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ABSTRACT

An in-depth understanding of a wide range of physical, chemical, atmospheric 

and biological processes can only be achieved after the structure and dynamics of 

interfaces and the interfacial behavior of aqueous species, such as ions, are thoroughly 

studied and understood. This dissertation describes computational studies conducted to 

gain a more comprehensive understanding of such interfaces and the behavior of ions in 

the bulk and interfacial regions of the (1) air/water interface, and (2) alkane/water 

interfaces.

At the air/water interface the effect of counterion (sodium cations) charge and the 

influence of ion pairing on anion (chloride) propensity for the air/water interface of water 

was investigated. Higher counterion charge led to greater interfacial activity of the 

chloride anions and also caused stronger binding between the sodium and chloride ions. 

Shorter sodium-chloride interatomic distance also led to greater anion interfacial 

propensity while dampening the interaction strength between the counterion and anion 

had a small effect on propensity of the anions for the interface. Another phenomenon 

examined at the air/water interface was the effect of the halide ion in various sodium 

halide electrolyte solutions on the surface tension and surface excess while including 

electrostatic damping in the simulation model. Divalent strontium chloride was also 

examined in comparison to monovalent sodium chloride. Findings suggested that the 

smaller halide ions were found farthest from the air/water interface— in keeping with



trends from previous studies— and resulted in the largest (most negative) surface excess, 

which would in turn cause the greatest increase in surface tension of water. Divalent 

strontium chloride had a more negative surface excess when compared to sodium 

chloride and the inclusion of electrostatic damping in the models reduced propensity of 

the ions for the interface and caused overall increase in surface excess.

The alkane/water interface was investigated to determine the effect of changing 

the length of the alkyl chain on the water/alkane interfacial width. Two separate studies 

found that longer alkane chain length led to shorter alkane/water interfacial widths. A 

long term goal of this research is to catalog the behavior of ionic species at different 

interfaces. The distribution of sodium-halide ions was compared at the alkane/water and 

air/water interfaces. Sodium halide ions were found closer to the air/water interface than 

the alkane/water interface. In the future, similar studies will be carried out at the 

alcohol/water interface and the effects of the nature of the organic phase (alkane or 

alcohol with varied chain lengths, degrees of branching, and solubility in water) will be 

examined.
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CHAPTER 1

INTRODUCTION

Over the past few decades, computer simulations have evolved into an essential 

branch of science and computer simulation techniques have become indispensible tools 

[1-3]. Computer simulations are often used to provide a hint to experimentalists for 

further investigations (as a complement to experiment) and are sometimes the only 

available method when experiments are not possible. Among other reasons, computations 

are often cheaper and faster than physical experiments. In most cases different 

possibilities can be explored simultaneously which means that unlikely scenarios can be 

ruled out before expensive physical experiments are conducted [2], Molecular modeling 

as a whole aims to mimic the behavior and properties of molecules and molecular 

systems to study complex processes [2]. Furthermore, molecular simulations can provide 

microscopic level details about systems which cannot be explained by macroscopic 

experiments. Molecular Dynamics (MD) is the simulation technique used to study the 

air/water and alkane/water interfacial systems discussed in this dissertation. Molecular 

dynamics is one of the available simulation techniques available for investigation 

molecular systems. Monte Carlo (MC) is another one of these methods that will be 

described briefly in Chapter 2 along with more details about MD simulations. Simply 

stated however, MD is employed as the computational method for this research because

1
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of its major advantage over other methods like MC. While other methods like MC 

provide a smeared picture of the system studied, MD provides a detailed movie of the 

system.

1.1 Motivation

A wide range of physical, biological, atmospheric, and chemical processes occur 

at some ‘sort o f’ interface—the boundary that forms between two different phases. As a 

result, a detailed understanding of the properties of these interfaces will benefit eclectic 

fields of study which involve any one or combination of the aforementioned processes. If 

we can use interfacial studies to establish that a particular species has a propensity for the 

interface, its extraction at the interface would probably happen more readily than 

otherwise. Furthermore, it may be possible to exploit these tendencies to enhance the rate 

of many interfacial process or mechanism [4-6]. Many of the characteristics of interfaces 

observed at the macroscopic level can only be scrutinized at the microscopic level which 

requires the use of sophisticated experimental and/or computational techniques. For 

instance, we observe foam formation along the shore line where sea water breaks, while 

the edges of fresh water lakes are usually devoid of foam. At the microscopic level, 

scientist have detected that the presence of salts, in this case sodium chloride (NaCl), is 

one factor which inhibits the joining of water bubbles causing the foam to form [7],

An in depth understanding of interfaces can also lead to break through technology 

that can be useful in the area of waste water cleanup [8]. Simulation studies can provide 

insight about the behavior of water contaminants and their likelihood of binding to 

specific ligands which can be present in an immiscible phase and in the proximity of the 

interface [8-9]. Another major application of interfacial studies is in the construction of
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biological membranes. Successful construction of these membranes requires a detailed 

understanding of how the molecules that make up the membranes interact, as well as how 

they interact with the molecules in the natural cellular environment [10-12],

A thorough investigation of interfaces also requires an understanding of the 

ability of the interfaces to interact with various species and how they are affected by 

other species, particularly ions. Studies at the air-water interface have revealed that the 

presence of ions at the interface can influence the interfacial tension and the reactivity of 

the surface [9]. Also, previous research has shown that the behavior of ions near the 

interface can influence the best means for specific ion extraction from an aqueous 

mixture [9]. Furthermore, the structure and stability of many proteins and membranes 

have been linked to the distribution of ions in the interfaces that form those systems [4, 

13-15]. The composition of the marine boundary layer in the atmosphere can be affected 

by the nature of seawater aerosols which is influenced by the uptake of atmospheric 

species, and reactions of ions in the aerosols with different atmospheric species [16-17]. 

Many studies have been conducted to investigate hydroxyl radicals at aqueous 

environments. These studies are primarily motivated by the fact that the hydroxyl radical 

is found in significant concentrations in the lower atmosphere and is found to react with 

the halide ions in saltwater aerosols [18-20]. Though studies have found no significant 

reactions between the hydroxyl radicals and theses ionic species it is important that we 

have a method of examining the mechanisms of such systems which are undoubtedly 

vital [21],

This dissertation work is aimed at increasing our understanding of interfaces 

using computational methods. In particular, we explored the air/water and the
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alkane/water interfaces. Molecular Dynamics (MD) was the computational technique 

employed for the studies documented in this dissertation. More details about the 

computational methods are addressed in Chapter 2, and relevant information about the 

simulations is included in related chapters throughout the dissertation. Some common 

properties of interfaces that are usually of interest and are addressed in this work include 

surface tension, surface excess, and reactivity [9]. Since in reality interfaces rarely exist 

in the absence of other species which can greatly affect the nature of the interfaces, this 

work includes investigations of the behavior of these interfaces in the presence of various 

ionic species. The ionic species explored were mainly extended to the sodium halides 

(chloride, bromide, and iodide) and to a lesser extent strontium chloride.

1.2 Background

1.2.1 Air/Water Interface

In the past few decades, much research has been conducted with the effort of 

understanding ion transport and the behavior of ions at aqueous interfaces. Initially, a 

fairly comprehensive idea was developed about ion solvation and ion paring at aqueous 

interfaces [22-23j. Many of the initial ideas came from pioneering work by Benjamin 

[22-23]. However, these studies excluded polarizability in their models, which was later 

found to be a very vital part in the understanding ion interfacial behavior. A completely 

different picture emerged when polarizability was included in the molecular models. The 

inclusion of polarizability was found to significantly enhance the anion propensity for the 

air/water interface [11, 24-26], Moreover, it was found that the larger, more polarizable, 

the halide anion, the greater its propensity for the air-water interface [24, 27]. It should 

be noted that without polarizability, larger sized anions still have a propensity for the air-
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water interface in comparison with smaller ones. However, this interfacial propensity was 

not as strong as with polarizable interactions [28-33],

When investigating the free energy profile of a single anion, chloride had a higher 

free energy near the interface than in the bulk [25] indicating that the chloride ion is 

unlikely to be found near the interface. However, concentrated NaCl solutions studied 

using similar models found that chloride has a propensity for the air/water interface [33- 

34]. Furthermore, divalent cations are found to significantly enhance this effect [35], 

This led us to believe that the cation, even if it does not have a propensity for the 

interface itself, plays a major role in the distribution of ions at the air/water interface. 

The origin for this effect is not well understood, and Chapter 3 of this dissertation details 

a study conducted to fill this gap. This molecular dynamics simulation study looks at how 

the cation (counterion) charge and degree of ion pairing influence the distribution and 

interfacial free energy of anions at the air/water interface. In Chapter 4, we also explore 

the effect of the ions in sodium halide and strontium chloride electrolyte solutions on 

surface tension and surface tension excess. These systems include electrostatic 

dampening with Kirkwood-Buff integrals in the simulation model. As a result, we 

explore the effect of including dampening on the ion distribution and surface tensions and 

excesses.

The behavior of water next to the air/water interface has been widely investigated 

experimentally and computationally, along with how different species are affected by 

them [11, 24, 26, 36-45]. Comparative studies of different interfaces are not as prevalent, 

and discerning how specific hydrophobic species directly influence the water structure is 

not well understood. More recent studies have been conducted to fill this void;
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developing an understanding of how water behaves next to general hydrophobic 

interfaces [4, 26, 33, 46-59].

1.2.2 Hydrophobic/Water Interfaces

Usually, hydrophobic liquids come into contact with water and results in the 

formation of an interface between them. It is important from both a technical and a 

theoretical point of view to gain detailed insight into the properties of hydrophobic/water 

interfaces especially since they play an important role in surface science and surfactant 

behavior [60]. A molecular level understanding of reactions at hydrophobic/water 

interfaces will strongly benefit atmospheric science, but will also provide general insight 

into important industrial, pharmaceutical, and biological processes like crude oil 

extraction [61], detergent activity [8], membrane dynamics, drug absorption [4], ion 

complexation [62], and phase transfer catalysis [63], If for instance, certain species have 

a greater propensity for certain hydrophobic interfaces than others, it may be possible to 

exploit these tendencies to enhance the rate of an interfacial process, or even promote 

greater selectivity [4-6]. Understanding the water structure and dynamics as well as the 

thermodynamic properties of the interface that forms between a hydrophobic liquid and 

water can be exploited for the flooding of oil wells with water in secondary oil recovery 

[8],

Richmond and coworkers have carried out extensive work utilizing both sum 

frequency generation (SFG) spectroscopy and molecular simulations to make 

comparisons among many interfaces for the structure of water [4-6, 64]. The nature of the 

hydrophobic liquid that water comes in contact with has been found to significantly 

influence the water structure and dynamics [4-6]. This in turn influences the
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thermodynamic properties of the interface as well as affects the behavior of water 

molecules, general reactivity, and interfacial behavior of aqueous species, such as ions. 

The hydrophobic/water interfaces of focus in this dissertation are various alkane/water 

interfaces which will be described in detail in Chapters 5 and 6 and to a lesser extent in 

Chapter 7.

Alkane/water interfaces are considered a prototypical system for studying the 

interaction of water with hydrophobic liquid surfaces [4], primarily because the 

molecular structure of alkanes can be easily modified by varying chain length and their 

degree of branching. Furthermore, alkane/water interfaces are prevalent in water flooding 

of oil wells [61], and understanding how different types of alkanes, including the role of 

chain length on alkane/water interfacial properties, can bring greater insight into this and 

many other processes. Previous spectroscopic studies found that for n-alkanes, those 

with an even number of carbons packed differently than those with an odd number of 

carbons [47], On the other hand, molecular dynamics simulations of water next to self

assembled monolayers found that there was no significant difference in the interfacial 

structure when the monolayers had odd and even numbers of alkanes [65]. X-ray 

reflectivity studies of n-alkane/water interfaces found no odd/even effect in regard to 

interfacial width, but greater interfacial widths with longer n-alkane chain lengths [46, 

55, 59]. These studies suggest that the chain length of n-alkanes may influence the 

interfacial structure, but the issue still requires further investigation. Even if longer 

alkane chain cause an increase the interfacial width, researchers still do not understand 

the mechanism for this phenomenon. Also, it is not conclusive whether n-alkanes with an 

odd number of carbons pack differently than those with an even number of carbons,
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though this would be a reasonable assumption since self-assembled monolayers had 

different structures depending if they had odd or even numbers of alkanes [66]. In

Chapters 5 and 6 we investigated different alkane/water interfaces in an attempt to

understand the effect of the alkyl chain length on width of the alkane/water interface.

1.2.3 Ions at Different Interfaces

To bring insight into many of the aforementioned processes it is necessary to

understand the similarities and differences between air/water and hydrophobic/water 

interfaces. In the studies discussed in subsequent chapters of this dissertation, we attempt 

to fill part of this void with molecular dynamics studies at the air/water and alkane/water 

interfaces in the presence of different ionic species (sodium chloride, sodium bromide 

and sodium iodide). It is fairly well known that interfacial water behaves in a different 

manner than bulk water. However, it is much more difficult to establish how the specific 

type of interface influences the behavior of aqueous species. Previous work has found 

that different hydrophobic/water interfaces may influence ion distributions in a different 

manner than the air/water interface [33, 67]. However, the only investigation of the 

behavior of ions at the alkane/water interface was carried out without polarizable 

potentials [68]. As pointed out in Section 1.2.1, inclusion of polarizability in the 

molecular model used to study ions at aqueous interfaces was vital [28-33, 69]. For the 

neat air/water or for alkane adsorption to the surface of water, good models exist without 

polarizable interactions [54, 56-57], but when ions are present, especially, large halogen, 

the inclusion of polarizability significantly influences their interfacial behavior. In 

general, polarizable interactions cause larger, more polarizable anions to have a 

significant propensity for aqueous interfaces. A specific subset of polarizable potentials
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are based on the Dang-Chang water model [25, 70], in which concentrated solutions of 

NaCl, NaBr, and Nal have enhanced anion concentrations at the air/water interface with 

respect to the bulk [33]. In these studies, Nal shows the greatest interfacial anion 

concentration, while NaCl shows the least, but still enhanced with respect to the bulk. In 

other studies, when carbon tetrachloride or 1,2-dichloroethane were present at the 

aqueous interface, anion concentrations were usually reduced in comparison with the 

air/water interface [33, 71-72]. However, these two hydrophobic liquids influenced 

interfacial ion concentration quite differently. For instance, 1,2-dichloroethane appeared 

to enhance the propensity of cations to a region near the hydrophobic/water interface, 

while carbon tetrachloride had little to no effect on NaCl interfacial concentrations [33], 

Another point to consider with these cited studies is that they both examined interfaces 

between water and chlorinated organic liquids. However, the behavior of these ionic 

species in the presence of only hydrocarbons (like alkanes) may be completely different 

and this phenomenon needs to be investigated. Chapter 7 includes a study which attempts 

to shed some light on this topic. That chapter includes a study which examined the 

propensity of different sodium halides for the air/water interface in comparison to some 

alkane/water interfaces. In the future, these studies can be extended to include ions at 

various hydrophobic/water interfaces to provide a more detailed picture.



CHAPTER 2

METHODS

2.1 Computer Simulations Techniques

Computer simulation techniques are an indispensible tool presently used as initial 

or complementary techniques to experiments to gain insight into a range of physical 

phenomena [1-3]. Computer simulations have evolved of the past decades into an 

essential branch of science utilized to solve theoretical models beyond certain 

approximations and to provide a hint to experimentalists for further investigations [1]. 

Molecular Dynamics (MD) and Monte Carlo are the most common simulation techniques 

used to study many-body systems— microscopic systems made up of a large number of 

interacting particles [1-2],

Molecular modeling as a whole is concerned with ways to mimic the behavior 

and properties of molecules and molecular systems—liquids, solutions, and solids— to 

study complex processes such as the adsorption of molecules onto surfaces and into 

solids and to investigate the behavior of macromolecules [2]. Macroscopic systems like 

these usually contain extremely large numbers of atoms or molecules, which makes it 

impossible to accurately compute and model properties of interest. However, computer 

simulation techniques usually consider small replications of the macroscopic system with

10
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manageable number of atoms and molecules making it possible to study these systems 

and predict relevant properties [2],

Monte Carlo simulations probe the configuration space by trial moves of particles. 

Each configuration depends only on its predecessor and not upon any other 

configurations that were previously visited [2], This method generates configurations 

randomly and uses the Metropolis algorithm— a special set of criteria used to decide 

whether or not to accept each new configuration [2].The energy change from step n 

to n + 1 is used as a trigger to accept or reject the new configuration. Paths towards 

lower energy are always accepted; those to higher energy are accepted with a probability 

governed by Boltzmann statistics. In that way, properties of the system can be calculated 

by averaging over all Monte Carlo moves [1].

Molecular Dynamics methods, on the other hand, are governed by the system’s 

Hamiltonian and consequently the Hamilton's equations of motion which are integrated to 

move particles to new positions and to get new velocities at these new positions. This can 

be viewed as an advantage of MD simulations with respect to MC since it considers the 

whole phase space, not only the configuration space, which gives additional information 

about the dynamics of the system [1],

However, all MD results are only correct with respect to the model used for the 

simulation [1], Consequently, simulation results are compared to theoretical predictions 

and experimental findings. The model is usually refined if the simulation results differ 

from the real system properties or are incompatible with existing theoretical 

manifestations [1]. Molecular dynamics, which is discussed further in this chapter, is the
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computer simulation method utilized for the study of interaction potentials of the 

different interfacial systems included in this dissertation.

2.2 Molecular Dynamics

Molecular dynamics (MD) is a deterministic method, which means that the state 

of the system at any time can be predicted from its current state. Once we have a 

molecular level understanding of the dynamic behavior of any system, we can easily 

interpret the "macroscopic" kinetics of the bulk system [73J. MD studies the progression 

of a molecular system over time as a means of predicting thermodynamic and transport 

properties directly from the underlying interactions between the atoms and/or molecules 

[2, 73-74], As a result, MD methods have been used over the past few decades as a major 

tool for obtaining information about the thermodynamic, structure, and dynamical 

properties in condensed matter, which range from simple pure liquids to more complex 

bimolecular systems in solution [3],

MD is concerned with both the motions within molecules themselves and 

collisions between different atoms and molecules [73J. The trajectory that specifies how 

the positions and velocities of the particles in the system vary with time is derived in 

sequence by solving the differential equations embodied in Newton's second law of 

motion, which states that force equals the rate of change of momentum (F =  m a ):

d 2x t Fxi
d t 2 mi

Eq. 2-1

Equation Eq. 2-1 describes the motion of a particle of mass m, along one coordinate (*;) 

where Fxt is the force on the particle in that direction [2, 73].



13

In realistic models of molecular interactions, the force of each particle changes 

whenever the particle changes its position, or whenever any of the other particles with 

which it interacts changes position. Also, the motions of all the particles are coupled 

together which gives rise to a many-body problem that cannot be solved analytically. 

Under such circumstances the equations of motion are integrated using the finite 

difference method [2]. The finite difference methods utilized in this work for solving the 

equations of motion is described in Sections 2.2.2 and 2.2.3 which follow in this chapter.

The main ingredients required for any molecular dynamics simulation include: (1) 

a model for the interaction between system constituents — atoms, molecules, surfaces, 

and so on—(2) an integrator which propagates particle positions and velocities from 

time t to t  +  St, and (3) a statistical ensemble—where thermodynamic quantities like 

pressure, temperature or the number of particles are controlled—has to be chosen [73]. 

Details concerning each model discussed in this dissertation will be presented in related 

chapters throughout. The molecular model (water model) is explained further in Section 

A.I. The general principles associated with the integrator and statistical ensembles are 

presented here in Chapter 2.

2.2.1 Numerical Integration Methods

Finite difference techniques are used to generate molecular dynamics trajectories 

after solving the Newton's second law of motion introduced in Section 2.2 and presented 

in Eq. 2-1. The basic idea is that the integration is broken down into small stages, each 

separated in time by a fixed time St. The total force on each particle in the configuration 

at a time t  is calculated as the vector sum of its interactions with other particles. The 

force is used to determine the acceleration of the particles, which are then combined with
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the position and velocities at the time t  to calculate the positions and velocities at the time 

t  + St. The force on the particles in their new position are then determined, leading to the 

new positions and velocities at time t + 2St, and so on. During each time step St,  the 

force is taken as being constant [2],

Several algorithms are available for integrating the equations of motion using 

finite difference methods; some are commonly used in molecular dynamics calculations. 

All of these integrating algorithms assume that the positions and dynamic properties 

(velocities, accelerations, etc) can be approximated as Taylor series expansions:

1 1 1  
r (t  +  St) =  r (t)  + S tv ( t )  + - S t 2a( t)  + - S t 3b ( t ) + —- S t 4c(t)  +  ••• Eq. 2-2

2 6 24

1 1
v ( t  + St)  = v ( t )  +  S ta ( t )  +  —8 t 2b( t)  +  —8 t 3c( t )  +  ••• Eq. 2-3

2 6

a ( t  +  St)  =  a ( t )  +  S tb ( t )  + — S t 2c( t )  H—  Eq. 2-4

b ( t  +  St) — b( t )  +  Stc( t)  +  ••• . Eq. 2-5

Where v  is the velocity (the first derivative of the position r  with respect to time), a  is 

the acceleration (second derivative), b  is the third derivative and so on [2]. The 

integration algorithms used for the molecular dynamics simulations presented in this 

dissertation is discussed briefly in later in Sections 2.2.2 and 2.2.3.

2.2.2 The Verlet Algorithm

The Verlet algorithm is the most widely used time integration algorithm available 

for solving the equations of motion in molecular dynamics simulations [75-76], It is also 

one of the integration algorithms employed in the molecular dynamics simulations

conducted and reported in this dissertation. The Verlet algorithm uses the positions and

acceleration at time t, and the positions from the previous step, r(t — St),  to calculate the
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new positions at r (t  + S t ) which we have at time t + St.  The relationships that are

obtained between these quantities and the velocities at time t  can be represented as:

1
r (t  +  St)  =  r (t)  + 8 tv ( t )  +  - 8 t 2a ( t )  + ••• Eq. 2-6

r (t  -  St) =  r (t)  -  8 tv ( t )  + ^ 8 t 2a ( t ) ----- . Eq. 2-7

Adding Eq. 2-6 and Eq. 2-7 together yields:

r (t  -I- St) =  2 r ( t )  —  r ( t  —  St) + 8 t 2a( t) .  Eq. 2-8

One problem with the Verlet integration algorithm, which can be observed by looking at 

Eq. 2-8, is that the velocities are not explicitly generated. The velocities can be calculated 

in a variety of ways; one of the simpler and most common ways to obtain this quantity is 

to divide the difference in positions at times t  + St  and t — S t  by 2St:

v ( t )  = [r(t + St) — r ( t  — St)] /2St .  Eq. 2-9

Another way to estimate the velocities is by using the half-step, t + ^ S t :

v  ( t  +  ^ 8 t )  =  [r(t + St) -  r ( t ) ] /8 t .  Eq. 2-10

The Verlet algorithm is usually simple to implement and has moderate storage 

requirements. However, this algorithm has some disadvantages. The lack of an explicit 

velocity term in the equation makes calculation of the velocities a bit more challenging

[2]. Some variations of the Verlet algorithm which have been developed include: the 

leap-frog algorithm, the velocity Verlet method, and Beeman’s algorithm.

2.2.3 The Velocity Verlet Algorithm

This method is a better implementation of the more general Verlet algorithm

[77], The positions, velocities and accelerations at time t  + St  are calculated in the 

following way:
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\m J
Eq. 2-13

Eq. 2-11

Eq. 2-12

Eq. 2-14

Where m is the mass of the atom (s) and W r ( t )  is the total force acting on the atom at 

time t, represented as a function of position.

Statistical mechanics studies macroscopic systems from the microscopic or 

molecular point of view. The goal of statistical mechanics is to understand and predict 

macroscopic phenomena and to calculate macroscopic properties from the properties of 

the individual molecules making up the system [2, 78]. Molecular dynamics simulations 

generate information at the microscopic level, including atomic positions and velocities. 

Statistical mechanics is used as a tool to convert this microscopic information to 

macroscopic observables—thermodynamic properties—such as pressure, energy, heat 

capacities, and so on [78].

Statistical mechanics usually deals with the physical properties of systems of 

various gases, liquids, and solids in their various forms, liquid crystals and biological 

systems which consist of a large number of particles [79-81]. In order to deal with this 

problem of modeling very large systems, Gibbs first introduced the concept of ensembles

2.3 Statistical Ensembles

2.3.1 Statistical Mechanics
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[78]. Where an ensemble is simply a collection of systems (a large number of copies of 

the system of interest, each prepared in an identical way) put together [82],

Statistical ensembles consider a large number of systems, A, which are each 

replicas on a thermodynamics (macroscopic) level of a particular thermodynamic system. 

Thus, if for instance a system has and isolated system with fixed volume V, contains N 

molecules of a single component, and is known to have energy E. Then the ensemble 

would have a volume AV, contain AN  molecules and have a total energy E =  AE  [78].

2.3.2 Microcanonical Ensemble (NVE)

This ensemble is a collection of many systems all with the same volume V , 

number of particles N , and each with the same energy £[78, 82]. There is a major 

disadvantage of the microcanonical ensemble since conditions of constant total energy 

are not those under which experiments are performed. It is, therefore, important to 

develop ensembles that have different sets of thermodynamic control variables in order to 

reflect more common experimental setups.

2.3.3 Canonical Ensemble (NVT)

The most commonly used ensemble in statistical mechanics is the canonical 

ensemble, this ensemble is a collection of many systems all with the same volume V, 

number or particles N and are all connected to the same heat bath (hence each system in 

the ensemble has the same temperature T) [78, 82], Each system is enclosed in a 

container of volume V with heat conducting walls that are impermeable to the passage of 

molecules [78]. The entire ensemble is placed in a heat bath at temperature T until 

equilibrium is reached, and then is isolated from the surroundings. Many of the systems 

explored in this dissertation were simulated in the NVT  ensemble.



2.3.4 Isothermal Isobaric Ensemble (NpT)

This is an ensemble of systems in which the containing walls of each system are 

heat conducting and flexible, so that each system of the ensemble is described by N, T, p. 

This ensemble plays an important role in chemistry, as chemical reactions in the 

laboratory usually have experimental conditions which include a fixed pressure P, 

temperature T, and number of atoms N which can be closely mimicked by the NpT 

ensemble [83]. Like the NVT ensemble, many of the required simulations for the studies 

documented in this dissertation are conducted using NpT ensemble conditions.

2.3.5 Thermostats and Barostats

The canonical and isothermal-isobaric ensembles are the most commonly used 

ensemble in molecular dynamics simulations. Particles in the canonical ensemble are 

required to interact with a thermostat to maintain the required temperature. Likewise, 

particles in the isothermal-isobaric ensemble are required to interact with a thermostat 

and barostat in order to maintain constant temperature and pressure respectively. The 

thermostats and barostats utilized in the molecular dynamics simulations that will be 

described in the following chapters of this dissertation are:

• The Berendsen Thermostat. There are essentially three ways to control the 

temperature during a molecular dynamics simulation. These include, (1) 

scaling the velocities, (2) adding stochastic forces and/  or velocities, and

(3) using the “extended Lagrangian” formulations. In this dissertation 

work, the Berendsen thermostat, a velocity scaling method of temperature 

control is utilized [84], This thermostat utilizes an algorithm which re
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scales the velocities of the particles involved in the molecular dynamics 

simulations in order to control the simulation temperature.

• The Berendsen Barostat. Similar to the thermostats, there are different 

classes of pressure control for molecular dynamics simulations. The 

Berendsen method is considered the length-scaling technique.

To maintain the temperature during simulations, the system is coupled to an 

external heat bath with fixed Temperature T0. The velocities are scaled at each step, such 

that the rate of change of temperature is proportional to the difference in temperature:

where x is the coupling parameter which determines how tightly the bath and the system 

are coupled together. This method gives an exponential decay of the system towards the 

desired temperature. The change in temperature between successive time steps is:

In practice, x is used as an empirical parameter to adjust the strength of the 

coupling and its value needs to be chosen carefully. The large the x the weaker the 

coupling and the longer it takes for the system to achieve the temperature To- On the 

other hand, too small values if x will result in unrealistically low temperature fluctuations. 

In the length-scaling technique used by the Berendsen barostat, the system is weakly

Eq. 2-15

AT = - ( T 0 - T ( t ) ) . Eq. 2-16

Thus, the scaling factor for the velocities is

i

Eq. 2-17
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coupled to an external system. An extra term is added to the equations of motion that 

affect the pressure change:

where rp is the time constant for the coupling and Po is the desired pressure . The system 

pressure is set toward a desired value by changing the dimensions of the simulation cell 

size during the simulation. The scaling factor (for each dimension) is

where P is the isothermal compressibility of the system [84],

Length scaling at each time step using a global scale factor can lead to violent 

oscillations of pressure in more ordered systems, and is therefore not usually 

recommended for production molecular dynamics runs.

A wide variety of thermodynamic properties can be calculated from computer 

simulations. A comparison of experimental and calculated values for such properties is an 

important way in which the accuracy of the simulation and the underlying energy model 

can be quantified. Simulation methods also enable predictions to be made of the 

thermodynamics properties of systems for which there is no experimental data, or for 

which experimental data is difficult or impossible to obtain [2J. Some of the main 

thermodynamic properties which are routinely calculated in computer simulations 

include, energy, heat capacity, pressure, temperature (in the canonical ensemble, this 

property is some chosen constant value) and radial distribution function. The radial 

distribution function is one of the main thermodynamic properties that are exploited as a

Eq. 2-18

1
Eq. 2-19

2.4 Thermodynamics Properties
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means of gaining insight about the interaction of molecules in the systems that are studied 

and reported in subsequent chapters of this dissertation. The radial distribution function 

will be presented in detail here while other thermodynamic properties will be presented in 

related chapters.

2.5 Radial Distribution Function (RDF)

The radial distribution function (commonly referred to as the paired correlation 

function) is a useful way to describe the structure of a system, especially in the case of 

liquid systems like the ones detail in this dissertation. This function is commonly denoted 

by g ( r ) and can be expressed by the equation

g(r )  = 4 n r 2p(r) ,  Eq. 2-20

where p (r)  is the local number density of atoms at a distance r  from an atom, average 

with respect to the choice of the atom [85].

The RDF provides a direct physical picture of the spatially averaged structure, 

although it is merely a one-dimensional representation. The area under the first peak,

/ g ( r ) d r  =  f  4 n r 2p ( r )d r  = Z, Eq. 2-21

is the first coordination shell surrounding an average atom, assuming no overlap of the 

second peak. Beyond the first peak which defines the mean nearest neighbor distance and 

mean coordination number, and the second peak which defines the root mean square 

(rms) angular deviation, nothing more can be learned reliably from the RDF [85].

If for instance, we have a spherical shell of thickness 5 r at a distance r from the

chosen atom as shown in Figure 2-1,



22

Figure 2-1: Showing the spherical shell of thickness 5r used to calculate the radial 
distribution function

and the volume of the shell is given by:

4 4
V = — n (r  +  Sr) 3 — — n r 3 Eq. 2-22

V =  A nr28r + AnrSr2 +  ^ n S r 3 ~  47rr25r. Eq. 2-23

If the number of particles per unit volume is p, then the total number in the shell is 

Anpr28r  and so the number of atoms in the volume element varies as r 2. The pair 

distribution function, g(r) ,  gives the probability of finding an atom a distance r from 

another atom compared to the probability expected from a completely random 

distribution at the same density [2, 86]. References to the ‘radial distribution function’ 

usually refers to the pairwise function, higher orders can be defined but are not usually 

calculated. The radial distribution function of liquids usually has a small number of peaks 

at shorter distances and has a steady decay towards a constant value at longer distances. 

Figure 2-2 shows the radial distribution function calculated from a molecular dynamics 

simulation of an aqueous solution.
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Figure 2-2: Radial distribution function determined from molecular dynamics simulation 
of an aqueous 1M NaCl solution at 298K. The RDF is between the water 
oxygen and the chloride ion in the NaCl.

For short distances (less than the atomic diameter) g(r) is zero, this is due to the strong 

repulsive forces. The first and the largest peak occurs at approximately 3.2A with g(r) 

having a value of about 3. This means that it is three more times likely that these two 

atoms would have this separation than in the ideal gas. The radial distribution function 

then falls and passes through a minimum at around 3.8 A, the chances of finding two 

atoms with this separation are less that for an ideal gas. At long distances g(r) tends to the 

ideal gas value, g (r )  =1, indicating that there is no long-range order [2].

The RDF is also commonly defined as:

N (r )
g(r) = Eq. 2-24

4 n r 2p 8 r '

where N(r) is the number of atoms in the shell between r and r + 8r  around the central 

atoms and p is the number density of atoms, taken as a ratio of the number of atoms to the
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volume of the simulation cell [87], and Anpr28r represents the total number of particles 

in an ideal gas system [88].

Each peak in the RDF can be identified as the coordination shells for the atoms or 

molecules. By integrating the RDF under the peak one can obtain the total of bonds 

between the atoms or molecules of interest [87], This is what we often refer to as the 

coordination number. According to RDF, the number of atoms in the first coordination 

shell, called the coordination number (CM), is obtained by taking the integral from the 

separation distance at which the RDF first increases from zero to the first minimum in 

g(r) designated as rmin and shown in Eq. 2-25 [88]

CN = j ^ mtn 4 n p g ( r ) r 2dr  = Z. Eq. 2-25

2.6 Force Fields

In molecular dynamics a molecule is described as a series of charged points 

(atoms) linked together by springs (bonds). A force field is used to accurately describe 

the time evolution of bond lengths, bond angles and torsions, as well as non-bonding— 

van der Waals and electrostatic—interactions [2], The force field can be briefly explained 

as a collection of equations and associated constants designed to reproduce molecular 

geometry and selected properties of tested structures from both experimental work and 

quantum mechanical calculations in high level. As such, a force field can be simply 

described as a mathematical function that describes how atoms/molecules move, stretch, 

vibrate, rotate and interact with each other [2], In the force field function, the presence of 

electrons is generally ignored.

A general form, like the one presented in Eq. 2-26 is used to represent the total 

energy in a force field,
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E(v  ) Efrond "I" Eangie +  Edihgfij-Q̂ i +  Eyan der Waals  ^ e lec tro s ta tic s , Eq. 2-26

where r N represents the positions of N particles, E ( r N) indicates the potential energy, it 

is a function of the positions ( r)  of N particles (usually atoms). The bonded interactions 

are: Ebond which accounts for the energy associated with bond stretching, Eanglewhich 

accounts for the energy associated with bond angle bending, and Edihedral which 

accounts for the torsion which is the energy needed to rotate about the bonds. The non

bonded interactions EVan der Waals and Eeiectrostatics account for the energy due to the 

interactions (attraction or repulsion) between the dipoles and the energy due to 

interactions between charged atoms respectively [2].

More complicated force fields also contain other terms like out-of-plane bending 

and cross terms. Out-of-plane bending describes improper torsions and is usually added 

to the force field to explain the torsion where the angles are not bonded in sequences and 

cross terms describe coupled motion such as bond stretching-angle bending [2]. Some 

force fields even take into account solvation and polarization effects

The AMBER (Assisted Model Building and Energy Refinement) force field, 

which is a family of different variations of a general force field form, was used for this 

work. The specific forms or modifications adapted will be detailed in the related sections. 

AMBER force fields consist of more complex force fields forms that can account for 

solvation and polarization effects.
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The functional form of the AMBER force field family is: 

E (rN) =  £  k b( l - l 0)2 + ] T  ka ( 8 - d 0) 2
bonds angles

+  ^  ^ E n [:1 +  cos(na> -  y)]
torsions  

N - 1 N
W j

Eq. 2-27

W 2 _
V r U' /  V r i j  J +

47re0ry]

Different members of the AMBER force field family which are recognized by different 

names have different values for the parameters present in Eq. 2-27 [89]. Paralleled to the 

general form in Eq. 2-26, the first and second terms represent the energy between 

covalently bonded atoms and the energy due to the geometry of the electron orbitals 

involved in the covalent bonds respectively. Where k aand k b are the force constants, l0 is 

the equilibrium bond length and 80 is the equilibrium bond angle. The third term 

represents the energy for twisting a bond due to bond order and neighboring bonds or 

lone pairs of electrons. These first three terms account for the bonded interactions. The 

non-bonded interactions are accounted for in the fourth term in Eq. 2-27, which 

represents both van der Waals and electrostatic energies. The third and fourth terms are 

expressed differently depending on the specific AMBER force field form used, for which 

details presented in related sections.

2.6.1 Lennard-.Tones Potential

As aforementioned, the Lennard-Jones potential can be used to model van der 

Waals interactions in the model utilizing simple force fields. The best known of the van 

der Waals potential functions is the “Lennard-Jones 12-6 function” which can be
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represented using the following formula, and represents the interaction between two 

atoms [2]

The Lennard-Jones potential is characterized by an attractive part that varies as r~6 and 

the repulsive part that varies as r -12. This Lennard-Jones parameter contains two 

adjustable parameters, a  which is referred to as the collision diameter (the separation 

between the atoms which results in zero energy) and £ which is referred to as the well 

depth.

For the flexible water model used for some of the molecular dynamics studies in 

this dissertation , the Van der Waals interactions were described with the exponential-6 

(exp-6) interaction potential which takes the form

where 13.5 for all interactions, while a different <xand f  value are used depending on 

the interaction type (ions-involved in the interaction). The values for crand fa re  included 

in related chapters.

In a simple force field the non-bonded term can be modeled using the Coulomb 

potential term for the electrostatics and the Lennard-Jones Potentials for the van der 

Waals interactions. Elements attract electrons (with electronegative elements attracting 

more charge than less electronegative elements) to themselves which gives rise to an 

unequal distribution of charge in a molecules [2J. One common way of representing this 

charge distribution in an arrangement of fractional point charges throughout the

Van der Waals
Eq. 2-28

Van der Waals Eq. 2-29

2.6.2 Coulomb Potential
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molecule. These charges are designed to reproduce the electrostatic properties of the 

molecule. The electrostatic interaction between two molecules (or between different parts 

of the same molecule) is calculated as a sum of interaction between pairs of point charges 

using Coulomb’s law and is written as:

Simple water models (described in appendix A) give very good results for a wide 

range of properties of pure liquid water [2]. However, these simple models are not always 

sufficient. As a matter of fact, when ions are present the inclusion of polarizability 

presents a more accurate picture of the solvent-water interactions [11, 24-26J. 

Essentially, polarizability is the ability of a molecules, atoms or ions to acquire a dipole 

moment in the presence of an electric field [90]. In the polarizable models used in the 

studies in this dissertation, the total electrostatic potential of the systems are written as:

Where i and j  includes the summation over all atoms, represents the atomic charges, Pj 

is the dipole of atom i, and is the static electric field.

Na Nb

electrostatics
Eq. 2-30

where NA and NB are the numbers of point charges in the two molecules.

2.6.3 Polarizable Interactions and 
Polarizability

elecrostatic Eq. 2-31
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Eq. 2-32

where Eq. 2-32 gives the relationship between the magnitude of the induced dipole 

moment (ii , the electric field E ,, and the polarizability a, (which is the proportionality 

constant) of site i. Furthermore,

The functions, f fn j)  are the damping potentials, which are defined for specific systems in 

related chapters throughout the dissertation. Polarizability enhances interfacial 

concentration due to the fact that it allows induced dipoles to form on anions, which are 

more stable at the air-water interfaces than in the bulk, providing an additional driving 

force to the air-water interface [69, 91-92J. Polarizable interactions are considered for all 

the molecular dynamics simulations described in this dissertation.

2.6.4 Always Stable Predictor Corrector

In order to handle polarizable interactions in our MD simulations we use the 

always stable predictor corrector (ASPC) method. Typically, in many MD simulations 

the self-consistent field (SCF) method is used to handle these polarizable interactions. 

The SCF method can essentially be simplified as an iterative method used to evaluate a 

property of interest where the stopping conditions for the iteration is self consistency 

(minor difference between two consecutive iterations). Dang and Chang adapted the SCF 

method for the induced dipoles in MD simulations using the water model briefly

Eq. 2-33

Eq. 2-34

(ASPC) Method
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described in Section A.2 [70]. At each time step, the electric field is computed at a site /, 

produced by fixed changes in the system. Then the calculated electric field is used to 

generate the initial estimate of the induced dipole moments. Both the initial estimates of 

the induced dipole and the calculated electric field are used to compute the total electric 

field. These steps are repeated until the difference between the induced dipole of two 

successive iterations are less than some predetermined tolerance value (approximately 

10"5 Debye) [70].

These iterations associated with the SCF method can be avoided by using the 

always stable predictor-corrector (ASPC) method which consists of a predictor and 

corrector. The predictor is used to predict the electrostatic field on the basis of knowledge 

from previous steps [93]. The corrector requires one evaluation (only one iteration is 

required) of induced dipoles per integration step. The corrector is damped by using a 

relaxation parameter. Specific values of the dampening parameter guarantees stability of 

the ASPC method; this means that errors are not accumulated as the predictor-corrector 

steps are repeated.



CHAPTER 3

INFLUENCE OF THE COUNTERION ON 

ANION PROPENSITY FOR THE 

AIR/WATER INTERFACE

3.1 Introduction

As mentioned and described in more detail in Chapter 1, many physical, 

chemical, atmospheric, and biological processes can benefit from a thorough 

understanding of the behavior of ions at aqueous interfaces. Factors such as interfacial 

tension, reactivity of the water surface, and the best method of extracting ions from an 

aqueous mixture are all factors that can be influenced by the behavior of ions near the 

interface [9, 22-23], Previous studies have also established that the distribution of ions 

can affect the structure and stability of proteins and membranes [10-12], In the study 

detailed in this chapter we intend to bring greater insight into many of these areas of 

study. For instance, if we can establish that an ion has a propensity for the interface, its 

extraction at the interface would probably happen more readily than otherwise.

Previous studies have also shown that chloride alone had no propensity for the 

air/water interface [25], while concentrated solutions of sodium chloride using similar 

models have found that chloride has a propensity for the air/water interface [33-34]. 

Furthermore, divalent cations are found to significantly enhance this effect [35], As

31
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aforementioned, this led us to believe that the cation, even if it does not have a propensity 

for the interface itself, plays a major role in the distribution of ions at the air/water 

interface.

This study was carried out to investigate the influence of ion pairing on anion 

propensity for the air/water interface of water. The study was conducted using molecular 

dynamics simulations with polarizable interactions. Figure 3-1 provides a picture of the 

molecules interacting in the NaCl systems described in this chapter.
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Figure 3-1: Showing a snapshot of the air/water interface with NaCl ions

In the aqueous NaCl solution pictured in Figure 3-1, the blue and white molecules 

represent the liquid water molecules. The yellow atoms represent chloride anions and the 

green atoms represent the sodium cations which are referred to as the counterions. Ln this 

study, the charges on the sodium counterions were varied and included 0.8, 1.0, and 1.2 

electron charges. This was done to observe the effect of the varied sodium charges on the 

chloride anion. Also, the interaction strength between the ions was dampened to test its
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effect on the interaction of the ions and propensity for the interface. Additionally, the 

bond distance between the sodium and chloride ions was varied to investigate the effect 

of counterion-anion proximity on propensity of the ions for the interface.

3.2 Simulation Details

Classical molecular dynamics (MD) simulations were carried out in the NVT 

ensemble at 298K, with the temperature controlled by the Berendsen thermostat [84], 

The Dang-Chang water model was used [70, 94J, which has four sites, including a single 

Lennard-Jones site at the oxygen atomic position, partial positive charges at the hydrogen 

atomic positions, and both a negative partial charge and point polarizability located at an 

m-site, which is along the bisector of the oxygen-hydrogen bonds. Previously developed 

polarizable potentials were also used for sodium and chloride [25]. All molecular 

geometries were kept fixed with the SHAKE and RATTLE algorithms [95]. A Lennard- 

Jones potential truncation of 9 A was enforced with analytical tail corrections employed. 

Long-ranged electrostatics were handled with the particle mesh Ewald summation 

technique [96].

3.2.1 Concentrated Systems

For these systems, 2669 water molecules were placed in a rectangular box of

dimensions 84 x 44 x 44 A, in which approximately half of the box was occupied with 

liquid, and the other half with vapor. As a result, two air/water interfaces form bisecting 

the z-axis. Four systems were simulated in this study, which included a number of 

sodium and chloride ions in addition to the water molecules described. The four systems 

include ones with a sodium electron charge of 0.8 (Na 0.8), 1.0 (Na 1.0), and 1.2 (Na 

1.2). The number of ions was adjusted such that the total system charge was neutral. For
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the Na 0.8 charged system, there were 48 sodium and 40 chloride ions, for the Na 1.0 

system, there were 48 of both ions, and for the Na 1.2 system, there were 38 sodium and 

48 chloride ions. It should be noted that previous work on the concentration dependence 

of NaCl interfacial distributions found no significant difference in relative interfacial 

concentration between 1M and 3M systems [97], so the small differences in ion 

concentrations should not be a factor here. The fourth system (Na 1.0_damp) had a 

sodium charge of 1.0, but the electrostatic interactions between NaCl were dampened at 

short range with a Thole-type damping interaction [98-99]. The total electrostatic 

interaction a system is given as,

which is described in detail earlier in Section 2.6.3. The dampening potentials which are 

the functions fi(nj) are presented in Section 2.6.3 are 1.0 for all interactions except 

between ions in the Na 1.0_damp system, and only significantly deviate from 1 when the

where T(2/3) is the gamma function, and Q represents the incomplete gamma function, 

which can be calculated from Numerical Recipes [100]. Again, all of these functions are 

1 except between NaCl in the Na 1.0_damp system, and the value for A for these systems

MjfoiTij)  1
Eq. 3-1

o

interatomic distance is less than 5 A. The values for these are given as,

1 - exp[-0.2(i:. / A)3]+ Q . 2 ' ^  / A ) r (2 / 3 )g [2 / 3,0.2(/~ / A)3]

Eq. 3-3

Eq. 3-4
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o

was set to 1.02 A. All properties were calculated from 6 ns simulations, following 

extensive equilibration.

3.2.2 Single Ion Pairs

We calculated the potential of mean force (PMF) as a function of z-position with 

respect to the Gibbs dividing surface (GDS) of the air/water interface. For these 

simulations, we had a total of 550 water molecules, and either a single ion (in the case of 

chloride) or a pair of NaCl with different cation charges. We used umbrella sampling to 

carry out the calculation [101], in which the z position of either chloride itself or the 

center of mass between NaCl had a harmonic biasing potential coupled to it with respect 

to the water center of mass.

U  =  k z ( z x - Z 0 ) 2 , Eq. 3-5

where zx represents the distance between the ion or ion pair center of mass with water 

center of mass. The value of kz was set to 2.0 kcal/mol, and multiple values of zo were 

used. For all systems, the zo values were spaced in 1.0 A increments, covering a range 

from near the GDS until far enough into the bulk such that the free energy profile flattens 

out. For the systems with NaCl pairs, a second harmonic umbrella,

U — kr (̂ kaci ~~ ro) 3*6

where rNaCi corresponds to the NaCl interatomic distance, and kr was set to 5.0 kcal/mol. 

Two different scenarios were investigated for the NaCl pairs, one with r0=2.25 A, 

corresponding with the contact ion pair (CIP), and the other with r0=4.5 A, corresponding 

with the solvent separated ion pair (SSIP), which have been defined in previous work in 

the bulk [102], and at the air/water interface [13, 103]. As stated earlier, multiple 

simulations were carried out for each system, each with a different zo value spaced in 1.0
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A increments. For each simulation, a weighted (to remove the contribution from the 

umbrella biasing potential [101]) PMF was calculated, and in regions of overlap, they 

were matched to create a single PMF. A total of 10 ns for each zo position was carried 

out following Ins of equilibration.

3.3 Results and Discussions

3.3.1 Density Profiles

Figure 3-2 shows the density profiles for sodium and chloride ions for the Na 0.8, 

Na 1.0, Na 1.2, and Na 1.0_damp systems with respect to the GDS. The integrated 

densities for each ion were set to be equal.

Na 0.8 
Na 1.0 
Na 1.2 
Na 1.0“  0.5 damp

CL

-10-15
z [ A]

Figure 3-2: Density profiles of sodium (bottom) and chloride (bottom) ions as a function 
of distance from the GDS.
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In Figure 3-2 there is a trend showing more highly charged cations leading to 

greater ion interfacial density. The difference is much more noticeable between the Na 

0.8 and Na 1.0 systems, with only a small difference between the Na 1.0 and Na 1.2 

systems. In fact, it can be seen that only for the Na 0.8 system, that the density profile of 

sodium shows no enhancement near the interface, but monotonically drops towards zero. 

Damping the interactions between sodium and chloride has a minor effect on the 

interfacial ion distributions. For the Na 1.0_damp system, the chloride interfacial density 

is similar to the Na 1.0 system, but shifted towards the bulk, while there is a small 

reduction in cation density 5 A from the GDS.

3.3.2 Radial Distribution Functions (RDFs)

The effect of counterion on anion interfacial behavior is likely due to two effects: 

the cation-anion interaction strength and the effect of the cation charge itself on 

interfacial electrostatic properties. To further investigate the former, the NaCl interatomic 

radial distribution functions (RDFs) were calculated for the different systems, and the 

results are given in Figure 3-3.
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Figure 3-3: Sodium-chloride RDFs for the systems investigated

From Figure 3-3, it is evident that higher cation charge causes the ions to interact 

more strongly with one another, showing a much stronger first RDF peak. The Na 

1.0_damp system has a similar first RDF peak height as the Na 0.8 system, which is 

lower than the Na 1.0 system. It is interesting to note that higher cation charge also shifts 

the RDF peak to shorter distances, but damping the NaCl interactions has little effect on 

the peak position. Moreover, the RDF well between the first and second peaks is lower, 

and the second RDF peak is higher with higher cation charge, showing greater overall 

structure. After the second RDF peak, the RDFs all appear to approach one another. In 

addition to NaCl interactions, cation charge should have an effect on cation-water 

interactions. Figure 3-4 gives the sodium-oxygen RDFs for the systems investigated.
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Figure 3-4: Sodium-oxygen (top) and chloride-oxygen (bottom) RDFs. The insets 
showed a closeup of the first peak of the Cl-O RDF.

Higher cation charge clearly causes stronger sodium-oxygen binding, as it 

increases the first RDF peak significantly. It is interesting to note that the difference in 

sodium-oxygen peak height between the Na 0.8 and Na 1.0 systems is similar to the 

height difference between the Na 1.0 and Na 1.2 systems. This type of consistency was 

not observed for the NaCl RDFs. Also, as with the NaCl RDFs, the first RDF well is 

lower and the second RDF peak is higher for the Na 1.2 system, showing some enhanced 

mid-ranged ordering with higher sodium charge. The Na 1.0_damp system shows a 

slightly smaller first RDF peak, which is somewhat unexpected, as the Na 1.0_damp 

system would have less bonding with chloride ions. This would be expected to enhance
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oxygen-chloride binding, due to competition between sodium-chloride and oxygen- 

chloride interactions. This suggests that anions binding with cations actually enhance 

cation-water binding. Figure 3-4 also gives the RDFs between chloride and oxygen for 

the systems investigated. These RDFs show fairly minor differences between the 

different systems. The first RDF peak for the Na 1.0_damp system is slightly lower than 

the rest, suggesting that stronger cation-anion binding itself also enhances anion-oxygen 

binding, but these are too small to develop a strong basis for them.

3.3.3 Induced Dipole

The propensity of anions for the air/water interface has been linked to the anion 

induced dipole. Figure 3-5 gives the average induced dipole of chloride as a function of 

position with respect to the GDS.

- 0.1

— Na 0.8
— Na 1.0
— Na 1.2 
_  Na 1.0

- 0.2

•e damp
-0.3

-0.4

-0.5,

Figure 3-5: Average anion induced dipole as a function of position for the systems 
investigated.



Interestingly, in Figure 3-5 the average induced dipoles in the bulk are all very 

similar, but the systems with the higher cation charge have greater anion induced dipoles 

at the air/water interface. The higher anion induced dipoles at the air/water interface 

would be expected to increase their propensity for that region, which is consistent with 

the density profiles. The induced dipoles for the Na 1.0_damp and Na 1.0 systems are 

very similar, so damping has little effect on interfacial induced dipoles. This allows a 

picture to be developed as follows. Cation-anion binding has a minor effect on the 

propensity for the air/water interface, but more highly charged cations result in anions at 

the air/water interface to have a higher induced dipole. These higher induced dipoles 

increase the anion propensity for the air/water interface.

3.3.4 Free Energy Profiles

The free energy profiles for a single chloride ion and NaCl contact ions pairs 

(CIPs) with different cation charges were carried out across the air/water interface, and 

given in Figure 3-6.
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Figure 3-6: PMFs for a single chloride and the NaCl pair for the systems investigated 
with ro=2.25  A.

For the single chloride anion, its free energy is greater at the interface than in the 

bulk, which is consistent with previous calculations of the same system [25], All of the 

NaCl pairs have a lower interfacial free energy than in the bulk. The Na 1.0 pair has an 

interfacial free energy minimum around -0.4 kcal/mol, showing that NaCl ion pairing 

decreases the free energy. The Na 0.8 pair has a higher interfacial free energy minimum, 

while the Na 1.2 pair has a lower free energy. This observation is consistent with the 

density distributions shown in Figure 3-2, as the Na 1.2 system has the highest interfacial 

densities, and the Na 0.8 system has the least. Also, the induced dipoles of the anions are 

greater for the Na 1.2 pair, and least for the Na 0.8 pairs, but these were still higher than 

the induced dipole of the single chloride anion (results not shown).
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One factor that may influence the interfacial behavior of an ion pair may be its 

orientation with respect to the air/water interface. Figure 3-7 gives the angular 

distribution of the cation-anion vector with the z-axis from the ion pair simulations with 

Zo at the GDS (or zero).

2JS

Na 0.8 
Na 1.0 
Na 1.2CD

g 1.5

-0.5 0.5
cos(0)

Figure 3-7: Angular distribution of NaCl for the different single ion systems 
investigated.

A cos(0) value of 1 represents the ion pair perfectly aligned with the z-axis with 

chloride oriented towards the air. All ion pairs show strong orientational preference with 

chloride pointing towards the air. It is interesting to note that a similar analysis of NaOH 

orientation found a greater preference for the anion (in this case hydroxide) to be oriented 

towards the air [104]. Greater cation charge increases the orientational preference 

observed. This allows the following picture to be developed to explain the observed 

trends. Ion pairing causes a dipole that points towards the air to form, and the higher 

cation charge increases this dipole due to greater induction of the anion dipole. This
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dipole is attracted to the air/water interface, due to attractive interactions with the electric 

field formed at the air/water interface, which is equivalent to a dipole pointing towards 

the bulk [105],

To further investigate how the cation-anion distance influences anion interfacial 

free energy, the free energy profile for NaCl in a (contact ion pair) CIP along in a 

(solvent separated ion pair) SSIP were calculated and given in Figure 3-8.

— Cl alone
— NaCl (r=2.25A)
— NaCl (r=4.5A)0.5

u
S

-0.5

z  [ A ]
Figure 3-8: A comparison of the PMFs for chloride alone and for NaCl with r0=2.25 A 

and ro=4.5 A.

The CIP has a more negative interfacial free energy than the SSIP. Again, the 

average chloride induced dipole is on average larger for the CIP than for the SSIP, which 

is larger than for chloride alone (data not shown), which is likely the reason for the 

observed trends.
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3.4 Conclusions

In the study detailed in this chapter, MD simulations were carried out to 

investigate how ion pairing, counterion charge, and cation-anion interaction strength 

influenced ion distributions at the air/water interface. The results of this work found that 

higher cation charge increased the propensity of anions for the air/water interface. 

Slightly weakening cation-anion interactions had minor effects on ion distributions at the 

interface, but did not significantly reduce their propensity for the interface. A single ion 

pair had a significantly lower interfacial free energy than the anion alone, and a CIP had a 

much lower free energy than a SSIP.



CHAPTER 4

EFFECT OF IONS ON SURFACE TENSION 

OF WATER WITH ELECTROSTATIC 

DAMPING

4.1 Introduction

Chapter 1 provides a more comprehensive overview of interfaces which are 

potential mediums for a large numbers of chemical reactions which makes it important to 

study the interfacial environment, including the concentration of species present there. 

Predicting and controlling behavior of matter at interfaces requires an understanding of 

what species are present at the related interfaces since these species will influence 

reaction conditions. The change in surface tension after the addition of solutes has been 

used as an indicator for solute propensity for the air-water interface [106-109]. For most 

inorganic salts, it has been established that their addition to water increases the surface 

tension of the air-water interface [110-114]. The Gibbs surface tension equation links an 

increase in surface tension to lower interfacial concentration with respect to the bulk, or a 

negative surface excess [107].

As mentioned in Chapter 1, larger, more polarizable, halide anions have a greater 

propensity for the air-water interface [24, 27]. Polarizability enhances interfacial 

concentration due to the fact that it allows induced dipoles to form on anions, which are

46
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more stable at the air-water interfaces than in the bulk, providing an additional driving 

force to the air-water interface [69, 91-92], More recently, it has been pointed out that 

traditional polarizable models often overestimate the induced dipole that forms on an ion 

in bulk water in comparison with ab initio molecular dynamics (AIMD) simulations 

[115-117], This work suggested that including electrostatic damping, of the Thole type 

[98], can bring agreement with anion dipole distributions from classical MD and AIMD. 

A subsequent study found that the inclusion of electrostatic damping reduces the anion 

propensity for the air-water interface as a consequence of the lower average induced 

dipole [118], However, this study was conducted with single (the same) ions which do 

not provide an accurate representation of real interfacial environments which have 

different species present near the interfacial region.

In the study detailed in this chapter, we try to better understand ion distributions 

at the air-water interface, specifically how the inclusion of electrostatic damping in ionic 

models influence interfacial properties. We parameterized and studied NaCl, NaBr, Nal, 

and SrCl2 aqueous systems, and calculated various thermodynamic properties, which we 

then compare with experiment.

4.2 Model Development

4.2.1 Interaction Potential Form

All models used for this work were classical and included a combination of point 

charges, point polarizabilities, and Buckingham exponential-6 (exp-6) intermolecular 

interactions. The water model used for this work was flexible and developed previously, 

as described in detail elsewhere [119]. Briefly, the water model included four interaction 

sites with a van der Waals site located on the oxygen atomic position, and partial positive
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charges located on the hydrogen atomic positions. There was another m-site located 

along the oxygen-hydrogen bond bisector that included a point polarizability and partial 

negative charge. The electrostatic charges themselves were dependent on the geometry 

of the water molecules, with a larger bond angle and long bond lengths corresponding to 

a more positive hydrogen charge. Previous work has found that this is necessary to 

reproduce both the gas phase and liquid phase water geometry [120]. While this feature is 

important for simultaneously capturing the gas and liquid phase water geometry, it does 

not allow the use of multiple timesteps, since molecular vibrations are related to 

intermolecular interactions in this model [121]. Because of this, a 0.2 fs timestep is 

required for all interactions, significantly increasing the computational costs of these 

simulations.

Van der Waals interactions were described with the exp-6 interaction potential of 

the form,

Eq. 4-1

where >1=13.5 for all interactions, while a different crand e  value were used for each 

interaction type, and are given in Table 4-1.
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Table 4-1: Showing Force Field Parameters Used to Describe the Ions

Ion er( A) £ (kcal/mol) «(A3)

Na+ 2.65 0.2 0.157

Sr2+ 3.70 0.1 0.860

c r 4.89 0.1 5.482

Br~~ 5.20 0.1 7.268

r 5.62 0.1 10.275

Unlike interactions were handled with the standard Lorentz-Berthelot combining 

rules: geometry mean for fan d  arithmetic mean for <J. The ions had integer charges on 

their atomic positions, along with point polarizabilities taken from ab initio derived gas 

phase values from the literature [122-123], and given in Table 4-1. Polarizable 

interactions allow induced dipoles to form in response to the electric field. Often times, a 

self-consistent iterative procedure is used to calculate the induced dipoles of a system, but 

a more efficient way is used for this work, the always stable predictor corrector method 

[124]. With regular polarizable interactions, induced dipoles are often overestimated by a 

significant degree in comparison with ab initio molecular dynamics (AIMD) simulations 

[117]. A way to overcome this is to introduce Thole damping to electrostatic interactions, 

which has been shown to bring agreement between AIMD and classical simulations [115- 

118], The total electrostatic potential of the system is given as a summation over 

interaction sites,

"9/4 l /o  ('»)

K J

E<» -4 -2
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where are the relevant terms are described earlier in Section 2.6.3. The dampening 

potentials, f ( n j )  functions are 1 when r , j >  5 A, but at shorter distances, they become 

smaller, dampening the electrostatic interactions,

1 -  exp[- 0 .44 ( a v  / A)3 ] + 0.44173 (r, /  A)r(2/3)£>[2/3,0.44(f), /  A)3 ]
f o  ('«,•) =   Eq. 4-3r..

IJ

f M j ) = 1 -e x p [-0 .2 (^  / A)3] Eq. 4-4

h  (ru) = 1 ~  I1 + °-3(6>1 A)3 ]exp[- 0.3(rtf / A)3 ] . Eq. 4-5

Where Q is the incomplete gamma function that is calculated form Numerical 

Recipes [100J, and 17(2/3) is the gamma function. For A, it depends on the polarizabilities 

between interacting sites, and is given by A=S(GCjG0U6 with £=1.0 for all water-water and 

water-ion interactions. For water itself, there is a single point polarizability located on its 

m-site and the hydrogens do not have polarizable interactions themselves. To remedy 

this, the point polarizabilities from another water model was used only to calculate the 

fiirij) functions, which were «;„=0.837 A3 for the water m-site and «k=0.496 A3 for the 

water hydrogens [125]. Notice however, that there are different prefactors, 0.44, 0.2, and 

0.3, used fo r / o , /i , an d /2 , respectively. Another exception to the rules for A was for 

iodide. Iodide was found in previous work to not reproduce the dipole distribution in 

water using its ab initio derived gas phase polarizability, but for the calculation of A, a 

value of 1.5xoi. was used [118].

4.2.2 Ion-Water Interaction
Parameterization

The only parameterization that took place for the ion interactions with water was 

in the o  and £ values. These were parameterized to reproduce the free energy of
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hydration for the ions. The staged free energy perturbation (FEP) method was used to 

calculate the hydration free energies 1126]. In general, staged FEP calculates the free 

energy difference between two states, state A and state B via n-1 intermediate steps,

where G i =Ga and G„=Gb■ For each of these steps, the free energy difference between 

the individual states is given as,

where Uj represents the potential energy of state /, and Boltzmann’s constant. The 

intermolecular potential energy of each state is defined by the following,

where f / vaw and L/c]cc are the intermolecular van der Waals (exp-6 interaction for this 

situation) and electrostatic potential energies, respectively. For each state, i, different A 

values were used, with progressively larger values between i=l and i=n. For each 

simulation stage, the forces from the potential energy of state i in the NpT  ensemble are 

used to sample configurations of the system, and the difference in energy between state 

i+l and state i is used to calculate the free energy difference as shown in state 9. In total, 

nine different stages were used, which included (/ivdw./, ^ i e c , / ) = [ ( 1 0 " 5 , 0 ) ,  ( 1 0  3 , 0 ) ,  ( 0 . 1 ,  0 ) ,

of equilibration preceded a 1.6 ns production run. Further simulation details are given in 

later Sections of this chapter. All uncertainties were calculated by splitting the 

simulations into 4 blocks and calculating the standard error of the mean.

AG = G ,-G „  = £ C W -C , Eq. 4-6
/=!

Eq. 4-7

Eq. 4-8

(0.5, 0.01), (1, 0.1), (1, 0.4), (1, 0.65), (1, 0.85), (1, 1)]. For each stage, a total of 0.4 ns
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4.2.3 Ion-Ion Interaction Parameterization

For many models, ion-ion interactions, are not parameterized, and for the current 

model, the ideal situation would be for no additional parameterization of them to be

all ion-water and water-water interactions. If one uses 5=1.0 for ion-ion interactions, the 

ions associate to an unphysically strong degree. Because of this, 5 values less than one 

were needed, which required an additional parameterization to be included for ion-ion 

interactions. To be consistent with how we parameterized ion-water interactions (to 

thermodynamic properties), we sought to parameterize ion-ion interactions to 

thermodynamic properties as well. Two common ways to describe the difference 

between ion-ion to ion-water interactions are osmotic and activity coefficients. There are 

multiple ways to calculate these via molecular simulation, but often require carrying out 

multiple very long simulations starting out at infinite dilution [127-128], A very creative 

way to calculate the osmotic coefficient is to explicitly simulate a system with a semi- 

permeable membrane and more directly extract the osmotic coefficient [129], Another 

approach to estimate the activity coefficients is to use KB integrals [130-132], which are 

extracted from the ion-ion, ion-water, and water-water radial distribution functions

where g(s) is the RDF. These can be used to determine the change in the activity 

coefficient as a function of salt concentration,

required. It should be recalled that A=8 (OjCtj)176 for Equations 4-5 to 4-7 with 8=1.0 for

(RDFs),

Eq. 4-9

a — 1 +  ------  —---------7------------ r
( a i n f t j  1 + PC( G « - G j

Eq. 4-10
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where yc is the component activity coefficient and p c is the component concentration. To 

determine the value of Gcc and Gcw for a system with ions, the following relations are 

used for a salt with cations (+) and anions(-),

where n+ and n. are the number of cations and anions, respectively, and n is the total 

number of ions. There are ways to relate G++ with G by imposing local electroneutrality 

[133-135]. This approach was already developed for a nonpolarizable aqueous alkali- 

halide ions, in which acc as a function of concentration was compared with experiment

While it would be desired to investigate acc at many different concentrations, the 

fact that such a small timestep, along with the fact that polarizable interactions are used 

only allows for one point to be used. A fairly high concentration of 3M is used for NaX 

salts (2.7 for SrCl2). The reason for this is that the calculation of G+., C++, and G.. are 

very slow to converge, and higher concentrations of ions allows a faster collection of 

statistics. A total of 3.2 ns of simulation time was carried out for each point after 

extensive equilibration of at least 0.4 ns, with the uncertainties estimated by splitting 

them into 4 blocks.

Multiple types of MD simulations were carried out for this work, including 

simulations to calculate the free energy of solvation, to calculate KB integrals, and 

interfacial simulations. For all simulations, a timestep of 0.2 fs was used, and the 

temperature was set at 298K with the Berendsen thermostat [136]. As described

Eq. 4-11

[134],

4.3 Simulation Details
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previously, polarizable interactions are handled with the always stable predictor-corrector 

algorithm [ 124], which is more efficient than typical self-consistent field approaches. A 

potential truncation of 12 A is enforced for van der Waals interactions, with analytical 

tail corrections, and the particle mesh Ewald summation technique is used to handle long- 

ranged electrostatics [96]. The Amber 10 simulation package was used for the calculations 

[137], and was modified to handle the exp-6 potential, Thole damping, Morse potentials, 

geometry-dependent charges, and the always stable predictor-corrector algorithm.

The simulations to calculate the free energies of solvation included 1000 water 

molecules in a cubic box and a single ion. These were carried out in the NPT  ensemble 

with the with the pressure controlled with the Berendsen barostat [136]. The staged FEP 

method was used to calculate the free energies of ion solvation, which is described, along 

with more simulations details, in later Sections. For the calculation of acc, a total of 2669 

water molecules were placed in a cubic box with the specified concentration of ions. 

These included 144 ion pairs for the 3M NaCl, NaBr, and Nal systems, and 130 SrCl2 ion 

sets for the 2.7 SrCfi simulations. All of these were in the NPT  ensemble, in which 3.2 ns 

was used to calculate the KB integrals. Since these simulations were used to 

parameterize the model, multiple different simulations were carried out in total for each 

system.

The third type of simulation, at the air-water interface, was carried out in the NVT 

ensemble. For these systems, both 1M and 3M concentrations were simulated for NaCl, 

NaBr, and Nal, while 1M and 2.7M was used for S1CI2 . The configurations from the 

simulations to calculate the KB integrals were used as starting points for the air-water 

interfacial simulations. These equilibrated and isotropic systems had their boxlength
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extended in the z-dimension by a factor of 3, giving approximate dimensions of 

45x45x135 A. The molecular coordinates were not extended with the boxlength, 

resulting in a third of the box, approximately, being occupied by liquid, and the rest by 

vacuum. As a consequence, two air-water interfaces formed bisection the z-axis. For the 

1M simulations, the coordinates from the 3M simulations were extracted, following by 

the removal of a third of the ions at random, enforcing neutrality. Then, further NPT 

simulations were carried out for 1 ns, followed by the same procedure for forming air- 

water interfaces as described for the 3M and 2.7M systems. These air-water systems 

were equilibrated for a total of at least 1 ns, and production runs of 4ns were carried out 

following them.

4.4 Results and Discussions

4.4.1 Single Ion Solvation

Table 4-2 gives the free energies of hydration that were calculated from the staged 

FEP method, along with comparisons with the experimental work of Marcus [138], which 

was used due to the fact that it does not include surface potential contributes (see the 

recent work by Beck for a more thorough description) [139].
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Table 4-2: Showing a Comparison of the Free Energy of Hydration for the Ions 
Investigated

Ion AG  (kcal/mol)

Simulation E xp erim en t[l38]

Na+ -85.56±0.5 -87.2

Sr2+ -342+1.5 -330

c r -81.8+0.9 -81.3

Br~ -77.8+1.1 -75.3

r -69.6±1.4 -65.7

The agreement between simulation and experiment is reasonable for these. Also, 

to compare the interaction with water, the RDF between the different ions and water 

molecules was calculated from the bulk 3M (2.7M for SrC^) aqueous simulations, and is 

given in Figure 4-1.
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Figure 4-1: Cation-oxygen (top), anion-oxygen (bottom, dashed lines), and anion-
hydrogen (bottom, solid lines) RDFs from the 3M NaX systems and the 2.7M 
SrCh system

The halide-water RDFs are similar to what has been reported elsewhere, showing 

strongest binding between water and chloride, weaker between bromide and water, and 

the weakest between water and iodide. What is particularly interesting is the strong 

interaction between water and strontium, which is expected, due to the fact that it is a 

divalent cation.

4.4.2 Concentrated Bulk Aqueous 
Solutions

The cation-anion RDFs obtained from the 3M (2.7 M for SrCb) bulk simulations 

are shown in Figure 4-2.
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Figure 4-2: Cation-anion RDFs for the 3M NaX and 2.7 M SrCF systems

For the sodium halides, there is the expected behavior of the NaCl interaction 

being the strongest and the Nal interaction being the weakness. It should be pointed out, 

that this interaction was parameterized too, but not the RDFs specifically, but to the acc 

values extracted from Eq. 4-12. The SrCl interactions have varied significantly in the 

literature, ranging from very strong, to very weak [35, 140-141]. The SrCl RDF in this 

work is between that of the previously referenced work, stronger than any of the sodium- 

halides. It should also be pointed out that the RDFs are shown out to a distance of 20 A,
o

and the RDF becomes fairly flat after around 12.5 A in all cases, which is important to 

extract a KB integral. The KB integrals extracted from the RDFs are given in Figure 4-3.
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Figure 4-3: KB integrals as a function of integration distance obtained from the 3M NaX 
and 2.7M SrCh systems

It can be observed that they oscillate to some degree until they reach near r=12 A, 

after which they are fairly constant. KB integrals were extracted from all RDFs between 

different ions and ion-water, but cation-anion were the most difficult to converge. It can 

also be observed that despite the fairly long simulation times (3.2 ns), that there are still 

significant oscillations in the cation-anion KB integrals.

The KB integrals were used to extract acc via Eq. 4-12. The uncertainties were 

calculated by breaking the simulations into four 0.8 ns blocks. The experimental values 

were extracted from the activity coefficients in ref. [142], which are given as a function 

of concentration. Eq. 4-12 shows that the change in the logarithm of the activity 

coefficient as a function of the logarithm of concentration can be used to extract acc. To 

do this, a cubic spline interpolation was used to determine the derivative of the logarithm
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of the activity coefficient at the 3 M concentration for NaX and 2.7 M for S1CI2 . The 

value for y  in A=S{o^o0m , which is used to determine the degree of electrostatic 

damping at short ranges in Equations 4-5 to 4-7, was modified until reasonable agreement 

between simulation and experiment for acc was achieved. The value arrived at for ^is 

given in Table 4-3 also.

Table 4-3: The Value of <5used and a Comparison of the acc Values Calculated from 
Simulation and Experimental Activity Coefficients According to Eq 4-12

Ion 5 Simulation Experim ent

NaCl 0.74 1.12+0.1 1.24

NaBr 0.75 1.20+0.1 1.36

Nal 0.74 1.38±0.2 1.54

SrCl2 0.85 2.58+0.2 2.45

Due to the long simulation time required to get good estimates of acc, perfect 

agreement was not achieved, but the agreement in the end is still reasonable, as shown in 

Table 4-3. It can also be observed, that the S  values are almost identical for the 

monovalent cation-anion interactions, while higher for the divalent cation-anion 

interaction, showing some consistency. It should be noted that the ion-ion RDF is quite 

sensitive to the value of 8 ,  in which if NaBr had <5=0.74 instead of 0.75, its first peak 

would be lower than the first Nal RDF peak.

4.4.3 Interfacial Ion Distributions

Figure 4-4 shows the density profiles for the NaX systems investigated, which 

included concentrations of both 1M and 3M.
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Figure 4-4: Density profiles of 1M (blue lines) and 3M (red lines) NaX systems.
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The 3M Nal results are not included as there were issues in equilibrating them, 

and potentially major system size effects, in which rather large systems are required when 

ion interfacial concentration is large [143]. The plots are scaled by the average bulk
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concentrations, and zero in z represents the GDS, which was fit to a hyperbolic tangent 

function [70], NaCl shows a very weak double layer, as it can be observed that for both 

concentrations, as the chloride density is somewhat shifted towards the air, in comparison 

with sodium. In addition, NaCl ions are repelled from the air-water interface, as their 

concentration at the GDS is less than 0.2 with respect to bulk. NaBr shows a more 

significant double layer than NaCl, but still not any significant interfacial propensity. 

This is consistent with previous work that shows NaBr having a higher interfacial 

concentration than NaCl, but much lower than previous results with polarizable potentials 

[11, 24, 26], Nal shows both a significant double layer and significant ion interfacial 

concentration. In summary, ion interfacial behavior, including the trends with respect to 

large anions, is consistent with previous work utilizing polarizable potentials, but with 

significantly reduced interfacial concentration [11, 24, 26].

Most previously developed polarizable models do not include the effect of 

electrostatic damping, and have shown significant ion propensity for the air-water 

interface [11, 24, 26]. To better study this, Figure 4-5 gives a comparison of our work 

with previous work by one of us to investigate ion propensity for the air-water interface 

using the Dang-Chang (DC) class of polarizable models [33, 91], which utilize a rigid 

water model and ions with integer charges and point polarizabilities [25, 70, 94, 105],
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Figure 4-5: Density profiles of 1M NaX systems comparing our model (solid lines) with 
the D-C model (dashed lines).

From the results in Figure 4-5, it is clear that the DC models have a much greater 

propensity for the air-water interface than the ones simulated for the current work.
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Specifically, the DC model shows a chloride propensity for the air-water interface, a 

strong surface density enhancement of bromide, and iodide interfacial concentration that 

peaks at approximately to four times the bulk concentration. This is in obvious contrast 

to the results from the current work, which shows little to no ion propensity for NaCl and 

NaBr, and about half the height in concentration peak as the DC model results. Previous 

studies have found that models that do not include electrostatic damping overestimate the 

average anion induced dipole in bulk water [115-118], When electrostatic damping has 

been included in the models, the average anion induced dipole is lowered and shows 

agreement with AIMD simulations [115-118]. Moreover, a higher induced dipole has 

been linked to a greater anion propensity for the air-water interface [91, 118]. which is 

consistent with these results. One should also note that ion-ion interactions have a modest 

effect on alkali-halide propensity for the air-water interface, making ion size and 

polarizability the most likely major driving forces for ion propensity for the air-water 

interface [144],

Figure 4-6 gives the interfacial ion distributions for the SrCb system. It is clear 

that there is a double layer forming, as the chloride density profile is shifted more toward 

the air, and this effect is greater than for NaCl.
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Figure 4-6: Density profiles of the 1M and 2.7M SrCl2 solutions
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Moreover, there is a peak in strontium density 4-6 A from the GDS, showing a propensity 

for the region near the air-water interface. A previous study of S1C I2 at the air-water 

interface had a very large peak in ion density [35J, but this was found to be attributed to 

the overbinding of strontium and chloride [141]. The latter study showed very weak 

binding between ions in water, and a strong double layer formed at the air-water interface 

utilizing the DC model. The current work has moderate binding between ions, and a 

minor double layer forms. The reason for the lack of a strong double layer, in 

comparison with previous work, is likely because the weaker propensity the chloride ion 

has for the air-water interface as also shown in Figure 4-5 for NaCl. It is still of high



interest that the presence of a divalent cation appears to result in a buildup of cation 

density near the air-water interface. Very recent experimental work has found that 

divalent magnesium ions build up at the surface of salt particles (see supporting 

information in ref. [145]). It should also be noted that the type of divalent cation has 

been known to play a role in the interfacial structure [146], and will be the subject of 

future work.

4.4.4 Surface Tensions and Excesses

Surface tension is a common way to compare interfacial properties between 

simulation and experiment. A common way to calculate it is to use the pressure tensor 

from the MD simulations [147], However, the uncertainty in these values scale with the 

system size, and for the present systems the uncertainty is too large to get a quantitative 

calculation of the difference in surface tensions. Another way to estimate the change in 

surface tension with the addition of solutes is to first calculate the surface excess [11, 

107],

r s = f'°“ \psiz )~  Psb}tz + f p s(z)dz Eq. 4-12
J  ° °  '-G D S

where />s(z)is the density profile of the solute and p sb is the density of the solute in the

bulk of the solution, zgds is the GDS, negative values represent bulk liquid, and positive 

values towards the air. Gibbs’ thermodynamic theory of interfaces links the change in 

surface tension with respect to the logarithm of activity with the surface excess [148],
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where R is the molar gas constant, yis the surface tension, and as is the activity of the

solute. Using thermodynamic tables for the solute activities and surface tensions, the 

surface excess at a specified concentration can be calculated. We estimated the values 

for experimental surface excess from Eq. 4-15 using experimental solute activities and 

surface tensions with respect to concentration [110, 142]. Moreover, we used Eq. 4-14 to 

calculate surface excess values from our simulation data at 1M and 3M (2.7M for SrCl2), 

and also from the 1M NaX solutions for the DC model (T d c)-

Table 4-4 compares simulation results for the surface excess with those derived 

from experimental surface tensions.

Table 4-4: Showing Computed versus Experimental Surface Excesses

System rcomp(nm ) rexpv^ni ) F DC(nm'2)

1M NaCl -0.49+0.1 -0.405 -0.359

3M NaCl -2.4+0.3 -1.253

1M NaBr -0.37+0.1 -0.321 -0.281

3M NaBr -1.3+0.4 -0.969

1M Nal -0.33±0.1 -0.255 -0.180

1M SrCl2 -0.91 ±0.03 -0.805

2.7M SrCl2 -1.9+0.2 -2.346

Surface excess values computed from the activity dependence of experimental
surface tension data[107].

The uncertainties from the simulations were estimated by splitting them into 4 Ins 

blocks , while the DC results were taken from previously calculated density profiles [33], 

so no uncertainty was allowed to be calculated. There is a negative surface excess for all
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models investigated, in qualitative agreement with experiment. The degree of negative 

surface excess, though, is greater for the new models than the DC models, which is 

consistent with the density profiles that show weaker ion propensity for the air-water 

interface for the new models. In comparison with experiment, it appears that the DC 

model underestimates the degree of surface excess, while the new model overestimates it 

somewhat for NaCl and NaBr. There may be many reasons for this overestimation. One 

potential cause is the fact that the new model does not incorporate charge transfer. 

Recent studies have found that there is appreciable charge transfer between water 

molecules [149-154], which only has modest effects on the interfacial properties of neat 

water [155]. However, one of the effects that work to repel ions for the air-water 

interface are their image charge repulsion [156-157]. If charge transfer were included in 

the models, it should slightly enhance their propensity for the air-water interface due to a 

reduction in image-charge repulsion. This is part of an ongoing investigation. For the 

1M and 3M Nal solutions, though, there appears to be fairly good agreement between 

simulation and experiment for the surface excess predicted by the new model. The SrCb 

systems also predict surface excesses that are close to experiment, showing that the 

model development works reasonably well for divalent cations.

4.5 Conclusions

We carried out molecular dynamics simulations to examine the interfacial 

properties predicted by a model that includes both a flexible water model and 

electrostatic damping. The ion-water interactions were parameterized to reproduce the 

Gibbs free energy of solvation, while the ion-ion interactions were parameterized to 

reproduce the change in activity coefficient with respect to concentration at 3M. The
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resulting models had a reduced ion propensity for the air-water interface, in comparison 

with previously developed polarizable models. For Nal, there was a significant anion 

propensity for the air-water interface, which is consistent with previous work, but this 

was reduced in comparison. Of particular interest is that SrCf aqueous solutions had a 

cation propensity for the air-water interface, in which the strontium density peaked at 1.3 

times the bulk average value near the interface. The salt surface excess was computed 

from the simulation and experimental data, showing that our model slightly 

overestimated the degree of negative surface excess in comparison with experiment, 

predicted by our model for NaCl and NaBr systems. For SrCl2 , our model predicted 

surface excesses that were in good agreement with experiment.



CHAPTER 5

EXPLORATION OF PROPERTIES OF THE 

N-ALKANE/WATER INTERFACE

5.1 Introduction

As emphasized in Chapter 1, alkane/water interfaces are considered a prototypical 

system for studying the interaction of water with hydrophobic liquid surfaces [4], 

particularly because their molecular structure can be easily modified by varying chain 

length and their degree of branching. One aspect of the alkane/water interface that may 

play a fundamental role in its ability to influence interfacial properties is the interfacial 

width. Previous experimental studies using x-ray reflectivity have found that the 

interfacial width may increase with n-alkane chain length [46, 55, 59]. However, further 

studies are required to gain a better understanding of why this phenomenon exists; since 

even if these findings are true, the reason for this occurrence is still not well understood. 

In this chapter, we examine the n-alkane/water interface and the effect of the alkane chain 

length on the interfacial width. These studies were conducted using molecular dynamics 

simulations with polarizable interactions. We examined systems of linear alkanes of 

different chain lengths which included n-hexane/water, n -heptane/water, n-octane/water, 

and n-nonane/water. Figure 5-1 shows a snapshot of the system simulated.

70
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Figure 5-1: Showing a snapshot of the alkane/water interface

Figure 5-1 shows a snapshot of one of the rc-alkane/water systems simulated. The 

red and white ball and stick representation is of the water molecules (red oxygens and 

white hydrogens) while the blue and white stick representations is of the alkane chains. A 

new polarizable force field was developed for n-alkanes which gave good agreement with 

experiment for liquid densities and heats of vaporization for different n-alkanes at 

different temperatures. Also, good agreement with experiment was found for 

alkane/water interfacial tensions for a variety of alkanes.

Polarizable molecular models were used for all simulations. For water, the rigid 

Dang-Chang (D-C) water model was used, which is a 4-site model with a single Lennard- 

Jones (U ) site located at the oxygen atomic position. Also, there are partial positive 

charges located on the water hydrogen positions, and an m-site located along the oxygen- 

hydrogen bisector that has a partial negative charge and a point polarizability [70].

5.2 Simulation Details

5.2.1 Molecular Models
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Polarizable ions were used in some simulations, which included single atomic sites with a 

LJ interaction, integer charge, and point polarizability [25], A new alkane force field was 

developed for this work. The model included LJ, point charges, and point polarizabilties 

on all atomic sites. The model had similar (but differing in charges) parameters for the 

methyl and methylene carbons, and the same parameters for all hydrogen atoms. The 

charges were taken from the OPLS-AA force field [158J, and all intramolecular bonded 

interactions (harmonic bond bending, dihedral potentials, and bond stretching) were taken 

from the GAFF force field [159]. Each atom had a point polarizability, which were taken 

from the work of Applequist [160], The LJ parameters were then fitted by carrying out a 

series of classical molecular dynamics simulations of bulk rc-hexane at 250 and 298 K 

and n-dodecane at 298 K and 350 K. The values for the intermolecular interaction 

parameters that were arrived at are given in Table 5-1.

Table 5-1: Intermolecular Parameters Used for the Alkane Force Field

Atom <7[A] E  [kcal/mol] q  [ e ] a  I A 3]

C(methyl) 3.457 0.058 -0.18 0.878

C (methylene) 3.457 0.058 -0.12 0.878

H 2.486 0.0358 0.06 0.135

During the parameter optimizations, we calculated the thermodynamic properties 

of bulk liquids including enthalpies of vaporization and densities, and compared them to 

experiments. The final potential parameters were obtained when the potential model 

adequately reproduced the experimental values. Table 5-2 gives a comparison between
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simulation and experiment [161] for the bulk properties calculated for n-hexane and n- 

dodecane, and the agreement with experiment is excellent.

Table 5-2: Comparison between Simulation and Experiment for the Bulk Densities and 
Heats of Vaporizations for the Bulk Alkane Systems Investigated

Aflyap [kcal/m ol] A q [g/cm 3]

system T [K] sim exp" sim exp°

n -hexane 250 8.23 8.30 0.704 0.698

298 7.21 7.64 0.652 0.654

n-dodecane 298 14.86 14.42 0.75 0.745

350 13.32 13.54 0.702 0.708

5.2.2 Simulation Details

The bulk systems were simulated in cubic boxes in the NPT ensemble, with the 

temperature and pressure fixed with the Berendsen thermostat and barostat, respectively 

[136]. One of the bulk systems included 200 molecules of n-hexane and the other had 200 

n-dodecane molecules. The pressure was set to be 1 atm for all simulations, and the 

temperatures specified in the previous Section were used. Moreover, four alkane/water 

systems were simulated, all with 2000 water molecules and 200 n-alkane molecules. The 

interfacial systems simulated included n-hexane-water (HEX), n-heptane-water (HEP), n- 

octane-water (OCT), and n-nonane-water (NON). The interfacial systems were placed in
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rectangular boxes in which the x  and y  dimensions were shorter and identical at around 

38 A for all, while the z dimension was longer, and was around 80 A. These dimensions 

were somewhat larger for the NON system than the HEX system due to the fact that the 

NON system had more atoms. Due to the extended length in the z dimension, two 

alkane/water interfaces formed in the systems bisecting the z axis. The alkane/water 

systems were all simulated at 298K. Standard Lorentz-Berthelot combining rules were 

used for the LJ interactions (geometric mean for e  and the arithmetic mean for o). A 

potential truncation of 12 A was enforced with analytic tail corrections, and the particle 

mesh Ewald summation technique used to calculate long-ranged electrostatic interactions 

[96]. Due to the fact that an interface is present, analytic tail corrections may not be 

adequate, so different cutoffs were investigated and the results described in Section 5.3.1. 

The point polarizabilities allow induced dipoles to form at their positions. The 

determination of the magnitude for these dipoles is a many-body problem, in which self- 

consistent procedures are often used. For the described work, the always stable predictor 

corrector algorithm was used, which requires only one evaluation of energy per timestep 

[124J. A 1 fs timestep was used for the calculations, and 800 ps of production was used 

for the calculations for each bulk system with uncertainties calculated from 200 ps 

blocks, while for the interfacial systems, 5 ns of production was used with uncertainties 

calculated from 500 ps blocks, all of these after extensive equilibration.
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5.3.1

5.3 Results and Discussions

Density Profiles. Interfacial Tensions 
and Widths

The interfacial tensions were calculated from the pressure tensors,

r = -
P x x  +  P y y

P z z Eq. 5-1

where L- is the boxlength in the z-direction. Table 5-3 gives a comparison with 

experiment for the interfacial tensions [162] of the alkane/water interfaces for the systems 

investigated.

Table 5-3: Showing a Comparison of the Simulation and Experimental Interfacial 
Tensions

SYSTEM Sim ulation E xperim ent[162]

HEX 50.3+0.8 50.0

HEP 51.2+1.2 50.3

OCT 48.9+1.1 50.7

NON 51.9+0.9 51.2

The surface tension data in Table 5-3 show that the agreement of our simulation 

results with experiment is very good. Figure 5-2 gives the density profiles for water and 

the alkanes for the HEX, HEP, OCT, and NON systems with zero representing the Gibbs 

dividing surface (GDS) of water.
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Figure 5-2: Density profiles for water (solid lines) and alkanes (dashed lines) for the 
systems described. The GDS of water is represented as zero.

It should be noted that the GDS for water is approximately 0.5 A from the GDS of 

the alkane for the alkane/water systems. The experimental liquid densities for pure n- 

hexane, n-heptane, n-octane, and n-nonane are 0.654, 0.684, 0.703, and 0.718 g/cm3, 

respectively [161]. These are in excellent agreement with the alkane liquid densities 

away from the alkane/water interface. Furthermore, the bulk n-hexane density is very 

similar to its value in the interfacial system (0.65 g/cm3). It is interesting to note that the 

water density reaches an average value around 5 A from the GDS with little fluctuation 

greater than this distance from the GDS. In contrast, the alkane densities show 

significant fluctuations with density peaks at 3 A, 7.5 A, and a much smaller peak around 

12 A from the GDS. These are all approximately 4 A from one another, which 

corresponds with the position of the minimum energy for the carbon LJ potential (crx21/6)
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o

of 3.88 A. This shows that alkane density fluctuations do not dissipate until far from the 

alkane/water interface, and that small potential system size effects may be present for the 

alkane phase.

The interfacial widths were calculated by fitting a hyperbolic tangent function 

[70] to the water and alkane density profiles and are given in Table 5-4.

o

Table 5-4: Interfacial Widths (in A) of the Water and Alkane Phases as Fit by a
Hyperbolic Tangent Function, Along with the Distance Between the Gibbs 
Dividing Surfaces (GDS) of the Alkane and Water Phases.

System W ater Alkane Intrinsic

HEX 3.46+0.02 3.00+0.02 0.498+0.006

HEP 3.42+0.02 2.98+0.03 0.522+0.005

OCT 3.39+0.04 2.87+0.04 0.528±0.008

NON 3.36+0.03 2.90+0.03 0.534+0.006

Additionally, the distance between the GDS for water and the alkane systems, 

sometimes referred to as the intrinsic width, are given in Table 5-4. The interfacial 

widths for both water and the alkanes decrease with increasing alkane chain length. This 

may be expected as the alkane phases become denser with increasing chain length, which 

decreases the difference in density between the aqueous and the alkane phases. However, 

x-ray reflectivity experiments found the opposite trend, that increasing the alkane chain 

length increased the interfacial width [59]. This discrepancy may be due to many factors. 

For instance, capillary wave action of a macroscopic interface cannot be completely 

captured in the simulations [163-165]. There may also be other system size effects in the 

simulations, and the experiments are related to electron densities and not specific
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densities. Finally, the results of Table 5-4 show that the intrinsic width for the 

alkane/water systems appears to slightly increase with chain length in contrast to the 

water and alkane density widths. This may explain part of the reason that longer alkane 

chain lengths appear to expand the interfacial width in contrast with experiments [59] as 

in principle, the intrinsic width should not depend on system size while the interfacial 

widths of the alkane and water phases will due to capillary waves. We are currently 

investigating this and the general interfacial width in detail to better understand this.

Two things were examined to see their effects on interfacial tension. One of these 

was the cutoff, and the other was how the barostat was applied. To test these, the HEX 

system simulations were extended 2 ns utilizing one of three simulation protocols. The
o

first one had a regular (12 A) LJ cutoff and 1 atm barostat (the 3-d barostat), the second

o

had a longer cutoff of 17 A and 3-d barostat, and the third had the regular cutoff and a 

barostat of 1 atm in only the z-dimension keeping the interfacial area constant. The 

interfacial tensions with uncertainties calculated from five 400 ps blocks for these 

systems were 48.7 ±1.3 dyn/cm, 48.1 ±1.5  dyn/cm, and 51.4 ± 1.4 dyn/cm, respectively. 

These are fairly close to one another, and near the limits of uncertainty.

5.3.2 Interfacial Structural Expansion and 
Contraction

An important feature of water structure at the air/water interface was the fact that 

the average distance between first solvation shell neighbors was larger than in the bulk 

[166]. Simulations only showed this feature with the addition of dipole polarizability or 

via ab initio MD [91, 167-168]. This has not been investigated at alkane/water 

interfaces, though, and it would be interesting to determine if there is an expansion of 

water structure as it approaches an alkane phase, which is dense, but has no hydrogen-
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bonding interactions. Figure 5-3 shows the average distance between first solvation shell 

water molecules as a function of z-position of its center of mass with respect to the GDS 

of water for the alkane/water systems, along with the results for the air/water [91].
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Figure 5-3: Average distance between water oxygens in first solvation shell as a function 
of water center of mass position.

In the bulk, there is slight variability of this average distance, which is probably 

due to statistics or system size effects, but this difference is small, around 0.03%. What 

is evident is that as the water molecules approach the alkane/water interface, there is an 

expansion of their structure. The air/water interface shows a greater expansion than the 

alkane/water interface, and the expansion at the air/water interface stretches farther away 

from the GDS. To further understand this difference, Figure 5-4 illustrates the average
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induced dipole of water as a function of its center of mass z-position for the alkane/water 

systems investigated and the air/water interface.
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Figure 5-4: Average induced dipole of water as a function of center of mass position

The average induced dipole drops off more towards the bulk at the air/water 

interface than at the alkane/water interfaces, with little change for the different alkane 

systems. This is not unexpected, as the alkane phases have small electrostatic 

interactions with the water phase, which should also cause water to have small induced 

dipoles in response to these interactions.

Unlike water, the alkanes simulated are present next to a phase with a greater 

density than its own and water-alkane interactions are similar to alkane-alkane 

interactions (mostly London forces with weak dipole-induced dipole interactions). This 

would be expected to result in the interface having a significantly different influence on
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alkane structure than water structure. To investigate this, Figure 5-5 gives the average 

distance between intermolecular methylene groups of nearest neighbor alkanes as a 

function of z-position for the alkane center of mass.
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Figure 5-5: Average distance between carbons of different molecules in first solvation 
shell as a function of carbon atomic positions.

It should be noted that the longer alkanes would have fewer intermolecular 

nearest neighbors, due to the increased likelihood that one of their nearest neighbors are 

intramolecular. Nevertheless, the average distance between the nearest intermolecular 

neighbor does not appear to depend on chain length significantly, and is around 6.0 A. 

One should also notice that the scale of Figure 5-5 is an order of magnitude greater than 

that of Figure 5-3 due to larger variability in alkane intermolecular distance. As the 

alkanes approach the alkane/water interface around the region of 3-8 A from the GDS

— HEX
— HEP
— OCT
— NON
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towards the alkane bulk, there is a contraction in intermolecular distance of around 0.03 

A, which is greater than the expansion observed for water as it approaches the 

alkane/water interface. This region aligns with the region between the two peaks in 

alkane density profile. Comparing this with the average induced dipole profile for the 

whole alkane molecule, which is given in Figure 5-6, the average alkane induced dipole 

increases as the alkane center of mass approaches 8 A from the GDS, corresponding with 

the region in which the alkane-alkane contraction is observed.
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Figure 5-6: Average induced dipole of alkane molecules as a function of alkane center of 

mass position

Just as with the water structure, in which lower induced dipoles leads to 

expansion, the higher alkane induced dipole appears to lead to its contraction. It should 

also be noted that Figure 5-4 shows that the alkane structure expands as it crosses the 

GDS towards the water, in comparison with bulk alkane structure. The average alkane
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induced dipole appears to still be higher than the bulk near the GDS, so this is likely not 

related to the induced dipole. However, near the GDS, there is a lot of water present, 

which could disrupt the alkane-alkane interactions, leading to the expansion.

The end-to-end distance (rend) squared for the alkanes was calculated as a function 

of the z-position of the alkane center of mass, and this property divided by the number of 

carbons squared is given in Figure 5-7.
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Figure 5-7: Alkane end to end distance squared divided by the number of carbons 
squared as a function of alkane center of mass position.

For all cases, rend is higher at the GDS than in the bulk, due to the chains lying 

somewhat flat on the surface of water, which will be discussed in greater detail later. 

What is of further interest is that NON, HEP, and OCT show a decrease in rend around 6 

A, 5 A, and 4 A from the GDS, respectively. In contrast, HEX shows little to no decrease
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in rend near the interface. It is evident that longer alkyl chain length causes a contraction 

in rend farther away from the GDS. This trend is not unexpected as the longer NON 

molecule will have parts of it influenced by the interface when its center of mass if 

farther away from the GDS. The reason for this trend may be related to the apparent 

stronger interactions with other alkane molecules in this region (4-8 A from the GDS).

5.3.3 Molecular Orientation.

To understand how the alkane/water interfaces affects the orientation of the 

alkane chains, the angle between the vector connecting adjacent carbon atoms and the z- 

axis (6,) was calculated as a function of the carbon pair center of mass z-position. From 

this angle, the following order parameter was calculated

Pj  will approach -1/2 when the carbon-carbon vector is parallel to the 

alkane/water interface, 1.0 when the vector is perpendicular to the interface, and 0.0 

when there is no orientational preference. Figure 5-8 displays the average value of P2 

with respect to z-position for the alkanes studied.

Eq. 5-2
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Figure 5-8: Profile of average orientational order from the angle of the vector between 
adjacent carbons and the z-axis as a function of atomic position.

This orientational preference is present farther away from the GDS the as the 

length of the alkane chain increases. In fact, NON has a nonzero Pi  average 16 A from 

the GDS, which could be indicative of some small system size effects for NON. In the 

region 0-6 A from the GDS towards the alkane bulk, there is a strong orientational 

preference for the carbon-carbon vector to be parallel to the alkane/water interface. This 

implies that the alkanes lay somewhat flat against the water surface. It is not unexpected 

that alkanes in contact with a phase in which they are immiscible would lay flat on the 

surface to maximize contact with the surface while minimize penetration into the water
o

phase. As the alkane position ventures into the aqueous phase in the -4 to 0 A region (or 

the region on the water side of the GDS), the alkane carbon-carbon vector is oriented 

perpendicular to the air/water interface, and this effect is greater the farther from the GDS
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the carbons are. This again is not unexpected as the parts of an alkane that ventures into 

the aqueous phase are likely to have some part of them still in the alkane phase, which 

would require the carbons penetrating the water phase to orient perpendicular to the 

interface.

5.3.4 Electrostatic Potential

The electrostatic potential as a function of z-position was calculated for the

alkane/water interface using the atomic approach [45, 105, 169]. For our polarizable 

potential model, the total electric potential difference across the interface is calculated 

from the partial charges and induced dipoles,

A ^  (z) = (j>q (z)-  <pq (z0) = - 11 E(z  )dz' Eq. 5-3

A ^;d (z) = —  f  (p'Zd(z'))dz’ Eq. 5-4
£q z°

£ z(z) = - J ( / > 9(z’))dz' . Eq. 5-5
£0 z0

Here, E(z) is the electric field along the surface normal direction, is the 

dielectric permittivity in vacuum, and zo is a reference point that is selected as a point far

from the interface in the bulk liquid. <pq(z)> is the ensemble averaged charge density

profile, which was evaluated in slabs of 0.25 A thickness along the z direction, and 

Ppm<i(z) is the z component of the averaged induced dipole moment. The contributions 

from water molecules were calculated separate from the contributions from alkanes to 

compare how they individually affect the electrostatic potential. Figure 5-9 presents the 

electrostatic potential as a function of position for the whole system and individual 

contributions from water and alkane molecules as a function of z position across the
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alkane/water interface, along with results from the air/water interface from previous work 

[33],
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Figure 5-9: Electrostatic potential as a function of position for the whole system (solid 
lines), from water molecules alone (dotted lines), and from alkane molecules 
alone (dashed lines).

The surface potential itself is the value present at negative z values when a steady value is 

reached. A negative surface potential coincides with positive charge orienting towards 

the air and negative charge orienting towards the bulk.

The overall surface potential drop for the alkane/water systems is significantly 

reduced in comparison with the air/water interface, being around —0.18 V for the 

alkane/water interfaces and -0.45 V for the air/water. The —0.18 V value compares with 

-0.38 V obtained from a fluctuating charge model and -0.11 V for a non-polarizable 

model [49]. These have been compared with experimental results for the potential
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difference between water and a lipid bilayer of -0.4 to -0.6 V [170-171], which is greater 

in magnitude than the results shown here. However, a recent investigation has put to 

doubt the viability of making direct comparisons between simulation results and those 

with electrodes for surface potentials in systems without ions present [172]. On the other 

hand, surface potentials from simulations provide useful information on the orientation 

and induced dipoles of the species present. The electrostatic potential from the water 

structure alone shows a greater drop at the alkane/water interface than at the air/water 

interface. This is in contrast to what is observed for the total potential. However, the fact 

that the electrostatic potential from the alkane phase increases as the water phase is 

approached would create an electric field that should increase the orientation of water 

molecules. The observed increase in alkane surface potential is the result of an electric 

field with a negative charge pointing towards the alkane phase and a positive charge 

pointing towards the water phase. Water molecules should respond to this field by 

having greater orientational preference for their hydrogens pointing towards the alkane 

phase, which is indeed the result. The reason the alkane phase has the described electric 

field is because its hydrogens are positively charged and its carbons are negatively 

charged. Since the hydrogens surround the carbons, any alkane surface will contain a 

slight positive charge.

5.4 Conclusions

This sudy looked at molecular dynamics simulations with polarizable potentials 

which were carried out to investigate different rc-alkane/water interfaces. A new 

polarizable alkane model was developed for this work which gave good agreement with 

experiment for liquid densities, heats of vaporization, and alkane/water interfacial
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tensions. No structural or interfacial differences were observed when the number of 

alkane carbons was odd versus even as has been found experimentally [47], With higher 

alkane molecular weight, though, it was found that the interfacial width decreased in 

contrast to trends observed from x-ray reflectivity experiments [55, 59]. Furthermore, 

there was an expansion in water structure at the alkane/water interface, which was linked 

to a lower water induced dipole at the interface. However, the lower induced dipole and 

expanded structure at the alkane/water interface was not as significant as at the air/water 

interface. The alkane structure showed a contraction near the alkane/water interface, 

which was linked to larger alkane induced dipoles in this region.



CHAPTER 6

THE EFFECT OF ALKYL CHAIN LENGTH 

ON ALKANE/WATER INTERFACIAL 

WIDTH

6.1 Introduction

As aforementioned in this dissertation, a detailed understanding of alkane/water 

interfaces would greatly advance our understanding of the less studied hydrophobic/water 

interface which are linked to many important processes [4-6, 8, 60, 62-63]. Alkane/water 

interfaces are particularly important because their molecular structure can be easily 

modified by varying the length of the alkane chain and the degree of branching [4]. 

Because of this feature they are considered a prototypical system for studying the 

interaction of water with hydrophobic liquid surfaces [4], The interfacial width of 

alkane/water interfaces are of interest to researcher because it may play a fundamental 

role in the ability of the interface to influence interfacial properties [4],

In this chapter we further examine the interfacial width, in an effort to clarify the 

results we obtained for interfacial width in our study in Chapter 5, which contradict with 

the finding of experimental results [46, 55, 59]. Previous experimental studies using x-ray 

reflectivity have found that the interfacial width may increase with n-alkane chain length 

[46, 55, 59]. However, our results in Chapter 5 show that the longer the n-alkane chain

90
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length, the smaller the interfacial width [173]. In these studies, however, we explored the 

separate water and alkane interfacial widths which are based on specific densities while 

experiments are based on electron density and not the electron density [46, 55, 59]. 

Additionally, due to the finite size of the simulation system, it does not fully account for 

how capillary waves may influence interfacial width [174-178], which exist in reality and 

could potentially be the reason for the qualitative differences between the two results. In 

this study, the electron densities were extracted from simulation data and a structure 

factor was calculated based on them. This information was then used to make direct 

comparisons with experimental (x-ray reflectivity) data [179]. Also, in our interfacial 

width calculation, we accounted for the capillary wave action which is expected to cause 

broadening of the interfacial width.

Here we investigate whether qualitative agreement can be brought between our 

simulation results and x-ray reflectivity experiments for the effect of chain length on 

interfacial width. The studies are conducted using molecular dynamics simulations with 

polarizable interactions. We examined systems of n-hexane/water and rc-nonaneAvater, 

and also investigated the effect of doubling the size of the alkane region, and quadrupling 

the entire system size.

6.2 Simulation Details

Water was simulated using the rigid Dang-Chang water model [70, 94], which has 

four sites, including a single Lennard-Jones (LJ) site at the oxygen atomic position. 

There are also partial positive charges at the hydrogen atomic positions, and both a 

negative partial charge and point polarizability located at an m-site, which is along the 

bisector of the oxygen-hydrogen bonds. Alkanes were simulated using a previously
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developed polarizable model [173]: the model included LJ, point charges, and point 

polarizabilties on all atomic sites. The model had similar parameters (with differing 

charges) for the methyl and methylene carbons and the same parameters for all hydrogen 

atoms. The charges were taken from the OPLS-AA [180] force field, and all 

intramolecular bonded interactions (harmonic bond bending, dihedral potentials, and 

bond stretching) were taken from the GAFF force field [181]. Each atom had an 

associated point polarizability taken from the work of Applequist [182],

MD simulations were carried out for the alkane/water interfacial systems in the 

NpT ensemble, with the temperature (298 K) and pressure (1 atm) controlled by the 

Berendsen thermostat and barostat, respectively [136]. A total of six systems were 

investigated, which included two different types of n-alkanes: n-hexane and n-nonane. 

The smallest of the n-hexane/water interfacial system is denoted 1 HEX and the smallest 

n-nonane-water system denoted 1NON, which both had 2000 water molecules and 200 n- 

alkane molecules. The approximate dimensions of these systems were 36 x 36 x 80 A, 

with the 1NON system being somewhat longer in the z-dimension. Because the system 

was elongated in the z-dimension, two alkane/water interfaces formed bisecting the z-
o

axis. Water occupied approximately 45 A of the box while alkane occupied the 

remaining. A second type of system had 400 n-alkane water molecules and the same 

number of water molecules (2000), which is denoted 2HEX and 2NON. This particular 

system was more elongated in the z-dimension with the water phase the same size and the 

alkane phase twice as long in the z-dimension, but with the same approximate x  and y 

dimensions. Finally, a third set of systems were simulated with 8000 water molecules 

and 800 n-alkane molecules, denoted 4HEX and 4NON. These systems had the same z-



93

dimension as the 1HEX and 1NON systems, but were replicated in the x and y 

dimensions, creating systems four times larger. As a result, the systems were twice as 

large in both the x and y dimensions. A total of 4 ns of production were carried out for 

each system, following extensive equilibration of at least 1 ns with a timestep of 1 fs. 

The alkane carbon-hydrogen bond lengths and the water geometries were kept rigid with 

the SHAKE and RATTLE algorithms [95], A Lennard-Jones potential truncation of 12 A 

was enforced with analytical tail corrections employed. Long-ranged electrostatics were 

handled with the particle mesh Ewald summation technique [96],

6.3 Results and Discussions

6.3.1 Density Profiles

Figure 6-1 shows the density profiles for the different alkane/water systems with 

zero representing the Gibbs dividing surface (GDS) of water.
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Figure 6-1: Density profiles for water (solid lines) and alkanes (dashed lines) for the 
systems described. The GDS for the water is represented as zero.

The GDS of the alkane phases are shifted to greater z-coordinate than the GDS of water, 

with the distance often being referred to as the intrinsic length. The experimental bulk 

densities for n-hexane and n-nonane are 0.654 and 0.718 g/cm3 respectively [183], 

corresponding closely to the liquid densities away from the GDS. It can also be observed 

that the systems have very similar bulk densities despite the different system sizes, except 

the 2NON system has a slightly lower density than the 1NON and 4NON systems. This 

may be a systems size effect due to the interfacial width in the z-direction, but as can be 

observed it is rather small. There are density oscillations present near the interface for
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the alkane phases, as described in our previous work [173]. We are particularly interested 

in how the different systems behave at the interface. While the 1HEX and 2HEX, along 

with the 1NON and 2NON systems have similar density oscillations at the interface, the 

4HEX and 4NON systems behave quite differently, having much broader interfacial 

density profiles and smaller oscillations at the interface. They still have density 

oscillations in phase with those of the 1 and 2 sized systems, but they are much smaller. 

If we take a model of an intrinsic width, broadened by capillary waves, the interfacial 

width should become broader with a greater lateral boxlength [174-178] due to capillary 

waves, consistent with our results. This will be discussed in greater detailed later.

6.3.2 Electron Density Profiles and X-ray 
Reflectivity

To be able to make comparisons with experimental x-ray reflectivity experiments, the 

electron density needs to be computed [179, 184], The total electron density was 

computed from the sum over the product of atomic number density n' (z) along the 

surface normal direction multiplied by the atomic number, Z, of each atomic species i 

[35, 179, 184]

p e ( z )  =  i n ' ( z ) Z i Eq. 6-1
;=1

The atomic density was calculated in a histogram with bins of 0.25 A in length. The 

electron density profiles computed across the alkane/water interface for the different 

systems investigated are shown in Figure 6-2.
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Figure 6-2: Electron density profiles for the n-alkane/water systems studied. The GDS 
for the water is represented as zero.

There are noticeable oscillations in the electron density profiles, just as in the specific 

density profiles, while the 4HEX and 4NON systems are more smeared out due to 

capillary waves. A simple model has been used for electron density to estimate the 

interfacial width of the alkane/water interface [10],

< P ( z ) )  =  ^ ( p K + p a )  +  ^ ( p w - p a ) e r f { z / i T ^ j 2 ) ' ,  Eq. 6-2

where a  is the interfacial width, pK and pa are the electron densities of the water and 

alkane phases, respectively. To be able to estimate the x-ray reflectivity, the structure



97

factor needs to be calculated by making the Fourier transform of the position dependent 

derivative of the electron density [35, 179, 184], [184]

dpe(z)1
<*>(?,) = —  f

p K L
exp(iqz z)dz Eq. 6-3

dz

where p w is the bulk electron density of water. This can be used to estimate the x-ray 

reflectivity [10],

i?(^) = /?F(^)|4>(^)|2 Eq. 6-4

R(q,) = RF (qz)exp(-qzq Tz cr2) Eq. 6-5

where Eq. 6-5 is valid if the electron density follows Eq. 6-2, RF(q.)  is the Fresnel 

reflectivity (reflectivity calculated for an ideal interface), <ris the interfacial width from

Eq. 6.2, and q[ -  ql —qc with qc being the critical wave vector transfer for total 

reflection of the x-rays from the lower phase, which is defined in previous work [59], If 

the electron density follows Eq. 6-2, a plot of log[R(qz) f R F(qz)] versus qzq[ will yield 

a straight line with a slope o f - o 2.

The electron density profiles obtained from our simulation results can be used to 

calculate the reflectivity by utilizing Eq. 6-3 on the derivative of the electron density 

profile with respect to z-position. Then, the reflectivity can be calculated using Eq. 6-4 

[35, 179, 184], To make direct comparisons between simulation and experiment, a 

correction is required which will be described later, but it is instructive to compare the 

reflectivity of the raw simulation data. Figure 6-3 gives log[/?(<7_)//?F(g.)] versus qzq[ 

for the systems investigated.
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Figure 6-3: Logarithm of x-ray reflectivity, normalized to Fresnel reflectivity RF (q Tz ), as 
a function of qz q Tz , for the n-alkane/water systems obtained from the raw 
electron density data.

The slope of these lines coincides with - o 2, assuming the electron density reasonably 

follows Eq. 6-2. Table 6-1 gives the value of <x, extracted from the slopes in Figure 6-3 

under ‘Raw’. It can be observed that going from the 1 to the 4 sized systems, there is a 

significant increase in interfacial width, which is consistent with the specific density 

profiles in Figure 6-1. The 2 systems have a slightly smaller interfacial width than the 1 

systems, showing some effect due to more alkane phase. However, it is clear that the 

interfacial width extracted from the simulated x-ray reflectivity is smaller for the NON 

systems than the corresponding HEX systems for all cases, in contrast to experiment [59].
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Table 6-1: Interfacial Width in A of the n-Alkane Water Systems Studied, Including a Fit 
to the Raw Data (Raw), the Values Extracted from Eq. 6.6 (crcw), and the 
Results From a Fit to the Raw Data Convoluted With a Gaussian of Width <rcw 
(Conv). The uncertainties for all numbers were between 0.02 to 0.03 A.

SYSTEM Raw dew Conv

1HEX 1.37 2.92 3.13

2HEX 1.32 2.92 3.12

4HEX 1.50 2.76 3.17

1NON 0.87 2.87 2.91

2NON 0.71 2.87 2.86

4NON 1.15 2.71 2.94

6.3.3 Capillary Wave Theory

As stated previously, the simulation data has to be corrected to make more direct 

comparisons with experiment. One of the most important corrections is to account for 

capillary waves, which increase the interfacial width. Capillary wave theory allows the 

estimation of the additional interfacial width due to capillary waves, crcw , beyond the box 

length [59]

kBT  ,
^ c w  = ^ 7 - log

2 n - y

r \
Q  max 

V *?min J

Eq. 6-6

Where gmax = # /£ ,,, with L\\ being the box length parallel to the interface, and gmin

=(27i/X)A/?sina, where k=0.825A, A(3=8.88xlO"4, and a=0.94° which gives a qmin value of 

;r*3.53xl0'5. Also, kB is the Boltzmann constant and y  is the interfacial tension. We 

used the interfacial tension calculated from the work in Chapter 5, which are very similar 

between n-hexane/water and n-nonane/water, but slightly higher for the n-nonane/water



100

system, as is found experimentally [162]. Table 6-1 gives the values extracted from Eq. 

6-6 for <rcw. For the 1HEX and 2HEX systems, the <rcw are nearly identical, as can be 

observed for the 1NON and 2NON systems, since they have the same L\\. Furthermore, 

the crcw values are slightly smaller for the NON systems than their corresponding HEX 

systems due to the fact that the NON systems have a slightly higher interfacial tension, to 

which Eq. 6-6 shows <xcw is inversely proportional.

In order to account for capillary wave contributions to the interfacial width, the 

electron density profile was convoluted with a Gaussian function with a standard 

deviation of<7c>v. A plot of log ( R( qz) / R F(qz))  against qzq[ is shown in Figure 6-4

taken from this convoluted electron density, and the corresponding interfacial widths 

extracted from the slopes (denoted Conv) are given in Table 6-1.
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Figure 6-4: Logarithm of x-ray reflectivity, normalized to Fresnel reflectivity RF (qTz ), as 
a function of qz qTz , for the «-alkane/water systems obtained from the electron 
density data convoluted using the capillary wave theory.

It is clear that the slopes are much more negative in Figure 6-4 when compared to Figure 

6-3. Consequently, the interfacial widths are significantly larger for the Conv results than 

the Raw results. It can also be observed that the Conv results for the 1HEX, 2HEX, and 

4HEX are very similar, while those for the 1NON, 2NON, and 4NON systems are similar 

also. However, the interfacial widths for the NON systems are consistently smaller than 

for the HEX systems, showing no qualitative differences between the trends shown in the 

Conv and Raw results. To check the viability of the convolution strategy, we convoluted 

the 1HEX and 1NON systems with a Gaussian with a more narrow distribution to



account for doubling its L\\. This was achieved by setting q ^  = it!  L,, with L\\ taken from 

the 4HEX and 4NON systems to convolute the 1HEX and 1NON systems respectively 

(Ln for qmax was taken from their respective 1HEX or 1NON box lengths). Then, <xcw 

was extracted from Eq. 6-6 and the 1HEX and 1NON electron densities were convoluted 

with a Gaussian with this width. Convoluting the 1HEX and 1NON system, we estimated 

an interfacial width of 1.49 A and 1.11 A, respectively, which compares with the raw
o  o

4HEX and 4NON widths of 1.50 A and 1.15 A, respectively, showing reasonable 

agreement. Experimentally, the interfacial widths calculated for the n-hexane/water and 

n-nonane/water interfaces are 3.5 A and 4.5 A, respectively. We underestimate the 

interfacial width modestly for the HEX systems, but to a much more significant degree 

for the NON systems. It is clear that for the n-nonane/water interface, there is something 

missing from the comparison with experiment, which will be discussed later. It is not 

surprising that including results of capillary wave theory do not change the qualitative 

differences between the HEX and NON systems. The interfacial tension is greater for the 

NON system than the HEX system, which results in a smaller crcw for the NON system 

and thus a smaller Conv result.

6.3.4 Distribution of Carbons

It is clear that the simulation results do not agree with the experimental results for 

the effect of longer n-alkane chain length on interfacial width, even with the correction 

for capillary waves. It should be noted, though, that since the simulation results 

investigate atoms and not electrons, there are potentially different electronic effects not 

taken into account in the simulations. To better understand the differences between the 

NON and HEX systems, we calculated the profile of the ratio of methyl to methylene
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carbons for the different systems as a function of position. Figure 6-5 shows the 

distribution of the ratio of methylene versus methyl carbons of the systems studied. Both 

the HEX and NON systems have higher methylene ratios near the interface than in the 

bulk.

4
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Figure 6-5: The distribution of methylene carbons compare to methyl carbons in the n- 
hexane-water (solid lines) and n-nonane-water (dashed lines) systems 
studied. The GDS for the water is represented as zero

It is interesting to observe that the NON systems have higher methylene ratios over a 

much broader range than the HEX systems. In fact the NON systems do not reach bulk 

ratios until around 7.5 A from the GDS, while the HEX systems reach bulk values around 

6 A from the GDS. This shows that for a true bulk region, 6 A to 7.5 A away from the 

GDS has to be reached, pointing to a fairly large interfacial region. The electron 

distribution surrounding methyl groups will be somewhat different than that surrounding
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methylene groups. Furthermore, unlike protons and neutrons, which the atomic density 

profiles show, electrons are somewhat smeared over a region of space. This smearing 

may affect how the electrons distribute in a system. To gauge this better, we carried out 

DFT calculations of n-hexane with the m06 functional [185J and the aug-cc-pvdz basis 

set and created a Gaussian cube electron density profile with a grid size of 0.1 A in each 

dimension carried out with the NWChem package [186]. Using the cube file, the electron 

density surrounding each atom as a function of distance was calculated. Figure 6-6 gives 

the electron density as a function of distance from the atomic center of methyl and 

methylene carbons and hydrogens. Both types of hydrogens behave in a similar manner.

* 2

— methylene carbon
— methyl carbon
— methylene hydrogen
— methyl hydrogen

Q.

0.5 1.5
r[Al

Figure 6-6: The electron density of methyl and methylene carbons and hydrogens
(bottom) and integral of these electron density profiles (top) as a function of 
distance from the atom centers



There is a peak just greater than 1 A corresponding to the carbon position. 

Methyl and methylene carbons have very similar electron density profiles also with only 

small differences. The integral of these profiles as a function of distance from the atom 

centers are also given in Figure 6-6. Hydrogens have one electron, and the integral for all 

hydrogens reaches one at 0.75 A, while carbons contain 6 electrons, in which the integral 

reaches six at 1.0 A. These could be used to slightly smear the electron density profiles 

in Figure 6-2, but they had no impact on the qualitative differences between the n- 

hexane/water and n-nonane/water systems (results not shown). There are other aspects 

that may influence the electron density, for instance, intermolecular charge transfer. We 

carried out ab initio calculations with the same level of theory as described previously for 

a single propane molecule with a water molecule. Using the ESP charges, we calculated 

a molecular charge of 0.03 for propane and -0.03 for water, showing some intermolecular 

charge transfer, but again small in comparison to the total atomic charges. There may be 

other effects of electron density in solution, and the only way to account for them would 

be to carry out ab initio molecular dynamics simulations of the alkane/water interface, as 

has been carried out for the air/water interface [187],

6.4 Conclusion and Future Work

In this study, we examined systems of n-hexane/water and n-nonane/water using 

molecular dynamics simulations to investigate how the alkyl chain length affects the 

interfacial width of «-alkane/water systems. The electron density profile across the n- 

alkane/water interface was calculated and used and estimated the resulting reflectivity. 

Our simulation results found the opposite trend to experiment. We found that as the n- 

alkane chain length increases, the interfacial width decreases, while experiment finds that
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the interfacial width increases. Corrections to the electron density to account for 

capillary waves had no significant impact on our qualitative results. Our results also 

showed that methylene carbons are more likely to be found in a region near the interface 

than in the bulk, and that the n-nonane/water interface has a much broader region of 

methylene enhancement. Ultimately, our molecular dynamics simulations simulate 

atoms and atomic densities, while experiment investigates electrons. This difference may 

be why there are disagreements between simulation and experiment, although 

investigating electron density surrounding methyl and methylene carbons and hydrogens 

with gas phase ab inito calculations of n-hexane found little difference between methyl 

and methylene atoms.



CHAPTER 7

A COMPARISON OF IONS AT THE AIR/ 

WATER AND N-ALKANE/WATER 

INTERFACES

7.1 Introduction

As discussed in earlier chapters of this dissertation, to better understand a wide 

range of chemical, industrial, biological and other processes it is necessary to understand 

the similarities and differences between air/water and hydrophobic/water interfaces. We 

know that interfacial water behaves in a different manner than bulk water. However, we 

do not have a thorough understanding of how the specific type of interface influences the 

behavior of aqueous species. Previous work has found that different hydrophobic/water 

interfaces may influence ion distributions in a different manner than the air/water 

interface [33, 67]. However, the only investigation of the behavior of ions at the 

alkane/water interface was carried out without polarizable potentials [68]. Including 

polarizability in the molecular model has been found to be particularly important when 

studying the behavior of ions at aqueous interfaces [28-32, 69].

In this chapter we attempt to fill part of this void with a comparison of molecular 

dynamics studies conducted at the air/water and alkane/water interfaces in the presence of

107
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different ionic species (sodium chloride, sodium bromide and sodium iodide). In this 

study, molecular dynamics simulations with polarizable potentials were carried out to 

investigate the sodium-halide ion distributions. Sodium-halide concentrated solutions at 

the n-octane/water interface were simulated and compared to the air/water interface.

7.2 Simulation Details

7.2.1 Molecular Models

Polarizable molecular models were used for all simulations. For water, the rigid 

Dang-Chang (D-C) water model was used, which is a 4-site model with a single Lennard- 

Jones (LJ) site located at the oxygen atomic position. Also, there are partial positive 

charges located on the water hydrogen positions, and an m-site located along the oxygen- 

hydrogen bisector that has a partial negative charge and a point polarizability [70]. 

Polarizable ions were used in some simulations, which included single atomic sites with a 

LJ interaction, integer charge, and point polarizability [25], A new alkane force field was 

developed for this work which is discussed in more detail in Chapter 6. The model 

included LJ, point charges, and point polarizabilties on all atomic sites. The charges 

were taken from the OPLS-AA force field [158], and all intramolecular bonded 

interactions (harmonic bond bending, dihedral potentials, and bond stretching) were taken 

from the GAFF force field [159]. Each atom had a point polarizability, which were taken 

from the work of Applequist [160].

7.2.2 Simulation Details

The interfacial alkane/water systems simulated consisted of 2000 water molecules 

and 200 n-octane molecules. Furthermore, 36 NaX ion pairs were added to the n-
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octane/water (OCT) system, having three systems, NaCl, NaBr, and Nal with aqueous 

concentrations of 1M. The interfacial systems were placed in rectangular boxes in which 

the x and y dimensions were shorter and identical at around 38 A for all, while the z 

dimension was longer, and was around 80 A. Due to the extended length in the z 

dimension, two octane/water interfaces formed in the systems bisecting the z axis. The 

octane/water systems were all simulated at 298K. Standard Lorentz-Berthelot combining 

rules were used for the LJ interactions (geometric mean for e  and the arithmetic mean for 

d). A potential truncation of 12 A was enforced with analytic tail corrections, and the 

particle mesh Ewald summation technique used to calculate long-ranged electrostatic 

interactions [96]. The point polarizabilities allow induced dipoles to form at their 

positions. The determination of the magnitude for these dipoles is a many-body problem, 

in which self-consistent procedures are often used. For the described work, the always 

stable predictor corrector algorithm was used, which requires only one evaluation of 

energy per timestep [124]. A 5ns production was used with uncertainties calculated from 

500 ps blocks, all of these after extensive equilibration. The air/water systems used here 

as a comparison were taken from previous work by Wick and Dang [33],

7.3 Results and Discussions

Figure 7-1 gives the density profiles of NaCl, NaBr, and Nal at the OCT and 

air/water interfaces with zero representing the GDS of water.
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Figure 7-1: Distribution of NaX ions as a function of position for the OCT system and 
the air/water interface with X- being chloride (bottom figure), bromide 
(middle figure), and iodide (top figure).

The results from the air/water interface were taken from previous work done by Wick and 

Dang [33], and all density profiles are scaled to be 1 for their bulk density. At the 

air/water interface, all anions show a propensity for the air/water interface. At the OCT 

interface, though, chloride is repelled from the interface, while bromide has a lower 

interfacial concentration than at the air/water interface. Iodide shows similar interfacial 

concentrations at the air/water and OCT interfaces, while the iodide is somewhat lower at 

the OCT interface.

In a plot of the electrostatic potential (not shown here) there is a significantly 

smaller drop at the octane/water interfaces than at the air/water interface. The
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electrostatic potential pictured here, was discussed in more detail in Chapter 5 which 

includes a more detailed view of the electrostatic potential of different alkane/water 

systems and is pictured in Figure 5-9. A drop in electrostatic potential means that there is 

an electric dipole with its positive pole pointing away from bulk water. This should cause 

ions to form a double layer in response to this electric field in an opposite manner: 

positive charge towards the bulk and negative charge towards the air or organic. This can 

be seen in the density profiles shown in Figure 7-1. Since the potential drop is greater for 

the air/water interface, this effect would be expected to be bigger at the air/water than the 

organic/water interfaces, and is consistent with the density profiles for NaBr and NaCl. 

For Nal, though, this effect is not as strong, as there is little difference in interfacial 

iodide concentrations between the air/water and OCT systems. Iodide is the most 

hydrophobic of the anions, so it would be expected that it would have potentially 

favorable interactions with the alkane phase, especially considering that the positive pole 

of the iodide dipole is pointing towards the alkane phase. This will cancel the 

electrostatic interaction from the negative charge of iodide to a degree in this region, 

which should increase the hydrophobicity of this region.

The interfacial tensions of the NaX solutions are shown in Table 7-1, in which 

NaCl increases the interfacial tension, NaBr increases it, but within the statistical 

uncertainty, and Nal decreases the interfacial tension.
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Table 7-1: Showing a comparison of the Simulation and Experimental Interfacial 
Tensions

SYSTEM Simulation Experiment'1621

OCT 48.9+1.1 50.7

NaCl 52.7+0.7 N/A

NaBr 50.2+0.8 N/A

Nal 47.3+0.9 N/A

To our knowledge, no experimental results are given for the effect of NaX salts on 

alkane/water interfacial tension, but examples of the influence of alkali-halides on the 

interfacial tensions of other aqueous/hydrophobic interfaces have been measured. For 

instance, NaCl has been shown to increase the interfacial tension of water-lysozyme 

interfaces, NaBr shown to slightly decrease it, and Nal shown to moderately decrease the 

interfacial tension [188], Furthermore, KC1 has been shown to increase the interfacial 

tension of the water-dekalin and water-n-dodecane interfaces, while KI has been shown 

to decrease it [189-190], These are in contrast with the air/water interface, in which 

NaCl, NaBr, Nal, KC1, KBr, and KI increase its surface tension [157, 190-191], These 

experimental results are consistent with our simulation results, showing iodide reduces 

the interfacial tension, showing mild sorption to the aqueous-hydrophobic interface, 

while chloride increases the surface tension, showing similar behavior as at the air/water 

interface. It should also be noted that a degree of sorption to the interface can correspond 

to a negative surface tension increment, which has been discussed in detail elsewhere [11, 

143, 192], Chapter 4 of this dissertation is a detailed molecular dynamics simulation 

study of the effect of NaCl, NaBr, and Nal on the surface tension and excess of the
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air/water interface. In that study, we found correlation between our simulation and 

experimental surface excess. Results of this study suggested that sodium chloride cause 

the greatest surface tension increase while sodium iodide caused the smallest increase in 

surface tension.

7.4 Conclusions

This chapter detailed molecular dynamics simulations with polarizable potentials 

which were carried out to investigate the n-octane/water interfaces. A new polarizable 

alkane model was developed for this work which gave good agreement with experiment 

for liquid densities, heats of vaporization, and alkane/water interfacial tensions. These are 

are discussed in more detail in Chapter 5. NaCl, NaBr, and Nal ion distributions at the n- 

octane-water interface were compared with the air/water interface. Chloride was repelled 

from the n-octane-water interface, even though it has a propensity for the air/water 

interface. Bromide’s interfacial concentration was significantly reduced at the n-octane- 

water interface in comparison with the air/water interface, while iodide had similar 

concentrations at both interfaces. The behavior of iodide was attributed to favorable 

hydrophobic interactions between iodide and alkanes that was not present for the more 

hydrophilic bromide and chloride anions.
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A .l The Water Model

Water models are used in the molecular simulation of liquid water and aqueous 

solutions. Water models can be divided into three main types:

(1) Simple Interaction-site Models: in this situation each water molecule is 

maintained in a rigid geometry and the model relies on non-bonded interactions. 

The pairwise Columbic expression describes electrostatic interactions and 

Lennard-Jones expressions describe dispersion and repulsion forces (explained in 

Chapter 2) [193].

(2) Flexible Models: in these models, internal changes in the conformation of the 

molecule are allowed.

(3) Polarizable Models: models that have been developed to explicitly include the 

effects of polarization and many body effects.

A variety of models exist; they can be classified by the number of points used to define 

the model (atoms plus dummy sites), whether the structure is rigid or flexible, and 

whether the model includes polarization effects [2].

A. 1.1 The Simple Interaction-site Models

These models usually have between three and six interaction sites and rigid water 

geometry.

3-5ite 4-site 5 -site G-site

Figure A -l: Snapshot of the possible geometries for the rigid water model ranging from 
three to six interaction sites
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Three-site models have three interaction sites, corresponding to the three atoms of the 

water molecule. Each atom gets assigned a point charge, and the oxygen atom also gets 

the Lennard-Jones parameters. The 4-site models place the negative charge on a dummy 

atom (labeled M  in the figure) placed near the oxygen along the bisector of the HOH 

angle. This improves the electrostatic distribution around the water molecule. The 5-site 

models place the negative charge on dummy atoms (labeled L) representing the lone pairs 

of the oxygen atom, with a tetrahedral-like geometry. A 6-site model that combines all 

the sites of the 4- and 5-site models was developed by Nada and van der Eerden [194], 

Flexibility is usually included in a model by “grafting” bond-stretching and angle- 

bending terms onto the potential function for a rigid model.

A.2 The Dang-Chang Water Model

The Dang-Chang Water Model is a rigid polarizable model used for the many of 

the studies in this dissertation [70, 94], The Dang-Chang water model has four  sites, 

including a single Lennard-Jones site at the oxygen atomic position, partial positive 

charges at the hydrogen atomic positions, and both a negative partial charge and point 

polarizability located at the M-site, which is along the bisector of the oxygen-hydrogen 

bonds.

A.3 The Flexible Water Model

The previously developed flexible water model was also used for studies included 

in this dissertation and is described in detail elsewhere [119]. In summary, the water 

model included four interaction sites with a van der Waals site located on the oxygen 

atomic position, and partial positive charges located on the hydrogen atomic positions. 

There was another M-site located along the oxygen-hydrogen bond bisector that included
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a point polarizability and partial negative charge. The electrostatic charges themselves 

were dependent on the geometry of the water molecules, with a larger bond angle and 

long bond lengths corresponding to a more positive hydrogen charge.
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B.l SHAKE and RATTLE

The SHAKE algorithm is designed for use with the Verlet integrators while the 

RATTLE algorithm is formulated for use with the velocity Verlet integrator [88]. The 

SHAKE algorithm [195] has become the standard approach for doing molecular 

dynamics (integrating the equations of motion) with fixed bond lengths. This algorithm 

can also be used to hold angles fixed, however, this practice is less common. SHAKE is a 

modification of the Verlet algorithm for integrating the equations of motion for the 

Cartesian coordinates degrees of freedom in a molecular system. Atomic velocities are 

first calculated for the unconstrained system then modified to meet each constraint. An 

iterative process is required to meet all the constraints concurrently [196]. The SHAKE 

algorithm works well for systems with timesteps of up to 5 fs. This in turn enables a 

speedup in computational time as long as the process of iteratively solving the constraint 

equations does not consume too much time [2].

The RATTLE algorithm is similar to SHAKE and calculates the positions and 

velocities at the next time from the positions and velocities at the present time step, 

without requiring information about the earlier history. RATTLE guarantees that the 

coordinates and velocities of the atoms in a molecule satisfy the internal constraints 

(bond lengths and angles) at each time step. RATTLE has two advantages over SHAKE. 

It provides higher precision than SHAKE on computers of fixed precision. And since it 

deals directly with the velocities, it is easier to modify RATTLE for use with the recently 

developed NVT and NpT molecular dynamics methods like the ones addressed in this 

dissertation [197],



120

B.2 Potential Mean Force (PMF)

When looking at our simulation results, we may be interested in examining the 

manner in which the free energy changes as a function of intermolecular or 

intramolecular coordinates. These can range from the distance between two atoms to the 

torsion angle of a bond within a molecule. The free energy surface along a specific 

coordinate is referred to as the potential mean force (PMF) [2J. Various methods have 

been proposed for calculating potentials of mean force. The simplest method of 

calculating the PMF is the free energy change as the separation between two particles 

change. One way to calculate the PMF is by using the radial distribution function and the 

following expression from Helmholtz free energy [2]:

A (r ) =  —k BTln g ( r ) +  con sta n t Eq. B-l

The constant is often chosen so that the most probable distribution corresponds to a free 

energy of zero. The primary drawback of employing this method is that molecular 

dynamics simulations often do not sample regions where the radial distribution function 

differs drastically from the most likely value. This can then result in inaccurately 

calculated potential mean force.

Similarly, the PMF, which is essentially the free energy, can be defined from the 

average distribution function P(r) as LI98],

A{r) = —k BT ln P (r )+  con sta n t Eq. B-2

where the average distribution function along the coordinate r is obtained from a 

Boltzmann weighted average. It is usually impractical to compute the PMF or the 

distribution function directly from a MD simulation. As a result, special techniques like 

umbrella sampling are used to calculate the PMF from molecular dynamics results.
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Umbrella sampling is a method used to overcome the sampling problem. The 

potential function is modified so that unfavorable states are sampled sufficiently. This 

method can be effectively used with molecular dynamics simulations, which are 

employed in this dissertation [2], The modified (biased) potential energy function can be 

written as [198],

In order to obtain the PMF over a range for a number of biased simulations are performed 

at different intervals (windows). These results at these different windows are then 

unbiased and combined to obtain the final PMF, A(r).

The interactions between pairs or atoms or molecules that are separated by large 

distances can typically be truncated. These approximations are only appropriate for non

bonded interaction and can never be used for bonded interactions. Many non-bonded 

pairwise potentials decay rapidly with separation distance which allows us to ignore 

interactions between pairs of atoms or molecules that are separated by large distances. 

For instance, with the Lennard-Jones (U ) potential initial described in Section 2.6.1:

A typical cutoff distance is 2.5a beyond which the potential is chosen to be zero .

V'(rN )  =  V(rN) +  W( r N )  

where W(rN) is a weighting function which often takes the form:

W{ r N) =  kw (rN -  t * o ) 2 .

Eq. B-3

Eq. B-4

The biased distribution function is given by:

( P ( r N ) )  =  e - w ( r N ) / k B T  ( p ( r N ) ) ( e - w ^ / k B T ) ~ 1 . Eq. B-5

B.3 Potential Truncation and Analytical Tail Corrections

Eq. B-6
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Truncating pair interactions systematically removes a contribution to the overall 

potential energy and pressure. For moderate cutoffs, such as 2.5a for the LJ system, this 

contribution can constitute a nontrivial fraction of the totals. For interactions that are cut 

but not shifted (another possibility that is not detailed here) the interactions beyond 2.5a 

can be approximately added back into the total energy expression.

I I  — I I  4- I I  Eq.u to ta l u pair  ^  u tail

Where Utau is the tail correction, and can be evaluated analytically [199].

B.4 Particle Mesh Ewald Summation Technique

Electrostatic energy consist of both short range and long range interactions. The 

Lennard-Jones potential decays strongly with distance (as r -5), which allows us to cut 

off the interaction at moderate distances and if desired add a correction factor in 

molecular simulations. Coulomb interactions, on the other hand, decay much slower (as 

r~ 1) and as a result, a correction factor cannot be computed. This causes the results of the 

calculation of electrostatics to diverge in molecular simulations. One of the most 

common methods used to deal with the long range electrostatic interactions is the Ewald 

Summation method [2], The Ewald summation method splits the electrostatics into two 

portions, where the short range electrostatic interactions are summed in “real-space” and 

the long range electrostatic interactions are summed in “Fourier-space”. Generally, Ewald 

summation can be represented as:

£ e le c tro s ta tic s  = ^ [ s h o r t  r a n g e ( r e a l  sp a c e ) +  long  r a n g e ( f o u r i e r  space)]  Eq. B-8
U

The particle mesh Ewald summation which is used in the simulations detailed in 

this dissertation is a modification of the Ewald summation. The particle mesh Ewald 

summation replaces the direct summation of short range and long range electrostatic
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interactions with two summations, a direct summation of short range interactions in space 

and a summation of the long range interactions in Fourier space represented as:

Ee le c tr o s ta tic s  = s h o r t  r a n g e ( r e a l  space)] + lo n g  r a n g e { fo u r i e r  space)]  Eq. B-9
i j
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