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ABSTRACT

The use of computational methods for design and simulation of control systems
allows for a cost-effective trial and error approach. In this work, we are concerned with
the robust, real-time control of physical systems whose state space is infinite-
dimensional. Such systems are known as Distributed Parameter Systems (DPS). A body
whose state is heterogeneous is a distributed parameter. In particular, this work focuses
on DPS systems that are governed by linear Partial Differential Equations, such as the
heat equation. We specifically focus on the MinMax controller, which is regarded as
being a very robust controller. The mathematical formulation of the MinMax controller
involves a design parameter, 6. This parameter provides a numerical measure of the
robustness of the MinMax controller; hence it is very important. However, there exists no
explicit formula for determining its value in advance of attempted control design.
Currently, this parameter’s optimal value- optimal in the sense of robustness- is
determined experimentally using an iterative process that seeks to maintain stability in
the closed loop control system as well as an always positive definite result for
[1 —6*PI] (i.e.[I —6*PIT] > 0) where I is the identity matrix, while Pand I1 are
solutions to Algebraic Riccati Equations discussed in this dissertation. This process is
obviously computationally expensive.

The search for a more efficient means of determining &, including the possibility

of the emergence of an explicit formula based on some mathematically rigorous criteria,
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v
is the driving force for this work. We use sensitivity analysis as a tool to mathematically
investigate different criteria (such as the controller sensitivity, state sensitivity, Riccati
equations’ sensitivity, etc.) to help achieve our goal of formulating a more efficient
means of determining an optimal value for 6.

For each of the systems investigated, it was found that low 6 values (e.g. 0.05) are

sufficient for adequate performance, robustness, and convergence of the MinMax

controller.
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CHAPTER 1

INTRODUCTION

1.1 Control of Distributed Parameter Systems

The design of control systems can be an expensive endeavor. However, the use of
computational methods of design and simulation allows for a cost-effective trial and error
approach. In this work, we are concemned with the robust real-time control of physical
systems whose state space is infinite-dimensional. Such systems are known as Distributed
Parameter Systems (DPS). A body whose state is heterogeneous is a distributed
parameter system. In particular, this work focuses on DPS systems that are governed by
linear Partial Differential Equations (PDEs). Examples of such systems include the heat
equation, Euler-Bernoulli cantilevered beam, wave equation, etc.

Control design applied to a DPS also results in an infinite-dimensional PDE
controller. For the purpose of computation and numerical simulation, we apply a
discretization algorithm to approximate the PDE models by finite-dimensional systems.
Controllers are designed for the finite-dimensional systems, resulting in finite-
dimensional controllers, though they are known to converge to the infinite-dimensional,
theoretical controllers [1].

There are many controllers that can be used for DPS control. The most classical
of these controllers is the Linear Quadratic Regulator (LQR). The LQR and the Linear

Quadratic Gaussians (LQG) are two of the most fundamental DPS control problems.



Their design and application are discussed fully in [2; 3]. The primary difference between
the LQG and the LQR systems is that LQR is an example of full state feedback control
(i.e. the entire state of the system is known at all time values), whereas the LQG is an
example of state estimate feedback control (an observer or compensator is used to
provide an estimate of the state based on measurements). Another example of DPS
controller is the Central controller discussed at length in [4; 5]. This controller is known
to stabilize the system it is applied to with a guaranteed robustness margin. The Central
controller involves a control parameter that provides a measurement of its robustness.
This parameter’s value is given by a mathematically rigorous deterministic formula.
Finally, another example of a DPS controller is the MinMax controller, which is the

controller investigated in this dissertation.

1.2 The Finite Dimensional MinMax Controller in Brief
The following is a summarized excerpt from [6]. Consider a linear system
described by
x(t) = A(t)x(t) + B(Ou(t) + T{H)w(t), Eq. 1-1
z(t) = H{)x(t) + Iy ()v (L), Egq. 1-2
where x is the n X 1 state vector, u is the m X 1 input vector, z is the p X 1 measurement
vector, w and v are the g X land p X 1 input disturbance vectors, respectively. It is
assumed that I'; is nonsingular. The measurement history up to t is defined as
Z, ={Z(s),0<s <t} Eq. 1-3
The deterministic linear quadratic game problem under consideration is to obtain an

optimal control strategy u(t) = u(Z,), for the worst case disturbances w(-),v(-) and



initial condition x(0) such that minmaxmaxm(%)xJ (u,v,w,x(0)) subject to the constraints
u v w X

in Eq. (1.1) and Eq. (1.2) where

J (v, w,x(0)) =3 [ 1x(0) = 202 + Nx(DII3, +
Eq.1-4

T
Iy {1xl3ey + el +5 (MWl -1y + wllZ-a ) t],

0 is the control parameter, x, and the terminal time T are fixed, and all matrices have

appropriate dimensions. It is assumed that R, Py, # and V are positive definite, and Q and
Qr are nonnegative definite. Here ||x| , denotes vx” Ax . The minimization of the above

cost function with respect to u, after it is already maximized with respect to the

disturbances v, w and the initial state x, is widely called the MinMax control problem.

1.3 The MinMax Parameter Problem

The MinMax controller is regarded as being a very robust controller. It has been
implemented for such problems as the design of a fault detection filter [7] and flow
control in a driven cavity [8]. Much work has been done in the past on the design and
application of the MinMax controller e.g. [9; 10; 11; 12].

The MinMax controller is a state-space formulation of the well known H.,
controller. The mathematical formulation of the H, controller involves a control
parameter whose optimal value remains an open problem in robust control theory [13].
In order to design a meaningful H,, control law for a system, the optimal control
parameter, 6°, should be available before hand. In the literature, this value is determined
by iterative schemes only. One such iterative scheme is as follows: start with a value 8
and determine whether 6 > 6 " by solving two “indefinite” algebraic Riccati equations and

checking the positive semi-definiteness and stabilizing properties of these solutions. If a



positive semi-definite solution exists, then 8 > 6 " and the process is repeated with a
lower 6. This is clearly a computationally expensive process. Even more importantly, as 6
approaches 6 ', numerical solutions of the algebraic Riccati equations become ill-
conditioned. Secondly, as 8 decreases, evaluation of the coupling condition generally
involves finding eigenvalues of stiff matrices. The iterative process is therefore
inefficient and unreliable.

The search for a more efficient means of determining 6, including the possibility
of the emergence of an explicit formula, is the driving force for this work. We use
sensitivity analysis as a tool to mathematically investigate different criteria such as the
controller sensitivity, state sensitivity, Riccati equations’ sensitivity, etc. to help achieve
our aim of contributing towards the ultimate goal of determining a more efficient means

of identifying 6.

1.4 Sensitivity Analysis

Sensitivity analysis provides a means of observing and analyzing the behavior or
reactions of a system’s output to variations in some input parameter. For instance, in
many engineering applications, an in-depth analysis of the design may require efficient
construction and manipulation of complicated geometries as well as accurate (though
fast) numerical PDE solutions. In order to achieve the aim of optimizing the design, it
may be very effective to alter the values of some of the design parameters. This alludes to
the fact that the sensitivity of some output variables (such as variables that affect
performance) to variations in some key parameters is critical.

Mathematically, the sensitivity of a function of a variable x with respect to that

. . o . . .3 )
variable is the derivative of the function with respecttox, 1.e. %. In this work, we



seek to investigate the sensitivity of various functions (e.g., state position, control effort

u etc.) with respect to the MinMax control parameter 6. We use a Galerkin finite

element scheme in order to obtain a finite dimensional approximation of the solutions of
the sensitivity equations.

There are two main classifications of numerical methods used to perform
sensitivity analysis: the “discretize-then-differentiate” methods and the “differentiate-
then-discretize” methods. The mechanisms of both methods are as their names suggest.
An example of the former case is a method based on finite differences. This is the first
and most prevalent method. There are issues with this method in the case of complex
fluid flow problems as well as the typical issue of stability in finite difference schemes
when dealing with step-size in the design variable (this is usually a trial-and-error process
that leads to increased computational expense). These problems are discussed fully in
[14; 15]. A second example of a “discretize-then-differentiate” method is Automatic
Differentiation applied in [16; 17]. In this method a computer code is used to generate a
finite dimensional state approximation. Specifically the program performs differentiation
by repeatedly using the chain rule at the discrete level after the aforementioned finite
dimensional state approximation is generated.

In this dissertation we apply Continuous Sensitivity Equation Methods (CSEMs)
to the heat equation (1-dimensional and 2-dimensional), the wave equation, and the
cantilevered Euler-Bernoulli beam that is attached to a rotating hub through which the
control enters. The input parameter, which will be varied, is the MinMax parameter 6.
The CSEMs used here are categorized as the previously mentioned “differentiate-then-

discretize” method. Examples of the usage of CSEMs are in [18; 19; 20]. A simple



example of the application of CSEMs is given in Section 2.2.1 of [21] and is presented

here.

1.5 Heat in a Thin Rod
This example is for a steady state temperature distribution in a thin rod. A heat
source is applied to only one section of the rod and the length of the rod is determined by

the shape parameter. Let Q = (1,2) be the design space. For this discussion, let Q
represent a bounded, connected, open subset of R”,(n =1,2,3) satisfying the cone

condition, see [22]. The state equation is an elliptic boundary value problem given as

*w(x)
o0x?

= f(x),x € Q(q) = (0,9), Eq. 1-5
for a giveng € Q . Here Q(q) 1s defined as the interval (0, q). f is the piecewise

continuous function

0, 0<x<1
f(x)_{—-l, 1<x<q. Eq. 1-6

We assume homogeneous Dirichlet boundary conditions, hence
w(0) =0,w(qg) =0. Eq. 1-7

These boundary conditions suggest that the two ends of the rod are insulated. The aim
here is to solve Eq. 1-5 through Eq. 1-7 for the state w(x, g)and to then determine its

sensitivity to small changes in g. The analytical solution can be verified to be

_(g-1)?
2q
_(g-1)°
2q

X, 0<x<1

w(x,q) = Eq. 1-8

1
x+§-(x—1)2, 1<x<q.

We define the sensitivity



ow(x,
s(x,q) = ———;E—q-)- Eq. 1-9
The sensitivity then is
—q?
s(x,q) = Z_qu' vx € Q(q) = (0, q). Eq. 1-10

Discretization of this final sensitivity equation completes a “differentiate-then-discretize”
example method.

In this work, we investigate the sensitivity of the controlled state, continuous
algebraic Riccati equations’ solutions, and other variables with respect to variations in 6.
The potential end result is to be one step closer to having an efficient means of
determining the optimal value of the parameter-optimal in terms of robustness,
performance and even stability- that passes the test of some mathematically rigorous

criteria.

1.6 Overview of Dissertation

In this dissertation, we perform sensitivity analysis on the heat equation, the
Euler-Bernoulli cantilever beam with a rotating hub, as well as the wave equation. In
Chapter 2 we discuss the MinMax controller design, stability analysis, Riccati sensitivity
analysis and some theoretical background. In Chapter 3 we discuss the results of
performing sensitivity and stability analyses for the 1 and 2-dimensional heat equations.
In Chapter 4 we discuss the results for the 1-dimensional wave equation. In Chapter 5 we
discuss the same results for the Euler-Bernoulli cantilevered beam with a rotating hub. In
Chapter 6, we provide a conclusive analysis of the results and indications of the direction
of future work. In Appendix A, we provide the exact solutions to the uncontrolled 1 and

2-dimensional heat equations, as well as the uncontrolled 1-dimensional wave equation.



This was done as a check for numerical accuracy of the simulations in Chapters 3 and 4.
Finally in Appendix B, we provide finite difference solutions to the uncontrolled 1-

dimensional heat and wave equations, as well as the 2-dimensional heat equation.



CHAPTER 2

THEORETICAL BACKGROUND AND
CONTROLLER DESIGN

2.1 Problem Formulation
As stated in Chapter 1, we are concerned with making progress towards the

ultimate goal of determining a potential formula for choosing the MinMax parameter that
is based on mathematically rigorous criteria. To this end, we work with physical systems
that are governed by Partial Differential Equations (PDEs). Such systems are known as
Distributed Parameter Systems. Based on the theory in [9; 10; 11], we assume that our
PDE control system can be modeled in abstract form as

x(t) = Ax(t) + Bu(t),x(0) = x,. Eq. 2-1
Here x(t)eX is the state of the system and X is a Hilbert space. The operator4: X — X
describes the dynamics of the system, B:U — X indicates how the controller is applied,
and u(¢) is the controller in Hilbert space U. The uncontrolled form of this equation is
given as

x(t) = Ax(t), x(0) = x,. Eq. 2-2

We further assume that there is less than complete knowledge of the system; hence we

introduce a state measurement y(¢) € Y , which is a Hilbert space. The form taken by the
measurement is given as

y(®) = Cx(2). Eq.2-3
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The operator C: X —Y determines how the state is measured. Since full state feedback

is often impossible, C is generally not the identity operator.

2.2 Semigroups

For the purpose of this discussion we denote the state space system given by Eq.
2-2 and Eq. 2-3 as Z(A,B, C) . The following definitions are cited from [23] and [24].
Definition 2.1 Let X be a Hilbert space. A family7(1),0 < T < o, of bounded linear

operators from X into X is a semigroup of bounded linear operators on X if

1. T(0)=1,where [ is the identity operator on X
2. T@+s)=T(s)T(¢)forevery 1,520
Definition 2.2 A semigroup 7'(¢), 0 <¢ < o, of bounded linear operators on X is a

strongly continuous semigroup, or C, —semigroup, of bounded linear operators if

l}f(l)l T(t)x =x, for every xe X. Eq. 24
Theorem 2.3 Let T(¢)be a C, — semigroup. There exist constants @=>0and M >1
such that

IT()] < Me”, for 0<t< oo, Eq. 2-5

If w<0 we say that T'() is an exponentially stable C, —semigroup. If @ =0, T(¢)is
said to be uniformly bounded, and moreover, if M =1, T(¢) iscalleda C, -

semigroup of contractions.
Definition 2.4 An operator A4is exponentially stable if and only if A generates an

exponentially stable C, —semigroup.
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In this work, we assume A generates an exponentially stable C, —semigroup

which guarantees well-posedness of the control problem. This is true for the PDE’s
investigated in this work: heat equation as seen in [25; 26], the 1-dimensional wave
equation [27] and the Euler-Bernoulli cantilevered beam with a rotating hub (also

investigated in this work) [1; 28].

Definition 2.5 The state linear system Z(A,B, C) is exponentially stable if 4 is
exponentially stable. We assume Z (4, B,C) is exponentially stable for this work.

Definition 2.6 Z(A,B, C) is stabilizable if there exists a linear operator F': X U
such that 4+ BF is exponentially stable. We refer to the pair (4, B) as being stabilizable.
Definition 2.7 Z(A,B, C) is detectable if there exists a linear operator L:Y — X such

that A+ LC is exponentially stable. We refer to the pair (A4, C) as being detectable.

2.3 MinMax Controller design
In attempting to achieve our aforementioned goal we design a MinMax controller
for the 1 and 2-dimensional heat equations, the 1-dimensional wave equation and Euler-
Bernoulli cantilevered beam with a rotating hub. The MinMax controller is a well-
established control strategy (e.g. [6; 29]) and the equations for implementation are
summarized here. We assume in this work that complete information about the controlled
system is not available, hence a compensator is used. This compensator or observer

incorporates the measurement of the state in Eq. 2-3 into its state equation:

x'c(t) = Acx(t) + F}'(t), xc(o) = Xy Eq. 2-6
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where x_is the state of the compensator. In this work, we assume that (4, B) is

stabilizable and that (4, C) is detectable (see definitions 2.6 and 2.7). Under these

assumptions,

F=[1-¢*P1]'PC", . Eq27
and

A.=A—-BK—FC+ 6°MTI, Eq. 2-8

where I1, P, Mand K are defined in Eq. 2-9 and 2-10. There exists an optimal control of

the form

u(t) = ~Kx, (1), Fa-2

where K is given as

K=R"'B'IL Eq. 2-10
In Eq. 2.7-2.10, ITand P are unique, positive definite solutions of the control and filter

algebraic Riccati equations given as

ATI+TU4-TI[BR'B" -9’ M| 1+ 0 =0, Eq.2-11
and
AP+ P4 —Plc'c-6%0| P+ M=0. Eq.2-12
Here,
0=C"C, Eq.2-13
and
M=BB". Eq.2-14

We are guaranteed minimal solutions IT and P such that
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[I — 62PM] > 0, Eq. 2-15

for sufficiently small 8. The final closed-loop control system is now
x1_[A -BRB'H|[* x(O)]__ xo]
[J'cc] - [Ac FC ][Xc]’[xc(O) = %) Eq. 2-16

2.4 Stability Analysis and Robustness
For a system that has bounded inputs, it is possible that the output maybe
unbounded. This would render any solution useless; hence it is important that the
controlled systems designed be stable. [30; 31] provide a simple criterion to determine
stability of the systems under consideration. Consider the continuous-time system in Eq.
2-3: x(t) = Ax(t).

For a given initial condition x(0) = x,, such a system has solution of the form

x(t) = etx,, Eq. 2-17

where ¢ > 0. Using this solution the following theorem is provable
Theorem 2.1 (Theorem 10.2 in [30])

The system in Eq. 2-2 is stable if and only if

A Res, <0,

ielk

Eq.2-18
where s, are the roots of the equation

det(A—sI) =0, Eq.2-19

i.e. s, are eigenvalues of A. This theorem is used in stability plots in Chapters 3, and 4

and 5.
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In order to further our search of an optimal means of choosing #, we compare
robustness of the MinMax controllers implemented for different 8 values. Two measures
of robustness are employed: stability margin and stability radius. The stability margin (as
described in [32}) for a given matrix 4 is a measure of the distance from the imaginary
axis to the nearest eigenvalue of matrix 4 . The stability radius, described in [32; 33], of
matrix A is a measure of the distance from A to the nearest unstable matrix based on

singular value computations.

2.5 Riccati Sensitivity

As previously stated, our goal is to contribute towards more efficient ways to
determine the MinMax parameter 6. Since the Algebraic Riccati Equations (ARE’s) are
essential to the design of the controller, and since their mathematical formulation is a
function of 6, we perform a sensitivity analysis of these equations. Consider the ARE’s in
Eq. 2-11 and Eq. 2-12:

A'TI+MMA-N[BR™1B* - 6’°MI1 + Q = 0,
AP + PA* - P[C*C - 6%Q]P+ M =0.

We begin by finding the derivatives with respect to 4,

A'Tlg + TgA — Iy [BR™1B* — 92M]II — N[-26M]II

Eq. 2-20
— T[BR1B* — 82M]1l, = 0,
APy + PyA* — P4[C*C — 62Q]P — P[-26Q]P —
Eq. 2-21
P[C*C — 62Q]Py =0
an P

Here, let Iy = 5, and -~ = Pg.Nowlet II, = X and F, =7 , then

A*X + XA — X[BR™1B* — 02M]Il — N[—20M]11
Eq. 2-22

~ N[BR™1B* - 82M]X =0,
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and
AY + YA* —Y[C*C — 62Q]P — P[-26Q]P — P[C*C — 62Q]Y = 0. Eq.2-23
Then factoring
[A* — I(BR™B* — 82M)]X + X[A — (BR™1B" - 92M)TI]
Eq. 2-24
~ (-26M)1,
[A = P(C*C - 82Q)]Y + Y[A" — (C*C — 62Q)P] — P(—26Q)P. Eq. 2-25

These final two equations are now in the form of Lyapunov equations which are solved

numerically in Chapters 3, 4 and 5 of this work.

2.6 Controller Sensitivity
As previously stated in Chapter 1, we perform sensitivity analysis on the various
PDE systems in this work. In doing so, we also investigate the sensitivity of the controller

with respect to variations of the MinMax parameter, 8. We know from Eq. 2-9 that

u(t) = —Kx_(t) . This can be re-written as

u(t,0) =—-R7'B'Ix_(¢,0). Eq. 2-26

Differentiating this with respect to 8 gives

ou(t, 8) 1 e 911 1 dx.(t,0)
= —R-1B* — R-1B*[ —™ Eq. 2-27
30 R™'B agxc(t,G) R™*B*Nl % q
or
uy(t,0)=-R'BIl zx.(t,0)— R™'B"Tx,,(1,0). Eq. 2-28

Let S, (t) = uy(t, ), then

S,(t,6)=—R7'B'M 4x,(1,8)— R™'B"IIx,,(t,6). Eq. 2-29



2.7 Sensitivity of the Compensator state
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The solution and subsequent simulations of Eq. 2-28 requires the definition of the

sensitivity of the compensator’s state variable x_ (1,6) . Recall that the compensator state

is defined by Eq. 2-4 as
x:(t,0) = A.x(t,0) + Fy(t,0).
Substituting F and A_into Eq. 2-30 gives
%c(t,0) = Ax.(t,8) — BR™1B*Tx.(t,8) — [I — 92PN]"1PC*Cx.(t, 6)
+ 02Mx_(t,0) + [I — 62PT"1PC*Cx(t, 6).
Differentiating this equation with respect to 8 gives
Xoy(t,0) = Axc,(t,6) — BR™1B Tlgx,(t,6) —
BR™1B*Igx,,(t, 0) + 26MIlx (t,6) + 62 MTx (¢, 6) +
[I — 62PN~} [-26P11 — §2P,I1 —
02PIlg][l — 62PN]~1PC*Cx (¢, 6) + 62MTlx,, (t,6) —
[ — 62PN PC*Cx(t,6) — [I — 62PN ~'PC*Cx, (t,6) —
[I — 92PM)~1[—26P11 — 92P,I1 —
82PMgl[I — 62PN)"1PC*x(t, 8) + [I — 82PN}~1PyC*Cx(t, 8) +
[1 — 62PI]~1PC*Cxy(t, 8)
Rearranging Eq. 2-32 gives
Xe, (t,0) = (—[1 — 82PN~ [—26PT1 — §2PyIl — §2PTlp)[I — 62PM]~* +
[ — 62PN]~1P,C*C)x(t) + (~BR™B*Ty + [ — 62PN]~1[-26PI — 82P,11 —
82PyTlg[1 — 62PM]~1PC*C — [I — 62PTI|"1PyC*C + 20MII + 82MTg)x (t) +
[I — 82PN}~ 1PC*Cxy(t,0) + (A— BR1B*N - [ — 92PI|~1PC*C +
62MI)x,, (t).

This can be re-written as

Eq. 2-30

Eq. 2-31

Eq. 2-32

Eq.2-33
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Xco(t,8) = A1 x(t,0) + Acpx (t) + AczSx(t,0) + AcaSy () Eq. 2-34
where
Sx(t.8) = xo(t, 0),
Sx (t,0) = x.,(t,6),
A, (t,0) = —[I — 82PN~ [—26P11 — %P,I
— 62PNgl[I — 62PN~1{I — 82PN]"'PyC"C,
A(t,0) = BR™1B*Tlg + [I — 62PI1]~[—26PT1 — §2PgI1 — 62PI](I -
62PNI~1PC*C — [I — 62PN 1Py C*C + 260MII + 62MT], Eq. 2-35
A(t,8) = [I — 92PN]"1PC*C,

Ac(t,0) = A—BR™'B*I - [I - §?PN]"*PC*C + 62MIL

2.8 Functional Gains
The following discussion of functional gains is a summary from [32]. The control law for
some PDEs can be written in integral form. For example, if the control space U is finite

dimensional, then from Riesz Representation theorem,
u(t) = —Kx(t) = —(ki(s), xc (1)), Eq. 2-36

where s is a spatial variable and k;(s)eX for i = 1,2, 3, ..., m. k(s), which is the kernel of
the integral, is called a functional gain. Functional gains are important for many reasons.
For example, the gains can be computed off-line, stored, and then multiplied by the state
estimate before numerical integration, when computing the control. Also the functional
gains can provide such information as the optimal locations for sensor placement (see for
example [34]). In this work, we are using functional gains to verify that our Galerkin

finite element scheme used to approximate the infinite dimensional PDE systems
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converges. We also want to examine the effect of 8 on convergence of functional gains.

This is a way to assess the convergence of the controller and the finite element scheme.



CHAPTER 3
HEAT EQUATION

In this Chapter, we implement the MinMax controller and apply Continuous
Sensitivity Equation Methods to the 1 and 2-dimensional heat equations. The goal here is

to further our investigation of a more efficient means of choosing the MinMax parameter,

6

3.1 1-D Heat Equation
Heat flow along a 1-dimensional structure, such as a rod, can be modeled by the

diffusion equation:

U, (6,0 - kU (6x) = 3 b, (oou(e), Eq.3-1

where 0<x<zand k= X2 is the thermal diffusivity, K, is the thermal conductivity, ¢ is
cp

the specific heat capacity, p is the mass density, t represents time, x is the distance along
the rod, U(¢,x) is the temperature at time ¢ and position x, u(¢) is the control input to
the system, and b,(x) describes how the control enters the system. Figure 3-1 shows the

system under discussion.

19
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Ut 0)=0 U L)=0

(L )

0 %

Figure 3-1: Heat flow in 1-d rod

We employ a Galerkin Finite Element scheme to Eq. 3-1. In order to determine
the finite element approximation to Eq. 3-1, we first write the weak form of the PDE. In

considering the weak form of the problem we seek to find a U(x)e X = H,(0,]) such
that

fol U(t, x)v(x)dx —

Eq. 3-2
k f, U (8, 0)v()dx = [ u(t) £, bi(x)v(x)dx.
Here v(x)e H}(0,L) is the test function. Using integration by parts,
Jy U (6, x)v(x)dx = U’ (t, X)v(@)]h — [ Ut x)v' (¢, x)dx =
Eq. 3-3
fol U'(t, x)v' (x)dx,
since v(0) = v(/) = 0. Substituting this into Eq. (3.2) gives
Ly L. [
Jo Ut x)v(x)dx + k f U'(t, x)v'(x)dx =
Eq. 34

fo u(t) T4 b (x)v(x)dx.
Now let, where U(t,x) = U¥(t,x) = X%, e;(£)p;(x), ¢;(x) are piecewise linear basis
functions and e;(t) are their coefficients. Then Eq. 3-4 becomes

fol UV (t, x)v(x)dx + k fol UM, x)v' (x)dx =
Eq.3-5
fol u(t) ¥, bi(x)v(x)dx,

or
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|
f ZN: é;(O)P;()v(x)dx + k f Z e; ()¢’ ()’ (X)dx =
0

i=1
Eq. 3-6
i m
u(t) ) bi(x)v(x)dx.
[«
Now we let v(x) range over ¢ (x) for j =1,2,--- N . Eq. 3-6 now becomes
I N Il N
[ Y a@aig@ax+k [ 3 a@eicsi@ax
° = o= Eq. 3-7
= u(®) ) i) ()dx.
i=1
This can be rewritten as
é1(t) e1(t)
M[ i |+kk| i ] = u(t)B,, Eq. 3-8
én(t) en(t)
where
I N I N I m N
= [ [#.00, (x)dx] K= [ [o e, (x)dx] and B, [ [>5,xw, (x)dx] .
0 ij=1 0 i, j=1 o =l j=1

Here M and X are the mass and stiffness matrices respectively. Rearranging Eq. 3-8
gives
e1(t)

en(t)

é1(t)
: + u(t)M~1B,,. Eq. 3-9

] = —kM™1K

én(t)
Let X(?) = e(?), then Eq. 3-9 becomes

X1 (t)
= —-kM™1K L :
O]

+u(t)M~1B,. Eq. 3-10

[Xlgt)

Xu(®)

Since full knowledge of the system is not available, we take measurements in the form
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¥ =clxo} Eg. 3-11
where C 1s composed of four averaging measurements of the state position, resulting in

the 4x (2N - 2) matrix

1
|
z
1

i
— ; dx 0
,£¢. (x)
L. i=1
r I 9N -1
4
-,——j):¢,~"<x)dx 0
Y di=1
_— e - Eq. 3-12
4 4
I—p,.”(x)dx 0
L 2 Ji=1
r 9N -1
4 !
T 0
3
L 4 o i=1

Next, we define {»,}7,. We begin by partitioning the spatial domain [0,/] as

"2
{x;}i2, where x; = i X i— The functions b, are defined as b;(x) = e~(*=x1)" for

xi—1 < x < x;, where x; = S Ll g 1.25, 3.75, 6.25, 8.75 since | = 10 for the rod in
question. Finally,
I i=m, j=N=-1
B, =|B,--B,]and [Bi = fbi ()¢, (X)dX] : Eq.3-13
0 i,j=1

For this system, m = 4, hence

B, = [Bx B, B, B41 Eq. 3-14
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3.2 Numerical Results
For all the simulations in this section N =80,/ =10,R=1 and
U(t,0) = U(t, D) = 0. Eq. 3-15
The results are presented in the following order: uncontrolled simulations, functional
gains, controlled simulations, stability analysis and sensitivity analysis.

3.2.1 Uncontrolled Results

For simulation purposes and to attain a solution to the system in Eq. 3-10 and Eq.
3-11 we apply the initial conditions
Up = U(0,x) = 100, U,, = U.(0,x) = 0.75U,. Eq. 3-16
Figure 3-2 shows the uncontrolled state for this system. We desire the state to tend to the
exponentially stable equilibrium position of zero (0). The MinMax controller is applied

with the aim of achieving this goal.

Temperature, Uncontrolled System

Figure 3-2: Uncontrolled heat flow in 1-d rod
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322 Controlled Results

Figures 3-3 to 3-6 show the functional gains for the system in Eq. 3-10 and Egq.
3-11. The color legend in this plot is: N = 10 blue, N = 20 red, N = 40 black, N = 80
magenta. The results clearly show convergence of the functional gains, hence the
Galerkin finite element scheme converges. More importantly, as 0 increases, there is no
visual change in the functional gains. This suggests that, with respect to convergence of
the functional gains and the MinMax controllers for this system, the choice of MinMax

parameter is not pivotal.
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Figure 3-3: Functional gains, 8 =0.05 Figure 3-4: Functional gains, 8=0.2
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Figures 3-7 and 3-8 show the controlled temperature values along the rod for the

full state (u(7) = —KU () ) and for the state estimate system (u(f) = —-KU (1)),
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respectively. In each figure, the top left result is for 6 = 0.05, top right is for §=10.2,

bottom left is for 8 = 0.05 and finally bottom right is for @ = 0.7. The maximum 0.7 is the
. . . 2 . A "'B K
maximum @ value that still results in [I — 8°PII] > 0 and eigenvalues of FC A
[
being in the left two quadrants of the complex plane as described in Chapter 2.

Tempersature, Full State MinMax System, 5= 0.05 Temperaturs, Full Stete MinMax System, 6= 0.2

8

Uitx)
Uex)

B8 o 8 88 8

Figure 3-7: Controlled temperature, full state MinMax
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Temperature,State Estimate MinMax System, 6= 0.05 Temperature, State Estimate MinMax System, §= 0.2
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Figure 3-8: Controlled temperature, state estimate MinMax

The results show that, as @ increases, there is an imperceptible difference in the
performance of the controller. This would suggest that the choice of 8 in terms of
performance is irrelevant. Both the full-state as well as the state estimate feedback
systems do a great job in driving the system towards equilibrium. Although this is not our
main goal, it is a necessary requirement.

323 Stability Analysis

The main aim of this dissertation is advance the search for a more refined means
of choosing the optimal MinMax parameter. With this main goal in mind, it is necessary
still to ensure stability in the control system without which our results will be invalid. In

order to verify stability in the control system we investigate the eigenvalues of the matrix
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[ P'.q c —ABCK]. As described in Chapter 2, all the eigenvalues of this matrix must be on the
left-hand side of the complex plane in order for the system to be stable. Figures 3-9 and
3-10 show the eigenvalue plots for varying @ values. The graphs on the right side of each
figure are a zoomed view showing the closest eigenvalues to the imaginary axis. As
described in Chapter 2, this is known as the stability margin. The larger the stability
margin, the higher the stability of the system. Two main conclusions can be drawn from
the results:
1. Since all of the eigenvalues are on the left-hand side of the complex plane, the
system is stable at all possible 8 values.
2. The stability margin increases slightly with increasing § (see Table 3-1). This
suggests that as 0 increases the system’s stability increases. However, since the

difference in the stability margin is minute, we conclude that all possible 6

values can be chosen with respect to system stability.
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Figure 3-10: Eigenvalues of
& 5 FC 4,

Table 3-1 shows the stability margin and radius results for various 8 values.
Recall from Chapter 2, that the stability radius is a robustness measurement that indicates
the distance of a particular matrix from the nearest unstable matrix. As a result the larger
this distance, the more stable the system. The table shows that as € increases, the stability
radius is virtually unchanged. This is in agreement with the previous results and hence
the conclusion drawn is the same: the value of the MinMax parameter chosen is not

critical based on the stability radius.



Table 3-1: Stability margin and radius for controlled system (A,,,)
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6 Stability Margin Stability Radius
0.05 0.106150912881119 0.0966256989626073
0.2 0.106242942442262 0.0966278024617770
0.5 0.106763979943028 0.0966337536956251
0.7 0.107351971099277 0.0966156352872341
324 Control Effort

As described in [4], an undesirable downside to the design of our controller is the

1dea that the controller’s operation may require too much power. This is not cost-effective

and hence one condition that we want to maintain is that the control effort, which is a

direct indication of the power required, must be reasonable. We therefore provide in

Figures 3-11 through 3-18 for § = 0.05, 0.2, 0.5, 0.7. In Figures 3-11 through 3-14, the

system under investigation is the full state MinMax controlled system where no

compensator/observer is used. In Figures 3-15 through 3-18, a compensator is

implemented.
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In order to better compare the control effort for different 8 values, we employ
Simpson’s rule to determine the area between the curve and the time axis. This area gives
us the total control effort used. Table 3-2 summarizes the results where 7 gives the area
obtained by Simpson’s rule. The total area is calculated for each 8 value and recorded in
the table. The results show two main trends:

1. The control effort for the full state system 1s higher than that of the state
estimate system; however, this difference is small. This small difference is
manifested in the similar controlled results for the two types of systems, as seen
in Figures 3-7 and 3-8.

2. As @ increases, the control effort increases for both types of systems. The
percentage increase from 6;to 6,, is not insignificant (e.g. in the case of the state
estimate system, the percentage difference is +11.19%). However, the actual
values at 8; and 8, are of the same order of magnitude. Again we conclude that

the value of @ chosen is not critical based on the control



Table 3-2: Area under control effort curve (Simpson’s rule)
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%
Area change
Under 6; = 0.05 6, =0.2 6; = 0.5 6, = 0.7 from 6,
Curve to 0,
1
controller 1 -80.530514 -80.945112 -83.641014 -89.030887 | -10.55
(full)
I
controller 2 -141.407050 -141.210885 | -140.174901 | -142.835227 | -1.01
(full)
1
(fl;lﬂl)s -141.514130 -141.327619 | -140.349007 | -143.066100 | -1.09
I
controller 4 -78.885233 -79.322521 -82.162331 -87.718358 | -11.19
(full)
TOTAL -442.34 -442.81 -446.33 -462.65 -4.59
1
fz"”"t’"f)" -74.223023 275117240 -80.628293 -88.171640 | -18.79
€st.
(t")z -135.131386 -135.985626 | -140.513787 | -144.443766 | -6.89
€St.
I
cz"'m;’*‘)" -135.216274 -136.077049 | -140.650368 | -144.653901 -6.98
€st.
(;’) 4 -72.655741 -73.549363 -79.072485 -86.678280 | -19.29
CSt.
TOTAL -417.23 -420.73 -440.865 -463.95 +11.19
325 Sensitivity Analysis

In order to perform sensitivity analysis of the 1-dimensional heat equation, we

begin by differentiating Eq. 3-1 with respect to 8, resulting in
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Uta (t xl a) kUXXQ (t x' 9) Zl—l b (x)uﬂ (tx 0)! qu 3"17
where, JO20) = Ug(t,x, 6) and 2522 = 441, 6).

Now let U, (t,x,8) =S, (t,x,0)andu,(t,60) = S, (t,8). We then have

$u,(6%,60) = kS0, (6. %,6) = ) Bi(x)S,(¢.6). Eq. 3-18

35(t.x,9)
at

aS(t x,8)

Now, let = S(t, x, 8) and —=— = §'(t, x, 9), then

$y(t,x,8) — kS(t, x,0) = Z by(x)S,,(t, 6). Eq. 3-19

In order to determine the finite element approximation to Eq. 3-19, we first write the
weak form of the PDE. In considering the weak form of the problem we seek to find a

S, (t,x)e X = H,(0,1) such that

Jo Su(t, x, O)v(x)dx ~ k [} S}/ (¢,x, 0)v(x)dx =
Eq. 3-20
fol i1 bi(x)S, (¢, 0)v(x)dx.

Using integration by parts, f Syt x,0) =~ f Syv' (x)dx, hence the weak form is now

J, Su(t.x,0)v(x)dx + k [ S}, (£, %, 0)v' (x)dx =
Eq. 3-21
LB, bi(0)Su(t, O)v(x)dx.

Let Sy(t,x,0) = SY(t,x,8) = TN, e;(t)p;(x) where ¢;(x) are piecewise linear basis

functions and e, (¢) are their coefficients. Then

fo SN %, 0)w(x)dx + k [ 5" (£, %,0) v’ (x)dx =
Eq. 3-22
71 bi(x)S,(t, O)v(x)dx,

or
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[ 2N, 6 i(0)v(x)dx + k ) T, ei(0)pi(x)v' (x)dx =

Eq. 3-23
§, T, bi(x)Sy(t, 8)v(x)dx.
Now we let v(x) range over ¢;(x) for j = 1,2, ..., N, hence
[N &by (0dx + k [ TN, ei(0¢] ()] ()dx = Eq.3-24
£, T by ()5, (8 8) by () dx.
Eq. 3-24 can be written as
é;(t) e; (1)
M| ¢ |+KkK| i |+S,(t0)B,, Eq. 3-25
en(t) en(t)
where
! “N ] N
M= l:j g (x)g,()dx | , K= I: j ¢/ (x)g; (x)dx] are the mass and stiffness matrices
0 Jij=t 0 i,j=1
~ m i=m,j=N
respectively and B, = I Zbi (X}, (x)dx} . Rearranging Eq. 3-25 gives
L0 7=l ij=1
é1(t) ey (t)
t = —kKM~1| i |+5,(t8)M B, Eq. 3-26
én(t) en(t)

Recall that the derivation of S, (¢,8)is done in Chapter 2. The final complete system of
equations (controlled and sensitivity equations) becomes

X3 (v) A -BK 0 0 17XV
X.®| |FC A 0 0 ||X.(D
s =10 -Bke A —BK||sy® | Eq.3-27
ch (t) AC1 A'32 AC3 AC4 SXC (t)
where and Ky, A, A,, Ac,, and A, are derived and defined in Chapter 2.

Figure 3-19 shows the sensitivity results for the 1-dimensional heat equation for
varying 6. The results show that the sensitivity of the state is initially high then rapidly

decreases with increasing time. This suggests that the system is closer to its desired
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equilibrium state as time elapses. More importantly, the results show that there is no
significant change in the sensitivity of the state with respect to 8 as 8 increases. The

conclusion then is that the actual value of & chosen is not critical based on the sensitivity

analysis.

Sensitivity of State ,State Estimate MinMax System, 5= 0.05 Sensitivity of State ,State Estimate MinMax System, 5= 0.2
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Figure 3-19: Sensitivity of state

Figures 3-20 through 3-27 show the results for the controller sensitivity for

various & values.
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As was done in the case of the control effort, we employ Simpson’s rule to
determine the area between the curve and the time axis. This area gives us the total
sensitivity of the controller. Table 3-3 summarizes the results where / gives the area
obtained by Simpson’s rule. The total area is calculated for each 8 value and recorded in
the table.

As in the case of the control effort, the table shows that the change in the
sensitivity results as 6 increases is not significant. The order of magnitude is the same
(despite the fact that the percentage changes in controller sensitivity values were 38% and
18% respectively). We draw the same conclusion, the actual value of 8 chosen is not

critical based on these sensitivity results.



Table 3-3: Area under controller sensitivity curve (Simpson’s rule)

45

%

Area change
Under 6, = 0.05 0, =02 6; = 0.5 6, =0.7 from
Curve 6,t0 8,
! (f;ﬁ; ! -59.917206 -58.806556 -59.768889 -82.247312 -37.27
! (f’:’{’l) 2 -104.522587 -99.810961 94256909 | -141.127601 | -35.02
! (ft;{ll) 3 -104.604629 -99.904745 -94.375426 | -141.079794 | -34.87
comtroller 4 -58.740397 -57.821848 -59.250787 -81.652895 -39.00
(full)
TOTAL -327.78 -316.34 -307.65 -446.11 -36.10
! ('"’t”) ! -56.711188 -60.584871 -72.224398 -80.593801 42.11
eSst.
7”*’{")’ 2 -102.642519 -107.079874 | -116.267130 | -107.437266 4.67
CSt.
I (”:') 3 -102.704091 -107.140862 | -116.362847 | -107.627948 -4.79
€St.
1 (";') 4 -55.532781 -59.401540 -71.117822 -79.883074 | -43.85
€Sst.
TOTAL -317.59 -334.21 -375.97 -375.54 -18.25

Figures 3-28 and 3-29 show the maximum absolute controller sensitivity values

with respect to 8. The results show that for both full-state and state estimate systems, as 6

increases, the maximum absolute controller sensitivity values increase. However, the



order of magnitude does not change. This suggests that the choice of 6 is again not

critical in terms of maximum controller sensitivity.
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3.2.6 Riccati Sensitivity

As stated in Chapter 2, in [35] and at the beginning of this chapter, a major issue
in designing a MinMax controller is the determination of an optimal value for 8. To this
end, the main focus of this dissertation is the sensitivity analysis of the system with
respect to 8. The Algebraic Riccati Equations are a key component in the design of the
controller as shown in Chapter 2. As a result we investigated the sensitivity of the Riccati
equations with respect to 6.

Figures 3-30 and 3-31 are plots of the maximum absolute values of the
sensitivities of the Riccati equations’ solutions (P and I1, described fully in Chapter 2) to
the MinMax parameter 6. The results show that both maximum sensitivities increase with

increasing 6. However the order of magnitude of the sensitivities for both results does not
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change as 8 increases. This is in agreement with the controlled results which showed that
increasing @ has minimal effect on the controlled state. Again the conclusion to be drawn

here is that the actual value of @ is not critical.
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Maximum P, values vs ©
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norm of P‘

Figure 3-31: Norm of Py versus 6
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3.3 2-D Heat Equation

Heat flow in a 2D medium can be modeled by the equation:

m
Eq. 3-28
Uet,%,9) = kU (6.2,9) + Upy (2, 9)] + D bi@u(e), 9
i=1

where 0 < x,y < L and k is the aforementioned thermal diffusivity. Figure 3-32 shows

the system under consideration.

x=0,y=L x=Ly=L
v=0 U=0
Yy
xy=0 | ! x=L,y=0
=0 =0

X

Figure 3-32: Two-dimensional heat surface

As in the previous case, we begin with the weak form of Eq. 3-28:

© Sy, =

[U.@.x, v, yyddy = k[ [U . (1, %, y)v(x, y)dy
L o Eq. 3-29
+k[[U,, (3, yv(e, y)dedy + [ [ 3 b, (e, y)u(e)v(x, y)drdy,

i=]

where v(x,y)e H}([0,L]x[0,L]) is the test function. Now integration by parts gives,

O'—\\

i

(U2, y(x, yydxdy = U (6,5, y)v(x, ),
° . Eq. 3-30
= [JU.@x v, (x, p)dy = [ [U, ¢, x, y)v, (x, y)dxdy,

and
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J.IUW (1, %, y)v(x, y)dxdy = Uy (&, x, y)v(x, y)l:)

' L Eq. 3-31
- [JU, 6.x,y, (5, y)dxdy ==[ [U, (%, y)v, (x, y)dxdy
00 00
Substituting these relationships into Eq. 3-29 gives
I 11
[JU.&x, y)v(x, yydxdy = k[ [U, (1, %, y)v, (x, y)dxy
°°,, Y Eq.3-32
—k[JU, (%, yw, (x, p)dxdy + [ [ Db, (x, p)ult)v(x, y)dxdy.
00 00 i=l

Now as in the previous case, let U(t, x,y) = UY(t,x,y) = T ¥ 181D (x,y),

hence Eq. 3-32 becomes

© Sy

JU" @x y(x, yydrdy =~k j j U (t,x,y)v, (x, y)dxdy

1 L1 Eq. 3-33
~k j j UY (t,x, y)v, (t, x, y)dxdy + j j )b, (x, y)v(x)dxdy,
00 ¢ 0 i=l
or alternatively,
Jy 3 ZN 6i(®i(x, y)v(x, y)dxdy =
_kf f Zz 1 el(t)d’ix(x: YIve(x, y)dxdy —
Eq. 3-34

kf f 21 1el(t)d)iy(xr}’)vy(x.:)/)dxdy+

f f Y21 bi(x, y)u()v(x, y)dxdy.

Now, let v(x, y)range over ¢ for j=12---N, then Eq. 3-34 becomes
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fo Jy T 60 ¢i(x, y);(x, y)dxdy =

—k fy Jy ZX 1 e()i, (2, ¥); (. y)dxdy —

Eq. 3-35
k fol fol X, e(t)¢i, (x, }')¢jy(x. y)dxdy +
fol f; Y bi(x, y)u®)d;(x, y)dxdy.
This can be rewritten as
é1(t)] e1(t)
M [ P |=—kK) ] + Bou(t). Eq. 3-36
én(t). en(t)

i=1

where M = [ [[8.63)8, (e )dsdy |, B, =[ib,. ®¥, (x,y)dxdy] and

N

11
K= D j ¢ (x, )¢, (x, y)dxdy + §,,(x, y)@,, (x, )’)dXdy} . Finally, Eq. 3-36 becomes

i,j=1
e;(t)

en(t)

é,(t)
: + M~1Byu(t). Eq. 3-37

] = —kM~1K

én(t)
As in the 1-dimensional case, full knowledge of the system is not available so we take
measurements in the form
y(t) = CX(t), Eq. 3-38

where
C = [zeros(1,N) 0.05 zeros(1,N) 0.05...... ] Eq. 3-39

Eq. 3-39 shows that measurements are taken at the interior nodes at intervals of N . In

 — 2 e 2 . -
this problem, m =1, and b,(x,y) = e (R where (x4, ,)is the geometric center

of the 2-d surface.
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3.4 Numerical Results

For all the simulations in this section, N =18, L, =L, =10, k=1, R=17and
U0,y)=U(t,x,0)=U(t,L,,y)=U(t,x,L,) = 0. Eq. 3-40

Note that N =18, results in a total of 361 nodes (including boundary nodes, with 289

interior nodes) and 648 triangular elements in the Galerkin finite element scheme used to

approximate the solutions to this problem. This Galerkin finite element scheme used for

this 2-dimensional system is presented in [36]. This number N waé limited due to
computer memory problems. However, numerical results to be presented indicate
convergence at this level of discretization. The results are presented in the following
order: uncontrolled simulations, functional gains, controlled simulations, stability
analysis and sensitivity analysis.

34.1 Uncontrolled Results

In order to obtain a solution to the system in Eq. 3-37 and Eq. 3-38, we apply the

following initial conditions

U, =U(0,x,y) =100, U, =U_(0,x,y)=0.75U,. Eq. 3-41

Figure 3-3 shows the uncontrolled state for this system along the horizontal center line,
. L : .. :
re. U(t, x, -z’i). The uncontrolled state along the vertical center line, i.e. U(t,y, 1'23), is the

same (due to symmetry) to the horizontal center results, and is therefore not presented
here. As before, we desire the state to tend to the exponentially stable equilibrium

position of zero (0).
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Temperature, Uncontrolled System

Figure 3-33: Uncontrolled heat flow along center of 2-d square surface

34.2 Controlled Results

Figures 3-34 through 3-37 show the results for the functional gains for the system
in Eq. 3-37 and Eq. 3-38. The color legend in this plot is: N= 6 blue, N= 10 red, N= 14
black, N = 18 magenta. The results show that the functional gains are converging to zero
which suggests that the Galerkin finite element scheme employed is convergent. The
results also show that as 0 increases, the convergence of the functional gains gets slightly
slower. This implies that the lower the value of 6, the faster the convergence of the

controller.
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Figure 3-37: Functional gains

Figures 3-38 and 3-39 show the controlled temperature values along the

horizontal center line of the square region for the full state (u(¢) = ~-KU (¢) ) and for the
state estimate system (u(f) =—KU _(t)), respectively. In each figure, the top left result is
for 6 = 0.05, top right is for 8 = 0.2, bottom left is for & = 0.6 and finally bottom right is

for 8 = 0.8. The maximum 0.8 is the maximum § value that still results in [I - HZPH] >0

and eigenvalues of [ P{l c A K] being in the left two quadrants of the complex plane as
c

described in Chapter 2. The state is driven to zero faster at the center of the rod. This is
due to the Gaussian distribution of the control input operator. In general, however, the
results show that as @ increases, the controller’s performance is virtually unchanging.
This is in agreement with the 1-dimensional case and again suggests that the actual value
of 8 chosen is not critical. In this 2-dimensional case, the difference between the full state
system and the state estimate feedback system is not as salient as in the 1-dimensional

case.
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343 Stability Analysis

As in the 1-dimensional case, we investigate the eigenvalues of the following

matrix [ Pfi C _ABK]. Recall that all the eigenvalues of this matrix must be on the left-
[

hand side of the complex plane in order for the system to be stable. Figures 3-40 and 3-41
show the eigenvalue plots for various 8 values. The results conclusively show that the
controlled system is stable. Again the figures on the right show the closest eigenvalues to
the imaginary axis. In these figures, the stability margin increases slightly with increasing
0 (see Table 3-4). The marginal increases again show that the actual value of 6 is not

critical with respect to the stability of the system.
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Figure 3-40: Eigenvalues of
FC A,
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Table 3-4 shows the stability margin and radius results for the controlled system.
The results show that as 8 increases, the stability radius increases slightly. The stability of
the system, in terms of the stability radius increases. However, this increase is only slight;

hence the choice of @ is not critical in terms of the stability radius.
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Table 3-4: Stability margin and radius for controlled system (A,,,,)

6 Stability Margin Stability Radius
0.05 0.131414815938655 0.116232872977096
0.2 0.132348858606243 0.116683248500507
0.6 0.144656368855594 0.122631778452644
0.8 0.172431522925289 0.135857785488283
344 Control Effort

We provide Figures 3-42 and 3-43, the controlled effort for § = 0.05, 0.2, 0.6, 0.8.
In Figure 3-42, the system under investigation is the Full State MinMax controlled
system where no compensator/observer is used. In Figure 3-43 a compensator is
implemented. As previously done, in order to better compare the control effort for
varying 6 values, we employ Simpson’s rule to find the area between the curve and the
time axis. The results are shown in Table 3-5. The results show that the control effort
increases (percentage) significantly from 6, to 8,, however, actual values are of the same
order of magnitude. These results again re-enforce the conclusion that the actual value of

6 employed is not critical with respect to the effort required by the controller.
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Table 3-5: Area under control effort curve (Simpson’s rule)

61

%change
Area Under from 6,
91 - 0.05 92 = 0.2 93 = 0.6 94 = 0.8
Curve to 6,
1
coniroller 1 -0.808086 -0.827892 -1.030291 -1.180309 -46.06
(full)
1
‘Z"""t'")’ ! -0.872973 -0.898834 -1.199288 -1.660371 -90.19
est.

345 Sensitivity Analysis

In order to perform sensitivity analysis of the 2-dimensional heat equation, we
begin by differentiating Eq. 3-28 with respect to 0, resulting in

Upg(t,x,¥,0) — k[Uyxg(t, x,¥,8) + Uyyo(t,%,,0)] =

I bi(x, y)ug(t, 6). Eq. 3-42
Here, i‘lﬁ%’iﬁl = Uy(t, x,y,8)and i‘%ﬁl = uy(t, 0). Now let Ug(t, x,y,0) =
Sy(t,x,y,0) and ug(t,0) = S, (t,0). We then have
Sy, (t,x,y,0) -k [Sux,(t: x,y,60)+ Sy, (t,x,y, 6)]
m
= D b )Su(t,6). Eq. 343
i=1
The weak form of Eq. 3-43 1s
13 Su(t,%,y, 00, Y)dxdy ~ k [y (S, %.7.6) +
Su,, (t. %, 9)) v(x, y)dxdy] = Eq. 3-44

ffol 2t bi(x, IS, (t, O)v(x, y)dxdy

Using integration by parts,



ffol (vax(t' x,y,0) + Sy, (t, x,y, 9)) v(x,y)dxdy =

- ffol (Sux(t, x,y, v (x,y) +

Suy (t,x,y,0)vy(x, y)) dxdy, hence the weak form is now

ffol Sy, (t, x,y,8)v(x,y)dxdy + k [ffol (Su,(t» x,y, v, (x,y) +

S, (t,%., 601, (x,)) dxdy| = ff; £, bi(x, y)S,(t, 6)dxdy.

N
Let Sy (t,x,5,0) = S} (1,x,5,6) = Y e,¢,(x,y,6)so that

[ S8t %, 0)v(x, y)dxdy +
M1y (58,063, 030, 3) + S8, 1, %7, 0wy (x.) ) dxdy] =
[} 2 bi(x,¥)S, (¢, 0)dxdy, or
[Iy Sy & (Db, yIv(x, y)dxdy +
k [y i e:(6) |5, (e y)ve(x, ) + i, (2, 3)wy (x, )| dxdy =
[ B bi(x,) Su(t, 0)v(x, y)dxdy.
Now we let v(x, y) range over ¢, (x, y) for j =1,2,---,N , hence
[y T 6, (i, y)¢y (x, y)dxdy +
k2 ei(0) [0, (99, (x,3) + 6y, (2. 9)¢; (x,3)] dxdy =
ffol Tl bi(x,¥) Sy (t, 0)¢;(x, y)dxdy.
Eq. 3-49 can be written as

[él ®
M :
én(t)

e1gt)

en(t)

+ kK

] + 5,(t,0)B,,

where
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Eq. 3-45

Eq. 3-46

Eq. 3-47

Eq. 3-48

Eq. 3-49

Eq. 3-50
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N

M=|[] ¢.~(x,y>¢,.(x,y)dxdy] :

i,j=1
i=m, j=N

B, = ﬁib,.(x,y»,(x,y)dxay]

i=l

ij=1 and Eq. 3-51

N

i
K = [I¢ix(x’y’9)¢jx(x,yae) + ¢,~,(x,y,9)¢,-y (x’ yye)]
0 i,j=1
Rearranging Eq. 3-50 gives
€ .(t)

en(t)

é1(t)
; +5,(t, ©)M~1B,. Eq. 3-52

] = —kM™K

én(t)

Recall that the derivation of S, (¢,6)1s done in Chapter 2. The final complete system of

equations (controlled and sensitivity equations) becomes

X() A —BK 0 0 J[X(®
x®| FC A 0 0 ||x.0
50| 0 -BK, A —-BK||Sy(® Eq.3-53
S‘xc(t) Acx Az Acz Ao 1Sy (D)

where K,,A4,, A,,, A.;,and A ,are derived and defined in Chapter 2.

Figure 3-44 shows the sensitivity results for the 2-dimensional heat equation for
varying 6. The results show that the sensitivity of the state is initially high then decreases
with increasing time. This suggests that the system is closer to its desired equilibrium
state as time elapses. More importantly, the results show that there is virtually no change
in the sensitivity of the state with respect to @ as 6 increases. Near the center of the spatial
domain, there is a slight decrease in sensitivity as 8 increases. This increase is not
significant, however. The conclusion then is that the actual value of 8 chosen is not

critical based on the sensitivity analysis.
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Sensitivity of State ,State Estimate MinMax System, 5= 0.05 Sensitivity of State ,State Estimate MinMax System, 6= 0.2
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Usens &%)
USCHS(t’x)

Figure 3-44: Sensitivity of state

Figures 3-45 and 3-46 show the results for the controller sensitivity for various 8
values. Table 3-6 shows the values of the areas between the curves and the time axis,
giving the total sensitivity over the elapsed time. Although the sensitivity increases with
increasing 6, the change is not significant. The values are all of the same order of
magnitude (despite the significant percentage increase from 8, to 6,. We draw the same

conclusion as in the 1-dimensional case: the actual value of 8 chosen is not critical based

on these sensitivity results.
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Figure 3-46: Controller sensitivity, full state MinMax
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Table 3-6: Area under controller sensitivity curve (Simpson’s rule)

%change
Area
from 6,
Under 91 = 0-05 92 = 0.2 83 = 0.6 04 =0.8
to 64
Curve
1
controller 1 -0.610156 -0.637937 -0.838519 -0.883410 -44.78
(full)
I
( ”°;‘”)"”" ! -0.669111 -0.735296 -1.240240 -2.216588 -231.12
est.

Figures 3-47 and 3-48 show the maximum absolute controller sensitivity values
with respect to 6. The results show that as 8 increases, the maximum absolute controller
sensitivity increases. However, this increase is insignificant. This agrees with the
previous results which showed that the controller’s performance changes minimally with

increasing 6.

Maximum absolute S, values vs 8 Full State System
04 T ¥ T T —-

035}F

0.3p

> 025}

max abs S

G2}

015¢
Gt
4
05 2 . " i s " "
¢ 0 01 02 03 04 0s 06 07 o8

]

Figure 3-47: Maximum absolute S, (¢) values, full state MinMax
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Maximum 3bsolute S, values vs 0, State Estimate System

07

u

max abs S

0 01 02 03 04 0.5 06 07 o8

Figure 3-48: Maximum absolute values, state estimate MinMax

346 Riccati Sensitivity

As in the case of the 1-dimensional heat equation, we investigated the sensitivity
of the Riccati equations with respect to 8. Figures 3-49 and 3-50 are plots of the
maximum absolute values of the sensitivities of the Riccati equations’ solutions (P and I,
described fully in Chapter 2) to the MinMax parameter 6. The results show that both
maximum sensitivities increase with increasing 8. However the order of magnitude of the
sensitivities for both results does not change as 6 increases. This is in agreement with the
1-dimensional heat equation results. Again the conclusion to be drawn here is that the

actual value of @ is not critical.
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CHAPTER 4

WAVE EQUATION

4.1 Problem Formulation
In this Chapter, we implement the MinMax controller and apply Continuous
Sensitivity Equation Methods (as described in Chapter 2) to the 1-dimensional wave
equation. The goal here is to further our investigation of a more efficient means of
choosing the MinMax parameter, 8. The 1-dimensional wave equation with viscous

damping can be written as

Un (ta x) —Uxx (t, x) + 7Ut (t,X) = ibx (x)u([)’ Eq. 4-1

=l

where U (¢, x) represents the displacement at position x and time ¢ for 20, y is the
viscous damping coefficient, 0 < x </ is the spatial dimension, b,(x) are the control
input functions which describe how the control is applied, and u(¢) is the control input to
the system. In this case, the speed of propagation of the wave is taken to be unity. We
apply the following boundary conditions to this system:

U(t,0) = U(t,1) = 0. Eq. 4-2

In order to implement the MinMax controller on this system, we use distributed

parameter control theory. This requires the formulation of a finite dimensional
approximation of the PDE. A Galerkin finite element scheme is used. In order to
determine the finite element approximation to Eq. (4.1), we first write the weak form of

the PDE. In considering the weak form of the problem we seek to find

69
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U(x) € X = H}(0,1) such that

[, Ut x)v(x)dx — [ U" (&, )v(x)dx +y [, U, )v(x)dx =

Eq.4-3
fy S b (u(t)v(x)dx,

where, v(x)eV = H}, U(t,x) = U(t, x), and U'(t, x) = U, (t,x).
Using integration by parts,
1 ; 1
[Urt.xvxax = Ut xv) | —jU'(z, x)V(x)dx =~ [U'(t, )v(x)dx , where
0 0 0
v(0) = v(/) = 0. Substituting this into Eq. (4.3) gives

fol U(t, x)v(x)dx +

fol U'(t, x)v'(x)dx +v fol U(t, x)v(x)dx = Eq. 4-4

fol Y4 bi(xu(t)v(x)dx.

Now we divide the spatial domain into N equidistant subintervals and approximate

N
U(t,x)by UV (t,x) = Ze,. (D¢, (x) where @,(x)are piecewise linear basis functions and

i=]
e;(¢) are the corresponding coefficients of these functions. We then have

J, U (6, 0)v()dx + f, UN' (&, x)v' (x)dx +

Eq. 4-5
Y 3 UM (e x)w(@dx = fy S, bu(ew(x)dx,

which can be rewritten as
fy TR 60 i (xv(x)dx +
Jy T et} (v’ (x)dx + Eq. 4-6

v Jy B 60 v(x)dx = [ TR bi(Du(®v(x)dx.

Let v(x) range over the basis functions ¢ (x) for j=1.2,....N . Eq. 4-6 becomes
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[y ZK, 601 (x); (X)dx + [, T, ()i (1)) (x)ddx +

Eq. 47
v [ ZX &) (x)dx = f) T, by(x)u(t)e;(x)dx.
This can be rewritten as
é.(t) é(t) e,(t)
M{ : ]+yM[ : ]+K[ : ]=Bou(t), Eq. 4-8
én(t) en(t) en(t)

N ] , , N
and K = [I ¢ (X)9; (x)dx] are the mass and stiffness
0 i,j=1

]
where M = [ [8.)8, (x)de

i, /=1

9 i=l

i j=1

' m N
matrices, respectively, and B, = |: J' Zb, ()¢, (x)dx} is the control input matrix.
Rearranging Eq. 4-8 gives

é,(t) é,(t) e, (t)
[ : ] = —yl[ : ] -M1g| ] + M~1Bju(t). Eq. 4-9

én(t) én(t) ey(t)

As stated in Chapter 2, it is necessary for the system to be posed as a first order system of
differential equations. To this end, we define x,(t) = e(t) and x,(t) = é(t). Eq. 4-9
now becomes

[28 - [—Mo‘lK —lw [;:Eg]J’[M‘qBo]“(t)' a0

Since full knowledge of the system is not available, we take measurements in the form

yit)=cC [::8} Eq. 4-11

where C is composed of four averaging measurements of both the position and velocity

states, resulting in the following 8 x (2N - 2) matrix
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Eq. 4-12

Next, we define {5,}7, . We begin by partitioning the spatial domain [0,/] as

! . ~(x=x]
{x,}", wherex, =iX— . The functions b, are defined as b,(x) =e " 28 forx,,

L
, where X,

Figure 4-1 shows the four control input functions.

Xig X

m

Sx<x

=1.253.75,6.258.75 since L=10 and m =4 for this problem.
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X
Figure 4-1: Control input functions
Finally,
O 0 ] i=m, j=N-1
B, = and B, =| [b,(x)p;(x)dx . Eq. 413
B, .. B, 0 i,j=1

4.2 Numerical Results
For all simulations in this section, N =60 and R =0.001* ] . The results are
presented in the following order: Uncontrolled simulations, functional gains, controlled
simulations, stability analysis, and sensitivity analysis.
42.1 Uncontrolled Results
For simulation purposes and to attain a solution to the system in Eq. 4-10 and Eq.

4-11, we apply the following initial conditions
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X, = [X(O, x),—a%X(O, x)} = [sin X, COS x],

5 Eq.4-14
X, = [Xc 0.0, X, ((Lx)J =0.75X,.

Figure 4-2 shows the uncontrolled state displacement for the system in Eq. 4-10

and Eq. 4-11.

Position, Uncontrolled System

Figure 4-2: Uncontrolled displacement

The simulation was performed using as little damping as possible while ensuring
that the system is controllable. In this case, y = 0.01.The consequence is that after
t = 100, the state position has not dissipated. We desire the state to tend to the
exponentially stable equilibrium position of zero (0). The MinMax controller is applied
with the aim of achieving this goal.

4272 Controlled Results

Figures 4-3 through 4-5 show the functional gains for the MinMax controller for

=0.08, 0.16, 0.32. The color legend is as follows: N =20 red, N =40 black, N = 80 cyan
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and N = 160 magenta. These results show that the functional gains are converging to
zero. Furthermore, the results show that as & changes, the functional gain plots are
similar. This indicates that there is convergence of the Galerkin finite element scheme

and that the controller convergence is unaffected by the choice of 6.

position, =0.08 velocity, §=0.08
04 04 .
0 g J—
0 5 10
X x
04
02
o o~
0 5 10
X X
04 04
0.2 82
D | e _ . U e ————
] 5 10 0 5 10
X X
0.4 04
02 02 ,
1} o P
0 10 0 5 10
X x

Figure 4-3: Functional gains for 8 =0.08

position, 6=0.16 velocity, 6=0.16
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OA_‘ 0 e ——,
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Lol )
x

x
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Figure 4-4: Functional gains for 6 =0.16
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position, §=0.32 velocity, £=0.32
04 04 )
02 e 02/;/—-‘ S
et S —— g b= \\.—9..___
8 5 10 0 5 18
04 R 04
02 J’_;/—F\ 2
A P - RS e o SR
0 5 10 0 5 10
x X
04 D4
02 02
Q pro——~_ [}  ————
0 5 10 8 5 10
x X
04 04
02 02
a o ———— Q . i ]
0 5 10 o 5 10

Figure 4-5: Functional gains for 8 =0.32

Figure 4-6 shows the controlled results for 6 = 0.04, 0.08, 0.16, 0.32 for full-state
MinMax control. These results show that the controller does a good job at driving the
system faster towards equilibrium. Also, as @ increases, the performance of the controller

is virtually unchanged.
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Position, Full-State MinMax System, 6= 0.04 Position, Full-State MinMax System, = 0.08

Figure 4-6: Controlled state position, full state MinMax

Figure 4-7 shows the controlled results with the use of a compensator as
described in Chapter 2. The results show that the controller does a nice job at bringing the
system to the desired equilibrium state. As in the case of the full-state system, the
controlled results do not change with varying 6. As a result, we conclude here that the

actual value of € chosen is not critical with regard to controlled state performance.
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Position, State Estimate MinMax System, ¢= 0.04 Position, State Estimate MinMax System, 6= 0.08

Figure 4-7: Controlled displacement, state estimate MinMax

423 Stability Analysis
As stated in the previous chapter, we seek to ensure stability in the controlled

system, without which our results will be invalid. As a result, we again investigate the

eigenvalues of the matrix [ ;.4 c —ABk]. Figures 4-8 and 4-9 show the eigenvalue plots for
c

various @ values.
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The results conclusively show that the controlled system is stable. The graphs on

the right show the closest eigenvalues from the imaginary axis. As & increases, the

eigenvalue plots and the stability margins remain unchanged (see Table 4-1). We

conclude that the choice of 8 is not critical in terms of the stability of the system. Table

4-1shows the stability margin and radius results for varying 8 values. The results show

that as 6 increases, the stability radius decreases slightly, with all the values having the

same order of magnitude. The slight increases suggest that the actual value of 0 chosen is

not critical in terms of the stability radii.

Table 4-1: Stability margin and radius for controlled system ( 4,,,,)

6 Stability Margin Stability Radius
0.04 0.00457127868116122 0.0735565889152003
0.08 0.00457127818031725 0.0734420137014636
0.16 0.00457127605908372 0.0729724434309744
0.32 0.00457126532342317 0.0709066557793600
424 Control Effort

As has been done in Chapter 3, we investigate the control effort for the MinMax

controller implemented. We therefore provide in Figures 4-10 through 4-13, the control

effort for = 0.04, 0.08, 0.16, 0.32. The system under investigation in these figures is the

Full-State MinMax controlled system; hence no compensator/observer is used.
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Figure 4-10: Control effort for full state MinMax system (@ = 0.04) : controller 1 (top
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom

right)
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Figure 4-12: Control effort for full state MinMax System (@ = 0.16) : controller 1 (top
left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom

right)
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Table 4-2 shows the results for the area between the curves and the time axis
using Simpson’s rule. The results show that as 6 varies, the control effort is changes
slightly (+1.59%), though the actual values are of the same order of magnitude. This
agrees with the controlled state results of the previous section, where there was no
considerable change in the results as § varied.

Figures 4-14 through 4-17 show the control effort results for the state estimate
feedback system (i.e. a compensator/ observer is utilized). The area between the curves
and the time axis are also shown in Table 4-2. One main conclusion can be made: As 6
varies from 6, to 8,, the control effort changes by approximately 11.92%, however the
order of magnitude does not change. This again is similar to the results for the full-state
system. As in the case of the Full State system, the actual value of 8 chosen is not critical

with respect to the effort required by the controller.
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Figure 4-14: Control effort for state estimate MinMax system (6 = 0.04) : controller 1 (top

left), controller 2 (top right), controller 3 (bottom left), controller 4 (bottom
right)
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Table 4-2: Area under control effort curve (Simpson’s rule)
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%change
Area
from 6,
Under 6, = 0.04 8, = 0.08 0; = 0.16 0, = 0.32
to 8,
Curve
I
controlier 1 -0.006275 | -0.006271 -0.006256 -0.006182 +1.48
(full)
controller 2 -0.006275 | -0.006271 -0.006256 -0.006182 +1.48
(full)
1
CE'%:;’S 3 -0.006275 | -0.006271 -0.006256 -0.006182 +1.48
1
”‘(";::{B ¢ -0.006275 | -0.006271 -0.006256 -0.006182 +1.48
TOTAL -0.0251 -0.0251 -0.0250 -0.0247 +1.59
1
“E"”"t”e)’ ! -0.004833 | -0.004856 -0.004952 -0.005401 -11.75
est.
1
Cz”"";"; 2 -0.004833 | -0.004856 -0.004952 -0.005401 -11.75
est.
1
‘z""";"; } -0.004833 | -0.004856 -0.004952 -0.005401 -11.75
est.
]”E""";"; 4 -0.004833 | -0.004856 -0.004952 -0.005401 -11.75
est.
TOTAL -0.0193 -0.0194 -0.0198 -0.0216 -11.92
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425 Sensitivity Analysis

In order to perform sensitivity analysis on the wave equation, we begin by
differentiating the system in Eq. 4-1 with respect to the MinMax control parameter 6.
This gives

Urgg(t,x,0) — Uxxg(t, x,8) + yUg(t, x,0) =

2?—1-1 bi (X)ug (tr 6)'

Eq. 4-15

Again we use homogeneous Dirichlet boundary conditions, Ug(t,0,8) = Ug(t,L,0) = 0.

Let BU(ate.x.G) = Sy(t,x,0) and 9.2‘5(_3.‘.’). = S,(t,6), then
Sy, (t,x,0) — Sy, (t,x,8) +ySy,(t, x,8) = XiZ1 bi(x)5,(t, 0). Eq.4-16

The weak form of Eq. 4-16 is

fol Sy(t,x, 0)v(x)dx — fol S{ (L, x,0)v(x)dx +

Eq. 4-17
J, ¥Su(t, x, 0)v(x)dx,
where § = g-f- and S’ = %. After integration by parts, Eq. 4-17 becomes
fol Syt x,0)v(x)dx + fol Syt x, 8)v'(x)dx +
Eq. 4-18

S, ¥Su(t,x,0)v(x)dx = [} TI, bi(1)S,, (¢, 0)v(x)dx.

N
Now let S, (t,x,6) = S (t,x,6)= Ze,. (1)¢,(x), where @,(x) are piecewise linear basis
i=1

functions. Eq. 4-18 then becomes

fol SNt x, 8)v(x)dx + fol SNt x,0)v' (x)dx +
Eq. 4-19
Y fol SY(t, x,0)v(x)dx = fol Su(t, ) XM, bi(x)v(x)dx.

Alternatively,
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fy ZX, &) i(x)v()dx + f, T, ei(O)i(x)v’ (x)dx +

Eq. 420
¥ Jy Bl e (x)v(x)dx = [ S,(t,8) T by(x)v(x)dx.
Let v(x)range over ¢ (x)forj=12,----- ,N , then Eq. 4-20 becomes
Jy 2 ()98, () + [, T, e ()i (x)¢)(x)dx +
Eq. 4-21
y o S, 6 ()i (0b;(x)dx = S, (¢, 0) T, b(x)v(x)dx.
This can now be rewritten as
é1(t) ey (t) é(t)
M{ : ]+K{ ; +yM[ : ]=Su(t,0)Bo, Eq. 4-22
én(t) en(t) én(t)
where,
! N ! N I m N
M= { [8,(0)9, (x)dx} . k= [ [#1x)8; (x)dx} and B, = [ [> b=, (x)dx} .
0 i, j=1 0 ij=1 0 i=l j=1
Rearranging Eq. 4-22 gives
é,(t) ey (t) é1(1)
[ : ] =-M-1K| : ] —yI [ | +5,(t,8)M~1B,. Eq.4-23
én () en(t) én(t)

Recall that the derivation of S, (¢,8)is done in Chapter 2. It is necessary to

formulate the system in Eq. 4-23 as a first order system of differential equations so that
the MinMax controller can be successfully implemented as stated in Chapter 2. We
therefore define X; ,(t) = e(t) so that X; 4 (t) = é(t), and X,,(t) = &(t) = Xy ,4(t) so

that X,,(t) = é(t). The system in Eq. 4-23 then becomes

X,0] 1 o0 1 1[%1,® 0
[XZ(;(t)] B [‘M 1K —yl [Xze(t)] + [M‘130] Su(t, 6). Eq. 4-24

The final complete system of equations (controlled and sensitivity equations) becomes
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X(@ A —-BK 0 0 [ X(@®
X@®| _|Fc A 0 0 || x.(0
scol=1 0 -Bke A —Bk|| s Eq. 4-25
) X, ®) A‘-'l A €2 Acs A‘-'4 SXC ®

where K,,A4,,, A,,, A.;,and A ,are derived and defined in Chapter 2. In order to perform

the simulations, we use the following initial conditions
Ug(0,x,68) = 0.75sinx, Ug (0, x,8) = 0.75 cos x. Eq. 4-26
Figure 4-18 shows that the sensitivity of the state position with respect to 8 does
not vary much as 8 varies. This suggests that the MinMax control parameter’s actual
value may not be critical in the performance of the state. This result is in agreement with
the results of the previous section where it was seen that the actual 8 value does not affect

the control effort.

Sensitivity of Stete Position, 9= 0.04 Sensitivity of Stals Position, 5= 0,08

Sensitivity of State Position,6= 0.32

Figure 4-18: Sensitivity of state position
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Controller Sensitivity
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The sensitivity of the controller with respect to 8, S,,(t, @), was investigated. The

results are shown in Figures 4-19 through 4-26 for both the full state and state estimate

control systems. Table 4-3 shows the area between the curves and the time axis, giving

the total controller sensitivity. The results show that the contoller implemented is not very

sensitive to variations in 8 since the order of magnitude is the same, despite the

significant percentage increase from 8, to 8,. This is in agreement with the results in

previous sections that show that the choice in 8 is not very critical to the overall

performance of the controller.
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Table 4-3: Area under controller sensitivity curve (Simpson’s rule)
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%change
Area
from 6,
Under 6, = 0.04 6, = 0.08 0; = 0.16 6, =0.32
to 94

Curve
1
(f;‘;’i’l’;”‘” ! -0.004635 | -0.004559 -0.004383 -0.003816 +17.67
1
(fi‘;’i’l’;"" 2 -0.004635 | -0.004559 -0.004383 -0.003816 | +17.67
(f‘l‘;'i'l’;”" 3 -0.004635 | -0.004559 -0.004383 -0.003816 +17.67
1
(fZ’i’{;”" 4 -0.004635 | -0.004559 -0.004383 -0.003816 +17.67
TOTAL -0.0185 -0.0182 -0.0175 -0.0153 +17.29
( “";”;”" ! -0.004053 | -0.004514 -0.005587 -0.009029 | -122.77
est.
1
( “”;”;”" 2 -0.004053 | -0.004514 -0.005587 -0.009029 | -122.77
est.
1
(;::’;”e’ } -0.004053 | -0.004514 -0.005587 -0.009029 | -122.77
(]“"’;”;”" 4 -0.004053 | -0.004514 -0.005587 -0.009029 | -122.77
est.
TOTAL -0.0162 -0.0181 -0.0224 -0.0316 -95.06
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Figures 4-27 and 4-28 show the maximum absolute sensitivity values with respect
to 6. The results are in agreement with the other sensitivity results:
e The full state sensitivities are slightly higher in amplitude than the state estimate
sensitivities
e The variations in the maximum controller sensitivities as the MinMax parameter 6
changes are small.
The conclusion therefore is the same as previous conclusions, i.e., the value of § chosen

is not critical with respect to controller sensitivity.

Mazximum sbsolute S, values vs 6, Full State System, Controller 1 Maximum absolute S, values vs 8, Full State System, Controfler 2
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Figure 4-27: Maximum absolute controller sensitivity for full state MinMax system:

controller 1 (top left), controller 2 (top right), controller 3 (bottom left),
controller 4 (bottom right)
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Figure 4-28: Maximum absolute controller sensitivity for state est. MinMax system:
controller 1 (top left), controller 2 (top right), controller 3 (bottom left),
controller 4 (bottom right)

4.2.7 Riccati Sensitivity

As stated previously, the Algebraic Riccati Equations are a key component in the
design of the controller as shown in Chapter 2. As a result we investigated the sensitivity
of the Riccati equations with respect to 6.

Figures 4-29 and 4-30 show plots of the maximum values of the sensitivities of
the Riccati equations’ solutions (P and I, described fully in Chapter 2) to the MinMax
parameter 6. The results show that both maximum sensitivities increase with increasing 6.
The order of magnitude for the Il,values does not change with respect to changes in 6.

Since I directly affects the controller performance (u(f) = —R™'B"Ilx, ), the small

variations in IT with respect to variations in 6 explains the unchanged controller
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performance as & changes. These results are in agreement with previous results and hence

the same conclusion can be drawn: the actual value of @ chosen is not critical.
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Figure 4-30: Norm of Pg versus 0



CHAPTERSS

EULER BERNOULLI CANTILEVER WITH
A ROTATING HUB

5.1 Problem Formulation
In this Chapter, we implement the MinMax controller and apply Continuous
Sensitivity Equation Methods (as described in Chapter 2) to the Euler-Bernoulli
Cantilever Beam with a rotating hub. Control of this system has been investigated by
several authors before e.g. [1; 28; 37; 38].
Figure 5-1 shows the system under investigation is a slight modification of the
system in [39] where a tip mass was included. In this diagram w(t) = O(t) is the angular

velocity of the hub.

Figure 5-1: Euler-Bernoulli cantilever beam with a rotating hub

99
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The equation of motion for this system, including Kelvin-Voigt and viscous

damping is
a%d(t.x) a%e(0) 2%d(t.x) ad(t.x)
pA at2 +pAx at? +vl a2 1 3 +
Eq. 5-1
*d(tx) _
El——aﬂ =0,

where pis the density of the beam material in kg/m’, A is the cross~s§:ctional area of the
beam in m?, ¥ is the Kelvin-Voigt damping coefficient, 7, is the viscous damping
coefficient, d(t,x) is the displacement of the beam at time, 7, and position, x, £ is
Young’s modulus, / is the moment of inertia, © is the hub’s angulaf position, x is the

position along the beam, and 0<x < L. We apply the following boundary conditions to

this system:
dt0)=0
od(t,0)
= _90
ox
4 3
ﬂa d(t,L) B a°d(t,L) ~0 Eq. 5-2
otox? o’
a%d(t,L) 0%d(t,L)
: EI > =0.
PV YR ¥

These boundary conditions represent:
e Clamped left-end of beam (1% two)
e No shear force at tip (3“j )
e No bending moment at tip (4™ ).
The model is completed by the inclusion of the hub-beam dynamics boundary condition,

92e(t)  3d(t,0) _ 32d(t,0)
Jo ot2 14 Jtox? 0x2

= u(t)' Eq. 5-3
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where J, is the hub moment of inertia and u(¢) is the control input to the system via

torque on the hub. We begin the finite element approximation by rewriting Eq. 5-1 as

pAd(t,x) + pAx8(t) + EId"" (t,x) + y,d(t,x)

Eq. 54
+ y,d""(t,x) = 0,
where a_ag_z_,_x_)_ = d(t,x) and Qia(;ﬁ = d’(t, x). In order to determine the finite element

approximation to Eq. 5-1, we first write the weak form of the PDE. In considering the

weak form of the problem we seek to finda d(x)e Vc X =H f (0,)) n H*(0,7) such that
fol pAd(t, )v(x)dx + fol pAx8(v(x)dx +
[ EI@ (&, 2)v(x)dx + [y yd (e, X)v()dx + Eq. 55
fol v d"' (¢, X)v(x)dx = 0,

where v(x)e H,(0,L) is a test function. Using integration by parts, we have

[, w(dx = [ d” @ 0v" 6 x)dx,

Eq. 5-6
U i — s 17
and [ d""'(t,x) = [, d"(t, )v" (X)dx.
Eq. 5-5 now becomes
fol pAd(t, x)v(x)dx +
fol pAxOV(x)dx + fol Eld"(t,x)v" (x)dx + Eq. 57

fol y,d(t, x)v(x)dx + f; y.d"'v"dx = 0.

Now we divide the spatial domain [0,L]into N equidistant subintervals and approximate

N
d(t,x)byd" (t,x) =Y €,()¢,(x) . Here ¢,(x)are cubic b-spline basis functions and

i=]

e, (?) are their coefficients. Eq. 5-7 can then be written as



[, pAd" (8, x)v(x)dx + [] pAx&(£)v(x)dx +
JLEId™ (6, 200" () dx + [y dM (& x)v(x)dx +
Ly2d"" &, x)v" (x)dx = 0,
or alternatively,
Jy ZX; 6(6) gu(x)v(x)dx + [, pAx8(t)v(x)dx +
[y ETEY, ()¢} (v (x)dx + [ EI T, () ¢ (x)v" (x)dx +

Ly I, e i)v)dx + [y, Ty (D¢ (v (x)dx =
0.

Now we let v(x) range over ¢ (x) forj =12,---,N . Eq. 5-9 then becomes

I N
[ Y aweee
o i=1
This can now be rewritten as
é:(t) . e1(t) é, (1)
pAM[ : |+ pAd(e)s + EIK| ]+y1M[ ; }
én(t) ey (t) én(t)
é1(t)]
+ YZK : = 0,
én(t)
N N

!

where M = [ [#.000, (x)dx} K= [ | ¢,."(x)¢;(x)dx}

ij Y

i, =1
Eq. 5-11 can be rearranged to give

é1(t) . .
[ : ] = —-B(M™1S - —=M"1K
én(t) ph

ey .(t)]

eN.(t)

é1gt)]

Y1 Y2 -
-—1[ : ]——-M ¢
A . A

G N C5)

and S = U x@, (x)dx

102

Eq.5-8

Eq. 5-9

Eq. 5-10

Eg. 5-11

}N
jol

Eq.5-12
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or,
31(0 . - ey (t)
[ ] -8(t)M~1s — —AM"K : } -
én(t) g en(t)
Eq.5-13
(71 I+ Y2 M-—IK) el:(t)]
pa” oA ol

We require Eq. 5-13 to be a system of first order equations as described in Chapter 2. We

therefore define X; (t) = e(t) and X,(t) = é(t) = X,(t). Eq. 5-13 becomes

X1(t) = X,(t),

El Y2
—_——— M1 -1 -
Ka(t) = ~ 2 M KX () - (pA am K)Xz(t) Eq. 514
- O(t)M1s.
Now Eq. 5-3 can be written as
Jo8(t) — yId" (t,0) — EId" (t,0) = u(t). Eq. 5-15
This can be rearranged to give
El
e(t) = d"(t 0) + d"(t 0) + u(t) Eq. 5-16
Eq. 5-16 can now be rewritten as
yix
6(5) =1 > é®)${'(0)
]0 i=1
Eq. 5-17

N
El . 1
+ };Z (D9 (0) +7-ul®)
This can be written as
o(t) = }-I-qXZ () + El le(t) + -1—u(t) Eq. 5-18

where g = ¢"(0). Substituting Eq. 5-18 into Eq. 5-14 gives



X,(t) = X, (0),
¢ = —El p-1 (Y21 —
X(6) = =S M7Kx — (B4 Ly K) X,(t)
(B ax,(6) + Zax, () +u®)) M5,
[+] [4] 0
This can be rearranged to give
X, (t) = X,(¢),
) = — (EEMm-1k + ELgm -
X, () = (pAM K+ qM 5)X,(8)
Lok L Eam- 15) X,(t) - -—u(t)M 1g,
Finally, in matrix form we have

Ii):(l(t) —
X2 (t)

[ 0 I
_(El 41 El -1 Y1, Y2 pe—1 -1

(pAM K+2qM s) - Loylayig+ L qM 5)

zeros(N +1,1)

M~1s =2 x ones(N +1,1) u(t).

In this formulation,

zeros(N+1, 1)
B=M"S

:—l—xones(N+ I, D
Jo
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Eq. 5-19

Eq. 5-20

Eq.5-21

Eq.5-22

Since full knowledge of the system is not available, we take measurements in the form

X ()
y® = [xi ®

Eq.5-23

where C is composed of four averaging measurements of both the position and velocity

states, resulting in the following 8 X (2N + 2) matrix
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[ s N+1 ] Eq. 5-24
[%!}@"(x)dx} .0 1
i=
_l_ N+1
[% el (x)dx] 0
4 i=1
3l N+1
PR
s d){"(x)dx] 0
2 i=1
AR N+1
[—l-f_g_z i(x)dx] 0
3 i=1
N+1

o [ fédﬂ"(x)dx.
-l 0 : 4

. :
0 % JE ol (x)dx
L 4 4

- +N+1
4 =
0 |7 [i &' (0)dx
L 2 4i=1
P JN+1
0 -fsl ¢i (x)dx
L L Ky Ji=1

5.2 Numerical Results
For all simulations in this section, N =40, /=5, R = I. The results are presented in
the following order: uncontrolled simulations, functional gains, controlled simulations,
stability analysis, and sensitivity analysis.

521 Uncontrolled Results

For simulation purposes and to attain a solution to the system in Eq. 5-22 and Eq.
5-23 , we apply the following initial conditions

3X(0,x) _
a |

Xo = [X(O, x), [2sin2x,4 cos 2x], X,

0X.(0,x Eq. 5-25
= [xc(o, x),“—(—)] = 0.75X,. 9
at
The following parameters were used: p = 2700, E = 7x10'°, 4=8.0x107°, J, = 0.01,

and/ = 6.7746 x 107" . Figure 5-2 shows the uncontrolled state displacement.
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Position, Uncontrolled System

t

Figure 5-2: Uncontrolled displacement

522 Controlled Results

Figures 5-3 through 5-5 show the functional gains for the system for 8 = 0.05, 0.4,
0.6. The color legend in this plot is as follows: N = 10 blue, N = 20 red, N = 30 black, N =
40 magenta, N = 50 cyan. The results are similar to that of the wave equation: the
functional gains show convergence and do not vary with varying 6, meaning controller

convergence is not affected by 4 value.
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Figure 5-3: Functional gains
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Figure 5-4: Functional gains
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position, 6=0.6 velocity, 6=0.6
03 . . 03 . .
o2t ; 0.2}
0 1 F 1 01 r 4
1 0 7

01t { o1t
02} 1 0.2
03} { 03}
04} { 04t
05 . L 05 4

0 2 4 B 0 2 4 6

X X

Figure 5-5: Functional gains

Figures 5-6 and 5-7 show the controlled displacement values along the beam for
the full state values (u(¢) = —KU (¢) ) and for the state estimate system (u(¢) = -KU (¢))

respectively. In each figure, the top left result is for § = 0.05, top right is for 8= 0.5, and

bottom left is for 8 = 0.6. The value 0.6 is the maximum 6 value that still results in
2 ) A -BKY, . .
[1 — 62PII] > 0 and eigenvalues of FC A being in the left two quadrants of the
C

complex plane as described in Chapter 2.
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Position, Full-siate MinMex System, 6= 0.5

Position, Full-state MinMax System.&6= 0.05
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6: Controlled state position, full state MinMax

Figure 5

Position, Stete Estimate MinMax System.g= 0.5

Pasition, State Estimate MinMax System,o* 0.05
Poskion, State Estimate MinMax System, o= 0.6
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7: Controlled state position

Figure §
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Two key points can be made:

1. The difference in the controller performance for the full state and the state
estimate systems are imperceptible in this case.

2. As 0 increases, there is virtually no difference in the performance of the
controller. This would suggest that the choice of  in terms of performance is not
critical. This result is in agreement with our previous results.

523 Stability Analysis

As in the case of the previous two chapters, we seek to ensure stability in the

control system without which our results will be invalid. As a result, we again investigate

. .[A —BK
the eigenvalues of the matnx[ FC A, ]

Figures 5-8 and 5-9 show the eigenvalue plots for various & values. The graphs on
the right side of each figure are a zoomed view showing the closest eigenvalues to the
imaginary axis. The results conclusively show that the controlled system is stable.
Furthermore the stability margin remains unchanged with changing 6 (see the stability
margin results in Table 5-1). The conclusion here is that the value of & chosen is not

relevant with respect to the stability of the system.

Stability of System 8= 0.05 Stabity Margn 8= 005
T T N

1500 1500
1000} 1000}
50 sob
® ®
2 < :
1 % : :
S Ope 0 [IE THNTN R 5NPN
ES & DR
H H
&0 500
-1000 1000
N 4 i < i 1 X — I i i
15 -10 5 5(11_1 48 08 V4 02 4] 02 04 08 08 1

Resi Axis Resl Axis

—BK]

. . A
Figure 5-8: Eigenvalues of [ FC A,
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Figure 5-9: Eigenvalues of
FC A

Table 5-1 shows the stability margin and radius results for various @ values. The
table shows that as 6 increases, the stability radius decreases, hence the system becomes
less stable. The difference between the smallest radius and the largest is only about 0.1.
The conclusion here is that the value of the MinMax parameter chosen is not critical

based on the stability radius.

Table 5-1: Stability margin and radius for controlled system ( 4,,,)

0 Stability Margin Stability Radius
0.05 | 0.0582554157489640 0.627864455774280
0.2 | 0.0590110193003510 0.616994500302368
0.5 | 0.0632578775179432 0.556667853290953
0.6 | 0.0655009976716679 0.526411275631653
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524 Control Effort

As has been done in the previous two chapters, we present the control effort for
the MinMax controller. In this case 8= 0.05, 0.5, 0.6. In Figure 5-10, the system under
investigation is the full state MinMax controlled system where no compensator/observer
1s used. In Figure 5-11 a compensator is implemented. Table 5-2 shows the results for the
area between the curves and the time axis, hence the total control effort. The results show
that as @ varies, the control effort does not change much. This result agrees with the
controlled state results of the previous section, where there was no considerable change in
the results as 8 varied. We conclude that the actual value of & employed is not critical

with respect to the effort required by the controller.

Control Effort; Full State MinMax System, 6= 0.05 Control Effort; Full State MinMax System, 8= 0.5
AL}

u®

b

[

§

11 1
24§ % , «
i} Q'N!MWWAJ\M/\/\M’\N\I‘»’\ANVW\W-V
2th¥ ‘ , ' 4
. P . .

B I S S S T R R TR I T
t
Control Effort; Fuit Stete MinMax System, &= 0.6

udt)

Figure 5-10: Control effort, full state MinMax



mCodrol Effort; State Estimate MinMeo System, 5= 0.8

4

P
WV&AANVVVV\NJ\«VVJMMAWN
i3
E
i 3

o 2 4 6 L]

T TR TR TR
t
Contsol Effort; State Estimate MinMax System, 5= 0.5

MMM\/VVV\/\/VVW’V\MI\NV\AAMM

" " " " "
0 12 % 18 20

t

N " " N
0 2 4 6 8

113

Control Effort; State Estimate MinMax System, o= 0.05
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Figure 5-11: Control effort, state estimate MinMax

Table 5-2: Area under control effort curve (Simpson's rule)

Area Under % change bet.
6, =0.05 8, =0.5 6, =0.6
Curve 6,and 6,
1 conroirer 1 (f0l) 3.514129 3.557756 3.584119 1.95
I eorrotter 1 (€5L.) 2.643727 2.705612 2.735693 3.36

52.5 Sensitivity Analysis

In order to perform sensitivity analysis, we begin by differentiating Eq. 5-1 with

respect to 4, resulting in
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PAd, (1, x,0)+ pAxO ,(t,0)+ v,1d, . (t,x,0) + ¥,d ,(1,x,6) Eq.
+Eld__,(t,x,60)=0, 5-26
where ©(t) is used here to represent the hub’s angular position in order to avoid
confusion with the MinMax parameter 6. Here ad(;,;,e) = dgy(t,x,0). Now let
dg(t,x,8) = Sy(t, x,8) and Oy(t, 8) = Se(t, 8). We then have
pAS (t,x,0) + pAxSg(t,0) + y,I1S)"(t,x,0) +
_ Eq. 5-27
¥1S4(t,x,0) + EIS]"(t,x,6) = 0.

The weak form of Eq. 5-27 is

PA f, $4(t, %, 0)v(x)dx + pA [, xSe(t, 0)v(x)dx +

v, fol SY(t, x, 0)v(x)dx + v, fol Sq(t, x,0) v(x)dx + Eq. 5-28

EI [ 5" (¢,x,6)v(x)dx = 0.
Using integration by parts, fol S7"(t,x,)v(x)dx = fol S (t,x,0)v" (x)dx and
fol St x, 0)v(x)dx = fol SHv" (x)dx.
Substituting this into Eq. 5-28 gives

pA f; Sa(t, x,0)v(x)dx + pA fol xSg(t, O)v(x)dx +

Y2l fol SH(t,x,8)v" (x)dx + v, fol S4(t, x,0) v(x)dx + Eq. 5-29

EI f, 4 (t, %, 0)v" (x)dx = 0.
Let S;(t,x,0) =~ SY(t,x,08) = YV, e;(t)p;(x) so that Eq. 5-29 becomes

pA f; S4(t, x,0)v(x)dx + pA fol xSg(t, ®)v(x)dx +

val f, S4(t,x,8)v" (x)dx + ¥, J;; Sa(t, x,0) v(x)dx + Eq. 5-30

EI f, S4(t,x,8)v" (x)dx = 0,
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or
pA [1 TN &,(0)s ()v(x)dx + pAx [} So(t, 0)v(x)dx +
val fy Ty €07 (v" (x)dx + Eq. 5-31
Y1 o s 60 IV ()dx + EI [ (£}’ ()v" (x)dx = .

Now let v(x) range over ¢, (x)for j =12,---,N, hence
pA [y EL1 E:(t)pi(x)b;(x)dx + pAx ) o (t,0); (x)dx +
val J; Zq (07 (X)) (x)dx + Eq. 5-32

¥1 Jy Ty ()i () () dx + EI [ e,(t) ) (X)) (x)dx = 0.

Eq. 5-32 can be rewritten as

é(t) . e1(t) é;(t)
pAM[ s ] + pASe(t, 0)S + EIK[ ; +y1M[ I
én(t) en(t) én(t)
Eq. 5-33
[é1 (t)]
YZK ! = 0'
én(t)
i N 1 N 1 N
where M = [Iq),.(x)qéj (x)dx} , K =[ I ¢,.’(x)¢]'.'(x)dx] and S = l:jxg)j (x)dx]
0 i,j=1 0 ij=1 0 j=1
Rearranging Eq. 5-33 gives
é:(t) ey (t) é,(t)
[ 15 ]:—fe(t,H)M'ls—f—l-M‘lK[ le _n 15 ]
En(t) pA en(®] PAley(®
. Eq. 5-34
L[],
P én(t)

Now, recall Eq. 5-16,

o) = Z-I-ci"(t, 0) + E—I-d”(t, 0)+ -1—u(t).
]0 ]O ]0



Now differentiating this with respect to the MinMax parameter 6 gives
Se(t,0) = S{;(t 0,6) +— S{i’(t 0,6) +-- S L (0.
The derivation and definition of S, (¢,8)is given in Chapter 2.

Eq. 5-35 can rewritten as

vl nN
Se(t,0) = ']_Sd j

or

$o(t,0) = LT, ()¢} (0) + - T ei(1)4]'(0) +-Su(t, 0).

This equation can now be written as

n y
Se(t, 9) ==q
0

+—S,(t,0).

é1 '(t)
[ ' Jo

EI [el,(t)
éN.(t)

+—ql :
Jo " ey(t)

Substituting this into Eq. 5-34 gives

é,(t) /i é,(t) a |6 ®
- )
én(t) én(t) en(t)

e,1(t) y é,(t)
ol 2

eN.(t) 4 en(t) ph

+ Jlsu(t, 9)) M-1S —
0

El pg1
pAM K

e .(t)]
éN.(t) -

Regrouping this equation gives
é; .(t)

[91 ®
: +
én(t)

] (—-—-q 1‘- %M‘ll{)

e, .(t)

en(t)

én(t)

+ }I—Su(t, g)M15.

1]

(t,0,8) + f’ S¥N(t,0,0) +— s ().
0
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Eq. 5-35

Eq. 5-36

Eq. 5-37

Eq. 5-38

Eq. 5-39

Eq. 5-40

We desire Eq. 5-40 to be a system of first order differential equations and so we define,

Sx, (t) = e(t) and Sy, (t) = é(t). Eq. 5-40 now becomes
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le(t) = SXz
5 - - E. -
S, 0 = (-Hqmis - L L y-1K) 5y, (0) + (SqM7IS + Eq. 541

El g4 1 -1
M K) Sx, () + 72 Su(t, )M 1S

The final complete system of equations (controlled and sensitivity equations) becomes

X)] 4 -BK 0 0 X
x| |Fc a4 o o |[x®
s l|=1 0 -BKe A -Bk|[sy® Eq. 5-42

ch(t) A, A, A, A4 Sx.(t)
where Kg, A, Ac,, Ac,, and A, are derived and defined in Chapter 2.
Figure 5-12 shows the sensitivity results for the Euler Bernoulli Cantilevered
beam with a rotating hub for varying 6. The following initial conditions were used:
S5¢(0,x,8) = 0.75X(0, x), and
Eq. 5-43
Sx.(0,x,8) = 0.75X.(0, x).
The results show that the sensitivity of the state is initially high then decreases rapidly
with increasing time. This suggests that the system is closer to its desired equilibrium
state as time elapses. The results for higher 8 values show slightly lower sensitivity than

for lower 8. The conclusion here is that the actual value of 8 chosen is not critical based

on the sensitivity analysis.
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Sensitivity of Position, State Estimate MinMex System, 6= 0.05 Sensitivity of Posttion, State Estimate MinMex System, 2= 0.5
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Figure 5-12: Sensitivity of state

Figure 5-13 shows the results for the controller sensitivity for various 8 values. As
was done in the case of the control effort, we employ Simpson’s rule to determine the
area between the curve and the time axis. This area gives us the total sensitivity of the
controller. Table 5-3 summarizes the results, where / gives the area obtained by
Simpson’s rule. The total area is calculated for each 0 value and recorded in the table.

As in the case of the control effort, the table shows that the change in the
sensitivity results as 6 increases is not significant. The order of magnitude is the same.

We draw the same conclusion, the actual value of @ chosen is not critical based on these

sensitivity results.
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Controller Sensitivity; State Estimate MinMax System, 9= 0.5
N . . —

Figure 5-13: Controller sensitivity, state estimate MinMax

Table 5-3: Area under controller sensitivity curve (Simpson’s rule)

Area Under % change from
61 = 0.05 02 = 0.5 93 = 0.6
Curve 6, to 65
Leontrotter(full) 2.650461 2.785177 2.809907 5.67
Iconerotier(€st) 2.007114 2.171982 2.123014 5.46

Figures 5-14 and 5-15 show the maximum absolute controller sensitivity values

with respect to 8 for both the full-state and the state estimate MinMax systems,

respectively. In the case of the full-state system, as @ increases, the maximum sensitivity

slightly increases. In the case of the state estimate system, the maximum sensitivity

increases gradually, then decreases. The overall change in maximum controller



120

sensitivity values for both cases is insignificant. This is in agreement with the previous

results which show that the controller performance changes only slightly with changing

0.

Maximum absolute S, values vs 6, Full State System
10.8 T T - v T v
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Figure 5-14: Maximum S, (¢) values, full state system

Maximum absolute 5 values vs 8, State Estimate System
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Figure 5-15: Maximum S, (¢) values, state estimate system
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5.2.6 Riccati Sensitivity

As stated previously, the Algebraic Riccati Equations are a key component in the
design of the controller as shown in Chapter 2. As a result we investigated the sensitivity
of the Riccati equations withA respect to 0.

Figures 5-16 and 5-17 are plots of the maximum values of the sensitivities of the
Riccati equations’ solutions (£ and I1, described fully in Chapter 2) to the MinMax
parameter 6. The results show that both maximum sensitivities increase with increasing 6.
The order of magnitude for the II,values does not change with respect to changes in 6.

Since IT directly affects the controller performance (u(t) = —R'B"Ilx, ), the minimal

variations inIT with respect to variations in 8 explains the unchanged controller
performance as 6 changes. These results are in agreement with previous results and hence
the same conclusion can be drawn: the actual value of 8 chosen is not critical regarding

Riccati solution sensitivity.

Maximum %, values vs 8

nomn of PIe
w E N
T T
A 1

Figure 5-16: Norm of Il versus 0
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work, we have successfully computed an optimal MinMax controller using
a Galerkin finite element scheme for the 1 and 2-dimensional heat equations,
1-dimensional wave equation with viscous damping, and the cantilevered Euler-Bernoulli
beam with a torque control through a hub, including both Kelvin-Voigt and viscous
damping. We then investigated the effects of variations in the MinMax parameter on
control effort, controlled system stability (stability margin and radius), functional gains,
and state position and/or velocity. We then applied Continuous Sensitivity Equation
Methods to each finite dimensional approximation of the original four (4) infinite-
dimensional PDEs. This was done in order to investigate the effects of variations in the
MinMax parameter on the sensitivity of state position and/or velocity, controller
sensitivity, and Riccati sensitivity. The results for all four sets of equations modeled in
this work are conclusive. For each case the conclusions were similar:
1. Controller Performance

We found that varying 6 does not significantly affect the performance of the
controller. In virtually all the cases, the system is driven towards equilibrium in about the

same time.

123
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2. Functional Gains

As mentioned in Chapter 2, the functional gains tell us whether the Galerkin finite
element schemes, employed in this work to approximate the various infinite-dimensional
Partial Differential Equations, are convergent as well as whether the controller employed
is convergent. As a result, we plotted the functional gains for varying € values for each
system. The results in each case showed that the functional gains were convergent for
each 6 value for the given N values (where Nis number of discretization intervals). More
importantly, the gains were similar for the different 6 values. We therefore concluded
that, in terms of functional gains and thus controller convergence, the actual value of 6
chosen is not critical.

3. Controlled System Stability

As previously stated, the controlled system must be stable in order for the other
controlled results to be useful. We investigated the stability margin and stability radius
for each system as 4 varied. We found that for all cases of 8, the stability margin and
radii were both similar or of the same order of magnitude. We therefore concluded that
the actual value of & chosen had no significant effect on the stability of the system and
thus was not critical.

4. Control Effort

We investigated the control effort u(t)for each controller implemented for
varying 6. In order to better analyze the results, we employed Simpson’s rule for
numerical integration to each graph. The results for each system showed that the control

efforts were similar or of the same order of magnitude for varying € values. We therefore
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concluded in the case of each system, that the actual value of & chosen was not critical in
terms of control effort required for each particular design.

5. Sensitivity of State

We employed Continuous Sensitivity Equation Methods, as outlined in Chapter 2,
to each system under investigation. The results for the sensitivity of the state with respect
to 0 showed similar state sensitivities for each control design with varying 8 values.

6. Controller Sensitivity

We investigated the sensitivity of the controller with respect to varying 6 values.
In order to better analyze the results, we employed Simpson’s rule for numerical
integration to each graph. In each case, we found that the controller sensitivities were all
either similar or of the same order of magnitude. Surprisingly, the MinMax controller,
which depends on 4, was not significantly sensitive to different 8 values.

7. Riccati Sensitivity

We investigated the sensitivity of the solution so the Riccati equations to

variations in 6. In particular, we were interested in the I, values since
u(t) = —R™' B'Ix,_(¢) suggesting thatIT directly influences the control effort. Generally,

the results showed that as @ varies the sensitivities had similar orders of magnitude. We
concluded therefore, that the actual value of 6 was not critical.

Although we have not obtained an explicit formula for the optimal 8 value, we
have provided both quantitative and qualitative results that suggest that the optimal value
in terms of stability, performance, and controller convergence is any & that satisfies the
positive definite condition in the [/ — 82PII] > 0. This further suggests that there is no

need to expend computational costs on choosing a € value. A low @ value close to 0, such
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as 0.05, can be chosen and the controlled system would exhibit excellent performance

and stability properties, along with controller convergence.

6.2 Future Work
In [35], the conditioning of the MinMax Riccati Equations, the sensitivity of the
eigenvalues of [I — 82PT1], as well as the robustness of the controller with respect to
variations in 8. It was concluded that the optimal value of the MinMax parameter 8 was
not necessarily crucial. In order to further the investigation, the systems in this

dissertation would be analyzed using the methods in [35].
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Al Exact Solutions

A.l1 Uncontrolled 1-dimension Heat Equation
The equation for the exact solution of the 1-dimensional Heat Equation is [40]:

m2n?

U(t,x) = Z ame-(_z"g-)ktsin mz—n—c).
m=1

L
2 mmx Eq. A-1
%210 :
am—LfU (x)sm( I )dx,
0

U%(x) = 100.

Figure A-1 shows the simulation of the exact solution for the uncontrolled 1-
dimensional heat equation. This result is similar to that of Figure 3-2, where a Galerkin

finite element scheme was employed.

Temperature, Uncontrolled System (Exact Solution)

Figure A-1: Exact solution of uncontrolled heat in 1-d rod
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A.l2 2-Dimensional Heat Equation

The equation for the exact solution of the uncontrolled 2-dimensional heat

equation is [41]:

e 22kt m2nikt

X ¥4 o f
U(trx'y) = ZZAmSin (n_) sin (u)e ( Lye E )’

L, L,

0 o0

U, 0,y) = U(t,L,y) = U(t,x,0) = U(t,x, L) = 0, Eq. A-2
U, x,y) = 100,
Amn = Liz :x foLy U(0,x,y)sin (%f) sin (—"—EZ) dx.

Figure A-2 shows the simulation of the exact solution for the 2-dimensional heat

equation. This result is similar to that of Figure 3-33, where a Galerkin finite element

scheme was employed.

Temperature, Uncontrolled System (Exact Solution)

Utx)

Figure A-2: Exact solution of uncontrolled heat on 2-d surface (along horizontal center)
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Al3 1-Dimensional Wave Equation
The equation for the exact solution of the 1-dimensional wave equation with

viscous damping is [42]:

U(t,x) = isin(ﬁi’z)e%l (a, sin(u,t)+b, cos(u,t))

n=1

Ut0)=0

U0,x)= f(x)=sinx

oU(0,x)
ox

¥ =0.01.
_ can*n? - 212

n = 2L >

L
b =2 | sin(l’-’—"i)/(x)dx,
L3\L

a, = 2 | sin(%)[ g(x)+ E—;—, f (x))dx.

= g(x) = cos(x)

Eq. A-3

Figure A-3 shows the simulation of the exact solution for the uncontrolled 1-
dimensional wave equation with viscous damping. This result is similar to that of Figure

4-1, where a Galerkin finite element scheme was employed.

Displacement, Uncontrolied System (Exact Solution)

Figure A-3: Exact solution of displacement for 1-d wave equation
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B.1  Finite Difference Solutions

In order to further verify the accuracy of the simulations in this work, we present
the uncontrolled simulations of the heat and wave equations using the explicit Finite
Difference scheme.
B.1.1 1-dimensional heat equation

We used the explicit Finite Difference scheme to approximate the solution to the
uncontrolled 1-dimensional heat equation

Uy (t, x) = kU, (t,%). Eq. B-1

The resulting model formulation is

Xi4q = AX;, where Eq. B-2
11— 2v v 0 0O 0 0 0 O 0 0
v 1—-2v v 0 0 0 0
0 v 1-2v v 0
0 0 v v 0
0 0 0 . 0 .
o 0 . . .0 O Eq. B-3
o 0o . . . 0 .
o . . v 0
. . . . 0. . 0 v 1-2v v
0 0 0 o 0 . 0 0 v 1~ 2v-

The result is shown in Figure B-1. This is similar to the original result in Figure
3-2.
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Temperature, UnControlled

Ut ,x)

Figure B-1: Uncontrolled heat in 1-dimensional rod (explicit finite difference)

B.1.2 2-Dimensional Heat Equation

In this section, the explicit scheme was used to simulate the uncontrolled 2-

dimensional heat equation

aU(x,y,t) *U(x,y,t) d*U(x,y,b)
3t =k 32 3y? . Eq. B4
This was modeled as
Xt+1 = AXt' chs B'S

where
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Eq. B-6

av 000v000O0O0O0O0OOCO0OO0OO0O0OOCO0DOOO0GO0O
vav00O0v 000000O0O0O0C0O0CO0O0OCO0COOOCO
0Ovav 000v 0000O0O0O0CO0O0O0O0CO0ODODODOTO0O0
00vav 000V 0000O0OO0CO0O0O0CO0O0OO0OOCGOGO0DO
000y a0000v00O0OO0O0OO0COOO0O0O0OO0COCO0OQ0
v000Oav 000Yv 00O0O0O0OO0OO0CO0O0O0GDO0O0O0O0
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In order to create this matrix, Figure B-2 was used, where the dots represents the

interior grid points. In this case, the number of interior grid points is 25, hence A is a

25 x 25 matrix. In the actual simulation 361 grid points were used.

Figure B-2: 2-d grid used to generate matrix A
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Figure B-3 shows the results. It is clear that this is similar to Figure 3-33

120

Utx)

Figure B-3: Uncontrolled heat distribution across horizontal center of 2-dimensional

square plate

B.1.3 1-Dimensional Wave Equation

In this section we use the explicit scheme to solve the 1-dimensional uncontrolled

wave equation with viscous damping,
oU(t,x) _ .2 Q*U(,x) yaU(t, x) Eq. B-7
ox ox o
We formulate Eq. B-7 as
X = AX (&4 Eq. B-S

where
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r 1 0 0 0 0 At 0 0 0 0 7
0 1 0 0 0 0 At 0 0 0
0 0 1 0 0 0 0 At 0 0
0 0 0 1 0 0 0 0 At 0
0 0 0 0 1 0 0 0 0 At
-2v v 0 0 0 1-y 0 0 0 0 Eq. B-9
v =2v v 0 0 0 1=y 0 0 0
0 v =-2v v 0 0 0 1=y 0 0
0 0 v =2v v 0 0 0 1-y 0
L 0 0 0 v -=2v 0 0 0 0 1~y

The matrix of Eq. B-9 was computed for a spatial discretization of N=5
intervals. The actual simulation was obtained with N = 40 intervals. Figure B-4 shows the

resulting simulation. The figure is similar to Figure 4-2.

Displacement, UnControlled

time, t ¢ o X

Figure B-4: Uncontrolled displacement {explicit finite difference scheme)
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