
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2013

Using power-law properties of social groups for
cloud defense and community detection
Justin L. Rice

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Engineering Commons, Computer Sciences Commons, and the
Psychology Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=digitalcommons.latech.edu%2Fdissertations%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages

USING POWER-LAW PROPERTIES OF SOCIAL GROUPS FOR CLOUD

DEFENSE AND COMMUNITY DETECTION

by

Justin L. Rice, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 2013

UMI Number: 3570079

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ttsw w ioft FtoMsh«i

UMI 3570079
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LO U ISIA N A TECH U N IV ER SITY

THE GRADUATE SCHOOL

1/14/2013
Date

We hereby recom m end that the dissertation prepared under our supervision

, Justin L. Rice
by_______________________________ ___

entitled ________________________________ ___

Using Power-Law Properties of Social Groups fo r Cloud Defense &

Community Detection

be accepted in partial fulfillm ent o f the requirem ents for the D egree o f

Doctor of Philosophy

R ecom m endation concurred in:

^ I f I

X

i i^jncum

Q k x

Dean o f the College

Director o f Graduate Studies

Supervisor o f Dissertation Research

Head o f Department

College o f Engineering and Sciences
Department

A dvisory C om m ittee

ApprovejL-^ i

Dean o f the Graduate School

GS Form 13a
(6/07)

ABSTRACT

The power-law distribution can be used to describe various aspects of social group

behavior. For mussels, sociobiological research has shown that the Levy walk best de

scribes their self-organizing movement strategy. A mussel’s step length is drawn from a

power-law distribution, and its direction is drawn from a uniform distribution. In the area

of social networks, theories such as preferential attachment seek to explain why the degree

distribution tends to be scale-free. The aim of this dissertation is to glean insight from these

works to help solve problems in two domains: cloud computing systems and community

detection.

Privacy and security are two areas of concern for cloud systems. Recent research

has provided evidence indicating how a malicious user could perform co-residence profiling

and public to private IP mapping to target and exploit customers which share physical re

sources. This work proposes a defense strategy, in part inspired by mussel self-organization,

that relies on user account and workload clustering to mitigate co-residence profiling. To

obfuscate the public to private IP map, clusters are managed and accessed by account prox

ies. This work also describes a set of capabilities and attack paths an attacker needs to

execute for targeted co-residence, and presents arguments to show how the defense strat

egy disrupts the critical steps in the attack path for most cases. Further, it performs a risk

assessment to determine the likelihood an individual user will be victimized, given that a

successful non-directed exploit has occurred. Results suggest that while possible, this event

is highly unlikely.

As for community detection, several algorithms have been proposed. Most of these,

however, share similar disadvantages. Some algorithms require apriori information, such

as threshold values or the desired number of communities, while others are computationally

expensive. A third category of algorithms suffer from a combination of the two. This work

proposes a greedy community detection heuristic which exploits the scale-free properties

of social networks. It hypothesizes that highly connected nodes, or hubs, form the basic

building blocks of communities. A detection technique that explores these characteristics

remains largely unexplored throughout recent literature. To show its effectiveness, the algo

rithm is tested on commonly used real network data sets. In most cases, it classifies nodes

into communities which coincide with their respective known structures. Unlike other im

plementations, the proposed heuristic is computationally inexpensive, deterministic, and

does not require apriori information.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott M em orial Library o f Louisiana Tech U niversity the right to

reproduce, by appropriate m ethods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreem ent, on the part o f the requesting party, that said reproduction

is for his personal u se and that subsequent reproduction w ill not occur w ithout w ritten approval o f the

author o f this D issertation. Further, any portions o f the D issertation used in b ook s, papers, and other

w orks must be appropriately referenced to this Dissertation.

Finally, the author o f this D issertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this D issertation.

A uthor Justin L. Rice____________

D ate 02/08/2013

GS Form 14
(5/03)

DEDICATION

To my family.

TABLE OF CONTENTS

ABSTRACT... ii

DEDICATION.. iv

LIST OF TABLES...viii

LIST OF FIGU RES.. ix

ACKNOWLEDGMENTS.. xi

CHAPTER 1 INTRODUCTION.. 1

1.1 Research Questions... 1

1.2 Limitations and Assumptions.. 2

1.3 Dissertation Overview... 2

CHAPTER 2 WEB FARM-INSPIRED CLOUD FRAMEWORK............................... 4

2.1 Introduction.. 5

2.2 Hadoop-Cloud Framework... 7

2.3 Related Research.. 9

2.4 Web Farm-Inspired Fram ework.. 11

2.4.1 Assumptions.. 11

2.4.2 System-Level Components.. 11

2.4.3 Node.js... 13

2.4.4 Job Submission & Processing.. 15

2.5 Cloud Description and S etup .. 16

v

vi

2.6 Experiments and Preliminary Results... 17

2.6.1 Non-Blocking O peration.. 17

2.6.2 Blocking O peration... 21

2.7 Discussion.. 25

2.8 C onclusion... 27

2.9 Using Proxies for Cloud Security .. 27

CHAPTER 3 MUSSELS, LEVY WALKS, AND CLOUD SECURITY....................... 28

3.1 Introduction.. 28

3.2 Contributions.. 31

3.3 System Model, Threat Model, and Exploit Description.. 32

3.3.1 System and Threat M odel... 32

3.3.2 Exploit Description.. 33

3.3.3 Discussion... 35

3.4 Mussel Behavior... 36

3.4.1 Background... 36

3.4.2 The M odel.. 37

3.4.3 The A lgorithm ... 41

3.4.4 Example Mussel Subscription...44

3.5 Proposed Fram ew ork... 45

3.6 Risk Assessm ent... 51

3.7 Conclusion... 57

3.8 From Cloud Security to Community Detection... 58

CHAPTER 4 SCALE-FREE NETWORK CONNECTIVITIES AND COMMU
NITY DETECTION... 59

4.1 Introduction.. 60

4.2 Background.. 61

4.2.1 What is a Community?... 61

4.2.2 Measuring the Strength of Community Structure.......................................62

4.3 Previous W ork... 63

4.4 Greedy Heuristic for Community Detection.. 65

4.4.1 P ro b lem D e f in i t io n .. 65

4.4.2 The Approach.. 65

4.4.3 The A lgorithm ... 66

4.4.4 Detecting Community Structure for Complete G raphs............................ 69

4.5 Real-World Network Data Sets... 71

4.5.1 Zachary’s Karate C lub.. 71

4.5.2 Bottlenose Dolphin Network... 73

4.5.3 Books on U.S. Politics... 74

4.6 Results... 76

4.7 Discussion.. 81

4.7.1 M isc lass if ica tion R ip p le E f fe c t ... 81

4.7.2 Continual Refreshing for Deadlocked N odes... 83

4.7.3 Avoiding Local Convergence.. 84

4.8 Conclusion... 84

CHAPTER 5 CONCLUSION.. 86

LIST OF TABLES

Table 3.1: Fitting movement strategies to actual experimental data................................. 39

Table 3.2: Mussel behavior in response to scale-dependent feedback..............................40

Table 3.3: The main parameters of the mussel algorithm ... 43

Table 3.4: Assigning categories to user preferences.. 44

Table 4.1: N-HAP from global and local perspective.. 66

Table 4.2: Node attributes for K5 complete graph .. 70

Table 4.3: Our method’s time complexity for each data s e t ...76

Table 4.4: Data set properties and community attributes as detected by our method
and previously published methods... 78

viii

LIST OF FIGURES

Figure 2.1: Web farm-inspired system design... 12

Figure 2.2: HAProxy A C L ... 13

Figure 2.3: Single node.js outperforms multi-threaded webrick servers for non-
blocking operations... 20

Figure 2.4: For blocking operations, the total execution time decreases exponentially
as the number of VMs increase.. 24

Figure 2.5: For blocking operations, the number of requests/second increases linearly
as the number of VMs increase.. 24

Figure 2.6: Exponential curve fitting for the total execution time..................................... 25

Figure 2.7: Linear curve fitting for the number of requests/second.................................. 26

Figure 3.1: Original mussel bed clustering computer m odel...40

Figure 3.2: Logic flow diagram ... 42

Figure 3.3: Users cluster according to mussel behavior.. 45

Figure 3.4: Technical architecture of the account proxies and mussel-based account
allocation.. 46

Figure 3.5: Attack capabilities and path to map public to private IPs............................... 49

Figure 3.6: Attack path to determine mapping of VM types to IP ranges and availability
zones... 50

Figure 3.7: Determination of co-residence using DomO equivalence check................... 51

Figure 3.8: Determination of co-residence using relative round trip time estim ate 51

Figure 3.9: P(A\\B), The likelihood user A is not victimized.. 54

X

Figure 3.10: P (.42jB), The likelihood that users from group B are not victimized 55

Figure 3.11: P{A\\B) = P(A2\B), When events A\ and .42 are equally likely 56

Figure 3.12: P(A^\B) - The likelihood user A is NOT victimized................................... 57

Figure 3.13: P{A\ \B) - The likelihood user A is NOT victimized................................... 57

Figure 4.1: K5 complete g raph .. 70

Figure 4.2: Zachary’s karate network: known structure as discovered by our method. 72

Figure 4.3: Zachary’s karate network degree distribution.. 72

Figure 4.4: Bottlenose dolphin network: known structure as discovered by our
method... 74

Figure 4.5: Bottlenose dolphin network degree distribution.. 74

Figure 4.6: Books on U.S. politics: known structure as discovered by our m ethod 75

Figure 4.7: Books on U.S. politics degree distribution... 75

Figure 4.8: American college football degree distribution... 77

Figure 4.9: The lack of prioritization may lead to misclassification ripple effect 82

Figure 4.10: A misclassified node due to the lack of continual refreshing.............. 84

ACKNOWLEDGMENTS

There is an old African proverb which states: “it takes a village to raise a child.” If

this is indeed true, then imagine how many more people would be involved in producing a

minority Ph.D. in the STEM discipline. Considering this, it is safe to say that many thanks

are in order for I stand on the shoulders of those who have paved the way for me. There

is simply not enough space and time to express the full extent of my gratitude, but I would

be remiss if I did not recognize a few special individuals. First and foremost, I would

like to thank God. There are some things that happened along the way that were nothing

short of miracles. So, thanks goes out to the Invisible Force which shapes my destiny

and guides me along my path of purpose. I would like to thank my mother and friend,

Colette Rice, for her patience and support. She sacrificed her life’s goals, aspirations, and

dreams to raise her children. I just want her to know that I really appreciate her presence,

her advice, her strength, and her wisdom. She is truly one of a kind. All a son could

ask for and more. I want to thank my late father, William Rice, III. He provided for

the family, and taught me many life lessons. I would like to thank my youngest brother,

Timothy Rice. His strength and will to live in spite of the prognosis of his disease gives me

the motivation needed to press on through any of life’s obstacles. Special thanks goes to

Jackson State University: Robert Whalin, Angie Jackson, Ora Rawls, Khalid Abed, Gerald

Morris, Mahmoud Manzoul, Gordon Skelton, and Kamal Ali. They have truly shown their

support both during my tenure at Louisiana Tech University and during my family’s hour

of need in the passing of my father in 2009 and my brother’s cancer diagnosis in 2011.

To my “Board of Directors,” thanks for support and encouragement: Miguel Gates, Ilija

Pjescic, Divya Narayan, Lamarious Carter, and Ivan Walker. I would especially like to

thank Miguel for his assistance while I was physically absent from Tech’s campus. I would

also like to thank the NASA Goddard Space Flight Center family for the moral support

and for helping me with the school/work balance: Damon Bradley, Janine Dolinka, Lori

Moore, Kenneth Rehm, Jerome Bennett, and Charles Wildermann. Thanks to Louisiana

Tech University for all the academic support and assistance: Bala Ramachandran, Galen

Turner, Terry McConathy, Anita Young, Gloria Skains, Marilyn Robinson, Rachel Parker,

and Brenda Stapleton. Last, but certainly not least, much gratitude goes to my advisor Vir

V. Phoha. The invaluable lessons I learned from this experience will undoubtedly help me

to become a better researcher, professional, and individual. Thanks.

CHAPTER 1

INTRODUCTION

Nature is one of life’s most fascinating mysteries. It is self-regulated, highly decen

tralized, and ever-evolving. Understanding how nature works may be the key to solving

some of man’s most challenging research questions. In recent years there has been a

growing interest in using interdisciplinary studies to investigate group behavior and the

underlying dynamics of within-group interactions. Towards this end, researchers have

begun to explore social animals - populations of interacting individuals that operate in a

cooperative fashion to survive. Examples of group activities include: foraging, nest build

ing, and group defense. Often times these interactions are asynchronous and decentralized

- exhibiting emergent properties, where basic communication and action on local scales

lead to complex phenomena on a global scale. Examples of emergent behavior include:

collective harvesting, flocking of birds, self-organization, standing ovations, and traffic

jams.

1.1 Research Questions

This research focuses on social groups from two different perspectives and seeks to

answer two fundamental questions.

1. From an insider’s perspective, in what ways do communities emerge? That is, what

internal processes have to occur on the micro-level to have group formation emerge

1

2

on the macro-scale? Can mussels and Levy walks be used to describe these pro

cesses? How can this type of behavior be used as a defense strategy?

2. From an outsider’s perspective, how to detect communities once they have formed?

Given each individual’s local connections only, is it possible to classify individuals

into their respective known global communities? How can the scale-free properties

of social networks help shed light on this problem?

1.2 Limitations and Assumptions

The idea is to use insight gained from social group behavior to develop algorithms

and social simulations that are, in turn, used to help solve real world problems. However,

one well-known characteristic of this type of approach is local convergence. Since individ

uals use peers within their vicinity to make decisions, this may lead to premature results -

local optima where local best is taken as global best. Though this phenomena is inherent

for populations of interacting individuals, this research does present ways to mitigate its

occurrence.

For community detection, this work assumes non-overlapping communities - the

notion that a network can be divided into disjoint communities where each individual

belongs to one (and only one) group. However, in reality, it is quite possible for groups

to overlap where individuals belong to one o f several groups.

1.3 Dissertation Overview

This dissertation aims to use power-law properties of social groups to develop: a

defense strategy for cloud systems and a greedy heuristic for community detection. Chap

ter 2 introduces an aspect of the technical cloud framework used by the work done in

3

Chapter 3. Among other things, it details the notion of using a proxy server to serve as

an intermediary between Internet users and multiple virtual machines. In light of an attack

strategy recently described by researchers in [1J, Chapter 3 proposes a defense strategy, in

part inspired by mussel self-organization behavior. Chapter 4 presents a greedy heuristic

for community detection which exploits the scale-free nature of social networks. Lastly,

Chapter 5 provides concluding remarks and ideas for future directions.

CHAPTER 2

WEB FARM-INSPIRED CLOUD FRAMEWORK

In this chapter, we introduce a web farm-inspired framework for dynamic and

concurrent computational processing in the cloud. We compare and contrast this with the

Hadoop-cloud framework, discuss the main problems associated with our approach, and

give suggestions on ways to overcome said challenges. To implement the web-inspired

framework, we use Node.js - a lightweight, single threaded, server-side framework which

uses asynchronous callbacks to allow nondependent operations (parallel-like sections) to

execute while waiting for I/O events such as “fetching a file” or “writing a file to disk.”

We perform experiments to reveal two preliminary results that showcase the framework’s

functionality and scalability.

One, for non-blocking operations, worker nodes which use Node.js servers are

significantly faster than those which use traditional servers. In particular, a single Node.js

is (on average) 2.11 times faster than one Ruby Webrick server, and is (on average) 1.88

times faster than two Ruby Webrick servers. Two, we find that increasing the number of

worker nodes improves overall performance for blocking computational operations. As the

number of worker nodes increases, the total execution time decreases exponentially and the

number of requests per second increases linearly.

4

5

2.1 Introduction

Cloud computing has recently emerged as an information technology solution which

facilitates access to on-demand utility storage and computing services. Customers are

afforded the economy of scale at a low operational overhead. These features prove to

be especially advantageous to small companies which lack financial resources and physical

manpower. For larger companies, security and the privacy are more issues of concern; so,

some organizations have developed private clouds, or even hybrid clouds, purposed to serve

internal communities and trusted constituents. Research communities have also considered

the cloud environment as a viable alternative platform for scientific workflows. Though

promising, the jury is still out on whether this technology marks the next generational shift

in platform of choice for low-cost computational processing and analysis [2—4],

The Internet, on the other hand, has found a formula that works - a formula which

is efficient and highly scalable. This success is, in part, due to the way in which web

services are hosted. More often than not, they take the form of web server farms. These

farms are usually comprised of three basic components: load balancer, web servers, and a

shared database server. The load balancer receives all the requests and forwards them to

the web servers according to some scheme, i.e., round robin, least connection, source. The

same content is duplicated on each server; so, it does not matter which server handles the

request. Since this is the case, all servers must use a shared database for storage. This type

of infrastructure grants websites the ability to accommodate the dynamic and bursty nature

(sudden and dramatic increase in requests) of web traffic.

6

We would like to bring these types of concepts to the science domain. In particular,

we envision a web farm-like framework for dynamic and concurrent computational pro

cessing in the cloud - an approach which allows researchers to quickly build, configure,

and perform experiments using tools traditionally designed for web applications. For

web services, developers create and deploy web applications to hypertext transfer protocol

(HTTP) web servers which, in turn, receive, process, and deliver web content. We propose

a similar framework whereby researchers develop and deploy computational applications

to compute servers which, in turn, receive computational tasks (via representational state

transfer (RESTful) requests over HTTP), perform computations, and deliver science prod

ucts.

With this, researchers will have the freedom to work on either a system level, an

application level, or both. Working on a system level gives one direct control over the

infrastructure, i.e., the interface to computational services, the job routing scheme, the

total number of nodes, the number of compute servers per worker node, etc. On the other

hand, the application level is more concerned with developing the computational algorithm,

which will be deployed as a job to run on the system - what executes, how it executes, and

the resources it requires. There are several reasons why this framework would be beneficial.

One, the basic infrastructure for communication between heterogeneous-roled components

already exists. Two, most of the tools for infrastructural development, experimentation, and

analysis are freely available (open-source), widely used, and rigorously tested. Three, this

“building on existing web components approach” provides an infrastructural abstraction,

and allows the researcher to focus on the algorithm itself, thereby increasing developer

productivity.

7

There are a number of other frameworks which leverage distributed resources for

computational processing, i.e., Hadoop [5] with MapReduce [6], Pegasus [7], Swift [8j,

SAGA [9], Condor [10], etc. However, the current state of the art does not easily lend itself

to the degree of flexibility we require. Our ultimate goal is to dynamically upload and pro

cess custom web coverage processing service (WCPS) [11] algorithms on heterogeneous

platforms. Platforms of interest include: cloud, unmanned aerial vehicles (UAV), satellites,

etc. In most of these cases, the upload bandwidth will be extremely limited. Implementing

the framework on the cloud provides a basic proof of concept. We later plan to expand the

implementation to other platforms.

This chapter presents a web farm-inspired framework for dynamic computational

processing in the cloud. It is divided into eight sections. Section 2.2 compares and con

trasts this approach with Hadoop-cloud framework. Section 2.4 presents and explains the

web farm-inspired design, and goes into detail about the Node.js framework. Section 2.5

describes the cloud services we use, and provides a general overview on our approach

toward implementing the web farm-inspired framework. Section 2.6 conducts experiments

(for blocking and nonblocking operations) to reveal preliminary results which showcase

the framework’s functionality and scalability. Section 2.7 reviews the results, discusses

the challenges associated with this approach, and identifies ways in which they can be

overcome. Finally, Section 2.8 provides concluding remarks.

2.2 Hadoop-Cloud Framework

Most existing distributed application frameworks (i.e., Hadoop) are designed to

handle large data processing jobs in a static batch-like fashion. When combined with a

8

web service such as Amazon Elastic MapReduce [12], compute nodes could be provisioned

on-demand to complete the job as fast as possible. To do this, individual nodes have to be

assigned individual tasks in a coordinated and organized manner. Once each node receives

and completes its respective task, each result must be collected. This is accomplished via

MapReduce. Here, a one (master) to many (workers) relationship is assumed. Furthermore,

there are two distinct phases: Map and Reduce. In the Map phase, the master node splits the

big job into smaller tasks and assigns them to available worker nodes. In the Reduce phase,

the master collects all the individual results and combines them in such a way to generate

the desired overall output. Additionally, there is a distributed file system for scalability,

data reliability, and fault tolerance.

The Hadoop approach caters specifically to big jobs; or small jobs which have been

bundled together to form big jobs. Either way, the processing engine will not be able to

process any new job until the current job has been completed. Thus, while processing, there

are two ways to handle dynamic requests:

1. Option One:

(a) Reject them OR

2. Option Two:

(a) Collect requests

(b) Form batch jobs which consists of many requests

(c) Queue batch jobs (first in, first out (FTFO) default) or use custom schedulers,

i.e., CloudBATCH [13]

(d) Process batch jobs (when available)

9

If we choose Option Two, we would have to determine whether all batch jobs should be

heterogeneous or homogeneous in size. If jobs are homogeneous, then problems could

arise in a situation where the demand goes down and there are not enough requests to make

a standard job. Perhaps determining an efficient “job padding” technique should suffice. If,

on the other hand, jobs are heterogeneous, a priority scheduling scheme would be needed

to prevent small jobs from being processed at the mercy of large jobs. As such, scheduling

this many (big jobs) to one (processing cluster) computational paradigm may not be the

best approach when processing smaller sized job requests (<C Hadoop job), i.e., requests

made via web.

As it stands, there is no standard framework to handle dynamic computational

requests. Usually, researchers have to build the infrastructure from the ground up [14].

Towards this end, we propose web farm-inspired computational cluster.

2.3 Related Research

Existing research to date primarily focuses on pleasingly parallel scientific applica

tion dataflows with large datasets. This is attractive because it caters to two strengths of

the cloud computing paradigm: on-demand scalability and minimal to no communication

between compute nodes. Below, we give a few examples.

Wall et al. implemented reciprocal smallest distance (RSD), a comparative genetics

algorithm, using Amazon’s Elastic Computing Cloud (EC2). They executed approximately

300,000 tasks on 100 high capacity compute node in about 70 hours at a cost of $6,302

USD [15]. Zhang et al. [16] use Hadoop to develop a cloud application which processes

sequences of microscopic images of live cells. They conclude that “Hadoop allows to speed

10

up calculations by a factor that equals the number of compute nodes.” Vecchiola, Pandey,

and Buyya use Aneka, a cloud computing solution, to classify gene expression and execute

an fMRI brain imaging algorithm [17J. From their findings, they state: large high

performance applications can benefit from on-demand access and scalability of compute

and storage resources provided by public Clouds.” Lu, Jackson, and Barga [14] seek

implement the AzureBLAST, their parallel version of the Basic Local Alignment Search

Tool (BLAST) algorithm, on Windows Azure. In regards to the scalability of their design,

they report: “ ... the throughput of AzureBlast increases almost linearly when given more

instances.” They also find that the read throughput of the Azure blob storage increases with

the number of instances. Lastly, Gunarathne et al. deploy pleasingly parallel biomedical

applications to the cloud environment [18]. They maintain that “cloud infrastructure based

models as well as the Map Reduce based frameworks offered very good parallel efficiencies

given sufficiently coarser grain task decompositions.”

From reviewing those above as well as others not presented here [19-21], we

conclude that application-specific algorithmic development is a non-trivial task. Issues such

as overall system architecture, job partitioning and allocation, inter-node communication,

etc. must be addressed. The approach to these issues may vary significantly from one

application to the next. Thus, developers should be well-versed and familiarized with the

application itself and the inner-workings of the cloud environment, as naive implementa

tions usually will not render impressive results.

11

2.4 Web Farm-Inspired Framework

2.4.1 Assumptions

Before we go into the details of the system design, we feel it is appropriate to

point out our assumptions. First, we take nodes to be representative of virtual machines

(VMs); and we also take algorithms to be representative of computational kernels. We

use these terms interchangeably. Second, users submit jobs asynchronously via some web

application. However, when testing to find the limitations of the system, the worst case

scenario is assumed - all users submit jobs simultaneously. Third, the system adopts a one

master to many workers distributed paradigm, whereby the master ONLY distributes jobs

to multiple worker nodes. Fourth, individual jobs are independent of each other, execute

on one worker node, and do not need to be partitioned. Given this, there is no need for

MapReduce. Fifth, the master uses some scheduling technique to distribute jobs, i.e., round-

robin, least connections, source, etc. Sixth, we assume a NO SHARE architecture. This

means that there is no inter-worker node communication or inter-worker node dependencies.

Seventh, if a worker node receives new jobs while it is processing, it simply queues and

processes them in a FIFO fashion (when available).

2.4.2 System-Level Components

As shown in Figure 2.1, the design contains the same basic components one would

expect to find in a traditional web farm. Here, the master HAProxy (22] node distributes

(load balance) jobs to worker nodes. Each worker contains a compute server which wraps

some computational kernel. HAProxy provides a password protected web status page

which allows system administrators to view how jobs are being distributed across the

12

worker nodes. Monit [23] monitors (stop, start, restart) critical processes, files, devices,

and remote systems. It also provides a password protected http interface which allows one

to monitor the system(s) via a web browser. Node.js [24] presents a server-side framework

which we use to build scalable networked compute servers. We discuss Node.js in detail

later. ApacheBench [25] (not shown) benchmarks the system’s raw performance; and it

generates a summary report which contains important measurements and statistics such as

achieved throughput (requests/second) and total execution time.

COMPUTATIONAL HTTP REQUESTS

:o m p u t e
KERNEL

Figure 2.1: Web farm-inspired system design

As mentioned, there are multiple http services that need to be accessed: HAProxy’s

status page, Monit’s system monitor, and the compute cluster itself. To only use one

uniform resource locator (URL), we take advantage of HAProxy’s access control list (ACL)

feature. This allows us to use HAProxy to make decisions based off of information ex

tracted from the uniform resource name (URN). In particular, we define rules such that

13

HAProxy routes requests to different server pools depending on the URN. Thus, a request

can mean “fetch a status page” or “submit a job to the compute cluster.” In our setup, as

shown in Figure 2.2, a request which ends in “/” is taken to be a job and is load balanced

across the compute servers; “/haproxy-stats” is directed to the HAProxy web status page;

and “/monit” is routed to the Monit http interface to view the health of the system. To

improve the system’s fault tolerance, Heartbeat [26] and an additional backup HAProxy

master node can be introduced for failover and failback. Since the Node.js server plays

a crucial role in the system design, we now turn to: describe the framework in detail,

elaborate on the properties which make the assignments to it more advantageous (when

compared to more traditional servers), and explain its role in job processing.

• Route to:
•Http Compute Servers

•Route to:
•System Status

•Route to:
•HAProxy Status

/ m o n i t

/h a p r o x y -
stats

Figure 2.2: HAProxy ACL

2.4.3 Node.js

Our design calls for a lightweight server-side framework which acts as a simple

I/O wrapper - a middleman which sits between HAProxy (the request dispenser) and the

computational kernel (the job to be performed). In particular, its role is to receive requests,

14

parse them into inputs, and appropriate the inputs to the desired computational kernel.

Though somewhat non-traditional, the focus here is to use a simple framework for I/O

rather than employ a full stack web application framework. Node.js is an evented I/O

server-side framework (built on top of Google’s V8 JavaScript Engine [27]) which runs a

single thread in an evented loop. To keep the loop from blocking, it uses asynchronous

callbacks for input/output (I/O).

There are three advantages to using Node.js. First, it adheres to our requirements.

It a lightweight framework which specializes in I/O. Second, asynchronous callbacks allow

nondependent operations (parallel-like sections) to execute while waiting for I/O events

such as “fetching a file” or “writing a file to disk.” This is in direct contrast with the nature

of traditional http servers (and serial programs in general) which execute commands in a

linear, top-down, fashion. The main argument here is that CPU cycles are wasted, espe

cially for I/O operations, because non-dependent commands do nothing since commands

are executed sequentially. Third, is the difference in the number of threads used to handle

multiple connections. Node.js is single threaded. However, it executes callbacks to accept

and possibly service multiple requests in parallel. The caveat here is that one non-blocking

service operation blocks all servicing operations from other requests. Traditional servers,

on the other hand, create a new thread for each accepted request. Hence, they are called

multi-threaded servers. In Section 2.5, we implement the web farm-inspired framework;

then in Section 2.6 we observe and analyze the performance for both blocking and non-

blocking operations. However, next, we discuss what a job is, how it is formed, and how it

is handled once it is distributed to a compute server.

15

2.4.4 Job Submission & Processing

We take a job to be a request for some type of computational processing. To make

a request, users will either select from existing algorithms in the database or upload a new

custom algorithm (which will be added to the database). A custom algorithm must be

written according to some agreed standard. The actual details of this standard is beyond

the scope of this chapter. Nonetheless, users will also have to provide the necessary inputs

which correspond to the selected algorithm. Once done, the request or “job” will be sent

to a worker node via HAProxy. Algorithm 1 gives a general idea of how a compute server

handles a job request. Each worker node has at least one compute server which listens for

jobs on some specified port (line 9). Once a job arrives, the server immediately accepts it.

When ready, the server begins to process the job by storing the input data to a local variable

(line 3). Next, it parses that variable and passes the parameters to the execution function

(lines 4-6). The execution function, as indicated by the constructor call (line 1), executes

the request when given the necessary parameters (line 7). Once the request is fulfilled, the

connection terminates (line 8).

Algorithm 1: Pseudocode for node.js compute server
1 execute -f— new job() ;
2 createSERVER
3 parameters <— receiveDATAQ ;
4 data <— stringTokenize(parameters) ;
5 input data [0] ;
6 algorithm <— data [l j ;

7 execute.run(algorithm, input) ;
8 end connection ;

9 listen (port, IP address) ;

16

2.5 Cloud Description and Setup

To realize the web farm-inspired framework, we require the cloud infrastructure

as a service (IaaS) paradigm. The model we use, in particular, is made accessible via

the Eucalyptus [28] application program interface (API). This API grants the ability to

provision, configure, manage, or deprovision VM instances - as needed. In terms of

specifications, each VM uses CentOS 5.5 (version 2.6.32-5-amd64) [29], has 15 GB of

memory and 19 GB of storage space, and is mounted with 42 TB of shared storage.

We now give a general overview on our approach toward implementing the web

farm-inspired framework. The experiments we will run (in this chapter), at most, require

11 VMs: one master node and up to 10 worker nodes. Instead of deploying all 11 nodes at

once, we start by deploying one node and configuring its environment with all the necessary

software components, i.e., HAProxy, Monit, Node.js, etc. Once done, we create an image

of the running instance, and use the Eucalyptus API to bundle the image, upload the bundle,

and register the image. Now that we have a base image, we deploy 10 additional VMs.

Regardless the role, each VM uses the same image.

We use screen [30] to multiplex the terminal so that we can secure shell (ssh) [31]

into each VM. Since we use a private cloud, each VM has a private internet protocol (IP)

address which takes the form of 10.101.10.- -. We take the VM the lowest IP address

to be the master node, and all the other nodes to be workers. We configure HAProxy

on the master node and create a server pool consisting of the IPrPORT of each compute

server which will run on the worker nodes. Next, we develop the both Node.js server and

the computational function which executes the job and deploy them to the worker nodes

(discussed in Section 2.6). We then start the compute servers on the ports as indicated in the

17

HAProxy configuration file. All workers are now ready to receive and process jobs. Next,

we start HAProxy on the master node, and now it is ready to receive requests and distribute

them to the compute servers, which execute on their respective worker nodes.

2.6 Experiments and Preliminary Results

In this section, we do experiments to reveal preliminary results which showcase the

framework’s functionality and scalability. Towards this end, our immediate objective is to

implement the web farm-inspired framework and assess its overall performance for both

blocking and nonblocking operations. We covered most o f the general framework imple

mentation in the prior section. So, here (in addition to assessing performance) we devote

some attention to discussing both the blocking and non-blocking jobs which execute within

their respective Node.js servers. Also, we do not implement the front-end web application

interface for end-users. To test this framework, we instead vary one of two parameters -

either vary the number of job requests or the number of VMs. We use Apachebench to

vary the number of concurrent requests - parameter one. As aforementioned, HAProxy

receives the requests and distributes them to the worker nodes. We modify HAProxy’s

configuration file to vary the number of VMs to which it routes requests - parameter two;

and use HAProxy’s status page to confirm that Apachebench did send the desired amount

of requests.

2.6.1 Non-Blocking Operation

For the non-blocking experiment, we imagine a scenario where users submit jobs

which perform some I/O operation. Let’s say that the operation is to fetch large files, and the

time required to fetch each file is 10 seconds. Given this, we want to observe the overall

18

task completion time given a certain amount of concurrent requests. So, for example, if

we have 20 users that each submit a request simultaneously, we expect the overall task

completion time to be about 200 seconds (at the very worst). A traditional single-threaded

server which accepts requests, queues and fetches files in a FIFO fashion would mostly

likely give these results. A natural question which comes to mind is: how do both the

Node.js server and a traditional multi-threaded server fare in this situation?

To answer this question, we implement a Ruby Webrick server (adapted from [32])

and a Node.js (adapted from [33]). We use a 10 second timeout function to simulate

the act of “fetching a file.” This means that for each request, each server waits for 10

seconds and delivers a “job completed” message at the end of the waiting period. Though

theoretically the same, each implementation is fundamentally different in approach. The

Ruby Webrick approach, as shown in Algorithms 2, is straightforward. The server accepts

requests, “fetches a file” (sleeps for 10 seconds), then responds.

Algorithm 2: Ruby webrick, fetch file
i class
2 Timeout ;
3 define
4 call(env);
5 sleep 10;
6 return {200, ; {Content-Type = > text/plain},
7 {“The timeout function has completed” }} ;

8 run Timeout.new ;

The Node.js implementation (Algorithm 3), on the other hand, is not as intuitive.

So let us describe this in a bit of detail. Node.js is evented. This means that a sequence of

events direct the nature of the program. Thus, in lines 1-4, we write a sleep function such

19

that it creates an event when the timeout expires. The function, in particular, ingests a status

parameter and passes it to the callback function. Since we set the timeout value to 10000

milliseconds, the callback function fires when the timeout value expires after 10 seconds.

The server is implemented in lines 5-9. There is a listener, on line 9, which triggers lines

6-9 every time a request is made. Lines 6-9 execute sequentially. Line 6 sends an “OK,

request received” response. On line 7, we pass a “completed” status to the sleep function.

After 10 seconds, an event fires and line 8 executes. Line 8, gives a “request completion”

response and closes the connection. As for the order of events, when the server starts,

the print statement on line 10 executes immediately. If we use Apachebench to send IV

concurrent requests, the listener on line 9 detects N requests. In response to this, all N

requests are accepted. Next, the server executes line 6 in parallel for each request, then line

7 (in parallel), and lastly line 8 (in parallel).

Algorithm 3: Node.js, fetch file
1 sleep
2 sleep <— function(data, callback);
3 var timeout <— 10000 ;
4 setTimeout(function(){callback(null, data)}, tim eout);

5 createSERVER
6 function(request, respond);
7 respond.writeHead(200, {Content-Type: text/plain }) ;
8 sleep(“completed”, function(err, data){ ;
9 respond.end(“The timeout function has: ” + data)}) ;

10 listen(3000, 127.0.0.1);
11 console.log(Server running at h ttp ://l27.0.0.1:3000/) ;

Using the web farm approach, we setup one worker node with one Node.js server.

We then use Apachebench to vary the number of concurrent requests from 20 to 500, and

http://l27.0.0.1:3000/

20

observe the performance. The results, shown in Figure 2.3, are as expected. The average

total execution time 10.28 seconds. Next, we repeat the same experiment with one Webrick

server. Again, the results are as expected. The Webrick server does not fare as well. The

average execution time here is 21.74 seconds. This means that one Node.js sever is on

average 2.11 times faster. We try to experiment again using two Webrick servers. The

results improve slightly. This time the average execution time is 19.24 seconds. Thus, a

single Node.js server is on average 1.88 faster than two Webrick servers. Notice that each

experiment in Figure 2.3 follows a similar trend. The total execution time increases from

20 to 100 concurrent requests, decreases from 100 to 200, and begins to increase again

from 300 to 500.

30

.2 15

no ■Webrick, 1 Server
Webrick, 2 Servers

-^-Node.js, 1 Server
0 - ...

20 50 100 200 300 400 500

Number of Concurrent Requests

Figure 2.3: Single node.js outperforms multi-threaded webrick servers for non-blocking
operations.

What happens if we actually replace the timeout function with an actual com

putation? How would the overall system perform? If the computation is a blocking

21

operation, can we increase the number of servers to improve performance? We entertain

these questions next.

2.6.2 Blocking Operation

In this experiment, we build on the contrived example above by replacing the “wait

statement” with an actual computation. Our goal is to determine whether adding worker

nodes to the web farm-inspired compute cluster lead to improved performance for blocking

computations. We decide to embed a normalized difference vegetation index (NDVI)

algorithm within the Node.js compute server, as indicated in Algorithm 4. The flow of

this program is similar to that described earlier (Algorithm 1). Thus, we will not go into as

much detail.

Algorithm 4: Node.js, perform NDVI
1 var sys 4— require(sys) ;
2 var http require(http) ;
3 job require(./job) ;
4 varrunJO B <— new job .R untim eE ngine() ;
5 createSERVER
6

7

8

9

10

11

12

13

(function(request, respond) ;
respond.writeHead(200, {Content-Type: text/plain}) ;
respond.write(Please Wait) ;
runJOB.execute(“am sJlgm dvL png”, “AMS. 19nov09.16.3^47”, 0) ;
runJOB.addListener(result, function(result)) ;
foreach v a r a ttr in resu lt do
L sys.puts(attr + “ : ” + result(attr));

respond.end(“Completed”) ;

14 listen(3000, 127.0.0.1) ;

Nonetheless, lines 1-4 include a few libraries. Line 4, in particular, is a custom

built library which has functions related to job execution. The nature of the library itself is

22

beyond the scope of this discussion. Lines 6-7 sends a response to the client once a request

is detected in line 15. Line 8 accepts three parameters: the NDVI algorithm, the image,

and a cache option. The cache option simply checks the database to determine whether

or not the results already exist for this algorithm/image combination. Setting this value to

one, turns the option on; and setting this value to zero, turns the option off. We want this

option off for testing purposes; so we set the value to zero. Lines 10-13 listens for the

result from each of the three image bands and outputs the result. Once done, line 14 sends

a “completed status” and closes the connection. The main thing to note here is this is not an

170 or non-blocking operation. Thus, the computation blocks all other computations from

executing in parallel.

Since image processing, in general, can be computationally intensive, we determine

that there should only be one compute server per worker node and that each worker node

would have the same compute server. So, for example, 10 worker nodes mean 10 duplicate

Node.js http servers. In order to establish some baseline for performance, we take all the

jobs to be the same. This means that all jobs executes the same NDVI algorithm on the

same image. Next, we use Apachebench to simulate an arbitrary number of concurrent

computational job requests (we choose 20). HAProxy then receives and distributes the

requests to worker nodes in a round-robin fashion. We form 10 test cases by varying the

cluster size from one to 10 worker nodes and observe the overall system performance.

Again, this time, instead of waiting, each Node.js compute server responds to a

request by executing the algorithm. In the previous example, each test case executed the

concurrent requests (from 20 up to 500) in approximately 10 seconds, the time it took to

execute one single request. This let us know that the concurrent requests were accepted and

23

processed in parallel. The operations did not block the single Node.js thread. However, in

this example, our initial observation is as expected. Node.js blocks while executing a single

request, but instead of rejecting, each worker node queues subsequent requests if received

while processing. Below, we indicate how we deduce this.

One computation takes approximately 5.51 seconds to complete. Instead o f taking

close to 5.51 seconds to accept and execute 20 duplicate concurrent computational requests,

it takes 88.94 seconds (for one worker node). This means that each computation takes about

4.45 seconds (on average), and that each request blocks the evented thread and prevent

other requests from being executed. To ensure that the thread is indeed blocked due to the

computation (as opposed to the problem being the same jobs waiting for the same resources

- not a blocked thread), we compose another simple function. If the function executes after

the computation, this would indicate that the computation blocks the thread. If the function

executes concurrently with the computation, this would indicate that the computation did

not block the thread. The results indicate the former. The function did not execute until

after the computation. The good news is, in spite of this, the compute servers accept and

queue the requests and execute them in a FIFO manner.

Given that the computation blocks the thread, the only way to improve the overall

performance is to increase the number of threads (or the number of Node.js servers). Since

we limit each worker node to 1 compute server, we have to increase the number of worker

nodes. By varying the number of worker nodes from one to 10, the overall performance

does improve.

The results are shown in Figures 2.4 and 2.5. The total execution time decreases

exponentially, and the number of requests/second increase linearly as the number of worker

24

nodes increase. Also, in both Figures 2.4 and 2.5, notice that the results for test cases six

and nine (number of virtual machines) deviate slightly from the trend, as suggested by

the other test cases. The result for these two cases is slightly higher than what the trend

suggests in Figure 2.4, and is slightly lower than what the trend suggests in Figure 2.5.

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10

Number of Virtual Machines

Figure 2.4: For blocking operations, the total execution time decreases exponentially as the
number of VMs increase.

T3
Co

« 1.5 «*3
CT
Itoc
■s 1
Si

I 0.5
Z

2 3 4 5 6 7 8

Number of Virtual Machines
10

Figure 2.5: For blocking operations, the number of requests/second increases linearly as
the number of VMs increase.

25

2.7 Discussion

In the last section, we claim that the total execution time decreases exponentially

and the requests/second increase linearly as the number of VMs (or worker nodes) increase.

However, this conclusion is just an initial assessment based on the trend that the data

suggests. To test our hypothesis, we make a scatter plot of the data, and fit an exponential

and linear curve to their respective graphs. As shown in Figures 2.6 and 2.7, each curve

fits well. The R2 for the exponential fit is 0.87. Notice, in Figure 2.6, that one VM has a

total execution time of about 89 seconds, and two VMs have a total execution time of about

44 seconds. Clearly, two VMs perform twice as good as one. However, the big disparity

in these two results most likely explains why the R 2 value is slightly below 90%. The

R2 value for the linear fit is 0.97. Thus, we can say that these results provide supporting

evidence in favor of our hypothesis.

100

90

o 80 0) y = 66.495e~°204x
R2 = 0.8703

re

10

0
0 4 6 8 10 12

Number of Virtual Machines

Figure 2.6: Exponential curve fitting for the total execution time

Number of Virtual Machines

Figure 2.7: Linear curve fitting for the number of requests/second

Moving forward, we now discuss the inherent challenges associated with using

the web farm-inspired framework for computational processing, and give suggestions re

searchers should consider when mapping computational kernels using this approach. Web

farms, and the tools associated with them, are designed to serve lightweight requests which

can be executed on the order of milliseconds to seconds. Computational processing, on the

other hand, can be compute and time intensive. Given this, developers should seek to min

imize communication and the number of compute servers per worker node (servers/node).

In regards to communication, the best thing to do is to follow the web farm approach:

maintain uni-directional communication from master node to worker nodes and have NO

communication among worker nodes. To ensure no inter-worker node communication, use

problems which are pleasingly parallel.

The number of worker nodes and the server/node ratio together determine the num

ber of requests the system can handle in parallel. To handle more concurrent blocking

computational requests, simply add more worker nodes. Like a web farm, each worker node

can support multiple compute servers; but since the computational kernel may command

27

significant resources, researchers should look to keep the number of servers/node to a

minimum. However, in general, the resource requirements of each computational request

and the anticipated peak request traffic will be the determining factors in choosing the

server/node ratio and the necessary number of worker nodes. Also, try to keep in mind

that there is an inverse relationship between the number of servers/node and the number

of worker nodes. A decrease in the server/node ratio means an increase in the number of

worker nodes.

2.8 Conclusion

In this chapter, we proposed a web farm-inspired infrastructure for dynamic and

concurrent computational processing in the cloud. We described this framework in detail

and gave reasons as to why, and under what circumstances, it proves beneficial. We did

experiments to reveal two preliminary results which showcased the framework’s function

ality and scalability. The first result showed that, for non-blocking operations, worker

nodes which use Node.js servers are significantly faster than those which use traditional

servers; and from the second result we concluded that, increasing the number of worker

nodes improves the overall system performance for blocking computational operations.

2.9 Using Proxies for Cloud Security

The framework presented in the this chapter mostly centered on the use of a proxy.

One important property of proxies is the ability to maintain 1-to-?; mappings between

clients and servers. In the next chapter, we couple the idea of proxies with the self

organizing behavior of mussels to develop a cloud defense strategy. This strategy addresses

a vulnerability which exploits a 1-to-l public to private IP mapping.

CHAPTER 3

MUSSELS, LEVY WALKS, AND CLOUD SECURITY

Recent research has provided evidence indicating how a malicious user could per

form co-residence profiling and public to private IP mapping to target and exploit customers

which share physical resources. The attacks rely on two steps: resource placement on the

target’s physical machine and extraction. Our proposed solution, in part inspired by mussel

self-organization, relies on user account and workload clustering to mitigate co-residence

profiling. Users with similar preferences and workload characteristics are mapped to the

same cluster. To obfuscate the public to private IP map, each cluster is managed and

accessed by an account proxy. Each proxy uses one public IP address, which is shared by

all clustered users when accessing their instances, and maintains the mapping to private IP

addresses. We describe a set of capabilities and attack paths an attacker needs to execute for

targeted co-residence, and present arguments to show how our approach disrupts the critical

steps in the attack path for most cases. We then perform a risk assessment to determine the

likelihood an individual user will be victimized, given that a successful non-directed exploit

has occurred. Our results suggest that while possible, this event is highly unlikely.

3.1 Introduction

Equipped with the ability to leverage virtual resources on-demand, cloud computing

systems have recently emerged as a viable low-cost alternative to traditional computing

28

29

platforms. This has sparked widespread interest, adoption, and/or research initiatives from

all institutions alike (e.g., academic, industrial, government, etc.), which in turn, has led

to myriads of success stories [34-36] that give credence to its potential and effectiveness.

Though promising, this technology suffers from the same fate as any other new develop

ment in its infancy stage. It solves some problems while newly introducing unanticipated

and not readily understood challenges [37]. At the core of these concerns lies privacy and

security [38^-2]. Recent research [1] has shown that it is possible to identify and target a

cloud user, launch malicious virtual machines (VMs) which perform co-residence checks,

and possibly extract confidential information once co-residency with the victim has been

established. An example such as this exposes the volatility of cloud security.

To gain insight on how to best solve this problem, we look towards nature - for

research shows that social animals have the tendency to solve distributed problems (e.g.,

foraging, nest building, defense) optimally, robustly, and efficiently [43-47], Similar to

how mussels form small clusters to decrease water stress and minimize the risk of preda

tion [48-52], we hypothesize that cloud providers can strategically cluster users to mitigate

the chance of targeted exploits via malicious co-resident users. The general idea of using

clustering to address security vulnerabilities is expressed in various works [53-56]. How

ever, these mostly use mix networks. We briefly consider one example. In [54], Reiter and

Rubin create a system to conceal the identity of clients when performing web transactions.

This system is based on the notion of crowd blending and “operates by grouping users into

large and geographically diverse groups that collectively issues requests on behalf of its

members.”

30

In this work, we propose a framework where the cloud provider uses mussel behav

ior to cluster users according to individual preferences, e.g., computational requirements

(small, medium, or large VM), workflow duration (hours, days, weeks), or cluster size

(small, medium, large). Each cluster contains members with similar preferences or work

load types - subscribed in a best effort manner. This means that assignment to the cluster

which exactly matches user preferences is not always guaranteed. To obfuscate the public to

private IP map, each cluster is managed and accessed by an account proxy. Each proxy uses

one public IP address, which is shared by all clustered users when accessing their instances,

and maintains the mapping to private IP addresses. To prevent attacks aimed at users

belonging to a particular proxy, clusters periodically dissolve. That is to say, on occasion,

members are disbanded and are subscribed to new clusters. If an individual’s preferences

have not changed, then the new cluster will be similar to the prior cluster. Otherwise,

the new cluster will reflect the individual’s new interests. The period of updates is a user

defined parameter. Thus, preference is used to determine how often clusters dissolve e.g.

(hours, days, weeks).

The rest of this chapter is organized into seven sections. Section 3.2 gives the

contributions of this chapter. Section 3.3 presents the system model, threat model, and

the exploit description. Section 3.4 provides a brief background on mussel behavior, and

details how we make mathematic and algorithmic modifications to a model which describes

density-dependent interactions between individual mussels. Section 3.5 covers the techni

cal aspects of our proposed solution. Section 3.6 performs a risk assessment to determine

the likelihood an individual user will be victimized, given that a successful non-directed

exploit has occurred; and lastly, Section 3.7 yields concluding remarks.

31

3.2 Contributions

Ristenpart et al. conduct research which uncovers security vulnerabilities in the

cloud. They use standard network probing tools to decode the 1 -to -1 public to private

IP map, and use this map to identify and target other cloud users. Next, they conduct

experiments and find that the private IP addresses are statically assigned according to

launch parameters - availability zone and instance type. They then use the same launch

parameters as that of the victim to maximize the chance of co-resident placement. Each VM

performs co-residence checks to determine whether it shares the same physical machine as

its victim. If not, it terminates. Otherwise, it proceeds with extraction - the next phase of

the attack. This is the nature of the adversarial model we consider.

This chapter, on the other hand, firstly introduces a defensive mussel- inspired

strategy to address cloud vulnerabilities. We obfuscate public to private IP mapping by

having account proxies perform 1-to-n random mapping of public to private IP addresses.

This decreases the risk of adversary targeting and significantly reduces the amount of

public IP addresses needed for users to access their VM instances. By having clusters

periodically dissolve, our strategy decreases the chances of directed attacks towards random

users belonging to a particular account proxy. Lastly, our approach takes advantage of

the cloud’s intrinsic features. VM instantiations are inherently transient. Even with co

residency and a successful breach, the victimized VM can be terminated at any time,

only to be redeployed later - possibly to another physical machine. This feature coupled

with account proxies helps prevent a user from being consistently targeted, tracked, and

victimized across multiple physical machines.

32

3.3 System Model, Threat Model, and Exploit Description

Cloud computing systems provide innovative solutions while introducing new av

enues for research direction. One aspect of cloud systems which serves in this capacity

is hardware virtualization - the ability for multiple customers to share the same physical

resources at the same time. Though providers benefit from resource consolidation, this

feature poses new security challenges and possibly serves as a significant system vulner

ability. Consider two competing organizations which both lease resources from the same

cloud provider. It is foreseeable that one customer’s motive could consist of exploiting the

shared nature of the cloud to identify, target, and victimize its competitor. Possible attacks

could include: monitoring workflow patterns, extracting valuable information, conducting

denial of service (DoS), distributed DoS (DDoS), or EDoS (Economic Denial of Service),

where the victim’s bill causes a shock at the end of the accounting period because they have

had to use more instances than planned. Given this, we consider customer VMs, data, and

information to be assets.

3.3.1 System and Threat Model

From a system model perspective, we classify customers based on intent. Malicious

users are those with malevolent intent - those who target other users and seek physical

machine co-residence for unauthorized surveillance and/or data extraction of via certain

exploits, i.e., side channel attacks. We consider these type of users to be threats which

launch attacks comprised of two steps: virtual machine placement on the machine upon

which the target resides and data extraction. Below, we identify four types of attackers and

list the possible goals for each.

33

1. Eavesdropping non-directed attacker goal is to read data or find out about any target.

2. Malicious non-directed attacker goal is to cause a DoS on any or all instances.

3. Eavesdropping directed attacker goal is to get data from a specific competitor’s

instance or learn about their workload pattern.

4. Malicious directed attacker goal is to cause one of the following attacks on a partic

ular target: DoS, DDos, or EDoS.

Honest users, on the contrary, are those that use cloud resources for their intended

purposes. These users have sincere intent. They abide by the protocols, procedures, and

regulations as outlined in the terms of service agreement. We would like to prevent these

users from being identified and targeted by malicious users. A peer is simply one that

shares the same physical resources - a co-resident user. A peer can either be a malicious or

honest user. We assume the cloud provider to be trusted and honest - providing the services

to its customers as outlined in the service license agreement.

3.3.2 Exploit Description

Since the inception of cloud services, the possibility of users being exploited by

a rogue peer has always been a major issue of concern. However, the realization of

these fears never quite materialized until researchers began to uncover the extent of cloud

user vulnerability. The exploit we consider is described by Ristenpart et al. In [1J, they

use Amazon’s EC2 [57J “ as a case study to demonstrate that careful empirical mapping

can reveal how to launch VMs in a way that maximizes the likelihood of advantageous

placement.” To investigate this notion, they assume a placement and extraction attack

strategy. They use domain name system (DNS) resolution queries and traditional network

34

tools, i.e., nmap, hping, wget, to determine the external name of an instance and to derive a

map which exposes the correlation between the external public IP address and the internal

private IP address of an instance. They additionally found that the internal IP addresses are

statically assigned to physical machines according to availability zone and instance type.

Thus, the map could be used to deduce the availability zone and instance type for any given

target - effectively reducing both the search space for finding a target and the number of

“probe instances” needed to be deployed before achieving co-residence. A probe instance

is simply a malicious VM that performs a co-residence check to determine whether or not

a target is a peer. If the target is a peer, it proceeds with data extraction - the next phase of

the attack. Otherwise, it terminates.

Ristenpart et al. identify three different methods which could be used to determine

co-residence, and present two strategies an attacker could use to exploit placement in EC2

- brute-forcing placement and placement locality. The brute-forcing placement strategy

deploys a large number of instances over time in same zone and of the same type as that of

the instances belonging to a large target set. They conduct an experiment using this strategy

and receive a success rate of 8.4%. This means that 8.4% of the probe instances actually

achieved co-residence with instances of the target set. The placement locality strategy,

on the other hand, assumes a smaller target set, and also presumes that the attacker can

launch probe instance soon after a targeted victim’s instances are launched. They conduct

another experiment, and find that this strategy yields a success rate of 40%. They make the

following conclusions concerning Amazon’s VM placement algorithm.

1. N parallel instantiations launched from a single account tend to result in placement

on N different machines.

35

2. If a VM which runs on machine A is terminated and another VM is launched im

mediately thereafter, then that new VM tends to be placed on machine A. This may

explain why the brute-forcing strategy did not fare as well.

3. Two VMs launched around the same time, from two different accounts, tend to be

assigned to the same machine.

4. There is a small inherent bias in assigning new VM instances to machines with light

loads.

They later outline possible ways to extract information from target victims once co

residence with the target is achieved. However, for the sake of space, we will not cover this

here. One thing should be noted. Though the case study is specific to Amazon, Ristenpart et

al. believe that modified variations of their technique can be extended to services supplied

by other cloud providers.

3.3.3 Discussion

From the above conclusions it seems the placement algorithm may inadvertently

assist miscreants in their mission to target and exploit other users. The first conclusion

helps maximize the search space for a particular victim. A machine co-residence check

only requires one probe instance. So ideally one VM, at most, should be assigned to

each machine. Further, the first and third conclusions together ensures heterogeneous VM

ownership per machine.

Two main problems form the central issue. The first - Amazon’s VM placement

algorithm is predictable and manipulable. The second - VM instances are directly con

nected to the Internet via port 80, and a DNS service, which translates public IPs to private

36

IPs, is a major line of defense for preventing malicious users from targeting, locating, and

exploiting honest users. Ristenpart et al. found a way to decode the map and presented the

details of their findings. To address these issues, we propose a solution in part inspired by

mussel self-organization. We describe the details of this behavior in the next section.

3.4 Mussel Behavior

It is forseeable that a combinatorial rise in the possible combinations of user pref

erences could result in large computational overhead with deterministic or complete enu

meration algorithms. Thus, the use of heuristic algorithms may prove to be beneficial. We

extend the self-organization behavior of mussels to develop an algorithm to address such a

problem.

3.4.1 Background

Interactions between organisms, themselves, and the environment in which they live

leads to feedback which affects both the organisms and the environment. For mussels, the

magnitude of this feedback varies with distance - a phenomenon known as scale-dependent

feedback (SDF) [58]. There are two types of SDF: positive and negative. Mussels ex

perience positive SDF over short-range distances with respect to peers. This leads to

cooperation between individuals in the vicinity. If there is short-range density, or a certain

number of peers per unit area in its immediate surroundings, an individual mussel tends

settle, or maintain its current position. It then secretes byssal threads to attach itself to the

shells of peers, rocks, or other various substrates. On the other hand, mussels experience

negative SDF ver long-range distances with respect to peers. This leads to competition

which restricts survival over long distances. If there is long-term density in its not so

37

immediate surroundings, an individual mussel tends to move to a new location. The

interplay between positive and negative SDF ultimately results in patches of optimal sized

clusters - large enough to decrease the risk of predation and water stress yet small enough

for the groups to withstand the risk of food depletion.

3.4.2 The Model

Our research takes interest in this natural phenomenon and, in part, builds on the

work done by de Jager et al. In [59], they use empirical observations, theoretical and

computer modeling to determine that the Levy walk (LW) best characterizes mussel move

ment strategy. When compared to the Brownian walk or ballistic motion strategies, the LW

provides the best tit to experimental step length data, minimizes the time needed for pattern

formation, and is evolutionary stable to mussels differing in movement strategy.

To investigate the role of density dependence in pattern formation, de Jager et

al. observe mussel movements under laboratory conditions and meticulously extract step

length data. Mussels are evenly spread on a PVC sheet, and a webcam is positioned to

record their activity. Over time, the individual mussels move around to search for nearby

conspecifics. They use byssal threading to attach themselves to the bed when they find

a position which best balances neighbors with food availability. This local clustering

behavior ultimately leads to a global spatial pattering in the mussel bed.

A histogram of the step length data reveals a heavy-tailed probability distribution.

This infers that when the step length data is plotted on a log-log scale, the general power-

law function, shown in Equation 3.1, results in a straight line with slope -p,

p(l) = ci~» . (3.1)

38

The parameter p determines the movement strategy. When lim ^ » 1, the strategy is

ballistic (straight-line) motion; and the likelihood of taking a large step is equal to that of

taking a small step [60]. When /i > 3, the movement approximates a Brownian walk; and

when 1 < /i < 3, the strategy is taken to be a LW, where small steps are occasionally

alternated with larger ones [59,60]. The LW most commonly found in nature is p 2 [59],

For the LW, the normalization constant, C, is expressed by Equation 3.2 [61],

where Imhl, (0 < lmin < 1), is a constraint which represents the minimum step length. An

lmin value of 0.42 provides the best results when fitting the actual data to the Levy walk.

For the truncated LW, the normalization constant C, is expressed by Equation 3.3,

where the steps, I, are only defined on the open interval lrnin < I < /,7)CJX. An lmin value of

0.42 and an lmax value of 58.84 provided the best results when fitting the actual data to the

truncated LW. De Jager et al. use the Goodness-of-fit (G) value, shown in Equation 3.4,

to determine how well the frequency distributions of the movement strategies fit the actual

data. A value closer to zero indicates a better fit,

Here, O is the inverse cumulative distribution of the actual data; and E is the inverse

cumulative distribution of the fitted movement strategies. Table 3.1 shows how well the

strategy models fit the actual data. Notice, the Levy and truncated Levy strategies both

c = (n- i)C7, (3.2)

(3.4)

39

yield comparable results, while the Brownian walk does not fare as well. In the end, the G

value suggests the truncated Levy strategy provides the best fit.

Table 3.1: Fitting movement strategies to actual experimental data

Movement Strategy
Truncated Levy Walk Levy Walk Brownian Motion

G 22.45 47.22 -190.09
AIC weights 0.443 0.428 0.129
Adjusted R 2 0.997 0.997 0.837
Levy exponent 2.01 2.06 -

To investigate how the LW movement strategy effects the rate of pattern formation,

de Jager et al. develop an individual-based model, where the density of conspecifics deter

mines whether or not individual mussels decide to move. Towards this end, multivariate

regression analysis of the experimental data reveals that mussels are more likely to stay if

there is short-range density - mussel density within a 3.3 cm radius, and are more likely to

move if there is long-range density - mussel density within a 22.5 cm radius. The linear

expression, shown in Equation 3.5, relates the chance of movement (P m) to long (D L)

and short-range (Ds) densities. By performing linear regression on experimental data, it is

determined that a = 0.63, b = 1.26, and c — 1.05. As indicated in Table 3.2, an individual

decides to move when its chance of movement is greater than a random value drawn from

a uniform distribution. Otherwise, it maintains its current position. If an individual mussel

decides to move, it takes a LW. That is to say, its direction, 0, is drawn from a uniform

distribution (depicted in Equation 3.6); and its step length, /, is drawn from a power law

distribution (shown in Equation 3.7).

40

Pm = a — bDs + cDL . (3.5)

e = 2ttw. w ~ £/((). 1) . (3.6)

I = Xnun ! , u' ~ (7(0,1) . (3.7)
(1 —

Table 3.2: Mussel behavior in response to scale-dependent feedback

SDF Type Action Condition
Positive Settle Pm < rand(0,1)
Negative Move Pm > rand{0,1)

Over time, local density dependent interactions between individual mussels and

their peers lead to the emergence of a distinct global spatial patterning in the mussel bed.

Figure 3.1 shows the state of the mussel bed before the computer model starts and just after

it ends.

(a) B efore (b) After

Figure 3.1: Original mussel bed clustering computer model

41

3.4.3 The Algorithm

We use the model which describes mussel behavior to develop a bio-inspired heuris

tic clustering algorithm for multi-agent systems. We assume that agents make independent

decisions based on local asynchronous interactions and have limited memory. Thus, they

cannot remember past decisions or movements. Initially, agents with various basic abilities

are randomly distributed throughout the interaction environment. As a result, agents must

actively search for similiar agents and form specialized groups in order to be collectively

effective. Agents with similar abilities are said to be homogeneous, and agents with dissim

ilar abilities are said to be heterogeneous. The highlights of the algorithm are:

1. first bio-inspired algorithm based on mussel behavior

2. decentralized - no central control

3. scalable to large agent set

Figure 3.2 shows the high level logic flow diagram. Each mussel agent initially

observes its surroundings and calculates the short and long range density which are, in turn,

used to determine its chance of movement. If it does not decide to move, it simply maintains

its current position for some time before re-observing its surroundings. On the other hand,

if it decides to move it selects a new position. If the new position is currently occupied,

it takes a truncated LW; otherwise, it takes a LW. The details are further explained in

Algorithm 5. As shown in lines 1 -2, the onset is marked by setting the necessary parameters,

i.e, the number of mussel agents, agent attributes, sensing radii, etc., and initializing the

agent set to random (A", Y) positions. The main parameters of the mussel alogorithm

are summarized in Table 3.3. Notice that each agent uses three different sensing radii to

determine the density of: homogeneous agents within a short range, heterogenous agents

42

within a medium range, and any agent within a long range. The following steps are repeated

until the number of maximum steps is reached. Each mussel agent uses the Euclidean

distance to determine the distance of all other agents - line 7; determines the positive SDF

by counting only the number of homogeneous peers in its short range sensing radius - lines

8-9; determines the negative SDF by counting both the number of hetergeneous peers in its

medium range sensing radius and the number of any peer in its long range sensing radius

- lines 10-11; uses the positve and negative SDF to determine the short and long range

density - lines 12-13; calculates the chance of movement - line 14; selects new position if it

decides to move - lines 15-19; takes a truncated LW if the new position is occupied - lines

20-21; and takes a LW if the new position is not occupied - lines 23-25.

M ussel A gent |

No

M ove?

Yes

Yes No

N ew position
^occupied?^

Stay

Take Levy w alk

Select new position

D eterm ine chance of
m o v e m en t (PM)

Take tru n c a te d Levy
walk

C alcu late sh o r t (Ds)
a n d long range (DL)

density

Figure 3.2: Logic flow diagram

43

Algorithm 5: Mussel agent clustering algorithm
1 set the necessary parameters ;
2

3
4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

initialize mussel (x. y) positions;
repeat

foreach mussel i in 0 to \T\ do
SDFpos < 0 . SD Fn<r/ <-():
foreach mussel j in 0 to \T\ do

dt,j = \J{xt - Xj)2 + (y, - y3)2
if dij < Di A g(i) = g(j) then

SDFpos + + ;
if D x < ditj < D2 V dij < D3 A g{i) ± g(j) then

SDFneg + + ;

Ds = (SDFpos ~ 1)/(*£>?) ;
A = (SDFneg - l) / (7tD\) ;
Pm A- according to Equation 3.5 ;
if Pm > rand then

di A - according to Equation 3.6 ;
Li a- according to Equation 3.7 ;
p x t = x, + c,os(0i) * Li ;
py, = Vi + sin{6i) * Li ;
if pxi ^ occupied A pig F occupied then
| xxriew A- pxi , y jn ew A - py, ;

else
Lmin A- calculate truncated step length ;
xxnew = x, + cos(di) * A * Lm in ;
yjnew = yi 4- sin(di) * L,- * Lm in ;

26 until maxSteps;

Table 3.3: The main parameters of the mussel algorithm

T set of agents
9 set of agent attributes

Dx sensing radius used for short range density of homogeneous agents
d 2 sensing radius used for long range density of any agent
D3 sensing radius used for medium range density of heterogeneous agents

3 m i n minimum walking distance
exponent for Levy movement strategy

44

3.4.4 Example Mussel Subscription

Now, suppose that we have 1800 users. Each of which is able can choose from two

preferences: VM size and workflow duration. Further consider that each preference has

two options. A VM ’s size can either be large or small, and the duration of workflows can

either be based on hours or days. As shown in Table 3.4, users can belong to one of four

categories. If a user intends to use a small VM for a few hours, then he/she will be placed in

workload category I. The color red is used to identify those users in this category. Similarly,

those users who prefer a large VM for a few hours will be placed in workload category II

- denoted by the color blue; those who desire a small VM for a few days will be placed in

workload category III - denoted by the color green; and those who wish to use a large VM

for a few days will be placed in workload category IV - denoted by the color yellow.

Table 3.4: Assigning categories to user preferences

VM Size
small large

—3
j: £4 J
tsfic<D

I (red) 11(blue)

III (green) IV (yellow)

For this example, we assume that users are indifferent to the preferences. That is

to say, the odds of being placed in any of the four categories are the same. Figure 3.3(a)

shows the initial state of the logical field once each user is placed in a workload category

based on preferences and assigned random (A", Y) coordinates. The system reaches steady

state after some time, and gives rise to an emergent clustering pattern between users with

45

like preferences - as shown in Figure 3.3(b). Notice the cells. Here, cells are analogous to

accounts. Users are subscribed to the cell in which their indicator settles. After some time

account membership dissolves - Figure 3.3(c); and users are subscribed to new accounts -

Figure 3.3(d).

(a) B efore (b) A fter

m

$

R ^ F E F F f

m

r c f c ; : b f i ;

■ u h\m :- iJr-A'iiy

■ r 4 U J I H. z& rm m
JIB

c £ m
iMiki/ 'wm
M u m m u

t a ± M d

(c) D isso lv e (d) Regroup

Figure 3.3: Users cluster according to mussel behavior.

3.5 Proposed Framework

We now describe the technical analysis of the mussel-inspired self-organization

approach towards reducing the risks of adversary exploitation as described by Ristenpart

46

et al [1]. They conclude by stating cloud providers should obfuscate the internal structure

of their services and placement policies in order to complicate the adversary’s attempts.

However, obfuscation of topology and placement policy leads to additional computational

overhead when doing VM placement, CPU load balancing, traffic shaping and workload

migrations. They additionally state that such obfuscation techniques should be demanded

only by customers with strong privacy requirements, but this additional differentiation

in user classification and infrastructure configuration leads to more complex registration,

preference analysis, and configuration options. We suggest defining a single user manage

ment and placement solution that comes with low-computation placement and topology

obfuscation inherently, without causing a change in the familiar interface exposed to cloud

users. Figure 3.4 provides an overview of the integrated solution’s technical architecture.

DMZ Cloud Infrastructure

Host2

users Gateway

— cius
Hestl

«• _H vm?~]

clusterl

ap#: account proxy
vm#: virtual machine
gp#:gatew ay interface with public IP
gr#: gateway inter face to private IP
cluster#: logical VM cluster from mussel algorithm
host#: physical host for VM creation

Muss«l-bas*d
Allocator/Controller

Figure 3.4: Technical architecture of the account proxies and mussel-based account
allocation

Al

Here, each logical cluster (cluster#) is managed and accessed by the same account

proxy (ap#). An account proxy has one public IP address, which is hence shared by all

account owners in a cluster when accessing their instances, and the account proxy maintains

the mapping to private IP addresses. There is hence no 1 -to -1 mapping of public to private

IP addresses or dependence on a sequential allocation of private IP addresses. A l-to-7;

mapping of public to private IP addresses is implemented by most modern Application-

Level Gateways that include Network Address Translation (NAT) and traversal. The se

quence of interactions of a typical user is as follows:

1. Subscription of user with the cloud infrastructure via an accessible gateway interface,

gpO, with a static public IP address. The user provides a username, password and

collection of preferences (duration, CPU, memory, availability zone), encrypted with

the public key of the cloud infrastructure provider.

2. The user information is checked against subscription policies and forwarded to the

Mussel-based Allocator/Controller, which is responsible for creating/dissolving groups

and account proxies, as well as assigning users and VM instances to account proxies,

groups, and physical hosts respectively. VMs with similar workload and access

preferences are assigned to the same physical host when possible.

3. The Allocator/Controller creates a new account proxy (ap#) if necessary and assigns

or adds the user to an existing account.

4. Asynchronously, the Allocator/Controller selects a host to create the requested VM

instance and starts the VM instance assigning it a random IP address from a pool of

unassigned private addresses.

48

5. The public IP of the newly created VM is mapped to the private IP and returned to the

user as a uniform resource identifier (URI) of form /{ip of gp#}/{userid}/{vmJd}.

6. The user uses URI to send requests to VM including start, stop, modify or ssh.

7. The account proxy translates URI into a private IP and forwards the requests to VM.

8. Responses from the VM are returned to the user as if the target was the public IP

address of the account proxy.

We assume that each user and the cloud provider are able to generate and main

tain non-compromised public-private key pairs (e.g. RSA [62]) and symmetric keys (e.g.

AES [63]) such that the above interactions can be secured using protocols like transport

layer security (TLS) [64]. This is among the current best practices from leading cloud

providers such as Amazon [65], and is an effective approach for minimising cloud com

munications risks such as man-in-the-middle, session high-jacking and replay attacks - as

also denoted in [66-68] These types of attacks are hence not the focus of the solution as

these are part of best practices in cloud security. On the other hand, we are interested in

mitigating the impact co-resident placement and data extraction have on an attacker’s ability

to carry out successful exploits against a given target set; or, said another way, we would

like to determine the maximum amount of co-residence knowledge an attacker can infer

when there is workload similarity amongst peers. Towards this end, we specify 3 breach

impact levels: low, medium, and high. A low level breach impact means that an attacker

cannot differentiate the workload owner and the workload type from that of other peers. A

medium level breach impact means that the enumeration of workload owner and workload

49

type is possible; and a high level breach impact means that an attacker can differentiate

workload owner and type.

We now describe the set of capabilities and attack path an attacker needs to execute

for targeted co-residence. As shown in Figure 3.5, we do not provide a solution to stopping

step 1 - malicious VMs or scripts from being installed in the cloud infrastructure, as this de

pends on the types of pre-installation scanning mechanisms the provider implements. Our

solution aims to remove the usefulness of public-to-private IP address mappings observable

by the attacker, which impacts on steps 2, 3, and 4 in the attack path shown in Figure 3.5.

Mapping one public IP address to n randomly assigned private IP addresses reduces the

specificity of knowledge gained by an attacker with the capability to do internal domain

name resolution. The records of mappings will have collisions, which serve to impede

targeted co-residence by introducing additional effort and cost for the attacker, in that more

brute-force attempts and malicious instances need to be deployed.

1) Install VM with DNS lookup scripts
2) Probe w eb-servers externally to check

responsive public IPs
3) U se internal DNS lookup to m ap public

IPs to private IPs
4) R ecord unique public to private m appings
5) IF m ore GOTO 2. ELSE en d

/ S * / S * / st ^

K hard/indistinguishable ^ easy/distinguishable

? partial/enum erable

Figure 3.5: Attack capabilities and path to map public to private IPs

50

Figure 3.6 shows that the critical step 5 in the attack path is disrupted by our

approach, as there is no pattern used for private IP address assignment. The assignment

of IP addresses by a dynamic host configuration protocol (DHCP) server will follow a

predictable sequence by default, but this can be configured to randomly select from the pool

o f available IP addresses. There is no need for an administrator to allocate IP addresses per

availability zone as groups are assigned responsibility for specific IP addresses.

1) Install VM for IP assignmentrecording
2) Specify VM oftype x
3) Install VM oftype x in cloud
4) Record private IP of newly-installed VM
5) Infer IP ass ig n m en t pattern for type x
6) IF try further GOTO 7, ELSE end
7) Vary type specification ofx. GOTO 2

))))) X > 1

< H

hard/indistinguishable / easy/distinguishable
' partial/enumerable

Figure 3.6: Attack path to determine mapping of VM types to IP ranges and availability
zones

Notice Figures 3.7 and 3,8. In each case, step 5 is not explicitly addressed by our

solution. It is still possible for the attacker to execute tracert on randomly selected private IP

addresses and test for co-residence based on equivalent DomO addresses or relatively short

round trip times. However, in both cases the attacker is forced to follow a random selection

as opposed to following a sequence. Therefore a successful co-residence detection does

not reveal knowledge about other IP addresses that are numerically close.

51

1) InstallVM with t r a c e d scrip t
2) S e le c t private IP o f ta rg e t
3) D o tra ce rt on p rivate IP o f ta rg e t
4) C h eck first h o p in trace rt a g a in s t la s t h o p

of b e fo re ta rg e t
5) IF first hop equals last hop infer share

DomO => co-residence:
6) IF m o re ta rg e ts G O TO 2 e ls e en d

Figure 3.7: Determination of co-residence using DomO equivalence check

1) InstallVM
2) S e le c t private IP within num eric ra n g e
3) Do ping on p rivate IP o f ta rg e t
4) C h eck ro u n d trip tim e (rtt)
5) IF response and "short" rtt: Infer co-

residence:
6) l£ m o re J a rg e ts G O T Q 2 e ls e en d

Figure 3.8: Determination of co-residence using relative round trip time estimate

3.6 Risk Assessment

Up until this point, we have discussed how our solution provides measures to

prevent users from being targeted and exploited. However, it is quite possible for users to be

random victims of non-directed exploits. We now perform a risk assessment to determine

the likelihood of this event. With that said, suppose a malicious user decides to randomly

target users belonging to any account proxy. Let user A denote a particular user amongst

those which could be victimized; and let group B describe all users aside from user A.

Below, we list three events.

52

Event A\. User A is not victimized

Event A 2: Group B users are not victimized

Event B: A successful exploit occurs

Further,

P(Ai) = a P(Aft = 1 - a

P (B \ A x) = ft P(B | A 2) = 1 - ft

Here, P(Ai) is the likelihood that user A is not victimized; P (A2) is the likelihood group B

users are not victimized; P(B | A]) is the likelihood a successful exploit occurs, given that

user A is not victimized; and P(i? | A 2) is the likelihood a successful exploit occurs, given

that group B users are not victimized. We assume that events A\ and A2 are mutually

exclusive. We now use Bayes ’ Theorem to determine the likelihood user A is NOT

victimized, given that a successful exploit occurred.

P(A i)P(B I Ai) + P(A2)P{B I a 2)
aft

(3.8)ft ft + (1 — o) (l — ft)

Further, suppose that all users each have a VM deployed, each account proxy has

Mj members, and there are N total account proxies. Further consider that each proxy

has the same chance of being targeted, and that members assigned to each account have

the same chance of being victimized. Then, the chance of user A being victimized is the

likelihood that his particular account proxy is targeted, 1/N, times the likelihood that user

A will be randomly targeted, 1 /Mj. This yields l /NMj . Thus, the chance that user A will

not be victimized is expressed in Equation 3.9. Notice, here, we use // to denote the product

of N and Mj. Moreover, as denoted in Equation 3.10, we say that the likelihood of user A

53

being victimized is the same as the chance that users from group B are not victimized.

0 = 1
1 1

i - i
L^r ftfj .

■ r i1 - 1 -

ip p

(3.9)

(3.10)

Substituting Equations 3.9 and 3.10 into Equation 3.8, we receive

P(A, | B) --
i — i

i i
ft

' i - i
i i _

, 8 + i

p .
(i - f t)

f t p - ft

11 flu-23+1
I'

' p - 1
(3.11)

f t ~ l + n - 2 '

In a similar sense, we use Bayes ’ Theorem to determine the likelihood that users from

group B are NOT victimized, given that a successful exploit occurred.

P(A2 \B) =
P(A2)P(B I a 2)

P(A\)P(B | Ai) + P(A2)P(B | A 2)
< l - a) (l - / 3)

aft + (1 — «) (1 — 3)

Substituting Equations 3.9 and 3.10 into Equation 3.12, we find

P(A2 \B) =

(3.12)

i
[1 _

3]J! _ 1 J

f i - 1ii 3 + i
[I - / ?]

1-/9

iini
I1 ft \-fl

li
I - ft

ft(/i — 2) + 1

Given an exploit, events A\ and A 2 are equally likely when

P (A l | B) = P(A2 | B)

(3.13)

1 - 3
3~' + f i - 2 B{n - 2) + 1

Setting e = ft 3 and solving for n we receive

(// - l)(c - 23 + 1) = (l - / 3) (, 3 -1 + / 7 - 2)

//f - 2f — 1 = . r 1 - 3

54

(3.14)

f(/ r — 2) = 1 1 - 2

/T
— • (3.15)e

The parameters for Equations 3.11 3.13, and 3.15 are N, Mj, and /). To understand

how the number of members (Mj) affect P(Aj\B) and P(A2\B), we arbitrarily choose

N = 36, vary the values of parameters Mj and fi, and plot the results. The interpretation

of the graphs is quite intuitive. As shown in Figure 3.9, it is highly likely a user A will be

NOT victimized, given a successful exploit has occurred.

36 Account Proxies, N

M. = 2
m 0.8 M. = 5l

M. = 10

M. = 15

 M. = 20

M. = 25
J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(3

Figure 3.9: P(A\\B), The likelihood user A is not victimized.

55

The chances increase both as the number of account proxy members and the number

of account proxies increase. That is to say, if you had virtual resources in the cloud and

a random non-directed exploit occurred, chances are someone else was affected. This

likelihood increases as the number of members subscribed to your account proxy increases

- especially for low ft values. In Figure 3.9, for instance, notice that having > 15 members

ensures that you have a 90% chance of being unaffected when ft < 0.1. However, when

ft > 0.5, these odds are > 90% regardless of proxy membership. The reverse is true for

a member from group B. If an exploit occurred, one of the many users in group B is most

likely the victim. As shown in Figure 3.10, the chances of a user from group B not being

the victim decrease as ft increases.

36 Account Proxies, N
0.5

0.45
0.4

0.35
S' 0.3
~}* 0.25 <
c l 0 . 2

0.15

 M = 2

= 10

= 20
= 25

0.05

P

Figure 3.10: P(A2\B), The likelihood that users from group B are not victimized.

Further, having more members subscribed to one’s respective proxy does little to

alter these odds when ft > 0.5. For events A\ and A 2 to be equally likely, /j, the product of

the number of members, Mj, and the number of proxies, N, has to be an integer - since Mj

56

and N are both integers. This only occurs for a select values of Mj and 3 when ,3 < 0.4

- as shown in Figure 3.11. When 3 > 0.4, the events are equally likely when // = 2. The

values of M3 are negligible in this case.

6

5

4
=2.

3

2

10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

Figure 3.11: P(Ai\B) = P (A 2\B), When events A\ and A2 are equally likely

To understand how the number of account proxies (N) affect P(Ai \B) and P {A 2\B),

we arbitrarily choose N values above and below 36, and use the same set of values for

parameters Mj and [3. If N is much lower than 36, we expect individuals to be more at risk

of being randomly victimized for lower values of Mj (when compared to the case where

N = 36). The opposite is true for N values much higher than 36. In this case, we expect

individuals to be less at risk of being randomly victimized for lower values of Mj (when

compared to the case where N = 36). Figures 3.12 and 3.13 tend to support each of these

claims. We do not present P{A2\B) for these graphs - as each decays exponentially (similar

to the way that Figure 3.10 corresponds to Figure 3.9).

36 Account Proxies, N

M. = 2j
M. = 5

M. = 10

M. = 15

 M. = 20

M =25

57

2 Account Proxies, N

0.9
0.8
0.7

S' 0.6
< - ° ' 5 sr o.4

0.3
0.2

 M = 10

M = 20
= 25

(3

Figure 3.12: P{A\\B) - The likelihood user A is NOT victimized.

1
0.975

0.95
0.925

S' 0.9
0.875

ST 0.85
0.825

0.8
0.775

° '750 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

Figure 3.13: P(Ai \B) - The likelihood user A is NOT victimized.

90 Account Proxies, N

= 10

= 15

= 20
= 25

3.7 Conclusion

In this chapter, we considered an exploit which targets cloud users - as outlined by

Ristenpart et al [1], We proposed a solution which relies on mussel-inspired user account

and workload clustering and account proxies to obfuscate the public to private IP map. We

58

then presented arguments to show how our strategy increases the effort required for an

adversary to carry out a directed attack against a target set. Further, we gave results from

a risk assessment that suggest a reduced per-individual chance of being victimized given a

non-directed attack.

3.8 From Cloud Security to Community Detection

The next objective involved extending the mussel algorithm to the community de

tection domain. However, after conducting various experiments, we determined that the

mussel algorithm was not flexible enough to handle network datasets of varying size. It

worked well for large populations, where there was a lot of interacting individuals. How

ever, it did not fare as well for small populations. Some social networks can have less than

50 nodes. In such cases, the system never reaches steady state - as there are not enough

peers to meet each individual’s short and long-term density thresholds. For this reason,

we derived another algorithm to detect communities. We present our greedy heuristic for

community detection in the next chapter.

CHAPTER 4

SCALE-FREE NETWORK CONNECTIVITIES AND
COMMUNITY DETECTION

Recent research suggests that node connectivities in social networks follow a scale-

free power-law distribution. On Twitter, for instance, large communities tend to form

around popular celebrities. Some followers possess an avid interest, while others either

preferentially attach or follow those who the majority of their peers follow. We propose a

greedy community detection heuristic which exploits these characteristics. Like celebrities,

we hypothesize that highly connected nodes, or hubs, form the basic building blocks of

communities. We assume that each community has one global hub, and that nodes with

lower degrees preferentially attach to hubs in their vicinity. We then frame community

detection as a node to hub assignment problem. To show its effectiveness, we test our algo

rithm on four commonly used real network data sets. We obtain the following modularity

(Q) values for three data sets: karate network - Q = 0.3715, dolphin network - Q = 0.3735,

and political books - Q = 0.4492. In each case, our algorithm consistently classifies nodes

into communities which coincide with their respective known structures. We additionally

receive Q = 0.4592 for the college football data set. Unlike other implementations, ours is

computationally inexpensive, deterministic, and does not require apriori information.

59

60

4.1 Introduction

Many complex networks have underlying community structures which could prove

useful when attempting to understand the dynamics of within-group interactions. The

potential benefits have broad impacts in a variety of fields, i.e., computer science, biology,

marketing, sociology, etc. This has recently led to a strong demand for the develop

ment of methods which are effective at detecting and/or discovering community structures.

Towards this end, several community detection algorithms have been proposed [69-73].

Most of these, however, share similar disadvantages. Some algorithms require apriori

information, such as threshold values or the desired number of communities, while others

are impractical and computationally expensive [74]. A third category of algorithms suffer

from a combination of the two.

Our objective is to develop a more intuitive and more practical method for commu

nity detection. Recent research [75-77] has suggested that social networks tend to follow a

heavy-tailed distribution - where a few nodes, called hubs, possess high connectivity, while

the overwhelming majority of other nodes possess low connectivity. We hypothesize that

hubs form the basic building blocks of communities, and thus are the key to community

detection. A detection technique which exploits hubs and the scale-free properties of social

networks remains largely unexplored throughout recent literature. This hence provides the

necessary motivation for our work. We outline our contributions below.

1. Our algorithm is practical, deterministic, easy to implement, and scalable. It

discovers community structures without the need of apriori information, i.e., thresh

old values, community size restrictions, or the desired number of communities.

61

2. In [78], the authors define modularity (Q) - a metric for measuring the strength

of community structure that since has become well-known and commonly used. They

state that in practice values “typically fall in the range from about 0.3 to 0.7.” We

obtain the following modularity values for three datasets: Zachary’s Karate Net

work [79] - Q = 0.3715, bottlenose dolphin network [80] - Q = 0.3735, and books

about U.S. politics [81] - Q = 0.4492. In each case, our algorithm consistently clas

sifies nodes into communities which coincide with their respective known structures.

We also apply our method on the American college football data set, and receive Q =

0.4592.

The rest of this chapter is divided into seven sections. Section 4.2 offers the nec

essary background information (i.e., commonly used definitions for network, community,

and modularity). Section 4.3 discusses previous work. Section 4.4 defines the problem,

gives the approach, and presents our algorithm. Section 4.5 details the real-world network

data we consider. Section 4.6 provides our results and compares them to those reported by

other researchers. Section 4.7 covers a small discussion on various issues we encountered

while validating our algorithm; and Section 4.8 yields concluding remarks.

4.2 Background

4.2.1 What is a Community?

For community detection, a network is typically represented by an undirected and

unweighted graph. This graph, G = (V, E), is an ordered pair comprised of a set of vertices

(sometimes referred as nodes), V, interconnected by a set of edges. The goal of community

62

detection is to find a disjoint partition G = C\ U C2 . . . U Ck, where each Ck represents a

community.

There are various definitions for what constitutes a community. However, a com

monly used definition states that a community is a subset or group of nodes where the

number of internal connections (between nodes within the group) are exceedingly dense

and the number of external connections (to nodes outside the group) are exceedingly sparse.

In [82], Radicchi et al. use the degrees of nodes inside and outside a group to define

community - in terms of both a weak and strong sense. Assuming that d\n represents the

degrees of node i inside its group Ck, and d°ut represents its degrees of node i outside group

Ck, then group Ck is said to form a strong community if the internal degree is greater the

external degree for all nodes ? in group Ck [83] - as shown in Equation 4.1.

On the other hand, group Ck is said to form a community in a weak sense if the sum of the

internal degrees of all nodes in group Ck is greater than the sum of the external degrees of

all nodes in group Ck [83] - as denoted in Equation 4.2.

4.2.2 Measuring the Strength of Community Structure

In [78], Newman and Girvan propose a metric for measuring the strength of com

munity structure, which they call modularity (Q). The main idea behind this metric is that

the fraction of within-community edges should be greater than the expected number of

edges found in a random null model. This model preserves the order of the graph and

d? > d ^ l,yi e c k (4.1)

(4.2)

63

individual node degrees, but forms random connections between nodes without regard for

community structures. If the number of within-community edges is no better than its

random counterpart, then Q = 0. On the other hand, a modularity value closer to one

denotes strong community structure. They define modularity to be

where e„ is the fraction of edges that fall within the same community and is the expected

fraction of randomly distributed edges in that community. In [84J, Clauset et al. further

expand on the definition of modularity and define Q to be

where m is the number of edges, A vw is the adjacency matrix, kv and kw are the degrees

of nodes v and w, respectively, and cv and cw are the communities to which nodes u

and w belong, respectively. d(c„, cw) denotes whether node v and w belong in the same

communities. If one then, they both belong to the same community. Otherwise, they each

belong to different communities.

To date, several solutions have been proposed to address the community detection

problem, i.e., Girvan-Newman algorithm [78,85], label propagation algorithm [71,83,86],

modularity maximization [72, 87J, genetic algorithms [70, 88, 89], etc. Most of these,

however, share similar disadvantages. Some algorithms require apriori information, such

as threshold values or the desired number of communities, while others are impractical and

computationally expensive [74]. A third category of algorithms suffer from a combination

(4.3)

(4.4)

4.3 Previous Work

64

of the two. We give two examples of previous research. The first is a community detection

method based on divisive hierarchical clustering; and the second is a detection method

based on nearest neighbors interactions.

In [78], Newman and Girvan hypothesize that edges which lie between communities

have the highest “betweenness” value. They derive three methods for calculating between

ness scores (shortest path, resistor networks, random walk), separately incorporate each of

these into a divisive method which removes the links with the highest value, and apply their

algorithms to real-world network data. To determine how well their algorithms performed,

they develop a metric (modularity) to denote the quality o f network partitions. The main

drawbacks of the shortest path algorithm, the best of the three, is that it is computationally

intensive and does not scale well. The time complexity for each iteration is 0(rn2n), where

n is the number of nodes and rn is the number of edges.

The technique which most resembles ours is the label propagation algorithm (LPA).

In [83], Raghaven et al. use this method to assign each node unique labels. Then, in an

iterative fashion, nodes adopt the label which coincides with the majority of their neighbors.

In the event there is a tie, nodes randomly choose among eligible candidates. The nodes

with the same label are assigned to the same community when the maximum number of

steps is reached. The authors state that their algorithm, “uses the network structure alone

as its guide and requires neither optimization of a pre-defined objective function nor prior

information about the communities.” Further, it runs near linear time and is thereby less

computationally expensive. The downside with this method is that it invokes a stochastic

process for breaking ties. This leads to non- deterministic results, i.e., different runs

produce different community structures. To remedy this, the authors combine multiple

65

results to form an aggregate solution. Our solution, on the other hand, comes with similar

benefits, but yields consistent results.

4.4 Greedy Heuristic for Community Detection

4.4.1 Problem Definition

We describe community detection as a node assignment problem. Node to Hub

Assignment Problem (N-HAP): Given an adjacency matrix, assign nodes to hubs such

that each node belongs the closest hub with the maximum number o f connections, subject

to the constraint that the majority o f each node ’s peers are members o f the same hub.

4.4.2 The Approach

To solve this problem, we first hypothesize that hubs, or highly connected nodes,

form the basic building blocks of communities; and thus are key to community discovery.

The notion that node degrees follow a scale-free power-law distribution for social networks

was first proposed by Barabasi and Reka. In [77], they found that this distribution was the

consequence of two primary mechanisms: continual network expansion by the addition of

new nodes and preferential attachment of new nodes to highly connected nodes. In other

words, for social networks, a “rich gets richer” effect leads to a handful of nodes having

an unusually high number of connections and the majority of nodes having an unusually

low number of connections. Given this, we assume that each community has a single hub,

and that nodes with lower degrees preferentially attach to hubs in their vicinity. Hence, our

approach for solving N-HAP is to have each hub start a community, and have nodes of lower

degrees use their nearest neighbors to find and join their respective local communities.

66

4.4.3 The Algorithm

Our algorithm can he divided in four phases. The first phase is initialization. In

this phase, each node compares its degree with those of its nearest neighbors. If a node

has the highest local degree, it declares itself as a hub. Otherwise, it joins its local hub.

The second phase is oblivious bandwagoning. In the event a hub is connected to a node

that is associated with a hub of a higher degree, it along with its followers join the com

munity associated with that node. This is done to prevent local convergence - for not all

local hubs end up being global hubs. The third phase is majority rules. Each node then

verifies whether it belongs to the same community as the majority of its peers and changes

membership in the event that this is not the case. The final phase is to repeat phase two -

oblivious bandwagoning. This is done to propagate the changes (if any) invoked by phase

three throughout the network. In phase one and two, each node carries out the objective

- as denoted in Table 4.1; and in phase three and four, each node enforces the constraint -

also denoted in Table 4.1.

Table 4.1: N-HAP from global and local perspective

input: Global adjacency matrix
objective: Local join closest hub with max connections
constraint: Local majority of peers are members of the same hub
output: Global assignment of nodes to a set of hubs

Our algorithm’s pseudocode is given in Algorithm 6. Phase one is implemented in

the first for loop - lines 1 - 7. Based on the degree of self and the degree of peers, a node

will either: declare itself as a hub, join the hub of a peer with equivalent degree, or join the

hub of the peer with the maximum degree. Phase two is implemented in lines 8 - 14. There

67

are three cases where a node will change hubs. Sometimes a node declares itself as a hub,

but has little to no members. In this case, it joins the hub that coincides with the majority

of its peers - line 10. There also may be a case where a node has peers whose memberships

are equally divided between two or more hubs. Here, a node does a continual refresh each

iteration to ensure it joins the hub that has the highest degree - line 12.

Algorithm 6: Greedy heuristic for community detection
Input: Adjacency Matrix
Output: Assignment of Nodes to a Set of Hubs

1 foreach node in i in 1 to \ V | do
2 if degree of self > degree of peers then
3 | declare self as hub;
4 else if no max degree among peers then
5 | join hub of 1st tied peer (or take 1st peer as hub);
6 else
7 join hub of peer with max degree;

while at least 1 node changes hubs do
if hub A most peers belong to another hub then
L join hub that coincides with majority of peers;

if peer membership divided between > 2 hubs then
L join hub that has greatest degree;

if hub joins new hub then
L join hub that former hub joined;

foreach node in i in 1 to \ V\ do
if majority of peers belong to another hub then

store ID of node,;
store ID of majority _hub,;
determine priority using max relative hub frequency;

20 use priority to sort nodes that need hub change;
21 use priority to sort new majority_hubs;
22 foreach node in i in 1 to | nodes Jo.change | do
23 node, joins new majorityJhub,;

24 Repeat steps 8 -1 7 ;

8
9

10

n
12

13

14

15

16

17

18

19

68

In the event, a hub joins another hub, its followers update their membership to

reflect the new change - line 14. This phase continues until all nodes stop changing hubs.

Phase three is denoted by lines 15 - 23. In the for loop, nodes determine whether they

belong to the same hub as the majority of their peers. If this is not the case, they associate

themselves with a ratio which will be used for prioritization. This ratio is simply the number

of majority peers which belong to the same hub divided by the total number of peers. Next,

according the priority, nodes change hubs to that which coincides with the majority of their

peers. Here, prioritization is key - for the act of randomly reassigning nodes to hubs could

lead to a misclassification ripple effect. We will cover this in detail in the discussion section.

The last phase, shown in line 24, propagates the changes (if any) of hub reassignment due

to majority rules.

There is one thing we should note. The constraint specified in N-HAP coincides

with the definition of a community in the strong sense as outlined in Equation 4.1. However,

there is one case which will prevent full compliance with this constraint - line 10 - a case

where a node has the number of peers inside its group equal to the number o f peers outside

its group. Typically this involves nodes that are situated between communities. A node

which falls in this category will not be able to comply with the constraint - for majority

rules is not applicable. We refer to this as deadlock. There is no best way to resolve

this issue. In our algorithm, a node responds to deadlock by carrying out the objective

and disregarding the constraint. In other words, the hub with the highest degree is the tie

breaker. For example, if a node of degree six had three peers in one community and three in

another, it would simply join the community of the peers which are associated with the hub

of the highest degree. This is rather arbitrary, but tends to gamer good results. Nonetheless,

69

given the special case of deadlock, we say that our algorithm creates strong communities

in a best effort fashion.

As shown in Algorithm 6, our method contains: three for loops, two while loops,

and two sorts. In the initialization phase, one of three basic statements execute per iteration.

Assuming that \V\ = n, this requires T = n time. In the oblivious bandwagoning phase,

again, one of three basic statements execute per iteration. Given that there are less hubs

than there are nodes, and that all nodes will not change hubs, this requires T = kn time -

where k < n. For phase three, a for loop is used to determine the priority of node changes.

Here, there are two basic store statements, and one statement which stores the maximum

value of an array - T = 2w + X T 0̂ - Next, there are two sorts and another for loop.

Assuming a quicksort method, this requires T = 2 w * login + w. Since some nodes will

already belong to the same hub as the majority of their peers, the time phase three requires

is T = 3w + XX” di + 2wlogw, where w < n. Phase four requires the same time as phase

2 - T = n. Hence, overall, our algorithm requires time

4.4.4 Detecting Community Structure for Complete Graphs

To demonstrate how our algorithm handles complete graphs (a case where there are

no hubs), we present a AT, graph in Figure 4.1 Notice, there are five nodes, and every pair

of nodes are connected by a unique edge. The labels denote each node’s ID. This graph has

strong community structure - for the internal degree (4) is greater than the external degree

(0) for all nodes. Thus, all nodes should be assigned to one community.

It*
(4.5)

70

Figure 4.1: K5 complete graph

Following our algorithm, Algorithm 6 - line 2 does not hold for any node, thus no

node would declare itself as hub. In this case, each node would follow line 3, and would

take its first peer as hub. Table 4.2 presents the attributes for all nodes. Notice, node 2 is

the first neighbor of node 1; and for all other nodes, node 1 is the first neighbor. So in the

initialization phase, node 1 would declare node 2 as hub; and all other nodes would declare

node 1 as hub. Next, in the oblivious bandwagoning phase, node 1 would notice that most

of its peers belong to a different node, line 9, and would declare itself as hub - line 10. In

this case, only lines 1-17 are required for community detection. Here, the algorithm’s total

running time is O(n).

Table 4.2: Node attributes for K5 complete graph

Node ID Degree Neighbors Max Peer ID Join Hub
1 4 2,3,4,5 - 2
2 4 1,3,4,5 - 1
3 4 1,2,4,5 - 1
4 4 1,2,3,5 - 1
5 4 1,2,3,4 - 1

71

4.5 Real-World Network Data Sets

In this section, we present three real-world network data sets commonly used in

community detection literature: Zachary’s karate club [79], bottlenose dolphin network [80],

and books on U.S. politics [81]. For each data set, we give a brief overview, show the known

community structures (as discovered by our method), and display the histogram.

4.5.1 Zachary’s Karate Club

Zachary’s karate club data set describes a three year observation of social interac

tions between members of a karate club. Towards the beginning, a dispute emerged between

the club president and the karate instructor over the cost o f lessons. Over time, this dispute

caused a rift between the club members. Some aligned themselves with the president,

while others rallied support for the instructor. Thus, there are two known communities in

this network. The graph of this network’s known structures, as discovered by our method,

is shown in Figure 4.2. Notice, there are two nodes with high connectivity - node 1, which

represents the instructor, and node 34 which represents the president. The other nodes

have low connectivity and are connected directly or indirectly to either node 1 or node 34.

The degree distribution is shown in Figure 4.3. As expected, the majority of nodes with

low degrees appear with great frequency, while the nodes with high degrees appear great

infrequency. This tends to support the idea that social networks have scale-free properties.

Further, the fact that the club divided into two factions - each centered around the two most

connected people tends to give credence to our initial hypothesis that communities tend to

form around hubs - in this case nodes 1 and 34.

72

Figure 4.2: Zachary’s karate network: known structure as discovered by our method

D egree Distribution

N ode D egree

Figure 4.3: Zachary’s karate network degree distribution

This data set is extensively used in community detection literature. The network is

small - consists of 34 nodes and 78 edges. Thus, the results from a community detection

algorithm can easily be verified by hand. Methods which use this data set tend to mis-

classify one node - typically either node 3 or 10. The authors in [78J misclassify node 3.

They place it in the pink community instead of the green community. The authors in [90J

73

misclassify node 10. Further, the authors in [74J consistently place 33 out of 34 nodes

in the correct community. A question which naturally comes to mind is: why are these

particular nodes hard to correctly classify? Notice nodes 3 and 10 in Figure 4.2. They are

both deadlocked - as both have an equal number of neighbors in each community. Node 3

has five neighbors in each community; and node 10 has one neighbor in each community.

This poses a problem because it violates the quantitative definition for a community in the

strong sense. For other algorithms, such as the LPA, a random selection may be used to

select a community given these circumstances. In the discussion section, we explain how

our algorithm handles this problem for this data set.

4.5.2 Bottlenose Dolphin Network

The bottlenose dolphin network data set describes a seven year observation of social

interactions among dolphins in Doubtful Sound, New Zealand. Here, the school divided

into two groups when the individuals connected at the boundaries of both groups suddenly

disappeared. This network contains 62 nodes and 159 edges. The graph of the known

community structures, as discovered by our method, is shown in Figure 4.4. Notice, the

degree distribution in Figure 4.5. There seems to be a few nodes with degrees higher than

expected. This may lead to local convergence/subgrouping - as we shall see. Though

there are two known communities, many detection algorithms divide this data set into four

communities [78,86-89].

74

Figure 4.4: Bottlenose dolphin network: known structure as discovered by our method

D egree Distribution

N ode D egree

Figure 4.5: Bottlenose dolphin network degree distribution

4.5.3 Books on U.S. Politics

This data set describes political books purchased on Amazon.com [91] during the

2004 U.S. presidential election. Relationships between books represent books frequently

purchased by the same buyers. As shown in Figure 4.6, the book communities divide along

political preference and affiliation - i.e., liberal or conservative. The degree distribution

is shown in Figure 4.7. Flere, the disparity between the frequency of nodes with low

75

degree to that of nodes with high degree is quite noticeable. Though there are two known

communities, researchers tend to detect anywhere from three to five groups in this data

set [86-88],

Figure 4.6: Books on U.S. politics: known structure as discovered by our method

D egree Distribution

4 0

3 5

3 0

o 2 5
o
a - 20 o
- 1 5

10

5

° 1 4 7 10 13 16 19 2 2 25
N ode D egree

Figure 4.7: Books on U.S. politics degree distribution

76

4.6 Results

In this section, we present our results along with a host of others - as published by

researchers for the same data set. We test our algorithm on the three data sets mentioned

in the prior section and an additional data set - American college football. Further, we use

Equation 4.4 to measure the strength of community structures - as detected by our method

on these data sets.

In [78], the authors state that in practice modularity values “typically fall in the

range from about 0.3 to 0.7.” We obtain the following modularity values for 3 datasets:

Zachary’s Karate Network [79] - Q - 0.3715, bottlenose dolphin network [80] - Q = 0.3735,

and books about U.S. politics [81] - Q = 0.4492. In each case, our algorithm consistently

classifies nodes into communities which coincide with their respective known structures.

Table 4.3 shows our method’s time complexity for each of these data sets according to

Equation 4.5. Notice that our method executes in linear time for each data set. For the

Table 4.3: Our method’s time complexity for each data set

k w T { n)
Karate 2 3 An + 6 log 3 + £?<*«■+ 9 = O(n)

Dolphins 3 1 5 n + dl + 3 = 0(n)
Books 3 1 5 n + di + 3 — 0(n)

fourth data set, American college football, we receive a Q value which indicates strong

community structure - Q = 0.4592. However, our algorithm only detects four communities

- where the number of known communities, for this data set, ranges anywhere from eight

to 12. Figure 4.8 provides a possible explanation. The histogram for this data set is the

complete opposite from what we have seen in the other cases. Nodes with high degrees are

77

the majority. They appear with great frequency, while the nodes with low degrees appear

with great infrequency. Despite this, the Q value we obtain is consistent with those reported

by other researchers.

D egree Distribution

N ode D egree

Figure 4.8: American college football degree distribution

We present the properties for each data set and the community attributes as detected

by our method and previously published methods in Table 4.4. Dashes in the table mean

that we were unable to obtain the designated information for a given method. Cm in column

two is the number of known communities for each data set; and # Cm Detected in column

five is the number of communities detected by each method. Notice that communities

detected by different methods may or may not coincide with the known number of commu

nities.

Table 4.4: Data set properties and community attributes as detected by our method and previously published methods.

Data Set # Nodes, Edges, Cm Method in Paper Apriori? # Cm Detected Q

Zachary’s Karate Club

34, 78, 2 SP betweenness [78J Yes 2 0.3500
Random Walks [92] No - 0.3710

Greedy Heuristic [this work] No 2 0.3715
Mod Maximization [93] - 2 0.3810
Label Propagation [86] - 2 0.4180

Extreme Optimization [94] - 4 0.4188
Eigenvector-based [95] - - 0.4190
Mod Maximization [87] - 4 0.4200

Bottlenose Dolphin

62. 159,2 Greedy Heuristic [this work] No 2 0.3735
Genetic Algorithm [88] - - 0.5050
Genetic Algorithm [89] - - 0.5070

SP betweenness [78] Yes 4 0.5200
Label Propagation [86] - - 0.5230
Mod maximization [87] - - 0.5290

Books on U.S. Politics

105, 441,2 Greedy Heuristic [this work] No 2 0.4492
Fast Algorithm [69] - - 0.5020

Genetic Algorithm [88] - - 0.5180
Label Propagation [86] - - 0.5270
Mod maximization [87] - 5 0.5272

American College Football

115, 663,8-12 Greedy Heuristic [this work] No 4 0.4592
Genetic Algorithm [88] - - 0.5150
Mod maximization [93] - 6 0.5460
Genetic Algorithm [89] - - 0.5770
Label Propagation [86] - - 0.6040
Mod maximization [87] - 10 0.6460

79

Although we present our results alongside that of others, there are subtle differences

which limit direct comparison. Two things should be noted. One, some of the Q values

reported by other researchers are the results of averages or rounding, whereas the values we

present are not. Our method is deterministic in nature. Therefore, multiple runs consistently

yield the same results. Two, some of the methods require apriori information, whereas

ours does not. Our method only uses the network structure, i.e., the adjacency matrix,

as a guide. The common trend observed throughout literature is to generically compare Q

values - with the basic assumption that a greater Q value denotes a more effective algorithm.

We maintain that this type of brute force comparison can be slightly misleading - as more

information may be needed. For instance, for the American college football network our

method detected the four communities and obtained Q = 0.4592. How does this compare to

an apriori method which detected less than the known number of communities it was given,

but received a higher (averaged/rounded) Q value? Perhaps, the solution is to compare

like methods - a priori with apriori methods and non-apriori with non-apriori methods.

However, this is no easy task. Rarely do researchers clearly state how well the communities

their method detected coincides with the known community structures - let alone whether

their method require apriori information. This just goes to show the convoluted nature of

establishing and executing a fair, direct, thorough result comparison.

The bottlenose dolphin network contains biggest disparity between the results we

present and those reported by others. This is due to the fact that our method exactly detected

the two known community structures, and the others most likely detected four communities.

For instance, in [78], Newman and Girvan detect four groups and report Q = 0.52 ± 0.03;

but they also give the Q value for the two known communities - Q = 0.38 ± 0.08. The latter

80

coincides with the results we receive. Further, the fact that all other researchers received

Q values in the range of the former, leads us to conclude that their methods detected four

groups as well - though not explicitly stated.

Another thing to note is that the modularity maximization method, proposed by

authors in [87J, yields the highest Q value for each data set. This is not happenstance - as

the goal of the technique is to do just as its name suggests - find the community structures

which maximize modularity for a given data set. This is done in hopes that the resulting

group structures closely coincide with the known group structures. In [87], the number

of community structures which maximized modularity is as follows: Zachary’s karate club,

four, where the known number is two; books on U.S. politics, five, where the known number

is two-three; bottlenose dolphin network - number not reported; American college football,

10, where the known number is eight-12. The authors also report the Q value found by

their method for the known structures of Zachary’s karate club. They state, “the bipartition

found by the VP method has a modularity of 0.3718, whereas the partition corresponding

to the actual factions in the club has a lower modularity of 0.3715.” Please note that this

exactly coincides with the Q value we obtain using our method for this data set - Q = 0.3715.

The authors go on to assert that the higher modularity value, “explains the misclassification

of node 10, and also emphasizes that no clustering objective can be guaranteed to always

recover the semantically correct community structure in a real network. The latter should

be taken as a cautioning against accepting modularity-maximizing clusterings as ground

truth.” Thus, a higher Q value does not always mean a better method for detecting known

group structures, it simply may be the result of misclassifications.

81

4.7 Discussion

Given that our method implements the objective (without regard for the constraint

first), then adheres to the constraint after, some nodes end up displaced. The nature of

the constraint itself is the reason we do this. It requires that nodes belong to the same

community as the majority of their peers. Instead of deriving techniques to tackle the con

straint directly (from the beginning), we assume that this implicitly mandates some basic

pre-existing community structure - for once communities have already been established,

this becomes a rudimentary exercise, i.e, it is easy to find where your friends are if they

already are grouped together. It turns out that our oblivious bandwagoning technique is

an effective way to establish basic community structures. In the cases we’ve seen, this

alone defaultly places the majority of nodes in same communities as that of their peers.

There may be a few exceptions. By actively invoking the majority rules constraint, we

identify and resolve these exceptions. The process of exception resolution cannot be done

haphazardly or it may lead the a misclassification ripple effect. Therefore, we derive a

way to prioritize node changes to minimize the chance of this occurring. We present two

examples we encountered while validating our algorithm. One deals with misclassification

ripple effect; and the other deals with continual refreshing for deadlocked nodes. We also

discuss measures we took to avoid local convergence.

4.7.1 Misclassification Ripple Effect

As mentioned earlier, some community detection algorithms tend to misplace a

node for the Zachary’s karate club data set: either node 3 or node 10. Depending on how

community structures are defined, both of these nodes could end up deadlocked. Since our

82

method handles this case by implementing the objective only, we did not have a problem

classifying node 10. It joined the community with the highest degree - and that coincided

with the correct classification. However, after exercising oblivious bandwagoning, we

noticed that three nodes were displaced - nodes 3, 14, and 20 (as shown in Figure 4.9).

Figure 4.9: The lack of prioritization may lead to misclassification ripple effect.

Further, we found that implementing majority rules in a haphazard fashion did not

remedy the situation. Initially, the exception resolution happened by node ID in ascending

order. So node 3 would invoke majority rules, then node 14, then node 20. W hat we

noticed was a misclassification ripple effect - nodes initially misclassified via oblivious

bandwagoning tend to propagate misclassification if resolved haphazardly. As shown in

Figure 4.9, node 3 is connected to node 14; and node 14 is misclassified. Tf node 3 invokes

majority rules first, it will end up deadlocked. In this case, it would join the community

with the highest degree - which, in this case, would be the wrong classification. Node 14

and node 20, on the other hand, can be resolved without issues - majority rules works just

83

fine for these nodes. Thus, leaving things unaltered, we would end up with the same result

as other researchers - one misclassification - node 3. The correct thing to do would be to

resolve node 14 before node 3. In order to do this, we came up with a way to prioritize

node changes based on the ratio of the number o f majority peers belonging to a single

community to the total number of peers. This way, those nodes who do not in deadlock

always invoke majority rules first. This is done in hopes to break the tie of a deadlocked

node. Following this, node 20 changes first - its ratio is 2/3. Node 14 goes next. Even

though, node 3 is misclassified its ratio is 3/5. Then, with a 1/2 ratio, node 20 goes last.

4.7.2 Continual Refreshing for Deadlocked Nodes

For the bottlenose dolphin network, we initially ended up with one misclassification,

and this was due to the lack of continual refreshing. As shown in Figure 4.10, node 40 is

deadlocked. Our rules state that node 40 should go to the hub with the highest connections.

Since node 58 had a higher degree than node 37, node 40 joined node 58 or the hub node

58 belonged to. Though it took time to propagate the changes, node 37 ultimate joined

the hub associated with node 15. At this moment, node 40 was supposed to switch to the

hub associated with node 37, because it had a higher number of connections than the hub

associated with node 58; but this did not happen because node 40 did not observe both its

peers after the initial observation. It joined node 58 and did whatever it (node 58) did. To

resolve this, we simply created a rule to enforce continual refreshing. Nodes involved in

deadlock should continuously observe peers to avoid potential misclassifications.

84

4.7.3 Avoiding Local Convergence

Initially, for the bottlenose dolphin network, we received the same results as those

presented in [78]: four communities. Each community centered around four highly con

nected nodes - nodes 15, 46, 18, and 58. As shown in Figure 4.10, nodes 15 and 46 are

subgroups which combine to form a larger community on the left half. The same goes for

nodes 18 and 58 on the right half. To avoid local subgroup convergence, we added the rule

that nodes which declare themselves as hubs should periodically observe their peers and

join the hub associated with the majority of their peers. This ultimately resulted in two

groups centered around nodes 15 and 18.

In this chapter, we framed community detection as a node to hub assignment prob

lem and developed a greedy heuristic which exploits the scale-free nature of social networks

to solve this problem. Our heuristic is practical, easy to implement, and deterministic.

Further, it discovers community structures without the need of a priori information, i.e.,

Figure 4.10: A misclassified node due to the lack of continual refreshing.

4.8 Conclusion

85

threshold values, community size restrictions, or the desired number of communities. The

results are promising - as our method, in some cases, outperforms apriori algorithms when

tested on the same data set. This tends to give credence to our initial hypothesis that hubs

play a key role in community discovery.

CHAPTER 5

CONCLUSION

The work contained in this dissertation sought to use power-law properties of social

groups to answer two research questions.

1. From an insider’s perspective, in what ways do communities emerge? That is, what

internal processes have to occur on the micro-level to have group formation emerge

on the macro-scale? Can mussels and Levy walks be used to describe these pro

cesses? How can this type of behavior be used as a defense strategy?

2. From an outsider’s perspective, how to detect communities once they have formed?

Given each individual’s local connections only, is it possible to classify individuals

into their respective known global communities? How can the scale-free properties

of social networks help shed light on this problem?

To address the first research question, we presented a defense strategy, in part

inspired by mussel self-organization, to address a security concern in cloud systems. The

strategy obfuscated public to private IP mapping by having account proxies perform 1 — to

il random mapping of public to private IP addresses. This decreased the risk of adversary

targeting and significantly reduced the amount of public IP addresses needed for users to

access their VM instances. By having clusters periodically dissolve, our strategy decreased

86

87

the chances of directed attacks towards random users belonging to a particular account

proxy.

To address the second research question, we used the scale-free properties of social

networks to develop a greedy heuristic for community detection. We hypothesized that

highly connected nodes, or hubs, formed the basic building blocks of communities; and

assumed that each community had one global hub, and that nodes with lower degrees

preferentially attached to hubs in their vicinity. We developed an algorithm based on this

notion and tested it on commonly used real network data sets. In most cases, it classified

nodes into communities which coincided with their respective known structures. Unlike

other implementations, it did not required apriori information and detected communities in

a computationally inexpensive and deterministic manner.

As for future directions, we look to: integrate the mussel algorithm as a functional

part of the cloud and observe how well it performs in practice; conduct more extensive

tests and use the community detection algorithm on large network data sets; and find other

problem domains where the mussel algorithm will prove useful.

BIBLIOGRAPHY

[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off o f my

cloud: exploring information leakage in third-party compute clouds,” in Proceedings

of the 16th ACM Conference on Computer and Communications Security, ser. CCS

’09. New York, NY, USA: ACM, Nov. 2009, pp. 199-212. [Online]. Available:

http://dx.doi .org/10.1145/1653662.1653687.

[2] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. Wasserman,

and N. Wright, “Performance analysis of high performance computing applications

on the amazon web services cloud,” in Cloud Computing Technology and Science

(CloudCom), 2010 IEEE Second International Conference on. Indianapolis, Indiana,

USA: Dec. 2010, pp. 159 -168.

[3] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A

performance analysis of ec2 cloud computing services for scientific computing,” in

Cloud Computing. Springer Berlin Heidelberg, 2010, vol. 34, pp. 115-131. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-12636-9_9.

[4] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn, “Case study for running

hpc applications in public clouds,” in Proceedings o f the 19th ACM International

Symposium on High Performance Distributed Computing, ser. HPDC ’ 10. New

York, NY, USA: ACM, 2010, pp. 395-401. [Online]. Available: http://doi.acm.org/

10.1145/1851476.1851535.

http://dx.doi
http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://doi.acm.org/

[5] Hadoop. http://hadoop.apache.org/ [Last accessed: 2011-05-10].

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Commun. ACM, vol. 51, pp. 107-113, January 2008. [Online]. Available: http://doi.

acm.org/10.1145/1327452.1327492.

[7] Pegasus, http://pegasus.isi.edu/ [Last accessed: 2011-05-10].

[8] Swift, http://www.ci.uchicago.edu/swift/main/ [Last accessed: 2011-05-10].

[9] Saga, http://saga.cct.lsu.edu/ [Last accessed: 2011-05-10].

[10] Condor, http://www.cs.wisc.edu/condor/ [Last accessed: 2011-05-10],

[11] Wcps. http://www.opengeospatial.org/standards/wcps/ [Last accessed: 2011-05-10].

[12] Amazon elastic mapreduce. http://aws.amazon.com/elasticmapreduce/ [Last ac

cessed: 2011-05-10],

[13] C. Zhang and H. D. Sterck, “Cloudbatch: A batch job queuing system on clouds

with hadoop and hbase,” in 2nd IEEE International Conference on Cloud Computing

Technology and Science. Indianapolis, Indiana, USA: Dec. 2010, pp. 368-375.

[14] R. B. Wei Lu, Jared Jackson, “Azureblast: A case study of developing science

applications on the cloud,” in Proceedings o f the 1st Workshop on Scientific Cloud

Computing (Science Cloud 2010), Chicago, Illinois, Jun. 2010.

[15] D. Wall, V. F. Parul Kudtarkar, R. Pivovarov, P. Patill, and P. J. Tonellato, “Cloud

computing for comparative genomics,” BMC Bioinformatics, vol. 11, no. 259, 2010.

[16] C. Zhang, H. D. Sterck, A. Aboulnaga, H. Djanibazian, and R. Sladek, “Case

study of scientific data processing on a cloud using hadoop,” Springer-Verlag Berlin

Heidelberg, 2010.

http://hadoop.apache.org/
http://doi
http://pegasus.isi.edu/
http://www.ci.uchicago.edu/swift/main/
http://saga.cct.lsu.edu/
http://www.cs.wisc.edu/condor/
http://www.opengeospatial.org/standards/wcps/
http://aws.amazon.com/elasticmapreduce/

90

[17] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance cloud computing: A view

of scientific applications,” in Proceedings o f the 2009 10th International Symposium

on Pervasive Systems, Algorithms, and Networks, ser. ISPAN ’09. Washington, DC,

USA: IEEE Computer Society, 2009, pp. 4-16. [Online]. Available: http://dx.doi.

org/10.1109/I-SPAN.2009.150.

[18] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “Cloud computing paradigms for

pleasingly parallel biomedical applications,” in Proceedings of the 19th ACM In

ternational Symposium on High Performance Distributed Computing, ser. HPDC

’10. New York, NY, USA: ACM, 2010, pp. 460-469. [Online]. Available: http:

//doi. acm.org/10.1145/1851476.1851544.

[19] R. Grossman and Y. Gu, “Data mining using high performance data clouds: exper

imental studies using sector and sphere,” in Proceeding of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ser. KDD

’08. New York, NY, USA: ACM, 2008, pp. 920-927. [Online], Available: http:

//doi .acm.org/10.1145/1401890.1402000.

[20] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, and P. Maechling,

“Scientific workflow applications on amazon ec2,” in Workshop on Cloud-based

Sen’ices and Applications in conjunction with 5th IEEE International Conference on

e-Science (e-Science 2009). Oxford, UK: Dec. 2009, pp. 59-66.

[21] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and J. Good,

“On the use of cloud computing for scientific workflows,” in eScience, 2008. eScience

'08. IEEE Fourth International Conference on. Los Alamitos, CA, USA: IEEE

Computer Society, Dec. 2008, pp. 640-645.

http://dx.doi

91

[22] Haproxy. http://haproxy.lwt.eu/ [Last accessed: 2011-05-10],

[23] Monit. http://mmonit.com/monit/ [Last accessed: 2011-05-10].

[24] Node.js. http://nodejs.org/ [Last accessed: 2011-05-10].

[25] Apachebench. http://httpd.apache.Org/docs/2.0/programs/ab.html [Last accessed:

2011-05-10].

[26] Heartbeat. http://www.linux-ha.org/wiki/Heartbeat [Last accessed: 2011-05-10].

[27] V8 javascript engine, http://code.google.eom/p/v8/ [Last accessed: 2011-05-10].

[28] Eucalyptus, http://open.eucalyptus.com [Last accessed: 2011 -05-10].

[29] Centos, http://www.centos.org/ [Last accessed: 2011-05-10],

[30] Screen, http://www.gnu.org/software/screen/ [Last accessed: 2011-05-10],

[31] Secure shell, http://www.openssh.com/ [Last accessed: 2011-05-10].

[32] About.com. Using rack. http://ruby.about.eom/od/rack/a/Using-Rack.htm [Last

accessed: 2011-05-10],

[33] P. Teixeira. Asynchronous iteration patterns. http://nodetuts.com/tutorials/

19-asynchronous-iteration-patterns.html#video [Last accessed: 2011-05-10].

[34] M. C. Schatz, “Cloudburst: highly sensitive read mapping with mapreduce,” Bioinfor

matics, vol. 25, no. 11, PP- 1363-1369, 2009.

[35] B. Langmead, M. Schatz, J. Lin, M. Pop, and S. Salzberg, “Searching for SNPs with

cloud computing,” Genome Biology, vol. 10, no. 11, PP- R134+, Nov. 2009. [Online],

Available: http://dx.doi.Org/10.l 186/gb-2009-10-1 l-rl34 .

[36] B.-G. Chun, S. lhm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic execution

between mobile device and cloud.” in EuroSys, C. M. Kirsch and G. Heiser, Eds.

ACM, 2011, pp. 301-314.

http://haproxy.lwt.eu/
http://mmonit.com/monit/
http://nodejs.org/
http://httpd.apache.Org/docs/2.0/programs/ab.html
http://www.linux-ha.org/wiki/Heartbeat
http://code.google.eom/p/v8/
http://open.eucalyptus.com
http://www.centos.org/
http://www.gnu.org/software/screen/
http://www.openssh.com/
http://ruby.about.eom/od/rack/a/Using-Rack.htm
http://nodetuts.com/tutorials/
http://dx.doi.Org/10.l

[37] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”

Commitn. ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010. [Online], Available: http:

//doi.acm.org/10.1145/1721654.1721672.

[38] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy challenges in cloud

computing environments,” IEEE Security and Privacy, vol. 8, no. 6, pp. 24-31, Nov.

2010. [Online], Available: http://dx.doi.org/10.1109/MSP.2010.186.

[39] B. Grobauer, T. Walloschek, and E. Stocker, “Understanding cloud computing

vulnerabilities,” IEEE Security and Privacy, vol. 9, pp. 50-57, 2011.

[40] S. Paquette, P. T. Jaeger, and S. C. Wilson, “Identifying the security risks associated

with governmental use of cloud computing,” Government Information Quarterly,

vol. 27, no. 3, pp. 245-253, 2010. [Online]. Available: http://linkinghub.elsevier.

com/retrieve/pi i/S0740624X10000225.

[41] K. Popovic and Z. Hocenski, “Cloud computing security issues and challenges,”

Computer, no. 3, pp. 344-349, 2010. [Online]. Available: http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=5533317.

[42] S. Pearson and A. Benameur, “Privacy, security and trust issues arising from cloud

computing,” 2010 IEEE Second International Conference on Cloud Computing

Technology and Science. Indianapolis, Indiana, USA: Dec. 2010, pp. 693-702.

[43] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed Optimization by Ant Colonies,”

in Proceedings of ECAL9I - European Conference on Artificial Life. Paris, France:

Dec. 1991, pp. 134-142.

http://dx.doi.org/10.1109/MSP.2010.186
http://linkinghub.elsevier
http://ieeexplore.ieee.org/

93

[44] A. E. Hirsh and D. M. Gordon, “Distributed problem solving in social insects,” Annals

of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 199-221, 2001. [Online].

Available: http://www.springerlink.com/index/T648V87668512N27.pdf.

[45] C. M. Drea and A. N. Carter, “Cooperative problem solving in a social carnivore,”

Animal Behaviour, vol. 78, no. 4, pp. 967-977, 2009. [Online]. Available: http:

//linkinghub.elsevier.com/retrieve/pii/S000334720900339X.

[46] D. Werdenich and L. Huber, “A case of quick problem solving in birds: string pulling

in keas, nestor notabilis,” Animal Behaviour, vol. 71, no. 4, pp. 855-863, 2006. [On

line]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0003347206000364.

[47] A. Dussutour, J.-L. Deneubourg, S. Beshers, and V. Fourcassi, “Individual and

collective problem-solving in a foraging context in the leaf-cutting ant atta colombica.”

Animal Cognition, vol. 12, no. 1, pp. 21-30, 2009. [Online]. Available: http:

//www.ncbi.nlm.nih.gov/pubmed/18560906.

[48] E. Jelnikar and I. M. Cote, “Predator-induced clumping behaviour in mussels (mytilus

edulis linnaeus),” Journal o f Experimental Marine Biology and Ecology, vol. 235,

no. 2, pp. 201-211, 1999. [Online]. Available: http://linkinghub.elsevier.com/

retrieve/pi i/S0022098198001555.

[49] M. M. Casey and D. Chattopadhyay, “Clumping behavior as a strategy against

drilling predation: Implications for the fossil record,” Journal o f Experimental

Marine Biology and Ecology, vol. 367, no. 2, pp. 174-179, 2008. [Online].

Available: http://www.sciencedirect.eom/science/article/B6T8F-4TW9WHW-l/2/

00a8aaa5177c0ceea5863d60b0591330.

http://www.springerlink.com/index/T648V87668512N27.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0003347206000364
http://www.ncbi.nlm.nih.gov/pubmed/18560906
http://linkinghub.elsevier.com/
http://www.sciencedirect.eom/science/article/B6T8F-4TW9WHW-l/2/

94

[50] J. Kobak, T. Kakareko, and M. Poznanska, “Changes in attachment strength and

aggregation of zebra mussel, dreissena polymorpha in the presence of potential fish

predators of various species and size,” Hydrobiologia, vol. 644, no. 1, pp. 195-206,

2010. [Online], Available: http://dx.doi.org/10.1007/sl0750-010-0113-2.

[51] B. Okamura, “Group living and the effects of spatial position in aggregations of

mytilus edulis,” Oecologia, vol. 69, no. 3, pp. 341-347, 1986. [Online]. Available:

http://www.springerlink.com/index/10.1007/BF00377054.

[52] J. Lin, “Predator-prey interactions crabs and ribbed mussels clumps between blue

living in clumps,” Estuarine, Coastal and Shelf Science, vol. 32, pp. 61-69, 1991.

[53] C. Shields and B. N. Levine, “A protocol for anonymous communication over the

internet,” in Proceedings of the 7th ACM Conference on Computer and Communica

tions Security, ser. CCS ’00. New York, NY, USA: ACM, 2000, pp. 33^12.

[54] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web transactions,” ACM

Transactions on Information and System Security, vol. 1, no. 1, pp. 66-92, 1998.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.

2499.

[55] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S. Wallach, “AP3:

Cooperative, decentralized anonymous communication,” in ACM SIGOPS European

Workshop, M. Castro, Ed. New York, NY, USA: ACM, 2004, p. 30.

[56] M. Rennhard and B. Plattner, “Introducing morphmix: peer-to-peer based anonymous

internet usage with collusion detection,” in Proceedings of the 2002 ACM Workshop

on Privacy in the Electronic Society, ser. WPES ’02. New York, NY, USA: ACM,

2002, pp. 91-102. [Online], Available: http://doi.acm.org/10.! 145/644527.644537.

http://dx.doi.org/10.1007/sl0750-010-0113-2
http://www.springerlink.com/index/10.1007/BF00377054
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42
http://doi.acm.org/10

95

[57J Amazon Web Services LLC. Amazon ec2. http://aws.amazon.com/ec2/ [Last

accessed: 2013-18-01 J.

[58] M. Rietkerk and J. Van De Koppel, “Regular pattern formation in real ecosystems,”

Trends in Ecology & Evolution, vol. 23, no. 3, pp. 169-75, 2008. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/18255188.

[59] M. de Jager, F. J. Weissing, R M. J. Herman, B. A. Nolet, and J. van de Koppel, “Levy

walks evolve through interaction between movement and environmental complexity,”

Science, vol. 332, no. 6037, pp. 1551-1553, 2011. [Online]. Available: http://www.

sciencemag.org/content/332/6037/1551 .abstract.

[60] A. James, M. Plank, and A. Edwards, “Assessing levy walks as models of animal

foraging.” J R Soc Interface, vol. 8, no. 62, pp. 1233-47, 2011.

[61] A. M. Edwards, “Using likelihood to test for Levy flight search patterns and for

general power-law distributions in nature,” Journal of Animal Ecology, vol. 77, no. 6,

pp. 1212-1222, 2008. [Online]. Available: http://dx.doi.O rg/10.llll/j.1365-2656.

2008.01428.x.

[62] B. Kaliski and S. O. T. Memo, “Public-key cryptography standards (pkcs) #1: Rsa

cryptography specifications version 2.1”, rfc 3447,” 2003.

[63] “Specification for the advanced encryption standard (aes),” Federal Information

Processing Standards Publication 197, 2001. [Online], Available: http://csrc.nist.gov/

publications/fips/fips 197/fips-197.pdf.

[64] T. Dierks and E. Rescorla, “The transport layer security (tls) protocol,” in IETF RFC

4346, 2006.

http://aws.amazon.com/ec2/
http://www.ncbi.nlm.nih.gov/pubmed/18255188
http://www
http://dx.doi.Org/10.llll/j.1365-2656
http://csrc.nist.gov/

96

[65J “Amazon aws security best practices,” Amazon Web Services LLC, Jan 2011. [On

line]. Available: http://media.amazonwebservices.com/Whitepaper_Security_Best_

Practices_2010.pdf.

[66] G. Brunette and R. Mogull, “Security Guidance for critical areas of focus in

Cloud Computing V2. 1,” CSA (Cloud Security Alliance), USA. Online: http://www.

cloudsecurityalliance. org/guidance/csaguide. v2, vol. 1, 2009.

[67] M. Jensen, J. Schwenk, N. Gruschka, and L. Iacono, “On technical security issues

in cloud computing,” in Cloud Computing (CLOUD ’09). IEEE International Confer

ence on. Bangalore, India: Sept. 2009, pp. 109 -116.

[68] J. Wayne and T. Grance, “Guidelines on security and privacy in public cloud

computing,” NIST Special Publication, 2011. [Online]. Available: http://csrc.nist.

gov/publications/nistpubs/800- 144/SP800- 144.pdf.

[69] M. E. J. Newman, “Finding community structure in networks using the eigenvectors

of matrices,” Physical Review E, vol. 74, no. 3, pp. 036104+, Jul. 2006. [Online].

Available: http://dx.doi.org/10J 103/PhysRevE.74.036104.

[70] M. Tasgin and H. Bingol, “Community detection in complex networks using genetic

algorithm,” in ECCS '06: Proc. of the European Conference on Complex Systems.

Oxford, UK: Apr. 2006. [Online]. Available: http://arxiv.org/abs/cond-mat/0604419.

[71] Z. Liu, P. Li, Y. Zheng, and M. Sun, “Community detection by affinity propagation,”

Tsinghua University, Tech. Rep. 001, 2008.

[72] J. M. Pujol, J. Bejar, and J. Delgado, “Clustering algorithm for determining commu

nity structure in large networks,” Phys. Rev. E, vol. 74, p. 016107, Jul 2006. [Online].

Available: http://link.aps.org/doi/10.! 103/PhysRevE.74.016107.

http://media.amazonwebservices.com/Whitepaper_Security_Best_
http://www
http://csrc.nist
http://dx.doi.org/10J
http://arxiv.org/abs/cond-mat/0604419
http://link.aps.org/doi/10

[73J N. Du, B. Wu, X. Pei, B. Wang, and L. Xu, “Community detection in large-

scale social networks,” in Proceedings of the 9th WebKDD and 1st SNA-KDD 2007

Workshop on Web Mining and Social Network Analysis. New York, NY, USA: ACM,

2007, pp. 16-25.

[74] I. Gunes and H. Bingol, “Community detection in complex networks using agents,”

CoRR, 2006. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr0610.

html#abs-cs-0610129.

[75] A.-L. L. Barabasi and E. Bonabeau, “Scale-free networks.” Scientific American, vol.

2S8, no. 5, pp. 60-69, May 2003. [Online], Available: http://view.ncbi.nlm.nih.gov/

pubmed/12701331.

[76] A.-L. L. Barabasi, “Scale-free networks: A decade and beyond,” Science, vol. 325,

no. 5939, pp. 412-413, 2009.

[77] A.-L. Barabasi and A. Reka, “Emergence of scaling in random networks,” Science,

vol. 286, no. 5439, pp. 509-512, 1999.

[78] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in

networks,” Physical Review E, vol. 69, no. 2, pp. 026113+, Feb. 2004. [Online],

Available: http://dx.doi.org/10.1103/PhysRevE.69.026113.

[79] W. Zachary, “An information flow model for conflict and fission in small groups,”

Journal of Anthropological Research, vol. 33, pp. 452—473, 1977.

[80] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson,

“The bottlenose dolphin community of Doubtful Sound features a large proportion of

long-lasting associations,” Behavioral Ecology and Sociobiology, vol. 54, no. 4, pp.

396-405, 2003. [Online], Available: http://dx.doi.org/10.1007/s00265-003-0651-y.

http://dblp.uni-trier.de/db/journals/corr/corr0610
http://view.ncbi.nlm.nih.gov/
http://dx.doi.org/10.1103/PhysRevE.69.026113
http://dx.doi.org/10.1007/s00265-003-0651-y

[81] V. Krebs, “Books about us politics,” http://networkdata.ics.uci.edu/data.php?d=

polbooks [Last accessed: 2012-16-09],

[82] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and

identifying communities in networks,” Proceedings of the National Academy of

Sciences o f the United States o f America, vol. 101, no. 9, pp. 2658-2663, Mar. 2004.

[Online], Available: http://dx.doi.org/10.1073/pnas.0400054101.

[83] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm to detect

community structures in large-scale networks,” Phys. Rev. E, vol. 76, p. 036106, Sept.

2007. [Online]. Available: http://link.aps.Org/doi/10.l 103/PhysRevE.76.036106.

[84] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very

large networks,” Physical Review E, vol. 70, no. 6, pp. 066 111+, Dec. 2004. [Online].

Available: http://dx.doi.org/10-l 103/PhysRevE.70.066111.

[85] M. Girvan and M. E. J. Newman, “Community structure in social and biological net

works,” Proceedings o f the National Academy o f Sciences, vol. 99, no. 12, pp. 7821 —

7826, Jun. 2002. [Online]. Available: http://dx.doi.org/10.1073/pnas.122653799.

[86] X. Liu and T. Murata, “Advanced modularity-specialized label propagation algorithm

for detecting communities in networks,” Physica A: Statistical Mechanics and its

Applications, Apr 2009. [Online]. Available: http://arxiv.org/abs/0910-l 154.

[87] G. Agarwal and D. Kempe, “Modularity-maximizing graph communities via mathe

matical programming,” The European Physical Journal B - Condensed Matter and

Complex Systems, Dec 2008. [Online]. Available: http://dx.doi.org/10.1140/epjb/

e2008-00425-1.

http://networkdata.ics.uci.edu/data.php?d=
http://dx.doi.org/10.1073/pnas.0400054101
http://link.aps.Org/doi/10.l
http://dx.doi.org/10-l
http://dx.doi.org/10.1073/pnas.122653799
http://arxiv.org/abs/0910-l
http://dx.doi.org/10.1140/epjb/

99

[88J C. Pizzuti, “A multi-objective genetic algorithm for community detection in net

works,” in Proceedings of the 2009 21st IEEE International Conference on Tools

with Artificial Intelligence, ser. ICTAI ’09. Washington, DC, USA: IEEE Computer

Society, 2009, pp. 379-386. [Online], Available: http://dx.doi.org/10.1109/ICTAI.

2009.58.

[89] R. Agrawal, “Bi-objective community detection (bocd) in networks using genetic

algorithm,” CoRR, 2011. [Online]. Available: http://dblp.uni-trier.de/db/journals/

corr/corrl 109.html#abs-l 109-3650.

[90] A. D. M. C O Dorso, “Community detection in networks,” International Journal of

Bifurcation and Chaos, vol. 20, no. 2, pp. 361-367, 2010. [Online], Available: http:

//www.worldscinet.com/ijbc/20/2002/S0218127410025818.html.

[91] Amazon.com. Amazon, http://www.amazon.com [Last accessed: 2013-18-01],

[92] K. Steinhaeuser and N. V. Chawla, “Identifying and evaluating community structure

in complex networks,” Pattern Recognition Letters, vol. 31, no. 5, pp. 413-421, 2010.

[93] M. E. J. Newman, “Fast algorithm for detecting community structure in networks,”

Physical Review E, vol. 69, no. 6, pp. 066 133+, Jun. 2004. [Online]. Available: http:

//dx.doi.org/10.1103/PhysRevE.69.066133.

[94] J. Duch and A. Arenas, “Community detection in complex networks using extremal

optimization,” Phys. Rev. E, vol. 72, p. 027104, Aug 2005. [Online]. Available: http:

//link.aps.org/doi/10.1103/PhysRevE.72.027104.

[95] M. E. J. Newman, “Modularity and community structure in networks,” Proceedings

of the National Academy of Sciences, vol. 103, no. 23, pp. 8577-8582, Jun. 2006.

[Online], Available: http://dx.doi.org/10.1073/pnas.0601602103.

http://dx.doi.org/10.1109/ICTAI
http://dblp.uni-trier.de/db/journals/
http://www.worldscinet.com/ijbc/20/2002/S0218127410025818.html
http://www.amazon.com
http://dx.doi.org/10.1073/pnas.0601602103

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Winter 2013

	Using power-law properties of social groups for cloud defense and community detection
	Justin L. Rice

	00001.tif

