
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2012

A nanostructured Fabry-Perot interferometer for
label-free biodetection
Tianhua Zhang

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Electrical and Computer Engineering Commons, and the Nanoscience and
Nanotechnology Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.latech.edu%2Fdissertations%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages


A NANOSTRUCTURED FABRY-PEROT 

INTERFEROMETER FOR LABEL-

FREE BIODETECTION 

by 

Tianhua Zhang, B. E., M. S. 

A Dissertation Presented in Partial Fulfillment 
of the Requirements of the Degree 

Doctor of Philosophy 

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY 

August 2012 



UMI Number: 3533096 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMI 3533096 

Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author. 
Microform Edition © ProQuest LLC. 

All rights reserved. This work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL 

MARCH 19, 2012 

Date 

We hereby recommend that the dissertation prepared under our supervision 

byTianhua Zhang, M.S. 

entitled 

A Nanostructured Fabry-Perot Interferometer for Label-Free Biodetection 

be accepted in partial fulfillment of the requirements 

Doctor of Philosophy 

for the Degree of 

Recommendation concurred in 
, ? 

!ervi scyjof J^sertatioi^esearch 

Engineering 
Head of Department 

Department 

Advisory Committee 

Approved: 

Director of Graduate Studies 

Dean of the College 

Approved: 

Dean of me Graduate School 

GS Form 13a 
(6/07) 



ABSTRACT 

A polymer nanostructured Fabry-Perot interferometer (FPI) based biosensor has 

been developed, fabricated, and tested. Different from a conventional FPI, this 

nanostructured FPI has a layer of Au-coated nanopores inside its cavity. The Au-coated 

nanostructure layer offers significant enhancement of optical transducing signals due to 

the localized surface Plasmon resonance (L-SPR) effect. Compared to a traditional FPI 

for label-free biosensing applications, the polymer nanostructured FPI based biosensor 

offers increased sensing surface area, extended penetration depth of the excitation light, 

and amplification of optical transducing signals. Using a nanostructured FPI, 

measurements taken had great improvements in free spectral range (FSR), finesse, and 

contrast of optical transducing signals over a traditional FPI without any device 

performance optimization. 

Several chemicals have been evaluated using the prototype device. Fourier 

Transform has been performed on the measured optical signals to facilitate the analysis of 

the transducing signals. Control experiments incubating immunoglobulin G (IgG) on a 

gold surface confirmed the small affinity of IgG to the Au-coated sensing surface. Then, 

using fluorescent images, shifts of interference fringes for IgG and BSA interaction were 

indirectly confirmed. 

Using this technical platform, the immobilization of capture proteins (Protein A) 

on the nanostructure layer and their binding with IgG was monitored in real time, 
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resulting in the direct observation of the shift in interference fringes of the optical 

transducing signals. The results showed that the detectionof limit (DOL) for this kind of 

biosensor should be lower than 10 pg/mL, which is approximately 55 fM of IgG, for IgG-

Protein A binding. Control experiments were performed to confirm that the biodetection 

is only specific to Protein A and IgG recognition. 

After the proof-of-concept demonstration for IgG-Protein A binding, the 

ultrasensitive label-free detection of a cancer biomarker free prostate specific antigen (f-

PSA) using this kind of nanostructured FPI was carried out. Experiments found that the 

DOL of the fabricated nanostructured FPI microchip for f-PSA is about 5 pg/mL and the 

upper detection range for f-PSA can be dynamically changed by varying the amount of 

mAb immobilized on the sensing surface. Control experiments have also demonstrated 

that the immunoassay protocol used shows excellent specificity and selectivity, 

suggesting great potential to detect cancer biomarkers at trace levels in biofluids. 

Given its nature of low cost, simple operation, and batch fabrication capability, 

the nanostructured FPI microchip based platform could provide an ideal technical tool for 

point-of-care diagnostic applications and anti-cancer drug screening and discovery. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Biosensors 

The human body is a perfect biosensing system. It can sense light, sound, smell, 

taste and touch by means of eyes, ears, nose, tongue, and fingers, respectively. For 

thousands of years, people have tried to mimic the function of the human body, with 

temperature sensors in refrigerators and airconditioners, gas sensors in gas-ovens, 

infrared sensors in televisions, speed sensors in vehicles, and so on. 

The first description of a biosensor was given by Leland C. Clark in 1962 as "a 

device that transforms chemical information, ranging from the concentration of a specific 

sample component to total composition analysis, into an analytically useful signal. 

Chemical sensors usually contain two basic components connected in series: a chemical 

(molecular) recognition system (receptor) and a physicochemical transducer. Biosensors 

are chemical sensors in which the recognition system utilizes a biochemical mechanism" 

[1], Thereafter, there has been an explosive growth of research on biosensors [2-5], which 

have been used for a wide variety of applications such as environmental monitoring, 

biomedical, and biological research. 

According to the International Union of Pure and Applied Chemistry (IUPAC), a 

biosensor is defined as a self-contained device, integrated with a biological recognition 

element and a transducing element [6]. Since biosensors have evolved over the past five 

1 



2 

decades, this definition is no longer appropriate. A more "modern" definition of 

biosensor is given by Newman et al. as "a compact analytical device incorporating a 

biological or biologically-derived sensing element either integrated within or intimately 

associated with a physicochemical transducer" [7]. 

Abiosensor consists of analyte, bioreceptor, transducer, and signal detector [8]. 

The component of the biosensor is shown in Figure 1.1. 

_ • • • -X. • 
••4- #-f- • 4-

. # 

••  ̂ . • 

* 4* 
+• + 

Analyte 

I I 1 
Nucleic acids 

Receptor: Antibody 

Enzyme 

I I 
Electrical 

Transducer : Mechanical 

Optical 
\ , , , / 

I 
Detector: 

Electrical Signal 

Figure 1.1 Biosensor components [7], 
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Analytes are chemical substances whose properties are measured for analytical 

purposes. Receptors are responsible for immobilizing analytes on the surface of a 

transducer. They include the antibody, enzyme, nucleic acid, etc. Antibodies are specific 

to certain antigens. The interaction between an antibody and an antigen is just like the 

relationship between a lock and a key. A specific antibody can only bind with a specific 

antigen, and enzymes have specific binding capabilities. Enzymes are also well known 

for their catalytic activities. In enzyme bioreceptor recognition, the detection is usually 

enhanced by catalyzed reaction. By using an enzyme cascade, the catalyzed reaction can 

be greatly amplified [9], Nucleic acid is another type of bioreceptor. During the past two 

decades, with the emerging of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), 

which are the basis of genetics, scientists and researchers have shown more and more 

interest in nucleic acids [10-15]. There are adenine : thymine (A : T) and cytosine : 

guanine (C : G) pairs in DNA. They are the basis of the nucleic acid recognition. 

Knowing one part of the pair, the other part can be synthesized which is usually identified 

with labels such as fluorescent dyes. Transducers are components that transform signals 

from one form to another that can be detected such as electrical, mechanical or optical 

signals. Detectors are components that recover bio transducing signals and transform 

them into electrical, mechanical or optical signals that can show information of interest 

for analytical purposes. 

Biomolecules are very small, weighted from less than 100 daltons to over 1,000 

daltons. The typical size is from a few nanometers to a few microns, as shown in Figure 

1.2. 
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Figure 1.2 Scale sizes of biomolecules [10-15] 

Transducing signals from biomolecules are very weak. In order to measure weak 

signals from small biomolecules, devices with nano- or microscale are needed. To this 

end, micro- and nanotechnologies have started to play a very important role in the 

enhancement of the sensitivity and DOL of biosensing technologies. Representative 

technologies include fluorescence [16], light scattering [17, 18], surface enhanced Raman 

spectroscopy (SERS) [19], surface Plasmon resonance (SPR) [20], photonic crystal [21, 

22], electrochemical immunosensing electrode [23], quartz crystal microbalance [24], 

(micro-) nanocantilever [25, 26], nanowire [27, 28], carbon nanotube [29], nanoparticle 

based localized SPR [30], nanohole and array [31], quantum dot [32, 33], magneto-

nanosensor [34], nanopore thin film [35, 36] technologies. Furthermore, recent technical 

advancement in nanofabrication, nanomaterial synthesis, micro/nanofluidics and bioassay 

has also enhanced the sensitivity or chip adaptability for the detection and quantification 

of protein biomarkers in biological samples via the binding to antibodies or aptamers [37], 

Biosensing can be realized by either the labeled or the label-free technique [38-

41]. The labeled biosensors require such labels as fluorescent dyes, radioisotopes, epitope 

tags [42-44] to be attached to the analytes in order to identify whether or not there are 

interactions. However, this technology has its own shortcomings such as the limited shelf 
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life of labels, the inherent toxicity caused by the labels which could also modify the 

properties of biomolecules and the need for specific read-out instrumentswith intelligent 

software and skilled lab personnel [8, 41 ]. 

In contrast to labeled biosensing, the label-free technique is attractive for 

biosensing since no labels such as fluorescent dyes need to be attached to the 

biomolecules. As a result, the experimental cost can be reduced dramatically, and the 

possible perturbation of properties of biomolecules can be completely avoided. Label-

free biosensing is a very important and efficient technique for environmental monitoring, 

biomedical, and biological research applications. 

1.2 Label-Free Biosensors 

There are three main categories of label-free biosensors in terms of transducing 

mechanisms, as shown in Figure 1.3. These transducing mechanisms include electrical, 

mechanical, and optical responses [27, 45, 46]. 

Label free transduction 
mechanism 

Mechanical Transduction 

Electrical Transduction 

Optical Transduction 

Figure 1.3 Classification of label free biosensors. 
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1.2.1 Electrical Label-Free 
Biosensors 

Electrical transduction is enabled by carbon nanotubes (CNTs) or nanowires 

(NWs) where the electrical conductance of the CNTs or NWs changes upon the binding 

between the receptors (antibodies-Abs) immobilized on them and the targets (antigens-

Ags). For example, the schematic of a NW based biosensor is shown in Figure 1.4. 

The receptors (Abs) are first immobilized on NWs. Then, the targets (Ags) bind 

with the receptors. The electrical conductance of the NWs changes upon the binding 

between the receptors immobilized on them and the targets [27, 48, 49]. 

1.2.2 Mechanical Label-Free 

Mechanical transduction is achieved by MEMS (Microelectromechanical systems) 

or NEMS (Nanoelectromechanical systems) cantilevers where the binding between an 

NanoFET Nanosensor 

Figure 1.4 Schematic of a NW based biosensor [47], 

Biosensors 
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antigentic target and an antibody immobilized cantilever surface changes the surface 

stress of the cantilever, resulting in its bending and the shifting of the resonant frequency. 

For example, the schematic of a MEMS cantilever based biosensor is shown in Figure 1.5. 

Y Y Y Y Y Y Y Y Y Y Y  

a « , '* • . 
T t • • . ' * * " 

' *• . * * * 

A 

* # 

Figure 1.5 Schematic of a MEMS cantilever based biosensor [50]. 

The receptors (Abs) are first immobilized on the tips of the MEMS cantilever. 

Then, the targets (Ags) bind with the receptors. The binding between an antigentic target 

and an antibody immobilized cantilever surface changes the surface stress of the 

cantilever, resulting in its bending and the shifting of resonant frequency [50], 

1.2.3 Optical Label-Free 
Biosensors 

Due to its non-invasive nature, high degree of sensitivity, capability of 

multiplexing, and immunity to environmental noise, the optical technique is very 

attractive for sensing applications. As nanotechnology has undergone explosive growth in 
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the past two decades, many optical components or systems such as lenses, gratings, 

mirrors, microring resonators, and interferometers have, therefore, been miniaturized for 

various sensing applications [51-56]. As a result, the field of microoptics and nanooptics 

has emerged, triggering extensive research to scale down the optics-based sensing 

platforms over the past decades. Optical label-free transduction can be achieved by such 

techniques as propagating surface Plasmon resonance (PSPR) [57], Raman spectroscopy 

[58], surface enhanced Raman spectroscopy (SERS) [59], localized SPR (L-SPR) [35], 

liquid core optical ring resonator (LCORR) [60], photonic crystal (PC) nanostructures [58, 

61], light scattering, quantum dots, microspheres [58], opto-fluidic ring resonators [59], 

microring resonators [60], and thin film interferometric devices [35, 36], These 

technologies can provide exceptional sensitivity. Some of them can even offer DOL 

down to the single molecular level, thus having great potential for the early stage 

detection of cancer/disease biomarkers. Specifically, using these technologies, the 

detection of a variety of disease biomarkers such as carcinoembryonic antigen (CEA) for 

colon cancer, prostate-specific antigen (PSA) for prostate cancer, HER2 for breast cancer 

and amyloid-beta derived diffusible ligands (ADDLs) for Alzheimer's disease has been 

demonstrated and reported [59, 60]. 

Surface plasmons (SP) can beexcited on a metal and dielectric interface by a 

monochromatic or nearmonochromatic optical source. Usually, a noble metal (gold, 

silver or platinum) thin film (50-100 nm) is coated on the surface of the substrate such as 

a glass slide or a prism, as shown in Figure 1.6. 
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Light 

source / ~ \ 
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Figure 1.6 Schematic of a PSPR based label free biosensor [62]. 

The fields associated with the SP extend into the medium adjacent to the interface 

and decay exponentially away from it. The penetration into the medium is in the range of 

<100-200 nm. Consequently, the SP is very sensitive to changes in thickness or refractive 

index in the environment near the interface between the metal and dielectric layers, and 

therefore, is used as a sensing probe. Beyond this range, the biomolecules can hardly be 

detected. Upon the excitation of the SPR, a valley in reflectance from the interface occurs. 

The position of the valley shifts to a different angle of incidence given any changes in the 

local environment at the interface.The SPR technique has seen tremendous growth over 

the past decades and has been used for a variety of applications such as drug discovery 

and homeland security [62], 

Recently, LCORR technology has been demonstrated for multiplexed biosensing 

by placing LCORR in contact with multiple anti-resonant reflecting optical waveguides 

(ARROWs). It utilizes the ARROWs to excite the whispering gallery modes of a LCORR 

sensor [63]. The schematic of a LCORR based label-free biosensor is shown in Figure 1.7. 
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Figure 1.7 Schematic of a LCORR based label-free biosensor [63]. 

One type of photonic crystal (PC) biosensors consists of a silicon waveguide 

adjacent to ID photonic crystal microcavity [64], which is evanescently coupled to each 

other [21], A change in the refractive index of the near field region surrounding the 

optical cavity results in a shift of the resonant wavelength, as shown in Figure 1.8. 

TIR boundary 
Defect layer 

ID PC X 
Substrate 

Open sensing surface 

Prism 

Figure 1.8 Schematic of a PC based label-free biosensor [64], 

Microsphere biosensors utilize the whispering gallery modes (WGMs) technique 

for the detection and analysis of microorganisms. The recirculation of photons in the 

cavities of the microsphere can tremendously enhance the signal of the evanescent wave 

between the microsphere and the surrounding medium. The enhancement of the 

evanescent field can be exploited for ultrasensitive biodetection [58], Using microsphere 

technology, label-free biodetection can be achieved by measuring the shift of resonance 
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frequency before and after the biosample is immobilized on the surface of the 

microsphere. However, specific detections of biomaterials need treatment or modification 

of the mircrosphere cavity surface. 

Porous silicon and alumina thin film interferometry for label-free DNA and 

protein interaction biodetection were pioneered by Sailor and co-workers [35, 65], yet 

engineering efforts are still needed for nanopore thin film sensors to achieve 

microfluidics-based multiplexed biosensing. A very important example of interferometric 

device is Fabry-Perot interferometer (FPI). FPIs have been designed, micromachined, and 

implemented for chemical sensing, gas sensing, ultrasonic sensing, and as optical 

modulators [51, 52], As a chemical and gas sensor, the FP cavity serves as a sensing area. 

The output signals reflect or transmit intensity through FPI, which changes with different 

chemicals [51, 52], For ultrasonic sensing, the micromachined capacitive acoustic 

transducer consists of an FPI cavity with embedded optical diffraction gratings on a 

transparent substrate. The detection sensitivity can be maintained at an optimum level by 

deflecting the membrane of the FPI. For optical modulation, an FPI contains a cross-

linked electro-optic polymer inside its cavity, offering the potential for high time-

bandwidth modulation. 

Various MEMS actuation mechanisms make some unique features of a jj,FPI 

possible. For instance, tunable (iFPIs have been demonstrated with electrostatic and 

thermal actuators. They have been exploited and utilized for wavelength division 

multiplexing (WDM) in optical communications [53] and Raman spectroscopy [54], 

oxygen detection in blood sample [55], and spectral endoscope optical imaging [56]. For 

WDM application, tunable JIFPI serves as a tunable filter, selecting different wavelengths 
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by changing the gap size of the FPI cavity. For oxygen detection in blood samples, the 

proposed jj.FPI device can detect a wide range of wavelength from visible to near infrared 

light, offering sufficient characteristics to analyze the spectrum of the blood [55], For 

spectral endoscope optical imaging, the device can acquire spectral images of a target at 

each pixel [56], Recently, jxFPI has been used to study nanoscale fluid dynamics, 

indicating its potential for nanoscience and nanotechnology research. 

Usually, (aFPIs are fabricated from silicon, polysilicon, silicon nitride, silicon 

oxide thin film or other semiconductor materials and are often operated by a laser source. 

In order to further simplify the operational procedure and lower the cost, recently a 

white-light source operated polymer FPI has been developed for (bio-) chemical sensing 

by our group. 

A FPI sensor is usually based on the principle of multiplebeam interference. In 

order to show the basic principle of a FPI sensor, a simplified FPI sensor is demonstrated. 

The refractive index inside an FPI sensor is related to its density, composition, pressure 

and temperature. The structure of a conventional FPI sensor is shown in Figure 1.9. 

I is the input light, Rx, R2 , A are reflected light and E],E2,E i, A are transmitted 

light. Optical fibers are used to collect reflected light into a spectrometer and the cavity is 

formed by two metal coated mirrors. However, this structure results in high coupling loss 

1 4 I 

Figure 1.9 Structure of a conventional FPI sensor. 
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when reflected light is coupled into optical fibers and low resolution [66]. The metal 

coated mirror on one end is usually used as the input end of light and the other coated 

mirror as the feedback mirror. In order to introduce the model, basic theories and 

methods must be described. One must consider two parallel transparent plates of 

refractive index n/, surrounded by a medium of refractive index «2, and suppose that a 

plane wave of monochromatic light shines on the plate at incident angle 0 . The 

corresponding phase difference is 

4 71 
8 = —nxhcos 9, ( 1 - 1 )  

A. 

where h is the thickness of the plate and X is the wavelength in vacuum. Let E0 be the 

amplitude of the electric vector of the incident wave, complex amplitudes of the waves 

reflected from the plate are rE0, tt'r'E^e, u'r'^E^e1'* , A , tt'rnl'"1)E0e'{p~^s, A , where 

r is the reflection coefficient, t is the transmission coefficient for a wave incident from the 

surrounding medium toward the plate, and r and /' are the corresponding quantities for 

waves traveling from the plate toward surrounding medium [66, 67], The ratio of 

reflected light intensity to incident light intensity is 

4r2 sin2 — 
R  =  ? ( 1 - 2 )  

(1 — r2)2 +4r2 sin2 — 
2 

Finesse is a key parameter of FPI. It is defined as the distance between the 

interference peaks AA, divided by the full width half maximum (FWHM) 8A of the 

peaks. Conceptually, finesse can be thought of as the number of interfering beams within 

the Fabry-Perot cavity, as illustrated in Figure 1.10. 
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Figure 1.10 Transmission spectrum of a FPI [67]. 

The slope of the constructive peak is determined by finesse. The larger the finesse 

value, the sharper the constructive peak and the larger the distance between two separate 

peaks, which means a higher resolution. The original finesse depends solely on the mirror 

reflectance in an ideal FPI and is commonly approximated (for R > 0.5) by 

71 • V/? 
No = . (1-3) 

* 1 -R '  

The higher the reflectance, the larger the finesse. The finesse can be degraded by 

the defects of the mirror, such as imperfect flatness and imperfect parallelism [66, 67]. 

The ratio of the energy of reflected light to incident light from a dielectric is given 

by the Fresnel equations. In the case of normal incidence, 

R 
E, 

2 
,n2 ,2 
H ~) , (1-4) 
n2 + nx  

where Er  and E t  are reflected and incident spectral intensities, respectively. The 

spectrometer is the equipment used to measure the reflectance [67]. 

All of these technologies in the above review have shown excellent detection 

sensitivity and ultra low DOL. However, these label-free optical techniques are plagued 

by some or all of the following issues: expensive nanofabrication processes (i. e. PC 
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sensors), complicated and expensive optical setup for operation (i. e. PC, LCORR, and 

SPR sensors), and difficulty of miniaturization (i. e. LCORR and SPR sensors) for 

microfabricating arrayed sensors for multiplexed detection. Even though the traditional 

^FPI shows elegant sensitivity and performance for various sensing applications, its 

limitations are obvious: limited sensing area due to the small surface areas of the planar 

plates of the jiFPI, limited penetration depth of the excitation light in the sensing area, 

and limited intensity of the transducing signal due to the optical power losses of the 

reflected or transmitted light from the FPI at the interface of air and the FPI plates. These 

issues contribute to the difficulty of making these platforms cost-effective and compact. 

A new type of disposable label-free optical biosensors based on micromachined 

polymer Fabry-Perot interferometers (jiFPIs) has been developed [68]. The schematic of 

a white-light source operated jiFPI chemo/biosensor is given in Figure 1.11, showing 

immobilized antibodies (Abs) on the surface of the Au-coated glass surfaceand the 

binding between Abs and antigens (Ags). 

1.3 Previous Work and Problems 

Receptor (Ab) 

FP cavity 

Outlet 

An thi n film 

Proteins (Ag) 

Figure 1.11 Schematic of a PDMS based JJIFPI chemo/biosensor. 
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This type of (iFPl is fabricated using polydimethylsiloxane (PDMS) plate and a 

glass plate. The PDMS and glass plates serve as two FPI planar plates. The sensing 

surface is the glass plate inside the FPI cavity, which is about 100 (im x 100 jam in area. 

A fiFP cavity with a gap of 50 is formed between them, serving as the sensing area. 

At the current stage, both plates do not have any thin film coating to enhance their 

reflectivity like the traditional macroscale FPI or reported (xFPI. The fiber optics based 

testing setup is illustrated in Figure 1.12. 

/"VTo spectrometer 

Optical fiber probe 
•Illumination light 

Center fiber to collect 
reflected light 

End surface of the 
optical fiber probe FPI chemo/biosensor 

Figure 1.12 Optical setup of a FPI biosensor. 

The customized optical fiber probe delivers the white-light to the sensor as well as 

receiving the reflected transducing signals from the (iFPI sensor, which are coupled to a 

spectrometer. The optical fiber probe consists of a tight bundle of seven optical fibers in a 

stainless steel ferrule. The center fiber collects the reflected light while the outer six 

fibers deliver illumination light to the FPI chemo/biosensor. 
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The operation principle of this sensor is shown in Figure 1.13. Upon entering the 

FPI cavity, the operation light undergoes multiple internal reflections between the two 

FPI plates and interferences inside the cavity. The reflected and transmitted light goes 

through the FPI as output transducing optical signals. 

Light! . 
Reflected 

' light 

^ nl 

FP cavity n 

' Transmitted 
light 

Figure 1.13 Operational principle of a FPI. 

As a result, modulated output transducing signals, such as reflected or transmitted 

interference fringes, are generated as shown in Figure 1.14. 

Protein A 

Binding between Protein A 
and porcine IgG 

Wavelength (nm) 

Figure 1.14 Inference fringe shift before and after binding. 
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The shift is due to the effective index of refraction changes in the FPI cavity with 

the binding between Protein A and Porcine IgG. More specifically, Protein A molecules 

serve as the probes and are immobilized on one FPI plate surface. When a variety of IgG 

antibodies are flowed through the cavity, they bind to Protein A, causing changes of the 

effective index of refraction. The binding results in the interference fringes shift (AA), 

which serves as the optical transducing signals. 

The performance of the FPI is determined by its finesse F, which is related to the 

free spectra range (FSR=AA) and the full-width at half-maximum (FWHM) 5X [67]. The 

sketch of the optical system, including the optical fiber and the fiFPI for the modeling, is 

illustrated in Figure 1.15. 

PDMS Optical fiber 

Optical coupling between the fiber and FPI 

Figure 1.15 Sketch of the optical system. 

The system includes the optical fibers and the |iFPI device: the indices of 

refraction of PDMS, medium in FPI cavity and glass are «/, «2 and A customized 

optical fiber probe delivers the white-light from a tungsten halogen source 

perpendicularly to a biochemical sensor. This probe also receives the reflected signals 

from the sensor, which is eventually coupled to a spectrometer [67]. The loss of the 

optical coupling between the fiber and jxFPI sensor needs to be considered. 
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One may assume the loss coefficient of (aFPI cavity is L and the loss between the 

fiber probe and jiFPI is L^er-i-Ph then, the reflected intensity lr from this system, coupled 

to the spectrometer, is written as, 

I, = /, exp(-2(A"^r) x Ln^m x /(/?_mu,, R^J, (1-5) 
or 

where 

f ( R  q  \ - '~2 +  ^fpi ~ 2r1r iLFPI  cos{2kn2d) ,. ^ 
a,r-PDKiS. airbus, } ^ ̂  ̂  2 _ ^ ̂ ̂  ̂ (2^ d) ' 

r2 = -rx  = ———, r, = , I,exp(-2(A-A ( l)2/oj) is incident light intensity, A0 is the 
«2 + «, n2 + «3 

center wavelength of the light source, co is the beam radius at the beam waist, f(Rai,-PDMs, 

Rair-ghss) is the reflectivity from the jiFPI, Rair-PDMs and Rair-gtass are reflectivities at the 

interface between air and PDMS, and air and glass, respectively, d is the gap size of FPI 

cavity, and ni, ri2 and nj are the indices of refraction of PDMS, the medium in FPI cavity, 

and glass, respectively. 

The measured output signal from a (J.FPI device with air inside its cavity is given 

in Figure 1.16 based on the model proposed in principle of FPI. The calculated 

transducing signals with air in the FPI cavity match the measured signals quite well as 

shown in Figure 1.16. Note that the intensity of the white-light source across the 

wavelength range, from 360-2,500 nm, is not uniform. The envelope of the interference 

fringes is the profile of the intensity of the white-light source. 
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Figure 1.16 Calculated and measured transducing signals. 

A protein-protein binding assay has been used to demonstrate the operation and 

biomolecular detection capability of the polymer based jiFPI at room temperature. The 

measured transducing signals for PBS, immobilized Protein A, Protein A bound with 

Porcine IgG, Protein A bound with sheep IgG and Protein A bound with rabbit IgG have 

been tested. The shifts in interference fringes are clearly observed, indicating differences 

of effective refraction indices of these three different types of IgGs. 

In previous work, a polymer based (J.FPI biochemical sensor had been developed 

and its biomolecular detection capability demonstrated successfully. The simple, cost 

effective, and disposable nature of this type of sensor is attractive for point-of-care 

biodetection applications. The experiments show that DOL of this sensor is between 50 

and 5 ng/ml for the rabbit IgG. 

However, for biochemical sensing, a conventional (J.FPT has intrinsic limitations. 

First, it has a limited sensing surface area (100 (J.m x 100 fxm), which means that binding 

x 10 

Measurement 

Calculation 

5 x 10 

660 
Wavelength (ma) 
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sites available for biomolecules are limited, resulting in low transducing signals. Second, 

the optical sensitive range/area is essentially limited only on the surface of the planar 

glass plate. Finally, it has a limited intensity of the transducing signals due to the optical 

power losses of the reflected light from the FPI at the interface of air and the FPI plates. 

It is highly possible to enhance the sensitivity and detection of limit significantly by 

introducing some nanostructures inside the FPI cavity [69, 70], 

1.4 Dissertation Objectives 

The aim of this dissertation research is to develop and investigate a novel 

nanostructured Fabry-Perot interferometer which is able to realize ultrasensitive label-

free biodetection. First, a nanostructured Fabry-Perot interferometer will be introduced 

and demonstrated. Then, Raman signal enhancement and interferometer signal 

enhancement based on gold coating nanostructured devices will be demonstrated to 

enhance optical transducing signals, including improving the finesse, the free spectral 

range,improving the DOL and enhancing the intensity of output signal. Based on this 

concept, a nanostructured device will be developed. Proof-of-concept demonstrations 

using IgG-Protein Abiodetection will be performed first. Thereafter, further experiments 

and experimental analysis will be carried out for ultrasensitive detection of a cancer 

biomarker using this technical platform. 

1.5 Organization of Dissertation 

Chapterl introduced biosensors and their components and reviewed three major 

types of label-free transduction mechanisms, which include an electrical biosensing 

mechanism, a mechanical biosensing mechanism and an optical biosensing mechanism. 



22 

Related work of developing biosensors that utilize electrical, mechanical, and optical 

transductons has been reviewed. Advantages and disadvantages have been investigated 

by comparing the previous work. Most recent examples of research on polymer based 

[iFPI biosensors and their future have been presented. Chapter 2 will cover the materials 

and equipment which will be used in later experiments. 

Chapter 3 will introduce the design of nanostructured Fabry-Perot interferometer 

based biosensors and the fabrication process. The prototype device will be evaluated 

using several chemicals. Fourier transform will be performed on the measured optical 

signals to facilitate the analysis ofthe transducing signals. Finally, the device will be 

funetionalized for subsequent immunosensing. 

Chapter 4 will investigate Raman signal enhancement and interferometer signal 

enhancement based on gold coating nanostructured devices to enhance optical 

transducing signals, including improving the finesse, the free spectral range, the DOL, 

and enhancing the intensity of the output signal. Then, a finite element analysis (FEA) of 

signal enhancement will be performed to simulate the signal enhancement. 

Chapter 5 will indirectly confirm the shifts of interference fringes for label-free 

biodetectionof IgG and BSA interaction using fluorescent imaging. A control experiment 

incubating immunoglobulin G (IgG) on gold surface will be carried out to confirm the 

small affinity of IgG to the gold coated sensing surface. 

Chapter 6 will describe and investigate a protein-protein (Protein A and Porcine 

IgG) binding assay based biosensor using this nanostructured Fabry-Perot interferometer 

for proof-of-concept demonstration. The DOL will be tested for this biosensing technical 

platform. Control experiments will be performed to check if Sea Block binds with Protein 
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A or IgG to confirm that the biodetection is only specific to Protein A and IgG 

recognition. 

Chapter 7 will describe and investigate the application for the ultrasensitive label-

free detection of a cancer biomarker using this technical platform. Specifically, the 

prostate cancer biomarker free prostate-specific antigen (f-PSA) will be detected with a 

mouse anti-human PSA monoclonal antibody (mAb) as the receptor. The DOL of this 

nanostructured FPI microchip for f-PSA and the upper detection range for f-PSA will be 

determined. The control experiments will be carried out to demonstrate that the 

immunoassay protocol used in the experiments shows excellent specificity and selectivity, 

suggesting the great potential to detect the cancer biomarkers at trace levels in biofluids. 

Chapter 8 will give the conclusion for the dissertation. Recommendations for 

future work will be further discussed. 



CHAPTER 2 

MATERIALS AND EQUIPMENT 

2.1 Materials 

The assay reagents used in the experiments included Protein A (Pierce 

Biotechnology, Inc.), bovine serum albumin (BSA) (Sigma-Aldrich, Co.), buffer solution 

phosphate buffered saline (PBS) (Sigma-Aldrich, Co.), Sea Block (Pierce Biotechnology, 

Inc.), Porcine, Rabbit and Goat IgG (Sigma-Aldrich, Co.) and free-PSA monoclonal 

antibody (Anogen-YES Biotech Laboratories, Ltd.). 

2.1.1 Immunoglobulin G 
and Protein A 

An antibody is usually a Y-shaped protein with large molecular weight. The 

foreign targets, such as bacteria and viruses, are called antigens. Due to the existence of 

antibodies, large foreign molecules, such as antigens, could be detected by theimmune 

system, neutralized and then cleaned out of the body. Antibodies are specified to their 

corresponding antigens with high affinity. In the field of clinical research, this feature 

makes antibodies a good choice of biological agents for treating a variety of diseases [71]. 

The structure of an antibody is shown in Figure 2.1. 

24 



25 

Antigen 
Antigen 

Figure 2.1 Structure of an antibody [71]. 

An antibody usually has a Y shape. The arms of the Y shape have their unique 

functions. The upper two arms consist of binding sites for antigens. This region is termed 

the "fragment, antigen binding (Fab) region" [29], The base of the Y-shape contains the 

function group, carboxyl group COOH, and is used for further binding. This region is 

termed the "fragment crystallizable(Fc) region" [29], 

As a type of antibody, IgG is specified to detect Protein A. This technology is 

widely used in biological research. In this work, Porcine IgG is purchased from Sigma-

Aldrich, Co. 

Protein A is usually derived from the cell wall of staphylococcus aureus bacteria. 

It has a large molecular weight of 40-60 kDa. The structure of Protein A is shown in 

Figure 2.2. 
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Figure 2.2 Structure of a protein molecule [72], 

Due to its capability of binding with IgG, Protein A has been widely in 

biomedical research. Its structure consists of five homologous Ig binding sites, each of 

which could bind with different IgGs with different affinities. However, Protein A loses 

its function when it is denatured. 

In this work, Protein A was purchased from Pierce Biotechnology, Inc. Usually, 

Protein A is first immobilized onto a substrate. The immobilized Protein A is used to 

purify IgG from a mixture sample such as serum or ascites fluid [73], 
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2.1.2 Bovine Serum Albumin and 
Anti-Bovine Serum Albumin 

Bovine serum albumin (BSA) is a serum albumin protein prepared from cows. 

There is a lot of serum albumin in the human body and other mammals, making it 

essential for body fluids. However, it is also harmful if there is too much serum albumin 

in the body. 

BSA has a molecular weight of 66.5 kDa. It has a high affinity and specificity for 

the anti-BSA antibody. BSA has been widely used inthe pharmacological and 

toxicological field [74], In this work, BSA was obtained from Sigma-Aldrich, Co. It was 

diluted with PBS (pH=7.5) solution at several different concentrations of 50, 100, 500, 

5,000 pg/mL. The analyte was anti-BSA IgG. In this work, anti-BSA Rabbit IgG and 

anti-Rabbit Goat IgG were also purchased from Sigma-Aldrich, Co. They were prepared 

by conjugating the IgG fraction of anti-bovine serum albumin (BSA) to cyanogen 

bromide-activated agarose. 

Secondary anti-BSA Rabbit IgG labeled with FITC was used to confirm the 

binding between BSA and primary anti-BSA Rabbit IgG and verify the weak affinity of 

primary anti-BSA Rabbit IgG to gold surface. In this work, secondary anti-BSA Rabbit 

IgG labeled with FITC was purchased from Sigma-Aldrich, Co. 

2.1.3 Phosphate Buffered Saline 
and Sea Block 

Phosphate buffered saline (PBS) was used to prepare the Protein A, IgG, and BSA 

solutions. In this work, PBS was purchased from Sigma-Aldrich, Co. PBS was prepared 

by mixing sodium and potassium chloride with small quantities of Na2HPC>4 and KH2PO4 

in distilled or deionized water. It had the pH value of 7.5 at 25 °C. 
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Sea Block was purchased from Pierce Biotechnology, Inc. It is a protein based 

blocking buffer prepared from steelhead salmon serum in PBS. It is widely used as a 

blocking agent in immunohistochemistry and biological detection using mammalian 

samples. 

2.1.4 SU8 and Poly Dimethvlsiloxane 

SU8 is a photosensitive epoxy-based polymer. SU8 is becoming widely used in 

the fields of micromechanics and microfluidics mainly by soft lithography [75, 76], The 

structure of a SU8 molecule is shown in Figure 2.3. 
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Figure 2.3 Structure of a SU8 molecule [77]. 

A structure of a SU8 molecule consists of eight epoxy groups. SU8 is a negative 

photo resist. Upon exposure to UV light, the SU8 molecules cross link, making the mold 

solidified. Usually, SU8 can be spun up to a thickness of 0.1 (j.m to form high aspect ratio 

structures [78], In this work, SU8 2050 is purchased from MicroChem, Corp. and was 

used for fabricating the mold for the bio interaction chamber on a silicon wafer. 
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Poly (dimethylsiloxane) (PDMS) was well known as a silicon-based organic 

polymer. It has such biocompatibility as nonirritating to skin, no adverse effect on mice 

or rabbit. It is highly hydrophobic, with contact angles from 90° to 120°. Its melting point 

is above 40°. It has been widely used to make the replica from SU8 mold to construct 

microfluidic devices [79]. The structure of PDMS is shown in Figure 2.4. 

PDMS has such advantages as cost effective, easy to fabricate and optically 

transparent. These features make PDMS suitable for fabricating optically integrated 

devices using micro molding [79, 81]. PDMS is also inert to many chemicals and non

toxic and non-flammable. These features make PDMS suitable for biomedical testing 

In this work, PDMS (MicroChem, Corp.) was used to bond with the substrate to 

form the sensing chamber and micro fluidic channels. The surface of PDMS was 

hydrophobic after being cured. The surface of PDMS was treated with oxygen and 

bonded with the substrate. 

Figure 2.4 Structure of PDMS [80]. 

[82]. 
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2.1.5 Rhodamine 6G 

Rhodamine 6G (R6G) is a chemical compound and its structure is shown in 

Figure 2.5. 

R6G is a tracer dye and also a laser dye. As a tracer dye, its fluorescent efficiency 

is amongst the highest, and it is highly stable [84], It is easy and inexpensive to detect 

with fluorometers. Therefore, R6G has been extensively used in environmental 

monitoring, food analysis, and biological research [85], 

As a laser dye (also called gain medium), it has the characterization of low cost, 

higher photochemical stability, and lower lasing threshold [86], Noble metals such as 

gold, silver can cause multiphoton induced emission on roughened surfaces. R6G can 

significantly enhance themultiphoton induced emission [87]. 

In this work, R6G (Lightning Powder Company, Inc.) was used to evaluate the 

optical signal enhancement capability of the Au-coated nanopore layers by measuring its 

Raman signals. A 250 R6G solution was prepared by mixing 0.12 mg R6G powder 

with 1 mL DI water. Substrates was immersed in R6G aqueous solution and incubated. 

Then, Raman spectroscopy measurements were performed on these substrates. 

Figure 2.5 Structure of Rhodamine 6G [83]. 
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2.1.6 Free Prostate Specific Antigen 

Mouse anti-human PSA monoclonal antibody (detector mAb) (catalog # T40081B, 

clone # CHYH2), ELISA kits for human f-PSA (catalog # 10050) were obtained from 

Anogen-YES Biotech Laboratories, Ltd. (Mississauga, Canada). The 10 ng/mL free-PSA 

standard solution was used for the preparation of free-PSA solutions with lower 

concentrations using sample dilutant provided in the ELISA kit. The 10 ng/mL free-PSA 

standard solution was prepared in a protein matrix solution according to the WHO 

standard by the vendor. The concentrations of diluted free-PSA included 0, 5, 10, 50, 100, 

500, 5000 pg/mL for the experiments. Absolute ethanol was obtained from Thermo 

Fisher Scientific, Inc., USA. Dionized (DI) water is obtained from a DI water purification 

system (Millipore, France). 

2.2 Equipment 

The experimental setup is shown in Figure 2.6. It includes a white-light source, 

optical probe, optical fibers, stage, syringe pumps, spectrometer, and data analysis system. 

1 >.H.l iUl.lh st:. 
svstcm 
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Figure 2.6 Experimental setup for optical testing. 
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2.2.1 White-Light Source 

The white-light source shown in Figure 2.7 was purchased from Ocean Optics, 

Inc. It is a tungsten halogen white-light source (LS-1), with a spectrum range from 360 

nm to 2,500 nm. The LS-1 is featured with an SMA 905 connector, which can be easily 

coupled to optical fibers with SMA 905 connectors. 

Figure 2.7 Photograph of a white-light source. 

2.2.2 Spectrometer 

The spectrometer was also purchased from Ocean Optics, Inc. The spectrometer 

(USB4000) has a resolution of 0.21 nm and the smallest integration time is 3 ms. The 

USB4000 is featured with an SMA 905 connector, which can be easily coupled to optical 

fibers with SMA 905 connectors, as shown in Figure 2.8. 
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Figure 2.8 Photograph of a spectrometer. 

2.2.3 Optical Fiber and Probe 

The optical fiber probe was customized from Ocean Optics, Inc. The optical fiber 

probe consists of a tight bundle of seven optical fibers in a stainless steel ferrule, as 

shown in Figure 2.9. The center fiber was used to collect the reflected light while the 

outer six fibers deliver the illumination light to the FPI chemo/biosensor. This optical 

fiber probe delivers white-light from a tungsten halogen source perpendicularly to a 

biochemical sensor. This probe also receives the reflected signals from the sensor, which 

was eventually coupled to a USB4000 spectrometer. 

Center fiber to 
reflected light 

Optical fiber probe 

End surface of the 

Illumination light 

FPI chemo/biosensor optical fiber probe 

Figure 2.9 Schematic of an optical testing setup. 
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2.2.4 Opto-Mechanical Components 

According to the manufacturers, opto-mechanical components should be set up on 

top of an optical platform (Newport, Inc.) to hold the optical fiber probe. The optical fiber 

probe was fixed on a probe holder kinematic mount with three-screw adjustment 

(Edmund Optics, Inc.), as shown in Figure 2.10. The holder can adjust the angle of the 

probe. Other posts, holders and adaptors were purchased from Thorlabs, Inc. 

Figure 2.10 Probe holder. 

2.2.5 Raman Microscope 

SENTERRA Raman Microscope (Bruker Optics, Inc.) was used to measure the 

Raman signals of R6G on glass, AAO, and Au-coated AAO substrates, respectively. The 

system is shown is Figure 2.11. 

Figure 2.11 Photograph of a Raman microscope. 

In this Raman spectroscopy, a 785 nm laser was used for exciting Raman signals. 

This instrument incorporates a patented automatic fluorescence rejection (AFR) method 
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for eliminating fluorescence from samples, thereby increasing the ratio of signal-to-noise 

of Raman signals. 

2.2.6 Sputter Coater 

The sputtering machine Cressington 108 Sputter Coater used to sputter gold was 

made by Cressington Scientific Instruments, Inc. 

The sputter coater can work in two modes, either manual or automatic. In the 

automatic mode, there are two options. The first option is multi-thickness mode (MTM). 

In this option, the coating process stops when assigned thickness is reached. The second 

option is timer-control mode. In this option, the coating process stops when assigned time 

was reached. 



CHAPTER 3 

DESIGN, FABRICATION, AND EVALUATION 

3.1 Design 

A schematic of two microfluidic nanostructured FPI devices on a single chip is 

illustrated in Figure 3.1. Each device consists of a PDMS plate, an Au-coated nanopore 

layer, and a glass plate. The Au-coated nanopore layer is anchored inside the FPI cavity. 

The average size of nanopores before Au coating is -50 nm in diameter and the gap size 

of the FPI cavity is 50 p.m. Note that for some nanostructured (J.FPI devices, the nanopore 

layer is not Au coated for comparison in some experiments. 

Nanopore-plasmonic 
substrate j| 

PDMS laver \ * 

Sample/* 
etecti<jjg£S 

Figure 3.1 Schematic of two nanostructured FPIs. 
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3.1.1 Microfluidic Chip 

For conventional immunoassays, probe molecules and target molecules are 

pipetted to the wells of the immunoassays and incubated for reaction without stirring. 

One of the disadvantages of conventional immunoassays is the relative large amount of 

samples, which are expensive. This problem can be solved by using the micro or 

nanotechnology to reduce the volume of the samples to nano- or picoliters. The other 

disadvantage of conventional immunoassays is the relatively long incubation time, which 

occurs because of its dependence on the diffusion time. The large molecules used in the 

experiments such as IgGs (150 kDa), diffuse very slowly in the wells of the 

immunoassays. The relation between the diffusion time and the diffusion distance inside 

a well follows the Einstein-Smoluchowski equation, as shown in Eq. (3-1) 

d=(2Dt) m ,  (3-1) 

where d is the diffusion distance, t is the diffusion time, and D is the diffusion coefficient. 

For IgGs with a diffusion coefficient D of 4xl0"7cm2/s, it takes about three and 

one-half hours to diffuse 1 mm distance, which is the order of distance in a well of an 

immunoassay. However, the much smaller chamber dimensions, such as 50 ^m, in this 

design, could reduce the diffusion distance, and therefore, the diffusion time to less than 

1 min. Thanks to the micro- and nanotechnology, microfluidic chips based on the 

polymer PDMS was used to shrink the dimensions of the sensing chamber and speed up 

the detection and analysis process. 
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3.1.2 Nanostructured Fabry-Perot 
Interferometer 

The embedded nanopores inside the FPI cavity were used for increasing the 

sensing surface area, namely increasing the number of binding sites for the biomolecules. 

The cross section view of the nanostructured FPI biosensor is shown in Figure 3.2. 

The sensing surface area includes the top, bottom surfaces of the nanopore layer, 

and sidewalls of the nanopores. The thickness of the nanopore layer is 3 (im. Therefore, 

the penetration depth of the light can be 3 fim. In other words, the optical sensitive range 

had been extended to 3 |im from the top surface of the nanopore layer. The Au thin film 

that is coated on the nanopore layer and sidewalls of the nanopores was used for 

enhancing the optical signal intensity. 

3.2 Fabrication 

The fabrication of a nanostructured Fabry-Perot interferometer includes the 

PDMS based microfluidic chip, the porous anodic aluminum oxide, the gold thin film 

coating, and the assembly of the chip. 

Reflected light 
(iFP cavity 

Broadband light source 

Figure 3.2 Cross section view of a nanostructured FPI. 
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3.2.1 Fabrication of PDMS Based 
Microfluidic Chip 

The device was fabricated using an inexpensive and rapid soft lithography process 

[88], First, SU8 was spin coated on a standard 100 mm diameter silicon wafer. An optical 

micrograph of the SU8 mold of one single (iFPI device showing the integrated channel 

for sample delivery to the FP cavity is given in Figure 3.3. The diameter of the FPI plate 

was 250 ^m. The thickncss of the SU8 mold of the device was 50 ^.m. 

Figure 3.3 Optical micrograph of a SU8 mold. 

A 50 pm high SU8 mold was formed on the silicon wafer as shown in Figure 3.4 

(A). PDMS was casted on the mold, followed by a 1.5 hr curing at a temperature of 65 °C, 

as shown in Figure 3.4 (B). Then, the PDMS layer was peeled off from the mold. After 

this step, the input and output channels were made in the PDMS layer using a 1.5 mm 

diameter hole puncher, as shown in Figure 3.4 (C). 
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Figure 3.4 Fabrication process of a PDMS microfluidic chip. 

An optical image of a 2 x 2 PDMS FPI device is shown in Figure 3.5. The cavity 

length is 50 (J.m. The diameter of each FPI chamber is 250 |im. 

Figure 3.5 Optical micrograph of 2 x 2 PDMS-FPIs. 
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3-2.2 Fabrication of Porous Anodic 
Aluminum Oxide 

The device consisted of a PDMS layer and an Au-coated nanopore layer. The 

nanopore layer was a porous anodic aluminum oxide (PAAO) layer. The PAAO layer 

was fabricated from an aluminum substrate using a standard two-step anodization process 

[89], The fabrication process of the nanostructures began with a polished aluminum plate, 

as shown in Figure 3.6 (A). Then, the nanopores were formed using two-step anodization 

process, as shown in Figure 3.6 (B). A 5 A Cr adhesion thin film was sputter coated on 

AAO, as shown in Figure 3.6 (C). Finally, a 50 A Au thin film was sputter coated, as 

shown in Figure 3.6 (D). 

Aluminum 

(A) 

I 
Porous AAO 

(B) 

I 
Sputter Cr 

nnnnnnnnnn 
(C) 

i 
SputterAu 

nnnnnnnnnn 
(D) 

Figure 3.6 Fabrication process of nanostructures. 
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Major steps for the anodic aluminum oxide (AAO) fabrication included polishing 

of the aluminum substrate, two-step anodization process, and release of the AAO barrier 

layer. 

The aluminum plate was purchased from Alfa Aesar, Inc. During the initial 

experiment, the aluminum plate was first cut into small square pieces while trying to 

better perform the fabrication process. The SEM image of the close-up of a bare 

nanopore structure layer is shown in Figure 3.7. 

Figure 3.7 Close-up SEM image of a bare nanopore layer. 

It has arrayed pores with size of about 50 nm in diameter. The size of the 

nanostructure as well as the space among them, can be tuned by changing the operational 

parameters during the fabrication process. 

It should be noted that depending on specific applications, the size of 

nanostructure as well as the space among them, can be readily tuned during the 

fabrication process from several ten nanometers to several hundred nanometers (e. g., 

100-200 nm) in diameter [89], Hence, the nanopores are big enough and can provide 

sufficient volumes and surface areas for biomolecular interaction inside them. 
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3.2.3 Gold Thin Film Coating 

After fabricating the nanostructures, in order to enhance the optical transducing 

signal, a thin layer of gold was coated on top of the nanopore layer using sputter coating. 

First, a layer of 5 A thick Cr was deposited onto PAAO as an adhesive layer. Then, a 

layer of Au thin film was deposited. Au thicknesses were from 5 A to 100 A in these 

experiments. For comparison, close-up SEM images of a bare AAO layer and an Au-

coated AAO layer are given in Figure 3.8. As shown, the Au thin film on AAO layer 

clearly consists of Au nanoparticles with size in the range of 10-20 nm. The gold 

nanoparticles in this structure play the major role in enhancing the intensity of the optical 

signal due to the localized surface Plasmon resonance effect [90, 91]. 

Figure 3.8 SEM images of bare AAO and Au-coated AAO. 

In order to have a three dimensional view of the nanostructure, an AFM image of 

a topside view of the nanopore layer and a 3D AFM image of the nanopore layer are 

given in Figure 3.9, showing the nanopores uniformly distributed. On the left, there is a 

top side view of the nanopore layer. On the right, there is a 3D AFM image of the 

nanopore layer. 



44 

Figure 3.9 AFM images of nanopores. 

3.2.4 Assembly of the Biosensing 
Platform 

Finally, the PDMS layer and the Au coated nanopore layer were bonded together 

to complete the device fabrication after an oxygen plasma treatment. The input and 

output wells were made in the PDMS layer for the delivery of samples to the nanopore-

FPI or Au-nanopore-FPI devices. 

The fabrication process flow and the assembly of the nanostructured FPI 

biosensor began with the SU8 mold by the soft lithography process, as shown in Figure 

3.10 (A). Then, PDMS microfluidic channel was formed using the SU8 mold, as shown 

in Figure 3.10 (B). The input and output channels were punched with a 1.5 mm diameter 

hole puncher, as shown in Figure 3.10 (C). The nanopore layer began with a polished 

aluminum plate using a two-step anodization process, as shown in Figure 3.10 (D). A 5A 

Cr adhesion thin film was sputter coated on AAO, as shown in Figure 3.10 (E). Then, a 

50 A Au thin film was sputter coated on top, as shown in Figure 3.10 (F). Finally, the 

PDMS microfluidic chip was bonded with the Au coated AAO to form the biosensor chip, 

as shown in Figure 3.10 (G). 
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Figure 3.10 Assembly process flow of the biosensing platform. 

The optical micrograph of the assembled polymer Au-nanopre-FPI is shown 

Figure 3.11, compared with a nickel. 

Input 

PDMS 

Figure 3.11 Photograph of a PDMS-based nanostructured FPI. 
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The arrayed devices can be readily and rapidly batch-fabricated, offering a cost 

effective and disposable biosensing technical platform with high throughput. 

3.3 Evaluation 

The prototype Au-nanopore-FPI sensor has also been evaluated with some 

chemicals such as IPA, ethanol, and water. As expected, clear shifts of the interference 

fringes has been observed in Figure 3.12 due to their different refractive indices. The 

coated Au thickness was 20 A. 

rrHmlnhXNk\f-•***? (Iff jfIf \ l 1\J \ JG I jf/\ K / 
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Wavelength (mn) 

Figure 3.12 Evaluation of a prototype device. 

In Table 3.1, the average fringe peak shifts relative to air inside the FPI cavity are 

summarized. The average shift was obtained by averaging the shift of the fringe peaks 

between the 400 nm to 1100 nm spectrum window. Given the resolution of the USB4000 

Spectrometer is 0.02 nm, the measurement error for the fringe peak shift is ± 0.01 nm. It 

should be noted that if the nanopores are blocked due to thicker Au coating, the 

interference fringes will disappear as observed in these experiments. This result 

confirmed that the nanopores play an important role in the formation of interference 

fringes. 

Water JPA 

Air Ethanol 
\ A JC' 
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Table 3.1 Fringe peak shift and EOT change. 

Material Average interference peak shift 
relative to air (400 nm-1100 nm) 

Calculated EOT change 
relative to air (nm) 

Water 24.94 ± 0.01 nm 517.8 nm 

IPA 37.09 ±0.01 nm 776.7 nm 

Methanol 22.67 ±0.01 nm 258.9 nm 

In order to simplify the analysis of transducing signals, Fourier Transform (FT) 

was performed on measured optical signals. For an FPI device, the wavelength (A) of the 

peak maxima in the interference spectrum is given by: ml=2nL, where m is the spectral 

fringe order, n is the effective refractive index of nanostructure layer and its contents in 

the cavity, L is the geometric thickness of nanostructure layer and FPI cavity gap. 2nL 

represents the effective optical thickness (EOT) and can be obtained from FT of 

measured spectrum in Figure 3.12 [92], As a result, only a single peak was presented for 

each case, as shown in Figure 3.13, in which the x-axis was EOT [92]. Changes of EOT 

for different chemicals relative to air inside the FPI cavity are summarized in Table 3.1. 
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Figure 3.13 The FT plot for evaluation. 
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3.4 Functionalization 

The antibody IgG is usually a Y-shaped protein with large molecular weight. The 

foreign targets such as bacteria and viruses are called antigens. Due to the existence of 

antibodies, large foreign molecules such as antigens could be detected by the immune 

system, neutralized, and cleaned out of the human body. Antibodies are specified to their 

corresponding antigens with high affinity. In the field of clinical research, this feature 

makes antibodies a good choice of biological agents for treating a variety of diseases [71]. 

The schematic of an antibody structure is shown in Figure 3.14. The arms of the Y-shape 

have their own unique functions. The upper two arms consist of binding sites for antigens. 

This region is termed the "fragment, antigen binding (Fab) region" [29]. The base of the 

Y-shape contains the function group, carboxyl group COOH, and is used for further 

binding with the antigen. This region is termed the "fragment crystallizable (Fc) region" 

[29], 

Antigen binding sites 

"Fab region 

-Fc region 

Figure 3.14Schematic of an antibody structure [29]. 
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In this work, the part of the antibody used to detect the antigen was the Fc domain 

of IgG. It contained the base as the binding site, which was used to bind with Protein A.It 

should be noted that different from the conventional immobilization of IgG first and 

binding with Protein A sequence, Protein A was immobilized due to its high affinity with 

gold surface and used to orient IgG. 

As a type of antibody, IgG is specified to detect the antigen Protein A. Protein A 

is usually derived from the cell wall of staphylococcus aureus bacteria. It has a large 

molecular weight of 40-60 kDa. Due to its capability of binding with IgG, Protein A has 

been widely used in biomedical research. Its structure consists of five homologous IgG 

binding sites, each of which could bind with different IgGs with different affinities. 

However, Protein A loses its function when it is denatured. 

Protein A was first immobilized onto a substrate. Then, the immobilized Protein 

A was used to purify IgG from a mixture sample such as serum or ascites fluid [73]. At a 

pH value of 7.4, Protein A is negatively charged [29]. It can be immobilized on gold 

surface by physical forces. Initially, PBS was pumped into the FPI cavity to rinse the 

device. Thereafter, the Protein A solution is applied into the device and allowed to stay 

for 30 min at room temperature, as shown in Figure 3.15 (A). The Protein A had 

sufficient time to bind to the Au-coated surface of the nanopore structures and served as 

capture proteins. The unbound Protein A was then washed away using PBS solution. The 

washing routine consisted of at least three cycles of pumping PBS through the device and 

each cycle lasting for 3mins. The measurement of the optical transducing signals was 

taken at each cycle for three times and checked for measurement repeatability. In order to 

block the sites on the nanopore layer unoccupied by Protein A, the solution was pumped 
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next into the device. The solution was allowed to stay for 15 mins at room temperatureas 

shown in Figure 3.15 (B). Then, the solution was pumped out and the wash and 

measurement routine was performed. Thereafter, the IgG solution was applied onto the 

device and allowed to settle and bind with Protein A for 15 to 30 mins at room 

temperature as shown in Figure 3.15 (C). The measurement was taken after washing the 

excess unbound IgG using PBS solution. 

Protein A 

*  , a .  •  
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Figure 3.15 Functionalization process. 

In this surface modification process, the capture probe Protein A was used to bind 

with the antibody IgG and used to orient IgG. 
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3.5 Summary 

In summary, a polymer-based nanostructured-FPI device has been developed and 

fabricated, its performance evaluated, and the device functionalized for subsequent 

immunosensing. The nanostructured-FPI device offered some unique properties such 

asincreased sensing area, extended penetration depth of the excitation light, and the 

tremendous amplification of the optical transducing signals. It is anticipated that this new 

type of nanostructured-FPI device can offer an ultrasensitive (e. g., femtomole) technical 

platform forlabel-free biosensing. The simple, cost-effective, and disposable nature of 

this type ofsensor is attractive for rapid point-of-care and field biodetection applications 

as well. Fourier Transform of the measured spectrum can simplify the data analysis since 

only one single peak presents in its corresponding plot for different samples whose x-axis 

coordinate is the EOT of the nanostructure layer and the gap size of the FPI cavity. 

Finally, the device has been functionalized for subsequent immunosensing. 



CHAPTER 4 

ENHANCEMENT OF OPTICAL 
TRANSDUCING SIGNALS 

4.1 Raman Signal Enhancement 

To analyze the signal enhancement mechanism for the Au-coated nanostructured 

FPI, two methods can be used. One is to measure the near field optical intensity 

distribution directly using a near field scanning optical microscope [93]. The other is the 

indirect measurement which can be achieved by measuring the Raman signal 

enhancement of molecules on the nanostructure in the optical far field [94]. 

The Raman signals of R6G in Figure 4.1 of the same concentration of 250 

have been obtained on Au-coated AAO, AAO, and glass substrates, respectively. 

6000 
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Figure 4.1 Measured Raman spectra of R6G. 
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A SENTERRA Raman microscope was used to measure the Raman signals of 

R6G on glass, AAO, and Au-coated AAO substrates, respectively. In this Raman 

spectroscopy, a 785 nm laser was used for exciting Raman signals. This instrument 

incorporates a patented AFR method for eliminating fluorescence from samples, thereby 

increasing the ratio of signal-to-noise of Raman signals. R6G was used to evaluate the 

optical signal enhancement capability of the Au-coated nanopore layers by measuring 

their Raman signals. A 0.12 mg of R6G powder was mixed with 1 mL DI water to get a 

250 juM R6G solution. A glass substrate, an AAO substrate, and an Au-coated AAO 

substrate were immersed in a R6G aqueous solution for 30 mins, separately. Thereafter, 

all of the three substrates are rinsed with DI water rigorously. Then, they were dried in a 

vacuum dryer for 1 hr at room temperature before Raman spectroscopy measurements 

were performed on these substrates. 

As a result, the Raman signal of R6G was amplified significantly on the Au-

coated AAO. The result indicated that the optical signal enhancement was enabled by the 

nanoscale roughness of the Au thin film coated on the nanopore structures due to the L-

SPR [70], 

4.2 Interferometer Signal 
Enhancement 

In order to examine the optical transducing signals of a gold thin film coated 

nanostructured FPI, a comparative experimental study ona conventional |iFPI and 

nanostructured FPIs (with and without Au thin film coating) was carried out. The testing 

setup is shown in Figure 4.2. 
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Figure 4.2 Testing setup of optical signal enhancement. 

An isometric sketch of a nanostructured FPI is shown in Figure 4.3. All the FPIs 

had the same FPI cavity size of 50 ^m. 

Figure 4.3 Isometric sketch of a nanostructured FPI. 
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For the nanostructured FPIs, one nanostructured FPI had an Au-coated nanopore 

layer and the other had the same nanopore layer but without Au coating inside its FPI 

cavity. Prior to any addition of fluid, optical transducing signals of each device were 

compared with air inside FPI cavities. Optical transducing signals were from three 

devices with a conventional ^iFPI, a nanostructured FPI without gold coating, and a 

nanostructured FPI with a 50 A gold coated thin film layer. The optical transducing 

signal was amplified significantly for the gold coated device as shown in Figure 4.4. 

Systematic experiments found that an Au-coated nanostructured FPI with a 

nanopore size of 50 nm had around twenty times improvement in FSR, around two times 

improvement in finesse, and around four times improvement in contrast of optical 

transducing signals over a traditional fj.FPI even without any device performance 

optimization. The FSR of a conventional jaFPI was approximately 3 nm, which was 

determined by the 50 ^im of the FPI cavity gap. In contrast, the FSR (around 60 nm) of a 

nanostructured FPI was essentially determined by the geometrical dimensions (nanopore 

size, pitch, and depth) of the nanopore layer. The comparison of these optical parameters 

of different types of devices is summarized in Table 4.1. 
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Figure 4.4 Enhancement of optical transducing signals. 
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Table 4.1 Comparison of optical parameters. 

FSR Finesse Output contrast 

uFPI Low Low Low 

FPI w/o Au 20 x Low Low 

FPI w/Au 20 x 2 x 4 x 

4.3 Finite Element Analysis 
of Signal Enhancement 

The simulation for the signal enhancement by arrayed nanopores was carried out 

using COMSOL. The module used was the electromagnetic wave module. The preset 

study was in frequency domain. The equation solved was the Maxwell equation. The 

parameters are shown in Table 4.2. 

Table 4.2 Global parameters. 

Name Expression Description 

na 1 Refractive index, air 

nb 1.77 Refractive index, alumina 

LamO 600 nm Wavelength 

fD cconst/lamO Frequency 

The simulation result for Au-coated nanopores is shown in Figure 4.5. Due to the 

nanoscale roughness of the Au thin film, the transducing signal was greatly amplified. 



57 

A : k-' 

Figure 4.5 Illumination profile surrounding Au-coated nanopores. 

The simulation result for bare nanopores is shown in Figure 4.6. Compared with 

the illumination profile for Au-coated nanopores, there is negligible enhancement. 

- 10* • " ' • • —-I A 1 Si?-! • 20' 
A-' '  ** 

Figure 4.6 Illumination profile surrounding bare nanopores. 

The electric field norm means the length of the electric field vector in COMSOL 

[95]. For a 50 nm diameter and a 100 nm distance from pore to pore at the wavelength of 

600 nm and the gold thickness of 5 nm, the ratio of the electric field norm of Au-coated 

nanopores to that of bare nanopores is approximately twenty times. The intensity of 
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reflected light is the square of the electric field norm. Therefore, the enhancement of the 

light intensity is approximately 400 times. 

In order to get a white-light spectrum, simulation for different wavelengths was 

performed. The wavelength ranged from 500nm to 800nm, with a step size of lOOnm. 

Enhancements for different wavelengths are summarized in Table 4.3. 

Table 4.3 Enhancements for different wavelengths. 

Wavelength (nm) Enhancement 

500 385.7532 

600 377.7853 

700 369.8852 

800 363.0092 

The relationship between intensity enhancementsand wavelengths has been 

plotted in Figure 4.7. In the white-light range, the 5 nm thick gold coated arrayed 

nanopores with a diameter of 50 nm and a distance of 100 nm from pore to pore had 

approximately 400 times enhancement for the light intensity. There was a slightly more 

enhancement for a shorter wavelength. 
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Figure 4.7 Relationship between enhancements and wavelengths. 

Enhancements for different thicknesses are summarized in Table 4.4. The 

relationship between enhancements and thicknesses has been plotted in Figure 4.8. 

Among 2 nm, 5 nm, and 8 nm thicknesses, the 8 nm thick Au-coated structure has the 

greatest enhancement. 

Table 4.4 Enhancements for different gold thicknesses. 

Thickness (nm) Enhancement 

2 267.5057 

5 377.7853 

8 489.7280 
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Figure 4.8 Relationship between enhancements and thicknesses. 

In order to study the effect of different nanopore structures, numerical analysis for 

different pore diameters and pitch sizes was carried out. Pitch is the distance from pore to 

pore. Pitch ratio is defined as the ratio of the pitch to the diameter of the nanopore. 

Enhancements for 50 nm and 100 nm diameter nanopores are shown in Table 4.5 and 

Table 4.6, respectively. 

Table 4.5 Enhancements for 50 nm diameter nanopores. 

Pitch ratio Enhancement 

2 378 

3 671 

4 1226 
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Table 4.6 Enhancements for 100 nm diameter naonpores. 

Pitch ratio Enhancement 

2 214 

3 574 

4 1473 

The relationship between enhancements and pitch ratios is plotted in Figure 4.9. 

Among diameters of 50 nm and 100 nm, and pitch ratios of 2, 3, and 4, the nanostructure 

with a diameter of 100 nm and a pitch ratio of 4 had the greatest enhancement. 
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Figure 4.9 Relationship between enhancements and pitch ratios. 

4.4 Summary 

In summary, experiments for enhancements of optical transducing signals were 

carried out by both the Raman spectroscopy and the Fabry-Perot interferometer. 

Enhancements of Raman signals indirectly confirmed enhancements of optical 
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transducing signals. The FEA of the intensity distribution for arrayed nanopores was also 

performed. The calculated results confirmed the great enhancement of the optical 

transducing signals using the Au-coated nanopores. 



CHAPTER 5 

USEING FLUORESCENT IMAGING TO 
CONFIRM FRINGE SHIFTS 

5.1 Overview 

The flow chart and the photograph of the experimental setup are shown in Figure 

5.1 and Figure 2.6, respectively. 

Optical fiber Optical fiber 
Light source wmmmmm} FPI chip Spectrometer 

Samples Waste 
Optical 
transducing 
signal 

Control unit Data analysis 
system 

Figure 5.1 Flow chart of the experimental setup. 

Before starting actual experiments, the small affinity of IgG for gold surface 

compared with the affinity of BSA for gold surface needed to be confirmed. 

Confirmation step began with incubating a 0.5 mg/mL anti-BSA rabbit IgG (diluted in 

PBS) on gold surface for 45 mins. Then, the gold surface was rinsed with PBS to wash 

away unbonded anti-BSA rabbit IgG. The second incubation was done with 0.5 mg/mL 

of anti-rabbit goat IgG labeled with FITC fluorescent dye (diluted in PBS) on the 
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previous surface for 45 mins. Finally, the gold surface was rinsed with PBS to wash away 

unbonded anti-rabbit goat IgG. The measured interference fringe result showed that there 

was no interference fringes shift before and after the incubation of anti-BSA rabbit IgG 

on the gold surface. This whole process was also monitored under a fluorescence 

microscope, and the observation did not show any kind of fluorescent signal. The absence 

of shift in the interference fringes and the absence of any kind of fluorescence signal 

confirmed that IgG exhibited a relatively small affinity for gold surface at pH=7.5.The 

experimental process for BSA detection is described in Figure 5.2. 
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Figure 5.2 Experimental process for BSA-IgG detection 

The actual experiment began with washing the surface of the nanostructured 

Fabry-Perot interferometer based biosensor, as shown in Figure 5.2 (A). A 0.5 

mg/mLBSA (diluted in PBS) solution was pumped into the device to ensure the 
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nanostructure sensing surface was fully occupied by BSA, as shown in Figure 5.2 (B). 

The incubation time was 45 mins. This was followed by three cycles of rigorous PBS 

rinsing. Then, a primary antibody, anti-BSA rabbit IgG, was pumped into the device and 

allowed to incubate for 45 mins, as shown in Figure 5.2 (C), followed by PBS rinsing. 

Thereafter, a secondary antibody, anti-rabbit goat IgG labeled with FITC fluorescent dye, 

was pumped into the device to ensure the binding of secondary antibody to the primary 

antibody, as shown in Figure 5.2 (D). The incubation time was 45 mins and followed by 

three cycles of rigorous PBS rinsing. 

5.2 Indirect Confirmation of 
Biosensing Signals 

While shifts of interference fringes from a nanostructured Fabry-Perot 

interferometer based biosensor were optically monitored in real time, their corresponding 

fluorescent images were obtained at the same time to indirectly confirm the biosensing 

signals. 

5.2.1 Shift of Fringes for 
Biodetection 

The experimental process was the same as described above. This whole process 

was monitored by a spectrometer in real time. The interference fringes for each step of 

the biointeractions are shown in Figure 5.3. 
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Figure 5.3 Optical transdusing signals for BSA-IgG detection. 

The clear shift between the primary IgG anti-BSA rabbit IgG and BSA indicated 

there was binding between the primary IgG and BSA. The clear shift between the 

secondary IgG anti-rabbit goat IgG labeled with FITC and the primary IgG indicated 

there was binding between the primary IgG and the secondary IgG as well. 

5.2.2 Fluorescent Imaging 
for Biodetection 

In order to indirectly confirm shifts of interference fringes from the experiment 

above, their corresponding fluorescent images were simultaneously obtained. 

The whole experimental process was monitored under a fluorescence microscope 

at the same time, and fluorescent images are shown in Figure 5.4. 
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Figure 5.4 Fluorescent images for BSA-IgG detection. 

Figure 5.4 (A) is a fluorescence image taken after applying BSA to the sensing 

surface of the biosensor. Figure 5.4 (B) is a fluorescence image taken after binding the 

primary IgG anti-BSA rabbit IgG to BSA treated sensing surface. Figure 5.4 (C) is a 

fluorescence image taken after binding the secondary IgG anti-rabbit goat IgG labeled 

with FITC and the primary IgG. From the images, one may see that no fluorescent signals 

were detected before the secondary IgG treatment, and clear fluorescent signals were 

detected after the secondary IgG treatment. This result indicated there is immobilization 

of BSA to the sensing surface and binding between the primary antibody and BSA. 

The fluorescent images indirectly confirmed shifts of interference fringes from the 

experiment work for BSA and anti-BSA IgG interaction. 
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5.3 Summary 

In this chapter, the control experiment was first carried out to confirm the small 

affinity of IgG to the gold coated sensing surface. Then, using fluorescent images, shifts 

of interference fringes for IgG and BSA interaction were indirectly confirmed. 



CHAPTER 6 

A PROTEIN BASED BIOSENSOR 
FOR IGG DETECTION 

6.1 Overview 

The schematic of a nanostructured FPI sensor was given in Figure 3.1. The 

biosensor was fabricated from PDMS and glass plate with its FPI cavity formed between 

them. Different from a conventional FPI, inside its cavity there was a layer of nanopore 

structures, serving as the biosensing area. This nanopore layer increased a great deal of 

the sensing area, thus enhancing the sensitivity of the senor greatly. In addition, this layer 

of nanopore was coated with Au thin film, typically ranging in thickness of several tens 

of angstroms. Due to the nanoscale roughness of the Au thin film, the transducing signal 

(e. g., reflected light) was amplified tremendously. Its operation procedure was reported 

previously by T. Zhang et al. [61]. The ease-of-fabrication of arrayed FPI sensors on a 

single chip facilitated its applications for highly multiplexed biosensing. 

A brief explanation of the operation principle was given as follows. As a 

refractive-index sensitive optical sensor, both immobilization of probes on the nanopore 

surfaces and their binding with different Immunoglobulin G (IgG) caused changes of 

effective refractive index and changes of EOT of the nanopore-structure layer inside the 

cavity. As a result, the interference fringes shifted, which could be monitored optically in 

real-time. More specifically, after Protein A adhered on the sidewall of nanopores, as 
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shown in Figure 6.1, the reflected optical signal from the sensor changed, resulting in the 

shift of the interference fringes of the reflected signal. The binding between Protein A 

and Porcine IgG are shown in Figure 6.1. 

The surface of nanostructures inside the FPI was first functionalized with probes 

(Protein A). The binding between Protein A and Porcine IgG antibody without tagging 

was monitored by the optical transducing signals: interference fringe shift (AX.) upon the 

change of the effective refractive index. 

The assay reagents used in the experiments included Protein A, buffer solution 

phosphate buffered saline (PBS), and Porcine IgG. Specifically, Protein A was prepared 

in PBS solution at a concentration of 500 ng/mL, which can be diluted accordingly for 

different concentrations. The blocking buffer, used to minimize the non-specific binding 

was mixed with PBS solution with a ratio of 1:4. Similarly, the Porcine IgG anti-sera 

were diluted with PBS with final concentrations of 500 |J.g/mL, 500 ng/mL, 50 ng/mL, 

and 5 ng/mL, respectively. The experimental procedures were as follows. First, the PBS 

solution was applied into the FPI cavity to rinse the sensor. Thereafter, the Protein A 

solution (500 ng/ml) was flowed into the device and allowed to stay inside the FPI cavity 

Protein A Poricne IgG 

anopore 

Figure 6.1 Closeup of a nanopore region. 

6.2 Biodetection Procedures 
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for 30 mins at room temperature. Sufficient Protein A molecules were allowed to bind to 

the Au-coated surface of the nanopore structures and served as capture proteins. The 

unbound Protein A was then washed away using PBS solution. The washing routine is 

done at least three cycles of 3 mins each. The measurement was taken at each interval 

and checked for measurement repeatability. After this step, the solution was flowed into 

the device to block the unmodified or unbound sites in the FPI cavity. The solution was 

allowed to stay inside FPI cavity for 15 mins at room temperature. After the specified 

time, the solution was pumped out and the wash routine performed again to take some 

measurements. Similarly, the Porcine IgG solution made with PBS solution was applied 

into the device and allowed to settle for 15 to 30 mins in the FPI cavity at room 

temperature. The measurements were taken at regular intervals after washing the excess 

unbound Porcine IgG using PBS solution. 

6.3 Results and Discussions 

6.3.1 Protein and IgG Biodetection 

The binding between Protein A and Porcine IgG in the nanostructured FPI sensor 

was monitored. Measured optical signals from the biosensor are shown in Figure 6.2. 
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Figure 6.2 Measured signals for Protein A-IgG binding. 

A clear shift in interference fringes was observed during the analyte binding 

process. For the same concentration of Protein A, the shifts for varied concentrations of 

Porcine IgG were different, which means that there was a change of the effective 

refractive index for each case. In other words, the higher the concentration of Porcine IgG, 

the more binding between Protein A and Porcine IgG, hence a higher effective refractive 

index and larger shift of interference fringes, as shown in Table 6.1. 

Table 6.1 Summary of binding measurements. 

Material (IgG represents Porcine-
IgG, P-A represents Protein A) 

Average peak shift 
relative to P-A (nm) 

EOT change 
relative to P-A (nm) 

P-A (0.5 mg/mL) 

P-A + IgG (0.5 mg/mL) 22.9 2072 

P-A + IgG (500 ng/mL) -5.6 1554 

P-A + IgG (50 ng/mL) -13.2 1036 

P-A + IgG (5 ng/mL) -16.9 518 
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While the measurement of the shift of interference fringes is a valid way to 

analyze and quantify the bioassay process, it is inconvenient to count and average shifts 

of hundreds of fringe peaks. In contrast, FT on the measured interference fringe data can 

simplify this process [92]. It is well known that the wavelength (A) of the peak maxima in 

the interference spectrum for FPI is given by 

mX=2nL, (6-1) 

where m is the spectral fringe order, n is the effective refractive index of nanostructure 

layer and its contents, L is the geometric gap of the FPI and thickness of nanostructure 

layer. 2nL represents EOT and can be obtained from FT of measured spectrum in Figure 

6.3. A MATLAB program was written and implemented to perform the FT on the 

measured data. As seen with FT on the measured spectrum in Figure 6.3, only a single 

peak, whose x-axis position was EOT of the FPI cavity gap and the nanostructure layer, 

was presented. 
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Figure 6.3 Fourier transform of reflectance spectrum. 
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The EOT with immobilized P-A (0.5 mg/mL) was 6214 nm. The EOT changed 

after its binding with Porcine IgG (P-IgG) at varied concentrations as summarized in 

Table 6.1. Again, for different concentration of P-IgG, the EOT was different. The higher 

the concentration of P-IgG, the more binding between P-A and P-IgG occured, hence the 

larger the EOT. The DOL of this sensor was evaluated by decreasing the concentration of 

the P-IgG. Based on the measured data in Table 6.1, the EOT changed after its binding 

with P-IgG at a concentration of 5 ng/mL up to 518 nm, which indicated the DOL of this 

biosensor should be much lower than 5 ng/mL. 

6.3.2 Detection of Limit 

In order to test DOL downward, lower concentrations of Porcine IgG were tested. 

Porcine IgG was diluted with PBS with final concentrations of 50 ng/mL, 5 ng/mL, and 

10 pg/mL, respectively. The experimental procedures were the same as before. 

The measured transducing signals from the biosensor are shown in Figure 6.4. As 

can be seen, among different concentrations of IgG, the average shift in interference 

fringes at a concentration of 10 pg/mL is the smallest. 

4 

Protein A 

Protein A + IgG(50 ng/ml) 

55 
Protein A + IgG(5 ng/ml) 
Protein A + lgG(10 pg/ml) 

500 600 700 800 900 
Wavelength (nm) 

Figure 6.4 Measured signals for DOL test. 



75 

The FT on the measured spectra is shown in Figure 6.5. It shows the changes of 

EOT with different concentrations of Porcine IgG. Inset is a table summarizing the AEOT 

upon the binding between Protein A and Porcine IgG at different concentrations. 
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Figure 6.5 Fourier transform of signals for DOL test. 

As expected, the AEOT decreased if the concentration of IgG decreased. The 

DOL of this technical platform was, therefore, the concentration of applied IgG where the 

AEOT approaches zero or undistinguished by the optical spectrometer. Experiments 

found that the AEOT after Protein A binding with IgGat a concentration of 10 pg/mL was 

still about 256 nm, which indicated that the DOL of this biosensor should be much lower 

than 10 pg/mL for IgG-Protein A binding. 

6.3.3 Control Experiments 

Control experiments were performed to check if Sea Block bonds with Protein A 

or IgG, to confirm that the biodetection is only specific to Protein A and IgG recognition. 
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The procedure for the control experiment to check if Sea Block bonds with 

Protein A was carried out as follows. First, two cycles of undiluted solution were pumped 

into two devices to ensure the nanostructure sensing surface was fully occupied. The 

incubation time was 1 hr, followed by rigorous PBS rinsing. Then, Protein A was applied 

and allowed to incubate for 45 mins followed by PBS rinsing. The measurement result is 

shown in Figure 6.6. From the measurement result, interference fringes had negligible 

shift, indicating Sea Block does not bind with Protein A. 

The procedure for the control experiment to check if Sea Block bonds with IgG 

was carried out as follows. First, two cycles of undiluted solution were pumped into two 

devices to ensure the nanostructure sensing surface was fully occupied. The incubation 

timewas 1 hr and followed by rigorous PBS rinsing. Then, IgG was applied and allowed 

to incubate for 45 mins followed by PBS rinsing. The measurement result is shown in 

Figure 6.7. 

SEA BLOCK 
S <c> | - SEA BLOCK 4 protein A 
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Figure 6.6 Control experiment for Protein A and Sea Block binding. 
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Figure 6.7 Control experiment for IgG and Sea Block binding. 

From the measurement result, interference fringes had negligible shift, indicating 

Sea Block does not bind with IgG. The IgG used in this experiment was rabbit IgG. 

6.4 Summary 

In summary, a protein-protein (Protein A and Porcine IgG) binding assay has 

been used to demonstrate the operation and label-free biomolecular detection capability 

of the nanostructured FPI at room temperature. The Au-coated nanostructure layer inside 

the FPI cavity offered significantly enhanced optical interference signals due to the L-

SPR effect and the increased sensing surface area. Immobilization of Protein A on the 

nanostructure layer and its binding with IgG inside the FPI cavity were monitored in real 

time, resulting in interference fringes shift. FT was performed on the measured 

interference spectra to simplify the analysis of the transducing signal. Experimental 

results indicated that DOL of the nanostructured FPI biosensor should be lower than 10 

pg/mL, which is approximately 55 fM of IgG, for IgG-Protein A binding. 



CHAPTER 7 

ULTRASENSITIVE DETECTION 
OF A CANCER BIOMARKER 

7.1 Overview 

The detection of cancers at their early stage is critical for survival of patients [97, 

98], In the field of genomics and proteomics, a variety of technologies have been 

developed for biomarker discovery and early detection such as various DNA microarrays 

[99], DNA sequence methods [100], enzyme-linked immunosorbent assay (ELISA) [101], 

two-dimensional polyarylamide gel electrophoresis (2D-PAGE) [102], mass spectrometry 

[103], proteomic pattern diagnostics [104], and protein/antibody microarrays [105]. 

However, most detection schemes suffer from a complicated fluorescent dye labeling 

process, bulk instrumentation and low sensitivity, and they are not applicable for trace 

detection of biomarkers at the early stage of tumor diseases. For instance, sandwich 

ELISA is the gold standard in the detection and quantification of protein/cancer 

biomarkers [38], But sandwich assays are inconvenient for achieving large scale 

multiplexed measurements [39]. On the other hand, most fluorescent imaging based 

techniques are incapable of providing sufficient sensitivity to monitor biomarker affinity 

at concentrations of around 10 pM or lower without some forms of signal amplification 

[40]. The concentration of many clinically relevant biomarkers residing in biofluids (i. e., 

blood) is usually at picomolar concentrations or lower [39], about 5-7 orders of 
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magnitude lower than the most abundant plasma protein. Since there is no universal 

ultrasensitive enzymatic amplification method for proteins like polymerase chain reaction 

(PCR) for the detection of nucleic acid [39], a diagnostic tool with ultrasensitivity 

(picomolar, femtomolar concentration or lower) and high specificity is required. 

To this end, micro- and nanotechnologies play a very important role in the 

enhancement of the sensitivity and DOL of the biosensing technologies. A variety of 

different detection technologies based on micro- and nanotechnologies have been 

developed in the past decades for the measurement of the tumor markers at a low 

concentration level, showing great promise for potential applications in point-of-care 

diagnostics and clinic settings. Among these technologies is the label-free optical 

detection technique. Label-free techniques are attractive for biosensing since no 

fluorescent dyes are needed to be attached to the biomolecules. As a result, the 

experimental cost can be reduced dramatically, and the possible perturbation of the 

properties of the biomolecules can be totally avoided. 

In this work, a new class of inexpensive polymer-based nanostructured Fabry-

Perot interferometer (FPI) optical microdevices was developed, offering a potentially 

powerful label-free technical platform for the detection of protein/cancer biomarkers. 

Prior work of the nanostructured FPI microchip focused on the proof-of-concept 

demonstrations. Experiments found that the sensitivity of the chip could be down to a 

single layer of molecule level, and the DOL of binding between Protein A and Porcine 

IgG was lower than 10 pg/mL, which is -55 fM of Porcine IgG. Herein, the detection of 

prostate cancer biomarker free prostate-specific antigen (f-PSA) is reported for the first 

time using this technical platform. 
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7.2 Biodetection Procedures 

7.2.1 Immobilization of Detector 
mAb on Gold Surface 

The immobilization of the detector mAb on the Au-coated surface of the 

nanostructured FPI microchip is schematically illustrated in Figure 7.1. 

o o 
OH >- OH OH 

HSCIOCOOH/HSC8OH 

HO HO 

JW 

>=o 

f-PSA 

Figure 7.1 Illustration of SAM formation. 

The Au-coated surface was first cleaned with O2 plasma for 15 mins before being 

bonded with the PDMS microfluidic layer, followed by a self-assembled monolayer 

(SAM) process by incubation in a mixture of 1 mM HSCIOCOOH and HSC80H with 

molar ratio of 1:10 in absolute ethanol solution overnight. The SAM then was activated 

by incubation in a pH=7.0, 10 mM phosphate buffer solution (PBS) containing 0.5 mM 

of EDC/NHS for 2 hrs. The activated SAM was rinsed with the 10 mM PBS and 

immediately flowed away by a freshly prepared 10 mM PBS solution containing 10 
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Hg/mL of the detector mAb for a 2 or 4 hr incubation. The microchip was then rinsed 

with the PBS and followed by a 0.2 M glycine PBS solution for 10 mins in order to 

deactivate the remaining active sites at the SAM. Finally, the microchip was ready for 

free-PSA (f-PSA) binding detection. 

7.2.2 Free PSA Detection 

Once the antibodies (mAbs) had been immobilized on the Au-coated 

nanostructured surface in the microchip, the detection of f-PSA was ready. The f-PSA 

was the unbounded form of the antigen and normally at the level of 10% of total PSA. A 

higher amount of f-PSA in a test means a lower chance of cancer. During the experiments, 

PBS was used as a running buffer to help minimize the nonspecific adsorption of the f-

PSA in the tubes and the microfluidic channels. 

7.2.3 Control Experiment 

Two types of control experiments were designed and carried out to evaluate the 

specificity/selectivity of the immunoassay using the nanostructured FPI microdevices. 

First, the binding between the detector mAb and BSA at concentrations of 50, 100, 500, 

5,000 pg/mL was evaluated. In addition, the binding between the detector mAb and rabbit 

IgG at several different concentrations was evaluated. 

7.3 Results and Discussions 

The average shift of the fringes for the measured transducing signals is obtained 

by first obtaining the shift of each fringe peak relative to that of the blank Au-coated 

nanostructure surface or after the antibodies (mAbs) have been immobilized on the 

nanostructure surface, then averaging the shift of all the peaks. The reference for each 

average shift is specified in the context in the following sections. 
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The EOT of the nanostructurelayer and the biomolecules immobilized on it was 

obtained by performing FT on the measured optical transducing signals, which were 

described in detail in the report written by T. Zhang et al.[61 ]. A MATLAB program 

based on the fast FT algorithm was developed for this calculation. 

7.3.1 Surface Functionalization of 
Au-Coated Nanostructures 

The surface functionalization of the Au-coated nanostructures was performed 

step-by-step, following the protocol as illustrated in Figure 7.1. It is a well-established 

method to form a mixed SAM of alkanethiols by the adhesion reaction of the thiol group 

on gold surface. The monolayer was well packed and the tethered carboxylic acid was 

easily fiinctionalized for biological molecule immobilization. Upon the presence of 

EDC/NHS, the carboxylic groups form active O-acylisourea intermediates, and readily 

reacted with primary amine groups which exist at the N-terminus of each polypeptide 

chain and in the side chain of lysine residues. Because of their positive charge at 

physiologic conditions, primary amines are usually outward-facing of proteins; hence, 

they were accessible for conjugation without denaturing protein structure. In such a way, 

the detector mAbs for f-PSA were covalently attached to the top of the mixed SAMs. The 

remaining active O-acylisourea intermediate groups were deactivated by the amino acid 

glycine to avoid non-specific biological attachment caused by the intermediates. At this 

stage, the mAbswere conjugated to the nanostructured surface and ready for next f-PSA 

detection. 

Each surface chemical modification step changed the local refractive index and 

the effective optical thickness of the nanostructured surface and wasoptically monitored 

in real time. The real-time monitoring experiments were carried out on four individual 
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nanostructured FPI microchips in the Set I, giving consistent results. As an example, 

Figure 7.2 (A) gives a representative step-by-step measurement during the surface 

functionalization. The interference fringes (transducing signals) shifted clearly after each 

step of addition of organic molecules and biomolecules. It should be noted that all these 

measurements were performed at room temperature. The measured interference fringes 

for the antibody attachment were obtained after 2 hrs of incubation and three cycles of 

rigorous PBS solution rinsing. Compared to the fringes obtained on the nanostructured 

FPI microchip with a blank Au-coated nanostructured surface in the range of 550 nm to 

850 nm, typical average shifts were 5.13 ± 0.02 nm after the HSCIOCOOH/HSC8OH 

was added and reacted with the gold-coated surface. A shift of 9.48 ± 0.02 nm was 

observed after EDC/NHS was added and reacted with the surface, and a shift of 13.68 ± 

0.02 nm was observed after the antibodies (mAbs) were added and attached to the surface. 
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Figure 7.2 Measured signals for antibody attaching process. 

The more detailed real-time monitoring of the process of the attachment of 

antibodies (mAbs) is given in Figure 7.2 (B). When the mAbs were flowed into the chip, 

the optical signals were monitored at different time intervals. It would take some time for 

the antibodies to be immobilized and attached to the SAM layer. The measurements 

showed a clear shift of the fringes after a lhr incubation at room temperature relative to 

that of pre-antibody being applied. The shift further increased after a 2 hr incubation, 

indicating that possibly more antibodies were immobilized or attached. Thereafter, three 

rigorous rinsings by flowing PBS solution were carried out to remove the unbounded or 

loosely bounded antibodies. As expected, the shift of the fringes decreased relative to that 

of pre-antibody attached condition, namely the fringes had a red-shift. Experiments found 
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that after three cycles of rinsing using PBS solution, no further shift of fringes was 

observed, suggesting that all unbounded antibodies had been gotten rid of from the 

microchip. After antibodies were attached and immobilized, the measured final average 

fringe shift was 4.21 ± 0.02 nm when compared to the fringe of the pre-attachment of 

antibodies. 

The real-time monitoring of the transducing signals is an important step to verify 

that each chemical modification of the sensing surface has actually occurred. This 

measurement is particularly useful and effective since there is no need to utilize any 

fluorescent dyes to tag organic molecules or biomolecules to visually observe and 

confirm the occurrence of each surface modification. In addition, it was also a simple 

approach to ensure that the unbounded and loosely bounded molecules had been 

completely rinsed away. This is a critical step to guarantee consistent measurements from 

each microchip, especially for future reliable and reproducible arrayed microchips for 

multiplexed biodetection. 

7.3.2 Detection of Cancer Biomarker 
Free-PSA 

After antibodies (mAbs) were immobilized on the Au-coated nanostructured 

surface inside the microchip, the quantitative measurement of f-PSA was carried out. 

This part included upper detection range and DOL. 

For the upper detection range of the f-PSA, the effect of the amount of antibodies 

immobilized on microchips (the same microchips used in experiments as reported in 

Figure 7.2) were evaluated. In this set of experiments, the antibody (mAb) concentration 

was 10 |ig/mL and the incubation time was 2 hrs. Concentrations of f-PSA flowed onto 

the microchip were 100, 500, and 5,000 pg/mL in a PBS solution. The order of the 
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experiments was as follows. The f-PSA was flowed into microchip from lower 

concentration to higher concentration. For instance, the f-PSA at a concentration of 100 

pg/mL was flowed into the chip first. After a 45 min incubation, PBS solution was 

flowed to rinse the microchip three times and measurements were carried out. Then, the 

f-PSA at higher concentrations (e. g., 500 and 5,000 pg/mL) were flowed into the chip. 

After incubation, a rinsing and measurement routine was carried out again. It was found 

that the binding sites had been almost totally occupied after f-PSA with a concentration 

of 500 pg/mL was flowed into the chip since interference fringes remained essentially 

unchanged even more f-PSA was added. As an example, the measurement in Figure 7.3 

showed when the concentration of f-PSA reached 5,000 pg/mL, there was little 

observable shift of fringes compared to that of f-PSA at a concentration of 500 pg/mL, 

indicating the upper detection range of f-PSA was about 500 pg/mL. 

£ 1 «L> 1 

X 10 blank gold vurfoce 
antibody (10 ue niL) 
f-PSA (100 pgmL) 
f-PSA (500 pe mL) 
f-PSA C-OOOpgniL) 
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550 600 650 700 750 800 S50 

Wavelength (11111) 

Figure 7.3 Upper detection range testing. 

In order to expand the upper detection range, more antibodies on the microchip 

have to be immobilized so that more binding sites are available for f-PSA. However, it 

should be also noted that the amount of the antibodies cannot be too excessive; otherwise, 
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the antibodies immobilized on the sensing surface are too closely packed and crowded to 

allow f-PSA to approach the binding sites efficiently and consequently to be attached to 

them. For instance, in one of these experiments, antibodies (mAbs) at a concentration of 

100 |ng/mL were immobilized on the sensing surface with a 24 hr incubation, and the f-

PSA at several concentrations was flowed into the chip for the testing. After rinsing by 

the PBS solution, it turned out that essentially no f-PSA had been attached to the 

antibodies, resulting in negligible shift in the fringes. 

For the DOL, the experiments were carried out on four individual microdevices in 

Set II. All the measurements gave consistent results. In this case, the antibodies at 

concentration of 10|ug/mL were flowed into the chip with incubation time of 4 hrs. The 

concentrations of f-PSA flowed into the microchip were 0, 5, 10, 50, 100 and 500 pg/mL 

in a PBS solution. The f-PSA was flowed into microchip from lower concentration to 

higher concentration sequentially. Specifically, the f-PSA at a concentration of 0 pg/mL 

was flowed into the chip first; after sufficient time (45 mins) for incubation, the PBS 

solution was flowed to rinse the microchip three times and measurements were carried 

out. Thereafter, the f-PSA at concentration of 5 pg/mL was flowed into the microchip for 

the testing. After a 45 min incubation, a rinsing and measurement routine was carried out. 

Similarly, the experiments were performed for f-PSA at concentrations of 10, 50, 100, 

and 500 pg/mL in sequence, respectively. All these results were obtained by multiple 

measurements on four individual microchips, and the average fringe shift for each 

concentration was obtained accordingly. 

A representative measurement of the transducing signals with the f-PSA flowed 

into microchip at concentrations of 0 and 5 pg/mL is shown in Figure 7.4. 
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Figure 7.4 Measured signals with different concentrations of f-PSA. 

As expected, the interference fringes showed no or a negligible shift with the f-

PSA at 0 pg/mL, since no f-PSA was actually available to be bounded to the antibodies. 

The average shift of the fringes was about 2.19 ± 0.02 nm with the f-PSA at a 

concentration of 5 pg/mL in the range of 550 nm to 850 nm, relative to the fringes for the 

device with immobilized antibodies. By increasing the concentration of the f- PSA to 10, 

50, 100, and 500pg/mL in sequence, the average fringe shift increased as expected since 

increasing amount of f-PSA were bounded to the antibodies. The rest of the optical 

signals were not overlaid in the plot in order to make the shift clearly readable and visible 

for the f-PSA at 5 pg/mL. Experiments have also found that the fringe shift was not 

clearly distinguishable when the concentration of the f-PSA was below 5 pg/mL using 
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these microchips for the experiments. This undistinguishable shift might be due to the 

resolution limit (± 0.02 nm) of the optical spectrometer used in the experiments or the 

DOL of these microchips, indicating that the DOL of current microchips for the f-PSA 

detection is about 5 pg/mL. 

FT has been applied on the measured transducing signals, and the EOT of the 

nanostructured layer and the biomolecules immobilized on it was obtained. Using the 

EOT after the immobilization of the antibodies as a reference, which is 7,487 ± 2 nm, 

AEOT was obtained after the application of f-PSA at different concentrations. In Figure 

7.5, AEOT under different concentrations of the f-PSA is summarized. 

160 
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Figure 7.5 Changes of EOT with different concentrations of f-PSA. 

As expected, the lower the concentration of the f-PSA, the less the f-PSA was 

bounded to the antibodies, hence the smaller the AEOT. The EOT for each case was 

obtained by averaging several measurements. Again, as can be seen based on the AEOT, 

the DOL is about 5 pg/mL or lower, which is -140 fM, for the detection of f-PSA. 
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7.3.3 Control Experiment 

Finally, control experiments were carried out on microdevices to demonstrate the 

specificity and selectivity of the bioassay. In this case, the incubation time of antibodies 

at a concentration of 10 ng/mL was 4 hrs. BS A solutions with different concentrations of 

50, 100, 500, and 5,000 pg/mL were flowed into the microdevice. For each concentration 

of BSA, the incubation time was 60 mins, followed by rigorous PBS solution rinsing 

three times. Representative measurements are given in Figure 7.6. No or negligible shifts 

in fringes were observed when BSA with four different concentrations was applied to 

microchips, confirming the specific recognition between antibodies (mAbs) and f-PSA. 

Similarly, experiments were performed to check if antibodies were bounded to rabbit IgG 

at concentrations of 50, 100, 500, and 5,000 pg/mL, respectively. No or negligible shifts 

in fringes were observed, indicating again that antibodies were only specific to f-PSA. 

Overall, these two types of control experiments (BSA and rabbit IgG) suggested excellent 

selectivity of the immunoassay. 
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Figure 7.6 Controlled experiment using microdevices. 
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It should be noted that even though the three sets of devices have somewhat 

different transducing signals (i. e., the positions of the fringe peaks were different), for 

each set of the devices, a nanostructured FPI device with a blank Au-coated 

nanostructured surface from the same set was used as the reference. Hence, consistent 

measurement results for the bioassay were obtained for all three types of tests. 

As demonstrated, the nanostructured FPI microdevices offered sufficient 

sensitivity for the detection of clinically relevant cancer biomarkers, typically in the 

range of picomolar concentration levels or lower. Initial experiments have also found that 

the sensitivity of a nanostructured FPI device can be further improved by increasing its 

finesse by changing the size of and interspacing among nanopores, under further 

investigation in our lab. Furthermore, even though this work only reports the detection of 

one cancer biomarker, since arrayed devices can be batch-fabricated in an inexpensive 

and efficient manner, a disposable platform based on arrayed nanostructured FPI devices 

which can be developed for the multiplexed biomolecular detection and analysis may be 

seen in the future. 

7.4 Summary 

In summary, the detection of f-PSA has been demonstrated using nanostructured 

FPI microchips successfully. It has been demonstrated that the chemical and biochemical 

functionalization of the nanostructured sensing surface can be monitored in real-time. 

The upper dynamic detection range can be changed by varying the amount of capture 

antibodies immobilized on the sensing surface. Currently, the DOL of the nanostructured 

FPI microchip for f-PSA is about 5 pg/mL, which can be further lowered by optimizing 

optical properties of the microchip. Experiments have also demonstrated the high 
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specificity and selectivity of the immunoassay used in the biosensing, indicating the great 

promise for the detection of cancer biomarkers at trace levels in biofluids. Finally, due to 

the feasibility of fabricating hundreds of nanostructured FPI microdevices on a single 

chip, this technical platform offers great potential for highly multiplexed, label-free 

biodetection for the diagnosis of various cancers or diseases in a clinic setting and for 

anticancer drug screen and discovery applications. 



CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this dissertation, an innovative biosensing platform using a nanostructured 

Fabry-Perot interferometer was developed, fabricated, and tested. This biosensing 

platform was tested for proof-of-concept demonstration and applied for ultrasensitive 

detection of the cancer biomarker f-PSA. 

For the past few decades, biosensors have seen an expanding market, particularly 

in the current climate of growing and aging populations. The need for accurate, 

inexpensive, and simple biosensors is going to continually increase. Biosensing can be 

achieved by labeled and label-free techniques. Traditional labeled biosensing techniques 

require labels such as fluorescent dyes, radioisotopes or epitope tags to be attached to 

analytes in order to identify whether there are interactions or not. Therefore, the labeled 

technology has shortcomings, such as the limited shelf life of labels, the inherent toxicity 

caused by labels which could also modify properties of biomolecules, the need for 

specific read-out instruments with intelligent software, and skilled lab personnel. In 

contrast to labeled biosensing, label-free techniques are attractive for biosensing since no 

labels need to be attached to biomolecules. As a result, the experimental cost can be 

reduced dramatically, and the possible perturbation of properties of biomolecules can be 

completely avoided. For label-free biosensing techniques, there are three major types of 
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label-free biosensors in terms of transducing mechanisms. These transducing mechanisms 

include electrical, mechanical, and optical transductions. Due to its high degree of 

sensitivity, the capability of multiplexing, and the immunity to the environmental noise, 

the optical technique is more attractive for sensing applications than other techniques. 

With the advancement of micro- and nanofabrication technologies, many optical 

components have been miniaturized. As a result, the field of microoptics and nanooptics 

has emerged, triggering extensive research to scale down the optics-based sensing 

platforms for past decades. One example is the miniaturization of Fabry-Perot 

interferometers. FPIs have been designed and implemented for chemical sensing, gas 

sensing, biosensing, ultrasonic sensing, and optical modulation. However, for 

biochemical sensing, a conventional FPI has following intrinsic limitations. First, it has a 

limited sensing surface area, which means that binding sites available for biomolecules 

are limited, resulting in low transducing signals. Second, the optical sensitive range/area 

is essentially limited only to the surface of the planar glass plate. Finally, it has a limited 

intensity of transducing signals due to optical power losses of the reflected light from the 

FPI at the interface of FPI plates. 

In order to enhance the optical transducing signal, an innovative biosensing 

platform using a nanostructured FPI has been designed. Each FPI consists of a PDMS 

plate, an Au-coated nanopore layer and a glass plate. The Au-coated nanopore layer is 

anchored on the glass plate, forming a nanopore plasmonic substrate. The PDMS 

microfluidic layer can be batch fabricated using an inexpensive, rapid, soft lithography 

process. The nanopore structures can be fabricated using a standard two-step anodization 

process. The Au-coated nanostructure layer inside the FPI cavity offers significantly 
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enhanced optical interference signals due to the L-SPR effect and the increased sensing 

surface area. 

Measurements have been carried out on the prototype devices to evaluate their 

performance using different chemicals. Systematic experiments found that for an Au-

coated nanostructured FPI with a nanopore size of 50 nm, it had approximately a twenty 

fold improvement in FSR, approximately a two fold improvement in finesse and 

approximately a four fold improvement in contrast of optical transducing signals over a 

traditional JJFPI even without any device performance optimization. From the 

comparison, this novel design offers at least three advantages over a traditional fxFPI 

including the increased sensing surface area, the extended penetration depth of the 

excitation light, and the tremendous amplification of the optical transducing signal due to 

the L-SPR effect. The Raman signal of R6G was also amplified significantly on the Au-

coated AAO, which indirectly confirmed that the optical signal enhancement is enabled 

by the nanoscale roughness of the Au thin film coated on the nanopore structures due to 

the L-SPR effect. The FEA of the intensity distribution for arrayed nanopores also 

confirmed great enhancements of optical transducing signals. 

The control experiment incubating IgG on gold surface confirmed the small 

affinity of IgG to the Au-coated sensing surface. Then, using fluorescent images, shifts of 

interference fringes for IgG and BSA interaction were indirectly confirmed. 

Using this technical platform, the immobilization of capture proteins (Protein A) 

on the nanostructure layer and their binding with IgG were monitored in real time, 

resulting in the shift of interference fringes of optical transducing signals, which 

demonstrated the operation and label-free biomolecular detection capability of the 



nanostructured FPI at room temperature. The Au-coated nanostructure layer inside the 

FPI cavity offers significantly enhanced optical interference signals due to the L-SPR 

effect and the increased sensing surface area. FT was performed on the measured 

interference spectra for simplifying the transducing signal analysis. Experimental results 

indicated that DOL of the nanostructured FPI biosensor should be lower than 10 pg/mL 

for IgG-Protein A binding, which is -55 fM of IgG. Control experiments were performed 

to check if Sea Block binds with Protein A or IgG to confirm that the biodetection is only 

specific to Protein A and IgG recognition. Measurements found that for both cases, 

interference fringes had a negligible shift, indicating Sea Block does not bind with either 

Protein A or IgG. 

After the proof-of-concept demonstration, the label-free detection of a cancer 

biomarker f-PSA using this nanostructured FPI microchip was performed. Specifically, 

the prostate cancer biomarker f-PSA was detected with a mouse anti-human PSA 

monoclonal antibody (mAb) as the receptor. Experiments found that the DOL of the 

current Au-coated nanostructured FPI microchip for f-PSA was about 5 pg/mL and the 

upper detection range for f-PSA could be dynamically changed by varying the amount of 

mAb immobilized on the sensing surface. Control experiments also demonstrated that the 

immunoassay protocol used in these experiments showed excellent specificity and 

selectivity, suggesting the great potential to detect cancer biomarkers at trace levels in 

biofluids. 

In summary, in this dissertation an innovative biosensing platform has been 

designed, fabricated, and tested. This nanostructured FPI microchip-based platform could 
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provide an ideal ultrasensitive label-free biodetection tool for point-of-care diagnostic 

application and anti-cancer drug screen and discovery. 

8.2 Future Work 

The ultrasensitive label-free biosensor has been successfully developed and 

demonstrated in this dissertation. However, there are a few recommendations for further 

improvements. 

In this dissertation, nanostructures have arrayed pores with the size of ~50 nm in 

diameter. Experiments found that the size of the nanostructure, as well as the spacing 

among them, could be tuned by changing operational parameters during the fabrication 

process. Therefore, the sensitivity of a nanostructured FPI device may be further 

improved by changing the size of and interspacing among nanopores, which is under 

further investigation. 

Due to the advantage of an inexpensive, rapid, soft lithography fabrication 

process, a disposable platform based on arrayed nanostructured FPI devices can be 

developed for the multiplexed biomolecular detection and analysis in the future, as shown 

in Figure 8.1. 
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Figure 8.1 Arrayed nanostructured FPIs on a single chip. 

A close up look of a single nanostructured FPI from arrayed nanostructured FPIs 

is shown in Figure 8.2. 

Figure 8.2 A close up look of a single nanostructured FPI. 

The optical signal input and output module were achieved by anexpensive 

customized optical fiber probe, shown inFigure 8.3. 
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Figure 8.3 Reflected signal measurement setup. 

This module consists of a tight bundle of seven optical fibers in a stainless steel 

ferrule, as shown inFigure 8.4. The center fiber is to collect the reflected light while the 

outer six fibers deliver the illumination light to the FPI chemo/biosensor. The incident 

light and reflected transducing light are both on the same side, which makes the structure 

complicated and expensive. 

In the reflected transducing signal measurement setup,each single biosensorcan be 

tested at one time. From the fabrication process, it has been found that the nanostructure 

can be made semi-transparent. By using the transmitted optical transducing signal, a 

Figure 8.4 End surface of customized probe. 
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simple setup can be achieved to separate the incident light and the transducing light as 

shown in Figure 8.5. In this transmitted transducing signal measurement setup, only one 

light source is needed and multiple biosensors can be tested simultaneously. 

Light source 

Arrayed chemo/biosensors 

Illumination light 

Transmitted light 
t o s eparate fibers To speetrom et er 

Figure 8.5 Transmitted signal measurement setup. 
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COMSOL Multiphysics is a powerful FEA software. The graphical user interface 

for COMSOL consists of several windows, such as Model Builder, Settings, Graphics, 

Messages, Progress, Help, Main Menu, and Main Toolbar. The process flow for 

simulation includes model wizard setup, global definition for parameters, geometry, 

material, module definition, mesh, study, and results. 

The geometry for arrayed nanopores is shown in Figure A-l. The bottom domain 

is the alumina domain. The diameter of a nanopore is 50 nm. The spacing among 

nanopores is 50 nm. The top domain is the air domain. On top of the air domain is a 5 nm 

thick gold layer. L is defined as the pore to pore distance. D is the pore diameter. 
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Figure A-l Geometry of arrayed nanopores. 



103 

In order to simulate arrayed nanopores, the periodic boundary condition is set for 

a single nanopore cell on both left and right hand side boundaries. The boundary on the 

top of the geometry is set as the input source. The geometry of a nanopore with periodic 

boundaries is shown in Figure A-2. 
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Figure A-2 Geometry of a nanopore with periodic boundaries. 

Material properties are assigned to each domain from the material library. The 

refractive index for air is 1. The refractive index for alumina is 1.77 at the wavelength of 

600 nm. The relative permittivity for gold is -1.74-5.4/ at the wavelength of 600 nm. 

Mesh for the gold domain is customized with a maximum element size of 0.5 nm 

in order to get an extremely fine mesh. The remaining domain is predefined coarse to 

balance the calculation time. The mesh result is shown in Figure A-3. The framed part is 

the customized mesh for the gold domain. 
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Figure A-3 Mesh for a single nanopore cell. 

In order to quantify the enhancement of gold coated nanopores comparing to bare 

nanopores, the data from COMSOL are exported to the text file and then imported into 

the excel file. After converting the COMSOL data into the excel file, MATLAB is used 

to load the data and perform the calculation. All mesh points in the nanopore region are 

added together. Thereafter, the sum is divided by the number of points to get an average 

value of magnitude enhancement. 
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