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ABSTRACT 

The Ramsey number R((0, a) is the minimum number n such that every graph G with 

|V(G)| > n has an induced subgraph that is isomorphic to a complete graph on (0 vertices, 

Km, or has an independent set of size a, Na. Graphs having fewer than n vertices that 

have no induced subgraph isomorphic to Ka or Na form a class of Ramsey graphs, denoted 

&((0, a). This dissertation establishes common structure among several classes of Ramsey 

graphs and establishes the complete list of ^ (3 ,4) . 

The process used to find the complete list for &(3,4) can be extended to find other Ram­

sey numbers and Ramsey graphs. The technique for finding a complete list for &((D, a) 

is inductive on n vertices in that a complete list of all graphs in M((0, a) having exactly n 

vertices can be used to find the complete list n+l vertices. This process can be repeated 

until any extension is not in &(a>, a), and thus R((0, a) has been determined. We conclude 

by showing how to extend methods presented in proving /?(3,4) in finding R(5,5). 
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CHAPTER 1 

INTRODUCTION 

This chapter will provide the basics of graph theory used in this dissertation. The reader 

familiar with graphs can skip to Section 1.5. The terminology used will follow West[17] 

and Diestel [3]. 

1.1 Introduction to Graphs 

A graph G = (V, E) is an ordered pair of sets consisting of a vertex set V, or V(G), and 

an edge set denoted E, or E(G). The elements ofV(G) are called vertices, and the elements 

of E(G), called edges, are unordered pairs of vertices in V(G). Every edge e in E(G) has 

two vertices called its endvertices or endpoints. A loop is an edge whose endvertices are 

identical. Two non-loop edges e and / are said to be parallel if they have the same pair 

of endvertices. A graph with no loops or parallel edges is said to be simple. Unless stated 

otherwise, all graphs in this dissertation will be finite and simple. 

In a simple graph G, an edge e G E(G) that has the endpoints u,v G V(G) is denoted 

uv or vu. A vertex v G V(G) is incident with an edge e G E(G) if v is an endpoint of e. 

Two vertices «, v G V(G) are adjacent, or neighbors, if and only if uv is an edge in E(G). 

The degree of a vertex v, denoted d{y), is the number of edges incident to v. A vertex with 

degree equal to zero is an isolated vertex. The number 5(G) := min{d(v)\v G V(G)} is 

the minimum degree of G, and the number A(G) := max{d(v)\v G V(G)} is the maximum 

degree of G. 

1 
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Two graphs G = (V,E) and G' = (V',Ef) are isomorphic, written G = G', if there exists 

a bijection <p : V —> V' with xy G £" O- <p(x)(p(y) E E' for all x, y G V. The map <p is called 

an isomorphism. 

1.2 Trees and Subgraphs 

A graph G has a path Pn = v\e\v2e2 • • • vn-\en-\vn where the endpoints of each edge e, 

are the vertices v,_i and v,, and the vertices of f are distinct. A graph that is a path with n 

vertices and n — 1 edges is called PnA cycle Cn = VQe\v\e2V2 • • • enVQ in a graph is similar to 

a path except that the first and last vertices coincide. A graph that is a cycle with n vertices 

and n edges is called C„. A graph G that contains no cycle is acyclic. 

A graph G is connected if a path exists between any two vertices in V(G); otherwise, 

G is disconnected. The components G\, G2, •••, Gn of a graph G are the maximally con-
o o 

nected subgraphs of G and G = G\ {JG2 (J " ' Gn. A graph G is minimally connected if G 

is connected and for any edge e G E(G), the graph G — <? is a disconnected graph. G is 

called ^-connected if |V(G)| > k and the deletion of any set of k vertices in V(G) results in 

a graph that is still connected. 

A tree is a connected acyclic graph. Clearly, for any u,v G V(T) such that uv £ E(T), 

the graph T + uv will contain a cycle. A leaf in tree T is a vertex v such that d(v) = 1. If 

each component of a graph is a tree, then the graph is a forest. The followig theorems are 

straightforward and standard in any textbook. 

Theorem 1.2.1. The following assertions are equivalent for a graph T. 

1. T is a tree; 

2. any two vertices ofT have a unique path in T; 

3. T is minimally connected; 

4. T is maximally acyclic. 

Theorem 1.2.2. IfT is a tree with A(T) = k, then T has at least k leaves. 

Corollary 1.2.3. IfT is a tree with A(T) < 2, then T is a path. 
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Let G = (V, E) and G' = (V',Er) be graphs. If V' C V and E' C £, then G' is a subgraph 

of G, denoted G' C G. A subgraph / / of G is induced when «v in £(/ /) if and only if uv in 

£(G). 

A spanning subgraph H of a graph G is a subgraph that contains every vertex in V(G). 

A spanning tree is a spanning subgraph that is a tree. A spanning cycle is a spanning 

subgraph that is isomorphic to a cycle. Spanning cycles are also called Hamilton cycles. 

Similarly, a Hamilton path is a path containing all the vertices in a graph. 

1.3 Cliques and Independent Sets 

The complete graph G on n vertices, denoted Kn, is such that every pair of distinct 

vertices are adjacent. A clique of G is a subgraph H that is isomorphic to a complete graph. 

The size of the largest clique of G is denoted ft)(G). The clique on three vertices, A3, is 

also called a triangle. Thus, graphs having no clique of size three are called triangle free. 

The complement of a graph G is denoted G where V(G) = V(G) and e G E(G) if and 

only if e ^ E(G). The totally disconnected graph is the graph that has no edges. The totally 

disconnected graph on a vertices is denoted Na = K„. If a graph G has an induced subgraph 

isomorphic to Na, then the set of vertices is said to be independent; moreover, the size of a 

maximum independent set of G is denoted a(G). 

1.4 Ramsey Graphs 

The class of Ramsey graphs, £%(co. a), consists of all graphs that contain no subgraph 

isomorphic to Km, and no independent set of size a, Na. The minimum number of vertices, 

n, for which every graph with at least n vertices contains an induced subgraph isomorphic 

to Ka or Na is called the Ramsey number, denoted R((0, a) = n. 

A common way to introduce Ramsey numbers, using R(3,3) as an example, is to ask 

the question "What is the minimum number of people that must be invited to a party such 

that there are three people who are all mutual acquaintances (each one knows the other 

two) or mutual strangers (each one does not know either of the other two)?" This question 
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can be represented as a graph G. Let the vertices of the graph represent the people at the 

party. If two people know each other, then their corresponding vertices are joined by an 

edge; otherwise, there is no edge present. If there are three people who mutually know 

each other, then this will form a triangle in the graph, or A3. If there are three people who 

are mutual strangers, then this will form a set of three independent vertices in the graph, or 

A3. Now the question becomes what is the minimum number of vertices, n, such that all 

graphs on n vertices either have a £3 or A3. Harary [7] presented Theorem 1.4.1 to establish 

#(3,3) = 6. 

Theorem 1.4.1. (Harary [7]) For any graph G with six vertices, GorG contains a triangle 

as a subgraph. 

Proof. Consider the cycle on five vertices, depicted in Figure 1.1, which is easily seen to 

be a Ramsey graph in ^(3 ,3) . No triangles exist in the cycle C5, so there is no subgraph 

isomorphic to A3. Also, there is no set of three vertices that do not have an edge in C5. 

Thus we say the cycle on five vertices is a Ramsey graph, or C5 G M(3,3). This means that 

#(3,3) > 5, so we must consider graphs with six vertices. The only connected graph on 

six vertices that has A(G) = 2 is the path or cycle on six vertices, but it is clear that three 

independent vertices exist, so A(G) > 3. Considering the neighbors of a vertex v, of degree 

three, if no edge exists between them then there are three independent vertices. Also if an 

edge exists between any two, a triangle exists. Thus there are no Ramsey graphs on six 

vertices and R(3,3) = 6. • 

Figure 1.1: The cycle on five vertices has no A3 or A3. 
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Theorem 1.4.2. (Ramsey 1930 [14] ) For every r G N there exists annEN such that every 

graph of order at least n contains either Kr orNr as an induced subgraph. 

Ramsey [14] proved that for any natural number r, the Ramsey number #(r, r) is finite. 

Few Ramsey numbers are known. From a survey of Ramsey numbers [13], the known 

numbers and best bounds are updated periodically. The known Ramsey numbers are listed 

in Table 1.1. 

Table 1.1: Table of known Ramsey numbers [13]. 

2 
3 
4 
5 
6 

2 

2 

3 

3 
6 

4 

4 
9 
18 

5 

5 
14 
25 

[43,49] 

6 

6 
18 

[35,41] 

7 

7 
23 

8 

8 
28 

9 

9 
36 

10 

10 
[40,43] 

Theorem 1.4.3. (Greenwood and Gleason [6]) R(a>, a) <#( f t ) - l,cu)+#(ft),a 1). 

The Ramsey numbers for #(5,5), #(4,6) and #(3,10) are not known, but we do know 

upper and lower bounds for these. Greenwood and Gleason [6] proved Theorem 1.4.3 

which gives an upper bound on a Ramsey number. The range for the remaining Ramsey 

numbers grows very large as a and ft) increase. 

To determine a particular Ramsey number, the Ramsey graphs with #(ft), a) — 1 vertices 

become a focus. Such graphs are called Ramsey critical. The complete set of Ramsey 

critical graphs are known for the Ramsey numbers #(3,3), #(3,4), #(3,5), #(3,6), #(3,7), 

and #(4,4). Some critical graphs for other Ramsey numbers are known, but we do not know 

if these collections are complete [13]. Many lower bounds for finding Ramsey numbers 

are created by finding a Ramsey graph where there is no Ka or Na on n vertices forcing 

R(co,a) > n. 

Theorem 1.4.4 proves that if a graph H satisfies the clique or independent set for a 

#(ft), a), then any graph G that contains H as an subgraph will also satisfy the clique or 
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independent set. This is useful since searching a subgraph can be considerably faster than 

searching the entire graph. 

Theorem 1.4.4. Let H be an induced subgraph ofG. IfH <£ &((0, a), the G <£ M(a>, a). 

Proof. Let H <£ M((Q, a). Let G be a graph such that H is an induced subgraph of G. 

Since H <£ &((0, a), there exists a Ka or Na subgraph of H. One of the following is true: 

K(o C H C G or the independent set Na in H is also an indpendent set of G. In both cases, 

GG^(ft>,a). • 

Corollary 1.4.5. If there are no &((0, a) graphs on n vertices, then there are no &((0, a) 

graphs on n+l vertices 

The proof of Corollary 1.4.5 is easily seen since there is a A"(B or Na for every graph on 

n vertices, and any graph on n + 1 vertices must also have a Km or Na. 

Lemma 1.4.6. IfG G M(3, a) then G is triangle free and A(G) < a — 1. 

Proof. Suppose G G M(3,a). Since G has no subgraph isomorphic to A3, G is triangle 

free. Suppose A(G) > a — 1. There is a vertex v G V(G) such that d(v) > a. Since G 

is triangle free, no two neighbors of v can be adjacent to one another without forming a 

triangle. This means that N(v) forms an independent set of size at least a, but a(G) < a, 

a contradiction. Thus G is triangle free and A(G) < a — 1. • 

1.5 Dissertation Overview 

An overview of the dissertation is provided here discussing the results found. Ramsey 

theory can be applied to many areas in mathematics and computer science. A survey of the 

applications of Ramsey theory include topics from algebra to theoretical computer science 

[16]. 

There are very few Ramsey numbers for which the exact value has been calculated. 

The most likely unkown Ramsey number to be determined next is #(5,5). The best known 
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bounds are 43 < #(5,5) < 49. Since there are approximately 10208 nonisomorphic graphs 

on 42 vertices [8], a brute force approach of searching all graphs on 42 vertices is not 

feasible with current computational resources. The research presented in this dissertation 

reduces the number of graphs that must be tested and provides a framework that shows a 

common structure among graphs in ^ (5 ,5) . 

Ramsey [14] started the work in this area in 1930 by proving that for any a, ft) G N 

there is a minimum number n such that every graph G on n vertices has either a Ka or Na. 

While we know these numbers exist, and can find a range where they will be, finding the 

exact value of n has proved to be intractable. 

Chapter 2 discusses patterns that are found in various Ramsey graphs. These patterns 

were discovered by creating algorithms to find all the Ramsey graphs for certain values of 

a and ft). Due to the computation complexity of the algorithms developed, the resources 

of the Louisiana Optical Network Initiative (LONI) were utilized. Then the graphs found 

were analyzed for a common structure between the set of Ramsey numbrers. The analyzed 

classes were #(3,3), #(3,4), #(3,5), #(3,6), and #(4,4). The analysis is summarized in 

the tables showing the relation of the number of Ramsey graphs based on the vertices and 

edges. 

Greenwood and Gleason [6] proved #(3,4) = 9 in 1955. Their proof found a maximal 

Ramsey graph and used bounds on #(3,4) to show that no larger Ramsey graphs exist. An 

independent proof of #(3,4) is shown in this dissertations by using the property that every 

graph G G ^(3 ,4) has a spanning tree, and extensions from all possible spanning trees are 

done to find the complete list for ^ (3 ,4) . Instead of using a brute force approach on all 

spanning trees, Chapter 3 shows that Ramsey graphs with at least five vertices must have 

a Hamilton path or be a tree, so the paths #5, #5, #7, Pg, and #9 are the only initial trees 

needed. These paths are then extended until all graphs in ^(3 ,4) are found. 

By showing that the list of all graphs in ^(3 .4) has been found, in Chapter 4, we show 

that no Ramsey graphs on nine vertices are possible. This being the smallest such number 
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leads to an independent proof of #(3,4) = 9. In Chapter 5, we show how to extend the 

method created here to aid in finding #(5,5). In particular, we show that all graphs in 

^(5 ,5) having 42 vertices are Hamiltonian that are also 14-connected. 



CHAPTER 2 

OBSERVATIONS OF RAMSEY GRAPHS 

2.1 Introduction 

A graph G is in the family of Ramsey graphs, denoted &((0,a), if G contains no 

induced subgraph isomorphic to Ka or Na. The Ramsey number #(ft), a) is the minimum 

number of vertices such that every graph with at least #(ft),a) vertices has an induced 

subgraph isomorphic to Ka or Na. Ramsey [14] showed that the number #(&),a) exists 

for any ft), a G N. Thus, there are a finite number of Ramsey graphs since there are a finite 

number of graphs up to a set number of vertices. Hence, all Ramsey graphs in M((0,a) 

will have at most #(ft), a) — 1 vertices. 

Using the algorithms developed in this chapter, each Ramsey number #(3,3), #(3,4), 

#(3,5), #(3,6), and #(4,4) was tested by determining all necessary graphs up to #(ft), a) 

vertices. This evaluation determines if a graph contains a Km or Na and is summarized in 

the tables at the end of Section 2.3. 

2.2 Parallel Algorithms 

A computer algorithm was developed to find the Ramsey graphs to analyze. Due to 

the number of graphs that needed to be searched, a regular computer was insufficeint to 

run the program. By parallelization, the algorithm was able to search through many more 

graphs than on a single computer. The main computer used in this dissertation was part 

of the Louisiana Optical Network Initiative (LONI) system. LONI consists of five Power5 

575 AIX clusters, six five teraflop Dell Linux clusters, and one Dell 50 teraflop Linux 

cluster. By using the P5 supercomputers, the computation for testing graphs with a higher 

9 
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number of vertices became feasible. For example, to test J?(4,4) on 18 vertices, it took 

eight nodes, 64 processors, on a Power5 495684 seconds = 139.69 hours = 5.73 days. If 

this test was performed on a single processor, an estimated time of approximately one year 

of continuous operation would be needed. 

Brendan McKay developed a graph generation program called nauty[l0]. Nauty can 

generate all graphs up to isomorphism with a maximum of 32 vertices. This limit is based 

on how a graph is stored in the program. A graph is represented in the bit-level of an integer, 

which is four bytes or 32 bits. Nauty can be passed many parameters in the generation 

of graphs. The parameters are passed to nauty when the program is called for a given 

vertex class. These parameters include connectivity, the edge range, minimum degree, and 

maximum degree. For example, we know from Lemma 1.4.6 that for every G G &(3, a), 

G has a maximum degree of a — 1, so we can instruct nauty to only generate graphs with 

A(G) < a — 1. Any other restrictions based on the class &{(D,a) can be passed as a 

parameter to nauty to reduce the number of graphs that will be tested. 

Since the algorithms used to test a graph are independent, graphs can be tested in paral­

lel to speed up computation time. Many methods were developed to optimize the program, 

but Algorithm 2.1 is what lies at the core of the program. The computational complex­

ity of the algorithm allows the generation of graphs on a small number of vertices, but is 

not feasible for larger numbers of vertices due to the large number of graphs that must be 

tested and given current computational resources on LONI. A parallelized version of the 

algorithm was used to create the tables in Section 2.3. Even with parallezation, the number 

of graphs that must be tested grows too fast to be feasible on current computer hardware. 

LONI is very useful extending the feasibility, but the exponential growth in the number of 

graphs as vertices increase is too much for the current hardware available. 

Nauty is able to generate all graphs up to isomorphism on up to 32 vertices. A graph 

with a small number of vertices, about 10 to 15 depending on conditions of the graphs, 

works well on a regular laptop or desktop computer, but the growth of the number of graphs 
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as vertices increase make continuing computation this way infeasible. In order to test all 

graphs on a higher number of vertices in a reasonable amount of time, parallelization was 

developed to increase the computational speed. 

Algorithm 2.1 Test all graphs on |V(G)| vertices for M((0, a). 
FUNCTION CreateListRwa( ft), a ) 

int i = 1; 
repeat 

|V(G)|=i; 
for every G on |V(G)| vertices do 

if NOTTestRwa(G,ft),a) then 
ListRwa[|V(G)|].Add(G); // Add G to list 

end if 
end for 
++i; 

until List[i-l].Size() = 0 
LisfRwa.PrintO; // All graphs in M((0, a) 

ENDFUNCTION 

The first step of parallelizing the program finds independent sections that run simulta­

neously with minimal communication. By partitioning the graphs of a vertex class, we can 

test several partitions in parallel. The partitioning is done through nauty in such a way that 

no two partitions have an isomorphic graph, but the partitions may vary in size. Once the 

graphs are partitioned into separate classes, each processor needs to be assigned a set of 

partitions to test. These assignments can be done statically or dynamically. 

A static allocation assigns each processor approximately the same number of partitions 

and requires no communication time other than the collection of the results at the programs 

completion. However, this does not work well for speeding up the program since each 

graph can vary on the number of computation cycles required to determine if the graph is 

in 3%{(Q, a) or not. This leads to some processors working on its assigned partitions while 

the other processors sit idle. 

By creating a Master Thread, shown in Algorithm 2.2, to dynamically allocate parti­

tions to processors, the idle time can be reduced. The Master Thread coordinate with all 
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the computation nodes to test for Ramsey graphs. One modification to Master Thread is to 

sort the size of the partitions to increase efficiency. While the size of the partition is not di­

rectly related to the time it takes to test it, it usually is a good indicator. Since the partitions 

are not necessarily similar in size, initially the graphs are counted in each partition with­

out being tested. This produces a slight amount of extra work, but the time used counting 

graphs is negligible compared to testing each graph. The partitions are sorted by size and 

the Master Thread assigns each processor a partition starting with the largest partition size. 

This is done since the smaller partitions will be assigned to processors as they become idle 

and thus will reduce processor idle time. After all partitions have been tested, the results 

are collected and summarized by the Master Thread. 

Algorithm 2.2 Master Thread controls the program. 
FUNCTION Master Thread( (Q,a,&) 

np := number of processors; 
nc := 100 * np; 
int class = 0; 
// Send initial class to each processor to test. 
for each processor do 

Send( pid, class); 
++class; 

end for 
// Wait for a processor to finish and then send new class to test. 
repeat 

Receive(p); 
Send(p, ^[class]); 
-H-class; 

until class == nc; 
// Wait for all processors to finish. 
for each remaing processor do 

Recieve(p); 
Send(p, "STOP"); 

end for 
// Collect all graphs found from processors. 
CollectGraphs(); 

ENDFUNCTION 



13 

The Compute Node, shown in Algorithm 2.3, does most of the computation. First, it 

gets the initial partition of graphs to test from the Master Thread. Each graph is tested to 

determine if the graph is the Ramsey class of graphs set by the initial parameters. When a 

Compute Node is finished with its partition, the Master Thread is contacted for a new class 

to test. This process is repeated until the Master Thread finishes assigning all classes and 

orders the Compute Node to stop. When all Compute Nodes are finished, the data collected 

is sent to the Master Thread for summarizing. 

Algorithm 2.3 Compute Node takes instruction from Master Thread. 
FUNCTION Compute Node( ft), a ) 

Receive(Jf); 
repeat 

for every graph G in M' vertices do 
if NOTTestRwa(G,G),a) then 

ListRwa.Add(G); // Add G to list 
end if 

end for 
Send(Master Thread) 

until Receive(JT) == "STOP" 
Returnlnfo(ListRwa); 

ENDFUNCTION 

These methods work well for computationally intensive programs that do not need 

much communication. The only communications required are integers representing a class 

and its size between the Master Thread thread and the processors. With enough graphs 

in each partition, the communication time is minimal compared to the computation time. 

Where np is the number of processors, usually around 100 *np partitions would result in a 

good parallel speedup. 

The P5 computers for LONI contain 14 nodes with eight processors on each node. The 

wall clock time, maximum time to run a program, on LONI is limited to one week. If we 

tested all graphs on n vertices and the program took five days, it can easily break the wall 

clock time on n + 1 vertices and the program will be shut down automatically. So another 

layer of parallelization was developed to test vertex classes that would take longer than one 
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week. At this level, the partitions created as before remain the same, but more partitions 

are created initially since many more graphs need to be tested. When running the program, 

a subset of the total partitions will be tested to fit in the wall clock time. Suppose we create 

5000 partitions to test. If we would run the program as before, the wall clock time would 

ellapse and kill the program. A job is created that would take the subset of partitions from 

0 to 1000 to be tested in one program. Four other jobs would also be created to test all the 

partitions in the set. In this way, a program that would have taken five weeks can still be 

done without violating the wall clock time by spreading the jobs out over the network. The 

number of partitions and jobs that must be created are highly variable based on the vertex 

class and any restrictions that can be placed on the graphs needed. 

2.3 Tables for Ramsey Graphs 

Tables 2.1 through 2.5 show the number of Ramsey graphs for each vertex and edge 

class for the Ramsey numbers R(3,3), R(3,4), R(3,5), R(3,6), and R(4,4). The tables are 

organized in a matrix where the columns are vertex classes, rows are the edge classes, and 

each cell has the number of Ramsey graphs for that particular vertex and edge class. The 

bottom row is the number of Ramsey graph for each vertex class. The right column is the 

number of Ramsey graphs for each edge class. Summing the total, the total number of 

Ramsey graphs for each Ramsey number is found in the bottom right corner. 
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Table 2.1: Distribution of ^(3 ,3) graphs. R(3,3) = 6. 

R(3,3) 

E 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 

1 
1 

1 

2 
1 
1 

2 

3 

1 
1 

2 

4 

1 
1 
1 

3 

5 

1 

1 

6 

0 

Total 
2 
2 
2 
1 
1 
1 
0 
9 

Table 2.2: Distribution of ^(3 ,4) graphs. R(3,4) = 9. 

R(3,4) 

E 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
1 

1 

2 
1 
1 

2 

3 
1 
1 
1 

3 

4 

1 
2 
2 
1 

6 

5 

1 
2 
3 
2 
1 

9 

6 

1 
1 
4 
4 
3 
1 
1 

15 

7 

1 
2 
3 
2 
1 

9 

8 

1 
1 
1 
3 

9 

0 

Total 
3 
3 
4 
5 
5 
6 
6 
5 
4 
3 
2 
1 
1 

48 



Table 2.3: Distribution of ^(3 ,5) graphs. R(3,5) = 14. 

R(3,5) 

E 
d 

8 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1 
1 

1 

2 
1 
1 

2 

3 
1 
1 
1 

3 

4 
1 
1 
2 
2 
1 

7 

5 

1 
2 
3 
4 
2 
1 

13 

6 

1 
3 
6 
8 
7 
4 
2 
1 

32 

7 

1 
2 
7 
13 
17 
15 
10 
4 
1 
1 

71 

8 

1 
1 
5 
13 
27 
39 
41 
27 
15 
6 
2 
1 
1 

179 

9 

1 
3 
11 
28 
59 
73 
62 
33 
14 
4 
2 

290 

10 

1 
2 
10 
32 
69 
86 
65 
32 
12 
3 
1 

313 

11 

' 

1 
6 
19 
31 
30 
13 
4 
1 

105 

12 

1 
2 
5 
2 
2 

12 

13 

1 
1 

14 

0 

Total 

4 
4 
6 
9 
14 
18 
26 
35 
47 
61 
74 
89 
99 
100 
104 
102 
76 
53 
43 
33 
15 
6 
6 
2 
2 
0 
1 

1029 
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Table 2.4: Distribution of ^(3 ,6) graphs. R(3,6) = 18. 

R(3,6) 

E 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

7 

1 
3 
7 
13 
20 
20 
18 
11 
5 
1 
1 

100 

8 

1 
3 
10 
23 
44 
63 
73 
63 
40 
21 
9 
3 
2 
1 

356 

9 

1 
2 
8 
26 
70 
142 
234 
284 
267 
185 
106 
47 
22 
8 
3 
1 
1 

1407 

10 

1 
1 
5 
16 
60 
175 
451 
864 
1255 

1344 

1114 

707 
377 
167 
71 
28 
13 
4 
2 
1 
1 

6657 

11 

1 
3 
16 
64 
265 
900 
2353 

4444 

6134 

6239 

4823 

2885 

1405 

565 
206 
64 
20 
6 
2 

30395 

12 

1 
4 
20 
119 
644 
2693 

7968 

16445 

23986 

25267 

19704 

11672 

5404 

2016 

630 
169 
41 
8 
1 

116792 

13 

1 
4 
45 
375 
2402 

10176 

27975 

51188 

64221 

56809 

36312 

17208 

6189 

1729 

377 
66 
8 
1 

275086 

14 

1 
16 
177 
1588 

8494 

27013 

53157 

67224 

56478 

32235 

12784 

3550 

699 
94 
9 
1 

263520 

15 

1 
7 
101 
822 
3998 

10910 

17552 

16896 

9957 

3587 

794 
100 
7 

64732 

16 

5 
39 
200 
547 
803 
634 
275 
62 
11 

2576 

17 

2 
3 
2 
7 

Total 

5 
5 
8 
13 
23 
37 
60 
99 
170 
290 1* 

493 

841 % 
1422 

2369 

3925 

6252 

9561 

14637 

21813 

29345 

36878 

48273 

63247 

71279 

67340 

63963 

70543 

73555 

59037 

36611 

23760 

21110 

17601 

10090 

3796 

1342 

903 
641 
275 
62 
13 
3 
2 

761692 
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Table 2.5: Distribution of ^(4 ,4) graphs. R(4,4) = 18. 

R(4,4) 

B 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
It 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

... 8 

1 
3 
11 
38 
111 
244 
398 
467 
398 
244 
111 
38 
11 
3 
1 

2079 

9 

1 
1 
5 
18 
73 
257 
768 
1719 

2831 

3355 

2831 

1719 

768 
257 
73 
18 
5 
1 
1 

14701 

10 

1 
5 
34 
177 
814 
2963 

8193 

16396 

23270 

23270 

16396 

8193 

2963 

814 
177 
34 
5 
1 

103706 

11 

1 
7 
72 
546 
3201 

13695 

41553 

87361 

126742 

126742 

87361 

41553 

13695 

3201 

546 
72 
7 
1 

546356 

12 

8 
177 
1906 

13332 

58131 

163757 

302088 

370368 

302088 

163757 

58131 

13332 

1906 

177 
8 

1449166 

13 

20 
535 
6339 

37825 

127138 

257711 

325095 

257711 

127138 

37825 

6339 

535 
20 

1184231 

14 

40 
872 
6247 

20901 

37348 

37348 

20901 

6247 

872 
40 

130816 

15 

13 
96 
211 
211 
96 
13 

640 

16 

2 

17 

1 

3 
3 
4 
8 
9 
15 
23 
34 
51 
83 -
124 
196 
320 
500 
737 
1175 

1998 

3119 

4207 

5806 

9922 

17237 

24073 

26544 

30109 

49751 

90333 

127734. 

128825 

100727 

99689 

177453 

305289 

370934 

302695 

170103 

95957 

140470 

259617 

325272 

257719 

127178 

38697 

12586 

21436 

37368 

37348 

20901 

6247 

872 
53 
96 
211 
211 
96 
13 

3432184 
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2.4 Analyzing Ramsey Graphs 

An analysis of each table reveals several patterns which are present in each class of 

Ramsey numbers. This section will look at R(3,5) in detail, but the patterns hold for the 

other Ramsey numbers. 

Figure 2.1 shows a perspective with regard to the number of Ramsey graphs. The 

distribution is formed by plotting the number of graphs on each vertex class of ^(3 ,5) . 

Notice how on 11 and 12 vertices the number of Ramsey graphs falls dramatically. We 

can use Theorem 1.4.4 and a complete list of Ramsey graphs on a vertex class past the 

maximum to find the ramsey number with less computation than testing all graphs up to 

R((a,ct) vertices. By having the list, each graph can have a vertex added in all possible 

ways to find the list of Ramsey graphs on the next vertex class. When a vertex class is 

reached where adding any vertex will form a Ka or Na, we will have the Ramsey number. 

350 

300 

250-

>• 15S 

103 

50 

,«l l 
1 2 3 4 5 8 7 8 9 1011121314 

Vertices 

Figure 2.1: The hill over vertices for ^(3 ,5) . 

Observing that the maximum occurs at |Vj = 10, we isolate the Ramsey graphs in 

^"(3,5) having exactly 10 vertices, considering how the graphs are distributed by the num­

ber of edges in each Ramsey graph. The plot is depicted in Figure 2.2. When plotting with 

vertices for ft) = a, the maximum is on the edge class [hf J = ["'"4~ ' \ where n is the vertex 

class. The edges classes surrounding [" 4 J ±x are symmetric since if G is in ^(3 ,4) , 
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then G is also in ^ (3 ,4) when ft) = a. For the Ramsey numbers M{3,3), ^(3 ,4) , ^(3 ,5) , 

\E\ 

and ^(3 ,6) in the tables shown, the maximum is less than or equal to '-j-. 

100 

90 

^ 60 - , 
ra « 

ra 30 i 
£E 

20 

10 I I 
1011121314151617181920 

Edges 

Figure 2.2: The hill over edges for vertex class 10 of ^(3,5) 

In a plot where the vertex classes and edge classes form a plane with the height being 

the number of Ramsey graphs for that vertex and edge class, this 3-dimensional plot looks 

similar to a mountain (Figure 2.3). This pattern appears in all the tables listed. When 

ft) = a, such as ^(4 ,4) the mountain is symmetric since if G G ^(4,4) then G E ^"(4,4) 

also. As with the vertex class, after the peak of the mountain the number of Ramsey graphs 

in each edge class drops fast. 
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O 

w 

Row 35 
Row 33 

Row 31 

Row 9 
1 2 3 4 5 6 7 8 8 10111213 Edges 

Vertices 

Figure 2.3: The mountain for ^(3 ,5) . 



CHAPTER 3 

HAMILTON PATHS IN GRAPHS IN ^(3,4) 

3.1 Overview 

The Ramsey number, R(3,4), is defined to be the minimum number n such that any 

graph with at least n vertices has an induced subgraph isomorphic to KT, or A/4. The class 

^ (3 ,4) contains all graphs having no induced subgraphs isomorphic to A3 or A/4. From 

the class ^ (3 ,4 ) , the Ramsey number R(3,4) can be easily obtained by finding a graph 

G in ^(3 ,4) with the maximum number of vertices among all graphs of ^(3 ,4) . In this 

case, R(3,4) = \V(G)\ + 1 = 8 + 1 = 9 . The main result of this dissertation summarized in 

Theorem 3.1.1 by showing the complete family of ^(3 ,4) . 

To prove Theorem 3.1.1, we will first determine the disconnected graphs. A conse­

quence of this process will also allow us to show the list of graphs G in ^(3,4) where the 

independence number of G is one or two. In Section 3.4, we will prove that any connected 

graph in &(3,4) that is not a tree will have a Hamilton path. This is used to prove Theorem 

4.2.1 which establishes the complete list of graphs G where a(G) = 3. Combining these 

results will show the list of graphs represented in Figure 3.1 to be ^(3 ,4) . Also, since the 

list is complete and the maximum number of vertices of any graph in ^(3 ,4) is eight, we 

get an independent proof for R(3A) = 9. 

22 



23 

Theorem 3.1.1. IfG E ̂ (3 ,4) , then G is isomorphic to a graph depicted in Figure 3.1. 

S\ 
Gi,o 

• — • 

G 4 , 2 

G 2 , 0 

• 

G 4 , 2 

G 2 , l 

A 
G 4 , 3 

G 3 , 0 

n 
G 4 , 3 

G 3 , l 

n 
G 4 ,4 

G 3 ,2 

• 
• • 
• • 

G 5 ,2 

G 4 , l 

•—•—• 

G 5 .3 

u n 
G 5 , 3 G 5 ,4 G 5 .4 G 5 .4 G 5 , 

G i , 5 GL 

G 6 ,3 G 6,4 

n 
G 6 , 5 Gh < & 

" T 
i i i t 

G 6,5 G 6,6 

G 6 ,6 

• 
Gl6 GL 76,7 G 6 ,7 G 6,7 

G 6 ,9 

o 
77.6 77.7 

o * 
G 7 ,7 '7,8 G7,i 

*—4 

G 7,8 

G 7 ,9 G 7 . 9 G 7 10 G8.10 G8.11 G8,12 

Figure 3.1: Complete list of graphs in ,^(3,4). 
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The following two straightfoward lemmas reveal some of the structure for graphs in 

^(3 ,4) and will be used in the proof of Theorem 3.1.1. Lemma 3.1.2 says that all graphs 

in ^"(3,4) are triangle free and have maximum degree of three and is easily derived from 

Lemma 1.4.6. 

Lemma 3.1.2. IfG E ̂ (3 ,4) then A(G) < 3 and G triangle free. 

Lemma 3.1.3. Let H be a spanning subgraph ofG such that H <£ ^ (3 ,4) and G E ^(3,4) . 

If S is an independent set of size four in H, then there is a pair {x, y } C 5 such that xy E 

E(G). 

Proof. Let H be a spanning subgraph of G such that H (£ ^ (3 ,4) and G E ̂ (3 ,4) . H is 

triangle free since H C G and G is triangle free. Thus a(H) > 4. Since a(H) > 4, there 

is an independent set S of size four in H. Suppose that for every {x,y} C 5 there is no 

edge xy E E(G). This means that the independent set S in H is also an independent set 

in G, but a(G) < 4 and |5| > 4, a contradiction. Thus there is a pair {x,y} C S such that 

xyEE(G). • 

Lemma 3.1.3 focuses on subgraphs H not in ^(3 ,4) of a graph G in ^(3 ,4) . For any 

independent set S of size four in H, an edge must exist in that set in E(G). This is used in 

the proofs of Theorem 3.4.2 and Theorem 4.2.1. It does not matter if larger independent 

sets exist since a larger independent set will consist of multiple independent sets of size 

four. 

The graphs depicted in Figure 3.1 are organized notationally by the number of vertices 

and edges. Specifically, we write Gjy, ,£, where |V| is the number of vertices, \E\ is the 

number of edges, and / is an index number for classes with more than one ^?(3,4)-graph 

with |V| vertices and \E\ edges. 
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3.2 Disconnected Graphs for M(3A) 

Let G\ and G2 be components of G, where u EV(G\) and v E V(G2). Since u and v 

are in different components of G, there is no wv-path in G. This also means that u and v 

are independent vertices in G. Since a vertex in one component will always be independent 

from all vertices not in that component, the graphs in ^(3 ,4) have a maximum of three 

components; otherwise, such a graph will have four independent vertices. By finding all 

connected graphs G in ^(3 ,4) with a(G) < 2, we can find all the disconnected graphs 

in ^(3 ,4) . Lemma 3.2.1 characterizes all connected graphs with a(G) = 1, and Lemma 

3.2.2 characterizes all connected graphs with a(G) = 2. Using these two lemmas, we prove 

Theorem 3.2.3 which provides the list of all G E ^(3 ,4) where G is disconnected. 

Lemma 3.2.1. Let G be a connected graph with a(G) = 1. Then G E ^(3,4) if and only 

ifG is isomorphic to K\ or K2 depicted in Figure 3.2. 

A ! = G 1 0 ^ 2 = G 2 ) ] 

Figure 3.2: List of connected ^(3 ,4) graphs with a(G) = 1. 

Proof. It is easy to see that K\ and K2 are in M(3A) and a(K\) = a(K2) = 1. Let G E 

M(3A) be connected and a(G) = 1. Since a(G) = 1, G must be isomorphic to a complete 

graph; otherwise, if xy ^ E(G), then x and y are independent and a(G) > 1. If |V(G)| > 3 

and G is a complete graphs, then G ̂  ^"(3,4) since G would contain a subgraph isomorphic 

to K3. Thus, \V(G)\ = 1 or \V(G)\ = 2, which are the graphs K\ = G\ 0 and K2 = Gl
2A. • 
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Lemma 3.2.2. Let G be a connected graph with a(G) = 2. Then G E ̂ (3 ,4) if and only 

ifG is isomorphic to P3, P4, C4, or C$ depicted in Figure 3.3. 

/x n • o 
Pl = G\2 P4 = G{3 C4 = Gl

44
 G5 = G i , 5 

Figure 3.3: List of connected R(3,4) graphs with a(G) = 2. 

Proof. It is easy to see that P3, P4, C4, and C5 are in M(3A) and each has exactly two 

independent vertices. So, let G be a connected graph with oc(G) = 2. Let us consider the 

maximum degree of G. If A(G) = 0 or A(G) = 1 then either G = Kx or G = K2, both of 

which have a(G) = 1, a contradiction. Thus suppose A(G) = 2. From Corollary 1.2.3, if 

G is a tree then G must be a path. The only paths that have an independence number two 

are P3 = G\ 2 and P4 = G\ 3. Thus suppose G must not be a tree. Since A(G) = 2 and G is 

not a tree then G is a cycle. Similarly, there are two cycles with an independence number 

two, namely C4 = G\A and C5 = G|5 . Finally, for A(G) > 3, there is a vertex v E V(G) 

such that d(v) > 3 and the neighborhood of v has at least three independent vertices since 

G is triangle free. Hence G must be isomorphic to ^3, P4, C4, or C5. D 

Theorem 3.2.3. Let G be a disconnected graph in ̂ "(3,4). Then G is isomorphic to one of 

the graphs depicted in Figure 3.4. 

0 0 0 

Proof. Let G be a disconnected graph in ^(3 ,4) such that G = G\ (J G2 U • • • U Gn where 

G/ are components of G. Since oc(G) < 4 and the components of G are disjoint, n < 3; 

otherwise, G would not be in the class ^ (3 ,4) since vertices in different components of G 

are independent. This means a(G]) + oi(G2) = oc(G) or a(G\) + a(G2) + a(G?,) = a(G). 

Suppose a(G\) + a(G2) + a(Gs) = a(G) < 4, it is clear that a(G\) = a{G2) = a(G3) = 1. 

Thus the components of G must be disjoint unions of graphs from Lemma 3.2.1. The 

disjoint unions are Kx {JKX [jKx =• G\ 0, KX (jKx (]K2 ^ G\A, KX (}K2(jK2 9* Gl
52, and 
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K2\JK2\JK2 = Gg3. This covers the cases where G has exactly three components, so 

now suppose G has exactly two components which are the following two cases. (1) Let 
o 

G = Gi UG2 have a(Gi) = a(G2) = 1. Again we use the graphs found in Lemma 3.2.1 

to find G to be Kx \JKX 9* G20, K{ {JK2 = G\A, or K2(jK2 = G\2. (2) Let a{G\) = 1 and 

a(G2) = 2. Similarly, we can use disjoint unions of the graphs such that G\ is from Lemma 
o 

3.2.1 and G2 is from Lemma 3.2.2. If G\ = Kx we have G isomorphic to Kx \JP3 9* G\2, 

Kx {JP4 ^ G]J3, KI UC4 = G\4, or ^ UQ> = G2
65. If G] = K2 we have G isomorphic to 

K2[jP3 = G\_3, K2{JP4 = G\4, K2{JC4 = Gl5, or K2\JC5 = G» 6. Thus the case for G 

having two components is complete. No analysis for one component is needed since a 

component is connected. Hence the graphs depicted in Figure 3.4 are all the disconnected 

graphs in ^(3 ,4) . • 

G 3 ,0 G 4 , l G 5 ,2 G 6.3 

G 2,0 G3.1 G4,2 

u n 
G 4.2 G 5,3 G5,3 G 5.4 

n o 
G6,4 G 6,5 G 6,5 G7,6 

Figure 3.4: List of disconnected ^(3,4) graphs. 

Thus we have characterized all disconnected graphs in ^(3 ,4) . Also we have shown 

all connected graphs G in ^(3 ,4) where a(G) = 1 and a(G) = 2. In the remainder of the 

chapter we assume that G E ̂ (3 ,4) is connected and a(G) = 3. 
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3.3 Trees with A(T) < 3 

Every connected graph G has a spanning subgraph T that is a tree that contains all the 

vertices of G. These trees are called spanning trees. The proof of ^(3 ,4) uses this property 

to find the complete list of graphs G in M(3A) where «(G) = 3. By extending all possible 

trees in all possible ways on a given number of vertices, the complete list of ^(3 ,4) can 

be found on that number of vertices since any graph G in ^(3 ,4) would have one of these 

spanning trees. The main result of this section is Theorem 3.3.1 which shows the list of 

trees up to nine vertices with a maximum degree of three. 

Theorem 3.3.1. IfT is a tree such that |V(JT)| < 9 and A(T) < 3, then T is isomorphic to 

a graph depicted in Figure 3.5. 

Proof. First, Lemma 3.3.2 shows all trees with a maximum degree of three up to six ver­

tices. After this, Lemma 3.3.3, Lemma 3.3.4, and Lemma 3.3.5 show the list of trees with 

a maximum degree of three for seven, eight and nine vertices respectively. By combining 

these four lemmas, we get the trees depicted in Figure 3.5. • 

To help prove the lemmas, we define Mp to be a maximum path in the tree T. The 

proofs for the following lemmas are similar. The main case is when A(T) = 3, which will 

be broken down into cases based on a longest path in the tree, Mp. The remaing vertices 

must be attached to the maximum path Mp. The leaf vertices of Mp cannot be part of the 

attachment since this will have a longer maximum path in T. Based on how many vertices 

must be attached and how many vertices in Mp have degree three, the different possible 

attachments will find all the possible trees. By looking at each case up to isomorphism, the 

graphs in Figure 3.5 will be shown to be complete. 
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Figure 3.5: All trees up to nine vertices with A(T) < 
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Lemma 3.3.2. IfT is a tree such that 1 < |V(T)| < 6 and A(T) < 3, then T is in Figure 

3.6. 

^ A n X 
P\ Pi P3 T4

l P4 T5
l 

O X >~ A LI 
5̂ # Ti T3 P6 

Figure 3.6: Trees up to six vertices with A(T) < 3. 

Proof. Let T be a tree with at most six vertices. It may be worth noting that this tree is a 

connected graph. If A(r) < 2 we can use Corollary 1.2.3 to show that T must be a path. 

The trees up to six vertices with A(T) < 2 are Pi, P2, P3, P4, P5, and P$. Now we may 

assume that A(r) = 3. We may also assume that |V(r)| > 4 since the only graph that is 

not a path with fewer than four vertices is #3. 

Suppose A(r) = 3 and |V(r) | = 4. The length of a maximum path Mp of T must be 

exactly three. Let Mp = v\v2vi,. The vertex V4 can only be attached to v2 without creating a 

longer maximum path. Thus, the resulting graph is isomorphic to T4 . Now we may assume 

that |V(r) | > 5 . 

Suppose |V(r) | = 5. The length of the maximum path Mp of T must be exactly four. 

Let Mp = V1V2V3V4. The vertex V5 can be attached to v2 or V3 without creating a longer 

maximum path. Both of the resulting graphs are isomorphic to T^. Now we may assume 

that |V(r)| = 6. 

Suppose |V(7)| = 6 . The length of the maximum path Mp of T can be either four or five. 

Suppose Mp = V] V2V3V4. The vertices V5 and V6 must be attached to Mp without creating a 

longer maximum path. If V5V6 E E{T), then any attachment to Mp would result in a longer 

maximum path. Thus V5V6 ^ E(T). Since A(T) = 3, the only graph up to isomorphism is 
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formed by adding the edges V2V5 and V3V6. The resulting graph is isomorphic to r6L Now 

we Suppose Mp = V1V2V3V4V5. The vertex V(, must be attached. The attachment by adding 

the edge V2V(, or V4V6 forms the tree T^. The other attachment by adding the edge V3V6 

forms the tree T6
3. Thus if T is a tree such that 1 < |V(r)| < 6 and A(T) < 3, then T is in 

Figure 3.6. • 

Lemma 3.3.3. If T is a tree such that \V(T)\ = 7 and A(T) < 3, then T is in Figure 3.7. 

X 
1i 

T4 
11 

Figure 3.7: Trees on seven vertices with A(T) < 3. 

Proof. Suppose T is a tree such that |V(T)| = 7 and A(T) < 3. From Corollary 1.2.3 we 

know if A(7) < 2 then T would be isomorphic to Pj. Thus we may assume A(T) = 3. Let 

Mp be a maximum path in T. 

The length of the maximum path Mp of T can be at most six. Now, suppose Mp = 

V1V2V3V4V5V6. Exactly one vertex, v-j, in V(T) that does not lie on Mp. Adding an edge to 

vi or V6 will result in a longer maximum path. Thus exactly one vertex in {v2,V3,v4,V5} 

can have degree three to attach v-/. The graph formed by adding V2V7 or V5V7 is isomorphic 

to T3. The graph formed by adding V3V7 or V4V7 is isomorphic to T7
4. Now Mp can be at 

most five vertices. 

Suppose M/> = V1V2V3V4V5. Exactly two vertices V(,,v-j E V(T) do not lie onMp. Adding 

an edge to v\ or v5 will result in a longer maximum path. Thus at most two vertices in 

{v2,V3,V4} can have degree three to attach V(, and v-j. Suppose v^v-/ E E(T). The graph 

x; 
T2 

T5 

1l 

T3 

Pi 
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formed by adding V2V6, V2V7, V4V6 or V4V7 will result in a longer maximum path. The graph 

formed by adding v^V(, or V3V7 is isomorphic to T7
5. Now we may suppose v^vj £ E(T). 

Since A(T) = 3, exactly two vertices in {v2,V3,V4} have degree three. The graphs formed 

by adding the attachment V(, and v-j up to isomorphism are Tj and T2. 

Now the maximum path can be at most four. However, since A(T) < 3, a longer max­

imum path will be created by attaching the three vertices that do not lie on Mp. Hence the 

graphs depicted in Figure 3.7 are the trees on seven vertices with a maximum degree of 

three. • 

Lemma 3.3.4. IfT is a tree such that \V(T)\ = 8 and A(T) < 3, then T is in Figure 3.8. 

• • i •—•—• -•—•-

• • • 

T 10 

• • 

T> 
Jo 

-•—•—• 

• — • -

Ps 

J o 

Figure 3.8: Trees on eight vertices with A(T) < 3. 

Proof. Suppose T is a tree such that |V(T")| = 8 and A(T) < 3. From Corollary 1.2.3 we 

know if A(T) < 2 then T would be isomorphic to P&. Thus we may assume A(T) = 3. Let 

Mp be a maximum path in T. 

The length of the maximum path MP of T can be at most seven. Suppose Mp = 

v\ V2V3V4V5V6V7. Exactly one vertex, vs, in V(T) that does not lie on Mp. Adding an edge to 

V] or v-j will result in a longer maximum path. Thus exactly one vertex in {v2,V3,V4,vs,V6} 

can have degree three to attach vs. The graph formed by adding v2vs or v^vg is isomorphic 
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to 7g . The graph formed by adding V3V8 or V5V8 is isomorphic to P8. The graph formed by 

adding V4V8 is isomorphic to P8
10. Now Mp can be at most six vertices. 

Suppose Mp = V1V2V3V4V5V6. Exactly two vertices, V7,vs E V(T) do not lie on Mp. 

Adding an edge to vi or V(, will result in a longer maximum path. Thus at most two vertices 

in {v2,V3,V4,V5} can have degree three to attach v-j and v$. Suppose V7V8 E E(G). The 

graph formed by adding V2V7, V2V8, V5V7 or V5V8 will result in a longer maximum path. The 

graph formed by adding V3V7, V3V8, V4V7 or V4V8 is isomorphic to P8
7. Now we may suppose 

V7V8 <£ E(T). Since A(T) = 3, exactly two vertices in {v2,V3,V4,V5} have degree three. 

Suppose V2V7 E E(T). The graph formed by adding V3V8 is isomorphic to P8
2. The graph 

formed by adding V4V8 is isomorphic to P8
4. The graph formed by adding V5V8 is isomorphic 

to Pg
3. Now we suppose V3V7 E E(T). The graph formed by adding V4V8 is isomorphic to 

P8
6. The graph formed by adding V5V8 is isomorphic to a graph in the previous case, P8

4. 

Now suppose V4V7 G E(T). The graph formed by adding V5V8 is isomorphic to a previous 

case, 7g . Now Mp can be at most five vertices. 

Suppose Mp = V1V2V3V4V5. Exactly three vertices, V6,V7,V8 E V(T) do not lie on Mp. 

Adding an edge to vi or V(, will result in a longer maximum path. Thus at most three vertices 

in {v2, V3,V4J can have degree three to attach V(„ v-j, and vs. Without loss of generality, let 

V3V6 E E(T). The vertices vj and vs can be added to {v2,V4,V6} since d(v?,) = 3. Suppose 

V7V8 E E(G). The graph formed by adding V2V7, V2V8, V4V7, V4V8, V(,V], or V(,v% will result 

in a longer maximum path. Now we may assume that V7V8 ^ E(T). Suppose V2V7 E E(T). 

The graph formed by adding V6V8 is isomorphic to P8
5. The graph formed by adding V4V8 

is isomorphic to 7g. Now if we suppose V4V7 E E(T), we would have isomorphic graphs. 

This leaves us to assume v^v-j E E{T). The graph formed by adding V4V8 is isomorphic to a 

previous case, P8
5. The graph formed by adding V6V8 is isomorphic to a previous case, P8

5. 

Now we suppose V3V7 E E(T). Now Mp can be at most four vertices. 

Now the maximum path can be at most four. However, since A(P) < 3, a longer max­

imum path will be created by attaching the four vertices that do not lie on Mp. Hence the 
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graphs depicted in Figure 3.8 are the trees on eight vertices with a maximum degree of 

three. • 

Lemma 3.3.5. IfT is a tree such that |V(P)| = 9 and A(P) < 3, then T is in Figure 3.9. 
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Figure 3.9: Trees on nine vertices with A(P) < 3. 
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Proof Suppose P is a tree such that |V(P)| = 9 and A(P) < 3. From Corollary 1.2.3 we 

know if A(P) < 2 then P would be isomorphic to Pg. Thus we may assume A(P) = 3. Let 

Mp be the maximum path in P. 

The length of the maximum path Mp of P can be at most eight. Suppose Mp is isomor­

phic to Ps and Mp = v\ V2V3V4V5V6V7V8. Exactly one vertex vg E T does not lie on Mp. Since 

d(v\) = d(v%) = 1, there is exactly one vertex on Mp has degree three in P. If v2( or V7) 

has degree three in P, then P = P9
13. If V3( or V6) has degree three in P, then P = P9

14. If 

v4( or V5) has degree three in P, then P = P9
15. Thus the case for a maximum path of eight 

is concluded. 

Suppose Mp is isomorphic to P7 and Mp = vj V2V3V4V5V6V7. Exactly two vertices v$, vg E 

T do not lie on Mp. Since d(v\) = d(v-j) = 1, either one or two vertices on Mp have degree 
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three in P. Suppose one vertex of Mp has degree three in P. Both vertices vs and V9 must 

be attached through the same vertex of Mp. Since A(P) = 3, we know that V8V9 E E(T). 

Without loss of generality, we can assume that d(vg) = 2 in P. If d(v2) = 3(or v^), then a 

longer maximum path would exist in P. If d(v3) = 3(or V5), then P = P9
16. If d{v4) = 3, then 

T ^T11. This concludes one vertex of degree three in P. Suppose two vertices in P have 

degree three. If d(v2) = d(vs) = 3 (or V5 and V(,), then P = P9
5. If d(v2) = d(v4) = 3 (or V4 

andv6), then P = P9
8. If d(v2) = d(v5) = 3 (orv3 and v6), then T^T9\ lfd(v2) = d(v6) = 3, 

then P = P9
6. If J(v3) = d(v4) = 3 (or v4 and v5), then P = P9

12. If d(v3) = J(v5) = 3, then 

T = T9
11. This concludes the case for a maximum path of seven. 

Suppose Mp is isomorphic to P(, and Mp = V1V2V3V4V5V6. There are exactly three ver­

tices V7,V8,V9 E T do not lie on Mp. Since d(v\) = d(v{,) = 1, either one, two, or three 

vertices on Mp have degree three in P. Suppose one vertex of Mp has degree three in P. 

Since vj, vg, and vg must attach to Mp through one vertex, we can assume V7V8 E E{T) 

and V8V9 E E[T) without loss of generality. If d(v2) = 3 (or V5), then a longer maximum 

path would exist in P regardless of how it is attached. Suppose d(vi) = 3 (or V4). If 

V3V7 E E(T)(or V3V9), then the path V9V8V7V3V4V5V6 is longer than Mp. If V3V8 E E(T), then 

P = P9
4. Suppose exactly two vertices of Mp has degree three in P. Clearly two attachments 

to Mp must be made, one of size two, and the other of size one. Without loss of generatlity, 

we assume that V7V8 G E(T) and d(vj) = 2 as one partition and vg as the second partition. 

If V2V7 G E(T)(or V5), then a longer maximum path would exist. Suppose V3V7 G E(T) (or 

V4V7). Now vg must be attached to a vertex in Mp other than vi, V3, or v^. If V2V9 G E(T), 

then P = P9
4, a graph which was found in the previous case. If V4V9 G E(T), then P = T9

l0. 

If V5V9 G E(T), then P = P9
9. This concludes two vertices of Mp have degree three. Suppose 

exactly three vertices of Mp has degree three in P. Clearly three attachments to Mp each of 

size one must be made. If d(v2) = d(v3) = d(v4) = 3 (or d(v3) = d(v4) = d(vs) = 3), then 

P ^ T2. If d(v2) = d(v3) = d{v5) = 3 (or d{v2) = d(v4) = d(v5) = 3), then T^TX. Thus 

the final case for Mp of size six is concluded. 
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Suppose Mp is isomorphic to P5 and Mp = V1V2V3V4V5. There are exactly four vertices 

V6,V7, V8,V9 G P do not lie on Mp. Since ^(vi) = d(vs) = 1, either one, two, three, or four 

vertices on Mp have degree three in P. Suppose exactly one vertex of Mp has degree three 

in P. The vertices v^, v-j,vg, and vg must all be attached through one vertex of Mp. Since 

A(P) = 3, this is impossible to do without creating a longer maximum path. A similar 

argument exists for the case with two vertices of Mp having degree three in P. Suppose 

exactly three vertices of Mp have degree three. The three vertices of Mp with degree three 

must be v2, v3, and V4. The size of the attachments must be one, one, and two since there are 

four vertices and three partitions. Without loss of generality, let vev-j E E(T) and d(v^) = 2. 

The edge V3V6 G E(T) otherwise P would have a longer maximum path. The remaining 

vertices can be attached either way to show T = T9 . If four vertices of Mp had degree three, 

a longer maximum path would exist in P. This concludes the trees with maximum path of 

five. 

Now the maximum path can be at most four. However, since A(P) < 3, a longer max­

imum path will be created by attaching the four vertices that do not lie on Mp. Hence 

the graphs depicted in Figure 3.9 are the trees on nine vertices with a maximum degree of 

three. • 

Using the list proved by Theorem 3.3.1, we will extend these trees in the next section to 

prove Theorem 3.4.2 to reduce the work needed by the main theorem of this dissertation. 

3.4 Trees in ^ (3 ,4) 

In this section we consider the case when G G ^(3,4) is a tree. Let P be a tree in 

M{3A)- From Lemma 3.2.1 and Lemma 3.2.2, the trees for a = 1 and a = 2 are easily 

found. These trees are K\, K2, P3, and P4. The remaining trees in ^(3,4) must have a = 3. 
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Lemma 3.4.1. IfTE M(3A) is a tree and ct(T) = 3, then T is isomorphic to G4 3, G2 

Gg 5, P5, or P(, depicted in Figure 3.10. 

A X. <"? A 
4,3 G5,4 ^5 - G 5 4 G6 g P6 - G65 

Figure 3.10: List of ^ (3 ,4) trees with a(G) = 3. 

Proof. By Corollary 1.2.3, if A(P) < 2, then P is a path. The paths P$ and P(, are the only 

paths with an independence number of exactly three, which are both in the list. Thus we 

may assume A(P) = 3. Let v G V(T) such that d(v) = 3 and let r,s,t E N(v). Removing 
o o 

the vertex v from P, three components will be formed, so let P — v = Tr\JTs{JTt where 

Tr,Ts,Tt are the components that contain the vertices r, s, and t respectively. Since there are 

no edges between components and P G ^(3 ,4) , we know a(Tr) + ct(Ts) + ot(Tt) < 3. This 

means each component can have a maximum independent set of 1. Using Lemma 3.2.1, 

the components can be K\ or K2. We now add v back to get four possible graphs. The case 
o o 

where P — v = K2\JK2{JK.2 will have a(T) ~ 4 as shown in Figure 3.11, so it is not in 

^ (3 ,4) . Thus P —vmustbe isomorphic to oneof G4 3, G2
4, and G^5. Lemma 3.1.2 states 

no graph P exists such that A(P) > 4. This completes the list of connected trees. • 

,1 

/ • \ 

Figure 3.11: The tree P - v = / ^ U ^ U ^ -

Lemma 3.4.1 gives all the trees in ^(3 ,4) with ot(P) = 3. The next theorem will help 

for construction of the remaining graphs in ^(3 ,4) . Any connected graph has a spanning 



38 

tree. If G G ^(3 ,4) , then a(G) < 4, but a spanning tree TEG does not need to have 

a(T) < 4 since E(T) C E(G). This means a(P) > a(G). 

Theorem 3.4.2 will use the tables at the end of the section in its proof to show the graph 

has a Hamilton path. First, we will describe how to interpret the tables and navigate the 

proof. 

The table starts with a list of all trees that have A(P) = 3 from Theorem 3.3.1 and have 

oc(T) > 4. Because a(T) > 4, an edge must be added to every independent set of size four 

to decrease the independence number of the graph to three. In order to understand how to 

read the tables, we will refer to Table 3.1 as an example. The vertices of the tree are labeled 

in the figure on the right side. An independent set S of size four is on the left(and are 

represented by hollow vertices in the graph). From Lemma 3.1.3, an edge must be added 

between two vertices of S. From the four vertices in 5, there are six possible edge additions 

that cover all cases, and the table on the left explains the result of each edge addition. For 

example, in Table 3.1, the goal is to show that an extension of P, T*, will have a Hamilton 

path, a triangle, or a vertex of degree four. If T* has a triangle or vertex of degree four, T* 

will not be a subgraph of any graph in ^ (3 ,4) , and generation may stop on the condition 

listed in Lemma 3.1.2. Generation may also stop when a Hamilton path is found since 

P* will have the same Hamilton path with any further edge additions. Temporary graphs 

#|V| |£i+i m a y De formed where a(HL, \E\+l) > 4, A(G) < 3, and Hl is triangle free. For 

example, by extending all trees to a P* or one of the stopping conditions, we will prove 

Theorem 3.4.2. 

Lets take a look at how the tree T2 in Table 3.1 eventually forms a Hamilton path. 

In Table 3.1, the set S = {A,D,E.G} is independent, and from Lemma 3.1.3, if Tx is a 

subgraph of some G G ^(3 ,4 ) , then there is a pair {x,y} C S such that xy E E(G). We now 

look at the six possible edges formed by S, namely AC, AE, AG, CE, CG, and EG. These 

edges are listed in the left panel of the table, with the result of T2 + e also listed where e 

is a possible edge addition. The graphs T2 +EG creates a triangle EFG, and thus will not 
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be in the class of ^ (3 ,4 ) . The generation along this path stops here. When one of the four 

edges, AE, AG, DE, and DG is added to T2, a Hamilton path is formed and is labeled in 

the result. Since this is the result we are looking for, generation stops since any graph that 

contains this graph will also have a Hamilton path. The remaining edge, AD form a graph 

isomorphic to H2
7. The generation continues on a graph further in the table. 

Table 3.1: Example tree T2. 

T2 

S = {A,D,E,G} 

Add Edge 
AD 
AE 
AG 
DE 
DG 
EG 

Result 
Hii 
Hamilton Path GFEABCD 
Hamilton Path EFGABCD 
Hamilton Path ABCDEFG 
Hamilton Path ABCDGFE 
Triangle EFG 

a > 4 

W 
d^—tT \f 

Continuing to the graph H2
7 in Table 3.2, we have a set S = {B,D,F, G} of four mu-

taully independent vertices. Since a(H2
7) > 4, Lemma 3.1.3 states there must exist an 

edge in the set of a graph in ^ (3 ,4 ) . The possible edge additions are BD, BF, BG, DF, 

DG, and FG. The vertex D has a degree of three, so by adding any edge incident with 

D will make d(D) > 4 contradicting Lemma 3.1.2, so BD, DF, and DG stop generation. 

Adding either edge BF or BG a Hamilton path is formed and is labeled. The final edge, 

FG, results in a triangle formed, so the resulting graph will not be a subgraph of a graph in 

M(3A)- This concludes the part of the proof for a(T2) > 4. This will be used in the next 

section to say that if for G G ^(3 ,4 ) , P is a spanning tree of G such that cc(T) > 4 then G 

has a spanning path. The following tables can be used for the proof of Theorem 3.4.2 and 

can be read in the same way as the above example. 
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Table 3.2: Example of temporary graph H2. 

Hl,l 

S = {B,D,F,G} 

Add Edge 
BD 
BF 
BG 
DF 
DG 
FG 

Result 
d(D) > 4 
Hamilton Path GEFBADC 
Hamilton Path FEGBADC 
d(D) > 4 
d(D) > 4 
Triangle EFG 

a>4 

•\xC 
This leads to the main theorem of this chapter, Theorem 3.4.2, which shows that a graph 

in ^ (3 ,4) is a tree or has a Hamilton path. 

Theorem 3.4.2. Let G E £#(3,4) be connected with at most nine vertices. Ifa(G) = 3 then 

G is a tree or has a Hamilton path. 

Proof. Let G in ^(3 ,4) be connected with at most nine vertices. If G is acyclic, then G 

is a tree. Thus we may assume G is not acyclic. There exists some spanning tree TEG. 

Clearly, there is a set of edges such that G = P + e\ + e2 H \~^n- Since we want to find 

all graphs in ̂ (3 ,4) , we can extend all trees on n vertices to find all graphs in ^(3 ,4) with 

n vertices. The remainder of this proof will focus on the construction of G from the tree P. 

Let P be a tree. If oc(T) < 3 then P must be isomporphic to one of the graphs shown 

in Lemma 3.2.1, Lemma 3.2.2, or Lemma 3.4.1, which all of these graphs have a Hamilton 

path or are a tree. Thus, we may assume oc(T) > 4. 

From Lemma 3.1.3, each independent set of size four in P must have an edge added 

to decrease the independence number. Since every set must have an edge added, the order 

in which the edges are added does not matter, so we may choose any independent set S of 

size four initially. Up to six graphs can be formed from the six possible edge additions. 

By exending all trees found in in this way, we get all graphs G in ^(3,4) with |V(P)| 
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vertices. We start this process on six vertices since trees with fewer vertices will not have 

an independence number of four. 

We are only concerned about graphs in ^(3 ,4) , so we can limit new graphs based on 

necessary conditions to be a subgraph of a graph in 3% (3 A)- There is no need to continue 

generation if addin an edge forms a triangle, a vertex of degree four, or a Hamilton path. 

Also, we only need to search the trees found in Theorem 3.3.1 since any tree not in the list 

cannot be a subgraph of a graph in ^ (3 ,4 ) . 

The arrangment of the Tables 3.3 through Table 3.6 prevents a circular argument. The 

tables are arranged in such a way that |V(G)| is constant throughout the table. The graphs 

are ordered in such a way that \E(Gi)\ < \E(Gi+\)\ where i is the position of the graph on 

the table. For each graph G, two possible results can happen. From an edge addition, the 

generation may terminate if no edge exists that can be added to G to satisfy the necessary 

conditions, for G G ^ (3 ,4 ) . The other case is to add a new graph to the table, namely 

G + e. The new graph will always have exactly one more edge than G. By only advancing 

foward to a graph with exactly one more edge, we will not encounter a circular logic since 

all generations terminate in the end. • 
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Table 3.3: G in ^(3 ,4) contains a Hamilton path on six vertices. 

IEI = 5 

n 
S = {A,C,E,F} 

Add Edge 
AC 
AE 
AF 
CE 
CF 
EF 

Result 
Triangle ABC 
Hamilton Path CBAEDF 
Hamilton Path CBAFDE 
Hamilton Path ABCEDF 
Hamilton Path ABCFDE 
Triangle DEF 

a>4 

\ 

/ 

/ N, 

n 
S = {A,C,D,F} 

Add Edge 
AC 
AD 
AF 
CD 
CF 
DF 

Result 
Triangle ABC 
Triangle ABD 
Hamilton Path CBAFED 
Triangle BCD 
Hamilton Path ABCFED 
Triangle DEF 

a > 4 

X • E o F 
W ^J 
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Table 3.4: G in ^(3 ,4) contains a Hamilton path on seven vertices. 

IEI = 6 

S = {A,C,E,G} 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
Triangle ABC 
Hl.l 
Hl.l 
H{l 
Hi,i 
Triangle EFG 

a>4 

/ X 
T2 

11 

S = {A,D,E,G} 

Add Edge 
AD 
AE 
AG 
DE 
DG 
EG 

Result 
Hl.l 

Hamilton Path GFEABCD 
Hamilton Path EFGABCD 
Hamilton Path AflCDEFG 
Hamilton Path ABCDGFE 
Triangle EFG 

a > 4 

X 
cx^#^ \ G 
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r3 

S = {A,C,D,F} 

Add Edge 
AC 
AD 
AF 
CD 
CF 
DF 

Result 
Triangle ABC 
Triangle ABD 
Hl,l 
Triangle BCD 
H{l 
Triangle DEF 

cc>4 

\ ^ B ^ D ^ E ^F ^ G 

T4 

S = {A,D,E,G} 

Add Edge 
AD 
AE 
AG 
DE 
DG 
EG 

Result 
Hamilton Path ADCBEFG 
Triangle ABE 
Hamilton Path DCBEFGA 
Hamilton Path AfiCDEFG 
Hamilton Path ABCDGFE 
Triangle EFG 

a>4 

A ^ o E »F oG 

<x^r 

T5 

S = {A,C,E,G} 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
d(C) > 4 
Hamilton Path GFCDEAB 
Hamilton Path EDCFGAB 
d(C) > 4 
d(C) > 4 
Hamilton Path ABCDEGF 

a > 4 

LB 

AA 
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IEI = 7 

Hi,i 

S = {A,C,F,G} 

Add Edge 
AC 
AF 
AG 
CF 
CG 
FG 

Result 
Triangle ABC 
Triangle AEF 
Triangle ABG 
Hamilton Path GBAEDCF 
Triangle BCG 
Hamilton Path CDEFGBA 

ce>4 

_ / F \ 
/ r>iG 

Hfl 

S = {B,D,F,G} 

Add Edge 
BD 
BF 
BG 
DF 
DG 
FG 

Result 
d(D) > 4 
Hamilton Path GEFBADC 
Hamilton Path FEGBADC 
d{D) > 4 
dip) > 4 
Triangle EFG 

a>4 

A A 
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Table 3.5: G in ^ (3 ,4) contains a Hamilton path on eight vertices. 

IEI = 7 

Ti 

S = {A,C,G,H} 

Add Edge 
AC 
AG 
AH 
CG 
CH 
GH 

Result 
Triangle ABC 

#8,8 

#8,8 

Triangle FGH 

a > 4 

> 

i / 
\ 

T2 

78 

S = {A,C,D,H} 

Add Edge 
AC 
AD 
AH 
CD 
CH 
DH 

Result 
Triangle ABC 
d{D) > 4 
Hamilton Path CBAHGFDE 
d(D) > 4 
Hamilton Path ABCHGFDE 
dip) > 4 

a > 4 

• 

-̂vA ^ B A p ^ ^ c ~H 

T3 

J 8 
S = {A,C,D,F} 

Add Edge 
AC 
AD 
AF 
CD 
CF 
DF 

Result 
Triangle ABC 
Triangle ABD 
d(F)>4 
Triangle BCD 
d(F)>4 
d(F)>4 

a > 4 

y "A. 
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T4 
i 8 

S = {A,C,G,H} 

Add Edge 
AC 
AG 
AH 
CG 
CH 
GH 

Result 
Triangle ABC 

#888 

#8?,8 
f/8 
#8 ,8 

# 8 , 8 

#8 ,8 

a > 4 

T5 

78 
S = {A,C,D,H} 

Add Edge 
AC 
AD 
AH 
CD 
CH 
DH 

Result 
Triangle ABC 
dp) > 4 
Hamilton Path FEDGHABC 
dp) > 4 
Hamilton Path FEDGHCBA 
dp) > 4 

a>4 

V/~ 
cT V—0" 

T--6 
J 8 

S = {A,D,H,G} 

Add Edge 
AD 
AH 
AG 
DH 
DG 
HG 

Result 

#8 68 

Hamilton Path DCBAHEFG 
Hamilton Path DCBAGFEH 
Hamilton Path ABCDHEFG 
Hamilton Path ABCDGFEH 

#8 68 

a>4 

XX' 
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T1 
7 8 

S={B,D,F,H} 

Add Edge 
BD 
BF 
BH 
DF 
DH 
FH 

Result 
Triangle BCD 
Triangle BCF 
Hamilton Path ABHGFCP>£ 
Triangle CDF 
Hamilton Path EDHGFCBA 
Triangle FGH 

a>4 

^ A B 

^ W c rf ^ G H 

7̂ 8 78 

S = {A,C,F,H} 

Add Edge 
AC 
AF 
AH 
CF 
CH 
FH 

Result 
Triangle ABC 

# 8 8 
Hamilton Path CBAHGFED 

# 8 8 
Hamilton Path ABCHGFED 
Triangle FGH 

a > 4 

\ — B ^ P ^ E ^.F ^ C ^ H 

T9 1S 

S={B,D,E,G} 

Add Edge 
BD 
BE 
BG 
DE 
DG 
EG 

Result 
Triangle BCD 
Triangle BCE 

#8,8 
Triangle CDE 

#8?,8 
Triangle EFG 

a > 4 

\ c ,~E ~r - C —H 
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'10 

S = {A,C,G,H} a>4 

Add Edge 
AC 
AG 
AH 
CG 
CH 
GH 

Result 
Triangle ABC 
Hamilton Path EFGABCDH 
Hamilton Path HABCDGFE 
Triangle CDG 
Triangle CDH 
Triangle DGH 

IEI = 8 

Hi 

S = {A,C,D,F} a > 4 

Add Edge 
AC 
AD 
AF 
CD 
CF 
DF 

Result 
Hamilton Path BDEACHGF 
dp) > 4 
Triangle AEF 
dp) > 4 
#8,9 
dp) > 4 

<f I o c 

u 
m 

S = {D,E,G,H} a>4 

Add Edge 
DE 
DG 
DH 
EG 
EH 
GH 

Result 
Triangle CDE 
Hamilton Path HFECBADG 
Hamilton Path GFECBADH 
Triangle EFG 
Triangle EFH 
Triangle FGH 
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#8,8 

S = {B,D,E,G} 

Add Edge 
BD 
BE 
BG 
DE 
DG 
EG 

Result 
Triangle ABD 
d{E) > 4 
Hamilton Path FGBADCEH 
dp) > 4 
Hamilton Path HEFGDABC 
dip) > 4 

a>4 

T o >-\B 

I t H 

#8,8 

S = {B,C,E,H} 

Add Edge 
BC 
BE 
BH 
CE 
CH 
EH 

Result 
Hamilton Path ABCGHDEF 
Triangle BDE 
Triangle BDH 
Hamilton Path ABDHGCEF 
Triangle CGH 
Triangle DEH 

a>4 

1 
cX^p" 
V 4° oc 

Hi,s 
S = {A,E,G,H} 

Add Edge 
AE 
AG 
AH 
EG 
EH 
GH 

Result 
Triangle AEF 
Triangle AFG 
Triangle ABH 
Triangle EFG 
Hamilton Path GFA5HEF>C 
Hamilton Path GHBAFEDC 

a > 4 

: ,x 
SE ^ D i 
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Edges = 9 

#8,9 

S={B,C,G,H} 

Add Edge 
BC 
BG 
BH 
CG 
CH 
GH 

Result 
Triangle ABC 
Hamilton Path HEDGBACF 
Hamilton Path GDEHBACF 
Hamilton Path HEDGCABF 
Hamilton Path GDEHCABF 
Hamilton Path CABFEHGD 

a>4 

— A 

<P 
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Table 3.6: G in ^(3 ,4) contains a Hamilton path on nine vertices. 

IEI = 8 

19 

S = {A,CP,G} 

Add Edge 
AC 
AP 
AG 
CP 
CG 
PG 

Result 
Triangle ABC 
Triangle ABD 
d(G) > 4 
Triangle BCD 
d(G) > 4 
d(G) > 4 

a > 4 

/ - v * M »* _ H 

\JL i» m 

\fcB nP X^ 
</ \ j 

fcE X ° 

^ \ 
X.' 

• 

T2 

L9 
S={A,C,D,G} 

Add Edge 
AC 
AP 
AG 
CP 
CG 
PG 

Result 
Triangle ABC 
dp) > 4 
#9.9 

dp) > 4 
#9 .9 

dp) > 4 

a > 4 

x ?6 

X-. B ^ D 

/x 
A M 
U • 

t F ^ H ^ 1 

T3 

19 
S={A,C,H,I} 

Add Edge 
AC 
AH 
AI 
CH 
CI 
HI 

Result 
Triangle ABC 

#9 .9 
A/11 
#9 .9 

#9 ,9 
w i i 
#9.9 
Triangle GHI 

a > 4 

« I \ t X L 
/ 

< / 

o" 
/ A X v 
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T4 
L9 

S = {A,C,D,I] 

Add Edge 
AC 
AP 
AI 
CP 
CI 
PI 

Result 
Triangle ABC 
dp) > 4 
Hamilton Path CBAIHPEFG 
dp) > 4 
Hamilton Path ABCIHPEFG 
dp) > 4 

a>4 

A ^ E _ - F _ - C 

T5 

L9 
S = {A,CP,H} 

Add Edge 
AC 
AP 
AH 
CP 
CH 
PH 

Result 
Triangle ABC 
dp) > 4 
Hamilton Path CBAHGFEPI 
dp) > 4 
Hamilton Path ABCHGFEPI 
dp) > 4 

a > 4 

* A£_AL-A!!LW 

7̂ 6 
L9 

S = {A,C,P,G} 

Add Edge 
AC 
AP 
AG 
CP 
CG 
PG 

Result 
Triangle ABC 
Triangle ABP 
d(G) > 4 
Triangle BCP 
d(G) > 4 
dip) > 4 

a > 4 

\ - B - D —E F ^ / G 
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S={A,C,P,F} 

Add Edge 
AC 
AP 
AF 
CP 
CF 
PF 

Result 
Triangle ABC 
Triangle ABP 
dp) > 4 
Triangle BCP 
dp) > 4 
dp) > 4 

a>4 

A ^ G - H 

^ ^ B „ D ^ E ^/r 

7̂ 8 
L9 

S = {A,C,E,H} 

Add Edge 
AC 
AE 
AH 
CE 
CH 
EH 

Result 
Triangle ABC 
dp) > 4 

#9 59 
dip) > 4 

#959 

dp) > 4 

a>4 

\ _ B ^ D ~ / E 

T9 
19 

S = {B,E,G,I} 

Add Edge 
BE 
BG 
BI 
EG 
EI 
GI 

Result 
d{B),d(E)>4 
d(B) > 4 
d{B) > 4 
dp)>4 
dp) > 4 

#9,9 

a>4 
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19 

S = {App,G} 

Add Edge 
AP 
AE 
AG 
PE 
PG 
EG 

Result 
Hb 

dip) > 4 
Hamilton Path PCBAGFEHI 
dp) > 4 
Hamilton Path ABCDGFEHI 
d(E) > 4 

a > 4 

yx 
oMT V V 

T l l 19 

S = {BPP,H} 

Add Edge 
BP 
BF 
BH 
PF 
PH 
FH 

Result 
d(B) > 4 
d(B),dp)>4 
d(B) > 4 
dp)>4 

#959 
dp) > 4 

a>4 

\ - ^ B ^ E /r^F 

7-12 
7 9 

S={BP,H,I} 

Add Edge 
BP 
BH 
BI 

PH 
PI 
HI 

Result 
d(B) > 4 
dip) > 4 
dip!) > 4 
Hamilton Path ABCDHGFEI 
Hamilton Path ABCDIEFGH 

#999 

a>4 

#f ^ 0G QH 
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7-13 
l9 

S = {B,E,G,I} 

Add Edge 
BE 
BG 
BI 
EG 
EI 
GI 

Result 
d(B) > 4 
dip!) > 4 
d(B) > 4 
Triangle EFG 

#9,9 
Triangle GHI 

a > 4 

A 

\ - s B ^ P ^ E ^ F ^ G ,^H ,^1 

7-14 
19 

S = {B,D,F,I} 

Add Edge 
BD 
BF 
BI 
DF 
DI 
FI 

Result 
dip) > 4 
d{B) > 4 
d{B) > 4 

#9,9 
Hamilton Path ABCDIHGFE 

#93,9 

a>4 

\ ^ B ^f. ^ F G ^ H - 1 

7-15 
19 

S={B,D,G,I} 

Add Edge 
BD 
BG 
BI 

DG 
DI 
GI 

Result 
d(B) > 4 
d(B) > 4 
dp) > 4 
« 8 
#9,9 

#959 
Triangle GHI 

cc>4 

— E P ^ / c 
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7-16 19 

S = {A,CPP} 

Add Edge 
AC 
AE 
Al 
CE 
CI 
EI 

Result 
dp) > 4 
Hamilton Path BAEDCFGHI 
Hamilton Path EDCBAIHGF 
d{C) > 4 
d{C) > 4 
Hamilton Path ABCDEIHGF 

a > 4 

_ A _ B 

\ ~ C — F - G —H 1 

7-17 19 

S={AP,GP} 

Add Edge 
AD 
AG 
Al 
DG 
DI 
GI 

Result 
dp) > 4 
Hamilton Path IHDCBAGFE 
Hamilton Path GFEDHIABC 
dp) > 4 
dp) > 4 
Hamilton Path ABCDEFGIH 

a>4 

p * —B C 

^G ^f ^/i 

IEI = 9 

#9,9 

S = {A,C,F,H} 

Add Edge 
AC 
AF 
AH 
CF 
CH 
FH 

Result 
dp) > 4 
dp)>4 

"9 .10 

d(C),d(F)>4 
d(C) > 4 
d(F)>4 

a > 4 

^ i T F G .-.H 
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#9,9 

S = {B,E,G,H} 

Add Edge 
BE 
BG 
BH 
EG 
EH 
GH 

Result 
d(B),d(E)>4 
dip) > 4 
dip) > 4 
dp) > 4 
dp) > 4 
Hamilton Path IBCDEFGHA 

a>4 

, ~ G — H | 

#9,9 

S={A,F,H,I] 

Add Edge 
AF 
AH 
Al 
FH 
FI 
HI 

Result 
Triangle AFG 
Triangle AGH 
Triangle A BI 
Triangle FGH 
Hamilton Path HGABIFEDC 
Hamilton Path ABCDEFGHI 

a>4 

o H < 

i X 
?' 

\ 

#9,9 

S = {BP,E,G} 

Add Edge 
BD 
BE 
BG 
DE 
DG 
EG 

Result 
Triangle ABD 
dp) > 4 
Hamilton Path IHECDABGF 
dp) > 4 
Hamilton Path IHECBADGF 
dp) > 4 

a > 4 

w1 

r\° A 

I E 

LG 

'-\B 

_ H 
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#9,9 

S = {B,F,H,I} 

Add Edge 
BF 
BH 
BI 
FH 
FI 
HI 

Result 
Triangle ABF 
Hamilton Path IGFAEDCBH 
Hamilton Path HGFAEDCBI 
Triangle FGH 
Triangle FGI 
Triangle GHI 

a>4 

L D i c 

#989 

S = {A,F,H,I} 

Add Edge 
AF 
AH 
Al 
FH 
FI 
HI 

Result 
d(A) > 4 
d(A) > 4 
d(A) > 4 
Hamilton Path IDEAGFHBC 
Hamilton Path HBCDIFGAE 
Hamilton Path FGAEDIHBC 

a>4 

_ F 

^X^_c« 
O1 m # c 

#9,9 

S = {BPP,H} 

Add Edge 
BE 
BF 
BH 
EF 
EH 
FH 

Result 
Triangle ABE 
dp)>4 
Hamilton Path IFGHBCDEA 
dp) > 4 
Hamilton Path IFGHEABCD 
dp) >4 

a>4 

0 ! A ^ X # ' 

w 
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t/10 
#9,9 

S = {A,D,F,H} 

Add Edge 
AD 
AF 
AH 
DF 
DH 
FH 

Result 
Triangle ADE 
Triangle AEF 
Hamilton Path IBAHGFEDC 
Triangle DEF 
Hamilton Path IBCDHGFEA 
Triangle FGH 

a > 4 

_ H 

X^f A^ B 

> N £ _ _ A C 

n i l 
#9,9 

S = {A,D,F,H} 

Add Edge 
AD 
AF 
AH 
DF 
DH 
FH 

Result 
dp) > 4 
Hamilton Path HGICBAFED 
Hamilton Path FEDGIBAH 
dp) > 4 
dp) > 4 
Hamilton Path ABCIGDEFH 

a>4 

_ F 

< 

IEI = 10 

A/3 
"9,10 

S={BP,FP} 

Add Edge 
BD 
BF 
BI 
DF 
DI 
FI 

Result 
dp) > 4 
dp) > 4 
dp) > 4 
Triangle DEF 
Triangle DEI 
Triangle EFI 

a > 4 

/ A \ 

If 

- J _ V E _ _ 7 D 



CHAPTER 4 

COMPLETING ^(3,4) 

4.1 Introduction 

The main result of this chapter is to show that the set of all graphs depicted in Figure 3.1 

is the complete set of all graphs in ^ (3 ,4 ) . In Chapter 3, all graphs G in ^(3 ,4) that were 

disconnected, ap) = 1, ap) = 2, and trees were proved. We must prove the remaining 

case of G in ^(3 ,4) such that G has an independence number of three and is not a tree 

which is Theorem 4.2.1. Once this is done, Theorem 3.1.1 can then be used to find an 

independent proof for R(3A) = 9. 

4.2 Completeness Of ^(3 ,4) 

For any graph G in 3%{3,4) that we have not found, we know G must be triangle free and 

have an independence number of three. Lemma 3.2.1 and Lemma 3.2.2 proved all graphs G 

in ^(3,4) with an independence number less than or equal to two, so we may assume that 

ap) = 3. Also, Theorem 3.2.3 proved all the disconnected graphs in ^(3,4) , so we may 

also assume G is connected. Since Lemma 3.4.1 proved all the trees with independence 

number three, we may assume that G is not a tree. Thus in this section, we may assume G 

is in ^(3 ,4) such that G is connected, G is not a tree, and ap) = 3. 

Since G is a connected graph, G must contain a spanning tree P. The spanning tree P 

will be triangle free like G, but the independence number of P can be different than G. The 

independence number must be a(T) < ap) since P is a subgraph of G. From Theorem 

3.4.2, we know that any connected graph G E ffl(3A) up to nine vertices with ap) — 3 is 

a tree or has a Hamilton path. Since G is not a tree, we know G must contain a Hamilton 

61 
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path. We will let the spanning tree P of G be a Hamilton path. By adding edges to P in all 

possible ways, we will find all graphs in ^(3 ,4) since they will all contain this Hamilton 

path as a spanning tree. 

To start construction of all graphs G in ^(3 ,4) , we start by labeling the vertices of a 

Hamilton path P. We want to extend this graph by adding one edge in all possible ways 

to form a new set of graphs up to isomorphism. This process produces the graphs P + e\, 

T + e2, •••, T + en. We know that for any edge e that is added to P, aiT + e) < a(T) and 

(o(T + e) > co(T). Since we are looking for graphs in ^(3 ,4) , we have restrictions on the 

independence number and clique number of the graphs. Only graphs that are triangle free 

and have an independence number of at least three need to be extended in the next round. 

This process repeats until no more extensions are possible due to the restrictions placed on 

it by ^(3 ,4) . 

We will use Table 4.1 to show how to read the tables used in the main proof of this 

chapter. Two types of graphs are listed on the table. If the name is of the form HL, ,£> 

then this is a graph with |V| vertices, \E\ edges, and i as an index number. All graphs 

denoted HL, ,£, have apL, X > 4 which are not graphs in ^(3 ,4) . These graphs are 

only temporary placeholders since HL, ,E, can be a subgraph of a graph that is in ^(3 ,4) . 

This graph is extended the same way as the graphs in Theorem 3.1.1 were extended by 

adding an edge to an independent set of size four to reduce the independence number. 

Adding edges in this way will produce a triangle, a temporary graph, or a graph in ^(3 ,4) . 

A graph with a triangle will not be a subgraph of a graph in ^(3,4) , so generation will 

stop. Both temporary graphs and graphs in ^(3 ,4) can be subgraphs of a graph in ^(3 ,4) ; 

thus, generation is continued until all extended graphs cannot be a subgraph of a graph in 

^(3 ,4) . When no graphs are left to extend, generation is stopped. 

If the name is of the form GA, ,£,, then this is a graph in ^(3,4) with |V| vertices, 

IPs | edges, and i as the index. The left side of the next row contains the set of vertices 

whose degree is equal to three, denoted by ^ (v) . The right side displays the independence 
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number of the graph. The left panel is a list of all possible edge additions to the graph and 

the results from adding that particular edge, while the right panel shows the labeled graph 

that is being used. 

Table 4.1: Initial graph G\ 5. 

G6,5 

ds(v) = {C} 

Add edge 
AD 
AE 
AF 
BD 
BE 
BF 
DF 
EF 

Result 
G 6 ,6 
G 6 ,6 Gh 
Triangle BCD 
G 6 , 6 

Triangle BCF 
Triangle CDF 
G 6 , 6 

a = 3 

• * • " 

E —A 
W 9 

The list of degree three vertices is determined by finding all vertices in Vp) that have 

degree equal to three. From Lemma 3.1.2, we know that A(G) < 3 since G E ^(3 ,4) ; thus, 

no edges can be added to a vertex of degree three since the maximum degree would be 

increased to four, contradicting Lemma 3.1.2. 

The list of possible edges given is reduced from the list of all possible edges which 

have ALL—I edges. Since parallel edges are not recognized, the edges already in Ep) 

are removed. Any edge that has an end vertex from one of the vertices of degree three is 

also removed since the addition of this edge creates a vertex of degree four. The edges 

remaining in the list are the possible edge additions to the graph. When a graph is a cycle, 

all the vertices are symmetric, so only one vertex is used to create the list of possible edge 

additions. The edges listed are the possible edge additions to the graph. Adding any of 

these edges from the list can result in creating a triangle or creating a graph in if (3,4). As 
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mentioned earlier, if a graph has a triangle, then this graph will not be in ^(3 ,4) and is not 

a subgraph of any graph in ^ (3 ,4 ) , so the generation stops along this route. Since a graph 

in ^ (3 ,4) can be a subgraph of another graph in ^(3 ,4) , generation of the new graph is 

continued further in the table. This process is repeated until no graphs are left to generate, 

at which point all graphs found form the complete list of connected graphs in ^(3,4) on 

\V\ vertices with an independence number of three. 

Now we use Table 4.1 to walk through an example of generating all graphs in ^(3,4) 

that have six vertices. The first graph is G^5 which is a tree from Lemma 3.4.1 with 

an independence number of three. The set d^(v) contains the vertex C which is the only 

vertex with degree three. Initially, there are ^ = 15 possible edges, but by removing the 

five edges already in the graph, the number of possible edge additions is reduced to 10. 

Removing any edge addition with an endvertex of C further reduces the number of edges to 

eight. These eight edges are AD, AE, AF, BD, BE, BF, DF, and EF. Now, for each edge, a 

new graph is formed G;? 5 + e where e is one of the edge additions. The result of adding any 

one of the edges BD, BF, or DF forms a triangle in the resultant graph; thus, generation 

along this route will stop. Adding the edge AD or BE forms a graph isomorphic to G^ 6. 

Adding either edge AF or EF will form a graph isomorphic to Gj? 6. The remaining edge 

AE will result in a graph isomorphic to G\ 6. The new set of graphs will continue generation 

further in the table. 

By repeating this process on P(, = G\5 we can find the complete list of graphs in M(3A) 

with six vertices. Just like before, the possible edge additions and results will form graphs 

isomorphic to Gl
66, G^6, GA, or G^6. Since we can assume that G in ^(3 ,4) has a 

Hamilton path, we do not need to extend Gg 5 since each graph produced is isomorphic to 

a graph produced from Gg 5. It is only included for clarity in the example. 

By using this process for five, six, seven, and eight vertices, we get the list of connected 

graphs G in ^(3 ,4) for ap) = 3. On nine vertices, no graphs are created from Pg, so this 
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is the smallest number for which every graph has a K3 or A/4; thus, no graphs with at least 

nine vertices will be in ^ (3 ,4 ) . This leads to Theorem 4.2.1. 

Theorem 4.2.1. If G E ^(3 ,4) , G is connected, ap) — 3, and G is not a tree; then G is 

one of the graphs in Figure 4.1 

G 7 .9 

J6,6 

A 
G6,7 

h 
G7,i 

al. 

< & 

G7, i 

r-i 
X10 

Figure 4.1: List of connected R(3,4) graphs that are not trees and ap) = 3. 

Proof. Let G be in ^"(3,4), connected, ap) = 3, and G is not a tree. We start with a 

Hamilton path on |V| vertices. Adding edges in all possible ways as described previously 

will give us the complete list of graphs meeting our conditions on |V| vertices. Since no 

graphs with fewer than five vertices have ap) = 3 and are not trees, we start with Table 

4.2 for five vertices. The process is repeated for six, seven, eight, and nine vertices in the 
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other tables. Since no graphs were found on nine vertices, we also do not need any tables 

that are larger than nine vertices to complete the proof. By analyzing the results from Table 

4.2 through Table 4.6 we get the complete list in of graphs depicted in Figure 4.1. • 

As in Chapter 3, the arrangment of the tables prevents a circular argument from being 

made. The tables are arranged in such a way that |V(G)| is constant throughout the table. 

In each table, the graphs are ordered in such a way that ppt)\ < \Epl+i)\ where i is 

the position of the graph on the table, so no infinite loop can exist as we progress through 

the tables. For each graph G, two possibilities can happen by adding an edge. First, the 

generation may terminate if no edge exists that can be added to G to satisfy the necessary 

conditions. The other way will be to consider a new graph that is further in the table, G + e. 

The new graph will always have exactly one more edge than G. By only going foward to 

a graph with exactly one more edge, we will not encounter a circular logic proof since the 

generation will terminate in the end. 

Now that Theorem 4.2.1 has been established, it can be used with what we also proved 

in Chapter 3 to prove Theorem 3.1.1. 

Theorem 3.1.1 If G E ̂ (3 ,4) , then G is isomorphic to one of the graphs depicted in Figure 

3.1. 

Proof. Let G E ̂ ( 3 ,4 ) . If G is disconnected then G is a graph from Theorem 3.2.3. Thus 

we may assume G is connected. If ap) = 1, then G is proved in Lemma 3.2.1. If ap) = 

2, then G is proved in Lemma 3.2.2. Now ap) = 3. If G is a tree, then G is proved in 

Lemma 3.4.1. The remaining case is G is connected and not a tree, which is proved in 

Theorem 4.2.1. Since no G is in ̂ (3 ,4) when ap) > 4, the union of these lists shown in 

Figure 3.1 is the complete list of ̂ (3 ,4 ) . • 

Theorem 4.2.2. J?(3,4)=9. 

Proof. Theorem 3.1.1 establishes the complete list of Ramsey graphs. By analyzing the 

list of graphs, we know for every graph G E M(3A) the number of vertices must be less 
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than or equal to eight. Thus, /?(3,4) > 9. Since is was also established that no Ramsey 

graph can exists on nine vertices, from Corollary 1.4.5, we know no Ramsey graph can 

exist on more than nine vertices; thus, R(3,4) < 9. Hence, we get an independent proof 

that/?(3,4)=9. • 
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Table 4.2: ^ (3 ,4) generation on five vertices. 

G5,4 

rf3(A=0 

Add Edge 
AC 
AD 
AE 
BD 
BE 
CE 

Result 
Triangle ABC 
G 5,5 
G 5,5 

Triangle BCD 
G 5,5 
Triangle CDE 

a = 3 

o 
IEI = 5 

G5,5 

d3(v) = {B} 

Add Edge 
AC 
AD 
AE 
CE 

Result 
Triangle ABC 
G 5 ,6 

Triangle ABE 
Triangle BCE 

a = 3 

V 
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G5,5 

d3{v)=<d 

Add Edge 
AC 
AD 
BD 
BE 
CE 

Result 
Triangle ABC 
Triangle ADE 
Triangle BCD 
Triangle A BE 
Triangle CDE 

a = 2 

{7 
w w 

IEI = 6 

G5,6 

d3(v) = {Ap} 

Add Edge 
CD 
CE 
DE 

Result 
Triangle ACD 
Triangle ACE 
Triangle ADE 

a = 3 

\ | > 
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Table 4.3: ^(3 ,4) generation on six vertices. 

G6,5 

d3{v)=<d 

Add Edge 
AC 
AD 
AE 
AF 
BD 
BE 
BF 
CE 
CF 
DF 

Result 
Triangle ABC 

G 6,6 
G 6 ,6 

Triangle BCD 
G 6,6 
G 6 ,6 

Triangle CDE 
G i , 6 
Triangle DEF 

a = 3 

k c A B —.A 

** W V 

jkD * E A F 

• • • 

IEI = 6 

G6,6 

d3(v) = {B} 

Add Edge 
AC 
AD 
AE 
AF 
CE 
CF 
DF 

Result 
Triangle ABC 
G6,7 
G6,7 

Triangle A BF 
Triangle CDE 
Triangle BCF 
Triangle DEF 

a = 3 

_ A 

A • • 



G 6 ,6 

d3(v) = {B,E} 

Add Edge 
AC 

AD 

AF 

CF 

DF 

Result 
Triangle ABC 
G 6 ,7 
G 6 ,7 
G 6,7 
Triangle DEF 

a = 3 

• 1 

< fc
B

 t 

w « 

G 6 ,6 

d3(v) = {C} 

Add Edge 
AD 
AE 
AF 
BD 
BE 
BF 
DF 

Result 
G 6,7 
G 6,7 
G 6 .7 
Triangle BCD 
G 6,7 

Triangle BCF 
Triangle DEF 

a = 3 

< 

( 
l , 
It ' 

• 

> F 

•E 

G 6 ,6 

d3{v)=Q) 
All vertices in graph are symmetric. 

Add Edge 
AC 
AD 
AE 

Result 
Triangle ABC 
Gl.l 
Triangle AEF 

a = 3 

* * — « 

i 
\ 

»E A D 

9 9 



IEI = 7 

G 6 ,7 

d3(v) = {App} 

Add Edge 
CP> 
CF 
DF 

Result 
Triangle ACP) 
G 6 ,8 
G 6,8 

a = 3 

G 6,7 

d3(v) = {B,E} 

Add Edge 
AC 
AD 
CF 
DF 

Result 
Triangle ABC 
G 6.8 
G 6,8 
Triangle DEF 

a — 3 

G 6,7 

d3(v) = {Ap} 

Add Edge 
CD 
CE 
CF 
DE 
DF 

Result 
Triangle ACD 
Triangle BCE 
Triangle ACF 
Triangle BDE 
Triangle ADF 

a = 3 

_ A 

< 
^ P 
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IEI = 8 

G6,8 

d3(v) = {A,CPP} 

Add Edge 
BE 

Result 
G 6,9 

a = 3 

<x> 
IEI = 9 

G6,9 

d3(v) = {A,B,C,Dpp} 
Every vertex has degree three. 

Add Edge 
0 

Result 

a = 3 

*x>-
No possible edge additions. 
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Table 4.4: ^(3 ,4) generation on seven vertices. 

IEI = 6 

#7,6 

S = {A,Cp,G} 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
Triangle ABC 
G 7,7 
G 7,7 
Triangle CDE 
G 7 ,7 
Triangle EFG 

IEI = 

a>4 

V •' oG 

7 

Gl,l 

dl(v) = {C} 

Add Edge 
AD 
AE 
AF 
AG 
BD 
BE 
BF 
BG 
DF 
DG 
EG 

Result 
G 7 ,8 
G 7,8 
G 7,8 
G 7 ,8 

Triangle BCD 
G 7.8 
G 7.8 
Triangle BCG 
Triangle DEF 
Triangle CDG 
Triangle EFG 

a = 3 

A 

A <Cr \ J v—*• 
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G7,7 

d3(v)=Q) 
All vertices in graph are symmetric. (A) 

Add Edge 
AC 
AD 
AE 
AF 

Result 
Triangle ABC 
G 7,8 
G 7,8 

Triangle AFG 

a = 3 

X> 
IEI = 8 

G7,8 

d3(v) = {B,Cp} 

Add Edge 
AD 
AF 
AG 
DF 
DG 

Result 
G 7 ,9 
G 7 ,9 
G 7,9 

Triangle CDF 
Triangle DEG 

a = 3 

w* 



G7,8 

d3(v) = {A,D} 

Add Edge 
BE 
BF 
BG 
CE 
CF 
CG 
EG 
FG 

Result 
G 7,9 
Triangle ABF 
Triangle ABG 
Triangle CDE 
G 7,9 
Triangle CDG 
Triangle DEG 
Triangle AFG 

a = 3 

_ A 

^^\~^~~~^ 

¥ 
. k E A S 

G7,8 

d3(v) = {C,F} 

Add Edge 
AD 
AE 
BD 
BE 
BG 
DG 
EG 

Result 
G 7 ,9 
G 7,9 

Triangle BCD 
G 7,9 
Triangle ABG 
G 7,9 
Triangle EFG 

a = 3 

<*y 
fcc M f 

4= *' 
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IEI = 9 

G7,9 

d3(v) = {Ap,Cp} 

Add Edge 
DF 
DG 

Result 
G7,10 
G7,10 

a = 3 

_ A 

LF 

\XSB 

L G 

G7,9 

J3(v) = {A,C,P,F} 

Add Edge 
BD 
BG 
DG 

Result 
Triangle BCD 
Triangle ABG 

"7,10 

a = 3 

<1> w 
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IEI = 10 

°7,10 

d3(v) = {B,CPP,F,G} 
Only one vertex with d(v) < 3 

Add Edge 
0 

No possible 

Result 

edge additions. 

a = 3 

£& Vv* 
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Table 4.5: ^(3 ,4) generation on eight vertices. 

IEI = 7 

Hll 

S = {A,CP,H} a>4 

Add Edge Result 
AC 
AF 
AH 
CF 
CH 
FH 

Triangle ABC 
H8,8 

Hg g 
Triangle FGH 

£ tf- ^ ~* 

if Of • ' O" 

IEI = 8 

m 
S = {A,DP,H} a>4 

Add Edge Result 
AD 
AF 

AH 
DF 
DH 
FH 

Ht$ 
Hi,9 
#8,9 
Triangle DEF 
Triangle CDH 
Triangle FGH 
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m 
S = {A,Cp,H} a>4 

Add Edge Result 
AC 
AE 
AH 
CE 
CH 
EH 

d{C) > 4 

#8.9 

#8,9 

dp) > 4 
dp) > 4 
H 8,9 

£ o^ 

tf 
F _ G _ H 

m 
S = {A,Cp,G} a>4 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
Triangle ABC 

#8 ,9 

Triangle AGH 
Triangle CPE 

#839 
Triangle EFG 

t tf-

O-
E ~f /-J* 

IEI = 9 

Hl,9 

S = {Cpp,H} a>4 

Add Edge 

CD 
CF 
CH 
DF 
DH 
FH 

Result 
Triangle ACD 
d{F)>4 
u 8 .10 

dp) > 4 

"8.10 

dp) > 4 
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S = {B,D,F,H} 

Hi,9 

a > 4 

Add Edge 
BP 
BF 
BH 
PF 
PH 
FH 

Result 
Triangle BCP 

X i o 
Triangle ABH 
Triangle PEF 
u 8 ,10 

Triangle FGH 

A s^H 

#8,9 

S={A,Cp,G} a>4 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
dp) > 4 
M2 

"8,10 
Triangle AGH 
dp) > 4 
dp) > 4 
Triangle EFG 

B _ » 

Hi,9 

S = {A,C,E,G} a>4 

Add Edge Result 
AC 
AE 
AG 
CE 
CG 
EG 

dp) > 4 
dp) > 4 
f/3 
"8 .10 
dp),dp) >4 
dp) > 4 
dp) > 4 

<? 
E *Jf 

cr 



Hi,9 

S = {A,D,F,H} a > 4 

Add Edge 
AD 
AF 
AH 
DF 
DH 
FH 

Result 
Triangle ACD 
Triangle AEF 
Triangle AGH 
Triangle BDF 
Triangle BDH 
Triangle BFH 

IEI = 10 

-"8,10 

S = {C,E,F,H} a>4 

Add Edge Result 
CE 
CF 
CH 
EF 
EH 
FH 

Triangle BCE 
dp) > 4 
Gg.n 
dp)>4 
Triangle DEH 
dp)>4 

M2 

-°8,10 

S={App,G} a>4 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
dp) > 4 
G 8, l l 
Triangle AGH 
dp) > 4 
dp) > 4 
Triangle EFG 
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W3 
-"8,10 

S = {A,PP,H} 

Add Edge 
AP> 
AF 
AH 
PF 
PH 
FH 

Result 

#81,ll 
dp) > 4 
Triangle AGH 
dp)>4 
Triangle PEH 
dp)>4 

a>4 

» c 

S* 1 E 

B 

A 

°8,10 

d3(v) = {A,D,E,H} 

Add Edge 
BF 

BG 

CF 

CG 

Result 
G 8 , l l 
G 8 , l l 
G 8 , l l 
G 8 , l l 

a = 3 

d E> 
IEIX11 

#8,11 

S = {A,P,F,H} 

Add Edge 
AP> 
AF 
AH 
PF 
PH 
FH 

Result 

X l 2 
dp)>4 
dp) > 4 
dp) > 4 
dp) > 4 
dp),dp)>4 

a > 4 

^L—r\A 

c 
\. 

4 

/ \ \ X XX 
^ G 

X 
-J 
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G 8, l l 

d3(v) = {A,C,Pp,G,H} 

Add Edge 
BF 

Result 
r l 
X l 2 

a = 3 

ft V 
A 

y 
IEI = 12 

r1 

X,12 

d3(v) = {Ap,C,D,E,F,G,H} 
Every vertex has degree three. 

Add Edge 
0 

No possible 

Result 
AllvGV(G),rf(v)>3 

edge additions. 

a = 3 

Jfi > 

W ' E 

N. / V C 

^ m D 
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Table 4.6: ^ (3 ,4) generation on nine vertices. 

IEI = 8 

#9,8 

S = {B,D,F,H} 

Add Edge 
BP 
BF 
BH 
PF 
PH 
FH 

Result 
Triangle BCP 

#>,9 

#929 
Triangle PEF 
#9,9 
Triangle FGH 

IEI = 

a>4 

cr—*^—o° 

v y >• s* 
9 

#9,9 

S={BP,G,I} 

Add Edge 
BE 
BG 
BI 
EG 
EI 
GI 

Result 
dp) > 4 
dip) > 4 
dip!) > 4 
Triangle EFG 

#9,10 
Triangle GHI 

a>4 

- F _rL - D 

_c 



S = {B,E,G,I} 

Add Edge 
BE 
BG 
BI 
EG 
EI 
GI 

Result 
dip) > 4 
dp) > 4 
dp) > 4 
Triangle EFG 
M2 

"9 .10 

Triangle GHI 

S = {B,P,G,I} 

Add Edge 
BP 
BG 
BI 
PG 

PI 
GI 

Result 
dip) > 4 
dp) > 4 
dp) > 4 

#9,11 
Triangle DEI 
Triangle GHI 

S = {A,C,E,H} 

Add Edge 
AC 
AE 
AH 
CE 
CH 
EH 

Result 
Triangle ABC 
dp) > 4 
dp) > 4 
dp) > 4 
dp) > 4 
dp),dp) >4 

#9,9 

Ct>4 

- XX, 

x̂  
IEI = 10 

#9,10 

a>4 

"I 
a>4 
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IEI = 11 

#9,11 

S={A,D,F,H] 

Add Edge 
AP> 
AF 
AH 
DF 
DH 
FH 

Result 

dp) > 4 
dp) > 4 
wi 
-"9,12 
dp),dp)>4 
dp) > 4 
dp)>4 

a > 4 

H^¥—=nD 

.B 

IEI = 12 

-"9,12 

S = {A,C,E,G} 

Add Edge 
AC 
AE 
AG 
CE 
CG 
EG 

Result 
Triangle ABC 
dp)>4 
dp)>4 
dp)>4 
dp)>4 
dp),dp) >4 

a>4 

•^^9^#D 

B 



CHAPTER 5 

OTHER RAMSEY NUMBERS 

5.1 Some Known Results 

The Ramsey number, M((0, a), is defined to be the minimum number n such that any 

graph with at least n vertices has a Ka orNa as a subgraph This dissertation has focused on 

the class of Ramsey graphs M(3A) by finding the underlying structure of Hamilton paths 

in these graphs A brute force approach, testing all graphs up to R(3,4) = 9 vertices, could 

have been done with a computer, but this method does not scale well for testing graphs on 

a larger number of vertices 

The Ramsey number R(3,4) = 9, R{3,5) = 14, and #(4,4) = 18 were found by Green­

wood and Gleason [6] from a critical Ramsey graph to create a lower bound Then, by 

using Theorem 14 3, the lower and upper bounds were shown to be tight Mckay and 

Radziszowski proved R(4,5) = 25 [11] 

The next Ramsey number for which the exact value is unkown is R{5,5) The best 

known bounds for R(5,5) are 43 and 49 The lower bound of 43 was found by Exoo [4] by 

showing a graph on 42 vertices with no #5 or N$ subgraph This means that R(5 5) > 42 

Mckay and Radziszowski [12] used the graph Exoo described and were able to manipu­

late it to find 656 ^(5,5)-graphs on 42 vertices, that is, they found 328 graphs and their 

complements None of these graphs were able to be extended to 43 vertices It is unknown 

whether more Ramsey graphs exist on 42 vertices or if any exist on 43 vertices 

88 
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5.2 Forced Subgraphs for J?(5,5) 

A brute force approach to find R(5,5) is not computationally feasible since the number 

of possible graphs grows exponentially compared to the number of vertices. Some overall 

structure must be found to significantly narrow the search for the graphs. This section 

finds that the critical graphs in R(5,5) are highly connected and must contain Hamilton 

cycles. We start this proof with Theorem 5.2.1, which uses the symmetry present in Ramsey 

numbers Rp, a) = Rp, co). 

Theorem 5.2.1. IfG E ̂ (5 ,5) and |V(G)| > 28, then G is connected. 

Proof. Let G E ^(5 ,5) and \Vp)\ > 28. We know that G has no K5 subgraph and no 

independent set of five vertices. Since each independent set of each component of G can 

be added together for the independent set of G, G has at most four components; otherwise, 

a ( G ) > 5 . 
o o o 

Suppose G has four components and G = G] UG2UG3UG4- Each component must 

have a maximal independent set of size one; otherwise, ap) > 5. Knowing this, each 

component G, must be in the class of ^(5 ,2) graphs. Since R(5,2) = 5, we get a bound on 

the number of vertices in G, to be |V(G,)| < R(5,2) — 1 = 5 — 1 = 4 vertices. Thus, G can 

have at most four components with each component having at most four vetrices. Hence, 

|V(G)| < 4 • 4 = 16. This contradicts our assumption that \Vp) | > 28, so G does not have 

four components. 
o o 

Suppose G has three components and G = Gi U G2 U G3 • Without loss of generality, we 

let G\ and G2 be in M(5,2) and let G3 be in ^(5 ,3) ; otherwise, ap\) + ap2) + ap3) = 

ap) > 5. The components G\ and G2 can have at most four vertices. Since R{5,3) = 14, 

G3 must have at most 13 vertices. Thus, our bound on the number of vertices is |V(G)j = 

4 + 4 + 13 = 21. However, |V(G)| > 28 > 21 so G does not have three components. 
o 

Suppose G has two components and G = G\ UG2, then the components can be either 

1) G\ E ^ (5 ,2) and G2 E @(5A) or 2) Gt € R(5,3) and G2 E R{5,3). We know the 

Ramsey number R(4.5) = /?(5,4) = 25. In the first case, the bound on the number of 
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vertices of G is (#(5,2) - 1) + (#(5,4) - 1) = 4 + 24 = 28. In the second case, our bound is 

\Vp)\ < (#(5,3) - 1) + (#(5,3) - 1) = 13 +13 = 26. In both cases, we get a contradiction 

since we assume |V(G)| > 28, thus G cannot have two components. 

Hence, if |V(G)| > 28, then G is connected. • 

Now we know that any graph G in ^(5 ,5) with at least 29 vertices is connected. Every 

connected graph has a minimum cut set of vertices, S, whose removal from G will discon­

nect the resultant graph. Theorem 5.2.2 proves the size of S in G based on the number of 

vertices that G contains. 

Theorem 5.2.2. IfG E ̂ (5 ,5) and \Vp)\ > 28, then G is (|V(G)| - 28) -connected. 

Proof. Let G E ^(5 ,5) with |V(G)| > 28. From Theorem 5.2.1, we know that G is con­

nected. Some set S C Vp) exists that is a minimum cutset of G, thus we let G — S = 

GiUG2-

Suppose G is 1-connected and not 2-connected. This means S is a cut-vertex and \S\ = 1. 

Since G E ^ (5 ,5) and vertex deletion does not increase the maximum clique, we know 

that G\ and G2 do not contain a AT5. Thus, we concentrate on the independence numbers 

of G\ and G2. We can add the independent sets of G\ and G2 for a lower bound on the 

independent set of G. Two cases are presented for the bound of the components G\ and G2. 

First, let Gi,G2 E M(5,3). Since #(5,3) = 14 and |5| = 1, we have \Vp)\ = |V(Gi)| + 

[V(G2)| + \V(S)\ < 13 + 13 + 1 = 27, which contradicts \Vp)\ > 28, thus is impossible. 

Second, without loss of generallity, we let G\ E ^(5 ,2) and G2 E ^ (5 ,4) . We get \Vp)\ = 

|V(Gi)| + |V(G2)| + \V(S)\ < 4 + 24+ 1 = 29. This shows for G to be 1-connected and not 

2-connected |V(G)| < 29. If |V(G)| > 29, then G must be at least 2-connected. 

Note that the size of G\ and G2 cannot increase as the connectivity of the graph in­

creases. Thus the increase in connectivity only increases the size of S. Similar argu­

ments can be used for higher connectivity. Hence we get G is at least (|V(G)| — 28)-

connected. • 
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Since 43 < #(5,5) < 49 are the best known bounds, Corollary 5.2.3 considers the 

connectivity of Ramsey graphs on 42 vertices. 

Corollary 5.2.3. IfG E ̂ (5 ,5) and |V(G)| = 42, then G is 14-connected, 5(G) > 14, and 

Ap) < 27 

Proof. Let G be in ^(5 ,5) and \V(G)\ = 42. From Theorem 5.2.2, we get G is 14-

connected. 

Since G is 14-connected it must have a minimum degree of at least 14; thus, 5(G) > 14. 

Also, if G e ^ (5 ,5 ) , then G E ̂ (5 ,5) . The complement of G must also be 14-connected. 

This yields the maximum degree A(G) < (42 — 1) — 14 = 27. • 

Theorem 5.2.4. (Chvatal, Erdos [2]) Let G be an s-connected graph containing no inde­

pendent set of s vertices. Then G is Hamiltonian-connected (i.e. every pair of vertices is 

joined by a Hamiltonian path). 

We can use Corollary 5.2.3 and the properties of ^(5 ,5) to show a Ramsey graph on 

at least 33 vertices satisfies the conditions of Theorem 5.2.4. The start of the underlying 

structure of ^ (5 ,5) graphs is that they are Hamiltonian-connected. We use this fact to 

reduce the test set of approximately 10208 graphs on 42 vertices. The test set of graphs 

have been reduced to only Hamiltonian graphs that are also 14-connected with 14 < 5(G) < 

A(G) < 27. 

Since looking for a Hamiltonian cycle in a graph is equivalent to the Traveling Salesman 

Problem, an NP problem, a better way is to generate the test set starting with a Hamilton 

cycle on 42 vertices. From this initial cycle, just like the Hamilton path in the proof of 

^ (3 ,4) , we can add edges between vertices. The edge additions will follow lemmas equiv-

elant to the lemmas used in ̂ (3 ,4) but for <^(5,5) and the additional information we know. 

An edge added should not form a K5, and this is easily checked by comparing the neigh­

borhoods of the endpoints of the edge to be added. Similar to Lemma 3.1.3, ap) < 4, if 

an independent set of size five is found, an edge must be added in that set for a graph to be 
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in ^ (5 ,5) . This produces only 10 edges that need to be traced, similar to the six edges in 

^ (3 ,4 ) . One additional property would be the minimum degree of 14 and the maximum 

degree of 27 on graphs with 42 vertices. 

The goal in the end is to reduce the set of graphs that need testing to become feasible 

for computation. By using LONI and reducing the number of graphs needing to be tested, 

eventually the two should meet when #(5,5) will be found. 



APPENDIX A 

ALGORITHMS FOR RAMSEY GRAPHS 
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Our first algorithm tests if G is in M{CO, a), determining if G contains a subgraph that is 

isomorphic to a clique of size CO. Algorithm A.l determines if graph G has a Ka for some 

CO vertices in Vp). The general form of this algorithm searches every subset S C Vp) 

such that \S\ = CO to determine if the induced subgraph S of G is isomorphic to Km or Na in 

G. 

Algorithm A.l Algorithm to test Km. 
FUNCTION TestKw( graph G, int CO ) 

int S[ft)]; 
bool flag; 
// for every set of CO vertices in Vp) assign to v 
for every S C Vp) of size CO do 

flag = true; 
for i = 0 to co-2 do 

for j = i+1 to co-1 do 
if S\i]S\j] i Ep) then 

flag = FALSE; // v is not Ka 

end if 
end for 

end for 
if flag then 

return TRUE; // v is Ka 

end if 
end for 
return FALSE; // No Ka in G 

ENDFUNCTION 

We can increase optimization of this program by reducing the search time for a small 

clique. For example, consider a graph G such that |V(G)| = 15 to determine if G contains 

a triangle. If we used the general algorithm to test for K3, then we would need to look 

through ( 3 ) = 455 sets of vertices to confirm that no triangles exist. Since every triangle 

in G must contain an edge e in Ep), we can limit our search to edges in Ep) because 

any two nonadjacent vertices cannot be part of the same triangle. For each edge e E Ep), 

e = v\V2, we need to compare the intersection of the neighborhoods, N(v\) n Np). If this 

intersection is not empty, then there is a triangle in G. Conversely, if the intersection is 
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empty, then the edge e is not part of a triangle in G. By limiting the test to only edges 

in Ep), a maximum of ^ ^ = 105 comparisons can save unnecessary computation time 

while also creating a list of A/3-subgraphs. The algorithm described here is depicted in 

Algorithm A.2. A similar algorithm can be developed to test if a graph is ^4-free by 

looking for a triangle in the induced subgraphs of the neighborhoods of each vertex since 

K4-v = K3. 

Algorithm A.2 Algorithm to test #3-free. 
FUNCTION TestK3-free( graph G ) 

// for every edge in Ep), test if part of triangle 
for every e = v\V2 E Ep) do 

Np nv2) =Np)r\N(v2); 
if Npnv2)^(j> then 

return TRUE; // e is part ofK3 

end if 
end for 
return FALSE; // No K3 in G 

ENDFUNCTION 

The test for the independence number in Algorithm A.3 is equivalent to test for a clique 

in the complement of a graph. An easy improvement is to modify the code for testing Ka 

to test for Na and not wasting computation time on creating a temporary complement of 

the graph. 

Algorithm A.3 Algorithm to test Na. 
FUNCTION TestNa( graph G, int a ) 

return TestKw( G, a); 

ENDFUNCTION 
// ap) = --cop) 

To determine if G E Mp, a), neither a Ka nor Na can be present in G. Algorithm A.4 

tests both of these conditions to determine if G E Mp, a). If either Km or Na is found 

in graph G, then FALSE is returned since G <£ Mp, a); otherwise, when neither is found 

TRUE is returned. This function is used to build the complete list of graphs in Mp, a). 
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Algorithm A.4 Algorithm to test if graph is in M(co, a). 
FUNCTION TestRwa( graph G, int co, int a ) 

if TestKw(G, co) OR TestNa(G, a) then 
return TRUE; 

else 
return FALSE; 

end if 
ENDFUNCTION 

The complete list for Mp, a) can be found by testing all graphs up to R(co, a) vertices. 

When R(co,a) is unknown, finding the complete list can be done from starting at one 

vertex. After finding all Ramsey graphs in a vertex class, the list for the next vertex class 

can be generated. When a vertex class n is reached that does not have a graph in M(co, a) 

then the list is complete. Corollary 1.4.5 states that the first vertex class n where Mp, a) 

is empty implies that the Ramsey number Rp, a) = n. 

The algorithms so far test an individual graph. Since many graphs must be tested to 

build Mp, a), several graphs can be tested simultaneously. This is the basis of the parallel 

algorithm used to find the complete list of Mp, a) graphs. 

II Ka or Na in G 

l/GEMp,a) 
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• • X A • t 

P\ #2 #3 P1 
PA 

• > 

#5 n n n #6 

Figure B.l: All trees up to six vertices with A(P) < 3. 

P1 T2 

-•—•-
< 

T4 
11 

P5 

Figure B.2: Trees on seven vertices with A(P) < 3. 
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P5 

-•-•-* 

1̂0 

-•—•—• 

Tju #8 

Figure B.3: Trees on eight vertices with A(P) < 3. 

P 1 

J Q 
T2 P3 

J 9 
T 4 
y9 

P5 

19 

P 7 
y 9 

T 1 0 
y9 

T l l 
19 

T 1 2 
y 9 

T 1 4 
y9 

T 15 
y9 

1̂6 T 17 
19 #9 

Figure B.4: Trees on nine vertices with A(P) < 3. 
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-10 
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P 12 
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Figure B.5: All trees up to 9 vertices with A(P) < 3. 
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Table C.l: Distribution oiM{3,4) graphs. R(3,4) = 9. 

R(3,4) 

E 
d 

g 
e 
S -I 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

1 
1 

1 

2 
1 
1 

2 

3 
1 
1 
1 

3 

4 

1 
2 
2 
1 

6 

5 

1 
2 
3 
2 
1 

9 

6 

1 
1 
4 
4 
3 
1 
1 

15 

7 

1 
2 
3 
2 
1 

9 

8 

1 
1 
1 
3 

9 

0 

Total 
3 
3 
4 
5 
5 
6 
6 
5 
4 
3 
2 
1 
1 

48 



Table C.2: Distribution of M(3,5) graphs. R(3,5) = 14. 

R(3,5) 

E 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

1 
1 

1 

2 
1 
1 

2 

3 
1 
1 
1 

3 

4 
1 
1 
2 
2 
1 

7 

5 

1 
2 
3 
4 
2 
1 

13 

6 

1 
3 
6 
8 
7 
4 
2 
1 

32 

7 

1 
2 
7 
13 
17 
15 
10 
4 
1 
1 

71 

8 

1 

1 
5 
13 
27 
39 
41 
27 
15 
6 
2 
1 
1 

179 

9 

1 
3 
11 
28 
59 
73 
62 
33 
14 
4 
2 

290 

10 

1 
2 
10 
32 
69 
86 
65 
32 
12 
3 
1 

313 

11 

1 
6 
19 
31 
30 
13 
4 
1 

105 

12 

1 
2 
5 
2 
2 

12 

13 

1 
1 

14 

0 

Total 
4 
4 
6 
9 
14 
18 
26 
35 
47 
61 
74 
89 
99 
100 
104 
102 
76 
53 
43 
33 
15 
6 
6 
2 
2 
0 
1 

1029 
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Table C.3: Distribution of ^ (3 ,6) graphs. R(3,6) = 18. 

R(3,6) 

E 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

... 

7 

1 
3 
7 
13 
20 
20 
18 
11 
5 
1 
1 

100 

8 

1 
3 
10 
23 
44 
63 
73 
63 
40 
21 
9 
3 
2 
1 

356 

9 

1 
2 
8 
26 
70 
142 
234 
284 
267 
185 
106 
47 
22 
8 
3 
1 
1 

1407 

10 

1 
1 
5 
16 
60 
175 
451 
864 
1255 

1344 

1114 

707 
377 
167 
71 
28 
13 
4 
2 
1 
1 

6657 

11 

1 
3 
16 
64 
265 
900 
2353 

4444 

6134 

6239 

4823 

2885 

1405 

565 
206 
64 
20 
6 
2 

30395 

12 

1 
4 
20 
119 
644 
2693 

7968 

16445 

23986 

25267 

19704 

11672 

5404 

2016 

630 
169 
41 
8 
1 

116792 

13 

1 
4 
45 
375 
2402 

10176 

27975 

51188 

64221 

56809 

36312 

17208 

6189 

1729 

377 
66 
8 
1 

275086 

14 

1 
16 
177 
1588 

8494 

27013 

53157 

67224 

56478 

32235 

12784 

3550 

699 
94 
9 
1 

263520 

15 

1 
7 
101 
822 
3998 

10910 

17552 

16896 

9957 

3587 

794 
100 
7 

64732 

16 

5 
39 
200 
547 
803 
634 
275 
62 
11 

2576 

17 

"* 

2 
3 
2 
7 

Total 

5 
5 
8 
13 
23 
37 
60 
99 
170 

.-wo 
493 
841 
1422 

2369 

3925 

6252 

9561 

14637 

21813 

29345 

36878 

48273 

63247 

71279 

67340 

63963 

70543 

73555 

59037 

36611 

23760 

21110 

17601 

10090 

3796 

1342 

903 
641 
275 
62 
13 
3 
2 

761692 



Table C.4: Distribution oiM{4,4) graphs. R(4,4) = 18. 

R(4,4) 

E 
d 

g 
e 
s 

Total 

Vertices 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

... 8 

1 
3 
11 
38 
111 
244 
398 
467 
398 
244 
111 
38 
11 
3 
1 

2079 

9 

1 
1 
5 
18 
73 
257 
768 
1719 

2831 

3355 

2831 

1719 

768 
257 
73 
18 
5 
1 
1 

14701 

10 

1 
5 
34 
177 
814 
2963 

8193 

16396 

23270 

23270 

16396 

8193 

2963 

814 
177 
34 
5 
1 

103706 

11 

1 
7 
72 
546 
3201 

13695 

41553 

87361 

126742 

126742 

87361 

41553 

13695 

3201 

546 
72 
7 
1 

546356 

12 

8 
177 
1906 

13332 

58131 

163757 

302088 

370368 

302088 

163757 

58131 

13332 

1906 

177 
8 

1449166 

13 

20 
535 
6339 

37825 

127138 

257711 

325095 

257711 

127138 

37825 

6339 

535 
20 

1184231 

14 

40 
872 
6247 

20901 

37348 

37348 

20901 

6247 

872 
40 

130816 

15 

13 
96 
211 
211 
96 
13 

640 

16 

2 

17 

1 

3 
3 
4 
8 
9 
15 
23 
34 
51 
83 
124 
196 
320 
500 
737 
1175 

1998 

3119 

4207 

5806 

9922 

17237 

24073 

26544 

30109 

49751 

90333 

127734 

128825 

100727 

99689 

177453 

305289 

370934 

302695 

170103 

95957 

140470 

259617 

325272 

257719 

127178 

38697 

12586 

21436 

37368 

37348 

20901 

6247 

872 
53 
96 
211 
211 
96 

13 

3432184 
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Ki=G\fl K2 = G^ 

Figure D.l: List of connected M(3,4) graphs with ap) = 1. 

n 
P4 = G. 4,3 = ^ 4 4 

Figure D.2: List of connected M(3,4) graphs with ap) = 2. 

G 3,0 G4.1 G 5.2 G 6,3 

G 2 .0 

• 
• • • 

G 4,2 

~ 

G 6,4 

G3.1 

•—•—• 

G 5,3 

13 
GJ.5 

G 4 ,2 

• 

G5,3 

(X 
< & 

• 

G 5.4 

•—• 

G7.6 

Figure D.3: List of disconnected M{3,4) graphs. 



A o 
r5,4 P5 = G 3 

5,4 <45 

Figure D.4: List of ^(3 ,4) trees with ap) = 3. 
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" t 

Pe = GU 

'5,6 

G 6 ,7 

Gl 6,6 

G 6 ,7 

i i i i 

dL 

<t> 
'6.7 

G 6,6 

G6.8 

G 7 .7 G 7 ,7 G 7,8 G7,l 

r7.9 G 7 ,9 ul 10 10 

'8.11 '8,12 

D.5: List of connected^1 (3,4) graphs that are not trees and ap) = 3. 
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ri,o G 2 ,0 G 2 , l '3,0 u 3 , l G\ G 3 ,2 G 4 , l 

G 4 ,2 G 4 .2 G 4 , 3 G 4 , 3 G 4 ,4 G 5 ,2 G 5,3 

u u 
G 5 .3 X 

A 
G 5 .4 '5.4 G5,5 75,5 G 5,6 

'6.3 G 6,4 

• 
«X G 6 , 5 G 6 ,5 

• • 

I I i> 

G 6,5 G 6,6 

u 
G i . 6 G 6 ,6 G 6 , 6 G 6 ,7 G 6 ,7 Gi ',7 G6,8 

G 6 .9 

o 
G 7 , 6 G 7 ,7 

O * 
G 7 .7 G 7 . : G7 G7,8 

G 7 .9 G 7 .9 G7,10 G8,10 G 8 ; l l G8,12 

Figure D.6: Complete list of graphs in M(3,4)-
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