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ABSTRACT 

The use of computational methods for design and simulation of control systems 

allows for a cost-effective trial and error approach. In this work, we are concerned with 

the robust, real-time control of physical systems whose state space is infinite-

dimensional. Such systems are known as Distributed Parameter Systems (DPS). A body 

whose state is heterogeneous is a distributed parameter. In particular, this work focuses 

on DPS systems that are governed by linear Partial Differential Equations, such as the 

heat equation. We specifically focus on the MinMax controller, which is regarded as 

being a very robust controller. The mathematical formulation of the MinMax controller 

involves a design parameter, 6. This parameter provides a numerical measure of the 

robustness of the MinMax controller; hence it is very important. However, there exists no 

explicit formula for determining its value in advance of attempted control design. 

Currently, this parameter's optimal value- optimal in the sense of robustness- is 

determined experimentally using an iterative process that seeks to maintain stability in 

the closed loop control system as well as an always positive definite result for 

[/ - 62PU\ (i.e. [/ — 02PYL\ > 0) where / is the identity matrix, while P and n are 

solutions to Algebraic Riccati Equations discussed in this dissertation. This process is 

obviously computationally expensive. 

The search for a more efficient means of determining 6, including the possibility 

of the emergence of an explicit formula based on some mathematically rigorous criteria, 

iii 



iv 

is the driving force for this work. We use sensitivity analysis as a tool to mathematically 

investigate different criteria (such as the controller sensitivity, state sensitivity, Riccati 

equations' sensitivity, etc.) to help achieve our goal of formulating a more efficient 

means of determining an optimal value for 6. 

For each of the systems investigated, it was found that low 0 values (e.g. 0.05) are 

sufficient for adequate performance, robustness, and convergence of the MinMax 

controller. 
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CHAPTER 1 

INTRODUCTION 

1.1 Control of Distributed Parameter Systems 

The design of control systems can be an expensive endeavor. However, the use of 

computational methods of design and simulation allows for a cost-effective trial and error 

approach. In this work, we are concerned with the robust real-time control of physical 

systems whose state space is infinite-dimensional. Such systems are known as Distributed 

Parameter Systems (DPS). A body whose state is heterogeneous is a distributed 

parameter system. In particular, this work focuses on DPS systems that are governed by 

linear Partial Differential Equations (PDEs). Examples of such systems include the heat 

equation, Euler-Bernoulli cantilevered beam, wave equation, etc. 

Control design applied to a DPS also results in an infinite-dimensional PDE 

controller. For the purpose of computation and numerical simulation, we apply a 

discretization algorithm to approximate the PDE models by finite-dimensional systems. 

Controllers are designed for the finite-dimensional systems, resulting in finite-

dimensional controllers, though they are known to converge to the infinite-dimensional, 

theoretical controllers [1]. 

There are many controllers that can be used for DPS control. The most classical 

of these controllers is the Linear Quadratic Regulator (LQR). The LQR and the Linear 

Quadratic Gaussians (LQG) are two of the most fundamental DPS control problems. 

1 
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Their design and application are discussed fully in [2; 3]. The primary difference between 

the LQG and the LQR systems is that LQR is an example of full state feedback control 

(i.e. the entire state of the system is known at all time values), whereas the LQG is an 

example of state estimate feedback control (an observer or compensator is used to 

provide an estimate of the state based on measurements). Another example of DPS 

controller is the Central controller discussed at length in [4; 5]. This controller is known 

to stabilize the system it is applied to with a guaranteed robustness margin. The Central 

controller involves a control parameter that provides a measurement of its robustness. 

This parameter's value is given by a mathematically rigorous deterministic formula. 

Finally, another example of a DPS controller is the MinMax controller, which is the 

controller investigated in this dissertation. 

1.2 The Finite Dimensional MinMax Controller in Brief 

The following is a summarized excerpt from [6]. Consider a linear system 

described by 

x(t)  = A(t)x(t)  + Z?(t)u(t) + r(t)w(t). Eq. 1-1 

z(t) = //(t)x(t) + Eq. 1-2 

where x is the n x 1 state vector, u is the m x 1 input vector, z is the p x 1 measurement 

vector, w and v are the q x land p x 1 input disturbance vectors, respectively. It is 

assumed that I\ is nonsingular. The measurement history up to t is defined as 

Z t  = {^00,0 < s < t}. Eq. 1-3 

The deterministic linear quadratic game problem under consideration is to obtain an 

optimal control strategy u(t) = u(Zt), for the worst case disturbances w(-), v(-) and 



3 

initial condition x(0) such that min max max max J(z/, v, w,x(0)) subj ect to the constraints 
u v w x(0)  

in Eq. (1.1) and Eq. (1.2) where 

j (u,v ,w,x{0)) = ^||||*(0) - XQllp-i + \\X(T)\\IT + 
Eq. 1-4 

Jor{Mi(t) + IMll(t) +K,,Wll^-1(0 + IIVllK-*(t))} rfc]» 

9 is the control parameter, x0 and the terminal time T are fixed, and all matrices have 

appropriate dimensions. It is assumed that R, PQ, W and V are positive definite, and Q and 

QT are nonnegative definite. Here ||x||^ denotes *JxTAX. The minimization of the above 

cost function with respect to u, after it is already maximized with respect to the 

disturbances v, w and the initial state x0 is widely called the MinMax control problem. 

1.3 The MinMax Parameter Problem 

The MinMax controller is regarded as being a very robust controller. It has been 

implemented for such problems as the design of a fault detection filter [7] and flow 

control in a driven cavity [8]. Much work has been done in the past on the design and 

application of the MinMax controller e.g. [9; 10; 11; 12]. 

The MinMax controller is a state-space formulation of the well known Hm 

controller. The mathematical formulation of the H® controller involves a control 

parameter whose optimal value remains an open problem in robust control theory [13]. 

In order to design a meaningful //«, control law for a system, the optimal control 

parameter, 9*, should be available before hand. In the literature, this value is determined 

by iterative schemes only. One such iterative scheme is as follows: start with a value 9 

and determine whether 9 > 6*by solving two "indefinite" algebraic Riccati equations and 

checking the positive semi-definiteness and stabilizing properties of these solutions. If a 
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positive semi-definite solution exists, then 0 > 0 * and the process is repeated with a 

lower 0. This is clearly a computationally expensive process. Even more importantly, as 0 

approaches 0 *, numerical solutions of the algebraic Riccati equations become ill-

conditioned. Secondly, as 0 decreases, evaluation of the coupling condition generally 

involves finding eigenvalues of stiff matrices. The iterative process is therefore 

inefficient and unreliable. 

The search for a more efficient means of determining d, including the possibility 

of the emergence of an explicit formula, is the driving force for this work. We use 

sensitivity analysis as a tool to mathematically investigate different criteria such as the 

controller sensitivity, state sensitivity, Riccati equations' sensitivity, etc. to help achieve 

our aim of contributing towards the ultimate goal of determining a more efficient means 

of identifying 0*. 

1.4 Sensitivity Analysis 

Sensitivity analysis provides a means of observing and analyzing the behavior or 

reactions of a system's output to variations in some input parameter. For instance, in 

many engineering applications, an in-depth analysis of the design may require efficient 

construction and manipulation of complicated geometries as well as accurate (though 

fast) numerical PDE solutions. In order to achieve the aim of optimizing the design, it 

may be very effective to alter the values of some of the design parameters. This alludes to 

the fact that the sensitivity of some output variables (such as variables that affect 

performance) to variations in some key parameters is critical. 

Mathematically, the sensitivity of a function of a variable jc with respect to that 

variable is the derivative of the function with respect tox , i.e. In this work, we 
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seek to investigate the sensitivity of various functions (e.g., state position, control effort 

u 5 etc.) with respect to the MinMax control parameter 0. We use a Galerkin finite 

element scheme in order to obtain a finite dimensional approximation of the solutions of 

the sensitivity equations. 

There are two main classifications of numerical methods used to perform 

sensitivity analysis: the "discretize-then-differentiate" methods and the "differentiate-

then-discretize" methods. The mechanisms of both methods are as their names suggest. 

An example of the former case is a method based on finite differences. This is the first 

and most prevalent method. There are issues with this method in the case of complex 

fluid flow problems as well as the typical issue of stability in finite difference schemes 

when dealing with step-size in the design variable (this is usually a trial-and-error process 

that leads to increased computational expense). These problems are discussed fully in 

[14; 15]. A second example of a "discretize-then-differentiate" method is Automatic 

Differentiation applied in [16; 17]. In this method a computer code is used to generate a 

finite dimensional state approximation. Specifically the program performs differentiation 

by repeatedly using the chain rule at the discrete level after the aforementioned finite 

dimensional state approximation is generated. 

In this dissertation we apply Continuous Sensitivity Equation Methods (CSEMs) 

to the heat equation (1-dimensional and 2-dimensional), the wave equation, and the 

cantilevered Euler-Bernoulli beam that is attached to a rotating hub through which the 

control enters. The input parameter, which will be varied, is the MinMax parameter#. 

The CSEMs used here are categorized as the previously mentioned "differentiate-then-

discretize" method. Examples of the usage of CSEMs are in [18; 19; 20]. A simple 



example of the application of CSEMs is given in Section 2.2.1 of [21] and is presented 

here. 

1.5 Heat in a Thin Rod 

This example is for a steady state temperature distribution in a thin rod. A heat 

source is applied to only one section of the rod and the length of the rod is determined by 

the shape parameter .  Let  Q = (1,2)  be the design space.  For this  discussion,  let  Q 

represent a bounded, connected, open subset of 9?",(w = 1,2,3) satisfying the cone 

condition, see [22]. The state equation is an elliptic boundary value problem given as 

d 2 w f x )  
dx~ =  * G  =  ̂ ° 'E q '1 - 5  

for a given q e Q . Here Q(q) is defined as the interval (0, q). / is the piecewise 

continuous function 

. f 0, 0 < x < 1 „ , 
f M  =  { - 1 , 1  E l - 1 " 6  

We assume homogeneous Dirichlet boundary conditions, hence 

w(0) = 0,w(q) ~ 0. Eq. 1-7 

These boundary conditions suggest that the two ends of the rod are insulated. The aim 

here is to solve Eq. 1-5 through Eq. 1-7 for the state w(x, q)and to then determine its 

sensitivity to small changes in q. The analytical solution can be verified to be 

(<7 " I)2 

w(x,  q)  

We define the sensitivity 

2 q 
(,Q - 1Y 1 

x,  0 < x < 1 
2 ^ Eq. 1-8 

x + -(x- l)2 ,  1 <x<q. 
2 q 2 
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Eq. 1-9 

The sensitivity then is 

Eq. 1-10 

Discretization of this final sensitivity equation completes a "differentiate-then-discretize" 

example method. 

In this work, we investigate the sensitivity of the controlled state, continuous 

algebraic Riccati equations' solutions, and other variables with respect to variations in 6. 

The potential end result is to be one step closer to having an efficient means of 

determining the optimal value of the parameter-optimal in terms of robustness, 

performance and even stability- that passes the test of some mathematically rigorous 

criteria. 

In this dissertation, we perform sensitivity analysis on the heat equation, the 

Euler-Bernoulli cantilever beam with a rotating hub, as well as the wave equation. In 

Chapter 2 we discuss the MinMax controller design, stability analysis, Riccati sensitivity 

analysis and some theoretical background. In Chapter 3 we discuss the results of 

performing sensitivity and stability analyses for the 1 and 2-dimensional heat equations. 

In Chapter 4 we discuss the results for the 1-dimensional wave equation. In Chapter 5 we 

discuss the same results for the Euler-Bernoulli cantilevered beam with a rotating hub. In 

Chapter 6, we provide a conclusive analysis of the results and indications of the direction 

of future work. In Appendix A, we provide the exact solutions to the uncontrolled 1 and 

2-dimensional heat equations, as well as the uncontrolled 1-dimensional wave equation. 

1.6 Overview of Dissertation 



8 

This was done as a check for numerical accuracy of the simulations in Chapters 3 and 4. 

Finally in Appendix B, we provide finite difference solutions to the uncontrolled 1 -

dimensional heat and wave equations, as well as the 2-dimensional heat equation. 



CHAPTER 2 

THEORETICAL BACKGROUND AND 

CONTROLLER DESIGN 

2.1 Problem Formulation 

As stated in Chapter 1, we are concerned with making progress towards the 

ultimate goal of determining a potential formula for choosing the MinMax parameter that 

is based on mathematically rigorous criteria. To this end, we work with physical systems 

that are governed by Partial Differential Equations (PDEs). Such systems are known as 

Distributed Parameter Systems. Based on the theory in [9; 10; 11], we assume that our 

PDE control system can be modeled in abstract form as 

x(t) = Ax(t) + Bu(t), x(0) = x0. Eq. 2-1 

Here x(t)eX is the state of the system and X is a Hilbert space. The operator ,4 : X -» X 

describes the dynamics of the system, B:U —>X indicates how the controller is applied, 

and u(t) is the controller in Hilbert space U. The uncontrolled form of this equation is 

given as 

x(t) = Ax(t), x(0) = x0. Eq. 2-2 

We further assume that there is less than complete knowledge of the system; hence we 

introduce a state measurement y(t) € Y, which is a Hilbert space. The form taken by the 

measurement is given as 

y(t)  = Cx(t) .  Eq. 2-3 

9 



The operator C: X —> Y determines how the state is measured. Since full state feedback 

is often impossible, C is generally not the identity operator. 

2.2 Semigroups 

For the purpose of this discussion we denote the state space system given by Eq. 

2-2 and Eq. 2-3 as^(A,B,C) . The following definitions are cited from [23] and [24]. 

Definition 2.1 Let X be a Hilbert space. A family T(t), 0 < T < of bounded linear 

operators from X into X is a semigroup of bounded linear operators on X if 

1. 7(0) = I ,  where 1 is the identity operator on X 

2.  T(t  + s)  = T(s)T(t) for every t ,s  > 0 

Definition 2.2 A semigroup T{t), 0 < t  < of bounded linear operators on X is a 

strongly continuous semigroup, or C0 — semigroup, of bounded linear operators if 

T =  * '  f o r  e v e r y  x e X '  E q .  2 - 4  

Theorem 2.3 Let 7'(/)be a C0 — semigroup. There exist constants 6J>0and M > 1 

such that 

IpT(0|| ^ Me°*, for 0 < f < °o. Eq> 2-5 

If C0< 0 we say that r(/)is an exponentially stable C0 - semigroup If o) = 0, r(7)is 

said to be uniformly bounded, and moreover, if M = 1, T(?) is called a C0 -

semigroup of contractions. 

Definition 2.4 An operator A is exponentially stable if and only if A generates an 

exjponentially stable C0 - semigroup. 
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In this work, we assume A generates an exponentially stable C0 —semigroup 

which guarantees well-posedness of the control problem. This is true for the PDE's 

investigated in this work: heat equation as seen in [25; 26], the 1-dimensional wave 

equation [27] and the Euler-Bernoulli cantilevered beam with a rotating hub (also 

investigated in this work) [1; 28]. 

Definition 2.5 The state linear system ]£](A,B,C) is exponentially stable if A is 

exponentially stable. We assume ^T(A,B,C) is exponentially stable for this work. 

Definit ion 2.6 ]jT (A, B,  C)  is  stabil izable i f  there exists  a  l inear  operator  F'.X —>£/  

such that A + BF is exponentially stable. We refer to the pair (A, B) as being stabilizable. 

Definition 2.7 ^T(A,B,C) is detectable if there exists a linear operator L: Y —> X such 

that A+LC is exponentially stable. We refer to the pair (A, C) as being detectable. 

2.3 MinMax Controller design 

In attempting to achieve our aforementioned goal we design a MinMax controller 

for the 1 and 2-dimensional heat equations, the 1-dimensional wave equation and Euler-

Bernoulli cantilevered beam with a rotating hub. The MinMax controller is a well-

established control strategy (e.g. [6; 29]) and the equations for implementation are 

summarized here. We assume in this work that complete information about the controlled 

system is not available, hence a compensator is used. This compensator or observer 

incorporates the measurement of the state in Eq. 2-3 into its state equation: 

x c( t)  = A cx(t)  + Fy(t) ,  x c(0) = xC g ,  Eq. 2-6 
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where x c is  the state of the compensator. In this work, we assume that (A,  B) is 

stabilizable and that (A, C) is detectable (see definitions 2.6 and 2.7). Under these 

assumptions, 

F = [l-02Pnl]PC\ Eq. 2-7 

and 

A c  = A — BK — FC + 92MU, Eq.2-8 

where II, P, Mand K are defined in Eq. 2-9 and 2-10. There exists an optimal control of 

the form 

u(t)  =-Kx c( t) ,  E q '2"9  

where K is given as 

K=R~ lB'TL. Eq. 2-10 

In Eq. 2.7-2.10, n and Pare unique, positive definite solutions of the control and filter 

algebraic Riccati equations given as 

A*n  + T\A-YL[BRTXB* -92M\ 11 + 0 = 0, Eq.2-11 

and 

AP+PA* -F{CC-02Q] P + M = 0. Eq. 2-12 

Here, 

Q = C*C, Eq. 2-13 

and 

M = BB*. Eq. 2-14 

We are guaranteed minimal solutions n and P such that 
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[ /  -  e 2P\ l ]  > 0, Eq. 2-15 

for sufficiently small 6. The final closed-loop control system is now 

r x i  \A -BR-XB* im*i r*(0)i r*oi 
k r h  re JU U(o)J=kl-  E q-2-1 6  

2.4 Stability Analysis and Robustness 

For a system that has bounded inputs, it is possible that the output maybe 

unbounded. This would render any solution useless; hence it is important that the 

controlled systems designed be stable. [30; 31] provide a simple criterion to determine 

stability of the systems under consideration. Consider the continuous-time system in Eq. 

2-3: x(t) = Ax(t).  

For a given initial condition x(0) = jc0 , such a system has solution of the form 

x(t) = eA tx0 ,  Eq. 2-17 

where t  > 0. Using this solution the following theorem is provable 

Theorem 2.1 (Theorem 10.2 in [30]) 

The system in Eq. 2-2 is stable if and only if 

A Re s,  < 0, £q. 2-18 
ie\tk 

where are the roots of the equation 

det(J-5/) = 0, Eq. 2-19 

i.e. Sj are eigenvalues of A. This theorem is used in stability plots in Chapters 3, and 4 

and 5. 
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In order to further our search of an optimal means of choosing 6, we compare 

robustness of the MinMax controllers implemented for different 9 values. Two measures 

of robustness are employed: stability margin and stability radius. The stability margin (as 

described in [32]) for a given matrix A is a measure of the distance from the imaginary 

axis to the nearest eigenvalue of matrix ,4. The stability radius, described in [32; 33], of 

matrix A is a measure of the distance from A to the nearest unstable matrix based on 

singular value computations. 

2.5 Riccati Sensitivity 

As previously stated, our goal is to contribute towards more efficient ways to 

determine the MinMax parameter 9. Since the Algebraic Riccati Equations (ARE's) are 

essential to the design of the controller, and since their mathematical formulation is a 

function of 0, we perform a sensitivity analysis of these equations. Consider the ARE's in 

Eq. 2-11 and Eq. 2-12: 

A*Tl + IL4 - n[BR^B* -  02M]TI + Q = 0, 

AP +  PA* -  P[C*C -  9 2 Q]P +  M =  0. 

We begin by finding the derivatives with respect to0,  

A*n g  + n 0 A - n-  6 2 M]Tl  - n[-20M]n 

-  n[BR^B* -  0 2 M]Y1 0  = 0 ,  

AP b  + PgA* -  P g [C*C -  e 2 Q]P -  P[—29Q]P -

P[C*C -02Q]Pe = 0 

Here, let Il0 = and = Pe .  Now let Y\ 0  = X and P 0  = Y,  then 

Eq. 2-20 

Eq. 2-21 

A*X +  XA-  XlBR^B* - 02M]n - n[-29M]Tl  

-  n[BR- r B* -  e 2 M]X =  0 ,  
Eq. 2-22 
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and 

AY + YA' -  Y[C*C -  02Q]P -  P[-26Q]P -  P[CC -  62Q]Y = 0. Eq. 2-23 

Then factoring 

[A* - n(BR~ rB* -  92M)]X + X[A -  (BR~XB* -  02M)n] 
Eq. 2-24 

- n(-20M)n, 

[A -  P(C*C -  62Q)]Y + Y[A* -  (C*C - 92Q)P] -  P(-29Q)P. Eq. 2-25 

These final two equations are now in the form of Lyapunov equations which are solved 

numerically in Chapters 3, 4 and 5 of this work. 

2.6 Controller Sensitivity 

As previously stated in Chapter 1, we perform sensitivity analysis on the various 

PDE systems in this work. In doing so, we also investigate the sensitivity of the controller 

with respect to variations of the MinMax parameter, 0. We know from Eq. 2-9 that 

u(t) = —Kxc (t). This can be re-written as 

u(t ,0) = -R- lB'Ilx c( t ,0) .  Eq. 2-26 

Differentiating this with respect to 0 gives 

du(t ,6) ,  dU ,  dx c( t ,6)  _ _ __ 
-W1 - -R'

lB
' - R E'- 2-2? 

or 

= -R~*B 'n $xc ( t ,9)-  R~ xB'Tlx c e{t ,0).  Eq. 2-28 

Let Su(t) = ug(t ,  0), then 

Sa( t ,0)  = -R- 'B'n.x. i t^)-  R- lB'Ilx c g( t ,0) .  Eq. 2-29 
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2.7 Sensitivity of the Compensator state 

The solution and subsequent simulations of Eq. 2-28 requires the definition of the 

sensitivity of the compensator's state variable x (t,0). Recall that the compensator state 

is defined by Eq. 2-4 as 

x c( t ,  9)  = A cx(t ,  0) + Fy(t ,  9) .  Eq. 2-30 

Substituting F and A c  into Eq. 2-30 gives 

x c( t ,  0)  = Ax c( t ,  0) - BR~ xB*l\x c( j t ,  9)  — [ I  — 9 2 Pn]~1PC*Cx c( t ,  9)  
Eq. 2-31 

+ 92Mx c( t ,9)  + [I -  92PU]~1PC*Cx{t,  9) .  

Differentiating this equation with respect to 0 gives 

xC e(P> 9) = AxC f )( t ,  9)  -  BR^B'TlgXcit ,  9)  -

BR^B'UgXc^t,  9)  + 29MY[x c{t ,  9)  + 92MU0x c( t ,  9)  + 

[ /  -  9 2 pn]~ 1 [ -29pn -  e 2 p e  n -

0 2 pn e ] [ /  -  92PY\]- 1PC*Cx c ( t ,  9 )  +  9 2 MY \xC 0 ( t ,  9)  -
Eq. 2-32 

[ /  -  9 2 pn]~ 1 pc*cx c ( t ,  0) - [/ - 0 2 pn]- 1 pc*cx c 0 ( j t ,  9 )  -

[i - 92Pi\]-1[-29Pn - e2p0 n -

e 2 pn 0 ] [ /  -  9 2 pu]~ 1 pc t x( t ,  9 )  + [ i -  e 2 pn]- 1 p 0 c*cx( t ,  9 )  +  

[1  -9 2 Pn]~ 1PC*Cx 0 ( t ,  9 )  

Rearranging Eq. 2-32 gives 

x C g ( t ,9 )  =  ( - [ /  -  02pn]_1[-20pn -  9 2 P0  n - 02pne][/ - 9 2 PU]~1  + 

[/ - 92pn]-1p0c*c)x(t) + (-BR^B'TIQ + [/ - a2pn]-1[-20pn - 92P0 n -

92P0U0][I - 92PU]~1PC*C -[I- 92PU]~1P0C*C + 20Mn + 92MUe)xc(t) + Eq. 2-33 

[ /  -  92pn]-1pc*cx e( t ,  9)  +(A- BR^B* n -  [/ -  92PI\]-1PC*C + 

92MYi)xC 0( t) .  

This can be re-written as 
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x C e ( t ,  9 )  -  A c l x( t ,  0) + A c 2 x c ( t )  +  A c 3 S x ( t ,  0) + A c 4 S X c ( t )  Eq. 2-34 

where 

S x( t ,  0) = x0( t ,  0), 

SX c( t ,&) = xC g( t ,0) ,  

A c l ( t ,0 )  =  - [ I  -  d 2 Pl l ] - 1 [ -2dPn -  6 2 P 0 U 

-  d 2 PU Q ] [ i  -  d 2 pu]~ 1 [ i  -  o 2 pn]- 1 p e c t c ,  

A c 2 ( . t ,  9 )  =  BR~XB* n0 + [/ - 02pn]_1[-20pn - 9 2 P6  n - e 2 pn 0 ] [ i  -

0 2Pn] - 1PC*C -  [/  -  0 2 Pn]~ 1 P g C*C +  29MU +  9 2 MXl,  
iL(|» 2-35 

A c 3 ( t ,  9 )  =  [ I -  9 2 Pn]~ 1 PC*C,  

AcS*' 9 ")  =  A ~ BR^B" n  -  [/  -  9 2 PU]~ 1 PC*C +  9 2 MU. 

2.8 Functional Gains 

The following discussion of functional gains is a sununary from [32]. The control law for 

some PDEs can be written in integral form. For example, if the control space U is finite 

dimensional, then from Riesz Representation theorem, 

u( t )  =  -Kx c ( t )  =  - {k i (s ) ,x c ( t ) ) ,  Eq. 2-36 

where s is a spatial variable and ki(s)eX for 1 = 1,2,3,m. k{s), which is the kernel of 

the integral, is called a functional gain. Functional gains are important for many reasons. 

For example, the gains can be computed off-line, stored, and then multiplied by the state 

estimate before numerical integration, when computing the control. Also the functional 

gains can provide such information as the optimal locations for sensor placement (see for 

example [34]). In this work, we are using functional gains to verify that our Galerkin 

finite element scheme used to approximate the infinite dimensional PDE systems 



converges. We also want to examine the effect of 0 on convergence of functional gains. 

This is a way to assess the convergence of the controller and the finite element scheme. 



CHAPTER 3 

HEAT EQUATION 

In this Chapter, we implement the MinMax controller and apply Continuous 

Sensitivity Equation Methods to the 1 and 2-dimensional heat equations. The goal here is 

to further our investigation of a more efficient means of choosing the MinMax parameter, 

0-

3.1 1-D Heat Equation 

Heat flow along a 1 -dimensional structure, such as a rod, can be modeled by the 

diffusion equation: 

U, (t ,x)~ kU ̂  ( t ,x)  = Y j  b.,  Eq. 3-1 
/=1 

where o < x < L  and k-—- is the thermal diffusivity, K0  is the thermal conductivity, c  is 
c p  

the specific heat capacity, p is the mass density, t represents time, x is the distance along 

the rod, U(t,x) is the temperature at time t and position x, u(t) is the control input to 

the system, and bi (x) describes how the control enters the system. Figure 3-1 shows the 

system under discussion. 

19 
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U(t,0) = 0 U(t L) = 0 

n ) 
i 1 

0 x L 

Figure 3-1: Heat flow in 1-d rod 

We employ a Galerkin Finite Element scheme to Eq. 3-1. In order to determine 

the finite element approximation to Eq. 3-1, we first write the weak form of the PDE. In 

considering the weak form of the problem we seek to find a U(x)e X = H 1(0,1) such 

that 

J0' 0(t, x)v(x)dx -
Eq. 3-2 

k /0' U"(t,x)v(x)dx = J0
l u(t) ££i bi(x)v(x)dx.  

Here v(x) e H l
o ( 0 , L ) is the test function. Using integration by parts, 

/0l U"(t,x)v(x)dx = U'(t,x)v(x)\l0 - JjJ U'(t,x)v'(t,x)dx = 
Eq. 3-3 

/J  U'(t ,x)v '(x)dx,  

since v(0) = v(/) = 0. Substituting this into Eq. (3.2) gives 

/0' U(t,x)v(x)dx + k /g U'(t,x)v'(x)dx = 

/J u(0 bi(x)v(x)dx.  

Eq. 3-4 

Now let, where U(t,x)  « UN( t ,x) = x ei(O0i(*)» <Pi( x)  are piecewise linear basis 

functions and (t) are their coefficients. Then Eq. 3-4 becomes 

J0 '  UN( t ,x)v(x)dx + k J0 '  U'N( t ,  x)v '(x)dx = 
Eq. 3-5 

Jo "(0 b i(x)v(x)dx,  

or 



21 

In IN II ei(t)<t>i(x)v(x)dx + k II ei(t)<f) '(x)v'(x)dx = 
o i=l o 1=1 

Eq. 3-6 
rn J u(t) bi(x)v(x)dx.  

0 i=1 

Now we let v(x) range over <j>. (x) for j = 1,2, • • • N. Eq. 3-6 now becomes 

In IN 

I I  II  ei(0(p' iM<Pj(x)dx 
0 i=1 0 i -1 

Eq. 3-7 
771 

= u(t) I bi(x)(f) j(x)dx.  
i=l 

This can be rewritten as 

ei(t) e1  (t) 
M J + kK J 

-%(0. 
= u(t)B0 ,  Eq. 3-8 

where 

M = 
i 

'.y=i 

l 

and5„ = 
i,j=1 

000, (*)<&• 
0 '=1 

JV 

>=1 

Here A/ and K are the mass and stiffness matrices respectively. Rearranging Eq. 3-8 

gives 

ei ( ty ei (£) 
I  = —kM~ xK ; 

.eN( ty 
+ u(t)AT %. Eq. 3-9 

Let X(t)  = e(t) , then Eq. 3-9 becomes 

T*i(Ol 
+ u(t)M-1B0. Eq. 3-10 

Since full knowledge of the system is not available, we take measurements in the form 

(0 r*i(Oi 
: = -kM~1K : 

A(0. 
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y ( t )  = c [X( t ) \  Eq. 3-11 

where C is composed of four averaging measurements of the state position, resulting in 

the 4x(2iV-2) matrix 

TJ t," (x)dx 
• n 

f l /* ^ r " (x )cbc 

J 
N  - I  

T\*,N  {x)dx 
I J ,  

7" j (x)ebc 
LL 
4 

/=i 

Eq. 3-12 

Next, we define {£. }",.We begin by partitioning the spatial domain [0, /] as 

1 (  *\ 2 

where x t  = i x The functions b t  are defined as b t{x) — e~^ x~ x^ for 

x t_ x  < x < x i }  where x\  = = 1.25,3.75,6.25,8.75 since I  = 10 for the rod in 

question. Finally, 

BQ=[BX-Bm \and B, = \b i(x)</>J(x)dx 
U=1 

Eq. 3-13 

For this system, m = 4, hence 

Bq — \B\ B2 B3 B4 ]. Eq. 3-14 
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3.2 Numerical Results 

For all the simulations in this section iV = 80,/ — \0 ,R~I and 

U(t,  0) = i/(t, 0 = 0. Eq. 3-15 

The results are presented in the following order: uncontrolled simulations, functional 

gains, controlled simulations, stability analysis and sensitivity analysis. 

3.2.1 Uncontrolled Results 

For simulation purposes and to attain a solution to the system in Eq. 3-10 and Eq. 

3-11 we apply the initial conditions 

U0  = 1/(0, x) = 100, UC o  = U c  (0, x) = 0.75U0 .  Eq. 3-16 

Figure 3-2 shows the uncontrolled state for this system. We desire the state to tend to the 

exponentially stable equilibrium position of zero (0). The MinMax controller is applied 

with the aim of achieving this goal. 

Temperature, Uncontrolled System 

Figure 3-2: Uncontrolled heat flow in 1 -d rod 
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3.2.2 Controlled Results 

Figures 3-3 to 3-6 show the functional gains for the system in Eq. 3-10 and Eq. 

3-11. The color legend in this plot is: N = 10 blue, N = 20 red, N = 40 black, N = 80 

magenta. The results clearly show convergence of the functional gains, hence the 

Galerkin finite element scheme converges. More importantly, as 0 increases, there is no 

visual change in the functional gains. This suggests that, with respect to convergence of 

the functional gains and the MinMax controllers for this system, the choice of MinMax 

parameter is not pivotal. 

position, 0=0.05 position. 0=0.2 

•S 5, 

Figure 3-3: Functional gains, 9 = 0.05 Figure 3-4: Functional gains, 0=02 

0.5 

0 
-0.5, 

position, 0=0.5 

2 3 4 5 

2 3 4 5 

2 3 4 5 

0 1 2 3 4 5 6 7 

position, £=0.7 
— ,, 

0 1 ? 3 i 5 5 7 8 9 10 

0 1 2 3 4 5 6 7 8 9 10 

s~—— 

0 1 2 3 4 5 6 7 e 9 io 

0 1 2 3 4 5 

Figure 3-5: Functional gains, 0=0.5 Figure 3-6: Functional gains, 0 = 0.1 

Figures 3-7 and 3-8 show the controlled temperature values along the rod for the 

fu l l  s t a t e  (« ( / )  =  - K U ( t ) )  and  fo r  t he  s t a t e  e s t ima te  sys t em ( u ( t )  =  - K U c { t ) ) ,  
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respectively. In each figure, the top left result is for 6 = 0.05, top right is for 6 = 0.2, 

bottom left is for 0 = 0.05 and finally bottom right is for 6 - 0.7. The maximum 0.7 is the 

maximum 0 value that still results in [/ — 62PW] > 0 and eigenvalues of 

being in the left two quadrants of the complex plane as described in Chapter 2. 

Temperature, Ful State MlnMax System, e -  0.2 Temperature, Ful State MinMax System, 0= 0.06 

Temperature, Ful State MlnMax System, 0* 0.7 Temperature, Ful State MinMax System, s *  0.5 

Figure 3-7: Controlled temperature, full state MinMax 
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Temperature,State Estimate MinMax System, e= 0.05 Temperature,State Estknate MinMax System, 6 -  0.2 

-

Temperature,State Estimate MinMax System, 8 -  0.S Temperature,State Estimate MinMax System, 6- 0.7 

Figure 3-8: Controlled temperature, state estimate MinMax 

The results show that, as 0 increases, there is an imperceptible difference in the 

performance of the controller. This would suggest that the choice of 6 in terms of 

performance is irrelevant. Both the full-state as well as the state estimate feedback 

systems do a great job in driving the system towards equilibrium. Although this is not our 

main goal, it is a necessary requirement. 

3.2.3 Stability Analysis 

The main aim of this dissertation is advance the search for a more refined means 

of choosing the optimal MinMax parameter. With this main goal in mind, it is necessary 

still to ensure stability in the control system without which our results will be invalid. In 

order to verify stability in the control system we investigate the eigenvalues of the matrix 
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FC A J -As described in Chapter 2, all  the eigenvalues of this matrix must be on the 

left-hand side of the complex plane in order for the system to be stable. Figures 3-9 and 

3-10 show the eigenvalue plots for varying 0 values. The graphs on the right side of each 

figure are a zoomed view showing the closest eigenvalues to the imaginary axis. As 

described in Chapter 2, this is known as the stability margin. The larger the stability 

margin, the higher the stability of the system. Two main conclusions can be drawn from 

the results: 

1. Since all of the eigenvalues are on the left-hand side of the complex plane, the 

system is stable at all possible 9 values. 

2. The stability margin increases slightly with increasing 6 (see Table 3-1). This 

suggests that as 6 increases the system's stability increases. However, since the 

difference in the stability margin is minute, we conclude that all possible 6 

values can be chosen with respect to system stability. 
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Table 3-1 shows the stability margin and radius results for various 6 values. 

Recall from Chapter 2, that the stability radius is a robustness measurement that indicates 

the distance of a particular matrix from the nearest unstable matrix. As a result the larger 

this distance, the more stable the system. The table shows that as 0 increases, the stability 

radius is virtually unchanged. This is in agreement with the previous results and hence 

the conclusion drawn is the same: the value of the MinMax parameter chosen is not 

critical based on the stability radius. 
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Table 3-1: Stability margin and radius for controlled system (Am m)  

e Stability Margin Stability Radius 

0.05 0.106150912881119 0.0966256989626073 

0.2 0.106242942442262 0.0966278024617770 

0.5 0.106763979943028 0.0966337536956251 

0.7 0.107351971099277 0.0966156352872341 

3.2.4 Control Effort 

As described in [4], an undesirable downside to the design of our controller is the 

idea that the controller's operation may require too much power. This is not cost-effective 

and hence one condition that we want to maintain is that the control effort, which is a 

direct indication of the power required, must be reasonable. We therefore provide in 

Figures 3-11 through 3-18 for 6 = 0.05, 0.2, 0.5, 0.7. In Figures 3-11 through 3-14, the 

system under investigation is the full state MinMax controlled system where no 

compensator/observer is used. In Figures 3-15 through 3-18, a compensator is 

implemented. 
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Control Effort for controller 1; Full State System, 0= 0.05 Control Effort for controller 2; Ful State System, e= 0.05 

Control Effort for controller 3; FuR State System,6= 0.05 Control Effort for controller 4; Ful State System, 5= 0.05 

Figure 3-11: Control effort, full state MinMax 

Control Effort for controtar 3; Ful Stat* System,0= 02 

Control Effort for controtor 1; Ful Stat* System, e- 0.2 

Control Effort for contro#»r 4; Ful State System,#- 0.2 

Control Effort for corOoMr 2; Fufl Strt* System,#3 0.2 

Figure 3-12: Control effort, full state MinMax 



Control Effort for eorrtroBer 1; Ful State System,0- 0.5 Control Effort for cootrofier 2; Fu# Stat* System, 0.5 
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t 
Control Effort for controller 3; Full State System.<9= 0.5 

0 2 4 

Control Effort for controller 4; FuH State System,£» 0.5 

Figure 3-13: Control effort, fiill state MinMax 

Control Effort for controHer 1; FuN State System,#* 0.7 

Control Effort for controtter 3; FuH State System,0.7 

Control Effort for controHer 2; Fufl State System,e= 0.7 

Control Effort for controller 4; Ful State System,$m 0.7 

Figure 3-14: Control effort, fiill state MinMax 



Control Effort for controM* 1; State Estimate System,#* 0.05 Control Effort for controiar 2; State Estimate System,#* 0.05 

Control Effort for controlar 3; State Estimate System, #* 0.05 

2 4 6 8 10 12 14 16 18 20 

t 
Control Effort for controlar 4; Stela Estimate System,#" 0.05 

Figure 3-15: Control effort, state estimate MinMax 

Control Effort for control* 1; State Estimate System, #= 0.2 

Control Effort for controlar 3; State Estonia System,#* 0.2 

Control Effort for controlar 2; State Estimate System, 9s 0.2 

2 4 6 6 to 12 14 16 18 20 

t 
Control Effort for controlar 4; State Estimate System,#** 0.2 

12 14 16 18 20 

Figure 3-16: Control effort, state estimate MinMax 



Control Effort for controtof 1; State Estimate System, £= 0.5 Control Effort for controMer 2; State Estimate System,#- 0.5 

Control Effort for controflar 3; State Estimate System, 0= 0.5 Control Effort for controller 4; State Estimate System,0.5 

Figure 3-17: Control effort, state estimate MinMax 

Control Effort for controller 1; State Estimate System, #= 0.7 Control Effort for controller 2; State Estimate System,6- 0.7 

Control Effort for controller 3; State Estimate System,#- 0.7 
°r 

-20 

Control Effort for controller^ State Estimate System,e* 0.7 

Figure 3-18: Control effort, state estimate MinMax 
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In order to better compare the control effort for different 6 values, we employ 

Simpson's rule to determine the area between the curve and the time axis. This area gives 

us the total control effort used. Table 3-2 summarizes the results where I gives the area 

obtained by Simpson's rule. The total area is calculated for each 9 value and recorded in 

the table. The results show two main trends: 

1. The control effort for the full state system is higher than that of the state 

estimate system; however, this difference is small. This small difference is 

manifested in the similar controlled results for the two types of systems, as seen 

in Figures 3-7 and 3-8. 

2. As 6 increases, the control effort increases for both types of systems. The 

percentage increase from 0xto 02, is not insignificant (e.g. in the case of the state 

estimate system, the percentage difference is +11.19%). However, the actual 

values at 0X and 02 are of the same order of magnitude. Again we conclude that 

the value of 6 chosen is not critical based on the control 
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Table 3-2: Area under control effort curve (Simpson's rule) 

Area 

Under 

Curve 

0! = 0.05 e 2  = 0.2 03 = 0.5 04 = 0.7 

% 

change 

from 6 1  

to 02 

^controller 1 
(full) 

-80.530514 -80.945112 -83.641014 -89.030887 -10.55 

^ controller 2 

(full) 
-141.407050 -141.210885 -140.174901 -142.835227 -1.01 

^ controller 3 

(full) 
-141.514130 -141.327619 -140.349007 -143.066100 -1.09 

^ controller 4 
(full) 

-78.885233 -79.322521 -82.162331 -87.718358 -11.19 

TOTAL -442.34 -442.81 -446.33 -462.65 -4.59 

^ controller 1 
(est.) 

-74.223023 -75.117240 -80.628293 -88.171640 -18.79 

^ controller 2 

(est.) 
-135.131386 -135.985626 -140.513787 -144.443766 -6.89 

^controller 3 

(est.) 
-135.216274 -136.077049 -140.650368 -144.653901 -6.98 

^ controller 4 

(est.) 
-72.655741 -73.549363 -79.072485 -86.678280 -19.29 

TOTAL -417.23 -420.73 -440.865 -463.95 +11.19 

3.2.5 Sensitivity Analysis 

In order to perform sensitivity analysis of the 1 -dimensional heat equation, we 

begin by differentiating Eq. 3-1 with respect to 0, resulting in 
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Utg(t,x,e) - kUXXg(t,x,8) = SSj bi(x)u0(t,6), Eq. 3-17 

where, ^*£2 = Ue(t,x,d) and^^ = ue(t,6). 

Now let U 6  ( t ,  x ,  6)  =  Sy ( t ,  x ,  6)  and u 0  ( t ,  6 )  =  S u  ( t ,  6 ) .  We then have 

m 
SUt(t,x, &) - kSVxx(t, x, 6) = bi(x)Su(t, 0). Eq. 3-18 

£=1 

Now, let dsit£6) = s(t,x, 0) and d s ( t
g *' 6 )  = s' ( t ,  x, 0), then 

m 

Sv  (t, x, 0) - kSU(t, x,e) = Y i  bi (x)Su (t, 6). Eq. 3-19 
i=X 

In order to determine the finite element approximation to Eq. 3-19, we first write the 

weak form of the PDE. In considering the weak form of the problem we seek to find a 

X = H 1(0,1) such that 

/0' Syit, x, 6)v(x)dx - k J* Su (t, x, 0)v(x)dx = 
Eq. 3-20 

J0' YiLi bi(x)Su(t, 9)v(x)dx. 

Using integration by parts, /Q
! S'J(t, x, 0) = — jj Syv'(x)dx, hence the weak form is now 

fJSuCt, x,0)v(x)dx + kf^Su(t, x,0)v'(x)dx = 
Eq. 3-21 

Jo b i(x)Su(t, 0)v(x)dx. 

Let S(/(t, x, 0) « S(j (t, x, 8) = Xjti ei(t)0i(x) where <t>i(x) are piecewise linear basis 

functions and e, (/) are their coefficients. Then 

J1 S(j(t, x, 0)v(x)dx + k /0
!  S'U

N{t, x, 0) v'(x)dx = 
Eq. 3-22 

bi(x)Su(t ,  0)v(x)dx, 

or  
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Jo 2{Li ei(t)0£(x)i;(x)dx + k Jjj £f=1 ei(t)0j (*>'(>)<** = 

Jo bi(x)Su(t, 6)v(x)dx. 

Now we let v(x) range over 0/(x) for ) = 1,2,..., N, hence 

J(JliLxei(t)<|)i(x)(t)j(x)dx + k J(j21=ie1(t)(t);(x)(J),'(x)dx = 

Jo E™ i bj (x)Su (t, 0)<|>j (x)dx, 
Eq. 3-24 can be written as 

Eq. 3-23 

Eq. 3-24 

eiOO ei(t) 
M 

eN(t). 
+ kK 

-eN(t) 
+ Su(t, 0)BO, Eq. 3-25 

where 

M = 
i 

\<p,(x)<pj(.x)dx 

N 

K = ]^(x)<p'J(x)dx 

N 

are the mass and stiffness matrices 
<v=i 

respectively andfi0 

' m 

lYjbXxypj^dx 
0 

i=m,j=N 

' .7=1 

®i(t) [ei(t)l 
; = —kKM-1 : 

•eN(t)-

. Rearranging Eq. 3-25 gives 

+ Su(t<e)M"1B0, Eq. 3-26 

Recall that the derivation of £„(/,#) is done in Chapter 2. The final complete system of 

equations (controlled and sensitivity equations) becomes 

Eq. 3-27 

where and Ke, ACl,AC2,AC3, and AC4axe derived and defined in Chapter 2. 

Figure 3-19 shows the sensitivity results for the 1-dimensional heat equation for 

varying 6. The results show that the sensitivity of the state is initially high then rapidly 

decreases with increasing time. This suggests that the system is closer to its desired 

Xx(t) • A -BK 0 0 rXx( t )n  
XcCt) FC Ac 0 0 xc(t) 
Sx(t) 0 -BK0 A -BK sx(t) 

SXc(t) ACl AC2 
AC3 

AC4 . LsXe(t)J 
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equilibrium state as time elapses. More importantly, the results show that there is no 

significant change in the sensitivity of the state with respect to 6 as 0 increases. The 

conclusion then is that the actual value of 0 chosen is not critical based on the sensitivity 

analysis. 

SansitMty of State .State Estimate MnMax System, 8= 0.05 Sensitivity of Stats .State Estimate MnMax System, 9= 0.2 

Sensitivity of State .State Estimate MnMax System, e= 0.7 

Figure 3-19: Sensitivity of state 

Figures 3-20 through 3-27 show the results for the controller sensitivity for 

various 6 values. 
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Control er Sensitivity for controller 1; Full-State System,#- 0.0S Controtor Sensitivity for controller 2; Ful-State System, e» 0.05 

16 18 20 

Controller Sensitivity for controller 3; FuB-State System,#* 0.05 Controller Sensitivity for controller 4; Ful-State System,0" 0.05 

Figure 3-20: Controller sensitivity, full state MinMax 

Controller Sensitivity for controller 1; FuS-Stote System,#8 0.2 Controller Sensitivity for controller 2; Full-State System,#" 0.2 

Controaer Sensitivity for controller 3; Futt-State System,d* 0.2 

o 2 * e 8 
Controller Senstovrty for controller4; Full-State System,#8 0.2 

Figure 3-21: controller sensitivity, foil state MinMax 



Control* Sensitivity for controller 1; FulStete System,#* 0.5 Control* StnsftMty for controller 2; FufrState System, 6~ 0.5 

Contrater Sensovrty for controller 3; Ful-State System,9* 0.5 ControMr Sens&Mty for control If 4; Ful-State System,#* 0.5 

Figure 3-22: Controller sensitivity, full state MinMax 

Controtor Sensitivity for controller 1; FuA-State System, #= 0.7 Controller Sensitivity for controller 2; FuR-State System,̂  0.7 

CoritroBsr Sensitivity for controller 3; FuR-Stete System,#= 0.7 Controller Sensitivity for controler 4; Fill-State System,#' 0.7 

Figure 3-23: Controller sensitivity, full-state MinMax 
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Controler Sensfcvity,controller 1; State Estimate System, £= 0.05 Controller Sensitivity, controller 2; State Estimate System, <9= 0.06 

ControNer Sensitivity,controler 3; State Estimate Sys,£= 0.05 ControHer Sensibvity.controller 4; State Estimate Sys,0= 0.05 

Figure 3-24: Controller sensitivity, state estimate MinMax 

Controfler Sensitivity,controller 1; State Estimate System,e- 0.2 Controller Sensitivity.controler 2; State Estimate System, d- 0.2 

Controler Sensitivity,controler 3; State Estimate Sys,0= 0.2 

0 2 4 6 

Controler Sensitivity,controller 4; State Estimate Sys,0= 0.2 

0 2 4 

Figure 3-25: Controller sensitivity, state estimate MinMax 



Controls Sensitivity,controlef 1; StaUi Estimate System,#* 0.5 ControS r̂ Sensitivity,controlef 2; State Estimate System,#* 0.5 

Control er Sensirvty.controler 3; State EOrnate Sys,£= 0,5 

16 16 X 

CorrtroMf Sens«v*y,confcroler 4; State Estimate Sys,£* 0.5 

Figure 3-26: Controller sensitivity, state estimate MinMax 

Controler Sensitivity,controler 1; State Estimate System,̂ - 0.7 Controler Sensitivity,controller 2; State Estimate System,0= 0.7 

Controler Senstority.controlar 3; State Estimate Sys, 0s 0.7 Controler Sensitivity,controller 4; State Estimate Sys,#* 0.7 

Figure 3-27: Controller sensitivity, state estimate MinMax 
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As was done in the case of the control effort, we employ Simpson's rule to 

determine the area between the curve and the time axis. This area gives us the total 

sensitivity of the controller. Table 3-3 summarizes the results where I gives the area 

obtained by Simpson's rule. The total area is calculated for each 9 value and recorded in 

the table. 

As in the case of the control effort, the table shows that the change in the 

sensitivity results as 9 increases is not significant. The order of magnitude is the same 

(despite the fact that the percentage changes in controller sensitivity values were 38% and 

18% respectively). We draw the same conclusion, the actual value of 9 chosen is not 

critical based on these sensitivity results. 
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Table 3-3: Area under controller sensitivity curve (Simpson's rule) 

Area 

Under 

Curve 

0X = 0.05 02 = 0.2 03 = 0.5 II ©
 

ki
 

% 

change 

from 

tfjtO 02 

^controller 1 
(fall) 

-59.917206 -58.806556 -59.768889 -82.247312 -37.27 

^controller 2 

(full) 
-104.522587 -99.810961 -94.256909 -141.127601 -35.02 

^ controller 3 

(full) 
-104.604629 -99.904745 -94.375426 -141.079794 -34.87 

^controller 4 

(fall) 
-58.740397 -57.821848 -59.250787 -81.652895 -39.00 

TOTAL -327.78 -316.34 -307.65 -446.11 -36.10 

^controller 1 
(est.) 

-56.711188 -60.584871 -72.224398 -80.593801 -42.11 

^controller 2 

(est.) 
-102.642519 -107.079874 -116.267130 -107.437266 -4.67 

^controller 3 

(est.) 
-102.704091 -107.140862 -116.362847 -107.627948 -4.79 

^ controller 4 

(est.) 
-55.532781 -59.401540 -71.117822 -79.883074 -43.85 

TOTAL -317.59 -334.21 -375.97 -375.54 -18.25 

Figures 3-28 and 3-29 show the maximum absolute controller sensitivity values 

with respect to  9.  The resul ts  show that  for  both  ful l -s ta te  and s ta te  es t imate  sys tems,  as  9 

increases, the maximum absolute controller sensitivity values increase. However, the 
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order of magnitude does not change. This suggests that the choice of 6 is again not 

critical in terms of maximum controller sensitivity. 

Maximum absolute Su values vs &, Full State System, Controller 1 Maximum absolute S values vs 0; Full State System, Controller 2 

Maximum absolute S„ values vs &, Full Stale System, Controller 3 

0.1 0.2 03 04 05 0.6 

6 
Maximum absolute S values vs fr, Full State System, Controller 4 

co 120 

Figure 3-28: Maximum absolute Su(t) values 
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Figure 3-29: Maximum absolute Su (t) values 

3.2.6 Riccati Sensitivity 

As stated in Chapter 2, in [35] and at the beginning of this chapter, a major issue 

in designing a MinMax controller is the determination of an optimal value for 6. To this 

end, the main focus of this dissertation is the sensitivity analysis of the system with 

respect to 6. The Algebraic Riccati Equations are a key component in the design of the 

controller as shown in Chapter 2. As a result we investigated the sensitivity of the Riccati 

equations with respect to 0. 

Figures 3-30 and 3-31 are plots of the maximum absolute values of the 

sensitivities of the Riccati equations' solutions (P and II, described fully in Chapter 2) to 

the MinMax parameter 6. The results show that both maximum sensitivities increase with 

increasing 6. However the order of magnitude of the sensitivities for both results does not 

Maximum absolute Su vakiss vs 8; Stale Estimate System. controller 1 Maximum absolute Su values vs 8; State Estimate System, controller 2 

0.1 0.2 0.3 0.4 05 06 07 0 
Maximum absolute S values vs 9, State Estimate System, controller 3 

0.1 0.2 03 0.4 0.5 0.6 0.7 e 
Maximum absokits Su values vs 9, Slate Estimate System, controller 4 
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change as 6 increases. This is in agreement with the controlled results which showed that 

increasing 6 has minimal effect on the controlled state. Again the conclusion to be drawn 

here is that the actual value of 6 is not critical. 

Maximum values vs 9 

0 12 

0.06 

Q. 

° 0.06 
6 
o c 

0.04 

0.02 

0.1 0.2 03 0.4 0.5 0.6 0.7 
6 

Figure 3-30: Norm of fie versus 6 

Maximum Pd values vs 0 

a? 

02 0.3 0.4 0.5 0 6  0.7 
8 

Figure 3-31: Norm of PQ versus 0 
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33 2-D Heat Equation 

Heat flow in a 2D medium can be modeled by the equation: 

m 
U t(t,x,y) = k[Uxx(t,x,y) + Uyy(t,x,y)\ + ̂ b i(x)u(t), 

i=1 

Eq. 3-28 

where 0 < x, y < L and k is the aforementioned thermal diffusivity. Figure 3-32 shows 

the system under consideration. 

u=o  u = o 

u=o  

Figure 3-32: Two-dimensional heat surface 

As in the previous case, we begin with the weak form of Eq. 3-28: 

ii ii 
J J t/,  (t ,  x, y)v(x, y)dxdy = A: J J £7^ (/,  x, y)v(x, y)dxdy 
0 0 0 0 

' I  I  I  m 
+ k J J Uy, (t,x, y)v(x, y)dxdy + J J J].b t  (x, y)u(t)v(x, y)dxdy, 

0 0 0 0 '=1 

Eq. 3-29 

where v(x, y) e H\ ([o,z]x [o, Z,]) is the test function. Now integration by parts gives, 

xx{t,x,y)v{x,y)dxdy = U X(t,x,y)v(x,y)\'0 

0 0 
II  II  

- J J Ux  (t, x, y)vx  (x, y)dxdy = - J J Ux  (t, x, y)vx  (x, y)dxdy, 

Eq. 3-30 

o o 0 0 

and 
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\\uyy x' yMx> y^dy = uy C. *. >0v(*, >o| „ 
0 0 

II II 
- J K «  ,x,y)vy(x,y)dxdy = - I I "  y{t,x,y)vy{x,y)dxdy 

0 0 0 0 

Substituting these relationships into Eq. 3-29 gives 

ii ii 
jju, (t, x, y)v(x, y)dxdy = -k\ J Ux  (t, x, y)vx  (x, y)dxdy 

0 0 0 0 

II I I m 
\uy{t>x, y)vy  (x, y)dxdy + i(x,y)u{t)v(x,y)dxdy. 

Eq. 3-31 

Eq. 3-32 

0 0 0 0 '=1 

Now as in the previous case, let U(t,x,y) « UN(t,x,y) = Ef=i ei(0 (Pj(x,y), 

hence Eq. 3-32 becomes 

i i  I I  

0 0 0 0 1=1 

y )v(x, y)dxdy = -k J J Ux  (t, x, y)vx  (x, y)dxdy 
0 0 0 0 

II I I m 

~k\)Uy (*> x> y^vy ( ' »y )dx<ty  +  J  J  E  bi (*» y)v(x)dxdy, 

or alternatively, 

fo fo ZiLi e i(t)<t> i(x,y)v(x ly)dxdy = 

~k J0' Sf=1 ei(,t)4> i x(x,y)vx(x,y)dxdy -

k J0' /„' Sf=i e t  (t)(f> i y  (x, y)vy  (x, y)dxdy + 

fo fo biix, y)u(t)v(x,y)dxdy. 

Now, let v(x, y) range over 0 for j -1,2 • • • TV, then Eq. 3-34 becomes 

Eq. 3-33 

Eq. 3-34 
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Jo J0' 2"=i edt)(t>i(x, y)<t>j(x, y)dxdy = 

J0' J0' ei(0(f) i x{x, y)<!>jx{x, y)dxdy 

k  Jo Jo Zi=i ei(t)(p i y(x, y)<pj (x,y)dxdy + 
Eq. 3-35 

Jo Jo bi (*. y)u(t)<pjO, y)dxdy. 

This can be rewritten as 

[Cl(Ol ex(t)-
M • = -kK 

eAf(t). eN(.ty 
+ B0u(t). Eq. 3-36 

where M • 
11 
| J (f>ii.x,y)<pj{x,y)dxdy 

.0 0 

N 

> 
Bo = 

<V= 1 

Y jb l(x,y)t/> j(x,y)dxdy 
m 

and 

K = 
11 
{ j <f> i x  (x, y)<p j x  (x, y)dxdy + (/> i y  (x, y)(j>Jy  (x, y)dxdy 
. 0  0  

. Finally, Eq. 3-36 becomes 

ex (t)" •«?i (ty 
J = —kM_1K I + M 

ew(t)-
f - l l  (t). Eq. 3-37 

As in the 1-dimensional case, full knowledge of the system is not available so we take 

measurements in the form 

y(t) = CX(t), Eq. 3-38 

where 
C = [zeros(l,N) 0.05 zeros(l,N) 0.05 ] Eq.3-39 

Eq. 3-39 shows that measurements are taken at the interior nodes at intervals of N .  In 

this problem, m = 1, and £, (*,>>) = e_<(jr~j:o) +(y~yo)) where (x0,y0)is the geometric center 

of the 2-d surface. 
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3.4 Numerical Results 

For all the simulations in this section, N  = 18, L s = L y =  10, k  = 1, /? = /and 

= U(t ,x ,  0) = U(t ,L x , y )  = U( t ,x ,L y )  = 0. Eq. 3_40 

Note that N = 18, results in a total of 361 nodes (including boundary nodes, with 289 

interior nodes) and 648 triangular elements in the Galerkin finite element scheme used to 

approximate the solutions to this problem. This Galerkin finite element scheme used for 

this 2-dimensional system is presented in [36]. This number N was limited due to 

computer memory problems. However, numerical results to be presented indicate 

convergence at this level of discretization. The results are presented in the following 

order: uncontrolled simulations, functional gains, controlled simulations, stability 

analysis and sensitivity analysis. 

3.4.1 Uncontrolled Results 

In order to obtain a solution to the system in Eq. 3-37 and Eq. 3-38, we apply the 

following initial conditions 

U o =U(0,x ,y )  = \00 ,  U C o  = U e (0 ,x ,y )  = 0J5U 0 .  Eq. 3-41 

Figure 3-3 shows the uncontrolled state for this system along the horizontal center line, 

i.e. U(t ,x ,^) .  The uncontrolled state along the vertical center line, i.e. U(t ,y ,  is the 

same (due to symmetry) to the horizontal center results, and is therefore not presented 

here. As before, we desire the state to tend to the exponentially stable equilibrium 

position of zero (0). 
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Temperature, Uncontrolled System 

Figure 3-33: Uncontrolled heat flow along center of 2-d square surface 

3.4.2 Controlled Results 

Figures 3-34 through 3-37 show the results for the functional gains for the system 

in Eq. 3-37 and Eq. 3-38. The color legend in this plot is: N= 6 blue, N= 10 red, N= 14 

black, N = 18 magenta. The results show that the functional gains are converging to zero 

which suggests that the Galerkin finite element scheme employed is convergent. The 

results also show that as 6 increases, the convergence of the functional gains gets slightly 

slower. This implies that the lower the value of 6, the faster the convergence of the 

controller. 



position, 0=0.05 

0 1 2 3 4 5 6 7 8 9  1 0  
x 

Figure 3-34: Functional gains 

position, 6-0.2 

I 1 1 1 1 i i I 1 
0 1 2  3  4 5 6 7 8 9  1 0  

Figure 3-35: Functional gains 

position, f>=0.6 

Figure 3-36: Functional gains 
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. X 1 0  
position, (?=0.8 

Figure 3-37: Functional gains 

Figures 3-38 and 3-39 show the controlled temperature values along the 

hor izontal center line of the square region for the full state (U(T) = -KU (T)) and for the 

state estimate system (u(t)=-KUc(t)), respectively. In each figure, the top left result is 

for $ = 0.05, top right is for 6 = 0.2, bottom left is for 0 = 0.6 and finally bottom right is 

for 6 = 0.8. The maximum 0.8 is the maximum 6 value that still results in [/ - d2 Pn\> 0 

FC A i*1 left two quadrants of the complex plane as 

described in Chapter 2. The state is driven to zero faster at the center of the rod. This is 

due to the Gaussian distribution of the control input operator. In general, however, the 

results show that as 8 increases, the controller's performance is virtually unchanging. 

This is in agreement with the 1-dimensional case and again suggests that the actual value 

of 0 chosen is not critical. In this 2-dimensional case, the difference between the full state 

system and the state estimate feedback system is not as salient as in the 1-dimensional 

case. 



56 

Temperature, Full State MinMax System, 0* 0.06 Temperature, Full State MinMax System, eB 0.2 

Temperature, Fid State MinMax System, 0.6 Temperature, FuS State MnMax System, <?= 0.9 

«£ H 60-

Figure 3-38: Controlled temperature, full state MinMax system 

Temperature,State Estimate MinMax System, e* 0.05 Temperature,State Estimate MinMax System, e- 0.2 

Temperifture,State Estimate MinMax System, 6s 0 .6 Temperature,State Estimate MinMax System, 9s 0.8 

e 1 

Figure 3-39: Controlled temperature, state estimate MinMax system 
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3.4.3 Stability Analysis 

As in the 1-dimensional case, we investigate the eigenvalues of the following 

[ y j  B / f l  
FC A J ^eca^ eigenvalues of this matrix must be on the left-

hand side of the complex plane in order for the system to be stable. Figures 3-40 and 3-41 

show the eigenvalue plots for various 0 values. The results conclusively show that the 

controlled system is stable. Again the figures on the right show the closest eigenvalues to 

the imaginary axis. In these figures, the stability margin increases slightly with increasing 

6 (see Table 3-4). The marginal increases again show that the actual value of 6 is not 

critical with respect to the stability of the system. 

Stability of System 0 05 Stabilily Margin 6- 0 05 
0.2 

0.8 0.15 
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0.4 
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£ -0.2 
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•0.15 •06 
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Stabilily of System 9* 0.2 
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Figure 3-40: Eigenvalues of 
A 

FC 

BK 

Ar 



58 

0 2  

0.15 

01 
0.05 

Stability of System 6- 0.6 

---

•0.1 

-0.15 

i 
0.2 

015 

0 1 

0.05 

0 
-0 05 

-0.1 

-0.15 

»c jin v: -an •* m ie in c 

Stability of System 6= 0.8 

1 
0.8 

0 6  

04 

5 02 
< 

| 0 

I -° 2 

•04 

•06 

-08 

Stability Margin ^ 06 

1 

0 8  

0.6 

04 

I 
I 0 
| -0 2 

-0.4 

-0.6 

•08 

.i I 1 1 1 i 1 1 1 1_ 
nc n * ni n •> ni n ni ni n-a 

Stability Margin 5= 0.8 

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 
Real Axis 

'•1)5 •0 4 -0.3 -0 2 -0.1 0 0.1 0 2 0 3 0.4 0.5 
Real Axis 

Figure 3-41: Eigenvalues of 
A 

FC 

•BK 

A n  

Table 3-4 shows the stability margin and radius results for the controlled system. 

The results show that as 0 increases, the stability radius increases slightly. The stability of 

the system, in terms of the stability radius increases. However, this increase is only slight; 

hence the choice of 0 is not critical in terms of the stability radius. 
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Table 3-4: Stability margin and radius for controlled system (A m m )  

0 Stability Margin Stability Radius 

0.05 0.131414815938655 0.116232872977096 

0.2 0.132348858606243 0.116683248500507 

0.6 0.144656368855594 0.122631778452644 

0.8 0.172431522925289 0.135857785488283 

3.4.4 Control Effort 

We provide Figures 3-42 and 3-43, the controlled effort for 8 = 0.05, 0.2, 0.6, 0.8. 

In Figure 3-42, the system under investigation is the Full State MinMax controlled 

system where no compensator/observer is used. In Figure 3-43 a compensator is 

implemented. As previously done, in order to better compare the control effort for 

varying 6 values, we employ Simpson's rule to find the area between the curve and the 

time axis. The results are shown in Table 3-5. The results show that the control effort 

increases (percentage) significantly from to d4, however, actual values are of the same 

order of magnitude. These results again re-enforce the conclusion that the actual value of 

6 employed is not critical with respect to the effort required by the controller. 
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Control Effort; FuK State MinMax System,e= 0.05 

Control Effort; FuN State MinMax System,S- 0.6 

Control Effort; FuS State MinMax System, £= 0.2 

Control Effort; Ful State MinMax System,6- 0.8 

0 2 4 

Figure 3-42: Control effort, full state MinMax 

Control Effort; State Estimate MinMax System,0.05 

Control Effort; Sate Estimate MinMax System,d = 0.6 

0 2 4 

Control Effort; State Estimate MinMax System, <9= 0.2 

0 2 4 

Control Effort; State Estimate MinMax System,<9= 0.8 
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Figure 3-43: Control effort, state estimate MinMax 
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Table 3-5: Area under control effort curve (Simpson's rule) 

Area Under 

Curve 
0X = 0.05 02 = 0.2 03 = 0.6 II o

 
GO

 

%change 

from 0j 

to 04 

^ controller I 

(full) 
-0.808086 -0.827892 -1.030291 -1.180309 -46.06 

^controller 1 
(est.) 

-0.872973 -0.898834 -1.199288 -1.660371 -90.19 

3.4.5 Sensitivity Analysis 

In order to perform sensitivity analysis of the 2-dimensional heat equation, we 

begin by differentiating Eq. 3-28 with respect to 0, resulting in 

U t e  (t, x, y,6)-k [Uxx6  (t, x, y, 6) + UyyQ (t, x, y, 0)] = 

£ b t (x, y)ue  (t, 0). Eq. 3-42 

Here, dui t^y ,9)  = U0(t,x,y, 0)and du^0)  = ue(t, 9). Now let U0(t,x,y, 9) = 

Su{t,x,y, 9) and ue(t, 9) = Su(t, 9). We then have 

SUt(t,x,y,6) - k [Sy^(t,x, y, 0) + SUyy(t,x,y,0)] 

m 

=  ̂ 6 i(*.y)5„(t,0). Eq. 3-43 
i=1 

The weak form of Eq. 3-43 is 

ffoSuc(t,x,y,6)v(x,y)dxdy - k [j/0 '  (Si/^(t,x,y,0) + 

SUyy (t, x, y, 0)) v(x, y) dxdy] = Eq. 3-44 

6i(x,y)5u(t, 0)v(x, y)dxdy 

Using integration by parts, 
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/io (5"*r *' y- + SUyy *' 9^) V^X' y)dxdV = 

~ ffo (sUx^' x> y> 0)v*(x< y) + E<*-3-45 

SUy(t,x,y, 6)vy(x,y)^ dxdy, hence the weak form is now 

/Jo s"t x- y- 0M*' y)dxdy + k  [//0
l  (sux  (t> x> y. s)vx(x, y) + 

SUy(t, x,y, e)vy(x,y)^j dxdy] = ff^ZIh b i(x,y)Su(t, 9)dxdy. 

N 

Let Sv(t,x,y,6) = Sj}(t,x,y,d) = ̂ ei<P,(*»y>&)so  tha t  

i=l 

Eq. 3-46 

//J S{j t(t, x,y, 6)v(x,y)dxdy + 

k[fSi(<
sux(t'x>y'0')vx(.X'y) + Sfly(t,x,y,e)vy(x,y)jdxdy\ = Eq. 3-47 

ffo i bi (x, y)Su (t, 6)dxdy, or 

ffo Z f L i  e, (t)4>iix,y)v(x,y)dxdy + 

k  f f o  X f =i ei(t) [<t> i x(x,y)vx(x, y) + <p i y(x, y)vy(x, y)] dxdy = Eq. 3-48 

ffo b i ( x >y)  su(t, 6)v(x,y)dxdy. 

Now we let v(x, y)  range over <j) ]  (x ,  y )  for j  = 1,2, • • •, N , hence 

ffo Z f L i  e t  ( t ) < p i ( x l y )4> j(x,y)dxdy + 

k  f fo  T. i=i  ei(0 [<M*, y)<t>j x ( x ,  y )  +  4>i y ( x .  y )<t>j y ( x ,  y ) ]  d x d y  = Eq. 3-49 

ffo 5u(t. 0)4>j{x,y)dxdy. 

Eq. 3-49 can be written as 

ex  (t) rei(t)l 
M 

.eN(t). 
+ kK 

1 
/—N 4U 

..
. 

s—
•" 
*
 

CLt 
« 

+ Su(.t,d)B0, Eq. 3-50 

where 
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M -

Bn  

\\^{x,y)<f>J{x,y)dxdy 
0 0 

j (x ty)dxxfy 
.0 0 '=1 

U=1 
i=m,j=N 

•J=1 and Eq. 3-51 

K 
I 

y,  0)<f> j x  (x, y, 0) + <l> i y{x, y,  6)<p j y  (x, y, d) 
'.7=1 

Rearranging Eq. 3-50 gives 

ei(0 
• II 1 1 

J  + Su ( t , e )M~1B0 .  Eq. 3-52 

X(t) \ A  -BK 0 0 1 r*(0i 
KIT)  FC Ae  0 0 xcit) 
SXIT)  0 -BKe  A -BK SXIT)  

U*c(t)J Aci Ac2 j4C3 Aci . SXCIT) .  

Recall that the derivation of Su(t,6)is done in Chapter 2. The final complete system of 

equations (controlled and sensitivity equations) becomes 

Eq. 3-53 

where Ke ,AcX ,  Ac2 ,  Ac3 ,  and v4c4are derived and defined in Chapter 2. 

Figure 3-44 shows the sensitivity results for the 2-dimensional heat equation for 

varying 0. The results show that the sensitivity of the state is initially high then decreases 

with increasing time. This suggests that the system is closer to its desired equilibrium 

state as time elapses. More importantly, the results show that there is virtually no change 

in the sensitivity of the state with respect to 6 as 6 increases. Near the center of the spatial 

domain, there is a slight decrease in sensitivity as 9 increases. This increase is not 

significant, however. The conclusion then is that the actual value of 6 chosen is not 

critical based on the sensitivity analysis. 
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Sensitivity of Slate .State Estimate MmMax System, 8-  0.05 Sensitivity of State .State Estimate MinMax System. 8= 0 2 

Sensitivity of State .State Estimate MinMax System, 8= 0.6 Sensitivity of State .State Estimate MinMax System, 8= 0.8 

Figure 3-44: Sensitivity of state 

Figures 3-45 and 3-46 show the results for the controller sensitivity for various 6 

values. Table 3-6 shows the values of the areas between the curves and the time axis, 

giving the total sensitivity over the elapsed time. Although the sensitivity increases with 

increasing 0, the change is not significant. The values are all of the same order of 

magnitude (despite the significant percentage increase from Qx to 04. We draw the same 

conclusion as in the 1-dimensional case: the actual value of 6 chosen is not critical based 

on these sensitivity results. 
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Controfer Sensitivty; State Estimate ItfinMn System,#* 0.05 Control* SansitMty; State Estimate Mwftlax System,#* 0.2 

Controler SansftMty; State Estimate Mrvmx System,<9* 0.6 

-025 

2 4 6 0 10 12 14 16 16 20 

t 

Controter SeftsHMly; State Estimate MwMax System, 0.8 

-0.05 

Figure 3-45: Controller sensitivity, state estimate MinMax 

Controfer Sensitivity; Full State MinMax System, 5 • 0.05 Control* Sensitivity; Ful State MinMax System,#" 0.2 
O p  

Control* Sansitivrty; FuH State MinMax System,#- 0 Control* Senstivity; Ful State MinMax System,#" 0 

Figure 3-46: Controller sensitivity, full state MinMax 
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Table 3-6: Area under controller sensitivity curve (Simpson's rule) 

%change 
Area 

from 0j 
Under = 0.05 02 = 0.2 03 = 0.6 00 o

 II <r> 
to 04 

Curve 

^controller 1 
(foil) 

-0.610156 -0.637937 -0.838519 -0.883410 -44.78 

^controller 1 
(est.) 

-0.669111 -0.735296 -1.240240 -2.216588 -231.12 

Figures 3-47 and 3-48 show the maximum absolute controller sensitivity values 

with respect to d. The results show that as 6 increases, the maximum absolute controller 

sensitivity increases. However, this increase is insignificant. This agrees with the 

previous results which showed that the controller's performance changes minimally with 

increasing 6. 

Maximum absolute Sw values v$ 8, Full State System 

0.4 

035 
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ot3 0 25 
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e 

Figure 3-47: Maximum absolute Su (t) values, full state MinMax 



67 

Maximum absolute Su values vs 6. Stale Estimate System 
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Figure 3-48: Maximum absolute values, state estimate MinMax 

3.4.6 Riccati Sensitivity 

As in the case of the 1-dimensional heat equation, we investigated the sensitivity 

of the Riccati equations with respect to 9. Figures 3-49 and 3-50 are plots of the 

maximum absolute values of the sensitivities of the Riccati equations' solutions (P and n, 

described fully in Chapter 2) to the MinMax parameter 9. The results show that both 

maximum sensitivities increase with increasing 9. However the order of magnitude of the 

sensitivities for both results does not change as 9 increases. This is in agreement with the 

1-dimensional heat equation results. Again the conclusion to be drawn here is that the 

actual value of 9 is not critical. 
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Maximum ̂  values vs 8 

Figure 3-49: Norm of fie versus 9 

Maximum Pe values vs 0 

a- 250 

Figure 3-50: Norm of Pe versus d 



CHAPTER 4 

WAVE EQUATION 

4.1 Problem Formulation 

In this Chapter, we implement the MinMax controller and apply Continuous 

Sensitivity Equation Methods (as described in Chapter 2) to the 1-dimensional wave 

equation. The goal here is to further our investigation of a more efficient means of 

choosing the MinMax parameter, 6. The 1-dimensional wave equation with viscous 

damping can be written as 

U. (/ ,*)-  Ua  (u x) + TV, ( t ,x)  = £  b, (x)u(O, E <" "-1  

i=1 

where U (t ,  jc) represents the displacement at position * and time t  for / > 0, y is the 

viscous damping coefficient, 0 < x < I is the spatial dimension, bt (x) are the control 

input functions which describe how the control is applied, and u{t) is the control input to 

the system. In this case, the speed of propagation of the wave is taken to be unity. We 

apply the following boundary conditions to this system: 

U(t,0) = U(t,l) = 0. Eq. 4-2 

In order to implement the MinMax controller on this system, we use distributed 

parameter control theory. This requires the formulation of a finite dimensional 

approximation of the PDE. A Galerkin finite element scheme is used. In order to 

determine the finite element approximation to Eq. (4.1), we first write the weak form of 

the PDE. In considering the weak form of the problem we seek to find 

69 
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U(x) £ X = HQ (0,0 such that 

J0' U(t, x)v(x)dx -  /0 '  U"(t,x)v(x)dx + y JQ' i)(t,x)v{x)dx = 
Eq. 4-3 

Jo i  bi(x)u(t)v(x)dx, 

where, v(x)eV = HQ ,U (J:,X ) = U t(t,x), and U'(t,x) = Ux(t,x). 

Using integration by parts, 

i i i  
ju"(t ,x)v(x)dx -  U\t ,x)v{x) |o -^U\t ,x)v(x)dx =-  ̂ U\t ,x)v{x)dx, where 
0 0 0 

v(0) = v(l) = 0. Substituting this into Eq. (4.3) gives 

j^U(t,x)v(x)dx + 

jJ U'(t,x)v'(x)dx + y JQ' (J(t,x)v{x)dx = Eq. 4-4 

fo ££i bi(x)u(t)v(x)dx. 

Now we divide the spatial domain into N equidistant subintervals and approximate 
N 

U (t ,  x)  by UN  (t ,  x)  =  ̂  e i  (t)( j) j  (jc) where (f) i  (x) are piecewise linear basis functions and 
;=l 

e i  (t) are the corresponding coefficients of these functions. We then have 

J0 '  UN(t,x)v(x)dx + /J UN '(t ,  x)v'(x~)dx + 
Eq. 4-5 

Y Jo x)v(x)dx = JQ '  b i{x)u{t)v{x)dx, 

which can be rewritten as 

J0'E" i ei(.t)<pi(x)v(x)dx + 

J0' Sf=i e i(t)(p' i(x)v'(x)dx + Eq. 4-6 

Y Jo ££=i = JQ' bi(x)u(t)v(x)dx. 

Let v(x) range over the basis functions (x) for j -1,2,....N . Eq. 4-6 becomes 
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J0
! Ef=i e"i(O0i(*)0y(*)d* + J0' I" i ef (t)0|(jc)0)(ac)dx + 

/ JoSf=iei(t)0i(*)^;(x)d* = J0' E™i bi(x)u(t)(f> j (x)dx. 

This can be rewritten as 

r«i(Oi r«i(Oi r^iCOi 
= B0u(t), 

Eq. 4-7 

*i (0 ex(t) (0 
M 

•*w(0-
+ yM 

%(0. 
+ K Eq. 4-8 

where M = 
t 

I &(*)</>j(x)dx 

N 

and K = 

i.J~ I 

f ' ' 
J & (*¥,• (x)dx 

N 

are the mass and stiffness 
<j=I 

matrices, respectively, and B0 = 

Rearranging Eq. 4-8 gives 

o <=i 

N 

is the control input matrix. 

h ( 0  ex(t) e i(t) 
• = -y/ ; i i 

*
! J  

% ( 0 .  -e/v (0 
+ M-1S0u(t). Eq. 4-9 

As stated in Chapter 2, it is necessary for the system to be posed as a first order system of 

differential equations. To this end, we define xx(t) = e(t) and x2(t) = e(t). Eq. 4-9 

now becomes 

ES]=U°., -XSWJ-® 
Since full knowledge of the system is not available, we take measurements in the form 

y ( t )"cE(o]' Eq-4-11 

where C is composed of four averaging measurements of both the position and velocity 

states, resulting in the following 8 x (2N - 2) matrix 
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N-1 

j J <pf /(x)dx 
0 

f * r  (x)dx 

I 4 
31 
4 

(x)dx 

I 

J <p?(x)dx 
31 
4 

1=1 

N-l 

i=1 
N-l 

i=l 
N-l 

1=1 

J J 4>i(x)dx 
0 

7 j *  (x~)dx 

I 4 
31 
4 

l l «  ?(x)dx 

!*F {x)dx 
31 
4 

N-l 

i=1 
N-l 

i=1 
N-l 

i=l 
N-l 

i=1 J  

Eq. 4-12 

Next, we define . We begin by partitioning the spatial domain [0,/] as 

/ 
where x t  =ix—. The functions b i  are defined as b t(x) = e x  '  for x. , < x < x, 

m 

, where x i  

x i_ l+x i  
1.25,3.75,6.25,8.75 since L = 10and m = 4 for this problem. 

Figure 4-1 shows the four control input functions. 
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Figure 4-1: Control input functions 

Finally, 

Bo = 
0 

B, 
0 

B. 
and B, = 

/ 

J b i  {x)(f>j (x)dx 
>J* 1 

Eq. 4-13 

4.2 Numerical Results 

For all simulations in this section, N — 60 and/? = 0.001*7. The results are 

presented in the following order: Uncontrolled simulations, functional gains, controlled 

simulations, stability analysis, and sensitivity analysis. 

4.2.1 Uncontrolled Results 

For simulation purposes and to attain a solution to the system in Eq. 4-10 and Eq. 

4-11, we apply the following initial conditions 

J 
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X(0,x),—X(0,x) 
at  

[sin x, cos x\ 

L cO Xf(0,;c),-X.(0,x) 
at 

Eq. 4-14 
0.75X0. 

Figure 4-2 shows the uncontrolled state displacement for the system in Eq. 4-10 

and Eq. 4-11. 

Position, Uncontrolled System 

Figure 4-2: Uncontrolled displacement 

The simulation was performed using as little damping as possible while ensuring 

that the system is controllable. In this case, y = 0.01.The consequence is that after 

t = 100, the state position has not dissipated. We desire the state to tend to the 

exponentially stable equilibrium position of zero (0). The MinMax controller is applied 

with the aim of achieving this goal. 

4.2.2 Controlled Results 

Figures 4-3 through 4-5 show the functional gains for the MinMax controller for 6 

= 0.08, 0.16, 0.32. The color legend is as follows: N = 20 red, N = 40 black, N= 80 cyan 

t 
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and N = 160 magenta. These results show that the functional gains are converging to 

zero. Furthermore, the results show that as 6 changes, the functional gain plots are 

similar. This indicates that there is convergence of the Galerkin finite element scheme 

and that the controller convergence is unaffected by the choice of 6. 

position, <9=0.08 velocity, £=0.08 
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Figure 4-3: Functional gains for # = 0.08 
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Figure 4-4: Functional gains for 0 = 0.16 
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position, £=0.32 velocity, t?=0.32 
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Figure 4-5: Functional gains for 6 = 0.32 

Figure 4-6 shows the controlled results for 6 = 0.04, 0.08, 0.16,0.32 for full-state 

MinMax control. These results show that the controller does a good job at driving the 

system faster towards equilibrium. Also, as 6 increases, the performance of the controller 

is virtually unchanged. 
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Poslion, Full-State MtoMax System, £= 0.04 Poslion,Fulf-StateMnMax System, e- 0.08 

Posftion.huu-State MinMax System, d- 0.16 

o o 

Postoon,Full-State MmMax System, d~ 0.32 

o o 

Figure 4-6: Controlled state position, full state MinMax 

Figure 4-7 shows the controlled results with the use of a compensator as 

described in Chapter 2. The results show that the controller does a nice job at bringing the 

system to the desired equilibrium state. As in the case of the full-state system, the 

controlled results do not change with varying 6. As a result, we conclude here that the 

actual value of 6 chosen is not critical with regard to controlled state performance. 
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Position,State Estimate MinMax System, 6= 0.04 Position,State Estimate MinMax System, e= 0.08 

Position,State Estimate MinMax System, 6= 0.16 Position,State Estimate MinMax System, 6- 0.32 

Figure 4-7: Controlled displacement, state estimate MinMax 

4.2.3 Stability Analysis 

As stated in the previous chapter, we seek to ensure stability in the controlled 

system, without which our results will be invalid. As a result, we again investigate the 

k [, eigenvalues of the matrix I ^ 
C J 

. Figures 4-8 and 4-9 show the eigenvalue plots for 

various 0 values. 
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The results conclusively show that the controlled system is stable. The graphs on 

the right show the closest eigenvalues from the imaginary axis. As 9 increases, the 

eigenvalue plots and the stability margins remain unchanged (see Table 4-1). We 

conclude that the choice of 6 is not critical in terms of the stability of the system. Table 

4-1 shows the stability margin and radius results for varying 8 values. The results show 

that as 6 increases, the stability radius decreases slightly, with all the values having the 

same order of magnitude. The slight increases suggest that the actual value of 0 chosen is 

not critical in terms of the stability radii. 

Table 4-1: Stability margin and radius for controlled system (Amm) 

e Stability Margin Stability Radius 

0.04 0.00457127868116122 0.0735565889152003 

0.08 0.00457127818031725 0.0734420137014636 

0.16 0.00457127605908372 0.0729724434309744 

0.32 0.00457126532342317 0.0709066557793600 

4.2.4 Control Effort 

As has been done in Chapter 3, we investigate the control effort for the MinMax 

controller implemented. We therefore provide in Figures 4-10 through 4-13, the control 

effort for B = 0.04, 0.08, 0.16, 0.32. The system under investigation in these figures is the 

Full-State MinMax controlled system; hence no compensator/observer is used. 
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System, £* 0.04 Control Effort for conftolor 2; Ful Sttte System, 0.04 

Control Effort for eontrolor 3; Ful 

0  1 Q Z ) X I O S ) 6 D 7 0 f l D 9 0 H 3 0  0  1 0  2 J 3 0 « « ) 8 0 7 0 a D 9 D  
t 

Figure 4-10: Control effort for full state MinMax system (0  = 0.04): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 

Control Effort for conhdir 1; Fdf Stet System,#" 0.08 Control Effort for control* 2; Ful State System,#* 0.08 

/'AA i \/^A Ay"——-'s 
f  \ i  v 

Control Effort for cowroor 3; Ful State System, 0.08 Control Effort for conHolsr 4; Ful Stete System,#" 0.08 

z^a/V 

Figure 4-11: Control effort for full state MinMax system {0  = 0.08): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 
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Control Effort for control* 1; Ful State System, 0» 0.16 Control Effort for control* 2; Ful State System, 0* 0.16 

Control Effort for control* 3; Ful State System,0= 0.16 

! i i , i \  

Control Effort for control* 4; Ful Stete System.&= 0.16 

Figure 4-12: Control effort for full state MinMax System (0 = 0.16): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 

Control Effort for controller 1; Full State System,0* 0.32 Control Effort for control* 2; FuH State System,<9= 0.32 

(v\A/ l/w-v/V i I \ !  

Control Effort for controller 3; Ful State System,8* 0.32 
0.03 

fV\l\( iMVV 

lvy\ I 

Control Effort for controMer 4; Fufl State System, 5= 0.32 

!fW\? K 

Figure 4-13: Control effort for full state MinMax system {Q = 0.32): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 
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Table 4-2 shows the results for the area between the curves and the time axis 

using Simpson's rule. The results show that as 6 varies, the control effort is changes 

slightly (+1.59%), though the actual values are of the same order of magnitude. This 

agrees with the controlled state results of the previous section, where there was no 

considerable change in the results as 6 varied. 

Figures 4-14 through 4-17 show the control effort results for the state estimate 

feedback system (i.e. a compensator/ observer is utilized). The area between the curves 

and the time axis are also shown in Table 4-2. One main conclusion can be made: As 6 

varies from 6t to 04, the control effort changes by approximately 11.92%, however the 

order of magnitude does not change. This again is similar to the results for the full-state 

system. As in the case of the Full State system, the actual value of 0 chosen is not critical 

with respect to the effort required by the controller. 

Control Effort far controter 1; SM* Estimate System,#" 0.04 Control Effort for contro4«r2; Stat* Estimate System,#" 0.04 

Control Effort for eonfroter 3; State Control Effort for eontrolar 4; 

t t 

Figure 4-14: Control effort for state estimate MinMax system (6  = 0.04): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 
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Control Effort for controler 1; State Estimate System, 0.08 Control Effort for controler 2; State Estimate System,#* 0.08 
rtm nm 

Control Effort for controler 4; State Estimate System,#" 0.08 Control Effort for controler 3; Slate Estimate System, 0.08 

1 '-"vA 

t t 

Figure 4-15: Control effort for state estimate MinMax system(0  = 0.08): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 

Control Effort for controler 1; State Estimate System,5= 0.16 Control Effort for controler 2; State Estimate System,0= 0.18 

Control Effort for controler 4; State Estimate System,#* 0.16 Control Effort for controler 3; Slate Estimate System, $- 0.16 

A/\| 

0  1 0  2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0  0  t O 2 O 3 O C 5 O 6 O 7 O 0 O 9 O 1 O O  
t 

Figure 4-16: Control effort for state estimate MinMax system {9 = 0.16): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 
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Control Effort far conkoterl; Control Effort for conlroler 2; 

Control Effort far controlT 3; Control Effort for eomroter 4; 

10 X 3D « SO 60 70 
t 

Figure 4-17: Control effort for state estimate MinMax system (0  = 0.32): controller 1 (top 
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom 
right) 
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Table 4-2: Area under control effort curve (Simpson's rule) 

Area 

Under 

Curve 

&i = 0.04 e2  = 0.08 03 = 0.16 04 = 0.32 

%change 

from 0X 

to 04 

^controller 1 
(foil) 

-0.006275 -0.006271 -0.006256 -0.006182 +1.48 

^ controller 2 

(foil) 
-0.006275 -0.006271 -0.006256 -0.006182 +1.48 

^ controller 3 

(foil) 
-0.006275 -0.006271 -0.006256 -0.006182 +1.48 

^ controller 4 

(foil) 
-0.006275 -0.006271 -0.006256 -0.006182 +1.48 

TOTAL -0.0251 -0.0251 -0.0250 -0.0247 +1.59 

^controller 1 
(est.) 

-0.004833 -0.004856 -0.004952 -0.005401 -11.75 

^ controller 2 

(est.) 
-0.004833 -0.004856 -0.004952 -0.005401 -11.75 

^ controller 3 

(est.) 
-0.004833 -0.004856 -0.004952 -0.005401 -11.75 

^ controller 4 

(est.) 
-0.004833 -0.004856 -0.004952 -0.005401 -11.75 

TOTAL -0.0193 -0.0194 -0.0198 -0.0216 -11.92 
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4.2.5 Sensitivity Analysis 

In order to perform sensitivity analysis on the wave equation, we begin by 

differentiating the system in Eq. 4-1 with respect to the MinMax control parameter 6. 

This gives 

Utee (t,  x, 0) -  Uxxg  (t, x, 0) + yUte (t> x,6) = 
Eq. 4-15 

Again we use homogeneous Dirichlet boundary conditions, Ug(t, 0,0) = Ue(t,  L, &) = 0. 

Let = Sy (t, x, 0) and = Su(t, 0), then 

SUt t(t ,x,e) - SUxx(t,x,6) + YSUt(t,x,e) = Eq.4-16 

The weak form of Eq. 4-16 is 

/J Su(t, x, 6)v(x)dx -  /Q '  S{j(t,  x, 0)v(x)dx + 

J*YSu(t.x, 0)v(x)dx, 

dS dS  
where 5 = — and S' = —. After integration by parts, Eq. 4-17 becomes 

fgSu(t,x,6)v(x)dx + fgSy(t,x,0)v'(x)dx + 

Jo ySu(t,x,0)v(x)dx = /0 '  I™ x  b t(x)Su(t,  d)v(x)dx. 

Eq. 4-17 

Eq. 4-18 

Now let Sv  (t,  x, 8) ~ Sy (t, x, 0) = e, (t)fc (or), where 0, (x) are piecewise linear basis 
i=1 

functions. Eq. 4-18 then becomes 

J0' 5y (t, x, 6)v(x)dx + /0' 5'y(t, x, d)v'(x)dx + 
Eq. 4-19 

Y /J $u (t,  x, 0)v(x)dx = S q Su(t,  0) 2^! bi(x)v(x)dx. 

Alternatively, 
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Jo hi=i e i(t)4> i(x)v(x)dx + J0' ZfLx et(t)0t'(z)v'(x)dx + 

Y J0
ZIf=iei(t)^>i(x)v(x)dx = Jg Su(t,  0) ££1 bi(x)v(x)dx. 

Let v(jc) range over ^ (»for7 = 1,2, , //, then Eq. 4-20 becomes 

Jo If=i ei(O0t O)0; (*) + Jo ZJU ei(t)0t'(x)^(x)dx + 

K JoSf=iei(£)0i(x)0y(x)dx = Su(t,e)^il1bi(x)v(x)dx. 

This can now be rewritten as 

il [eiOOl rei(t)l  
= Su(t,0)Bo .  

Eq. 4-20 

Eq. 4-21 

ex  (t) e1(ty e t(ty 
M 

eN(t). 
+ K 

.eN(t). 
+ yM 

MO. 
Eq. 4-22 

where, 

/ 

j0,(x)0j(x)dx 
0 

Rearranging Eq. 4-22 gives 

M K = 

>,/=1 
j<p' i(x)<p'J(x)dx and Bn  -

»j=i 

r m 

j1£ jb i(x)^ j(x)dx 
0 «=i M 

ej(t) ei(0 ex(t) 
J = —M~1K ' 

- Yl • 

.ewCO. -e/v(0- .eN(tl 
+ Su(t,e)M~1B0 .  Eq. 4-23 

Recall that the derivation of Su(t,0)is done in Chapter 2. It is necessary to 

formulate the system in Eq. 4-23 as a first order system of differential equations so that 

the MinMax controller can be successfully implemented as stated in Chapter 2. We 

therefore define Xlg(t) = e(t) so that Xl0(t) = e(t), and X2e(t) = e(t) = Xlg(t) so 

that X2e(t) = e(t). The system in Eq. 4-23 then becomes 

X l e(t) 

*2  e (0  

0 11 —M~XK —y/J [*2l(oJ + [w"1fio]5u(t'0)" 
Eq. 4-24 

The final complete system of equations (controlled and sensitivity equations) becomes 
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X(t) r A -BK 0 0 m 1 
*c(t) FC Ac  0 0 Xc(t) 
SxM 0 -BKe  A —BK Sx(t) 

.Sxc(.t). Ac t  AC2 AC3 Ac4 .  lSXc(t)\ 

Eq. 4-25 

where Kg ,  Ac l ,  Ac2 ,  Ac3 ,  and Ac4are derived and defined in Chapter 2. In order to perform 

the simulations, we use the following initial conditions 

fJe(O,x,0) = 0.75 sin x , Ug (0, x, 0) = 0.75 cos x. Eq. 4-26 

Figure 4-18 shows that the sensitivity of the state position with respect to 6 does 

not vary much as 6 varies. This suggests that the MinMax control parameter's actual 

value may not be critical in the performance of the state. This result is in agreement with 

the results of the previous section where it was seen that the actual 6 value does not affect 

the control effort. 

Sensitivity of State Position,#* 0.04 Swisitiviy of State Posiion, 6 * 0.08 

0-

Sensitivity of State Position,#8 0.16 S«ntitirity of St*» Posiion,0.32 

Figure 4-18: Sensitivity of state position 
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4.2.6 Controller Sensitivity 

The sensitivity of the controller with respect to 6, 5u(t, 0), was investigated. The 

results are shown in Figures 4-19 through 4-26 for both the full state and state estimate 

control systems. Table 4-3 shows the area between the curves and the time axis, giving 

the total controller sensitivity. The results show that the contoller implemented is not very 

sensitive to variations in 0 since the order of magnitude is the same, despite the 

significant percentage increase from 9± to 04. This is in agreement with the results in 

previous sections that show that the choice in 6 is not very critical to the overall 

performance of the controller. 

Controller Sensitivity, controller 1; Full-State System,6= 0.04 Controller Sensitivity, controller 2; Full-State System,&= 0.04 

'W\ \/WV 
3 -0 U05 

-0.015 

•0 025 

3 -0 005 

-0 015 

-0 025 

Controller Sensitivity, controller 3; Full-State System, 8= 0.04 Controller Sensitivity, controller 4; Full-State System,&- 0.04 
~~ 0 02 r  

-0.005 

•0.015 

-0 02 

•0.025 

•0 005 

Figure 4-19: Controller sensitivity for full state MinMax system {9 = 0.04): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 
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ControNer Sensitivity, controNer 1; Fuft-State System,*- 0.08 Contro*ef Sensitivity, controfter2; FuN»State System,** 0.08 

Q 015 

b -0.005 <3 005 

•0.015 43 015 

•0.CC5 

CortroMf Sensitivity, controNer 3; Fui-Start* System, *= 0.08 ControNer Sensitivity, controNer 4; FuN-State System,#- 0.08 

fwm/w^ 
<0.006 

Figure 4-20: Controller sensitivity for full state MinMax system (0 = 0.08): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 

ControNer Sensitivity, controNer 1; FuA-State System, 0* 0.16 ControNer Sensitivity, controMer 2; FuR-State System, 0= 0.16 

OQ1« 

0 005 

n/^W— t/w 

ControNer Sensitivity, controNer 3, FuN-Strte System, £=* 0.16 ControNer Sensitivity, controA*r4; Full-State System,5- 016 

•fiOtt 

70 eo 90 HD 

MV 

Figure 4-21: Controller sensitivity for full state MinMax system (0 = 0.16): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 
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Controller Sensitivity, control er 2; Full-State System,d* 0.32 ControHer Sensitivity, controHer 1; Full-State System, £= 0.32 

Controller Sensitivity, controHer 4; FuH-State System, 0.32 ControHer Sensitivity, controHer 3; FuH-State System, 0s 0.32 

"a -0 005 

-'v/V \r-

50 80 

t 
SO 60 70 

t 

Figure 4-22: Controller sensitivity for full state MinMax system {0 = 0.32): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 

ControHer Sensitivity,controHer 1; State Estimate Sys,<9= 0.04 Controller Sensitivity,controHer 2; State Estimate Sys,0- 0.04 
002, . , , . 1 1 r- . 1 002r 

0015 
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-0 005 

•a 015 -0.015 

-0.025 •OQ25 

ControHer Sensitivity,controAer 4; State Estimate Sys,£= 0.04 Controller Sens frivity,controHer 3; State Estimate Sys, 0- 0.04 

0 015 

hAAI  \  r^Aj V\A / \ /•-—-xy-

•0 005 

€015 •0.015 

4)025 •COS 

Figure 4-23: Controller sensitivity for state est. MinMax system (0 = 0.04): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 
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Cmitiutai S#njitMty,controfef 1; State Estimate Syt,«» 0.08 ControOM control 2; SMb EstimM* Sy»,9» 0.08 

^ I |M/s/i/WV 
W -C 005 

ControMf SonsitMty,controltor 3; Stat* Estimate Sys,d* 0.06 

•0015 

0 005 

AA j 1 A 
4)005 

•0015 

ControOar Sensitivity,controtor 4; Stat* Estimate Sy»,<9* 0.08 

f ^ aa-'\A/s—'"v^-

Figure 4-24: Controller sensitivity for state est. MinMax system (6 = 0.08): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 

Controtor SansitMty,controller 1; Stat* Estimate Sys,0*0.16 Coritroter Ssnsitivity,controll*r2;Stat* Estimate Sys.tf® 0.16 
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Controter S*mAMty,control*r4;State Estimate Sys,0« 0.16 

fW\ I t  /^a/V 
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Figure 4-25: Controller sensitivity for state est. MinMax system (0 - 0.16): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 
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Controller Sensitivity,controRer 1; State Estimate Sys.d- 0.32 
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Figure 4-26: Controller sensitivity for state est. MinMax system (9 = 0.32): controller 1 
(top left), controller 2 (top right), controller 3 (bottom left), controller 4 
(bottom right) 
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Table 4-3: Area under controller sensitivity curve (Simpson's rule) 

Area 

Under 

Curve 

0! = 0.04 02 = 0.08 03 = 0.16 04 = 0.32 

%change 

from 8X 

to 04 

^controller 1 

(full) 
-0.004635 -0.004559 -0.004383 -0.003816 +17.67 

^ controller 2 

(full) 
-0.004635 -0.004559 -0.004383 -0.003816 +17.67 

^controller 3 

(full) 
-0.004635 -0.004559 -0.004383 -0.003816 +17.67 

^controller 4 

(full) 
-0.004635 -0.004559 -0.004383 -0.003816 +17.67 

TOTAL -0.0185 -0.0182 -0.0175 -0.0153 +17.29 

^controller 1 

(est.) 
-0.004053 -0.004514 -0.005587 -0.009029 -122.77 

^controller 2 

(est.) 
-0.004053 -0.004514 -0.005587 -0.009029 -122.77 

^controller 3 
(est.) 

-0.004053 -0.004514 -0.005587 -0.009029 -122.77 

^controller 4 
(est.) 

-0.004053 -0.004514 -0.005587 -0.009029 -122.77 

TOTAL -0.0162 -0.0181 -0.0224 -0.0316 -95.06 
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Figures 4-27 and 4-28 show the maximum absolute sensitivity values with respect 

to 0. The results are in agreement with the other sensitivity results: 

• The full state sensitivities are slightly higher in amplitude than the state estimate 

sensitivities 

• The variations in the maximum controller sensitivities as the MinMax parameter 6 

changes are small. 

The conclusion therefore is the same as previous conclusions, i.e., the value of 6 chosen 

is not critical with respect to controller sensitivity. 

Maximum absolute Su values vs 6; Full State System, Controller 1 Maximum absolute S values vs 0; Full State System, Controller 2 
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Figure 4-27: Maximum absolute controller sensitivity for full state MinMax system: 
controller 1 (top left), controller 2 (top right), controller 3 (bottom left), 
controller 4 (bottom right) 
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Figure 4-28: Maximum absolute controller sensitivity for state est. MinMax system: 
controller 1 (top left), controller 2 (top right), controller 3 (bottom left), 
controller 4 (bottom right) 

4.2.7 Riccati Sensitivity 

As stated previously, the Algebraic Riccati Equations are a key component in the 

design of the controller as shown in Chapter 2. As a result we investigated the sensitivity 

of the Riccati equations with respect to 9. 

Figures 4-29 and 4-30 show plots of the maximum values of the sensitivities of 

the Riccati equations' solutions (P and II, described folly in Chapter 2) to the MinMax 

parameter 9. The results show that both maximum sensitivities increase with increasing 9. 

The order of magnitude for the values does not change with respect to changes in 9. 

Since II directly affects the controller performance («(/) = -R~lBTUxc), the small 

variations in IT with respect to variations in 9 explains the unchanged controller 

0.D737 



98 

performance as 0 changes. These results are in agreement with previous results and hence 

the same conclusion can be drawn: the actual value of 6 chosen is not critical. 

._-8 Maximum values vs 6 
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Figure 4-29: Norm of lie versus 0 
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Figure 4-30: Norm of Pe versus 0 



CHAPTER 5 

EULER BERNOULLI CANTILEVER WITH 

A ROTATING HUB 

5.1 Problem Formulation 

In this Chapter, we implement the MinMax controller and apply Continuous 

Sensitivity Equation Methods (as described in Chapter 2) to the Euler-Bernoulli 

Cantilever Beam with a rotating hub. Control of this system has been investigated by 

several authors before e.g. [1; 28; 37; 38]. 

Figure 5-1 shows the system under investigation is a slight modification of the 

system in [39] where a tip mass was included. In this diagram oi(t) = 0(t) is the angular 

velocity of the hub. 

Figure 5-1: Euler-Bernoulli cantilever beam with a rotating hub 

99 



100 

The equation of motion for this system, including Kelvin-Voigt and viscous 

damping is 

pA^+pAx>jm+rl^+n!iga+ 

= Q 
dtA 

Eq. 5-1 

where p is the density of the beam material in kg/m3, A is the cross-sectional area of the 

beam in m2, y is the Kelvin-Voigt damping coefficient, y, is the viscous damping 

coefficient, d(t,x) is the displacement of the beam at time, t, and position, x, E is 

Young's modulus, I is the moment of inertia, 0 is the hub's angular position, x is the 

position along the beam, and 0<x<L. We apply the following boundary conditions to 

this system: 

d(t ,  0) = 0 

dd(t ,0) _ 

d4d(t ,L) |  E }d'd(t ,L)_Q  Eq. 5-2 

dtdx3  dx3  

dtdx dx 

These boundary conditions represent: 

• Clamped left-end of beam (1st two) 

• No shear force at tip (3rd ) 

• No bending moment at tip (4th ). 

The model is completed by the inclusion of the hub-beam dynamics boundary condition, 

yew 0) na2d(t.0)_ Eq. 5-3 
'° at2 r  dtdx2  dx2  W '  q  
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where J0 is the hub moment of inertia and u(t)  is the control input to the system via 

torque on the hub. We begin the finite element approximation by rewriting Eq. 5-1 as 

pAd(t ,x)  + pAx&(t)  + Eld""(t ,x)  + Yid(t ,x)  
Eq. 5-4 

+ Y2d""(t ,x) = 0, 

where = d(t ,  x) and = d'(t ,  x) .  In order to determine the finite element 

approximation to Eq. 5-1, we first write the weak form of the PDE. In considering the 

weak form of the problem we seek to find a d(x)e V czX = Hl(0,/) nH4(0J) such that 

f^pAd(t ,x)v(x)dx + fg pAx6(t)v(x)dx + 

f^Eld""(t ,x)v(x)dx + j^Yd(t ,x)v(x)dx + Eq. 5-5 

JoYid""(t ,x)v(x)dx = 0, 

where v(x) e H l
0  (0,L) is a test function. Using integration by parts, we have 

J0' d""(t ,  x)v(x)dx =  ̂ d"(t ,x)v"(t ,x)dx,  
Eq. 5-6 

and J0'd""(t,x) = ^d"Ct,x)v"(x-)dx.  

Eq. 5-5 now becomes 

J0' pAd(t, x)v(x)dx + 

J0' pAx@v(x)dx + J0' EI d"(t ,  x)v"(x)dx + Eq. 5-7 

Jo Yid(t ,  x)v(x)dx + f*Y2d"v"dx = 0. 

Now we divide the spatial domain [0, L\ into N equidistant subintervals and approximate 

N 

d(t ,x)  bydN(t ,x)  = . Here 0, (x) are cubic b-spline basis functions and 
/=i 

e t  (/) are their coefficients. Eq. 5-7 can then be written as 



fgpAd"(t ,x)v(x)dx + pAxQ(t)v(x)dx + 

^EId"N(t,x)v"{x)dx + ^YidN (t,x)v(x)dx + 

foY2d"N(t ,x)v"(x)dx = 0, 

or alternatively, 

Jo Sf= i  eXO <pi(x)v(x)dx + J0 '  p /4x0(tMx)dx + 

Jo EI ei( tW(x)v"(x)dx + J0' EI £f=1 e t(t)  0"(x)v"(x)dx + 

Jo Yi ZfU e l(t)<p i(x)v(x)dx + /0' Yz EfLi e((t)0t"(x)v"(*)d* = 

0. 

Now we let v(jc) range over <j>] (x) for j = 1,2,- • iV. Eq. 5-9 then becomes 

l  N 

SI 0 i=l 

This can now be rewritten as 

ei(t) 
+ pA@{t)S + EIK 

ei(0 <?i(0 
pAM J + pA@{t)S + EIK : + 7iAf J 

.ew(t). e/v(t). .eN(t). 

+ Y2K 
ex (t) 

LcatCOJ 
= 0, 

where M 
i 

J (*¥/(*>& K 
>J=1 

f#(xty(x)dx 

N 

and S -
ij=1 

I 

J x(j)j  (x)dx 

Eq. 5-11 can be rearranged to give 

rei(f)1 

= -e(t)ArxS 
ieN(t) \  

ei(t) 

ex(t) 

ew(t)J 

®i(0 
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or, 

h (0 

e'w(t) 
-0( — pA 

ei  ( t)  

ew(0 

(^1 +^M~1K) \PA PA ) 

ex (t) 

eyv(0-

Eq. 5-13 

We require Eq. 5-13 to be a system of first order equations as described in Chapter 2. We 

therefore define X^t) = e(t) and X2(t) = e(t) = Xi(t). Eq. 5-13 becomes 

Xi(t)  = X2(t) ,  

X2(0 = " ̂ M~1KX1  (t) -  (A + ̂  M~ xKj X2(t) Eq. 5-14 

- 9(t)Af-15. 

Now Eq. 5-3 can be written as 

/o0(O -  0) -  EId"(t ,  0) = u(t). 

This can be rearranged to give 

vl EI 1 
0(t) = —d"(t, 0) + — d"(t ,  0) +—u(t). 

Jo Jo Jo 

Eq. 5-16 can now be rewritten as 

6(t) =^V e(t)0,"(O) 
'"U 

N 

+ ^^ei(t)0r(O)+^u(O-

w 

This can be written as 

vl EI 1 
6(t)  = —qX2(t)  + — qX1(t)+—u(t) ,  

Jo Jo Jo 

Eq. 5-15 

Eq. 5-16 

Eq. 5-17 

Eq. 5-18 

where q = <p"{0).  Substituting Eq. 5-18 into Eq. 5-14 gives 
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*l(0 — ^2 (0> 

j2(0 = -fiM-n, - (£ + ar'K) *2(t) -

g qX2  (t) + ^ q X1  (t) + i u(t)) M"'S. 

This can be rearranged to give 

(0 = *2(0, 

*z(t) = + f <7M-1s)Xi(0-

fZT + iTM"1^ + - 9M_15) X2(t) - -u(t)Af-1S. vp>» ;0^ / zv y /o 

Finally, in matrix form we have 

*i (t) 
L*2(t)J 

M~XS 
Jo  

zeros(N + 1,1) 

x ones(N + 1,1) u(t) .  

In this formulation, 

B = MS 

zeros(N +1, 1) 

-1 

Jn 

xones(N +1, 1) 

Eq. 5-19 

Eq. 5-20 

Eq. 5-21 

Eq. 5-22 

Since full knowledge of the system is not available, we take measurements in the form 

y(0 = [ 
(t) 

.*2(0. 
Eq. 5-23 

where C is composed of four averaging measurements of both the position and velocity 

states, resulting in the following 8x (2 N + 2) matrix 
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-N+l 
}f*^(x)dx\ 
' ->i=l 

L lw+1 

y//0fW^ 
4 Jf=l 

N+1 31 

i=l 
W+l 

7 J? 4>i (x)dx 
2 

j fu<pi(x)dx\  
Ll • J i= 

t f<l>i(x)dx 

0 

0 

ZV+l 

1 f2 
4 

31 

1 
Af+1 

i=l 
iN+l 

j ft4 

1 * Ji=l 

Ji=l 
N+l 

Eq. 5-24 

5.2 Numerical Results 

For all simulations in this section, N = 40, / = 5, R = I. The results are presented in 

the following order: uncontrolled simulations, functional gains, controlled simulations, 

stability analysis, and sensitivity analysis. 

5.2.1 Uncontrolled Results 

For simulation purposes and to attain a solution to the system in Eq. 5-22 and Eq. 

5-23 , we apply the following initial conditions 

dX(0,x) Xn  = X(0,x),-
dt  

= [2 sin 2x , 4 cos 2x],  X c 0  

dX c(0,x)i  r , N OX c(i) ,x)-\  
= |A"c(0, X), —^—-J = 0.75*0-

Eq. 5-25 

The following parameters were used: p = 2700 , £ = 7 x 1010, ,4 = 8.0 x 10 ~5, ./„ = 0.01, 

and/ = 6.7746 x 10"11. Figure 5-2 shows the uncontrolled state displacement. 
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Position, Uncontrolled System 
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Figure 5-2: Uncontrolled displacement 

5.2.2 Controlled Results 

Figures 5-3 through 5-5 show the functional gains for the system for Q = 0.05,0.4, 

0.6. The color legend in this plot is as follows: N = 10 blue, N = 20 red, N = 30 black, N = 

40 magenta, N = 50 cyan. The results are similar to that of the wave equation: the 

functional gains show convergence and do not vary with varying 8, meaning controller 

convergence is not affected by 6 value. 
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position, <9=0.05 velocity, 0=0.05 

Figure 5-3: Functional gains 

position, <9=0.4 velocity, <9=0.4 

-0.5 

Figure 5-4: Functional gains 
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position, <9=0.6 velocity, £=0.6 

-0.4 • 

-0.5 

Figure 5-5: Functional gains 

Figures 5-6 and 5-7 show the controlled displacement values along the beam for 

the full  state values («(/)  = -KU( t))  and for the state estimate system (u(t)  = -KU c(t))  

respectively. In each figure, the top left result is for 6 = 0.05, top right is for 6 = 0.5, and 

bottom left is for 8 = 0.6. The value 0.6 is the maximum 6 value that still results in 

FC A j ke'n§ *n teft two quadrants of the 

complex plane as described in Chapter 2. 
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Position, Fui-stateMhMaxSystem,#* 0.05 Position, Ful-state MmMaxSystem, 0s 0.5 
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e o-

Figure 5-6: Controlled state position, full state MinMax 
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Figure 5-7: Controlled state position, state estimate MinMax 
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Two key points can be made: 

1. The difference in the controller performance for the full state and the state 

estimate systems are imperceptible in this case. 

2. As 6 increases, there is virtually no difference in the performance of the 

controller. This would suggest that the choice of 6 in terms of performance is not 

critical. This result is in agreement with our previous results. 

5.2.3 Stability Analysis 

As in the case of the previous two chapters, we seek to ensure stability in the 

control system without which our results will be invalid. As a result, we again investigate 

the eigenvalues of the matrix 
A -BK 

FC A r  

Figures 5-8 and 5-9 show the eigenvalue plots for various 6 values. The graphs on 

the right side of each figure are a zoomed view showing the closest eigenvalues to the 

imaginary axis. The results conclusively show that the controlled system is stable. 

Furthermore the stability margin remains unchanged with changing 9 (see the stability 

margin results in Table 5-1). The conclusion here is that the value of 9 chosen is not 

relevant with respect to the stability of the system. 

Stability of Syctvm £= 0.06 StabMy Margin 0 05 

-06 -0.6 -0.4 -02 0 02 04 06 00 
RHIAJM 

Figure 5-8: Eigenvalues of 
A -BK 

FC A c  
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Figure 5-9: Eigenvalues of 
A 

FC 

•BK 

Ar 

Table 5-1 shows the stability margin and radius results for various 6 values. The 

table shows that as 0 increases, the stability radius decreases, hence the system becomes 

less stable. The difference between the smallest radius and the largest is only about 0.1. 

The conclusion here is that the value of the MinMax parameter chosen is not critical 

based on the stability radius. 

Table 5-1: Stability margin and radius for controlled system ( Am m)  

0  Stability Margin Stability Radius 

0.05 0.0582554157489640 0.627864455774280 

0.2 0.0590110193003510 0.616994500302368 

0.5 0.0632578775179432 0.556667853290953 

0.6 0.0655009976716679 0.526411275631653 
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5.2.4 Control Effort 

As has been done in the previous two chapters, we present the control effort for 

the MinMax controller. In this case 6 = 0.05, 0.5, 0.6. In Figure 5-10, the system under 

investigation is the full state MinMax controlled system where no compensator/observer 

is used. In Figure 5-11 a compensator is implemented. Table 5-2 shows the results for the 

area between the curves and the time axis, hence the total control effort. The results show 

that as 6 varies, the control effort does not change much. This result agrees with the 

controlled state results of the previous section, where there was no considerable change in 

the results as 0 varied. We conclude that the actual value of 6 employed is not critical 

with respect to the effort required by the controller. 

Control Effort; Fid Stats MinMax System,̂  0.05 

^AftAAA/WVW' 

Control Effort; Futt State MinMax System,e- 0.6 

^^^VA.AAAAAA,V\.'VV\AT.^ 

Control Effort; FuB State MinMax System, 0= 0.5 

"VvAAA/^ 

Figure 5-10: Control effort, full state MinMax 
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Control Effort; State Estimate MmMm System,#" 0.8 

yvA-̂ AAAA-V\A^v̂ V»/s/'%AAyv\A.'V>vvv'> 

Control Effort; State Estimate MnMax System,#* 0.5 

Control Effort; State Estimate MinMax System,#* 0.0S 

/vAw 

Figure 5-11: Control effort, state estimate MinMax 

Table 5-2: Area under control effort curve (Simpson's rule) 

Area Under 

Curve 
0X  = 0.05 e2  = 0.5 03 =0.6 

% change bet. 

0,and 03  

honker . (foll> 3.514129 3.557756 3.584119 1.95 

I controller 1 ( e S * )  2.643727 2.705612 2.735693 3.36 

5.2.5 Sensitivity Analysis 

In order to perform sensitivity analysis, we begin by differentiating Eq. 

respect to 6, resulting in 

5-1 with 
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pA d t t g  (t ,  x ,  0)  + pAx&„ e  (t ,0) + y2  Id^ (t,  x,  0)  + y x  d l 6  (t ,  x,  0)  Eq. 

+ (t ,x,  6)  = 0,  5_26 

where 0(t) is used here to represent the hub's angular position in order to avoid 

confusion with the MinMax parameter 0. Here d d^'*' e^ = dg(t ,  x ,  0).  Now let 
du 

dg(t ,x,  6)  = Sd(t ,x,  0) and &Q(t,  9) = S e(t ,  6). We then have 

pASd(t ,x,  9)  + pAxS e(t ,  9)  + Y2^d"(t ,x,  9) + 
Eq. 5-27 

YiSd(t ,x,  9)  + EISd"(t ,x,  9) = 0. 

The weak form of Eq. 5-27 is 

pA j^Sd(t ,x,  9)v(x)dx + pA f^xS e(t ,9)v(x)dx + 

Y2I fg Sd ' \ t ,x ,  9)v(x)dx + Yi Jo'Sd(t> x-  6)  v(x)dx + Eq. 5-28 

EI J0 'Sd"(t ,x,  9)v(x)dx = 0. 

Using integration by parts, JQ' Sd"(t ,  x,  9)v(x)dx = JQ' Sd  (t ,  x,  Q)v"(x)dx and 

Jo Sd"(t ,x,9)v(x)dx = ̂ Sdv"(x)dx.  

Substituting this into Eq. 5-28 gives 

pA JQ' Sd(t,x,  9)v(x)dx + pA JQ' xSQ(t ,  9)v(x)dx + 

Y2I Jo ̂ d(t ,  x,  9)v"(x)dx + Yi J0' Sd(t ,  x ,  9)  v{x)dx + Eq. 5-29 

EI JQ' Sd  (t ,x,  9)v"(x)dx = 0. 

Let Sd(t ,x,  9) ~ Sd(t ,x,  9) = XfLi so that Eq. 5-29 becomes 

pA JQ' Sd(t ,  x ,  9)v{x)dx + pA fgXS9(t ,  9)v(x)dx + 

Y2 1  J0' (f< x> 9)v"(x)dx + Y\ J0' Sd(t ,  x ,  9)  v(x)dx + Eq. 5-30 

EI f i sZ( t ,x ,0)v"(x)dx = 0, 



or 

pA J0' T,i=1 ei(t)(pi(x)v(x)dx + pAx /J Se(t, 0)v(x)dx + 

YZI  /J Xf=i ei( t)4>"(x)v"(x)dx + 

Yi fo ZiLi e i(t)(p i(x)v(x)dx + EI /Q' ei(t)0i"(x)i;"(x)dx = 0. 

Now let v(x) range over <pj (x) for j = 1,2, • • •, N, hence 

pA /0' If=1 e i(t)(p i(x)4> j(x)dx + pAx /0'se(t, e)<j>j(x)dx + 

Y2I Jo 1 ei(t)4>" (x)<t>'j  {x)dx + 

yi fo EiLi  ̂ i ( t)(p i(x)(pj(x)dx + EI J0' ei(t)<p"(x)<t>"(x)dx = 0. 

Eq. 5-32 can be rewritten as 

pAM 
e'i (t) 

-ew(t) 
4- pAS e(t ,  9)S + EIK 

ei(0 

-e/v(0-
+ yiM 

'ex(t) 
+ 

Y 2K 
ei(t) 

= 0, 

~ 1 "T r* - AT 
" /  

where M - \<}>,(x)<l>j(x)dx K = 

i j=1 
and S — 

U=1 
J x(j>j (x)dx 

Rearranging Eq. 5-33 gives 

re'i(t)l 

e'iv(t) 

EI 
= -Seit .dW^S -M'^K 

pA 

ei(c) _ Xi_ 
e x ( ty  

pA ejv(t)-

~M~XK 
pA 

ex(t) 

Now, recall Eq. 5-16, 

0(t) = 0) + Y-d"(t, 0) + iu(t). 
Jo Jo Jo 
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Now differentiating this with respect to the MinMax parameter 0 gives 

s e(t, e) = f s'jit, 0, e) + f 0,0) + f su(t). 
Vo /o /o 

The derivation and definition of Su(t ,0)is  given in Chapter 2. 

Eq. 5-35 can rewritten as 

Se(t, 0) = y-Sf(t, 0,0) + -y~S'JN(t ,  0,9) + ̂ 5u(t). 
7o Jo Jo 

Eq. 5-35 

Eq. 5-36 

or 

S e(t ,  e)  = f £?=1 eiCO r̂co) +J- Zf=1 ei(t)^r(0) + f Su(t ,  e) .  7o 7o 7o 

This equation can now be written as 

s e(t ,e)  = ̂ -q 
ex(t) EI 

+ hq 

ex(t) 

Le/v(t)J 

1 
+ 76 ) .  

Jo 

Substituting this into Eq. 5-34 gives 

e"i (t) 

— - f - 9  

ei(t) 
+ -0 

ei(0 

%(£)- ew(t)-
7o 9 

ew(t). 
+ j-su(t ,e)\M-1s-

El 

pA1 

Regrouping this equation gives 

et (t) 

e'w(t) 

ei(0" 
_ 21 

^i(t) '«i 00' 
: _ 21 : : 

pA 
e/v(t). 

pA 
iiv(t)-

= (— — qM~ xS — — — —M~ xK) 
\  Jo pA pA / 

\J0 H pA ) 

pA pA 

rei(f) 

ex (t) 

.«w(0 
+ 

%(t) 
+ f5u(t,0)M-15. 

/o 

Eq. 5-37 

Eq. 5-38 

Eq. 5-39 

Eq. 5-40 

We desire Eq. 5-40 to be a system of first order differential equations and so we define, 

= e(t) a^d S*2 (t) = e(t). Eq. 5-40 now becomes 
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sX l(t)  = sX 2  

Eq. 5-41 

EL M' p A , .^K)sX l( . t)+j-oSu(t ,e)M- xS. 

The final complete system of equations (controlled and sensitivity equations) becomes 

X(t) 

$x(t)  
Sx c(  0  

\A -BK 0 0 
FC Ac 0 0 
0 -BKq A -BK 

ACl AC2 AC3 AC4 

X(t) 
Xc(t) 
Sx(t)  
SX c(t)\  

Eq. 5-42 

Eq. 5-43 

where K e ,  AC l ,AC 2 ,AC 3 ,  and AC 4  are derived and defined in Chapter 2. 

Figure 5-12 shows the sensitivity results for the Euler Bernoulli Cantilevered 

beam with a rotating hub for varying 6. The following initial conditions were used: 

S x(0,x,6) = 0.75^f(0,x), and 

SX c(O,x,0) = 0.75X c(0,x).  

The results show that the sensitivity of the state is initially high then decreases rapidly 

with increasing time. This suggests that the system is closer to its desired equilibrium 

state as time elapses. The results for higher Q values show slightly lower sensitivity than 

for lower 6. The conclusion here is that the actual value of 6 chosen is not critical based 

on the sensitivity analysis. 



118 

Sanslbvity of Position. State Estimate MinMax System, 0* 0.05 Sensitivity of Position, State Estimate MinMax System, d* 0.5 
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Figure 5-12: Sensitivity of state 

Figure 5-13 shows the results for the controller sensitivity for various 9 values. As 

was done in the case of the control effort, we employ Simpson's rule to determine the 

area between the curve and the time axis. This area gives us the total sensitivity of the 

controller. Table 5-3 summarizes the results, where 1 gives the area obtained by 

Simpson's rule. The total area is calculated for each 6 value and recorded in the table. 

As in the case of the control effort, the table shows that the change in the 

sensitivity results as 6 increases is not significant. The order of magnitude is the same. 

We draw the same conclusion, the actual value of 9 chosen is not critical based on these 

sensitivity results. 
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Controller Sensitivity; State Estimate MinMax System,5= 005 Controller Sensitivity; State Estimate MinMax System,#* 0.5 

Controller Sensitivity; State Estimate MinMax System,e- 0.6 

Figure 5-13: Controller sensitivity, state estimate MinMax 

Table 5-3: Area under controller sensitivity curve (Simpson's rule) 

Area Under 

Curve 
et = 0.05 e2 = 0.5 03 = 0.6 

% change from 

0! to 03 

I controller 2.650461 2.785177 2.809907 5.67 

I controller 2.007114 2.171982 2.123014 5.46 

Figures 5-14 and 5-15 show the maximum absolute controller sensitivity values 

with respect to 0 for both the full-state and the state estimate MinMax systems, 

respectively. In the case of the full-state system, as d increases, the maximum sensitivity 

slightly increases. In the case of the state estimate system, the maximum sensitivity 

increases gradually, then decreases. The overall change in maximum controller 
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sensitivity values for both cases is insignificant. This is in agreement with the previous 

results which show that the controller performance changes only slightly with changing 

e. 

Maximum absolute Su values vs Full State System 
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Figure 5-14: Maximum Su (/) values, full state system 

Maximum absolute Su values vs 8; State Estimate System 
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Figure 5-15: Maximum Su (0 values, state estimate system 
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5.2.6 Riccati Sensitivity 

As stated previously, the Algebraic Riccati Equations are a key component in the 

design of the controller as shown in Chapter 2. As a result we investigated the sensitivity 

of the Riccati equations with respect to 6. 

Figures 5-16 and 5-17 are plots of the maximum values of the sensitivities of the 

Riccati equations' solutions {P and II, described fully in Chapter 2) to the MinMax 

parameter 6. The results show that both maximum sensitivities increase with increasing 0. 

The order of magnitude for the II0 values does not change with respect to changes in 0. 

Since n directly affects the controller performance («(?) = -/?~'5rnxc), the minimal 

variations in n with respect to variations in 0 explains the unchanged controller 

performance as 0 changes. These results are in agreement with previous results and hence 

the same conclusion can be drawn: the actual value of 9 chosen is not critical regarding 

Riccati solution sensitivity. 

Maximum x, values vs 8 
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Figure 5-16: Norm of lie versus 0 
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Maximum P6 values vs 6 
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Figure 5-17: Norm of Pe versus 0 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this work, we have successfully computed an optimal MinMax controller using 

a Galerkin finite element scheme for the 1 and 2-dimensional heat equations, 

1-dimensional wave equation with viscous damping, and the cantilevered Euler-Bernoulli 

beam with a torque control through a hub, including both Kelvin-Voigt and viscous 

damping. We then investigated the effects of variations in the MinMax parameter on 

control effort, controlled system stability (stability margin and radius), functional gains, 

and state position and/or velocity. We then applied Continuous Sensitivity Equation 

Methods to each finite dimensional approximation of the original four (4) infinite-

dimensional PDEs. This was done in order to investigate the effects of variations in the 

MinMax parameter on the sensitivity of state position and/or velocity, controller 

sensitivity, and Riccati sensitivity. The results for all four sets of equations modeled in 

this work are conclusive. For each case the conclusions were similar: 

1- Controller Performance 

We found that varying 6 does not significantly affect the performance of the 

controller. In virtually all the cases, the system is driven towards equilibrium in about the 

same time. 

123 
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2. Functional Gains 

As mentioned in Chapter 2, the functional gains tell us whether the Galerkin finite 

element schemes, employed in this work to approximate the various infinite-dimensional 

Partial Differential Equations, are convergent as well as whether the controller employed 

is convergent. As a result, we plotted the functional gains for varying 0 values for each 

system. The results in each case showed that the functional gains were convergent for 

each 6 value for the given TV values (where N is number of discretization intervals). More 

importantly, the gains were similar for the different 6 values. We therefore concluded 

that, in terms of functional gains and thus controller convergence, the actual value of 6 

chosen is not critical. 

3. Controlled System Stability 

As previously stated, the controlled system must be stable in order for the other 

controlled results to be useful. We investigated the stability margin and stability radius 

for each system as 6 varied. We found that for all cases of 6, the stability margin and 

radii were both similar or of the same order of magnitude. We therefore concluded that 

the actual value of 6 chosen had no significant effect on the stability of the system and 

thus was not critical. 

4. Control Effort 

We investigated the control effort u(t)for each controller implemented for 

varying 6. In order to better analyze the results, we employed Simpson's rule for 

numerical integration to each graph. The results for each system showed that the control 

efforts were similar or of the same order of magnitude for varying 6 values. We therefore 
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concluded in the case of each system, that the actual value of 8 chosen was not critical in 

terms of control effort required for each particular design. 

5. Sensitivity of State 

We employed Continuous Sensitivity Equation Methods, as outlined in Chapter 2, 

to each system under investigation. The results for the sensitivity of the state with respect 

to 9 showed similar state sensitivities for each control design with varying 9 values. 

6. Controller Sensitivity 

We investigated the sensitivity of the controller with respect to varying 9  values. 

In order to better analyze the results, we employed Simpson's rule for numerical 

integration to each graph. In each case, we found that the controller sensitivities were all 

either similar or of the same order of magnitude. Surprisingly, the MinMax controller, 

which depends on 9, was not significantly sensitive to different 6 values. 

7. Riccati Sensitivity 

We investigated the sensitivity of the solution so the Riccati equations to 

variations in 0. In particular, we were interested in the Tlff values since 

u(t) = -R~lB'Tlxc(t) suggesting thatn directly influences the control effort. Generally, 

the results showed that as 9  varies the sensitivities had similar orders of magnitude. We 

concluded therefore, that the actual value of 9 was not critical. 

Although we have not obtained an explicit formula for the optimal 9  value, we 

have provided both quantitative and qualitative results that suggest that the optimal value 

in terms of stability, performance, and controller convergence is any 9 that satisfies the 

positive definite condition in the [/ — 02PU] > 0. This further suggests that there is no 

need to expend computational costs on choosing a 9 value. A low 9 value close to 0, such 
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as 0.05, can be chosen and the controlled system would exhibit excellent performance 

and stability properties, along with controller convergence. 

6.2 Future Work 

In [35], the conditioning of the MinMax Riccati Equations, the sensitivity of the 

eigenvalues of [/ — 92PW], as well as the robustness of the controller with respect to 

variations in 6. It was concluded that the optimal value of the MinMax parameter 0 was 

not necessarily crucial. In order to further the investigation, the systems in this 

dissertation would be analyzed using the methods in [35]. 
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A.l Exact Solutions 

A.l.l Uncontrolled 1-dimension Heat Equation 

The equation for the exact solution of the 1-dimensional Heat Equation is [40]: 

U°(x) = 100. 

Figure A-l shows the simulation of the exact solution for the uncontrolled 1-

dimensional heat equation. This result is similar to that of Figure 3-2, where a Galerkin 

finite element scheme was employed. 

Temperature, Uncontrolled System (Exact Solution) 

V -(27^L-)kt • (mnx\ sra(—J 
m=1 

L Eq. A-l 2 f „ , „ /mnx\ 
a m  =  Lj (*) s i n  (~Y~)d x '  

o 

100 

3 

x 

10 

t 0 0 
X 

Figure A-l: Exact solution of uncontrolled heat in 1-d rod 
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A.1.2 2-Dimensional Heat Equation 

The equation for the exact solution of the uncontrolled 2-dimensional heat 

equation is [41]: 

mnx\ (nny\ 
U{t,x,y) =Y^Amsin{—)stnl— e  •* '  ^  I,  

0 0 \ h J  

U(t,0,y) = U(t,  L,y) = U(t,x,  0) = U(t,x,L) = 0, 

U(0,x,y) = 100, 

Amn = T2 t foh U(°' X> y>in {T7) Sin (if) dX-

Eq. A-2 

Figure A-2 shows the simulation of the exact solution for the 2-dimensional heat 

equation. This result is similar to that of Figure 3-33, where a Galerkin finite element 

scheme was employed. 

Temperature, Uncontrolled System (Exact Solution) 

40-

Figure A-2: Exact solution of uncontrolled heat on 2-d surface (along horizontal center) 
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A. 1.3 1-Dimensional Wave Equation 

The equation for the exact solution of the 1-dimensional wave equation with 

viscous damping is [42]: 

J/(r,x)-Xsin(^Je 2 (an sin<X0+6„ c°s(/v)) 

U(t,  0) = 0 

U (0, x) = / (x) = sin x 

BU(Q,x) ,  x  ^ 
—^—- = g(x) = cos(x) 

ax 
r=o.oi.  

cj4n2x2  -b2L2c2  

M„ = 
2 L 

, 2 r . (nmc 
6«=7J s in  ~r f(x)dx, 

2 r . (nfix 
a„ - -— J sin —— 
" lM*1 

2 

g(x) + ~-f(x) 
\ 

dx. 

Eq. A-3 

Figure A-3 shows the simulation of the exact solution for the uncontrolled 1-

dimensional wave equation with viscous damping. This result is similar to that of Figure 

4-1, where a Galerkin finite element scheme was employed. 

Displacement, Uncontrolled System (Exact Solution) 

Figure A-3: Exact solution of displacement for 1-d wave equation 
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B.l Finite Difference Solutions 

In order to further verify the accuracy of the simulations in this work, we present 

the uncontrolled simulations of the heat and wave equations using the explicit Finite 

Difference scheme. 

B.l.l 1-dimensional heat equation 

We used the explicit Finite Difference scheme to approximate the solution to the 

uncontrolled 1-dimensional heat equation 

U t(t ,x) = kU x x(t ,x).  Eq. B-l 

The resulting model formulation is 

*t+l = AX t ,  where 

— 2v V 0 0 0 0 0 0 0 0 
V l  — 2v V 0 , 0 0 0 
0 V l - 2 v  V . , , 0 
0 0 V V , . . , 
0 0 0 , 0 , 
, 0 0 , 0 0 , 

, , 0 , , 0 
. . . 0 , V 0 
, . 0 v 1 — 2v V 

0 0 0 0 0 0 0 V 1 -

The result is shown in Figure B-l. This is similar to the original result in Figure 
3-2. 
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Temperature, Uncontrolled 

time, t 0 0 

Figure B-1: Uncontrolled heat in 1-dimensional rod (explicit finite difference) 

B.1.2 2-Dimensional Heat Equation 

In this section, the explicit scheme was used to simulate the uncontrolled 2-

dimensional heat equation 

dU(x,y,t)  
— b 

d2U(pc,y,t)  d2U(x,y,t)  
dt dx2  dy2  

This was modeled as 
u+i AX t ,  

Eq.B-4 

Eq. B-5 

where 
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a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

V a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 V a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 V a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 V a 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

V 0 0 0 0 a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 V 0 0 0 V a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 V 0 0 0 V a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 V 0 0 0 V a V 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 V 0 0 0 V a 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 V 0 0 0 0 a V 0 0 0 V 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 V 0 0 0 V a V 0 0 0 V 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 V 0 0 0 V a V 0 0 0 V 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 V 0 0 0 V a V 0 0 0 V 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 V 0 0 0 V a 0 0 0 0 V 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 a V 0 0 0 V 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a V 0 0 0 V 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a V 0 0 0 V 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a V 0 0 0 V 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a 0 0 0 0 V 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 0 a V 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a V 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a V 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a V 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 0 0 0 V a 

Eq. B-6 

In order to create this matrix, Figure B-2 was used, where the dots represents the 

interior grid points. In this case, the number of interior grid points is 25, hence A is a 

25 x 25 matrix. In the actual simulation 361 grid points were used. 

Figure B-2: 2-d grid used to generate matrix A 
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Figure B-3 shows the results. It is clear that this is similar to Figure 3-33. 

Temperature, Uncontrolled System (x-direction) 

Figure B-3: Uncontrolled heat distribution across horizontal center of 2-dimensional 
square plate 

B.1.3 1-Dimensional Wave Equation 

In this section we use the explicit scheme to solve the 1-dimensional uncontrolled 

wave equation with viscous damping, 

dU(t,x) _ 2  d2U(t,x) dU(t,x) Eq. B-7 

dx ~ c a* 7 dt~' 

We formulate Eq. B-7 as 

X t + l=AX„ Eq.B-8 

where 
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- 1 0 0 0 0 At 0 0 0 0 
0 1 0 0 0 0 At 0 0 0 
0 0 1 0 0 0 0 At 0 0 
0 0 0 1 0 0 0 0 At 0 
0 0 0 0 1 0 0 0 0 At 

—2v V 0 0 0 1 - Y  0 0 0 0 
V —2v V 0 0 0 1 - Y  0 0 0 
0 V —2v V 0 0 0 1 - Y  0 0 
0 0 V —2v V 0 0 0 1 - Y  0 

. 0 0 0 V —2v 0 0 0 0 1 - y J  

The matrix of Eq. B-9 was computed for a spatial discretization of N- 5 

intervals. The actual simulation was obtained with N - 40 intervals. Figure B-4 shows the 

resulting simulation. The figure is similar to Figure 4-2. 

Displacement, Uncontrolled 

time.t 0 0 

Figure B-4: Uncontrolled displacement (explicit finite difference scheme) 
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