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ABSTRACT 

Non-invasive electroencephalography (EEG) based brain-computer interface 

(BCI) is able to provide alternative means for people with disabilities to communicate 

with and control over external assistive devices. A hybrid BCI is designed and developed 

for following two types of system (control and monitor). 

Our first goal is to create a signal decoding strategy that allows people with 

limited motor control to have more command over potential prosthetic devices. Eight 

healthy subjects were recruited to perform visual cues directed reaching tasks. Eye and 

motion artifacts were identified and removed to ensure that the subjects' visual fixation to 

the target locations would have little or no impact on the final result. We applied a Fisher 

Linear Discriminate (FLD) analysis for single-trial classification of the EEG to decode 

the intended arm movement in the left, right, and forward directions (before the onsets of 

actual movements). The mean EEG signal amplitude near the PPC region 271-310 ms 

after visual stimulation was found to be the dominant feature for best classification 

results. A signal scaling factor developed was found to improve the classification 

accuracy from 60.11% to 93.91% in the two-class (left versus right) scenario. This result 

demonstrated great promises for BCI neuroprosthetics applications, as motor intention 

decoding can be served as a prelude to the classification of imagined motor movement to 

assist in motor disable rehabilitation, such as prosthetic limb or wheelchair control. 

in 
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The second goal is to develop the adaptive training for patients with low visual 

working memory (VWM) capacity to improve cognitive abilities and healthy individuals 

who seek to enhance their intellectual performance. VWM plays a critical role in 

preserving and processing information. It is associated with attention, perception and 

reasoning, and its capacity can be used as a predictor of cognitive abilities. Recent 

evidence has suggested that with training, one can enhance the VWM capacity and 

attention over time. Not only can these studies reveal the characteristics of VWM load 

and the influences of training, they may also provide effective rehabilitative means for 

patients with low VWM capacity. However, few studies have investigated VWM over a 

long period of time, beyond 5-weeks. 

In this study, a combined behavioral approach and EEG was used to investigate 

VWM load, gain, and transfer. The results reveal that VWM capacity is directly 

correlated to the reaction time and contralateral delay amplitude (CDA). The approximate 

"magic number 4" was observed through the event-related potentials (ERPs) waveforms, 

where the average capacity is 2.8-item from 15 participants. In addition, the findings 

indicate that VWM capacity can be improved through adaptive training. Furthermore, 

after training exercises, participants from the training group are able to improve their 

performance accuracies dramatically compared to the control group. Adaptive training 

gains on non-trained tasks can also be observed at 12 weeks after training". 

Therefore, we conclude that all participants can benefit from training gains, and 

augmented VWM capacity can be sustained over a long period of time. Our results 

suggest that this form of training can significantly improve cognitive function and may be 

useful for enhancing the user performance on neuroprosthetics device. 
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CHAPTER 1 

INTRODUCTION 

1.1 BCI Control System 

Brain Computer Interface (BCI) is a frontier research area in neural engineering 

that has gathered a great deal of attention from scientists and the general public. BCI 

technology allows communication to occur between the brain and an external machine 

[1], and its application can range from entertainment to assistive devices [2], In a typical 

BCI system, the brain activities are recorded and processed by a computer system, which 

in turn, deciphers the mental or physical activities and creates commands to control 

external devices [3, 4]. A brain-computer interface device is shown in Figure 1. 

1 
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Figure 1: A brain-computer interface device [5], 

One of the goals in BCI and neural engineering research is creating assistive 

devices for those with limited motor control. A successful BCI system is valuable in 

motor disable rehabilitation by allowing the subjects to perform physical practices [6], 

This type of technology would drastically improve the quality of life for the patients by 

allowing these individuals to have better communication and more independent control 

over the assistive devices [7, 8]. 

The operation of traditional electromyogram (EMG)-based controlled prosthetics 

is based on the decoding of myoelectric signals of residual muscles [9, 10]. While these 

devices provide more basic control over the prostheses, certain limitations restrict their 

acceptability. Users with severely limited motor ability would require much effort to 

learn how to contract specific muscle groups in order to control the device. The number 

of these distinctive muscle contractions is related to the degrees of freedom (DoF) of the 



3 

device. The movements of these muscle contractions are often unnatural and may 

interfere with the individual's social interactions. Therefore, the need to create a more 

intuitive control strategy based on the user's naturally occurring brain signals is apparent. 

Figure 2 shows the difference between classical (EMG based) control and the new (brain 

wave) control of prosthesis. 

User 
forearm 

Classifier 
(High level of 

control) 

Control s trategy 
(Low level of 

control) 

Hand 
Prototype , 

Brain signal Low level of feedback 

High level of feedback 

Classify user intention and hand 
configuration 

Perform the holding task using the 
classified configuration 

Figure 2: The classical (EMG based) and the new (brain wave) control of prosthesis. 

The use of BCI can eliminate the user's need to learn different muscle 

contractions, then reducing the amount of cognitive interaction required for rehabilitation 

applications. The BCI technology today encompasses invasive electrocorticography 

(ECoG), implanted electrodes, or non-invasive electroencephalography (EEG) [11]. 

Current literature suggests that EEG is adequate to extract detailed information about 

precise movements of the upper limb [12]. Non-invasive techniques based on EEG 

surface potentials appear to be a more sensible method for collecting and processing data 

[13-15] for neuroprosthetics applications with relatively few DoFs (such as prosthetic 

arm control). With the use of surface EEGs, the user's intentional movements can be 

decoded. Real-time signal classification based on the activation and feature extraction 

from particular brain regions can allow for the control of the assistive devices. 
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When examining the neuronal activities for BCI applications, the signal intensity 

or signal power features has been commonly used for decoding user movement intents. 

The posterior parietal cortex (PPC) region is responsible for converting visual stimuli into 

motor movements [16] and is a vital location for decoding intended motor movement 

[13]. While most other research focused on discriminating EEG signals between left 

hand, right hand, toe, and tongue imagined movement [17, 18], our endeavor is to decode 

and classify EEG signals for the intended movement direction of the same limb, leading 

to a more realistic control of a single upper limb prosthetic arm [19]. Single-trial signal 

classification strategy was developed to evaluate the temporal, spatial, and spectral EEG 

features during the planning stages of motor movements in the left, right, and forward 

directions similar to [20-22]. Ultimately, such classification algorithm will be a part of a 

two-stage neuroprosthetics control strategy. In the first stage, the intended motor 

movement directions can be decoded using EEG signal features. The second stage is 

envisioned to be a motor imaginary classifier. In this paper, we shall focus our discussion 

on the classification of motor intention only. 

Since the presentation of different types of visual cues does not influence the 

performance [23], we used "realistic" instead of "abstract" visual-cue in order to avoid a 

tedious calibration procedure. Furthermore, realistic visual image environment may 

enhance the learning progress in a BCI task [24]. Ensemble Empirical Mode 

Decomposition (EEMD), where the signals are decomposed into intrinsic mode functions 

(IMF) [25], was utilized to isolate the frequency information in the training set. 

We developed and validated the use of scalp EEG data and current density 

localization for intended movement direction analysis. Subsequently, we evaluate the 
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feature classification strategy suitable for distinguishing the brain activity associated with 

the intended hand movement. Potential variations in electrode impedance at different 

recording locations and at different recording times may drastically impact the amplitude 

and signal-to-noise ratio (SNR) of the EEG signals. This would considerably hinder the 

performance of any amplitude-based signal classifiers. Finally, we proposed and 

evaluated a scaling factor based on the "signature" EEG signal after the presentation of 

the visual-cues. We hypothesize that such scaling factor is able to compensate the 

potential problems of electrode impedance differences between trials and across different 

locations. Our preliminary result indicated that the inclusion of such a scaling process 

would significantly improve the overall single-trial signal classification accuracy. In a 

two-class decoding scheme, the accuracy improved from approximately 60% to over 90% 

with the scaling factor. The implication of this work would have direct impact on the 

acceptability of the BCI neuroprosthetics application as the new device will function 

based on user's intent, which can provide a more intuitive control paradigm, for simple 

device control with few DoFs. 

1.2 BCI Monitor System 

Visual working memory (VWM) , or visual short-term memory, refers to a 

limited amount of information storage within a few seconds [26]. It is associated with 

important cognitive modalities, including attention, perception, reasoning, 

comprehension, and language acquisition [27, 28]. VWM also plays a critical role in 

preserving and processing information, and its capacity can be used as a predictor of 

cognitive abilities [29], For instance, researchers have focused on VWM capacity 

changes to identify healthy or memory-impaired individuals suffering from attention-
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deficit hyperactivity disorder (ADHD), schizophrenia, stroke [30], or memory 

deficiencies related to aging [31, 32]. Recent evidence has suggested that brain training 

can enhance an individual's VWM capacity and attention over time [31] by increasing the 

activity in the prefrontal cortex, the parietal cortex, and the basal ganglia [33], Not only 

can these studies reveal the characteristics of VWM load and the influences of training, 

they may also provide effective rehabilitative means for patients with low VWM 

capacity. Furthermore, healthy individuals who seek to enhance their intellectual 

performance may also benefit from the adaptive training [33], This method could also be 

used with brain computer interfaces to repair or augment human cognitive function [34], 

Despite the potential applications of VWM, very few studies have investigated 

VWM over a long period of time, beyond 5-weeks. Most of the research has been 

concentrated on distinguishing different memory systems and memory-processing phases 

to build up a category of memory systems and their functions [35]. Considering the 

importance of VWM, a combined behavioral and electrophysiological approach was used 

to reveal the impact of VWM load, training, and transfer effects on individuals' memory 

capacities and task-related performances. The event-related potentials (ERPs) as the 

result of VWM information processing were recorded. Arrays of colored squares were 

used to estimate the VWM capacity through computerized tasks, broken into several 

experimental blocks. 

The goal of this study was to evaluate training paradigms to expand memory 

capacity and improve VWM performance. We hypothesized that participants would 

dramatically improve their neural activities in raising attention and memorization. 

Overall, three major experiments were conducted. (1) VWM load experiments. We 
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estimated the VWM capacity behaviorally through accuracy measurements, and 

electrophysiological^ through the level of CDA. (2) VWM training gains experiment. 

VWM adaptive training was developed to expand memory capacity and general cognitive 

improvement over a period of 12-weeks. (3) VWM transfer benefits experiment. Subjects 

were separated into two groups, training and control groups, to evaluate the behavior 

evidence and neural activity. The transfer benefits were calculated by comparing between 

pre-training and post-training. We conclude that VWM can be improved by adaptive 

training across time, that all subjects benefit from training tasks, and that they show 

sustained improvement on VWM capacity over a long period of time. 



CHAPTER 2 

BACKGROUND 

2.1 Brain-Computer Interface 

Brain-Computer Interface (BCI) or Brain-Machine Interface (BMI) has caught 

much attention in the past few years not only by scientists and engineering forces in 

understanding brain function and by impressive application but also people have a brief 

idea from the movie Avatar. The signals used for BCI can be collected either invasively 

or non-invasively. The invasive approach uses electrodes implanted on the surface of the 

cortex, known as Electrocorticography (ECoG). The non-invasive approach uses 

Electroencephalography (EEG), in which electrodes are placed on the scalp. There are 

some various steps in the non-invasive based BCI cycle as shown in Figure 3, such as 

measurement of brain activities, single preprocessing, feature extraction, pattern 

recognitions classification and device commands. We believe BCI research should 

translate into practical applications for the healthy and disabled users as well as into 

novel ways of analysis neurophysiology data because these developments will have 

significant impact on our lives [11]. Figure 4 shows the current Prototype device 

designed in our neural signals and systems laboratory [19]. 

8 
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Prediction 

Feature 
extraction Output 

Stimulation I Preprocessing 

Task 

User 

Modality Measurement 

Figure 3: A typical BCI [11]. 

Figure 4: (Left) The CAD model of the low-cost robotic hand is illustrated using 
SolidWorks software. (Right) Prototype of the robotic hand is covered with a silicone 
glove, which helps to protect the components and to faciliate a secure grip [19]. 

2.2 Electroencephalographs (EEG) 

2.2.1 Introduction of EEG 

EEG is an important tool for studying neural activity in a human. It uses a non­

invasive brain imaging method by recording electric potential differences on the scalp 
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[36]. The electrical charges are maintained by billions of neurons. Neurons constantly 

exchange ions with an extracellular medium. The volume conduction process is defined 

as many ions pushed out of many neurons at the same time to generate a wave. The wave 

reaches the surface and picks up by the electrodes [37], 

EEG is measured by these electrodes and recorded as voltages over time. 

Localizing the different modules of the functional network in a given mental task is the 

principal aim of functional neuroimaging studies [38]. To investigate whether EEG 

signals recorded from a human can be used to decode intended movement direction, we 

recorded the whole head EEG with eye movement and reach task and find the direction 

related modulation of event-related potentials (ERPs). 

Neural activity associated with different movement directions can be 

distinguished using EEG recording and might be used to drive the brain-computer 

interface applications [13]. It has been assumed that these parameters can be derived 

accurately only from a signal recorded by electrodes, but the long-term stability of the 

brain-computer interface is the electrodes are not uncertain by the conductivity value 

[39]. 

2.2.2 Wave Patterns and Brain Functions 

Source EEG activity exhibits oscillatory behavior at different frequency ranges 

and spatial distributions for different brain functions. Most of the brain signals observed 

from the surface EEG falls in the range of 0.1-30 Hz due to the EEG technique 

limitation. Below or above this range is often seen as artifacts [40]. A typical wave 

pattern in EEG is shown in Figure 5. The Delta band is the slowest with the highest 
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amplitude ranges up to 4 Hz. Theta is between 4-7 Hz, Alpha is 8 ~ 12 Hz, Beta is 12 -

30 Hz, Gamma is 30- 100 Hz, and Mu is 8 - 13 Hz. 

Beta 

Alpha 

Theta >^4»<<'vvwWVV>•A^ 

Figure 5: A typical wave patterns in EEG. 

The brain provides coherent control over the interplay between different 

subsystems such as information processing, perception, motor control, arousal, 

homeostasis, motivation, learning and memory [41]. The cortical input and output 

pathways are shown in Figure 6. Previous research in the localization of brain function 

indicates regions that could provide signals that are particularly useful for BCI. In 

general, motor intention and visual working memory studies involved include the 

prefrontal cortex, the parietal cortex, the motor cortex, and the basal ganglia [33]. The 

posterior parietal cortex especially plays an important role in visual intention and VWM 

that processes the visual information about the structure of the environment. Next, PPC 

analyzes the information. With memory of past circumstances, it generates motor 

response comments. Finally, PPC is involved in motor control by producing body 

movements [42]. 
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PPC Input and Output Pathways 

Auditory 

Figure 6: Cortical input and output pathways [43]. 

2.2.3 Neuroimaging Techniques 

When you insert a figure, you may need to adjust its formatting. To view the 

borders of the table, click on the figure, click on the table, and then click on the "Layout" 

ribbon. (The "Layout" ribbon will not appear until you click on the figure or other 

content within the table). The The most important limitation in EEG is poor spatial 

resolution, but EEG is sensitive and accurate because the device can directly detect the 

neural activity changes from scalp electrodes [44], Likewise, compared to other 

neuroimaging methods [45, 46], such as functional magnetic resonance image (fMRI), 

EEG is low cost, less time consuming and easier to operate. It is simple to modify our 

EEG-based visual tasks to other paradigms to study visual intention and VWM. Another 

important difference between EEG and fMRI is that EEG is able to resolve hemodynamic 

changes of integrated cognitive activity over milliseconds, while the fMRI only requires 
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the resolution over a few seconds [47]. As a result, EEG is more suitable for the 

understanding of short term memory representation, and predict one's cognitive ability 

through VWM tasks. Currently, various hardware and software advancements have 

improved both resolution and noise reduction for EEG. One improvement has been the 

increase from 64 to 128 and 256 electrodes for sensor nets [2]. Additionally, software has 

been developed that effectively removes the noise, providing a cleaner EEG signal. 

Although the capacitance of the cell membrane tends to filter the higher gamma 

frequencies, some studies have found features at these higher frequency bands [39, 48]. 

Functional near-infrared spectroscopy (fNIRS) is another method which measures 

changes in blood hemoglobin concentrations linked with neural activities [49]. EEG and 

fNIRS are much more portable than the fMRI machine allow us to freely move the 

subjects. However, fNIRS only can scan the cortical cortex compared to the fMRI which 

measures throughout the whole brain [50]. The invasive method ECoG provides high 

spatial resolution and better signal fidelity from artifacts such as eye movement [39]. The 

main obstacle for this approach comes from the development of infections or the creation 

of scar tissue from the immune system that insulate the electrodes over time. A secondary 

problem is the difficulty in getting approval for research on human subjects due to the 

inherent risk to the patients. Moreover, the participants of these studies are generally non-

healthy individuals and the results might be limited or affected by their ailments [51]. 

Figure 7 is shown as the EEG resolution compared to other common measurement 

methods for BCI. 
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Figure 7: Overview of the scale of spatial and temporal resolution of measurement 
methods used for BCI. Non-invasive methods are shown in blue and invasive methods 
are shown in red [11]. 

There are some common questions about source localization: 1) where is the 

source? 2) what are the orientations? and 3) how does source field pass through the 

subject's head to the recoding electrodes? Forward and inverse modelings are the first 

problem for EEG/ERP researchers. A biophysical solution to this inverse problem must 

start with construction of a forward head model for individual users, but it requires 

extensive computation and expensive MR Head images and needs to develop EEG 

electrodes into a 3D functional brain image modality. A different purpose might require 

various degrees of anatomic accuracy. So, using a standard head model may suffice for 

our research since we do not have a MRI machine. For the inverse problem, we look for a 

simple map representing the only one activation source, which is easy to classify the 

source and location. So, utilizing the independent component analysis as an unsupervised 

spatial filtering technique can extract the EEG's independent component activities 

without abnormal movement (eye movement, eye blink, and muscle signals) as well as 

2.3 The Estimation of Source Localization 
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brain signal from other functional processes [52]. Figure 8 shows the spatiotemporal filter 

for extracting activity from multiple cortical sources. 

x(t) = As(t) 
Observed 

multi-channel EEG 

W /  Q 

4 " • 
imkuoum RLiND 
mixing SEPARATION 
proem (ham! weight*) 

u(t) =Wx(t) 
Activity from Independent 

Cortical Sources 

Figure 8: A Spatiotemporal Filter for extracting activity from multiple cortical sources. 

DIPFIT stands for equivalent dipole source localization of independent 

components. DIPFIT 2.0 toolbox is an EEGLAB plug-in based on functions written and 

contributed by Robert Oostenveld, and docked to EEGLAB [53]. DIPFIT 2.0 includes 

two types of scalp map. By draft, the spherical four shell model uses four spherical 

surfaces to model the brain. The boundary element model is comprised of three 3D 

surface extracted from MNI. In general, the BEM is more realistic than the four spheres 

model, and will get back more precise results. Nevertheless, BEM is a numerical model 

whereas the spherical is an analysis model. Sometimes BEM leads to an incorrect 

solution due to numerical instabilities [53]. Figure 9 shows the BEM model which we are 

used for this project and the illustration in Figure 10 is of dipoles using BEM mode for 

independent components (ICs) 1, 3 and 6 from our intended arm reaching movement 

data. 
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Figure 9: Boundary Element Model coordinate system [53]. 

Summary model Components 1 3 6 

Figure 10: Illustration of dipoles using BEM mode for ICs 1,3 and 6 [53]. 
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2.4 Biological Artifacts 

2.4.1 Independent Component Analysis (ICA) 

Independent component analysis (ICA) has been widely used in EEG analysis. It 

can decompose the overlapping source activities constituting the scalp EEG into 

functionally specific component processes [13]. EEGLAB toolbox v.9 in Matlab was 

used in the analysis of the intended arm movement [53]. Independent component analysis 

(ICA) was used to remove artifacts and to reduce the dimensionality of the data. The 

extended informax ICA method algorithm was used to decompose the signals. Bad trials 

containing abnormal values and artifacts, such as eye movement, eye blinks, and muscle 

signals were removed. Figure 11 shows some typical components of abnormal signals of 

brain. Data constraints for ICA recommend it is optimal to decompose a number of times, 

more than 20 times the number of the channels squared. In my study, 128 channels data 

20 * 1282 time points at 128 points/sec will require over 42 min, about 750 MB data ( 

20 * 1282 /(128 * 60) = 42). 

ICA should be zero-mean. Any re-referencing of the data does not change its 

information content or its source. The impact of the sampling rate is unknown in the field 

of ICA decomposition. ICA roles to single trials and ERPs by the definition and design 

independent component processes contribute independent temporal variability to sets of 

single-trial epoch [52]. Figure 11 is an example of ICA in the real world. Figure 12 is the 

scalp electrodes' locations. Figure 13 is topomap and ERSP for left hand, right hand, foot 

and tongue imaged movements using ICA spatial filter. Figure 14 is the typical 

component properties of 4 non-neural ICs such as eye blink, lateral EOG. 



Cocktail Party 

Figure 11: Illustration of ICA in the real world [54]. 

CSF 

Figure 12: Illustration of signal source location [54]. 
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Figure 13: Illustration of topomap and ERSP for left hand, right hand, foot and tongue 
imaged movements using ICA spatial filter [18]. 
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Figure 14: Typical component properties of 4 non-brain ICA such as eye blink, lateral 
EOG [53]. 



21 

2.4.2 Empirical Ensemble Mode Decomposition (EEMD) 

An empirical mode decomposition (EMD) technique is widely use in signal 

processing, especially suitable for nonlinear and non-stationary analysis. EMD can 

decompose the EEG signal into a collection of intrinsic mode functions (IMFs) [55]. 

IMFs are kind of whole, adaptive and nearly an orthogonal representation of the studied 

signal [25]. EEMD solves the mode mixing problem utilizing the uniformly distributed 

reference frame based on white noise. Ensemble EMD enables the EMD method to be a 

truly dyadic filter bank and in utilizing the scale separation principle of EMD, it 

represents a major improvement of the EMD method [56]. The EEMD method described 

some advantages in neurophysiological studies and BCI applications, a) It is usefully in 

removing artifacts and extracting dependable signal features in high dense array EEG 

data, b) The EEMD reports for trial-by-trial dynamics to reserve inter-trial variability of 

periodic activities and investigates the temporary or discontinuous states in neurosignals. 

c) The effective extraction rate of oscillatory activities can be beneficial for BCI 

applications, d) The single-trial approach allows an operational in cases where 

participants can undertake long procedures and in medical settings where patients have 

attention problems. This approach is capable of sustaining long experiments [57]. Figure 

15 is an illustration of EEMD decomposition during the imagination of the combined 

left-foot with left-hand movement. 
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Figure 15: Illustration of the characteristic IMF extraction, (a) The single-trial EEG data 
at C4 during the imagination of the combined left-foot with left-hand movement, (b) The 
EMD results of (a), (c) The PSD distribution of the first four IMFs in (b) [25]. 
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2.5 Signal Classification 

Fisher's linear discriminate analysis (FLDA) was evaluated in this project. After 

ICA and EEMD decomposition had been completed, the peak time, active location and 

frequency content of the directions signal related to the intended arm reaching movement 

were treated as input vectors of FLDA classifiers. FLDA projects the high dimensional 

data onto a one dimensional vector. It has a low computational cost, which makes it 

attractive for real-time implementation. The training process for this method is utilized, 

averaged, and segmented data from each subject on each experiment date [58]. Figure 16 

is the example of FLDA method [59] and Figure 17 is the ICA source localization for 

classification. 

Feature 2 * atur^2 Feature 2 * 
* X X * 

Featurejg^ ^^Feature Feature 1 

Mapping Solution 

Fisher's linear discriminant analysis (FLDA) 

Figure 16: Fisher's linear discriminate analysis [60]. 
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Figure 17: ICA source localization for classification of multi-class intended arm 
movement. 



CHAPTER 3 

METHODS 

3.1 BCI Based on Motor Intention 

The experimental procedure for investigating the motor intention using targeted 

BCI is shown in Figure 18. It involves the design of a visual stimulation system, an EEG 

data acquisition system, a signal pre-processing unit, an artifact removal algorithm, a 

feature extraction method, and a signal classifier. The detail for each step is provided in 

the subsequent sections. The method for computing the visual-cue based scaling factor is 

proposed and described in the feature extraction section. 

25 
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Figure 18: A flow chart describing overall experimental procedure for decoding the 
reaching tasks during the planning stage. The visual stimulation was provided to subjects 
for recording EEG signals. Artifact in the data was removed before finding the suitable 
scaling factors. Once the scaling factors were obtained, they were applied to the signal 
amplitude features in the test set. To determine the overall accuracy, a 5x5-fold cross 
validation procedure was performed for a binary classifier. 

3.1.1 Visual Stimulation and Data Acquisition 

Eight able-bodied participants with normal or corrected to normal eye sight (6 

males and 2 females, ages 19-29, all right handed users) were recruited in this study. All 

of the subjects had no prior experience with BCls and no history of neurology disorders. 

The protocol has been approved by the Institutional Review Board for Human Use (IRB) 

at Louisiana Tech University. All participants had read and signed an informed consent. 

The experimental setup is shown in Figure 19 where the subjects were seated in 

front of a computer screen and given visual cues from the computer monitor. Touch pad 

sensors were placed at the middle and to the sides of the monitor to track the subject's 

responses. In order to obtain useful signals for the fast interpretation, the BCI task should 
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be relatively easy to perform and require little effort from the users to prevent physical or 

mental fatigue [11]. In order to do so, a targeted delayed saccade/reach task was used in 

this study. A minimum of 450 trials were performed by each subject. The recording 

sessions were broken into blocks (90 trials / block), separated by 5 min breaks in 

between. 

Figure 19: The experimental setup is illustrated. Touch pads (circles) are placed at the 
base (resting) position and at the targets of the reaching tasks (left, right, and forward) 
to track whether the subject has performed the tasks correctly. 

40cm 

30cm 
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The sequence of each trial is shown in Figure 20. At the beginning of each trial, 

each subject was asked to relax the forearm and place the palm on the touch pad at the 

base position 40 cm away from the screen. Visual cues were provided using the E-Prime 

2.0 system (Science Plus Group, Netherland) to inform the subjects of the proper 

movement to perform in a dark room. Two types of visual cues were provided. First, the 

"Effector cue" was displayed 500 ms after the beginning of each trial. It instructed which 

movement type the users should perform (imaginary movement with eyes closed, reach 

without eye movement, or saccade to target). The second visual cue, called the "Direction 

cue" was shown at the center of the screen 1000 ms after the "Effector cue". It informed 

the user of the appropriate reaching directions (left, right, or forward). The subjects were 

asked to fixate on the center of the screen until the "Go cue" appears 700 ms after the 

"Direction cue". They were then asked to perform the indicated actions as quickly as 

possible after the appearance of the "Go cue". The nine different "Effector - Direction" 

combinations were evenly distributed and randomly provided over the whole experiment. 

The EEG evoked response potential (ERP) signals were recorded using a 128-channel 

HydroCel Geodesic Sensor Net (Electrical Geodesies Inc., Eugene, OR) with the Net-

Station 5.3 software. Figure 21 shows the electrode placement as viewed from the top of 

the head and regions of interest around the PPC. All signals were anti-aliasing low-pass 

filtered at 100 Hz, and digitized at a sample rate of 256 Hz. 
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Figure 20: Time course of one trial is illustrated. The 700 ms delay period between the 
presentation of the "Direction cue" and the "Go cue" is considered the period of 
directional movement planning. The EEG data within this time window is used for the 
analysis. 
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Figure 21: The channel map for 128 electrodes is shown with electrode number labeled. 
The illustration is observed from the top of the subject's head with the front of the head 
pointing upward. The regions of interest on the scalp surface near the PPC are circled. 
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3.1.2 Signal Pre-processing and Artifact Removal 

The EEG data was digitally filtered between 0.1-30 Hz. Since this project 

focused only on the analysis of the motor's intention prior to any actual movements, all 

three different effectors were included and combined in the analysis. The data was 

separated into three groups (left, right, or forward) based on the "Direction cues". Bad 

channels, as the result of poor skin contact, eye blink, eye movement, or muscle 

movement were detected based on their particular signal characteristics and abnormal 

amplitude information, were replaced by the averaged signals from neighboring channels 

using NetStation built-in functions. Only those artifact-free epochs (with amplitude < 50 

(iV) were used for further analysis. The data was also re-referenced to the average signal 

across all 128 electrodes. The 100 ms before onset of each trial was also used for baseline 

correction adjustments. 

The average evoked response potentials after the "Action" cue were segmented 

for analysis (Figure 22). The EEG data from this period represents the planning phase of 

a motor task, before the subjects were prompted to make any horizontal reaching 

motions. 
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Figure 22: Illustration of surface potential map. The averaged evoked potentials from all 
128 channels from one particular subject are shown. The scalp maps at the top represent 
the spatial activity at a particular time instance that signifies the activation signals in the 
scalp surface. Specific activities at 122, 147 and 200 ms after the "Action" cue are 
shown. 

3.1.3 Offline Source Localization Validations 

Source localization was performed offline as a way to validate that the activated 

brain regions of our recorded data is consistent with the literature. The process described 

in this subsection would not be needed in the real-time implementation of the motor 

intention decoder. Independent component analysis (ICA) [61] was first performed using 

the extended Infomax-ICA algorithm in the EEGLAB tools [53] to find the maximally, 

temporally independent signals available [62], Independent components (ICs) related to 

motion artifacts can be identified visually based on the spatial contribution of each IC. 

We have used ICA to effectively detect, separate and remove activity in EEG records 

from a wide variety of artifactual sources (Figure 23). Figure 24 illustrates the averaged 
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signals across all the recording trials before and after the removal of eye motion artifact. 

The DIPFIT 2.0 algorithm was then used to estimate the dipole sources of the remaining 

independent component (IC) after spatial filtering [53]. The dipoles were projected onto 

the boundary element mode in EEGLAB, then plotted on the average MNI (Montreal 

Neurological Institute) brain images [63], The source locations were then specified using 

the Talairach coordinate system. Dipole locations from the source localization algorithm 

would not be used in the single-trial classification of arm movement direction since it is a 

time consuming process. 

$6 

7 

Figure 23: The projection of each independent component. The ten largest identified ICs 
at different stages of the ICA pruning process are shown. (Top row) The original ICs 
after the first ICA. Lateral eye movement artifacts are shown in IC#1, 3 and 6. Muscle 
artifacts are shown in IC#2 and 4. (Middle row) After the first pruning process, ICA was 
run again. Here, the ICs corresponding to the left and right movements are more 
apparent at IC# 2 and 3. (Bottom row) After the second pruning step, 9 out of 10 
components shown are related to the intended arm movement. 
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Figure 24: EEG signals before and after spatial filtering is shown. The signal for each 
channel is averaged across all trials prior to ICA spatial filtering. An example of eye 
artifact is seen in the EEG spatial map around 305ms. After eye artifact is removed, the 
averaged signal for each channel after ICA spatial filtering is shown at the bottom 
subplot. 

3.1.4 Ensemble Empirical Mode Decomposition 

Ensemble empirical mode decomposition (EEMD) is a data-driven analysis 

method that separates the signal into a collection of intrinsic mode functions (IMFs). It is 

a powerful approach for analyzing nonlinear, non-stationary EEG signal since the method 

is only based on the local characteristic time scale [55-57]. Unlike traditional bandpass 

filters, EEMD breaks down the signals in an empirical manner, which is strictly based on 

the signal characteristics without specifying any frequency bands [64], Mode mixing 

problem that existed in the Empirical mode decomposition (EMD) method can be 

resolved by EEMD utilizing the uniformly distributed reference frame by the addition of 

white noise [65]. The procedure for EEMD has been described in great detail in [56], and 

would not be repeated here. 
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3.1.5 Feature Extraction and Signal Classification 

Signal classifiers were created using the Statistical Pattern Recognition Toolbox 

in Matlab [66] to decode the EEG signal features. A two-class analysis (left versus right) 

was first performed using Fisher Linear Discrimination (FLD) binary classifier in a 5x5-

fold cross validation procedure. Eighty percent (80%) of the data for each direction was 

randomly chosen to be the training set. The remaining 20% of the data was assigned to be 

the testing set. The "signature" signal was acquired in each region of interest (ROI) near 

the PPC region (see Figure 21) using the training set for each cross-validation study. In 

this study, the averaged ERP signal within 235 ms after the presentation of the "Direction 

cue" would be considered the "signature" at each ROI. It has been observed that 

regardless of the intended reaching direction or the type of effectors requested of the 

subject, the averaged EEG signal within the first 235 ms after the presentation of the 

"Direction cue" retains a similar signal profile. Each "signature", consisted of a dominant 

high delta (0-4 Hz) and a low theta (4-8 Hz) component, has been observed to have 

similar shapes, regardless of the intended direction of movement. The local maximum 

and local minimum of the "signature" signal at each ROI were found and their difference 

was used as a scaling factor. The signal amplitude at each recording site was scaled 

accordingly with the following equation: 

v ( t )  —  v (  _  t \ ' /  i , m i n  
i, scaled \ ) Efl. 1 

v — V /, max t, min 

where v,(t) and vlscaiecl(t) denote the ERPs in the test set, at location i, before and after 

scaling. The values v,imax and vi mm are the maximum and minimum of the "signature" at 

the same location, found in the averaged training data set. Since this scaling process only 
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involves multiplying the EEG recording by a different factor at each location, it is 

suitable for real-time applications. Figure 25 is the graphical illustration for scaling the 

EEG signals. 
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Figure 25: Graphical illustration of the scaling factor is shown. The scaling factor 
computed from the individual recording channels in the training set is applied to the test 
set before signal classification. The light color lines indicate the EEG signals at a single 
electrode from different trials in the training set; the dark bolded line indicates the 
average signal at that particular electrode location. The scaling factor is set to be the 
difference between the maximum and minimum values in the first 235 ms of the averaged 
signal. 

The impact of scaling was evaluated by investigating the features at different time 

delays after the "Direction cue" [67]. Once it has been established that using this cue-

based "signature" can enhance the binary classification accuracy of the planned motor 

movement in two directions, we performed the second analysis. It involved the evaluation 

of the EEMD-based operation on the decoding accuracy. The high frequency noise in the 

EEG data was reduced through the elimination of IMF 1 and IMF2 [68], since the ERP 

difference of intended direction of movement have been reported to be < 12 Hz [69]. 
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3.2 BCI Based on Visual Working Memory 

The experimental procedure for investigating the visual working memory using 

electrophysiological and behavior evidences is shown in Figure 26. It involves an EEG 

data acquisition system, a signal pre-processing unit, an artifact removal algorithm, 

ANOVA method, and time-frequency analysis. The detail for each step is provided in the 

subsequent sections below. 

EEG raw data 
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Correction 
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artifacts 

ERPs 
(0.1-80HZ) 

ANOVA 
On ERPs data 

ICA decomposition 
(EEGLAB) 

Time-Frequency 
Analysis and statistics 

Figure 26: A flow chart describing overall experimental procedure for visual working 
memory data analysis. 

3.2.1 Visual Stimulation and Data Acquisition 

Sixteen healthy, young participants (18-31 years of age, 5 females and 11 males) 

performed the VWM load tasks: two of the subjects participated in the training gains 

study, and four individuals completed the transfer benefit tasks (two people per training 

and control group). All participants had normal or corrected to normal eye sight. None of 

them have a reported history of neurological or psychological disorder. All of them had 
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no prior experience with computerized VWM training. The experimental protocols were 

approved by Louisiana Tech University's Institutional Review Board Committee. All 

participants gave informed consent. The experimental data from one of the participants 

was rejected from VWM load experiments due to an excessive amount of bad trials (> 

30%) related to eye movement or eye blinks. 

Participants were seated in front of a computer screen and given visual cues at a 

distance of 80-100 cm in a dark sound-attenuated room. They were instructed to respond 

to the VWM arrays by pressing a button on a response pad and performing as quickly and 

accurately as possible to the assigned tasks. All experiments were conducted between 

9:00 am and 1:00 pm. Each subject was only given 10-20 min of practice time before the 

start of the VWM load tasks. 

The sequence of each trial for the VWM load and training gains experiments 

(change-detection: color and position) is shown in Figure 27A. At the beginning of each 

trial, a central arrow cue instructed the subjects to focus on either the left or right hemi-

field for 500 ms. Memory arrays were displayed as 2, 4, 6, or 8 colored squares 

consisting of 2-9 possible colors (red, blue, black, yellow, green, purple, gray, orange, 

and light blue) on each side of a central fixation cross for 100 ms. The color of each 

square was randomly chosen one at a time (no repetitive color appeared in the same 

memory array on each side). The positions of colored squares were also randomly 

arranged in each trial. Fifty percent of the trials had the same colored and oriented 

squares in both memory and test arrays. Another fifty percent of the trials presented 

different targets in the test array. Each memory and test array pair was separated by a 900 

ms retention interval. The test array would last, at most, 2000 ms, or until a subject 
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responded. A 500-ms inter-trial interval would directly follow the termination of the test 

array. 

The transfer benefit tasks (Figure 27B.) not only asked the observers to memorize 

the feature characteristics of the items in the memory arrays (change-detection: color, 

position, and shape), but also the location of a particular item displayed in the test array. 

Participants in the training group before and after the VWM training gains experiments 

were labeled as TBI and TB2, respectively. For comparison, the control group was 

assigned to include the participants with data recorded only at the beginning and at the 

end of a 12-week period, without any training sessions in between. In order to reduce 

user fatigue, the recording sessions were separated into blocks with 5 min breaks. 

Depending on the experiment, each block consisted of 100 trials of VWM load 

experiment, 150 trials for training gain, or 150 trials for transfer benefit experiments. 

Consequently, the VWM load task was divided into 6 blocks, the training gain and 

transfer benefit tasks were separated into 4 blocks, with each block lasting approximately 

10 min. The total experiment time required for each day was about 2 hr. 
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Figure 27: Example of a visual working memory trial for the left hemi-field. A. The 
VWM load and training gains experiments are easier to detect a change where the 
position context is the same in both memory and test arrays. B. The transfer benefits 
experiment not only asked the observers to memorize the feature characteristics of the 
items in the memory arrays (colors, positions and shapes), but also where the position 
was altered in the test array. 

Electroencephalogram (EEG) evoked response potential (ERP) signals were 

recorded using a 128-channel HydroCel Geodesic Sensor Net (Electrical Geodesies Inc., 

Eugene, OR) with Net-Station 5.3 software. Regions of interest (ROI) around the 

posterior parietal cortex (PPC) were selected from the following standard international 

10/20 posterior parietal electrodes for P3, P4, P5, P6, P05, P06, 01, 02, T5, and T6. All 

signals were anti-aliasing, low-pass filtered at 100 Hz, and digitized at a sample rate of 

250 Hz. 

3.2.2 EEG Preprocessing and Artifact Removal 

The EEG data were digitally filtered between 0.1 ~ 30 Hz. The data were 

segmented into individual groups based on the number of items in the memory array. 

Each data segment, or epoch, lasted 1200 ms, and consisted of a 200 ms pre-memory 

array, a 100 ms memory array, and a 900 ms retention interval. The epochs of poor skin 
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contact, eye blink, eye movement, or muscle movement were detected and removed 

based on their particular signal characteristics and abnormal amplitude (± 25 (iV) using 

EEGLAB [53]. Approximately, 15-20% of the trials were rejected based on the above 

criteria. Only eye blinks and horizontal eye movement were removed through 

independent component analysis (ICA) with topographies [70], resulting in 20-25 

independent component removals [71]. The data were also re-referenced to the average 

signal across all 128 electrodes. The first 200 ms of each trial was used for baseline 

correction adjustments. 

ERJP waveforms were obtained from posterior parietal cortex over selected 

latency ranges (1200 ms). The PI wave was identified as the first positive peak after the 

memory array cue during the 50-100 ms time window. The N1 wave was defined 

between 100-180 ms [31]. Trials were averaged into segmented grand average ERPs for 

each participant. CDA (300-1000 ms) was measured as the ERP amplitude from 

electrodes contralateral to the location of the task-relevant cue in the memory array [72]. 

We used the results from T5/T6 because the CDA amplitude was consistently higher. 

However, the same patterns can be obtained over P3/P4, P5/P6, P05/P06, and 01/02 

electrode pairs [73]. 

3.2.3 Behavior Measures 

For each participant, the reaction times (RT) were calculated regardless of the 

correctness of the subject responses. A default RT of 2000 ms was used if the subject did 

not respond. The mean RT value from the result is different from other studies which 

only included correct-responses [74]. Accuracies in percent correct responses were 

calculated from all recorded trials. 
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3.2.4 VWM Capacity 

The formula developed by Cowan was used to estimate the VWM capacity [75]. 

K = S*(H - F), where K is the memory capacity, S is the item in a memory array, H is 

the hit rate, and F is the false rate. Generally, the working memory was considered to 

have a limited capacity. The assumption was that an observer can hold K index in 

memory from S items in the memory array, guided by the correct performance on the 

VWM experiments. This formula adjusts the false rate to correct guessing. The 

commonly accepted capacity limit for an individual is four items. 

3.2.5 Statistical Analysis 

One-way ANOVA statistical analysis [76] was performed to compare the VWM 

capacity and average CDA amplitude in each individual. A value of p < 0.05 was 

accepted as significant. All values are expressed as mean ± standard error (Mean ± S.E.). 



CHAPTER4 

RESULTS 

4.1 BCI Based on Motor Intention 

Using the Talairach coordinate system, the dominant equivalent dipole source for 

each intended arm movement direction was observed near the PPC areas for all subjects. 

Figure 28 illustrates the result of the EEGLAB plug-in DIPFIT2.0 output for a particular 

subject where the coordinates for the left component [-20, -40, 24], the forward 

component [0, -33, 40], and the right component [28, -40, 23] are found. This is 

consistent with the results reported in the literature [13]. The effects of the parietal ICs 

were then back-projected onto the scalp for each subject after artifact removal (Figure 

29). 
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Figure 28: Source reconstruction for three equivalent dipoles is illustrated. As a 
validation, estimated source dipole locations were found to be near the PPC regions, 
consistent with reported literature [2] with the residual variance for each dipole estimate 
found to be < 6%. 



44 

Forward 

C/ic1 

B/ic3 

D/lc1 

E/ic10 F/ic9 G/ic15 H/ic2 

Left Afc10 

C/ic5 

8/ic1 

0/ic6 

E/ic2 F/ic3 G/ic2 H/ic3 

Right A/ic4 B/ic6 

C/ic8 D/ic3 

F/icQ 

Figure 29: The independent component (IC) clusters of each subject are shown. The three 
ICs clusters that extracted from eight subjects' ICA decomposition demonstrate activities 
at posterior parietal cortex region. The larger heads show the average projection across 
eight subjects. The smaller scalp maps are from individual subjects. 
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The evaluation of the EEMD-based operation on the decoding accuracy was 

performed by comparing the FLD decoder performance on IMF-removed data set. Since 

the average EEG signal amplitude in a 40 ms window was the feature of signal, removing 

IMF1 and IMF2 components did not significantly improve the decoder performance from 

93.91 ± 6.09% to 95.44 ± 3.28% (p > 0.4). 

As a preliminary evaluation of the proposed cue-based scaling strategy, a two-

direction (left versus right) classifier was created. The averaged ERP data from the 

training set at each recording site was found, the scaling term was calculated to be the 

difference between the maximum and minimum values within 235 ms after the 

presentation of the visual cue. Once the scaling factors were found, they were applied to 

the test set. Amplitude features at different time delays were evaluated and the 

improvement of classification accuracy after the scaling operation is shown in Figure 30. 

The highest classification accuracy (on the scaled data) was found to take place 271-310 

ms after the visual cues. Statistically, significant improvement (p <0.01) in classification 

performance was found with scaling (accuracy 93.91 ± 6.09%) than without (accuracy 

60.11 ± 9.02%). Table 1 summarizes the subject-by-subject result for the single-trial FLD 

using 5x5-fold cross validation. Figure 31 is shows the scatter plot of EEMD-based 

features for left and right intended movement separated by FLD classifier. 
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Figure 30: EEG amplitude features obtained in the PPC regions can be used to classify 
the intended direction of reaching motion. Classification accuracy is at the highest using 
amplitude features 271-310 ms after the presentation of the visual cues. 

Table 1: Single-trial binary classification of left versus right intended movement was 
performed using FLD. Statistically significant improvement in accuracy was found after 
cue-based "signature" scaling (p < 0.01). 

Subject 
Without Scaling With Scaling 

Subject 
Mean ± Stdev Mean ± Stdev 

A 66.40 ±8.11% 99.33 ± 0.83% 
B 59.20 ± 4.05% 96.13 ±3.87% 
C 72.80 ± 5.68% 91.60 ±4.89% 
D 55.23 ± 5.48% 96.80 ± 2.25% 
E 68.54 ±4.91% 95.33 ± 2.50% 
F 57.67 ± 5.49% 78.71 ± 7.03% 
G 54.75 ± 5.37% 94.79 ±2.31% 
H 46.29 ± 5.54% 98.58 ± 1.43% 

Mean ± Stdev 60.11 ± 9.02% 93.91 ± 6.09% 
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Figure 31: Scatter plot of EEMD-based features for left and right intended movement 
separated by FLD classifier. 

4.2 BCI Based on Visual Working Memory 

4.2.1 4.2.1 VWM Load Experiment 

The goal of the VWM load experiment was to estimate the VWM capacity. 

Because the information that can be maintained and stored in memory is limited, it is 

important to understand the individual differences that may impact one's ability to learn. 

Behavior and brain activity could predict the VWM capacity by high accuracy and the 

level of amplitude [77, 78]. This VWM load experiment also included a parametric 

manipulation of the number of possible items in the memory array to further test the 

hypothesis that CDA amplitude can be used to understand the VWM templates [73, 79]. 

The ERP waveform amplitudes and memory capacity were compared. Also, the reaction 

time (RT) and CDA amplitude were measured at different levels of memory load. 

The average accuracy decreased significantly as the number of items increased 

the conditions (96.46 ± 0.85%, 90.27 ± 1.51%, 77.5 ± 2.35% for 2-, 4-, and 6-items, 

respectively; p < 0.005) as indicated in Figure 32A. A large drop in accuracy for 6-items 
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suggested that memory array of this complexity may have exceeded the individual's 

memory limit. The overall capacity was 2.8 items for 15 participants. Even though this 

value is smaller than the reported maximum "magic number 4" [75], it still falls within 

the range of the lateral effects for similar experiments [77]. Nevertheless, the reaction 

time was significantly slower from 2- or 4- to 6-item conditions (570.3 ± 24.7 ms vs 

579.5 ± 22.2 ms vs 648.1 ±31.6 ms, respectively; p < 0.05). The reaction time was highly 

affected by the difficulty of memory array in Figure 32B. 

B 

« -2.2 

550 i 

2 Items 4 Items 6 Items 2 Items 4 Items 6 Items 

Figure 32: A. The average accuracy across 15 participants for 2-, 4-, and 6-item 
conditions. B. Combined RT and CDA results. Bar graph (right-axis), RT. Line graph 
(left-axis), CDA amplitude. Error bars represent confidence intervals. *** p < 0.005 for 
comparisons between adjacent conditions in A and between mean CDA in B. 

Figure 33A shows the average waveforms from the posterior parietal electrodes 

contralateral to the location of the cue for each trial of the VWM load experiments. The 

CDA components during the time duration 300-1000 ms after the memory cue were 

measured and indicated by the gray shaded region. A paired comparison of the mean 

CDA showed a significant increase from the 2- to 4-item condition (-1.40(jV and -

2.17|iV, respectively, p < 0.005), while no significant difference was evident between 4-
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and 6-item conditions (-2.17^iV and -2.38|iV, respectively, p > 0.05). This provided 

statistical evidence that the CDA reaches a plateau at approximately 4 items which was 

the suggested maximum memory capacity for most people [80]. The largest ERP 

amplitudes were found at the posterior lateral parietal electrode sites at the latency of 

meanNl peak (100-180 ms) [81] as shown in Figure 33B. 

Number of Items B 
in Memory Array 

|1V 

100 200 300 400 500 600 700 800 900 

Time (ms) 

Figure 33: An electrophysiological summary of the VWM load experiment result is 
shown. A. The grand average ERP waveforms of 15 subjects (from T5/T6 electrodes), 
contralateral to the location of the cue during the stimulus encoding phase are shown. The 
gray shaded region indicates the duration (300 - 1000 ms after cue onset) in which the 
CDA components were measured. The yellow bar (0 - 100 ms) on the timeline represents 
the epoch of the memory cue. B. The scalp topographies of the VWM load experiments 
at the latency of mean N1 peak (100-180 ms) illustrate activated posterior parietal 
regions. 

CDA can be used to measure the number of items represented in the memory 

array; therefore, a relationship between CDA and the efficiency of the VWM response 

can be found (Figure 32B). As expected, an increase in RT corresponds to increased 

difficulty in the memory array. Likewise, the CDA also demonstrated this similar trend in 

which CDA positively correlates with the memory capacity for 2-, 4-, and 6-items (r = 
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0.36, 0.42, and 0.61, respectively, p < 0.005) (Figure 34). Therefore, individuals with 

low memory capacity depend on more working memory to perform VWM load tasks. In 

contrast, participants with high memory capacity could perform VWM tasks much more 

easily and efficiently. Likewise, they are able to process and store higher amounts of 

information during the VWM load experiments. The relationships among CDA and RT 

and memory capacity is critical in revealing a strong link between the behavior and 

neural evidence. 
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Figure 34: The combined behavioral and electrophysiological summary of the VWM load 
experiment. A-C. Memory capacity and CDA amplitude demonstrate linear correlations 
in the 2-, 4-, and 6-item conditions. 

4.2.2 VWM Training Gains Experiment 

The goal of the VWM training gains experiment was to develop VWM training 

procedures that would lead to general cognitive improvement. Increase in behavioral 

accuracy and brain activity is the marker of improved performance, because it was highly 

related to the reaction time, VWM capacity, and CDA amplitude in Figures 32B and 34. 

We compared the difference in training gains for various levels of difficult tasks where 

CDA changes can be considered as a predictor of memory capacity improvement. 
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VWM training gains within the 12-week intervention period are shown in Figure 

3 5 A. At the beginning of the training gain tasks (1st week), the average accuracies of the 

8-, and 6-item conditions were 62.67% and 83%, respectively. An accuracy exceeding 

93% was found in the 4- and 2-item conditions. After 12 weeks of training, participants 

achieved significant improvements in the average accuracies (up to 87.67%, 94.67% and 

99.67% for the 8-, 6- and 4-item trials, respectively). Since there was a high baseline 

level in average accuracy (98 - 100%) for the 2-item trials, no significant difference was 

found after 12 weeks of training. Specifically, there were two significant drops in the 4th 

and the 9th week in the 6-item condition, possibly caused by the subject's loss of 

attention during this long training period. However, the overall VWM performance 

demonstrated an increasing trajectory from week to week. This result indicates that 

memory capacities of individuals have already shifted to the upper-limit level, which also 

means that the VWM capacities of the trainees have expanded through a long period of 

training. Consequently, Figure 35B shows that the reaction time has speeded up after 12 

weeks of training in all 2-item, 4-item, 6-item, and 8-item conditions (570 ms vs. 478 ms, 

613 ms vs. 524 ms, 699 ms vs. 578 ms, and 751 ms vs. 563 ms), which suggests that the 

participants felt more confident performing tasks in the last week than the first week. 

The average N1 amplitude (100 - 180 ms) and CDA amplitude were significantly 

lower in the 2-item trials than the 4-, 6-, and 8-item trials during the first two weeks, as 

shown in Figure 35C (-1.89 ^V, -3.01 jaV, -3.53 j^V, and -4.00 |iV, respectively; p < 

0.005). This relationship is consistent with the VWM load experiment at the maximum 

memory capacity of 4-items. The average CDA increased as the difficulty level 

increased. This situation was observed only in the early training period. This implied that 
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the subjects had to pay more attention to the more difficult tasks, such as 4-, 6- and 8-

item trials, as the ERP waveforms were modulated by attention [82]. However, with 

continual regular training, the average CDA changed gradually over time, resulting in 

negligible difference between the CDA patterns for the 2-, 4-, 6-, and 8-item conditions (-

2.37 nV, -2.22 ^V, -2.13 ^V, and -2.56 }iV, respectively; p > 0.05), as shown in Figure 

35D. This might be due to the fact that the participants' VWM capacities were enhanced 

by training. 
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Figure 35: A. VWM training gains within the 12-week intervention period. The overall 
VWM performance was improved week by week. B. The comparison of RT results 
between the first and the last weeks. The 12th week was faster than the first week in all 
conditions. C-D. ERP waveforms using the same conventions defined in Figure 3A are 
shown. The average N1 amplitude (100 - 180 ms) and the CDA amplitude for the 2-item 
trials were significantly lower than the 4-, 6-, and 8-item trials during the first two weeks. 
However, with weekly training, the averaged CDA changed gradually. Later, the typical 
amplitude pattern in gray shade (2-item < 4-, 6-, and 8-item) became indistinguishable. 
Error bars represent confidence intervals. *** p < 0.005. 
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4.2.3 VWM Transfer Benefit Experiment 

The goal of the VWM transfer benefit experiment was to study the impact of 

training gains on high-level cognitive VWM tasks. Subjects were separated into two 

groups, training and control groups, to evaluate the behavior evidence and neural activity. 

Their performance on non-trained tasks was compared between pre-training (TBI) and 

post-training (TB2) sessions. The neural activity of functional plasticity (TB2 - TBI) that 

refers to changes of N1 amplitude and CDA can be used as a signal marker to predict 

VWM accuracy improvement. 

The average accuracy improvement of the training group was significantly higher 

than the control group in 4-item, 6-item, and 8-item (7% vs 3.33%, 7.33% vs 4%, and 8% 

vs 3.33%, respectively; p < 0.005). However, no difference for 2-items (0.67% vs 0%) 

was found (Figure 36A). In the RT analysis (Figure 36B), the training group's response 

was faster than the control group in all of the experimental conditions, including TBI 

pre-training (584 ms vs. 816 ms; p < 0.005; 649 ms vs. 772 ms; p < 0.005; 672 ms vs. 

796 ms; p < 0.005; and 713 ms vs. 752 ms; p > 0.05, respectively) and TB2 post-training 

(517 ms vs. 752 ms; p < 0.005; 633 ms vs. 689 ms; p < 0.05; 723 ms vs. 757 ms; p > 0.05 

and 780 ms vs. 874 ms; p < 0.05, respectively). The result suggests that the trainees felt 

more confident performing tasks than the controls. 

The ERP analysis of the VWM transfer benefit was focused on N1 amplitude and 

CDA in the 8-item condition, because the more difficult task showed the greatest 

improvement (TB2 - TBI: 8%) for the trainees. For the training group, N1 amplitude and 

CDA were significantly different at TBI and TB2 as shown in Figure 36C (Nl: -3.67 fiV 

vs. -2.43 (aV; p < 0.05; CDA: -2.91 nV vs. -1.52 p,V; p < 0.005). However, there was no 
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significant difference in N1 and CDA for the control group in Figure 36D (N1: -3.50 (iV 

vs. -3.06 |iV; p = 0.42; CDA: -2.75 fiV vs. -2.64 jxV; p = 0.09). This diminished N1 and 

CDA could be used as a predictor of VWM training gains on non-trained tasks. This was 

also consistent with this study's hypothesis for the VWM load experiment where CDA 

changes in ERP stimuli would lead to improved memory capacity and VWM 

performance. Recent reports have implicated that training can enhance VWM capacity 

and attention over time and can increase the brain activity in the prefrontal and parietal 

cortex [33]. We analyzed the transfer benefits by proposing a subtractive measure in 

which the difference between the post-training TB2 and the pre-training TBI was 

computed for both training and control groups. The positive increase in neural activity 

was consistent with the notion of neuroplasticity generated by training [31]. For the 

control group, no significant change in ERP activity was observed. These cognitive 

improvement findings are important for demonstrating the strength of the adaptive 

training gains on non-trained tasks by providing behavior evidence and neural 

mechanism. 
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Figure 36: A. VWM transfer benefits experiment between subjects with and without 
weekly training. The training group achieved a significant improvement over the control 
group. B. Comparison of RT results between training and control groups for pre-training 
and post-training sessions. C-D. Grand average ERPs are shown. The N1 amplitude (90 -
170 ms after cue) and the CDA have significantly diminished for the training group at 
TB2 (NI: -3.67 [TV vs. -2.43 jxV; p < 0.05; CDA: -2.91 fxV vs. -1.52 jaV, respectively; p < 
0.005), but not for the control group (NI: -3.50nV vs. -3.06 |aV; p = 0.42; CDA: -2.75 |iV 
vs. -2.64 jj.V, respectively; p = 0.09). Error bars represent confidence intervals. * p < 
0.05, ***p< 0.005. 



CHAPTER 5 

DISCUSSION 

5.1 Decoding Motor Intention through EEG BCI 

BCI technology enables people to interact with external devices in new and 

intuitive ways. As a prosthetic application, it helps people with limited muscle control 

(such as those suffering from spinal injury, stroke or cerebral palsy) regain some of the 

lost motor functions. Even though there is still debate over the best classification method 

for BCI, we developed and validated the use of surface EEG to distinguish the brain 

activity during planning of intended arm movements. EEG data was recorded from 

untrained subjects excluding feedback, where each individual subject was analyzed 

independently in this study. Subjects only instructed to perform the indicated reaching 

tasks (see Figure 3). In the framework of upper limb neuroprosthesis, this paradigm could 

be directly implemented as a part of the control strategy of the prosthetic arm for activity 

of daily living (ADL). 

The spatial, temporal, and spectral features were extracted based on reported 

literature. We used the spatial information near the PPC regions as previously reported 

[16]. The temporal feature pertaining to the mean EEG signal amplitude 271-310 ms, 

after the presentation of the "Direction cue", the visual-cue was found to have the most 

significant difference between the intended arm reaching directions, and the highest 
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classification accuracy. A scaling strategy based on the EEG response to cue-based 

stimulus was proposed. The maxima and minima "signature" signal from 0-235 ms after 

the presentation of the "Direction cue" was used as a scaling factor for subsequent single-

trial analysis. The early synchronization in the delta (0-4 Hz) and low theta (4-8 Hz) 

bands is related to the "Direction cue", which supports the idea of early component 

reflects the processing of the visual intention, where the alpha band (9-12 Hz) is 

associated with the visual attention [83]. The "signature" signal around this frequency 

range can be found at different recording electrodes near the ROIs and the visual cortex 

during the delayed "Direction cue" period. The utility of the proposed cue-based 

"signature" scaling factor gave some promising results by improving the classification 

accuracy of intended motor directions. To test this scaling strategy in more realistic 

situations, it may be extended to non-visual cue based (voluntary movement) setup. In 

these experiments, the subjects will decide the desired reaching destinations without the 

target-specific stimulation. The "signatures" in these situations would have been 

internally triggered, possibly dominated by a slightly different frequency component. 

Our current study did not attempt to distinguish the three effectors. Recently, 

there have been many reported studies on the classification of saccade motor imagery 

versus motor execution tasks [22, 84, 85]. In the future, a combination of motor planning 

and motor imagery for amputee subjects may be a more viable technique for controlling 

neuroprosthetics devices. Another future improvement includes the use of non-invasive 

mobile prosthetic platform via wireless dry electrodes and wearable EEG systems would 

benefit in real world operational environments [86, 87]. Before the implementation of a 

real-time BCI system, some hardware platforms and specific software need to be 



developed. Future development of specific software communication systems between 

EEG recording devices and signal processing platform must be designed and operated 

close to real-time. Other specification includes simple training protocol for rehabilitation 

purposes. More work is needed to understand how changes in attention and intention may 

impact EEG signals. Future study related to the angular direction decoding, instead of the 

current discrete directions, may be necessary. Participants with motor-disabilities will be 

recruited to provide more conclusive results on the advantage of the proposed "signature" 

scaling and classification algorithms. 

5.2 Monitoring Visual Working Memory Though EEG BCI 

The second part of this study demonstrates the long-term effects of VWM load, 

training gains and transfer benefits. In summary, we found that (1) the VWM capacity 

can be estimated based on accuracy and CDA level. These are also highly related to 

reaction time, VWM capacity, and CDA. Neural evidence for VWM capacity limit, 

which approximates the "magic number 4" [75], is observed in ERP waveforms. The 

average capacity across 15 participants is 2.8 items, which is similar to Emrich's result 

[88]. (2) VWM capacity can be improved through adaptive training over a long period of 

time. We are particularly interested in a longer training period (up to 12 weeks) than 

other previous studies (5 weeks) [89]. The reaction time improved after 12-weeks of 

training in all 2-item, 4-item, 6-item, and 8-item conditions, which suggests that the 

participants may have felt more confident performing tasks in the last week than the first 

week. (3) Trainees have higher accuracy improvement than the control group. The 

increased activity in the posterior partial cortex was obtained in a subtractive measure 

(TB2 - TBI) which was the difference between post-training and pre-training 
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performance for trainees. The diminished N1 and CDA can be used as a neural marker of 

VWM training gains on non-trained tasks where CDA changes in ERP stimuli led to 

improved memory capacity and VWM performance. The improvement measurement also 

relates to the strength of the adaptive training gains on non-trained tasks by providing 

behavior evidence and neural mechanism. Overall, these results support our hypothesis 

that all participants can benefit from training gains, and demonstrate the sustained 

impacts on VWM capacity over a long period of time. Moreover, this training method 

may be useful for enhancing cognitive function through training. 

VWM plays a critical role in change-detection, especially when the memory array 

becomes more complex. VWM becomes more demanding as the memory array becomes 

more difficult [27]. Low-item conditions results in less information, more efficient, 

higher accuracy, and low CDA amplitude. On the other hand, when many items are in a 

memory array, the subjects' recall complex information is less efficient, resulting in 

lower accuracy and higher CDA amplitude. Furthermore, individuals with low memory 

capacity depend on more working memory to perform VWM tasks. In contrast, 

participants with high memory capacity could perform VWM tasks much more easily and 

efficiently. Likewise, they are able to process and store more information during the 

VWM experiments. This arrangement was supported by the correlation to accuracy, 

reaction time, VWM capacity, and CDA in VWM load experiments (Figures 32-34), 

representing that high-capacity individuals were more accurate and efficient in more 

complex conditions than low-capacity individuals. 

The results of this study demonstrate that CDA component can be used to predict 

the individual's VWM capacity. The CDA pattern in ERP waveform (Figure 35C) was 
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similar to others' findings in which the CDA amplitude from 2-object searching was 

twice as high as for a single target [73]. Meanwhile, the CDA disappeared when the 

subjects were repeating the same searching tasks after a short period of time [90], which 

is consistent with our outcomes from training gain experiments in Figure 35C-D. This 

situation can be explained considering that the subjects had to pay more attention in the 

early training period (weeks 1-2). However, with regular training, the CDA changed 

gradually over time, resulting in a negligible difference between the CDA patterns in 

these conditions (weeks 11-12). This might be due to the fact that the participants' VWM 

capacities were enhanced by training, or changed by the transition from a short-term 

memory to a long-term memory. 

The present study also focuses on the differences between trainees and controls in 

the transfer benefit experiment. Training gains and transfer effects were maintained 

across the 12-week intervention period. The subtractive measure in transfer benefits 

displays that plasticity induced by training often appears in VWM and attention [91]. 

This study may help with cognitive decline due to normal aging and memory deficits can 

be overcome by training and medication [92]. The comparison between young and old 

adults would help in understanding the training gains and transfer effects in the system's 

development [93-95], though we can expect that there are significant training gains for 

young adults in most of VWM training paradigms. 

One possibility is that this study can be considered as a diagnostic tool for the 

early stage screening of age-related disease, such as mild cognitive impairment (MCI) 

and Alzheimer's disease (AD) [96]. VWM coupled with quantified EEG has been used to 

distinguish mild dementia from normal aging controls [97]. Working memory tasks have 
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also been applied to study schizophrenia patients [30] where prefrontal inefficiency and 

cognitive deficits were found. Recent studies have suggested that new neurons are 

generated by the brain throughout their entire lifespan, so adaptive training and cognitive 

exercises may have a positive impact on building up strong neural connections and 

creating new brain networks [33, 98]. Overall, VWM tasks combined with EEG 

measurments will have the potential to serve as a diagnostic tool in the clinical 

environment and provide insights into the activity of cognitive behavior. 

Our method may be extended on a useful tool to predict age-related trends in 

memory capacity through machine learning technique [96]. We are also interested in 

investigating how practice and training impact an individual's performance as one ages 

[99], and the efficiencies of different training programs for different age groups. The 

research in VWM raises many unanswered questions, such as the optimal duration period 

and the amount of training time. Likewise, the comparison between visual WM and 

verbal WM tests will be necessary to improve the working memory method development. 

Brain computer interface (BCI) technology allows direct communication to occur 

between the brain and an external machine [1], and its application can range from 

medical devices to entertainment [100]. A wearable and wireless brain computer interface 

device with novel dry electrodes can be applied to this VWM study [101, 102]. We 

believe that the plasticity of the brain enables it to become more effective in memory, 

attention, processing information, thinking innovation, and solving problems [103, 104] 

through effective novel brain training simulations [105]. An advanced monitoring system 

with both wireless BCI and effectual simulations which provides neural activity and 
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behavior evidence in real-time will be popular and easy to operate for people who seek to 

enhance their academic ability and daily performance. 

This experimental approach is sensitive and accurate, since the device can directly 

detect the neural activity changes from posterior parietal electrodes contralateral to the 

location of the cue in each trial [44, 106]. Likewise, compared to other neuroimaging 

methods [45, 46], such as functional magnetic resonance image (fMRI), EEG is low cost, 

less time consuming and easier to operate. It is simple to modify our EEG-based visual 

tasks to other paradigms to study VWM. Another important difference between EEG and 

fMRI is that EEG is able to resolve hemodynamic changes of integrated cognitive 

activity over milliseconds, while the fMRI only requires the resolution over a few 

seconds [47]. This helps to understand the short term memory representation, and predict 

one's cognitive ability through VWM tasks. Specifically, CDA is considered as an 

indicator of an individual's memory capacity. 

The future aims are to expand my research in (1) An advanced monitoring system 

with both wireless BCI and effectual simulations that provides neural activity and 

behavior evidence in real-time will be popular and easy to operate for people who seek to 

enhance their academic ability and daily performance. (2) VWM combined with EEG 

measurement will have the potential to serve as a diagnostic tool in the clinical 

environment and provide insights into the activity of cognitive manners. (3) Designing a 

useful system to predict age-related trends in memory capacity through machine learning 

technique. (4) Creating a new adaptive training and cognitive exercises to make a positive 

impact on building up strong neural connections and creating new brain networks. (5) 
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Brain function relating action and perception is an attractive subject, especially decision­

making. It is so interesting to understand human choice behavior. 



CHAPTER 6 

CONCLUSIONS 

A hybrid BCI approach can be used to control the directions of intended arm 

movement on neuroprosthetics devices and to monitor for individuals VWM capacity 

which can benefit from adaptive training. Although surface EEG signals have limit 

information about complex arm movements, we have demonstrated EEG signal can be 

used to decode the direction of the reaching tasks during the planning stage prior to the 

actual motion. Visual cue-based experiments were designed to provide visual-cues to 

guide the user saccade/arm movements. ICA and EEMD are efficient to remove artifacts. 

The estimate of source localization related to the motor intention is found at PPC. An 

amplitude scaling strategy has been developed to adjust the trial-to-trial variability in the 

EEG signal amplitude near the PPC regions. Temporal information (271-310 ms) after 

the presentation of the visual cues is found to hold the most discriminatory features. This 

work would have direct application based on the electrographical signals of the user's 

intent. In addition, motor intention combined with motor imagery paradigm would 

provide more commands on the control of BCI. The overall single-trial classification 

accuracy of 93.91 ± 6.09% holds this paradigm promising for noninvasive BCI design in 

neuromotor prosthesis or wheelchair applications. The results reveal that VWM capacity 

is directly correlated to the RT and CDA amplitude. The approximate "magic number 4" 
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has been observed through the ERPs patterns, where the average capacity is 2.8-item 

from 15 participants. In addition, VWM capacity can be improved through adaptive 

training. Furthermore, participants from the training group are able to improve their 

performance accuracies dramatically compared to the control group. Transfer benefits 

from adaptive training can also be observed at 12 weeks after training". Therefore, we 

conclude that all participants can benefit from training gains, and augmented VWM 

capacity can be sustained over a long period of time. Our results suggest that this form of 

training can significantly improve cognitive function and may be useful for enhancing the 

user performance on neuroprosthetics devices. The more we learn about the neural 

mechanisms linking thoughts, movements and perceptions, the better we can address 

therapeutic approaches to prolong useful life and cognitive decline. The ultimate research 

goal is to create marketable systems for individuals' needs and to accelerate translational 

research. 
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Important Notes: 

• Make sure everything is plugged into the white box 

• Ensure that the firewire ports are connected to the correct sides 

• Check to see if the participants have any allergic reactions (Potassium Chloride 

(KC1,) Baby shampoo, etc.) 

• Ask that Cellphones be turned off (Not silent). Electronic devices might create 

artifacts on the EEG recording. 

• Check and ask participant to remove earrings, piercings, or anything else that 

might catch on the hair net. 

• Ask and check to see that the participant does not have hair gel, hairspray, 

dreadlocks, corn rows, temporary hair dye, or conditioner. 

• Check that the participant is not chewing gum. 

Setup: 

1) Turn on computer. 

Username: EGI 

Password: Geodesic (No's') 

2) Open Net Station program. 

3) Check that the first two numbers for the version number and HASP (Hardware 

and Software Protection) match. HASP is located at the bottom left corner of 

window. 
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a. If an update is needed. 

Click HASP updater. 

Zip the HASP file. 

Send to support. 

Unzip response and drag HASP file back into the HASP updater. 

b. Move on the next step. 

4) Create Acquisition Setup or select previously created Acquisition Setup. 

a. Open "Workbench". 

b. Place: 

Net Amp 300 

First Order High Pass 

Digital Filter 

Bipolar Montage (Optional) 

Display TCP/IP (Optional) 

Dense Waveform Display 

Multiport Simulator 

Waveform Recorder 

c. Configure First Order High Pass to 0.10 then turn on. 

d. Open panels (windows). 

Make sure the hair net is not hooked up. 

Turn on the program and it will automatically start a "Gains" test. 

If there is an error, run the "Gains" test 2-3 more times. 

If the error continues to appear, conduct the "Bucket" test. 



Bucket Test. 

Do not conduct on participant's head. 

[Need to double check procedure for Bucket Test]. 

e. When no errors are indicated, then proceed to turn off the workbench. 

f. Click on the workbench to close everything. 

Session Template: 

1) Create Session Template or select Standard Session Template. 

2) Click Calibrate Template. 

3) Select the appropriate Acquisition setup from the list. 

a. Choose Metric fields and insert. 

Select Metrics (i.e First Name, Gender, Age, etc.). 

Select Subject/Date/Time. 

b. Close. 

Open up Session: 

1) Click Session. The workbench and all panels should open. 

2) Enter the name of the session. 

Putting on Hair Net: 

1) Double check that the participant does not have any of the following: 

a. Hair gel, hairspray, dreadlocks, corn rows, temporary dye, conditioner, 

earrings, piercings, or anything that will catch on the hair net. 

b. Check to see if the participant has any allergic reactions to Potassium 

Chloride (KC1) or baby shampoo. 

c. Check that the participant is not chewing gum. 
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2) Measurements: 

a. Start from the middle of the eyebrow ridge (Nasion) and go around the 

head. Make sure the measuring tape is above the ear and goes around the 

Lambda (bump at the back of the skull). 

b. Determine which net to use. If the individual is between sizes, then utilize 

the smaller net. 

c. Note the size used for the experiment. 

3) Prepare hair net: 

a. Fill Electrolyte Bucket with one liter of warm water. 

b. Add one spoonful of KC1 and one spoonful of shampoo. Use the 

appropriate spoons. 

c. Stir with the shampoo spoon. 

d. Place hair net into the solution. Agitate the solution by dunking the hair 

net four times into the bucket. 

e. Let the hair net sit for five minutes. The hair net can sit in the solution 

between 5-20 minutes. 

f. Make sure the net is completely underwater. 

g. If necessary, make the Disinfectant Solution now. (See Making 

Disinfectant Solution). 

4) Measure the "Placement Point" for the "Reference" electrode (REF): 

a. Inform the participant that you will be marking the top of the head for a 

reference point. 
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b. Start from the Nasion and go over the top of the head to the depression 

point below the bump (Lambda) at the back of the skull. 

c. Mark the top of the head with the red pencil at the half way point. 

d. Then measure the head from the open jaw on one side of the head to the 

other. Ask the participant to open and close mouth. Or measure from ear 

to ear, if they are leveled. 

e. Mark the top of the head with the red pencil at the half way point. Make 

sure that this mark crosses the previous mark. 

5) Explain the experiment while waiting for the hair net to soak up the electrolytes: 

a. Check for chewing gum. 

b. Explain to the participant to stay as still as possible while the experiment 

is in progress. 

6) Place towels over the shoulders of the participant. 

7) Turn on the PC and start up E-Prime. 

8) Placement of hair net. 

a. Have participant hold the connection end of the hair net. 

b. Instruct participant to close eyes. 

c. Stick hands into hair net. Thumbs are placed one electrode outside of nose 

guard and under the double plastic lines. Pinkies should extend to the back 

near the last row. 

d. Place REF electrode on the target marked previously. 

e. Stretch out hands and pull Net down over the head. 
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f. Adjust ears, nose guard and chin straps. Caution: Never pull a single 

electrode. Pull in clumps. 

i. Tighten chin strap first. 

ii. Adjust the checked electrodes and make sure the wires and straps 

are not in front of the eyes. 

iii. Hold down the white knob while grabbing the white strand and pull 

the red strand. 

iv. Then hold down the white knob while grabbing the red strand and 

pull the white strand. 

v. Then hold down the white knob and both white and red strands and 

pull down on the chin strap. 

vi. After tightening both sides, retighten the chin strap. 

g. Make sure that there is nothing blocking the eyes and check with 

participant to see if anything is irritating the eyes. 

h. Line up the reference points of the Mastoids (Both vertically and 

Horizontally). 

i. Make sure participant is comfortable. Too much blinking will cause 

artifacts on the EEG. If patient wears glasses, place the glasses over the 

hair net. 

j. Rub in electrodes. Make sure to rub hard enough to shake head in order to 

ensure skin contact. 

k. Have participant open eyes and check visibility. 
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9) Move participant to the testing chair. 

10) Insert the connection end into the arm. Caution: DO NOT FORCE THE 

CONNECTION INTO THE ARM. Check that knob is 180 degrees from the 

reference pin. (There are two pins on the connecting end. The reference pin is the 

pin that is offset from the center.) Then turn the knob to lock the connection. 

11) Test for Impedance. 

12) Change the monitor switch to MAC. 

13) Slide Impedance Chart over to the edge of the screen. 

14) Rewet and rub in the electrodes that are indicated in red on the Impedance Chart. 

15) Make sure to rewet the REF and COM electrodes (located 2 electrodes down from 

the REF electrode) even if the Impedance Chart shows all green responses. 

16) Close and save Impedance Test. 

17) Make sure participant is sitting in a comfortable position that will require little 

movement to touch the signal pad. 

Beginning Experiment: 

1) OpenE-Prime. 

2) Click ok to all of the dialogue boxes. 

3) Change the monitor switch to PC. 

4) Check to see if participant sees the screen for the test. 

5) When ready to begin experiment, click on the "Running Man". 

6) On MAC, comments and notes can be made on the EEG recording. 

a. Hold Command (comma) to insert comments. 

b. Click on tabs for eyeblink, eye movement, etc. 
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7) When done click close session button. 

Removing hair net: 

1) Unhook the connection end of the hair net. 

2) Have participant hold onto the connection end. 

3) Instruct the participant to close eyes. 

4) Loosen the chin strap and pull all three white knobs all the way down. 

5) Stick thumbs under the chin strap and push up underneath the hair net up to the 

eyebrows. 

6) Use the outer fingers to peel the net away from the head. 

7) Empty the Electrolyte Bucket into the sink. 

8) Rinse the hair net four times with water. Dunk the net into the Electrolyte Bucket 

until about % full. 

9) Place the hair net into the Disinfectant Bucket. Dunk a few times and let sit for 

ten minutes. 

10) Rinse the hair net four times under the water. Dunk the net into the Electrolyte 

Bucket until about 3A full. 

11) Store Net away on the hair net hooks behind the door. 

Making Disinfectant Solution: 

1) Fill the Disinfectant Bucket with two liters of distilled water. 

2) Add one scoop of disinfectant. 

3) The disinfectant lasts for 2 weeks. Mark the expiration date on the bucket. After 

the expiration, utilize a test strip to see if the disinfectant is still useable. 
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4) If it is good, then you can use the disinfectant for another week. Mark new date on 

the bucket. 

5) If the disinfectant is no longer good, then dispose of the disinfectant. 

Processing Data: 

1) Select the Waveform Tool. 

2) Create tool or select a previously created tool. 

3) If creating a tool, then use a consistent naming convention, (i.e. Person's initial 

then 2 digit number). 

4) Select First Order High Pass. Name 01. 

5) Select Filtering. Name 02. Set 30 hz Low-pass. 

6) Select Segmentation. Name 03. 

7) Select Artifact Detection. Name 04. 

8) Create script named Preprocessing. Highlight and drag 01-04. 

9) Select Bad Channel Replacement. Name 06. 

10) Select Averaging. Name 07. 

11) Select Montage Operations. Name 08. 

Select Hydrocell GSN 128.1.0. 

Select Average Reference. 

12) Select Baseline Correction. Name 09. 

Baseline set to 100 ms before and 100 ms long. 

13) Create script named Postprocessing. Highlight and drag 06-09. 

Use data from Preprocessing. This should be the last one on the dialog box. 
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B.l E-Prime 2 Stimulation Program Protocol 

E-Prime is a graphical interface software applications suite conducting 

psychological and neuroscientific approaches. It offers control over almost every aspect 

of paradigm creation, and is temporally accurate to within a few milliseconds, a crucial 

aspect of control for many research needs. E-Prime takes you through the creation of 

your experiment to performing descriptive statistics on your collected data. 

The E-Prime suite of functions offers the user control over every part 

characteristic to data analysis in a research application. The core system comprises: E-

Studio, E-Basic, E-Run, E-Merge, E-DataAid, and E-Recovery (Figure 37). 

Real-Time Graphical Design Full Scripting 
Environment Language Experiment 

Generator 

This is a diagram 
of E-Prime s 
core system 
components. 

Data Merging 
Utility 

Spreadsheet 
Application for 

E-Prime Data Files 

Figure 37: E-prime 2.0 core system components. 
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E-Studio: E-Studio's graphical environment greatly speeds up the creation of an 

experiment. Better yet, you can implement most experiment designs without the use of 

code. 

E-Basic: It is E-Prime's comprehensive, object-oriented programming language. 

It is similar to Visual Basic for Applications with many enhanced commands for 

behavioral research. 

E-Run: E-Run is E-Prime's real-time experiment generator. It compiles E-Basic 

code from the experiment that you visually created in E-Studio and executes it in a real­

time environment. 

E-Merge: Merge the individual data files into one file using E-Merge. View, edit, 

and analyze individual or merged data files in E-DataAid. 

E-DataAid: E-DataAid allows you to view and edit your E-Prime data. 

E-Recovery: Users can use this program to recover some of the information that 

was gathered already. 

B.2 W aveform T ools 

In filtering, filter out activity in frequencies that are not of interest. Normally, the 

brain activity has been focused on frequencies below 30 or 40 Hz. Note that if you do a 

low-pass filter in this range, then the 50 Hz or 60 Hz line noise will be filtered out, so 

there is no need to apply a notch filter. In the experiment, all trials have a band-pass 

filtered range of 0.1-30 HZ (Figure 38). 



80 

filtering Specification N*mt: 
' CJ JOHZLmpmi 

Output Options: 
Hat** f MpNtw fertwatcw «<tt» "'SSj 
DtUtfttfttn;; 

Fifttr Settings; 

SSL 
, for*.— 

|iit»wu in &"" 
Q*"* O 

•MS 

UKtlMMuntl 
tatting SprtMatftfttomt 

• Preview Filtering ~ 
:«0r»|4Mtlt«,ert<fca 

(OpBCftt. *) 

$$ Cycle Ctenncis 

First Order Highptss filtering Specification Output Options: 

® ClO.lHtH^Kpm ' ' | Mptoc*Cwwwten*t»MR 
PWtnrtooJSwwMSwct •• • - "SB 

First Order fflghpass Filter Settings: 

MgNxn «•& 
0041-2jOOHI 01-MOttt 
ftlHilfghfwu 
0fAuCoS«Rt«iRg SpectfMtoiiume 

* Review Ffltering 
] *&»#*«• tart. erwlKt 
U Meet *1 

IMftnewJ 

•Sj 

f!| CyOt Clamll 

Figure 38: Illustration of low-pass and high-pass filters setup. 

In segmentation, it reduces your data to segments (short epochs) that fall into 

different categories or retention interval. Define the criteria for the categories. Each 

category is temporally referenced to an event of interest, for a specific experimental 

condition of interest. You specify the duration, before and after the reference event, to 

include in the segment. Here, we first broke down the trials for each subject into five 

directions (right, left, center, up, down). In each direction included the three effectors. 

Length is 0 to 700 ms following direction cue onset that labeled by movement direction 

"dir+" (Figure 39). 
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Figure 39: Illustration of segmentation setup for our intended arm movement study. 

In artifact detection (Figure 40), automatically detect and mark bad channels and 

bad segments (which are segments that are contaminated by artifacts). In Figure 41 

below, you can see how many segments each channel is bad. Electrodes with poor skin 

conductively are identified by abnormal activity patterns and removed from the EEG 

signal data. 
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Figure 40: Illustration of artifact detection. 

00 e ATD256_ l .ses.40.sg; Info 

-—View, f Bad Channels 

4 Central Tracks ! Fields • Motes History L 

~~m — . 

Mode: ; list B«d Channels Per Segment j§| CRes") 
( Reset Segment Status ^ 

P Standard Correct 313/31? 

M Target Correct 82/S2 

;S1 
51 

51 

51 

sr~ 
51 

.... L.„ 

™y«l. 

A 

Figure 41: Number of good segments/ total number of segments. 

In bad channel replacement (Figure 42), we replace the data in the bad channels 

with data interpolated from the remaining channels. Bad channel replacement is based on 

the idea that because of electrical volume conduction, channels in proximity to each other 
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will have similar data. This approximation increases in validity as the channel count 

increases. For 128 channels, the results of bad channel replacement are quite good, but 

for channel counts less than 64, considerable and serious errors exist in the reconstructed 

data. 
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Figure 42: Data in Topo Plot view before bad channel correction. 

In averaging, we calculate a single, average segment from all the segments that 

are not rejected. 

In baseline correction, we establish a baseline interval within our segment. We 

select the interval to use as the baseline. For the experiment, baseline is the period of 

direction cue onset from -200 to 0 ms before onset for each trial. 
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B.3 Ensemble Empirical Mode Decomposition 

Ensemble empirical mode decomposition (EEMD) is a data-driven analysis 

method that separates the signal into a collection of intrinsic mode functions (IMFs). It is 

a powerful approach for analyzing nonlinear, non-stationary EEG signal since the method 

is only based on local characteristic time scale [55-57]. Unlike other bandpass filters, 

phase shifts were not introduced using EEMD. It breaks down the signals in a subject 

dependent manner, which is strictly based on the signal characteristics without specifying 

any frequency bands [64]. Empirical mode decomposition (EMD) has mode mixing 

problem where EEMD can solve it by utilizing the uniformly distributed reference frame 

using the addition of white noise [65]. The procedure for EEMD is described in [56] is 

summarized below: 

SI: Add a white noise to the EEG data to give*7^. The standard 

deviation of ^ is 10% of the standard deviation of . 

x  ( t }  
S2: Decompose into IMFs to obtain n-IMFs. 

X (/) 
S2.1: Identify all the local extrema in J , including maxima and minima; 

S2.2: Connect all the local maxima and local minima by a cubic spline to create 

the upper/lower envelope. 

S2.3: Calculate a local mean, W| ̂  by averaging the upper and lower envelopes. 

The difference between XJ^ and W| is the first component^1 ^, i.e. 

h l ( t )  =  x J ( t ) - m l ( t )  
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S2.4: If Wis not an IMF, treat ^^as the original signal and repeat S2.1 to 

S2.3 until Wis an IMF. 

S2.5: Set c' ̂  = ^ O as the first IMF 

S2.6: Remove the first component from the original signal and obtain the residue 

signal = (')-*,<'). 

S2.7: Replace x
j''' in SI by ^'and repeat S2.1 to S2.6 to obtain other IMFs 

f*  ( t}  — f  ( / )  Q 
until "v' v ' " |V ' becomes a monotonic function or a constant. 

S3: Repeat SI and S2 with different white noise series 50 times; 

S4: Obtain the ensemble means of the corresponding IMFs. Each IMF can be 

considered as a filtered version of the original signal [57]. 

*(0 = 2ci(0 + rll(0 
M . Eq. 2 

We translated a decomposition of the signal into n-IMFs and a residue rn ( t ) .  Each 

IMF was then considered as a filtered signal itself [57] from IMF 1 to IMF7 ( highest to 

lowest frequency components). The mathematical equations for obtaining the IMF 

analytic signal are given as: 

2,  (0 = c,  (0 + jc ,  ( / )  = a,  ( t )em , )  

Eq. 3 

c . ( 0  =  ̂ P  f ^ r  
n •L c 01 -  r 

a,( t )=ylc?(0 + cf(t )  

c,(0 
9 t{t )  =  arctan 

c,(  0  

Eq. 4 

Eq. 5 

Eq. 6 
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An illustrative example of the IMFs of an averaged EEG signal and their 

corresponding power spectra are shown in Figures 43-44. 
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Figure 43: The EEMD decomposition and signal reconstruction procedure. The 
procedure for computing the IMFs using EEMD is outlined on the left. After collecting 
the IMFs, the characteristics representing 0.1-30 Hz frequency components were 
identified using the power spectral density of each mode [25]. High frequency noise can 
be reduced without phase shifts by removing the low IMFs from the signal 
reconstruction. 
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Figure 44: These figures show the difference before and after apply this normalized 
factor to individual single-trials. 
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