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ABSTRACT

The goal of the research developed in this dissertation is to develop a more
accurate segmentation method for Affymetrix microarray images. The Aftfymetrix
microarray biotechnologies have become increasingly important in the biomedical
research tield. Affymetrix microarray images are widely used in disease diagnostics and
disease control. They are capable of monitoring the expression levels of thousands of
genes simultaneously. Hence, scientists can get a deep understanding on genomic
regulation, interaction and expression by using such tools.

We also introduce a novel Affymetrix microarray image simulation model and
how the Affymetrix microarray image is simulated by using this model. This simulation
model embraces all realistic biological characteristics and experimental preparation
characteristics. which could have different impacts on the quality of microarray image
during the real microarray experiment. The most important aspect is that this model could
provide the “ground true information,” which allows us to have a deep understanding on
difterent segmentation algorithms performance.

After the simulation. the new proposed segmentation algorithm Segmentation
Based Contours (SBC) method is presented as well as the modifications of the Active
Contours Without the Edges (ACWE) method. By moditying the ACWE method with
higher order finite difference scheme and fast scheme. we establish the new segmentation

algorithm Segmentation Based Contours method. In the end, we compare the gene

1
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signal values obtained from the new proposed algorithm Segmentation Based Contours
method and the best currently known method. This gene expression signal comparison 1s
more meaningful in gene expression analysis, since it represents the whole gene
expression level rather than the small transcripts hybridization abundance level. Different
types of experimental comparison results will be presented to show that the new proposed

Segmentation Based Contours method is more efficient and accurate.
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CHAPTER 1

INTRODUCTION OF DNA AND DNA MICROARRAY

In this chapter, an overview of the DNA microarray on the molecular biology
level, aiming at providing the appropriate background for understanding the microarray

segmentation problem will be presented.

1.1 DNA

All living cells on earth store their hereditary information in double-stranded
molecules of DNA from Molecular Biology of the Cell [1]. These double-stranded
molecules of DNA contain four types of monomers. which form the long paired chains
based on the complementary rule. A (adenine), T (thymine), C (cytosine). G (guanine) are
strung together, encoding the hereditary information. By interpreting this sequence
information from a DNA strand, scientists are capable of deciphering the hereditary
information contained in cells.

In 1869. Friedrich Miescher first discovered the nucleic acid from his experiment.
In 1952, Altred Hershey and Martha Chase first established that DNA was the molecules
carrying the hereditary information for all living cells [2]. In 1953, James D. Watson and
Francis Crick first elaborated and presented the DNA double-stranded molecular model
[3]. This double helix model brought a significant impact on understanding the DNA

transcription and translation process. In [1]. the nucleotide was introduced, consisting of
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two sections. One part is called the deoxyribose with a phosphate group in Figure 1.1.

The other part is called the base, which is either A. G. Cor T.

G

S

building block of DNA
phosphate
: sugar
+ G —
sugar base
phosphate

nucleotide

Figure 1.1 Building block of DNA from [1]

Next, several nucleotides are connected together by the phosphate group, which

constructs the DNA strand. These two DNA strands are synthesized according to the

complementary structures of the bases, where A binds to T, and G binds to C. After this

synthesis process, two DNA strands twist on each other to form the double helix shown in

Figure 1.2.

double-stranded DNA

< T G <
moo

sugar-phosphate
backbone

ONA double helix

hydsogen-bonded
base pairs

Figure 1.2 DNA helix structure from [1]
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1.2 DNA Transcription and Translation

In order to carry the genomic information, the DNA sequence must undergo the
process of replication and transcription with the help of RNA (ribonucleic acid) and
protein. RNA has the similar intermediary structure with the DNA strand stored in
cytoplasm. There are, however, some differences in RNA compared with DNA. In RNA,
the backbone is formed by ribose instead of deoxyribose. In addition, those four bases are
the same with one exception: where U (uracil) replaces T (thymine) [1, 3]. Thus, in RNA,
Ais paired with U and C is paired with G.

This process starts from the transcription, as the DNA sequence is treated as the
template for RNA synthesis. The genetic information in a specific sequence is transferred
into a complementary special sequence of messenger RNA (mRNA) as seen in Figure
1.3. Three bases in RNA transcripts are considered as the genetic code called “codon.”
Several of these triplet codons guide the synthesis of polymers of protein, which is the

translation process. Thus, from DNA to protein, hereditary information is deciphered.

RNA MOLECULES AS EXPENDABLE
INFORMATION CARRIERS

DOUBLE-STRANDED DNA AS R

INFORMATION ARCHIVE

TRANSCRIPTION
A ————

strand used as a template to TR BT R e R
direct RNA synthesis R
many identical
RNA transcripts

Figure 1.3 DNA transcriptions from [1]

Each genetic code 1s read out by a small sequence of RNA molecules called the

“transfer RNA.™ It matches up the genetic code, which guides the order of amino acids to

form the protein molecules. There are 4° =64 total possible codons. Each mRNA stars



with the beginning codon AUG and ends up with the ending codon UAA. UAG, or UGA.
All the other sequences between the starting codon and ending codon are the Open
Reading Frame (ORF). which stores all the genetic information from DNA sequence. All

of this process is shown in Figure 1.4.

Froow DRA B v RRA Froony RN Uapr

WEEE N

Figure 1.4 Central Dogma of Molecular Biology from [4]

Each DNA sequence experiences three stages: the replication, the transcription
and the translation, and genetic information is passed down through this process. The
subsequence of DNA that is transferred into protein is called a “gene” [5]. Thus. this
process is called the “gene expression.” In the genetics field, gene expression is the most
significant and basic foundation for transforming the genotype to the phenotype.
Ditterent organism phenotype is caused by controlling the different properties of the gene
expression [6]. By using DNA microarray technology. scientists are able to monitor and
manage thousands of genes™ expression simultaneously. Therefore, it is an important

method allowing us to understand and analyze gene expression etficiently.
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1.3 DNA Microarray

DNA microarrays are part of a new class of biotechnologies allow the monitoring
of thousands of genes expression levels simultaneously. It is extremely important in the
pharmaceutical and clinical field since they can help the scientists get a better
understanding on genome regulation and interaction [7]. There are two basic DNA
Microarray techniques currently used nowadays: spotted microarray image
(Complementary DNA Microarray) shown in Figure 1.5 for ¢cDNA microarray and
oligonucleotide microarray image shown in Figure 1.6 for Affymetrix microarray.
Among these techniques, the high density oligonucleotide microarray technology
provided by Affmetrix GeneChip Company [8] has been widely utilized by thousands of

researchers because of its high sensitivity and accuracy [9].

Figure 1.5 ¢cDNA microarray image
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Figure 1.6 Affymetrix microarray image

The microarray technique is originated from the Southern Blotting technology.
The Southern Blotting technique is mainly used in molecular biology to detect a specific
sequence of DNA in DNA samples. This technique has two important characteristics; one
is the transportation of the DNA fragments, and the other one is the probe hybridization
of the DNA fragments. In Southern Blotting, DNA strands are first cut into smaller
fragments by using restriction endonucleases. Next, these tiny DNA fragments are
separated by size by gel electrophoresis method. After classification and separation, the
DNA fragments are transferred to a sheet of nitrocellulose or nylon membrane. This
membrane is exposed to a single DNA hybridization probe with specific sequence. In
addition. this DNA sequence is labeled in order to be easily detected. After hybridization.
extra DNA fragments will be washed oft, and hybridization fragments will be visualized
on tilm. In this way. the specific DNA sequence is detected.

Though the Southern Blotting is very effective for detecting the DNA special

sequence, it is not a convenient method. The main disadvantage for the Southern Blot



method is that it is rather time consuming and labor-intensive. Thus, microarray

technology is innovative. because it can manipulate and mange thousands of genes at the

same time. In 1993, the first DNA microarray was proposed for gene expression analysis

[10].

A common microarray experiment contains the following six steps:

Experiment preparation. Two samples are selected as the treated sample and the
untreated sample. For example, one sample is from a normal tissue, and the other
sample is from a tumor tissue.

Interest Nucleic acid separation and purification. For example, the RNA
sequence for expression analysis or the DNA sequence for the comparisons.
Reverse transcription is performed to obtain the labeled sequence. For example.
the mRNA is reverse transcribed to cDNA. Also, a label is added in this process
through molecular combination.

The ¢cDNA sequence is mixed and hybridized in the solution. Next, the mix is
denatured and spotted on a microarray, which could be a gene chip or a glass
microarray.

The microarray is scanned by a special laser scanner, which can detect the label
quantitatively and qualitatively.

Microarray image and raw data is generated after the scan process is performed.

1.3.1 cDNA Microarray

The ¢cDNA microarray isolates the RNA sequence from both the control sample

(normal sample) and the experiment sample (diseased sample). Next. it operates the

reverse transcription process, which allows it to convert the RNA sequences of interest



into cDNAs. After the reverse transcription. the ¢cDNAs will be further labeled with
fluorescent probes, Cv3 for control sample and Cy35 for experiment sample. The Cy3 is in
a green channel with 530nm wavelength, and Cy3 1s in a red channel with 630nm
wavelength [11]. When finishing the labeling process, cDNA microarray is scanned both
at the ~540nm and ~630nm for each channel correspondently. Two 16-bit monochromatic
images are generated after scanning, which are Red and Green images. In these two
images, each spot represents a specific gene {12, 13].

Normally, a ¢cDNA experiment {13, 14] consists of the steps illustrated in Figure

1.7.

Figure 1.7 ¢cDNA microarray experiment from [13]

* In the experiment preparation step, the normal sample and the experiment sample
are selected.

= In the isolation step., the RNA sequences of interests are extracted and purified.



» [n the reverse transcription step, the RNA sequences are reversely transcribed
into ¢cDNA sequences.
* n the hybridization and label step, the cDNA is labeled with a fluorescent dye.
Next, the labeled ¢cDNA sequence is hybridized. After full hybridization, extract
DNA sequences will be washed away if they were not hybridized at all.
* In the scanning step. the microarray will be scanned in the two channels.
= |n the data extraction step, intensity data of each spot will be extracted for the
subsequent analysis.
1.3.2 Affymetrix Microarray
The Affymetrix microarray technique (Figure 1.8) is originated from late 1980s
by Stephen Fodor together with other scientists. Fodor at all introduced the semi-
conductor technique for biological setting in microarray fabrication process. This process
helped to construct a system to measure more and more various mRNA sequences in one
sample. In addition. Affymetrix microarray introduced small oligonucleotide sequences
(probes). containing 25-nucleotides located variously in their sequence composition. This
is an impressive characteristic compared to the cDNA microarray, which uses single and
long probes to detect the transcript of interests because small probes could bring a better
discrimination between similar related transcripts over long oligonucleotides. especially
when mRNAs are highly abundant. Hence, we mainly focused our research interests on

Affymetrix microarray image analysis.



Figure 1.8 Affymetrix microarray chip from [12]

Probe sets are designed for each mRNA sequences [15]. Each gene normally
consists of 11 to 20 different probes, which corresponds to a single transcript at different
locations. For Affymetrix microarray, it usually has tens of thousands of different probe
sets. This feature makes the Aftfymetrix microarray more desirable than c¢DNA
microarray. since it could allow scientists to monitor and manipulate such amounts of
genes at the same time.

Another significant characteristic is that Affymetrix introduces the Perfect Match
(PM) and the Mismatch (MM) in a pair into the probes as shown in Figure 1.9. In other
words. each probe pair consists of two probes, PM and MM. These two probes are
exactly the same. except for the one base in the middle. For example, PM has 25-
nucleotides. which are pertectly hybridized to the mRNA sequences; whereas, MM has
the same 25-nucleotides, but there is only one base in the middle of the 25 bases that is

ditferent from what the PM has. Each PM should be uniquely different from each other.
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In this case. false signals transcription caused from similar complete sequences were

completely eliminated. and MM was used to help scientists to learn and control the

unspecific signal and background signal.

mRNA reference sequence

/ L

tiuorescence intensity image

7/
poveset| 30 X X Xk % % % % xx
spaced probe pawr

S o P PM probe
R e D R T MM probe

~ perfect match probe cells
mismatch probe cells

Figure 1.9 Probe level design in Affymetrix microarray from [16]

Normally. an Affymetrix experiment contains the following steps. This whole

process shown in Figure 1.10 usually requires two and a half days:

First, the sample of interest is selected.

Next., the RNA sequences are isolated. The RNA quality is monitored and
checked. After checking the quality of RNA sequences, good quality RNA
sequences are labeled. These mRNAs experience the reverse transcription to

cDNA. which is labeled by /n Vitro Transcription (IVT).



= Next. this mixture is injected into the microarray platform. Hybridization is
performed on the gene microarray platform under specific temperature and
hours.

* After complete hybridization, the chip is scanned by a special laser, generating
the Aftfymetrix microarray image in 16-bit gray level.

* Finally. the intensity of each pixel on the chip is recorded according to the

emission of the fluorescent dye.

Biotin-iabwled
Totai ANA cONA cRNA
Reverse in Vitro ,{
e ARAA Trangcription - " Transcription
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T T TN AARA . B
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] Fragmentation
GeneChip A i
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Array e
s 3]

Fragmenied, /
Biotn-lsbeled - B ~

Hybridization ;;f = cRNA ~
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B " T washand (O ' scanand |
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8.7 s -9 5
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Figure 1.10 Affymetrix microarray experiment process from [17]

There are several microarray types developed by Affymetrix. They are different in
many aspects. such as different emphasis on genes, exons or genome wide transcriptions

and ditferent use of mismatch probes on different number of probes.



The standard expression array is the most common array used in the public
research area, which could be canine. rat. human. fly, yeast, bacteria and plant. Such
probe arrays are available as public resources at UniGene, GenBank. dbEST and so on.
The microarray data for this dissertation mainly came from this standard expression array
database.

The exon array could provide the gene expression information based on the exon
level. From this point of view, the splicing patterns could be clearly monitored and
learned. It is known that not all the DNA sequence may be translated into a protein. After
generating the mRNA, there is an important step that removes the non-coding sections in
mRNA. These non-coding sequences are referred as to “introns.” The rest of the exons
are constructed together in different ways resulting in various genes. This whole process
is called “splicing.” It plays a significant role in the human genome system, because
different splicing and construction of the exons will contribute to completely different
proteins.

The gene array contains more up-to-date genome annotations for human and
mouse. Hence, it is more accurate compared to the standard array. It is usually little
smaller than the standard array since it does not carry any mismatch probes but the 5-
micron feature. This array is the next generation of standard arrays. It begins to include a
large amount of perfect match probes for each gene and to drop all the mismatched
probes. Another impressive characteristic this array has is that it removes the 3’-bias end
of each transcript. Instead. it uses 26 different probes to cover the whole transcript.
Removing this 3 -bias end will provide more accurate gene information when alternative

splicing happens in 3" -end and so on.
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The tiling array only covers several organisms such as human, mouse and veast.
The tiling array uses 25-mer probes which are evenly located every 35 bases with around
10 bases as the gap between each probe. It only uses the evenly located probes on the
non-repetitive part of the genome sequence rather than using the probes which
corresponds to the relevant gene expression sequences. This type of array is widely used

in transcript elements mapping and protein binding identification.



CHAPTER 2

INTRODUCTION OF AFFYMETRIX MICROARRAY IMAGE

Over the last decade. the microarray biotechnologies have become increasingly
important in the biomedical research field, since they are capable of monitoring the
expression levels of thousands of genes simultaneously. This quality of the technology
that allows researchers to access such a large number of genes simultaneously while the
traditional methods are limited in the number of genes that can be researched at one time,
sparked the interests of scientists in researching and improving their understanding of
genomic regulation and gene interaction. The DNA microarray technology has provided
the scientific community with a tool to be used in understanding the basic aspects of life
development and especially in exploring genetic causes and anomalies occurring in the
human body.

The microarray applications currently are very wide; one of the first applications
of microarrays was genome sequencing analysis using hybridization, tissue microarrays
used in the study of cancer, including the molecular profiling of tumor specimens and of
the applications determining gene copy number. Drug discovery is one of the largest
aspects. The microarray’s capabilities make them a perfect candidate for various stages of
drug discovery. validation and clinical studies. Other applications of microarrays are in

DNA computing. bioinformatics, and data mining, where the microarrays are required

15
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tools for solving computational problems, analyzing huge amounts of data with similar
characteristics. by using diverse analytical methods: Bayesian methods, neural networks.
clustering. multivariate statistical analysis, and information retrieval [18].

Last, but not the least. and the direction where our interest lies was the gene
expression analysis, with the goal of gene discovery and the possibility of using these
results in monitoring and detecting the changes in gene expression from different cells.
There are already chips with arrays of many types of genes such as human or species like
rat. mouse and Escherichia coli and more. The Affymetrix Company manufactures chips
for analysis of DNA microarrays, chips that scientifically match significant parts of
human and non-human genomes.

The method developed in this dissertation aimed to provide a better segmentation
method compared to the ones currently used. We expected that the improvement could
lead the way to a quantitative feature of the DNA arrays. Such results would impact
directly the many fields that use DNA arrays; the most important impact will be in a
better prediction of genes that activate different diseases. We looked to provide a stepping
stone towards quantitative results from DNA array experiments (at the moment we
receive rather qualitative signals of the gene-disease relationships from such
experiments). With the advancement of the hardware in digital photography and the
processing/manipulation of cells, we fully expected the images obtained after the DNA
arrays experiments to reach much higher resolutions and have significantly lower noise in
the signals and. thus. the proposed algorithm to lead to dramatic improvements as
opposed to the currently used Affymetrix segmentation method. This new method will

lead. in turn. to quantitative results which would have a significant impact in shedding
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light on the cellular processes. This segmentation of a picture is one of the three
important steps in microarray image processing. together with spot gridding and
information extraction. It directly affects the accuracy of gene expression analysis in the

data mining process that follows [19, 20, 21,22].

2.1 Overview of Affymetrix Microarray Image Analysis Methods

In a microarray experiment, the image analysis could be viewed as one of the
most crucial steps of processing, which could have a large impact on the subsequent data
analysis, such as clustering or identification of different gene expression levels. During
the microarray experiment process, usually two samples of (a healthy sample versus
diseased sample) microarrays are hybridized with complementary DNA labeled with
usually two different fluorescent dyes, Cy3 and CyS5. Next, the hybridized microarrays
are processed by a microarray scanner to visualize the red and green florescence. In other
words, the hybridized microarrays are imaged at each spot. In this way, a raw 16-bit TIFF
image is obtained. The florescence intensity of each spot represents the hybridized level
of the sample. Therefore. analyzing the microarray image is one of the most important
steps in a microarray experiment. The microarray image analysis can be described as a
three step process [11].

The addressing or gridding step is performed to find the exact location of each
spot and to assign the coordinates to each spot. The purpose is to define the spot region
based on the microarray image layout information. After gridding on the microarray
image. each spot is assigned with a geometric location, which is a square or a rectangle.
The center of each spot and the region between the center and the boundary are used to

detect the object curve within the square. However. in real microarray experiments, the



18

misalignment usually happens. For example, the microarray chip may not be arranged
exactly in the center during the scanning process. Or the sub-array chip may be shifted
subtly during the hybridization process. All these issues will be considered and handled in
our image analysis process [23].

The segmentation process was the main concern in our research. In the data
acquisition process. the segmentation of spots is the one of the most challenging tasks
and has a significant impact on the gene expression analysis process that follows. The
task is to identity the pixels either as foreground (within the printed spot) or as
background (beyond the printed spot). In this sense. the image segmentation is a process
that divides an image into two mutually exclusive regions: foreground and background.
The key point at this stage is to get the exact shape of the foreground pixels. This
exactness does not usually happen in the previously used segmentation methods in the
literature. In this way, the foreground and the background regions are classified and the
florescence intensity for the spot is calculated according to this classification.

However, the microarray images are hard to segment since they have highly
varying image contrast different from experiment to experiment and also contain a high
level of background noise and image artifacts. The segmentation step is further
complicated by the non-uniform shape and surface intensity distribution in the
experiment pictures.

The intensity extraction follows next. The value of ecach pixel represents the
expression level of hybridization for that specific DNA sequence. Hence, the next step in
processing DNA arrays is to calculate foreground florescence intensity. background

intensity for each spot based on the results from the segmentation. In addition, at this step
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some other calculations are performed such as the possibility of random hybridization,
noise and quality measures. Many methods use the mean or the median pixel value as the
whole value of the foreground spot mask. Additionally, these methods make use of the
statistical tests to measure the background intensities relative to the foreground
intensities, [11, 24]. Therefore, the result produced in the segmentation step is extremely
important in the subsequent image analysis process.

In recent years, several methods have been developed to segment microarray
spots and have been incorporated into commercial microarray image analysis software
packages [25, 26].

The last step of the process is the intensity to gene expression signal value step.
The intensity only represents the abundance of hybridization for target interested
sequence in each spot. not for each gene. The last step is to summarize the intensity

values into the signal value. which represent the expression level for each gene.

2.2 Affymetrix Microarray Image Analysis Process

In Affymetrix, all microarray image analysis is accomplished in Gene Chip
Operating Software (GCOS) produced by Affymetrix Company. It provides a set of
comprehensive analysis tools for data management and control in the processing of
microarrays. The software summarizes all the probe intensity values and combines them
into gene signal values after image gridding process. Besides these characteristics, this
software enables data analysis to be customized. automated and integrated with various
laboratory systems.

First, segmentation and intensity extraction are performed by the built-in GCOS.

In Affymetrix microarray image, each probe spot cell contains » X n pixels depending on
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the experiment design. After identifying the position of each probe, GCOS omits the
outer boundary pixels. Only the inner pixels are included and considered to be within the

foreground area. The method chooses the 75"

percentile of the rest of the pixels in the
square to represent the intensity for each probe. Table 2.1 is the pixels matrix of one spot
in microarray image.

The outer highlighted pixels are dropped off in Table 2.1. The 75" percentile of
remaining inner pixels is recorded as the intensity value for the spot. The reason why
GCOS omits the outer pixels is that it is believed that such pixels are not reliable and may
carry some noise and errors. for they may be located by the misalignment in the scanning

process. or they may be influenced by the neighboring probes which have large amount

of emission. These intensity values are recorded into the CEL file.

Table 2.1 Pixels matrix for one cell

In Affymetrix, GCOS chooses the 75" percentile of the interior pixels of each
probe cell as the intensity for each probe. Research from Harry Zuzan [23] shows that
with the increasing of the pixel values, the variance would become unstable when
choosing the 75" percentile as the probe intensity. In addition, this method is not robust
enough when dealing with different qualities of cells. Hence, in this dissertation, we
introduced an intensity extraction algorithm named as ““Segmentation Based Contours™

method. which is a modified version of the ACWE method [27]. The ACWE model will
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detect a curve which is constrained in a specified image without any gradient calculation
but minimizing the energy based function. Thus. the ACWE presented by Tony F. Chan
and Luminita A. Vese [27] has more advantages in finding objects within a microarray
image in which boundaries are not defined by gradient. We will present more details for
this ACWE method and its modified method SBC.

Next. intensity values for each spot are combined transformed into the gene
expression signal value. The Affymetrix GCOS software uses the MASS algorithm to
calculate the signals from intensities [28, 29, 30]. The Genechip array designed by
Aftymetrix Company is the probe level design array. A Genechip array contains many
probe cells, where each probe cell is related with a specified target sequence probe. Probe
spots are tiled into probe pairs with a Perfect Match (PM) and a Mismatch (MM). There
is only one base in the middle changed in MM sequence, where it does not follow the
complement rule. All related PM and MM together consist of a probe pair. related to a

whole expressed gene transcript shown in Figure 2.1.

123456 78 910
PM « cell

VMEEEE §onn

probe set " probepar

Figure 2.1 Probe set from [28]

Before calculating the signals. the MASS conducts global background subtraction
and noise correction based on the raw intensities in CEL file. This background adjustment
noise correction could even out the background errors caused by different cell locations.

First the whole chip is divided into 16 rectangular zones as shown in Figure 2.2. Next. the
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distance dj, is computed between the chip coordinate (x,y) and the center of each sub

zone. Next. the weighting factor W, is obtained based on d.

W, (x,y) = (d}(x,y) + smooth)™*, smooth = 100.
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Figure 2.2 Background subtractions from [28]

(2.1)

Based on such distances d; and W, together and a constant b, a weighted sum is

obtained, which is used for each probe cell (x, y).

b(x,y) =

ZWirlxy)

1

XbZWe(x,y).

(2.2)

Now, MASS computes the adjusted intensity value by shifting the original

intensity value down based on the local background b. This b is considered to be the

noise correction. For noise correction, local noisc factor #» is obtained based on the

standard deviation in each sub zone.

n(x,y) =

I We(xy)

1

2nZ Wilx,y).

(2.3)
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Next. an initial threshold and a floor are specified such that no adjusted intensity
value is below that threshold. The adjusted intensity is calculated from subtracting this
local background.

A(x,y) = max(I'(x,y) — b(x,y), NoiseFrac *n(x,y)),
where I'(x,y) = max(I(x,y),0.5),NoiseFrac = 0.5. 2.4)

After adjusting the background for each cell. the MASS algorithm uses the new
intensities to calculate the signal for each probe as follows:

1. An ideal mismatch value i1s calculated and subtracted to adjust the PM
intensity. Ty,; is the one step biweight algorithm. In an Aftymetrix microarray, the reason
why it introduces the MM probe is that it comprises the background noise and cross
hybridization. which will bring impact on the PM probe. Hence, the ideal possible MM
value should be less than PM value. However, in some cases, the MM value is larger than
PM value. This result indicates that this MM value is a physical impossible measurement.
It cannot be used to calculate the signal value. Instead, an adjusted value should be
estimated based on the whole gene probe set level. MASS uses the one step biweight
algorithm to calculate this specific background estimation SB;.

SB; = Typ:(logPM;; — logMM;;),j = 1,2,..n;. (2.5)

The one-step biweight algorithm begins by calculating the median M for a data set
with # values. In the signal measurement. this data set consists of the log(PM — IM)
probe values of a probe set. Next, we calculate the absolute distance for each data point
from the median. and calculate S. the median of the absolute distances from Af. The

median absolute deviation, MAD, is an initial measure of spread.



For each data point /. a uniform measure of distance from the center is given.

xi—M
Ui = sve (2.6)
Next. calculate the weight by the bi-square function.
(1-u?)?ul =1,
' = 2.7
w(w) { 0, lul > 1. (&%)
Finally. the corrected values can be calculated by the one-step w-estimate.
_ Twiludx;
Tpi(x) = Swa (2.8)

[t the background estimate SB; is large, the related values in the probe set are
reliable. This §B; is capable of constructing the ideal adjusted mismatch /M if necessary.
It §B; is small, more of PM values are used to calculate the ideal adjusted mismatch 7M.
These different cases which determine the ideal adjusted mismatch /M are described as
follows:

MM[J, when MMi:j < PMi,j'
224511 when MM, ; = PM,; j and SB; > 0.03,

M, = g 2.9)
b L, when MML] = PML} and SB[ < 0.03. (
2 1+-—i‘0‘~—~

When MM value is less than PM value, this MM provides a reliable estimation

for the probe background. When MM value is not less than PM value, this MM value is
not reliable. but still provides some relevant information for the probe. If SB; is less than
or equal to 0.03. the MM value provides the least information estimation.
2. The adjusted PM intensities are log-transformed to stabilize the variance.
Given the adjusted ideal mismatch MM. probe value (P1) is calculated with the
numerical stability.
Vi

j=max (PM;;—IM,;;, D), whereD = 272 (2.10)
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Next. log-transformation is performed on probe value for each probe cell.
PV, ;= log(Vu-), j=12,..,n;. (2.11)
Absolute expression value for each probe set is obtained by performing the one
step biweight estimate algorithm.
SignalLogValue = Ty;(PV; 1, ..., PVip). (2.12)
3. The biweight measurement is used to calculate the robust mean of the input
values. Signal is output as the anti-log of the Signal Log Value. Finally, the reported
signal for each probe set is obtained.

ReportedSignal = nf x sf x 25ignallogvalue (2.13)

23 Affymetrix Microarray Image Analysis Flow in GCOS

After finishing the microarray experiment, the most crucial step is to extract most
reliable data information from the microarray image, obtaining the intensity value for
each probe on the chip. The probe intensity is the foundation of the whole microarray
image analysis because all the subsequent data analysis is based on the probe intensity
value, calculating gene expression signals and so on. Thus, how to achieve more accurate
probe intensity values was our main research interest. For Aftymetrix microarray image.
all such analysis was accomplished in GCOS. Figure 2.3 is the GCOS microarray image
analysis flow chart. The gene chip was scanned after microarray experiment. The raw
image information was stored in DAT file and we used GCOS to open this DAT file.
Alignment gridding was automatically performed and intensity values were written in
CEL file. When the intensity values were obtained. GCOS implemented the MAS3

algorithm to analyze the CEL file and related CDF file to calculate the gene signal value
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for each probe set. This gene signal value was stored in CHP file and TXT file. One was

in special format in CHP file. The other one was in text format in TXT file.

EXP file CDF file
Hybridized S , \ N , | CHP file
TXT file

Figure 2.3 GCOS microarray image analysis tlow

The DAT file shown in Figure 2.4 contains the data information of raw 16-bit
(TIFF) optical image followed by the relevant header information shown in Table 2.2. It
also includes that array chip layout information and experiment information, etc. The
CEL file shown in Figure 2.5 contains the information for each probe cell. It includes the
layout coordinates of each cell, the intensity value for each cell, the number of pixels
included for each cell and the standard deviation of each cell, etc. It is written in a special

format shown in Table 2.3.
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Figure 2.4 DAT file structure shown in MATLAB

Table 2.2 Part of header information for DAT file

Index | Description Type

1 Type of file, must be OxFC. BYTE

2 Number of pixels per line. WORD

3 Number of lines in the image. WORD

4 The total number of data points (pixels) in the image. DWORD

5 Minimum pixel value in the image. DWORD

6 Maximum pixel value in the image. DWORD

7 Mean pixel value. double

8 Standard deviation of the pixel values double

9 Number of pixels per row (padded with spaces). preceded with char[9]

10 NCLJI;nSbe.r of rows in the image (padded with spaces). preceded char[9]
with "RWS="
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igure 2.5 CEL file structure shown in Matlab



Table 2.3 Part of format description for CEL file

' TAG Description |
. Version The version number. Always set to 3.
TAG Description
Cols The number of columns in the array (of cells).
Rows The number of rows in the array (of cells).
TotalX Same as Cols.
TotalY Same as Rows.
OffsetX Not used. always 0.
OffsetY Not used, always 0.
GridCornerUL XY coordinates of the upper left grid corner in pixel
coordinates.
GridCornerUR XY coordinates of the upper right grid corner in pixel
coordinates.
GridCornerLLR XY coordinates of the lower right grid corner in pixel
coordinates.
GridCornerLL XY coordinates of the lower left grid corner in pixel
coordinates,
Axis-invertX Not used, always 0.
Axis-invertY Not used, always 0.
swapXY Not used, always 0.

The CDF file shown

in Figure 2.6 contains the information for each probe set

gene. It includes the number of probe sets, the name of each gene probe set, the number

of probe pairs of PM and MM. and the coordinates for each probe pairs, etc.

The CHP file shown in Figure 2.7 contains the experiment results created from

CEL and CDF files. It includes the gene expression value for each probe set and includes

the pixel resolution, etc.
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Figure 2.7 CHP file structure shown in MATLAB

The TXT file 1s the text format of CHP file, which contains the same information
as the CHP file. The EXP file is the text file, which contains the experiment details. such

as the experiment date, time, name. scanning machine and pixel size, etc.



CHAPTER 3

MICROARRAY IMAGE SIMULATION METROD

The Affymetrix GeneChip microarrays have become a crucial component of gene
expression and genotype research for many laboratories. Data analysis remains a major
challenge for the effective use of GeneChip data. There is high interest in analyzing the
microarray data and improving in the existing analyzing methods.

We will compare our proposed segmentation method SBC with the method
currently used by the Aftymetrix. The Affymetrix GeneChip Operating Software (GCOS)
is an operating system that controls Affymetrix instruments, acquires data. and executes
gene expression analysis. In addition, GCOS contains an embedded database that
manages both experiment information and data. The comparison will not be made in
respect to the segmentation time. the Affymetrix method is by far much faster than our
method, and it will concentrate on performance, in the number of genes that can be
detected. We planned to run an experiment to detect active expressed genes in different
organisms. Since the experiment involved detecting genes’ expressions, even a small
improvement in the detection rate could be crucial in determining a gene of interest.

However, due to the lack of the “ground true information.” it was difficult to
evaluate different intensity extraction algorithms. Therefore. we utilized an advanced

microarray simulation model [31], which played a significant role in validating different
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kinds of segmentation analysis algorithms. It contained all the experiment and
manufacture steps for producing one microarray image in practice. It also embraced
biological realistic characteristics, which could affect the microarray image quality
significantly. The most important thing is that this model could provide the “ground true
information” to help us have a deep understanding on how the algorithm performs. The
simulation program can be downloaded from [32]. In order to simulate data carrying real
genetic information, we used the analyzed intensity of real Affymetrix microarray images
as data input obtained from GCOS for the simulation model.

In this chapter, we will present the data input used in the simulation model and the

description of this simulation method.

3.1 Database for Simulation Model
The original Affymetrix microarray images can be downloaded from [33]. All the
data on this website are the sample test data provided by Affymetrix Company as a free
test online source. Some of those data are not available, Canine2.0, Chicken. Citrus,
Cotton, Dros Test Yease. Focus-Ecoli, HG-U133, MG-U74, Mouse 430, etc. In our
research, we utilized eight different high resolution microarray images from [33] as the

data source for simulation model. Table 3.1 presents the data used in our research.
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Table 3.1 Data sets for simulation model

1 Bovine a: | A replicate probe array file for the Bovine Genome Array.

- Bovine_b: | A replicate probe array file for the Bovine Genome Array.

i Canine_a: | A replicate probe array file for the Canine Genome Array.

Canine_b: | A replicate probe array file for the Canine Genome Array.

Vitis_a: A replicate probe array file for the Vitis Vinifera (grape) Genome Array.
Vitis_b: A replicate probe array file for the Vitis Vinifera (grape) Genome Array.
Yeast_a: A replicate probe array file for the Yeast (YG-598) S98 Genome Array.
Yeast b: | Areplicate probe array file for the Yeast (YG-S98) S98 Genome Array.

Bovine_a and Bovine b are all selected from Bovine genome. This Bovine
genome array can be used to understand over 23,000 Bovine transcripts. This array is an
idea microarray chip for scientists to study cattle. Researchers are able to monitor genetic
mechanisms, which regulate different kinds of traits such as disease resistance, meat and
dairy production, stress tolerance and so on.

Canine_a and Canine_b were selected from the Canis families’ genome. which is
an important model organism used for human disease study in the biomedical field. This
Canine array enables researchers to interrogate 18,000 Canine genomes mRNA/EST
transcripts and 20.000 non-redundant predicted genes simultaneously.

Vitis_a and Vitis_b were selected from the Vitis genome. This Vitis genome array
is the first array to provide comprehensive analysis for V. vinifera genome and is
provided as free sample test data from the Affymetrix database. There are sixteen pairs
for each oligonucleotide probe set to measure the specific sequence of target genes. All
sequence of target genes were selected from GenBank, dbEST. and RefSeq online gene
sequence research databases.

Yeast-1 and Yeast-2 were selected from the Yeast genome. This genome array

contains probe sets to detect transcripts from two most important species, which are



Saccharomyces cerevisiae and Schizosaccharomyces pombe. It provided the
comprehensive coverage for these two species. including around 5.744 probe sets for
5.800 genes in S. cerevisiae and 5,021 probe sets for all 5,031 genes in S. pombe.

In Affymetrix, all these array files were provided in DAT file format. The
researcher needed to download GCOS to open this DAT file format. Next, the raw
microarray image will be shown in GCOS platform. The GCOS automatically allocated
the grid alignment information from DAT file. The intensity value for each spot cell was
analyzed and stored in the CEL file. When the intensity value was obtained. the
researcher was capable at calculating the gene signal value by using the build in MASS

algorithm. recorded in CHP file. The GCOS platform is shown in Figure 3.1.
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Figure 3.1 GCOS platform



('S
W

3.2 Microarray Simulation Method

In order to compare the segmentation results from the two methods SBC and
Affymetrix GCOS, we introduced an advanced Affymetrix microarray image simulation
model. This simulation model played a significant role in validating different kinds of
segmentation analysis algorithms, since it contains all the manufacture steps for
microarray image. This model embraced biological realistic characteristics which could
affect the microarray image quality significantly. Most important thing is that this model
could provide the “ground true information™ which led us have a deep understanding on
how the segmentation algorithms perform.

The simulation model contained six main steps which are slide manufacturing,
data input, biological noise, slide hybridization. slide scanning and image reading (Figure
3.2). By operating the model parameters, the simulation process will provide three

different qualities images, which are high, normal and bad quality.

y

Slide scanning

v

Ld

Data » Biological noise o Slide manufacturing and

Image reading
hybridization

Figure 3.2 Simulation steps

Data input for the Affymetrix microarray image is the intensity for each cell in the
microarray chip. In addition to the intensity data. the cell location, probe name and
location and their identifiers should also be specified in a proper format by using a file
input module. The requirement for the input data format is described in Table 3.2. In our
research. we used the analyzed intensity data obtained from real Affymetrix microarray

image as the data input for the simulation model.



Hence. the simulated microarray image also carried the real genome information

rather than randomly generated data.

Table 3.2 Data input format

Data | Intensity data for each cell

Time | Time instants

Genes | Probe names

Spot | Probe locations

Name | Dataset name

Type | cDNA or oligonucleotide or ratios

scale | Input data scale

* [nput variable: Data. This variable contained the intensity matrix of each cell in
microarray chip. Each column corresponds to one sample of the microarray.
Next. all conditions of the data were saved as a data matrix.

* [nput variable: Time. This was a vector variable. This vector contains the time
instants for different microarray experiments. Time scale can vary. The total
length of this vector should equal to the number of rows in the Data matrix.

= nput variable: Name. This is a string variable. It indicates the name of the
dataset saved.

* [nput variable: Info.genes. This is an array variable. It stores the name of the
genes/probes. Each name corresponded to each gene/probe

* Input variable: Info.spots. This is a matrix variable. Coordinates x and y were
given for each cell which indicates the location. The info.spots has a matrix form

of [x,]. where x and y were both column vectors.



= [nput variable: Info.*. This is an optional variable if the user needs to define
more information for the cell.

* Input variable: Type. This is a string variable. There are three optional strings,
ratios, expression and intensity. Ratios represent the gene expression type.
Expression represents the ¢cDNA microarray type. Intensity represents the
Affymetrix microarray type.

* Input variable: Scale. This is a string variable. There are two options which are
linear and log. These two options indicated that if the input data is in log scale or
linear scale.

Biological errors were related to the experiment preparation process [34. 35].
These intrinsic errors were presented no matter what sort of measurements is used. As to
the measurement noise errors, they were more related to the measurement technology
used in the experiment [36]. After such errors were taken into account, there are also
some other studied error sources added in this section {37, 38, 39. 40, 41].

This was the most important step in this whole simulation process since this step
introduced many realistic biological statistical error and noise model for the simulated
data. Furthermore. the specified noise and error model parameters to obtain different
qualities of microarray image such as high quality. median quality and low quality.
Default model parameters were set as follows: for Simple noise model, SNR noise model.
Dror noise model. Hartemink noise model, Hierarchical error model. Rocke noise model.

and Hein noise model. Table 3.3 shows the error noise parameters for these models.



Table 3.3 List of noise parameters

Kernel Kernel used to model the population
| effect.
Copies Number of times the population

effect is applied.

Error model

Error model to be used; each error
model has its own parameters

Simple noise model

(0.01,0.001)

SNR noise model

(0,10)

Dror noise model

(1,0.01,0,36,13,0.76,0,0.21)

Hartemink noise model

(0.2,0.01,1)

Hierarchical error model

(0.012,0.010,0.085, 0.094, 0.011)

Rocke noise model

(5,01,1,1)

Hein noise model

(0.341,0.335,0,50,0.5,1,0.5,10)

The slide manufacturing option was the data extraction process from slides. This
step was also an important step. In this step, the user specified the microarray chip layout
such as how many sub-arrays and how many probes on the chip and so on. It included
also several error models which may be caused by the spotting and printing process.

These may be the variation of the cell position and size, or the print tip and the spot shape

deformations and so on. Table 3.4 contains the parameters used in this step.




Table 3.4 List of manufacturing parameters

; Good Normal Bad Affymetrix
| Stype cdna cdna cdna oligo
Sspot circle gaussian gaussian

Spix 12 12 12 10
Smovprob | 0.01] 0.1 0.5 0.1
Smov 0 1 2 1

Sy 5 5 5 4
S,z 0.001 0.01 0.1 0.01
p 0 1 1

Pp 0.0 0.5 0.9

Ph 0 3 3

Pw 0 2 2

Pb 0 1 2

Cprob 0 0.1 0.25

Cnum 0 4 8

Cecut 0 3 6

B [4,2] [4,2] [4,2] [1.1]
Bspace 50 50 50

Bcurve 0 1 2

Bmaxc 0 3 10

The slide hybridization was for the spot shape simulation. There were several

models included in this step to control the spot shape. Since there was no single model

that can simulate all the types of microarray images, several models such as Gaussian and

polynomial hyperbolic models were implemented [42]. Researchers may set up

parameters in different error models to control the spot shape. The final spot shape will

be influenced by the multiplicative Gaussian noise with the researcher-specified

parameter values in error noise models. In addition, this step allowed users to choose

which type of microarray was related. two-channel or one-channel. For Affymetrix

oligonucleotide microarray, the rectangular spot influenced by the Gaussian noise model

was used. Like the previous steps. the user could also specify the parameters in each error

models. Table 3.5 contains the parameters used in this step.



Table 3.5 List of hybridization parameters

40

Good Normal Bad Affymetrix
H,- 0.001 0.01 0.1 0.01
Herrors 1 1 1 1
Hbgnoise 10 30 50 20
Hbgvar 0.001 0.01 0.03
Hbggrad 1 1 1 1
Hnoscratch | 0 1 3 0
HSlength 0 0.3 0.9
HSwidth 0 3 S
Hnoair 0 1 3
H_ . 0 15 30
H, 1 10 20
Hbleed 0 2 10
Fbleedsize 0 S 10
Hbleeddist 0 0.4 0.4

After the hybridization process, the microarray image was read by an optical

scanning. Although the advanced scanners are usually of high quality. they could still

generate misalignment errors. For example, the slide was not perfectly scanned straight in

the chip. This misalighment happens very often in Affymetrix microarray image cases. In

addition. there may be some saturate measurement values generated due to the finite

dynamic range of the scanner.

After the scanning step, the microarray image was generated automatically. The

user could also define if the built in segmentation algorithm is used to analyze the

simulated image straightly. Table 3.6 contains the parameters used in this step.
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Table 3.6 List of scanning parameters

x Good Normal Bad 1
Rpower 1 10 20 1
Rb 16 16 10

| Req 0 0 0
Rth 7 5 3
RRch 2 2 2
RGch 1 1 1
Rerrors 0 1 1
Rangle 0 0.1 1

' Rmm 0 0 1

3.3 Microarray Simulation Process

When evaluating the performance of the segmentation algorithms. it is hard to
discover the exact gene expression levels or pixel level intensities. Hence, we utilized the
simulation module to obtain different qualities of microarray images. The “ground true
information™ for each simulated image was pre-assigned before analysis. In order to
obtain a comprehensive understanding of different algorithms’ performance, we analyzed
the simulated image based on the gene expression level in order to observe the expression
sensitivity of different algorithms will be directly analyzed. In our research, we mainly
focused on high quality resolution simulation since nowadays every high density
oligonucleotide microarray is produced in an advanced experimental environment.
Bubble, scratch and other layout disadvantages are rarely generated.

Therefore. we could control the gene signal values and intensity values to
implement the simulation for each microarray image group. All the simulated images for
each quality microarray group will share the same signal and intensity inputs. Next. these
images were analyzed separately with both SBC and GCOS to generate two sets of

intensity values and used the built in GCOS gene signal of the MASS5 algorithm to
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compute the corresponding signal values from those two sets of intensity values. In this
way. we could compare the gene expression results between these two methods. This
feature was more desirable than just to validate the intensity accuracy because the gene
expression level has a more influential meaning in practice than the intensities have.
When the simulation step was completed, a simulated microarray image TIFF file
was generated and written into a specitic DAT file. Next, the DAT file and TIFF file were
imported into both SBC and GCOS in order to obtain two sets of intensity and signal
values. Therefore. not only was the intensity accuracy evaluated, but also the signal
accuracy was validated using both SBC and GCOS methods in the evaluation process.

This whole process is illustrated in Figure 3.3.

1 NMhicrearray Image
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Figure 3.3 Microarray simulation process



1. Write simulated microarray image into DAT file.

In what follows. we defined each step of the process, after obtaining the simulated
microarray images, the Affymetrix GCOS will analyze the images. However, the
Affymetrix GCOS software cannot analyze the microarray image type file (JPG, TIFF
and so on) directly. In order to allow the Affymetrix GCOS to analyze the simulated
image, we needed to rewrite the simulated microarray image into the *.DAT file. The
* DAT file contains the 16-bit grey level image pixels data, header information, layout
information and so on. It is a special data format designed by Affymetrix. The first
section in DAT file is the header information stored in DAT file. The pixel data matrix is
stored as 16-bit unsigned integer value at byte 512 following the header. The new
simulated microarray image has everything as the original image except has for the image
pixels data. Thus, we extracted the new simulated pixels data and wrote them into the
original DAT file and remained any other layout information the same. In this case. we
got a new DAT file corresponded to the new simulated microarray image.

2. Analyze the new DAT file by GCOS.

When the simulated image was written into the specific DAT file format, the new
DAT file was imported into GCOS. GCOS automatically analyzed and generated the
CEL2 file and CHP2 file, which presented the intensity and expression information for
that specific DAT file. In such a way, one set of intensity values and signal values from
GCOS was obtained.

3. Analyze the new simulated image by SBC.

SBC is the segmentation based contour algorithm implemented in JAVA platform.

The input of SBC is a batch file. which contains both image and grid location information
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together. New simulated image and its corresponding grid information are written into

saved as the output in a

P,

C. The intensity results were

this batch file and imported into SB

TXT file, which contains four columns. They were the numbers of pixels assigned as the

toreground, foreground/background mean, cell intensity and cell background median. In

addition, the SBC generated a segmented image shown in Figure 3.4 with the boundary

colored in white for each cell.
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Figure 3.4 Segmented image by SBC

4. The SBC intensity output is written into CEL file to get the corresponding gene

expression signal values.

image

in TXT file after

intensity output

generate

SBC algorithm will

segmentation. Since our objective was to detect the signal expression sensitivity for each

segmentation algorithm., we needed to calculate the gene expression values by MASS3

based on the intensity values obtained from SBC. However, the GCOS requires special

CEL file format as the input to MASS algorithm. In another words, we needed to write



45

the SBC intensity TXT file output into this specified CEL file. The CEL file format was
an ASCII text file, which was divided into many sections begin with a section name
defined by a line. It contained the information for each probe cell. It included the layout
coordinates of each cell, the intensity value for each cell, the number of pixels included
tfor each cell and the standard deviation of each cell, etc.

Theretore, CEL3 was generated from the intensity values obtained from SBC.
Next, we used MASS to analyze these intensity values stored in CEL3 file to get the
corresponding gene expression signal values stored in CHP3 file.

We started with the picture that we want to segment and using the segmentation
method, embedded into the GCOS, we created a CELL1 file, which stores the results of
the intensity calculations on the pixel values of the DAT file. Using the data acquisition
module in the GCOS, we extracted the gene values, the so called “true-values™ in CHP1
file. On the CELLI file, we applied the algorithm, and we generated a new picture. This
picture was segmented using the segmentation module in the GCOS and generated
CELL2 file. It was segmented using the SBC method and generated CELL3 file. To
eliminate any bias in our analysis. we processed both CELL2 and CELL3 files with the
data acquisition module inside the GCOS and obtained gene values in CHP2 file from
Affymetrix and gene values in CHP3 file from SBC. These two sets of gene signal values
were compared with the “true values” and statistical analysis performed to determine
which segmentation method performs better.

Hence. after modifying the original simulation algorithm. we were able to
generate Affymetrix type of images by using the obtained intensity value, the so-called

“true values.” Previous studies in the literature did not have such information; therefore.
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the statistical analysis that could be done was rather limited. After applying our
modification to the algorithm, we were able to generate any number of pictures we
needed for an experiment. To these pictures we could apply and any segmentation
method in existence. and we could analyze which segmentation method offered values
closer to the “true values.” This simulation method also enables us to identity weak or
strong points within each segmentation method. In our research, we only compared the
performance of two methods: the SBC and the GCOS methods since GCOS was the

currently known method used in Affymetrix microarray analysis.

3.4 Microarray Simulation in 4 X 4 Blocks

Usually, a normal image is a 16-bit grey intensity image in a special DAT file
format. The DAT file contains a 512 byte header following by the raw image data. A
normal image, for instance, contains 4733 X 4733 grid of pixels which contains all the
cells as well as the small, vacant border area. Therefore, the total size for one image
would be 2*473372+512=44803090 bytes which is approximately 45M. Sometime, the
size of an image can be more than SOM up to 100M. Additionally, during the simulation
process, a large amount of grid layout information and noise error statistical models are
implemented. However, due to the limits of the computer RAM and MATLAB memory
space. our first approach we could not simulate a whole Affymetrix microarray image at
once from the original simulation model. Thus, we did an iteration to simulate the
microarray image piece by piece, and integrate all the pieces together into a whole image.

First. we divided the whole image probe cells area into 4 x 4 pieces from upper
left to lower right. Each piece contained 200 x 200 cells at most. After simulating the

image piece by piece. we omitted the border area in the simulated image. and we
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extracted the simulated cells area substituting them into the original image cells area. In
this case. we made sure that the probe chip layout format and border area was exactly the
same with the original microarray image but with different probe cells’ pixels. Figure 3.5
is the original microarray image for Canine_a genome. Figure 3.6 is the simulated

microarray Canine a image in 4 X 4 blocks.

Figure 3.6 Simulated microarray Canine_a image in 4 X 4 blocks
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The 4 x 4 blocks simulated microarray image has captured some properties of the
microarray experiment. However, there are some population block effects caused by the
piece wise simulation. This block effect motivated us to seek the possibility of one block

simulation.

3.5 Microarray Simulation in One Block

In the first stage of this research, due to the limit memory of CPU and MATLAB,
it was not possible to simulate the Affymetrix microarray image at one time. Hence, we
divided the original real microarray image into 4 X 4 blocks. Next, we implemented
simulation on each sub area iteratively. In this way, the Affymetrix microarray image
could be generated in computer but with obvious an population block effect which will
never happen in real microarray experiment image.

Therefore, we implemented the simulation model on a high performance
computer allowing simulate Affymetrix microarray image at one time. This guarantees
that the simulated Affymetrix microarray image was fully capturing the real biological

characteristics without any block effect.



CHAPTER 4

MICROARRAY IMAGE SEGMENTATION METHOD

In this chapter, we will present the Active Contours Without the Edges (ACWE)

segmentation method.

4.1 Active Contours Without the Edges Method

The Active Contours Without the Edges (ACWE) is a method introduced by Tony
F. Chan [27], as a model for active contours to detect objects in a given image. The
technique used is based on curve evolution and the method can detect objects that have
very smooth boundaries. The method uses an algorithm that employs finite difterence
partial differential equation. This ACWE method has been used in literature in multiple
studies. Mark Moelich and Tony F. Chanin [43] developed a tracking algorithm based on
the ACWE. segmentation algorithm that is able to handle changes that result from
deformations in the object that is tracked. Ahmad Almhdie in [44] presented a method
based on ACWE algorithm as a segmentation method used for mouse brain MRI images.
and Nassir Salman in [45] introduced an image segmentation algorithm based on ACWE
used to extract individual components from a medical image. We can continue with other
examples. Olivier Rousseau in [46] used ACWE for heart segmentation. Hence. we have
already established that the ACWE method is one of the frequently used segmentation

methods.
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In ACWE. an image u, is defined by two regions which are inside and outside the
objects within uy. The inside region is denoted by u) and the outside region is denoted
by ug. Hence, a fitting function is defined, where C is the active curve, and C; and C, are

the constants depending on C.

F,(C) + Fy(C) = f o (. y) — 1|2 ddy +
inside(c)
foutside(c) [uo(x, y) = CZided}L (4.1)

Hence, the object’s boundary C is the minimal C such that the fitting function is
inf{F(C) + F,(0)} = 0 = F,1(Co) + FL(Cp). (4.2)
After the fitting function is defined, the energy function is presented. where 4; >
0,4, > 0,v = 0,u > 0 are fixed values.

F(cy,c5,C)=p-Length(C) + v - Area(inside(C)) +
Ay fmside(c)luo (x,y) — c;|*dxdy + A, - finside(c)'uo (x,y) — co|? dxdy. (4.3)

For the following calculation, A, and A,are set to be 1 and v = 0. Thus. the
approximation value u of uJ can be defined in

_ { average(uy)insideC, (4.4)

~ laverage(uy)outsideC.
In the level set method, C is represented by the Lipschitz function, C € Qand ¢ :
Q-R
C=0dw={(x,y)eQ: ¢(x,y)=0},
inside(C) = w = {(x,y)e: ¢(x,y)>0}. (4.5)
inside(C) = w = {(x,y)e: ¢(x, y)<0}.

After substitute ¢ for C in above level set. Heaviside function H and Dirac

function & are introduced as follows:



_(Lifz=0,
H(z) = {o, if z< 0. (4.6)
5,(z) = %H(z). (4.7)

Next, the energy function F(cq, ¢,, C) can be rewritten as follows:
Length{¢ = 0} = [, |VH(p(x, ) |dxdy = Jq |(dCe, )| 8o(d(x,y))dxdy. (4.8)
JysolttoCr,y) — e Pdxdy = [ lu(x,¥) = c1]* - H(¢(x,»))dxdy.  (4.9)
[yeolua (e, y) = e 2dxdy = [ luo(x,) = col? - (1 = H(¢(x,3))) dxdy.  (4.10)

Fey,c0,C) = p fo IV, )1 - 8((x, ) )dxdy + v+ [, H(¢(x, y))dxdy+
A fy lwe(ey) = eyl - H(p(x, y))dxdy+
2o o oo y) = cal? - (1= H(p(x,3)) ) dxdy (@.11)

Finally, the approximation u is obtained.
u(r,y) = o H(@G )+ (1= H(9(x 1)), (uy)ed.  @.12)
Finite difference technique is implemented to solve the partial differential
equation problem.
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The whole algorithm is introduced as follows:

1. An evolving curve is initialized. Initialize ¢p°by ¢ . n=0.

2. Compute the average energy inside and outside the active curve.

Jo uo(x.¥)H(@p(xy))dxdy

(4.14)
Jo H(@(xy))dxdy

c1(p)=

Ja uo(xl}’)(l—H(d)(x,y)))dxdy
Ia (1—H(¢>(x,y))>dxdy '

ca(P)= (4.15)

3. Detect the exact curve by solving the PDE in ¢, where ¢(0,x,y) =

do(x,y) in 02, %%2%% = 0 on 9N, nis the exterior normal vector to the boundary 9Q,

ag . . . .
and 5% is the normal derivative of ¢ at the boundary.

%gt: = 6£(¢) [#dlv (T%) 2 Al(uo - 61)2 + Az(uO - Cz)z] = 0, (0, OO) X .Q (4.16)

4. Reinitialize ¢ based on the signed distance function to the curve.
5. Check if the solution is stationary or not. If not, n = n + 1 and repeat from step

{two.

4.2 Advantages of Active Contours Without the Edges Method

From [27]. it has been established that the Active Contours Without the Edges
method does not determine the curve from being initialized to being stopped at the
boundary by using the edge function. The edge detection function technique is the
traditional segmentation tool in image processing, machine vision and computer vision.
especially in feature detection and feature extraction. All of these aim at identifying the
points where the image brightness changes sharply or discontinuity. Normally. several
discontinuities are considered during the partition process such as the discontinuities in

depth. discontinuities in surface orientation, and changes in material properties and
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variations in scene illumination. However, most of these edge function detection
techniques are not capable of capturing the spatial relationship information of the pixels.
The main disadvantages of these types of methods are sensitivity to noise and inaccurate
segmentation over the boundary [47]. Hence, in the ACWE model, it does not rely on the
edge detection function, which solves the problem of evolving curve over the defined
boundary.

In the ACWE model, the initial curve can be set anywhere within the boundary. In
traditional active contours method, however, the initial curve must be defined close to the
objects. In this case, ACWE is more robust when applying on the microarray image
segmentation process. In our research, the object within the defined boundary was
randomly located, which was the property of the microarray experiment.

In the ACWE method, it can detect the boundary of the object even in noisy
image. but in traditional segmentation method, the image needs to be smoothed at the
beginning if it is in a noisy condition.

The traditional active contours method is to detect the object different from the
background. After initializing a curve within an image, the internal and external forces
will drive the evolving curve to the contours of the object, which implies that the ACWE
method is more convenient to segment a various conditions of images. The original
snake’s model used in active contours method is presented for a curve C, the external

energy is defined as the energy out of the curve C.

1 2
Eort(C) = J; |Vu0 (c((s>))| ds. (4.17)
The internal energy is defined as the energy inside of the curve.

Eine(€) = a [J1C'(S)I?ds + B f,1C"(S)|? ds. (4.18)



Total energy to be minmimized is detined as follows:
E(C) = A Eey(C) + Eine (C) (4.19)
Hence, in this original snake’s model, the boundary of the objects may not be
detected correctly when the initial curve is defined far from the boundary of the object.
Given this disadvantage, the ACWE method introduces a new balloon force into the

snake’s model. The modified snake’s model of the minimum energy is defined by the sum

of these three terms afollC’(S)lzds +Ef01IC”(S)|2ds , AfolfVuo (C((S)))l2 and

v[f, dxdy.
This modification reduces the sensitivity of the initial curve and the noise level of
the target image. In addition. by setting =0, w(0) = 1 and lim,_ ., w(x) = 0, the total

energy function is simplified as follows:

E(C) = A Eout (€) + B (C) = a [1C'()N2ds + 2 [} w|vuo (c((5)))|” ds. (4.20)

Therefore, the introduction of the balloon force will be adjusted. By applying
these modifications. there is no limit on the initial curve location and the condition of the
target image. This implies that the ACWE method has more advantages compared to the

traditional edge detection methods.

4.3 Segmentation Based Contours Method
As we mentioned previously. the ACWE method can partition an image into
several parts. but when applying it to microarray, it needs to partition the image exactly
into two parts: intensity and background. We will use Chan-Vese (C-V) method [23] and

make some improvements on the initial conditions to compute the exact boundary of the
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probe cell in Affymetrix GeneChip microarray. The proposed modified ACWE method is
called as the Segmentation Based Contours (SBC) method.
4.3.1 Reduce the Length Constraint.

Since the Affymetrix types of microarray image is very large, the segmentation is
very time consuming. Hence, we tested the possibility of a term reduction in the Chan-
Vese model. We still set 5_(¢) = 1 for simplicity. Some equations could be simplified.

¢

5t 8:(P)[A (ug — c1)* + 2, (up — c)?] = 0. (4.21)
_ﬂ% = [—l (uo,i,j - C1(¢’n)>2 + A, (uo,i,j - Cz(d)n))z]
= 2(c, (@™ — 2 (@™ )(ug; — (c1(@™) + c2(9™))/2). (4.22)

4.3.2 Using a Fast Algorithm.

The fast algorithm it directly calculates the difference of the both inside and
outside curve energy functions when detecting a pixel changed from inside curve to the
outside curve or opposite. When the changing pixel is detected, the whole region will be
updated. Next, each pixel will be swept and the iteration will terminate until the energy
remains stationary.

The fast algorithm is introduced as follows:

1. Set up an initial curve which could partition the image into two parts. ¢ =
1 and ¢ = —1 are represented for these two parts.

2. For a pixel x related to the intensity ).

If ¢(x) = 1. then
AFpp = (y =) === (y = ) == (4.23)

If AF;, < 0. then

¢ =—1 (4.24)



If ¢ = —1, then

m
m+1

APy = (y = ¢1)? (y = 2)* —. (4.25)
IfAF,, <0, then
¢ =1 (4.26)
Where ¢, is the average of the pixels within the objects; ¢, is the average of the
pixels beyond the objects; m is the number of the pixels within the objects; and n is the
number of the pixels beyond the objects.
3. Check 1f the energy function is stationary or not. If not, go back to step two and
iteration.
4.3.3 Using a Higher Order Finite Difference Scheme.

By using a higher order finite difference scheme, the segmentation results will be

more accurate.

¢n+1,'_¢n—1 j ¢n,+1_¢,n._1
2 ) and £ M

In ACWE. the central finite difference formula is ” =

8(¢?+1,j'¢?—1,/)"((75}14»2,;‘_4’?—2,])
12h

Then. we rewrite the central finite difference formula into

8(¢?j+1“1’?;’—1)—(‘1’?#2“‘1’3}'—2)
12h )

and In addition, we also improve the forward and

n n n n n n
Dive,j=Pij to ”¢i+2,j+4§’}:‘+1,j"3¢i,/" from ¢i,j+;‘¢ir,lj

backward finite ditference formula, from
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4.4 Apply Segmentation Based Contours Method on Affymetrix Image

Before we applied the Segmentation Based Contours (SBC) method on

Affymetrix microarray image. there were some adjustments that had to be implemented
in SBC.

* First, we conducted the SBC on each cell at a time. Usually, a normal
microarray image consists millions of cells. If we just use the SBC to analyze
the whole image at once, the segmentation and the extracted information for
each cell will not be accurate.

» Second. in order to locate each cell precisely, we introduced the grid
calculation for each cell. This grid calculation would detect and correct the
misalignment. After the grid process. each cell was assigned an x and y
coordinates.

* Third. we decreased the iteration times when finding the evolving curve
which decreased the segmentation time dramatically.

= Finally, we adjusted the u to detect dim cells.

After the adjustment, applying ACWE on microarray images was as follows:

1. Download the Affymetric microarray image library file from Aftymetrix

website: htip:/www. Affymetrix.com/support/technical/sample data/demo data.afix.

2. After installing the library file, DAT and CEL files related to the experiment
were extracted from GCOS.
3. We calculated the grid coordinates for each cell based on the DAT and CEL

files. An image type file (16-bit TIFF) of the microarray was extracted from the DAT file.


http://www.Affymetrix.com/support/technical/sample

4. Each cell was segmented iteratively by using the image type file and the grid
file. The 75" percentile of the pixels inside the curve were calculated and saved as the
intensity for that cell. Next. a TXT file containing the intensity information was
generated. In the TXT file. there were four columns. The first column saves the number
of pixels included inside the curve. The second column and the fourth column saved the
background median and mean. The third column saved the intensity for each cell. Figure
4.1 presents the segmented Affymetrix microarray image with the boundary of each probe

cell colored in white.

Figure 4.1 Affymetrix microarray image segmented by SBC

In Figure 4.1, we present a zoomed area of a segmented microarray image. More
detailed segmentation information is introduced in the following tables with one cell as
an example. Table 4.1 illustrates the “ground truth information” for each pixel in one
cell. Table 4.2 and Table 4.3 are shown as the segmentation results separately by GCOS
and SBC. In Table 4.2, GCOS sets the outer pixels in highlighted area as the boundary for
each cell. In Table 4.3, we set the detected boundary pixel value to be 60000. From these
three tables, the GCOS was seen as more unstable to be influenced by the different noise
level. It just cuts off the cell boundary pixels and calculates the 75" percentile for the rest
of pixels. As to SBC. we integrate the level set method to find the exact boundary for
each specific cell. This level set method is more robust and accurate than GCOS for the

segmentation accuracy.



Table 4.1 Ground truth pixels in one cell

271 376 143 196 98 159 91
56 286 121 83 174 128 234
54 83 76 76 76 83 234
55 354 196 143 76 76 174
57 98 76 76 98 301 76
51 286 76 143 136 76 106

L 49 91 294 76 76 211 76

Table 4.2 Segmentation results from GCOS
271 376 143 196 98 159 91
56 286 121 83 174 128 234
54 83 76 76 76 83 234
55 354 196 143 76 76 174
57 98 76 76 98 301 76
51 286 76 143 136 76 106
49 91 294 76 76 211 76
Table 4.3 Segmentation results from SBC
60000 | 60000 60000 60000 60000 60000 60000
60000 | 60000 60000 60000 60000 60000 60000
60000 | 60000 76 76 76 83 60000
60000 | 60000 60000 143 76 76 60000
60000 | 60000 76 76 98 60000 76
60000 | 60000 76 143 136 76 106
60000 | 60000 60000 76 76 60000 76
60000 | 60000 60000 60000 60000 60000 60000

In Table 4.4, we introduced intensity comparison among “ground truth intensity.”
SBC intensity and GCOS intensity. It is shown that our intensity value obtained from

SBC is more approaching with the true intensity value. More comprehensive comparison

method and results will be illustrated in segmentation results section.




Table 4.4 Intensity results comparison
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we will show how we performed gene expression value
comparison between the results obtained trom the SBC segmentation algorithm and the
GCOS segmentation algorithm. The GCOS algorithm utilizes the 75™ percentile pixel
value as the intensity value for each spot. It shows some weakness when analyzing
different qualities of spot cells. However, SBC algorithm segments each spot adaptively
by modifying the C-V model from three perspectives as we described in the previous
chapter. After solving the partial differential equations in C-V model. SBC achieves the
boundary for each spot cell in microarray image. Next, each spot is partitioned into two
areas. intensity and background. When applying the SBC segmentation process. the

parameters are set as A, = A3 = 1,v = 0, h = 1 and 4t = 0.1. In addition, smaller x. ¢,

are chosen according to the spot cell size in oligonucleotide microarray image. Once all
these parameter are set up in SBC program. it is not necessary to adjust them during the
segmentation.

After the simulation on real microarray data from sample data website [33]. two
sets of intensity and expression values were obtained for each simulated image after
applyving the SBC and the GCOS algorithms. Statistical comparison analysis was

conducted on these two sets of gene expression values. In our research, we mainly

61
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focused on the gene expression accuracy analysis. which was more related to the gene
expression levels. This gene expression accuracy analysis has more significant influence
in microarray image analysis.

At the beginning of our research, due to the limited memory of CPU and
MATLAB. it was not possible to simulate the Affymetrix microarray image at one time.
Hence. we divided the original real microarray image into 4 X 4 blocks. Next, we
implemented the simulation on each sub area iteratively. In this way, the Affymetrix
microarray image could be generated in a computer but with the obvious population
block etfect, which will never happen in real microarray experiment image. However.
since the simulation model we developed showed great improvements over known
methods, we investigated the comparison results for these 16-block simulated images and
obtained some encouraging results showing that the analyzed gene signal values obtained
from SBC is more accurate and stable compared to the analyzed gene signal values
obtained from GCOS. Therefore, we implemented the simulation model on a high
performance computer allowing simulate Affymetrix microarray images one at a time. In
this case, the simulated Affymetrix microarray image was fully capturing the real
biological characteristics without any block effect. Table 5.1 shows the system

information and MATLAB information.



Table 5.1 System and MATLAB information

Windows System: Windows 7 Professional
Version: 2009

Processor: Intel Core 15-2500K
System Type: 64-bit Operating System
Total Physical Memory: | 8GB

Installed Memory: 8GB

Installed Matlab: Matlab 7.11.0

Figure 5.1 presents the simulated 16-block image for Canine a genome. Figure

5.2 presents the simulated one block image for Canine_a genome.

Figure 5.1 Simulated 16-block image for Canine_a Genome
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Figure 5.2 Simulated one block image for Canine_a Genome

We started with the one block simulated Affymetrix image generated from the
sample of 23,912 genes in Canine_a genome. The sum of squares error metric was

investigated for this simulated image, which is considered to be the most useful measures

of dispersion. By calculating the sum of squares error },(observed data — true data)2
between the true gene signal value and the analyzed gene signal value, we could get a
general understanding on how far the analyzed gene signal value is away from the true
gene signal value. Table 5.2 shows the comparison result of sum of squares error. From
Table5.2. the SBC analyzed gene signal values have less sum of squares error compared
to the GCOS analyzed gene signal values. This result may indicate that the gene signal
value obtained from SBC has a better capability to approach the true gene signal value

compared to the gene signal value obtained from GCOS. In addition, for each pair, if the
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absolute difference between the SBC analyzed signal value and the true signal value is
smaller compared to the difference between the GCOS analyzed signal value and the true
signal value, value one will be assigned for SBC and value zero will be assigned for
GCOS and vice versa. Next, we summed up all the numbers assigned to SBC and
assigned to GCOS separately. The corresponding rate value was obtained through
dividing this summation by the total number of genes. Hence, from this rate measurement
of value, the percentage number of analyzed gene values for each method which
approaches more to the true gene values for each method SBC and GCOS is investigated.
From Table 3.2. it can be seen that SBC has higher percentage rate value 0.67 compared
to GCOS which has 0.33. This higher percentage rate indicates that there are 67% of
gene signal values that show that the analyzed gene signal values obtained from SBC
more nearly approaching the true gene signal values compared to the analyzed gene

signal values obtained from GCOS.

Table 5.2 Preliminary comparison for one block simulated image

Signal SBC GCOS
Sum of squares error 9860.32 33188.65
Rate 0.67 0.33

In order to investigate whether the analyzed gene signal value is significantly
different from the true gene signal value, paired t test was performed separately on
dland d2.

dl = Signaly e — Signalsg,. (5.1)

d2 = Signaltrue hd Signalccos. (5.2)
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In this paired t test. the null hypothesis and alternative hypothesis are presented as
follows:

Hy:ugr = 0and Hytug, = 0.
Hy: gz = 0and Hy: uyg, # 0.

We hypothesized that the mean difference between the true gene signal value and
the SBC gene signal value equals zero, and the mean difference between the true gene
signal value and the GCOS gene signal value equals zeros at the given significance
levelsa = 0.05,a = 0.01 and a = 0.001. The alternative hypothesis was that the mean
difference between the true gene signal value and the SBC gene signal value does not
equals zero and the mean difference between the true gene signal value and the GCOS
gene signal value does not equals zeros at the given significance levels @ = 0.05,a =
0.01 and a« = 0.001 .We chose three different significance levels as they represent
different critertons used to reject the null hypothesis. The lower the significance level, the
more the data must diverge from the null hypothesis to be significant. We used these three
significance levels for all the rest of the hypothesis tests performed in our research. Table

5.3 and Table 5.4 show the paired t test results for d1 and d2.

Table 5.3 Paired t test results for d1 = Signal;ye — Signalsgc

Significant level Decision for P-value = 0.0015
a = 0.05 Reject
a =0.01 Reject
a =0.001 Accept
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Table 5.4 Paired t test results for d2 = Signal;, e — Signalzcos

Significant level Decision for P-value < 0.000001
a =0.05 Reject
a =001 Reject
a = 0.001 Reject

Table 5.3 shows that the null hypothesis Hy: g, = 0 failed to be rejected at 0.001
significance level and were rejected at the other two significance levels. Hence. at the
0.001 significance level, we can conclude that the mean difference between the true gene
signal value and the SBC gene signal value is zero. However, in Table 5.4, the null
hypothesis Hy: (4> = 0 was rejected at all significant levels. Hence, the mean difference
between the true gene signal value and the GCOS gene signal value was significantly not
zero. Therefore, when we selected a more conservative significance level 0.001 for the
lowest probability of not being true, we can conclude that the mean of the SBC gene
signal value was closer to the mean of the true gene signal value as compared to the mean
of the GCOS gene signal value. The gene signal value obtained from SBC more nearly
approaches the true gene signal value on average.

In order to evaluate and compare such differences in magnitude, we set:

D1 = |Signaliyye — Signalggcl. (5.3)
D2 = |Signalirye — Signalgeos!- (5.4)

We compared the difference between the analyzed gene signal value and the true
gene signal value after taking the absolute value sign to get better understanding on “how
far™ but not on ~in which direction.” Our main interest was to decrease the difference
between the true gene signal value and the analyzed gene signal value. Hence, two

sample left tail t test was performed on the mean of D1 and the mean of D2 at the given
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significant levels ¢ = 0.05,a = 0.01 and a = 0.001. The null hypothesis and alternative
hypothesis were presented as follows:
Ho: upy = Upa-
Hy:ppy < Hpa.
This left tail t test could provide more information assuming the fact that the mean
difference between true gene signal value and the SBC gene signal value was smaller
than the mean ditference between the true gene signal value and the GCOS gene signal

value. The two sample t test results are shown in Table 5.5.

Table 5.5 Two sample t test for D1 and D2

Significant level Decision for P-value < (0.000001
a = 0.05 Reject
a = 0.01 Reject
a = 0.001 Reject

From Table 5.5, the null hypothesis Hy: up, = ppzwas rejected at all significant
levels. which indicated that we may accept the alternative hypothesis H;:pup; <
Upz. Thus, we could conclude that there was a significant ditference between the mean
of D1 and the mean of D2 and the mean of D1 was significantly less than the mean of
D2. Hence, from this twosample t test, the mean difference between true gene signal
value and SBC gene signal value are shown significantly smaller than the mean
difference between true gene signal value and GCOS gene signal value. The gene signal
values obtained from SBC were closer to the true gene signal values as compared to the
gene signal values obtained from GCOS.

In addition to the paired t test and two sample t test, we also drew the boxplot for

D1 and D2 as shown in Figure 5.3 to check if the SBC method provided gene signal
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values that were closer to the true gen signal values as compared to the gene signal values
provided by GCOS. The commonly used quartiles for D1 and D2 are described in Table
5.6.

The boxplot showed that the interquartile range and the total range of D1 are
smaller than those of D2. In addition, the mean of D1 is smaller than the mean of DZ,
which was consistent with the previous two sample t test result. Hence, from Figure 5.3
and Table 5.6. we may conclude that the absolute difference between true gene signal
value and SBC gene signal value is smaller compared to the absolute difference between
true gene signal value and GCOS gene signal value. Therefore, there was less
dissimilarity between true gene signal value and SBC gene signal value. SBC

segmentation method is providing more accurate gene signal values.
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Figure 5.3 Boxplot for D1 and D2
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Table 5.6 Quartiles summary information

Quartiles 0.025 025 |05 1075 10975 |1
D1:|Signaly,,, — Signalsge| | 045 |5.96 | 17.41 | 37.47 | 108.61 | 2545.95
D2:|Signal, . — Signalgeos| | 0.74 | 8.62 | 3227 | 7138 | 553.84 | 3411.45

After this hypothesis test analysis, we continued the analysis by introducing more
advanced statistical comparison techniques such as clustering analysis to investigate the
dissimilarity between the true gene signal value and the analyzed gene signal value
obtained from SBC and GCOS. Clustering analysis is the most commonly used method in
microarray image data analysis process [48, 49, 50, S1]. There are two important options
when performing the clustering analysis. One is the choice of the distance used to
evaluate the dissimilarity between different groups of data. In this option, Sum of

absolute difference Y7 |di| (Manhattan distance), Person correlation distance 1 —

z (observed data)+Z. (true data) . .
Se0Ls, score and Euclidean distance [Y'd? are the most

n
important metrics in performing clustering analysis. The other one is the choice of the
clustering technique on how to classify different groups of data based on the distance
measurements obtained from the first option.

Table 5.7 lists all the distance metrics used for calculating the distance between
the true gene signal value and the corresponding analyzed gene signal value obtained
from SBC and GCOS. Table 5.7 indicates that the analyzed gene signal value obtained
from SBC has smaller dissimilarity with true gene signal value as compared to the
analyzed gene signal value obtained from GCOS. In addition, the analyzed gene signal
value obtained from SBC has higher correlation with the true gene signal value as

compared to the analyzed gene signal value obtained from GCOS. Hence, we may
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conclude that SBC gene analyzed signal values are closer to the true gene signal values

than are the GCOS analyzed gene signal values.

Table 5.7 Different metrics comparisons for Canine_a one block simulated image

Measurements SBC Signal GCOS Signal
Sum of absolute difference (Manhattan distance) | 702602.7 1986828
Standard error of performance 63.76 214.62
Pearson correlation 0.99 0.98
Euclidean distance 9860.317 33188.65
Chebychev distance 2545.951 3411.448
Correlation distance 0.01015285 0.01485263
City block distance 702602.7 1986828

For Canine_a simulated microarray image, several commonly used difference
metrics were investigated in Table 5.7. The SBC analyzed gene signal value had the less
dissimilarity with true gene signal value compared to GCOS analyzed gene signal value.
Hence, we conducted the cluster analysis. This could provide more information that if the
SBC analyzed gene signal value and true gene signal value could be classified in the
same group based on this small dissimilarity.

Cluster analysis is the most widely used statistical technique in gene expression
analysis. In cluster analysis, a set of objects are assigned into different groups, where the
objects in the same group share the least dissimilarity to each other than to those in
different group. There are many different types of cluster algorithms used in different
fields. The hierarchical clustering has many applications, and it is the most widely used
method in bioinformatics gene expression data analysis [S1, 52]. It merges different
samples based on the pairwise distance similarity measurements to form same group until

all different objects are evaluated and contained in on single group. The result of a
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hierarchical clustering is a clustering complete tree plot with gene expression patterns as
leaves and the root as the convergence point of all groups.

In our research. we chose Unweight Pair Group Method [53] with Arithmetic
Mean as the bottom up agglomerative hierarchical clustering algorithm to measure the
dissimilarity among different objects. This agglomerative hierarchical clustering
algorithm is established to be the most commonly used cluster technique in
bioinformatics gene expression data mining analysis. The bottom up scheme starts from
the individual patterns and combines similar group together, ending up with the root
based on the difference metrics selected as the measurement. In our analysis, we chose
the Euclidean difference metric as the dissimilarity measurement for the clustering
algorithm as classifying different groups of gene signal values.

Figure 5.4 shows the dendrogram cluster tree plot after implementing the
hierarchical clustering algorithm on those three sets of gene signal values based on the
Euclidean distance metric. The three sets of data were automatically divided into two
different groups by average linkage clustering criterion. The SBC analyzed gene signal
values and the true gene signal values were classified in one group. The GCOS analyzed
gene signal values were classified in another different group. Therefore, the SBC
analyzed gene signal value had significant less dissimilarity to the true gene signal values
compared to the GCOS analyzed gene signal values. The SBC analyzed gene signal value
more nearly approaches the true gene signal value compared to the GCOS analyzed gene

signal value.
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Figure 5.4 Cluster Tree for Canine_a one block simulated image

From the paired t test, two sample t test and clustering analysis, we may conclude
that the SBC analyzed gene signal value had less dissimilarity with the true gene signal
value compared to the GCOS analyzed gene signal value. Hence. we desired to
investigate if the SBC analyzed gene signal value had a better capability to predict the
true gene signal value compared to the GCOS analyzed gene signal value. Inverse
regression was performed to provide more information on this prediction analysis.

Calibration problem in regression was studied and defined as the inverse
regression in [54, 55]. It aimed to build the relationship on the observed data from a
known observation of the dependent variable to predict a corresponding explanatory
variable. This can be known as the reverse process of common regression. In our

research. we aimed at evaluating predicted true gene signal values from observed
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analvzed gene signal values. Hence, the calibration inverse regression model was
constructed. where true gene signal value was the dependent variable and analyzed gene
signal value was the independent variable. In our research, we built two regression
models, one had the SBC gene signal value as the independent variable, and the other one
had the GCOS gene signal value as the independent variable.

ngq?

I3

Standard error of performance and R squared are shown in Table 5.8 for

these two models. where d; is the difference between the observed data and the true data.
The standard error of performance was a measurement to estimate what type of difference
was likely to be between the reference value and the prediction value when the inverse

regression model was used introduced by Trevor Hastie [S6] and A.M.C. Davies [54].

Table 5.8 Standard error of performance and R squared

True signal with SBC True signal with GCOS
signal signal

Standard error of 49.0563 59.2638

performance

R squared 0.9798 0.9705

From Table 5.8. the smaller standard error of performance and higher R squared
are observed, when using SBC analyzed gene signal value as the independent variable.
Hence. when we used the SBC analyzed gene signal value to predict the reference true
gene signal value. it was likely to have more accurate prediction than we used the GCOS
analyzed gene signal value. The SBC gene signal value had better linear relationship with
the true gene signal value.

Additionally, we investigated the linear relationship between the analyzed gene

signal value and the true gene signal value in regression model. This regression model
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provided us more visual information on how well the SBC analyzed gene signal value
and the GCOS analyzed gene signal value were correlated with the true gene signal value
and their prediction performance. Figure 5.5 and Figure 5.6 present the inverse
regression plots for the SBC analyzed gene signal value and the GCOS analyzed gene

signal value.
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Figure 5.5 Regression plot using SBC signal as independent variable
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Figure 5.6 Regression plot using GCOS signal as independent variable

Setting the true gene signal value as the dependent variable, we built two inverse
regression models; one had the SBC analyzed gene signal value as the independent
variable and the other one had the GCOS analyzed gene signal value as the independent
variable in the inverse regression model. By comparing these two inverse regression
models. it can be shown in Figures 5.5 and 5.6, that SBC signal had a better linear fit
correlation with the true signal compared to GCOS signal.

Figures 5.7 and 5.8 present the residual plot for these two inverse regression
models to show the model of fit capability. Residuals in Figure 5.7 from SBC signal
model were more compressed and evenly distributed around zero horizontal line.
However, residuals in Figure 5.8 from GCOS signal model were more scattered and

exhibiting a trend. slowly increasing with the increasing number of the predicted value.
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The true gene signal. the SBC analyzed gene signal and the GCOS analyzed gene
signal were all measured for the same gene on the expression level in the same
microarray experiment. Therefore, straight linear regression relationship was expected
between the true gene signal and the analyzed gene signal. By performing the inverse
regression analysis, we may concluded that the SBC analyzed gene signal value was
more stable to predict the true gene signal value with less standard error of performance
and higher R squared. In addition, the SBC analyzed gene signal value had a better linear
fit with the true gene signal value. From the above comparison results, we achieved as
standard error of performance, R squared and residual plot, SBC analyzed gene signal
values were more accurate in estimating and predicting the true gene signal value as
compared to the GCOS analyzed gene signal values.

Since one simulated microarray image cannot provide the unbiased comparison
analysis results, the unbiased sampling replication number needed to be evaluated based
on the appropriate sampling error [57]. A commonly used technique would be to increase
the simulation replications, which will approach all the characteristics of the population.
Hence, for different microarray images, the standard deviations and average mean u

should be related to the sample replication determination. The sample size determination

. txCV : : .
formula n = (—3—,—5——)2 and CV = % was introduced in our research, where at significant

level @ = 0.05. Hence, tgo5 i1s 1.96 and u and s are determined based on the given
population characteristics. Table 5.9 shows the sample replication size table for different

sampling error rate.
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Table 5.9 Sample replication size table

SE= |SE= SE = SE = SE =
Array Lo s 1% 0.75% 0.65% 0.5% 0.1%
Canine a | 278 | 640 |20 36 48 81 2029
Bovine a | 486 | 1690 | 46 82 110 185 4637
Canine b | 319 | 722 |20 35 47 79 1968
Bovine b | 425 | 1475 | 46 82 110 185 4634
Vitis a 604 | 1072 | 12 22 29 48 1211
Vitis b | 633 | 1113 | 12 21 28 48 1189
Yeast-1 | 368 | 964 | 26 47 62 105 2629
Yeast-2 | 378 | 1001 | 27 48 64 108 2696

Considering the simulation time and segmentation time for each simulated
microarray image, we chose 50 as the replication size, where SE = 0.75% for six out of
eight microarray images and sampling error between 0.75% and 1% for the rest two
microarray images. Therefore, 50 simulation replications for each microarray image
guarantee that SE is below 1%.

Table 5.10 presents the standard error of performance of 50 simulation replication
images for Canine_a group. If the standard error of performance for SBC analyzed gene
signal value was less than the standard error of performance for GCOS, a value one was
assigned on the last column in Table 5.10. If value one was assigned, this indicated that
the SBC analyzed gene signal value had a better linear relationship with the true gene
signal value as compared to the GCOS analyzed gene signal value. The SBC analyzed

gene signal value more nearly approaches to the true gene signal value.



Table 5.10 Standard error performance comparison for Canine_a

Standard error of Standard error of SBC is
Simulation | performance (SBC) performance (GCOS) better
1 63.76 214.62 1
2 66.12 58.50 0
3 85.78 80.59 0
4 65.41 58.17 0
5 84.84 216.55 1
6 70.29 214.63 1
7 69.29 220.17 1
8 72.93 68.10 0
9 58.30 48.67 0
10 62.26 215.55 1
11 59.22 216.76 1
12 50.16 209.02 1
13 63.59 54.96 0
14 62.35 53.97 0
15 68.72 213.49 1
16 68.91 214.06 1
17 65.04 215.02 1
18 64.28 216.55 1
19 53.71 45.64 0
20 57.65 50.31 0
21 59.95 215.94 1
22 56.27 205.96 1
23 48.56 207.83 1
24 52.54 43.01 0
25 73.99 67.18 0
26 67.41 220.61 1
27 54.21 42.61 0
28 58.99 50.72 0
29 58.56 218.83 1
30 52.67 215.05 1
31 173.00 165.74 0
32 57.30 226.46 1
33 69.81 213.49 1
34 70.73 214.06 1
35 160.85 154.05 0
36 156.12 147.65 0
37 174.09 167.20 0
38 56.08 214.62 1
39 51.54 208.03 1




Table 5.10 Contd.

40 147.66 139.61 0
41 151.15 142.26 0
42 126.72 116.17 0
43 80.21 221.91 1
44 70.38 226.46 1
45 68.83 213.70 1
46 51.85 208.81 1
47 74.08 226.83 1
48 60.81 213.51 1
49 58.16 214.63 1
50 50.58 220.17 1

Table 5.11 presents the Pearson correlation of 50 simulation replication images
for Canine_a group. If the Pearson correlation for SBC analyzed gene signal value was
less than the Pearson correlation for GCOS, a value one was assigned on the last column
in Table 5.9. If value one was assigned, this indicated that the SBC analyzed gene signal

value was more correlated to the true gene signal value as compared to the GCOS

analyzed gene signal value.

Table 5.11 Pearson correlation comparison for Canine_a

Pearson Correlation for | Pearson Correlation for SBC is
Simulation | SBC GCOS better
1 0.9898 0.9851 1
2 0.9915 0.9951 0
3 0.9916 0.9950 0
4 0.9915 0.9946 0
5 0.9906 0.9841 I
6 0.9905 0.9859 1
7 0.9916 0.9860 1
8 0.9911 0.9946 0
9 0.9916 0.9952 0
10 0.9905 0.9843 1
11 0.9910 0.9856 1
12 0.9920 0.9844 1
13 0.9915 0.9953 0
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14 0.9911 0.9946 0
15 0.9914 0.9849 1
16 0.9922 0.9844 1
17 0.9914 0.9863 1
18 0.9917 0.9841 1
19 0.9912 0.9944 0
20 0.9918 0.9947 0

21 0.9918 0.9834 1
22 0.9910 0.9849 1
23 0.9910 0.9855 1
24 0.9915 0.9948 0
25 0.9914 0.9953 0
26 0.9913 0.9859 1
27 0.9896 0.9941 0
28 0.9919 0.9950 0
29 0.9916 0.9849 1
30 0.9918 0.9852 1
31 0.9720 0.9890 0
32 0.9913 0.9854 1
33 0.9918 0.9849 1
34 0.9915 0.9844 1
35 0.9741 0.9890 0
36 0.9740 0.9891 0
37 0.9724 0.9888 0
38 0.9910 0.9851 1
39 0.9920 0.9869 1
40 0.9756 0.9898 0
41 0.9731 0.9877 0
42 0.9768 0.9900 0

43 0.9910 0.9849 1
44 0.9918 0.9854 ]
45 0.9911 0.9844 1
46 0.9899 0.9875 ]

47 0.9912 0.9847 1
48 0.9909 0.9850 1
49 0.9920 0.9859 1
50 0.9917 0.9860 1




Table 5.12 presents the paired t test for Canine a group of 50 simulated images
performed on d1 = Signal; . — Signalsge with the null hypothesis and alternative
hypothesis listed below.

Hy:pugq, = 0and Hy:pug, # 0.

P values are shown for each image on the last column in Table 5.12. The decision
results are also shown at the given significance levels, 0.05, 0.01 and 0.001.

When the null hypothesis failed to be rejected, that meant there was not enough
evidence to show that the mean difference between the true gene signal value, and the
SBC analyzed gene signal value was significantly not zero. Hence, there was no
significant difference between the mean of the SBC analyzed gene signal value and the
mean of the true gene signal value. When the null hypothesis was rejected, that meant the
mean difference between the true gene signal value and the SBC analyzed gene signal

value was significantly not zero. Hence, there was significant difference between the

mean of the SBC analyzed gene signal value and the mean of the true gene signal value.

Table 5.12 Paired t test for the SBC analyzed gene signal value from Canine_a

Simulation | Decision for a | Decision for a = | Decision for a = P-values
= 0.05 0.01 0.001

1 Reject Reject Accept 0.00151394
2 Reject Accept Accept 0.01726763
3 Reject Reject Reject < 0.0000001
4 Accept Accept Accept 0.30516950
5 Reject Reject Reject < 0.0000001
6 Reject Reject Reject 0.00000002
7 Reject Reject Reject < 0.0000001
8 Reject Reject Reject < 0.0000001
9 Reject Reject Reject < 0.0000001
10 Reject Reject Accept 0.00493396
11 Reject Reject Reject < 0.0000001
12 Reject Reject Reject < 0.0000001
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13 Accept Accept Accept 0.62280550
14 Accept Accept Accept 0.05122368
15 Reject Reject Reject < 0.0000001
16 Reject Reject Reject < 0.0000001
17 Accept Accept Accept 0.22036240
18 Accept Accept Accept 0.07014492
19 Reject Reject Reject < 0.0000001
20 Reject Reject Reject < 0.0000001
21 Reject Reject Reject 0.00072543
22 Reject Reject Reject < 0.0000001
23 Reject Reject Reject < 0.0000001
24 Reject Reject Reject < 0.0000001
25 Reject Reject Reject < 0.0000001
26 Reject Reject Reject 0.00017473
27 Reject Reject Reject < 0.0000001
28 Reject Reject Reject 0.00003934
29 Reject Reject Reject 0.00000273
30 Reject Reject Reject < 0.0000001
31 Reject Reject Reject <0.0000001
32 Reject Reject Reject <0.0000001
33 Reject Reject Reject <0.0000001
34 Reject Reject Reject <0.0000001
35 Reject Reject Reject < 0.0000001
36 Reject Reject Reject < 0.0000001
37 Reject Reject Reject < 0.0000001
38 Reject Reject Reject < 0.0000001
39 Reject Reject Reject < 0.0000001
40 Reject Reject Reject < 0.0000001
41 Reject Reject Reject < 0.0000001
42 Reject Reject Reject < 0.0000001
43 Reject Reject Reject < 0.0000001
44 Reject Reject Reject < 0.0000001
45 Reject Reject Reject 0.00000003
46 Reject Reject Reject < 0.0000001
47 Reject Reject Reject < 0.0000001
48 Reject Reject Accept 0.00416029
49 Reject Reject Reject < 0.0000001
50 Reject Reject Reject < 0.0000001




Table 5.13 presents the paired t test for Canine_a group of 50 simulated images

performed on d2 = Signalyy,, — Signalgcos with the null hypothesis and alternative

hypothesis listed below.

HO:MdZ = 0 and leﬂdz * 0.

P values are shown for each image on the last column in Table 5.13. The decision

results are also shown at the given significance levels, 0.05, 0.01 and 0.001.

When the null hypothesis failed to be rejected, that meant there was not enough

evidence to show that the mean difference between the true gene signal value, and the

GCOS analyzed gene signal value was significantly not zero. Hence, there was no

significant difference between the mean of the GCOS analyzed gene signal value and the

mean of the true gene signal value. When the null hypothesis was rejected, that meant the

mean difference between the true gene signal value and the GCOS analyzed gene signal

value was significantly not zero. Hence, there was significant difference between the

mean of the GCOS analyzed gene signal value and the mean of the true gene signal

value.

Table 5.13 Paired t test for the GCOS analyzed gene signal value from Canine_a

Simulation | Decision for a = | Decision for o = | Decision fora = | P-values
0.05 0.01 0.001

1 Reject Reject Reject < 0.0000001
2 Reject Reject Reject < 0.0000001
3 Reject Reject Reject < 0.0000001
4 Reject Reject Reject < 0.0000001
5 Reject Reject Reject < 0.0000001
6 Reject Reject Reject < 0.0000001
7 Reject Reject Reject < 0.0000001
8 Reject Reject Reject < 0.0000001
9 Accept Accept Accept 0.17197370
10 Reject Reject Reject < 0.0000001
11 Reject Reject Reject < 0.0000001
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12 Reject Reject Reject < (.0000001
13 Reject Reject Reject < 0.0000001
14 Reject Reject Reject 0.00000795
15 Reject Reject Reject <0.0000001
16 Reject Reject Reject < 0.0000001
17 Reject Reject Reject < 0.0000001
18 Reject Reject Reject < 0.0000001
19 Reject Reject Reject < 0.0000001
20 Accept Accept Accept 0.86454040
21 Reject Reject Reject < 0.0000001
22 Reject Reject Reject < 0.0000001
23 Reject Reject Reject < 0.0000001
24 Reject Reject Reject < 0.0000001
23 Reject Reject Reject < 0.0000001
26 Reject Reject Reject < 0.0000001
27 Reject Reject Reject < 0.0000001
28 Accept Accept Accept 0.21564290
29 Reject Reject Reject < 0.0000001
30 Reject Reject Reject < 0.0000001
31 Reject Reject Reject < 0.0000001
32 Reject Reject Reject < 0.0000001
33 Reject Reject Reject < 0.0000001
34 Reject Reject Reject < 0.0000001
35 Reject Reject Reject <0.0000001
36 Reject Reject Reject < (.0000001
37 Reject Reject Reject < 0.0000001
38 Reject Reject Reject <0.0000001
39 Reject Reject Reject < 0.0000001
40 Reject Reject Reject < 0.0000001
41 Reject Reject Reject < 0.0000001
42 Reject Reject Reject < 0.0000001
43 Reject Reject Reject <0.0000001
44 Reject Reject Reject < 0.0000001
45 Reject Reject Reject < 0.0000001
46 Reject Reject Reject < 0.0000001
47 Reject Reject Reject < 0.0000001
48 Reject Reject Reject < 0.0000001
49 Reject Reject Reject < 0.0000001
50 Reject Reject Reject < 0.0000001
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Table 5.14 presents the Minkowski distance metric comparison for 50 simulation
replication images of Canine_a group. This Minkowski distance is a generalization of
both the Euclidean distance and the Manhattan distance. If the Minkowski distance for
SBC analyzed gene signal value was less than the Minkowski distance for GCOS, a value
one was assigned on the last column in Table 5.14. If value one was assigned. this
indicated that the SBC analyzed gene signal value had less dissimilarity with the true

gene signal value as compared to the GCOS analyzed gene signal value.

Table 5.14 Minkowski distance comparison for Canine_a

Simulatio | Minkowski Distance for Minkowski Distance for SBC is
n SBC GCOS better
| 4211.80 11319.20 1
2 3879.50 3620.41 0
3 5030.95 4884.74 0
4 3909.66 3724.42 0
5 5215.08 11588.73 1
6 4371.60 11329.68 1
7 4022.55 11661.54 1
8 4290.29 4301.41 1
9 3352.41 2998.08 0
10 3854.42 11495.30 1
11 3608.77 11470.49 1
12 2817.01 11138.84 1
13 3694.73 3451.64 0
14 3707.36 3485.22 0
15 4047.60 11290.95 1
16 3932.16 11426.56 1
17 3793.59 11403.90 1
18 3802.05 11588.73 1
19 3152.21 2995.43 0
20 3347.84 3216.32 0
21 3428.99 11545.44 1
22 3297.30 10996.41 1
23 2661.52 11043.57 i
24 3090.47 2693.76 0
25 4321.79 4093.69 0
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Table 5.14 Contd.

126 3974.47 11728.18 1
27 3811.73 3071.12 0
' 28 3364.70 3144.85 0
29 3419.27 11619.84 1
30 3066.89 11487.53 1
31 9919.52 9685.08 0
32 3423.76 12048.97 1
33 4027.10 11290.95 1
34 4162.12 11426.56 1
35 9095.63 9003.37 0
36 8857.26 8602.88 0
37 9871.26 9686.59 0
38 3413.36 11319.20 1
39 2854.86 11025.45 ]
40 8341.22 8165.39 0
41 8545.57 8320.00 0
42 7091.48 6878.61 0
43 4803.63 11759.76 1
44 4095.02 12048.97 1
45 4025.67 11385.35 1
46 3346.63 11067.18 1
47 4393.55 12067.78 1
48 3596.24 11328.69 1
49 3281.92 11329.68 1
50 2810.19 11661.54 1

Table 5.15 presents the Euclidean distance metric comparison for 50 simulation
replication images of Canine_a group. If the Euclidean distance for SBC analyzed gene
signal value was less than the Euclidean distance for GCOS, a value one was assigned on
the last column in Table 5.15. If value one was assigned. this indicated that the SBC
analyzed gene signal value had less dissimilarity with the true gene signal value as

compared to the GCOS gene signal value.



Table 5.15 Euclidean distance metric comparison for Canine a

| Simulatio | Euclidean distance for Euclidean distance for SBC is

'n SBC GCOS better

1 9860.32 33188.65 1
2 10224.29 9046.84 0
3 13265.08 12461.79 0
4 10114.46 8994.62 0
5 13120.15 33487.29 ]
6 10869.69 33189.58 1
7 10714.73 34046.66 ]
8 11277.45 10530.10 0
9 9014.94 7526.40 0
10 9627.11 33332.33 1
11 9156.99 33519.05 1
12 7757.08 32322.46 1
13 9832.91 8498.66 0
14 9642.11 8345.75 0
15 10626.21 33014.10 1
16 10656.60 33102.52 1
17 10058.29 33250.46 1
18 9940.32 33487.29 1
19 8305.48 7057.04 0
20 8914.60 7780.56 0
21 9270.79 33392.16 1
22 8701.43 31848.69 1
23 7509.78 32138.96 |
24 8124.77 6651.55 0
25 11441.62 10388.90 0
26 10424.26 34115.29 1
27 8382.38 6588.64 0
28 9121.46 7843.03 0
29 9056.30 33839.99 1
30 8145.14 33255.69 1
31 26752.48 25629.96 0
32 8860.87 35019.78 1
33 10795.52 33014.10 1
34 10937.98 33102.52 1
35 24873.14 23821.47 0
36 24141.60 22831.65 0
37 26921.69 25855.56 0
38 8672.50 33188.65 1
39 7969.38 32169.83 1
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| 40 » 22833.23 21588.95 0
41 . 23374.32 21999.50 0
42 1 19595.76 17963.76 0
43 12403 .41 34316.12 ]
44 10883.20 35019.78 1
45 10644.51 33045.81 1
46 8017.38 32290.09 1
47 11456.02 35075.94 1
48 9403.27 33016.23 1
49 8993.18 33189.58 1
50 7821.88 34046.66 1

Table 5.16 presents the correlation distance metric comparison for 50 simulation

replication images of Canine_a group. If the correlation distance for SBC analyzed gene
signal value was less than the correlation distance for GCOS, a value one was assigned
on the last column in Table 5.16. If value one was assigned, this indicated that the SBC
analyzed gene signal value had less dissimilarity with the true gene signal value as

compared to the GCOS gene signal value.

Table 5.16 Correlation distance metric comparison results for Canine_a

Correlation distance for | Correlation distance for SBC is 1
Simulation | SBC GCOS better
1 702602.70 1986828.00 1
2 724797.10 541573.70 0
3 826781.00 659337.30 0
4 725176.00 537168.40 0
5 817402.00 1987510.00 1
6 740425.00 1983415.00 1
7 745560.20 2026214.00 1
8 767690.30 585245.90 0
9 693226.20 501522.60 0
10 699760.50 1978458.00 I
11 689894.90 1994482.00 1
12 663211.50 1923072.00 1
13 722084.10 528692.90 0
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14 704024.10 519750.60 0
15 740293.80 1960800.00 1
16 748187.50 1971284.00 1
17 728175.00 1984374.00 1
18 724231.50 1987510.00 1
19 672622.70 482240.80 0
20 692837.70 503588.20 0
21 703038.70 1982577.00 1
22 683651.10 1899540.00 1
23 677806.10 1914651.00 1
24 662901.80 478672.20 0
25 765293.50 588251.50 0
26 731935.30 2014574.00 1
27 665706.30 477797.10 0
28 695688.50 508171.50 0
29 691885.90 2012252.00 1
30 662983.50 1972600.00 1
31 1489280.00 1256894.00 0
32 689086.50 2068795.00 1
33 747323.80 1960800.00 1
34 747538.30 1971284.00 1
35 1442715.00 1187092.00 0
36 1411510.00 1154407.00 0
37 1501049.00 1273509.00 0
38 675912.20 1986828.00 1
39 670624.70 1924983.00 1
40 1371311.00 1107114.00 0
41 1392729.00 1126679.00 0
42 1289697.00 971279.50 0
43 795094.70 2042043.00 1
44 756395.00 2068795.00 1
45 746655.20 1967977.00 1
46 672355.80 1919913.00 1
47 760242.10 2083066.00 1
48 699960.30 1969807.00 1
49 692344.90 1983415.00 ]
50 661885.10 2026214.00 1
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Table 5.17 presents the Chebychev distance metric comparison for 50 simulation
replication images of Canine_a group. If the Chebychev distance for SBC analyzed gene
signal value was less than the Chebychev distance for GCOS, a value one was assigned
on the last column in Table 5.17. If value one was assigned, this indicated that the SBC
analyzed gene signal value had less dissimilarity with the true gene signal value as

compared to the GCOS gene signal value.

Table 5.17 Chebychev distance metric comparison for Canine_a

Chebychev distance for | Chebychev distance for SBC is
Simulation | SBC GCOS better
1 4211.80 11319.20 1
2 3879.50 3620.41 0
3 5030.95 4884.74 0
4 3909.66 3724.42 0
5 5215.08 11588.73 1
6 4371.60 11329.68 1
7 4022.55 11661.54 1
8 4290.29 4301.41 1
9 3352.41 2998.08 0
10 3854 .42 11495.30 1
11 3608.77 11470.49 1
12 2817.01 11138.84 1
13 3694.73 3451.64 0
14 3707.36 3485.22 0
15 4047.60 11290.95 1
16 3932.16 11426.56 1
17 3793.59 11403.90 ]
18 3802.05 11588.73 1
19 3152.21 2995.43 0
20 3347.84 3216.32 0
21 3428.99 11545.44 |
22 3297.30 10996.41 1
23 2661.52 11043.57 1
24 3090.47 2693.76 0
25 4321.79 4093.69 0
26 3974 .47 11728.18 1
27 3811.73 3071.12 0
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| 28 3364.70 3144.85 0
29 3419.27 11619.84 1
30 3066.89 11487.53 1
31 9919.52 9685.08 0
32 3423.76 12048.97 1
33 4027.10 11290.95 1
34 4162.12 11426.56 1
35 9095.63 9003.37 0
36 8857.26 8602.88 0
37 9871.26 9686.59 0
38 3413.36 11319.20 ]
39 2854.86 11025.45 1
40 8341.22 8165.39 0
41 8545.57 8320.00 0
42 7091.48 6878.61 0
43 4803.63 11759.76 1
44 4095.02 12048.97 1
45 4025.67 11385.35 1
46 3346.63 11067.18 ]
47 4393.55 12067.78 ]
48 3596.24 11328.69 ]
49 3281.92 11329.68 1
50 2810.19 11661.54 1

In Table 5.18, we present the summary comparison of standard error of
performance and correlation coefticients for all the 50 simulated microarray images of
Canine_a genome. Table 5.18 illustrates that for each of these two metrics, the
correlation and standard error of performance, there are 60% of the cases that SBC was a

better segmentation method as compared to GCOS.
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Table 5.18 Summary comparison of standard error of performance and correlation

Canine a No. of Images show SBC is better Ratio
Correlation 30 out of 50 60%
Standard error of performance 30 out of 50 60%

In Table 5.19 and Table 5.20, we present the summary comparison of the paired t
test for all the 50 simulated microarray images of Canine_a genome. Table 5.19 shows
the summary comparison of paired t test for SBC. Table 5.20 shows that summary
comparison of paired t test tor GCOS. At each significance level, there were more images
showing that we had not enough evidence to reject the null hypothesis in Table 5.19 as
compared in Table 5.20. Hence, the gene signal value obtained from SBC had a higher
percentage of the cases more approach to the true gene signal value. The SBC provided

more accurate gene signal values as compared to GCOS.

Table 5.19 Summary comparison of paired t test for SBC for Canine a

Canine a No. of Images show Accept for Ratio
SBC

Paired t test at 0.05 level five out of 50 10%

Paired t test at 0.01 level six out of 50 12%

Paired t test at 0.001 level | nine out of 50 18%




Table 5.20 Summary comparison of paired t test for GCOS for Canine_a

' Canine_a No. of Images show Accept for Ratio
GCOS
Paired t test at 0.05 level | three out of 50 6%
Paired t test at 0.01 level | three out of 50 6%
Paired t test at 0.001 level | three out of 50 6%

In Table 5.21. we present the summary comparison of the clustering distance
metrics for all the 50 simulated microarray images of Canine_a genome. In each of these
distance metrics, the gene signal value obtained from SBC had a higher percentage of the
cases than it had less dissimilarity with the true gene signal value. Hence, SBC provided

more accurate analyzed gene signal as compared to GCOS.

Table 5.21 Summary comparison of clustering distance metrics for Canine_a

Canine_a No. of Images show SBC is better Ratio
Minkowski distance 31 out of 50 62%
Euclidean distance 30 out of 50 60%
Correlation distance 30 out of 50 60%
Chebychev distance 31 out of 50 62%

To validate this improvement in a more global level, we propose the average
analyzed gene signal value for both SBC and GCOS AverageSignalsg: and
AverageSignalgcps. We started with the average analyzed gene values of 50 simulated

microarray images from Canine_a genome. For each gene, we computed the
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AverageSignalsge and AverageSignalccps. Then. we had two sets of analyzed
average signal value with one set from SBC and the other set from GCOS. Similar
statistical analysis was performed on these two sets and the set of true gene signal value.
T test. standard error performance, correlation coefficient and clustering distance were
investigated for this average analyzed gene values.

_ 370 signalspe

AverageSignalsge = - (5.5)

22, Signalgeos

AverageSignal;cos = 50

(5.6)
Two sample t test with two tails was performed between the mean of
AverageSignalsgc and the true gene signal value with the null hypothesis and
alternative hypothesis are shown below.
Ho: Uaveragesignaisec = HTrueGenesignal-
Hi: Paveragesignaissc F UrrueGenesignal-
Table 5.22 shows that we had not enough evidence to reject the null hypothesis.
Hence, there was no significant difference between the mean of the SBC average

analyzed gene signal value and the mean of the true gene signal value.

Table 5.22 Two sample t test for the SBC averaged analyzed gene signal value

Significant level Decision for P-value = 0.4267
a = 0.05 Accept
a =0.01 Accept
a = 0.001 Accept

Next. we also performed the two sample t test between the mean
ofAverageSignal;cos and the set of true gene signal value with the null hypothesis and

alternative hypothesis are shown below.



97

Ho: HaveragesignalGeos = UTrueGenesSignal-
Hi: Uaveragesignaicecos  UrrueceneSignal-

In Table 5.23. the null hypothesis was rejected at all levels. Therefore, there was
significant difference between the mean of the GCOS average analyzed gene signal value
and the mean of the true gene signal value. We may conclude that the SBC average
analyzed gene signal value more approached the true gene signal value on average when

compared to the GCOS average analyzed gene signal value.

Table 5.23 Two sample t test for the GCOS averaged analyzed gene signal value

Significant level Decision for P-value < 0.00001
a = 0.05 Reject
a = 0.01 Reject
a = 0.001 Reject

In addition to the two sample t test performed between the average analyzed gene
signal value and true gene signal value, we also want to evaluate the absolute value of
difference D11 and D12 in more detail.

D11 = |AverageSignalsg, — TrueGeneSignal|. (5.7
D12 = |AverageSignal;cos — TrueGeneSignal|. (5.8)

We compared these two differences after taking the absolute value sign in order to
understand on “how far” but not on “in which direction.” Our main interest was to
decrease the difference between the true gene signal value and the average analyzed gene
signal value. Hence. two sample t test with left tails was performed on D11 and D12 with
the null hypothesis was that there was no significant difference between the mean of D11

and the mean of D12 based on the given the significance levels, 0.05, 0.01 and 0.001.
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Ho:upi1 = Ups2.
Hytupir < Hpia.

This left tail test could provide us more information to know if the mean
difference between true gene signal value and the average SBC analyzed gene signal
value is smaller than the mean difference between the true gene signal value and the
average GCOS analyzed gene signal value.

From Table 5.24, the null hypothesis Hy was rejected at all significance levels,
which indicated that we might accept the alternative hypothesis H; for upq; <
Up1z- Thus, there was significant difference between the mean of D11 and the mean of
D12, and the mean of D11 was significantly less than the mean of D12. Hence, from this
two sample t test, the difference between the true gene signal value and the average SBC
gene signal value was shown significantly smaller than the difference between the true
gene signal value and the average GCOS gene signal value averagely. The gene signal
value obtained from SBC more nearly approached the true gene signal values compared
to the gene signal values obtained from GCOS on average. Besides the two sample t test,
we also presented the boxplot for D11 and D12 shown in Figure 5.9 to provide more
information in visual. Therefore, we could have a better understanding on the comparison
between D11 and D12.The commonly used quartiles for D11 and D12 were described in

Table 5.25.

Table 5.24 Two sample t test for D11 and D12

Significant level Decision for P-value < 0.00001
a = 0.05 Reject
a =0.01 Reject
a = 0.001 Reject
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Figure 5.9 Boxplot for the absolute value of D11 and D12

Table 5.25 Quartiles comparison information for D11 and D12
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Quartiles 0.025 0.25 0.5 0.75 0.975 1
D11 for [true-SBC} 1.18 9.21 15.51 23.60 111.53 1566.67
D12 for ltrue-GCOS| | 3.26 11.96 19.54 35.84 275.78 1710.31

The boxplot showed that the interquartile range and the total range of D11 were

both smaller than those of D12. In addition, the mean of D11 was smaller than the mean

of D12, which was consistent with the previous two sample t test result. Hence, from

Figure 5.9 and Table 5.25. we may conclude that the absolute difference between the true

gene signal value and the average SBC gene signal value was smaller compared to the

absolute difference between the true gene signal value and the average GCOS gene signal

value. Therefore. there was less dissimilarity between the true gene signal value and the

average SBC gene signal value. SBC segmentation method provided more accurate gene

signal values as compared to GCOS.
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After this hypothesis test analysis, we continued our research by performing the
similar comparison as what we did for one simulated microarray image, such as
clustering analysis and inverse regression analysis to investigate the dissimilarity and
prediction capability between the true gene signal value and the average analyzed gene
signal value obtained from SBC and GCOS.

There are two important options when performing the clustering analysis. One is
the choice of the distance used to evaluate the dissimilarity between different groups of

data. In this option, Sum of absolute difference Y['|di| (Manhattan distance), Person

Zscore (Observed data)=Zscore (true data)
n

and Euclidean

correlation distance 1-

distance |[¥? d? are the most important metrics used in clustering analysis. In addition,

we also included the Minkowski distance, which was the generalization form of
Euclidean distance. The other one was the choice of the clustering technique on how to
classify difterent groups of data based on the distance measurements obtained from the
first option.

Table 5.26 lists all the distance metrics we calculated between the true gene
signal value and the average analyzed gene signal value obtained from SBC
(AverageSignalgsg-) and between the true gene signal value and average analyzed gene
signal value obtained from GCOS (AverageSignalgcos). Table 5.26 indicates that the
average analyzed gene signal value obtained from SBC had smaller dissimilarity with the
true gene signal value compared to the average analyzed gene signal value obtained from
GCOS. In addition, the average analyzed gene signal value obtained from SBC had

higher correlation with the true gene signal value compared to the analyzed gene signal
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value obtained from GCOS. Hence. we may conclude that SBC provided more accurate

gene signal value closer to the true gene signal value on average as compared to GCOS.

Table 5.26 Comparison for averaged analyzed gene signal for Canine_a group

Average SBC analyzed gene | Average GCOS analyzed
Metrics signal value gene signal value
Standard error of
performance 64.8206 101.7257
Euclidean distance 10023.75 15730.69
Correlation 0.9975975 0.9923104
Manhattan distance 610965.9 1054203
Minkowski distance | 3973.867 5278.628

For Canine_a simulated microarray image, several commonly used difference
metrics were investigated in Table 5.26. The SBC average analyzed gene signal value had
the less dissimilarity with true gene signal value compared to the GCOS average
analyzed gene signal value. Hence, we wished conduct the cluster analysis which could
allow us to have a better understanding that if the SBC average analyzed gene signal
value and true gene signal value could be classified in the same group based on this
smaller dissimilarity.

Similarly, we chose Unweight Pair Group Method with Arithmetic Mean as
bottom up agglomerative hierarchical clustering algorithm to measure the dissimilarity
among different objects. This agglomerative hierarchical clustering algorithm is
established to be the most commonly used cluster technique in bioinformatics gene
expression data mining analysis. The bottom up scheme starts from the individual
patterns and combines similar group together, ending up to the root based on the

difference metrics selected as the measurement. Euclidean difference metric was chosen
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as the dissimilarity measurement for the clustering algorithm as classifying different
groups of gene signal values.

Figure 5.10 shows the dendrogram cluster tree plot after implementing the
hierarchical clustering algorithm on AverageSignalsg-. AverageSignalscos and true
gene signal value, based on the Fuclidean difference metric. The three sets of data were
automatically divided into two different groups by average linkage clustering criterion.
The SBC average analyzed gene signal values and true gene signal values were classified
in one group. The GCOS average analyzed gene signal values were classified in another
ditferent group. Therefore. the SBC average analyzed gene signal values had significant
less dissimilarity with the true gene signal values compared to the GCOS average
analyzed gene signal values. The SBC average analyzed gene signal value more nearly
approached the true gene signal value when compared to the GCOS average analyzed

gene signal value.
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Figure 5.10 Clustering tree plot for the average analyzed gene signal value
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From two sample t test and clustering analysis, we concluded that the SBC
average analyzed gene signal value had less dissimilarity with the true gene signal value
compared to the GCOS average analyzed gene signal value. Hence, we investigated if the
SBC average analyzed gene signal value had a better capability to predict the true gene
signal value when compared to the GCOS average analyzed gene signal value. Inverse
regression was performed to provide more information on this prediction analysis. The
inverse regression aimed to build the relationship on the observed data from a known
observation of the dependent variable to predict a corresponding explanatory variable. In
our research. we aimed at evaluating predicted true gene signal values from observed
average analyzed gene signal values. Hence, the calibration inverse regression model was
constructed, where true gene signal value was the dependent variable and the average
analyzed gene signal value was the independent variable.

Setting the true gene signal value as the dependent variable, we built two inverse
regression models, with one having the SBC average analyzed gene signal value
(AverageSignalgsg) as the independent variable and the other one having the GCOS
average analyzed gene signal value (AverageSignalsgc) as the independent variable. By
comparing these two inverse regression models, it can be shown in Figure 5.11 and
Figure 5.12 that the SBC average gene signal value had a better linear fit correlation with
the true signal compared to the GCOS average gene signal value. This indicated that the
SBC average analyzed gene signal value was more nearly approaching to the true gene

signal value as compared to the GCOS average analyzed gene signal value.
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Figures 5.13 and 5.14 present the residual plots for these two inverse regression
models to show the model of fit capability. Residuals in Figure 5.13 from the SBC
average signal model were more compressed and evenly distributed around zero
horizontal line. However, residuals in Figure 5.14 from the GCOS average signal model

were more scattered everywhere and slowly increasing with the increasing number of the

predicted value.
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Figure 5.13 Residual plot from average SBC
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The true gene signal, the SBC average analyzed gene signal and the GCOS
average analyzed gene signal were all measured for the same gene on the expression
level. Therefore, straight linear regression relationship was expected between the true
gene signal and the average analyzed gene signal. From Figures 5.11 and 5.12, the SBC
average analyzed gene signal value was more correlated with the true gene signal value
along with the expected straight line. Residuals between the true gene signal value and
the average analyzed gene signal values were investigated for both SBC and GCOS.
Figures 5.13 and 5.14 show that using the SBC average analyzed gene signal value to
predict the reference gene signal value led to narrow residual range compressed around
the zero horizontal line. However, using the GCOS average analyzed gene signal value to
predict the reference gene signal value generated more scattered residual spreading over

the plot. By performing the inverse regression analysis, we concluded that the SBC
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average analyzed gene signal value was more stable to predict the true gene signal value.
In addition, the SBC average analyzed gene signal value had a better linear fit with the
true gene signal value. From the above comparison results, we achieved in standard error
of performance, R squared and residual plot, the SBC average analyzed gene signal
values were more accurate to approach the true gene signal value compared to the GCOS
average analyzed gene signal values.

Therefore, for Canine_a genome, we concluded that the SBC analyzed gene
signal value was more accurate and had less dissimilarity with true gene signal value
compared to the GCOS analyzed gene signal value on average.

In our research, there were eight different Affymetrix microarray images. We
started with analyzing genome Canine a after 50 simulation replications. Similarly, 50
simulation replications were generated and analyzed for the other different Affymetrix
microarray images. Next, SBC and GCOS were performed on all of these simulated
images. Two sets of analyzed gene signal values obtained from SBC and GCOS were
compared with the true gene signal value by statistical methods similarly as what we did
above.

Table 5.27 presents the summary comparison of gene signal value obtained from
SBC and GCOS for the all the eight microarray image groups, Bovine a, Bovine b,

Canine_a, Canine_b. Vitis_a, Vitis_b, Yeast-1 and Yeast-2.
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Table 5.27 Summary comparison for eight groups simulated images

| Array Simulation | Standard error of | Euclidean distance Minkowski
‘ performance shows SBC better distance shows
shows SBC SBC better
better
Bovine_a | 50 19 18 18
Bovine b | 50 1 1 5
Canine a { 50 30 30 31
Canine b | 50 30 30 31
Vitis_a 50 0 0 0
Vitis b 50 17 17 17
Yeast-1 50 30 30 35
Yeast-2 50 30 30 33

In these eight groups of Affymetrix microarray images, there were four out of
eight groups showing that there are more images analyzed by SBC have smaller standard
error of performance, Euclidean distance and Minkowski distance compared to GCOS.
Hence. for these four groups of Affymetrix microarray images, Canine a, Canine b,
Yeast-1 and Yeast-2, SBC provided the gene signal values which were closer to the true
gene signal value compared to GCOS. For the rest of images, Bovine_a. Bovine b,
Vitis_a and Vitis_ b, GCOS provided more accurate results. Hence, a hybrid method
which chooses dynamically between SBC and GCOS may be more useful when
analyzing different Aftymetrix microarray genome image.

In order to show this improvement on a more global level, we proposed the
average analyzed gene signal value for both SBC and GCOS, AverageSignalgg, and
AverageSignalscos from 50 simulated microarray images for all eight different
Affvmetrix microarray images. For each gene in one genome group, there were 50
analyzed values obtained from SBC and GCOS. Hence, an average mean value for each

gene was calculated over 50 images for SBC and GCOS. By comparing this average
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mean value of each gene to the true gene signal value, it provided us a more
comprehensive understanding of how different algorithm influences the gene expression
calculation on a global level.

Paired t test was performed between the average analyzed gene signal value and
the true gene signal value for all eight different Affymetrix microarray images. We
hypothesized that the difference between the mean of the SBC average analyzed gene
signal value and the mean of the true gene signal value was zero and the difference
between the mean of the GCOS average analyzed gene signal value and the true gene
signal value was zero. Table 5.28 presents the paired t test results for all eight different
Affymetrix microarray images between the mean of the SBC average analyzed gene
signal value and the true gene signal value. Table 5.29 presents the paired t test results for
all eight different Affymetrix microarray images between the mean of the GCOS average

analyzed gene signal value and the true gene signal value.

Table 5.28 Paired t test for the SBC average analyzed gene signal value

Decision
fora=
Array P-value Decision for a = 0.05 | Decision for o = 0.01 | 0.001
Bovine a | <0.000001 | Reject Reject Reject
Bovine b | <0.000001 | Reject Reject Reject
Canine a | <0.000001 | Reject Reject Reject
Canine b | <0.000001 | Reject Reject Reject
| Vitis_a <0.000001 | Reject Reject Reject
' Vitis b | <0.000001 | Reject Reject Reject
Yeast-1 < 0.000001 | Reject Reject Reject
Yeast-2 | <0.000001 | Reject Reject Reject
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Table 5.29 Paired t test for the GCOS average analyzed gene signal value

Decision
‘ fora =
Array P-value Decision for « = 0.05 | Decision fora = 0.01 | 0.001
Bovine a | <0.000001 | Reject Reject Reject
Bovine b | <0.000001 | Reject Reject Reject
Canine a | <0.000001 | Reject Reject Reject
Canine b | <0.000001 | Reject Reject Reject
Vitis a < 0.000001 | Reject Reject Reject
Vitis b < 0.000001 | Reject Reject Reject
Yeast-1 0.0034 Reject Reject Accept
Yeast-2 <0.000001 | Reject Reject Reject

Table 5.28 shows that the difference for all eight Affymetrix microarray images
between the mean of the SBC average analyzed gene signal value and the true gene
signal value was significantly no zero. Table 5.29 shows that the difference for all eight
Affymetrix microarray images between the mean of the GCOS average analyzed gene
signal value and the true gene signal value was significantly not zero, except for Yeast-1
genome image at 0.001 significance level. Hence, we concluded that there was
significance difference between the average analyzed gene signal value and the true gene
signal value. Then, we implied the two sample t test between the true gene signal value
and the average analyzed gene signal value. The null hypothesis and the alternative
hypothesis are shown below.

Ho: Urrue = Haveragesignasace Hit Hrrue F Haveragesignassc.
Ho: Brrue = Haveragesignaceoss Hit Hrrue # Haveragesignaccos.
We hypothesized that there was no significant difference between the mean of the

true gene signal value and the mean of the average analyzed gene signal value at the



given significance levels, 0.05.0.01 and 0.001. Table 5.30 and Table 5.31 present the two

sample results for all eight Aftymetrix images.

Table 5.30 Two sample t test for the SBC average analyzed gene signal value

Decision

fora =
Array P-value Decision for a = 0.05 | Decision for a = 0.01 | 0.001
Bovine a | <0.000001 | Reject Reject Reject
Bovine b | <0.000001 | Reject Reject Reject
Canine a | 0.43 Accept Accept Accept
Canine b | 0.37 Accept Accept Accept
Vitis_a < 0.000001 | Reject Reject Reject
Vitis b <0.000001 | Reject Reject Reject
Yeast-1 0.003 Reject Reject Accept
Yeast-2 0.008 Reject Reject Accept

Table 5.31 Two sample t test for the GCOS average analyzed gene signal value

Decision

fora=
Array P-value Decision for a = 0.05 | Decision for o = 0.01 | 0.001
Bovine a | <0.000001 Reject Reject Reject
Bovine b | <0.000001 Reject Reject Reject
Canine a | <0.000001 Reject Reject Reject
Canine b | 0.18 Accept Accept Accept
Vitis_a < 0.000001 Reject Reject Reject
Vitis_b <0.000001 | Reject Reject Reject
Yeast-1 0.37 Accept Accept Accept
Yeast-2 | 0.034 Reject Accept Accept

When the null hypothesis failed to be rejected, there was not enough evidence
showing that there was significant difference between the mean of the true gene signal
value and the mean of the average analyzed gene signal value. When the null hypothesis
was rejected. that indicated that there was significant difference between the mean of the

true gene signal value and the mean of the average analyzed gene signal value,
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When we set the significant level at 0.05, for SBC. there were two accepted
decisions for Canine_a and Canine b. For GCOS. there were two accepted decisions for
Canine_b and Yeast-1. When we set the significant level at 0.01, for SBC, there were two
accepted decisions for Canine_a and Canine_b. For GCOS, there were three accepted
decisions for Canine_b, Yeast-1 and Yeast-2. When we set the significant level at 0.001,
for SBC, there were four accepted decisions for Canine_a, Canine_b, Yeast-1 and Yeast-
2. For GCOS, there were three accepted decisions for Canine b, Yeast-1 and Yeast-2.
Hence, for the significance level at 0.001, SBC had more images showing that it was
providing gene signal value which were closer to the true gene signal value as compared
to GCOS.

Then, we implemented the clustering analysis among true gene signal value,
averaged analyzed gene signal value from SBC and GCOS by using the same cluster
technique as what we did for one simulated image analysis. Eight clustering tree plots for

eight microarray images are shown in Figures 5.15 through 5.22.
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Figure 5.15 Clustering tree for Bovine a
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Figures 5.19. 5.21 and 5.22 show that SBC averaged analyzed gene signal value
and true gene signal value were assigned to the same group by clustering analysis. This
indicated that for these three genomes, Yeast-1, Canine_a and Canine_ b, there were less
dissimilarity between the true gene signal value and the SBC average analyzed gene
signal value compared to the GCOS average analyzed gene signal value. SBC was able to
provide more accurate gene signal value for these three images. For the rest of the
genome, Bovine _a, Bovine b, Vitis_a, Vitis_b and Yeast-2, the SBC averaged analyzed
gene signal value and the GCOS averaged analyzed gene signal value were assigned to
the same group.

Hence, there were less dissimilarity between the SBC averaged analyzed gene
signal value and GCOS averaged analyzed gene signal value as compared to the true gene

signal value. SBC and GCOS stayed at the same accuracy level for the rest of five
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Affymetrix microarray images on average, Bovine a, Bovine b, Vitis_a, Vitis_b and

Yeast-2 based on the clustering analysis.



CHAPTER 6

CONCLUSIONS

The purpose of this dissertation was to construct a more accurate segmentation
algorithm for Aftfymetrix microarray image. In Chapter 4, the Active Contours Without
the Edges (ACWE) method and Segmentation Based Contours (SBC) method are
presented. After modifying ACWE method, the SBC method was constructed and
proposed to apply on Affymetrix microarray simulated image. The simulation method
was Introduced in Chapter 3, which embraces the most important biological
characteristics of microarray experiments. In Chapter 5, we presented the comparison
results after applying SBC and GCOS on simulated image based on the gene expression
level. This gene expression comparison would bring significant impact in shedding light
on cellular analysis field.

From all eight groups of different microarray images downloaded from
Affymetrix sample test database, we replicated the generation of an image 50 times. We
applied SBC and GCOS on all of these simulated images to obtain the gene signal
expression values. Statistical analysis was performed based on the gene signal expression
values instead of the intensity level. In this case, we were able to have a comprehensive
understanding on how difterent algorithm will influence the gene expression calculation.

In Chapter 5. we presented the dissimilarity distance metrics, sum squares of errors

118
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measurement, standard error of performance. paired t test, two sample t test, inverse
regression analysis and cluster analysis among three sets of gene signal values, which
were true gene signal values, gene signal values obtained from SBC and gene signal
values obtained from GCOS. Additionally, we computed the average gene signal values
for each gene from the analyzed gene signal value obtained from both SBC and GCOS in
each Affymetrix microarray image group. Similar statistical analysis was conducted on
these average gene signal values, such as dissimilarity distance metrics, sum squares of
errors measurement, standard error of performance, paired t test, two sample t test,
inverse regression analysis and cluster analysis.

Based on all the comprehensive comparison results obtained from the above
analyses. the SBC method provided more accurate gene signal values for Canine a,
Canine b, Yeast-1 and Yeast-2. The GCOS method provided more accurate gene signal
value for Bovine a, Bovine b, Vitis_a and Vitis_b. Hence, we concluded that SBC
provided more accurate segmentation intensity values for some genome Affymetrix
microarray images as compared to the GCOS. For the rest of the images analyzed in our
research., GCOS had a better capability. However, even a small improvement in
microarray image segmentation process would lead to a significant impact on genome
expression analysis. For future research, we would like to propose a new hybrid method
which will dynamically choose between SBC and GCOS based on the types of genome to
which the microarray image belongs. This new hybrid method will possibly yield a
greater improvement on detecting interested genes for disease diagnostics and disease

control.



APPENDIX A

SOURCE CODE FOR SEGMENTATION METHOD



// import the libraries using in the program
importjava.awt. Transparency;
importjava.awt.image.*;

import java.io.*;

importjavax.media.jai.*;
importjavax.swing.*;
importjava.awt.event.*;
importcom.sun.media.jai.codec.*;

// main class of image segementation

public class ImageSeg

{

// get a file from input
public static File getFileForFilename(String filename)
throwslOException {

File fi = new File(filename);

if (Mi.exists())

throw new [OException(fi.getName() + " not found");
if (Mi.isFile())

throw new [OException(fi.getName() + " is not a file");
return fi;

1
s

// main method
public static void main(String[] args)
{
String filename=null;
// Prompt for user to choose the file
JFileChooser chooser = new JFileChooser();
chooser.setFileSelectionMode(JFileChooser. FILES ONLY);
intreturnVal = chooser.showOpenDialog(null);

// Confirm the user choosing file.

if(returnVal == JFileChooser. APPROVE_OPTION) {
/System.out.println("You chose to open this file: " +
// chooser.getSelectedFile().getName());

tilename=chooser.getSelectedFile().getPath();
]

)
intxpels=0. ypels=0 ; //initialize the variables
double [] intensity ;
try {
// get the input file
File til = getFileForFilename(filename);
//System.out.printIn("Segmenting...");



FileInputStream finl = new FilelnputStream(fil);
BufferedReader binl = new BufferedReader(new InputStreamReader(finl)):
String linel = binl.readl.ine(); //read in each line of the input file
while (linel!= null )
S
3
String[] resultl = linel.split("\\t");
String filenamel=null.filename2=null.filename3=null.filename4=null,
for (int z=0; z<resultl length; z++)

{
t

filenamel=result]1[0]:
tilename2=result1[1];
}
// create output files name
filename3=filenamel.replace All(".tif"," segment.tif");
filenamed=tilenamel .replace All(".tif"," output.txt™);
// create output image file
RenderedImage pi = JAl.create("fileload", filenamel);
Raster imagedata=pi.getData();
WritableRasterwr=null ;
WritableRaster imagedatal=pi.copyData(wr);
intensity = new double [100];
// create an new object from class segment
segmentmyseg;
myseg = new segment();
try {
intzzz=1;
File fi = getFileForFilename(filename?2);
FileInputStream fin = new FilelnputStream(f1);
BufteredReader bin = new BufferedReader(new InputStreamReader(fin));
String line = bin.readLine();
Buffered Writer out = new BufferedWriter(new File Writer(filename4));
// using progress bar
ProgressMonitorInputStream pin
= new ProgressMonitorInputStream(null, fi.getName(), fin);
ProgressMonitor pm = pin.getProgressMonitor():

File file = new File(filename?2);
FileReaderfr = new FileReader(file);
LineNumberReaderln = new LineNumberReader(fr);
int count = 0;
while (In.readLine() '= null){

count++;

1
§

pm.setMaximum(count);
while (line!= null )

{
t

[§9]
3]



// initialize the variables
String[] result = line.split("Vit");
intstartx=0;
intstarty=0:
intlastx=0;
intlasty=0;
for (int z=0; z<result.length; z++)

H
X

// get the location from the gridding file
starty=Integer.parselnt(result[0]);
startx=Integer.parselnt(result[1]);
lasty=Integer.parselnt(result{2});

lastx=Integer.parselnt(result[3]);

1
i1

for (int y=starty;y<=lasty;y++)
for (int x=startx:x<=lastx ;x++)
{
{
mntLj;
xpels=lastx-startx+1; // pixels in X-axis
ypels=lasty-starty+1; // pixels in Y-axis
intensity=new double[xpels*ypels];
for (j=03j<ypels;j++)
tor (1=0;1<xpels;i++)
intensity[i+xpels*j]=imagedata.getSample(i+startx,j+starty,0);
// get the intensity value

j

}
// segmenting using the methods from class segment
myseg.create(xpels, ypels, startx, starty, lastx, lasty, intensity);
myseg.initialize(xpels, ypels, startx, starty, lastx, lasty, intensity);
if (xpels*ypels>=100)
{
t
myseg.set_dt e w(0.1,1,0.0251);
myseg.set_init_curve(3);
!
else
{
myseg.set_dt e w(0.1.1.0.01);
myseg.set_init_curve(l);
13
5
myseg.segment():
out.write(Double.toString(myseg.areainfo(startx+1,starty+1.lastx-1,lasty-1)));
out.write("\t");
if (myseg.areainfo(startx,starty,lastx,lasty)!=0)
out.write(Double.toString(myseg.area_intensitymean(startx,starty,lastx,lasty)));

3
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else
out.write(Double.toString(myseg.background _intensitymedian(startx.starty,lastx.lasty))):
out.write("it");
if (myseg.areainfo(startx+1.starty+1 lastx-1.lasty-1)!=0)
out.write(Double.toString(myseg.area_intensity 75pvalue(startx+1, starty+1, lastx-1,
lasty-1)));
else
out.write(Double.toString(myseg.background intensity 75pvalue(startx, starty, lastx.
lasty)));
out.write("\t");
out.write(Double.toString(myseg.background _intensitymedian(startx,starty,lastx.lasty))):
out.write("\n");
// output to the output text file

pm.setProgress(zzz);

227=777+1:

f
t

intij;
for(j=0;j<myseg.ypels;j++)
for (1=0:i< myseg.xpels-1;i++)
d
if
(myseg.sign(myseg.area_mapping[i+myseg.xpels*j])!=myseg.sign(myseg.area_mapping|
i+1+myseg.xpels*j]))
{
if (myseg.sign(myseg.area_mapping[i+myseg.xpels*j])<0)
imagedatal.setSample(i+myseg.startx,j+myseg.starty,0,60000);
else
imagedatal.setSample(i+1+myseg.startx,j+myseg.starty,0,60000);
v
} s
h
. .. {
inti,j;
for(j=0;j<myseg.ypels-1;j++)
for (i=0:i<myseg.xpels:i++)
{
if
(myseg.sign(myseg.area_mapping[i+tmyseg.xpels*j])!=myseg.sign(myseg.area_mapping|
i+myseg.xpels*(j+1)]))
f
t
if (myseg.sign(myseg.area_mapping[i+myseg.xpels*j])<0)
imagedatal.setSample(i+myseg.startx,j+myseg.starty,0.60000):
else

imagedatal .setSample(i+myseg.startx,j+ 1 +myseg.starty,0,60000);

1
]

13
)



P

nt j:
for(j=0;j<myseg.ypels:j++)

s
t
if (myseg.sign(myseg.area_mapping[0+myseg.xpels*j])>=0)
imagedatal .setSample(0+myseg.startx,j+myseg.starty,0,60000);
if (myseg.sign(myseg.area_mapping[myseg.xpels-1+myseg.xpels*j])>=0)
imagedatal .setSample(myseg.xpels-1+myseg. startx,j+myseg.starty,0,60000);
}
h
{
ntl;
for(i=0;1<myseg.xpels;i++)

s
it
if (myseg.sign{myseg.area_mapping[i+myseg.xpels*0])>=0)
imagedatal.setSample(i+myseg.startx,0+myseg.starty,0,60000);
if (myseg.sign(myseg.area_mapping[i+myseg.xpels*(myseg.ypels-1)])>=0)
imagedatal .setSample(i+myseg.startx,myseg.ypels-1+myseg.starty,0,60000);
]
)
// draw the boundary of each cell in the output image file
line = bin.readLine();

j

out.close();
b
catch (IOException e) { // Trap exception

System.err.println(e.toString()); // Display error
]

!
BufferedImage bi = new BufferedImage(pi.getColorModel(), imagedatal, true, null);

RenderedImage op =JAl.create("filestore" bi,filename3,"TIFF");
linel = binl.readLine();

}

X
]

catch (IOException e) { // Trap exception

System.err.printin(e.toString()); // Display error
1

s

//System.out.println("Finished!");

int response = JOptionPane.showOptionDialog(

null // Center in window.
. "The whole segmentation process has finished" // Message
., null // Title in titlebar
. JOptionPane. DEFAULT OPTION // Option type
. JOptionPane PLAIN_MESSAGE // messageType



)
if (response==0)

S
§

System.exit(0);

1
s

if (response==-1)

{
b

System.exit(0);

|
i1

//System.exit(0);

1
]

1
)]

// Icon (none)
// Button text as above.
// Default button's label
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functionaffywritedat_new(image,gridname,headl.newdat)

[px.px_l]=size(image):
%[Al.headl.dumpl]=affyreaddat(datname);
grid=load(gridname):

[r.c]=size(grid);

n=sqrt(r);
ul=[grid(1,2).grid(1,1)};
ur={grid(n.4).grid(n,1)];
l=[grid((n*(n-1)+1).2),grid((n*(n-1)+1),3)];
Ir=[grid(n*n,4).grid(n*n.3)]:

fid=topen(newdat,'w"'l');
head=writehead(fid.image.head1,ulur,1l.lr);
fori1=1:px
forj=1l:px |
%tmp=fwrite(fid,uint16(image(i,j)),'uint16');

fwrite(fid.uint16(image(i,j)).'uint16");
end
end

Y%twrite(fid,uintl 6(image),'uint16');
tclose(fid);

function head=writehead(fid.image.headl,ul,ur,lL1r)
% head=tfread(fid,512,'uint8");

[px.px_l]=size(image);

head.type=fwrite(fid,headl.type,'uint8")

head.pixperline=fwrite(fid,px_1,'uint16");
head.nolines=fwrite(fid,px,'uint16');
head.pixels=fwrite(fid,px*px_1,'uint32');
head.minpixvalue=fwrite(fid,min(image(:)),"uint32'");
head.maxpixvalue=fwrite(fid,max(image(:)),"nint32');
head.meanpixvalue=fwrite(fid,mean(image(:)),'double');
head.stdpix=fwrite(fid.std(image(:)), double");

head.nopixperrow=fwrite(fid,headl.nopixperrow,'uchar');
head.norows=fwrite(fid.head 1 .norows,'uchar');
head.pixwidth=fwrite(fid,headl.pixwidth,'uchar');
head.pixheight=fwrite(fid.head.pixheight,'uchar’);
head.scanspeed=fwrite(fid,head1.scanspeed,uchar’);
head.temperature=fwrite(fid,head!.temperature,'uchar');
head.laserpower=fwrite(fid.head | .laserpower,'uchar');
head.datetime=fwrite(fid.headl .datetime,'uchar'y,



head.subtield=fwrite(fid. headl.subfield,'uchar');

head.meandcoffset=fwrite(fid.headl.meandcoftset,'double’);
head.stddcoffset=fwrite(fid.headl.stddcoffset,'double’);
head.dcdoffsetsamples=fwrite(fid.headl.dcdoffsetsamples,'uint32');

head.xy ul=fwrite(fid,ul,'int16');
head.xy_ur=fwrite(fid,ur,'int16');
head.xy_Ir=fwrite(fid,Ir,'int16');
head.xy_ll=fwrite(fid,ll,'int16"),
head.cellmargin=fwrite(fid,headl.cellmargin,'uint16');

a=headl.name;

[r.c]=size(a);

n=154-c;

b="h'";
fori=1:n

a=strecat(a, b);

end

head.name=fwrite(fid.a,'uchar");
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path=pwd;

file=dir(fullfile(path, "*.cel’));

t size=size(file);

tor (i=1:1 size(1)):

t tile=tullfile(path.file(i).name);
acwe_f=strrep(lower(f_file).".cel',' output.txt');

outcel f=strrep(lower(f file),'.cel',' output.cel');

fid = fopen(f file):

tid1=fopen (outcel f.,'w");

cel=affyread(f file);

[A.B.ACWE,C]=textread(acwe_{f,'%f %f %f %f 'headerlines’,0);

%while ~feof(fid);
for (i=1:24)
tline=tgets(fid);
fwrite(fidl, tline);
end

%end

for (i=1:cel.NumProbes)
tline=fgets(tid);

[tokenl. remainl] = strtok(tline);
[token2, remain2] = strtok(remainl);
[token3, remain3] = strtok(remain2);
[tokend. remaind] = strtok(remain3);
[tokenS, remain5] = strtok(remain4);
Y%twrite(fidl, '%12.8f\n",g(3));
fprintf(fid1, '%3d\t',str2num(tokenl));
fprintf(fid1. '%3d\t',str2num(token2));
Yofprintf(fid1, 'Yos\t'token3);
fprintf(fid1, '%s\t'.num2str(ACWE(1)));
fprintf(fid1, '%s\t',tokend);
fprintf(fid1. '%3d\n';str2num(tokens));

end

while ~feof(fid);

tline=fgets(fid):

furite(fid!, tline);

end

end

felose(fid):
fclose(fidl)
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