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ABSTRACT

The internet era has revolutionized computational sciences and automated data 

collection techniques, made large amounts o f  previously inaccessible data available and, 

consequently, broadened the scope o f exploratory computing research. As a result, data 

mining, which is still an emerging field o f  research, has gained importance because o f  its 

ability to analyze and discover previously unknown, hidden, and useful knowledge from 

these large amounts o f  data. One aspect o f  data mining, known as frequent pattern 

mining, has recently gained importance due to its ability to find associative relationships 

among the parts o f  data, thereby aiding a type o f  supervised learning known as 

“associative learning”.

The purpose o f  this dissertation is two-fold: to develop and demonstrate supervised 

associative learning in non-temporal data for multi-class classification and to develop a 

new frequent pattern mining algorithm for time varying (temporal) data which alleviates 

the current issues in analyzing this data for knowledge discovery. In order to use 

associative relationships for classification, we have to algorithmically learn their 

discriminatory power. While it is well known that multiple sets o f  features work better 

for classification, we claim that the isomorphic relationships among the features work 

even better and, therefore, can be used as higher order features. To validate this claim, 

we exploit these relationships as input features for classification instead o f  using the 

underlying raw features. The next part o f  this dissertation focuses on building a new



classifier using associative relationships as a basis for the multi-class classification 

problem. Most o f  the existing associative classifiers represent the instances from a class 

in a row-based format wherein one row represents features o f  one instance and extract 

association rules from the entire dataset. The rules formed in this w ay are known as 

“class constrained rules,” as they have class labels on the right side o f  the rules. We 

argue that this class constrained representation schema lacks important information that is 

necessary for multi-class classification. Further, most existing works use either the intra

class or inter-class importance o f the association rules, both o f  which sets o f  techniques 

offer empirical benefits. We hypothesize that both intra-class and inter-class variations 

are important for fast and accurate multi-class classification. We also present a novel 

weighted association rule-based classification mechanism that uses frequent relationships 

among raw features from an instance as the basis for classifying the instance into one o f 

the many classes. The relationships are weighted according to both their intra-class and 

inter-class importance.

The final part o f  this dissertation concentrates on mining time varying data. This 

problem is known as “ inter-transaction association rule mining” in the data-mining field. 

Most o f  the existing work transforms the time varying data into a static format and then 

use multiple scans over the new data to extract patterns. We present a unique index- 

based algorithmic framework for inter-transaction association rule mining. Our proposed 

technique requires only one scan o f  the original database. Further, the proposed 

technique can also provide the location information o f  each extracted pattern. We use 

mathematical induction to prove that the new representation scheme captures all 

underlying frequent relationships.
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CHAPTER 1

INTRODUCTION

1.1 Data Mining and Why it is Important

The growth o f  multi-dimensional datasets has exploded since the beginning o f  the 

internet era. Collecting and sharing large amounts o f data has become easy due to the 

ability o f  the internet to house large data repositories and the ease o f  sharing such 

repositories. Multi-national companies, supermarkets, and scientific research fields 

routinely collect hundreds and thousands o f  giga bytes (GB) and tera bytes (TB) o f  data. 

However, unless we analyze this massive amount o f  data and put it to good use, it is 

nothing more than an ineffectual storage place. Such situations in which researchers have 

an abundance o f  data but not enough data analysis tools for learning from that data, are 

aptly labeled as “data rich hut information poor ' scenarios [1], The sheer size o f  this 

data presents daunting challenges since most o f the existing data analysis methods are not 

adept at handling such high dimensionality data alone.

Our quest to find meaningful information from data is not new. For centuries, 

humans have manually examined data to generate significantly useful patterns. However, 

with the amount o f  data growing by a factor o f  10 every five years [2], humans can no 

longer produce meaningful results in adequate time. Data mining, also known as 

knowledge discovery in databases (KDD), provides a solution to this problem in the form
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o f sophisticated algorithmic tools which can replace humans and are more reliable and 

faster. According to one o f the many definitions, data mining is “the nontrivial extraction 

o f  implicit, previously unknown, and potentially useful information from data” [3], 

Currently, data mining tools are used in a wide range o f  domains, for example in the 

market place to help organizations make better decisions and develop more efficient 

business strategies; in the scientific field to help uncover important data patterns by 

providing exploratory data analysis and predictive and descriptive data modeling; and in 

the medical filed to help technicians make better decisions about patient diagnoses and 

information retrieval.

1.2 The KDD Process

As with the many uses o f  data mining, the exact definition o f  the KDD process varies

from person to person. While some people may treat data mining synonymously with 

KDD, others think o f  data mining as a separate and intricate step in the KDD process [1], 

The work o f Fayyad et al. [4] clearly distinguishes data mining from KDD wherein data 

mining, as a step in the KDD process, provides results, which are then transformed into 

useful information. Knowledge discovery is an iterative and data driven approach, which 

consists o f  the following steps [1]:

1. Data Cleaning: Raw data captured from different sources cannot always be used 

for analysis due to the inherent noise and inconsistencies present. Data might be 

missing due to faulty data capturing mechanisms or due to withholding o f  

information for privacy concerns, (e.g. a social security number or an address). 

These inconsistencies need to be fixed before any other operation can be 

performed on the data.
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2. Data Selection: Not all o f  the data available is useful, as the knowledge mining 

procedure is usually task driven. Therefore, only the data relevant to the task 

needs to be selected from complete data.

3. Data Transformation/Preprocessing: The data needs to be transformed into a 

format that is compatible with the knowledge mining tools used and to offer better 

insights on the underlying data distribution. Discretization, binning, and 

normalization are examples o f  the transformation and preprocessing operations.

4. Data Mining: Data mining is the most important step in KDD. In this step, 

intelligent pattern mining methods are used to generate relationships, trends, 

patterns and anomalies present in the data.

5. Pattern Evaluation: Only some o f  the underlying patterns extracted from the 

data are interesting and useful. Moreover, the data mining tools can discover not 

all interesting patterns. Hence, it is important to use an interestingness measure to 

interpret and evaluate the patterns and to narrow the extracted information to 

usable patterns.

6. Knowledge Presentation: The results are validated using information from the 

problem domain and presented using visualization and knowledge representation 

techniques to the user.

One o f  the most significant topics o f scientific computing research in the field o f  data 

mining due to its practical and theoretical importance is frequent pattern mining. Two 

key reasons for the interest in frequent pattern mining are its ability to provide key insight 

by summarizing the data and its ability to serve as a preprocessing tool for other data
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mining tasks like classification ([5], [6], [7], and [8]), clustering ([9], [10], and [11]), and 

event prediction ([12], [13], and [14]). Figure 1.1 shows the complete KDD process.

V

Knowledge

Evaluation and 
Presentation

Data Mining

Selection and 
Transformation

Cleaning / ^

Databases

Figure 1.1 Steps in the KDD Process

1.3 Frequent Pattern Mining

Depending on the type o f  data available and the type o f patterns to be mined, frequent 

pattern mining can be segregated either as frequent itemset mining or as temporal pattern 

mining.
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1.3.1 Frequent Itemset Mining

The problem o f  frequent itemset mining, also called association rule mining, was first 

introduced by Agarwal et al. [15] for mining associative relationships from large-scale 

databases, typically “market-basket” databases. Their algorithm called “Apriori” used the 

strong rule interestingness measures put forward by Piatetsky Shapiro [16] as their basis 

for itemset mining. The motivation for this step was to formulate a way to link one type 

o f  behavior to another in order to understand common trends in user purchasing habits, 

which could then be used to maximize profit. One o f  the classical examples o f  

association rules is the “beer and diaper” problem. The example states that “when men 

bought diapers on Thursdays and Saturdays, they also tended to buy beer” [17]. While 

such a pattern may not be implicit to a human observer and such patterns are difficult, if 

not impossible, to perceive, the pattern shows how data mining can extract hidden 

patterns from the data. We formally define the frequent itemset mining problem as 

follows.

L e t /  = [be a set o f items and D  be a database consisting o f

transactions 7], T ,,.....,7 \ . A subset A c  I is called an itemset and an itemset with k

items is known as a k-itemset. Each transaction 7] = {i,P} is a tuple such that 1 < / < Af 

and P  is a set o f  items such that P c  I . An association rule can then be represented

as X  => Y . Here, the left-hand side o f  the rule is known as an antecedent, and the right- 

hand side is known as a precedent. The following three constraints are required for a rule 

to be called an association rule:

1) 37; ! X o Y  c P . P z T n



2) X  c  I , Y  c  / ,  and

3) X n Y  = ( f > .

Two measures o f  rule interestingness are associated with each rule: support and 

confidence. Support gives the percentage/probability o f  transactions in D  that contain 

both 3fand Y. This percentage can also be represented by probability, P ( X  u  T).

S u p p o r t(X  => Y) = P ( X \j Y)  =

\r, I \ X  vj Y | e  7]| ^  Number o f  Transactions with { X  u  T}

|/J>| Total Number o f  Transactions

The confidence o f  a rule gives the conditional probability o f  the occurrence o f 

precedent o f  the rule, given the antecedent has already occurred, P (Y  | X ) .  For example:

. . .  . . . . . .  . . .  f a  | { X  u  Y)  c  Tj\ Number o f  Transactions with {X  vj Y}
Confidence, X => } ) = P( Y X )  = — ;------------- ;— L = -----------------------------------------------

f  | X  c  7} I Number o f  Transactions having X

An association rule is called a frequent association rule if the support and confidence 

o f  a rule are greater than a user specified minimum support and confidence. Since the 

items in the rule are present in the same transaction, we call these rules intra-transaction 

rules. The apriori algorithm proposed by Agarwal et al. is a commonly used frequent 

association rule-mining algorithm [15]. Since these types o f  rule mining algorithms 

generate rules whereby individual items happen at the same time, associating items in the 

same transaction, they are also known as intra-transaction association rules.

1.3.2 Associative Classification

Both supervised and unsupervised learning techniques play an important role in the 

data mining process. Supervised learning methods are generally more abundant and 

successful in application, primarily because their distinctive learning component tries to
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extract, interpret and employ the natural behavior o f data distribution [18]. Classification 

is a supervised learning method and the primary goal o f  any classification algorithm is to 

group data into categories based on similarity or dissimilarity measures. A classifier 

usually extracts some knowledge from the training data to build a classification model, 

which is then used to categorize/classify previously unknown instances.

The classification problem can be defined as follows: given C, a set o f  class labels 

and training data {(Tx,c^),(T2,c 2),....,(TN,c N)}, where Tn \/\ < i  < N  represents the

thfeature set o f  / instance, N= total number o f instances, and c, e  C  represents a class 

label o f  the fh instance, build a classifier 8  : T -> C which maps a query instance Ti to 

its class label c( e  C . Figure 1.2 shows a typical classification mechanism.

Featareslf
t ■ t $

1 0.150 1.45
2.004

Query Instance 
Class Label

Figure 1.2 A Normal Classification Mechanism
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The type o f  model used for classification and the representation o f  knowledge 

gathered from training data depends upon the classifier used. Classification using 

associative patterns as the base o f knowledge is known as “associative classification

Associative classifiers generally connect features o f  the data instances based on their 

co-occurrences, regulatory behavior or other interdependencies. These “connections” are 

then transformed into classifier rules, which are then employed for supervised learning 

purposes. It must be noted that this process o f  discovering associations is not aimed at 

reducing the dimensionality o f  the data and can at times leads to a gain or loss in 

dimensionality. This change in dimensionality results from the fact that the values o f  each 

feature are usually converted to a set o f  categorical values, which create pseudo instances 

o f  that feature. While the associations between these features will be fewer than the 

number o f  these instances, they can be more or less in number than the original set o f 

features.

One such area where associative classifiers are a better fit than regular classifiers is 

toxicity analysis [19], It is not considered a viable option to measure the in-vivo response 

o f  each chemical in some experiments. As a result, scientists usually resort to the 

classification models to predict/classify the in-vivo response o f  a chemical based on its 

in-vitro response or the chemical compound structure. While regular classifiers can 

perform this task efficiently, they still lack the functionality to provide the actual causal 

rules such as which chemical compound combinations lead to what type o f in-vivo 

response and by what probability. Associative relationships on the other hand easily 

capture relationships like a low dosage o f  compound A and compound B will lead to a 

high in-vivo response 80% o f the time or a high in-vitro response o f  chemical K



combined with the low dosage o f compound A will result in a low in-vivo response 

almost 95% of the time. These types o f rules could be more helpful to researchers in 

predicting the performance o f new chemicals.

Since the performance o f a classifier depends heavily on the type o f data examined, 

no single classifier can be considered the “best” for all situations. Therefore, researchers 

are always searching for ways to improve the existing classifiers and build new ones for 

more robust and scalable results. Associative classifiers have recently become more 

important because o f  the ease with which their results can be interpreted and because o f  

the high levels o f  accuracy. Figure 1.3 shows a typical association-rule-based 

classification mechanism.

J
1 0.150 1.45 . . . 1
2 0.123 2.004 2
„ ,,, ... ...
.. ... ... ...
.. ... ... ...
,, ,,, .. .
N 2.34 1.45 5

Query- Instance 
Class Label

Figure 1.3 Associative Classification Mechanism
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Despite the efforts o f  numerous researchers, some questions remain. For instance, 

researchers have yet to determine the best type o f  data representation to use for mining, 

what support and confidence to use, whether rule weighting or rule pruning should be 

used, whether class-based rules should be used, and how to accurately perform the 

weighting when dealing with weighted rules. We address these issues by developing a 

new weighted rule-based classification algorithm. We used the new rule-based 

classification algorithm with datasets from different domains to test its robustness and 

scalability.

1.3.3 Temporal Data Mining

Most frequent-itemset mining approaches find patterns that occur at the same time 

(e.g. when a customer buys bread and butter, he/she will also buy jelly). As explained in 

Section 1.3.1, these types o f  rules are called intra-transaction association rules. 

However, in reality, not all the data is static. For example, meteorological and stock 

market data are dynamic, and are also known as temporal data, (i.e. data that changes 

with time). Regular frequent itemset mining algorithms cannot work in these scenarios as 

the patterns o f  importance here have a time difference. One example o f  such a pattern is 

if  Microsoft stock goes up on the first day, and Intel stock goes up on the second day, 

then the Apple stock will go down on the third day. These types o f  patterns, which have 

time information associated with them, are temporal patterns. Notice that the pattern is 

still a combination o f  frequent items from the database, but now the items belong to 

different transactions. Throughout the rest o f  the dissertation, we will call these types o f  

patterns “inter-transaction patterns” or “inter-transaction association rules”, as the scope 

o f  the pattern covers multiple transactions but each item only lasts for a single
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transaction. In this work, we present a novel Transaction ID based windowless inter

transaction rule-mining algorithm. The proposed algorithm not only addresses most o f  

the issues (discussed later in detail) that plague current inter-transaction rule mining 

algorithms, but also provides the location information o f  every generated rule. Such 

location information is required to confirm the accuracy o f  the rules.

1.4 Dissertation Outline

In Chapter 2, we provide background information and related literature for associative 

classification, inter-transaction association rule mining, and temporal pattern mining. In 

Chapter 3, we show how association rules can replace raw features as higher-order and 

aid in classification. In Chapter 4, we explain our proposed weighted rule based 

associative classification mechanism. In Chapter 5, we provide details about our 

proposed inter-transaction rule-mining algorithm. Finally, we provide our conclusions 

and fiiture directions in Chapter 6.



CHAPTER 2

BACKGROUND AND RELATED RESEARCH

2.1 Rule Based Learning

Rule based learning methods generally use inductive or derivative if  -  then type 

decision rules to build learning models. These decision-based models are then used for 

predicting the class labels o f  test instances. Rule-based classification is not new to the 

scientific community. One o f  the earliest decision tree-based rule mining algorithms, ID3 

[20], was developed in 1986 by J. R. Quinlan. ID3 was the precursor to early rule-based 

classifiers C4.5 [5] and C5.0/See5 [21]. Other rule-based classifiers were FOIL [22] and 

RIPPER [23]. Interest in the field o f  rule based classification has steadily grown over the 

years.

Classical rule based algorithms like ID3 and C4.5 build a decision tree to predict the 

label o f  a target instance based on several input variables. Every node o f  the tree consists 

o f  questions regarding one o f  the variables o f  the instance, and leaves consist o f  the 

classification labels. ID3 and C4.5 use information gain to decide which variable to use 

as test variable for a node. In order to classify a new instance, one starts at the root node 

and follows all the test nodes one by one depending upon the answers. The root node 

reached by finishing all the tests gives the predicted class labels for test instance. While 

rule based methods have some advantages like simplicity to interpret and understand and

12



ability to handle both numerical and categorical data, they have some disadvantages as 

well such as high memory overhead resulting from data storage and overfitting resulting 

from complex decision tree models. These disadvantages limit their use for many 

applications.

2.2 Associative Classification

Associative classification is special type o f  rule based learning which uses association 

rules for building classification models. The earliest associative classifier, developed by 

Liu et al. [6 ], is known as CBA (classification based on associations). CBA was designed 

to integrate association rule mining with classification. Liu et al. employed the classical 

apriori algorithm for rule generation and concentrated on generating only a special subset 

o f  all possible association rules, which they called class association rules (CARs). CAR 

is such a rule that has feature values on the LHS o f  the rule and only a class label on the 

RHS o f  the rule: => c \ . They divided the approach into three steps: (1) data

discretization, (2) CAR generation, and (3) classifier building using CAR’s.

Apriori generates all the association rules that satisfy the user defined minimum 

support and confidence. Given m rules, in order to build the best classifier having only a 

subset o f  these rules and minimum error, one would require an evaluation o f  all possible

subsets (2 m) . Such an evaluation may be computationally expensive. Hence, Liu et al. 

developed a heuristic classifier, which ranked the rules according to their support and 

confidence and by how well each rule classified the instances in the training data. Only 

those rules that classified at least one training instance correctly were kept. For 

classification, a test instance was matched sequentially with each rule’s LHS, starting
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from the highest ranked rule, and the instance was classified to the class o f  the first rule it 

matched. If a test instance did not match any rule, then it was classified to a default class 

(the majority class o f  the training data after rule ranking). The results showed that CBA 

outperformed the most common rule-based algorithm at that time, C4.5.

Dong et al. introduced CAEP (Classification by Aggregating Emerging Patterns) to 

use emerging patterns (EPs), itemsets which contain support that changes from class to 

class, for classification [24]. They divided the algorithm into two parts: finding emerging 

patterns and building a classifier using pattern aggregation and scoring. CAEP uses the 

border differential procedure to generate emerging patterns for a class C, satisfying some 

user defined minimum support and growth rate thresholds [25]. The growth rate 

thresholds are a ratio o f  instances in class C having the pattern to instances o f  other 

classes with the pattern. For classifying an instance, the differentiating power o f  all EPs 

o f C that occur in the instance are aggregated and then normalized with some base score 

from training instances to generate an aggregated differentiating score for each class. 

The instance is classified to a class with the largest normalized base score. Because the 

scores are normalized, CAEP can handle imbalances in the training data very well. 

Experimental results showed that CAEP outperformed both CBA and C4.5 in most test 

cases.

Li et al. proposed CMAR (classification based on multiple association rules) [8 ]. As 

the name suggests, CMAR is unlike CBA in that it requires multiple rules for 

classification, thereby alleviating the classification bias caused by single rule 

classification. Another important difference between CMAR and CBA is that CMAR 

uses an FP-growth property to generate class distribution-based associated FP-Tree
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instead o f  apriori to mine rules [26]. CMAR uses a compact prefix-tree-based novel data 

structure called a CR-Tree to store and retrieve association rules for classification. Rule 

pruning was performed based on confidence, correlation, and database coverage. A new

2
technique called weighted X was used to find strong association rules by considering 

both conditional support and class distribution. For classifying a new test instance, first, 

all the rules matching for this test instance were retrieved from the CR-Tree, and then the 

class label o f  these rules was analyzed. If there was no conflict in the class label, (i.e. all 

the rules had the same class label), the test instance was assigned the class label. 

However, i f  one or more rule had differing class labels, the rules were grouped according

2
to their class labels, the effects o f  each group were compared using weighted X , and 

the instance was classified to the strongest group. Experiments using 26 UCI machine 

learning datasets showed that CMAR outperformed both CBA and C4.5 in average 

accuracy, efficiency, and scalability.

Yin et al. proposed CPAR (classification based on predictive association rules). 

CPAR adopts a greedy approach to generate a smaller set o f  rules and the combined 

advantages o f  both associative classifiers and traditional rule-based classifiers [27]. 

CPAR uses the rule generation ideas from FOIL [22]. In FOIL, the information gained 

by adding a literal to the rule is measured using foil gain. For extracting predictive 

association rules, CPAR uses a PRM (predictive rule-mining) algorithm, which is a 

modified version o f  FOIL. For multi-class classification rule pruning in FOIL, an 

accurately predicted training instance is removed from the dataset, but in CPAR only its 

weight is reduced. Due to this methodological difference, CPAR usually generates more 

predictive rules than FOIL. In the experiment, Yin et al. avoided rule redundancy by



16

considering a set o f  already-generated rules. They then used CPAR to generate more 

rules since the classification method considers all the close-to-best literals instead o f  

using only the best literals, as FOIL does. Once all the rules were formed, their 

prediction power was evaluated using the Laplace expected error estimate [28]. For 

classification o f  a test instance, all the matching rules for the test instance and the best k- 

rules for each class were found, the average expected accuracy o f  each class was 

calculated, and the instance was classified to the class with the highest accuracy. The 

experiments were performed on 26 UCI machine learning datasets with the best five- 

rules, and CPAR outperformed CBA, C4.5, and CMAR in most cases.

2.3 Inter-Transaction Pattern Mining

Since temporal data varies with time, it has time information attached to it. Mining 

such time varying data is a highly complex task due to the added dimensionality and 

complexity o f  time. Most existing classical pattern mining algorithms are inadequate to 

handle this type o f  data as they only deal with the co-occurrence o f  values at a time. 

However, mining time varying data results in a time dependent causal pattern for which 

one event triggers the response to another. For example, i f  the temperature drops in hour- 

one and the humidity increases in hour-two, then there will be rain in hour-three. In terms 

o f data mining, these types o f  patterns are called “inter-transaction patterns” or “inter

transaction association rules”. Significant research effort has been devoted to this task in 

the past decade. There are two major types o f  data formats, horizontal data-format or 

vertical data-format. The market basket data is usually captured and saved in the 

horizontal data format in which each row has a unique identifier called a ‘Transaction 

ID” (TID), and the corresponding values in the transaction represent the events that occur
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in this transaction. The vertical database, on the other hand, is an event-based 

representation for which each row represents an event having its own IDList that contains 

the TIDs o f  all the transactions where an event happens. Figure 2.1 shows the example o f  

horizontal data format and vertical data format.

TID Items
1 a, 4  e
2 b, c, d
3 a, c, e
4 a, b,
5 c, d, e
6 b, c, e
7 a , b, d
8 c, 4  e
9 a, b, c, d
10 a, b, c, e

Item IDList

a 1,3,4,5,7,9,10

b 2,4,6,7,9,10

c 2,3,5,6,8,9,10

d 1,2,5,7,8,9

e 1,3,5,6,8,10

(a) (b)

Figure 2.1 Data Formats: (a) Horizontal Data Format (b) Vertical Data Format

Most o f  the existing inter-transaction association rule mining algorithms can be 

divided based on these two data types. In this section first, we explain the horizontal data- 

based algorithms (E-Apriori, EH-Apriori, FITI, EFP-Tree, and MMIT). Then, we discuss 

the vertical data-based algorithms (PROWL, ITPMine).

The concept o f  inter-transaction association rules was first introduced by Lu et al. in 

[29]. Two algorithms E-Apriori and EH-Apriori were proposed to extract inter

transaction association rules from stock market data. Both o f  these techniques were 

based on the apriori algorithm. As a preprocessing or data preparation step, each item in 

the dataset was appended with a TID. Then, a sliding window mechanism was used to 

transform a set o f  simple transactions into mega-transactions. The items in mega



18

transactions, called mega-items or extended items, address connected items from the 

original database. Figure 2.2 explains this mega-transaction creation scheme.

TID Items
I fl(0), rf (0), s(0), 6(1), e (1), d (1), a( 2), e( 2), a(2)
2 6(0), c (0), d (0), a(l),c(l), e(l), a(2), i>( 2),c(2)
3 a(0)fe(0),<(0)>fl(l),i(l),ea),e<2),<I(2)I<(2)
4 u(0), 6(0), c (0), c(l ),d(l), e (1),& (2), c (2),«(2)
5 c (0), rf (0), e(0), 6(1), c (1), e (1), a( 2),i> (2), rf (2)
6 6(0)>c(0),e(0),fl(l),6(l),d(l),c(2)>rf(2),«(2)
7 «(0),K0),rf(0),c(l),rf(l),e(l),fl(2),K2),c(2),d(2)
8 c (0), (0), e(0), a (1), 6(1), c(l), rf(l), a (2), 6(2), e (2), e( 2)
9 «(0), t>(0), c (0), d (0), a(l), 6(1), e (1),«(1)
10 a(0),i>(0),c(0),fl(0)

TID Items
1 a, 4  e
2 b, c, d
3 a, c, e
4 a, b
5 c, 4 e
6 b, c, e
7 a, b, d
8 c, 4  e
9 a, b, c, d

10 a, b, c, e

(a) (b)

Figure 2.2 (a) Original Database with Sliding Windows (w=3), (b) Mega-Transaction 
Database after the Sliding Window Operation

In this way, an inter-transaction rule-mining problem was reduced to an intra

transaction rule-mining problem. Then, a regular apriori algorithm was used to generate 

association rules between these extended items. Experiments were performed on the 

stock data from the Singapore Stock Exchange (SES), and the technique captured 

fluctuation patterns between stocks o f  various companies correctly.

FITI (First Intra Then Inter) builds upon the mega-transaction format put forward by 

the EH-Apriori algorithm [30]. As the name suggests, the algorithm first makes frequent 

intra-transaction itemsets and then generates frequent inter-transaction itemsets from 

these intra-transaction items. The technique is divided into three phases: Phases I, II, and

III. In Phase I, frequent inter-transaction itemsets are mined and then stored in a unique 

data structure. In Phase II, the original database is transformed into a new one using the
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data structure from Phase I. Finally, in Phase III, inter-transaction itemsets are generated 

from the transformed database. The motivation for using this approach is that any 

frequent inter-transaction itemset should contain only the frequent intra-transaction 

itemsets. To meet this goal, the algorithm first generates frequent intra-transaction 

itemsets using the apriori algorithm. Then, each o f  these itemsets is given a unique 

number called an ID, and these itemsets are stored in a new data structure called FILT 

(Frequent-Itemset Linked Table). The FILT data structure consists o f  a hash table with 

nodes connected by four types o f  links: lookup links, generator and extension links, 

subset links, and descendent links. After FILT formation, the original database is 

transformed into a number o f  new ID encoded databases known as FIT (Frequent-Itemset 

Table). Each FIT table only represents the ID encoded frequent itemsets o f  one level.

Hence, the number o f  FIT tables } is equal to the maximum size o f  the

intra-transaction itemset discovered in Phase I. After this transformation, intra

transaction join  and inter-transaction jo ins  are used to combine the ID encoded itemsets 

for generating candidate inter-transaction itemsets. The support o f  these candidates is 

calculated using a hash-tree-based mechanism and making multiple passes over the 

database. Rule generation stops when no more candidates can be generated. 

Experimental results over synthetic data and stock market data show that FITI 

outperforms EH-Apriori in CPU time consumption.

Luhr et al. proposed EFP-Tree, which used the FP-tree-based approach for rule 

mining [31]. As in EH-Apriori, they used the sliding window concept to transform the 

dataset into the mega-transaction format as a data preparation step by appending the time 

stamp/transaction ID with the items. Then, they used a modification o f  the FP-growth
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property, called EFP-Growth (extended FP-growth), for itemset and rule generation. 

They performed three passes over the data. The frequency o f  single items was calculated 

in the first pass by scanning the extended mega-transaction itemset database once. In the 

second pass, Luhr et al. built the intra-transaction FP-tree and calculated the conditional 

frequencies o f  inter-transaction items. Finally, in the third pass, they built the inter

transaction EFP-Tree. Frequent itemsets and inter-transaction rules were generated from 

this EFP-Tree. Experimental results on both synthetic and real world data showed that 

EFP outperformed FITI in terms o f  memory usage and execution time, in most cases.

Wang et al. proposed MMIT (matrix mining inter-transaction), which was based on 

the concept o f  co-occurrence matrix [32]. Their technique is divided into five phases. In 

Phase I, they scanned the original transaction database using the sliding window format 

to generate extended items. These extended items were frequent-one level inter

transaction itemsets, which were sorted. Only 1-frequent inter-transaction itemsets were 

selected. In Phase II, the authors created a co-occurrence matrix o f  1-frequent itemsets 

[33]. In Phase III, the transaction database was scanned once again with the sliding 

window format, and the frequent inter-transaction itemset information was stored in the 

co-occurrence matrix. Inter-transaction itemset mining for level k (k > 2 ) was generated 

in Phase IV. Finally, in Phase V, strong inter-transaction association rules were 

generated from the frequent inter-transaction itemsets generated in Phase IV. 

Experimental results on synthetic data showed that their technique outperformed FITI in 

terms on execution time.

To the best o f  our knowledge, PROWL (PROjected Window List) was the first 

algorithm which deviated from this norm and used the vertical data format (Figure 2.2
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(b)) [34]. For PROWL, the original database is scanned once, and each item is then 

associated with the IDs o f  the transactions where the item occurs, thereby making an ID- 

list for each item in the database. The length o f  an ID-list gives the support o f  the item. 

Frequent 1-itemsets are then found using the support constraints, and their ID lists are 

kept for higher-level itemset generation. For example, let there be three frequent 1-items 

{er e2,e3} with IDLists o f {IDlist(e^),IDlist(e2)JD list(e3)} . For each frequent-1 item, a 

Projected Window List (PWL), {PWL(ex) PWL(e2),PWL(e3)} is created by adding one to 

the existing IDs o f  the IDList. Then, candidate 2-itemsets o f  the form e] followed by 

e2 one time point later {e,(0)e2(l)}are created by intersecting PWL(e^) w ithIDlist(e2) . 

The intersecting IDs form the IDList o f  2-itemset (0)e2 (1)}, represented

b y IDlist{e3,e2} . Using the same formula, we can make ID list{ei ,e 3},ID list{e2,e3}, 

IDlist{e2,e 1},ID list{e3,e l}, andIDlist{e3,e2} . Further,PWL{ex) is also the IDlist o f  

{ e, ,*} (IDlist{ex,* }) , where * indicates that the item for this time stamp is undefined. 

The notation is used to allow a mismatch at a position. It means that the user does 

not care about the item present at this position. This ID list{e,,*} is then used to create 

itemsets where the second item following the first happens two time points later instead 

o f  one, for e.g. e, followed by e2 two time points later (e,(0 ),e2(2 )), or e] followed by e3

two time points later(e,(0),e3(2)). The IDLists are represented asID list{ex *,e2}

and IDlist {ex *,e3} . Similarly, the itemsets o f  the form (e](0),e2(i),e3(3))are then formed by

generating PWL{e],e2} and intersecting it with IDlist{e3} . In the same way, the depth

first search (DFS) mechanism o f  PWL generation is repeated until the maxspan level has 

been reached for all events in the database. Unlike the vertical data format-based
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techniques, PROWL does not generate all frequent-k itemsets at the same time, since the 

itemsets generated by a maximum o f  m time points will only be generated by PWLs 

generated at maxspan level m. For example, frequent-2 itemsets separated by three time 

points {(e, (0)e2 (3)), (e, (0)e3(3)) etc.}will be generated by the PWLs at maxspan level 

three only. For more information, we advise the user to refer to [34].

ITPmine, which is also a DFS-based mechanism, is the only other algorithm, which 

we are aware o f  that uses the vertical data format to find inter-transaction association 

rules [35]. ITPMine scans the entire database once using the sliding window mechanism. 

In one pass, it adds the IDs (called dats for ITPmine) for all the 1-itemsets/ events. 

During this first scan o f  the database, ITPmine also uses the EH-Apriori type hash-based 

approach to hash all the possible 2 -itemsets in the sliding window into a hash tree. 

During this process, it hashes the candidate 2-itemsets along with the support counting 

for 1-itemsets during one sliding window scan over the database. Once the ID lists 

(called Dat lists for ITPMine) o f  the 1-events are created, ITPmine finds the support o f  1- 

itemsets by counting the length o f  each Dat list. Frequent-1 itemsets, (i.e. the itemsets 

with a length/support higher than the user defined minimum support are kept), and others 

are deleted. Candidate 2-itemsets are generated by joining each frequent 1-itemset with 

another and adding the time stamp. The support o f  these candidate itemsets is found by 

hashing the itemsets and checking the support at the hash address. If the support is 

higher than a user defined minimum support, then the itemset is added to the new 

itemsets and their corresponding dats are found in the dat list. The new itemsets are 

divided into joinable and extendable groups. Then, the DFS mechanism is used for each 

frequent 2 -itemset to generate all possible k-itemsets by joining each frequent 2 -itemset
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with itemsets from its joinable group and using the pruning mechanisms. The procedure 

is repeated for each frequent 2-itemset. For further reading, please refer [35].

2.4 Major Contribution of the Dissertation

In this dissertation, we concentrate on two components o f  data mining: associative 

learning for classification and temporal pattern mining. Our goals are to:

• Show the discriminatory power o f  associative relationships for supervised 

learning,

• Develop an intra-class/inter-class weighted rule-based classification system for 

the classification o f  multidimensional datasets, and

•  Develop a framework for capturing point-based and event-based frequent 

temporal patterns from multivariate time series data.

The overarching aim o f  the first part o f  the dissertation is to build a new associative 

classifier that uses intra-class and inter-class-based weighted rules for classification. We 

deviate from the common row/instance-based representation for associative classifiers 

and introduce an alternate data representation whereby each instance is treated separately 

for association rule mining. Since we have introduced a new representation, we first 

validate that such a representation can provide more information than the commonly used 

row/instance representation. Therefore, we present a novel data transformation schema 

that transforms the association rules into higher order features for classification in 

Chapter 3. The detailed experiments in this chapter validate our hypothesis that the new 

representation scheme provides better classification results.

The insights obtained from results in Chapter 3 motivated us to further explore this 

new representation and determine how the rules extracted can be weighted according to
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inter-class and intra-class importance. Consequently, we present a novel associative 

classification mechanism based on this data representation in Chapter 4. The proposed 

algorithm uses the intra-class and inter-class variations to weight the association rules. 

These weighted rules, along with the rule cardinality, form the basis o f  the new classifier, 

which we named WAR-BC (Weighted Association Rule Based Classifier).

Chapter 5 contains the second part o f  this dissertation: (frequent pattern mining for 

time varying data). Most existing works transform the time varying data using a sliding 

window approach to a static format and then use existing frequent pattern mining 

algorithms (with small modifications) for static data to extract underlying patterns. These 

types o f  techniques have several limitations such as the requirement o f  new dataset 

generation every time a sliding window size is changed, increased dimensionality, and 

lack o f  location information to check the accuracy o f  rules. More detail is provided in 

Chapter 5. We show that the underlying problem is not the existing work, but the data 

format with which the previous researchers have worked. We present a new, windowless 

item index-based frequent pattern mining algorithm which not only extracts the frequent 

patterns in less time than existing work, but which also provides the location information 

for each rule generated from the database. We use mathematical induction to prove that 

the proposed algorithm extracts all the underlying patterns from the dataset.

2.5 Conclusion

This dissertation work is a compilation o f  three works that have already been 

published and one work that is currently in progress:
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1. S. Dua, H. Singh, and H. W. Thompson, “Associative Classification o f Mammograms 

using Weighted Rules based Classification,” Elsevier Expert Systems with 

Applications, volume 36, Issue 5, 2009.

2. H. Singh, S. Dua, and H. W. Thompson, “Weighted Rule based Algorithmic Tool for 

Image Classification,” NSF EPScor Research Infrastructure Improvement Annual 

Meeting, 11 May 2009.

3. S. Dua and H. Singh, “Biomedical Image Classification using Association Rule 

Mining,” 24th Annual Houston Conference on Biomedical Engineering Research, 

Houston Society for Engineering in Medicine and Biology, 2007.

4. H. Singh and S. Dua, “DMITAR: Difference Matrix based Inter-Transaction 

Association Rule Mining,” IEEE Transactions on Knowledge and Data Engineering 

(in Progress).

Chapters 3 and 4 are based on the first three publications. Chapter 5 is based on the

fourth publication.



CHAPTER 3

ASSOCIATIVE RELATIONS AS 
HIGHER ORDER FEATURES

While a great deal o f  effort has been put into building new associative classifiers 

which use class constrained rules, little has been done in terms o f  using regular 

association rules as higher order features for classification with existing classifiers. We 

believe that associative relationships existing in data are discriminatory and provide 

valuable information for learning. The first part o f  our research focuses on justifying our 

claim that association rules can be treated as higher order features and employing them as 

classifier inputs instead o f  raw features will yield better results. In Chapter 3, we attempt 

to answer two questions:

1. How can non-class specific association rules be uniquely represented as features?

2. Do these higher order features have better discriminatory power than raw 

features?

Most frequent pattern-based algorithms represent each instance as a row, and the 

combination o f  these individual instances, stacked one beneath the other, are used as 

market basket data to extract class-constrained association rules. In market basket data, 

one instance equals to one row representation, which is the main limitation for non-class 

association rules. Therefore, in order to extract such non-class association rules, it 

becomes imperative that the data representation be such that each instance is represented

26
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as an individual market basket database. Hence, the dataset choice becomes an important 

factor for such a technique.

In lieu o f  the above factors, we have used image and image datasets for our analysis. 

The number o f  images and image datasets are increasing rapidly due to the ease and 

availability o f  such datasets over internet. Because o f  the increased size, it has become 

difficult for humans to organize, store, and manage these enormous datasets efficiently. 

Hence, automated image classification techniques are needed to solve this issue. The 

advent o f  computational technology in the field o f  medicine has seen a meteoric rise in 

the amount o f  medical image data collected on a daily basis. Brain scans, MRI’s, 

diabetic retinopathy images, CAT scans, and mammograms are some o f  the examples o f  

medical images. Mammograms are widely used by doctors to detect and evaluate breast 

cancer. Since the etiology o f  cancer is unknown, it cannot be prevented. However, 

regular mammogram screenings can help reduce the mortality rate o f  breast cancer 

through early detection, which leads to earlier treatment. In most cases, more than one 

radiologist analyzes a mammogram before a diagnosis or treatment decision is made, and 

recent studies have shown that error in diagnosis can be reduced by almost 10-15% by 

multiple readings [36].

Moreover, these multiple readings further cause a significant bottleneck for 

healthcare. First, there are significant delays since many healthcare facilities do not have 

enough radiologists. Second, most healthcare facilities avoid employing multiple 

radiologists since it is cost prohibitive to do so. Finally, many insurance companies do 

not pay for multiple radiologists. Therefore, an automated system which could provide a 

valuable diagnosis to the physician and replace the second radiologist is highly sought.
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We present an association-rule-based automated classification system in this dissertation. 

In Chapter 4, we present a new classifier built upon these association rules. In this 

chapter, we focus on the usability o f  association rules as higher order features. We 

propose a simple rule transformation schema, which we use to transform the association 

rules extracted from data into a new feature space. This feature space is then used as 

input for classification.

3.1 Problem Definition

Let D  be a training database, I  = { / , , / 2, .. . . ,/w} be a set o f  images, C be a class 

attributeC= (c ,,c 2 ,....,c;v}and F  = { / ,,/ ,,• ••• ,/*  }be a set o f  features. Let 

f i  ~ { ful f i l  >••>//*} be set o f  features extracted for each image/,. | /,. e  / ,  VI < / <  M  . 

Then an image /, in  the dataset can be represented as { /,< : ,}  \ i < M , j  < N ,  where 

Cj e C is the class label o f  image i. Assuming /?,. is the set o f  rules extracted for image i, 

the rule representation o f  an image/,, is {/?,-, c7-} . Then, higher order based classification 

is used to build mapping to transform the low order rule representation /?, into a higher 

order feature representation R, using the transformation T : {i?, , c ; } -»  {/?, , Cj}. A multi

class classifier can then be used for classification.

3.2 Dataset

Data has to be in the market basket (transaction) format for association rule 

extraction. With this information in mind, we selected the digital mammogram database 

as our training and test set.
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Mammogram Dataset. We used the MIAS (Mammogram Image Analysis Society) 

dataset for our analysis [37]. The dataset is commonly used for medical image 

classification paradigms and contains 322 mammogram images. The images are divided 

into three major disease categories: normal, benign, and malignant. There are 208 images 

in class normal, 63 in class benign, and 51 in class malignant. Each image in the dataset 

is o f  1024x1024 resolution. The original dataset was digitized at 50-micron pixel edge, 

but was then reduced to 200 micron pixel edge. It was clipped and padded with 0 ’s 

(black background) to ensure that the size o f  all images were the same. The position o f  

the nipple on the breast could be either on the left or on the right, which makes it even 

harder to classify this dataset.

3.3 Proposed Methodology

Our methodology can be divided into five parts:

I. Data preprocessing,

II. Feature extraction,

III. Data preparation,

IV. Association rule mining, and

V. Rule transformation.

Once the rules are transformed into a feature format, we use two classifiers: FKNN 

and SVM for classification comparison.

3.3.1 Data Preprocessing

Medical images present in the mammogram database are noisy, and some labels that 

are present are not useful. These labels need to be removed, so they do not confuse the 

classifier with redundant and non-informative rules. Further, the images are large
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(1024x1024), and most o f the area consists o f  a black background that provides no useful 

information and can be omitted. Here, we present a method, based on the connected 

component theory, to remove the labels from the image and crop the big image into a 

smaller one. Figure 3.1 shows the complete preprocessing procedure.

I" * t Lnmtc

Figure 3.1 Data Preprocessing for Label and Noise Removal

First, every image is changed into its binary form, and then connected components 

are formed from this format, providing us with all the connected components present in 

the image. Presumably, the connected component with the largest area is the breast part 

o f the mammogram. This area is extracted from the original image. Once the area has 

been extracted, the next step is to smooth the breast boundaries. The segmented image is 

scanned line-by-line, and the starting and ending points o f  each segment on the line are 

taken. The same points are taken on the unsegmented image. The image is read, left 

from the starting point and right from the ending point, and two new boundary points (cut 

points) are marked on the unsegmented image, when five consecutive pixels are below
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threshold value f i . After careful consideration o f  the images, we define the /? value as 

20. We make a new cut point when five consecutive pixels have an intensity o f  less than 

20 on the left and right sides o f  the starting and ending points. Every pixel to the left o f  

the first cut point and to the right o f  the second cut point on this line is set to zero. The 

same procedure is applied to each following line o f  the segmented image, and a new 

boundary is formed for it. Finally, once the borders have been smoothed, the image is 

cropped to within 10 pixels o f  the border tip in both directions. The data preprocessing 

algorithm is explained in Figure 3.2.

Algorithm Border Smoothing and Image Cropping (BSl-Crop)

Input Segmented part o f the mammogram, starting pixel and ending pixel points on 
each line o f the segment, original image, number o f rows .V, intensity threshold a  = 10, 
border threshold jB = 20

Output Cropped segmented and border smoothened image 

Method
(1) For every line (row) j  in the segmented image V; < N
(2) Scan the line
(3) Start_pixel <r starting pixel position o f the segment
(4) End_pixel <r ending pixel position o f the segment
(5) Scan the same line on original image
(6 ) Read left from Start_pLxei
(7) A>vi'_5m?7jpoinUj) <- pixel position when five consecutive pixels have intensity
(8) < ct
(9) Read right from Endjpixel
(10) Nm_End_poinuj) <r pixel position when five consecutive pixels have intensity
(11) « x
(12) Change every pixel value to the left o f N m _Slart jpoinifj) and to the right of
(13) Nm_End_paini(j) to zero
(14) End For
(15) I  ip_B order_i eft <- minimum (Xm'_Starrjpoini fl-X))
(16) Tip_Border_R ight <- maximum (.\'ew_End_point fl-N))
( 17) Left_b order <- Tip_B orderJefl - ft
(18) RightJborder <- Tip_Borderjighi -rfS
(19) New_cropped_segmentedJmage <- crop the border smoothened image into
(20 )_________________________________ Left border and Right border limits_________

Figure 3.2 Data Preprocessing Algorithm
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3.3.2 Feature Extraction

We use grid-based image segmentation to extract low-level texture features from the 

images. Initially, each image is divided into n x n non-overlapping segments, and then 

low-level features are extracted from each o f  these segments. The size o f  the block, (i.e. 

n x n), is chosen so that approximately 10 0 0  -  1500 sub-blocks o f  the image are obtained. 

Our aim is to segment the image into smaller blocks and capture local relationships 

among image features. Once the image has been segmented, we extract eight texture 

features from each segment. Therefore, each segment represents a feature vector o f  

length eight.

In order to differentiate one feature vector from another, each vector is given a unique 

ID. In our case, this ID is the number o f  the segments from which the features have been

extracted, e.g. TID 1 ( f l , f 2 , f 3 ........ .f8) and TID 2 (fI, f2, f 3  .f8). The Haralick

texture features first introduced by Haralick et. al. used the co-occurrence matrix formed 

from the intensity value o f  pixels in the image to calculate 14 texture features for an 

image [38]. Here, we use eight o f  those features. Texture is an important aspect o f  an 

image and has several definitions, namely the frequency o f  change and arrangement o f  

tones o f  color in an image and the statistical distribution o f  spatial relationships between 

gray-level properties o f  pixels in an image. When distribution o f  texture changes slightly 

with distance in an image, the texture is called coarse texture, and when the distribution 

changes rapidly with distance, it is called a fine  texture. Information regarding the 

change in texture can be captured in a co-occurrence matrix. When the image is a gray- 

level image, it is called a gray-level co-occurrence matrix (GLCM). This GLCM matrix 

was used by Haralick in to find statistical texture features. Since these features are based
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on the intensity profile o f  an image, and since mammogram images are also intensity- 

based images, GLCM is a perfect fit for our problem. Figure 3.3 shows the calculation o f  

a 6 x6  co-occurrence matrix.

1 «■» 3 4 5 6
1 0 A 0 0 0 0

O '  ■^2s) 'A 5 3

-- - - -

r 11 1 ) + 1 0 1

e r T P 3 4 5 3 0 1 0 1 0 0
1 i 3 6 5 4 0 0--- ^ 0fc .. .. . 0 1 0
4 5 3 r .4b ■6 .5 . _ o 0 -> 2 0 0 0

6 0 0 0 0 1 0

Figure 3.3 Gray Level Co-Occurrence Matrix for an Image with 6 Gray Level Values

The eight features that we use in our method are:

1) Energy £ t {/>(>'■/)> ‘
/=(> /=0

2) Contrast
1=0 /=0

sA p ( i ,  j )
3) Local Homogeneity JTj

, = o j =o 1 + (/ -  j )

4) Correlation
7=0

5) E n t r o p y - ± ± p ( /,  j ) l o g p ( i ,  j )
i=0 j=0

6 ) Cluster Shade ± ± ( i - M x + j - M ) 1 p(i, j )
i-o y=<> y

where M _ =  ± ± i p ( i , j )  and M  =  ± i j p ( i , j )
»=0 7=0
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7) Information Measure o f  Correlation HXY-HXY1/ max{HX,HY} 

whereHXY= Entropy P = ± p ( i J )  , P  = ± p ( i j )
j -0 > /■=0

« r  = -iP ,(i)logP (0  > H Y  =  - ± P ( j ) l o g P ( j ) ,
j=0 ' y=0 *

HXYl = -S i^ ( i,; ) lo g {^ ( /)P 0 -)}  •
/=0 y

8) Maximum Probability m a x i,y P{*>j )

Here, P(i,j) is an entry in the co-occurrence/spatial dependence matrix with row 

number i and column number j .  fj, and fj, are the means for rows and columns,

respectively, and <7 , and CJ are the corresponding standard deviation. Four possible

angular nearest-neighbor distances can be used to calculate the co-occurrence matrix. 

These angles are 0°,45°,90°,135°. Figure 3.4 represents these four directions.

45
135

Figure 3.4 Different Directions o f  Co-Occurrence Matrix

The values o f  all the features are calculated in these four directions, and the average 

values are represented as the value o f  a feature. We used the 1-nearest neighbor distance
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approach to calculate the co-occurrence matrix. The algorithm for segmentation and 

feature extraction is presented in Figure 3.5.

Algorithm

SEgmentation and Feature Extraction (SE-FEX) divides the image into different non- 
overlapping segments, extracts features from these segments and arranges them in a 
Transactional Database

Input Preprocessed images Ih I2, ,INs Segment size nxn; set of discrete values a

feature can take {v1;v2,....... , vfc} , number of Haralick texture features H

Output Images Ih l2,.......,lN in transaction database fomiat whore each transaction is a

vector representing features extracted from each segment

Method:

(1) For every Image /y(l...r ,l..r) Vj € (\..N),r shows number of rows and Cnumber of

(2) columns
(3) number of segments (N s (r*c)/(n*n)

(4) For every segment W e ()..N5)

(5) (1}-[Fk]) vfVi <k,h < H j  <N,l  < N5 extract features from the

(6) segment

(7) Endfor
(8) Endfor

Figure 3.5 Algorithm for Segmentation and Feature Extraction

3.3.3 Data Preparation

Once feature extraction has been performed, we need to modify the data so that it can 

be used for association rule mining. During the feature extraction phase, some features 

give “not a number,” or (NaN), values because o f  noise in the images. This problem is 

observed often in medical images, as, despite segmentation, most o f  the background is
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black in these images. As a result, some statistical formulas provide the NaN value. We 

observe that the corresponding features for the same segment do not have a 

discriminatory value (most o f  them are 0 and 1). As a result, we have decided to remove 

those transactions or segments, as they do not provide us any information and will not 

have any part in the classification procedure. Once data cleaning has been performed, the 

next step is to normalize the data.

Since different features cover different values and the values differ drastically from 

each other, it is better to normalize these values to a comparable base. We use the z- 

score normalization procedure to address this issue. In z-score normalization, the values 

o f  attribute A are normalized based on the mean and standard deviation o f  A. Z-score 

normalization maps a value v o f  A to v using the formula:

, V — A
V = --------- , (Equation 3.1)

where A is the mean and a A is the standard deviation o f  the attribute. To provide an 

accurate representation o f  the mean and standard deviation o f  one attribute (feature), we 

combine the training data for each attribute to make a combined matrix. Then, we find 

the mean and standard deviation from this combined matrix for each attribute. This mean 

and standard deviation is used to normalize the data. Figure 3.6 shows the results o f  data 

preparation mechanism.



37

Seg
ID

FI F2 Fm

SI .345 2.44 39.9 56.7

S2 1 0 Nan 0 NaN 1

S3 1 0 Nan 0 Nan 1

S4 .456 5.67 675

So .m 12.8 34.8 457

ID
FI F2 Fa

SI 2.32 0.244 .... 1.229 1.44

S4 2.447 1.447 1.708

... . . .

Sn -.8070 2.180 ... . . . 1.234 .897

(a ) (b)

Figure 3.6 Data Preparation: (a) Original Image Data Matrix,
(b) Data Matrix after Data Removal and Normalization

The features extracted using this technique have continuous values, and, hence, it is 

necessary to discretize them so that association rules can be extracted from among them. 

In our approach, we partition each feature range into ten intervals. The value that occurs 

in each interval is replaced by the median o f  that interval; for example, a value falling in 

the interval 0 -  0.1, like 0.0345, is replaced by 0.05. Again, we use the combined 

training data for all the attributes to make the interval list for each attribute. We find the 

minimum and maximum from the combined data and then make the interval range 

starting at the minimum and ending at the maximum, with ten intervals between them. 

Once the interval range is formed for every attribute, the data in each image is discretized 

using this interval range.

3.3.4 Association Rule Mining

In our approach, each image can be seen as a dataset consisting o f  transactions that 

map to the individual feature vectors o f  segments. Items refer to individual feature 

values. The number o f  transactions in a database will be equal to the number o f  segments 

in the image. Since all the features have been normalized in a base range, it is necessary
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to give a specific ID to values in each feature, so that value -0.1567 o f  the first feature can 

be distinguished from value -0.1567 o f  the second and third features. To solve this 

problem, we prepare the data further using a three step procedure (shown in Figure 3.7).

Ft n .... .... FI

1 •1.5 u ... <4,973 S i

* 1J2 2.5? ... -.0573 3.1

.. ... ... ... ... ...

... ... ... ... ...
a 9i4 >,14 ... 4.1 « i

Original Data Matrix

Step 1

FI F2 .... F7 F8

1 1085 2085 ... 7094 8155

* 1134 2124 ... 7094 8155

.. ... ... ... ... ...

... ... ... ... ...

B 1195 2195 ... 7145 8165

Step 3

FI F2 .... . . . . FI

1 Si 8.5 . . . 9.42 15.5

i* 11.52 12.55 . . . 9.42 13.5

M . . . . . . . . . . . . . . .

•• . . . . . . . . . . . . . . .

B 19.54 19.14 . . . 14.5 16.5

Step
1

FI f ; .... .... F8

1 85 85 ... 94 155

134 124 ... 94 155

•• ... ... ... ...

... ... ... ... ...

n 195 195 ... 145 165

Final Data Matrix for 
Association Rule generation

Figure 3.7 Data Preparation for Association Rule Development

1. First, we make all the values positive by adding 10 to every value in the matrix.

2. Second, we multiply each value in the matrix by 10 and take the floor value o f  each 

attribute. This step is performed to make each value in the matrix distinct in at least 

two points o f  precision.
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3. Finally, the product o f  feature index i and 1000 is added to each value to make a value 

in one feature different from the same value in another feature so that it will be 

possible to find association rules. The following formula is used for this purpose:

F (i, j )  = (1000 *j) + F (i, j )  ( Equation 3.2)

/=  1: n ; j  = 1: 11.

In the Equation 3.2, F  (i, j )  represents the value o f  feature j in row i.

We then use an apriori-based association rule-mining algorithm. The support and 

confidence for rule mining are fixed depending upon the data. The common norm is to 

keep the support low and confidence high in order to extract strong representative rules. 

In our technique, an association rule is represented in the form:

1 134 a  2124  => 7094 a  8 0 7 4 , Support= 5% , Confidence= 0.9835.

The rule implies that if  the first feature has a value o f  134, and the second feature has 

a value o f  124, then the seventh feature will have a value o f  94, and the eleventh feature 

will have a value o f  74 with 5% support and 98.35% confidence. Similar types o f  rules 

are then formed for every image in the dataset.

3.3.5 Classifier Training and Classification

For raw features, we take all the segments from an image and combine them to 

generate one row vector for each image. Once we generate the row vectors, each image 

is represented by only one row vector, where the length o f  the row is equal to the product 

o f the number o f  segments in an image multiplied by eight. If an image has n segments, 

then the total number o f  columns (or length o f  feature vector) for that image will be n x 8 

(because we extract eight features from each segment). Class labels are included for 

training data and excluded for testing data.
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While the data transformation schema is simple for raw features, it is not 

straightforward for association rules because different images will have different rules, as 

will different classes o f  images. We, therefore, introduce a new transformation scheme 

based on the global rule presence. Figure 3.8 shows a graphical representation o f  this 

procedure.

Global Rule Set

Cl SI C2 S2 . . . . . . . . . Cm Sm

Figure 3.8 Images Rules to Global Rule Set Generation

Once the rules have been generated for each file/image, we combine the rules from 

objects o f the same class into one set to form class-level rule sets. Class-level association 

rule sets are combined to form an aggregate global rule set over a complete database. 

Unique rules from this aggregate rule set are selected and arranged in a data matrix. Each 

row in the data matrix represents an image, and two consecutive columns represent the 

support and confidence o f  a single rule.
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Since not all the images have every rule present, for an object/row that does not have 

a particular rule from the aggregate rule set, the corresponding columns are set to zero. 

The columns containing the confidence and support for a rule Rj can be located by the 

function (i-l)*2+ l. For example, the confidence and support for a rule #40 for all the 

images is found in columns 79 and 80, respectively. As with the raw features, the class 

labels are included for training and excluded for testing. Once the transformation is 

complete, we have the vector-based data representation for both raw features and 

association rules. Figure 3.9 shows this feature vector to data matrix transformation.

Kul i  s f n i " l R u l e s  l i n . i m - 2 R u l e s  I1n.11!

Cl \ —
SI c : S2 Cm Sm

1 r > r r 1

Im ages Conft Supl Con 12 Sup2 . . . . . . ConfSO SuptfO
Im azel .98 13 0 0 .. 0 0
Im aze2 0 0 .98 6 .. .90 10
Image 3 .99 13 .97 7 .. 0 0

. . . .. .. .. .. .. ..

. . . .. .. .. .. .. ..

. . . .. .. .. ..
ImageX 1 12 .99 8 .. .99 13

Figure 3.9 Association to Data Matrix Transformation

This vector-based data representation is provided as input to multi-class classifiers 

for query image classification. These individual vectors are arranged in a data-matrix
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format where each row represents the vector based feature representation for an image. 

The classifiers used in our experiments are FKNN and SVM, which are described below. 

FKNN (Fuzzy K-Nearest Neighbors) [40]: FKNN is an extension o f  the commonly used 

KNN (K-Nearest Neighbor) algorithm in which the memberships are fuzzy (some 

probabilities) and not crisp. The disadvantage o f  using a definitive mechanism is that it 

treats all the samples in a class equally. In other words, members who are at the 

boundary are given equal importance to the members who are in the center o f  the 

instance pool. Fuzzy theory solves this problem by replacing the crisp “is member/ not 

member” mechanism with probabilities like “how close are you to other instances in this 

class and other classes.” FKNN uses a “Bayes like” normalizing factor to provide 

memberships to different instances.

SVM (Support Vector machines) [41]: SVM is a commonly used classification and 

regression method. An SVM classifies instances by constructing a hyperplane in a multi

dimensional space. It views the classification problem as an optimization problem where 

it constructs an optimum hyperplane which separates the training instances into two 

classes. The shape o f  the hyperplane is generated using one o f  the many kernel 

functions: linear, radial basis, or polynomial, for example. SVMs are known as 

“maximum margin classifiers,” because they minimize the empirical classification error 

by maximizing the separating margin between instances. Although SVMs are used 

primarily for binary classification, they can be modified to work with multiple classes 

using the “one-vs.-one” or “one-vs.-all” strategy. We used the one-vs.-all strategy for our 

classification purposes.
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3.4 Experimental Results and Evaluation

For our experiments, we used 90% o f the data from each class for training and 10% 

o f the data from each class for testing. For extracting association rules from each image, 

the support was kept low, 4%, and the confidence was kept high, 90%. Five-fold 

repetitions were performed in order to normalize any bias in the data. The results for 

both FKNN and SVM show a significant increase in accuracy when association rules are 

used as input instead o f raw features. The results for both FKNN and SVM using raw 

features and association rules as input are presented in Figure 3.10 and Figure 3.11, 

respectively.

Accuracy %
■  RAW Features 
■ARD Features

Figure 3.10 Comparison o f  Results for FKNN Classifier

RAW features vs. ARD for  SVM

A ccuracy %

100-1
80

60

40

20

0

p i  m  i i  ■  
| l  M  B  ■
p i  8 1  H  ■

2 3 4
D ifferent Runs

■ RAW Features 
I ARD Features

Figure 3.11 Comparison o f Results for SVM Classifier
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Although the increase in accuracy varies for both classifiers, it still proves that 

associative relationships have more discriminatory power than non-associative 

relationships. These results validate our hypothesis that association rules can be used 

successfully as higher order features for classification.

3.5 Conclusions

Associative rule mining has gained importance in the field o f  supervised learning due 

to the ability o f  associative rules to provide detailed information regarding the underlying 

data and to provide better and more accurate results. In this work, we have provided an 

innovative higher order data representation based on association rules. A simple 

transformation mechanism was used to represent the association rules as higher order 

features. These features were then used with SVM and F-KNN for the classification o f  

mammograms. The comparative evaluation o f  results with raw features and higher order 

features shows that both the classifiers performed significantly better with higher order 

features. This discovery validated our hypothesis that associative relationships can 

indeed be represented as higher order features, and they capture more information about 

the underlying data than raw features represented as higher order features do.

While there is significant improvement in accuracy using this simple transformation 

schema, it still only uses the support and confidence o f  the rules. The intra-class and 

inter-class presence o f  association rules can provide even more information. This 

observation has led us to focus on building a novel associative classifier that uses the 

intra-class and inter-class importance o f  rules. In Chapter 4, we present this framework.



CHAPTER 4

WAR-BC: WEIGHTED RULE BASED 
ASSOCIATIVE CLASSIFICATION

4.1 Introduction

In Chapter 3, we introduced a novel association-rule-based data representation 

schema which provided us with valuable insight into the associative classification 

process. In this chapter, we present a model for building a new associative classifier that 

utilizes the inter-class and intra-class similarities and dissimilarities o f  the data as basis to 

weight the association rules and then use these rules to perform classification.

4.2 Why a New Algorithm is Necessary 

Classification using frequent patterns, otherwise known as “associative classification” 

(AC), has recently gained importance due to its ability to provide better results and to 

summarize the underlying information o f  data. While it is a well-known fact that a 

combination o f  features usually provides more knowledge than a single feature, not all 

patterns are useful. Hence, it is important that we generate models that will only use the 

informative patterns. In order to generate a good model, we must determine what pattern 

is useful, and how to measure usefulness. While most o f  the ACs use only a handful o f  

patterns, we argue that deleting/pruning patterns causes problems in multiclass 

classification scenarios. One o f the biggest problems with current AC algorithms is 

class-constrained rules, (i.e. keeping the class on the right hand side o f  the rule). Most 

AC algorithms push the class label into the rule generation module, thereby generating

45
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only “class association rules” (CARs). We argue that this limitation is a major 

component o f  multi-class classification problems, especially when the difference in 

instances from heterogeneous classes is very low, (e.g. images o f  sky and airplane). Let 

us view this problem through the following example. Consider a rule => c , .

This rule could be present in both classes c, andc2, and, hence, could cause confiision for 

the classifier. In most ACs, this rule will be deleted to avoid confusion. If we examine 

this rule more carefully, we can see that frequent itemset f , f 2,--fk might be present in 

more than one class. However, a rule f , f 2 => f k or f  => / 2, f k might be present in only

one o f  the two classes. Hence, this rule could be used as an important discriminator for 

classification. In addition, even if  the same rule is present in more than one class, it 

might be present with a different support and confidence. This support and confidence 

information could again be used for classification purposes. Some other problems with 

associative classifiers like rule ranking, incremental learning, rule overlapping, and multi

label rule classification, were put forward by Thabtah [42]. We address all o f  these 

issues in our proposed research.

We propose a novel weighted rule-based associative classification algorithm, WAR- 

BC, and address most o f  those issues. The class constraint issue stems from the 

restrictions in data representation, so we propose to use a different type o f  representation 

where each instance is treated as a separate transaction database. Then, regular 

association rules are formed followed by classifier training. We used two datasets from 

different domains to evaluate our method. Since these datasets are from different 

domains, some data preprocessing and feature extraction modules are different for both 

o f them.
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4.3 Problem Definition

Let D  be a training database, /  = {/, , / 2, .. . . ,/M} be a set o f  images, and C  be a class

attributeC = {c ,,c2,....,cA, } . Let = { f n, f i2>••■•>/*}be a set o f  features extracted for

each image / ,  | /,. e  /,V 1 < i < M  . Then, every image in a dataset can now be

represented as { / ] ,c .} ,  where c; e  C is the class label o f  image i. Let

iR. = {r.,,r;2,...,^}V/> > 1 be the set o f  rules extracted for image i. The weight o f  a rule is

a positive real number representing the importance o f  a rule. Let r_ in tra n and

r _intern represent the intra-class and inter-class weights o f  the rule rn ; then the

weighted rule representation o f  an image i is {R Weightt, c j }. Then the associative

classification problem is to learn a classification model based on the weighted rule space 

F : {RWeight;} ->  y  wherey  is a class label.

4.4 Datasets

Mammogram Dataset: This dataset is the same MIAS mammogram dataset that we 

used for our experiments in Chapter 3.

Corel Image Dataset [43]: The Corel image dataset is a commonly used scenic image 

dataset for multi-class image classification. We only use a subset o f  the 2000 image 

dataset. The dataset consists o f  20 classes o f  100 images. The images are saved in the 

JPEG format, and each image is o f  either 384x256 or 256x384 resolution. The 20 image 

categories used from the Corel database are Africa, Beach, Buildings, Buses, Dinosaurs, 

Elephants, Flowers, Horses, Mountains, Food, Dogs, Lizards, Models, Sunsets, Cars, 

Waterfalls, Antiques, Ships, Skiing, and Deserts. The major reason for using this dataset
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was the availability o f  benchmark results for comparison [44]. Figure 4.1 shows a 

representative image from each o f the 20 classes.

/ ’

Cat 1: Africa Cat 3: Buildin Cat 4: BusesCat 2: Beach

Cat 5: Dinosaurs Cat 6: Elephants Cat 7: Flowers Cat 8: Horses

Cat 9: Mountains Cat 10: Food Cat 11: Dogs Cat 12: Lizards

Cat 13: Models Cat 16: WaterfallsCat 14: Sunset Cat 15: Cars

Cat 17: Antiques Cat 18: Ships Cat 19: Skiing Cat 20: Deserts

Figure 4.1 Representative Images from the 20 COREL Image Categories [43]

4.5 Proposed Methodology

Since we have used three datasets to evaluate WAR-BC, some steps o f  the 

methodology are different for all o f  the datasets, particularly feature extraction and data
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preparation. We w ill explain these steps, which are different for our datasets, separately. 

The methodology can be divided into five phases:

I. Data preprocessing,

II. Feature extraction,

III. Data preparation,

IV. Association rule mining, and

V. Classifier training and classification.

4.5.1 Data Preprocessing

As explained in Chapter 3, because mammograms contain labels that are intentionally 

added to them by technicians for reference, they are noisy. Hence, they need to be 

cleaned before any features can be extracted from them. For brevity, we do not explain 

the preprocessing step here, as it is the same as described in Section 3.3.1. The Corel 

image dataset does not require any preprocessing, as it is significantly noise free.

4.5.2 Feature Extraction

Mammogram Dataset: The feature extraction procedure for a mammogram dataset is 

the same as described in Section 3.3.2.

Corel Im age D ataset’. We use the same grid-based segmentation as is used for 

mammograms to extract low-level wavelet-based features from the images. Additionally, 

since these images are colored, we also extract color features from them. Initially, each 

image is divided into n x n non-overlapping segments, and then low-level features are 

extracted from each o f  these segments. The size o f  the block, (i.e. n x n), is chosen so 

that approximately 2000 -  3000 sub-blocks o f  the image are obtained. For our analysis, 

we use n=5. The scenic images from Corel stock data contain a great deal more
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information and objects o f interest than the mammograms, which contain only one object 

in an image, the breast. This high level o f content is one reason we keep the block size 

small. Corel stock images are 3-D colored images, so we use both the color and wavelet 

information for classification. A colored image is an image where each pixel is 

represented by a combination o f  three values- one value for red, one value for green, and 

one value for blue. These values are why colored images are also sometimes referred to 

as RGB images. In most platforms, a colored image is stored as a 3-D matrix, where the 

first matrix represents the values o f red color for individual pixels, the second matrix 

represents the green values for the same pixels, and the third matrix represents the blue 

values. The true color o f each pixel is represented by the combination o f each o f  these 

three RGB values for that pixel. Figure 4.2 shows a colored image and its matrix 

representation.

Figure 4.2 A Colored Image and Its Matrix Representation

For colored images, we extract six features, three color moments, and three wavelet 

moments. The three color features are the first order moment (average) o f  the red, green, 

and blue values o f  the pixels in the current segment. The three wavelet moments
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represent the energy, which is the square root o f  the second order moment o f  wavelet 

coefficients, in high frequency bands o f  the wavelet transform [44]. These features are 

extracted using the following method:

1) Take an individual non-overlapping segment, and transform this colored segment 

into its grayscale counterpart using color-to-grayscale conversion;

2) Perform one level wavelet transform on this segment using Daubechies-4 wavelet 

as the parent wavelet;

3) The transformation provides coefficients in four frequency bands: LL, LH, HL, 

and HH. The three wavelet features are then extracted by taking the square root 

o f  the second order moment (variance) o f  the coefficients from HL, LH, and HH 

bands separately.

These three wavelet features are combined with the mean (average) values o f  the red, 

green, and blue values o f  the segment resulting in a feature vector o f  length k=6. Each 

vector is given a unique segment ID, which, in our case, is the number o f  the segment 

from which the features were extracted, e.g. TID 1 (fl, f2, f3 .....fk) and TID 2(fl, f2, 

f3....fk), where k=6, since there are six features for any given segment.

4.5.3 Data Preparation

We use the same data preparation step for mammograms that we explained in Section 

3.3.3. Since there is no single object o f  interest in the Corel stock images, the features 

extracted from these images do not give any NaN values. As a result, we do not need to 

delete any rows from the database. However, as with the mammogram dataset, we use 

the Z-score normalization and data discretization mechanism. For Corel images, we 

again discretize the values into ten bins.
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4.5.4 Association Rule Mining

Association rule mining is similar for both the mammogram dataset and the Corel 

image dataset. Each image is viewed as a dataset consisting o f  transactions that map to 

the individual feature vectors o f  segments. The length o f  the feature vector varies 

depending on the type o f  images used (eight for mammograms and six for Corel images). 

Items refer to individual feature values. The number o f transactions in a database is equal 

to the number o f  segments o f  the image. While the number o f  transactions for each 

mammogram may differ depending upon the size o f  the breast part and the black 

background, the number o f  segments for a Corel image dataset is the same, since the total 

resolution o f  the Corel images is the same (384x256 = 256x386=98304). The feature 

values are changed using the data transformation mechanism (Equation 3.1) explained in 

Section 3.3.4, so that similar values from different features are represented by unique 

IDs. For a quick review, the formula for Equation 3.2 is provided below for 

transformation.

NewF (i, j )  = (1000 *j) + F  (i, j )  (Equation 3.2)

/=  1: n ; j  = 1: 11.

In Equation 3.2, F (i, j )  represents the value o f  feature j  in row i. An apriori algorithm 

with minimum support and confidence is used to generate association rules o f  the form 

1004 a  2104=?- 7090 a  8070 Support= 7%, Confidence^ 90%.

4.5.5 Classifier Training and 
Classification (WAR-BC)

The procedure is similar for both mammogram and scenic images. We will explain 

the differences between them. First, a fixed percentage o f  the data is selected from each 

class for the training phase. The data chosen depends upon the user-defined percentage.
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After association rule generation for the training images, the rules from images in each 

class are combined into a class-level association rule set. Each class will have its own 

rule sets. The size o f  this class level rule set varies for each class depending upon the 

depth o f  information present in images o f  a class and the rules generated for them. 

Further, the size is also affected by the imbalance in data for different classes. The 

mammogram data is also affected by an imbalance in data, as we usually have more 

normal data than cancerous data. For an individual class-level rule set, the frequency o f  

each rule for that class (the intra-class weight o f  a rule) is calculated. The frequency 

information for mammograms is the percentage o f  training images per class that have the 

rule present in them. The frequency information for Corel images is the number o f  

images in a class that have that rule. Since the classes in the Corel images dataset are 

balanced, we do not choose a percentage for Corel images.

However, we can work with percentages in the Corel images. The rules are ranked 

using this intra-class frequency measure to find the most important to the least important 

rule. Now, it is possible that one rule is present in the images o f  other classes, possibly 

because we generate all rules and not just predictive rules from data and because there are 

classes that might be similar, (e.g. sky and airplane, and ocean and ship, etc). Therefore, 

to solve this issue, we assign another frequency weight to a rule based on its presence 

across multiple classes. We call this the “inter-class weight” o f  a rule. To calculate this 

weight, we combine the class-level rule sets from all the classes into a global rule set 

which has only unique rules from all the classes. Associated with each rule is the 

frequency o f  the rule in each class. We introduce two rule measures, horizontal weight 

and vertical weight, for all the rules in the database. Horizontal weight evaluates the
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inter-class importance o f  the rule and, hence, is calculated based on the frequency o f  a 

rule across the classes. After calculating the frequency o f  a rule in all the classes in the 

database, the individual class frequencies are divided by the sum o f  all the frequencies o f  

that rule over the classes, resulting in the relative frequency measure o f  a rule for each 

class.

The relative frequency o f  a rule for a class is known as its horizontal weight for that 

class. For example, suppose there are 1000 unique rules present across all classes. In a 

class for which the rule is not present in any o f  its images, the rule is given a horizontal 

weight o f  zero. For instance, then, if  rule Rj is present in 20% o f  training images in

Class 1, 60% in Class 2, 30% in Class 3, and 40% in Class 5, and it is not present in any 

other class o f  the dataset, then the frequency o f  Rjt  in Class 1 is 0.20, in Class 2 is 0.60, 

in Class 3 is 0.30, and in Class 5 is 0.40. The relative frequency/horizontal weight o f Rj

for Class 1 is 0.20/(0.20+0.60+0.30+0.40)=0.133, for Class 2 is 0.60/1.5=0.40, for Class 

3 is 0.30/1.5 =0.2, and for Class 5 is 0.40/1.5= 0.267.

While horizontal weighting uncovers the inter-class importance o f  a rule, the vertical 

weight finds the intra-class importance o f  each rule. Vertical weight is performed 

separately for each class. For calculating vertical weights, the individual class-level rule 

sets are first sorted according to the decreasing order o f  the confidence value o f  a rule. 

However, it is common that more than one rule will have the same confidence. 

Therefore, the rules are sorted further according to the decreasing order o f  their support 

within each confidence value. After this rearrangement, the rule with the highest 

confidence/support pair gets the highest rank (1st) and the highest weight. The highest 

weight is equal to the number o f  rules present in a class. For example, if  there are 200
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rules in a class, then the highest ranked rule (first rule) will be assigned a weight o f  200. 

The weight o f  second ranked rule is one less, then the first ranked rule, which, in our 

example, will be 199. The weight o f  the third ranked rule is one less than second ranked 

rule and two less than the first ranked rule. The procedure is used to rank all the rules in 

the class-level rule set until the last ranked rule, which is assigned a weight o f  1. These 

weights are then normalized in the 0-1 range. The pseudocode for rule weighting is 

shown in Figure 4.3.

Algorithm Rule Weighting (R-Weight) is used to provide Horizontal and Vertical 
weights to every rule present in the training database

Input Number of classes C. combined list of training rales for each class Lc ; 

Number of rules in each class (j) C j. Total number of rules N

Output Horizontal and Vertical weight matrices of rules 

Method:

(1) For every* rule R}Ĉ  Vi < N , j  <C

(2) frequencyi^C j  )<-percentage of images in C}- having R fij
c

(3) Horizontaljveighti R}Cj  )<-frequency  ̂R f j  > R f j
J-1

(4) End For// Horizontal weighting complete
(5) For every’ class j  Vj < C

(6) Rank _ rules j  <— Sort rales according to confidence and then support in each

(7) Confidence
(8) For every rale R{Cj  Vi <Cj , j  <C

(9) Vertical_\veightt RiC] )<— (C; - Rank_rules( RtCj ))

(10) End For
(11) Normalizedjveight (R̂  ) f-normalize vertical weights in the range 0-1

(12) End For

Figure 4.3 Algorithm for Rule Weighting
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Finally, we also use the cardinality, (i.e. the number o f  items in a rule), o f  the rule. 

The total weight o f  the rule is then represented as a sum o f  its horizontal and vertical 

weight multiplied by its cardinality. The weighting notations are explained herein.

Let us assume C = the total number o f  classes and N  = the total number o f  global 

rules,

CD i = Cardinality o f  rule Rt V/ < N ;

Cj = Rules in class j ,  Vj < C ;

HjRj  = Horizontal weight o f  rule R t for class j ,  V(z < N,  j  < C ) ;

Vj Ri = Vertical weight o f  rule R j for class j ,  V(z < C} , j  < C ) ;

Q  = Number o f  rules from query image which match with global set o f  rules (N).

Then, the weight o f  a rule /?, for class C  t is defined by the formula:

W JR l̂ ( / f ^  +  K ^ x C D , .

Once the classifier is trained, the next step is to classify previously unseen instances. For 

every new test instance, association rules are generated using the same support and 

confidence as was used for training instances. Then, an individual rule from a query 

image is taken and is matched with the global rule set to find its horizontal weight. A 

match is defined as the matching o f  all the items in a rule body, both on the left and right 

hand side o f  the rule. This matching is different from the CAR matching, for which only 

the LHS was used because the predictor or class label was always on the RHS. The same 

rule is then matched with the different class-level rule sets to find its vertical weight for 

each class. Next, the horizontal and vertical weights o f  a rule are added and multiplied 

by the cardinality o f  the rule. The resultant product is called the score o f  the rule. The
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same procedure is repeated for every rule in the query image. Finally, the scores o f the 

matching rules are added on a class-by-class basis, and a cumulative sum is calculated for 

each class. Finally, the query image is classified to the class with the highest cumulative 

sum. Figure 4.4 shows the algorithmic process.

i ™

Gass Label

Figure 4.4 Query Mechanism for the Algorithm

CembiaedSim afl
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The sum o f  all the rules for class Cj is calculated using the formula defined below:

T o t J = f i ( W JR l ) .
1 =  1

Then, the output label (predicted class) can be decided using the formula:

c
C lassLabel <= arg max ( 7 o / .) .

./=!

If N t = the number o f  query images from class /  and Q{ = the number o f  images in 

class i correctly predicted by the classifier, then the accuracy for class i can be defined

_ Qt 5  01
by: C A cc i -  — L ,and the total accuracy is given by: TotAccuracy -  ------

N i 2 > ,
i=i

4.6 Results

Since we use a score-based classification mechanism, each query image will have its 

scores for every class in the database. Hence, we can have both “crisp” classification 

where only one class is predicted per query image, or “fuzzy” classification where the 

query image is classified to the top k classes based on the top k scores. We explain the 

results for each datasets separately.

4.6.1 Mammogram Dataset Results

In order to make an accurate comparison, we compare the results o f  the proposed 

technique WAR-BC with six existing techniques from literature. Antonie et al.used two 

techniques for mammogram classification: a three layer (input, hidden, and output) back 

propagation neural network (BPNN) and an association-rule-based classifier (ARC-AC)
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[45]. Each layer in BPNN had different nodes with 69 nodes in input layer, 10 nodes in 

hidden layer, and 1 node in output layer. The single node in output layer was responsible 

for the classification o f  a query image.

The authors developed ARC-AC as an association-rule-based classification 

algorithm. The rules generated were class constrained rules (class label on the RHS o f  

the rule) extracted from the entire mammogram dataset. Initial support was set at 10% 

and an initial confidence was set at 0%. Depending on the classification accuracy over 

training data, the confidence was increased in the tuning phase. ARC-BC, proposed by 

the same authors, improved on ARC-AC [46]. The association rules in ARC-BC were 

formed separately for each class with different support and confidence values, unlike 

ARC-AC wherein the same support and confidence were used for rule generation from 

the entire dataset. Yun et al. proposed the Joining Associative Classifier (JAC), which 

they used to combine rough set theory with association rule mining to build a hybrid 

classifier [47]. For further reading about these works please refer to [45], [46], and [47],

Apart from the existing benchmark results present in the literature, we also implement 

two extra classifiers for comparison: F-KNN [40] and PNC2 [48]. The details o f  the F- 

KNN classifier haven been presented in Chapter 3. We perform ten-fold repetition using 

F-KNN with the same images as used for WAR-BC. We also use PNC2, a hierarchical 

agglomerative clustering tool that generates “if  -  then” type rules directly from the data 

for use with classification. Initially, the input data matrix provided to PNC2 for rule 

generation was the same as the input data matrix provided for F-KNN. While the model 

training time for one run o f  the system with this input matrix is very large (25 hours on a 

single processor AMD opteron 2.39 GHz Machine), the testing accuracy is only 53.13%.
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In an attempt to boost the model training runtime for 10-fold repetition, we take four 

consecutive segments (in row-major format) for each data matrix and average the features 

to extract the derived aggregated value. These average features values are afterwards 

used as input for rule generation and classification. This modification reduces the data 

size and time for model learning significantly without compromising the training 

accuracy. For further information about the working o f  FKNN and PNC2, we 

recommend [40] and [48].

4.6.1.1 Associative Classification

All o f  the existing benchmark techniques have used 90% data for training and 10% 

for testing. In order to make accurate comparisons, we use the same training/testing split. 

For association rule generation using WAR-BC, the support value is kept low, at 4%, and 

the confidence level is kept high, at 90%. The same support and confidence values are 

used for all the classes to generate rules separately.

The MIAS mammogram dataset is highly unbalanced with more normal cases than 

benign and malignant. Our rule-weighting schema easily handles this multiple class 

imbalance. This non-sensitivity to class imbalance is an important improvement over 

existing association-rule-based techniques that are sensitive to unbalanced data like ARC- 

AC. Further, we use true association rules, rather than class-constrained rules like those 

used by ARC-AC and ARC-BC, in which the class is kept on the right-hand side o f  the 

rule.

We perform ten-fold repetition to compare the results o f  [45], [46], [47], [40], and 

[48] with WAR-BC. The comparative results o f  these six techniques with our proposed 

technique are presented in Table 4.1.
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Table 4.1 Accuracy Comparison o f  Existing Techniques with WAR-BC

BP NN ARC-AC JAC ARC-BC F-KNN PNC2 WAR-BC
1st 96.87 67.64 69.342 80 59.37 53.13 93.75
2nd 90.62 79.41 86.373 93.33 46.87 56.25 90.62
3rd 90.62 67.64 77.586 86.67 56.25 62.5 93.75
4th 78.125 61.76 72.912 76.67 71.87 62.5 84.37
itti 81.25 64.7 78.224 70 53.12 59.37 93.75
6th 84.375 64.7 77.055 76.67 75 20 81.25
7th 65.625 64.7 77.691 83.33 65.25 68.75 90.62
8th 75 64.7 73.752 76.67 56.25 20 90.62
9th 56.25 67.64 82.123 76.67 53.12 68.75 87.5
10th 93.75 88.23 79.819 83.33 59.37 12.5 90.62
Avg.

81.2485 69.112 77.4877 80.334 59.647 48.375 89.685

As can be seen from Table 4.1, WAR-BC outperforms all six comparative techniques 

in terms o f  accuracy over the same training/testing data. The results for BP NN, ARC- 

AC, ARC-BC, JAC, F-KNN, and PNC2 are based on 90% training and 10% testing data. 

The average accuracy o f  our technique for the same training/testing data is almost 20% 

higher than ARC-AC, 10% higher than ARC-BC, 8% higher than BP NN, 12% higher 

than JAC, 30% higher than F-KNN, and 40% higher than PNC2. These results show that 

WAR-BC is superior to existing techniques. Additionally, we also experimented with 

two splits o f  data, namely 70% training and 30% testing, and 80% training and 20% 

testing. The average accuracy achieved for these splits is higher than the accuracy 

compared to the existing six techniques. These results can be seen in Figure 4.5. (a). 

Further, we experimented with class constrained rules (WAR-CCBC), (i.e. rules with 

class label on the RHS). These results are seen in Figure 4.5. (b). As can be seen, the 

accuracy with WAR-CCBC is still higher than all the other techniques.
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WAR-BC
70% 80%

1st 93.81 96.87
2nd 92.7 93.75
3rd 90.72 96.87
4th 61.85 71.87
5th 90.62 93.75
6th 65.97 73.47
7th 69.07 75
8th 84.53 84.37
6th 84.37 82.81
10th 93.75 93.75
Avg.
Acc 82.739 86.251

WAR-CCRBC
1st 96.87
2nd 90.62

" swt 96.87
4th 75
5th 93.75
6th 75
7th 78.12
8th 87.5
9th 90.62
10th 93.75
Avg.
Acc 87.81

(a) (b)

Figure 4.5 (a) Average Accuracy for 70% and 80% Training Data over 10-Fold 
Repetition, (b) Average Accuracy for 90% Training Data using Class Constrained Rules

In order to assess the accuracy for each class, we also calculate the precision and

sensitivity. Following formulas are used for calculating Precision and Sensitivity values:

Precision  = -------------  (Equation 4.1)
TP + FP

Sensitivity/Recall =   (Equation 4.2)
TP + FN

Since precision and sensitivity is calculated for only binary cases, we keep the data

from class normal as such, but combine the data from classes benign and malignant to

form a new class, labeled abnormal. Hence, the precision and sensitivity is calculated for

normal versus abnormal mammogram classification. In this case, TP = images which are

normal and are labeled normal by the classifier, FP = images which are abnormal, but are

labeled normal, TN = images which are abnormal and are labeled abnormal, and FN =

images which are normal, but are labeled abnormal. Figure 4.6. (a)-(b) shows the

precision and sensitivity graphs using WAR-BC for three percentage splits o f  data

(70/30, 80/20, and 90/10) over tenfold repetition.
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Figure 4.6 (a) Sensitivity over 10 Runs (b) Precision over 10 Runs

As can be seen from the graphs, the precision and sensitivity values for our algorithm 

are high for all pairs o f  classification. For 90% training data, the average precision is 

91.83%, and the average sensitivity is 96.36%. A confusion matrix for the best-case 

scenario is shown in Figure 4.7. We can see from the results that all normal images are 

classified correctly into class normal and only one image each from the benign and 

malignant classes is misclassified into the normal class
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Normai Benign Malign
Normal 22 0 0
Benign 1 5 0
Malign 1 0 3

Figure 4.7 Confusion Matrix for the Best Case Scenario

4.6.1.2 Classification Based on 
Mammogram Density

During experimentation, we note that misclassification indicates a problem with the 

image, rather than with the classifier. After a close inspection, we find that the 

mammogram density is an important factor affecting this result. This revelation 

motivates us to perform classification separately for different mammogram density 

classes. Three mammogram density classes: fatty, glandular, and dense, are used for the 

MIAS mammogram dataset.

In this set o f  experiments, WAR-BC is used to classify normal vs. benign vs. 

malignant cases separately, for each o f  the three tissue densities. O f the 322 images in 

the dataset, 108 belong to class fatty, 101 belong to class glandular, and 112 belong to 

class dense. These images are divided based on abnormality. For class fatty, there are 67 

normal, 23 benign, and 18 malignant images; for class glandular, there are 65 normal, 20 

benign, and 16 malignant images, and for class dense, there are 76 normal, 20 benign, 

and 16 malignant images. Training and testing o f  WAR-BC is performed separately for 

each density class with three percentage splits o f  data (70/30, 80/20, and 90/10). The 

accuracy in the class fatty for 70/30 data pair is 77%, for 80/20 is 86.84%, and for 90/10 

is 95%. Average accuracy for class glandular for the same data split is 85%, 84.38%, and 

88%. Moreover, the accuracy for dense class is 84.23%, 87.7%, and 86.6% for the same 

data split. Figure 4.8 shows the average accuracy for different density classes.
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90% 1st run 2nd run 3rd run 5th run Average
Patty 100 100 100 75 100 95

Glandular 100 80 80 90 90 88
Dense 91.66 83.33 83.33 83.33 91.66 86.662

(a)

80% 1st run 2nd run 3rd mh 4th run Stti run Average
Patty 95.65 95.65 95.65 69 78.26 86.842

Glandular 100 77.27 77.27 81 86.36 84.38
Dense 95.65 86.95 86.95 82 86.95 87.7

(b)

70% 1st run 2nd run 3rd run 4th run 5th run Average
Fatty 91.17 82.35 79.14 67.64 64.7 77

Glandular 100 81.25 81.25 75 87.5 85
Dense 96.96 78.78 78.78 87.87 78.78 84.234

(c)

Figure 4.8 Density-Based Classification over Five Runs

4.6.1.3 Classification Using Region 
of Interest Information

In the previous set o f  experiments, we ignored the region o f  interest (ROI) 

information provided with mammograms. The ROI provides us with the location o f the 

micricalcification on the mammogram. The x and y  coordinates and the radius (in pixels) 

o f the abnormality on the mammogram are provided for some abnormal (benign and 

malignant) mammograms. If the calcifications are scattered over the entire mammogram, 

then information for the ROI is omitted. From the images, which contain ROI 

information, we segment the ROI and formulate rules for the remaining portions o f  the 

image. Rules for images from one class are combined to form a class rule set (for 

example, R2). These rules are matched with the existing rule set for the same class (R l) 

where rules from the entire image (including ROI) are formulated. Horizontal weighting 

for rule set R l is performed in the same way as earlier but the vertical weighting is 

modified.
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The rules in R l, which did not match with the rules in R2 (for example, 

RNotCommon), are given the highest weight in vertical weighting as these rules are 

assumed to come from the ROI since they are not present in the new rules set R2. Rule 

ranking is performed separately on this set o f rules first. Then, the rules that match both 

set Rl and R2 and for which the support and confidence are different for set Rl and R2 

are selected (say RCDiffSupConj). These rules are important as a part o f  these rules lies 

in ROI (evident from the decrease in support and confidence for rules set R2). Rule 

ranking is performed on them separately, but the ranks are lower than the ranks for 

R NotCommon. Finally, the remaining rules are taken and ranks are given to them. 

Therefore, the highest ranks are given to R NotCommon, the next highest weights are 

given to RCDiffSupConf, and the lowest weights are given to rules that are common for 

both Rl and R2, and their support and confidence does not change. The class level and 

overall accuracies for 10 runs can be seen in Figure 4.9 and Figure 4.10 respectively.

C lass level Accuracies for ROI based 
Classification

'fir

100

80
B
3 60 -
o

< 40 -

£ 20

0  ■ II ■ Norm al

■ Benign

■ Malignant

1 2 3 4 S 6 7 8 9  10

Different runs of data

Figure 4.9 Class-Level Accuracies for WAR-BC over 10 Runs
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ROI-BC
1st 81.25
a id 84.37
3rd 81.25
4th 81.25
5th 84.37
6th 78.12
7th 81.25
8th 81.25
9th 81.25
19th 81.25

Avg. Acc 81.561

Figure 4.10 Classification Accuracy for Regions-Based Classifier

From the results in Figure 4.10, it is evident that incorporating the ROI information 

into the classifier decreases the accuracy. After a close inspection we see that there is 

only one class, Benign, which brings down the overall accuracy. Hence, we conclude that 

the current set o f  features cannot be used to capture the information present in the ROI 

accurately.

4.6.2 Scenic Dataset Results

For the COREL dataset images, we compare the results o f  WAR-BC with four 

existing works: MILES [44], DD-SVM [49], MI-SVM [50], and k-means SVM [51]. In 

order to make an accurate comparison, we use the same amount o f  training/testing data 

(50/50) as was used for MILES.

4.6.2.1 Associative Classification

Two sets o f  experiments were performed in MILES: one with 1000 image and a 10- 

class image dataset, and another with 2000 images and 20-class image dataset. Initially, 

we experiment with three segment sizes and two combinations o f  support and confidence 

values. The corresponding classification results are shown in Table 4.2.
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Table 4.2 Classification Accuracy for Different Combinations o f Segment Size and
Support and Confidence

Sup/Conf combination*^ 

Segment Sizesl'

Sup=0.01%,
Conf*90%

Sup=a0.005% , <

I r ; 4x4 ; 78.80% 80.00%
' 5x5 ' ' 80.60% 84.00%

7x7 79.00% 81.80%

The segment sizes used in Table 4.2 are 4x4, 5x5, and 7x7, and the support 

confidence combination for each o f these segment sizes are support= 0.01% and 

confidence= 90% , and support= 0.005% and confidence= 90%. Since window segment 

5x5 and the (support, confidence) combination o f (0.005%, 90%) provide the best 

classification accuracy, we use this combination for the rest o f our experiments. The 

experiments presented in the rest o f  the dissertation are based on this combination o f  

segment size, and support and confidence unless otherwise specified. For the remainder 

o f the dissertation, we will call the experiments using the 1000 image dataset COREL-I 

and the experiments using the 2000 image dataset COREL-II. Figure 4.11 shows the 

results for WAR-BC with COREL-I.

!

Com parison o f D ifferent Techniques

MILES DD-SVM M iS V M  k-m oans-S V M  WAR-BC

M ethods

Figure 4.11 Comparison o f  Different Techniques with WAR-BC
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From the results, we can see that the accuracy o f  WAR-BC is better than the accuracy 

for the existing techniques. The accuracy is only slightly better using WAR-BC, but we 

use less features (six) compared to nine (as the six used by WAR-BC and three region- 

based features) used by MILES, DD-SVM, MI-SVM and k-means SVM. We also 

investigate the confusion matrix (averaged over five runs) o f  COREL-I classification 

using WAR-BC to discover the individual performance o f  each class. Each row in the 

matrix represents the percentage o f  images in a category classified to one o f  the ten 

categories. The number on the diagonal shows the percentage o f  images that were 

accurately classified and the number in adjacent columns represents the percentage o f  

images in a category that were misclassified into another category. Table 4.3 shows the 

confusion matrix for COREL-I.

Table 4.3 Confusion Matrix for COREL-I

% Africa Beach BaiMings Buses Dinosaurs Etepbanb Flowers Horses Mountains Food
Africa 86.4 0.4 2 0 8 0 4 0 12 2 8 2 4
Beach 24 732 1.2 1.2 0 2.4 0.8 0 18.8 0

Buildings 104 3.6 68 8 0 4 1.2 0 4 0.8
Buses 0 2 0 92.4 0 2 0 0 2.4 12

Dinosaurs 0.8 0 04 0 936 12 0 0 1.2 2 8
Elephants 7.6 2 2 0 0 792 0 0.8 7.2 12
Flowers 1.6 1.6 0 0 0 0.8 95.2 0 0 08
Horses 10.4 0.8 0 8 0.8 0 4 0.8 808 0.8 03

Mountains 0 16.8 0.4 0 0 2 1.2 0.8 78.8 0
Food 72 0.4 0 0.8 0 08 0 0 2 88 8

After a close inspection o f the confusion matrix, we find that a majoi

misclassification occurs between two classes: Beach and Mountains, 16.8% o f  images 

from class Mountains are misclassified to class Beach while 18.8% o f  images from class 

Beach are classified to class Mountains. These errors are in-line with the errors reported
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in [44] and [49]. The possible explanation for this misclassification is that most o f  the 

images in these two classes have similar semantic regions like sky, ocean, etc.

Further, class Africa is a major culprit for misclassification. As can be seen, two 

classes (buildings and horses) have major misclassification with this class. One reason 

for this behavior is that there is a great deal o f intra-class variance in class Africa. This 

behavior results in a high number o f rules generated for this class. Hence, this class 

absorbs a number o f rules during classification. Figure 4.12 shows the classification 

accuracy o f  each o f the ten classes over five runs.

Class level accuracies for 5 different runs

*  
a

C‘a u 
3 Q V

Figure 4.12 Class Level Accuracies o f COREL-I over 5 Runs

As can be seen from the graph, the classes with the highest accuracy (Africa, Buses, 

Dinosaurs, and Flowers) are also the most stable, as the classification rates vary little for 

these classes. Similarly, the classes with the lowest accuracy are those that have varying 

classification rates over different runs. This observation validates our hypothesis that the

lllllllIlM
■ ■ ■ ■ ■ ■ ■ ■ ■ ■

too 
80
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4 0 __________________________________________________________________

___________________________________________________________iRun 2
2 0 __________________________________________________________________

■ Run 3

■ Run 4

/  ✓  /  ✓ , /  /  /  /  /  /

Classes
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intra-class variance among the images present in these classes results in low classification 

accuracy. Figure 4.13 shows the classification results for COREL-II dataset.

Comparison o f Different techniques
BSj

70.00%

£ 60.00% -
.3w $0.00% t

40.00% -
O
2 30.00% "M0O 20.00%

<4 10.00% 

0.00% -
MU FS DD-SVM MI-SVM k -m panvS V M  WAR-BC

M eth o d s

Figure 4.13 Classification Accuracy for COREL-II Dataset

Once again, we see that the classification accuracy for WAR-BC is comparable to the 

best technique, MILES. As expected, the classification accuracy drops significantly 

when the number o f classes increases, as many o f the new classes share some semantic 

information with the existing ones. Figures 4.14 and 4.15 show the class-level accuracies 

for COREL-II over five runs.

C la s s  le v e l a c c u ra c ie s  f o r  5  d if f e r e n t  r u n s
lOO -|
oo
80
70
60

o ' 50 -

2 40 '

g
30
70
10 -
0 1

Classes (1-10)

I R u i i l

I R tin 2  

i R u n 3  

I Ru«i4

I R im  6

Figure 4.14 Class-Level Accuracies for COREL-II over Five Runs (Classes 1-10)
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Class level accuracies for 5 different runs

■  R u n l

■  R un2

■ Run3

■  Run4

■  RunS

Classes (11 -2 0 )

Figure 4.15 Class-Level Accuracies for COREL-II over Five Runs (Classes 11-20)

Again, we see that the classes with the highest average accuracy over different runs 

are also the most stable classes. It can be seen from the individual class-level accuracies 

that there are a few classes: Beach, Mountains, Elephants, Lizards, and Desserts, which 

bring down the overall accuracy. Of these, Class Desert performs the worst. After careful 

evaluation o f the images in this class, we find a high intra-class variation among images. 

Figure 4.16 shows examples o f the images from class Desserts, and we can see that many 

images share semantic regions with other classes.

Figure 4.16 Sample Images o f  Class Desert from COREL Dataset [43]
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This semantic similarity is one reason for high misclassification rate for Class 

Desserts. The output o f WAR-BC is a classification score for each class. Figure 4.17 

shows example query images that have been classified correctly into their respective 

classes. The first column shows the class label and the second column shows the 

corresponding score generated by WAR-BC for that class.

-ftr-wpr-

Africa 4419.495
Food 3359.502
Buses 3072.004

Dinosaurs 1349.739
Food 1145.882

Africa 954.710

Flowers 3805.264
Africa 3766.070

Elephants 3138.711

Africa 3661.853 Beach 4601.331
Food 3630.555 Mountains 3705.558
Buses 2611.479 Buses 3347.623

Beach 2706.122 Bases 2906.740
Mountains 2676.830 2863.032
Elephants 2577.635 Buildings 2769.600

Dinosaurs 1785.943
Food 1152.08

Africa 1051.148

Flowers
Africa
Food

Buses 2663.406
Buildings 1960.447
Mountains 1842.509

3466.067
2143.862
1906.092

Food 3494.866 Food 2299.883
Africa 2816.378 Africa 1842.104

Flowers 2225 199 Flowers 1677.349

Figure 4.17 Examples o f  Accurately Classified Query Images
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The class label assigned in this set o f experiments is the class with the highest score 

(shown in bold). All the images in Figure 4.17 were classified accurately to their base 

classes. Figure 4.18 shows some images that were misclassified. The class label assigned 

to these query images is the top most class label. The correct class label for each o f  these 

images is shown in bold.

M ountains
Beach

Buildings

2506.099
2226.481
1275.873

Mountains 3227.081
Beach 3211.962

Buildings 2651.056

Buses 3891.169
Africa 3844.424

Buildings 3076.835

3962.903
Mountains 3548.362

3361.031

mmmuMumtHi
Buses 2671.305

Buddings 2539.044
Beach 2059.232

Africa 2037.983
Beach 1867.822

Elephants 1831.629

3611.602
3593.019

Mountains 3207.599

n
Beach 1625.409

Mountains 1321.558
Africa 952.053

9■
Beach 3177.609

Mountains 3098.840
Elephants 2667.880

Figure 4.18 Examples o f Inaccurately Classified Query Images

It can be seen from the misclassified query images o f classes Mountain and Beach 

that these images do share some semantic regions such as sky, water, and sand. This
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semantic similarity, as explained earlier in the section, is the major reason for

misclassification. Further, we also see that the true class label o f  most misclassified

images appears in the top three scores provided here. This observation leads us to focus

on another set o f  experiments explained in the next section.

4.6.2.2 Classification With Top-k 
Classes (WAR-BCk)

The experiments performed in the last section assign a query image with a label o f  the 

class with the highest score (recall the classification formula

c
ClassLabel  <=argm ax(7of )). This type o f  classification can be called crisp

. / = •

classification, as only one class is assigned to a query image. However, as discussed in 

the last section, many images share some semantic regions. This semantic similarity 

leads to similarity in the type o f  rules for these classes, which in turn, leads to an increase 

in the classification score for such similar classes. This increased classification score is 

one reason for misclassification. For example, an image from class Mountains might be 

categorized to class Skiing because they both contain a mountainous region or the sky.

As a result, providing one label to an image may not be adequate, and crisp 

classification in such cases might not be always correct. Therefore, we perform another 

set o f  experiments in which we assign multiple labels to the query images instead o f  

assigning only the single class label with the highest score. We call this type o f  

classification “classification with top-k classes.” The scores o f  WAR-BC for each class 

are sorted in the decreasing order, and the class with the top-k highest scores is assigned 

as possible class labels. We use the same training and testing splits as used in the last 

section for both COREL-I and COREL-II. We perform experiments with top-3 (WAR-
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BC3) and top-5 classes (WAR-BC5). For the COREL-I dataset, the average 

classification accuracy increases to 96% with WAR-BC3 and to 99.16% with WAR-BC5. 

Figure 4.19 and Figure 4.20 show the classification accuracy o f WAR-BC compared with 

WAR-BC3 and WAR-BC5 over five splits o f  data for the COREL-I dataset and the 

COREL-II dataset, respectively.

Classification with Top-k classes (COREL-I)

^  100%  -

o
J5 85%

3
£  80%80% -

75%

■  WAR-BC

■  WAR-BC3

■ WAR-BC5

Runl RunS

Different R uns

Figure 4.19 Classification with Top-3 and Top-5 Classes over Five Runs

Classification with Top-k classes (COREL-II)
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Different Runs

Figure 4.20 Classification with Top-3 and Top-5 Classes for COREL-II
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It is evident from the results that once again our algorithm is stable for all the runs o f  

data, as the accuracy does not deviate much from the average classification accuracy for 

the COREL-I and COREL-II datasets. As expected, the classification accuracy increases 

for both the top-3 and the top-5 classes. This increased accuracy is due to images, which 

would be misclassified using only the top class label, as they share semantic regions, but 

the real class label might appear in the top-k classes. Figure 4.21 shows the images that 

were misclassified using only the top label but were classified accurately using the top-3 

labels.

J
847.1364 Waterfalls 2007.246

Models 4334.845Buudings 2643.9307 Mountains 1958.146
A fric a 4279.8322309.0274 1634.928

I
6413.524 E lephants 2056.0151 323 / .9402

Waterfalls 5798.765 Lizards 3165.92012019.1409
5671.081 Africa 2905.8142Lizards 1991.1185 rMountains 2808.0851 2498.893 4934.5877

W aterfalls 2741.0494 W aterfalls 2467.8077 4914.0357
2648.7578 2417.1565 Africa 4821.3894

2909.7916 2971.9063 3995.6789
2792.5467 Buddings 2928.0153 W aterfalls 3522.1906

Skiing 2683.8771 Africa 2787.6748 Mountains 3452.372

Figure 4.21 Correctly Classified Images with Top-3 Labels
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Figure 4.22 shows the images, which were misclassified using both the top class label 

and top-3 class labels, but were classified accurately using the top-5 classes.

Mountains 3274.9542
Waterfalls 3204.5366

Beach 3159.9684
Africa 3081.0648

Cars 3052.7322

Beach 4538.4324
Waterfalls 4468.7564

Ships 4414 1495
M ountains 4143.224
Buildings 3978.7322

Waterfalls 1668.6634
1559.1128
1257.0841

M o u n ta in s 1252.8287
1106.884

Cars 3385.1634
Food 3149.8028
Sunset 3139.0264

Lizards 3071.0322
Desserts 2856.6584

4052.4303
3952.8409
3746.1479Antiques

Buildings 3642.0979
3626.6663

2938.7076Elephants
2841.0189

A frica 2820.702
Buildings 2818.9413
Waterfalls 2634.3732

Models 4577.9568
Flowers 4469.7799

Waterfalls 4374.9349
Dogs 4374.9325

Desserts 4370.7741

■
Dogs 2241.9605

Desserts 2137.4992
Buildings 2099.4626
Elephants 2093.2415
Waterfalls 1914.9168

Waterfalls 4039.5236
Beach 3917.8572
Ships 3490.2595

Elephants 3337.4867
M ountains 3307.907

Dogs | 3250.2518
Horse 2974.9747

Elephants 2715.7592
Lizards 2634.9352
Antiques 2596.4805

Buildings 1621.8011
Elephants 1338.7745

Horses 1308.8916
Beach 1244.4448
Africa 1231.5664

Ships 3407.3938
Beach 3247.0554
Skiing 3234.8804
Dogs 3037.1283

Desserts 2989.5472

Figure 4.22 Correctly Classified Images with Top-5 Labels
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4.7 How WAR-BC Addresses the Issues Faced by 
Associative Classifiers

Thabtah introduced interesting limitations that plague state o f  the art AC algorithms. 

Our proposed solution addresses most o f  these issues [42]:

Multi-Label Rules Classifier: Most existing classifiers are single label classifiers as 

they only provide the most obvious class correlated to the data and ignore the other 

classes correlated with these rules. This problem stems from the data representation and 

the type o f  rules (CARs) used by the AC algorithms. We address this problem by finding 

non-class constrained rules and then associating the frequency o f  these rules in each 

class. WAR-BC calculates scores for each class and classifies the testing instance to the 

class with the highest score. However, we can extend this single label classification to 

multi-label classification, in which the top-k labels are used for classification.

Rule Ranking: Rule ranking, also known as rule sorting according to some defined 

criteria, plays an important role in classifying AC algorithms. Most algorithms take into 

account only the support, confidence, and cardinality o f  the rules. This low threshold o f  

information is not considered a sound reasoning, as these values are not a proper 

representation o f  the importance o f  a rule for some classes. WAR-BC addresses this 

issue by using the support, confidence, and cardinality information and the inter-class and 

intra-class based frequency measures o f  the rules.

Incremental Learning: Due to their inherent reliability for using class-constrained 

rules, most o f  the existing AC algorithms mine the training datasets as a whole to find 

associations. Adding a new data instance (e.g. a new image) means mining the dataset 

again, wasting time and resources. We address this issue by representing each instance as 

a separate dataset instead o f  the class constrained representation. Therefore, if  a new data
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instance is added to the dataset, then we only need to extract the rules for this instance 

and update the vertical weight for the class to which the new instance belongs.

Rules Overlapping: Many classic rule-based classification algorithms build the 

classifier heuristically so that once a rule is evaluated during training, all the training 

objects covered by it are discarded. This technique is not a good method o f  training, as 

objects might be associated with more than one rule (especially true in case o f  multi-label 

classification). In our methodology, we keep all the data and we weigh the rules 

according to their intra-class and inter-class presence.

4.8 Conclusions

The method o f  using association rules for classification has intrigued researchers in 

data mining, due to the ability o f  the rules to portray inherent capacity to capture causal 

relationships among underlying data. The past decade has seen a sharp increase in the 

applicability o f  these associative relationships for supervised learning tasks like 

classification. Despite the inherent success o f  the myriad o f  associative classification 

algorithms developed, there is still a significant room for improvement as most o f  the 

algorithms suffer several limitations, some o f  which we have discussed in this chapter. 

Some o f  the features, such as multi-label classification, incremental learning, and intra

class and inter-class pattern weighting are necessities for all classifiers, whether they are 

a regular classifier or an associative classifier. Therefore, it becomes imperative that any 

new classifier developed should be able to address them

In this work, we have proposed a novel associative classification framework which 

uses the intra-class and inter-class rule presence to weight the rules. The proposed 

algorithm uses non-class constrained association rules, which boosts classification



81

accuracy. Exhaustive experimentation and comparative evaluation with existing works 

over two dataset from completely different domains show that our algorithm is far 

superior to the existing works for most o f  the cases. We also show that our algorithm can 

perform both crisp and fuzzy classification without any major modifications. In respect to 

image classification, fuzzy classification does make sense as there is no benchmark for 

image semantics and many image types share semantic regions. Further, as explained in 

Section 4.7 the proposed algorithm is able to address most o f  the issues that plague 

associative classifiers.



CHAPTER 5 

TEMPORAL PATTERN MINING

5.1 Introduction

The frequent itemset mining problem was first introduced almost two decades ago. 

Since that time, a significant amount o f  research has focused on developing better 

algorithms. One addition to frequent itemset mining has been the advent o f  inter

transaction itemset mining, which is only a few years old. Researchers are still looking 

for better algorithms for mining inter-transact ion itemsets. Unlike the intra-transaction 

itemset mining whereby the most extensively used methods are Apriori and FP-Growth, 

there is no consensus on what the best algorithm for inter-transaction itemset mining is. 

As explained in Section 1.3.1, most o f  the frequent-itemset mining approaches find a 

pattern based on time o f  occurrence (i.e. events that happen at the same time), and that is 

why these types o f  patterns/rules are known as intra-transaction patterns/association 

rules. Inter-transaction pattern/rule mining generates temporal/time-stamped patterns 

from time series data. Meteorological data and stock market data are two examples o f  

dynamic or temporal data, data that changes with time.

5.2 Problem Definition

In Section 5.2, we formally introduce the problem o f  inter-transaction association rule 

mining.

82
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Definition 5.1 Let E  = {ep e2,....,ev}be the set o f  items and I  be a dimensional attribute in 

which Dom(I) represents the domain o f  I. A transaction database D  consists o f  a set o f  

transactions in the form o f  (t , S ) ,  where t e  Dom(I)  and 5  c  E .

The dimensional attribute I  describes the properties associated with items, time and 

space, for example. Depending on the application used, a dimensional attribute can be 

divided into m equal parts. For instance, time can be divided into hours, days, weeks, or 

months.

An association is said to span across k intervals if  it associates items that are k

intervals apart. Since finding all such associations is laborious and since rules separated

by large intervals might not be interesting, a window called maxspan (w) is introduced to 

look at future intervals. Therefore, at any given time, there are exactly w  transactions in

the maxspan window. Only rules that are separated by a maximum o f  w  intervals are

then mined.

Definition 5.2 Given E  and window W with w  transactions {r0,q ,...,rw_,}, the set o f  

extended items £  is defined as E' = {ei(J)}\ei e t j ,tJ Q E , \ / \ < i < N , 0 < j  < w - \ .

Therefore, given w and E, the complete set o f  extended items will be

E' = {e1(0),e1(l),....,el( w - l ) ,e 2(0),...,e2( w - l ) , . . . ,e „ ( w - l ) } .

Definition 5.3 Given E , an inter-transaction association rule is an implication o f  the 

form A => B ,  where

1. A cz E ,B c  E , 2. 3e;(0) e A,\ < i < N ,

3. 3 e,U)  e  B, 1 < / < N , j  *  0 , and 4. Af] B = <j>.
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For example an inter-transaction association rule could be o f  the form 

a(0 ),6 (l),c(2 )ora(0 ),6 (l),c (l).

Definition 5.4 If M  is the number o f  transactions in database (|Z)| = M ) ,  A => B is the 

inter-transaction association rule, Y AB is the set o f  sliding windows W that contain 

A { ] B , and Z^is the set o f  windows which contain only A ,  the support and 

confidence o f  the inter-transaction association rule A => Bis  defined as:

Support (A => B ) =  AB I (Equation 5.1) Confidence {A => B) = (Equation 5.2)
M \Z a\

Inter-transaction itemsets, which have a support higher than the user defined minimum 

support, are known as frequent inter-transaction itemsets. Given the minimum support 

and confidence, the inter-transact ion association rule-mining problem is to find all such 

frequent association rules in the database.

5.3 Issues with Current Techniques and Proposed Solution

In Chapter 2, we explained the current state o f  the art methods for inter-transaction 

association rule mining algorithms. Below we present some limitations o f  these 

algorithms and propose our own novel solution. One o f  the biggest problems that current 

inter-transaction rule mining methods face is the sliding window-based mega-transaction 

database format for inter-transaction rule mining. Below we list some o f  the problems 

caused by this format.

1) The dimensionality o f  the new mega-transaction-based database will increase 

with windows size, (e.g. assuming ten dimensions in the original database and the 

window size o f  five, in the worst-case scenario there would be 10x5 = 50 new
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attributes/dimensions for the mega-transaction database). Anyone who has used 

association rule mining knows that the execution time w ill skyrocket with the 

increase in the number o f  dimensions.

2) The optimum overlap for the sliding window is time consuming to obtain. In 

order to make sure that one does not miss any inter-transaction rules and for 

accurate support and confidence calculations, the window should be slid at a 

maximum o f  only one time point/transaction per overlap. This restraint further 

adds to the execution time.

3) Which window size is the best? Can the window size be changed later? These 

issues bring another overhead for the algorithm, because, if  at any moment the 

user feels like he wants to change the window size, for instance, in order to find 

rules covering ten days between them instead o f  five days, the mega-transaction 

database has to be rebuilt from scratch, and rule mining has to be performed 

again.

4) Finally, the existing methods lack the functionality o f  providing the location 

specific information for the rules. This information could be used to check the 

accuracy o f  the rules extracted. Further, this information could also tell the user 

whether a rule is localized to a certain part o f  the dataset or whether it reoccurs 

after short intervals.

PROWL was the first algorithm to our knowledge which did not use this mega 

transaction format. In PROWL, the PWL (projected window list) generation method 

extends the technique from single events to multiple events at a time point by generating 

multiple PWLs. The method stores the IDs o f  every event in a list, called the time list or
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the window list, in which each ID represents the occurrence time slot o f  an event. Then, 

for each frequent 1-event, a PWL is generated by adding one to the pattern time list. This 

PWL is then mined for frequent events, and the new frequent inter-transaction event is 

formed by the current pattern and the frequent events from the new PWL.

While PROWL does not use the mega-transaction format, and it can provide the exact 

location o f  patterns, it has some limitations. The PWL method for generating itemsets is 

unidirectional. For two itemsets ex and e2, the PWLs o f  ex can only give itemsets o f  the 

form ex followed by e2 . In order to find itemsets o f  the form e2 followed b y e ,, the PWL 

procedure has to be repeated withe2. Since PROWL uses the DFS method to generate all 

the itemsets between e, and e2, we need to generate all the PWLs up to the maxspan 

level for both ex and e2 . Therefore, although an itemset o f  the form 

ex(0)e2(l),ex(0)e2(2) may not exist, we need to generateIDlist{ex ,*} and IDlist{ex ,*,*} in 

order to generate itemsets o f  the forme,(0)e2(3 ) . This phantom IDlist generation 

becomes an even bigger issue as the maxspan level and number o f  items increase. 

Additionally, PROWL lacks the ability to generate inter-transaction itemsets in which 

more than one event is present at the same time, (e.g. e,(0)e2(0)e3(l) or e,(0)e2(l)e3(l)). 

These types o f  itemsets are formed by the intra-transaction join in FITI. This issue arises 

because PROWL only allows one item to be present in the PWL o f  a base event, while 

making an intersection o f  the IDs. This issue becomes more severe when the maxspan 

size is less than the number o f  events in the database. For example, if  the number o f  

events is ten and the maxspan is five, PROWL can only associate a maximum o f  five 

events at once for making inter-transaction itemsets. Finally, PROWL cannot generate 

patterns o f  varying lengths, (i.e. temporal patterns).
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While ITPMine does not suffer from the same problems that PROWL does, it has 

limitations. First, since ITPMine uses the sliding window format to get the dats for 1- 

itemsets and hashing candidate 2-itemsets, any change in the maxspan means that the 

database will have to be scanned again and, at the very least, additional itemsets will have 

to be hashed again. Second, unlike FITI, which uses the intra-transaction rule mining to 

find frequent intra-transaction itemsets, ITPMine does not have any prior knowledge o f  

the frequent 1-itemsets while hashing the candidate 2-itemsets during the first scan. This 

hashing mechanism is more similar to EH-Apriori than FITI. Therefore, ITPMine could 

make combinations o f  1-itemsets that might not be frequent. This possibility adds to the 

computation time. Finally, the hashing function used for ITPMine 

h - { { u *  (maxspan + 1) + w) * AT + v)mod Hashsize is misleading. In many cases, more 

than one itemset is hashed to a similar hash address. We w ill explain this problem using 

the following example: Let there be ten items, each having a unique ID from 1 to 10, 

maxspan=5; let u and v represent two items, and let w represent the lag or time point 

difference between the first and second item. Then, using the Hashsize formula for FITI 

the Hashsize will b e 5 x l0 2 = 500 .Using the hashing function, the hash address for 

«(0)v(2) with u=9 and v=6 will be h = ((9 * (5 +1) + 2) * 10 + 6)mod 500 = 566 mod 500 

= 66 , and the hash address for w(0)v(0)with u=l and v=6 will be h = ((l* (5  + l) + 2)*  

10 + 6)mod 500 = 66 mod 500 = 66. Given these addresses, both itemsets 9(0)6(2) and 

1 (0)6(0) will be hashed to the same address o f  66. We can see that, although the hashing 

function used by ITPMine is similar to FITI, there is one major difference between the 

systems. FITI does not allow the lag or the time difference between two items to be zero 

while hashing, (i.e. w *  0 ,  intra-transaction itemsets o f  the form a(0)b(0), a(0)c(0), etc.).
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However, ITPMine does allow a zero time difference between two items, written as 

0 < w < maxspan . This small difference in the conditions leads to problems since more 

than one itemset shares the same hash address.

The success o f  PROWL and ITPMine leads us to believe that an inter-transaction 

rule-mining algorithm will benefit by using a vertical data format rather than a horizontal 

one. The limitations o f  current techniques described earlier have motivated us to focus 

on an improved inter-transaction rule-mining algorithm. In this research, we propose 

DMITAR (Difference Matrix-based Inter-Transaction Association Rule Miner). While 

most inter-transaction algorithms use the horizontal data format (transaction data), 

PROWL uses the vertical data format (IDs o f  events). In the proposed algorithm, we use 

the vertical data format o f  PROWL and develop a windowless, ID based itemset 

representation, which alleviates all the issues explained for PROWL and other window 

based approaches described earlier in this section. Our proposed algorithm uses the ID 

information to generate difference lists for two events, which are then used to extract 

inter-transaction itemsets.

5.4 Datasets Used

We have finalized three multi-variate time series datasets, stock market dataset, 

weather dataset, and synthetic dataset, to evaluate our proposed method.

Stock Data [52]: We gather the closing price o f  eight stocks (Google, Yahoo, Apple, 

Microsoft, IBM, HP, Dell, and Intel) for the 2008-2009 year from the Yahoo Finance 

website. Our dataset includes data from 253 trading days in the 2008-2009 year. Hence, 

the data matrix is 253x8 (rows x columns), with rows representing the trading days and 

columns representing one o f  the eight stocks.
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Weather Data [53]: The U.S. Department o f  Commerce National Climactic Data 

Center provides free, unedited, daily, and historical data for more than 700 locations in 

the U.S. We have finalized the use o f  the data for New Orleans for the past two years 

(January 2007 to January 2009) observed at the Louis Armstrong International Airport. 

There are several variables for this data, but we only used the six most informative ones: 

average temperature (in Fahrenheit), dewpoint, wetbulb, station pressure, sea level 

pressure, and average wind speed (in mph).

Synthetic Data [54]: Finally, we use synthetic data for our evaluation. For this 

purpose, we use the CRU weather generator. The CRU weather generator is a stochastic 

weather data generator, which uses the Markov chain model to generate 30 years o f  daily 

data for 11 UK sites. This model does not take Leap years into account, and every year 

has 365 days. We will use multiple year data for the “Heathrow” site. For more 

information regarding CRU the readers, please see the CRU documentation [55]. CRU 

provides several weather variables, but we use the six most informative ones: maximum 

temperature (degrees C), vapor pressure (hecta pascals), relative humidity (%), wind 

speed ( ms-1), sunshine (hrs.), and reference potential evapotranspiration ( m m d a y ).

5.5 Proposed Methodology

Our proposed inter-transaction association rule-mining algorithm is divided into three 

parts: Frequent-1 itemset generation, Frequent-2 itemset generation, and Frequent-k 

itemset generation (k >2).

5.5.1 Frequent 1-Itemset Generation

In order to form the 1-itemsets, the original database is scanned once, and an IDList 

is formed for each event. The entries in an IDList represent the IDs o f  the rows in which
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the 1-event happens. For example, the IDList o f  event {a} will list all the rows where 

{<2} occurs.

Definition 5.6 Give a set o f  itemsE = {epe2,....,ev}and a transaction database D  in the

form o f  (T^Si) , where |D| = M ,  1 < Tt < M ,  and S  c  E . The IDList o f  an event ,

where j  < N  can be defined as IDList(ej) = {7} 11 < 7} < N,e j  € St} .

Using the above definition and the example database o f  Figure 5.1, we can find the 

IDLists for {a, b, c, d, e}.

TID Items

1 a, d, e
2 b, c, d
3 a, c, e
4 a, b
5 c, d, e
6 b, c, e
7 a, b, d
8 c, d, e
9 a, b, c, d
10 a, b, c, e

Figure 5.1 Example o f  a Temporal Database

The respective IDLists are:

IDList(a) = {1,3,4,7,9,10 },IDList(b) = {2,4,6,7,9,10 },IDList(c) = {2,3,5,6,8,9,10}, 

IDList(d) = {l,2,5,6,7,8,9},and/DZ.wt(e) = {1,3,5,6,8,10}. Now, the support o f  each 

itemset is the length o f  the IDList.

Definition 5.7 Given a 1-itemset e} and its IDList{ej \ , we define the support o f  e - as the 

length o f  its IDList, Sup(ej) = |/DL/s?{e/ } |.
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Therefore, the support o f  a, b, c, d, and e  are 6, 6, 7, 7, and 6, respectively. Let the 

minimum support (minsup) = 2. The frequent 1-itemsets can be found by using the 

following formula: is frequent, ifSup(ej) > min s u p . Using this formula, we discover

that the frequent 1-itemsets are {a, b, c, d, and ej. For clarity, we call the 1-itemsets 

atomic itemsets and k-itemsets (k > 2) composite itemsets in the rest o f  the paper. A k- 

itemset is composed o f  k atomic itemsets; for example, a composite itemset a(0)b(l)c(2) 

consists o f  the atomic itemsets a, b, and c. For the remainder o f  the paper, we use the 

following terminology regarding the IDLists: HIDList = height o f  IDList = number o f

rows in the IDList, and IDList{ej} = length o f  the IDList= number o f  columns in the

IDList. At any given level k o f  frequent itemsets, the height o f  the IDList -k.  The kth 

row represents the IDs o f  the transaction where the &th event happens. 

Set{Freq -  k} stores the set o f  all the itemsets o f  level k, and List\Freq -  k\  store their 

corresponding IDLists. Once the itemsets o f  level k and their corresponding IDLists are 

stored, we can generate inter-transaction frequent ^-itemsets ( k > 2 )  from these intra

transaction frequent 1-itemsets.

5.5.2 Frequent 2-Itemset generation

Since inter-transaction patterns are temporal patterns, there are only three possible 

relations between two items (say a and b): a happens before b, a happens with b, or a 

happens after b. We introduce a new data structure called the DIFFerence Matrix 

(DIFFMat) which captures and stores information about all these possible relations. 

Using the frequent 1-itemset ID lists, we generate the difference matrices for all pairs o f  

frequent 1-itemsets. This pairing o f  frequent 1-itemsets is similar to the Apriori principle
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o f  2-itemset generation. However, unlike PROWL and ITPMine, the DIFFMat 

mechanism is bidirectional (i.e. one DIFFMat is sufficient to generate all a followed by b 

and b followed by a patterns). The IDs o f  one itemset form the column indices/labels, 

and the IDs o f  the other itemset form the row indices/labels. Then, each cell in a matrix 

(q,r)  is calculated by taking the difference o f  the current row label (Rlabel(q)) from the 

current column label (Clabel(r)).

Defnition 5.8. Given Set{Freq -1 }  and List{Freq - 1 } ,  the difference matrix for two 

frequent atomic items e, and is represented as DFMatie^e^ . A cell (q,r)  in the 

difference matrix represents the value for ^th row and rth column where:

1. DFMat{en ej }(q,r )  = IDlist{ej}(r) -  IDlist{e^iq),

2. 1 < i < 7,1 < j  < / , i *  j , and

3. q < m | m = \lDlist(e,}|,and r < n | n = \[IDlist{ej  ̂ .

Here, IDlist {ek}{l) represents the Ith value in the IDList o f  atomic item ek. Therefore,

a DIFFMat between two items e{ and will be an m row and n column matrix, where m

is the number o f  IDs in the IDList o fe ;and n is the number o f  IDs in IDList o f  . Using

the above definition, we generate the difference matrix for all possible pairs o f  frequent

1-itemsets. Since, as stated earlier, a single DIFFMat is sufficient to find all possible 

relations between two items, then, if  DFMat{ei,ej ) has been formed, there is no need to

formDFMat{ej ,ej} . We explain the reason for this scenario later in this section. 

Therefore, if  there are A  different frequent atomic items in the database ex,e2,....,eN} , the 

number o f  difference matrices formed will be N (N  — 1) / 2 . Hence, the number o f
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difference matrices formed from the frequent 1-itemsets from Section 5.5.1 is 

5(5 —1)/2 = 10. The difference matrices are DFMat{a,b\ , D FMat{a ,c \ , DFMat{a ,d ) , 

DFMat{a, e j , DFMat{b, c}, DFMat{b, d ) , DFMat{b, e) , DFMat{c, d ) , DFMat{c, e \ , and 

DFMat{d,e} . Four o f  the ten difference matrices are represented in Figures 5.2 -  5.5.

Labels b-»  
a i

2 4 6 7 9 10

1 1 3 5 6 8 9
3 -1 1 3 4 6 7
4 -2 0 2 3 5 6
7 -5 -3 -1 0 2 3
9 -7 -5 -3 -2 0 1
10 -8 -6 -4 -3 -1 0

Figure 5.2 Difference Matrix DIFFMat{a,b}

Labels c-> 
a !

2 3 5 6 8 9 10

1 1 2 4 5 7 8 9
3 -1 0 2 3 5 6 7
4 -2 -1 1 2 4 5 6
7 -5 -4 -2 -1 1 2 3
9 -7 -6 -4 -3 -1 0 1
10 -8 -7 -5 -4 -2 -1 0

Figure 5.3 Difference Matrix DIFFMat {a, c]

Labels c-^ 
b f

2 3 5 6 8 9 10

2 0 1 3 4 6 7 8
4 -2 -1 1 2 4 5 6
6 -4 -3 -1 0 2 3 4
7 -5 -4 -2 -1 1 2 3
9 -7 -6 -4 -3 -1 0 1
10 -8 -7 -5 -4 -2 -1 0

Figure 5.4 Difference M atrix D IFFM at{b,c}
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Labels d-> 
c l

1 2 5 7 8 9

2 -1 0 3 5 6 7
3 -2 -1 2 4 5 6
5 -4 -3 0 2 3 4
6 -5 -4 -1 1 2 3
8 -7 -6 -3 -1 0 1
9 -8 -7 -4 -2 -1 0
10 -9 -8 -5 -3 -2 -1

Figure 5.5 Difference Matrix DIFFMat{c,d}

Three types o f  values are present in every DIFFMat: positive, negative, and zero. 

From this point forward, we refer to these types o f  values as lags ( /) .  Positive values 

from DFMat{a,b} indicate that a happens, and then b happens; negative values indicate 

that first b happens, then a happens, and zero indicates that a and b happen at the same 

time. Each difference value/lag represents the exact time difference between the 

occurrences o f  two events. From each DIFFmat, we find the different lags and their 

support (number o f  times the lag appears in the DIFFMat). For example, in Figure 5.2 

( DFMat{a,b}), we find that the different lags are

/, = 0 , l 2 = 1 , / 3 = 2  , / 4 = 3 , / 5 = 4  , l 6 = 5 , l 7 =6,1,  = 7 ,/9 = 8 ,/,0 = 9 ,/„  = -1  , l u = -2 , 

ln = - 3 , / 14 = - 4 ,  /15 = - 5 , / 16 = - 6 , / 17 = -7 ,a n d /lg = - 8 ,  and their corresponding support 

are |/,| = 4,|/2| = 2,|/,| = 2,|/4| = 4,|/s| = l,|/t |=  2,|/,| = 3,|f,| = 1,|/,| = 1, |/,0| = 1,|/„| = 3,|/l2| = 2,

|/„ I = 3 ,|/]41 = 1, |/,j I = 2, |/K I = 1, |/„ I = 1, and |/„ | = 1, respectively.

Once we have the lags, we can find out what each o f  these lags represents. Lag 

/, = 0 represents an occurrence o f  a followed by b with a lag o f  zero. In other words, a 

and b happen at the same time (intra-transaction itemset, a (0 )6 (0 )). The pattern repeats
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itself four times in the database (support o f  this pattern is four, |/, | = 4 ). Lags from l2 to 

/10 represent positive values. Therefore, these lags represent itemsets o f  the form “when a 

happens, then b happens lk time points later (a(0)b(lk)) Lag l2 indicates that when a 

happens, then b happens one time point later (a(O)fe(l)). This pattern repeats twice in the 

database ( |/21 = 2). Similarly /3 indicates that when a happens, then b happens two time 

points later (a(0)b(2)),  and lw indicates that when a happens, then b happens nine time 

points later(a(0)6(9)). Finally, the lags from /n to /lg represent negative values. These 

lags tell us that b has happened before a or that when b happens, a happens after a lag o f  

lk time points (b(0)a(lk)) . Lag indicates that when b happens, then a happens one time 

point later (fe(O)a(l)) . This pattern repeats three times in database ( |/n | = 3). Similarly, 

ln indicates that when b happens, then a happens two time points later (b(0)a(2)); / i8 

indicates that when b happens, then a happens eight time points later (b(0)a(8)). As can 

be seen, both the a followed by b and b followed by a patterns can be formed from a 

single difference matrix DFMat{a,b) .Therefore, we do not need to make another 

matrix DFMat{b, a } . In the same way, we can find the 2-itemsets from all the difference 

matrices.

Definition 5.9 Given a difference matrix DFMat{ei,ej } , let Z /og represent all the unique 

lags in the difference matrix, then a 2-itemset is defined as:

1. (■('0)c,(/<), V/, s  if  I, > 0 and

2. ej(0)e,(abs(/,)),VI,  i f / ,  < 0 .
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Therefore, using the above definition, the possible 2-itemsets for DFMat{a,b)  are: 

a(0)b(0), a(0)b(l), a(0)b(2), a(0)b(3), a(0)b(4), a(0)b(5), a(0)b(6), a(0)b(7),a(0)b(8), 

a(0)b(9),b (0)a(l),b (0H 2),b (0M 3),b (0M 4),b(0M 5),b (0)a(6),b (0)a(7),and  b(0)a(8). 

As can be seen in the equations above, we can find all the possible 2-itemsets from this 

combination. The algorithm for frequent 2-itemset generation is explained in Figure 5.6

A lgorithm  Frequent 2-itemset generation

Input Set {Freq -1}. List{Freq- 1} . Wlin_sup

Output Frequent 2-itemset (Set{Freq-2} )
and their IDLists ( List {Freq -  2} )

M ethodology
(1) F o r u = l  to  l&qFreg — 1}J—1
(2) // |&#{Freg-l}|-l since DFM at’s are bidirectional

(3) F orv= U + ltO  \Set{Freq -1}|
(4) . let ei = Set {Freq -1} (u) and

(5) ' let 6j = Set{Freq — l}(v)

(6) DF^Aej.ej) difference matrix o f  «,• and es

(7) T,zag ^uniqueiDFMtotej.ej})

(8) F o r k = l: |2/^1

(9) ijl “ 2] J.rp (̂ )
(10) If (fĵ l < minsup
(11) Go to next lk

(12) else
(13) I f  /*=o
(14) Set {Freq -2} «- Sj(0)ey(0)
(15) else if  > 0
(16) Set {Freq -  2} Sj(0)<! _,■(/*)
(17) else
(18) Set{Freq -  2} s/Otafefaffji))
(19) end end o f if  >0 loop
(20) end // end o f I f  |k| < minsup loop
(21) end // end o f for v loop
(22) end //  end o f for u loop

Figure 5.6 A lgorithm  for Frequent 2-Item set G eneration
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In most cases, a user is interested only in patterns that happen in a certain time interval 

(the Maxspan window). Our technique provides the flexibility o f  using such a maxspan 

by simply keeping a threshold -Maxspan < lk < Maxspan on the lag/*. For example, if  

the Maxspan equals 5, then only the lag values from -5 to 5 will be used for making 2- 

itemsets. Therefore, a(0)Z>(6) to a(Q)b(9) and b(0)a(6)  to b(0)a(%) will not be formed.

One important addition that our technique provides is that the Maxspan can be 

changed without remaking DIFFMats, as the DIFFMats can be adjusted to a changing 

Maxspan by changing the threshold on lk. In most o f  the existing work, a change in 

Maxspan means the entire process o f  itemset generation has to be redone. The frequent

2-itemsets can be formed by simply finding the lags that have a higher support than 

minsup. A 2-itemset <?, (0)e; (/*) is frequent, if  \lk | > min sup . Thus, the frequent 2- 

itemsets using m insup^ defined in Section 5.5.1. are a(0)Z>(0),a(0)Z>(l), 

a(0)b(2), a(0)b(3), a(0)b(5), a(0)b(6), 6(0)a(l),/>(0)a(2),6(0)a(3), and b(0)a(5). Once 

we have the itemsets, we need to find their IDLists. Since these are 2-itemsets, the 

number o f  rows for the IDList (HIDList) will be two. The first row identifies the IDs o f  

the transactions where the first event happens, and the second row identifies the IDs o f  

the transactions where the second event happens. This information can be extracted 

easily from the DIFFMat o f  the events.

Definition 5.10 Given DFMat{ei, e;.} and et (0)e7 (/*), let RLabel  and CLabel represent 

the row labels and column labels o fDFMat{ei,eJ) , respectively. Then IDList o f  

e,.(0)e; (/*) is formed as follows:

1. IDlist{ei (0)e ■ (/* )}(1, u) = RLabel(q),  1 < u < \lk \ ,
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2 .IDlist{ei(0)e; (lk )} (2 ,u) = CLabel(r),  1 < w < |/t | ,

Such that DFMat{e(, } (</, r) = lk , and RLabel(q) e  IDlist{ei ), CLabel(r)  e  IDlist(e/ ).

We explain DIFFMat using DFMat {a, b} .The row and column labels are 

RLabel = {1,3,4,7,9,10} and CLabel = {2,4,6,7,9,10}. Therefore, IDlist {a(0),b(\)}(\,\) = 1 

/D //sr{a(0)6(l)}(l,2) = 3,IDlist{a(0)b(l)}(\,3) = 9 ,  IDlist {a(0)b(l)} (2,1) = 2,

IDlist{a(Q)b(l)}(2,2) = 4, and IDlist{a(0)b(\)}(2,3) = 10. The first row provides us with 

the IDs where a (0) happens, and the second row provides us with the IDs where 

6(1) happens. Here, the lag lk = 1, and we see that IDs in the second row are exactly one 

time point away. Therefore, we see that not only can w e generate the inter-transaction 2- 

itemsets using a difference matrix format; we can also find the exact location o f  these 

itemsets. Figure 5.7 (a) -  (d) represents the IDLists o f  2-itemsets

a(0)6(l),a(0)c(l),6(0)c(l),and c(0 )^ (l), respectively.

a(0) 1,3,9
6(1) 2,4,10

(a)

6(0) 2,6,9
«0) 3,7,10

a(0) 1,4,7,9
c(l) 2,5,8,10

(b)

C(0) 2,3,6,8,9
«(D 3,4,7,9,10

(c) (d)

Figure 5.7 IDList for Different 1-Itemset Combinations (a) IDlist{a(0),b(\)} ,
(b) IDlist{a(Q),c(\)},  (c) IDlist{b(0),a(\)}, (d) IDlist{c(0),a(l)}

We can check the accuracy o f  the 2-itemsets by checking the IDLists in the original 

database. For example, IDlist{a(0)b(\)} shows that when a(0) happens in transactions 2, 

3, and 9 in the database, then b also happens one time point later in transactions 3, 4, and 

10, respectively. This correlation proves that the itemsets formed using DMITAR are



99

indeed correct inter-transaction 2-itemsets. The support o f  an itemset, as explained in 

Section 5.5.1, is the length o f  its IDList. Therefore, using the association rule definitions 

described in Section 5. 2, we can find the inter-transaction association rules. Again using 

a(0)6(l) as an example, we know that the support o f  a(0)6(l) = \lDlist{a(0)b(\)}\ = 3 and 

the support ofn(O) = 6 . Therefore, the support and confidence o f  an inter-transaction 

association rulea(O) ->6(1) are 3 and 3/6=0.50, respectively. Similarly, we can find all 

the possible inter-transaction association rules. Now that we have the 2-itemsets, we will 

explain how they can be extended to higher order itemsets.

5.5.3 Frequent k-Itemset Generation (k>2)

We now examine how to generate inter-transaction ffequent-k itemsets (k>2). A 

common procedure for generating level k-itemsets from (k-l)-itemsets is to use the cross

join operation on (k-l)-itemsets. Given two frequent (k-l)-itemsets

a  = {mo(0),« ,(/,),.....,wA_,(/*_,)},Vw. e  E and /? = {vo(0),v, (/>,),......,v,_,(/>*_,)}, Vv, e  E ,  if

the first k-1 items o f  both a and p are similar, and uk_x (/t_,) > v^, ( p k_x) ,  then these two 

itemsets can be joined to form a new k-itemset represented as

(«o(0 ),« ,(/,),.....,«*_,(/*_,), vt_,(/?*_,)}. For example, a(0)6(l) can be joined to a(0)c(l)to

form the new candidate itemset a (0 )6 (l)c(l). As explained by Kam and Fu [56], if  a 2- 

itemset BC is not frequent, then any itemset for which this itemset forms the tail (ABC, 

ADBC, etc.) is not frequent. Keeping the above property in mind, we argue that since 

inter-transaction rules are directional temporal patterns, the only condition necessary is 

the condition on the last two atomic items uk_x{lk_x) andvk_t ( p k_x) .  Therefore, if

) is not frequent, then {«0(0 ),« ,(/,),.....,«*_,(/*_,), vt_,(/7t_,)} is not
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frequent. As a result, frequent k-itemsets can be generated by simply making the 2- 

itemset combinations o f  the last atomic item o f  the (k-l)-itemset with the existing 

frequent 1-itemsets. This combination reduces the number o f  candidates by a huge 

number, as the regular join operation usually finds many candidates. Further, since we 

already have the prior knowledge o f  the existing frequent 2-itemsets, we can remove 

infrequent 2-itemsets. Now, we will explain how we generate candidate k-itemsets from 

(k-l)-itemsets.

Given a frequent (k-1)-itemset, the first step is to check the frequent 2-itemsets and 

find those itemsets where the kth item is the first item. The second item from these 2- 

itemsets form the joinable candidate 1-items for this kth item.

Definition 5.11 Given a  = {e0(0),e,(/,), ,ek_x(/*_,)}, the joinable candidate group for

ek_{ is defined as Cand(ek_x(lk. x) = {ey} , where

1. ek_x *  e,-, Ve*_, e  E , e E  and

2. 31 j  | et_,(0)e,(lj) e  Set(Freq -  2 ) .

For instance, given a frequent 2-itemset a (0 )6 (l) , the candidate group for 6 

isCand(b(\)) = { c , d , e } . Now that we have the candidates, the 2-itemset formation 

procedure is repeated to create DFMat{b(\),c},DFMat{b(Y),d} and DFMat{b(\) ,e} . We 

already know the IDList for {c,d,e}, and the IDs for 6(1) are the IDs in the second row o f  

IDlist{a(0)b(V)}. As a result, IDlist(6(1)} = {2,4,10}. While making the DIFFMats for 

frequent-k itemset generation (k>2), an extra constraint is added so that the IDs o f  6th 

item always form the row labels, and the IDs o f  its candidates form the column labels. 

The rest o f  the difference matrix formation procedure is the same as described in Section
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5.5.2. DFMat{6(1),c } , DIFFMat{c(l),b}, DIFFMat{a(\),b} , and DIFFMat{c{\),d)  are 

shown in Figures 5.8 -5 .11 , respectively.

Labels c-^ 
b i

2 3 5 6 8 9 10

2 0 1 3 4 6 7 8
4 -2 -1 1 2 4 5 6
10 -8 -7 -5 -4 -2 -1 0

Figure 5.8 Difference Matrix DFMat{6(1),c} for 6-Itemset Generation

Labels b-^  
c i

2 4 6 7 9 10

2 0 2 4 5 7 8
5 -3 -1 1 2 4 5
8 -6 -4 -2 -1 1 2
10 -8 -6 -4 -3 -1 0

Figure 5.9 Difference Matrix DIFFMat{c{l),b} for k-Itemset Generation

Labels b-> 
a i

2 4 6 7 9 10

3 -1 1 3 4 6 7
4 -2 0 2 3 5 6
7 -5 -3 -1 0 2 3
9 -7 -5 -3 -2 0 1
10 -8 -6 -4 -3 -1 0

Figure 5.10 Difference Matrix DIFFMat {«(!),b) for 6-Itemset Generation

Labels d-> 
c l

1 2 5 7 8 9

2 -1 0 3 5 6 7
5 -4 -3 0 2 3 4
8 -7 -6 -3 -1 0 1
10 -9 -8 -5 -3 -2 -1

Figure 5.11 D ifference M atrix DIFFMat {c(l),</} for k-Item set G eneration
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Once we have the DIFFMats, we can find the 2-itemsets using the following 

definition.

Definition 5.12 Given DFMat{ei(lk_x) , e ^ , let represent the different lags in the 

matrix. Then, a 2-itemset is defined as e,-(0)ey-(/ ) ,  where

1. /p > 0 ,V /p 6 l faf, and

2. e. > e yi f  /*_, = l p .

Notice that the first constraint on lags in Definition 5.12 is different from the 

constraints in Definition 5.9. This difference is because in Definition 5.12, we only 

consider l p > 0 to reduce redundancy. Take, for example, a 3-item seta(0)6(l)c(2). If

both the positive and negative lags are taken for Definition 5.12, then the 2-itemset 

combo 6(l)c(2) can be formed from DFMat {b,c} and DFMat {c ,b } . Therefore, to avoid

such redundancy during k-itemset generation, on ly /p > 0 is  used. If a(0)6(l)c(2) is

indeed a frequent 3-itemset, then it will be formed by extending the 2-itemset 

a(0)6(l) and n ota(0)c(2). The second constraint ensures that redundant itemsets o f  the 

form a(0)6(l)c(l) and a(0)c(l)6(l) are not created. Both o f  these itemsets can be read as 

“if  a happens, then b and c happen one time point later.” Therefore, using Definition 

5.12, the 2-itemsets generated for DFMat {b(\),c} are: 6(0)c(0),6(0)c(l),6(0)c(2), 

6(0)c(3),6(0)c(4),6(0)c(5),6(0)c(6), 6(0)c(7), and 6(0)c(8). Their corresponding 

supports are 2,2,1,1,2,1,2,1, and 1, respectively.

Therefore, the frequent 2-itemsets are 6(0)c(0), 6(0)c(l),6(0)c(4), and 6(0)c(6) with 

their corresponding supports 2, 2, 2, and 2, respectively. The corresponding IDLists 

using Definition 5.10 in (Rlabel,Clabel) format are IDlist {b(0)c(0)} = {(2,2)(10,10)},
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IDlist {b(0)c(\)} = {(2,3), (4,5)}, IDlist {b(0)c(4)} = {(2,6)(4,8)},/D/irf{&(0)c(6)} = 

{(2,8)(4,10)}. Now that we have the frequent 2-itemset combinations o f  the M i item o f  

(k-l)-itemset, we can extend the existing (k-\)  itemset using the following definition. 

Definition 5.13 L eta  = {e0(0),e,(/,),.....,e*_, (/*_,)} be a (k-l)-itemset, and let

2Set{ek_x (/*_,)} represent the new 2-itemsets formed using

DFMat{ek_x{lk_x),e j } , y e j e  Cand{ek_ (̂lk_x)) .ThereforeP = {e*_,(0) ,e j( lp)} , such that 

P  e  2Set{ek̂  (/*_,)} can be joined with a  to form a new A-itemset d  as follows:

<5 = {e0(0),e ,(/,), ,e4_, (/*_,), ̂ -(/^ + /*_,)} •

Using the Definition 5.13 and a(0)6(l)as an example, we can see that the new 3- 

itemsets formed by joining a(0)fr(l) with b(0)c(0), 6(0)c(l),6(0)c(4), and6(0)c(6) are: 

a(0)6(l)c(l),a(0)6(l)c(2),a(0)fe(l)c(5), and a(Q)b(\)c(l). Similarly, we can combine b 

with the remaining items in its candidate set Cand (6(1)). The same procedure can then 

be repeated to extend all the existing (k-l)-itemsets.

Further, Maxspan can be used if  the user is only interested in itemsets that span across 

a certain number o f  transactions. The extra itemsets from newly formed A:-itemsets can 

be pruned by keeping only those itemsets in which lk < M axspan . Therefore, the 3- 

itemsets for Maxspan =5 are a(0)£>(l)c(l),a(0)/>(l)c(2),and a (0 )6 (l)c(5 ). a(0)6(l)c(7) is 

pruned, since lk = 7 > Maxspan .
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Figure 5.12 presents the algorithms for frequent k-itemset generation (no maxspan is 

used in this algorithm).

Algorithm Frequent k-itemset generation

Input -Sfefl Freq - 1}. List{ Freq -1} ,_m insup,
Set{Freq-2},List{Freq-2},Set{Freq —(Jt—1)},

List{Freq -(£-!)}

Output Frequent k-itemset ( Set {Freq -k})
and their IDLists ( List {Freq -  it})

M ethodology
(1) For u =1 to \Set{Freq — (jt—1)| ,7 Loop 1

(2) 7 let a = {eotOXflM), ,Sfc_i(/*_i)} represent the current k-1 itemset
(3) Find Candie^l^))
(4) For each value in Cfcnd(%.!(/*_!)) 7 Loop 2

(5) Find DFMll{ekr_i(!l!r_i),ej}

(6) Ziag = unique (D F ^ e ^ l ^  ),ej})

(7) For p = l: I s^ l Loop 3

(8)

(9) I f  |f?| < minsup

(10) Go to next lf
(11) else
(12) I f  f? >o

(13)
(14) end .7 end o f if  lf > 0 loop

(15) end // end o f I f  |??| < minsup loop

(16) end // end o f Loop 3
(17) For each ekA(Q)ej{lf ) e 2Set{ek_1(l!̂ 1)}
(18) Set{Freq-k}
(19) {eo(0),«i(/i),...+ ^ l)l

(20) end '' end o f for « * _ i ( 0 ) lo o p
(21) end 7 end o f Loop 2
(22) end .7 end o f Loop 1

Figure 5.12 A lgorithm  for Frequent-/: Item set G eneration
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Once we have the itemsets, we need to find the IDList o f  the newly generated itemsets. 

Then, given a itemset, IDList{A>l}, the 2-itemset candidate formed by the kth item, and 

IDList{2-cand}, we intersect the IDs from the Ath row o f  IDList{A-l} with the IDs from 

the first row o f IDList{2-cand}and find the indexes o f  the matching IDs. Once we find 

the indexes o f  the matching IDs, we discard those IDs that do not match so that only 

those that match are kept in the IDList o f  new k-itemset. Using a(0)b(l) as (k-l)-itemset 

and 6(0)c(0)as one o f  the candidate 2-itemsets for 6(1), we find that the matching 

indexes using the second row o f  IDlist{a(0)b(Y)} and the first row o f  IDlist{b(0)c(0)} are 

{1,3} (the first and third index o f  ID list{a(0)b(l)}match the indexes in IDlist {a(Q)b( \)} ). 

Therefore, we only keep those IDs that have these indexes for all the rows in 

ID list{a(0)b(\)} . The last row in IDlist {a(0)b(l)c(\)} will be filled using the indexes 

from the second row o f  ID list{6(0)c(0)}. Therefore, the resulting IDList will have the 

following IDs (R label,Clabel) format: ID list{a(0)b(\)c(l)} = {(1,9), (2,10), (2,10)}. The 

IDLists for a(0)6(l)c(l), a(0)6(l)c(5), a(0)c(l)6(2), a(0)c(l)6(3),a(0)c(l)^(l),and

a(0)c(l)rf(4) can be seen in Figure 5.13 (a) -  (f).

a (  0) 1, 9
6(1) 2,10
c (l) 2,10

a(0) 1 ,3
6(1) 2,4
c (  5 ) 6,8

<7(0) 4,7
C ( l) 5,8
6 ( 2 ) 6,9

77(0) 1,4,7
c (l) 2,5,8
6(3) 4,6,9

(d)

77(0) 1,4,7
C ( l) 2,5,8
7/(1) 2,5,8

(e)

M
77(0) 1,4
C( 1) 2,5
7 /( 4 ) 5,7

(f)

Figure 5.13 IDLists o f  Different Combinations: (a) i D i i s t { a ( 0 ) , b Q ) c ( h } , (b) I D l i s t  {a(0),f>(i)c(5)},

(c) I D l i s t \ a { Q \ c { \ ) b { 2 ) } , (d) I D l i s t { a { 0 ) , c ( \ ) b { l ) }  , (e) I D l i s t { a ( Q ) , c ( \ ) d ( \ ) }  , (f) I D l i s t { a ( 0 ) , c ( \ ) d ( 4 ) }



106

5.6 Completion of DMITAR (An Induction-Based Proof)

Now that we have explained the methodology, we will prove that DMITAR does not 

miss any itemsets during itemset generation. If S e t{F req -n )  is the set o f  frequent inter

transaction itemsets present in the database and Set {Freq - n )  is the frequent itemsets 

generated by DMITAR, then, to prove the completeness o f  DMITAR, we must first prove 

that Set {Freq - n }  = Set {Freq - n )  . Given {m insup), let Argn represent the argument

that Set{Freq  -  n) = Set{Freq -  n ) ,

Since Set {Freq — 1) is the set o f  unique items present in the database with 

support>mm_j,Mp, Argx is true. Let IDList{Freqx) be the corresponding IDLists o f  

frequent 1-itemsets. Let us assume Argk is true. We need to prove that Argn where
9

n=k+l is true. We will prove the equation by contradiction. Let us assume that 

Set{Freq — (k + Y ) } S e t { F r e q - ( k +  i ) } . This equation implies that there exists an 

itemsets a  = {e0 (0), ex ( /,) ,.....,ek_2 (lk_2), ek_x {lk_x)} such that a  e  Set {Freq -  {k + 1)} (the

set o f  complete itemsets in the database), but a  £ Set {Freq ~ {k  + 1)} (the set o f  itemsets 

generated by DMITAR). We already know that a  was formed by combining 

ek_2 (lk_2) with ek_x to make a 2-itmeset. Therefore, for a  to be a frequent k+1 itemset,

ek- 2  (Jk-i)’ek-\ k- \ ) should be a frequent 2-itemset. Now we already know from Argk

that<?0(0 ),<?,(/,),.....,^ _ 2(4_2) is true, therefore a  can only not be frequent

if  ek_2 (lk_2), ek_x {lk_t) g Freq2 . This logic implies that there exists and index K  such that 

IDList{ek_2(lk„2)ek_x (lk_x )}(1,K ) <£ IDList{ek_2(lk_2)} or

IDList{ek_2{lk_2)ek_x{lk_x)}{2, K)<£ IDList{ek_x{lk_x) } . However, this assumption
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contradicts the statement that Arg, is true. Hence, ek_2 (lk_2 ), (lk_x) e Freq2. The

above assumption indicates that S e t{F req -(k  + 1)} = S e t{F re q -(k  + \ ) } , and thus if

Argk is true, then A rgk+l is also true. Therefore, the argument Set{Freq -  n}

= Set {Freq -  n} is true by induction. Since Set {Freq -  n] = Set{Freq  -  n ) , we know that 

DMITAR generates all possible frequent inter-transaction itemsets.

5.7 Results

As explained in Section 5.3, we used three different datasets: stock price data, 

weather data, and synthetic data to evaluate our algorithm. In order to convert the time 

series data into an event based data representation a threshold is used. I f the difference 

between the current value o f  a variable and its future value is higher than or equal to the 

threshold, it is considered as a positive change, otherwise it is considered a negative 

change.

Stock Data: We use <5 = 0 as a threshold on the change o f  a stock price for 

transforming the original database into its binary counterpart. If the relative change in 

the closing price o f  a stock for the current day> 8 , then the stock value is changed to +1. 

Otherwise, it is changed to -1. Therefore, given N  stock, there are a total o f  N*2 events in 

the database. A positive change in stock S is represented by SI, while a negative change 

is represented by S2.

W eather Data: Again, we use 5 -  Oas a threshold for the relative change in all the 

six variables giving a total o f  6*2 = 12 total events. The positive change in a variable (V) 

was represented by V I, and negative change was represented by V2.
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Synthetic Data: Once again d  -  0 is used as a threshold for the relative change in all

the six variables giving a total o f  6*2 = 12 total events. A positive change in a variable

(V) is represented by V I, and negative change is represented by V2.

5.7.1 Comparative Evaluation of DMITAR 
With Existing Methods

We implement the DMITAR algorithm using Matlab R2007b on an AMD Opteron 

150 Pc with 2.36 GHz Processor and 1 GB RAM. For comparison, we also implement 

FITI, PROWL, and ITPMine in Matlab and in the same processing environment we used 

for the DMITAR experiments. For comparative evaluation, we only take a subset o f  the 

complete data for the three datasets: the first 50 days and the first five stocks for the stock 

database, three month data (April 2009 to June 2009) and the six variables for the 

weather database, and one year (365 days) data and the six variables for the synthetic 

database. We only compared the performance o f  DMITAR for frequent itemset 

generation, since, as explained in [30], frequent itemset mining takes most o f  the 

execution time. The maxspan is fixed at five days, and the support is varied from 14% to 

24%. Tables 5.1, 5.2, and 5.3 show the execution time (in seconds) for FITI, ITPMine, 

PROWL, and DMITAR over the stock, weather, and synthetic databases. The graphs 

showing the relative performance o f  DMITAR with existing techniques are presented in 

Figures 5.14 - 5.16. As is evident from the comparative evaluation, DMITAR takes less 

execution time on all three datasets than FITI and ITPMine.
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Table 5.1 Comparison o f  DMITAR with Existing Techniques over Stock Dataset

Stock Database
Support FITI ITPMine PROWL DMITAR

14% 6424.7s 132.39s 3.03s 5.556s
16% 2348.9s 67.14s 2.14s 4.015s
18% 861.92s 34.62s 1.55s 2.89s
20% 334.51s 18.89s 1.12s 2.07s
22% 143.84s 10.87s 0.87s 1.45s
24% 63.62s 7.15s 0.671s 1.04s

Table 5.2 Comparison o f  DMITAR with Existing Techniques over Weather Dataset

Weather Database
Support FITI ITPMine PROWL DMITAR

li% 36362.6s 893.1094s 5.843s 19.8281s
16% 11913.04s 378.2188s 3.8906s 13.4375s
18% 4116s 170.3438s 2.75s 9.1406s
20% 1507s 86.5781s 2.14s 6.203s
22% 859.2813s 63.3438s 1.7969s 5.7656s
24% 378.5313s 36.1875s 1.4375s 3.5625s

Table 5.3 Comparison o f  DMITAR with Existing Techniques over Synthetic Dataset

Svnthetic Dal
Support KTTTr i i l ITPMine PROWL DMITAR

14% 1651.6s 199.843s 3.1406s 17.015s
16% 574.32s 119.32s 2.0938s 10.875s
18% 416.109s 95.31s 1.6094s 7.39s
20% 370.25s 83.31s 1.453s 5.8438s
22% 265.78s 66.3438s 1.3594s 4.75s
24% 133.96s 43.0781s 0.9219s 3.5781s
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The only algorithm that performs faster than DMITAR is PROWL. But as we have 

already discussed it in Section 5.3, PROWL does not generate all the inter-transaction 

itemsets. Figure 5.17 (a) -  (c) shows the number o f itemsets generated by DMITAR and 

PROWL.

N u m b e r  o f  Item sets  fo r  v a ry in g  su p p o rt ■ 
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Figure 5.17 Comparison o f Total Number o f Itemsets Generated by DMITAR and 
PROWL: (a) Stock Dataset, (b) Weather Dataset, (c) Synthetic Dataset
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It can be seen from the graphs that the difference between the actual number o f  

itemsets present in the database (the ones generated by DMITAR, FITI, and ITPMine) 

and the ones generated by PROWL increases with the decrease in support. This 

difference in the number o f  itemsets generated will be even higher if  the Maxspan size is 

smaller than the number o f  variables used (explained in Section 5.3). Therefore, we can 

see that although PROWL is the fastest o f  the four algorithms, it is still inefficient in 

capturing all the itemsets. Hence, we only make comparisons o f  DMITAR with FITI and 

ITPMine in the rest o f  the experiments. On a close inspection o f  Tables 5.1, 5.2, and 5.3, 

we see that the time difference between FITI compared with ITPMine and DMITAR is 

very large. We w ill discuss the time difference in execution in more detail here. Due to 

the previously explained inefficiencies o f  PROWL, comparison between it and our 

system is not required and, hence, is avoided here.

First, we compare DMITAR with FITI. FITI is a horizontal data-based sliding 

window technique. It is iterative and joins itemsets to first generate candidates and then 

scan the database repetitively to count the support o f  these candidates. Every time a 

transaction is read for support counting in FITI, the algorithm has to match all the 

candidate inter-transaction itemsets with at least w  consecutive transactions. This multi

scan repetitive nature adds to the execution time. ITPMine and DMITAR, on the other 

hand, are both single pass-based schemes and, as a result, take far less time to execute.

As can be seen from the graphs, DMITAR performs faster than ITPMine. There are 

several reasons for this time difference. First, as explained in Section 4, ITPMine does 

not have a mechanism to find frequent 1-itemsets while hashing candidate 2-itemsets. As 

a result, it hashes 2-itemsets that have subsets that might not satisfy the downward
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closure property o f  association rules. Second, unlike DMITAR, ITPMine is a DFS based 

unidirectional technique. Therefore, during itemset formation fo r a , only itemsets o f  the 

form “ afo llow ed  b y /? ” are formed. The procedure has to be repeated to generate 

itemsets o f  the form “ /? followed by a . ” Finally, DMITAR avoids unnecessary 

candidates during k-itemset generation by using the constraints that, if

uk-\(0)v*-i(Pk-\ not frequent, thend =m0(0 ),« ,(/,), (/?*_,)is not

frequent either. ITPMine also uses the same constraint on the last two items o f  the k- 

itemset.

In this step, there is one major difference between the methods. ITPMine first makes

thejoinable group fora = m0(0),« ,(/,), ,uk_2{lk_2),u k̂ {lk̂ ) (jo in ab le(a ) ) , such that the

first k-\ items o f  all the itemsets in (jo inab le{a )) are the same as the first k- 1 items ofa

(w0(0 ),« ,(/,),.....,uk- 2(lk- i))  ’ and the M i item for each itemset in jo inable{a)  is greater

than the kth item in a .  Then, before making (w0(0 ),« ,(/,),..... ,wt_1(/4_,),vi_](p t_,)} using

a and an itemsets from jo in ab le(a ), it hashes the 2-itemset wA._1 (0)vA._, (/?*_, -/*_ ,) to 

see if  it is frequent. If so, only then is {mo(0),m,(/,),.....,«*_,(/*_,), v*_, (/?*_,)} generated as

a candidate. As a result, ITPMine takes more time than DMITAR because, regardless o f  

the fact that some 2-itemsets might not be frequent (a fact that can be verified from the 

set o f  frequent 2-itemsets), it still has to hash all the 2-itemsets formed using 

jo inable(a) to find their support. For example, suppose there are 100 itemsets in 

jo inable(a) and only 20 o f  those would form frequent 2-itemsets. In such a case, 

ITPMine still makes 2-itemsets with all these 100 itemsets to find their support from the 

hash table. DMITAR, on the other hand, uses the information from frequent 2-itemsets.



Thereby, it only creates combinations with known frequent itemsets. Further, the fact

thatMA_, (0)vA_, (/?*_, — ) is frequent does not guarantee that (wo(0),« ,(/,),..... ,

m*-) (/*_,), vA_, (/?*_,)} is also frequent. ITPMine still has to match the IDs in the IDList o f

{«0(0),« ,(/,) , ,ma_2(/4_2 (/*_,)}and «0(0),«,(/,),.....,ma_2(/*_2)v*-i(Pa- , ) t0 find the

matching IDs and then check its support to see if  it is frequent. The DIFFMats formed 

for DMITAR capture all this information in just one difference matrix, thereby creating 

all the possible higher order itemsets.

Once the frequent itemsets have been generated, we can very easily generate the 

frequent association rules from these itemsets using a threshold on minconf and 

Definitions 5.3 and 5.4. Tables 5.4, 5.5, and 5.6 show the top five rules extracted (Sup = 

20%, and Conf = 60%) from the Stock, Weather, and Synthetic datasets, respectively.

Table 5.4 Top Five Rules from the Stock Dataset

Yahoo 11, IBM It (0), Google ft(1) =* Microsoft it (2)
_______ Support = 22%, Confidence — 100%_______

Google 11, Microsoft 1) (1) => Apple 11 (1)
 Support = 22%, Confidence = 91.67%______

Google 11, IBM ft (1) =* Apple ft (3)
 Support = 22%, Confidence = 91.67%______
Yahoo ft, Microsoft ft (1), IBM ft (0) =* Google ft (2)

 Support = 20%, Confidence = 90.91%______
Apple ft, IBM ft (0) => Microsoft ft (3) 

 Support = 20%, Confidence = 90.91%______
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Table 5.5 Top Five Rules from the Weather Dataset

Dewpoint ft, St. Pressure ft (0), Wetbulb ft (1) => Avg. Temp ft (3)
________________ Support = 20%, Confidence = 100%________________
Avg. Temp ft, St. Pressure ft (1), Sea Pressure ft (1) => Wetbulb ft (1)
_______________Support = 23.33%, Confidence = 100%_______________

Sea Pressure ft, St. Pressure ft (3) => Wetbulb ft (1)
_______________Support -  22.22%, Confidence =  100%_______________

St. Pressure ft, Sea Pressure ft (2) => Wetbulb ft (2)
_______________Support = 26.66%, Confidence -  100%_______________

Avg. WindSpeedft, Sea Pressure ft (1) => Wetbulb ft (1) 
_____________ Support = 24.44%, Confidence =  100%_____________

Table 5.6 Top Five Rules from the Synthetic Dataset

Max. Temp ft, Vap. Pressure ft (0), Rel Humidity ft (0) => Pot. EvaTransp. ft (1)
______________________ Support = 15.06%, Confidence = 78.57%___________________

Max. Temp ft, Vap. Pressure ft (1), Rel Humidity ft (0) => Pot. EvaTransp. ft (1)
______________________ Support = 13.97%, Confidence = 76.12%___________________

Rel Humidity ft, Vap. Pressure ft (2) => Pot. EvaTransp. ft (1)
______________________ Support = 18.08%, Confidence = 79.52%___________________

Max. Temp ft, Rel Humidity ft (0) => Pot. EvaTransp. ft (1)
______________________ Support = 15.34%, Confidence -  76.71%___________________

WindSpeedft, Vap. Pressure ft (2) => Pot. EvaTransp. ft (1) 
____________________ Support = 17.26%, Confidence = 75.90%_________________

The rules are represented in the format: Attribute name ft / ft (lag) where ft represents 

a positive change in the attribute value (e.g. stock going up or temperature going up), ft 

represents a negative change in the attribute value (e.g. stock going down or temperature 

going down), and lag represents the time difference o f  the current attribute occurrence 

from the occurrence o f  the last attribute (e.g. two days later or two hours later). There is 

no lag value after the first attribute value since the occurrence o f  this attribute leads to the 

occurrence o f  other attributes. Therefore, by default, it can be assumed that such a value 

occurs at the first time point (e.g. the first day). A Lag value o f  zero (0) means that the 

attribute values happen at the same time. The first rule from the Stock dataset can be
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read as “If Yahoo’s stock price rises, IBM’s stock price rises the same day (lag is zero),

and Google’s stock price falls one day later, then Microsoft’s stock price will fall two

days later.” This rule has a 22% support and 100% confidence. Similarly, the first rule

from the Weather dataset can be read as “If dew point goes up and station pressure goes

down in the same day and wetbulb increases one day later, then the average temperature

will go up three days later with 20% Support and 100% Confidence. All the remaining

rules can be interpreted in the same way.

5.7.2 Execution Time with Changing 
Window (Maxspan) Size

To evaluate the effect o f changing maxspan, we varied the maxspan value from three 

to ten. The support was fixed at 24% for all three datasets. The amount o f data used here 

for the stock, weather, and synthetic datasets were the same as those used in Section 

5.7.1. As can be seen from the graphs in Figure 5.18 (a) -  (c), the execution time for 

FITI increases rapidly for all three datasets while the time for ITPMine and DMITAR 

increases linearly. This pattern can be attributed to the increase in maxspan, which 

results in a rapid increase in the number o f candidate itemsets for FITI.

V a r y  in g  M a x s p a n  -  S to c k  D a t a s e t
yu
8 0
7 fl
6 0
SO
4 0
3 0
20
lO
O

4 s 6 7 8 9 lO

  f  4 .G 7 1 9  9 .0 4 G 9  1 4 .8 9 0 6  2 4 . 3 4 3 8  3 3  G 5 6 3  4 0 . 3 5 9 4  6 1 . 4 8 4 4  7 8 . 5 4 6 9

—• — I T P M in e  1 .4 8 4 4  2 . 4 6 8 8  3 . 4 2 1 9  4 . 7 9 6 9  6 0 3 1 3  7 . 4 2 1 9  9  1 0 . 5 9 3 8

—*r— D M IT A R  0 . 3 4 3 8  0 . 5  O .S 6 2 5  0 . 6 5 6 3  0 . 7 1 8 8  0 . 7 8 1 3  0 . 8 2 8 1  0 . 9 3 7 5

(a)



117

V a r y in g  M a x s p a n  -  W e a t h e r  D a ta s e t
600 0

■JB
.s,

I

sooo

4000

3000

2000

1000

0
3 4 5 6 7 8 9 10

-FIT I

- IT P M in e

-DMITAR

42.437b  148.094 343 .828  b b b .lb b  1207.2 2116 .8b  3333.62  b 3 b b .6

0 .35934  20 .1406  36 .0313  54 .1563 

1.8281 2.6094 3.5 4.468S

80 .25

5.5938

115.922 157.75 219 .516

6 .8594  8 .25  10.0781

(b)

Varying M axspan - Synthetic D ataset
700

.aH

400

300

200

100

0
3 4 5 6 7 8 9 10

-FITI

-ITPMine

- D M IT A R

37.375 68.4844 120.4531 184.2969 261.12S 359.25 475.0469 603.0313

161 2 5  26.4688 42.9688 58.125 79.9844 101.265 125.6875 152.2813

1.843 2.7656 3.6094 4.625 5.6563 6.8281 7.9844 9.2813

(C)

Figure 5.18 Execution Time Comparison o f DMITAR with FITI and ITPMine for 
Varying Maxspan Size (3 to 10): (a) Stock Dataset, (b) Weather Dataset,

(c) Synthetic Dataset

As a result, the time required to count the support o f  the itemsets also increases. 

Alternatively, both ITPMine and DMITAR use a single scan over the database and avoid 

unnecessary candidate generation; therefore, their time increases only linearly. However, 

for the same support DMITAR far outperforms ITPMine with an increase in maxspan.
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5.7.3 Execution Time with Varying 
Number of Dimensions

Next, we examine the effect o f changing the size o f the transactions in the database. 

Since the maximum number o f columns in our stock dataset is eight (eight stocks), and, 

in the weather and synthetic datasets is six, we increase the transaction size from three to 

eight for stock data and from two to six for synthetic and weather data. For these 

experiments, the support measure is fixed at 20%, and the maxspan is fixed at five 

intervals. For stock data, we use all o f the 253 day trading data; for weather data, we use 

twelve month data (July 2008 to June 2009), and, for synthetic data, we use the data for 

one year (365 days). The resulting execution time is presented in Figure 5.19 (a) -  (c).
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Figure 5.19. Execution Time Comparison o f DMITAR with FITI and ITPMine for 
Varying Number o f Dimensions (a) Stock Dataset, (b) Weather Dataset,

(c) Synthetic Dataset
The number o f candidate itemsets increased exponentially as the transaction size

increased. Since the execution time o f  DMITAR was dependent on the number o f

frequent itemsets, as expected, the time increased exponentially. FITI and ITPMine

exhibited a similar behavior, as well. However, once again DMITAR was faster than the

other three techniques.

5.7.4 Execution Time with Varying 
Number o f Transactions

Finally, we investigate the effect o f the varying the number o f transactions in the 

database on the execution time o f DMITAR. For the stock dataset, we vary the number 

o f transactions from 100 to 253 (trading days). For the weather data, we vary the number 

o f transactions from 180 (6 months data) to 703 (24 month data), and for the synthetic 

dataset, we vary the number o f transactions from 365 (one year data) to 2555 (seven year 

data). For these experiments, the support and maxspan are fixed at 20% and 5, 

respectively. For stock data, all eight stocks were used, and for weather and synthetic 

data, all six variables used in Section 5.7.1 were used. The comparative results o f 

DMITAR with FITI and ITPMine are presented in Figures 5.20 (a) -  (c).
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Figure 5.20 Execution Time Comparison o f DMITAR with FITI and ITPMine for 
Varying Number o f Transactions (a) Stock Dataset, (b) Weather Dataset,

(c) Synthetic Dataset

From the graphs, we see that the execution time increases almost linearly for all three 

techniques (FITI, ITPMine, and DMITAR) over the three datasets. However, once again 

DMITAR outperforms both FITI and ITPMine on all three datasets.
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5.8 Conclusions

The unprecedented generation and availability o f  large temporal databases and 

the ability o f  association rules to discover embedded useful knowledge therein has 

lead to inter-transaction and intra-transaction rule discovery efforts. However, such 

efforts have focused primarily on abstracting the data space so that classical apriori 

principle-based algorithms can be applied to them. As such, most inter-transaction 

association rule mining algorithms use a sliding overlapping window concept to 

convert a transaction database into a mega transaction database, thereby abstracting 

the problem to an intra-transaction rule-mining problem. This database 

transformation scheme is subject to amplified dimensionality, supervised 

determination o f  the fixed sliding window size, and determination o f  an optimal 

window overlap for extracting the rules. Moreover, the rules discovered from such 

schemas lack temporal location characterization and are difficult to apply practically.

This lack o f  characterization leads us to state that the problem has not been defined 

comprehensively in the existing literature, which has led to sparseness and voids in 

the proposed solutions.

We have taken a fresh look at the problem o f  inter-transaction rule discovery in 

this work. We present a new algorithmic framework, DMITAR, based on the 

differences o f  the index o f  frequent items. DMITAR eliminates the need for a sliding 

window scheme and the creation o f  a mega-transaction, hence, constraining data 

dimensionality further improves its performance. Additionally, the algorithm 

provides the location o f  every frequent inter-transaction rule generated from the 

database. We have performed exhaustive experimentation with three temporal
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datasets from different domains. Experimental results demonstrate that the 

technique is comparatively superior, and is robust in resolving key issues faced by 

existing inter-transaction association rule mining algorithms.



CHAPTER 6 

CONCLUSIONS

6.1 Contributions to Associative Classification

The research presented in this dissertation and related published results addresses the 

problem o f  higher order knowledge representation and provides a novel perspective for 

the associative classification problem. In Chapter 3, we present the association rule- 

based higher-order data representation framework. By viewing every instance o f  a class 

as a separate transaction database, we discover non-class constrained isomorphic patterns. 

Experimental results showed that this new representation captures more information than 

raw feature based representation. The research and insight provided by this work 

motivated us to develop a new associative classifier. Earlier associative classification 

algorithms focus on finding perfect discriminatory patterns from data, which is a difficult 

task because many times, such perfect patterns are only present for one type o f class 

instance or do not exist at all. Discarding patterns that are common to some classes is not 

the best method, as the importance o f  patterns varies from class to class. Therefore, it 

becomes imperative to weight the patterns according to their importance in their own 

class (intra-class) and their importance in other classes (inter-class). In Chapter 4, we 

present a novel weighted rule-based associative classifier called WAR-BC. The objective 

o f  this work is to develop a non-class constrained rule-based associative classifier that 

would incorporate the inter-class and intra-class importance o f  the rules in rule

123



124

weighting. Our proposed method alleviates most o f  the issues that plague current 

associative classifiers and open the door for further innovations. While the current work 

is complete, there is still room for improvement. It is well-known that certain feature 

types are more important for different domain o f  images. One immediate line o f  

improvement would be to use multiple feature types for images and then perform 

ensemble-based classification [57]. Incorporating this knowledge could increase the 

classification o f  the algorithm. Another line o f  research would be to extend the current 

associative classification framework by incorporating classifier delegation [58], whereby 

a separate classifier (associative or another) would be used to train those instances which 

are deemed difficult (i.e. those images which the classifier is not able to categorize during 

training). These explorations will enhance our understanding o f  the classification process 

in general.

6.2 Contribution to Temporal Pattern Mining and 
Future Directions

The definition for temporal pattern mining builds a strong foundation for the 

establishment o f  the proposed research and future associated endeavors. Most existing 

algorithms, with the exception o f  PROWL and ITPMine (as referenced earlier), use the 

horizontal data format to solve the inter-transaction rule-mining problem. We have 

shown that this representation causes various problems. Using the success built by the 

vertical format o f  PROWL and ITPMine, we developed a new framework which solves 

all the issues faced by techniques using the horizontal data format and the issues faced by 

PROWL and ITPMine. The results from this research provide better insight into the 

inter-transaction pattern-mining problem. The technique addresses key limitations o f  the
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existing methods, especially those stemming from an increase in the dimensionality o f  

the data space, multiple passes over databases, and lack o f  location-specific rule 

information. The applications o f  such algorithms include, but are not limited to, the 

analysis o f  financial databases, gene expression time series, growth patterns in 

toxicoinformatics, and hydrology, as well as hurricane prediction and modeling and 

cybersecurity applications. The elucidation o f  the design and implementation o f  a robust, 

scalable, and efficient algorithm for the discovery o f  inter-transaction rules is complete, 

yet there are several opportunities for enhancement. We list some o f  them here:

1. Currently, DMITAR only generates one-dimensional inter-transaction rules, as 

there is only one varying dimension, (i.e. time). Adding more dimensions, such as space 

(distance), to the data for generating multi-dimensional inter-transaction rules would 

create interesting challenges for ID encoding-based difference matrix formulation [59].

2. Along with prediction, time series classification is a key application for time-series 

analysis algorithms. The application o f  DMITAR to such domains as EEG signal 

classification, target tracking, and cancer-cell mutation could be important additions to 

the algorithm.

Future efforts will entail addressing these issues and performing characterization with 

increased and heterogeneous data workloads.
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