cross-section at y = 0.56
cm, where the vein is located, at various times: (a) t =100 s [19].
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Figure 2.8.b Contours of the temperature distributions in the xz-cross-section at y = 0.56
cm, where the vein is located, at various times: (b) t =200 s [19].
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Figure 2.8.c Contours of the temperature distributions in the xz-cross-section at y = 0.56

cm, where the vein is located, at various times: (c) t =300 s [19].
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Figure 2.8.d Contours of the temperature distributions in the xz-cross-section at y = 0.56
cm, where the vein is located, at various times: (d) t =400 s [19].
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Figure 2.9.a Contours of the temperature distributions in the yz-cross-section at x = 0.5
cm at various times: (a) t = 100 s [19].
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Figure 2.9.b Contours of the temperature distributions in the yz-cross-section at x = 0.5
cm at various times: (b) t =200 s [19].
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Figure 2.9.d Contours of the temperature distributions in the yz-cross-section at x = 0.5

cm at various times: (d) t =400 s [19].



0.0 ¢

0.2 b

Skin Burn
1 0EH4
1 OEHO0
53E-0t

03 E
0.4 F
0.5 E

0.7 F
0.8 k-

1.0 E
11 E

1_2:_""""llllllll||||||||

0 0.2 0.4 0.6 0.8 1

x (om)

(a)

Figure 2.10.a Contours of the skin burn distributions in the xz-cross-section at y = 0.4
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Figure 2.12.b Contours of the skin burn distributions in the xz-cross-section at y = 0.56

cm, where the vein is located, at various times: (b) t =200 s [19].
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Figure 2.13.b Contours of the skin burn distributions in the yz-cross-section at x = 0.5
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#include "string.h"
#include <math.h>
#include <stdio.h>
#include "memory.h"

#define SCREEN_OUT  //flag for screen output

#define SCALEX 1 //GRID POINT CHANGING SCALE
#define SCALEY 1

#define NZ1 8 /Mayer 1 skin grid points in z direction
#define NZ2 208 /Mayer 1+2 skin grid points in z direction
#define NZ3 1542 /Mlayer 1+2+3 skin grid points in z direction

/f#of grid points in x direction **MUST BE EVEN NUMBER**
#define NX 162 * SCALEX
/f#of grid points in y direction **MUST BE EVEN NUMBER**
f#define NY 162 * SCALEY

#define LX1A 100 * SCALEX

#define LY1A 20 * SCALEY

#define LZ1A 200

#define LX2A 16 * SCALEX

#define LY2A 72 * SCALEY //whole length
#define LZ2A 160

#define LX3A 12 * SCALEX //each branch
#define LY3A 12 * SCALEY //each branch
#define LZ3A 500 /Iwhole length
#define LX4A 36 * SCALEX //whole length
#define LY4A 10 * SCALEY //each branch
#define LZ4A 100 /leach branch
#define LX5A 8 * SCALEX //each branch
#define LY5A 26 * SCALEY //whole length
#define LZ5A 80 //each branch
#define LX6A 6 * SCALEX //each branch
#define LY6A 6 * SCALEY //each branch
#define LZ6A 180 //whole length
#define LX7A 14 * SCALEX //whole length
#define LY7A 4 * SCALEY //each branch
#define LZ7A 50 /leach branch

#define LX1B 62 * SCALEX

#define LY1B 20 * SCALEY

#define LZ1B 200

#define LX2B 16 * SCALEX

#define LY2B 72 * SCALEY //whole length
#define LZ2B 160

#define LX3B 12 * SCALEX //each branch
#define LY3B 12 * SCALEY //each branch
#define LZ3B 500 /fwhole length
#define LX4B 36 * SCALEX //whole length
#define LY4B 10 * SCALEY //each branch
#define LZ4B 100 //each branch
#define LX5B 8 * SCALEX  //each branch
#define LYSB 26 * SCALEY //whole length
#define LZ5B 80 /leach branch
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#define LX6B 6 * SCALEX  //each branch
#define LY6B 6 * SCALEY  //each branch
#define LZ6B 180 //whole length
#define LX7B 14 * SCALEX //whole length
#define LY7B 4 * SCALEY  //each branch
#define LZ7B 50 /leach branch

double deltaT = 0.1f;

double deltaX = 0.01f/ SCALEX, deltaY = 0.01f/ SCALEY;
double deltaZ = 0.001f; /ltissue and blood use same grid size
/{double L1, L2, L3; //depth of three skin layers

//double Lb1{2],Lb2[2],Lb3[2],Lb4[2],Lb5[2],Lb6[2],Lb7[2];
//Length of blood vessel

double P1[2],P2[2],P3[2],P4[2],P5[2],P6[2],P7]2];
/Ivessel perimeters of level 1 to 7.

double F1[2],F2[2],F3[2],F4[2]),F5[2],F6[2],F7[2];
//area of the cross-section of blood vessel level 1 to 7.
double M1[2],M2[2],M3[2],M4[2],M5[2],M6[2],M7[2];
//the mass flow of blood in level 1 to 7.

double CB = 4.134f; //heat capacity of blood
//double CB = 0.004134;

double Cbl = 0.0f, Cb2 = 4.2f, Cb3 = 4.2f;

//specific heat of blood in skin later 1 to 3

double v1 = 8.0f; /Iv2, V3. velocity of blood flow in level 1 ??

//double v1 = 80;//v2, v3. velocity of blood flow in level 1 2?

double alpha = 0.2f; //heat transfer coefficient between blood and tissue
//double alpha = 0.002; //heat transfer coefficient between blood and tissue
double Pdot = 0.5e-3f; //decreased blood flow rate (for level 7 only)

double pl = 1.2f, p2 = 1.2f, p3 = 1.0f; //density of tissue of layer 1,2,&3
double C1 = 3.6f, C2 = 3.4f, C3 = 3.06f; //specific heat of tissue

double k1 = 0.0026f, k2 = 0.0052f, k3 = 0.0021f; //thermal conductivity of tissue
//double k1 = 0.0026,k2 = 0.0026, k3 = 0.0052; /fthermal conductivity of tissue

double Wbl = 0.0f, Wb2 = 0.0005f, Wb3 = 0.0005f; //blood perfusion rate
//double Wb1 = 0.0, Wb2 = 0.000, Wb3 = 0.000; //blood perfusion rate

double Hf = 0.001;

//convective heat transfer coefficient between the environment and the skin
double Tf=200.0; //-17C; //environment temperature

double tau = 20.0; /I delay of time

//double sigma = 5.669¢-12;//Stefan - Boltzmann constant, unit: W/cm”2K"4
double sigma = 5.669¢-12; //Stefan - Boltzmann constant

double epsilon = 0.9; //Reflectivity

double energy;

double frequency;

double gas = 8.314472; /fUnit: J/K mol

int centerX = NX/2;
int centerY = NY/2; //center of the layer power

const double pai = 3.14159265358979f;

const double omega = 1.0f;

double Bi = alpha/k3; //BIOT number
//[double Bi=2; //BIOT number

Double factor1[2],factor2[2],factor3[2],factor4[2];



Double factor5[2],factor6[2],factor7[2]; //used for Runge-Kutta method

double THETAO = 0.0f; /lelavated blood temperature at entrance

double (*Tt)[NY+1][NZ3+1]; /ltissue temperature at time level n

double (*Tt n1)[NY+1][NZ3+1]; //tissue temperature at time level n+1 (loop I+1)
double (*Tt n1_D[NY+1][NZ3+1]; //tissue temperature at time level n+1 (loop I)
//double (*Tt_n_1)[NY+1][NZ3+1]; //tissue temperature at time level n-1

double (*Ut)[NY+1][NZ3+1];

double (¥*Ut n1)[NY+1]{NZ3+1];

double (*Damage t)[NY+1][NZ3+1];
double (*Damage nl)[NY+1][NZ3+1];

/*double **Tb1;
double **Tb2;
double **Tb3;
double **Tb4;
double **Tb5;
double **Tb6;
double **Tb7;

double *Tbd1[2][4];
double *Tbd2[2][4];
double *Tbd3[2]{4];
double *Tbd4{2][4];
double *Tbd5[2][4];
double *Tbd6[2]{4];

/ffirst level blood boarder temperature
//second level blood boarder temperature
/fthird level blood boarder temperature
//fourth level blood boarder temperature
/ffifth level blood boarder temperature
//sixth level blood boarder temperature
//seventh level blood boarder temperature*/

//blood board temperature at time level 1
//blood board temperature at time level 2
//blood board temperature at time level 3
//blood board temperature at time level 4

//blood board temperature at time level S

//blood board temperature at time level 6

double *Tbd7{2][4]; //blood board temperature at time level 7
double **Tb1 _nl;
double **Tb2_nl;
double **Tb3_nl;
double **Tb4 nl;
double **Tb5_nl;
double **Tb6_nl;
double **Tb7_nl;
double **Tvl nl;
/finterpolated first level blood vessel temperature at time ievel n+1
double **Tv2 nl;

//interpolated second level blood vessel temperature at time level n+1
double **Tv3 nl;

/linterpolated third level blood vessel temperature at time level n+1
double **Tv4 nl;

//interpolated fourth level blood vessel temperature at time level n+1
double **Tv5 nl;

//interpolated fifth level blood vessel temperature at time level n+1
double **Tv6 nl;

//interpolated sixth level blood vessel temperature at time level n+1
double **Tv7 _nl;

/linterpolated seventh level blood vessel temperature at time level n+1

/ffirst level blood temperature at time level n+1
//second level blood temperature at time level n+1
/fthird level blood temperature at time level n+1
//fourth level blood temperature at time level n+1
//ifth level blood temperature at time level n+1
//sixth level blood temperature at time level n+1
//seventh level blood temperature at time level n+1

double (*a)[NY+1][NZ3+1], (*b)[NY+1][NZ3+1], (*c)[NY+1][NZ3+1];
double (*d)[NY+1][NZ3+1];//tridiagonal system
double (*aQ)[NY+1][NZ3+1], (*bO)[NY-+1][NZ3+1], (*cO)[NY+1][NZ3+1];

const int SPAN = 3;
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//grid points index on boarder of blood vessel

int X1[2],X2a[2],X2b[2],X3a[2],X3b[2],X4a[2],X4b[2],X5a[2],X5b{2];

int X6a1[2],X6b1[2],X6a2{2],X6b2[2],X7al[2],X7b1[2],X7a2{2],X7b2[2];
int Y1a[2],Y 1b[2],Y2a[2],Y2b[2],Y3a[2],Y3b[2],Y4al[2],Y4b1[2];

int Y4a2[2],Y4b2[2],Y5al[2],Y5b1{2],Y5a2[2],Y5b2[2];

int Y6al1[2],Y6b1[2],Y6a2[2],Y6b2[2],Y7al[2],Y7b1[2],Y7a2[2],Y7b2[2]);
int Y7a3[2],Y7b3[2],Y7a4[2],Y 7b4[2];

int Z1a[2],Z21b[2],Z2a[2],Z2b[2],Z3a[2],Z3b[2],Z4a[2],Z4b[2];

int Z5al[2],Z5b1{2],25a2{2],25b2[2},26a1(2],26b1[2},26a2[2],26b2[2];
int Z7al{2],Z7b1{2},Z27a2[2],Z7b2[2];

inti,j,x,y,z; //X,Y, z direction index

int x1, y7, z1, X2, y2, 22, x3, y3, 73, x4, y4, X5, y5, 74, 25, z6;

/ly1 already defined in Math.h, temperary variables of x, y, z direction in all blood levels
int t, I, loopP; //used to keep record of loop and output result

intk, p, q, 1, h; /repeat variable used for blood vessels of same layer

//blood boarder avaibles

int x1a,x2a,x2b,x3a,x3b,x4a,x4b,x5a,x5b,x6al,x6b1,x6a2,x6b2,x7al,x7bl,x7a2,x7b2;
int yla,ylb,y2a,y2b,y3a,y3b,ydal,y4bl,y4a2,y4b2,y5al,y5bl,y5a2,y5b2,y6al,y6bl;
int y6a2,y6b2,y7al,y7bl,y7a2,y7b2,y7a3,y7b3,y7ad,y7b4;

int zla,z1b,z2a,z2b,z3a,z3b,z4a,z4b,z5al1,z5b1,z5a2,25b2,z6al,z6b1;

int z6a2,z6b2,z7al,z7b1,z7a2,z27b2;

int Ix1,ly1,1z1,Ix2,ly2,122,1x3,1y3,1z3,1y4,1z4,1x4,1x5,1y5,1z5;

int 1x6,ly6,1z6,1x7,1y7,127;

int cenY,cenZ,cenX;

//bool bPowerOn; //flag indicating whether the power is on or off

void initialize();

int CalcAll();

int getTv_blood(int index);

int CalcTb();

int CalcTb2();

double CalcTt();

void CalcVessel(int index);

void Reset(void);

void setVesselBorder();

void AdjustMtx(int index);

void clearMem();

void setboarderVariable(int index);//added by me
void reloadbloodeteperature(int index);//added by me

void writeSquareXZ(int x0, int z0, int x1, int z1, int y, int t, int I);

void writeSquareYZ(int yO0, int z0, int y1, int z1, int x, int t, int I);

void writeSquareX Y(int x0, int y0, int x1, int y1, int z, int t, int I);

void writeZCenter(int t);

void writeAll(int t, int I);

void writeLinearSys(int x, int y, int i, int I);

void writebloode(int i, double x);//test by zeng

void writeLog(char *line);

void writeSquareXZ Damage(int x0, int z0, int x1, int z1, int y, int t, int I);
void writeSquareYZ Damage(int y0, int z0, int y1, int z1, int X, int t, int I);
char tmp[256];

int TOTAL T =200;
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//double TOTAL T = 0.1f; //test value by zeng
double Err 1=0.001f; //for Iloop

double Err P =0.01f; //for P loop

double temp;

double maxErrl, f;

double aa, bb;

int inde;

double fk1, k2, fk3, fk4;

int n;

int main(void)
{
printf("screen out\n");
printf("initializing...\n");
initialize(); //memory allocation & variable initalization
printf("running_1\n");
loopP = 0;//un-used variable by zeng
//calculate tissue and blood temperature based on specified power level
CalcAll();
printf("CalcAll Finished!\n");
clearMem();
return 1;

}

//memory allocation & variable initalization

void initialize()

{
Tt = new double [NX+1][NY+1][NZ3+1];
Tt n1 =new double [NX+1][NY+1][NZ3+1];
Tt_nl_I=new double [NX+1][NY+1][NZ3+1];
/Tt n_1 =new double [NX+1][NY+1][NZ3+1];
Ut = new double [NX+1][NY+1][NZ3+1];
Ut nl =new double [NX+1][NY+1][NZ3+1];
Damage t=new double [NX+1][NY+1][NZ3+1];
Damage nl = new double [NX+1][NY+1][NZ3+1];

a =new double [NX+1][NY+1][NZ3+1];
b =new double [NX+1][NY+1]}[NZ3+1];
¢ =new double [NX+1][NY+1][NZ3+1];
d =new double [NX+1][NY+1][NZ3+1];
a0 =new double [NX+1][NY+1][NZ3+1};
b0 =new double [NX+1}[NY+1][NZ3+1];
c0 =new double [NX+1][NY+1][NZ3+1];

memset(a0, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memset(b0, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memset(c0, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));

/*Lb1[0] = LX1A*deltaX; //areries blood length in one to seven layer
Lb2[0] = LY2A*deltaY;
Lb3{0] = LZ3A*deltaZ,
Lb4{0] = LX4A*deltaX;
LbS[0] = LY5A*deltaY;
Lb6[0] = LZ6A*deltaZ;
Lb7[0] = LX7A*deltaX;



Lb1[1] = LX1B*deltaX; //vene blood length in one to seven layer

Lb2[1] = LY2B*deltaY;
Lb3{1] = LZ3B*deltaZ;
Lb4[1] = LX4B*deltaX;
Lb5[1] = LY5B*deltaY;
Lb6[1] = LZ6B*deltaZ;
Lb7[1] = LX7B*deltaX;

L1 =NZl*deltaZ; //first layer of skin length
L2 = (NZ2-NZ1)*deltaZ; //second layer of skin length
L3 = (NZ3-NZ2)*deltaZ, //seven layer of skin length */

setVesselBorder();

Tbl_nl = new double*{2];
Tb2_nl = new double*{2];
Tb3_nl = new double*[2];
Tb4 nl = new double*[2];
TbS_nl = new double*[2];
Tb6_nl = new double*[2];
Tb7 nl = new double*[2];
Tvl_nl = new double*[2];
Tv2_nl = new double*[2];
Tv3_nl = new double*[2];
Tv4_nl = new double*[2];
TvS_nl =new double*[2];
Tv6_nl = new double*[2];
Tv7_nl = new double*[2];

Tbd1[0][0] = new double[LX1A+1];
Tbd2[0][0] = new double[LY2A+1];
Tbd3[0][0] = new double[(LZ3A+1)*2];
Tbd4[0][0] = new double[(LX4A+1)*4];
Tbd5[0][0] = new double[(LY5A+1)*8];
Tbd6[0][0] = new double[(LZ6A+1)*16];
Tbd7[0][0] = new double[(LX7A+1)*32];

Tbd1[0][1] = new double[LX1A+1];
Tbd2[0][1] = new double[LY2A+1];
Tbd3[0][1] = new double[(LZ3A+1)*2];
Tbd4[0][1] = new double[(LX4A+1)*4];
Tbd5{0][1] = new double[(LY5A+1)*8];
Tbd6[0]{1] = new double[(LZ6A+1)*16];
Tbd7{0][1] = new double[(LX7A+1)*32];

Tbd1[0]{2] = new double[LX1A+1];
Tbd2[0][2] = new double[LY2A+1];
Tbd3[0]f2] = new double[(LZ3A+1)*2];
Tbd4[0]f2] = new double[(LX4A+1)*4];
Tbd5[0][2] = new double[(LYS5A+1)*8];
Tbd6[0][2] = new double[(LZ6A+1)*16];
Tbd7{0]{2] = new double[(LX7A+1)*32];

Tbd1[0][3] = new double[LX1A+1];
Tbd2[0][3] = new double[LY2A+1];
Tbd3[0][3] = new double[(LZ3A+1)*2];
Tbd4[0][3] = new double[(LX4A+1)*4];
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Tbd5[0][3] = new double[(LY5A+1)*8];
Tbd6[0][3] = new double[(LZ6A+1)*16];
Tbd7{0]{3] = new double[(LX7A+1)*32];

Tbl_n1[0] = new double[LX1A+1];
Tb2_n1[0] = new double[LY2A+1];
Tb3_n1{0] = new double[(LZ3A+1)*2];
Tb4 n1[0] = new double[(LX4A+1)*4];
Tb5_n1{0] = new double[(LY5A+1)*8];
Tb6 n1{0] = new double[(LZ6A+1)*16];
Tb7 n1[0]} = new double[(LX7A+1)*32];

Tvl_n1[0] = new double[LX1A+1];
Tv2_n1{0] = new double[LY2A+1];
Tv3_n1[0] = new double[(LZ3A+1)*2];
Tv4_n1[0] = new double[(LX4A+1)*4];
TvS5_n1[0] = new double[(LY5A+1)*8];
Tv6_n1[0] = new double[(LZ6A+1)*16];
Tv7_n1{0] = new double[(LX7A+1)*32];

Tbd1[1][0] = new double[LX1B+1];
Tbd2[1]{0] = new double[LY2B+1];
Tbd3[1][0] = new double[(LZ3B+1)*2];
Tbd4[1][0] = new double[(LX4B+1)*4];
Tbd5[1][0] = new double[(LY5B+1)*8];
Tbd6[1][0] = new double[(LZ6B+1)*16];
Tbd7{1]{0] = new double[(LX7B+1)*32];

Tbd1[1][1] = new double[LX1B+1];
Tbd2[1][1] = new double[LY2B+1};
Tbd3{1][1] = new double[(LZ3B+1)*2];
Tbd4[1]{1] = new double[(LX4B+1)*4];
Tbd5[1][1] = new double[(LYSB+1)*8];
Tbd6[1][1] = new double[(LZ6B+1)*16];
Tbd7{1][1] = new double[(LX7B+1)*32];

Tbd1[1][2] = new double[LX1B+1];
Tbd2[1][2] = new double[LY2B+1];
Tbd3[1]{2] = new double{(LZ3B+1)*2];
Tbd4[1]{2] = new double[(LX4B+1)*4];
Tbd5[1][2] = new double[(LY5B+1)*8];
Tbd6[1][2] = new double[(LZ6B+1)*16];
Tbd7[1][2] = new double[(LX7B+1)*32];

Tbd1[1][3] = new double[LX1B+1];
Tbd2[1][3] = new double[LY2B+1];
Tbd3[1][3] = new double[(LZ3B+1)*2];
Tbd4[1][3] = new double[(LX4B+1)*4];
Tbd5[1][3] = new double[(LY5B-+1)*8];
Tbd6[1]{3] = new double[(LZ6B+1)*16];
Tbd7{1][3] = new double[(LX7B+1)*32];

Tb1l nl1[1] = new double[LX1B+1];
Tb2_nl1[1] = new double[LY2B+1];
Tb3 ni1f1] = new double[(LZ3B+1)*2];
Tb4 nl[1] = new double[(L.X4B+1)*4];
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TbS_n1f1] = new double[(L.Y5B+1)*8];
Tb6_n1[1] = new double[(LZ6B+1)*16];
Tb7 nl[1] = new double[(LX7B+1)*32];

Tvl nl[1] = new double[LX1B+1];

Tv2 nli[1] = new double[LY2B+1};
Tv3_nl1[1] = new double[(LZ3B+1)*2];
Tv4 nl[1] = new double[(LX4B+1)*4];
Tv5_nl[1] = new double[(LY5B+1)*8);
Tv6_nl[1] = new double[(LZ6B+1)*16};
Tv7_nl[1] = new double[(LX7B+1)*32];

P1[0] = (LZ1A*deltaZ + LY 1 A*deltaY)*2;
P2[0] = (LX2A*deltaX + LZ2A*deltaZ)*2;
P3[0] = (LX3A*deltaX + LY3A*deltaY)*2
PA[0] = (LZ4A*deltaZ + LY4A*deltaY)*2;
P5[0] = (LX5A*deltaX + LZ5A*deltaZ)*2;

P6[0] = (LX6A*deltaX + LY6A*delta¥)*2;
P7[0] = (LZ7A*deltaZ + LY7A*deltaY)*2;

P1[1] = (LZ1B*deltaZ + LY 1B*deltaY)*2;
P2[1] = (LX2B*deltaX + LZ2B*deltaZ)*2;

P3[1] = (LX3B*deltaX + LY3B*deltaY)*2;

P4[1] = (LZ4B*deltaZ + LY4B*deltaY)*2;
P5[1]) = (LX5B*deltaX + LZ5B*deltaZ)*2;

P6[1] = (LX6B*deltaX + LY6B*deltaY)*2;

P7[1] = (LZ7B*deltaZ + LY7B*deltaY)*2;

F1[0] = (LZ1A*deltaZ)*(LY 1 A*deltaY);
F2[0] = (LX2A*deltaX)*(LZ2A*deltaZ);
F3[0] = (LX3A*deltaX)*(LY3A*deltaY);
FA[0] = (LZ4A*deltaZ)*(LY4A*deltaY);
F5[0] = (LXS5A*deltaX)*(LZ5A*deltaZ);
F6[0] = (LX6A*deltaX)*(LY6A*deltaY);
F7[0] = (LZ7A*deltaZ)*(LY7A*deltaY);

F1[1] = (LZ1B*deltaZ)*(LY 1B*deltaY);
F2[1] = (LX2B*deltaX)*(LZ2B*deltaZ);
F3[1] = (LX3B*deltaX)*(LY3B*deltaY);
F4[1] = (LZ4B*deltaZ)*(LY4B*deltaY);
F5[1] = (LX5B*deltaX)*(LZ5B*deltaZ);
F6[1] = (LX6B*deltaX)*(LY6B*deltaY);
F7[1] = (LZ7B*deltaZ)*(LY7B*deltaY);

M1[0] = v1 * F1[0];
M2[0] = 0.5 * M1[0];
M3[0] = 0.5f * M2[0];
M4[0] = 0.5 * M3[0];
MS5[0] = 0.5f * M4[0];
M6[0] = 0.5f * M5[0];
M7[0] = 0.5f * M6{0];

MI[1] = vl * F1[1];
M2[1] = 0.5f * MI[1];
M3[1]=0.5¢ * M2[1];
M4[1]=0.5¢ * M3[1];

>
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MS5[1] = 0.5 * M4[1];
M6[1] = 0.5 * MS[1];
M7[1] = 0.5 * M6[1];

//factor(] is used for Runge-Kutta method

factor1[0] = deltaX*alpha*P1[0)/(M1[0]*CB);
factor2[0] = deltaY *alpha*P2[0]/(M2[0]*CB);
factor3[0] = deltaZ*alpha*P3[0]/(M3[0]*CB);
factor4[0] = deltaX*alpha*P4[0]/(M4[0]*CB);
factor5[0] = deltaY *alpha*P5{0]/(M5[0]*CB);
factor6[0] = deltaZ*alpha*P6[0]/(M6[0]*CB);
factor7[0] = deltaX*alpha*P7[0]/(M7[0]*CB);

factor1[1] = deltaX*alpha*P1[1]/(M1[1]*CB);
factor2[1] = deltaY *alpha*P2[1]/(M2[1]*CB);
factor3[1] = deltaZ*alpha*P3{1]/(M3[1]*CB);
factor4[1] = deltaX*alpha*P4[1]/(M4[1]*CB);
factorS[1] = deltaY *alpha*P5[1])/(M5[1]*CB);
factor6[1] = deltaZ*alpha*P6[1]/(M6[1]*CB);
factor7[1] = deltaX*alpha*P7[1])/(M7[1]*CB);

writeLog("Initialization...");

//initialize tri-diangonal system, left side (fixed)
for(i=1;i<=NX-1;i++)
{
for(j=1;j<=NY-1;j++)
{
for(z=1;z<=NZ1-1;z++)
{
//Laser_case: Cranknicolson-scheme
/*b0[i]{j1[z] = -(k1*deltaT)/(deltaZ*deltaZ);
a0[i][jlfz] = 2*p1*C1 + Wb1*Cb1*deltaT +
(4.0*k1*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY *deltaY))
+ (2*k1*deltaT)/(deltaZ*deltaZ);
cO[i][j}[z] = -(k1*deltaT)/(deltaZ*deltaZ);*/

//Laser_case: implicit-scheme
/*b0[il[jl{z] = -(k1*deltaT)/(deltaZ*deltaZ);
a0[i][jl[z] = p1*C1 + Wb1*Cb1*deltaT +
(4.0*k1*deltaT)*(1.0f/(deltaX *deltaX)
+1.0f/(deltaY *deltaY))
+ (2.0*k1*deltaT)/(deltaZ*deltaZ);
c0[i](j1[z] = -(k1*deltaT)/(deltaZ*deltaZ);*/

//Radiation_case: Dr dai's scheme
bO[i][j][z] = -(k1*deltaT)/(deltaZ*deltaZ);
a0[i][jl[z] = 2.0*p1*C1*(1.0+tau*Wb1*Cb1/(p1*Cl)
+2.0*taw/deltaT) + Wb1*Cb1*deltaT
+ (4.0*k 1 *deltaT)*(1.0/(deltaX*deltaX)
+1.0/(deltaY *deltaY))
+ (2.0*k1*deltaT)/(deltaZ*deltaZ);
c0[i][j1{z] = -(k1*deltaT)/(deltaZ*deltaZ);
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bO[i][j][NZ1]=-kI;
aO[i][j][NZ1]=k1+k2;
cO[i][j]INZ1]=-k2;

for(z=NZ1+1;z<=NZ2-1;z++)

{

}

/[Laser_case: Cranknicolson-scheme
/*b0[i][jlz] = -(k2*deltaT)/(deltaZ*deltaZ);
a0[i][jl[z] = 2*p2*C2 + Wb2*Cb2*deltaT +
(4*k2*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY *delta¥))
+ (2*k2*deltaT)/(deltaZ*deltaZ);
c0[i][j]{z] = -(k2*deltaT)/(deltaZ*deltaZ);*/

//Laser_case: implicit-scheme
/*b0[i][j)[z] = -(k2*deltaT)/(deltaZ*deltaZ);
a0[i][j]{z] = p2*C2 + Wb2*Cb2*deltaT +
(4.0*k2*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY *deltaY))
+ (2.0*k2*deltaT)/(deltaZ *deltaZ),
cO[il[j][z] = -(k2*deltaT)/(deltaZ *deltaZ);*/

//Radiation_case: Dr Dai's scheme
bO[i][j1[z] = -(k2*deltaT)/(deltaZ*deltaZ);
a0[i][j1[z] = 2.0*p2*C2*(1.0+tau* Wb2*Cb2/(p2*C2)
+2.0*tau/deltaT) + Wb2*Cb2*deltaT
+ (4.0*k2*deltaT)*(1.0/(deltaX *deltaX)
+1.0/(deltaY *deltaY))
+ (2.0*k2*deltaT)/(deltaZ*deltaZ);
cO[i][j1[z] = -(k2*deltaT)/(deltaZ*deltaZ);

bO[i](j]{NZ2]=-k2;
a0[i][j][NZ2]=k2+k3;
0[i][j}[NZ2]=-k3;

// third skin layer
for(z=NZ2+1;z<=NZ3-1;z++)

{

//Laser_case: Cranknicolson-scheme
*b0[i](jl[z] = -(k3*deltaT)/(deltaZ*deltaZ});
a0[i](j](z] = 2*p3*C3 + + Wb3*Cb3*deltaT +
(4*k3*deltaT)*(1.0f/(deltaX *deltaX)
+1.0f/(deltaY *deltaY))
+ (2*k3*deltaT)/(deltaZ*deltaZ);
c0[i][j1[z] = -(k3*deltaT)/(deltaZ*deltaZ);*/

//Laser_case: implicit-scheme
/*b0[i]j1fz] = -(k3*deltaT)/(deltaZ*deltaZ);
a0[i](jl[z] = p3*¥C3 + Wb3*Cb3*deltaT +
(4.0*k3*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY *deltaY))
+ (2.0¥k3*deltaT)/(deltaZ*deltaZ);
c0[i][j1[z] = -(k3*deltaT)/(deltaZ*deltaZ);*/

//Radiation_case: Dr Dai's scheme
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}

bO[i][j1[z] = -(k3*deltaT)/(deltaZ*deltaZ);

a0[i][jl{z] = 2.0*p3*C3*(1.0+tau*Wb3*Cb3/(p3*C3)
+2.0*tau/deltaT) + Wb3*Cb3*deltaT
+ (4.0*¥k3*deltaT)*(1.0/(deltaX*deltaX)

+1.0/(deltaY*deltaY))
+ (2.0*k3*deltaT)/(deltaZ*deltaZ};
c0[i][j1[z] = -(k3*deltaT)/(deltaZ*deltaZ),

M
yh

return;

void clearMem()

{

}

if(Tt) delete [] Tt;

if(Tt_n1) delete [] Tt _nl;
if(Tt_nl _I)delete (] Tt_nl_I;
/fif(Tt_n_1) delete [] Tt_n_1;
if(Ut) delete [] Ut;

if(Ut_n1) delete [] Ut_nl;

if(a) delete [] a;
if(b) delete [] b;
if(c) delete [] c;
if(d) delete [] d;

if(Tbl_n1) {delete {] Tb1 n1{0]; delete [] Tbl_nl1[1]; delete Tb1_nl;}
if(Tb2_nl) {delete [] Tb2_n1[0]; delete [] Tb2_n1[1]; delete Tb2_n1;}
if(Tb3_n1) {delete [] Tb3_n1[0]; delete [] Tb3_n1[1]; delete Tb3_n1;}
if(Tb4_n1) {delete {] Tb4 n1[0]; delete [] Tb4 nl[1]; delete Tb4_nl;}
if(Tb5_nl) {delete [] Tb5 nl[0]; delete {] Tb5_n1[1]; delete Tb5_nl;}
if(Tb6_n1) {delete [] Tb6_n1[0]; delete [] Tb6_n1[1]; delete Tb6_n1;}
if(Tb7_nl) {delete [] Tb7 n1{0]; delete [] Tb7 nl1[1]; delete Tb7 nl;}

if(Tvl_nl) {delete [] Tvl_n1{0]; delete [] Tvl_nl[1]; delete Tvl_nl;}
if(Tv2_nl) {delete [] Tv2_nl1{0]; delete [] Tv2_nl1[1]; delete Tv2_nl;}
if(Tv3_nl) {delete [] Tv3_nl1[0]; delete [] Tv3 nl[1]; delete Tv3_nl;}
if(Tv4_nl) {delete [] Tv4 nl1[0]; delete [] Tv4_n1[1]; delete Tv4_nl;}
if(Tv5_nl) {delete [} Tv5 nl1[0}; delete [] Tv5_nl1[1]; delete Tv5_nl;}
if(Tv6_n1) {delete [] Tv6_n1[0]; delete [] Tv6_nl[1]; delete Tv6_nl;}
if(Tv7_nl) {delete [] Tv7_n1{0]; delete [] Tv7 nl[1]; delete Tv7_nl;}

writeLog("Memory released.");
return;

void setVesselBorder()

{

X1[0] =NX;

X2b[0] = NX-LX1A;

X2a[0] = X2b[0]-LX2A;

X3a[0] = X2b[0]-LX2A/2-LX3A/2;
X3b[0] = X2b[0]-LX2A/2+LX3A/2;
X4a[0] = X2b[0]-LX2A/2-LX4A/2;
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X4b[0] = X2b[0]-LX2A/2+LX4A/2;
X5a[0] = X4a[0]-LX5A;

X5b[0] = X4b[0]+LX5A;

X6a1[0]= X4a[0]-LX5A/2-LX6A/2;
X6b1[0]= X4a[0]-LXSA/2+LX6A/2;
X6a2[0]= X4b[0]+LX5A/2-LX6A/2;
X6b2[0]= X4b[0]+LX5A/2+LX6A/2;
X7al[0]= X4a[0]-LX5A/2-LX7A/2;
X7b1[0]= X4a[0]-LX5A/2+LX7A/2;
X7a2[0]= X4b[0]+LX5A/2-LX7A/2;
X7b2[0]= X4b[0]+LX5A/2+LXTA/2;

Y1a[0] = centerY-LY1A/2;

Y 1bf0] = centerY+LY1A/2;

Y2a[0] = centerY-LY2A/2;

Y2b[0] = centerY+LY2A/2;

Y3a[0] = Y2a[0]-LY3A;

Y3b[0] = Y2b[0]+LY3A;

Y4al{0]= Y2a[0]-LY3A/2-LY4A/2;
Y4b1[0]= Y2a[0]-LY3A/2+LY4A/2;
Y4a2[0}= Y2b[0]+LY3A/2-LY4A/2;
Y4b2[0]= Y2b[O]+LY3A/2+LY4A/2;
Y5al[0]= Y2a[0]-LY3A/2-LYSA/2;
Y5b1{0]= Y2a[0]-LY3A/2+LY5A/2;
Y5a2(0]= Y2b[O]+LY3A/2-LY5A/2;
Y5b2[0]= Y2b[0]+LY3A/2+LY5A/2;
Y6al[0]= Y5al[0]-LY6A;

Y6b1[0]= YSb1[0]+LY6A;

Y6a2[0]= Y5a2[0]-LY6A;

Y6b2[0]= Y5b2[0]+LY6A;

Y7al[0]= Y5al[0]-LY6A/2-LY7A/2;
Y7b1[0]= YSal[0]-LY6A/2+LY7A/2;
Y7a2[0]= Y5b1[0]+LY6A/2-LY7A/2;
Y7b2[0]= Y5b1[0]+LY6A/2+LY7A/2;
Y7a3[0]= Y5a2[0]-LY6A/2-LY7A/2;
Y7b3[0]= Y5a2[0]-LY6A/2+LY7A/2;
Y7a4[0]= Y5b2[0]+LY6A/2-LY7A/2;
Y7b4[0]= YSb2[0]+LY6A/2+LYTA/2;

Z12a[0] = (NZ3+NZ2)/2-LZ1A/2;
Z1b[0] = Z1a[0]+LZ1A;

72a[0] = (NZ3-+NZ2)/2-LZ2A/2;
Z2b[0] = Z2a[0]+LZ2A;

Z3a[0] = (NZ3+NZ2)/2-LZ3A/2;
Z3b[0] = Z3a[0]+LZ3A;

Z4a[0] = Z3a[0]-LZ4A;

Z4b[0] = Z3b[0]+LZ4A;

Z5al[0]= Z3a[0]-LZ4A/2-LZ5A/2;
Z5b1[0]= Z3a[0]-LZ4A/2+LZ5A/2;
Z5a2[0]= Z3b[0]+LZ4A/2-LZ5A/2;
Z5b2[0]= Z3b[0]+LZ4A/2+LZ5A/2;
Z6al1[0]= Z3a[0]-LZ4A/2-LZ6A/2;
Z6b1[0]= Z32[0]-LZ4A/2+LZ6A/2;
Z6a2[0]= Z3b[0]+LZ4A/2-LZ6A/2;
Z6b2[0]= Z3b[0]+LZ4A/2+LZ6A/2;
Z7al[0]= Z6al[0]-LZ7A;
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Z7b1[0]= Z6b1[0]+LZ7A;
Z7a2[0]= Z6a2[0]-LZ7A;
Z7b2[0]= Z6b2[0]+LZ7A;

X1[1] =NX;
X2b[1] = NX-LX1A;

X2a[1] = X2b[1]-LX2A;

X3a[1] = X2b[1]-LX2A/2-LX3A/2;
X3b[1] = X2b[1]-LX2A/2+LX3A/2;
X4a[1] = X2b[1]-LX2A/2-LX4A/2;
X4b[1] = X2b[1]-LX2A/2+LX4A/2;
X5a[1] = X4a[1]-LX5A;

X5b[1] = X4b[1]+LX5A;

X6al[1]= X4a[1]-LX5A/2-LX6A/2;
X6b1[1]= X4a[1]-LX5A/2+LX6A/2;
X6a2[1]= X4b[1}+LX5A/2-LX6A/2;
X6b2[1]= X4b[1]+LX5A/2+LX6A/2;
X7al[1]= X4a[1]-LX5A/2-LX7A/2;
X7b1[1]= X4a[1]-LX5A2+LX7A/2;
X7a2[1]= X4b[1]+LX5A/2-LXTA/2;
X7b2[1]= X4b[1]+LX5A/2+LX7A/2;

Yla[l] = centerY-LY1A/2;

Y1b[1] = centerY+LY1A/2;

Y2a[1] = centerY-LY2A/2;

Y2b[1] = centerY+LY2A/2;

Y3a[l] = Y2a[l]-LY3A;

Y3b[1] = Y2b[1]+LY3A;

Y4al[l1]= Y2a[1]-LY3A/2-LY4A/2;
Y4bl1[1]= Y2a[1]-LY3A/2+LY4A/2;
Y4a2[1]= Y2b[1]+LY3A/2-LY4A/2;
Y4b2[1]= Y2b[1]+LY3A/2+LY4A/2;
Y5al[1]= Y2a[l]-LY3A/2-LY5A/2;
Y5bl{1}= Y2a[1]-LY3A/2+LYSA/2;
Y5a2[1]= Y2b[1]+LY3A/2-LY5A/2;
Y5b2[1]= Y2b[1]+LY3A/2+LY5A/2;
Yé6al[l]= Y5al[1]-LY6A;

Y6b1[1]= YSb1{1]+LY6A;

Y6a2[1]= Y5a2[1]-LY6A;

Y6b2[{1]= YS5b2[1]+LY6A;
Y7al[1]=Y5al[1]-LY6A/2-LY7A/2;
Y7bl[1]= Y5al[1}-LY6A/2+LY7A/2;
Y7a2[1]= Y5b1[1]+LY6A/2-LYTA/2;
Y7b2[1]= Y5bI[1]+LY6A/2+LY7A/2;
Y7a3[1]= Y5a2[1]-LY6A/2-LYTA/2;
Y7b3[1]= Y5a2[1]-LY6A/2+LY7A/2;
Y7a4[1]= Y5b2[1]+LY6A/2-LY7A/2;
Y7b4[1]= Y5b2[1]+LY6A/2+LY7A/2;

Z1a[1] = (NZ3+NZ2)/2-LZ1A/2;
Z1b[1] = Z1a[1}+LZ1A;
Z2a[1] = (NZ3+NZ2)/2-LZ2A/2;
Z2b[1] = Z2a[1]+LZ2A;
Z3a[1] = (NZ3+NZ2)/2-LZ3A/2;
Z3b[1] = Z3a[1]+LZ3A;
Z4a[1] = Z3a[1]-LZ4A;
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Z4b[1] = Z3b[1]+LZ4A;

Z5al[1]= Z3a[1]-LZ4A/2-LZ5A/2;
Z5b1[1]= Z3a[1]-LZ4A/2+LZ5A/2;
Z5a2[1]= Z3b[1]+LZ4A/2-LZ5A/2;
Z5b2[1]= Z3b[1]+LZ4A2+LZSA/2;
Z6al[1]= Z3a[1]-LZ4A/2-LZ6A/2;
Z6b1[1]= Z3a[1]-LZ4A/2+LZ6A/2;
Z6a2[1]= Z3b[11+LZ4A/2-LZ6A/2;
Z6b2(1]= Z3b[1]+LZ4A/2+LZ6A/2;
Z7al[1]= Z6al[1]-LZ7A;

Z7b1[1]= Z6bI1[1]+LZTA;
Z7a2[1]= Z622[1]-LZTA;

ZTb2[1]= Z6b2[1]+LZ7A;

//seperate the blood vessels
int dX0 = 0; //offset of arteries
int dX1 = 38; //offset of veins

int dZ = 150;

X1[0] -=dXo0;
X2a[0] -= dXO0;
X2b[0] -= dX0;
X3a[0] -= dXO0;
X3b[0] -= dXO0;
X4a[0] -= dXO0;
X4b[0] -= dX0;
X5a[0] -= dXO0;
X5b[0] -= dX0;

X6al1[0]-=dXo;
X6b1{0]-=dXO0;
X6a2[0]-= dXO0;
X6b2[0]-= dXO0;
X7al[0]-=dX0;
X7b1[0]-= dXO0;
X7a2[0]-= dX0;
X7b2[0]-= dXO0;

X1[1] +=0;//if dX1>0, then X1[1] will be out of range, so LX1B-dX1
X2a[1] +=dX1;
X2b[1] +=dX1;
X3a[1] +=dX1;
X3b[1] +=dX1;
X4a[1] += dX1;
X4b[1] += dX1;
X5a[1] +=dX1;
X5b[1] +=dX1;
X6al[1]+=dX1;
X6bl1[1]+=dX1;
X6a2[1]+= dX1;
X6b2[1]+= dXT1;
X7al[1]+=dXI;
X7b1[1]+= dX1;
X7a2[1]+=dX1;
X7b2[1]+= dX1;

Z1a[0] += dZ,;
Z1b[0] +=dZ;
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}

Z2a[0] +=dz;
Z2b[0] +=dZ;

Z3a[0] +=dzZ;

Z3b[0} +=dZ;

Z4a[0] +=dZ;

Z4b[0] += dZ;

Z5al[0]+=dZ;
Z5b1[01+=dZ;
Z5a2[0]+= dZ;
Z5b2[0]+=dZ,;
Z6al{0]+=dzZ;
Z6b1[0]+=dz;
Z6a2[0]+= dZ;
Z6b2[01+=dZ,;
Z7al[0]+= dZ;
Z7b1[0]+=dz,;
Z7a2[0]+=dZ;
Z7b2[0]+=dZ,;

Z1a[1] -=dZ;
Z1b[1] -=dzZ;
Z2a[l] = dz;
Z2b[1] = dz,
Z3a[l1] =dZ;
Z3b[1] =dz,;
Z4a[1] =dz;
Z4b[1] -=dz;

Zsal[1]-= dz;
Z5b1[1]=dZ;
Z5a2[1]-= dZ;
Z5b2[1]= dz;
Z6al[1]-= dz;
Z6b1[1]= dZ;
Z6a2[1]-= dz;
Z6b2[1]-= dZ;
Z7al[1}-= dz;
Z7b1[1]-=dZ;
Z7a2[1]-= dz;
Z762[1]= dZ;

return;

void Reset()

{

memset(a, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memset(b, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memset(c, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memset(d, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));

//memset(Tt, 37, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
//memset(Tt_nl, 37, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
//memset(Tt nl1_1,37, sizeof(double) *(NX+1)*(NY+1)*(NZ3+1));
for (int i=0; i<=NX; i++)
for (int j=0; j<=NY; j++)
for (int k=0; k<=NZ3; k++)
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Tt[i][j1[k] = 34.0;

Tt nl[i][jl{k] = 34.0;

Tt _nl_I[i]fjl[k] = 34.0;
/Tt n_1[i][1[Kk] = 34.0;
Ut[i][jl{k] = 34.0;
Ut_n1[i][j][k] = 34.0;
Damage t[i][j][k] = 0.0;
Damage nl1[i][ji[k] = 0.0;

}
//memset(Tb1[0], 37, sizeof(double)*(LZ1A+1));
//memset(Tb1_n1[0], 37, sizeof(double)*(LZ1A+1));
/fmemset(Tvl_nl[0], 37, sizeof(double)*(LZ1A+1));
for (j=0; j<=LX1A; j++)

Tbd1[0][0][j] = 34.0;
Tbd1[0][1][j] = 34.0;
Tbd1[0][2]j] = 34.0;
Tbd1[0][3][j] = 34.0;
Tb1_n1[0][j] = 37.0;
Tv1_n1[0][j] = 37.0;

}
//memset(Tb1[1], 37, sizeof(double)*(LZ1B+1));
//memset(Tb1 ni{1], 37, sizeof(double)*(LZ1B+1));
//memset(Tv] _nl[1], 37, sizeof(double)*(LZ1B+1));
for (j=0; j<=LXI1B; j++)
{

Tbd1{1][0][j] = 34.0;

Tobd1[1][1][j] = 34.0;

Tbd1[1][2](j] = 34.0;

Tbd1[1][3][j] = 34.0;

Tbl _nl[1][j]=37.0;

Tvl_nl[1]{j]=37.0;

}
//memset(Tb2{0], 37, sizeof(double)*(LX2A+1));
//memset(Tb2_n1[0], 37, sizeof(double)*(LX2A+1));
//memset(Tv2_n1[0], 37, sizeof(double)*(LX2A+1));
for (j=0; j<=LY2A; j++)
{

Tbd2[0][0][j] = 34.0,

Tbd2[0]{1][j] = 34.0;

Tbd2[0][2](j] = 34.0;

Tbd2[0][3][j] = 34.0;

Tb2 nl1[0][j]=37.0;

Tv2_nl[0][j]1=37.0;
}
//memset(Tb2[1], 37, sizeof(double)*(LX2B+1));
//memset(Tb2_ni[1], 37, sizeof(double)*(LX2B+1));
//memset(Tv2_nl[1], 37, sizeof(double)*(LX2B+1));
for (j=0; j<=LY2B; j+1)
{

Tbd2[1][0][j] = 34.0;

Tbd2[1][1][j] = 34.0;

Tbd2[1][2][j] = 34.0;

Tbd2[1][3][j] = 34.0;

Tb2 nl[1]{j]1=37.0;
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Tv2_nl[1][j] = 37.0;

}
/fmemset(Tb3[0], 37, sizeof(double)*(LZ3A+1)*2);
//memset(Tb3 n1[0], 37, sizeof(double)*(LZ3A+1)*2);
//memset(Tv3_nl1[0], 37, sizeof{(double)*(LZ3A+1)*2);
for (j=0; j<=2*LZ3A+1; j++)
{

Tbd3[0][0]1{j] = 34.0;

Tbd3[0][1](j] = 34.0;

Tbd3[0]{2][j] = 34.0;

Tbd3[0}[3][j] =34.0;

Tb3 nl1[0][j] = 37.0;

Tv3_nl[0][j] = 37.0;
}
//memset(Tb3[1], 37, sizeof(double)*(LZ3B+1)*2);
//memset(Tb3_nl[1], 37, sizeof(double)*(LZ3B+1)*2);
//memset(Tv3_nl[1], 37, sizeof(double)*(LZ3B+1)*2);
for (j=0; j<=2*LZ3B+1; j++)
{

Tbd3{1]{0][j] = 34.0;

Tbd3[11[1][j] = 34.0;

Tbd3[1][2][j] = 34.0;

Tbd3[1}[31[j] = 34.0;

Tb3_nl[1][j] =37.0;

Tv3 nl[1][j] =37.0;
}

for (j=0; j<=4*LX4A+3; j++)

{
Tbd4[0}[0][3] = 34.0;
Tbd4[0][1][j] = 34.0;
Tbd4{0]1[2]1[j] = 34.0;
Thd4[0][31[j] = 34.0;
Tb4 nl1{0][j] =37.0;
Tv4_nl1{0]{j] = 37.0;

}

for (j=0; j<=4*LX4B+3; j++)

{
Tbd4[1][0][j] = 34.0;
Tbd4[1]{11(j] = 34.0;
Tbd4[1][2]{j] = 34.0;
Tbd4[11[3][j] = 34.0;
Tb4 ni[1][j]=37.0;
Tv4 nl[1][j] = 37.0;

}

for (j=0; j<=8*LYSA+7; j++)
{
TbdS5[0][0][j] = 34.0;
Thd5[0][1][j] = 34.0;
Tbd5[0][2][j] = 34.0;
TbhdS5[01[3][j] = 34.0;
Tb5 nl1[0][j] =37.0;
Tvs_nl1[0][j] =37.0;



for (j=0; j<=8*LY5B+7; j++)

{
Tbd5[1][0][j] = 34.0;
Thd5[1][1][j] = 34.0;
Tbd5[11]{2][j] = 34.0;
Tbd5[1][3][j] = 34.0;
Tb5 nl[1][j] =37.0;
Tv5_nl[1][j}=37.0;

}

for (j=0; j<=16*LZ6A+15; j++)

{
Tbd6[0]{0][j] = 34.0;
Tbd6[0][11[j] = 34.0;
Tbd6[0][2][j] = 34.0;
Tbd6[0][3][j] = 34.0;
Tb6_n1{0][j] = 37.0;
Tv6_nl1[0]{j]1=37.0;

}

for (j=0; j<=16*LZ6B+15; j++)

Tbd6[1]{01[j] = 34.0;

Tbd6[1][1][j] = 34.0;

Tbd6[1][2][j] = 34.0;

Tbd6[1][3](j] = 34.0;

Tb6_n1[1][j] = 37.0;

Tv6_nl[1][j] = 37.0;
}

for (j=0; j<=32*LXT7A+31; j++)

Tbd7[0][0][j] = 34.0;

Tbd7[0][11{j] = 34.0;

Tbd7[0][2][j] = 34.0;

Tbd7[0][3]{j] = 34.0;

Tb7_n1[0][j] = 37.0;

Tv7_nl1[0]{j] = 37.0;
}

for (j=0; j<=32*LX7B+31; j++)

Tbd7[1][0]{j] = 34.0;

Tbd7[1][1}[j] = 34.0;

Tbd7[1]{2][j] = 34.0;

Tbd7[11[3][j] = 34.0;

Tb7 nl[1][j] = 37.0;

Tv7_nl[1]{j]1=37.0;
}

//Tb1[0][0] = 37.0 + THETAOQ;

Tb1_n1{0][0] = 37.0 + THETAO;

return;
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int

CalcAll()

double maxErr, oldE; //sum of square error of tissue temperatures
FILE *fpl;

FILE *fp2;

fpl = fopen("T_center t_0.txt","w");

fp2 = fopen("T_center t 100.txt","w");

Reset();

t=0;

T e i

getTv_blood(0);

getTv_blood(1);

/lcalculate blood temperature based on given vessel temperature
CalcTb();

CalcTbh2();

reloadbloodeteperature(0);

reloadbloodeteperature(1);

CalcVessel(0);

CalcVessel(1);

I T
while((t*deltaT < TOTAL_T))
{ /fwhile loop begin

t++;

1=0;

maxErr =0.0;

oldE = 99999999.0f;

do{ //1 iteration, do while loop begin
I++;
//Calculate tissue temperature
maxErr = CalcTt();
printf("t:%2d 1:%d Err:%5.41f T0:%10.6f T1:%10.6f
T2:%10.6f\n", t, I, maxErr, Tt_nl[NX/2][NY/2][0],
Tt n1[0][NY/2][0], Tt_n1[NX/2][NY/2][100]);

if(maxErr>=0ldE)

{
writeLog(" unstable "%
#ifdef SCREEN_OUT

#endif
writeSquareXZ(0, 0, NX, NZ3, NY/2, t, D);
break;
}
oldE = maxErr;
}while(maxErc>Err_I); //do while I loop end, Err_1=0.001

fprintf(fp2,"%5d  %10.68n",t, Tt n1[NX/2][NY/2][100]);

for (i=0; i<=NX; i++){

for (j=0; j<=NY; j++){
for (z=0; z<=NZ1; z++){

Ut_nl[i][jIz] = - Ut[i]{j][z] + (1.0+tau*Wb1*Cb1/(pI*CI)
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+2.0*taw/deltaT)*Tt_n1{il[ji[z]
+(1.0+tau*Wb1*Cb 1/(p1*C1)-2.0*taw/deltaT)*Te[i][j][2];

}
for (z=NZ1+1; z<=NZ2; z++){
Ut _nl1[i][jl[z] = - Ut[i][j1[z] + (1.0+tau* Wb2*Cb2/(p2*C2)
+2.0*taw/deltaT)*Tt_nl1{i][j][z]
+(1.0+tau* Wb2*Cb2/(p2*C2)-2.0*tau/deltaT)* Tt[i][j][z];

}
for (z=NZ2+1; z<=NZ3; z++){

Ut nl[i][jl[z] = - Ut[i]§][z] + (1.0+tau*Wb3*Cb3/(p3*C3)
+2.0*tau/deltaT)*Tt nl{i][j][z]
+(1.0+tau*Wb3*Cb3/(p3*C3)-2.0*taw/deltaT)* Tt[i][(j1[z];

}
}
}

//Calculation of damage
for (i=0; i<=NX; i++){
for (j=0; j<=NY; j++){
for (z=0; z<=NZ3; z++){
if (Tt_n1{i]{j][z] <=50.0){
energy = 4.18e+5;
frequency = 4.322¢+64;
}
else{
energy = 6.69¢+5;
frequency = 9.389e+104;}
Damage nl[i][j][z] = Damage t[i](jl{z]
+ frequency*exp(- energy/(gas*(Tt_nl1[i]{jl[z]+273.0)))*deltaT;
}
}
}

memcpy(Ut, Ut_nl, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memcpy(Tt, Tt_nl, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memcpy(Damage t, Damage nl, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));

} //Time while loop block end, upper bound TOTAL_T
fclose(fp2);
printf(""Record the temperature of the last second\n");
//Record the temperature of the last second
writeSquareXZ(0, 0, NX, NZ3, NY/2, t, I);
writeSquareXY(0, 0, NX, NY, (Z1a[0]+Z1b[0])/2, t, I);
writeSquareXY(0, 0, NX, NY, (Z1a[1]+Z1b[1])/2, t, I);
writeSquareXZ(0, 0, NX, NZ3, (Y1a[0]+Y1b[0])/2, t, I);
writeSquareXZ(0, 0, NX, NZ3, (Y4al[0]+Y4b1[0])/2, t, I});
writeSquareXZ(0, 0, NX, NZ3, (Y7a2[0]+Y7b2[0])/2, t, I);
writeSquareYZ(0, 0, NY, NZ3, NX/2, t, I);
writeSquareYZ(0, 0, NY, NZ3, (X3a[0}+X3b[0])/2, t, I);
writeSquareYZ(0, 0, NY, NZ3, (X3a[1][+X3b[1])/2, t, I);
writeSquareYZ(0, 0, NY, NZ3, (X6a2[0]+X6b2[0])/2, t, I);
writeSquareYZ(0, 0, NY, NZ3, (X6al[1]+X6b1[1])/2, 1, I);
writeSquareXZ_Damage(0, 0, NX, NZ3, NY/2, t, I);
writeSquareXZ_Damage(0, 0, NX, NZ3, (Y1a[0]+Y 1b[0])/2, t, I);
writeSquareXZ Damage(0, 0, NX, NZ3, (Y4al[0]+Y4b1[0])/2, t, I);
writeSquareXZ Damage(0, 0, NX, NZ3, (Y7a2[0]+Y7b2[0])/2, t, I);
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writeSquareYZ Damage(0, 0, NY, NZ3, NX/2, t, I);
writeSquareYZ_Damage(0, 0, NY, NZ3, (X3a[0]+X3b[0])/2, t, I);
writeSquareYZ _ Damage(0, 0, NY, NZ3, (X3a[1]+X3b[1])/2, t, I);
writeSquareYZ_Damage(0, 0, NY, NZ3, (X6a2[0]+X6b2[0])/2, t, I);
writeSquareYZ Damage(0, 0, NY, NZ3, (X6al[1]+X6b1[1])/2, t, I);

return(1);

}//programm finish

void setboarderVariable(int index)

{

x1a=X1[index];x2a=X2a[index];x2b=X2b[index];x3a=X3a[index];x3b=X3b[index];

x4a=X4a[index];x4b=X4b[index];
x5a =X5a[index];x5b=X5b[index];x6al=X6al[index];x6b1=X6b1[index}];
x6a2=X6a2[index];x6b2=X6b2{index];

x7al =X7al[index];x7bl =X7b1[index]};x7a2 =X7a2[index];x7b2 =X7b2[index];

yla =Y la[index];y1b=Y 1b{index];y2a=Y2a[index];y2b=Y2b[index];
y3a=Y3a[index];y3b=Y3b[index};
yd4al=Y4al[index];y4b1=Y4bl[index];y4a2=Y4a2[index];y4b2=Y4b2[index];
y5al=YS5al[index];y5Sb1=Y5b1[index];

y5a2=Y Sa2[index];y5b2=Y 5b2[index];y6al=Y6al[index];y6b1=Y6b1[index];
y6a2=Y 6a2[index];y6b2=Y 6b2[index};
y7al=Y7al[index];y7b1=Y7bl[index];y7a2=Y 7a2[index];y7b2=Y 7b2[index];
y7a3=Y7a3[index];y7b3=Y 7b3[index];

y7a4=Y 7a4{index];y7b4=Y 7b4[index];z1a=Z1a[index];z1b=Z1b{index];
z2a=72a[index];z2b=Z2b[index];
z3a=Z3a[index];z3b=Z3b[index];z4a=Z4a[index];z4b=Z4b[index];
z5al=Z5al[index];z5b1=Z5b1[index}];
z5a2=75a2[index];z5b2=Z5b2[index];z6al=Z6al[index];z6b1=Z6b1[index];
z6a2=7Z6a2[index];
z6b2=76b2[index];z7al=Z7al{index];27b1=Z7b1[index};z7a2=7Z7a2[index];
Z7b2=Z7b2[index];

Ix1 = index==0?7LX1A:LXI1B;

lyl = index==0?LY1A:LY1B;

1z] = index==0?LZ1A:LZ1B;

1x2 = index==07LX2A:LX2B;

ly2 = index==0?LY2A:LY2B;

122 = index==07LZ2A:LZ2B,;

Ix3 = index==0?LX3A:LX3B;

ly3 = index==0?LY3A:LY3B;

123 = index==07LZ3A:LZ3B;

ly4 = index==0?LY4A:LY4B;

1z4 = index==07LZ4A:LZA4B,;

1x4 = index==0?7LX4A:LX4B;

Ix5 = index==0?LX5A:LX5B;

ly5 = index==0?LYS5A:LY5B;

125 = index==07LZ5A:LZ5B,;

1x6 = index==0?7LX6A:LX6B;

ly6 = index==0?LY6A:LY6B;

126 = index==07LZ6A:LZ6B;

Ix7 = index==07LX7A:LX7B;

ly7 = index==0?LY7A:LY7B;

1z7 = index==0?LZ7A:LZ7B;

cenY = (yla + ylb)/2;//actual center y after seperate the arteries and veins
cenZ = (zla + z1b)/2;

cenX = (x2a + x2b)/2; //symetry center for x coordinate from level 2
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return;
}
int getTv_blood(int index)
{

//interpolate vessel temperature from the tissue temperature near the vessel

//****L EFT and RIGHT side could be different if the blood vessel has an offset to //the center

setboarderVariable(index); //set the common blood boarder variables

/first level

for(i=0;i<Ix1;i++)
Tvl_nl[index][i] = ( Tbd1[index][0][i] + Tbd1[index][1][i]
+ Tbd1[index][2][i] + Tbd1[index][3][i] ) / 4.0f;

//second level

for( i=0;i<=1y2;i++) //i=0 & LY2 are on the blood vessels
Tv2_nl{index][i] = ( Tbd2[index][0][i] + Tbd2[index][1][i]
+ Tbd2[index][2][i] + Tbd2[index][3][i] ) / 4.0f;

//third level

for (k=0;k<2;k++)

for(i=0;i<=1z3;i++)

{
Tv3_nl[index][i+k*(1z3+1)] = (Tbd3[index][0][i+k*(1z3+1)] +
Tbd3[index][1][i+k*(1z3+1)] + Tbd3[index][2][i+k*(1z3+1)] +
Tbd3[index][3][i+k*(1z3+1)] )/ 4.0f;
}
//fourth level
k=0;

for(r=0;r<2;r++)
for(G=0;j<2;j++)
{

for(i=0;i<=Ix4;i++)

{
Tv4 nl[index][i+k*(1x4+1)] = ( Tbd4[index][0][i+k*(Ix4+1)] +
Tbd4[index][1]{i+k*(Ix4+1)] + Tbd4[index][2][i+k*(Ix4+1)] +
Tbd4[index}[3][i+k*(1x4+1)] ) / 4.0f;

}

k++;

}

}
//ifth level
k=0;
for(r=0;r<2;r++)//repeat variable in z coordinate
{
for(j=0;j<2;j++)//repeat variable in y coordinate

for(p=0;p<2;p++)//repeat variable in X coordinate

for(i=0;i<=ly5;i++)
{

Tv5_nl[index][i+k*(ly5+1)] = ( Tbd5[index][0][i+k*(ly5+1)] +

Tbd5[index][1][i+k*(ly5+1)] + TbdS[index][2][i+k*(lyS+1)] +
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TbdS[index][3][i+k*(lyS+1)] ) / 4.0f;
}
k++;
}
}

}
//sixth level

k=0;
for(r=0;r<2;r++)//repeat variable in z coordinate

{

for(j=0;j<2;j++)//repeat variable in y coordinate
for(p=0;p<2;p++)//repeat variable in x coordinate
for(q=0;q<2;q++) //repeat variable in inner y coordinate

for(i=0;i<=1z6;i++)
{
Tv6_nl[index][i+k*(1z6+1)] = ( Tbd6[index][0][i+k*(1z6+1)] +
Tbd6[index][1][i+k*(1z6+1)] + Tbd6[index][2][i+k*(1z6+1)] +
Tbd6[index]{3][i+k*(1z6+1)] ) / 4.0f;
}
k++;
3
}
}
}
//seventh level
k=0;
for(r=0;r<2;r++)//repeat variable in z coordinate

{

for(j=0;j<2;j-++)//repeat variable in y coordinate
for(p=0;p<2;p++)//repeat variable in X coordinate
for(q=0;q<2;q++) //repeat variable in inner y coordinate
for(h=0;h<2;h++)//repeat variable in inner z coordinate

for(i=0;i<=Ix7;i++)
{
Tv7_nl[index][i+k*(Ix7+1)] = ( Tbd7{index][0][i+k*(1x7+1)] +
Tbd7[index][1][i+k*(1x7+1)] + Tbd7[index]{2][i+k*(Ix7+1)] +
Tbd7[index][3][i+k*(1x7+1)] ) / 4.0f;
}
k++;
}
}
}
}
}
return(1);
}

int CalcTb() // calculate the value for artery
{



//int index = 0;

//double k1, fk2, k3, fk4;

inde = 0;

setboarderVariable(inde);//set the common blood boarder variables

Tb1 nl[inde][0] = 37.0 + THETAO;

/ffirst level blood

for(i=1;i<=Ix1;i++)

{ fk1 = factor1[inde]*(Tv1_nl1[inde][i-1]- Tbl_n1[inde][i-1]);
fk2 = factor1[inde]*(Tv1 _nl[inde][i-1]-(Tb1 nl[inde][i-1]+fk1/2.0));
fk3 = factor1[inde]*(Tv1l_nl[inde][i-1]-(Tb1_nl[inde]{i-1]+fk2/2.0));
fk4 = factorl[inde]*(Tv1l_nl[inde]{i-1]-(Tb1_nl[inde][i-1]+fk3));

Tbl_n1{inde][i] = Tb1_nl{inde][i-1] + (fk1 + 2.0%fk2 + 2.0*k3 + fk4)/6.0;
}

/Isecond level blood

Tb2_nl[inde][ly2/2] = Tbl _nl{inde][lx1];

/lthe interface grid point between level 1 and level 2

/Neft part

for(i=ly2/2-1;i>=0;i--)

{
fk1 = factor2[inde]*(Tv2_nl[inde][i+1]- Tb2_ nl1[inde][i+1]);
fk2 = factor2[inde]*(Tv2_nl[inde}[i+1]-(Tb2_nl[inde][i+1]+fk1/2.0));
k3 = factor2[inde}*(Tv2_nl[inde][i+1]-(Tb2_nl1[inde][i+1]}+{k2/2.0));
fk4 = factor2[inde]*(Tv2_nl[inde}[i+1]-(Tb2_n1[inde][i+1]+fk3));

Tb2_nl{inde][i] = Tb2_nl[inde][i+1] + (k1 + 2.0*fk2 + 2.0*fk3 + k4)/6.0;

}
/fright part
for(i=ly2/2+1;i<=ly2;i++)
{ k1 = factor2[inde]*(Tv2_nl[inde][i-1]- Tb2_nl[inde][i-1]);
fk2 = factor2[inde]*(Tv2_nl[inde][i-1]-(Tb2_nl[inde][i-1]+fk1/2.0));
fk3 = factor2[inde]*(Tv2_nl[inde][i-1]-(Tb2_nl[inde][i-1]+{k2/2.0));
fk4 = factor2[inde}*(Tv2_nl[inde][i-1]-(Tb2_nl1{inde][i-1]+{k3));
\ Tb2 nlfinde][i] = Tb2_nl[inde][i-1] + (fk1 + 2.0*fk2 + 2.0*fk3 + tk4)/6.0;
/fthird level blood

for(7=0;j<2;j++)
{ //the interface grid point between level 2 and level 3
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Tb3 nl[inde][1z3/2+j*(1z3+1)] = Tb2_n1[inde][j*ly2];
//upper part
for(i=1z3/2-1;i>=0;i--)
{
fk1 = factor3[inde]*(Tv3_nl1[inde][i+1+j*(1z3+1)]-
Tb3_nl[inde][i+1+j*(1z3+1)]);

fk2 = factor3[inde]*(Tv3_ni[inde][i+1+j*(1z3+1)]-
(Tb3_nl[inde][i+1+j*(z3+1)]+{k1/2.0));

fk3 = factor3[inde]*(Tv3_n1[inde][i+1+j*(1z3+1)]-
(Tb3_nl[inde][i+1+j*(1z3+1)]+k2/2.0));

fk4 = factor3[inde]*(Tv3_nl[inde][i+1+*(1z3+1)}-
(Tb3 nlfinde][i+1+j*(1z3+1)]+fk3));

Tb3_n1[inde][i+j*(1z3+1)] = Tb3_n1{inde][i+1+j*(1z3+1)]
+ (fk1 + 2.0*fk2 + 2.0+k3 + fk4)/6.0;
}

/Mlower part
for(i=123/2+1;i<=1z3;i++)

fk1 = factor3[inde]*(Tv3_nl[inde][i-1+j*(1z3+1)]
- Tb3 nl[inde][i-1+j*(1z3+1)]);

fk2 = factor3[inde}*(Tv3_nt[inde][i-1+j*(1z3+1)]
-(Tb3_nl[inde][i-1+j*(1z3+1)]+1k1/2.0));

k3 = factor3[inde]*(Tv3_nl[inde][i-1+j*(1z3+1)]
-(Tb3_n1[inde]{i-1+j*(1z3+1)]+1k2/2.0));

fk4 = factor3[inde]*(Tv3_nl1[inde][i-1+j*(1z3+1)]
-(Tb3_nl1{inde][i-1+j*(1z3+1)}+1k3));

Tb3_nl1[inde][i+j*(1z3+1)] = Tb3_nl[inde][i-1+j*(1z3+1)]
+ (fk1 +2.0%Kk2 + 2.04k3 + fk4)/6.0;
}
}

[//fourth level blood
k=0;
for(r=0;r<2;r++)
{
for(j=0;j<2;j++)
{

Tb4_nl[inde][1x4/2+k*(Ix4+1)] = Tb3_n1[inde][r*1z3+j*(1z3+1)];

//left part
for(i=1x4/2-1;i>=0;i--)

fk1 = factord[inde]*(Tv4_n1[inde][i+1+k*(Ix4+1)]
- Tb4_n1[inde][i+1+k*(Ix4+1)]);

fk2 = factor4[inde]*(Tv4_nl[inde][i+1+k*(Ix4+1)]

133



134

-(Tb4_nl[inde]{i+1+k*(Ix4+1)]+fk1/2.0));

fk3 = factord[inde]*(Tv4_nl[inde][i+1+k*(1x4-+1)]
-(Tb4_nl[inde][i+1+k*(Ix4+1)]+fk2/2.0));

fk4 = factor4[inde]*(Tv4_n1[inde][i+1+k*(1x4+1)]
-(Tb4_nl[inde][i+1+k*(Ix4+1)]+fk3));

Tb4_nl[inde][i+k*(Ix4+1)] = Tb4_nl1[inde][i+1+k*(Ix4+1)]
+(fk1 + 2.0%fk2 + 2.0*fk3 + Tkd)/6.0;

}
/Iright part
for(i=Ix4/2+1;i<=x4;i++)
{
fk1 = factor4[inde]*(Tv4 nl[inde]fi-1+k*(1x4+1)]
- Tb4_nl[inde][i-1+k*(1x4+1)]);
fk2 = factor4[inde]*(Tv4_nl[inde]{i-1+k*(Ix4+1)]
-(Tb4_nl[inde][i-1+k*(1x4+1)]+{k1/2.0));
fk3 = factor4[inde]*(Tv4 nl[inde][i-1+k*(Ix4+1)]
-(Tb4_n1[inde][i-1+k*(Ix4+1)]+{k2/2.0));
fkd = factord[inde]*(Tv4 nl[inde][i-1+k*(Ix4+1)]
-(Tb4_nl[inde][i-1+k*(1x4+1)]}+1k3));
Tb4 nl{inde]{i+k*(Ix4+1)] = Tb4 nlinde][i-1+k*(Ix4+1)]
+ (fk1 + 2.0*fk2 + 2.0*fk3 + tkd)/6.0;
}
k++;
}
}
//fifth level blood
k=0;
for(r=0;r<4;r++)

for(3=0;j<2;j++)

{ //the interface grid point between level 4 and level 5
TbS_nl{inde][ly5/2+k*(ly5+1)] = Tb4_nl1[inde][j*I1x4+r*(1x4+1)];
/Neft part
for(i=ly5/2-1;i>=0;i--)

{
fk1 = factor5{inde]*(TvS_nl[inde][i+1+k*(ly5+1)]
- Tb5_nl{inde][i+1+k*(ly5+1)]);

fk2 = factor5[inde]*(TvS_nl{inde][i+1+k*(ly5+1)]
-(Tb5_n1[inde]{i+1+k*(ly5+1)]+fk1/2.0));

k3 = factor5[inde]*(TvS_nl1[inde][i+1+k*(ly5+1)]
-(Tb5_nl[inde][i+1+k*(ly5+1)]+k2/2.0));

fk4 = factor5[inde]*(Tv5_nl[inde][i+1+k*(ly5+1)]
-(Tb5_nl[inde][i+1+k*(ly5+1)]+{k3));



TbS_n1[inde][i+k*(ly5+1)] = TbS_n1[inde][i+1+k*(ly5+1)]
+ (K1 + 2.0%6k2 + 2.0%£k3 + kd)/6.0;

}
/Iright part
for(i=ly5/2+1;i<=lyS;i++)
{
fk1 = factor5[inde]*(Tv5_nl[inde][i-1+k*(ly5+1)]
- Tb5_nl[inde][i-1+k*(lyS+1)]);
k2 = factor5[inde]*(TvS_nl[inde][i-1+k*(ly5+1)]
-(Tb5_nl[inde][i-1+k*(ly5+1)]+tk1/2.0));
fk3 = factor5[inde]*(Tv5_nl[inde][i-1+k*(ly5+1)]
-(Tb5_nl[inde][i-1+k*(ly5+1)]+{k2/2.0));
fk4 = factor5[inde]*(Tv5_nl1[inde][i-1+k*(ly5+1)]
-(Tb5_nl[inde][i-1+k*(ly5+1)]+fk3));
Tb5 nl{inde]{i+k*(ly5+1)] = Tb5_nl{inde]{i-1+k*(ly5+1)]
+ (fk1 + 2.0*fk2 + 2.0*{k3 + fk4)/6.0,
}
k++;
}
/fsixth level blood
k=0;
for(r=0;r<8;r++)

for(j=0;j<2;j++)
{

//the interface grid point between level 5 and level 6
Tb6_nl1{inde][lz6/2+k*(1z6+1)] = Tb5 nl[inde]{j*ly5+r*(ly5+1)];

/eft part
for(i=1z6/2-1;i>=0;i--)
{
fk1 = factor6[inde]*(Tv6_nl[inde][i+1+k*(1z6+1)]
- Tb6_nl[inde]{i+1+k*(1z6+1)]);

fk2 = factor6[inde]*(Tv6_nl[inde][i+1+k*(1z6+1)]
-(Tb6_n1[inde][i+1+k*(1z6+1)]+fk1/2.0));

fk3 = factor6[inde]*(Tv6_nl[inde][i+1+k*(1z6+1)]
-(Tb6_n1[inde][i+1+k*(Iz6+1)]+{k2/2.0));

tk4 = factor6[inde]*(Tv6_n1[inde][i+1+k*(Iz6+1)]
-(Tb6_nl[inde][i+1+k*(1z6+1)]+{k3));

Tb6_n1{inde][i+k*(1z6+1)} = Tb6_nl[inde][i+1+k*(1z6+1)]
+ (K1 + 2.0*fk2 + 2.0*£k3 + k4)/6.0;
}

/Iright part
for(i=1z6/2+1;i<=1z6;i++)

{
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k1 = factor6[inde}*(Tv6 nl[inde][i-1+k*(1z6+1)]
- Tb6_nl[inde][i-1+k*(1z6+1)]);

fk2 = factor6[inde]*(Tv6_n1[inde][i-1+k*(1z6+1)]
-(Tb6_n1{inde][i-1+k*(1z6+1)]+£k1/2.0));

fk3 = factor6[inde]*(Tv6_nl[inde][i-1+k*(Iz6+1)]
-(Tb6_nl[inde][i-1+k*(1z6+1)]+fk2/2.0));

k4 = factor6[inde]*(Tv6_nl[inde][i-1+k*(1z6+1)]
-(Tb6_nl[inde][i-1+k*(1z6+1)]+£k3));

Tb6_nl1[inde][i+k*(1z6+1)] = Tb6_n1[inde][i-1+k*(1z6+1)]
+ (fk1 + 2.0*fk2 + 2.0*fk3 + fk4)/6.0;

k++;
}
}

//seventh level blood
k=0;
for(r=0;r<16;r++)
{
for(j=0;<2;j++)
{ //the interface grid point between level 6 and level 7
Tb7_nl[inde][1x7/2+k*(Ix7+1)] = Tb6_ni[inde][j*1z6+r*(1z6+1)];
/eft part
for(i=1x7/2-1;i>=0;i--)

fk1 = factor7[inde]*(Tv7_nl[inde]{i+1+k*(Ix7+1)]
- Tb7_nl{inde][i+1+k*(Ix7+1)])
+ deltaZ*F7[inde]*Pdot*Tb7_n1[inde][i+1+k*(1x7+1)}/M7[inde];

fk2 = factor7[inde]*(Tv7_nl[inde][i+1+k*(Ix7+1)]
-(Tb7_nl[inde][i+1+k*(Ix7+1)]+fk1/2.0))
+ deltaZ*F7[inde]*Pdot*(Tb7 _nl1[inde][i+1+k*(Ix7+1)]
+fk1/2.0)/M7[inde];

k3 = factor7[inde]*(Tv7_nl{inde][i+1+k*(1x7+1)]
-(Tb7_n1[inde][i+1+k*(1x7+1)]+fk2/2.0))
+ deltaZ*F7[inde]*Pdot*(Tb7_nl[inde][i+1+k*(1x7+1)]
+1k2/2.0)/M7[inde];

fk4 = factor7[inde]*(Tv7_n1[inde][i+1+k*(Ix7+1)]
(Tb7_n1[inde][i+1+k*(Ix7+1)}+£k3))

+ deltaZ*F7[inde]*Pdot*(Tb7_n1[inde][i+1+k*(Ix7+1)]+fk3)M7[inde];

Tb7 ni[inde][i+k*(Ix7+1)] = Tb7_n1[inde][i+1+k*(Ix7+1)]
+(fk1 + 2.0*fk2 + 2.0*£k3 + k4)/6.0;
}

/fright part
for(i=Ix7/2+1;i<=Ix7;i++)
{
fk1 = factor7[inde]*(Tv7_nl{inde][i-1+k*(Ix7+1)]
- Tb7_nl{inde][i-1+k*(Ix7+1)])+ deltaZ*F7[inde]
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*Pdot*Tb7_nl[inde][i-1+k*(Ix7+1))/M7[inde];

fk2 = factor7[inde]*(Tv7 nl[inde][i-1+k*(1x7+1)]
-(Tb7_nl[inde][i-1+k*(Ix7+1)]+k1/2.0))
+ deltaZ*F7[inde]*Pdot*(Tb7_nl[inde][i-1+k*(ix7+1)]
+1k1/2.0)/M7[inde];

k3 = factor7[inde]*(Tv7 _nl[inde]fi-1+k*(Ix7+1)]
~(Tb7_nl[inde][i-1+k*(Ix7+1)]+{k2/2.0))
+ deltaZ*F7[inde]*Pdot*(Tb7_nl[inde][i-1+k*(Ix7+1)]
+fk2/2.0)/M7[inde];

k4 = factor7[inde]*(Tv7_nl1[inde][i-1+k*(Ix7+1)]
~(Tb7_nl[inde][i-1+k*(Ix7+1)}+k3))

+ deltaZ*F7[inde]*Pdot*(Tb7_n1[inde][i-1+k*(Ix7+1)]+fk3)/M7[inde];

Tb7_nl[inde][i+k*(Ix7+1)] = Tb7_nl[inde][i-1+k*(Ix7+1)]
+ (k1 + 2.0*tk2 + 2.0*fk3 + k4)/6.0;

k++;

return(1);

int CalcTb2() // Calculate the blood temperature of vein

{
/fint index = 1;
//double fk1, k2, tk3, fk4;
inde = 1;
setboarderVariable(inde);//set the common blood boarder variables

//seventh level blood

n=0;

k=0;

for(r=0;r<2;r++)//repeat variable in z coordinate

z2=cenZ+(2*r-1)*1z3/2-+2*r-1)*1z4/2;
for(j=0;j<2;j++)//repeat variable in y coordinate

{

for(p=0;p<2;p++)//repeat variable in x coordinate

x2=cenX+(2*p-1)*1x4/2+(2*p-1)*1x5/2-1x7/2;
x3=cenX+(2*p-1)*1x4/2+(2*p-1)*Ix5/2+1x7/2;
for(q=0;q<2;q++) //repeat variable in inner y coordinate

y2=cenY-+(2*j-1)*ly2/2+(2*j-1)*ly3/2+(2*q-1)*ly5/2+(2*q-1)*ly6/2;
for(h=0;h<2;h++)//repeat variable in inner z coordinate

//left part
Tb7_nl[inde][0+k*(1x7+1)] = Tt_n1[x2-2][y2}[z2+(2*h-1)*1z6/2
+2*h-1)*127/2]; //entry point

for(i=1;i<=Ix7/2;i++)

{
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fk1 = factor7[inde]*(Tv7_n1{[inde][i-1+k*(Ix7+1)]
- Tb7_nIfinde][i-1+k*(x7+1)]);

fk2 = factor7[inde]*(Tv7 nl[inde]{i-1+k*(1x7+1)]
-(Tb7_nl{inde][i-1+k*(Ix7+1)]+fk1/2.0));

k3 = factor7[inde]*(Tv7_nl[inde][i-1+k*(Ix7+1)]
-(Tb7_nl[inde][i-1+k*(1x7+1)]+{k2/2.0));

fk4 = factor7[inde]*(Tv7_n1[inde][i-1+k*(1x7+1)]
-(Tb7_nl[inde][i-1+k*(Ix7+1)]+{k3));

Tb7_nl1[inde][i+k*(Ix7+1)] = Tb7 n1[inde][i-1+k*(Ix7+1)]
+ (k1 + 2.0%k2 + 2.0*k3 + 1k4)/6.0;

}

//store the middle temperature (intersection of blood level 6 & 7)
Tb6_n1[inde}[h*1z6+n*(1z6+1)] = Tb7 nl[inde][Ix7/2+k*(Ix7+1)];

/Iright part
Tb7 nlfinde][Ix7+k*(1x7+1)] = Tt _n1[x3+2]{y2]{z2+(2*h-1)
*126/2+(2*h-1)*127/2); //entry point

for(i=1x7-1;i>=1x7/2;i--)

fk1 = factor7[inde]*(Tv7_n1[inde][i+1+k*(Ix7+1)]
- Tb7_nlfinde][i+1+k*(Ix7+D]);

fk2 = factor7[inde]*(Tv7_nl[inde][i+1+k*(Ix7+1)]
-(Tb7_n1[inde][i+1+k*(Ix7+1)]+fk 1/2.0));

k3 = factor7[inde]*(Tv7_nl[inde][i+1+k*(1x7+1)]
-(Tb7_nl[inde][i+1+k*(Ix7+1)]+1k2/2.0));

fk4 = factor7[inde}*(Tv7_nl[inde][i+1+k*(Ix7+1)]
-(Tb7_nl[inde][i+1+k*(1x7+1)}+{k3));

Tb7_n1[inde][i+k*(Ix7+1)] = Tb7_n1[inde][i+1+k*(Ix7+1)]
+ (k1 + 2.0%K2 + 2.0%k3 + k4)/6.0;

}

//take the average of calculation of left and right sides
Tb6_nl[inde][h*I1z6+n*(1z6+1)] = (Tb6 _nl[inde](h*1z6+n*(1z6+1)]
+Tb7_nl{inde][Ix7/2+k*(Ix7+1)])/2.0;
Tb7_nl[inde][Ix7/2+k*(Ix7+1)}= Tb6_n1[inde}[h*1z6+n*(1z6+1)];
k++;
}//h loop end
nt++;
}//q loop end
}/1p loop end
} //j loop end
}//r loop end

//sixth level blood
k=0;
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for(r=0;r<8;r++)
for(j=0;j<2;j++)
{

/lupper part
for(i=1;i<=126/2;i++)
{
fk1 = factor6[inde]*(Tv6 nl1[inde][i-1+k*(1z6+1)]
- Tb6_nl[inde][i-1+k*(1z6+1)]);

fk2 = factor6[inde]*(Tv6_nl[inde][i-1+k*(1z6+1)]
-(Tb6_n1[inde][i-1+k*(1z6+1))+1k1/2.0));

fk3 = factor6[inde]*(Tv6_nl [inde][i-1+k*(1z6+1)]
-(Tb6_n1[inde]fi-1+k*(1z6+1)]+£k2/2.0));

fk4 = factor6[inde]*(Tv6_nl[inde][i-1+k*(1z6+1)]
-(Tb6_nl{inde][i-1-+k*(1z6+1)]+k3));

Tb6_nl{inde][i+k*(1z6+1)] = Tb6_n1[inde][i-1+k*(1z6+1)]
+ (fk1 + 2.04(k2 + 2.0%{k3 + fkd)/6.0;

/Istore the middle temperature (intersection of blood level 5 & 6)
Tb5_nl[inde]{j*ly5+r*(ly5+1)] = Tb6_nl{inde][lz6/2+k*(1z6+1)];

//lower part
//Tb6_n1[inde][lz6+k*(1z6+1)] = Tb7_nl[inde][I1x7/2+H2*k+1)*(1x7+1)];
//the interface grid point between level 6 and level 7

for(i=lz6-1;i>=1z6/2;i--)
{
fk1 = factor6[inde]*(Tv6_n1[inde][i+1+k*(1z6+1)]
- Tb6_nlfinde][i+1+k*(1z6+1)]);

k2 = factor6[inde]*(Tv6_nl[inde][i+1+k*(1z6+1)]
-(Tb6_nl[inde][i+1+k*(1z6+1)]+tk1/2.0));

fk3 = factor6[inde]*(Tv6_n1[inde][i+1+k*(1z6+1)]
-(Tb6_nl{inde][i+1+k*(1z6+1)]+tk2/2.0));

fk4 = factor6[inde]*(Tv6_nl[inde][i+1+k*(1z6+1)]
-(Tb6_nl[inde][i+1+k*(1z6+1)}+1k3));

Tb6 _ni[inde][i+k*(1z6+1)] = Tb6_nl[inde]{i+1+k*(1z6+1)]
+ (fk1 +2.0*fk2 + 2.0*{k3 + tk4)/6.0;
}
//take the average of calculation of left and right sides
TbS nl[inde][j*ly5+r*(ly5+1)] = (Tb5_nl1[inde][j*ly5+r*(lyS+1)]
+Tb6_nl[inde][1z6/2+k*(1z6+1)])/2.0;
Tb6_nlfinde][1z6/2+k*(1z6+1)] = Tb5_nl[inde][j*ly5+r*(ly5+1)];
kt++;

}

}

/ifth level blood
k=0;
for(r=0;r<4;r++)



for(j=0;j<2;j++)
{

//left part
for(i=1;i<=ly5/2;i++)

fk1 = factorS[inde]*(TvS_nl[inde][i-1+k*(ly5+1)]
- Tb5_nl[inde][i-1+k*(ly5+1)]);

fk2 = factorS[inde]*(Tv5_nl[inde][i-1+k*(ly5+1)]
-(Tb5_nl{inde][i-1+k*(ly5+1)]+1k1/2.0));

fk3 = factor5[inde]*(TvS_nl[inde][i-1+k*(ly5+1)]
-(Tb5_nl[inde][i-1+k*(ly5+1)]+fk2/2.0));

fk4 = factor5[inde]*(Tv5_nl1[inde][i-1-+k*(ly5+1)]
-(Tb5_nl[inde][i-1+k*(ly5+1)]+{k3));

TbS nl[inde]li+k*(ly5+1)] = Tb5_nl1[inde][i-1+k*(ly5+1)]
+ (k1 + 2.0*fk2 + 2.0*fk3 + tk4)/6.0;
}
//store the middle temperature (intersection of blood level 4 & 5)
Tb4_nl[inde][j*Ix4+r*(Ix4-+1)] = TbS_nl1[inde][ly5/2+k*(ly5+1)];

//right part
for(i=ly5-1;i>=1y5/2;i--)
{
fk1 = factorS[inde]*(Tv5_nl[inde][i+1+k*(ly5+1)]
- TbS nl[inde][i+1+k*(ly5+1)]);

fk2 = factor5[inde]*(Tv5_nl[inde][i+1+k*(ly5+1)]
-(Tb5_n1{inde][i+1+k*(ly5+1)]+{k1/2.0));

k3 = factor5[inde}*(TvS5_nl[inde][i+1+k*(ly5+1)]
-(Tb5_nl[inde][i+1+k*(ly5+1)}+{k2/2.0));

fk4 = factorS[indeJ*(TvS_nl[inde][i+1+k*(ly5+1)]
-(Tb5_n1[inde][i+1+k*(ly5+1)}+k3));

Tb5_nl[inde][i+k*(ly5+1)] = Tb5_nl1[inde][i+1+k*(lyS+1)]
+ (fk1 +2.0*fk2 + 2.0*{k3 + fk4)/6.0;
}
/ftake the average of calculation of left and right sides
Tb4_nl[inde][j*Ix4+r*(Ix4+1)] = (Tb4_nl[inde][j*Ix4+r*(1x4+1)]
+Tb5_nl[inde}[ly5/2+k*(ly5+1)])/2.0;
Tb5_nl[inde][ly5/2+k*(ly5+1)] = Tb4 nl[inde][j*Ix4+r*(Ix4+1)];
k++;
}

}

//fourth level blood
k=0;
for(r=0;r<2;r++)

{

for(j=0;<2;j++)
{

//left part
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for(i=1;i<=1x4/2;i++)

{

fk1 = factor4[inde]*(Tv4_nl[inde][i-1+k*(Ix4+1)]
- Tb4_nl[inde][i-1+k*(Ix4+1)]);

fk2 = factor4[inde]*(Tv4_nl1[inde][i-1+k*(1x4+1)]
-(Tb4_ni[inde][i-1+k*(Ix4+1)]+fk1/2.0));

fk3 = factord[inde]*(Tv4 nl[inde][i-1+k*(1x4+1)]
-(Tb4_n1[inde][i-1+k*(1x4+1)]+{k2/2.0));

tk4 = factor4{inde]*(Tv4_nl{inde]{i-1+k*(Ix4+1)]
-(Tb4_n1[inde][i-1+k*(Ix4+1)]+1k3));

Tb4_nl[inde][i+k*(1x4+1)] = Tb4 nl[inde][i-1+k*(Ix4+1)]
+ (fk1 +2.0*fk2 + 2.0*{k3 + fk4)/6.0;
}
/fstore the middle temperature (intersection of blood level 4 & 3)

//the order between 3 and 4 are exception to others
Tb3_nl[inde][r*1z3+j*(1z3+1)] = Tb4_n1[inde][Ix4/2+k*(1x4+1)];

//right part

for(i=Ix4-1;i>=1x4/2;i--)

{

fk1 = factor4[inde}*(Tv4_nl[inde][i+1+k*(Ix4+1)]
- Tb4_nl[inde]{i+1+k*(Ix4+1)]);

fk2 = factord[inde]*(Tv4_nl[inde][i+1+k*(Ix4+1)]
-(Tb4_nl[inde][i+1+k*(Ix4+1)]+1k1/2.0));

fk3 = factor4[inde]*(Tv4_nl1[inde][i+1+k*(Ix4+1)]
-(Tb4_n1[inde][i+1-+k*(Ix4+1)]+fk2/2.0));

fk4 = factord[inde]*(Tv4_ni[inde][i+1+k*(Ix4+1)]
-(Tb4_n1finde][i+1+k*(Ix4+1))+fk3));

Tb4_nl[inde]{i+k*(1x4+1)] = Tb4_nl[inde][i+1+k*(1x4+1)]
+ (fk1 +2.0*fk2 + 2.0*tk3 + tk4)/6.0;
}
/ftake the average of calculation of left and right sides
Tb3_nl[inde][r*1z3+j*(1z3+1)] = (Tb3_nl[inde][r*1z3+j*(1z3+1)]
+Tb4_nl[inde][Ix4/2+k*(Ix4+1)])/2.0;
Tb4 nl[inde][1x4/2+k*(I1x4+1)] = Tb3_nl[inde]{r*1z3+j*(1z3+1)];
k++;

}

//third level blood
for(j=0;j<2;j++)
{

//upper part

for(i=1;i<=1z3/2;i++)

{

fk1 = factor3[inde]*(Tv3_nl[inde][i-1+j*(1z3+1)]
- Tb3_nl[inde][i-1+j*(1z3+1)]);
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}

fk2 = factor3[inde]*(Tv3_nl[inde][i-1+j*(1z3+1)]
-(Tb3_nl[inde][i-1+j*(1z3+1)]+1k1/2.0));

k3 = factor3[inde]*(Tv3_nl[inde][i-1+j*(1z3+1)]
-(Tb3_nl[inde][i-1+j*(1z3+1)]+1k2/2.0));

fk4 = factor3[inde]*(Tv3_nl[inde][i-1+j*(1z3+1)]
-(Tb3_nl[inde][i-1+j*(1z3+1)]+k3));

Tb3_nl[inde][i+j*(z3+1)] = Tb3_n1[inde][i-1+j*(1z3+1)]
+(fk1 +2.0*{k2 + 2.0*fk3 + fk4)/6.0;

//store the middle temperature (intersection of blood level 2 & 3)
Tb2_nlfinde][j*1y2] = Tb3_nl[inde][123/2+j*(1z3+1)];

/llower part
for(i=1z3-1;i>=123/2;i--)

fk1 = factor3[inde]*(Tv3_n1[inde][i+1+j*(1z3+1)]
- Tb3_n1[inde][i+1+j*(1z3+1)]);

k2 = factor3[inde]*(Tv3_nl{inde][i+1+j*(1z3+1)]
-(Tb3_nl1[inde][i+14*(1z3+1)]+k1/2.0));

fk3 = factor3[inde]*(Tv3_nl[inde][i+1+j*(1z3+1)]
-(Tb3_nl[inde][i+1+j*(1z3+1)}+fk2/2.0));

tk4 = factor3[inde]*(Tv3_nl{inde][i+1+j*(1z3+1)]
-(Tb3_nl[inde][i+1+j*(12z3+1)]+fk3));

Tb3_nl1[inde]{i+j*(1z3+1)] = Tb3_nl[inde][i+1+j*(1z3+1)]
+ (fK1 + 2.0*fk2 + 2.0*£k3 + fk4)/6.0;

//take the average of calculation of left and right sides
Tb2 nl[inde][j*ly2] = (Tb2_nl1[inde][j*ly2]+Tb3_ nl[inde][1z3/2+j*(1z3+1)])/2.0;
Tb3_nl[inde]{iz3/2+j*(1z3+1)] = Tb2_nl[inde][j*ly2];

//second level blood

//left part

for(i=1;i<=ly2/2;i++)

{

fk1 = factor2[inde]*(Tv2_n1[inde]fi-1]- Tb2_n1[inde][i-1]);

fk2 = factor2[inde]*(Tv2_nl[inde]{i-1]-(Tb2_nl[inde][i-1]+fk1/2.0));
fk3 = factor2[inde]*(Tv2_nl[inde](i-1]-(Tb2_nI[inde][i-1]+fk2/2.0));
fk4 = factor2[inde]*(Tv2_n1[inde][i-1]-(Tb2_nl[inde][i-1]+fk3));

Tb2_nl1[inde][i} = Tb2_ni[inde][i-1] + (k1 + 2.0%k2 + 2.0*fk3 + fk4)/6.0;

1111111 store the middle temperature (intersection of blood level 2 & 1)

Tb1l _nlfinde][1x1] = Tb2 nl[inde][ly2/2};

/Iright part
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for(i=ly2-1;i>=ly2/2;i--)

{ fk1 = factor2{inde]*(Tv2_nl[inde][i+1]- Tb2_n1[inde][i+1]);
k2 = factor2[inde]*(Tv2_nl[inde][i+1]-(Tb2_n1[inde][i+1]+fk1/2.0}));
1k3 = factor2[inde]*(Tv2_nl[inde][i+1]-(Tb2_nl1[inde][i+1]+{k2/2.0));
fk4 = factor2[inde]*(Tv2_n1[inde][i+1]-(Tb2_nl[inde][i+1]+fk3));
} Tb2_nl[inde][i] = Tb2_nifinde][i+1] + (fk1 + 2.0*fk2 +2.0*%fk3 + fk4)/6.0;

//take the average of calculation of left and right sides
Tbl nl[inde][Ix1] = (Tbl_n1[inde][1x1] + Tb2_n1[inde]{ly2/2])/2.0;
Tb2 nl[inde]{ly2/2] = Tb1l nlfinde][Ix1];

/first level blood
for(i=lx1-1;i>=0;i--)
{
fk1 = factor1{inde]*(Tvl nl[inde]{i+1]- Tbl nl[inde][i+1]);

fk2 = factor1[inde]*(Tv1 nl[inde}[i+1]-(Tb1 nl[inde]{i+1]+fk1/2.0));
k3 = factor1[inde]*(Tv1_nl[inde][i+1]-(Tb1 nl[inde][i+1]+fk2/2.0));
fk4 = factor1[inde]*(Tv1_nl1{inde][i+1]~(Tbl_nl[inde][i+1]+ik3));

Tbi_ni{inde](i] = Tbl_nl[inde][i+1] + (k1 + 2.0*fk2 + 2.0*fk3 + fk4)/6.0;
}
return(1);
}

double CalcTt() //Calculate the tissue temperature

{
//[double maxErr, f; //defined as gloab varialble by zeng
//double aa, bb; //defined as gloab varialble by zeng

//initialize tridiagonal system

memcpy(a, a0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1)),
memcpy(b, b0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memcpy(c, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));
memset(d, 0, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));

i
//initialize tri-diangonal system
for(i=1;i<=NX-1;i++)

for(j=1;j<=NY-1;j++)

for(z=1;z<=NZ1-1;z++)

{
//Crank_Nicolson scheme for Laser-case
*=( 2*p1*C1+Wb1*Cbl*deltaT)*Tt_n1_I[i]{j][z] +
(-:2*p1*C1+Wb1*Cb1 *deltaT)*Tt[i][j}[z]-
2*Wb1*Cb1*deltaT*(Tb3_nl[0][LZ3A])
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-k1*deltaT*( (Tt_nl_I{i-1][j][z]+Tt_n1_Ifi+1]][z]
2*Tt_n1_I[i][jl[z])/(deltaX *deltaX)
+(Tt_nl_I[i][j-1][z]+Tt_nl_I[i][j+1]{z]
2*Tt_nl_I[i][j][z])/(deltaY *deltaY)
H(Tt_nl_I[il[jl{z-1]+Tt_nl_I[i}[i}[z+1]
2*Tt_nl_I[i]{jl[z])/(deltaZ*deltaZ))

Kk 1*deltaT*( (Tt[i-1][j}[z]+ T[i+1][j][z)
2*Tt[i][j][z])/(deltaX *deltaX)
+(TH[i][j-1][Z+ T+ 1 )[z]-2* TG [z])/(deltaY *deltaY)
+(Tt[]j]{z- 1+ Te[i) 1 [z+ 1)-2* TH{il[j][2])/(deltaZ *deltaZ) ) );

dlil[jllz] = (2*p1*C1 + Wb1*Cb1*deltaT +(4*k1*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY*deltaY)) + (2*k1*deltaT)/(deltaZ*deltaZ) )

* Tt nl _I[i)[j)[z]- k1*deltaT /(deltaZ*deltaZ) * (Tt nl_I[i][j]{z-1]

+ Tt nl_I[i][j}[z+1]) - omega * f; */

//Tmplicit scheme for Laser-case
*f=((pl*C1+Wb1*Cbl*deltaT)*Tt_n1_I[i]{jl[z] - p1*C1*Tt[i][j][z]

-k1*deltaT*( (Tt_nl_I[i-1][j][z]+Tt_n1_I[i+1][][z]
-2.0*Tt_nl_I[i][jl[z])/(deltaX*deltaX)
+(Tt_ni_I[ij{j-1][z]*+Tt_nl_I[i){+1](z]
2.0*Tt_n1_I[i][j]{z])/(deltaY *deltaY)
+(Tt_n1_I[i][)z-1]1+Tt_n1_K[i]{j)[z+1]
-2.0*Tt_n1_I[i][j}{z])/(deltaZ*deltaZ)) );

d(il[jl[z} = (p1*C1 + Wb1*Cb1*deltaT + (4.0*k1*deltaT)*(1.0f/(deltaX *deltaX)
+1.0f/(deltaY *deltaY)) + (2.0*k1*deltaT)/(deltaZ*deltaZ))
* Tt nl_I[i][jl[z] - k1 *deltaT /(deltaZ*deltaZ)
* (Tt_nl_I[i][j1[z-1] + Tt_nl_I[i][j}[z+1])
- omega * f; ¥/
//radiation_case: Dr Dai's method
f=(Q2.0*p1*C1*(1.0+tau*Wb1*Cb1/(p1*C1)+2.0*tau/deltaT)
+Wb1*Cb1*deltaT)*Tt nl I[i][jl[z] + (2.0*p1*C1*(1.0+tau*Wb1*Cb1/(p1*C1)
-2.0*tau/deltaT)+Wb1*Cb1*deltaT)*Tt[i][jl[z] - 4.0*p1*C1*Ut{i][j]l[z]
- 2.0*Wb1*Cb1*deltaT*(Tb7 n1[0}[LX7A])
- k1*deltaT*( (Tt_n1 _I[i-1][j)[z]+Tt_nl_I[i+1][j][z]
-2*Tt_nl_I[i][jl{z])/(deltaX*deltaX)+(Tt_nl_I[il[j-1][z]
+Tt _nl I[i][j+1][z]-2*Tt n1_I{i][j][z])/(deltaY *deltaY)
+(Tt_nl_I[il{}[z-1}+Tt_nl_I[i](j]{z+1]
-2*Tt_nl_I[i][j]1[z])/(deltaZ*deltaZ) )
-k1*deltaT*( (Tt[i-1][j1[z}+ Tt[i+1][j}{z]
-2*Tt[i][j1[z])/(deltaX*deltaX)
HTt{)[-1][z]+Ttli][j+1][z])-2* Ttfil[]{z])/(deltaY *deltaY)
+H(Tt[i]{j{z- 1]+ Tt[i}{j1[z+1]-2* Tt[i)[j1[z])/(deltaZ*deltaZ) ) );

dli][j]{z] = (2.0*p1*C1*(1.0+tau* Wb1*Cb1/(p1*C1)+2.0*tau/deltaT)
+ Wb1*Cb1*deltaT + (4.0*k1*deltaT)*(1.0f/(deltaX *deltaX)
+1.0f/(deltaY *deltaY)) + (2.0*k1 *deltaT)/(deltaZ*deltaZ))

* Tt_nl I[i][jl[z]- k1*deltaT /(deltaZ*deltaZ)

* (Tt_nl_I[i][j][z-1] + Tt_n1_I[i][j}[z+1])- omega * f;

}
d[i][jIINZ1]=0; /d=0 from -k1*u-1 + (k1+k2)*u -k2*u+1 =0

for(z=NZ1+1;z<=NZ2-1;z++)

{
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//Crank_Nicolson scheme for Laser-case

= (2*p2*C2+Wb2*Cb2*deltaT)*Tt_n1_I[i][j]{z] + (-
2*p2*C2+Wb2*Cb2*deltaT)*Tt[i][j][z) -2* Wb2*Cb2*deltaT*(Tb3_n1[0][LZ3A])
-k2*deltaT*( (Tt_n1_I{i-1]}[jl[z}+Tt_ni_Ii+1][j]{z]-2*Tt_n1_I{il[ji[z])
/(deltaX*deltaX)+(Tt_n1_I{i]{j-1]{z]+Tt_n1_I{i][j+1]{z]
-2*Tt nl _I[i][jl[zD)/(deltaY *deltaY)+(Tt _nl I[i][jl{z-11+Tt_nl _I[i]{jl{z+1]
-2*Tt_n1_I[i][jl{z])/(deltaZ*deltaZ) )
-k2*deltaT*( (Tt[i-1]0]1[z}+ Tt[i+115)[z]-2* Tt[i][j][z])/(deltaX *deltaX)
HTt[][G-1][z}+ Te[i][j+11{z]-2 *Te[i][j][z])/(delta¥Y *deltaY)
HTHi][1{z- 11+ Te[i][j][z+1]-2* Tt[i][j1[z])/(deltaZ*deltaZ) ) );

d[illj][z] = ( 2*p2*C2 + Wb2*Cb2*deltaT + (4*k2*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY *deltaY)) + (2*k2*deltaT)/(deltaZ*deltaZ) ) * Tt_n1_I[i][j][z]
- K2*deltaT /(deltaZ*deltaZ) * (Tt_nl_I[i][j][z-1] + Tt_nt_I[i]{][z+1])

- omega * f;*/

/MTmplicit scheme for Laser-case

/= ((p2*C2+Wb2*Cb2*deitaT)*Tt_nl_I[i]{jl[z] - p2*C2*Tt{i]{ji(z]
-Wb2*Cb2*deltaT*(Tb3_n1[0][LZ3A))

-k2*deltaT*( (Tt_nl _I[i-1)[j}{z]+Tt_n1_I[i+1][j]{z]-
2.0*Tt_nl_Ifi][jl[z]//(deltaX*deltaX)+(Tt_nl _I[i][j-1][z}+ Tt _nl Ifi][j+1][z]-
2.0*Tt_nl_I[i][j}{z])/(deltaY *deltaY)+(Tt_n1_I[i]{j}[z-1]+Tt_n1_I[i][j}[z+1]-
2.0*Tt_nl_I[i][j1[z])/(deltaZ*deltaZ)) );

d[il[j1[z] = ( p2*C2 + Wb2*Cb2*deltaT +
(4.0*k2*deltaT)*(1.0f/(deltaX*deltaX)+1.0f/(deltaY *deltaY))+
(2.0*k2*deltaT)/(deltaZ*deltaZ)) * Tt nl1_I[i][j][z] - k2*deltaT
/(deltaZ*deltaZ) * (Tt_ni_I[i}[j][z-1] + Tt nl _I[i]{jl[z+1])- omega * f; */

//radiation_case

//radiation_case: Dr Dai's method

f=( (2.0%p2*C2*(1.0+tau*Wb2*Cb2/(p2*C2)+2.0*tau/deltaT)

+Wb2*Cb2*deltaT)*Tt_nl1_I[i}[j][z] + (2.0*p2*C2*(1.0+tau* Wb2*Cb2/(p2*C2)-

2.0*tau/deltaT)+Wb2*Cb2*deltaT)* Tt{i][j1{z] - 4.0*p2*C2*Ut[i](ji{z] -
2.0*Wb2*Cb2*deltaT*(Tb7_nl[0][LX7A]) - k2*deltaT
*((Tt_nl_I[i-1][j1[z]*+Tt_nl_I[i+1]{j]{z]-2*Tt_ni_I[i][j][z]/(deltaX *deltaX)
HTt_nl _I[i]{j-1][z]+Tt nt_Hi][j+1][z]-2*Tt _nl I[i][j)[z])/(deltaY *deltaY)
+HTt_nl_I[i][jl[z-1]+Tt_nl_I{il{jl[z+1])-2*Tt_nt _I[i]{j][z])/(deltaZ*deltaZ)
-k2*deltaT*( (Tt[i-1][j][z}+Tt[i+1][j]{z]-2* Tt[i][j1[z])/(deltaX *deltaX)
HTt[i][j-1][z]+Tt[i)[j+1][z]-2* Tt[i][)[z]/(deltaY *deltaY)
HTt[i][j1[z- 11+ Ttlil[j1{z+ 112 *Tt[i][j1[z])/(deltaZ*deitaZ) ) );

dli]{jllz] = (2.0*p2*C2*(1.0+tau*Wb2 *Cb2/(p2*C2)+2.0*tau/deltaT)

+ Wb2*Cb2*deltaT + (4.0*k2*deltaT)*(1.0f/(deltaX*deltaX)+1.0f/
(deltaY*deltaY)) + (2.0*k2*deltaT)/(deltaZ*deltaZ) y* Tt nl_Ifi]{j]{z]

- k2*deltaT /(deltaZ*deltaZ) * (Tt_nl_I[i]{j][z-1] + Tt_nl_I[i][j]{z+1])-omega * f;

d[i][jIINZ2]=0; /d=0 from -k1*u-1 + (k1+k2)*u -k2*u+1 =0

// third skin layer
for(z=NZ2+1;z<=NZ3-1;z++)

{

//Crank_Nicolson scheme for Laser-case
/*€=((2*p3*C3+Wb3*Cb3*deltaT)*Tt_nl_I{iJ[j}{z] + (-
2*p3*C3+Wb3*Cb3*deltaT)*Tt[i][j][z] -2* Wb3*Cb3*deltaT*(Tb3_n1[0]J[LZ3A])
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k3*deltaT*( (Tt_nl_I[i-1)[j][z]+ Tt _nl_I[i+1]{}z)-
2*Tt_nl_I[i][j}[z])/(deltaX*deltaX)+(Tt_nl_I[i][j-1][z]+Tt_nl_I[iJ[j+1][z]-
2*Tt_nl_I[i][jl[z])/(deltaY*deltaY)+(Tt_n1_I[i][j][z-1]+Tt_nl_I[i](1[z+1}-
2*Tt_nl_I{i][j][z])/(deltaZ*deltaZ)) -k3*deltaT

*( (THfi- N z)+THi+11[)[2)-2* Te[i][}[z))/(deltaX *deltaX)
H(THi][-11[z]+ Tl [j+1][z}-2* Tt[i][j][z])/(deltaY *deltaY)

H(Tt[ilj1[z- 11+ Tt ][z + 1]-2* TH[i](][2])/(deltaZ*deltaZ) ));

dfil[jl[z] = (2*p3*C3 + Wb3*Cb3*deltaT +(4*k3*deltaT)*(1.0f/(deltaX *deltaX)
+1.0f/(deltaY *deltaY)) + (2*k3*deltaT)/(deltaZ*deltaZ) )* Tt_nl _I[i][j]{z]
- k3*deltaT /(deltaZ*deltaZ) * (Tt_n1 _I[i]{j])[z-1] + Tt nl_I[i][jl[z+1]) - omega * f;*/

/Implicit scheme for Laser-case

/*f=( (p3*C3+Wb3*Cb3*deltaT)*Tt nl_I[i][jl[z] - p3*C3*Tt[i][jI[z]
-Wb3*Cb3*deltaT*(Tb3 n1[0][LZ3A]) -k3*deltaT*( (Tt_n1_I[i-1][j][z]
+Tt_nl_I[i+1][j1{z]-2.0*Tt ni I[i][jl[z])/(deltaX*deltaX)+(Tt nl I{i]{j-1][z]
+Tt_nl_I[i][j+1]{z]-2.0*Tt_n1 _I[i][jl[z])/(deltaY*deltaY)+(Tt nl1 I[i][j][z-1]
+Tt nl_I[i][jl{z+1]-2.0*Tt_nl_I{i]{jl[z])/(deltaZ*deltaZ)));

d[ili][z] = ( p3*C3 + Wb3*Cb3*deltaT +(4.0*k3*deltaT)*(1.0f/(deltaX*deltaX)
+1.0f/(deltaY *deltaY)) + (2.0*k3*deltaT)/(deltaZ*deltaZ)) * Tt_n1_I[i][j][z]
- k3*deltaT /(deltaZ*deltaZ) * (Tt_n1_I[i][jl{z-1] + Tt_nl_I[i][j][z+1])- omega * £, */

/fradiation_case

//radiation_case: Dr Dai's method

f= ( (2.0¥p3*C3*(1.0+tau* Wb3*Cb3/(p3*C3)+2.0*tau/deltaT)
+Wb3*Cb3*deltaT)*Tt_n1_I[i]{j][z] + (2.0*p3*C3*(1.0+tau*Wb3*Cb3/(p3*C3)-
2.0*taw/deltaT)+Wb3*Cb3*deltaT)* Tt[i][j][z] - 4.0*p3*C3*Ut[i][j][z] —
2.0*Wb3*Cb3*deltaT*(Tb7_nl1[0][LX7A]) - k3*deltaT
*((Tt_nl_I[i-11{j](z]+Tt_n1_I[i+1]{j][z]-
2*Tt_nl_I[i][j}[z])/(deltaX*deltaX)+(Tt_n1_I[i]{j-1][z]+Tt nl1_I[i]j[j+1][z]-
2*Tt_nl_I[i][j}[z])/(deltaY *deltaY)+(Tt_nl_I[i][jl[z-1]+Tt nl_I[i][ji[z+1]-
2*Tt_nl_I[i][jl[z])/(deltaZ*deltaZ) ) -k3*deltaT

*((TH[i-1]G][z]+ Teli+1](j1{z])-2* Te[i}[j1{z])/(deltaX *deltaX)
+(Tt[i)(j-11[z]+Tt[i){j+1]{z]}-2*Tt[i] [j}[z])/(deltaY *deltaY)
+(Tt[i)[j1[z-11+Tt[i][j]1[z+1]-2*Tt[i] [j1[z])/(deltaZ *deltaZ});

d[i][1(z] = ( 2.0*p3*C3*(1.0+tau*Wb3*Cb3/(p3*C3)+2.0*tauw/deltaT) + Wb3*Cb3*deltaT
+ (4.0*k3*deltaT)*(i.0f/(deltaX*deltaX)+1.0f/(deltaY *deltaY))
+ (2.0*k3*deltaT)/(deltaZ*deltaZ))* Tt _nl Ifi}[j]{z]
- k3*deltaT /(deltaZ*deltaZ) * (Tt _nl1_I[i](jl[z-1] + Tt_nl _I[i][j][z+1]) - omega * f;
}/for NZ2 to NZ3
3]

/IwriteLinearSys(NX/2, NY/2, t, I);
//ajust tissue start here

double tE[NZ3], tF[NZ3];
//solve the tria-diangonal system
for(i=1;i<=NX-1;i+t+)

for(j=1;j<=NY-1;j++)

// Without convection on the surface
MF[1] =d[iIGI] /7 (bli)GIL] + ali]GIL] );
tE[1] = -c[i]j1[1] / (b[EIGI] + alil1(1] ); */
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// With convection on the surface

/F[1} = d[GI11-blLIGIH 1) ¥*Hf*deltaZ*Tf/(k 1 +deltaZ* Hf))

/ (B)GI1T*k1/(k1+deltaZ *Hf) + a[i][jI[1] );*/

MME[1] = -c[i1[j1[1] / ( bLAIG I 11*k 1/(k 1 +deltaZ*HS) + a[i][j1[1] );

// With radiation on the surface

aa =kl + Hf*deltaZ + sigma*epsilon*deltaZ *((Tf+273.0)*(Tf+273.0)
+(Tt_nl_I[i][j][01+273.0)*(Tt_nl_I{i][j][0]+273.0)*((Tf+273.0)
+ (Tt_n1_I[i][j][0]+273.0));

bb = Hf*deltaZ*Tf + sigma*epsilon*deltaZ*((Tf+273.0)*(Tf+273.0)
+ (Tt_n1_I[i][j}[0]+273.0)*(Tt_n1_I[i][j][0}+273.0))*((T£+273.0)
+(Tt_n1_I{i](][0]+273.0))*Tf;

tF[1] = (d[i](j](1] - b{i][i][1]*bb/aa) / (b[i](j})[1]*k1/aa + a[i]j][1]);
tE(1] = -c[i]j)(1] / (bli]]{1]*k1/aa + a[i][j][1]);

for(z=2;z<=NZ3-1;z++){
tF[2] = (LiJ][2] - OGN Flz-11) / (alillllz] + bliIGNzI*ELz-11);
| tE[z] = -c[il[jllz] / (alil[jllz] + bli][j]{z]*E[z-1] );

Tt_nl[i][]INZ3-1] = tF[NZ3-1] / (1-tE[NZ3-1]);

for(z=NZ3-2;2>=1;z--)
Tt_nl1[i][jl{z] = tF[z] + tE[z}*Tt_nl[il{jl[z+1];

i

//assign tissue boundary grid points

for(i=0;i<=NX;i++)
for(G=0;j<=NYj++)

// With convection on the surface
Tt_nl[i}[j1[0] = (Tt_n1[i]jI[1]*k1+Hf*deltaZ*Tf
+sigma*epsilon*deltaZ *TH*TT*T*TH)
/(k1+deltaZ *Hf+sigma*epsilon*deltaZ*Tt_n1_I[ij[j][0]
*Tt_nl_I[{]{j]1{0]*Tt_n!_I[i][j][0]);
Tt_nlI[i][jIINZ3] = Tt_nl[i][j][NZ3-1];
}

for(z=0;z<=NZ3;z++)
for(j=0;j<=NY;j++)
{
Tt_n1[0][j}{z] = Tt_n1[1][j][z];
Tt_ni[NX][jl[z] = Tt_nl[NX-1][j]l[z];
}

for(z=0;z<=NZ3;z++)
for(i=0;i<=NX;i++)
{
Tt ni[i][0][z] = Tt_nifi][1][z];
Tt nl[i][NY][z] = Tt_nl[i][NY-1][z];
}



/fajust tissue start here//////11/111111111111111]

getTv_blood(0);

getTv_blood(1);

//calculate blood temperature based on given vessel temperature
CalcTb();

CalcTb2();

reloadbloodeteperature(0);

reloadbloodeteperature(1);

CalcVessel(0);

CalcVessel(1);

//calculate sum of square error
maxErr] = 0;

for(i=1;i<NX;it++)
for(j=1;j<NY;j++)
for(z=1;z<NZ3;z++)

temp = fabs(Tt_n1[i][j]{z] - Tt_n1_I[i][j]{z]);
if(temp > maxErrl)
maxErr] = (double)temp;

}

//store result to loop 1

memcpy(Tt nl_I, Tt nl, sizeof(double)*(NX+1)*(NY+1)*(NZ3+1));

return maxErrl;

}

void reloadbloodeteperature(int index)

{

setboarderVariable(index); //set the common blood boarder variables

/reassign back the grid points in blood
/Nevel 7
k=0;
for(r=0;r<2;r++)//repeat variable in z coordinate
{
z3=cenZ+(2*r-1)*123/2+(2*r-1)*1z4/2;
for(j=0,j<2;j++)//repeat variable in y coordinate
{
y3=cenY+(2¥j-1)*ly2/2+(2*j-1)*ly3/2;
for(p=0;p<2;p++)//repeat variable in x coordinate

for(q=0;q<2;q++) //repeat variable in inner y coordinate

for(h=0;h<2;h++)//repeat variable in inner z coordinate

{
for(x=0;x<=Ix7;x++)
{
x2=cenX+(2*p-1)*Ix4/2+(2*p-1)*1x5/2-1x7/2+x;
x3=x+k*(Ix7+1);
for(y=Ly<ly7;y++)

y2=y3+(2*q-1)*ly5/2+(2*q-1)*1y6/2-1y7/2+y;
for(z=1,z<127;z++)

148



149

{
72=73+(2*h-1)*126/2+(2*h-1)*127/2-127/2+z,
Tt nl[x2]{y2][z2] = Tb7_nl[index][x3];
}
3
}

k++;

//sixth level

k=0;

for(r=0;r<2;r++)//repeat variable in z coordinate
{
z2=cenZ+(2*r-1)*1z3/2+(2%*r-1)*1z4/2-126/2;
for(j=0;j<2;j++)//repeat variable in y coordinate

{
y3=cenY+(2*j-1)*1y2/2+(2*j-1)*ly3/2;
for(p=0;p<2;p++)//repeat variable in x coordinate

x2=cenX+(2*p-1)*Ix4/2+(2*p-1)*1x5/2-1x6/2;
for(q=0;q<2;q++) //repeat variable in inner y coordinate

y2=y3+(2*q-1)*ly5/2+(2*q-1)*1y6/2-1y6/2;
for(z=0;z<=1z6;z++)
for(y=1y<ly6;y++)
{
for(x=1;x<Ix6;x++)

Tt_nl[x2+x][y2+y][z2+z]= Tb6_n1{index][z+k*(1z6+1)];

}
}

//fifth level

k=0;

for(r=0;r<2;r++)//repeat variable in z coordinate

{
2=cenZ+(2*r-1)*1z3/2+(2*r-1)*1z4/2-125/2;
for(j=0;j<2;j++)//repeat variable in y coordinate

y2=cenY+(2*j-1)*ly2/2+(2*j-1)*1y3/2-1y5/2;
for(p=0;p<2;p++)//repeat variable in x coordinate

x2=cenX+(2*p-1)*I1x4/2+(2*p-1)*Ix5/2-1x5/2;

for(y=0;y<=ly5;y++)
for(x=1;x<Ix5;x++)
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for(z=1;z<l1z5;z++)
Tt_nl[x2+x][y2+y]{z2+z] = Tb5_n1[index][y+k*(ly5S+1)];

k++;

}

//fourth level

k=0;

for(r=0;r<2;r++)

{
z2=cenZ+(2*r-1)*1z3/2+(2*r-1)*1z4/2-1z4/2;
for(j=0;j<2;j++)
{

y2=cenY+(2*j-1)*ly2/2+(2*j-1)*1y3/2-1y4/2;
for(x=0;x<=1x4;x++)

{
x2=x4at+x;
for(y=Ly<ly4;y++)
for(z=1;z<1z4;z++)
Tt nl[x2][y2+y]{z2+z]=Tb4_ nl1[index][x+k*(1x4+1)};
}
kt++;
}
}
//third level

for (k=0;k<2;k++)

y2=y3a+k*(ly3+ly2);
for(z=0;z<=1z3;z++)
for(y=1;y<ly3;y++)
for(x=1;x<Ix3;x++)
Tt_nl[x3a+x]{y2+y][z3a+z]=Tb3_nl[index][z+k*(1z3+1)];
}

//second level
for( y=0;y<=ly2;y++)
for(z=1,z<122;z++)
for(x=1;x<Ix2;x++)
Tt nl[x2a+x][y2a+y][z2a+z] = Tb2 nl[index][y];

//first level
for(x=0;x<=Ix1;x++)
for(y=1;y<lyl;y++)
for(z=1;z<lz1;z++)
Tt nl[xla-x][yla+y][zlatz] = Tbl_nl[index][x];
return;

}

void CalcVessel(int index)



setboarderVariable(index); //set the common blood boarder variables

i

//calculate blood vessel temperature on sides

//irst level

for(y=ylat1;y<ylb;y++)//x-y plane
for(x=x2b+1;x<=x1a;x++)

Tt n1{x][yl{zla] = ( Tt_nl[x][y][zla-1] + Tbl_ nl[index][x1a-x]
* deltaZ*Bi ) / (1+deltaZ*Bi);
Tt ni[x](y][z1b] = ( Tt nl[x]{y]l(z1b+1] + Tb1l_nl[index][x1a-x]}
* deltaZ*Bi ) / (1+deltaZ*Bi);
}
for(z=zla+1;z<zlb;z++)
for(x=x2b+1;x<=x1la;x++)//x-z plane

Tt nl[x][yla][z] = ( Tt_nl[x][yla-1][z] + Tbl_nl[index][x1a-x]
* deltaY*Bi ) / (1+deltaY *Bi);
Tt n1[x][ylb][z] = ( Tt _nl[x][ylb+1][z] + Tb1l nl[index][x1a-x]
* deltaY*Bi ) / (1+deltaY *Bi);
}
for(z=zla+1;z<z2a;z++)//left most sides
{
for(y=yla+L;y<ylb;y++)
Tt n1[x2b][y][z] = ( Tt_nl{x2b-1][y][z] + Tbl_nl1[index][Ix1-1]
* deltaX*Bi ) / (1+deltaX*Bi);
/lside edges
Tt_n1{x2b][ylal[z] = ( Tt_nl[x2b+1][yla][z] + Tt nl{x2b][yla+1][z] )/2;
Tt nl[x2b][y1b][z] = ( Tt nl[x2b+1]{y1b]]z]
+ Tt _ni[x2b][ylb-1][z] }/2;
}
for(z=z2b+1;z<z1b;z++)
{
for(y=yla+1;y<ylb;y++)
Tt_n1{x2b][y][z] = ( Tt_nl1[x2b-1]{y]{z] + Tbl nl1[index][Ix1-1]
* deltaX*Bi ) / (1+deltaX*Bi);
/fside edges
Tt_ni[x2b][yla][z] = ( Tt nl[x2b+1][yla][z] + Tt_nl{x2b]{yla+1][z] )/2;
Tt _n1[x2b][ylb][z] = ( Tt nl[x2b+1}[y1b][z] + Tt_n1[x2b][ylb-1][z] )/2;
}
for(x=x2b+1;x<=x1a;x++)
{
Tt nl[x][yla][zla] = ( Tt nl{x][ylatl][zla] + Tt nl{x][yla}[zla+1] )/2;
Tt_nl[x][yla][zlb] = ( Tt nl{x][yla+1]{zlb] + Tt_nl[x][yla](zlb-1] }/2;
Tt nl{x]{ylb){zla] = ( Tt nl[x][ylb-1][zla] + Tt nl{x]}[ylb][zla+1] }/2;
Tt_nl[x][y1b][z1b] = (Tt nl[x][ylb-1][z1b] + Tt_nl[x][ylb][z1b-1] )/2;
//save blood boarder temperature
Tbdi[index][0][x1a-x] = Tt _nl[x][yla][zla];
Tbd1[index][1][x1a-x] = Tt _nl{x][y1b][zla];
TbdI[index]{2][x1a-x] = Tt _nl[x][yla]j{zib];
Tbd1[index][3][x1a-x] = Tt nl[x][ylb}[z1b];
}
/vertix
Tt _nl1[x2b][yla][zla] = ( Tt nl[x2b+1][yla][zla] + Tt_nl[x2b][yla+1][z]a]
+ Tt _nl{x2b][yla]{zla+1] )/3;
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Tt nl[x2b][yla][zlb] =( Tt nl[x2b+1]{yla](z1b] + Tt n1{x2b]j[yla+1](z1b]
+ Tt _n1[x2b][yla][z1b-1] )/3;

Tt nl{x2b][ylb]{zla] = ( Tt nl[x2b+1](y1b]{zla] + Tt nl1{x2b][ylb-1][z1a]
+ Tt_n1{x2b][y1b][z1a+1] )/3;

Tt nl{x2b][ylb][z1b] = ( Tt_nl[x2b+1][y1b]{z1b] + Tt nl[x2b][ylb-1][z1b]
+ Tt n1{x2b][ylb]{z1b-1] )/3;

//save blood boarder temperature

Tbd1[index][0][x1a-x2b] = Tt_nl1{x2b][yla][z]1a];

Tbd1{index][1][x1a-x2b] = Tt ni[x2b][ylb]{zla];

Tbdl[index]{2][x1a-x2b] = Tt nl[x2b][yla]{z1b];

Tbdl1[index][3][x1a-x2b] = Tt _nl[x2b][y1b][z1b];

/Nevel 2
for(y=y2a+1;y<y2b;y++)//x-y plane
for(x=x2a+1;x<x2b;x++)
{
Tt nl{x]{yl[z2a] = ( Tt _nl[x][y]{zZa-1] + Tb2_nl[index][y-y2a]
* deltaZ*Bi ) / (1+deltaZ*Bi);
Tt nl{x][y){z2b] = ( Tt nl[x][y][z2b+1] + Tb2 nl[index][y-y2a]
* deltaZ*Bi ) / (1+deltaZ*Bi);

for(z=22a+1;z<z2b;z++)
{ /ly-z plane
for(y=y2a+1;y<y2b;y++)
Tt nl{x2a][y][z] = ( Tt_nl[x2a-1]{y][z] + Tb2_nl[index][y-y2a]
* deltaX*Bi ) / (1+deltaX*Bi);
for(y=y2atl;y<ylayy++)
Tt nl1[x2b][y]{z] = ( Tt n1[x2b+1]{y]{z] + Tb2_ nl[index][y-y2a]
* deltaX*Bi ) / (1+deltaX*Bi);
for(y=ylb+1;y<y2b;y++)
Tt nl{x2b]{y]{z] = ( Tt_nl[x2b+1][y][z] + Tb2 nl1[index][y-y2a]
* deltaX*Bi ) / (1+deltaX*Bi);
//x-z plane
for(x=x2a+1;x<x3a;x++)

Tt_nl[x][y2al{z] = ( Tt nl[x][y2a-1][z] + Tb2_nl[index][1]
* deltaY*Bi ) / (1+deltaY *Bi);
Tt nl[x][y2b][z} = ( Tt _nl[x][y2b+1][z] + Tb2 nlfindex][ly2-1]
* deltaY*Bi ) / (1+deltaY *Bi);

}
for(x=x3b+1;x<x2b;x++)

Tt ni[x][y2a](z] = ( Tt_nl{x]{y2a-1][z] + Tb2_nl[index][1]
* deltaY*Bi ) / (1+deltaY*Bi);
Tt_n1[x][y2b][z] = ( Tt_nl[x][y2b+1]{z] + Tb2_nl[index][ly2-1]
* delta¥Y*Bi ) / (1+deltaY *Bi);
}

//vertical edges

Tt nlf{x2a][y2a][z] = ( Tt nl[x2a+1][y2a][z] + Tt_nl[x2a][y2a+1][z] )/2;
Tt_nl[x2a][y2b]{z] = ( Tt nl[x2a+1][y2b]{z] + Tt_nl[x2a][y2b-1]{z] )/2;
Tt _nl[x2b][y2a][z] = ( Tt_n1[x2b-1]{y2a][z]