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ABSTRACT

The goal o f  the research developed in this dissertation is to develop a more 

accurate segmentation method for Affymetrix microarray images. The Affymetrix 

microarray biotechnologies have become increasingly important in the biomedical 

research field. Affymetrix microarray images are widely used in disease diagnostics and 

disease control. They are capable o f  monitoring the expression levels o f  thousands of 

genes simultaneously. Hence, scientists can get a deep understanding on genomic 

regulation, interaction and expression by using such tools.

We also introduce a novel Affymetrix microarray image simulation model and 

how the Affymetrix microarray image is simulated by using this model. This simulation 

model embraces all realistic biological characteristics and experimental preparation 

characteristics, which could have different impacts on the quality o f  microarray image 

during the real microarray experiment. The most important aspect is that this model could 

provide the "ground true information,” which allows us to have a deep understanding on 

different segmentation algorithms performance.

After the simulation, the new proposed segmentation algorithm Segmentation 

Based Contours (SBC) method is presented as well as the modifications o f  the Active 

Contours Without the Edges (ACWE) method. By modifying the ACW E method with 

higher order finite difference scheme and fast scheme, we establish the new segmentation 

algorithm Segmentation Based Contours method. In the end, we compare the gene
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signal values obtained from the new proposed algorithm Segmentation Based Contours 

method and the best currently known method. This gene expression signal comparison is 

more meaningful in gene expression analysis, since it represents the whole gene 

expression level rather than the small transcripts hybridization abundance level. Different 

types o f  experimental comparison results will be presented to show that the new proposed 

Segmentation Based Contours method is more efficient and accurate.
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CHAPTER 1

INTRODUCTION OF DNA AND DNA MICROARRAY

In this chapter, an overview o f  the DNA microarray on the molecular biology 

level, aiming at providing the appropriate background for understanding the microarray 

segmentation problem will be presented.

1.1 DNA

All living cells on earth store their hereditary information in double-stranded 

molecules o f  DNA from Molecular Biology o f  the Cell [1]. These double-stranded 

molecules o f  DNA contain four types o f  monomers, which form the long paired chains 

based on the complementary rule. A (adenine), T (thymine), C (cytosine), G (guanine) are 

strung together, encoding the hereditary information. By interpreting this sequence 

information from a DNA strand, scientists are capable o f  deciphering the hereditary 

information contained in cells.

In 1869. Friedrich Miescher first discovered the nucleic acid from his experiment. 

In 1952. Alfred Hershey and Martha Chase first established that DNA was the molecules 

carrying the hereditary information for all living cells [2], In 1953, James D. Watson and 

Francis Crick first elaborated and presented the DNA double-stranded molecular model 

[3]. This double helix model brought a significant impact on understanding the DNA 

transcription and translation process. In [1], the nucleotide wras introduced, consisting of



two sections. One part is called the deoxyribose with a phosphate group in Figure 1.1 

The other part is called the base, which is either A. G. C or T.

building block of DNA

phosphate
sugar

i' G
sugar base (G

phosphate nucleotide

Figure 1.1 Building block o f  DNA from [1]

Next, several nucleotides are connected together by the phosphate group, which 

constructs the DNA strand. These two DNA strands are synthesized according to the 

complementary structures of the bases, where A binds to T, and G binds to C. After this 

synthesis process, two DNA strands twist on each other to form the double helix shown in 

Figure 1.2.

d o u b l e - s t r a n d e d  DNA

A c  T G  G  c  A  A  T G

II ..........  Til Ilf Tf M 11 m
T G A  c  c  g  T T a C

s u g a t-p h o s p h a te  hydf o g e n - b o n d e d  
b a c k b o n e  b a se  pairs

DNA d o u b le  h eh x

C A 1 -A 

A T

C TVi

G
11T
C A

Figure 1.2 DNA helix structure from [1]



1.2 DNA Transcription and Translation

In order to carry the genomic information, the DNA sequence must undergo the 

process o f  replication and transcription with the help o f  RNA (ribonucleic acid) and 

protein. RNA has the similar intermediary structure with the DNA strand stored in 

cytoplasm. There are, however, some differences in RNA compared with DNA. In RNA, 

the backbone is formed by ribose instead of deoxyribose. In addition, those four bases are 

the same with one exception: where U (uracil) replaces T (thymine) [1, 3]. Thus, in RNA, 

A is paired with U and C is paired with G.

This process starts from the transcription, as the DNA sequence is treated as the 

template for RNA synthesis. The genetic information in a specific sequence is transferred 

into a complementary special sequence of messenger RNA (mRNA) as seen in Figure 

1.3. Three bases in RNA transcripts are considered as the genetic code called "codon." 

Several o f  these triplet codons guide the synthesis o f  polymers o f  protein, which is the 

translation process. Thus, from DNA to protein, hereditary information is deciphered.

DOUBLE-STRANDED D N A  AS 
INFORM ATION ARCHIVE

s t r a n d  u s e d  as a  t e m p l a t e  t o  
d i r e c t  RNA s y n th e s i s

RNA MOLECULES AS EXPENDABLE 
IN FORM ATION CARRIERS

TRANSCRIPTION
SO B

m a n y  id e n t i c a l  
RNA t r a n s c r i p t s

Figure 1.3 DNA transcriptions from [1]

Each genetic code is read out by a small sequence o f  RNA molecules called the 

"transfer RNA." It matches up the genetic code, which guides the order o f  amino acids to 

form the protein molecules. There are 4 ’=64 total possible codons. Each mRNA stars
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with the beginning codon AUG and ends up with the ending codon UAA. UAG, or UGA. 

All the other sequences between the starting codon and ending codon are the Open 

Reading Frame (ORF). which stores all the genetic information from DNA sequence. All 

of this process is shown in Figure 1.4.

Figure 1.4 Central Dogma o f Molecular Biology from [4]

Each DNA sequence experiences three stages: the replication, the transcription 

and the translation, and genetic information is passed down through this process. The 

subsequence o f  DNA that is transferred into protein is called a “gene” [5]. Thus, this 

process is called the "gene expression.” In the genetics field, gene expression is the most 

significant and basic foundation for transforming the genotype to the phenotype. 

Different organism phenotype is caused by controlling the different properties o f  the gene 

expression [6], By using DNA microarray technology, scientists are able to monitor and 

manage thousands o f  genes' expression simultaneously. Therefore, it is an important 

method allowing us to understand and analyze gene expression efficiently.



1.3 D N A  M ic r o a r r a y

DNA microarrays are part of a new class o f  biotechnologies allow the monitoring 

of thousands o f  genes expression levels simultaneously. It is extremely important in the 

pharmaceutical and clinical field since they can help the scientists get a better 

understanding on genome regulation and interaction [7], There are two basic DNA 

Microarray techniques currently used nowadays: spotted microarray image

(Complementary DNA Microarray) shown in Figure 1.5 for cD N A  microarray and 

oligonucleotide microarray image shown in Figure 1.6 for Affymetrix microarray. 

Among these techniques, the high density oligonucleotide microarray technology 

provided by Affmetrix GeneChip Company [8] has been widely utilized by thousands of 

researchers because o f  its high sensitivity and accuracy [9],

^^B
K r^T T jB ^^Hi j n ^^B

n j ^B |BbbBh B̂̂ BBF̂ B
BEjl^BBjQ j

BJBBj BBB^Bb^̂ B̂||
□ n B^B
^̂ BB

H flE^BBmB^^B'J^Bj
B^TjEBB^Bĵ ^Bfl^Bfl

•  •  •  • • • •  •  •
* •  ■ •  •  » •

r r r m B1^ ^ B |B
Qj^B^^^BBETjB|̂ Bfl

rT|̂ nB m ^^BESQBTj^B
Q B E B E j
m B B B D O O fj9 |B B p G
r^^B| V ]

BBH f B Br^ B | ■ L M ^ ^ BF V ] ■3•  o • • •  •  9  •  • • •
•  •  • •  #  » « •  • •
• •  •  •  •  •  • •  • •  •

Figure 1.5 cDNA microarray image
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Figure 1.6 Affymetrix microarray image

The microarray technique is originated from the Southern Blotting technology. 

The Southern Blotting technique is mainly used in molecular biology to detect a specific 

sequence o f  DNA in DNA samples. This technique has two important characteristics; one 

is the transportation o f  the DNA fragments, and the other one is the probe hybridization 

o f  the DNA fragments. In Southern Blotting, DNA strands are first cut into smaller 

fragments by using restriction endonucleases. Next, these tiny DNA fragments are 

separated by size by gel electrophoresis method. After classification and separation, the 

DNA fragments are transferred to a sheet o f  nitrocellulose or nylon membrane. This 

membrane is exposed to a single DNA hybridization probe with specific sequence. In 

addition, this DNA sequence is labeled in order to be easily detected. After hybridization, 

extra DNA fragments will be washed off. and hybridization fragments will be visualized 

on film. In this way, the specific DNA sequence is detected.

Though the Southern Blotting is very effective for detecting the DNA special 

sequence, it is not a convenient method. The main disadvantage for the Southern Blot



method is that it is rather time consuming and labor-intensive. Thus, microarray

technology is innovative, because it can manipulate and mange thousands o f  genes at the 

same time. In 1995. the first DNA microarray was proposed for gene expression analysis 

[ 1 0 ].

A common microarray experiment contains the following six steps:

■ Experiment preparation. Two samples are selected as the treated sample and the 

untreated sample. For example, one sample is from a normal tissue, and the other 

sample is from a tumor tissue.

■ Interest Nucleic acid separation and purification. For example, the RNA 

sequence for expression analysis or the DNA sequence for the comparisons.

■ Reverse transcription is performed to obtain the labeled sequence. For example, 

the mRNA is reverse transcribed to cDNA. Also, a label is added in this process 

through molecular combination.

■ The cDNA sequence is mixed and hybridized in the solution. Next, the mix is 

denatured and spotted on a microarray, which could be a gene chip or a glass 

microarray.

* The microarray is scanned by a special laser scanner, which can detect the label

quantitatively and qualitatively.

■ Microarray image and raw data is generated after the scan process is performed.

1.3.1 cDNA Micro array

The cDNA microarray isolates the RNA sequence from both the control sample 

(normal sample) and the experiment sample (diseased sample). Next, it operates the 

reverse transcription process, which allows it to convert the RNA sequences o f  interest



into cDNAs. After the reverse transcription, the cDNAs will be further labeled with 

fluorescent probes, Cy3 for control sample and Cy5 for experiment sample. The Cy3 is in 

a green channel with 530nm wavelength, and Cy5 is in a red channel with 630nm 

wavelength [11]. When finishing the labeling process, cDNA microarray is scanned both 

at the ~540nm and ~630nm for each channel correspondently. Two 16-bit monochromatic 

images are generated after scanning, which are Red and Green images. In these two 

images, each spot represents a specific gene [12, 13],

Normally, a cDNA experiment [13, 14] consists o f  the steps illustrated in Figure

1.7.

tramcr*>*on, 
l u t f M C t n f r t i b t M  

«*** Cy3 {<><«**«}

Figure 1.7 cDNA microarray experiment from [13]

■ In the experiment preparation step, the normal sample and the experiment sample 

are selected.

■ In the isolation step, the RNA sequences o f  interests are extracted and purified.
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* In the reverse transcription step, the RNA sequences are reversely transcribed

into cDNA sequences.

■ In the hybridization and label step, the cDNA is labeled with a fluorescent dye. 

Next, the labeled cDNA sequence is hybridized. After full hybridization, extract 

DNA sequences will be washed away if  they were not hybridized at all.

■ In the scanning step, the microarray will be scanned in the tw'o channels.

■ In the data extraction step, intensity data o f  each spot will be extracted for the 

subsequent analysis.

1.3.2 Affymetrix Microarray

The Affymetrix microarray technique (Figure 1.8) is originated from late 1980s 

by Stephen Fodor together with other scientists. Fodor at all introduced the semi­

conductor technique for biological setting in microarray fabrication process. This process 

helped to construct a system to measure more and more various mRNA sequences in one 

sample. In addition, Affymetrix microarray introduced small oligonucleotide sequences 

(probes), containing 25-nucleotides located variously in their sequence composition. This 

is an impressive characteristic compared to the cDNA microarray, which uses single and 

long probes to detect the transcript o f  interests because small probes could bring a better 

discrimination between similar related transcripts over long oligonucleotides, especially 

when mRNAs are highly abundant. Hence, we mainly focused our research interests on 

Affymetrix microarray image analysis.
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m m m

Figure 1.8 Affymetrix microarray chip from [12]

Probe sets are designed for each mRNA sequences [15]. Each gene normally 

consists o f  11 to 20 different probes, which corresponds to a single transcript at different 

locations. For Affymetrix microarray, it usually has tens o f  thousands o f  different probe 

sets. This feature makes the Affymetrix microarray more desirable than cDNA 

microarray, since it could allow scientists to monitor and manipulate such amounts of 

genes at the same time.

Another significant characteristic is that Affymetrix introduces the Perfect Match 

(PM) and the Mismatch (MM) in a pair into the probes as shown in Figure 1.9. In other 

words, each probe pair consists o f  two probes, PM and MM. These two probes are 

exactly the same, except for the one base in the middle. For example, PM has 25- 

nucleotides. which are perfectly hybridized to the mRNA sequences; whereas, MM has 

the same 25-nucleotides, but there is only one base in the middle o f  the 25 bases that is 

different from what the PM has. Each PM should be uniquely different from each other.
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In this case, false signals transcription caused from similar complete sequences were 

completely eliminated, and MM was used to help scientists to learn and control the 

unspecific signal and background signal.

mRNA reference sequence

5-

probe set [

3

spaced probe pair

c : P M  p r o b e  

M M  p r o b e

I ___I

fluorescence intensity image

perfect match probe cells 

mismatch probe cells

Figure 1.9 Probe level design in Affymetrix microarray from [16]

Normally, an Affymetrix experiment contains the following steps. This whole 

process shown in Figure 1.10 usually requires two and a half  days:

■ First, the sample o f  interest is selected.

■ Next, the RNA sequences are isolated. The RNA quality is monitored and 

checked. After checking the quality o f  RNA sequences, good quality RNA 

sequences are labeled. These mRNAs experience the reverse transcription to 

cDNA. which is labeled by In Vitro Transcription (IVT).



■ Next, this mixture is injected into the microarray platform. Hybridization is 

performed on the gene microarray platform under specific temperature and 

hours.

■ After complete hybridization, the chip is scanned by a special laser, generating 

the Affymetrix microarrav image in 16-bit gray level.

■ Finally, the intensity o f  each pixel on the chip is recorded according to the 

emission o f  the fluorescent dye.
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Figure 1.10 Affymetrix microarray experiment process from [17]

There are several microarray types developed by Affymetrix. They are different in 

many aspects, such as different emphasis on genes, exons or genome wide transcriptions 

and different use o f  mismatch probes on different number o f  probes.
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The standard expression array is the most com mon array used in the public 

research area, which could be canine, rat. human, fly, yeast, bacteria and plant. Such 

probe arrays are available as public resources at UniGene, GenBank. dbEST and so on. 

The microarray data for this dissertation mainly came from this standard expression array 

database.

The exon array could provide the gene expression information based on the exon 

level. From this point o f  view, the splicing patterns could be clearly monitored and 

learned. It is known that not all the DNA sequence may be translated into a protein. After 

generating the mRNA, there is an important step that removes the non-coding sections in 

mRNA. These non-coding sequences are referred as to “introns.” The rest o f  the exons 

are constructed together in different ways resulting in various genes. This whole process 

is called “splicing.” It plays a significant role in the human genome system, because 

different splicing and construction o f  the exons will contribute to completely different 

proteins.

The gene array contains more up-to-date genome annotations for human and 

mouse. Hence, it is more accurate compared to the standard array. It is usually little 

smaller than the standard array since it does not carry any mismatch probes but the 5- 

micron feature. This array is the next generation o f  standard arrays. It begins to include a 

large amount o f  perfect match probes for each gene and to drop all the mismatched 

probes. Another impressive characteristic this array has is that it removes the 3 '-bias end 

of each transcript. Instead, it uses 26 different probes to cover the whole transcript. 

Removing this 3 '-bias end will provide more accurate gene information when alternative 

splicing happens in 3 "-end and so on.
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The tiling array only covers several organisms such as human, mouse and yeast. 

The tiling array uses 25-mer probes which are evenly located every 35 bases with around 

10 bases as the gap between each probe. It only uses the evenly located probes on the 

non-repetitive part o f  the genome sequence rather than using the probes which 

corresponds to the relevant gene expression sequences. This type o f  array is widely used 

in transcript elements mapping and protein binding identification.



CHAPTER 2

INTRODUCTION OF AFFYMETRIX MICROARRAY IMAGE

Over the last decade, the microarray biotechnologies have become increasingly 

important in the biomedical research field, since they are capable o f  monitoring the 

expression levels o f  thousands o f  genes simultaneously. This quality o f  the technology 

that allows researchers to access such a large number o f  genes simultaneously while the 

traditional methods are limited in the number o f  genes that can be researched at one time, 

sparked the interests o f  scientists in researching and improving their understanding of 

genomic regulation and gene interaction. The DNA microarray technology has provided 

the scientific community with a tool to be used in understanding the basic aspects o f  life 

development and especially in exploring genetic causes and anomalies occurring in the 

human body.

The microarray applications currently are very wide; one o f  the first applications 

of microarravs was genome sequencing analysis using hybridization, tissue microarrays 

used in the study o f  cancer, including the molecular profiling of tumor specimens and of 

the applications determining gene copy number. Drug discovery is one o f  the largest 

aspects. The microarray's capabilities make them a perfect candidate for various stages of 

drug discovery, validation and clinical studies. Other applications o f  microarrays are in 

DNA computing, bioinformatics, and data mining, where the microarrays are required

15
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tools for solving computational problems, analyzing huge amounts o f  data with similar 

characteristics, by using diverse analytical methods: Bayesian methods, neural networks, 

clustering, multivariate statistical analysis, and information retrieval [18].

Last, but not the least, and the direction where our interest lies was the gene 

expression analysis, with the goal o f  gene discovery and the possibility o f  using these 

results in monitoring and detecting the changes in gene expression from different cells. 

There are already chips with arrays o f  many types o f  genes such as human or species like 

rat. mouse and Escherichia coli and more. The Affymetrix Company manufactures chips 

for analysis o f  DNA microarrays, chips that scientifically match significant parts of 

human and non-human genomes.

The method developed in this dissertation aimed to provide a better segmentation 

method compared to the ones currently used. We expected that the improvement could 

lead the way to a quantitative feature o f  the DNA arrays. Such results would impact 

directly the many fields that use DNA arrays; the most important impact will be in a 

better prediction o f  genes that activate different diseases. We looked to provide a stepping 

stone towards quantitative results from DNA array experiments (at the moment we 

receive rather qualitative signals of the gene-disease relationships from such 

experiments). With the advancement o f  the hardware in digital photography and the 

processing/manipulation o f  cells, we fully expected the images obtained after the DNA 

arrays experiments to reach much higher resolutions and have significantly lower noise in 

the signals and. thus, the proposed algorithm to lead to dramatic improvements as 

opposed to the currently used Affymetrix segmentation method. This new method will 

lead, in turn, to quantitative results which would have a significant impact in shedding
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light on the cellular processes. This segmentation of a picture is one o f  the three 

important steps in microarray image processing, together with spot gridding and 

information extraction. It directly affects the accuracy of gene expression analysis in the 

data mining process that follows [19, 20 , 21,22],

2.1 Overv iew of A ffym etrix M icroarray Im age Analysis M ethods

In a microarray experiment, the image analysis could be viewed as one o f  the 

most crucial steps o f  processing, which could have a large impact on the subsequent data 

analysis, such as clustering or identification o f  different gene expression levels. During 

the microarray experiment process, usually two samples o f  (a healthy sample versus 

diseased sample) microarravs are hybridized with complementary DNA labeled with 

usually two different fluorescent dyes, Cy3 and Cy5. Next, the hybridized microarrays 

are processed by a microarray scanner to visualize the red and green florescence. In other 

words, the hybridized microarrays are imaged at each spot. In this way, a raw 16-bit TIFF 

image is obtained. The florescence intensity o f  each spot represents the hybridized level 

o f  the sample. Therefore, analyzing the microarray image is one o f  the most important 

steps in a microarray experiment. The microarray image analysis can be described as a 

three step process [ 11].

The addressing or gridding step is performed to find the exact location o f  each 

spot and to assign the coordinates to each spot. The purpose is to define the spot region 

based on the microarrav image layout information. After gridding on the microarray 

image, each spot is assigned with a geometric location, which is a square or a rectangle. 

T he center o f  each spot and the region between the center and the boundary are used to 

detect the object curve within the square. However, in real microarray experiments, the



misalignment usually happens. For example, the microarray chip may not be arranged 

exactly in the center during the scanning process. Or the sub-array chip may be shifted 

subtly during the hybridization process. All these issues will be considered and handled in 

our image analysis process [23].

The segmentation process was the main concern in our research. In the data 

acquisition process, the segmentation o f  spots is the one o f  the most challenging tasks 

and has a significant impact on the gene expression analysis process that follows. The 

task is to identify the pixels either as foreground (within the printed spot) or as 

background (beyond the printed spot). In this sense, the image segmentation is a process 

that divides an image into two mutually exclusive regions: foreground and background. 

The key point at this stage is to get the exact shape o f  the foreground pixels. This 

exactness does not usually happen in the previously used segmentation methods in the 

literature. In this way, the foreground and the background regions are classified and the 

tlorescence intensity for the spot is calculated according to this classification.

However, the microarray images are hard to segment since they have highly 

varying image contrast different from experiment to experiment and also contain a high 

level o f  background noise and image artifacts. The segmentation step is further 

complicated by the non-uniform shape and surface intensity distribution in the 

experiment pictures.

The intensity extraction follows next. The value o f  each pixel represents the 

expression level o f  hybridization for that specific DNA sequence. Hence, the next step in 

processing DNA arrays is to calculate foreground tlorescence intensity, background 

intensity for each spot based on the results from the segmentation. In addition, at this step
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some other calculations are performed such as the possibility of random hybridization, 

noise and quality measures. Many methods use the mean or the median pixel value as the 

whole value o f  the foreground spot mask. Additionally, these methods make use o f  the 

statistical tests to measure the background intensities relative to the foreground 

intensities, [11, 24], Therefore, the result produced in the segmentation step is extremely 

important in the subsequent image analysis process.

In recent years, several methods have been developed to segment microarray 

spots and have been incorporated into commercial microarray image analysis software 

p ackages[25, 26].

The last step o f  the process is the intensity to gene expression signal value step. 

The intensity only represents the abundance o f  hybridization for target interested 

sequence in each spot, not for each gene. The last step is to summarize the intensity 

values into the signal value, which represent the expression level for each gene.

2.2 Affymetrix M icroarray Im age Analysis Process

In Affymetrix, all microarray image analysis is accomplished in Gene Chip 

Operating Software (GCOS) produced by Affymetrix Company. It provides a set of 

comprehensive analysis tools for data management and control in the processing of 

microarrays. The software summarizes all the probe intensity values and combines them 

into gene signal values after image gridding process. Besides these characteristics, this 

software enables data analysis to be customized, automated and integrated with various 

laboratory systems.

First, segmentation and intensity extraction are performed by the built-in GCOS. 

In Affymetrix microarray image, each probe spot cell contains n x  n pixels depending on
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the experiment design. After identifying the position o f  each probe, GCOS omits the 

outer boundary pixels. Only the inner pixels are included and considered to be within the 

foreground area. The method chooses the 75th percentile o f  the rest o f  the pixels in the 

square to represent the intensity for each probe. Table 2.1 is the pixels matrix o f  one spot 

in microarray image.

The outer highlighted pixels are dropped off in Table 2.1. The 75th percentile of 

remaining inner pixels is recorded as the intensity value for the spot. The reason why 

GCOS omits the outer pixels is that it is believed that such pixels are not reliable and may 

carry some noise and errors, for they may be located by the misalignment in the scanning 

process, or they may be influenced by the neighboring probes which have large amount 

o f  emission. These intensity values are recorded into the CEL file.

Table 2.1 Pixels matrix for one cell

196 369 "  279    ' 458 219 f g
m  166 : 241 286 451................  g g

In Affymetrix, GCOS chooses the 75lh percentile o f  the interior pixels o f  each 

probe cell as the intensity for each probe. Research from Harry Zuzan [23] shows that 

with the increasing o f  the pixel values, the variance w'ould become unstable when 

choosing the 75th percentile as the probe intensity. In addition, this method is not robust 

enough when dealing with different qualities o f  cells. Hence, in this dissertation, we 

introduced an intensity extraction algorithm named as “Segmentation Based Contours” 

method, which is a modified version o f  the ACWE method [27], The ACWE model will



detect a curve which is constrained in a specified image without any gradient calculation 

but minimizing the energy based function. Thus, the ACW E presented by Tony F. Chan 

and Luminita A. Vese [27] has more advantages in finding objects within a microarray 

image in which boundaries are not defined by gradient. We will present more details for 

this ACWE method and its modified method SBC.

Next, intensity values for each spot are combined transformed into the gene 

expression signal value. The Affymetrix GCOS software uses the MAS5 algorithm to 

calculate the signals from intensities [28, 29, 30], The Genechip array designed by 

Affymetrix Company is the probe level design array. A Genechip array contains many 

probe cells, where each probe cell is related with a specified target sequence probe. Probe 

spots are tiled into probe pairs with a Perfect Match (PM) and a Mismatch (MM). There 

is only one base in the middle changed in MM sequence, where it does not follow the 

complement rule. All related PM and MM together consist o f  a probe pair, related to a 

whole expressed gene transcript shown in Figure 2.1.

1 2  3  4  5  6  7

PM
MME1 1 1  S3 1 1 3

8

■

9  1 0
m  c e  II

■

probe s e t  pro b e  par

Figure 2.1 Probe set from [28]

Before calculating the signals, the MAS5 conducts global background subtraction 

and noise correction based on the raw intensities in CEL file. This background adjustment 

noise correction could even out the background errors caused by different cell locations. 

First the whole chip is divided into 16 rectangular zones as shown in Figure 2.2. Next, the



distance d k is computed between the chip coordinate (x, y )  and the center o f  each sub 

zone. Next, the weighting factor Wk is obtained based on d k .

Wk ( x , y )  =  (d \ { x , y ) +  s m o o t h ) * 1, s m o o t h  =  100. (2.1)

 r

Figure 2.2 Background subtractions from [28]

Based on such distances d k and Wk together and a constant b , a weighted sum is 

obtained, which is used for each probe cell (x ,y ) .

b(x,  y )  = Z b Z k Wk (x,  y ) .  (2.2)

Now, MAS5 computes the adjusted intensity value by shifting the original 

intensity value down based on the local background/). This/) is considered to be the 

noise correction. For noise correction, local noise factor n is obtained based on the 

standard deviation in each sub zone.

n{x,  y )  =  z u, / !xy) £  n Z k Wk (x, y ) .  (2.3)
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Next, an initial threshold and a floor are specified such that no adjusted intensity

value is below that threshold. The adjusted intensity is calculated from subtracting this

local background.

A ( x , y )  =  m a x ( / ' ( x ,  y )  — b ( x , y ) ,  N o i s e F r a c  * n (x ,  y ) ) ,
w h e r e  / ' (x ,y )  =  m a x ( I ( x ,  y ) ,  0 .5 ) ,  N o i s eF r a c  =  0.5. (2.4)

After adjusting the background for each cell, the MAS5 algorithm uses the new

intensities to calculate the signal for each probe as follows:

1. An ideal mismatch value is calculated and subtracted to adjust the PM

intensity. Tbi is the one step biweight algorithm. In an Affymetrix microarray, the reason

why it introduces the MM probe is that it comprises the background noise and cross

hybridization, which will bring impact on the PM probe. Hence, the ideal possible MM

value should be less than PM value. However, in some cases, the M M  value is larger than

PM value. This result indicates that this MM value is a physical impossible measurement.

It cannot be used to calculate the signal value. Instead, an adjusted value should be

estimated based on the whole gene probe set level. MAS5 uses the one step biweight

algorithm to calculate this specific background estimation S£?j.

SBi = T ^ l o g P M i j  -  l ogMMi j ) , }  =  1 ,2 , . . . ^ .  (2.5)

The one-step biweight algorithm begins by calculating the median M  for a data set

w ith n values. In the signal measurement, this data set consists o f  the log (PM — 1M)

probe values o f  a probe set. Next, we calculate the absolute distance for each data point

from the median, and calculate S. the median o f  the absolute distances from M.  The

median absolute deviation, MAD, is an initial measure of spread.
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For each data point i, a uniform measure o f  distance from the center is given.

(2 .6 )

Next, calculate the weight by the bi-square function.

(1 -  u 2) 2, \u\ < 1, 
0, |u |  >  1.

(2.7)

Finally, the corrected values can be calculated by the one-step u-estimate.

(2 .8)

If the background estimate S B ; is large, the related values in the probe set are 

reliable. This S B t is capable o f  constructing the ideal adjusted mismatch I M  if  necessary. 

If SBi is small, more o f  PM values are used to calculate the ideal adjusted mismatch IM. 

These different cases which determine the ideal adjusted mismatch I M  are described as 

follows:

When MM value is less than PM value, this MM provides a reliable estimation 

for the probe background. When MM value is not less than PM value, this MM value is 

not reliable, but still provides some relevant information for the probe. If SBi  is less than 

or equal to 0.03. the MM value provides the least information estimation.

2. The adjusted PM intensities are log-transformed to stabilize the variance.

Given the adjusted ideal mismatch MM, probe value (PI') is calculated with the 

numerical stability.

MM[j, w h e n  MM!y- <  PMLj ,

M i j  = <

r  M  • •

-̂ sb~, w h e n  MMjj  >  PMitj a n d  S B t >  0.03,

, w h e n  M M y >  P M tj  and  S B t < 0.03.

T( ; = m a x  {PMi j  — I Mi j . D ' ) , w h e r e  D =  2 20. (2.10)
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Next, log-transformation is performed on probe value for each probe cell.

PVltj =  \ o g ( y i:j), j  =  (2.11)

Absolute expression value for each probe set is obtained by performing the one 

step biweight estimate algorithm.

S i g n a l L o g V a l u e  — ^ ( P F i l f ..., PVi n). (2.12)

3. The biweight measurement is used to calculate the robust mean o f  the input 

values. Signal is output as the anti-log of the Signal Log Value. Finally, the reported 

signal for each probe set is obtained.

R e p o r t e d S i g n a l  =  n f  x  s f  x  2 SignalLogValue. (2.13)

2.3 Affymetrix M icroarray Image A nalysis Flow in GCOS

After finishing the microarray experiment, the most crucial step is to extract most 

reliable data information from the microarray image, obtaining the intensity value for 

each probe on the chip. The probe intensity is the foundation o f  the whole microarray 

image analysis because all the subsequent data analysis is based on the probe intensity 

value, calculating gene expression signals and so on. Thus, how' to achieve more accurate 

probe intensity values was our main research interest. For Affymetrix microarray image, 

all such analysis was accomplished in GCOS. Figure 2.3 is the GCOS microarray image 

analysis flow' chart. The gene chip was scanned after microarray experiment. The raw 

image information was stored in DAT file and we used GCOS to open this DAT file. 

Alignment gridding was automatically performed and intensity values were written in 

CEL file. When the intensity values were obtained, GCOS implemented the MASS 

algorithm to analyze the CEL file and related CDF file to calculate the gene signal value
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for each probe set. This gene signal value was stored in CHP file and TXT file. One was 

in special format in CHP file. The other one was in text format in TXT file.

EXP f i le CDF f i le

TXT f i le

Figure 2.3 GCOS microarray image analysis flow

The DAT file shown in Figure 2.4 contains the data information o f  raw 16-bit 

(TIFF) optical image followed by the relevant header information shown in Table 2.2. It 

also includes that array chip layout information and experiment information, etc. The 

CEL file shown in Figure 2.5 contains the information for each probe cell. It includes the 

layout coordinates o f  each cell, the intensity value for each cell, the number o f  pixels 

included for each cell and the standard deviation o f  each cell, etc. It is written in a special 

format shown in Table 2.3.
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Figure 2.4 DAT file structure shown in MATLAB

Table 2.2 Part o f  header information for DAT file

Index Description Type

1 Type o f  file, must be OxFC. BYTE

2 Number o f  pixels per line. WORD

3 Number o f  lines in the image. WORD

4 The total number o f  data points (pixels) in the image. DWORD

5 Minimum pixel value in the image. DWORD

6 Maximum pixel value in the image. DWORD

7 Mean pixel value. double

8 Standard deviation o f  the pixel values double

9 Number o f  pixels per row (padded with spaces), preceded with 
"CLS=."

char[9]

10 Number o f  row s in the image (padded with spaces), preceded 
with "RWS=."

char[9]
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Figure 2.5 CEL file structure shown in Matlab
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TAG Description

Version The version number. Always set to 3.

TAG Description

Cols The number o f  columns in the array (o f  cells).

Rows The number o f  rows in the array (of cells).

TotalX Same as Cols.

Total Y Same as Rows.

OffsetX Not used, always 0.

OffsetY Not used, always 0.

GridCornerUL XY coordinates o f  the upper left grid corner in pixel 
coordinates.

GridCornerUR XY coordinates of the upper right grid corner in pixel 
coordinates.

GridCornerLR XY coordinates o f  the lower right grid corner in pixel 
coordinates.

GridCornerLL XY coordinates o f  the lower left grid corner in pixel 
coordinates.

Axis-invertX Not used, always 0.

Axis-invertY Not used, always 0.

swapXY Not used, always 0.

The CDF file shown in Figure 2.6 contains the information for each probe set 

gene. It includes the number o f  probe sets, the name o f  each gene probe set, the number 

of probe pairs o f  PM and MM. and the coordinates for each probe pairs, etc.

The CHP file shown in Figure 2.7 contains the experiment results created from 

CEL and CDF files. It includes the gene expression value for each probe set and includes 

the pixel resolution, etc.



30

>> : = a:fyreaa i ' ■

: =

:!d.T.a : ' Car.ir.e a . rdf '
Cr.ipType: ’ Car.: re a ‘
IcfcPacr.: ' F : \ cr.er.gyj.ar. f.ffyXWir.” xp sr.are\2-.2XF '

FallFacr.'.’air.e: ' F: \ rf.er.gyaar.'. Af fy'-.Wir.” xp share\ACKE\ Car.ir.e a. cat’
t  a - e : ' 23-5ep-2 1 e : '

1 ) U» ” 3 2
2c 13 : “32

Uujr.FrcfceSets: 23213
Xurr.'CFr cbeSecs: 9

frifceietCclu rr.r.' larr.fts: •:€xl cell;
Frcfc»S*'.s: ; 23 92 2 xl scrucc;

Figure 2.6 CDF file structure shown in MATLAB
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Figure 2.7 CF1P file structure shown in MATLAB

The TXT file is the text format o f  CHP file, w'hich contains the same information 

as the CHP file. The EXP file is the text file, which contains the experiment details, such 

as the experiment date, time, name, scanning machine and pixel size, etc.



CHAPTER 3

MICROARRAY IMAGE SIMULATION METROD

The Affymetrix GeneChip microarrays have become a crucial component o f  gene 

expression and genotype research for many laboratories. Data analysis remains a major 

challenge for the effective use o f  GeneChip data. There is high interest in analyzing the 

microarray data and improving in the existing analyzing methods.

We will compare our proposed segmentation method SBC with the method 

currently used by the Affymetrix. The Affymetrix GeneChip Operating Software (GCOS) 

is an operating system that controls Affymetrix instruments, acquires data, and executes 

gene expression analysis. In addition, GCOS contains an embedded database that 

manages both experiment information and data. The comparison will not be made in 

respect to the segmentation time, the Affymetrix method is by far much faster than our 

method, and it will concentrate on performance, in the number o f  genes that can be 

detected. We planned to run an experiment to detect active expressed genes in different 

organisms. Since the experiment involved detecting genes’ expressions, even a small 

improvement in the detection rate could be crucial in determining a gene o f  interest.

However, due to the lack of the "ground true information.” it was difficult to 

evaluate different intensity extraction algorithms. Therefore, we utilized an advanced 

microarray simulation model [31], which played a significant role in validating different



kinds o f  segmentation analysis algorithms. It contained all the experiment and 

manufacture steps for producing one microarray image in practice. It also embraced 

biological realistic characteristics, which could affect the microarrav image quality 

significantly. The most important thing is that this model could provide the "ground true 

information" to help us have a deep understanding on how the algorithm performs. The 

simulation program can be downloaded from [32], In order to simulate data carrying real 

genetic information, we used the analyzed intensity o f  real Affymetrix microarray images 

as data input obtained from GCOS for the simulation model.

In this chapter, we will present the data input used in the simulation model and the 

description o f  this simulation method.

3.1 Database for Simulation Model

The original Affymetrix microarray images can be downloaded from [33]. All the 

data on this website are the sample test data provided by Affymetrix Company as a free 

test online source. Some of those data are not available, Canine2.0, Chicken. Citrus, 

Cotton, Dros Test Yease, Focus-Ecoli, HG-U133, MG-U74, Mouse 430, etc. In our 

research, w'e utilized eight different high resolution microarray images from [33] as the 

data source for simulation model. Table 3.1 presents the data used in our research.



Table 3.1 Data sets for simulation model

Bovine_a: A replicate probe array file for the Bovine Genome Array.
Bovine_b: A replicate probe array file for the Bovine Genome Array.
Canine_a: A replicate probe array file for the Canine Genome Array.
Canine_b: A replicate probe array file for the Canine Genome Array.
Vitis_a: A replicate probe array file for the Vitis Vinifera (grape) Genome Array.
Vitis b: A replicate probe array file for the Vitis Vinifera (grape) Genome Array.
Yeast_a: A replicate probe array file for the Yeast (YG-S98) S98 Genome Array.
Yeast_b: A replicate probe array file for the Yeast (YG-S98) S98 Genome Array.

Bovine_a and Bovine b are all selected from Bovine genome. This Bovine 

genome array can be used to understand over 23,000 Bovine transcripts. This array is an 

idea microarray chip for scientists to study cattle. Researchers are able to monitor genetic 

mechanisms, which regulate different kinds o f  traits such as disease resistance, meat and 

dairy production, stress tolerance and so on.

Canine_a and Canine_b were selected from the Canis families’ genome, which is 

an important model organism used for human disease study in the biomedical field. This 

Canine array enables researchers to interrogate 18,000 Canine genomes mRNA/EST 

transcripts and 20,000 non-redundant predicted genes simultaneously.

Vitis_a and Vitis b were selected from the Vitis genome. This Vitis genome array 

is the first array to provide comprehensive analysis for V. vinifera genome and is 

provided as free sample test data from the Affymetrix database. There are sixteen pairs 

for each oligonucleotide probe set to measure the specific sequence o f  target genes. All 

sequence o f  target genes were selected from GenBank, dbEST. and RefSeq online gene 

sequence research databases.

Yeast-1 and Yeast-2 were selected from the Yeast genome. This genome array 

contains probe sets to detect transcripts from two most important species, which are
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Saccharomyces cerevisiae and Schizosaccharomyces pombe. It provided the 

comprehensive coverage for these two species, including around 5,744 probe sets for 

5,800 genes in S. cerevisiae and 5,021 probe sets for all 5,031 genes in S. pombe.

In Affymetrix, all these array files were provided in DAT file format. The 

researcher needed to download GCOS to open this DAT file format. Next, the raw 

microarray image will be shown in GCOS platform. The GCOS automatically allocated 

the grid alignment information from DAT file. The intensity value for each spot cell was 

analyzed and stored in the CEL file. When the intensity value was obtained, the 

researcher was capable at calculating the gene signal value by using the build in MAS5 

algorithm, recorded in CHP file. The GCOS platform is shown in Figure 3.1.
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Figure 3.1 GCOS platform
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3.2  M icro a rra y  S im u la t io n  M e th o d

In order to compare the segmentation results from the two methods SBC and 

Affymetrix GCOS, we introduced an advanced Affymetrix microarray image simulation 

model. This simulation model played a significant role in validating different kinds of 

segmentation analysis algorithms, since it contains all the manufacture steps for 

microarray image. This model embraced biological realistic characteristics which could 

affect the microarray image quality significantly. Most important thing is that this model 

could provide the "ground true information" which led us have a deep understanding on 

how the segmentation algorithms perform.

The simulation model contained six main steps which are slide manufacturing, 

data input, biological noise, slide hybridization, slide scanning and image reading (Figure 

3.2). By operating the model parameters, the simulation process will provide three 

different qualities images, which are high, normal and bad quality.

D ata — ► B io l o g ic a l  n o i s e — ► Slide m a n u f a c t u r i n g  a n d - - - - - ► S l i d e  s c a n n i n g - - - - - ► I m a g e  r e a d i n g
h y b r id i z a t io n

Figure 3.2 Simulation steps

Data input for the Affymetrix microarray image is the intensity for each cell in the 

microarray chip. In addition to the intensity data, the cell location, probe name and 

location and their identifiers should also be specified in a proper format by using a file 

input module. The requirement for the input data format is described in Table 3.2. In our 

research, we used the analyzed intensity data obtained from real Affymetrix microarray 

image as the data input for the simulation model.
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Hence, the simulated microarrav image also carried the real genome information 

rather than randomly generated data.

Table 3.2 Data input format

Data Intensity data for each cell

Time Time instants

Genes Probe names

Spot Probe locations

Name Dataset name

Type cDNA or oligonucleotide or ratios

scale Input data scale

■ Input variable: Data. This variable contained the intensity matrix o f  each cell in 

microarray chip. Each column corresponds to one sample o f  the microarray. 

Next, all conditions o f  the data were saved as a data matrix.

■ Input variable: Time. This was a vector variable. This vector contains the time

instants for different microarray experiments. Time scale can vary. The total

length o f  this vector should equal to the number o f  rows in the Data matrix.

■ Input variable: Name. This is a string variable. It indicates the name o f  the 

dataset saved.

■ Input variable: Info.genes. This is an array variable. It stores the name o f  the 

genes/probes. Each name corresponded to each gene/probe

■ Input variable: Info.spots. This is a matrix variable. Coordinates x  and y  were

given for each cell which indicates the location. The info.spots has a matrix fonn

o f  [.v.y]. where x  and y  were both column vectors.
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■ Input variable: Info.*. This is an optional variable if the user needs to define 

more information for the cell.

* Input variable: Type. This is a string variable. There are three optional strings, 

ratios, expression and intensity. Ratios represent the gene expression type. 

Expression represents the cDNA microarray type. Intensity represents the 

Affymetrix microarray type.

■ Input variable: Scale. This is a string variable. There are two options which are 

linear and log. These two options indicated that if  the input data is in log scale or 

linear scale.

Biological errors were related to the experiment preparation process [34. 35]. 

These intrinsic errors were presented no matter what sort o f  measurements is used. As to 

the measurement noise errors, they were more related to the measurement technology 

used in the experiment [36], After such errors were taken into account, there are also 

some other studied error sources added in this section [37, 38, 39, 40, 41],

This was the most important step in this whole simulation process since this step 

introduced many realistic biological statistical error and noise model for the simulated 

data. Furthermore, the specified noise and error model parameters to obtain different 

qualities o f  microarray image such as high quality, median quality and low quality. 

Default model parameters were set as follows: for Simple noise model, SNR noise model. 

Dror noise model, Hartemink noise model, Hierarchical error model. Rocke noise model, 

and Hein noise model. Table 3.3 shows the error noise parameters for these models.
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T a b le  3 .3  L is t  o f  n o i s e  p a r a m e t e r s

Kernel Kernel used to model the population 
effect.

Copies Number o f  times the population 
effect is applied.

Error model Error model to be used; each error 
model has its own parameters

Simple noise model (0 .0 1 , 0 .0 0 1 )
SNR noise model (0 , 10)
Dror noise model (1 ,0 .0 1 ,0 ,3 6 ,1 3 ,0 .7 6 ,0 ,0 .2 1 )
Hartemink noise model (0 .2, 0 .0 1 , 1)
Hierarchical error model (0 .012 ,0 .010 , 0 .0 8 5 ,0 .0 9 4 ,0 .0 1 1 )
Rocke noise model (5 ,0 .1 ,1 ,1 )
Hein noise model (0.341, 0 .335 ,0 , 5 0 ,0 .5 ,1 ,0 .5 ,1 0 )

The slide manufacturing option was the data extraction process from slides. This 

step was also an important step. In this step, the user specified the microarray chip layout 

such as how many sub-arrays and how many probes on the chip and so on. It included 

also several error models which may be caused by the spotting and printing process. 

These may be the variation of the cell position and size, or the print tip and the spot shape 

deformations and so on. Table 3.4 contains the parameters used in this step.



T a b le  3 .4  L is t  o f  m a n u f a c t u r i n g  p a r a m e te r s

Good Normal Bad Affymetrix
Stype cdna cdna cdna oligo
Sspot circle gaussian gaussian
Spix 12 12 12 10
Smovprob 0.01 0.1 0.5 0.1
Smov 0 1 2 1

5 5 5 4

V 0.001 0.01 0.1 0.01
p 0 1 1
Pp 0.0 0.5 0.9
Ph 0 3 3
Pw 0 2 2
Pb 0 1 2
Cprob 0 0.1 0.25
C num 0 4 8
Ccut 0 3 6
B [4,2] [4,2] [4,21 [1, 1]
Bspace 50 50 50
Bcurve 0 1 2
Bmaxc 0 3 10

The slide hybridization was for the spot shape simulation. There were several 

models included in this step to control the spot shape. Since there was no single model 

that can simulate all the types o f  microarray images, several models such as Gaussian and 

polynomial hyperbolic models were implemented [42], Researchers may set up 

parameters in different error models to control the spot shape. The final spot shape will 

be influenced by the multiplicative Gaussian noise w'ith the researcher-specified 

parameter values in error noise models. In addition, this step allowed users to choose 

which type o f  microarray was related, two-channel or one-channel. For Affymetrix 

oligonucleotide microarray, the rectangular spot influenced by the Gaussian noise model 

was used. Like the previous steps, the user could also specify the parameters in each error 

models. Table 3.5 contains the parameters used in this step.
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Table 3.5 List o f  hybridization parameters

Good Normal Bad Affvmetrix
H n 2 0.001 0.01 0.1 0.01
Herrors 1 1 1 1
Hbgnoise 10 30 50 20
Hbgvar 0.001 0.01 0.03
Hbggrad 1 1 1 1
Hnoscratch 0 1 3 0
HSlength 0 0.3 0.9
HSwidth 0 5
Flnoair 0 1 3
H

a  a i r 0 15 30
1 10 20

Hbleed 0 2 10
Ilbleedsize 0 5 10
Hbleeddist 0 0.4 0.4

After the hybridization process, the microarray image was read by an optical 

scanning. Although the advanced scanners are usually o f  high quality, they could still 

generate misalignment errors. For example, the slide was not perfectly scanned straight in 

the chip. This misalighment happens very often in Affymetrix microarray image cases. In 

addition, there may be some saturate measurement values generated due to the finite 

dynamic range o f  the scanner.

After the scanning step, the microarray image was generated automatically. The 

user could also define if  the built in segmentation algorithm is used to analyze the 

simulated image straightly. Table 3.6 contains the parameters used in this step.



T ab le  3 .6  L is t  o f  s c a n n in g  p a r a m e t e r s
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Good Normal Bad
Rpower 1 10 20
Rb 16 16 10
Req 0 0 0
Rth 7 5
RRch 2 2 2
RGch 1 1 1
Rerrors 0 1 1
Rangle 0 0.1 1
Rmm 0 0 1

3.3 M icroarray Sim ulation Process

When evaluating the performance o f  the segmentation algorithms, it is hard to 

discover the exact gene expression levels or pixel level intensities. Hence, we utilized the 

simulation module to obtain different qualities o f  microarray images. The “ground true 

information” for each simulated image was pre-assigned before analysis. In order to 

obtain a comprehensive understanding o f  different algorithms' performance, we analyzed 

the simulated image based on the gene expression level in order to observe the expression 

sensitivity o f  different algorithms will be directly analyzed. In our research, we mainly 

focused on high quality resolution simulation since nowadays every high density 

oligonucleotide microarray is produced in an advanced experimental environment. 

Bubble, scratch and other layout disadvantages are rarely generated.

Therefore, we could control the gene signal values and intensity values to 

implement the simulation for each microarray image group. All the simulated images for 

each quality microarray group will share the same signal and intensity inputs. Next, these 

images were analyzed separately with both SBC and GCOS to generate two sets of 

intensity values and used the built in GCOS gene signal o f  the MAS5 algorithm to
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compute the corresponding signal values from those two sets of intensity values. In this 

way. we could compare the gene expression results between these two methods. This 

feature was more desirable than just to validate the intensity accuracy because the gene 

expression level has a more influential meaning in practice than the intensities have.

When the simulation step was completed, a simulated microarray image TIFF file 

was generated and written into a specific DAT file. Next, the DAT file and TIFF file were 

imported into both SBC and GCOS in order to obtain two sets o f  intensity and signal 

values. Therefore, not only was the intensity accuracy evaluated, but also the signal 

accuracy was validated using both SBC and GCOS methods in the evaluation process. 

This whole process is illustrated in Figure 3.3.
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Figure 3.3 Microarray simulation process
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1. Write simulated microarrav image into DAT file.

In what follows, we defined each step o f  the process, after obtaining the simulated 

microarray images, the Affymetrix GCOS will analyze the images. However, the 

Affymetrix GCOS software cannot analyze the microarray image type file (JPG, TIFF 

and so on) directly. In order to allow the Affymetrix GCOS to analyze the simulated 

image, we needed to rewrite the simulated microarray image into the *.DAT file. The 

*.DAT file contains the 16-bit grey level image pixels data, header information, layout 

information and so on. It is a special data format designed by Affymetrix. The first 

section in DAT file is the header information stored in DAT file. The pixel data matrix is 

stored as 16-bit unsigned integer value at byte 512 following the header. The new 

simulated microarray image has everything as the original image except has for the image 

pixels data. Thus, we extracted the new simulated pixels data and wrote them into the 

original DAT file and remained any other layout information the same. In this case, w'e 

got a new DAT file corresponded to the new simulated microarray image.

2. Analyze the new DAT file by GCOS.

When the simulated image was written into the specific DAT file format, the new 

DAT file was imported into GCOS. GCOS automatically analyzed and generated the 

CEL2 file and CHP2 file, wfiich presented the intensity and expression information for 

that specific DAT file. In such a way, one set o f  intensity values and signal values from 

GCOS was obtained.

3. Analyze the new simulated image by SBC.

SBC is the segmentation based contour algorithm implemented in JAVA platform. 

The input of SBC is a batch file, which contains both image and grid location information
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together. New simulated image and its corresponding grid information are written into 

this batch file and imported into SBC. The intensity results were saved as the output in a 

TXT file, which contains four columns. They were the numbers o f  pixels assigned as the 

foreground, foreground/background mean, cell intensity and cell background median. In 

addition, the SBC generated a segmented image shown in Figure 3.4 with the boundary 

colored in white for each cell.
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Figure 3.4 Segmented image by SBC

4. The SBC intensity output is written into CEL file to get the corresponding gene 

expression signal values.

SBC algorithm will generate intensity output in TXT file after image 

segmentation. Since our objective was to detect the signal expression sensitivity for each 

segmentation algorithm, we needed to calculate the gene expression values by MAS5 

based on the intensity values obtained from SBC. However, the GCOS requires special 

CEL file format as the input to MAS5 algorithm. In another words, we needed to write
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the SBC intensity TXT file output into this specified CEL file. The CEL file format was 

an ASCII text file, which was divided into many sections begin with a section name 

defined by a line. It contained the information for each probe cell. It included the layout 

coordinates o f  each cell, the intensity value for each cell, the number o f  pixels included 

for each cell and the standard deviation o f  each cell, etc.

Therefore. CEL3 was generated from the intensity values obtained from SBC. 

Next, we used MAS5 to analyze these intensity values stored in CEL3 file to get the 

corresponding gene expression signal values stored in CHP3 file.

We started with the picture that we want to segment and using the segmentation 

method, embedded into the GCOS, we created a CELL1 file, which stores the results of 

the intensity calculations on the pixel values o f  the DAT file. Using the data acquisition 

module in the GCOS, we extracted the gene values, the so called “true-values” in CHP1 

file. On the CELL1 file, we applied the algorithm, and we generated a new picture. This 

picture was segmented using the segmentation module in the GCOS and generated 

CELL2 file. It was segmented using the SBC method and generated CELL3 file. To 

eliminate any bias in our analysis, we processed both CELL2 and CELL3 files with the 

data acquisition module inside the GCOS and obtained gene values in CHP2 file from 

Affymetrix and gene values in CHP3 file from SBC. These two sets o f  gene signal values 

were compared with the "true values” and statistical analysis performed to determine 

which segmentation method performs better.

Hence, after modifying the original simulation algorithm, we were able to 

generate Affymetrix type o f  images by using the obtained intensity value, the so-called 

"true values.” Previous studies in the literature did not have such information; therefore.
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the statistical analysis that could be done was rather limited. After applying our 

modification to the algorithm, we were able to generate any number o f  pictures we 

needed for an experiment. To these pictures we could apply and any segmentation 

method in existence, and we could analyze which segmentation method offered values 

closer to the "true values.” This simulation method also enables us to identify weak or 

strong points within each segmentation method. In our research, we only compared the 

performance o f  two methods: the SBC and the GCOS methods since GCOS was the 

currently known method used in Affymetrix microarray analysis.

3.4 Microarray Simulation in 4 x  4 Blocks

Usually, a normal image is a 16-bit grey intensity image in a special DAT file 

format. The DAT file contains a 512 byte header following by the raw image data. A 

normal image, for instance, contains 4733 x  4733 grid o f  pixels which contains all the 

cells as well as the small, vacant border area. Therefore, the total size for one image 

would be 2*4733A2+512=44803090 bytes which is approximately 45M. Sometime, the 

size of an image can be more than 50M up to 100M. Additionally, during the simulation 

process, a large amount o f  grid layout information and noise error statistical models are 

implemented. However, due to the limits o f  the computer RAM and MATLAB memory 

space, our first approach we could not simulate a whole Affymetrix microarray image at 

once from the original simulation model. Thus, we did an iteration to simulate the 

microarray image piece by piece, and integrate all the pieces together into a whole image.

First, we divided the whole image probe cells area into 4 x 4  pieces from upper 

left to lower right. Each piece contained 200 x 200 cells at most. After simulating the 

image piece by piece, we omitted the border area in the simulated image, and we



47

extracted the simulated cells area substituting them into the original image cells area. In 

this case, we made sure that the probe chip layout format and border area was exactly the 

same with the original microarray image but with different probe cells’ pixels. Figure 3.5 

is the original microarray image for Canine_a genome. Figure 3.6 is the simulated 

microarray Canine_a image in 4 x  4 blocks.

Figure 3.5 Original microarray image for Canine_a genome
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Figure 3.6 Simulated microarray Canine_a image in 4 x  4 blocks
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The 4 x 4  blocks simulated microarray image has captured some properties o f  the 

microarray experiment. However, there are some population block effects caused by the 

piece wise simulation. This block effect motivated us to seek the possibility o f  one block 

simulation.

3.5 Microarray Simulation in One Block

In the first stage o f  this research, due to the limit memory o f  CPU and MATLAB, 

it was not possible to simulate the Affymetrix microarray image at one time. Hence, we 

divided the original real microarray image into 4 x 4  blocks. Next, we implemented 

simulation on each sub area iteratively. In this way, the Affymetrix microarray image 

could be generated in computer but with obvious an population block effect which will 

never happen in real microarray experiment image.

Therefore, we implemented the simulation model on a high performance 

computer allowing simulate Affymetrix microarray image at one time. This guarantees 

that the simulated Affymetrix microarray image was fully capturing the real biological 

characteristics without any block effect.



CHAPTER 4

MICROARRAY IMAGE SEGMENTATION METHOD

In this chapter, we will present the Active Contours Without the Edges (ACWE) 

segmentation method.

4.1 Active Contours Without the Edges Method

The Active Contours Without the Edges (ACWE) is a method introduced by Tony 

F. Chan [27], as a model for active contours to detect objects in a given image. The 

technique used is based on curve evolution and the method can detect objects that have 

very smooth boundaries. The method uses an algorithm that employs finite difference 

partial differential equation. This ACWE method has been used in literature in multiple 

studies. Mark Moelich and Tony F. Chanin [43] developed a tracking algorithm based on 

the ACWE, segmentation algorithm that is able to handle changes that result from 

deformations in the object that is tracked. Ahmad Almhdie in [44] presented a method 

based on ACWE algorithm as a segmentation method used for mouse brain MRI images, 

and Nassir Salman in [45] introduced an image segmentation algorithm based on ACWE 

used to extract individual components from a medical image. We can continue with other 

examples. Olivier Rousseau in [46] used ACWE for heart segmentation. Hence, we have 

already established that the ACW E method is one o f  the frequently used segmentation 

methods.

4 9
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In ACWE. an image u Q is defined by two regions which are inside and outside the 

objects within u Q. The inside region is denoted by Uq and the outside region is denoted 

by Uq. Hence, a fitting function is defined, where C is the active curve, and Cx and C2 are 

the constants depending on C.

FX(C) +  F2(C) =  f  \u0( x , y )  -  cx|2 d x d y  +
J i ns i de(c)

<4 .i)

Hence, the object's boundary C0 is the minimal C such that the fitting function is

i n f d F ^ C )  +  F2(C)} *  0 *  FX(C0) +  F2(C0). (4.2)

After the fitting function is defined, the energy function is presented, where Ax >

0 , A2 > 0, v  > 0 , u  > 0 are fixed values.

F (c 1, c2, C) =  H' L e n g th ( C )  +  v  ■ A r e a ^ in s id e ^ C ) )  +

V  / 1n ^ ( c ) l u o ( x , y ) - c 1|2 d x d y +  A2 - f inside{c)\u0( x , y )  -  c2\2 d x d y .  (4.3)

For the following calculation, Ax a n d  A2 are set to be 1 and v  =  0. Thus, the

approximation value u  o f  Uq can be defined in

_  ( a v e r a g e ( u 0)ins ideC,
U \ a v e r a g e ( u 0) o u t s i d e C .

In the level set method, C is represented by the Lipschitz function. C e l l  and  (p :

fi —» R

f  c = da) = { (x ,y)eH : <p(x,y)=Q},
< in s id e (C ) =  co =  { (x .y jeH : (p {x ,y )> 0), (4.5)
[ in s id e (C )  = co =  {(x , y ) e f l : (p{x, y )<0} .

After substitute <p for C in above level set, Heaviside function H and Dirac

function 6 are introduced as follows:
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H (z )  =

S0 U )

1 , i f z >  0 , 
0 , i f  z  < 0 .

d z
H (z).

(4.6)

(4.7)

Next, the energy function F (c 1, c2, C) can be rewritten as follows:

Length{4> = 0 } =  fn \VH(cp(x, y ) ) \ d x d y  =  Jn | ( 0 ( x , y ) ) |  ■ S0(<t>(x,y))dxdy.  (4.8)

J*>olu o (* .)0  ~  c ^ d x d y  =  Jn |u 0(x ,y )  -  q |2 ■ H (< p (x ,y ) )d x d y .  (4.9)

J0 <olu ° ( x ' y ) ~  Ci\2d x d y  = f n \u0( x , y ) -  c2 |2 • ( l  -  t f ( 0 ( x , y ) ) )  d x d y .  (4.10)

F (c 1, c 2, C ) =  g ■ f n \V<p(x,y)\ ■ S ( ( t ) ( x , y ) ) d x d y  + v  • Jn H ( ( p ( x , y ) ) d x d y +

■ Jft K ( x , y )  -  cx|2 ■ H (< p(x ,y ) )dxdy+

A2 • f n lu0( x , y ) -  c2|2 • ( l  -  t f ( 0 ( x , y ) ) ) d x d y  (4.11)

Finally, the approximation u  is obtained.

u ( x , y )  = c1 - / / ( 0 ( x , y ) ) +  c2 - ( l - / / ( 0 ( x , y ) ) ) , ( x , y ) € n .  (4.12)

Finite difference technique is implemented to solve the partial differential 

equation problem.

At =  S h { < P l j )

(
—  Ax
h 2

\

(
+ — Ayh2

\
\ j - Atw 2 '

2  ' 

■V -  A j  ( u 0ii(;  -  ^ ( 0 " ) )  +  A 2 (liQjj -  C2 ( 0 n ) )

(4.13)
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The whole algorithm is introduced as follows:

1. An evolving curve is initialized. Initialize 0 °b y  0 O, n=0.

2. Compute the average energy inside and outside the active curve.

fn u 0(x, y ) H(<p( x , y ) )dxdyCl(0 )=  ^  ^  (4.14)
fn H(<p(x, y) )dxdy

Sn u 0( x , y ) ( i - H ( < p ( x , y ) ) ) d x d y  

2 fn ( l - H ( 0 ( x , y ) ) ) d x d y

3. Detect the exact curve by solving the PDE in 0 ,  where 0 ( 0 , x , y )  = 

0 o(x«y) in (2, ^  =  0 on d f l , n  is the exterior normal vector to the boundary dfl,
| V 0 |  on

and ^  is the normal derivative o f  0 at the boundary.

=  5£( 0 )  -  v - A t ( u 0 -  c 0 2 +  A 2 ( u 0 -  c 2 ) 2] =  0, ( 0 ,cx>) x  12. (4.16)

4. Reinitialize 0  based on the signed distance function to the curve.

5. Check if  the solution is stationary or not. I f  not, n  =  n  +  1 and repeat from step

two.

4.2 Advantages o f  Active Contours Without the Edges Method

From [21], it has been established that the Active Contours Without the Edges 

method does not determine the curve from being initialized to being stopped at the 

boundary by using the edge function. The edge detection function technique is the 

traditional segmentation tool in image processing, machine vision and computer vision, 

especially in feature detection and feature extraction. All o f  these aim at identifying the 

points where the image brightness changes sharply or discontinuity. Normally, several 

discontinuities are considered during the partition process such as the discontinuities in 

depth, discontinuities in surface orientation, and changes in material properties and
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variations in scene illumination. However, most o f  these edge function detection 

techniques are not capable of capturing the spatial relationship information o f  the pixels. 

The main disadvantages o f  these types o f  methods are sensitivity to noise and inaccurate 

segmentation over the boundary [47]. Hence, in the ACWE model, it does not rely on the 

edge detection function, which solves the problem o f  evolving curve over the defined 

boundary.

In the ACW E model, the initial curve can be set anywhere within the boundary. In 

traditional active contours method, however, the initial curve must be defined close to the 

objects. In this case, ACWE is more robust when applying on the microarray image 

segmentation process. In our research, the object within the defined boundary was 

randomly located, which was the property o f  the microarray experiment.

In the ACW E method, it can detect the boundary o f  the object even in noisy 

image, but in traditional segmentation method, the image needs to be smoothed at the 

beginning if it is in a noisy condition.

The traditional active contours method is to detect the object different from the 

background. After initializing a curve within an image, the internal and external forces 

will drive the evolving curve to the contours o f  the object, w'hich implies that the ACWE 

method is more convenient to segment a various conditions o f  images. The original 

snake’s model used in active contours method is presented for a curve C, the external 

energy is defined as the energy out o f  the curve C.

(4.17)

The internal energy is defined as the energy inside o f  the curve.

Emt ( O  =  a  f t  IC ' (5) | :2 d s  +  /? f t  | C " (5) |:2 ds. (4.18)
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Total energy to be minimized is defined as follows:

E(C)  = A E ext(C) + Eint(C) (4.19)

Hence, in this original snake's model, the boundary of the objects may not be 

detected correctly when the initial curve is defined far from the boundary o f  the object. 

Given this disadvantage, the ACWE method introduces a new balloon force into the 

snake's model. The modified snake's model o f  the minimum energy is defined by the sum

2
ando f  these three terms a  ^ \ C ’(S ) \2cLs +  /? ^ \ C ” ( S ) \ 2 d s  , A f *  Vw0 ^ C ( (5 ) ) j  

v j j n d xd y .

This modification reduces the sensitivity o f  the initial curve and the noise level of 

the target image. In addition, by setting /3 -0 ,  w (0 ) =  1 and lirn^co  w (x )  =  0, the total 

energy function is simplified as follows:

2

E(C) = A E ext(C) + Eint( .C)= a  f ^ \ C ' ( S ) \ 2ds  +  A f *  w  |vu0 (c((S)))| ds.  (4.20)

Therefore, the introduction o f  the balloon force will be adjusted. By applying 

these modifications, there is no limit on the initial curve location and the condition o f  the 

target image. This implies that the ACWE method has more advantages compared to the 

traditional edge detection methods.

4.3 Segmentation Based Contours Method

As we mentioned previously, the ACWE method can partition an image into 

several parts, but when applying it to microarray, it needs to partition the image exactly 

into two parts: intensity and background. We will use Chan-Vese (C-V) method [23] and 

make some improvements on the initial conditions to compute the exact boundary o f  the
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probe cell in Affymetrix GeneChip microarray. The proposed modified ACW E method is 

called as the Segmentation Based Contours (SBC) method.

4.3.1 Reduce the Length Constraint.

Since the Affymetrix types o f  microarray image is very large, the segmentation is 

very time consuming. Hence, we tested the possibility o f  a term reduction in the Chan- 

Vese model. We still set S€{</>) = 1 for simplicity. Some equations could be simplified.

4.3.2 Using a Fast Algorithm.

The fast algorithm it directly calculates the difference o f  the both inside and 

outside curve energy functions when detecting a pixel changed from inside curve to the 

outside curve or opposite. When the changing pixel is detected, the whole region will be 

updated. Next, each pixel will be swept and the iteration will terminate until the energy 

remains stationary.

The fast algorithm is introduced as follows:

1. Set up an initial curve which could partition the image into two parts. 0  = 

1 and 0  =  —1 are represented for these two parts.

2. For a pixel x  related to the intensity y.

=  5£(0 ) [A 1(u o -  cx) z +  A2(u 0 -  c2) 2] =  0. (4.21)

(4.22)

If 0 ( x )  =  1, then

(4.23)

If AF12 <  0, then

0  =  - 1. (4.24)
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If  0  =  — 1, then

AF21 =  (y  -  c f ) 2 — —  (y -  c2Y  - —
y  1 m + 1 n - 1

(4.25)

If AF21 <  0. then

0 =  1. (4.26)

Where c1 is the average of the pixels within the objects: c2 is the average o f  the 

pixels beyond the objects; m  is the number o f  the pixels within the objects; and n  is the 

number o f  the pixels beyond the objects.

3. Check if  the energy function is stationary or not. I f  not, go back to step two and 

iteration.

4.3.3 Using a Higher Order Finite Difference Scheme.

By using a higher order finite difference scheme, the segmentation results will be 

more accurate.

In ACWE, the central finite difference formula is 2 h
<Pn

2/1

Then, we rewrite the central finite difference formula into 12 h

and
8

. In addition, we also improve the forward and12h

f i f+l  i — 0 P ;backward finite difference formula, f ro m   ---- -h 2 h ’ h

. and from — ----  — toh2 h ' h 2 h

n

2/1
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4 .4  A p p ly  S eg m e n ta t io n  B a sed  C o n to u r s  M e th o d  on A ffy m e tr ix  Im a g e

Before we applied the Segmentation Based Contours (SBC) method on 

Affymetrix microarray image, there were some adjustments that had to be implemented 

in SBC.

■ First, we conducted the SBC on each cell at a time. Usually, a normal 

microarray image consists millions o f  cells. If  we just use the SBC to analyze 

the whole image at once, the segmentation and the extracted information for 

each cell will not be accurate.

■ Second, in order to locate each cell precisely, we introduced the grid 

calculation for each cell. This grid calculation would detect and correct the 

misalignment. After the grid process, each cell was assigned an x  and y  

coordinates.

■ Third, we decreased the iteration times when finding the evolving curve 

which decreased the segmentation time dramatically.

■ Finally, we adjusted the n  to detect dim cells.

After the adjustment, applying ACW E on microarray images was as follows:

1. Download the Affymetric microarray image library file from Affymetrix 

website: http://www.Affymetrix.com/support/technical/sample data/demo data.affx.

2. After installing the library file, DAT and CEL files related to the experiment 

were extracted from GCOS.

3. We calculated the grid coordinates for each cell based on the DAT and CEL 

files. An image type file (16-bit TIFF) o f  the microarrav was extracted from the DAT file.

http://www.Affymetrix.com/support/technical/sample
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4. Each cell was segmented iteratively by using the image type file and the grid 

file. The 75lh percentile o f  the pixels inside the curve were calculated and saved as the 

intensity for that cell. Next, a TXT file containing the intensity information was 

generated. In the TXT file, there were four columns. The first column saves the number 

o f  pixels included inside the curve. The second column and the fourth column saved the 

background median and mean. The third column saved the intensity for each cell. Figure

4.1 presents the segmented Affymetrix microarray image with the boundary o f  each probe 

cell colored in white.

Figure 4.1 Affymetrix microarray image segmented by SBC

In Figure 4.1. we present a zoomed area o f  a segmented microarray image. More 

detailed segmentation information is introduced in the following tables with one cell as 

an example. Table 4.1 illustrates the “ground truth information” for each pixel in one 

cell. Table 4.2 and Table 4.3 are shown as the segmentation results separately by GCOS 

and SBC. In Table 4.2, GCOS sets the outer pixels in highlighted area as the boundary for 

each cell. In Table 4.3, we set the detected boundary pixel value to be 60000. From these 

three tables, the GCOS was seen as more unstable to be influenced by the different noise 

level. It just cuts off the cell boundary pixels and calculates the 75th percentile for the rest 

o f  pixels. As to SBC, we integrate the level set method to find the exact boundary for 

each specific cell. This level set method is more robust and accurate than GCOS for the 

segmentation accuracy.
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Table 4.1 Ground truth pixels in one cell

271 376 143 196 98 159 91
56 286 121 83 174 128 234
54 83 76 76 76 83 234
55 354 196 143 76 76 174
57 98 76 76 98 301 76
51 286 76 143 136 76 106
49 91 294 76 76 211 76

Table 4.2 Segmentation results from GCOS

271 376 143 196 98 159 91
56 286 121 83 174 128 234
54 83 76 76 76 OC 04 234
55 354 196 143 76 76 174
57 98 76 76 98 301 76
51 286 76 143 136 76 106
49 91 294 76 76 211 76

Table 4.3 Segmentation results from SBC

60000 60000 60000 60000 60000 60000 60000
60000 60000 60000 60000 60000 60000 60000
60000 60000 76 76 76 83 60000
60000 60000 60000 143 76 76 60000
60000 60000 76 76 98 60000 76
60000 60000 76 143 136 76 106
60000 60000 60000 76 76 60000 76
60000 60000 60000 60000 60000 60000 60000

In Table 4.4, we introduced intensity comparison among "ground truth intensity." 

SBC intensity and GCOS intensity. It is shown that our intensity value obtained from 

SBC is more approaching with the true intensity value. More comprehensive comparison 

method and results will be illustrated in segmentation results section.
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Table 4.4 Intensity results comparison

Original Cell intensity A C W E intensity GCOS intensity
60 S3 143



CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, we will show how we performed gene expression value 

comparison between the results obtained from the SBC segmentation algorithm and the 

GCOS segmentation algorithm. The GCOS algorithm utilizes the 75th percentile pixel 

value as the intensity value for each spot. It shows some weakness when analyzing 

different qualities o f  spot cells. How'ever, SBC algorithm segments each spot adaptively 

by modifying the C-V model from three perspectives as we described in the previous 

chapter. After solving the partial differential equations in C-V model, SBC achieves the 

boundary for each spot cell in microarray image. Next, each spot is partitioned into two 

areas, intensity and background. When applying the SBC segmentation process, the 

parameters are set as Xx =  =  1, v — 0, h — 1 and A t  = 0.1. In addition, smaller //, <f>0

are chosen according to the spot cell size in oligonucleotide microarray image. Once all 

these parameter are set up in SBC program, it is not necessary to adjust them during the 

segmentation.

After the simulation on real microarray data from sample data website [33], two 

sets o f  intensity and expression values were obtained for each simulated image after 

applying the SBC and the GCOS algorithms. Statistical comparison analysis was 

conducted on these two sets o f  gene expression values. In our research, we mainly

61
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focused on the gene expression accuracy analysis, which was more related to the gene 

expression levels. This gene expression accuracy analysis has more significant influence 

in microarray image analysis.

At the beginning of our research, due to the limited memory o f  CPU and 

MATLAB. it was not possible to simulate the Affymetrix microarray image at one time. 

Hence, we divided the original real microarray image into 4 x 4  blocks. Next, we 

implemented the simulation on each sub area iteratively. In this way, the Affymetrix 

microarray image could be generated in a computer but with the obvious population 

block effect, which will never happen in real microarray experiment image. However, 

since the simulation model we developed showed great improvements over known 

methods, we investigated the comparison results for these 16-block simulated images and 

obtained some encouraging results showing that the analyzed gene signal values obtained 

from SBC is more accurate and stable compared to the analyzed gene signal values 

obtained from GCOS. Therefore, we implemented the simulation model on a high 

performance computer allowing simulate Affymetrix microarray images one at a time. In 

this case, the simulated Affymetrix microarray image was fully capturing the real 

biological characteristics without any block effect. Table 5.1 shows the system 

information and MATLAB information.
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T a b le  5.1 S y s t e m  a n d  M A T L A B  in f o r m a t io n

Windows System: Windows 7 Professional
Version: 2009
Processor: Intel Core i5-2500K
System Type: 64-bit Operating System
Total Physical Memory: 8GB
Installed Memory: 8GB
Installed Matlab: Matlab 7.11.0

Figure 5.1 presents the simulated 16-block image for Canine_a genome. Figure

5.2 presents the simulated one block image for Canine_a genome.
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Figure 5.1 Simulated 16-block image for Canine_a Genome
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Figure 5.2 Simulated one block image for Canine_a Genome

We started with the one block simulated Affymetrix image generated from the 

sample o f  23,912 genes in Canine_a genome. The sum o f  squares error metric was 

investigated for this simulated image, which is considered to be the most useful measures 

of dispersion. By calculating the sum o f  squares error ^ ( o b s e r v e d  d a t a  — t r u e  d a ta )  

between the true gene signal value and the analyzed gene signal value, we could get a 

general understanding on how far the analyzed gene signal value is away from the true 

gene signal value. Table 5.2 shows the comparison result o f  sum o f  squares error. From 

Table5.2. the SBC analyzed gene signal values have less sum of squares error compared 

to the GCOS analyzed gene signal values. This result may indicate that the gene signal 

value obtained from SBC has a better capability to approach the true gene signal value 

compared to the gene signal value obtained from GCOS. In addition, for each pair, if  the
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absolute difference between the SBC analyzed signal value and the true signal value is 

smaller compared to the difference between the GCOS analyzed signal value and the true 

signal value, value one will be assigned for SBC and value zero will be assigned for 

GCOS and vice versa. Next, we summed up all the numbers assigned to SBC and 

assigned to GCOS separately. The corresponding rate value was obtained through 

dividing this summation by the total number o f  genes. Hence, from this rate measurement 

of value, the percentage number o f  analyzed gene values for each method which 

approaches more to the true gene values for each method SBC and GCOS is investigated. 

From Table 5.2. it can be seen that SBC has higher percentage rate value 0.67 compared 

to GCOS which has 0.33. This higher percentage rate indicates that there are 67% of 

gene signal values that show that the analyzed gene signal values obtained from SBC 

more nearly approaching the true gene signal values compared to the analyzed gene 

signal values obtained from GCOS.

Table 5.2 Preliminary comparison for one block simulated image

Signal SBC GCOS
Sum of squares error 9860.32 33188.65
Rate 0.67 0.33

In order to investigate whether the analyzed gene signal value is significantly

different from the true gene signal value, paired t test was performed separately on

d l  and d2.

d l  = S i g n a l true -  S i g n a l SBC. (5.1)

d 2 =  S i g n a l true — S i g n a l GC0S. (5.2)
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In this paired t test, the null hypothesis and alternative hypothesis are presented as 

follows:

H0: g dl =  0 and  *  0 .

H0: g d2 =  0 and  H^. (id2 *  0.

We hypothesized that the mean difference between the true gene signal value and 

the SBC gene signal value equals zero, and the mean difference between the true gene 

signal value and the GCOS gene signal value equals zeros at the given significance 

levels a  = 0.05, a  =  0.01 and a  =  0.001. The alternative hypothesis was that the mean 

difference between the true gene signal value and the SBC gene signal value does not 

equals zero and the mean difference between the true gene signal value and the GCOS 

gene signal value does not equals zeros at the given significance levels a  =  0.05, a  = 

0.01 and  a  = 0.001 .We chose three different significance levels as they represent 

different criterions used to reject the null hypothesis. The lower the significance level, the 

more the data must diverge from the null hypothesis to be significant. We used these three 

significance levels for all the rest o f  the hypothesis tests performed in our research. Table

5.3 and fable 5.4 show the paired t test results for d l  and d2.

Table 5.3 Paired t test results for d l  =  S i g n a l true — S i g n a l SBC

Significant level Decision for P-value = 0.0015
a  =  0.05 Reject
a  =  0.01 Reject
a  =  0.001 Accept
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T a b le  5 .4  P a i re d  t te s t  r e su l ts  fo r  d l  =  S i g n a l true — S i g n a l ccos

Significant level Decision for P-value < 0.000001
a  — 0.05 Reject
a  =  0.01 Reject
a  =  0.001 Reject

Table 5.3 shows that the null hypothesis H0: g dl =  0 failed to be rejected at 0.001 

significance level and were rejected at the other two significance levels. Hence, at the 

0.001 significance level, we can conclude that the mean difference between the true gene

signal value and the SBC gene signal value is zero. However, in Table 5.4. the null

hypothesis H0: g d2 — 0 was rejected at all significant levels. Hence, the mean difference 

between the true gene signal value and the GCOS gene signal value was significantly not 

zero. Therefore, when we selected a more conservative significance level 0.001 for the 

lowest probability o f  not being true, we can conclude that the mean o f  the SBC gene 

signal value was closer to the mean o f  the true gene signal value as compared to the mean 

of the GCOS gene signal value. The gene signal value obtained from SBC more nearly 

approaches the true gene signal value on average.

In order to evaluate and compare such differences in magnitude, we set:

D l  =  | S i g n a l true — S i g n a l SBC |. (5.3)

D l  =  |S i g n a l true -  S i g n a l ccos |. (5.4)

We compared the difference between the analyzed gene signal value and the true 

gene signal value after taking the absolute value sign to get better understanding on "how 

far"' but not on "in which direction.” Our main interest was to decrease the difference 

between the true gene signal value and the analyzed gene signal value. Hence, two 

sample left tail t test was performed on the mean o f  D l  and the mean o f  D l  at the given
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significant levels a  =  0.05, a  =  0.01 and a  =  0.001. The null hypothesis and alternative 

hypothesis were presented as follows:

H 0 - Mdi =  Md2-

Hi ’- Hd i  <  MD2-

This left tail t test could provide more information assuming the fact that the mean 

difference between true gene signal value and the SBC gene signal value was smaller 

than the mean difference between the true gene signal value and the GCOS gene signal 

value. The two sample t test results are shown in Table 5.5.

Table 5.5 Two sample t test for D l  and D2

Significant level Decision for P-value < 0.000001
a  = 0.05 Reject
a  =  0.01 Reject
a  =  0.001 Reject

From Table 5.5, the null hypothesis H0: y D1 =  ^ D2was rejected at all significant 

levels, which indicated that we may accept the alternative hypothesis H y y ^ ^  <  

^ D2.Thus. we could conclude that there was a significant difference between the mean 

o f  D l  and the mean o f  D2 and the mean o f  D l  was significantly less than the mean of 

D2. Hence, from this twxtsample t test, the mean difference between true gene signal 

value and SBC gene signal value are shown significantly smaller than the mean 

difference between true gene signal value and GCOS gene signal value. The gene signal 

values obtained from SBC were closer to the true gene signal values as compared to the 

gene signal values obtained from GCOS.

In addition to the paired t test and two sample t test, we also drew the boxplot for 

D l  and D2 as shown in Figure 5.3 to check if  the SBC method provided gene signal
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values that were closer to the true gen signal values as compared to the gene signal values 

provided by GCOS. The commonly used quartiles for D l  and D2 are described in Table 

5.6.

The boxplot showed that the interquartile range and the total range o f  D l  are 

smaller than those o f  D 2. In addition, the mean o f  D l  is smaller than the mean o f  D2, 

which was consistent with the previous two sample t test result. Hence, from Figure 5.3 

and Table 5.6. we may conclude that the absolute difference between true gene signal 

value and SBC gene signal value is smaller compared to the absolute difference between 

true gene signal value and GCOS gene signal value. Therefore, there was less 

dissimilarity between true gene signal value and SBC gene signal value. SBC 

segmentation method is providing more accurate gene signal values.
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Figure 5.3 Boxplot for D l  and D 2
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T a b le  5 .6  Q u a r l i l e s  s u m m a r y  in f o r m a t io n

Quartiles 0.025 0.25 0.5 0.75 0.975 1
D 1 . \SigTLQ.l^rue SicjTiCLl^gQ| 0.45 5.96 17.41 37.47 108.61 2545.95

D 2 . |Signo.l^rue S i g n a l GCos\ 0.74 8.62 32.27 71.38 553.84 3411.45

After this hypothesis test analysis, we continued the analysis by introducing more 

advanced statistical comparison techniques such as clustering analysis to investigate the 

dissimilarity between the true gene signal value and the analyzed gene signal value 

obtained from SBC and GCOS. Clustering analysis is the most commonly used method in 

microarray image data analysis process [48, 49, 50, 51]. There are two important options 

when performing the clustering analysis. One is the choice o f  the distance used to 

evaluate the dissimilarity between different groups o f  data. In this option, Sum of 

absolute difference £ f | d i |  (Manhattan distance), Person correlation distance 1 —

d a t a )  •Zicore  ( t r u e J a ' a )  ^  E l|c |idean  ^  ^  ^

important metrics in performing clustering analysis. The other one is the choice o f  the 

clustering technique on how to classify different groups o f  data based on the distance 

measurements obtained from the first option.

Table 5.7 lists all the distance metrics used for calculating the distance between 

the true gene signal value and the corresponding analyzed gene signal value obtained 

from SBC and GCOS. Table 5.7 indicates that the analyzed gene signal value obtained 

from SBC has smaller dissimilarity with true gene signal value as compared to the 

analyzed gene signal value obtained from GCOS. In addition, the analyzed gene signal 

value obtained from SBC has higher correlation with the true gene signal value as 

compared to the analyzed gene signal value obtained from GCOS. Hence, we may
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conclude that SBC gene analyzed signal values are closer to the true gene signal values 

than are the GCOS analyzed gene signal values.

Table 5.7 Different metrics comparisons for Canine_a one block simulated image

Measurements SBC Signal GCOS Signal
Sum o f  absolute difference (Manhattan distance) 702602.7 1986828
Standard error o f  performance 63.76 214.62
Pearson correlation 0.99 0.98
Euclidean distance 9860.317 33188.65
Chebychev distance 2545.951 3411.448
Correlation distance 0.01015285 0.01485263
Citv block distance 702602.7 1986828

For Canine_a simulated microarray image, several commonly used difference 

metrics were investigated in Table 5.7. The SBC analyzed gene signal value had the less 

dissimilarity with true gene signal value compared to GCOS analyzed gene signal value. 

Hence, we conducted the cluster analysis. This could provide more information that if  the 

SBC analyzed gene signal value and true gene signal value could be classified in the 

same group based on this small dissimilarity.

Cluster analysis is the most widely used statistical technique in gene expression 

analysis. In cluster analysis, a set o f  objects are assigned into different groups, where the 

objects in the same group share the least dissimilarity to each other than to those in 

different group. There are many different types o f  cluster algorithms used in different 

fields. The hierarchical clustering has many applications, and it is the most widely used 

method in bioinformatics gene expression data analysis [51, 52]. It merges different 

samples based on the pairwise distance similarity measurements to form same group until 

all different objects are evaluated and contained in on single group. The result o f  a
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hierarchical clustering is a clustering complete tree plot with gene expression patterns as 

leaves and the root as the convergence point o f  all groups.

In our research, we chose Unweight Pair Group Method [53] with Arithmetic

Mean as the bottom up agglomerative hierarchical clustering algorithm to measure the 

dissimilarity among different objects. This agglomerative hierarchical clustering 

algorithm is established to be the most commonly used cluster technique in

bioinformatics gene expression data mining analysis. The bottom up scheme starts from

the individual patterns and combines similar group together, ending up with the root 

based on the difference metrics selected as the measurement. In our analysis, we chose 

the Euclidean difference metric as the dissimilarity measurement for the clustering 

algorithm as classifying different groups o f  gene signal values.

Figure 5.4 shows the dendrogram cluster tree plot after implementing the 

hierarchical clustering algorithm on those three sets o f  gene signal values based on the 

Euclidean distance metric. The three sets o f  data were automatically divided into two 

different groups by average linkage clustering criterion. The SBC analyzed gene signal 

values and the true gene signal values were classified in one group. The GCOS analyzed 

gene signal values were classified in another different group. Therefore, the SBC 

analyzed gene signal value had significant less dissimilarity to the true gene signal values 

compared to the GCOS analyzed gene signal values. The SBC analyzed gene signal value 

more nearly approaches the true gene signal value compared to the GCOS analyzed gene 

signal value.
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Figure 5.4 Cluster Tree for Canine_a one block simulated image

From the paired t test, two sample t test and clustering analysis, we may conclude 

that the SBC analyzed gene signal value had less dissimilarity with the true gene signal 

value compared to the GCOS analyzed gene signal value. Hence, we desired to 

investigate if  the SBC analyzed gene signal value had a better capability to predict the 

true gene signal value compared to the GCOS analyzed gene signal value. Inverse 

regression was performed to provide more information on this prediction analysis.

Calibration problem in regression was studied and defined as the inverse 

regression in [54, 55]. It aimed to build the relationship on the observed data from a 

known observation o f  the dependent variable to predict a corresponding explanatory 

variable. This can be known as the reverse process o f  common regression. In our 

research, we aimed at evaluating predicted true gene signal values from observed
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analyzed gene signal values. Hence, the calibration inverse regression model was 

constructed, where true gene signal value was the dependent variable and analyzed gene 

signal value was the independent variable. In our research, we built two regression 

models, one had the SBC gene signal value as the independent variable, and the other one 

had the GCOS gene signal value as the independent variable.

Standard error of performance I 1 ‘ and R squared are shown in Table 5.8 for

these two models, where d, is the difference between the observed data and the true data. 

The standard error o f  performance was a measurement to estimate what type o f  difference 

was likely to be between the reference value and the prediction value when the inverse 

regression model was used introduced by Trevor Hastie [56] and A.M.C. Davies [54],

Table 5.8 Standard error o f  performance and R squared

True signal with SBC 
signal

True signal with GCOS 
signal

Standard error o f  
performance

49.0563 59.2638

R squared 0.9798 0.9705

From Table 5.8, the smaller standard error o f  performance and higher R squared 

are observed, when using SBC analyzed gene signal value as the independent variable. 

Hence, when we used the SBC analyzed gene signal value to predict the reference true 

gene signal value, it was likely to have more accurate prediction than we used the GCOS 

analyzed gene signal value. The SBC gene signal value had better linear relationship with 

the true gene signal value.

Additionally, we investigated the linear relationship between the analyzed gene 

signal value and the true gene signal value in regression model. This regression model



75

provided us more visual information on how well the SBC analyzed gene signal value 

and the GCOS analyzed gene signal value were correlated with the true gene signal value 

and their prediction performance. Figure 5.5 and Figure 5.6 present the inverse 

regression plots for the SBC analyzed gene signal value and the GCOS analyzed gene 

signal value.
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Figure 5.5 Regression plot using SBC signal as independent variable
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Figure 5.6 Regression plot using GCOS signal as independent variable

Setting the true gene signal value as the dependent variable, w e built two inverse 

regression models; one had the SBC analyzed gene signal value as the independent 

variable and the other one had the GCOS analyzed gene signal value as the independent 

variable in the inverse regression model. By com paring these two inverse regression 

models, it can be shown in Figures 5.5 and 5.6, that SBC signal had a better linear fit 

correlation with the true signal com pared to GCOS signal.

Figures 5.7 and 5.8 present the residual plot for these two inverse regression 

models to show the model o f  fit capability. Residuals in Figure 5.7 from SBC signal 

model were more com pressed and evenly distributed around zero horizontal line. 

However, residuals in Figure 5.8 from GCOS signal m odel were m ore scattered and 

exhibiting a trend, slowly increasing with the increasing num ber o f the predicted value.
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Figure 5.7 Residual plot I using SBC signal as independent variable
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Figure 5.8 Residual plot II using GCOS signal as independent variable
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The true gene signal, the SBC analyzed gene signal and the GCOS analyzed gene 

signal were all m easured for the same gene on the expression level in the same 

microarrav experiment. Therefore, straight linear regression relationship was expected 

between the true gene signal and the analyzed gene signal. By perform ing the inverse 

regression analysis, we may concluded that the SBC analyzed gene signal value was 

more stable to predict the true gene signal value with less standard error o f  performance 

and higher R squared. In addition, the SBC analyzed gene signal value had a better linear 

fit with the true gene signal value. From the above com parison results, w'e achieved as 

standard error o f perform ance, R squared and residual plot, SBC analyzed gene signal 

values were more accurate in estimating and predicting the true gene signal value as 

compared to the GCOS analyzed gene signal values.

Since one simulated microarray image cannot provide the unbiased comparison 

analysis results, the unbiased sampling replication num ber needed to be evaluated based 

on the appropriate sam pling error [57], A com monly used technique would be to increase 

the simulation replications, which will approach all the characteristics o f  the population. 

Hence, for different microarray images, the standard deviations and average mean /U 

should be related to the sample replication determination. The sample size determination

formula n  =  ( ~ ~ ) 2 ar*d CV =  j  was introduced in our research, where at significant

level a  =  0 .05. Hence, t 005 is 1.96 and /U and s are determ ined based on the given 

population characteristics. Table 5.9 shows the sample replication size table for different 

sampling error rate.
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T a b le  5 .9  S a m p le  r e p l i c a t io n  s ize  t a b l e

Array M s
SE = 
1%

SE = 
0.75%

SE = 
0.65%

SE = 
0.5%

SE = 
0 .1%

Canine a 278 640 20 36 48 81 2029
Bovine a 486 1690 46 82 110 185 4637
Canine b 319 722 20 35 47 79 1968
Bovine b 425 1475 46 82 110 185 4634
Vitis a 604 1072 12 22 29 48 1211
Vitis b 633 1113 12 21 28 48 1189
Y east-1 368 964 26 47 62 105 2629
Yeast-2 378 1001 27 48 64 108 2696

Considering the sim ulation time and segm entation time for each simulated 

microarray image, we chose 50 as the replication size, where SE = 0.75%  for six out of 

eight microarray images and sampling error between 0.75%  and 1% for the rest two 

microarray images. Therefore, 50 simulation replications for each m icroarray image 

guarantee that SE is below 1%.

Table 5.10 presents the standard error o f perform ance o f 50 sim ulation replication 

images for Canine_a group. If  the standard error o f  perform ance for SBC analyzed gene 

signal value was less than the standard error o f  perform ance for GCOS, a value one was 

assigned on the last column in Table 5.10. I f  value one was assigned, this indicated that 

the SBC analyzed gene signal value had a better linear relationship w ith the true gene 

signal value as com pared to the GCOS analyzed gene signal value. The SBC analyzed 

gene signal value more nearly approaches to the true gene signal value.
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Table 5.10 Standard error performance com parison for Canine_a

Simulation
Standard error o f 
performance (SBC)

Standard error o f 
performance (GCOS)

SBC is 
better

1 63.76 214.62 1
2 66.12 58.50 0
3 85.78 80.59 0
4 65.41 58.17 0
5 84.84 216.55 1
6 70.29 214.63 1
7 69.29 220.17 1
8 72.93 68.10 0
9 58.30 48.67 0
10 62.26 215.55 1
11 59.22 216.76 1
12 50.16 209.02 1
13 63.59 54.96 0
14 62.35 53.97 0
15 68.72 213.49 1
16 68.91 214.06 1
17 65.04 215.02 1
18 64.28 216.55 1
19 53.71 45.64 0
20 57.65 50.31 0
21 59.95 215.94 1
22 56.27 205.96 1
23 48.56 207.83 1
24 52.54 43.01 0
25 73.99 67.18 0
26 67.41 220.61 1
27 54.21 42.61 0
28 58.99 50.72 0
29 58.56 218.83 1
30 52.67 215.05 1
31 173.00 165.74 0
32 57.30 226.46 1
'y -> 69.81 213.49 1
34 70.73 214.06 1
35 160.85 154.05 0
36 156.12 147.65 0
37 174.09 167.20 0
38 56.08 214.62 1
39 51.54 208.03 1
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40 147.66 139.61 0
41 151.15 142.26 0
42 126.72 116.17 0
43 80.21 221.91 1
44 70.38 226.46 1
45 68.83 213.70 1
46 51.85 208.81 1
47 74.08 226.83 1
48 60.81 213.51 1
49 58.16 214.63 1
50 50.58 220.17 1

Table 5.11 presents the Pearson correlation o f 50 sim ulation replication images 

for Canine_a group. I f  the Pearson correlation for SBC analyzed gene signal value was 

less than the Pearson correlation for GCOS, a value one w as assigned on the last column 

in Table 5.9. If value one was assigned, this indicated that the SBC analyzed gene signal 

value was more correlated to the true gene signal value as com pared to the GCOS 

analyzed gene signal value.

Table 5.11 Pearson correlation com parison for Canine_a

Simulation
Pearson Correlation for 
SBC

Pearson Correlation for 
GCOS

SBC is 
better

1 0.9898 0.9851 1
2 0.9915 0.9951 0
3 0.9916 0.9950 0
4 0.9915 0.9946 0
5 0.9906 0.9841 1
6 0.9905 0.9859 1
7 0.9916 0.9860 1
8 0.9911 0.9946 0
9 0.9916 0.9952 0
10 0.9905 0.9843 1
11 0.9910 0.9856 1
12 0.9920 0.9844 1
13 0.9915 0.9953 0
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14 0.9911 0.9946 0
15 0.9914 0.9849 | 1
16 0.9922 0.9844 1
17 0.9914 0.9863 1
18 0.9917 0.9841 1
19 0.9912 0.9944 0
20 0.9918 0.9947 0
21 0.9918 0.9834 1
22 0.9910 0.9849 1
23 0.9910 0.9855 1
24 0.9915 0.9948 0
25 0.9914 0.9953 0
26 0.9913 0.9859 1
27 0.9896 0.9941 0
28 0.9919 0.9950 0
29 0.9916 0.9849 1
30 0.9918 0.9852 1
31 0.9720 0.9890 0
32 0.9913 0.9854 1
33 0.9918 0.9849 1
34 0.9915 0.9844 1
35 0.9741 0.9890 0
36 0.9740 0.9891 0
37 0.9724 0.9888 0
38 0.9910 0.9851 1
39 0.9920 0.9869 1
40 0.9756 0.9898 0
41 0.9731 0.9877 0
42 0.9768 0.9900 0
43 0.9910 0.9849 1
44 0.9918 0.9854 1
45 0.9911 0.9844 1
46 0.9899 0.9875 1
47 0.9912 0.9847 1
48 0.9909 0.9850 1
49 0.9920 0.9859 1
50 0.9917 0.9860 1
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Table 5.12 presents the paired t test for Canine a group o f  50 sim ulated images 

performed on d l  — S i g n a l true — S i g n a l SBC with the null hypothesis and alternative 

hypothesis listed below.

H o ^ d i =  0 and  H ^ g ^ i  *  0 -

P values are shown for each image on the last colum n in Table 5.12. The decision 

results are also shown at the given significance levels. 0.05, 0.01 and 0.001.

When the null hypothesis failed to be rejected, that meant there was not enough 

evidence to show that the mean difference between the true gene signal value, and the 

SBC analyzed gene signal value was significantly not zero. Hence, there was no 

significant difference between the m ean o f the SBC analyzed gene signal value and the 

mean o f the true gene signal value. W hen the null hypothesis was rejected, that m eant the 

mean difference between the true gene signal value and the SBC analyzed gene signal 

value was significantly not zero. Hence, there was significant difference between the 

mean o f the SBC analyzed gene signal value and the mean o f  the true gene signal value.

Table 5.12 Paired t test for the SBC analyzed gene signal value from Canine_a

Simulation Decision for a  
= 0.05

Decision for a  = 
0.01

Decision for a  = 
0.001

P-values

1 Reject Reject Accept 0.00151394
2 Reject Accept Accept 0.01726763
3 Reject Reject Reject < 0.0000001
4 Accept Accept Accept 0.30516950
5 Reject Reject Reject < 0.0000001
6 Reject Reject Reject 0.00000002
7 Reject Reject Reject < 0.0000001
8 Reject Reject Reject < 0.0000001
9 Reject Reject Reject < 0.0000001
10 Reject Reject Accept 0.00493396
11 Reject Reject Reject < 0.0000001
12 Reject Reject Reject < 0.0000001
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13 Accept Accept Accept 0.62280550
14 Accept Accept Accept 0.05122368
15 Reject Reject Reject < 0.0000001
16 Reject Reject Reject < 0.0000001
17 Accept Accept Accept 0.22036240
18 Accept Accept Accept 0.07014492
19 Reject Reject Reject < 0.0000001
20 Reject Reject Reject < 0.0000001
21 Reject Reject Reject 0.00072543
22 Reject Reject Reject < 0.0000001
23 Reject Reject Reject < 0.0000001
24 Reject Reject Reject < 0.0000001
25 Reject Reject Reject < 0.0000001
26 Reject Reject Reject 0.00017473
27 Reject Reject Reject < 0.0000001
28 Reject Reject Reject 0.00003934
29 Reject Reject Reject 0.00000273
30 Reject Reject Reject < 0.0000001
31 Reject Reject Reject < 0.0000001
32 Reject Reject Reject < 0.0000001
33 Reject Reject Reject < 0.0000001
34 Reject Reject Reject < 0.0000001
35 Reject Reject Reject < 0.0000001
36 Reject Reject Reject < 0.0000001
37 Reject Reject Reject < 0.0000001
38 Reject Reject Reject < 0.0000001
39 Reject Reject Reject < 0.0000001
40 Reject Reject Reject < 0.0000001
41 Reject Reject Reject < 0.0000001
42 Reject Reject Reject < 0.0000001
43 Reject Reject Reject < 0.0000001
44 Reject Reject Reject < 0.0000001
45 Reject Reject Reject 0.00000003
46 Reject Reject Reject < 0.0000001
47 Reject Reject Reject < 0.0000001
48 Reject Reject Accept 0.00416029
49 Reject Reject Reject < 0.0000001
50 Reject Reject Reject < 0.0000001
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Table 5.13 presents the paired t test for Canine_a group o f 50 sim ulated images 

performed on d 2 =  S i g n a l true — S i g n a l GC0S with the null hypothesis and alternative 

hypothesis listed below.

H0: g d2 =  0 an d  Hx: g d2 ±  0.

P values are shown for each image on the last colum n in Table 5.13. The decision 

results are also shown at the given significance levels, 0.05, 0.01 and 0.001.

W hen the null hypothesis failed to be rejected, that meant there w'as not enough 

evidence to show' that the mean difference between the true gene signal value, and the 

GCOS analyzed gene signal value was significantly not zero. Hence, there was no 

significant difference betw een the mean o f the GCOS analyzed gene signal value and the 

mean o f the true gene signal value. W hen the null hypothesis was rejected, that meant the 

mean difference between the true gene signal value and the GCOS analyzed gene signal 

value was significantly not zero. Hence, there was significant difference between the 

mean o f the GCOS analyzed gene signal value and the mean o f  the true gene signal 

value.

Table 5.13 Paired t test for the GCOS analyzed gene signal value from Canine_a

Simulation Decision for a  = 
0.05

Decision for a  = 
0.01

D ecision for a  = 
0.001

P-values

1 Reject Reject Reject < 0.0000001
2 Reject Reject Reject < 0.0000001
3 Reject Reject Reject < 0.0000001
4 Reject Reject Reject < 0.0000001
5 Reject Reject Reject < 0.0000001
6 Reject Reject Reject < 0.0000001
7 Reject Reject Reject < 0.0000001
8 Reject Reject Reject < 0.0000001
9 Accept Accept Accept 0.17197370
10 Reject Reject Reject < 0.0000001
11 Reject Reject Reject < 0.0000001
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12 Reject Reject Reject < 0.0000001
13 Reject Reject Reject < 0.0000001
14 Reject Reject Reject 0.00000795
15 Reject Reject Reject < 0.0000001
16 Reject Reject Reject < 0.0000001
17 Reject Reject Reject < 0.0000001
18 Reject Reject Reject < 0.0000001
19 Reject Reject Reject < 0.0000001
20 Accept Accept Accept 0.86454040
21 Reject Reject Reject < 0.0000001
22 Reject Reject Reject < 0.0000001
23 Reject Reject Reject < 0.0000001
24 Reject Reject Reject < 0.0000001
25 Reject Reject Reject < 0.0000001
26 Reject Reject Reject < 0.0000001
27 Reject Reject Reject < 0.0000001
28 Accept Accept Accept 0.21564290
29 Reject Reject Reject < 0.0000001
30 Reject Reject Reject < 0.0000001
31 Reject Reject Reject < 0.0000001
32 Reject Reject Reject < 0.0000001
-v nJ J Reject Reject Reject < 0.0000001
34 Reject Reject Reject < 0.0000001
35 Reject Reject Reject < 0.0000001
36 Reject Reject Reject < 0.0000001
37 Reject Reject Reject < 0.0000001
38 Reject Reject Reject < 0.0000001
39 Reject Reject Reject < 0.0000001
40 Reject Reject Reject < 0.0000001
41 Reject Reject Reject < 0.0000001
42 Reject Reject Reject < 0.0000001
43 Reject Reject Reject < 0.0000001
44 Reject Reject Reject < 0.0000001
45 Reject Reject Reject < 0.0000001
46 Reject Reject Reject < 0.0000001
47 Reject Reject Reject < 0.0000001
48 Reject Reject Reject < 0.0000001
49 Reject Reject Reject < 0.0000001
50 Reject Reject Reject < 0.0000001
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Table 5.14 presents the M inkowski distance metric com parison for 50 simulation 

replication images o f Canine_a group. This M inkowski distance is a generalization of 

both the Euclidean distance and the M anhattan distance. If  the M inkow ski distance for 

SBC analyzed gene signal value was less than the M inkowski distance for GCOS, a value 

one was assigned on the last column in Table 5.14. I f  value one was assigned, this 

indicated that the SBC analyzed gene signal value had less dissimilarity with the true 

gene signal value as compared to the GCOS analyzed gene signal value.

Table 5.14 Minkowski distance com parison for Canine_a

Simulatio
n

M inkowski Distance for 
SBC

Minkow'ski Distance for 
GCOS

SBC is 
better

1 4211.80 11319.20 1
2 3879.50 3620.41 0
3 5030.95 4884.74 0
4 3909.66 3724.42 0
5 5215.08 11588.73 1
6 4371.60 11329.68 1
7 4022.55 11661.54 1
8 4290.29 4301.41 1
9 3352.41 2998.08 0
10 3854.42 11495.30 1
11 3608.77 11470.49 1
12 2817.01 11138.84 1
13 3694.73 3451.64 0
14 3707.36 3485.22 0
15 4047.60 11290.95 1
16 3932.16 11426.56 1
17 3793.59 11403.90 1
18 3802.05 1 1588.73 1
19 3152.21 2995.43 0
20 3347.84 3216.32 0
21 3428.99 11545.44 1
22 3297.30 10996.41 1
23 2661.52 11043.57 1
24 3090.47 2693.76 0
25 4321.79 4093.69 0
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26 3974.47 1 1728.18 1
27 3811.73 3071.12 0
28 3364.70 3144.85 0
29 3419.27 11619.84 1
30 3066.89 11487.53 1
31 9919.52 9685.08 0
32 3423.76 12048.97 1
33 4027.10 11290.95 1
34 4162.12 11426.56 1
35 9095.63 9003.37 0
36 8857.26 8602.88 0
37 9871.26 9686.59 0
38 3413.36 11319.20 1
39 2854.86 11025.45 1
40 8341.22 8165.39 0
41 8545.57 8320.00 0
42 7091.48 6878.61 0
43 4803.63 11759.76 1
44 4095.02 12048.97 1
45 4025.67 11385.35 1
46 3346.63 11067.18 1
47 4393.55 12067.78 1
48 3596.24 11328.69 1
49 3281.92 11329.68 1
50 2810.19 11661.54 1

Table 5.15 presents the Euclidean distance metric com parison for 50 simulation 

replication images o f  Canine_a group. If the Euclidean distance for SBC analyzed gene 

signal value was less than the Euclidean distance for GCOS, a value one was assigned on 

the last column in Table 5.15. If value one was assigned, this indicated that the SBC 

analyzed gene signal value had less dissim ilarity with the true gene signal value as 

compared to the GCOS gene signal value.



89

T a b le  5 .15  E u c l id e a n  d i s t a n c e  m e t r ic  c o m p a r i s o n  for  C a n i n e  a

Simulatio
n

Euclidean distance for 
SBC

Euclidean distance for 
GCOS

SBC is 
better

1 9860.32 33188.65 1
2 10224.29 9046.84 0
-> 13265.08 12461.79 0
4 10114.46 8994.62 0
5 13120.15 33487.29 1
6 10869.69 33189.58 1
7 10714.73 34046.66 1
8 11277.45 10530.10 0
9 9014.94 7526.40 0
10 9627.11 33332.33 1
11 9156.99 33519.05 1
12 7757.08 32322.46 1
13 9832.91 8498.66 0
14 9642.11 8345.75 0
15 10626.21 33014.10 1
16 10656.60 33102.52 1
17 10058.29 33250.46 1
18 9940.32 33487.29 1
19 8305.48 7057.04 0
20 8914.60 7780.56 0
21 9270.79 33392.16 1
22 8701.43 31848.69 1
23 7509.78 32138.96 1
24 8124.77 6651.55 0
25 11441.62 10388.90 0
26 10424.26 34115.29 1
27 8382.38 6588.64 0
28 9121.46 7843.03 0
29 9056.30 33839.99 1
30 8145.14 33255.69 1
31 26752.48 25629.96 0
32 8860.87 35019.78 1
33 10795.52 33014.10 1
34 10937.98 33102.52 1
35 24873.14 23821.47 0
36 24141.60 22831.65 0
37 26921.69 25855.56 0
38 8672.50 33188.65 1
39 7969.38 32169.83 1
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40 | 22833.23 21588.95 0
41 23374.32 21999.50 0
42 19595.76 17963.76 0
43 12403.41 34316.12 1
44 10883.20 35019.78 1
45 10644.51 33045.81 1
46 8017.38 32290.09 1
47 11456.02 35075.94 1
48 9403.27 33016.23 1
49 8993.18 33189.58 1
50 7821.88 34046.66 1

Table 5.16 presents the correlation distance metric com parison for 50 simulation 

replication images o f Canine_a group. If the correlation distance for SBC analyzed gene 

signal value was less than the correlation distance for G COS, a value one was assigned 

on the last colum n in Table 5.16. If value one was assigned, this indicated that the SBC 

analyzed gene signal value had less dissimilarity with the true gene signal value as 

compared to the GCOS gene signal value.

Table 5.16 Correlation distance metric com parison results for Canine_a

Simulation
Correlation distance for 
SBC

Correlation distance for 
GCOS

SBC is 
better

1 702602.70 1986828.00 1
2 724797.10 541573.70 0
3 826781.00 659337.30 0
4 725176.00 537168.40 0
5 817402.00 1987510.00 1
6 740425.00 1983415.00 1
7 745560.20 2026214.00 1
8 767690.30 585245.90 0
9 693226.20 501522.60 0
10 699760.50 1978458.00 1
11 689894.90 1994482.00 1
12 663211.50 1923072.00 1
13 722084.10 528692.90 0
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19
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
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704024.10 519750.60
740293.80 1960800.00
748187.50 1971284.00
728175.00 1984374.00
724231.50 1987510.00
672622.70 482240.80
692837.70 503588.20
703038.70 1982577.00
683651.10 1899540.00
677806.10 1914651.00
662901.80 478672.20
765293.50 588251.50
731935.30 2014574.00
665706.30 477797.10
695688.50 508171.50
691885.90 2012252.00
662983.50 1972600.00
1489280.00 1256894.00
689086.50 2068795.00
747323.80
747538.30

1960800.00
1971284.00

1442715.00 187092.00
1411510.00 154407.00
1501049.00 1273509.00
675912.20 1986828.00
670624.70 1924983.00
1371311.00 107114.00
1392729.00 126679.00
1289697.00 971279.50
795094.70 2042043.00
756395.00 2068795.00
746655.20 1967977.00
672355.80 1919913.00
760242.10 2083066.00
699960.30 1969807.00
692344.90 1983415.00
661885.10 2026214.00



Table 5.17 presents the Chebychev distance metric com parison for 50 simulation 

replication images o f Canine_a group. If  the Chebychev distance for SBC analyzed gene 

signal value was less than the Chebychev distance for GCOS, a value one was assigned 

on the last column in Table 5.17. If value one was assigned, this indicated that the SBC 

analyzed gene signal value had less dissimilarity with the true gene signal value as 

compared to the GCOS gene signal value.

Table 5.17 Chebychev distance metric com parison for Canine_a

Simulation
Chebychev distance for 
SBC

Chebychev distance for 
GCOS

SBC is 
better

1 4211.80 11319.20 1
2 3879.50 3620.41 0

5030.95 4884.74 0
4 3909.66 3724.42 0
5 5215.08 11588.73 1
6 4371.60 11329.68 1
7 4022.55 11661.54 1
8 4290.29 4301.41 1
9 3352.41 2998.08 0
10 3854.42 11495.30 1
11 3608.77 11470.49 1
12 2817.01 11138.84 1
13 3694.73 3451.64 0
14 3707.36 3485.22 0
15 4047.60 11290.95 1
16 3932.16 11426.56 1
17 3793.59 11403.90 1
18 3802.05 11588.73 1
19 3152.21 2995.43 0
20 3347.84 3216.32 0
21 3428.99 11545.44 1
22 3297.30 10996.41 1
23 2661.52 11043.57 1
24 3090.47 2693.76 0
25 4321.79 4093.69 0
26 3974.47 11728.18 1
27 3811.73 3071.12 0



93

T a b le  5 .1 7  C o n td .

28 3364.70 3144.85 0
29 3419.27 11619.84 1
30 3066.89 11487.53 1
31 9919.52 9685.08 0
32 3423.76 12048.97 1
33 4027.10 11290.95 1
34 4162.12 11426.56 1
35 9095.63 9003.37 0
36 8857.26 8602.88 0
37 9871.26 9686.59 0
38 3413.36 11319.20 1
39 2854.86 11025.45 1
40 8341.22 8165.39 0
41 8545.57 8320.00 0
42 7091.48 6878.61 0
43 4803.63 11759.76 1
44 4095.02 12048.97 1
45 4025.67 1 1385.35 1
46 3346.63 11067.18 1
47 4393.55 12067.78 1
48 3596.24 11328.69 1
49 3281.92 11329.68 1
50 2810.19 11661.54 1

In Table 5.18, we present the summary com parison o f  standard error of 

performance and correlation coefficients for all the 50 sim ulated m icroarray images of 

Canine_a genome. Table 5.18 illustrates that for each o f  these two metrics, the 

correlation and standard error o f performance, there are 60%  o f the cases that SBC was a 

better segmentation method as com pared to GCOS.
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T ab le  5 .1 8  S u m m a r y  c o m p a r i s o n  o f  s t a n d a r d  e r r o r  o f  p e r f o r m a n c e  a n d  c o r r e la t io n

C a n in e a No. o f  Images show SBC is better Ratio

Correlation 30 out o f  50 60%

Standard error o f  performance 30 out o f  50 60%

In Table 5.19 and Table 5.20, we present the sum m ary com parison o f  the paired t 

test for all the 50 simulated m icroarray images o f Canine_a genome. Table 5.19 shows 

the summary com parison o f  paired t test for SBC. Table 5.20 shows that summary 

comparison o f paired t test for GCOS. At each significance level, there were more images 

showing that we had not enough evidence to reject the null hypothesis in Table 5.19 as 

compared in Table 5.20. Hence, the gene signal value obtained from SBC had a higher 

percentage o f  the cases more approach to the true gene signal value. The SBC provided 

more accurate gene signal values as com pared to GCOS.

Table 5.19 Summary com parison o f  paired t test for SBC for Canine a

Canine_a No. o f Images showr A ccept for 

SBC

Ratio

Paired t test at 0.05 level five out o f  50 10%

Paired t test at 0.01 level six out o f  50 12%

Paired t test at 0.001 level nine out o f 50 18%
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T a b le  5 .2 0  S u m m a r y  c o m p a r i s o n  o f  p a i r e d  t te s t  fo r  G C O S  fo r  C a n i n e a

Canine_a No. o f Images show Accept for 

GCOS

Ratio

Paired t test at 0.05 level three out o f 50 6%

Paired t test at 0.01 level three out o f 50 6%

Paired t test at 0.001 level three out o f 50 6%

In Table 5.21, we present the summary com parison o f the clustering distance 

metrics for all the 50 simulated microarray images o f  Canine_a genome. In each o f these 

distance metrics, the gene signal value obtained from  SBC had a higher percentage o f  the 

cases than it had less dissimilarity with the true gene signal value. Hence, SBC provided 

more accurate analyzed gene signal as com pared to GCOS.

Table 5.21 Summary com parison o f clustering distance metrics for Canine_a

Canine_a No. o f  Images show SBC is better Ratio

M inkowski distance 31 out o f  50 62%

Euclidean distance 30 out o f  50 60%

Correlation distance 30 out o f  50 60%

Chebychev distance 31 out o f 50 62%

To validate this improvement in a more global level, we propose the average 

analyzed gene signal value for both SBC and GCOS A v e r a g e S i g n a l SBC and 

A v e r a g e S i g n a l CCos • We started with the average analyzed gene values o f  50 simulated 

microarray images from Canine_a genome. For each gene, w'e com puted the
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A v e r a g e S i g n a l SBC and A v e r a g e S i g n a l GC0S ■ Then, we had two sets o f analyzed 

average signal value with one set from SBC and the other set from GCOS. Similar 

statistical analysis was performed on these two sets and the set o f true gene signal value. 

T test, standard error performance, correlation coefficient and clustering distance were 

investigated for this average analyzed gene values.

A v e r a g e S i g n a l s s c  = ^ si^ alsBC. (5 .5)

A v e r a g e S i g n a l GCos =  ^ ° * 5^ atcco*, (5.6)

Two sample t test with two tails was perform ed between the mean of 

A v e r a g e S i g n a l SBC and the true gene signal value w ith the null hypothesis and 

alternative hypothesis are shown below.

H o  - M AverageS igna lSBC V-TrueGeneSignal -

H i  - ^ A ver ag eS ig n a lS B C  ^  H-TrueGeneSignal-

Table 5.22 shows that we had not enough evidence to reject the null hypothesis. 

Hence, there was no significant difference between the mean o f  the SBC average 

analyzed gene signal value and the mean o f the true gene signal value.

Table 5.22 Two sample t test for the SBC averaged analyzed gene signal value

Significant level Decision for P-value = 0.4267
a  =  0.05 Accept
a  =  0.01 Accept
a  =  0.001 Accept

Next, we also performed the two sample t test between the mean 

o i A v e r a g e S i g n a l ccos and the set o f  true gene signal value with the null hypothesis and 

alternative hypothesis are shown below.
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H 0 - I^AverageSignalGCOS H-TrueGeneSignal-  

H i -  1^-AverageSignalGCOS  ^  t^-TrueGeneSignal-

In Table 5.23, the null hypothesis was rejected at all levels. Therefore, there was 

significant difference between the mean o f  the GCOS average analyzed gene signal value 

and the mean o f  the true gene signal value. We may conclude that the SBC average 

analyzed gene signal value more approached the true gene signal value on average when 

compared to the GCOS average analyzed gene signal value.

Table 5.23 Two sam ple t test for the GCOS averaged analyzed gene signal value

Significant level Decision for P-value < 0.00001
a  =  0.05 Reject
a  =  0.01 Reject
a  =  0.001 Reject

In addition to the two sample t test perform ed betw een the average analyzed gene 

signal value and true gene signal value, we also want to evaluate the absolute value of 

difference D l l  and D12 in more detail.

D l l  =  \A v e r a g e S i g n a l SBC — T r u e G e n e S ig n a l \ .  (5.7)

D 12 =  \ A v e r a g e S i g n a l GC0S — T r u e G e n e S ig n a l \ .  (5.8)

We com pared these two differences after taking the absolute value sign in order to 

understand on “how far” but not on “in which direction.” Our main interest was to 

decrease the difference between the true gene signal value and the average analyzed gene 

signal value. Hence, two sample t test with left tails was performed on D l l  and D 12 with 

the null hypothesis was that there was no significant difference between the mean o f  D l l  

and the mean o f  D12 based on the given the significance levels, 0.05, 0.01 and 0.001.
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t f0 ; Md i i  =  Md i 2.

^ i : Mdh < MD12.

This left tail test could provide us more inform ation to know  if the mean 

difference between true gene signal value and the average SBC analyzed gene signal 

value is smaller than the mean difference between the true gene signal value and the 

average GCOS analyzed gene signal value.

From Table 5.24, the null hypothesis H0 was rejected at all significance levels, 

which indicated that we might accept the alternative hypothesis for jiD11 < 

Mdi2-Thus, there was significant difference between the mean o f  D l l  and the mean o f 

D12, and the mean o f D l l  was significantly less than the mean o f D12. Hence, from this 

two sample t test, the difference between the true gene signal value and the average SBC 

gene signal value was shown significantly sm aller than the difference between the true 

gene signal value and the average GCOS gene signal value averagely. The gene signal 

value obtained from SBC more nearly approached the true gene signal values compared 

to the gene signal values obtained from GCOS on average. Besides the two sample t test, 

we also presented the boxplot for D l l  and D12 shown in Figure 5.9 to provide more 

information in visual. Therefore, we could have a better understanding on the comparison 

between D l l  and D12.The commonly used quartiles for D l l  and D12 were described in 

Table 5.25.

Table 5.24 Two sample t test for D l l  and D12

Significant level Decision for P-value < 0.00001
a  =  0.05 Reject
a  =  0.01 Reject
a  =  0.001 Reject
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Figure 5.9 Boxplot for the absolute value o f  D l l  and D12

Table 5.25 Quartiles com parison inform ation for D l l  and D12

Quartiles 0.025 0.25 0.5 0.75 0.975 1
D l l  for true-SBCj 1.18 9.21 15.51 23.60 111.53 1566.67
D12 for jtrue-GCOS 3.26 11.96 19.54 35.84 275.78 1710.31

The boxplot showed that the interquartile range and the total range o f D l l  were 

both smaller than those o f  D12. In addition, the m ean o f D l l  was sm aller than the mean 

o fD 12 , which was consistent with the previous two sam ple t test result. Hence, from 

Figure 5.9 and Table 5.25. w'e may conclude that the absolute difference between the true 

gene signal value and the average SBC gene signal value was sm aller compared to the 

absolute difference between the true gene signal value and the average GCOS gene signal 

value. Therefore, there was less dissimilarity between the true gene signal value and the 

average SBC gene signal value, SBC segmentation method provided more accurate gene 

signal values as com pared to GCOS.
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After this hypothesis test analysis, we continued our research by perform ing the 

similar com parison as what we did for one sim ulated microarray image, such as 

clustering analysis and inverse regression analysis to investigate the dissimilarity and 

prediction capability between the true gene signal value and the average analyzed gene 

signal value obtained from SBC and GCOS.

There are two important options when perform ing the clustering analysis. One is 

the choice o f the distance used to evaluate the dissim ilarity between different groups of 

data. In this option. Sum o f absolute difference £ f |d i |  (M anhattan distance). Person

correlation distance 1 -  Z“ °' » (ol’se" ed -a t.)  ^  Euclidean
n

distanceJ ^ d f  are the m ost im portant metrics used in clustering analysis. In addition,

we also included the M inkowski distance, which was the generalization form o f 

Euclidean distance. The other one was the choice o f  the clustering technique on how to 

classify different groups o f data based on the distance m easurem ents obtained from the 

first option.

Table 5.26 lists all the distance metrics we calculated betw een the true gene 

signal value and the average analyzed gene signal value obtained from SBC 

(.A v e r a g e S i g n a l SBC) and between the true gene signal value and average analyzed gene 

signal value obtained from GCOS (A v e r a g e S i g n a l ccos). Table 5.26 indicates that the 

average analyzed gene signal value obtained from SBC had smaller dissim ilarity with the 

true gene signal value compared to the average analyzed gene signal value obtained from 

GCOS. In addition, the average analyzed gene signal value obtained from SBC had 

higher correlation with the true gene signal value com pared to the analyzed gene signal
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value obtained from GCOS. Hence, we may conclude that SBC provided more accurate 

gene signal value closer to the true gene signal value on average as com pared to GCOS.

Table 5.26 Com parison for averaged analyzed gene signal for Canine_a group

Metrics
Average SBC analyzed gene 
signal value

Average GCOS analyzed 
gene signal value

Standard error o f  
performance 64.8206 101.7257
Euclidean distance 10023.75 15730.69
Correlation 0.9975975 0.9923104
M anhattan distance 610965.9 1054203
M inkowski distance 3973.867 5278.628

For Canine_a simulated microarray image, several com monly used difference 

metrics were investigated in Table 5.26. The SBC average analyzed gene signal value had 

the less dissim ilarity with true gene signal value com pared to the GCOS average 

analyzed gene signal value. Hence, we wished conduct the cluster analysis which could 

allow us to have a better understanding that if the SBC average analyzed gene signal 

value and true gene signal value could be classified in the same group based on this 

smaller dissimilarity.

Similarly, we chose U nweight Pair Group M ethod with Arithm etic Mean as 

bottom up agglom erative hierarchical clustering algorithm  to measure the dissimilarity 

among different objects. This agglomerative hierarchical clustering algorithm is 

established to be the most com monly used cluster technique in bioinform atics gene 

expression data mining analysis. The bottom up scheme starts from the individual 

patterns and com bines sim ilar group together, ending up to the root based on the 

difference metrics selected as the measurement. Euclidean difference metric was chosen
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as the dissim ilarity measurem ent for the clustering algorithm  as classifying different 

groups o f  gene signal values.

Figure 5.10 shows the dendrogram cluster tree plot after im plem enting the 

hierarchical clustering algorithm  on A v e r a g e S i g n a l SBC, A v e r a g e S l g n a l ccos and true 

gene signal value, based on the Euclidean difference metric. The three sets o f  data were 

automatically divided into two different groups by average linkage clustering criterion. 

The SBC average analyzed gene signal values and true gene signal values were classified 

in one group. The GCOS average analyzed gene signal values were classified in another 

different group. Therefore, the SBC average analyzed gene signal values had significant 

less dissimilarity with the true gene signal values com pared to the GCOS average 

analyzed gene signal values. The SBC average analyzed gene signal value more nearly 

approached the true gene signal value when com pared to the GCOS average analyzed 

gene signal value.
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Figure 5.10 Clustering tree plot for the average analyzed gene signal value
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From two sample t test and clustering analysis, we concluded that the SBC 

average analyzed gene signal value had less dissim ilarity w ith the true gene signal value 

compared to the GCOS average analyzed gene signal value. Flence, we investigated if  the 

SBC average analyzed gene signal value had a better capability to predict the true gene 

signal value when com pared to the GCOS average analyzed gene signal value. Inverse 

regression was performed to provide more inform ation on this prediction analysis. The 

inverse regression aimed to build the relationship on the observed data from a known 

observation o f  the dependent variable to predict a corresponding explanatory variable. In 

our research, we aimed at evaluating predicted true gene signal values from observed 

average analyzed gene signal values. Hence, the calibration inverse regression model was 

constructed, where true gene signal value was the dependent variable and the average 

analyzed gene signal value was the independent variable.

Setting the true gene signal value as the dependent variable, we built two inverse 

regression models, with one having the SBC average analyzed gene signal value 

( A v e r a g e S i g n a l SBC) as the independent variable and the other one having the GCOS 

average analyzed gene signal value (A v e r a g e S i g n a l SBC) as the independent variable. By 

comparing these two inverse regression models, it can be shown in Figure 5.11 and 

Figure 5.12 that the SBC average gene signal value had a better linear fit correlation with 

the true signal com pared to the GCOS average gene signal value. This indicated that the 

SBC average analyzed gene signal value was more nearly approaching to the true gene 

signal value as com pared to the GCOS average analyzed gene signal value.



104

6000

R ~ = Q  9 9 6

5000

4000

O)
w 3000'

O)
®  2000

1000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
SB C  average analyzed g e n e  signal value

Figure 5.11 Regression plot for average SBC signal
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Figure 5.12 Regression plot for average GCOS signal
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Figures 5.13 and 5.14 present the residual plots for these two inverse regression 

models to show the model o f  fit capability. Residuals in Figure 5.13 from the SBC 

average signal model were more com pressed and evenly distributed around zero 

horizontal line. However, residuals in Figure 5.14 from the GCOS average signal model 

were more scattered everywhere and slowly increasing w ith the increasing num ber o f  the 

predicted value.
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Figure 5.13 Residual plot from average SBC
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Figure 5.14 Residual plot from average GCOS

The true gene signal, the SBC average analyzed gene signal and the GCOS 

average analyzed gene signal were all measured for the same gene on the expression 

level. Therefore, straight linear regression relationship was expected between the true 

gene signal and the average analyzed gene signal. From  Figures 5.11 and 5.12, the SBC 

average analyzed gene signal value was m ore correlated w ith the true gene signal value 

along with the expected straight line. Residuals between the true gene signal value and 

the average analyzed gene signal values were investigated for both SBC and GCOS. 

Figures 5.13 and 5.14 show that using the SBC average analyzed gene signal value to 

predict the reference gene signal value led to narrow residual range com pressed around 

the zero horizontal line. However, using the GCOS average analyzed gene signal value to 

predict the reference gene signal value generated m ore scattered residual spreading over 

the plot. By perform ing the inverse regression analysis, we concluded that the SBC
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average analyzed gene signal value was more stable to predict the true gene signal value. 

In addition, the SBC average analyzed gene signal value had a better linear fit with the 

true gene signal value. From the above com parison results, we achieved in standard error 

o f performance. R squared and residual plot, the SBC average analyzed gene signal 

values were more accurate to approach the true gene signal value com pared to the GCOS 

average analyzed gene signal values.

Therefore, for Canine_a genome, we concluded that the SBC analyzed gene 

signal value was more accurate and had less dissim ilarity with true gene signal value 

compared to the GCOS analyzed gene signal value on average.

In our research, there were eight different Affymetrix m icroarray images. We 

started with analyzing genome Canine_a after 50 sim ulation replications. Similarly, 50 

simulation replications were generated and analyzed for the other different Affymetrix 

microarray images. Next, SBC and GCOS were perform ed on all o f  these simulated 

images. Two sets o f  analyzed gene signal values obtained from SBC and GCOS were 

compared w ith the true gene signal value by statistical methods sim ilarly as what we did 

above.

Table 5.27 presents the summary com parison o f gene signal value obtained from 

SBC and GCOS for the all the eight microarray image groups, Bovine_a, Bovine_b, 

Canine a. Canine b. Vitis_a, Vitis_b, Yeast-1 and Yeast-2.
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T a b le  5 .2 7  S u m m a r y  c o m p a r i s o n  fo r  e ig h t  g r o u p s  s im u la t e d  i m a g e s

Array Simulation Standard error o f 
performance 
shows SBC 
better

Euclidean distance 
shows SBC better

M inkowski 
distance shows 
SBC better

Bovine a 50 19 18 18
Bovine b 50 1 1 5
Canine a 50 30 30 31
Canine b 50 30 30 31
Vitis a 50 0 0 0
Vitis b 50 17 17 17
Y east-1 50 30 30 35
Yeast-2 50 30 30 33

In these eight groups o f  Affymetrix microarray images, there were four out of 

eight groups showing that there are more images analyzed by SBC have sm aller standard 

error o f  performance. Euclidean distance and M inkowski distance com pared to GCOS. 

Hence, for these four groups o f  Affymetrix microarray images, Canine a, Canine_b, 

Yeast-1 and Yeast-2, SBC provided the gene signal values which w ere closer to the true 

gene signal value compared to GCOS. For the rest o f  images, Bovine_a. Bovine b, 

Vitis a and Vitis_b, GCOS provided more accurate results. Hence, a hybrid method 

which chooses dynam ically between SBC and GCOS may be more useful when 

analyzing different Affymetrix microarray genome image.

In order to show this im provem ent on a more global level, we proposed the 

average analyzed gene signal value for both SBC and GCOS, A v e r a g e S ig n a lSBC and 

A v e r a g e S ig n a lGCOs from 50 simulated microarray im ages for all eight different 

Affymetrix microarray images. For each gene in one genome group, there were 50 

analyzed values obtained from SBC and GCOS. Hence, an average mean value for each 

gene was calculated over 50 images for SBC and GCOS. By com paring this average
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mean value o f  each gene to the true gene signal value, it provided us a more 

com prehensive understanding o f  how different algorithm  influences the gene expression 

calculation on a global level.

Paired t test was perform ed between the average analyzed gene signal value and 

the true gene signal value for all eight different Affym etrix microarray images. We 

hypothesized that the difference between the m ean o f the SBC average analyzed gene 

signal value and the m ean o f the true gene signal value was zero and the difference 

between the mean o f the GCOS average analyzed gene signal value and the true gene 

signal value was zero. Table 5.28 presents the paired t test results for all eight different 

Affymetrix m icroarray images between the mean o f  the SBC average analyzed gene 

signal value and the true gene signal value. Table 5.29 presents the paired t test results for 

all eight different Affymetrix microarray images between the mean o f  the GCOS average 

analyzed gene signal value and the true gene signal value.

Table 5.28 Paired t test for the SBC average analyzed gene signal value

Array P-value Decision for a  = 0.05 Decision for a  = 0.01

Decision 
for a  = 
0.001

Bovine a < 0.000001 Reject Reject Reject
Bovine b < 0.000001 Reject Reject Reject
Canine a < 0.000001 Reject Reject Reject
Canine b < 0.000001 Reject Reject Reject
Vitis a < 0.000001 Reject Reject Reject
Vitis b < 0.000001 Reject Reject Reject
Yeast-1 < 0.000001 Reject Reject Reject
Yeast-2 < 0.000001 Reject Reject Reject
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T ab le  5 .2 9  P a i r e d  t te s t  fo r  th e  G C O S  a v e r a g e  a n a l y z e d  g e n e  s ig n a l  v a lu e

Arrav P-value Decision for a  = 0.05 D ecision for a  = 0.01

Decision 
for a  -  
0.001

Bovine a < 0.000001 Reject Reject Reject
Bovine b < 0.000001 Reject Reject Reject
Canine a < 0.000001 Reject Reject Reject
Canine b < 0.000001 Reject Reject Reject
Vitis a < 0.000001 Reject Reject Reject
Vitis b < 0.000001 Reject Reject Reject
Y east-1 0.0034 Reject Reject Accept
Yeast-2 < 0.000001 Reject Reject Reject

Table 5.28 shows that the difference for all eight A ffym etrix microarray images 

between the mean o f the SBC average analyzed gene signal value and the true gene 

signal value was significantly no zero. Table 5.29 shows that the difference for all eight 

Affymetrix microarray images between the mean o f  the GCOS average analyzed gene 

signal value and the true gene signal value was significantly not zero, except for Y east-1 

genome image at 0.001 significance level. Hence, we concluded that there was 

significance difference between the average analyzed gene signal value and the true gene 

signal value. Then, we implied the two sample t test between the true gene signal value 

and the average analyzed gene signal value. The null hypothesis and the alternative 

hypothesis are shown below.

^ 0 : M True  ~  l^-AverageSignaSBC' H-True  ^  HA ver age S i gn aS B C .

H q - y - T r u e  ~  y A v e r a g e S i g n a G C O S ; ^ 1 : A G r u e  ^  y A v e r a g e S i g n a G C O S .

We hypothesized that there was no significant difference between the mean o f  the 

true gene signal value and the mean o f the average analyzed gene signal value at the



given significance levels, 0.05. 0.01 and 0.001. Table 5.30 and Table 5.31 present the two 

sample results for all eight Affymetrix images.

Table 5.30 Two sample t test for the SBC average analyzed gene signal value

Array P-value Decision for a = 0.05 Decision for a  = 0.01

Decision 
for a  = 
0.001

Bovine a < 0.000001 Reject Reject Reject
Bovine b < 0.000001 Reject Reject Reject
Canine a 0.43 Accept Accept Accept
Canine b 0.37 Accept Accept Accept
Vitis a < 0.000001 Reject Reject Reject
Vitis b < 0.000001 Reject Reject Reject
Y east-1 0.003 Reject Reject Accept
Yeast-2 o.oos Reject Reject Accept

Table 5.31 Two sample t test for the GCOS average analyzed gene signal value

Array P-value Decision for a = 0.05 D ecision for a  = 0.01

Decision 
for a = 
0.001

Bovine a < 0.000001 Reject Reject Reject
Bovine b < 0.000001 Reject Reject Reject
Canine a < 0.000001 Reject Reject Reject
Canine b 0.18 Accept Accept Accept
Vitis a < 0.000001 Reject Reject Reject
Vitis b < 0.000001 Reject Reject Reject
Y east-1 0.37 Accept Accept Accept
Yeast-2 0.034 Reject Accept Accept

When the null hypothesis failed to be rejected, there was not enough evidence 

showing that there was significant difference between the mean o f  the true gene signal 

value and the mean o f the average analyzed gene signal value. When the null hypothesis 

was rejected, that indicated that there was significant difference between the mean o f the 

true gene signal value and the mean o f the average analyzed gene signal value.
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When we set the significant level at 0.05, for SBC, there were two accepted 

decisions for Canine_a and Canine b. For GCOS, there w ere two accepted decisions for 

Canine_b and Yeast-1. When we set the significant level at 0.01, for SBC, there were two 

accepted decisions for Canine_a and Canine_b. For GCOS, there were three accepted 

decisions for Canine b, Yeast-1 and Yeast-2. W hen we set the significant level at 0.001, 

for SBC, there were four accepted decisions for Canine_a, Canine_b, Y east-1 and Yeast- 

2. For GCOS, there were three accepted decisions for Canine_b, Y east-1 and Yeast-2. 

Hence, for the significance level at 0.001, SBC had more images showing that it was 

providing gene signal value which were closer to the true gene signal value as compared 

to GCOS.

Then, w'e im plem ented the clustering analysis am ong true gene signal value, 

averaged analyzed gene signal value from SBC and GCOS by using the same cluster 

technique as w hat we did for one simulated image analysis. Eight clustering tree plots for 

eight microarray images are shown in Figures 5.15 through 5.22.
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Figure 5.16 Clustering tree for Bovine_b

S B C  G C O S  TRUE

F ig u r e  5 .1 7  C lu s te r in g  t r e e  fo r  V i t i s _ a



114

5000 - 

4500 - 

4000 - 

3500 - 

3000 - 

2500 - 

2000  -

1500 L-----------------------1.................. .....— J ----------------------------
S B C  GCOS TRUE

Figure 5.18 Clustering tree for Vitis_b

3400 - 

3200 - 

3000 - 

2800 - 

2600 - 

2400 -

2200  -  ____________________

TRUE S B C  G C O S

F ig u r e  5 19 C lu s t e r in g  t r e e  fo r  Y e a s t - 1



115

2500 - 

2400 - 

2300 - 

2200  -  

2100  -  

2000  -  

1900 - 

1800 - 

1700 - 

1600 -

1500 - ------------ ------------

SBC GCOS TRUE

Figure 5.20 Clustering tree for Yeast-2

2200  -  

2100  -  

2000  -  

1900 - 

1800 - 

1700 - 

1600 -

TRUE S B C  G C O S

F ig u r e  5 .21 C lu s te r in g  t re e  fo r  C a n in e _ a



116

1650 - 

1600 - 

1550 - 

1500 - 

1450 - 

1400 - 

1350 - 

1300 - 

1250 -

1200 |- | ' '   |______________________________________________

TRUE SBC GCOS
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Figures 5.19, 5.21 and 5.22 show that SBC averaged analyzed gene signal value 

and true gene signal value were assigned to the same group by clustering analysis. This 

indicated that for these three genomes, Y east-1, Canine_a and Canine_b, there were less 

dissimilarity between the true gene signal value and the SBC average analyzed gene 

signal value com pared to the GCOS average analyzed gene signal value. SBC was able to 

provide more accurate gene signal value for these three images. For the rest o f  the 

genome, Bovine_a, Bovine_b, Vitis_a, Vitis_b and Yeast-2, the SBC averaged analyzed 

gene signal value and the GCOS averaged analyzed gene signal value were assigned to 

the same group.

Hence, there were less dissimilarity between the SBC averaged analyzed gene 

signal value and GCOS averaged analyzed gene signal value as com pared to the true gene 

signal value. SBC and GCOS stayed at the same accuracy level for the rest o f  five
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Affymetrix m icroarray images on average, Bovine_a, Bovine b, Vitis_a, Vitis b and 

Yeast-2 based on the clustering analysis.



CHAPTER 6

CONCLUSIONS

The purpose o f  this dissertation was to construct a more accurate segmentation 

algorithm for Affymetrix microarray image. In Chapter 4, the Active Contours W ithout 

the Edges (ACW E) method and Segmentation Based Contours (SBC) method are 

presented. After modifying ACW E method, the SBC method was constructed and 

proposed to apply on A ffym etrix microarray sim ulated image. The simulation method 

was introduced in Chapter 3, which em braces the most im portant biological 

characteristics o f  microarray experiments. In Chapter 5, we presented the comparison 

results after applying SBC and GCOS on simulated image based on the gene expression 

level. This gene expression com parison would bring significant im pact in shedding light 

on cellular analysis field.

From all eight groups o f different m icroarray images dow nloaded from 

Affymetrix sample test database, we replicated the generation o f an im age 50 times. We 

applied SBC and GCOS on all o f  these simulated im ages to obtain the gene signal 

expression values. Statistical analysis was perform ed based on the gene signal expression 

values instead o f  the intensity level. In this case, we were able to have a com prehensive 

understanding on how different algorithm will influence the gene expression calculation. 

In Chapter 5, we presented the dissimilarity distance metrics, sum squares o f  errors
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measurement, standard error o f  performance, paired t test, two sample t test, inverse 

regression analysis and cluster analysis am ong three sets o f  gene signal values, which 

were true gene signal values, gene signal values obtained from SBC and gene signal 

values obtained from GCOS. Additionally, we com puted the average gene signal values 

for each gene from the analyzed gene signal value obtained from both SBC and GCOS in 

each A ffym etrix m icroarray image group. Sim ilar statistical analysis was conducted on 

these average gene signal values, such as dissim ilarity distance m etrics, sum squares of 

errors m easurement, standard error o f perform ance, paired t test, two sample t test, 

inverse regression analysis and cluster analysis.

Based on all the com prehensive com parison results obtained from the above 

analyses, the SBC method provided more accurate gene signal values for Canine_a, 

Canine b, Y east-1 and Yeast-2. The GCOS method provided more accurate gene signal 

value for Bovine a, Bovine b, Vitis_a and V it is b .  Hence, we concluded that SBC 

provided more accurate segmentation intensity values for some genom e Affymetrix 

microarray images as com pared to the GCOS. For the rest o f  the im ages analyzed in our 

research, GCOS had a better capability. However, even a small im provem ent in 

microarray image segm entation process would lead to a significant im pact on genome 

expression analysis. For future research, we would like to propose a new  hybrid method 

which will dynam ically choose between SBC and GCOS based on the types o f  genome to 

which the microarray image belongs. This new' hybrid method will possibly yield a 

greater improvement on detecting interested genes for disease diagnostics and disease 

control.
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// import the libraries using in the program 
importjava.awt. Transparency; 
im portjava.awt.im age.*; 
import java.io.*; 
im portjavax.m edia.jai.*; 
im portjavax.swing.*; 
im portjava.awt.event.*; 
im portcom .sun.m edia.jai.codec.*;

// main class o f image segementation 
public class ImageSeg 
{

// get a file from input
public static File getFileForFilenam e(String filename) 
throwsIOException {

File fi = new File(filename);

if (!fi.exists())
throw new IO Exception(fi.getNam e() + " not found"); 
if (Ifi.isFileQ)
throw new' IO Exception(fi.getNam e() + " is not a file"); 
return fi;
ii

// main method
public static void main(String[] args)
{

String filename=null;
// Prompt for user to choose the file 
JFileChooser chooser = new JFileChooserQ; 
chooser.setFileSelectionM ode(JFileChooser.FILESO N LY ); 
intreturnVal = chooser.showOpenDialog(null);

// Confirm the user choosing file. 
if(returnVal == JFileChooser.APPROVE_OPTION) { 

//System.out.println("You chose to open this file: " +
// chooser.getSelectedFile().getName());

filename=chooser.getSelectedFile().getPath();
*f

intxpels=0 . ypels=0 ; //initialize the variables 
double [] intensity ; 
try (
// get the input file
File fil = getFileForFilename(filenam e);

//System, out. println("Segmenting...");
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FilelnputStream  finl = new FileInputS tream (fil);
BufferedReader b in l = new BufferedReader(new InputStream R eader(finl)); 
String linel = binl .readLineQ; //read in each line o f  the input file

while (linel != null )
)I

String[] resultl = line 1 .split("\\t");
String filenam eI=null,filenam e2=null,filenam e3=null,filenam e4=null; 

for (int z=0 ; z<resultl .length; z++)
i
i

filenam el=resu ltl [0]; 
filenam e2=resultl [ 1];

}
11 create output files name
filenam e3=filenam el .rep laceA ll(" .tif ,"_segm ent.tif'); 
filenam e4=filenam el ,rep laceA ll(".tif',"_output.txt");

11 create output image file
Renderedlm age pi = JAI.create("fileload", filename 1);
Raster im agedata=pi.getData();

W ritableRasterwr=null ;
W ritableRaster im agedatal =pi.copyData(wr); 
intensity = new double [100];
// create an new object from class segment
segmentmyseg;
myseg = new segment();
try {

intzzz= 1;
File fi = getFileForFilenam e(filenam e2);
FilelnputStream  fin = new FilelnputStream (fi);
BufferedReader bin = new BufferedReader(new InputStream Reader(fin)); 
String line = bin.readLine();
BufferedW riter out = new BufferedW riter(new FileW riter(filenam e4));

// using progress bar 
ProgressM onitorlnputStream  pin
= new ProgressM onitorInputStream (null, fi.getNam e(), fin);
ProgressM onitor pm = pin.getProgressM onitorQ;

File file = new File(filename2);
FileReaderfr = new FileReader(file);
LineNum berReaderln = new LineNum berReader(fr); 
int count = 0 ;
while (ln.readLine() != null){ 
count++;

i
pm.setM aximum(count); 
while (line!= null )

f
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// initialize the variables 
String[] result = line.split("V\t"); 
intstartx=0 ; 
intstartv=0 ; 
intlastx=0 ; 
intlasty=0 ;
for (int z=0 ; z<result.length; z++)

(i
// get the location from the gridding file 

starty=Integer.parseInt(result[OJ); 
startx=:rlnteger.parselnt(result[ 1 ]); 
lasty=lnteger.parselnt(result[2]); 
lastx=lnteger.parselnt(result[3]);

ii
for (int y=starty;y<=lasty;y++) 
for (int x=startx;x<=lastx ;x++)

{
i

inti.j;
xpels= lastx-startx+ l; 11 pixels in X-axis 
ypels= lasty-starty+ l; 11 pixels in Y-axis 
intensity=new double[xpels*ypels]; 

for (j=0 ;j<ypels;j++) 
for (i=0 ;i<xpels;i++)
intensity [i+xpels*j]= im agedata.getSam ple(i+startx,j+starty,0);
11 get the intensity value 
}

}
// segmenting using the methods from class segm ent 
myseg.create(xpels, ypels, startx, starty, lastx, lasty, intensity); 
m yseg.initialize(xpels, ypels, startx, starty, lastx, lasty, intensity); 

if (xpels*ypels>=100)
{

m yseg.set_dt_e_w (0.1,1,0.0251); 
myseg.set_init_curve(3);

i

else
i

myseg.set_dt_e_\v(0 . 1, 1.0 .01); 
myseg.set_init_curve( 1);

ii
myseg.segment();
out. write(Double.toString(m yseg.areainfo(startx+ 1 ,starty+ 1,lastx-1,lasty -1))); 
out.vvrite("\t");
if (m yseg.areainfo(startx,starty,lastx,lasty)!=0)
out. write(Double.toString(m yseg.area_intensitym ean(startx,starty,lastx,lasty)));
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else
out. \vrite(Double.toString( m yseg.background_intensitym edian(startx. starty, lastx .lasty))); 
out.vvrite("\t");
if (m yseg.areainfo(startx+l .starty+1 .lastx-1.lasty -1)!=0)
out.w rite(D ouble.toString(m yseg.area_jntensity_75pvalue(startx+l, starty+1, lastx -1,
lasty-1)));
else
out.w rite(D ouble.toString(m yseg.background_intensity_75pvalue(startx, starty, lastx.
lasty)));
out.write("\t");
out. vvrite(Double.toString(m yseg.background_intensitym edian(startx,starty,lastx,lasty))); 
out.write("\n");

// output to the output text file 
pm.setProgress(zzz); 

zzz=zzz+1;
fi

inti.j;
for(j=0 ;j<m yseg.ypels;j++)

for (i=0 ;i< m yseg.xpels- 1 ;i++)
{
if

(m yseg.sign(m yseg.area_m apping[i+m yseg.xpels*j])!=m yseg.sign(m yseg.area_m apping[ 
i+ 1 +m yseg.xpels*j]))

{
if  (m yseg.sign(m yseg.area_m apping[i+m yseg.xpels*j])<0) 

im agedatal.setSam ple(i+m yseg.startx,j+m yseg.starty,0,60000); 
else
im agedatal.setSam ple(i+ l+m yseg.startx,j+m yseg.starty,0,60000);

t
f

I
)

}
{

inti j ;
for(j=0 ;j<m yseg.ypels- 1 ;j++)

for (i=0 ;i<myseg.xpels;i++)
t
if

(m yseg.sign(m yseg.area_m apping[i+m yseg.xpels*j])!=m yseg.sign(m yseg.area_m apping[ 
i+m yseg.xpels*(j+ l)]))

ii
if  (m yseg.sign(m yseg.area_m apping[i+m yseg.xpels*j])<0) 

im agedatal.setSam ple(i+m yseg.startx,j+m yseg.starty.0.60000); 
else
im agedatal.setSam ple(i+m yseg.startx,j+l+m yseg.starty,0,60000);

ii
ii
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int j;
for(j=0 ;j<myseg.ypels;j+-O

it
if (m yseg.sign(m yseg.area_m apping[0+m yseg.xpels*j])>=0) 
im agedatal .setSam ple(0+m yseg.startx,j+m yseg.starty,0,60000); 
if (m yseg.sign(m yseg.area_m apping[m yseg.xpels- 1 +m yseg.xpels*j])>=0) 
im agedatal .setSam ple(m yseg.xpels-1 +m yseg.startx,j+m yseg.starty,0,60000);

}
i

{
inti;
for(i=0 ;i<mvseg.xpels;i++)

if (m yseg.sign(m yseg.area_m apping[i+m yseg.xpels*0])>=0) 
im agedatal .setSample(i+m yseg. startx, 0+myseg. starty,0,60000); 
if (m yseg.sign(m yseg.area_m apping[i+m yseg.xpels*(m yseg. ypels- 1 )])>=0) 
im agedata l. setSam ple(i+myseg. startx, myseg. ypels- 1+myseg. starty,0,60000);

\
II draw the boundary o f each cell in the output im age file 

line = bin.readLineQ;
}

out.closeQ;
}

catch (IOException e) { // Trap exception
System.err.println(e.toString()); // Display error 

)
Bufferedlmage bi = new BufferedIm age(pi.getColorM odel(), im agedatal, true, null); 
Renderedlm age op =JAI.create("filestore",bi,filenam e3,"TIFF"); 

linel = binl.readLine();
}
»
)

catch (IOException e) { // Trap exception
System.err.println(e.toStringO); // Display error

f
//System .out.println("Finished!");
int response = JOptionPane.showOptionDialog(
null // Center in window.

, "The whole segmentation process has finished" // M essage 
, null // Title in titlebar
. JOptionPane.DEFAULT OPTION // O ption type 
, JOptionPane,PLA IN _M ESSAG E // messageType



126

. null 

. null 
, null

);
if (response==0 )

i
i

System. exit(O);
ii

if (response==-l)
ti

System.exit(O);
(

//System. exit(O);
ii

i

// Icon (none)
// Button text as above. 
11 Default button's label
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functionaffy\vritedat_ne\v( image, gridname, head 1 .newdat)

[px.px_l]=size(image);
%[A 1 .head 1 .dump 1 ]=affyreaddat(datname); 
grid^loadCgridname):

[r,c]=size(grid); 
n=sqrt(r); 

ul=[grid( 1,2 ).grid( 1, 1)]; 
ur=[grid(n,4),grid(n,l)]; 
ll=[grid((n*(n- 1 )+ l ).2),grid ((n*(n-l)+1 ),3)]; 
lr=[grid(n*n,4).grid(n*n.3)];

fid=fopen(newdat,'w ',T); 
head=vvritehead(fid.image.head 1 ,ul,ur,ll,lr); 
for i= l :px 
for j= l :px 1

% tm p=fw rite(fid ,u intl6(im age(i,j)),'u in tl6 ');
fw rite(fid ,u intl6(im age(i,j)).'u in tl6 ');
end
end

% fwrite(fid,uint 16(im age),'uint 16'); 
fclose(fid);

function head=writehead(fid.im age,head 1 ,ul,ur,ll,lr)
% head=fread(fid,512,'uint8');

[px.px lj^sizefim age);

head.type=fwrite(fid,head 1 .type,'uint8')
head.pixperline=fw rite(fid,px_l,'uintl6 '); 

head.nolines=fw rite(fid,px,'uintl6'); 
head.pixels=fwrite(fid,px*px_l,'uint32'); 
head.m inpixvalue=fwrite(fid,m in(im age(:)),'uint32'); 
head.maxpixvalue=fwrite(fid,m ax(im age(:)),'uint32'); 
head.m eanpixvalue=fwrite(fid,m ean(im age(:)),'double'); 
head.stdpix=fwrite(fid,std(im age(:)),'double');

head.nopixperrow=fwrite(fid,head 1 .nopixperrow,'uchar'); 
head. noro\vs=fwrite(fid, head 1 .norows.'uchar'); 
head.pix\vidth=fwrite(fid,head 1 .pixwidth,'uchar'); 
head.pixheight=f\vrite(fid,head 1 .pixheight,'uchar'); 
head.scanspeed=fvvrite(fid,headl.scanspeed,'uchar'); 
head.tem perature=fwrite(fid,head 1. temperature,'uchar'); 
head.laserpower=fvvrite(fid.head 1 .laserpower,'uchar'); 
head.datetim e=fwrite(fid.headl .datetime,'uchar');
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head.subfield=fwrite(fid. head 1 .subfield,'uchar');

head.meandcoffset=fvvrite(fid,headl .meandcoffset,'double'); 
head.stddcoffset=fwrite( fid,head 1 .stddcoffset,'double');

head.dcdoffsetsam ples=fwrite( fid,head 1 .dcdoffsetsam ples,'uint32');

head.xy_ul=fw rite(fid ,ul,'in tl6'); 
head.xy_ur=fwrite(fid,ur,'int 16'); 
head. xy_lr=fwrite(fid,lr, 'int 16'); 
head.xy_ll=fw rite(fid ,ll,'in tl6 '); 
head.cellmargin=fwrite(fid,head 1 ,cellm argin,'u intl6 '); 

a=headl .name;
[r,c]=size(a); 
n=l 54-c; 
b -h ';  

for i=l :n
a=strcat(a, b);

end
head. namer=fwrite(fid,a,'uchar');
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path=p\vd;
file=dir(fullfile(path, '*.cel')); 
f_size=size(file); 
for (i=l :f_size( 1)); 
f_file=fullfile(path,file(i).nam e); 
ac\ve_f=strrep(lovver(f_file).'.cel','_output.txt');

outcel_f=strrep(low er(f_file),'.celV _output.cer);

fid -  fopen(f_file); 
fid l=fopen (outcel_f,'w '); 
cel=affyread(f_file);
[A ,B.ACW E,C]=textread(acw e_f,,% f % f % f % f,'headerlines’,0);

%\vhile ~~feof(fid);
for (i=l :24)
tline=fgets(fid);
fw rite(fid l, tline);
end
%end

for (i=l :cel.NumProbes)

tline=fgets(fid);

[token 1. remain 1] = strtok(tline);
[token2 , rem ain2] = strtok(rem ainl);
[token3, remain3] = strtok(rem ain2);
[token4. remain4] = strtok(rem ain3);
[token5, remain5] = strtok(rem ain4);
% fw rite(fidl, '%12.8An',g(3)); 

fprintf(fid 1, ’% 3d\t',str2num (token 1)); 
fprintf(fid 1, '% 3d\t',str2num(token2));

% fprintf(fidl. '%s\t',token3); 
fp rin tf(fid l, '% s\t'.num 2str(ACW E(i))); 
fprintf(fidl, '% s\t',token4); 
fp rin tfffid l. ’% 3d\n',str2num (token5));

end
while ~-feof(fid);
tline=fgets(fid);
f\vrite(fidl. tline);
end
end
fclose(fid);

fclose(fid l)
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