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ABSTRACT 

Myoelectric signals (MES) are viable control signals for externally-powered 

prosthetic devices. They may improve both the functionality and the cosmetic appearance 

of these devices. Conventional controllers, based on the signal's amplitude features in the 

control strategy, lack a large number of controllable states because signals from 

independent muscles are required for each degree of freedom (DoF) of the device. 

Myoelectric pattern recognition systems can overcome this problem by discriminating 

different residual muscle movements instead of contraction levels of individual muscles. 

However, the lack of long-term robustness in these systems and the design of counter­

intuitive control/command interfaces have resulted in low clinical acceptance levels. As a 

result, the development of robust, easy to use myoelectric pattern recognition-based 

control systems is the main challenge in the field of prosthetic control. 

This dissertation addresses the need to improve the controller's robustness by 

designing a pattern recognition-based control system that classifies the user's intention to 

actuate the prosthesis. This system is part of a cost-effective prosthetic hand prototype 

developed to achieve an acceptable level of functional dexterity using a simple to use 

interface. A Support Vector Machine (SVM) classifier implemented as a directed acyclic 

graph (DAG) was created. It used wavelet features from multiple surface EMG channels 

strategically placed over five forearm muscles. The classifiers were evaluated across 

seven subjects. They were able to discriminate five wrist motions with an accuracy of 

iii 



iv 

91.5%. Variations of electrode locations were artificially introduced at each recording 

session as part of the procedure, to obtain data that accounted for the changes in the 

user's muscle patterns over time. The generalization ability of the SVM was able to 

capture most of the variability in the data and to maintain an average classification 

accuracy of 90%. 

Two principal component analysis (PCA) frameworks were also evaluated to 

study the relationship between EMG recording sites and the need for feature space 

reduction. The dimension of the new feature set was reduced with the goal of improving 

the classification accuracy and reducing the computation time. The analysis indicated that 

the projection of the wavelet features into a reduced feature space did not significantly 

improve the accuracy and the computation time. However, decreasing the number of 

wavelet decomposition levels did lower the computational load without compromising 

the average signal classification accuracy. 

Based on the results of this work, a myoelectric pattern recognition-based control 

system that uses an SVM classifier applied to time-frequency features may be used to 

discriminate muscle contraction patterns for prosthetic applications. 
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CHAPTER 1 

INTRODUCTION 

1.1. Problem Statement 

In the United States, 1.7 million people live with limb loss, and it is projected that 

this number will double by the year 2050 [1]. Dysvascular amputations constitute the 

leading cause of limb loss followed by trauma-related amputations [2]. However, the 

majority of upper limb amputations are related to injuries and only 3% are related to 

vascular diseases [1, 3]. Limb replacement is a complex process influenced by many 

factors. Lower limb amputations are 20 times more frequent than the upper limb 

amputations. However, the damage produced by upper limb loss is more detrimental [4] 

because the dexterity of the hand plays a major role in carrying out the different activities 

of daily living. The replacement of an upper extremity impacts the amputees' life 

socially, psychologically and economically. The social impact arises from the altered 

cosmetic appearance and the reduced limb functionality. The psychological impact arises 

directly from the absence of the limb. Part of the economic impact, for most people, is the 

cost of replacing the absent extremity. Consequently, a properly designed upper limb 

prosthetic device should address all three of these issues that emerge from the 

amputation. 

The prosthesis has to be comfortable, functional, and aesthetically pleasing to be 

acceptable. Existing prostheses are mostly focused on one of these attributes so they do 

1 
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not present an appropriate balance among them and this may be the reason of the high 

rejection rate [5]. Upper limb amputees have two different options for prosthetics: a) 

passive prostheses that do not actively grasp but have excellent cosmetic appearance; and 

b) active prostheses (also called functional prosthetics), which allow the user to hold and 

manipulate objects but with lower attractive appearance. Passive prostheses lack 

functionality but they can look incredibly natural. They present only few user concerns, 

mostly related to glove problems and strap irritation [6]. On the other hand, functional 

prostheses can help people perform different activities of daily living but the comfort and 

the cost are limiting factors. Body-powered (cable controlled) and externally-powered 

(electrically powered) are the two main types of functional upper limb prostheses. 

Currently, the use of myoelectric signals (MES) in the control strategy of active 

prostheses [7-9] offers a viable alternative for body-powered control by providing more 

functionality and better cosmetic appearance [10, 11], as signals recorded during 

voluntary muscle contractions are translated into different prosthetic actions. 

Conventional use of signal amplitude as the feature for control lacks a large number of 

controllable states because independent muscles are required for each degree of freedom 

(DoF). Myoelectric pattern recognition systems can overcome this problem if the set of 

features describing a specific muscle activation pattern is repeatable at particular 

electrode locations [12]. Multiple prosthetic actions can be created by discriminating 

different muscle states instead of individual muscle contraction amplitudes. Many pattern 

recognition [13-16] and feature extraction algorithms [17-20] have been proposed for 

prosthetic applications. Although patterns were successfully classified on both able 

subjects and amputees, these methods lack the long-term robustness and intuitive 
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command interfaces of historical body-powered prostheses. The long term robustness is 

associated to the ability of the control system to adjust to changes in the user's 

myoelectric patterns over time. The intuitiveness in the control is related to the cognitive 

burden of the user, who has to be able to actuate the prosthetic's functions in the most 

natural way. Therefore, the development of a robust, easy to use myoelectric pattern 

recognition-based control system that accurately discriminates several voluntary muscles 

contractions is a major need in the field of prosthetic control. 

1.2. Prosthetic Hand Project Overview 

The need of a new generation of upper limb prosthetics motivated the 

development of a cost effective prosthetic hand with a user friendly control interface. 

Advanced signal processing tools and an automatic control algorithm have been 

incorporated into the myoelectric hand to allow replacement of expensive, specialized 

actuators and sensors with less expensive components and to reduce the cognitive burden 

associated with the actuation of the device. Figure 1 illustrates the scheme of the 

proposed prosthesis. High-level control is used to interpret the user's intention to actuate 

the hand prototype, which was specially designed and fabricated for this project. Low-

level control then automatically performs the grasping task. Low level feedback gives 

both grasping force and joint position information to the control, whereas a vibrotactile 

feedback system (high level feedback) gives an indirect sense of touch to the user. 
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Figure 1. General scheme of the proposed device. The intention of the user is translated 
into actions of the hand. The control algorithm will automatically modulate the grasping 

force. This dissertation focuses only on the classification of the user intention. 

MES recorded from the body surface of the forearm are classified into different 

patterns that represent the user's intention to actuate the prosthetic hand to different 

configurations. Once the action is selected, the control strategy is activated to 

automatically modulate the grasping force. The prosthetic hand is continuously 

monitored by the low level control to prevent slippage of the object. The combination of 

a signal classifier with an automatic grasping scheme leads to a robust system that is 

more natural and easier to control. The user simply has to select the grasping 

configuration and the control system will modulate the holding task automatically. 

Minimal further monitoring of the prosthesis is needed during the grasping task, which 

considerably decreases the psychological effort of the user. 

This dissertation focuses on the high level control, which involves the 

development of a myoelectric pattern recognition-based control system. The methods 

used to classify the different motion patterns are extensively explained in this manuscript. 

The validation of the proposed control system is achieved through the evaluation of the 
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accuracy in the classification of four different wrist movements, which were selected as 

the motions that could activate four different functions of the prosthetic hand. 

1.3. Goals 

The main goal of this work is to develop a robust myoelectric pattern recognition-

based control system for upper limb prosthetics that involves a minimum user effort. 

When a prosthetic device is controlled by electromyographic signals generated by the 

muscles of the residual limb, three main aspects have to be taken into account to get a 

successful control [21]: 

- The different movements produced must be accurately classified. 

- User control must be intuitive and must require low psychological effort. 

- The system response time should not introduce perceivable delay. 

A pattern recognition scheme will help to achieve an easy to use interface since 

the user has to perform a simple muscle contraction to actuate the device. The 

implementation Support Vector Machines (SVM) as the signal classifier will help to 

achieve high accuracy in the classification because of its high generalization property. 

The SVM model is a linear function that can be calculated with low computational load. 

The specific aims of this project include: 

• Implement and evaluate SVM signal classification technique for the 

discrimination of five different muscle contraction classes. 

• Minimize the effect caused by variations in the electrode location to reduce the 

user effort to setup the device. 

Implement and evaluate the myoelectric pattern recognition system for a real-time 

control of a prosthetic hand. 
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1.4. Myoelectric Control System Overview 

The myoelectric pattern recognition-based control system presented in this work 

classifies several users' muscle contractions to actuate a prosthetic hand. Figure 2 

illustrates the four main blocks of the control system. Surface myolectric signals are 

recorded and conditioned for feature extraction. A classifier takes the reduced set of 

features and determines the appropriate function of the prosthesis. 

Y • / > 

f Surface MES 

detection 

! Class Output | 

Figure 2. Block diagram of the myoelectric pattern recognition-based control system 

proposed. 

In the following paragraphs a brief explanation of the contents covered on each 

block is introduced. The dimensionality reduction block is presented after the 

classification stage because it was implemented as a potential method to improve the 

performance of the whole pattern recognition system. 

MES detection 

As the prosthetic hand under development was designed to be a non-invasive 

device, MES were recorded from the surface of the skin. Five forearm muscles were 

selected, whose activation is directly associated with four different wrist movements: 

abduction, adduction, extension and flexion. Seven bipolar channels were distributed 

along the selected muscles, and the reference electrode was placed on the wrist. The 

recorded signal was filtered to eliminate both low frequency motion artifacts and power 

Feature 
extraction 

Dimensionality 
reduction 

Classification 
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line noise. The amplitude of the filtered signal was normalized into 256-points non-

overlapped windows. 

Feature Extraction 

To extract the information contained in the cleaned MES, the Discrete Wavelet 

Transform (DWT) was applied to each 256-point moving time window segment of 

muscle contraction. This time-frequency representation of the signal overcomes both time 

and frequency features because the mother wavelets functions resemble the motor unit 

actions potentials that represent the gross EMG signal. The DWT mapped the windowed 

signal into a set of wavelets coefficients, whose number depended on the level of depth 

decomposed. To reduce the amount of information obtained, the wavelet coefficients' 

energy was averaged at each frequency resolution level. The reduced features of each 

channel were combined into a single feature vector to give a D -dimensional wavelet 

feature vector (D = No. of decomposition levels x No. of channels). 

Classification 

The four specific wrist movements performed by the user were decoded into four 

different actions of the prosthetic hand. A rest muscle state was translated as no action for 

the device. Therefore, the classifier was responsible for the correct classification of five 

different motion classes. It incorporated the information received from the feature vector 

into a mathematical description of the decision boundary that separated the classes. SVM, 

implemented as a directed acyclic graph (DAG), was used as the classification algorithm 

because it can generalize and classify both linear and nonlinear data. Multiple binary 

SVM classifiers were trained to discriminate the classes using the Gaussian Radial Basis 

Function (GRBF) kernel. The selection of the best model parameters, as well as 
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classification accuracy achieved after training one classifier per subject was examined. 

The classifier also incorporated minor variations in electrode locations so potential trial-

to-trial changes produced by either a misalignment of the socket or long-term use can be 

accommodated. It was hypothesized that the SVM algorithm will be able to compensate 

for these variations. To test this hypothesis a training strategy was proposed. Signals from 

different recording sessions simulated the electrode placement variations. The 

improvement in the SVM classification accuracy was evaluated as data from the different 

sessions were added to the training set. The performance of the classifier was also 

evaluated by calculating the sensitivity and specificity. 

Dimensionality Reduction 

A feature projection framework based on Principal Component Analysis (PCA) 

was implemented with the aim to expedite the processing time and improve the 

classification accuracy of the myoelectric control system. It was hypothesized that the 

implementation of a PCA feature projection framework will gather the relevant 

discriminatory information from the original features set, producing an improvement in 

the classification accuracy of the signal classifier. In addition, a reduction in the 

dimensionality of the new feature set will expedite the processing time in the decision 

stage. Two PCA frameworks were tested for dimensionality reduction. The effect of 

reducing the feature dimension was analyzed in classification accuracy and processing 

time. The analysis was also extended to determine the effect of these feature projection 

frameworks on the performance of the classifier as more data were incorporated in the 

training process to account for the variations of electrode placement. 



CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

Electromyography (EMG) is a well known technique that records the electrical 

activity produced by the skeletal muscles. By means of appropriate detection methods, 

the signals generated can be used to determine when a muscle is contracted or if an 

intention of a movement exists. This important tool allows the control of assistive devices 

by means of voluntary contractions produced by the subject. This type of control is 

referred to as myoelectric control. It can enable people with disabilities such as 

amputation, cerebral palsy, and spinal cord injury to communicate with the external 

environment and to perform tasks that would otherwise be impossible. In the case of 

prosthetic devices, signals from the muscles on the residual extremity can be used to 

activate different functions of the artificial limb. 

This chapter reviews the basic principles of myoelectric signal generation and the 

past and present techniques that use these signals in the control strategy of upper limb 

prostheses. The chapter begins with the origin of electromyographic signals and the two 

main detection methods. Several applications that use analysis and interpretation of EMG 

are mentioned. Conventional and pattern recognition-based myoelectric control 

techniques are presented later in this chapter. The latter technique is explained in more 

detail since it was implemented in this work. 

9 
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2.1. Nature of Myoelectric Signals 

Electromyographic (EMG) signals represent the electrical activity generated when 

skeletal muscles are contracted after an action potential stimulated the muscle fibers. 

Myelinated large nerve fibers originated from a-motor neurons located in the anterior 

horn of the spinal cord innervate the skeletal muscle fibers. The terminal branches of a 

single motor neuron excite multiple muscle fibers forming a motor unit (MU) (Figure 3). 

The number of muscle fibers innervated by one nerve fiber range from 10 in the 

extraocular muscles to over 500 in large limb muscles [22]. The motor unit is the smallest 

part of a muscle that the central nervous system can control individually. A normal 

muscle is formed by a random distribution of the muscle fibers of a motor unit that are 

intermingled with muscle fibers belonging to 20-50 different motor units [23]. 

Spinal Cord 

Spinal Nerve 

Motor Neuron 

Muscle Fibers 

Figure 3. Nerve fiber originated in the spinal cord innervates several muscle fibers 
forming a motor unit (MU). 

A single motor neuron controls the muscle fiber through special synaptic 

junctions called motor end plates (Figure 4.a). The action potential (AP) transmitted from 
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the brain down to the neuromuscular junction initiates a sequence of electrochemical 

events at the pre-synaptic nerve terminal. An excitatory transmitter Acetylcholine (Ach) 

is released into the synaptic cleft producing an increment in the electrical potential inside 

the muscle fiber in the positive direction by opening the Ach-gated ion channels located 

in the fiber membrane and allowing the flow of great amount of ions to the interior of the 

cell. This local potential is referred to as the end plate potential (Figure 4.b). A 

depolarization in the post-synaptic membrane above a threshold level initiates an action 

potential in the adjacent membrane and spreads along the muscle fiber in opposite 

directions towards the two ends. 

A B 

> 
Time (ms) 

b) 

Figure 4. a) Contact point between the axon terminal and the muscle fiber membrane, b) 
End plate potentials: A is too weak to elicit an action potential whereas B is a normal end 

plate that elicits an AP. 

When a motor unit is recruited, action potentials are generated on each muscle 

fiber innervated by the motor neuron causing a brief contraction or twitch of the muscle 

(delayed few milliseconds from the AP origin). The spatial-temporal superposition of the 

contributions of the individual fiber results in an electrical signal called motor unit action 

potential (MUAP) (Figure 5). A needle electrode placed in the contracting muscle can 

record this local voltage. The shape and the amplitude of the observed MUAP depend on 
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the geometric orientation of the active muscle fibers with respect to the recording sites as 

well as on the muscle tissue and on the properties of the MU. The filtering properties of 

the electrodes also affect the phase and the duration of the MUAP recorded [23]. In 

normal muscles, the typical amplitude may vary from 20 to 2000 uV [25]. The duration 

of the MUAP in skeletal muscles is inversely related to the conduction velocity of the 

muscle fiber, varying from 1 ms to 5 ms, about five times as long as in large myelinated 

nerves [24]. 

a motoneuron 
muscle fiber - h(t) 

Motor unit action potential 

Figure 5. The motor unit action potential (MUAP) is the result of a spatial-temporal 
superposition of the action potentials from each muscle fiber [23]. 

To maintain the muscle contraction, a sequence of MUAP must be generated 

yielding to a train of impulses called motor unit action potential train (MUAPT). The 

time interval between the adjacent discharges is called interpulse interval (IPI) whereas 

the reciprocal of the average IPI is referred to as the average firing rate of the MU. The 
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myoelectric signal (MES) generated at the recoding sites is the summation of the 

contributions of the MUAPTs (Figure 6). The irregular discharges of the motor units and 

the different shapes of the MUAPs lead to a myoelectric signal that can be represented by 

a band-limited stochastic process with Gaussian amplitude distribution whose frequency 

spectrum ranges from DC to 500 Hz [26]. In summary, a myoelectric signal is a function 

of physiological and anatomical factors as well as of the filtering characteristics of the 

environment and the recording device. 

m(t,F) 
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Figure 6. The myoelectric signal is the summation of the contribution of the individual 
motor unit action potential trains. It characteristics depends on anatomical factors and the 

properties of the recording equipment [23] 

2.2. Detection Techniques for Myoelectric Signals 

The electric potential field generated by a muscle contraction can be recorded 

from either intramuscular or surface electrodes. The signals from these two types of 
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recordings differ strongly because of the amount of biological tissue separating the active 

fibers and the recording sites, called volume conductor. In the intramuscular recordings, 

needle electrodes are inserted directly into the muscle, so the effect of volume conductor 

is minimal. The signal is detected close to the source and consists of the activity of a few 

muscle fibers belonging to 10 to 15 motor units. On the other hand, the distance between 

the surface electrodes and the sources of the signal is relevant, which produces a 

significant spatial lowpass filtering effect on the EMG signal. The surface 

electromyographic (sEMG) signal contains electric potentials from several tens of MUs, 

yielding global information about muscle function. The detection volume of the surface 

electrodes is much larger than that on the intramuscular electrodes. The sEMGs are also 

subject to crosstalk, where the signal contains information from muscles that are not 

relevant for the study but that are close to the recording muscle. This phenomenon is one 

of the most important sources of error in interpreting surface myoelectric signals [27]. 

Intramuscular recordings have been used to study the physiology of single motor 

units because they are highly selective to individual action potentials [28]. Studies have 

attempted to decompose the intramuscular EMG (iEMG) signals into its constituent 

MUAPs to understand the control strategies of muscle contractions by the neuromuscular 

system [29-31] (Figure 7). As an example, firing patterns have been analyzed to identify 

the activity of specific MUs for different force levels and contraction types [32-34]. In 

addition, the recruitment behavior of the human motor units was studied by decomposing 

the iEMG signals detected from individual muscles [35-37]. 
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Figure 7. Decomposition of the myoelectric signals into its constituent MUAP [38]. 

Clinical applications of intramuscular EMG have been limited by decomposition 

algorithm, which require excessive processing time to generate useful information. 

Another factor is the necessity high-quality signals for a reliable decomposition, which 

can only be achieved by a meticulous placement of the needle electrodes. Present 

applications in the clinical environment are related to diseases affecting either the 

neuromuscular junction or a-motor neuron. They do not require the full decomposition of 

the iEMG but it uses either the shape of some motor unit action potentials or the 

interference signal (superposition of many motor unit responses) for the diagnosis of the 

pathology [39, 40]. In the field of assistive technology, current technological advances on 

implantable sensors have led to studies that focuses on the implementation of 

intramuscular EMG as a potential alternative for the control of prosthetic devices [41]. 

On the other hand, surface recordings present the advantage of being non 

invasive because the signal is picked up over the skin surface overlaying the examined 
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muscles. They have been also used for signal decomposition even though the process is 

considerably more complex than when using needle electrodes [42]. The main reason is 

the effect of the volume conductor, which strongly affects the shapes and durations of the 

MUAPs increasing the probability of superposition and making more difficult their 

correct interpretation [43]. However, advanced signal processing algorithms [42, 44, 45] 

and novel surface recording techniques [46, 47] have allowed decomposition of surface 

electrode recordings that are reliable for investigating physiological muscle properties. 

For example, conduction velocity of the action potentials has been estimated by detecting 

the motor unit activity during muscle contractions [48, 49]. In addition, the firing patterns 

of the MU trains and their behavior were analyzed by several investigators [50-52]. 

Surface EMG find important application in neurology, sports, rehabilitation 

medicine and in the control of assistive devices where needle electrodes are not 

acceptable. The study of patterns of muscle activations generated by the central nervous 

system can help to the analysis and diagnosis of neurological disorders. Fluctuations in 

the sEMG signal during normal and pathological fatigue can be tracked reflecting several 

aspects of the metabolic state of the muscle and the variations in the motor command 

during exercise [53-55]. The analysis of the function and coordination of muscles in 

different movements and postures as well as in skilled actions and during training is often 

done by means of myoelectric signals. Isometric and non-isometric contractions are 

studied in time and frequency domain for determining the timing of muscle activation. 

The linear envelope (rectification and low-pass filtering of the EMG) as well as 

additional smoothing techniques are used to describe the human walking and running and 

to estimate the muscle forces [56-59]. In rehabilitation engineering, different parameters 
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of the EMG signal, such as the peak amplitude or the onset and end of EMG activity are 

analyzed to evaluate low back pain, neck pain, pelvic floor pathologies, and motor 

control of the trunk muscles [60, 61]. 

Prosthetic devices can be controlled with sEMG signals recorded from specific 

muscles in residual limbs. Signal processing techniques extract relevant information from 

the recorded signal and map it into different actions of the prosthetic device (Figure 8). 

Myoelectrically controlled prostheses have several advantages over prostheses that do not 

use these signals; no harnesses are required to command the device, minimal muscle 

activity is needed to provide reliable signals, and a non-invasive technique is used for 

recording [9, 62, 63]. An expanded literature review on the two main types of 

myoelectric control of prosthetic devices is presented in the next section. 
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Figure 8. Block diagram showing a general scheme of a myoelectric control system. 
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2.3. Conventional Myoelectric Control of Prosthetic Devices 

The surface myoelectric signal is widely used as an input for the actuation of 

upper limb prosthetic devices. Individuals with amputations or congenital deficient limbs 

can still voluntarily control the contraction of the remaining muscles. Appropriately 

located electrodes detect this activity and by means of signal processing algorithms 

different functions of the prosthesis can be selected. Since the 1960s, researchers had 

been addressing alternatives for commanding the prosthesis by discriminating several 

muscle states. Two major groups can be identified depending on the type of myoelectric 

control implemented: a) conventional control and b) pattern recognition based control. In 

both cases, the objective was to allow the users to actuate the device at a subconscious 

level, so they can focus on things other than the contraction of specific muscles [64]. 

Conventional myoelectric control systems extract the information of the muscle 

activity either from the signal's amplitude or from its rate of change. These features are 

used to initiate a set of commands that can be used to instruct the prosthetic device for a 

specific degree of freedom (DoF) in movement. Most of the commercially available 

myoelectric prostheses use the amplitude of the signal from an active control muscle of 

the user's remaining limb. 

Early myoelectric systems decoded the amplitude of the signals from two 

independent muscles for controlling the open and close functions of the prosthesis [65, 

66]. Flexor and extensor muscle activities were commonly used as the on-off switch for 

the two-state actuation of the device. These systems have a good performance, are easy 

to materialize and do not require excessive user effort to control. Those may have been 

the reasons for being the first control schemes commercially implemented in prosthetic 
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devices [9]. The MES detected is full-wave rectified and then smoothed or averaged 

using a low-pass filter. This provides a signal amplitude level that gives an indication of 

the variance of the raw signal, which is then used as the control input. If the amplitude 

level corresponding to the contraction of the control muscle rises above certain threshold 

(SI and S2 in Figure 9), the associated function is activated. The disadvantage of the two-

state method is that two independent muscle sites are needed to control one degree of 

freedom making the system impractical when more than two functions must be controlled 

(i.e. above elbow amputees needs to actuate three DoF: elbow, wrist, hand). 

Co-contraction 
No Action 

S2 
Hand Close 

*,»«^HW4 
FLEXOR ACTIVITY 

Figure 9. Basic principle of the two-state myoelectric control system using two different 
control muscles [9] 

Three-state myoelectric control systems were developed for overcoming this 

limitation and were clinically tested on below-elbow and forequarter amputees [67, 68]. 

Each control muscle can control two functions (one DoF) of a terminal device (i.e. hand, 

wrist) by modulating the amplitude of the signal and comparing its value with two 

different threshold levels (Figure 10). When the mean absolute value (MAV) of the MES 

is below threshold level SI the corresponding function is in off state; when MAV falls 
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between SI and S2 one function is activated (i.e. hand open, right wrist rotation, elbow 

extension); finally, when the MAV of the signal is above S2 the opposite function is 

selected (i.e. hand close, left wrist rotation, elbow flexion). To operate the device 

successfully, the user needs to be trained, which implies an additional cognitive effort 

since the control strategy was not physiologically designed [9]. 
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Figure 10. Three-state myoelectric control system using a single control muscle [9]. 

Following the same principle, myoelectric control systems attempting to select 

more than three states from one control muscle were investigated but with no promising 

results. The operator error and the necessity of feedback on the level of force executed 

made this type of control unreliable [69, 70]. 

A proportional myoelectric control of devices has been addressed as an additional 

approach. The velocity at which the terminal device is actuated is proportional to the 

amplitude of the contraction of the control muscle. The advantage of proportional control 

over the on-off state control is that it allows a more natural response of the device with 

mean absolute value 
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less psychological effort for the user. Some companies have implemented this control 

technique in prosthetic devices. The Boston Elbow (Liberating Technologies, Inc. [71]) 

was created to compensate for the absence of an arm and uses residual muscles in the 

stump to control the extension and flexion of the elbow joint. The speed of the movement 

is controlled by the intensity of the contractions performed by the remaining muscles. 

The Utah Arm (Motion Control, Inc. [72]), originally developed in 1981 for above elbow 

amputees, also uses proportional control to command elbow, wrist and hand at different 

velocities [73]. These three degrees of freedom cannot be controlled simultaneously, so a 

switch mechanism using quick co-contraction of the control muscle was implemented to 

select the active terminal. However, the introduction of two microcontrollers in the latest 

version, the Utah Arm 3, allows the user to control both the elbow and the hand at the 

same time but not the wrist rotation. A newer device that implemented proportional 

control but that was not commercially developed was the Southampton hand [74]. It was 

designed based on the hierarchical form employed by the central nervous system to 

control the hand. This task was broken up into three levels where the person simply 

desires to move the object (first level) and the system automatically coordinates the 

actions (second and third levels) to reach the objective without significant psychological 

effort. The first level is the myoelectric control, in which a pair of electrodes was 

connected to the flexor and extensor muscles of the forearm to record a bipolar EMG 

signal. The degree of opening of the hand was proportional to the level of contraction on 

one direction (extension) whereas the amount of grip force exerted by the hand was 

proportional to the level of contraction on the other way (flexion) (Figure 11). 



Hand Extension 

POSITION CONTROL 

Flexion 

—f- mix. hftnd extension 

POSITION 
flexion 

SQUEEZE HOLD 
lhr««hold Ihr.lhold 

max. grip force 

FORCE CONTROL 

RELEASE 
flexion 

EMG 
REL|A.XPOSITION RELEASE 

threaHold Ihreehdld 
Ma.1 

E*s«n«ion 

Demand 

Extension 

Grip Force 

22 

Figure 11. Proportional myoelectric control implemented in the Southampton Hand. 
Hand extension and grip force are controlled by extensor and flexor muscles, respectively 

[74]. 

The conventional control approaches described in this section have two common 

drawbacks. First, only two functions can be controlled using the same control muscle, 

and in the case of multifunction control (>2), the signal sources must be independent. 

This constitutes a limitation for high-level amputees because they require more 

functionality in the device but they probably don't have enough number of control sites 

available. Second, the psychological effort associated with the multifunction control 

forces the training of the users. This may become very complex because they must learn 

to contract several independent muscles in a coordinated way [8]. 

Current technological advances in computing devices and instrumentation as well 

as the development of complex signal processing techniques have opened the door to the 
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design of new strategies for multifunction myoelectric control. The discrimination among 

muscle states has emerged as the most reliable technique for controlling more than one 

degree of freedom of the prosthetic device. This technique is referred to as pattern 

recognition based myoelectric control. The next section presents a review of this 

technique as well as of the different methods explored by researchers to achieve a high 

accuracy in the selection of the prosthetic functions. 

2.4. Pattern Recognition-Based Myoelectric Control 

Pattern recognition-based myoelectric control systems attempt to discriminate 

different classes of movements by using time of frequency related signatures observed on 

the MES. Each class is directly related with a DoF in movement, so the user can 

voluntarily select and modulate the functions of the prosthetic device. These systems are 

based on the assumption that the set of features describing the MES of specific muscle 

activation's pattern is repeatable under particular electrode location [12]. The pattern 

recognition process encompasses a series of steps before the final control outcome can be 

achieved. They are represented by each one of the blocks illustrated in Figure 12. 

MES 
Detection 

c=y 
Feature 
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Dimensionality 

Reduction 
t = > Classification 

Figure 12. Block diagram of the pattern recognition process applied to the control of a 
prosthetic device. The surface EMG signal is detected and then conditioned for the 

extraction of the most relevant information. A classifier takes the reduced set of features 
and determines the appropriate action of the prosthesis. 

Surface electrodes are strategically placed over the skin in order to record as 

much information as possible about the muscle activity. The measured signal is 
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transformed to extract important features contained in it. This feature extraction stage is 

one of the most critical in myoelectric control design because the overall performance of 

the system depends on it [8]. In some cases, the amount of information must be reduced 

because a large number of features may lead to a sub-optimal performance in the 

classification stage. The classifier takes the reduced set of features and creates a model 

that is able recognize the patterns present on the signal with a certain level of accuracy. 

These patterns are associated with different prosthetic commands, so the control system 

takes the output of the classifier and execute the appropriate action. 

Most of the earlier myoelectric pattern recognition systems designed for 

multifunction myoelectric prosthesis used information from a single recording site. One 

of the opening systems was developed in 1975 by Graupe et al. [75]. They examined the 

EMG signal using autoregressive moving-average (ARMA) models and found the four-

order ARMA to be the best approach. Even though the myoelectric signals are non-

stationary in nature, they showed that the variation of the ARMA parameters with time 

was adequately small to allow an accurate discrimination of four upper-limb functions 

95% of the time. Later on, they performed online tests of a slightly modified scheme on 

one above elbow amputee. Five classes of motion, elbow flexion, elbow extension, wrist 

pronation, wrist supination, and hold, were discriminated with 85% of accuracy [76]. 

These results were obtained after 12 hours of user training, and performance was 

significantly decreased with time because the signals generated by the user became 

modified with time. 

An important contribution was made by Hudgins et al. in 1993 [77]. He found 

deterministic patterns in the onset of several sudden muscle contractions by representing 
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the EMG signal with four time-domain parameters. He implemented a control strategy 

that used a Multilayer Perceptron (MLP) Artificial Neural Network (ANN) classifier to 

discriminate among four classes of limb motion (Figure 13). This new control strategy 

eliminated the need for extensive user training. An average classification accuracy of 

85% was obtained over normally limbed and limb-deficient subjects. A second channel 

was added in a subsequent study to increase the classifier performance up to 90% 

accurate [78]. This new multifunction controller was embedded into a hybrid control 

system for commanding the multiple-axis Southampton-Remedi hand [79]. The users 

were able select up to four different functions of the prosthesis achieving secure 

manipulation of objects of various sizes and compliances. 
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Figure 13. Pattern recognition based control system implemented by Hudgings et al. 
Transient MES was processed to select the output state (function). A proportional control 

was also added to control de speed of the function [77]. 
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The introduction of multiple recording channels promised an improvement in the 

performance of the classifier for discriminating more than three functions. Two channels 

were used for Al-Assaf et al. to classify four elbow and wrist movements with less that 

6% of classification error [80]. Doerschuk et al. recorded signals from four channels and 

classified four functions with more than 95% accuracy using nearest neighbor classifier 

trained with four ARMA coefficients per channel [81]. Englehart et al. used the same 

number of channels and extracted frequency domain features to classify six functions 

with a maximum accuracy of 98% [82]. Other research groups have implemented four or 

more recording channels into a multifunction pattern recognition system averaging less 

that 15%) classification error [83-88]. One of the most significant works was developed at 

the Northwestern University and the Rehabilitation Institute of Chicago by Kuiken et al. 

They developed a system with 12 bipolar electrodes placed over chest muscles, which 

were reinnervated by residual arm nerves in a surgical procedure called targeted muscle 

reinnervation (TMR) (Figure 14). Four time domain features were used to train an ANN 

classifier that discriminated among 11 motion classes with an average accuracy of 88% 

(SD, 7%) [89]. 

Figure 14. Placement of 12 bipolar electrodes for TMR subjects [89, 90]. 
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Three important aspects determine the performance of the myoelectric control 

system of a prosthetic device: the accuracy of movement selection, the intuitiveness of 

actuating control, and the response time of the system [21]. Accurate discrimination of 

the movements produced by the user leads to a more precise control of the prosthesis by 

the user. Furthermore, more than one function of the device could be controlled using an 

integrated system. 

During the past decades, researchers have addressed different directions in order 

to achieve effective pattern recognition algorithms that can be translated into real-world 

prosthetic applications. In the subsequent subsections, the block diagram presented in 

Figure 12 is used as a reference to present the most common methods followed and the 

most important conclusion obtained from them. 

2.4.1. MES Detection 

The main objective of the detection stage is the collection of unique information 

about different muscle contractions. The number of channels and the locations of the 

recording sites must be optimized to successfully discriminate among muscle states. 

Myoelectric signals from several locations of the body surface can be used to 

activate upper limb prosthesis. The most appropriate location depends on the amputation 

level and on the type of application (i.e. arm or hand). Signals from biceps and triceps 

brachii are typically selected for describing arm movements of above elbow and elbow 

disarticulation amputees [79, 86, 91, 92], whereas the remaining muscles in the forearm 

are mainly used as recording sites in below elbow amputees [10, 21, 93-95]. 

Although the system performed well with one [77, 96-98] and two [78, 99-101] 

myoelectric channels, additional recording channels (>2) improved the classification 
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accuracy [82]. The muscle activity recorded from additional channels adds information 

about the contractions of spatially separated muscle groups. However, the incorporation 

of more than seven channels in the socket of a real prosthesis can be difficult [102]. 

2.4.2. Feature Extraction 

Whereas each one of the four blocks presented in Figure 12 can be considered as 

a research gap that could be addressed, the feature extraction block becomes the most 

important because valuable information present in the raw myoelectric signal must be 

separated and decoded for successful discrimination of the muscle states by the classifier 

[8]. 

A considerable amount of research has been done in this area leading to a wide 

variety of features for representing the MES for multifunction myoelectric control. They 

can be grouped in three main categories: time domain, frequency domain and time-

frequency (also called time-scale) domain. 

Time domain features (TD) are frequently used for myoelectric classification 

because they are computationally simple [11]. They do not require a previous signal 

transformation in most cases, and the EMG is considered a zero-mean stochastic signal 

[63]. Researchers have used combinations of various features to represent the myoelectric 

activity, including mean absolute value, mean absolute value slope, signal variance, 

number of zero crossings, waveform length, number of slope sign changes, Willison 

amplitude, Cepstrum coefficients and AR model coefficients [77, 89, 90, 103-105]. These 

types of features are significantly affected by disturbances in the MES, such as those 

introduced by shifts in electrode locations and variations in muscle contraction efforts. 

The classification accuracy is considerably reduced by these physical and physiological 
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effects, making time-domain features unstable for their implementation in a pattern 

recognition system for long term use [20]. 

Frequency domain features present information about the signal spectrum and are 

influenced by two factors: the firing rate of the motor units and the morphology of the 

action potential travelling along the muscle fibers [106]. The power spectral density 

(PSD) based on the Fourier transform is commonly used to perform a spectral analysis of 

the myoelectric signal. The mean and median frequency of the PSD can be estimated 

using either the classic periodogram [107] or parametric methods such as autoregressive 

(AR) models [108]. Few studies have investigated the use of frequency domain features 

in pattern recognition schemes [109-111] because the non-stationary nature of the 

myoelectric signal [23] is not captured by the Fourier transform. 

Time-frequency representations (TFR) are special tools used to analyze non-

stationary process that capture the time and frequency information present in the 

observed signal. In real-time signal classification applications, linear TFRs (i.e. the short-

time Fourier transform (STFT), the discrete wavelet transform (DWT) and the wavelet 

packet transform (WPT)) are preferable to quadratic TFRs (continuous wavelet transform 

(CWT)) because of their computation efficiency [11]. The linear TFRs differ mainly in 

the partitioning of the time-frequency plane [112] (Figure 15). 

The STFT [113] maps the myoelectric signal into a two dimensional function of 

time and frequency depending on an analysis window. The size of this window 

determines the time frequency resolution; a short window leads to a high time resolution 

but poor frequency resolution whereas a long window gives low resolution in time but 

high in frequency. The STFT has a fixed tiling of the time-frequency space, consisting in 
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an identical aspect ratio for each cells, which on the size of the analysis window (Figure 

15a). The DWT overcomes the resolution limitations of STFT by using basis functions 

that have time widths adapted to each frequency band [114]. This adaptation generates a 

variable time-frequency aspect ratio for the cells yielding a good frequency resolution at 

low frequencies and a good time resolution at high frequencies (Figure 15b). This tiling 

of the time-frequency space is appropriate for most physical signals [115]. The WPT is a 

generalization of the wavelet transform and it provides an adaptive tailing of the time-

frequency space (Figure 15c). The best tailing is selected among different alternatives 

using an entropy cost function that minimizes the reconstruction error [116]. Computing 

the WPT is significantly more expensive than computing the DWT [11]. 
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Figure 15. Time-frequency domain partitioning: (a) STFT, (b) WT and (c) WPT [115]. 

These three TFRs have been implemented as the method to extract relevant EMG 

signal information for myoelectric pattern recognition based control (STFT [117], DWT 

[82, 118-120] and WPT [18, 121-123]). Englehart et al. showed that for transient 

myoelectric signal (observed during the onset of muscle contractions [77]), the features 

extracted by both DWT and WPT improve the classification performance obtained using 

STFT features [115]. In the same work, the authors obtained better signal classification 
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with TFRs than with time domain features, and the wavelet packet transform presented 

the best overall performance. Similar results were observed by the same research group 

when analyzing steady-state MES [124]. 

2.4.3. Dimensionality Reduction 

The dimensionality reduction of the feature vector was another important research 

direction in the myoelectric control. Depending on the technique used to extract the 

information from the recorded signal, the dimension of the input vector will vary. As the 

number of dimension increases, machine learning algorithms need more input data to 

generalize sufficiently well; this requirement is called the course of dimensionality [125]. 

For that reason, the main goal of this process is to obtain a reduced representation of the 

original feature vector by retaining information that is useful for class discrimination and 

discarding that which is worthless [126]. When wavelet transform is used to select the 

time-frequency features [127], the input vector dimension obtained will generally be 

larger. This dimension will need to be reduced for any practical real-time application. 

Depending on the objective function used, two strategies can be used to reduce 

dimensionality: a) feature selection, which finds a subset of the original feature set; and 

b) feature projection, which finds the best combination of the original features to create a 

new feature set [11]. 

Feature selection [128, 129] is a recurrent process in which the feature subset 

generated is evaluated and compared with previous subsets according to a certain 

evaluation criteria. The best subset is chosen each time until a stopping criteria is 

satisfied. An algorithm combining two different feature selection approaches has been 

proposed for reducing the dimension of the myoelectric feature vector [130]. Seven limb 
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motions were correctly classified 93% of the time by introducing the mutual information 

(MI) approach into the particle swarm optimization (PSO) algorithm. 

Among different methods for feature projection, PCA [131] performs a linear 

projection of the original variables into a new coordinate system that captures the largest 

amount of variation in data. This unsupervised technique has been proposed for reducing 

the number of frequency [132] and time-frequency [133] myoelectric features presented 

to the classifier of a pattern recognition system. Linear discriminant analysis (LDA) was 

another method proposed to linearly project the features for maximizing class separability 

of the projected features [17]. In some cases, nonlinear projection of the original features 

[134] may be more appropriate for representing variables. Self-organizing feature maps 

(SOFM) [135] and kernel PCA (KPCA) [136] can reduce the dimensionality, but their 

implementation in real-time applications is restricted by the associated computational 

load. A linear-nonlinear feature projection algorithm composed of PCA and a SOFM had 

been proposed [137]. The combination PCA-SOFM process was able to achieve 97% 

accuracy for the classification of nine hand movements. In general, the PCA algorithm is 

found to be superior dimension reduction technique when it is applied to TFR input 

feature vectors [115, 123]. 

2.4.4. Classification 

In a pattern-recognition-based multifunction myoelectric control, the prosthesis is 

actuated by means of the classification of the information received from the reduced 

feature vector into different classes. Each class determines a particular action of the 

device, which is then executed by the control system. The classification of data is a two-

step process that involves the learning step and the signal classification step [138]. In the 
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first step, an algorithm is used to build a classifier by learning a decision function (or 

rules) from a training set that can be used to predict the associated class label of a given 

data point. In the second state a validation set is used to evaluate the model in terms of 

classification accuracy (percent of data that was correctly classified). If the results are 

considered acceptable the classifier is used to classify new data, whose class labels are 

unknown. 

The types of classifiers used for myoelectric control can be divided into two main 

groups: statistical classifiers (i.e. LDA, Naive Bayes) and machine learning classifiers 

(i.e. ANN, Fuzzy Logic, K-nearest neighbor (kNN)). The first group was predominantly 

used in myoelectric control systems before the second group begins to appear. LDA 

classifiers are usually chosen for myoelectric signal classification because they are well 

understood and easily implemented. Englehart et al. combined LDA with time domain 

[21] and time-frequency [82] features to classify several limb motions resulting in less 

than 10% error rate in both cases. The low computational complexity of statistical 

classifiers in this category makes them suitable for real-time applications. This simplicity 

is the primary motivation for their continued use [13, 14, 139, 140]. A mixture of 

Gaussian models (GMM) [141] as well as hidden Markov models (HMM) [142] have 

been also proposed to decode limb motions for multifunction myoelectric control. Both 

methods yielded robust classifiers that could discriminate six limb movements with high 

classification accuracy (>90%). 

A wide variety of the second group of classifiers, also called neural classifiers, 

has been employed. MLP neural network was presented as the signal classifier in 

numerous works. Their main advantage is the ability to model (learn) linear and nonlinear 
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relationships directly from the data and to adapt to real-time implementations [7]. One of 

the pioneers of the development of real-time multifunction myoelectric control, Englehart 

et al., implemented a MLP neural network to classify four different limb motions with an 

average accuracy of around 90% [77]. In their way to develop a new generation of 

prosthetic arm/hand, a group of researchers from John Hopkins University employed 

feed-forward MLP to decode movements of the hand [16]. Flexion and extension 

movements of each finger performed by both transradial amputees and normal-limbed 

subjects were classified with more than 90% accuracy. Other works utilized ANN of 

classifiers to identify limb movements produced by the subjects [80, 143-145]. Fuzzy 

networks are another type of learning classifiers that researchers have used. A fuzzy 

approach was introduced to classify single-site EMG signals [146]. Its performance was 

comparable to feed-forward artificial neural network (FFNN), but the fuzzy approach is 

superior in achieving higher recognition rate, less sensitivity to overtraining and higher 

reliability. 

An ongoing method for classification is SVM [147]. SVM are based on statistical 

learning theory and can be thought of as a method for constructing a special kind of rule, 

called a linear classifier, which has the property of high level of classification on unseen 

data (high generalization) [148]. The use of this type of classifiers in pattern recognition-

based control has recently spread. One of the first works that introduced SVM in a 

myoelectric pattern recognition system was published in 2007 [19]. A recognition rate of 

93% was obtained by combining SVM with a generalized discriminant analysis (GDA) 

algorithm to create a cascaded kernel learning machine classifier for gaining high 

generalization ability. In another work, a linear SVM was trained to classify time-domain 
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features from eight classes with 92-98% accuracy [149]. Oskoei et al. proposed a real­

time myoelectric control framework using SMV [150]. Its performance was superior to 

LDA and MLP classifiers in terms of classification accuracy (95% average for classifying 

5 limb motions), robustness and computational load. 

This good generalization property of SVM is extremely important for the real­

time implementation of a multifunction myoelectric control because the classifier has to 

be able to accommodate to the changes in the user's myoelectric patterns over time [90]. 

These alterations may be caused by variations of electrode conductivity, spatial 

displacement of the electrodes from their original location or electrophysiological 

changes caused by muscle fatigue. SVM meets the real-time constrains, which is an 

important feature in prosthetic control systems. 



CHAPTER 3 

MYOELECTRIC SIGNAL DETECTION 

The myoelectric pattern recognition-based control system starts with the 

recording of electromyographic (EMG) signals from a set of muscles specifically chosen. 

As the proposed control system is applied to actuate a prosthetic hand, it was decided to 

investigate five different forearm muscles as the potential sources of control. The 

activation of these muscles is directly associated with four different wrist movements: 

abduction, adduction, extension and flexion. The resting state was also considered and it 

is coded as the neutral state of the prosthesis (no action). Seven bipolar channels were 

placed over the skin's surface and distributed along the selected muscles. Their main 

purpose was to detect the activity of the underlying muscles when each one of the wrist 

motions was executed. Before proceeding to the feature extraction stage, the recorded 

signal must be conditioned so that the muscle contraction pattern can be correctly 

interpreted. 

This chapter explains the recording and conditioning of the EMG signals obtained 

from seven able-body subjects to create the project database. The first section gives the 

rationale of the muscle and motion selection. A typical recording session is presented in 

the second section. In the last three sections of the chapter, the filtering, segmentation and 

normalization strategies are presented, respectively. 

36 
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3.1. Movement and Muscle Selection 

A pattern recognition scheme designed for multifunction myoelectric control can 

be implemented for discriminating any set of motions. As a proof of concept, a five-class 

discrimination problem involving prosthetic hand control was investigated, as below-

elbow amputees represent a large proportion of prosthetic users. Four types of wrist 

motions were selected (Figure 16): 

• Abduction: the thumb side of the hand is moved toward the lateral aspect 

(radial side) of the forearm. This movement is also called radial deviation of 

the wrist. 

• Adduction: the little finger side of the hand is moved toward the medial aspect 

(ulnar side) of the forearm. This movement is also called ulnar deviation of 

the wrist. 

• Extension: the back of the hand is moved toward the posterior aspect of the 

forearm. 

• Flexion: the palm of the hand is moved to the anterior aspect of the forearm. 

These constituted four different myoelectric classes that need to be discriminated 

by the classification algorithm for selecting a particular action of the prosthetic device. 

The forearm in a relaxed position was introduced as the fifth class (Rest) and was 

interpreted by the control system as the inactive class. 
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Figure 16. Four specific wrist motions that represent four of the classes to be 

discriminated: Abduction, Adduction, Extension and Flexion respectively 

Activities corresponding to isometric contractions of five forearm muscles (Figure 

17) were analyzed to identify different patterns in the EMG signal that can discriminate 

among muscle states. The five muscles were selected because they directly contribute to 

each of the wrist movements studied (Table 1). 

Table 1. Muscles selected to record EMG signals 

Muscle 

Anconeus 

Extensor Carpi Ulnaris 

Extensor Digitorum 

Flexor Carpi Radialis 

Flexor Carpi Ulnaris 

Function 

Assists triceps in extending forearm at elbow; 

stabilizes elbow joint; abducts ulna during pronation. 

Extends and adduct hand at wrist joint. 

Extends hand at wrist joint; extend medial four digits 

at metacarpophalangeal joints. 

Flexes and abducts hand at wrist joint. 

Flexes and abducts hand at wrist joint. 
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Figure 17. Location of the forearm muscles selected to record the EMG signals 

3.2. Recording Sessions 

In order to test the feasibility of the pattern recognition scheme proposed in this 

work, myoelectric signals from seven normally-limbed subjects (four males, three 

females, age range: 19-28 years) were collected. The data were obtained over six 

different recording sessions. The number of subjects was determined in order to 

demonstrate the performance of the system with statistically significant results. The 

BioRadio 150 wireless data acquisition system (CleveMed, Inc) was used to detect 
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muscle activity by means of seven bipolar channels distributed along the five forearm 

muscles introduced above. One pair of Ag/AgCl electrodes (Vermed, Inc) were placed on 

the Extensor Digitorum, Anconeus, and Flexor Carpi Radialis muscles (Figure 18). Two 

pairs of electrodes were placed on the Extensor Carpi Ulnaris and the Flexor Carpi 

Radialis muscles. The reference electrode was placed on the wrist (Appendix A presents 

a detailed explanation of the protocol). 
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Figure 18. EMG channels location. 

On a typical recording session, a subject performed 25 contractions consisting of 

5 seconds duration for each of the four classes of motion: abduction, adduction, extension 

and flexion. The contractions were divided into 5 groups of 5 repetitions of the same 

contraction each with roughly 3 seconds of resting intervals between repetitions to avoid 

muscle fatigue. All contractions began with the subject's arm by the side in a comfortable 
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neutral position. There were not constrains in terms of contraction level; however the 

subject was asked to be consistent in reproducing the desired motion. Finally, 60 seconds 

of signals were collected with the forearm upholding and 60 seconds with the forearm 

resting besides the body. These recordings constituted the Rest class. All the data 

underwent an analog anti-aliasing low pass filter before being digitized at a sample rate 

of 960 Hz and quantized with 12-bit resolution. All EMG channels were saved in a single 

file and exported to Matlab, for each recording trial. 

3.3. Signal Conditioning 

The raw myoelectric signal acquired is presented in a contaminated form so it 

needs to be processed for better understanding. The power density spectra of the EMG 

signal detected at the body surface contains most of its power in the frequency range of 5-

500 Hz. However, the frequency components below 10 Hz are unstable and have highly 

unpredictable fluctuations. In addition, noise associated with motion artifacts and wire 

sway have low frequencies (<10 Hz). For these reasons, the 7 EMG channels were high-

pass filtered with a cutoff frequency of 10 Hz and a notch filter (60 Hz) for suppressing 

the effect of power line noise. Both filters were designed and implemented under Matlab 

environment. The high-pass filter was a tenth order Butterworth with less than 3 dB of 

attenuation in the passband, defined from 10 Hz to the Nyquist frequency (480 Hz), and 

with at least 60 dB attenuation in the stop-band, defined from 0 to 5 Hz. The notch filter 

was implemented as a third order band-stop filter with cutoff frequencies selected at 58 

Hz and 62 Hz. The motion artifacts, caused mainly by subject's arm movements, are 

presented in the raw EMG signal as fluctuations of the baseline (Figure 19, top); this 

effect is removed after signal filtration (Figure 19, bottom). 
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Figure 19. Example of one channel of EMG signal recorded from subject's forearm (top). 
After both high pass and notch filtering the motion artifacts (low frequency components) 

are removed (bottom). 

3.4. Data Segmentation 

As the muscle contractions are separated by rest intervals, it is necessary to isolate 

them in order to extract a relevant set of features. The protocol of recordings stated that 

every 5 seconds of contraction must be separated by 3 seconds of rest. However, this 

timing depended on the delay between the contract/release instruction and the subject's 

response. Consequently, an algorithm was designed to determine the onset of the muscle 

contraction. The most representative of the seven channels was selected based on the 

contraction/rest amplitude ratio. The amplitude of the selected channel was filtered as 

explained in Section 3.3 (Figure 20, top) and then squared (Figure 20, center). A moving 

average (MA) filter with a 150 sample window length was used to remove the high 

frequency components of the resulting signal. A threshold was set and plotted over the 

Raw EMG signal 
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Filtered EMG signal 
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smoothed signal, and an algorithm determined the onset and the end of the muscle 

contraction (Figure 20, bottom). The threshold value depended on the amplitude of the 

smoothed signal and was selected to be around 10% of the peak. This procedure was 

performed on all recorded signals and resulted in five sets of 5 seconds of muscle 

contraction. 
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Figure 20. Example of the movement's isolation. The amplitude of the filtered signal 
(top) is squared to increase the difference between contraction and rest (middle). A 

threshold is set to determine the approximate location for the muscle contraction onset 
(bottom). 

In order to realize a real-time myoelectric control, the 5-seconds repetitions must 

be windowed into smaller segments so a fast feature extraction and signal classification 

can be performed. The width of the analysis window is a critical parameter. The lower 

limit for the window width is restricted by the low statistical variance of the features 
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extracted from small windows that yield lower classification accuracy. The upper limit is 

given by the time required for acquiring and processing the signal in order to obtain the 

final decision. Englehart et al. found that analysis windows of around 128 ms and 256 

ms led to acceptable classification accuracy values and allowed the system to be more 

responsive than shorter window's lengths [21]. In this study, the EMG signals for each 

wrist motion were partitioned into 256-point segments corresponding to 267 ms of 

contraction. The number of segments created depended on the number of points of the 

original signal representing the movement. In most cases, 20 segments were obtained for 

each 5s interval of muscle contraction. Figure 21 illustrates the segmentation procedure. 
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Figure 21. Example of the signal segmentation procedure. Approximately five seconds of 
muscle contractions are divided into 20 segments of 256 data points. Each segment 

represents 266 ms of muscle contraction. 
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3.5. Normalization 

During a sustained voluntary contraction, the amplitude of the myoelectric signal 

decreases progressively [107]. For this reason, the amplitude varied in the EMG segments 

created from 5 seconds of sustained contraction, as shown in the two windows at the top 

of Figure 22. The amplitude range of the EMG signal is wider at the beginning of the 

contraction (left hand side) than near the end of the contraction (right hand side). To 

overcome this inconsistency, the signal amplitude was normalized within a fixed range of 

[-1, 1] in all channels. All segment points were scaled with the maximum amplitude value 

observed. The bottom part of Figure 22 shows the normalized segments for the beginning 

and the end of a specific wrist motion. 
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Figure 22. Example of the EMG signal normalization procedure. Each segment's 
amplitude normalized to fall between the [-1,1] interval. 



46 

This amplitude adjustment was the final step of the initial processing for this 

work. The techniques for feature extraction and signal classification explained in 

successive chapters were applied over the normalized 256-points windows presented in 

this chapter. 



CHAPTER 4 

WAVELET DECOMPOSITION OF EMG SIGNALS 

The multichannel EMG signals recorded contain information that can be used for 

motion classification. A mathematical transformation is needed to extract the relevant 

information for the discrimination task. This transformation generates a feature space 

which dimension depends on the nature and the number of the extracted features. The 

amplitude modulation of a single channel maps the EMG in a one-dimensional feature 

space but does not yield to an acceptable classification performance. Acceptable 

performance can be achieved only by extracting more than one feature from the data. 

Time-frequency or time-scale features are nonparametric representations of the 

data that are independent of a possible error in the model choice. The non-stationary 

nature of the myoelectric signals increases the difficulty of choosing the right model, so 

the use of time-frequency representations as the nonparametric method for EMG feature 

extraction represents a good approach. 

This chapter presents the rationale for the selection of the discrete wavelet 

transform (DWT) over traditional Fourier representations. The application of the D WT to 

extract features from the EMG signal is explained in the last section. 
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4.1. The Fourier Approach 

Most of the mathematical transforms assume that the statistical properties of the 

signal under analysis do not change in time; they are stationary. The Fourier transform 

(FT) is probably the most popular transformation used for spectral analysis. It is widely 

known from Fourier theory that any signal can be expressed as a sum of sine and cosine 

functions. The FT transforms the signal x(t) from its original time domain to a signal in 

the frequency domain x ( / ) by calculating the integral: 

This can be considered as a scalar product between x(t) and a family of 

monochromatic waves of frequency/. The result,x(/), describes which frequency 

components are present in the original signal. The FT can also be applied to non-

stationary signals such as biological signals (EMG, EEG, and ECG). However, the 

interpretation may be imprecise because the FT has only limited ability to localize the 

spectral components in time. Figure 23.a illustrates a myoelectric signal corresponding to 

several seconds of wrist flexion. It was sampled at 960 Hz and filtered using both 

bandpass (20-450 Hz cutoff) and notch (60 Hz) filters. The power spectrum indicates that 

the major frequency components of the signal are in the range of 50-200 Hz (Figure 

23.b). The problem in this case is that they may not be present all the time or that their 

amplitude may be different at different times. 
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Figure 23. a) Single channel EMG signal during wrist flexion, b) The power spectrum of 
the MES shows the frequency component present but without time resolution. 

Therefore, the main disadvantage of the Fourier expansion is the lack of time 

resolution, meaning that all the frequency components of the signal are well determined 

but without indication on when they are present. On the other hand, a time domain 

analysis describes the signal by its temporal features but without frequency information. 

To correct this deficiency, Gabor proposed a new method of signal description, 

intermediate between the two extremes of time analysis and spectral analysis [151]. He 

adapted the FT to analyze only a small time-interval of the signal at a time, a technique 

called windowing. The resultant technique maps the signal into a two-dimensional 

function of time and frequency and is called Short-Time Fourier Transform (STFT). 

STFTx(t,f) = j[x(u)h*(u - t)]e-j2nfudu (2) 

Here the signal is assumed to be stationary inside the window h(t) which is 

centered at the current analysis time t. The FT is the calculated to find the frequency 

component of the clipped signal. The idea behind these time-frequency joints 
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representations is to analyze different parts of the signal separately with the aim at giving 

more information about when and where different frequency components occur. 

However, the product between the time resolution (At) and the frequency resolution (A/) 

is limited by a lower bound given by the Heisenberg's uncertainty principle 

At * A/ > 1/47T (3) 

This principle means that the frequency information cannot be determined for a 

given time instant so they have to be investigated over a time interval defined by the size 

of the analysis window. Narrow windows give good frequency resolution but poor time 

resolution. Wider windows give superior time resolution but with reduced frequency 

resolution and the risk of losing the stationary condition. Although the STFT has many 

useful properties and can be computed very fast, it is constrained because the size of each 

cell in the time-frequency plane must be fixed. Figure 24 shows the partition of the time-

frequency plane for time, frequency and time-frequency analysis. 

Figure 24. Three different representations of a signal depending on the analysis 
performed. Spectral analysis gives high frequency resolution but no temporal resolution 

(left). Temporal analysis gives time but not frequency resolution (center). The STFT 
solved that problem by partitioning the time-frequency plane into cells that have a fixed 
time and frequency resolution which depends on the size of the analysis window (right). 
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The fixed resolution of the STFT can represent a problem when dealing with 

EMG signals. The usable energy of the surface MES is limited to the 10-500 Hz 

frequency band, with the dominant energy being in the 50-150 Hz range. In addition, the 

spectral components are generated at different times and propagate along the muscle 

fiber. This non-stationary nature of the myoelectric signal indicates that the information 

is present not only in the frequency domain but also in the time domain. Therefore, a 

more flexible approach than the STFT is required so the size of the analysis window can 

be changed to obtain a variable time-frequency resolution. 

4.2. The Wavelet Transform 

The most significant characteristic of the wavelet transform is that the time 

resolution and the frequency resolution are not fixed in the time-frequency space. The 

wavelet transform was introduced as a unifying theory at the beginning of the 1980s by 

Morlet et al, who used it to evaluate seismic data [152]. Daubechies [153] and Mallat 

[154] were the first researchers who linked the wavelet theory to the processing of 

discrete signals. Since then, various types of wavelet transforms have been developed, 

and many other applications have been found. Wavelet transform has proven to be an 

efficient method for biological signal compression [155], signal denoising [156] and 

feature extraction [157, 158]. 

The continuous wavelet transform (CWT) utilizes basis functions, called 

wavelets, which have time widths adapted to each frequency band. It is defined as: 

1 f00 (t-r\ 
CWTX(T,S)=—\ x ( t > W )dt (4) 

Vsj-oo \ s / 
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The CWT correlates the signal x{t) and the translated and scaled versions of a 

prototype window ip(t), which is called the mother wavelet. The term 1/Vs is 

introduced to normalize the energy for all the values of the scale parameter s. The 

translation term, T, indicates the location of the window as it is shifted along the signal 

and the term s is the scale parameter defined as the inverse of the frequency term (1 / / ) . 

Small values of the scale parameter (0 < s < 1) contract the mother wavelets which 

highlight the high frequency components of the signal, whereas s > 1 expand the basis 

function and stress the low frequency components. Figure 25 illustrates a simple mother 

wavelet at different translations and scales. For small scales, poor frequency resolution 

(A/) but high time resolution (At) is observed; as the scale increases, the wavelet basis is 

stretched and signal is analyzed with better frequency resolution but poorer time 

resolution. 
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Figure 25. Example of a mother wavelet at different locations and scales in the time 
domain (left) and in the frequency domain (right). The values in parenthesis (s, T) 

indicate the scale and shift values, respectively. [159]. 

The time and frequency resolution for the STFT generated a regular grid in the 

time-frequency plane. In the case of wavelet transform, it can be demonstrated that for a 
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scaled-shifted mother wavelet ipSiT(t), both time and frequency resolutions depends on 

the scale parameter s as [159]: 

1 
A/ ' = - X A/ ; At' = s x At (5) 

s 

This relationship clearly shows that at low scales values (high frequencies), a cell 

in the time-frequency plane is tall and narrow and for greater scales (low frequencies), 

the cell is width and short [159] (Figure 26). 

A/ 

I 
At 

TIME 

Figure 26. Partitioning of the time-frequency plane when wavelet transform is used to 
analyze a discrete signal. Good frequency resolution and poor time resolution is observed 
at low frequencies and poor frequency resolution but good time resolution is obtained at 

low frequencies. 

As in the case of the STFT the time-frequency localization of each wavelet 

function is subject to the Heisenberg uncertainty principle bound: 

1 
A/ ' x At' = A/ x At > — (6) 

A family of wavelet functions is obtained by dilatations and translations of the 

mother wavelet. They constitute a set of orthonormal basis that can generate any function 
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in the space of square-integrable functions L2(9t). In addition, the wavelet xp(t) is a 

symmetric function of zero average and a bandpass in nature. A fundamental property 

indicates a constant relationship between the bandwidth A/ and the center frequency / of 

the passband as: 

c = Af/f (7) 

This relationship has led to a view of wavelet functions as filter banks with a 

constant relative passband. 

The CWT was applied to the EMG signal introduced in Figure 23.a. The absolute 

value of the wavelet coefficients are plot for the time and scale parameters (Figure 27). 

The time axis directly indicates the position of the mother wavelet in time, while the scale 

parameter is inversely related with the normalized frequency. CWT allows the spectral 

components of the signal to be described at different times. The portion of the graph for 

the scale range of 4 to 22 (48 to 240 Hz) showed that this components are present during 

the entire contraction time with different amplitudes. The portion with higher scales 

(s > 22) indicated the presence of frequency components ( / < 48 Hz) only at the 

beginning of the contraction. 
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Absolute Values of wavelet coefficients for a = 2 4 6 8 ...48 

Figure 27. Continuous wavelet transform applied to the signal presented in Figure 23.a. 
The scale axis corresponds to the 20-480 Hz frequency band. The scale parameter is the 

inverse of frequency. 

The time-frequency resolution approach of the wavelet transform is especially 

suitable for EMG signals because high frequency components are present during short 

time periods and low frequency components are observed most of the time [160]. In 

addition, the mother wavelet functions resemble the motor unit action potentials that 

represent the gross EMG signal [21]. On the contrary, one of the main drawbacks of the 

CWT is that the wavelet coefficients obtained after the transformation contain redundant 

information about the signal, and their calculation requires a significant amount of 

computation time and resources. To solve that problem and to speed up the computation, 

filter bank implementations of dyadic wavelets were introduced, as explained in the next 

section. 
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4.3. Discrete Wavelet Transform 

The wavelet transform of a continuous signal sampled at uniform intervals is 

computed at discrete scales s = (s0)-' and translations T = n • (s0)~J, where j and n are 

integers. This sampled version is referred to as the discrete wavelet transform (DWT). 

The new representation of the mother wavelet xp(t) is given by Eq. (8). 

1 

When analyzing discrete signals, it is usually convenient to choose s0 = 2 so that 

the sampling of the frequency axis corresponds to a dyadic sampling. The dyadic form of 

the wavelets is more computationally efficient than the CWT and also the analysis 

windows achieve the property of mutual orthogonality, which underlies an efficient 

representation. 

A wavelet function is always associated with a partner referred to as the scaling 

function <p{t), which forms a sparse orthonormal basis of L2(5R) as wavelet functions do. 

The set of stretched and translated version of this function, 

1 (t-n-V\ 

generates a chain of nested orthogonal subspaces Vj c Vj-i c ••• c Vx c VQ, where V0 is 

the space of the original signal x(t) and j = 0,1, . . . , / constitute a set of resolution levels. 

The scaling function projects x(t) onto the subspaces Vj giving a sequence of 

successively coarser approximations of x(t) as the resolution levels; go from 0 to/ . 

In the same way, wavelet basis allows an orthogonal decomposition of any 

function in L2(9?) meaning that a complete description of the signal x(t) can be obtained 

t — n- s, -j 

(8) 
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from a direct sum of orthogonal subspaces Wj. These new subspaces are defined by the 

wavelet functions {ipnj(t)] and they are the complement subspaces of Vj. 

The subspaces described by both the wavelet and the scaling functions are related 

such that: 

Vj,0 = Vj-i © WJ-I
 f o r ;' = 0 '1 / (io) 

The subspace Wj^± contains the information needed to go from the approximation 

level Vj_1 to a finer level Vj. This information is called a detail and is obtained by the 

projection of x(t) onto WJ_1. 

The approximation and detail components of the original signal x(t) at a specific 

scale s = 2J are represented by coefficients computed as: 

A[n] = (x(t),<pnJ(t)) ; D[n] = (x(t),xpnJ(t)) (11) 

The projection ofx(t) giving the approximation coefficients is a lowpass 

operation in nature, whereas the projection giving the detail coefficients is a bandpass 

operation. Therefore, the low frequency components of x(t) are defined by the scaling 

function (^(t) and the complementary high frequency band is obtained by the wavelet 

functions ipn j (t). 

The wavelet transform decomposes the original discrete signal into successive 

approximation A[n] £ Vj and detail D[n] G Wj signals (Figure 28). After the first level of 

decomposition (j = 1), the detail coefficients are kept and the approximation signal is 

subject to a new decomposition (J = 2). This procedure continues until the final level J is 

reached. The result of the DWT is a set of wavelet coefficients corresponding to J levels 

of detail coefficients and the approximation signal at the lowest level / : 



58 

{D1[n],D2[n] D,[n\,A,[n\} (12) 

A o 

D, 

A~ 

D, 

-L* A7^ 
D, 

A 7 

Figure 28. Wavelet decomposition of the original signal Ao into sub-bands represented by 
approximation (A/) and detail (D/) coefficients. 

To avoid the discretization of the wavelet and scaling functions, the DWT is 

approximated by digital filter banks (Figure 29). The jV-sample original signal x[n] is 

passed through two complementary filters g and h, where g(k) is the highpass filter 

and h(Ji) is the low pass filter. The output of h(k) is a smoothed version of the original 

signal and therefore it is the approximation signal, whereas the output of g{k) contain the 

details of the input signal. These two signals have the same number of samples than x[n] 

meaning that the information is doubled. The filtered sequences are then sub-sampled by 

a factor of 2 to solve that problem. Next, the vector of the lower frequency band is 

filtered in the same way to obtain a new approximation signal and a second level of detail 

coefficients. This process can be repeated / = log2 N times in order to obtain a full 

wavelet decomposition of the input signal x[n]. Such analysis in which the signal is 

divided into a set of frequency bands was developed by Mallat et al. and is called 

multiresolution analysis (MRA) [161]. 
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Figure 29. Illustration of the multiresolution analysis performed as successive lowpass 

and highpass filtering of the approximation signals. 

In order to illustrate the procedure, multiresolution analysis was performed on the 

signal presented in Figure 23.a. (N = 5120). The original MES was decomposed into its 

detail and approximation signals using Daubechies-1 mother wavelet (Figure 30). The 

decomposition was stopped at the seventh level (J = 7) to facilitate the representation. 

The detail coefficients of the higher level (Dl) capture the high frequency components of 

the original signal. Progressively lower components are caught by coefficients in the 

lower levels. The approximation signal (A7) is caused by the lowpass filtering of the 

signal at level 7 = 7. The use of dyadic wavelets reduces length of each successive 

detail level by a factor of 2. 

file://�/9W/-*
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Figure 30. Wavelet decomposition applied to the signal introduced in Figure 23.a. using 
'dbl.' Seven levels of detail coefficients illustrate the frequency components of the 
signal. The lower levels catch the high frequency component of the original signal 

whereas the higher levels the low frequency components. 

4.4. Wavelet-Based Feature Extraction From EMG Signals 

To extract valuable information contained in the signal, a multiresolution analysis 

was performed on each 256-samples moving time window segment of muscle contraction 

after the pre-processing stage (Sections 3.3 to 3.5). 

4.4.1. Selection of Wavelet Parameters 

Two parameters must be specified when using the WT a) the mother wavelet and 

b) the depth of decomposition. Coiflet is a family of wavelets created by Daubechies 
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[162]. They are commonly used to decompose myoelectric signals because it has yielded 

higher accuracy in signal classification than several other families of different orders. 

Their ability to resemble the motor unit action potentials, which are the elemental 

components of the MES, increases their ability to localize the signal energy and to 

discriminate signals in different classes [82, 100]. For this study in particular, a second 

order Coiflet was selected as the basis functions to perform a MRA on the EMG dataset 

(Figure 31). 

Wavelet function psi 

1 

0.5 

0 

Scaling function phi 
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Figure 31. Second order Coiflet scaling and wavelet functions. 

The second parameter selected was the depth of the wavelet decomposition. The 

maximum depth for a signal of length L is given by: 

/ = log2 L (13) 

The full decomposition divides the frequency axis towards zero until no more 

subdivision can be performed. If decomposition is terminated before the last level, the 

approximation signal occupies the portion the portion of the frequency axis that was not 

partitioned. The effect of the depth of decomposition on the performance of the signal 

classification was studied for myoelectric signals, and it was concluded that full wavelet 

decomposition yielded the lowest classification error [82, 159]. 
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4.4.2. Feature Extraction 

In the data set created for this study, the length of the each MES segment 

analyzed was L = 256, giving a total of 8 levels for a full decomposition. This 

segmentation provided information from 9 frequency sub-bands: eight details and one 

approximation. Table 2 presents the frequency components covered by the sub-bands at 

each resolution level; the deeper the level, the smaller the frequency range. Recalling that 

the sample frequency of the recorded MES was 960 Hz, the anti-aliasing filter built in the 

data acquisition system limited the bandwidth of the collected signal to 0 - 480 Hz. 

Table 2. Partition of the frequency axis when full wavelet decomposition was performed 
and the number of wavelet coefficients obtained at each level. 

Decomposition 
level 

di 

d2 

d3 

d4 

d5 

d6 

d7 

d8 

as 

Frequency range 
(Hz) 

240 - 480 

120-240 

60-120 

30 -60 

15-30 

7.5-15 

3.75-7.5 

1.875-3.75 

0-1.875 

# of coefficients 
obtained 

133 

72 

41 

26 

18 

14 

12 

11 

11 

The wavelet coefficients corresponding to the first decomposition level (di) 

contains information about the highest frequency components of the signal with poor 

resolution but good time resolution. As the depth increases the coefficients represent the 
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signal information about lower frequencies components with higher resolution but 

loosing time resolution. Figure 32 shows the absolute values of the detail coefficients 

distributed on the time-frequency plane as a result of full wavelet decomposition applied 

to a 256-sample segment of EMG signal. The vertical axis indicates the depth of the 

decomposition, which increases from bottom to top. The horizontal axis is directly related 

with time (sample/960 = time(s), and it is clear how its resolution is reduced by a 

factor of 2 as the depth level increases (recall dyadic sampling). On the other hand, the 

frequency resolution increases by a factor of 2, but it is not represented in the figure for 

clarity reasons. The top graph shows that the levels 2 to 5 (30 - 240 Hz frequency range) 

grouped most of the wavelet coefficients with higher amplitude, which suggests that most 

of the signal information is clustered in that frequency range. 

Coefficients 

Samples 

Figure 32. Distribution of the absolute values of the wavelet coefficients on the time-
frequency plane obtained after full wavelet decomposition of the 256-sample EMG 

signal. The highest values are grouped at levels 2 to 5 (30 - 240 Hz frequency range). 
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Another way to represent the decomposition is by looking at the signals obtained 

at each level (Figure 33). Recalling that the MRA is performed by successive application 

of complementary filters to the approximation signals, the detail signals illustrated 

correspond to the output of the highpass filters whereas the approximation signal 

represent lowpass output at the deepest level. The signal at detail level 1 (di) captures the 

highest frequency components present in the original EMG segment (240 - 480 Hz 

frequency range). Lower spectral components are gradually captured at deeper levels as 

presented in Table 2. The approximation signal (a«) contains the lowest frequency 

components (0 - 1.875 Hz). 

Decomposition at level 8 : s = a8 + d8 + d7 + d6 + d5 + d4 + d3 + d2 + d 1 . 
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Figure 33. Details signals at each resolution level. They represent the output of the high-
pass filters in a multiresolution analysis. The last approximation and the original signals 

are illustrated at the top. Lower frequencies are captured at deeper resolution levels. 
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A total of 338 wavelet coefficients were obtained after applying the WT to a 

single channel of EMG. This number rose up to 2366 after considering all seven 

channels. If all these coefficients are combined to form a feature vector, the performance 

of the signal classifier may be affected in terms of accuracy and training and testing 

times. As the dimensionality (number of features) increases, the data become increasingly 

sparse and the possible combination of subspaces grows exponentially. This relationship 

is known as the curse of dimensionality. The result is that an extremely large number of 

training points are needed to create the model that can lead to a good generalization. 

The square of each wavelet coefficient was used instead of the original signed 

values because the latter are highly irregular and may lead to a poor classifier 

generalization. The squared values give an indication of the energy contained in the detail 

and the approximation frequency bands. 

In order to reduce the number of features obtained after MRA, the average energy 

of the wavelet coefficients was calculated at each resolution level: 

r NJ 

WTX = < 

^T|d;-(/c)|2 y = l,2 / 
fc=i 
Nj 

^Ja7(/c)|2 
(14) 

^ fc=i 

where d;- and aj are the detail and approximation coefficients respectively, / is the depth 

of the decomposition and Nj is the number of coefficients obtained at the j t h level. This 

resulted in a vector containing 9 feature values. As EMG signals were acquired from 

seven different channels, the final feature vector contained 63 wavelet-based features. It 

is important to highlight that the time information at each resolution was lost when 

performing the energy averaging. However, steady-state EMG signals do not have 
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significant temporal structure and it can be considered as stationary when they are 

analyzed in time intervals of around 250 ms [82]. It still remains true that the wavelet 

transformation is the best feature extraction method for this type of signals [82]. 

Figure 34 illustrates a summary of the feature extraction procedure. The wavelet 

coefficients obtained after full wavelet decomposition are averaged in order to reduce the 

number of features per channel. The average energies of nine frequency sub-bands are 

used as the features of one EMG channel. The features form all seven channels are then 

combined into a single 63-dimensional feature vector, which represent the EMG signal 

recorded during 267 ms. 
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Figure 34. Summary of the feature extraction procedure. MRA was performed on seven 
channels of EMG signals. The final feature vector represents 267 ms of myoelectric 

signals. 



CHAPTER 5 

SUPPORT VECTOR MACHINES SIGNAL CLASSIFICATION 

Classification is one of the most important stages affecting the final performance 

of the myoelectric pattern recognition system. In this stage, the classifier should be able 

to learn the different muscle contraction patterns selected to actuate the prosthetic device. 

SVM was chosen as the signal classifier over other techniques because it can generalize 

complex data. The final model must also be simple enough to meet the real-time 

constraints. To test the feasibility of the SVM, the classification accuracy on the test set 

was first computed for the classifiers trained with the data form one recording session. To 

test the hypothesis that the SVM classifier is able to compensate for variations in the user's 

myoelectric patterns, displacements of the electrodes from their original location were 

introduced in the recordings. The patterns obtained in multiple recording sessions were 

introduced to the training data. 

A detailed explanation of the SVM fundamentals is presented at the beginning of 

this chapter followed by a summary of the most common multiclass classification 

methods. The methodology section is presented afterwards. The results for the single-

session and multi-session classifiers are then outlined. An explanation of the real-time 

implementation of the myoelectric system is presented before the final discussion section. 

67 
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5.1. Binary Classification 

SVM is a machine learning algorithm that maps the input data into a high 

dimension feature space, in which the different dynamics are linearly separable by an 

hyperplane that constitute the decision surface [147] (Figure 35). This new model is 

represented by the following equation: 

y(x) = wTcp(x) + b (15) 

where w and b are the parameters of the hyperplane and 0 (AT) represents the feature 

space transformation. 

Feature Space 

Figure 35. After transforming data to a new feature space, SVM finds a linear decision 
surface that separates the input data. 

5.1.1. Linearly Separable Classes 

Considering a two-class classification problem, a data point xn may have two 

possible targets (tn = ±1). Assuming that the training data is linearly separable in the 

feature space, the hyperplane created will exactly separate them. Therefore, Equation (15) 
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will satisfy y(xn) > 0 for points with£n = +1 andyO*n) < 0 for points withtn = —1. 

Moreover, all points will satisfy the condition: 

tn-y(xn)>0 (16) 

Several solutions may be found to separate the classes exactly. The SVM theory 

attempts to find the solution that gives the smallest generalization error, which means that 

the model created will correctly categorize a wide variety of new input data [163]. 

The operation of the SVM is based on the concept of margin. It is defined as the 

smallest distance between the separating hyperplane (decision boundary) and any of the 

points (Figure 36). This distance is given by: 

tn-y(xn) tn • (w r 0(x n ) + b) 

IMI M l 
(17) 

o 

large 
margin 

o 

o 
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m 
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a 

Figure 36. The perpendicular distance between the closest data point and the decision 
boundary (y=0) is referred to as the margin. SVM finds the maximum margin between 

classes. 
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The objective of this approach is to find the optimal parameters iv and b that 

maximize the margin. This is mathematically represented as: 

arSmauX 7i7Tmin( tri(M ' r0<>ri) + *0) | (18) 
w,b K\\W\\ n J) 

To reduce the complexity of this optimization problem, the closest distance of a 

point to the decision surface is set to 1: 

tn • (wT(p(xn) + b) = l (19) 

This is based on that the parameters w and b can be scaled by a factor k without 

changing the distances. Thus, the original problem was converted in an equivalent one 

that is easier to solve. It requires the maximization of | |w| |_ 1 which is equal to solve the 

following quadratic optimization problem: 

minfillu/H2] 
w,b (.2 ) 
min - | |w | | 2 (20) 
w,b (.2 ) 

subject to the following constrains satisfied for all the JV training points: 

tn • (wT0(* n ) + b) > 1 n = 1 N (21) 

The solution is obtained by calculating the Lagrange multipliers an > 0, with one 

multiplier for each constraint in (21). Thus, each data point is associated with a 

multiplier. The Lagrangian function is written as: 

N 

L(w, b,a)=^ \\w\\2 - ^ an{tn • (wT<p(xn) + b) - 1} (22) 
n=l 

where a = [a1( a2,..., O-NY- Setting to zero the derivatives of L(w, b, a) with respect to iv 

and b gives the following new conditions: 

N 
dL(w,b,a) \~< ^ i x 

dw =0 => w = 2_iantncKxn) (23) 
n = l 



71 

dL(w,b,a) 
- = 0 => 0 = 2jantn (24) 

n = l 

A new quadratic optimization problem is obtained when the terms w and 6 are 

eliminated from (22) using the conditions (23) and (24). It is a dual representation of the 

maximum margin problem and it can be written as the maximization of: 

N N M 

1(a) = 2^ an + 2 J 2^ anamtntmk(xni xm) (25) 
n=l n = l m = l 

subject to the constraints: 

an > 0 n = ll2,...,iV (26) 

^ a n t n = 0 (27) 

n = l 

The function k(xn,xm) is referred to as the kernel function, and it allows the 

computation of the dot product between the transformed data points without specifying 

the feature transformation: 

k(xn, Xm) = <pT(xn) • <p(xm) (28) 

This type of constrained optimization problem satisfies the Karush-Kuhn-Tucker 

(KKT) conditions, which imply that every data point in the training set satisfies either 

an = 0 or tny(xn) = 1. Training points for which an = 0 are not taken into account 

for the final model and do not contribute in the classification of new data points. The 

remaining points satisfy tny(xn) = 1 and are used for predicting outputs for new input 

data. These points define the decision boundary and are called support vectors. They are 

located on the maximum margin hyperplane in feature space (Figure 37). 
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Support Vectors 

Figure 37. A subset of data points determines the location of the boundary. They are 
called support vectors. 

Once the model is trained, a new data point can be classified by evaluating the 

sign of y{x) in Equation (15). This equation can be rewritten in terms of the Lagrange 

multipliers obtained (an) and the kernel function as: 

N 

y(x) = 2_iantnk(xn,x) + b (29) 
n=l 

5.1.2. Overlapping Classes 

The training data can be contaminated with a high noise level that causes a large 

overlap of the classes. In this and other cases of overlapping classes, the solution to the 

optimization problem may not be reached (hyperplane may not exist). In order to solve 

this problem, the constraints in (21) have to be relaxed for allowing some training points 

to be on the wrong side of the decision boundary (soft margin) (Figure 38). It is achieved 

by introducing a penalty term £n > 0 for each training point [148]. It is called slack 

variable and its value increase with the distance from the margin boundary. Thus, fn = 0 

for points on or inside the correct margin; 0 < <fn < 1 for points that lie between the 
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decision boundary and the correct margin and £n > 1 for points on the wrong side of the 

decision boundary (misclassified points). 

y = l 
o 

Figure 38. A penalty term is introduced when the data is not linearly separable in the 
feature space. Data points lying on the wrong side of the decision boundary are support 

vectors withf > 1. 

The constraints are now changed to: 

tn • (wT<P(xn) + b)>l-$n (30) 

fn > 0 (31) 

The margin is maximized but penalizing those points in the wrong of the margin 

boundary. The optimization problem becomes: 

c , Z ^ n + ^ I M 2 (32) 
m=l ) 

where C > 0 is the parameter that controls the tradeoff between the misclassification 

error and the complexity of the model. In the limit C -* oo, all the training points are 

correctly classified and the problem becomes the hard margin maximization as in Section 

5.1.1. As in the separable case, incorporating the kernel function and rewriting the 
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problem in terms of Lagrange multipliers leads to the maximization of (25) subject to the 

constraints: 

0 < an < C (33) 

N 

antn = 0 (34) 
7 1 = 1 

The only difference with the separable case is the introduction of an upper bound 

for the Lagrange multipliers an. Again in this case, a new data point is classified by 

evaluating the sign of (29). 

5.1.3. Quadratic Programming Problem Solution 

In a classification problem, training a SVM requires the solution of the quadratic 

programming (QP) optimization problem presented in (25). The high amount of 

computation and memory requirements make most of the traditional techniques 

unpractical, especially for large amount of data. Several algorithms have been designed 

for decreasing the amount of work and storage by removing the columns of the kernel 

matrix with Lagrange multipliers equal to zero. Among them, sequential minimal 

optimization (SMO) [164] is one of the most popular approaches addressed because it is 

simple and allows fast training speed. It breaks the QP problem into a series of smaller 

ones that can be solved analytically. The initial goal is to identify the nonzero multipliers 

and to discard the rest. For various applications, the SMO algorithm scales somewhere 

between linear and quadratic with the training set size. 

In the present work, a pattern recognition system is designed for actuating a 

prosthetic device in real-time. The classifier is trained offline with data that have been 

previously collected from the user. Therefore, the training of the classifier does not take 

I 
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part in the real-time implementation of the whole system so it does not need to be 

optimized for processing time. Given the advantages presented above the SMO algorithm 

was used to train all the classifiers analyzed along this project. 

5.2. Multiclass Classification 

SVM were originally designed to discriminate between two classes. However, 

several methods have been introduced for combining multiple binary classifiers in order 

to solve multiclass classification problems. 

One of the most common approaches creates a set of K binary classifiers to solve 

a AT-class classification problem. Each model yk(x) is trained considering all data from 

one class having positive labels and all the data from the remaining classes having 

negatives labels. This method is referred to as one-against-all (OaA) (Figure 39, left). A 

new point is assigned to the class to which the value of yfc(;t) obtained was maximum. 

The main disadvantage of this method is that the training sets are imbalanced and 

the yk(x) values may not have appropriate scales for different classifiers. In addition, the 

construction of this type of classifiers may lead to ambiguous regions in the feature space 

in which an input point may be assigned to multiple classes at the same time (gray 

regions in Figure 39). 

Another method trains K{K — l ) / 2 different binary classifiers on data from only 

two classes. This approach is called one-against-one (OaO) (Figure 39, middle). The 

class assigned to a new point is decided using a voting strategy. After the point has been 

evaluated with every classifier, the class having the highest number of votes is selected. 

As in the case of OaA, this approach may also result in classification ambiguities. 
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Because the OaO method creates more classifiers, it requires a significantly longer 

training and testing time than the OaA method for cases with a large number of classes. 
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Figure 39. Three multiclass classification approaches using multiple binary SVM 
classifiers. Left: one-against-all method (OaA); middle: one-against-one method (OaO); 

right: direct acyclic graph method (DAG). 

The decision directed acyclic graph (DAG) is another alternative for multiclass 

classification using SVM proposed in early 2000's [165]. The training stage is the same 

as the OaO method by solving K(K — l ) / 2 binary SVM's. In the testing phase, a rooted 

binary directed acyclic graph is used to assign the final class to the new point (Figure 39, 

right). It has K(K — l ) / 2 internal nodes and K leaves. Each node is associated with a 

binary classifier and each leaf is associated with a class label. A test point is evaluated at 

the root node and depending on the result it can go either left or right towards the next 

level. This process continues until the final leaf indicating the predicted class is reached. 

The decision path followed by the input point face only K — 1 classifier evaluations, 

which makes the testing procedure faster that the OaO method. 

A comparison among these methods indicated that the one-against-one and 

directed acyclic graph methods are more appropriate for practical use [166]. The DAG 

method overcomes the limitation of the OaO strategy in terms of the evaluation time 
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needed. It requires less computation time to perform the testing stage, which is an 

important point for the implementation of the pattern recognition system in real-time. 

Another advantage of the DAG approach is that for a multiclass classification problem, 

the bound on the generalization error depends on the number of classes K and not on the 

dimension of the space. 

5.3. EMG Signal Classification Methods 

5.3.1. Training and Testing Data Sets 

In order to train and test the myoelectric signal classification system, the data 

collected were divided in two sets. From the five trials recorded during each session, four 

trials were selected to create the training set and one trial to create the testing set. Each 

trial collected five 5-s repetitions of a specific wrist motion which led to 100 MES data 

points. As a result, 400 training points (4 trial x 100 points/trial) and 100 testing points (1 

trial x 100 points/trial) were typically obtained. The amount of training data was 

determined experimentally by gradually increasing the number of trials until the SVM 

classifier can be appropriately trained. 

The data points were obtained following the steps showed in Figure 40. The MES 

was filtered and segmented into non-overlapping 256-points windows (Section 3.3 and 

3.4). The amplitude of the segments was then normalized (Section 3.5) before a discrete 

wavelet transformation (Section 4.4.2) was applied to extract relevant features. The 

processing of each segment resulted in a D-dimensional feature vector. It is a single point 

in the trn/tst matrix and represents 267 ms of myoelectric signal. 
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Figure 40. Block diagram representing the steps followed to create the training and 
testing data sets. Four out of five trials are used for training and the remaining for testing. 

Every data point is associated with a class label that depends on the wrist motion 

that originated that point. The labels assigned to the five classes analyzed in this study are 

presented in Table 3: 

Table 3. Class label assignments 

Wrist Motion 

Abduction 

Adduction 

Extension 

Flexion 

Rest 

Class n 

1 

2 

3 

4 

5 

After the processing of the MES collected during a recording session, a matrix 

was prepared to train the SVM classifier. The format of the matrix created is presented in 

Figure 41. TRN is a struct-type variable with two fields: a) field X is a DxN matrix (D is 

the data dimension and N in the total number of training points) that contains the data 

points used to find the decision boundary and b) field y is lxN matrix that has the class 
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labels associated with each point in the TRN.X matrix. So for example TRN.y(l, i) is the 

class label for the ith point in TRN. X(:, i). 

Abduction 
Dx400 

Adduction 
Dx400 

Extension 
Dx400 

Flexion 
0x400 

Rest 
0x400 

Class 1 Class 2 Class 3 Class 4 Class 5 

Figure 41. Outline of the training matrix. The TRN.X variable contain the training data 
and the TRN.y variable the data labels. The dimension D of the matrix depends on the 

number of wavelet decomposition performed (D=63 for full decomposition). 

5.3.2. Training and Testing Algorithms 

The reason for choosing that name's nomenclature in the previous section was the 

pattern recognition toolbox used to create the SVM models. The statistical pattern 

recognition toolbox (STPRTool) was developed by a group of students at the Czech 

Technical University in Prague [167]. STPRTool is open source software that contains a 

collection of pattern recognition methods implemented in Matlab. The toolbox allows the 

user to use SMO to train SVM models (see Section 5.1.3) and to test new data points by 

the evaluation of the sign of Equation (29) in Section 5.1. The synopsis and description of 

the call to the training function is presented in Appendix B. 

5.3.3. Decision Directed Acyclic Graph (DAG) 

For this study, the DAG method was implemented to classify K = 5 movements. 

In the training stage, one binary classifier is constructed for each pair of movements, 

leading to a total of 10 binary classifiers. When training each binary classifier, the data 

corresponding to the two different classes may overlap, therefore, the class separation has 
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to be performed using the soft margin approach. SMO was used in this pattern 

recognition system to train the set of classifiers. The kernel function used to map the 

input data (Radial Basis Function was chosen) as well as the value of the constant C were 

the parameters required for this algorithm. 

In the testing phase, a rooted binary directed acyclic graph was used to determine 

the movement that originated the input data. As illustrated in Figure 42, our classifier 

contains 5 leaves and 10 internal nodes. As it is stated in [165], this method is similar to 

operating it on a list. It starts with all classes at the root node, where the new testing 

point x is first evaluated against the first and the last classes on the list. The class with the 

lowest value of the function y(x) (Equation (29)) would be eliminated, and a new list is 

created for the next node. Therefore, the test point will go through an evaluation path 

containing 4 internal nodes before reaching the leaf that contains only one final class on 

the list (Figure 42). 
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Figure 42. A DAG implementation of the SVM classifier for discriminating five limb 
motion classes. Inside each decision node, the list state is placed at the top, and the two 
classes being evaluated are shown at the center. Each node is associated with a binary 

classifier The final leaf indicates the class predicted for a new test point. 
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5.4. EMG Signal Classification Results 

5.4.1. SVM Parameter Selection 

The Gaussian Radial Basis Function (GRBF) is one of the most popular kernels 

found in the literature and it generally outperforms polynomial kernels when dealing with 

overlapped class distributions [19, 150, 168, 169]. Its mathematical expression is given 

by Equation (35). 

/ 1 | |x n - ;* : | | 2 \ 
fc(*,*n) = e x p l - - —2 I (35) 

The parameter a is proportional to the kernel width, and in most cases it is 

determined experimentally. The GRBF kernel was used here to train the SVM models 

because it can map the input vector into an infinite dimension, increasing the likelihood 

of obtaining good data separation in the new space. 

Besides the kernel parameter a, the regularization constant C is the only 

parameter remaining for selection. Therefore, the optimum value for each one was 

determined by performing a grid search. That is, different combinations of a and C were 

used to train multiclass SVM models and the classification performance was then 

evaluated. The intervals for each of them were selected based on a previous work [170] 

as: 

1 
a~~^+i for m = - 7 , - 6 , . . . ,5 (36) 

2 2 

C = 2n for n = - 2 , - 1 , . . . ,9 (37) 

As a result, 156 multiclass classifiers were tested using the DAG method. The 

training set contained 954 data points and the test set comprised 240 samples. These sets 

were generated using myoelectric signals from three trials of the entire protocol 
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performed by a single subject. The value of the parameters used to train the model that 

presented the highest percentage of samples correctly classified (accuracy) were the 

target of this analysis. Figure 43 illustrates the classification accuracies resulted after 

testing the entire grid of models. Parameters outside the selected range were not 

considered because they increased the training time without improving accuracy. The 

best classification performances were observed at the top-right corner of the graph, 

suggesting that high accuracy can be achieved when combining wide GRB kernel 

functions with regularization constants higher than 64. The highest accuracy 

corresponded to a = 8 and C = 256 for a classifier 86.67% accurate. These two values 

were selected for posterior training stages. 
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Figure 43. Grid based selection of both the optimal kernel (horizontal axis) and the 
regularization constant (vertical axis) parameters. The brightest region represents the 

lowest classification error (higher accuracy). 
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5.4.2. Offline Classifier Performance 

A first look at the performance of the proposed myoelectric control system was 

taken by training a multiclass classifier for each subject and by determining how well it 

discriminated the five classes. The dataset used for training was created with data from 

the first recording session. It contained 400 samples of each class as explained in Section 

5.3.1. The parameter C and the value of o for the GRBF kernel used to create all the 

SVM models were selected based on the results in Section 5.4.1. The classification 

accuracies of the test set are illustrated in Figure 44 averaged across the 5 classes. The 

classifiers for subjects 1, 2, 4, and 5 correctly determined the correct class of the test 

points more than 93% of the time. The best performance was achieved for subject 1 with 

an average accuracy of 98.2% ± 1.3%. The test data from subject 6 and 7 presented the 

lowest classification performance, 85.5% ± 13.3% and 83.5% ± 20.1% respectively. 
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Figure 44. Classification accuracy for each subject averaged across the 5 classes. Subject 
1 presented best classification performance with 98.2% ± 1.3%. 
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The classification performance for each individual class is showed in Figure 45. 

The accuracy values for subjects 6 and 7 were lower because of the low classification 

performances for adduction and flexion classes in subject 6 and for abduction and 

extension classes in subject 7. For both subjects, the classification of the other three 

classes was more than 90% accurate. The rest class was accurately discriminated with 

more than 98% of accuracy in all cases. It is an important to have a high accuracy of the 

rest class because it indicates the suppression of the prosthetic device, hence reducing the 

amount of inappropriate actuations (< 2% of the time). Among the remaining classes, 

adduction was correctly classified more that 90% of the time for all subjects except 

subject 6 (72%). This high performance suggests that the wrist adduction class can be 

used to activate a critical action of the prosthesis as for example the hand opening or 

closing. Abduction, extension and flexion classes were classified with and accuracy 

within 90-100% in five of the seven individuals. 
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Figure 45. Classification accuracy obtained for each wrist motion. The rest class 
presented the higher classification accuracies across all subjects. 
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A confusion matrix was created for each subject to illustrate the results in more 

detail (Table 4 to Table 10). The rows of these matrices represent the true class whereas 

the columns indicate the class predicted by the classifier. The perfect classifier 

performance would lead to off-diagonal elements (miss-predicted points) equal to zero 

and main diagonal elements (perfectly predicted points) equal to the number of testing 

points for the corresponding class. The last column is the classification accuracy for the 

class in the corresponding row. The average classification accuracy is also presented at 

the bottom-right part of each table to indicate the overall performance of the model. Test 

points of Subject 1 were correctly predicted most of the time and the few miss-predicted 

points (9 out of 499 points) were mainly predicted as adduction (4 times) and abduction 

(3 times) (Table 4). The misclassified points of subject 2 (30/513) were wrongly 

predicted as abduction points more than half of the time (Table 5). For both subjects, the 

rest class was classified almost perfectly; there was only one point misclassified as 

abduction (Subject 1). 

Table 4. Confusion matrix subject 1. 

S
U

B
JE

C
T 

1 

^ Abd 

§ Add 
£ Ext 
i Flex 

Rest 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

99 0 0 1 0 

0 99 0 1 0 

0 2 98 0 0 

2 2 0 96 0 

1 0 0 0 98 

Class 

accuracy 

99.00% 

99.00% 

98.00% 

96.00% 

98.99% 

Avg. 98.20% 

St. Dev. 1.30% 
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Table 5. Confusion matrix subject 2. 

SU
B

JE
C

T 
2 

<o Abd 

£ Ext 
g Flex 

Rest 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

99 0 0 0 0 

4 91 0 5 0 

3 0 96 1 0 

8 6 3 83 0 

0 0 0 0 114 

Class 

accuracy 

100.00% 

91.00% 

96.00% 

83.00% 

100.00% 

Avg. 94.00% 

St. Dev. 7.18% 

The classification of the test points of subject 3 showed that all classes except the 

rest class were misclassified at least 9% of the time (Table 6). When their true class was 

incorrectly assigned, abduction points were mostly predicted as extension and vice versa. 

In the same way, flexion points were predicted as adduction but adduction points were 

assigned to either extension or flexion classes. Again for this subject, the rest class was 

almost perfectly discriminated 

Table 6. Confusion matrix subject 3. 

S
U

B
JE

C
T 

3 

* Abd 

3 Add 

% Ext 
g Flex 
Ft 

Rest 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

84 0 10 5 1 

0 91 4 5 0 

16 1 83 0 0 

0 10 0 87 0 

0 0 2 0 96 

Class 

accuracy 

84.00% 

91.00% 

83.00% 

89.69% 

97.96% 

Avg. 89.13% 

St. Dev. 6.03% 

A better classification performance was observed in the model trained for subject 

4 (Table 7). All the classes were discriminated with more than 97% accuracy except for 

the wrist flexion class (90%). Misclassified flexion points were only confused with 
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adduction or abduction points. Rest class was correctly classified all the time and no 

points were wrongly predicted as rest. 

Table 7. Confusion matrix subject 4. 
SU

B
JE

C
T 

4 

«o Abd 

3 Add 

£ Ext 
i Flex 

flesf 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

97 0 0 3 0 

0 99 0 1 0 

0 2 98 0 0 

6 4 0 90 0 

0 0 0 0 82 

Class 

accuracy 

97.00% 

99.00% 

98.00% 

90.00% 

100.00% 

Avg. 96.80% 

St. Dev. 3.96% 

Another good performance was obtained in the classification of the test points of 

subject 5 (>90% for all classes) (Table 8). As it happened with test set of subject 1, most 

of the misclassifications corresponded to adduction pointes predicted as flexion and vice 

versa. The rest class was perfectly classified. 

Table 8. Confusion matrix subject 5. 

in 

b 
LU 

3 
D 

«o Abd. 
§ Add 
£ Ext 
i Flex 

Rest 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

85 1 7 1 0 

1 93 2 4 0 

7 0 83 1 0 

2 4 0 85 0 

0 0 0 0 70 

Class 

accuracy 

90.43% 

93.00% 

91.21% 

93.41% 

100.00% 

Avg. 93.61% 

St. Dev. 3.78% 

The low averaged accuracies found for subjects 6 and 7 had the same cause. 

Three of the five classes were discriminated with a high accuracy (>92%), whereas the 

performance of the remaining two classes was radically poor. Adduction patterns of 
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subject 6 were predicted as flexion 24% of the time, whereas flexion patterns were 

assigned to adduction another 24% of the time (Table 9). For subject 7, an unexpected 

accuracy of 53% was obtained for the abduction class, which was because 45% of these 

points were predicted as belonging to the rest class (Table 10). The 73% of accuracy in 

the classification of extension patterns also dropped the overall performance of the 

model. The classification of the rest patterns was perfect for subject 6 and only one point 

was misclassified as abduction in the test set of subject 7. 

Table 9. Confusion matrix subject 6 

SU
B

JE
C

T 
6 

* Abd 

§ Add 
£ .m ___ 
g Flex 

Rest 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

93 2 4 0 1 

1 72 3 24 0 

4 2 92 2 0 

0 24 5 70 0 

0 0 0 0 79 

Class 

accuracy 

93.00% 

72.00% 

92.00% 

70.71% 

100.00% 

Avg. 85.54% 

St. Dev. 13.32% 

Table 10. Confusion matrix subject 7. 

S
U

B
JE

C
T 

7 

PREDICTED CLASS 

Abd Add Ext Flex Rest 

^ Abd 53 2 0 0 45 

2 Add 0 99 1 0 0 

£ Ext 5 15 73 0 7 

g Flex 1 5 0 94 0 

"" Rest 1 0 0 0 70 

Class 

accuracy 

53.00% 

99.00% 

73.00% 

94.00% 

98.59% 

Avg. 83.52% 

St. Dev. 20.12% 

To get an idea of the general classification performance of each motion class, all 

confusion matrices were combined into a single matrix. The sensitivity (or True Positive 

rate) was plotted against the specificity (or 1 minus the False Positive rate) for each one 
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of the discriminated classes of motions (Figure 46). Sensitivity is a measure of how well 

the classifier assigns the positive class label to a point that is positive. Specificity 

indicates how likely it is for the classifier to predict a negative class for a point that has a 

negative class label. These two measures are defined by following the binary confusion 

matrix given as example (Table 11). 

Table 11. Binary confusion matrix used to define different measures 
TR

U
E

 

C
LA

SS
 P 

N 

PREDICTED CLASS 

P 

TP 

FP 

N 

FN 

TN 

Sensitivity and specificity are defined as: 

TP 
Sensitivity = TP rate = — (38) 

TN 
Specificity = 1 — FP rate = ————— (39) 

v FP + TN 

As this case is a multiclass classification problem (5 classes of limb motion), one 

movement was taken as the positive class and all the others as the negative classes. This 

adaptation was called class reference formulation [171]. One point in the graph represents 

the classification performance for a specific class averaged across the seven subjects. The 

closer the point to the top-right corner, the better the classification performance for that 

specific class. Results in Figure 46 confirmed that the rest class was the best 

discriminated class with more than 97% of sensitivity and specificity. Adduction and 

extension classes were better classified that abduction and flexion classes. All the classes 

present acceptable specificity (>97%) meaning that a small number of false positives 
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(points predicted as the positive motion when they belong to other motion) are predicted. 

On the other hand, the sensitivity of the abduction and flexion classes was low, indicating 

that the classifier predicted a small number of true positives. 
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Figure 46. Each point in the sensitivity vs. specificity plot represents the classifier ability 
to discriminate each class averaged across all subjects. 

The good classification performance of the rest class was also supported by the 

classifier's margins obtained (Table 12). SVM models are trained to maximize the 

margins between the decision boundary and the closest point of each class (Figure 36). 

The average margins for all of the models involving the rest class (class 5) at least 

doubled the margins of the other classifiers, meaning that rest class is well separated from 

the others. The smallest margin was found in the binary classifier that discriminated 

adduction and flexion classes (classes 2 and 4, respectively). 

http://__QFI.exid.n_
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Table 12. Margins obtained for each binary classifier. 

CLASSIFIER'S MARGINS 

SVM 
Classifier 

l-vs-2 

l-vs-3 

l-vs-4 

l-vs-5 

2-vs-3 

2-vs-4 

2-vs-5 

3-vs-4 

3-vs-5 

4-vs-5 

1 

0.0064 

0.0072 

0.0066 

0.0169 

0.0064 

0.0050 

0.0195 

0.0061 

0.0184 

0.0183 

2 

0.0070 

0.0081 

0.0062 

0.0165 

0.0072 

0.0052 

0.0166 

0.0072 

0.0112 

0.0160 

3 

0.0074 

0.0053 

0.0063 

0.0093 

0.0067 

0.0051 

0.0142 

0.0069 

0.0093 

0.0145 

SUBJECT 

4 

0.0083 

0.0094 

0.0075 

0.0163 

0.0088 

0.0050 

0.0159 

0.0085 

0.0170 

0.0195 

5 

0.0068 

0.0065 

0.0059 

0.0179 

0.0069 

0.0059 

0.0283 

0.0071 

0.0257 

0.0300 

6 

0.0083 

0.0065 

0.0086 

0.0168 

0.0064 

0.0049 

0.0182 

0.0066 

0.0158 

0.0182 

7 

0.0107 

0.0074 

0.0098 

0.0129 

0.0078 

0.0063 

0.0216 

0.0090 

0.0194 

0.0223 

Avg. 
Margin 

0.0078 

0.0072 

0.0073 

0.0152 

0.0071 

0.0053 

0.0192 

0.0073 

0.0167 

0.0198 

St. Dev. 

0.0015 

0.0013 

0.0014 

0.0030 

0.0009 

0.0005 

0.0047 

0.0010 

0.0054 

0.0051 

5.4.3. Electrode Placement Variations 

The success of any pattern recognition-based myoelectric system is commonly 

related to the classification accuracy. Although it is not the only factor affecting the 

acceptability of prosthetic devices, it plays an important role because accuracy is directly 

related to the correct interpretation of the intended movement performed for the subject. 

A signal classifier is trained to learn the nature of the muscle contractions patterns that 

are repeated at specific electrode locations. However, various factors can change these 

patterns over time. One of the most important changes is produced by the spatial 

movement of the electrodes over the skin. Such movement may be caused by 

misalignment between the socket and the residual limb or a slight change in the electrode 

position when the prosthesis is used for a long period of time. Therefore, the classifier 

must accommodate those changes. It was demonstrated that the accuracy of the pattern 

recognition system decreased when possible shifts in the electrode location are not taken 

into account [172]. A potential solution is to minimize the effect of electrode placement 
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variations by training a robust classifier on data collected from the area that covers the 

displacement range. 

To confirm the effect of the spatial changes, preliminary tests were run on the 

data set collected for the present work. MES from two sessions were used, where the 

locations of the electrodes were not exactly the same in the two sessions. Even though 

these variations were not intentionally introduced; slight changes in the position were 

expected because the original location was not marked on the skin. The multiclass 

classifier was trained and tested with data from the first and second sessions respectively. 

The order was then swapped and a new classifier was created. A 5-fold cross-validation 

was used to show the performance of the classifier for data from the same location and 

the test set for data from different location. The classifier of the first session 

discriminated with an average accuracy of 28% for the test set and 90% for cross-

validation. The second model accurately classified 36.5% of the test data and 85% of the 

cross-validation (Table 13). These results suggest that small changes in electrode 

placement strongly affect the accuracy of the classifier. 

Table 13. Classification accuracy results using 5-fold cross-validation and a test set. 

Fold 

1 
2 
3 
4 
5 

Avg. 
StDev 

Train with 1st session 

Same 
session 

89.09% 
89.09% 
90.37% 
90.83% 
89.91% 
89.86% 
0.65% 

Different 
session 

28.59% 
26.68% 
27.83% 
28.03% 
27.63% 
27.75% 
0.53% 

Train with 2 

Same 
session 

84.92% 
85.71% 
83.75% 
85.75% 
86.15% 
85.26% 
0.93% 

nd session 

Different 
session 

37.11% 
35.56% 
37.84% 
36.47% 
35.65% 
36.53% 
0.92% 
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Both data sets were then merged into a single training set to create a new 

classifier. The results of a 5-fold cross-validation showed an average accuracy of 

approximately 80% (Table 14). This accuracy suggests that an improvement in the 

robustness of the classifier has been made when incorporating data from different 

sessions. However, an additional test set from a new recording session would be 

necessary to confirm that behavior. The set would comprise new spatial changes that 

were not included in the two-session model and would indicate whether accuracy was 

significantly improved. 

Table 14. Cross-validation results for classifiers trained with data from two sessions 

Train data 1st & 2nd session 

Fold 

1 

2 

3 

4 

5 

Avg. 

StDev 

Accuracy 

77.67% 

82.55% 

81.23% 

79.61% 

78.13% 

79.84% 

1.68% 

A new training strategy was implemented to analyze the performance of the 

classifier as information of the spatial changes is progressively added to the training set. 

To simulate the electrode deviations, EMG signals were recorded during consecutive 

experimental sessions. From one session to another, slight shifts (< 3 cm) in the 

electrode location were expected when they had been removed and replaced. Following 

each recording, a classifier is trained and tested with the information from the previous 

and current sessions, respectively. The first set for every subject is trained in the second 
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session using all the data recorded on session one. All the data recorded in the current 

session is used for testing in the DAG method. The same rule is applied for subsequent 

sessions, the training and testing sets are created with data from previous and current 

sessions respectively (Figure 47). 
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Figure 47. Training strategy designed to diminish the effect of variations in electrode 
placement. Data is progressively added to the training set by combining different 

recording sessions. Classifier is tested with data from a new session. 

The performance of the classifier sets was evaluated by calculating the numbers 

of points of the testing set that were correctly classified. This calculation is referred to as 

the classifier accuracy. Figure 48 illustrates the accuracy of the multi-state classifier after 

each training session. The values were averaged over six subjects. Because the classifier 

of a specific session is trained on data from previous ones, the first point of this figure 

corresponds to session 2. The results indicate that a minimum of three recording sessions 

are required to achieve accuracy higher than 89%. After training the multiclass classifier 

with data from two sessions (in recording session #3) the classifier accuracy starts to 

reach a plateau, so it does not increase considerably after that point (p>0.05). Figure 49 

illustrates the improvement in accuracy for the classification of each movement. Except 
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for the Flexion movement, the accuracies of the remaining classes (abduction, adduction, 

extension and rest) are higher than 85% after only three sessions of recordings. 
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Figure 48. The averaged accuracy obtained for the classifiers trained during different 
recording sessions. After the fourth session the performance does not increase 

significantly 
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Figure 49. Progress of the movement classification accuracy over the training sessions. 
Each class was averaged over all subjects 



96 

Another way to evaluate the classifier performance is shown in Figure 50. We are 

interested in both the correct identification for each movement and the potential cost 

associated with misclassification. The sensitivity (or True Positive rate) is plotted against 

the specificity (or 1 minus the False Positive rate) for each one of the discriminated 

movements. As this case is not a binary classification problem, the class reference 

formulation is used [171]. One movement is taken as the positive class and all the others 

as the negative classes. For every movement, one point in the 'sensitivity-vs-specificity' 

graph represents the movement performance for a specific recording session. As a result, 

five points per class are drawn in the graph. They illustrate the behavior of the movement 

classification through the training sessions. The points closer to the upper-right corner 

represent higher accuracy in the discrimination of movements than points closer to the 

bottom-left corner. The results illustrated in Figure 7 indicate that the multi-state 

classifier discriminated both Extension and Rest classes more accurately than Flexion 

class. Classification of Abduction and Adduction movements presented similar behavior. 
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After a critical number of recordings, the pattern recognition system was able to 

adapt to the shifts in the electrode placement, meaning that the classification accuracy 

will not be significantly affected by the addition of new training data (p>0.05). As a 

result, the prosthetic device can be commanded accurately despite of possible electrode 

placement variations. 

5.5. Real-Time Implementation 

The myoelectric pattern recognition system presented in this work was 

implemented in real-time using National Instruments' LabVIEW development system. 

The main objective of this task was to assess the performance of the entire system in 

terms of its response time. This evaluation was extremely important to decide whether the 

system was suitable for real-time control. 
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5.5.1. Methods 

The system response time is considered as the delay between the initiation of a 

command (onset of muscle contraction) and moment of the prosthetic actuation. Real­

time constraints impose a maximum of 300 ms as the acceptable delay for controlling the 

device, which includes the acquisition of the MES data, the computation of features, the 

signal classification, and the generation of the control command. Several lengths for the 

MES window were tested by Englehart et al. to analyze their effect on the classification 

accuracy of the system [82]. An analysis window of 256 ms contained enough 

information to accurately estimate the motion state of the hand. 

Two main approaches have been used to create a real-time continuous 

myoelectric signal classifier. The simplest approach uses adjacent, non-overlapped 

windows of length 7^ (Figure 51). This approach generates one class decision (Dn) for 

each window. The time required to compute the signal features and the classification is 

called the processing delay (TD). If the data can be processed while new signals are 

acquired, the interval between decisions is limited by, and equal to, the window length. 

Because the processing delay is generally shorter than 7^, processing power is available 

that could be exploited to provide more frequent decision updates. 
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Non-overlapped windows 

Time (s) 

Figure 51. Signal classification scheme that uses non-overlapped widows of myoelectric 
signals. The class decisions are separated by one window length, TA. 

Another approach uses overlapped windows that generate a dense stream of class 

decisions for myoelectric control [21] (Figure 52). The sliding window is shifted by a 

time interval, 7 ,̂ which must be long enough to allow the processing of the segment (TD) 

but must not be longer than the length of the segment, TA, (Figure 52). In the optimal 

scenario, the processing of each analysis widow would start as soon as the previous 

decision was generated. As a result, the decisions are separated by intervals equal to the 

processing delay (7^ = TD) and they correspond to the most recent TA milliseconds of 

signal. This scenario fully uses the computational capacity of the system because the 

segmented signal is processed while it is being acquired. 
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Figure 52. Overlapped windows signal classification scheme. The decision stream is 
more dense than in the in the non-overlapped windows scheme and each decision is 

separated by 7̂  milliseconds. 

The real-time myoelectric control interface was developed in LabVIEW, based on 

the overlapped window approach. The algorithm implemented can be divided into three 

main parts: a) signal acquisition, b) signal processing, and c) signal classification or class 

decision (Figure 53). 
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Signal Processing 
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Figure 53. Block diagram of the real-time myoelectric patter recognition scheme 
implemented in Lab VIEW. The signal is acquired (read from PC's port) and stored in an 
internal buffer for computation of the feature vector and classification. Before new data is 

acquired, the oldest data points are removed from the internal buffer. 

Signal Acquisition 

The signal was acquired with the BioRadio 150 wireless system (CleveMed, Inc) 

as explained in Section 3.2. A software DLL interface was developed by CleveMed, Inc 

to allow the communication and control of the BioRadio 150 through LabVIEW-based 

applications. The basis communication involves six main steps. 

1) Finding the attached device: Indentify the attached receiver 
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2) Starting base communication: Start the communication between the PC and 

the BioRadio Computer Unit (embedded in the receiver). Create a software 

device object. 

3) Starting acquisition: Start the communication between the Computer Unit and 

the User Unit (transmitter). 

4) Acquiring data: Read and interpret data from the port buffer. Acquire 

transmission statistics (missing packets of data as well as good and bad 

packets). 

5) Stopping acquisition: Stop the communication between transmitter and 

receiver. 

6) Stopping base communication: Stop communication between PC and receiver, 

and destroy the software device object. 

Steps 1 to 3 are performed only once at the beginning of the acquisition, and steps 

5 and 6 only once at the end to conclude the communication. Regarding to the step 4, the 

software collects the data from the PC's communication port where the Computer Unit 

has deposited them. The time interval between port's readings can be controlled from the 

software interface and it was set to 80 ms as the default time. The data read from the PC's 

port were piled up into an internal buffer where L new data points are accumulated at the 

end. The first 256 points of that new buffer are read on each cycle to obtain the analysis 

window. Before performing the next reading from the PC's port, the older L data points 

are removed from the internal buffer to create the overlapped windows. The value of L 

depends on the data acquisition delay selected. When 80 ms is set as the delay time, L is 
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approximately equal to 80. The internal buffer must first be filled until the number of 

points increased up to more than 256 points so the first analysis window can be created. 

Signal Processing 

All the task of the signal processing stage were coded in Matlab and implemented 

as an embedded script node in the LabVIEW software. After the analysis window was 

read, both the high-pass and notch filters were applied to the acquired segment. As the 

signal was sampled at 960 Hz, the 256-point time window represented a total of 266 ms 

of muscle contraction. The extraction of the features by wavelet decomposition followed 

the amplitude normalization. The final task consisted in the averaging of the wavelet 

coefficients at each decomposition level to create the feature vector. 

Signal Classification 

In the signal classification stage, the input feature vector was assigned to the one 

of the five classes using the DAG-SVM framework explained in Section 5.3.3. This class 

output is associated with an action of the prosthetic device, which would be executed by 

the control system. 

5.5.2. Results 

The real-time algorithm was evaluated on subject 2. Seven bipolar electrodes 

were placed over the right forearm in according to the recording protocol. The subject 

was asked to place the arm in a relaxed position before starting. In the evaluation trial, the 

person sequentially performed 6 seconds of the four wrist movements separated by rest 

intervals: abduction, adduction, extension and flexion. The algorithm used the pre-trained 

SVM model to classify the segments while the EMG signal was being acquired. Two 

models from subject 2 were used: one created with data from the first four recording 
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sessions (three trials) and one with data from the first five sessions (three trials) (see 

Section 5.4.3). Two models were chosen because the four-session model presented the 

best accuracy in the experiments reported in Section 5.4.3 and the five-session classifier 

contained all the trained data. 

For each class decision, the time required for acquisition, processing and 

classification was computed (processing and classification were combined into a single 

value). For both SVM models, the total time averaged less that 20 ms, that is, from the 

onset of the muscle contraction to the time when the final decision is made (Table 15). 

This number would leave more than 250 ms for the control system to actuate the device 

when the decision stream is as dense as possible (TD = Tt). For this particular case, the 

decisions were separated by Tt = 80 ms, the default setting for the data collection delay. 

However, this number could be adjusted for further experiments. 

Table 15. The total system response time includes the acquisition time plus the signal 
processing and classification times. Four-session classifier was used in trials 1-3 and five-

session classifiers in trials 4-6. 

Time (ms) • 

Acquisition 

Processing + 

Classification 

1 

0.163 

17.715 

2 

0.141 

17.912 

TRIAL 

3 

0.154 

18.085 

4 

0.160 

19.949 

5 

0.147 

17.606 

6 

0.151 

17.621 

Avg. time 

(ms) 

0.153 

18.148 

Total system „ „ _ „ „ 
, , 18.301 

response time(ms) 

The classification accuracies were lower than expected, especially for the 

abduction class (Table 16). The accuracies of all classes dropped from those obtained in 

the electrode displacement experiments (Section 5.4.3). The most critical parts were 

found near the transition intervals, when the contraction types were changed (Figure 54). 
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5.6. Discussion 

Offline classification 

The SVM models were evaluated on seven different subjects. The RBF kernel 

selection was based on the results of previous studies, and its parameter sigma (o~) was 

determined experimentally. Because the data points corresponding to the five classes 

overlapped in the original feature space, the soft margin approach was used to train the 

classifiers (the regularization constant parameter C was also determined experimentally). 

The classification accuracies obtained were satisfactory; test points were correctly 

discriminated 91.5% of the time. This value was averaged across all subjects and it is 

comparable with the results obtained by other researchers [16, 140, 150]. The 15% 

difference between the poorest classification performance (Subject 7, 83.5 %) and the 

best performance (Subject 2, 98.2%) may be a consequence of the SVM parameter 

selection. Before creating the models, the purpose was to generalize the training phase by 

using the same set of parameters for all subjects. Although the results were promising, the 

high variability suggested that the classifier parameters could not be generalized but 

needed to be optimized individually for every subject. This optimization combined with 

an optimization of the wavelet parameters may lead to a customized pattern recognition 

system that authentically represents user's intent. 

The classifier's ability to discriminate each class was presented in Figure 46 (page 

90). The high specificity for all classes meant that the classifiers generated few false 

positives. The rest class presented the best performance because it was well separated 

from the other classes, as indicated by the margins of the points to the decision boundary 

(Table 12). The classification accuracies of classes 1 through 4 differed for every subject. 
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Adduction presented the best averaged performance (92%) but was poorly discriminated 

by the classifiers of subject 6. Abduction and extension classes were well-classified for 

subject 6 but not for subject 7. In contrast, adduction and flexion classes were well 

classified for subject 7, but they were poorly discriminated for subject 6. The classifier of 

subject 2 discriminated all the classes with more than 90% accuracy, except the flexion 

class (83%). These results suggest another possible customization of the myoelectric 

control system. The class that activates the actions of the prosthesis can be adapted 

according to the classification performances for each class. The classes with higher 

classification accuracies may be used to actuate the most critical functions of the 

prosthesis. 

Pattern variations caused by electrode displacements 

The training strategy proposed in Section 5.4.3 attempted to simulate the 

variations in electrode placement by recording EMG signals during consecutive sessions. 

The strategy was examined because small shifts in electrode position were expected. The 

performance of the multiclass classifiers was illustrated in Figure 48. It showed an 

improvement in the classification accuracy that asymptotically approaches 90%. After a 

critical number of recording sessions, the classifier accuracy started to reach a plateau, 

meaning that inclusions of new training data did not significantly improve the 

performance of the multi-state classifier (p>0.05). This study showed that an average of 

three sessions was needed to achieve classification accuracy higher than 89%. This value 

may be increased by combining an additional algorithm able to determine the best 

combination of the averaged wavelet features for this application. PCA for 
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dimensionality has been shown to work effectively in combination with wavelet 

transform [115, 123]. The inclusion of PC A with SVM will be examined in Chapter 6. 

The extension and rest classes were classified with high accuracy (>90%) from 

early sessions, as illustrated in Figure 49, meaning that only a small data set was required. 

However, additional data recorded for the flexion movement did not directly translate to a 

high flexion classification accuracy. The accuracy could be improved by increasing the 

number of repetitions performed during each recording session. As outlined in Figure 50, 

all movements can be distinguished with high specificity. The specificity-vs.-sensitivity 

data for the flexion movement was saturated at a lower level than the other classes, 

meaning that the classifier was more likely to reject false flexion points than to accept 

true flexion points. Abduction and adduction were classified with good accuracy (>85%) 

when the multiclass classifier was trained with data from more than three recording 

sessions. 

The results obtained for the implemented pattern recognition system supported the 

hypothesis that the proposed training strategy allows the classifier to adapt to the changes 

produced by alterations in the electrode location. This adaptation will permit the amputee 

to manipulate the prosthetic device effectively, even when the socket is placed incorrectly 

on the residual limb or is moved from its original location after long term use. 

Real-time implementation 

The real-time constraint on the myoelectric control system forces the controller 

delay to be as small as possible. An acceptable delay between the onset of the contraction 

and the prosthesis motion is 300 ms. The pattern recognition scheme proposed was able 

to record, process and classify the controlling signal in less than 20 ms on a 1.99 GHz 
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Pentium 4-based workstation. This result is comparable with results obtained by other 

researchers. The short the delay can be used advantageously in two ways. First, a 

myoelectric system with fast response time can be created since the processing time is 

low when compared with the perceivable delay. Second, the class decisions can be post-

processed to improve accuracy. The decision can then be based on a sequence of 

successive output states instead of a single time window. The class with the greatest 

number of occurrences is selected as the output class. This scheme may prevent the 

misclassifications produced during the transitions from one contraction to another, but 

will increase the system response time. 



CHAPTER 6 

FEATURE PROJECTION FRAMEWORK 

The main purpose of the work presented in this chapter was the implementation of 

a feature projection framework based on PC A, with the aim to expedite the processing 

time and improve the classification accuracy of the myoelectric control system. PCA is a 

standard, non-parametric method for extracting relevant information from confusing, 

complex data sets to reduce them to a lower dimension. The PCA algorithm was found to 

work effectively in combination with wavelet transform as a potential mean to reduce the 

EMG feature space dimensionality prior to the signal classifier [115, 124, 137]. These 

results led to the hypothesis that the implementation of a PCA feature projection 

framework would gather the relevant discriminatory information from the original 

features set, improving the classification accuracy of the SVM classifier. In addition, a 

reduction in the dimensionality of the new feature set would expedite the processing time 

in the decision stage. 

This chapter begins with a brief introduction to the PCA method and the way that 

the new feature space is obtained. The two feature-projection frameworks evaluated are 

presented next. The results are expressed in terms of classification accuracy and 

processing time at the end of the chapter. 
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6.1. Principal Component Analysis 

PCA refers to the orthogonal projection of multivariate data into a new coordinate 

system (feature space) such that the variance of the projected data is maximized [131] 

(Figure 55). This new feature space is defined by the eigenvectors corresponding to the 

eigenvalues of the covariance matrix of the data set. So, for a D-dimensional data set 

containing L number of observations the covariance matrix is defined as: 

S = --2_i(xl-x)-(xl-x)1 (40) 

where 5 is a D x D matrix and x is the mean vector given by the following equation: 

x=iLxi 

i=i 

(41) 

Figure 55. a) Orthogonal projection of the multivariate data into a new dimension, b) 
PCA maximizes the variance of the projected data 

The principal components are presented in terms of D-dimensional unit 

vectors um (uT • u) so a single vector in the data set is projected to the first component as 

(u r • x), resulting in a scalar vale. The variance of the projected data is given by: 
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L 

J ' X ^ 7 ' Xl ~ U±T '*} =ut
T Siii (42) 

1=1 

The goal of PCA is to maximize (42) subjected to the constraint u^ ux = 1. 

This is done by finding the eigenvectors of 5: 

uJ-S-ii! =At (43) 

As a result, the variance will be at its maximum when choosing the 

eigenvector ux corresponding to the largest eigenvalue Ax. The vector ut is the first 

principal component. 

Therefore PCA can be used to reduce the dimension of the original data (from D 

to M). Thus, the optimal M-dimensional linear projection that maximizes the variance of 

the projected data is given by the eigenvectors ut, u2, —,uM of the covariance matrix 5 

corresponding to the Mlargest eigenvalues Xlt A2,..., AM. 

6.2. Feature Projection Methodology 

6.2.1. Datasets 

The feature set obtained in Section 4.4.2 was used to evaluate two feature 

projection frameworks. The full wavelet decomposition of the original EMG segment 

provided information from 9 frequency bands per channel. Seven recording channels 

were combined, resulting in a feature vector of dimensionality D8 = 63. The complete 

dataset contained 400 training samples and 100 testing samples (typically) of each of the 

five classes. 

A second dataset of reduced dimension was created not only to analyze the 

performance of the PCA projection framework but also to compare its performance with 

the original dataset. Since the MES was high-pass filtered, the sub-bands corresponding 
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to the lower frequencies may have information that is not relevant (last four frequency 

intervals in (Table 2). This second feature set was created by performing 4 levels of 

wavelet decomposition, which provided information from 5 frequency sub-bands. The 

number of wavelet coefficients obtained for each sub-band was reduced by taking the 

average energy for each recording channel. Finally, the five DWT features of each 

channel were aggregated into a 35-dimension embedding feature vector for D4. 

PCA was applied to both D8 and D4 dimensional wavelet feature sets in order to 

find a new coordinate system for projecting the data. The resultant orthogonal 

coordinates are organized in such a way that the first coordinate contains the highest 

variance of the training data and the last coordinate the smallest variance. Figure 56 

illustrates a general scheme of the PCA implementation. Samples from each class are 

merged into a training matrix. After all the points are projected to the new space, the first 

Mmost significant dimensions are used to train the model. 

Abduction = [Z)gxA^,] 

Adduction = [ D 8 X J V 2 ] 

Extension = [-DgxAf3] 

Flexion = [ D 8 X A ^ 4 ] 

Rest = [£>8xiV5] 

N, = 400 = number of points 
per condition 

/V= N, + ... + N5 

••• D*xN PCA 

Training matrix 
Averaged Wavelet coefficients 

M x J V 

Dimensionally reduced 
Training matrix 

Figure 56. Representation of the feature projection method. The original feature set is 
projected to a new feature space using PCA. The first Mmost significant dimensions are 

used to train the SVM classifier 

Since the solution for the multiclass classification problem is approached by 

training multiple binary classifiers, two different methods involving PCA are 
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implemented for projecting the data before the training stage and their performances are 

compared in terms of both classification accuracy and processing time. These two 

methods are presented in the next two Sections. 

6.2.2. One PCA 

In the one PCA method, a single feature space is associated with the DAG signal 

classification tree that contains the ten binary classifiers (Figure 57). All data is merged 

into a single training matrix consisting of 2000 data points (5 classes, 400 points per 

class). After the new feature space is found, each point in the training set is linearly 

projected before training the entire set of binary classifiers. As a result, a point in the 

testing set is projected to the same feature space before going through the decision path in 

the classification tree. 

j Single PCA "J 
l projection I 
i t 

Figure 57. One PCA (oPCA) method project the input point into a new feature space 
before making the class decision through the DAG graph. 
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6.2.3. Multiple PCA 

In the multiple PCA method, one feature space is associated with each binary 

decision node (Figure 58). Each space is found by combining the data points 

corresponding to two of the classes and applying PCA. As a result, a point in the 

validation set is projected to the corresponding feature space before entering each 

decision node. 
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Figure 58. Multiple PCA (mPCA) method projects the input point into a new feature 
space before reaching each node of the decision path. 



116 

From this point forward, the single PCA projection method will be referred to as 

oPCA and the multiple PCA projection method will be called mPCA. Data from the 

second recording session (randomly chosen) was used to evaluate the performance of the 

classifier trained with the projected features as well as to decide on the appropriate 

reduced dimension M for both oPCA and mPCA feature sets that does not jeopardize the 

performance of the myoelectric pattern recognition system. Finally, in order to 

incorporate potential variations of the electrode placement at the recording sites, EMG 

data collected during six different sessions was progressively added to the training set. 

Consequently, one SVM classifier was trained on each session using data from all 

previous sessions which were projected into the new feature space by either oPCA or 

mPCA. The improvement in classification accuracy was evaluated as more data were 

added to the training set as well as the time required for classifying a single instance. For 

each feature projection framework, one set of classifiers were trained using the feature 

vectors projected but not reduced in dimension and another using the feature vectors 

subjected to dimensionality reduction. The classification accuracy for the SVM classifier, 

trained with the features in the wavelet domain and without projection, was denoted as 

the baseline 

6.3. Feature Projection Results 

6.3.1. Finding the Best Reduced Dimension 

The feature projection frameworks implemented in this study were compared to 

determine the appropriate number of dimension that could be reduced without risking 

both the classification accuracy and processing time of the decision-making stage. 

Accuracy was defined as the number of correctly classified points over the total number 
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of points in the test set. The processing time included the time required to classify the test 

point using either the oPCA framework (Figure 57) or the mPCA framework (Figure 58). 

When oPCA and mPCA were applied to the original D8 vector, no significant 

difference in accuracy was found, whereas a greater delay was found when using mPCA. 

Figure 59 and Figure 60 illustrate the classification and processing time results of the 

testing stage for different dimensions. The reduction in the dimension of the training 

vectors obtained with oPCA and mPCA methods was associated with a reduction in the 

classification accuracy (Figure 59). In both cases, the best fit for the data was given by a 

logarithmic function (R2 = 0.985 for oPCA and R2 = 0.9803 for mPCA). On the other 

hand, one-way ANOVA in combination with multiple comparison test indicated that 

more time was required for classifying a single instance using mPCA than either oPCA or 

DWT features (p < 0.05) (Figure 60). Between oPCA and DWT features, the processing 

time for DWT was significantly lower in most dimensions beyond 18 (p < 0.05). 
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Figure 59. Classification accuracies averaged across all subjects. The classifiers were 
trained with 8-levels wavelet features that were projected using either oPCA or mPCA 

methods. The dashed line represents the baseline results. No significant difference in the 
accuracy values was found for all M dimensions 
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Figure 60. Average time required for the processing of a single data point in the decision 
stage using 8-levels wavelet features. The baseline time (DWT features) is the lower than 

the mPCA time in most of the dimensions (One-way ANOVA,p < 0.05). 

Similar results were observed when oPCA and mPCA where applied to the 

feature vector DA. No significant differences in accuracy were found between the two 

projection methods and between each one of them and the baseline (Figure 61). The 

reduction in the dimension was also accompanied by a reduction in the classification 

accuracy (best fit: logarithmic function, R2 = 0.9589 for oPCA and R2 = 0.9794 for 

mPCA). Regarding to the processing time, oPCA features and DWT features presented 

equivalent results (p < 0.05) but the time required to classify mPCA features was higher 

than for classifying baseline features (Figure 62). Between mPCA and oPCA features, the 

processing time was higher for the former than for the latter in most of the dimensions 

(One-way ANOVA, p < 0.05). 
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Figure 61. Classification accuracies obtained for the classifiers trained with 4-levels 
wavelet features and projected using either oPCA or mPCA methods. No significant 

difference was found along all M dimensions 
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Figure 62. Average time required for the processing of a single data point in the decision 
stage using 4-levels wavelet features. No significant difference was found between the 

baseline time (DWT features) and oPCA times. Baseline time is the lower than the 
mPCA time in dimensions beyond 16 (One-way ANOVA,/? < 0.05). 
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To determine the number of dimensions that can potentially be reduced, the 

classification accuracy for every dimension was statistically compared with the 

classification accuracy of the non-reduced vector (D8 orZ)4). For 8-levels wavelet 

decomposition, a maximum of 16% and 12% in data dimension can be reduced without 

significant drop in the accuracy using oPCA and mPCA, respectively (p > 0.05 in both 

cases for a t-test). A more interesting result was found when combining the 4-levels 

wavelet decomposition feature vector and the oPCA method. Up to 49% of data 

dimension can be reduced without considerable drop in the classification accuracy (t-test, 

p > 0.05), which suggested that 18 dimensions could be used to train the SVM model. 

Table 17 summarizes the dimensionality reductions that are suitable for each method 

(rows) and for each feature extraction technique (second and third big columns). 

Table 17. Reduced dimension implemented the electrode displacement experiment 

REDUCED DIMENSION SELECTED 

Feat. Proj. 

framework 

oPCA 

mPCA 

4 levels 

From D4=35 to 

18 

24 

% of dim. 

Reduction 

48% 

32% 

8 levels 

From Dg=63 to 

53 

55 

% of dim. 

Reduction 

16% 

12% 

The classification accuracies obtained for the feature vectors D8 and D4 that were 

projected using both frameworks but not dimensionally reduced were also compared 

(Table 18). No statistical differences were found in the oPCA framework as well as in the 

mPCA framework and the baseline (no feature projection). These results may indicate 

that dimensionality the original D8 feature vector (Section 4.4.2) could be reduced 
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stopping the wavelet decomposition at the fourth level instead of going to the deepest 

level (level 8). The processing time is significantly reduced between D8 and D4 in both of 

the PCA frameworks and in the baseline scheme. 

Table 18. Classification accuracies for the baseline and the two PCA frameworks 

AVERAGE CLASSIFICATION ACCURACY 

Framework 

DWT 

(baseline) 

oPCA 

mPCA 

4 levels (M=D4=35) 

93.84% (± 3.64%) 

92.67% (± 4.77%) 

93.60% (±4.04%) 

8 levels (M=D8=63) 

94.092% (± 3.75%) 

92.645% (±3.17%) 

93.459% (±3.88%) 

6.3.2. PCA and the Electrode Displacement Effect 

Based on the results observed in the previous Section, the performances of the 

classifiers were examined using the reduced dimensions as presented in Table 17. The 

main goal was to evaluate the improvement of classification accuracies and processing 

times of the SMV models as more data were added to the training set. These results 

suggested whether the PCA projection methods would cause a significant improvement 

in the performance of the pattern recognition-based myoelectric control system proposed 

in this study. 

The oPCA and mPCA methods applied to the D8 feature vector were compared 

with the baseline. For oPCA, classification accuracies for both the reduced (M = 53) and 

the original (D8= 63) feature vectors showed the same trend as the baseline (Figure 63). 

There was a sudden increase in accuracy when the data from the second session were 
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incorporated into the training set. This suggests that the variability introduced by data 

from sessions 1 and 2 was captured by the SVM classifier. For the mPCA method, the 

classifier performance was steadily improving as more data were added to the training set 

(Figure 64). The projected feature vector without dimensionality reduction (D8) presented 

an almost identical behavior to the baseline. After the second session of recordings, the 

session-to-session increment in accuracy was not significant (p > 0.05) for both the 

reduced (M = 55) and the non-reduced (D8 = 63) feature vectors. The dimensionality 

reduction performed by any the two frameworks did not significantly improve in the 

classifier performance (p>0.05). 
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Figure 63. Classification accuracy on the test set averaged across 6 subjects. The training 
set contained features from 8 wavelet decomposition levels and projected using oPCA. 
The best performance was achieved when the features were not reduced in dimension. 
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Figure 64. Classification accuracy on the test set averaged across 6 subjects. The training 
set contained features from 8 wavelet decomposition levels and projected using mPCA. 
An increasing trend was observed when data from different sessions was added to the 

training set. The best performance was achieved when the features were not reduced in 
dimension. 

Similar results were observed when comparing oPCA and mPCA with the 

baseline for a 4-levels decomposition (Figure 65 and Figure 66). After the training set 

was projected onto the new feature space using oPCA, the classification accuracy 

indicated a better performance without feature reduction (D4 = 35) than with reduced 

features (Figure 65). There was a significant increment in accuracy (p < 0.05) when data 

from the second session was added to the training set but no significant change 

afterwards (p > 0.05). On the other hand, classification accuracies for mPCA are similar 

to oPCA (Figure 66). The original feature set resulted in higher accuracy than the reduced 

set. In both frameworks, there were not major differences in the performances of the 

SVM classifiers when compared with the baseline. 
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Figure 65. The signal classification accuracy was evaluated when the features from 4 
levels of wavelet decomposition from each recording session were added to the training 
set. The projection and dimensionality reduction of the features using oPCA framework 

did not significantly improve the performance of the baseline classifier 
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Figure 66. Improvement in the average classification accuracy when the features from 4 
levels of wavelet decomposition from each recording session were added to the training 

set. The mPCA feature projection framework did not improve the performance of the 
baseline classifier. 
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The time required for classifying a single trial when its features were projected 

with either oPCA or mPCA were compared in order to determine their feasibility for real­

time implementation. Results for 8-level and 4-level wavelet decomposition features are 

illustrated in Figure 67 and Figure 68, respectively. The processing time for a single trial 

without feature projection is presented as the baseline. For D8 features, the time it took to 

classify the baseline features was lower than it took to classify oPCA or mPCA features 

(Figure 67). In addition, less time was needed to classify test data without dimensionality 

reduction. A possible reason for this behavior was that the complexity of the SVM model 

(number of support vectors) increased after the training stage when lower dimensionality 

was used. This result suggested that there was a tradeoff between the number of 

dimensions reduced and the model complexity. For D4 features, no major differences in 

the decision time were obtained in all cases (Figure 68). The PCA feature projection 

frameworks implemented did not expedite the final processing time. 
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Figure 67. Time required to classify a single data point containing information from an 8-
level wavelet decomposition. In both feature projection frameworks, oPCA and mPCA, 

the reduction in the dimension increased the processing time. 
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Figure 68. Time required to classify a new vector containing information from 4 levels of 
wavelet decomposition. A linear trend is observed when the features are projected and 

reduced on both PC A frameworks. 
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6.3.3. Four vs. Eight Levels of Wavelet Decomposition 

The classification results for the two sets of features obtained using 4 and 8 levels 

of wavelet decomposition were evaluated. The performances of both methods were 

similar without dimensionality reduction. After the testing stage, the dimension of the 

training set was gradually decreased and a new classifier was trained. This procedure was 

repeated until the averaged accuracy dropped below an acceptable level (i.e. < 80%). 

Figure 69 illustrates the baseline classification results. For the classifiers trained with 8 

levels of wavelet decomposition (Ds = 63), the accuracy presented a slower trend for M 

> 18 with a considerably drop for M < 18. On the other hand, the behavior of the 

classifier trained with 4 levels of decomposition (D4 = 35) was approximately linear for 

the entire range. 
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Figure 69. Averaged accuracies obtained on the test data, when the classifiers were 
trained using 8 (top) and 4 (bottom) levels of wavelet decomposition. 
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An interesting result was observed when the dimensions of the feature vectors 

were not reduced. No significant differences were present in the performance of the 

classifiers trained withD8 = 63 andD4 = 35 (p > 0.05). The average classification 

accuracy was 94.09% for the D8 feature vector and 93.84% forD4. However, the 

dimension reduction of the 8-level training vectors from D$ = 63 to M = 35 significantly 

reduced the classification accuracy. These results suggested that wavelet decomposition 

beyond the fourth level is unnecessary because it does not significantly improve the 

classification. 

6.4. Discussion 

Uncorrected features from either oPCA or mPCA methods did not improve the 

discriminatory power. This result is supported by a lack of statistically significant 

improvement in the performance of the SVM classifier when using any PCA framework. 

Moreover, the classification accuracy was reduced when the dimension of the projected 

features was reduced. This behavior may be related to the location of the recording 

channels. The muscles in the forearm are closely spaced, so a signal recorded from the 

surface may have contributions from more than one muscle. When a contraction is 

produced, the spatial propagation of the action potentials may lead to correlated signals at 

different recording sites. A previous study used PCA to remove the correlation present on 

the raw MES recorded from electrodes circumferentially located around the apex of the 

forearm muscle bulge and showed an improvement in the classification accuracy [102]. 

In the present study, the electrode locations were meticulously selected so that the 

recordings were not strongly dependent on each other. As a result, the redundant 
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information collected and decoded by wavelet transformation was reduced; no significant 

improvement can be made using the PCA frameworks. 

A one-way ANOVA test was performed at each reduced dimension to compare 

the computation times (Figure 60 and Figure 62). A significant difference was observed 

between mPCA and the baseline, regardless of decomposition level at sufficiently high 

feature dimensions (p < 0.05). Internal processes of the computer may have delayed the 

computation and caused the outliers. For 4-level wavelet features, D4, no significant 

difference was found between the processing times of oPCA and the baseline (p > 0.05), 

except for an outlier at M = 15. For 8-level features, £>8, computation time for the 

baseline, beyond 18 feature dimensions, is faster than that of the oPCA (p < 0.05). The 

mPCA has a longer delay, most likely because it calculates a new projection at each 

decision node in the DAG path, whereas the oPCA calculates the projection only once. In 

addition, the processing time for classifying a single point was not significantly decreased 

when the dimensionality of the data was reduced. 

Finally, both PCA frameworks were applied on wavelet features representing data 

from different recording sessions for evaluating the classifier performance. It was shown 

in Section 5.4.3 that the SVM classifier achieved 90% accuracy after three training 

sessions when using features obtained with 8-levels wavelet decomposition [95]. The 

dimensionality reduction of the D8 feature vector did not significantly change the 

classification performance. The accuracy was lower for the reduced feature vectors and 

the processing time was slower. The same results were observed for the reduced D4 

feature vector, which did not significantly change the processing time. These results 

suggest that oPCA and mPCA did not improve the ability of SVM to capture the 
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variations in the EMG patterns. Both oPCA and mPCA projection of D8 orD4, without 

reducing their dimensions, improved the classification accuracy in the recording sessions 

to a level that was almost identical to the baseline accuracy. The processing times were 

also extremely close to the baseline time for both feature vectors. These results suggest 

that the effect of electrode placement variations can be generalized. 

The experiments performed to evaluate the potential implementation of two PCA 

methods showed that these frameworks did not significantly improve the performance of 

the baseline classifier. Additionally, the reduction in dimension of D8 from 63 to 53 (35 

to 18 for Z)4) in the case of oPCA, and from 63 to 55 (35 to 24 for D4) in the case of 

mPCA, was not significant. 

An interesting result from these experiments that was not related to PCA 

presented an alternative method to reduce the dimensionality of the feature vector. The 

performance of the myoelectric pattern recognition system using 8-level wavelet features 

can be improved by decoding information from the raw MES using 4-level wavelet 

decomposition. The 4-level decomposition would require less computation time without 

significantly reducing the classification accuracies obtained for both feature vectors. The 

similar accuracy for 4-level and 8-level decompositions arises because the wavelet 

coefficients corresponding to the levels 5 to 8 did not add useful information to the 

feature vector. The frequency band represented by the approximation coefficients after 4 

resolution levels is 0-30 Hz. This frequency is not relevant, as most of the information of 

the muscle contractions selected for this application exceeds 30 Hz. The classification 

process using D4 was less computationally intensive than using D8, making it more 

suitable for real-time implementation. 



CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

A myoelectric control system that classifies a user's intention to actuate different 

functions of a prosthetic hand has been developed and tested. A pattern recognition-based 

controller was chosen over a conventional controller because it allows multifunction 

control (more that 2 degrees of freedom) to be performed without the constraint of 

independent muscle sites. By discriminating different muscle contraction patterns, the 

prosthetic device can be actuated in a more intuitive manner. 

Surface EMG signals were classified with an SVM implemented, as a DAG that 

used 63-dimension wavelet features from seven channels. Single session results obtained 

from seven able-body subjects have showed that classification could be up to 98.2% 

accurate. This value was similar to results from other studies [16, 140, 150]. However, 

these models did not accommodate small changes in the user's patterns over time, which 

caused a significant drop in the classification accuracy. To increase the robustness of the 

models, EMG data from different recording sessions were incorporated to the training 

dataset to account for the variations in the user's signal patterns. The high generalizability 

of the SVM captured most of the variability in the data after the second recording session 

and produced an average 90% classification accuracy for new data points. A plateau in 

the classification accuracy was reached after the third session. Even though the accuracy 
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dropped with respect to the single-session classifiers, the results were promising since the 

new training strategy yielded a more robust classifier. The real-time processing of the 

whole control system introduced a delay of only 20 ms, which was much lower that the 

acceptable delay of 300 ms. This time is counted from the onset of the muscle contraction 

until the final class decision is made. The small processing time allows several class 

decisions to be combined to improve the performance of the system. 

Two PCA feature projection frameworks were implemented in an attempt to 

improve the classification accuracy and to expedite the processing time. In both cases, the 

features embedded in the wavelet domain were linearly projected into a new coordinate 

system for further dimensionality reduction. These frameworks did not introduce 

significant improvement in the classification accuracies when compared with the baseline 

study. In addition, both frameworks introduced additional delays that contributed to 

prolonging the overall processing time. These results suggested that carefully selected 

EMG channels are highly uncorrected; hence, there is no need for PCA. 

The results from this work show that a myoelectric pattern recognition-based 

control system that uses an SVM classifier applied to time-frequency features can be used 

to discriminate a set of limb motions for prosthetic applications. 

7.2. Ongoing and Future Work 

7.2.1. Current Tests on Amputees 

Even though the proposed control system was able to classify five limb motions 

of normally-limbed subjects, its ability to discriminate the activation patterns of 

amputees' muscles remains to be tested. Classification tests are being performed in the 

laboratory to demonstrate the feasibility of the control system in amputees. Two very-
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short below elbow congenital amputees were recruited for signal recording. As the 

recording locations selected for normally-limbed subject were not available in these 

cases, the seven bipolar channels were located according to the available musculature. 

For subject 8, electrodes were circumferentially located around the upper arm, and for 

subject 9, they were also circumferentially located but around the residual forearm. 

Figure 70 illustrates the layout of the cross-sectional and lateral views of the electrode 

placement for both cases. The recording channels were uniformly distributed on the 

recording region. 
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Figure 70. Left: analogy for the lateral view of a residual limb used to illustrate the 
distribution of the bipolar channels. Right: analogy for the cross sectional view of the 

residual limb. Seven bipolar channels were distributed with equidistant separation among 
them. 

The methodology followed to obtain the training set was the same as in able-

bodied subjects. The signals recorded were segmented into non-overlapping 256-point 

windows, and the DWT was applied to each segment to obtain the feature vectors. SVM 

classifiers were tested to discriminate five different classes of motion. Preliminary results 

showed an averaged accuracy of 92% for a classifier created with single-session data. 

The performance of classifiers trained with multi-session data is being assessed. 
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Successful results on those classifications would produce an important advance to the 

final implementation of the myoelectric pattern recognition-based control system. 

7.2.2. Future Improvements for Clinical Trials 

Although the classification accuracy obtained in this work was acceptable (around 

90%), there is an obvious motivation to increase that value as much as possible. The 

usability of the myoelectric control system would be enhanced by increasing the 

accuracy. However, it is important to perform clinical trials to find a threshold for this 

classification accuracy that is acceptable for prosthetic actuation. Several steps need to be 

accomplished before the pattern recognition system can be tested on the field: 

• Implement the real-time post-processing strategy. In the real-time scheme 

presented in Section 5.5.1, every class decision represented an output of the 

system. This strategy is susceptible to short-time involuntary contractions that 

should not be considered for classification. To create a more robust real-time 

processing strategy, the class decisions would be made based on a sequence of 

successive output states. The class with greatest number of occurrences would 

represent the output of the system. This new strategy would also reduce the 

misclassification rate produced in the areas where changes of muscle contraction 

types are produced. 

• Implement the myoelectric control system in a microcontroller. Clinical trials 

would investigate the performance of the control system over days or months. 

While these tests are being performed, the subjects involved must be able to 

continue with their daily living activities. Even though the initial recording 

sessions and the classifier training can be performed in the lab, all pattern 
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recognition stages (signal acquisition, processing and classification) must be 

embedded into a single external device. A feasible option is a digital signal 

processor (DSP), which is a specialized microprocessor that is optimized for fast 

computation of mathematical operations. The DSP can digitize analog EMG 

signals and perform all the operations involved in the pattern recognition scheme 

to produce the class output necessary to activate the prosthesis. The DSP can 

include the SVM classifier and store the support vectors and their corresponding 

class labels. Each data point is classified through the necessary matrix operations 

that compute the function y{x) from Equation (29) (page 72). 

One of the most important constraints is related to the physical dimensions of the 

board designed for the DSP. It should be small enough to be embedded inside a 

socket specially designed for the trials. 

• Design a prosthesis socket that can hold seven bipolar channels. The final 

step towards the clinical tests of the proposed work is the design of the prosthetic 

socket. The seven bipolar electrodes and the electrical wires must be strategically 

distributed on it to allow the recording of activity of specific muscles. The DSP 

device may also be located on the socket or embedded in the hand prototype. The 

socket has to be custom made to pick up the signals from the appropriate locations 

so a successful classification can be achieved. In addition, this customization 

would create a better fit between the residual limb and the prosthetic device 

allowing as much function of the residual limb as possible. 
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To conclude, one of the principal limitations of this type of control system is the 

lack of robustness in processing the input myoelectric signal to select the output action. 

The ability of SVM to generalize was important to capture the variations in the muscle 

contraction patterns over time caused by electrode displacements. However, these 

variations may also be caused by either electrophysiological changes (muscle fatigue) or 

electrode conductivity changes (perspiration). An important improvement for this work 

would take those factors into account to design a myoelectric patter recognition system 

that adapt to most of the changes on the user's patterns over time. 



APPENDIX A 

EMG DATA ACQUISITION PROTOCOL 
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This appendix presents the protocol designed to record Electromyographic (EMG) 

signals from the surface of the skin. It was approved by the IRB for implementation. 

Materials 

• Disposable Ag-AgCl surface electrodes. 

• CleveMed BioRadio 150 wireless programmable Data Acquisition System 

(DAQ), with the following specifications: 

• RF band: 902-928 MHz (ISM band) or 2.4-2.484 GHz. 

• Transmission range:-100 feet. 

• Number of channels: 8 configurable channels (external sensors) and 4 

embedded channels. 

Resolution: 8, 12, 16 bits. 

• Sampling rate: 128 - 960 samples per second per channel (configurable). 

• Matlab and LabVIEW software installed in either a Desktop or a Laptop 

computer. 

• Abrasive skin gel for skin cleaning purpose. 

• Conductive gel. 

Procedure 

EMG signals were recorded from 7 locations over the skin's surface using 

disposable Ag-AgCl electrodes. The subject was asked to perform four different 

isometric muscle contractions. The procedure required for the data collection is presented 

in the following subsections: 



139 

1. Movement Selection 

The following four movements of the wrist were asked of the subject to perform: 

• Wrist abduction (radial deviation of the wrist). 

Wrist adduction (ulnar deviation of the wrist). 

Wrist extension. 

• Wrist flexion. 

In addition to them, the subject was asked to maintain the forearm in a relaxed 

position besides his/her body as well as to uphold the forearm during a certain period of 

time. 

2. Skin Preparation 

The skin was cleaned with an abrasive skin gel. It was applied to the electrode 

site by using a gauze pad and by rubbing the gel into the skin surface. The excess of gel 

was removed using clean gauze. 

A small amount of conductive gel was applied to the electrode site in order to 

improve signal conductivity of the electrode-skin interface 

• After the skin was prepared, the next step was to positioning the patient in the 

starting posture. It allowed determining the proper site of the electrode on the muscle. For 

these recordings, the subject was seated on a chair with the arm resting besides the body. 

Then he/she performed different movements with the wrist and fingers to identify the 

muscles. 
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3. Electrode Placement 

General considerations 

The surface EMG (sEMG) sensor location is defined by the SENIAM project 

[173] (Surface Electromyography for the Non-Invasive Assessment of Muscles) as the 

position of the center of two bipolar electrodes on the muscle. For this protocol, because 

unipolar electrodes were readily available, a pair of them was placed to obtain a bipolar 

recording. The recommendations given by the SENIAM project were as follows: 

The electrode size in the direction of the muscle fiber has to be less than 10 

mm. 

• The inter-electrode distance, defined as the center-to-center distance between 

the conductive surfaces of two electrodes, has to be around 20 mm. 

The bipolar electrodes must be oriented parallel to the muscle fibers. 

• The reference electrode must be placed in one of the standard locations. In this 

case, it was placed on the wrist at the styloid process of the ulna (bone end). 

Seven electrode locations were used for this experiment. They were distributed 

along the following forearm muscles: Extensor Carpi Radialis, Extensor Digitorum, 

Anconeous, Flexor Carpi Radialis and Flexor Carpi Ulnaris (Figure 71). 
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1 Anconeous • 

1 Extensor Digitorum 

1 Extensor Carpi Ulnaris j 
I Flexor Carpi Radialis 

Flexor Carpi Ulnaris 

POSTERIOR FOREARM ANTERIOR FOREARM 

Figure 71. Location of the forearm muscles selected for EMG signal recording. 

Channel identification 

To identify the sensor location and to place the electrodes, the subject performed 

different actions, which are explained in the next paragraphs. 

Channel 1 - Extensor Digitorum: To identify this muscle, the subject was asked to 

sequentially extend and flex the index, middle, ring and small fingers. A muscle activity 

can be detected in the posterior forearm, which corresponds mostly to the Extensor 

Digitorum muscle. After the muscle was found, pair of electrodes was placed at 40% of 

the line extended from the elbow to the wrist articulation. 

Channel 2 & 3 - Flexor Carpi Radialis: The subject was asked to perform wrist 

flexion while applying pressure to the hand in the direction of the wrist extension. That 

action caused a contraction of the Flexor Carpi Radialis that can be detected by placing 
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the hand over the surface of the anterior part of the forearm. Two pair of electrodes were 

placed on this muscle, one at 25% of the origin of the muscle (medial epicondyle of the 

Humerus) and at 50% of the origin. 

Channel 4 - Flexor Carpi Ulnaris: The same movement performed to identify the 

Flexor Carpi Radialis muscle was done for finding the electrode location for this muscle. 

A pair of electrodes was placed at around 40% of the line extended from the origin of the 

muscle to the end. It corresponded with the thickest cross section of the muscle 

Channel 5 - Anconeous: The subject to both flex and extend the forearm at the 

elbow, continuously. That movement activated the Anconeous muscle, which can be 

detected by placing the hand over the surface of the skin close to the bone end of the ulna 

at the elbow. 

Channel 6 & 7 - Extensor Carpi Ulnaris: After the ulna bone was identified, the 

subject was asked to perform an ulnar deviation of the wrist. Along with others muscles, 

that movement activated the muscle needed. It can be perceived by placing the hand over 

the forearm just above the ulna. Two electrode locations were used for this muscle. One 

was placed at around 30% of the line from the elbow to the wrist articulation. The other 

location was placed at around 60% of the same line. 

4. Recording Process 

The next steps were followed to set up the data acquisition system: 

I. The BioRadio software was started and the Wireless Transmitter turned on. 

II. After the 'Start' button was clicked, the connection between the Computer Unit 

and the Wireless Transmitter was checked. 
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III. The 'Config' button was pressed to set up the data collection parameters. A new 

window pop up, and the following values were set: 

Sample Frequency: 960 samples per second 

Resolution: 12 bits. 

The boxes of the first seven channels were selected and AC voltage with a 

range of ±1.5771^ was set. All the other boxes were leaved unchecked. 

Click in the 'Program' icon and then close the window. 

IV. On the 'DSP Settings,'' a High-Pass Filter was added for each one of the channels 

by clicking on the arrows on the DSP Method column. The filter was set to 2 and 

the cutoff frequency as 2.125 Hz. A Notch Filter (60 Hz) was also included for 

each one of the channels. After that, the DSP Filtering knob was switched to the 

'on' position in the main window. 

V. In the last step, a file was created to save the data that will be collected. After 

clicking on the 'Save Data' icon, the name of the new file and the folder location 

were selected. The file was saved as comma separated values ('.csv' extension). 

As a convention, the files corresponding to one subject were saved in a single 

folder called Subject#_date (e.g. if recorded from subject 3 on October 13' of 

2008, then the folder was named S320081013). Inside that folder, the name of 

the file had the following format. Subjec#_Movement_Trial# (e.g. if collecting 

the second trial of recordings from subject 3 and he/she was performing the 

Adduction of the wrist, then the file should be called 'S3_Add_2.csv'). 
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The entire protocol was divided in several subsections (trials). In each one of 

those, the subject was asked to perform isometric contractions, also called static 

contractions. It means that the subject started the specified movement and maintained it 

for the time required. That generated steady state EMG signals, which then were 

processed according to the needs. It is important to mention that there was no restriction 

regarding to the strength of the muscle contraction, the subject performed the movement 

as naturally as possible. 

In each subsection of the protocol, EMG signals of one kind of movement were 

collected. The order of them was the following: 

1. Wrist Abduction (Abd). 

2. Wrist Adduction (Add). 

3. Wrist Extension (Ext). 

4. Wrist Flexion (Flex). 

5. Relaxed position (Rest). 

6. Uphold the forearm (RestUp). 

The protocol of recording was the same for the first four movements and it was 

repeated as many times as needed depending on the amount of data required in the 

processing stage. The time between repetitions of the protocol was around 1 minute. The 

steps followed for recording signals when performing the first four movements is 

explained below: 

a) The subject was sat on a chair with the arms in rest position beside the body. 

b) The transmitter-receiver connection of the data acquisition system was started. 

c) Three to four seconds were given before the contraction. 
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d) The subject was asked to perform the specific movement and to maintain the 

contraction for six seconds 

e) The subject was asked to release the current contraction. 

f) Steps c) to e) were repeated four more times. 

Thus, the resultant signal contained 5 repetitions of the muscle contraction of six 

seconds length and spaced by three to four seconds intervals. It was saved in a file, which 

name followed the convention already explained. 

For the rest data collection, the protocol was simpler. For the movement 5) 

a) The subject was sat on a chair with the arms in rest position beside the body. 

b) The transmitter-receiver connection of the data acquisition system was started. 

c) 60 seconds of data were collected while the subject stayed in the rest position. 

For the movement 6) 

a) The subject was sat on a chair with the arms in rest position beside the body. 

b) The subject was asked to lift the forearm at the shoulder's level and to maintain 

the contraction for at least 60 seconds. 

c) 60 seconds of data were collected. 

After collecting data from these two movements, the protocol was run again in 

order to increase the data available for further processing. 

Security information 

1. Instruments and measures to insure protection of confidentiality, anonymity 

The researchers take great caution in maintaining a high level of confidentiality or 

anonymity of the research data. All documents will be handled only by the principal 

investigator and will be stored in a secure environment. All files will be coded with group 
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labels and numbers. Data files of any kind will not contain any personal information of 

the subject. Subject's identity will not be disclosed to any third parties. Only aggregate 

data will be presented for the public (articles, presentation, et al.) 

2. Risk/Alternative treatments 

Before a patient is accepted for EMG signal recording, it was necessary to 

perform an allergic test in order to determine any allergic reaction to the electrode or to 

the gel used to measure the signals. 

Although the risk of micro shots is very low, it should be taken into account in 

order to ensure subject safety. 

The muscle fatigue was considerate in the design of the recording time of this 

protocol. 

3. Safeguards of physical and emotional well-being 

Prior to the recording procedure, the researchers will inform the subjects in full 

details, the risk involved with the measurements. All information collected from the study 

will be held strictly confidential. No one will be allowed access to the recorded data 

except the authorized personnel. 
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The algorithms used in this dissertation have been included in an attached optical 

media. It also contains a database with the EMG signals recorded from the seven subjects 

studied. Al algorithms were implemented in Matlab (The Math Works, Inc). 

• For preprocess the raw signals and for the feature extraction stage: 

Main program: 'EMGProcessing^ 

Sub-programs used in the main program: 'hpfemg.m'; 'ploteo.m'; 'start_end.rri\ 

'onset.m'; 'segmentation.m'; ' normalization, m' and ''wavelet_decomposition.m\ 

Main program synopsis: Program that initially takes the raw EMG signal from a 

single trial and perform the preprocess steps outlined in Sections 3.3 to 3.5. The program 

calls different sub-programs to filter, segment and normalize the data. The last step is the 

wavelet feature extraction that is carried out using the 'wavelet_decomposition.m' 

algorithm. The number of levels of decomposition was set to eight but it can be modified 

to perform different levels. 

• For training and testing the SVM classifier: 

The statistical pattern recognition toolbox (STPRTool) is an external Matlab 

toolbox that was used in this dissertation. Some machine learning functions, implemented 

in the selected toolbox, were embedded in a Matlab code developed for training and 

testing. 

Training program: ' nclassDA GSVMjrn. m' 

Testing program: inclass_DAGSVM_tst.m\ 'accuracy.m' 

Programs synopsis: The training algorithm takes the dataset containing patterns 

corresponding to the five classes. The data of one class is paired with data from other 

class and the corresponding binary classifier is trained. A set of ten binary classifiers is 
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created each time the program is run. The testing algorithm takes the model created and 

classify all the data points inputted using the DAG scheme. It also calculated the 

confusion matrix and the accuracy of the classification. 

A detailed description of the call to the STPRTool functions is presented in the 

following paragraphs. 

SVMmodel = smo (TRN, options); 

The function smo is the STPRTool implementation of the Sequential Minimal 

Optimizer algorithm to train binary SVM classifiers with soft margin. The inputs to the 

function are the struct-type variables: TRN and options. The TRN input contains the 

sample MES patterns used to create the models with the following outline (see Figure 41 

for reference): 

TRN.X = training data points (DxN, D = dimension feature vector, N = # of 

training points) 

TRN.y = labels for each data point in the TRN.X matrix (lxN). 

The options input groups the control parameters in the following fields: 

options, ker = Kernel identifier. 'r£>/' for Gaussian Radial Basis function 

options, arg = Arguments for the kernel function selected. 

option. C = Regularization constant (see Section 5.1.2). 

The output of this function is another struct-type variable that includes the following 

important fields: 

SVMmodel. Alpha = Values of the Lagrangian multipliers [nsv x 1]. 

SVMmodel. b = Value of the bias [ l x l ] . 

SVMmodel. sv. X = Support Vectors used to predict class labels of new points. 
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SVMmodel. nsv = Number of support vectors [ l x l ] . 

SVM mo del. mar gin = Margin of the found classifier [1 x 1]. 

SVMmodel. cputime = CPU time used to get the model [ l x l ] . 

The testing of new data points is carried out using the function svmclass, which 

classifies each point into one of two outputs using Equation (29). The call to this function 

is done as follows: 

y = svmclass (T ST. X, SVMmodel) 

The inputs to this function are the struct-type variable TST.X that contains the 

test data and the variable SVMmodel, which is the output on the smo function. The 

output is the vector y that has the predicted labels (for the ith point y(i) = 1 ory(i) = 

2). The inclass_DAGSVMjst.rri: algorithm makes successive calls to the svmclass 

function to implement the DAG multiclass classification scheme. 

• For the experiments involving PCA: 

The number of SVM classifiers trained increased significantly because a set of 10 

binary classifiers was created at each feature dimension (10 to 63) and for each PCA 

framework (oPCA and mPCA). To expedite the training stage, Weka data mining 

software was used and run from Matlab [174]. This software is coded in Java 

environment and it is well suited for developing machine learning schemes. 

PCA frameworks: 'dataFor Classifiers oPCA.m'; 

' dataFor Classifiers jnPCA. m' 

Dim. reduction: findBestDimensionDWT.m'; 

'findBestDimensionOnePCA.m''; 

findBestDimensionMultPCA.m'; 
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' wekaTrainSMOClassifier'; 

' wekaClassifySMOjnultiPCA. m'; 

iwekaClassifySMO_DAG.m' 

Programs synopsis: The PCA frameworks programs take the wavelet features 

obtained previously. In both cases, the new feature space is found and the wavelet 

features are projected into the new coordinates. The dimensionality reduction programs 

train one set of classifiers for each dimension using the smo algorithm included in Weka. 

The classification uses different files, depending on the PCA framework used. These 

algorithms can be slightly modified to process the wavelet features obtained after 4 levels 

of wavelet decomposition. 
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The LabVIEW algorithms used in this dissertation for the real-time 

implementation of the myoelectric pattern recognition system are included in the optical 

media attached. The main program was designed for acquiring, processing and 

classifying EMG signals. A screen shot of the latest version of front panel designed is 

illustrated in Figure 72. The seven channels of signal being acquired are plotted in the 

charts showed in the left-hand side of the figure. The time delay and the class decision 

output are displayed in the right-center side of the front panel. The rest of the indicators 

display information related with the device configuration, link status and for debugging 

purposes. 

Figure 72. LabVIEW front panel of the real-time myoelectric pattern recognition system 
implemented in this dissertation. 



154 

National Instruments' LabVIEW programs are known as Virtual Instruments 

(VI's) because they simulate real instruments. Several VI's can be combined to create 

new VI's. In this dissertation, VI's provided by CleveMed Inc were used to allow the 

communication and control of the BioRadio 150 data acquisition system through a 

LabVIEW virtual instrument. This main program used those VI's in combination with 

other custom VI's to perform the three principal tasks previously mentioned: acquisition, 

processing and classification. 

Main VI: 'BioRadio EMGProcessing.vf 

Sub-VI's for starting acquisition: 'BioRadioFindAndChooseReceiver.vV 

'BioRadio StartBaseComm. vV 

'BioRadio Start. vV 

' BioRadio Read, vz' 

Sub-VI's for stopping acquisition: 'BioRadio Stop.vV 

' BioRadio _StopBaseComm. vf 

Sub-VI's for processing: 'onLineProcessing.vf 

Sub-VI's for classification: 'onLineProcessing.vf and 'classIndicator.vV 

Programs synopsis: The main VI contained all sub-Vis. The signal recording is 

initialized by using the sub-Vis for starting acquisition. As more data is read, a Matlab 

script embedded in the main VI stores them in a buffer and creates the analysis segments. 

These segments are sent to the processing and classification sub-VI, which has another 

Matlab script embedded. On this script, the segmented signal is filtered and normalized 

before the wavelet is decomposed. The final class decision is made using the classifier 

previously trained offline. These processes are timed to display the processing delay for 
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each segment in the front panel. The classlndicator.vi program takes that decision and 

activates a green light in the front panel that corresponds to the selected class. Figure 73 

shows the set up of a typical recording session. 

Figure 73. Illustration of the complete set up used for recording, processing and 
classifying EMG signals in real-time. Electrodes placed on the subject forearm are 

connected to the wireless transmitter. The receiver communicates with the computer 
through the LabVIEW application. 
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