
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Winter 2014

Performance modeling and optimization
techniques for heterogeneous computing
Supada Laosooksathit

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Applied Statistics Commons, Mathematics Commons, and the Other Computer
Sciences Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.latech.edu%2Fdissertations%2F274&utm_medium=PDF&utm_campaign=PDFCoverPages

PERFORMANCE MODELING AND OPTIMIZATION TECHNIQUES

FOR HETEROGENEOUS COM PUTING

by

Supada Laosooksathit, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 2014

UMI Number: 3662202

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Di!ss0?t&Ciori Publishing

UMI 3662202
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

D ec 10, 2013

Date

We hereby recommend that the dissertation prepared under our supervision

. SUPADA LAOSOOKSATHIT
by__

entitled__

PERFORMANCE MODELING AND OPTIMIZATION TECHNIQUES

FOR HETEROGENEOUS COMPUTING

be accepted in partial fulfillm ent o f the requirements for the D egree o f

DOCTOR OF PHILOSOPHY

Supervys<Votf)i(>sertation Research

Head o f Department

Computational Analysis and Modeling
Department

Recommendatiomconcurred in:

/

Approved:

DiregtefoC^Sfaduate Studies

Advisory Committee

Approved:

uate School

V
Dean o f the College

GS Form 13a
(6/07)

ABSTRACT

Since Graphics Processing Units (GPUs) have increasingly gained popularity

amoung non-graphic and computational applications, known as General-Purpose com

putation on GPU (GPGPU), GPUs have been deployed in many clusters, including

the worlds fastest supercomputer. However, to make the most efficiency from a GPU

system, one should consider both performance and reliability of the system.

This dissertation makes four major contributions. First, the two-level check

point/restart protocol that aims to reduce the checkpoint and recovery costs with a

latency hiding strategy in a system between a CPU (Central Processing Unit) and

a GPU is proposed. The experimental results and analysis reveals some benefits,

especially in a long-running application.

Second, a performance model for estimating GPGPU execution time is pro

posed. This performance model improves operation cost estimation over existing

ones by considering varied memory latencies. The proposed model also considers

the effects of thread synchronization functions. In addition, the impacts of various

issues in GPGPU programming such as bank conflicts in shared memory and branch

divergence are also discussed.

Third, the interplay between GPGPU application performance and system re

liability of a large GPU system is explored. This includes a checkpoint scheduling

model for a certain GPGPU application. The effects of a checkpoint/restart mecha

nism on the application performance is also discussed.

Finally, optimization techniques to remedy uncoalesced memory access in

GPU’s global memory are proposed. These techniques are memory rearrangement

using 2-dimensional matrix transpose and 3-dimensional matrix permutation. The

analytical results show that the proposed technique can reduce memory access time,

especially when the transformed array/m atrix is frequently accessed.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech U niversity the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this D issertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Author Supada Laosooksathit
v

Date 12/10 /2013 _______

GS Form 14
(5/03)

DEDICATION

my late mothor, Suvimol Laosooksathit, I dedicate this work.

TABLE OF CONTENTS

ABSTRACT... iii

DEDICATION... vi

LIST OF TABLES... x

LIST OF FIGURES.. xi

ACKNOWLEDGMENTS..xv

CHAPTER 1 INTRODUCTION.. 1

1.1 Overview of G P U s... 1

1.2 GPGPU Performance and Optimization... 2

1.3 Checkpoint/Restart Mechanism.. 4

CHAPTER 2 BACKGROUND AND RELATED W ORKS................................... 6

2.1 Checkpoint/Restart Mechanism.. 6

2.2 Checkpoint Scheduling and System Reliability... 7

2.3 GPGPU Performance M odels.. 8

2.4 Memory Optimization... 9

2.4.1 Memory Optimization in H P C .. 9

2.4.2 Memory Optimization in G PG PU .. 11

2.4.2.1 GPU-CPU Memory Latency Hiding.................................. 11

2.4.2.2 GPGPU Memory Hierarchy... 12

CHAPTER 3 TWO-LEVEL CHECKPOINT/RESTART FOR G PG PU 14

vii

3.1 CUDA Stream s... 14

3.1.1 Performance Model of CUDA Stream s.. 16

3.1.2 Benchmarks.. 22

3.2 Two-Level Checkpoint/Restart Protocols..25

3.3 Experiments... 27

3.4 Simulation.. 31

3.5 Conclusion.. 35

CHAPTER 4 PERFORMANCE MODEL FOR G P G P U ..36

4.1 Performance Modelling.. 38

4.1.1 Parameters...38

4.1.2 Performance Model in a General C ase .. 42

4.1.3 Performance Model in a Case with Synchronization........................ 43

4.1.4 Control Flow Cases..45

4.2 Results and Discussion...47

4.2.1 Code Analysis... 47

4.2.2 Results... 49

CHAPTER 5 GPU APPLICATION PERFORMANCE VS CHECKPOINTS ... 52

5.1 Application Performance and System Reliability.. 53

5.1.1 Predicting the System Size from the Maximum System Reliability 57

5.1.2 Predicting the System Size from an Expected Performance 58

5.1.2.1 Non-scalable Workload... 59

5.1.2.2 Scalable W orkload... 59

5.2 Checkpoint Scheduling... 60

ix

5.3 Performance.. 64

5.4 Real-World Case Study... 69

5.5 The Model with an Excess Weibull...72

5.6 Conclusion..74

CHAPTER 6 GPGPU OPTIMIZATION..75

6.1 Coalescing VS Uncoalescing... 76

6.2 Memory Rearrangement.. 78

6.2.1 Single S tride...79

6.2.2 Double Strides... 81

6.3 Analytical Models...86

6.3.1 Predetermined D ata Size... 86

6.3.2 Unknown Data Size.. 88

6.3.2.1 Single Stride..88

6.3.2.2 Double S trides... 90

6.4 Results and Cost Analysis..90

6.4.1 Predetermined Data Size... 91

6.4.2 Unknown Data Size and Break-even Analysis................................... 91

6.5 Conclusion.. 92

CHAPTER 7 CONCLUSIONS AND FUTURE W ORK..94

BIBLIOGRAPHY...96

LIST OF TABLES

Table 3.1: Times spent by operations of matrix multiplication, measured by
CUDA Events.. 23

Table 3.2: Total execution times with non-stream and the expected total
execution time with 8-stream are calculated from the operational
times on Table 3.1... 24

Table 4.1: The values of experimental parameters validated in the model 48

Table 6.1: The comparison between the kernel execution times based on our
technique using the sample code in Listing 6.4 with the original
memory access and transformed memory access..................................... 91

Table 6.2: The comparison between the performance gain from the transformed
memory access to the time of 2D matrix transpose.................................92

x

LIST OF FIGURES

Figure 1.1: Two-level checkpoint for a heterogeneous system................................. 5

Figure 2.1: Memory hierarchy in G P G P U .. 12

Figure 3.1: The results of simpleStreams application with various numbers of
streams and array sizes.. 15

Figure 3.2: Time diagram of non-streamed execution... 17

Figure 3.3: Time diagram of streamed execution: (a) asynchronous memory
copies from host to device, (b) asynchronous memory copies from
device to host, and (c) asynchronous memory copies in both directions. 18

Figure 3.4: Time diagram of execution time when the time of memory copies
are longer than kernel executions: (a) synchronous memory copies,
(b) synchronous memory copies from host to device, (c) asynchronous
memory copies from device to host, and (d) asynchronous memory
copies in both directions.. 20

Figure 3.5: Time diagram of execution time when the time of kernel executions
are longer than memory copies: (a) synchronous memory copies,
(b) synchronous memory copies from host to device, (c) asynchronous
memory copies from device to host, and (d) asynchronous memory
copies in both directions.. 21

Figure 3.6: The checkpoint protocol for GPU streamed CPR................................. 26

Figure 3.7: The restart protocol for GPU streamed CPR.. 27

Figure 3.8: The percentage of performance improvement in terms of (a) checkpoint
cost, (b) recovery cost due to a failure occurrence, and (c) wasted
time due to a failure occurrence... 30

Figure 3.9: The percentages of total checkpoint costs compared to wasted time
of the application with non-streamed, 4-streamed, and 8-streamed
CPRs, when the size of arrays is 224 and (a) the checkpoint interval
is 30 minutes, and (b) the M TTF is 12 hours... 32

xi

Figure 3.10: The percentages of total recovery costs compared to wasted time
of the application with non-streamed, 4-streamed, and 8-streamed
CPRs, when the size of arrays is 224 and (a) the checkpoint interval
is 30 minutes, and (b) the MTTF is 12 hours... 33

Figure 3.11: The percentages of wasted time compared to completion time of the
application with non-streamed, 4-streamed, and 8-streamed CPRs,
when the size of arrays is 224 and (a) the checkpoint interval is 30
minutes, and (b) the MTTF is 12 hours.. 33

Figure 4.1: Memory latency on GPU NVIDIA GeForce GTX 295 37

Figure 4.2: GPU architecture: (a) programming model; (b) warp scheduling
in an SM ...39

Figure 4.3: The instruction list in (a) transforms into the timeline in (b)............ 41

Figure 4.4: Diagrams show the execution time when: (a) there is no idle time;
(b) there is idle time. A shaded box indicates that the warp is
being executed. A white box indicates that the warp is waiting for
the memory access.. 43

Figure 4.5: Diagrams show the execution time when: (a) a synchronization
function causes extra time between two consecutive computational
instructions; (b) a synchronization function causes extra time between
memory and computational instructions. Again, a shaded box
indicates that the warp is being executed. A white box indicates
that the warp is waiting for the memory access...................................... 44

Figure 4.6: The kernel execution time from the performance model compared
to the measurement of: (a) naive matrix multiplication; (b) tiled
matrix multiplication...49

Figure 4.7: Percentage of error of the performance model compared to the
measurement for both benchmarks... 50

Figure 5.1: Probability of survival for different values of c and k from Equation
(5.4).. 56

Figure 5.2: The time between two consecutive checkpoints when: (a)-(c) k is
predicted by the maximal reliability expressed by Equation (5.8);
(d)-(f) k is predicted by the desired performance with fixed workload
expressed by Equation (5.9); (g)-(i) k is predicted by the desired
performance with scalable workload expressed by Equation (5.10).... 64

xiii

Figure 5.3: Comparison of application performance when: (a)-(c) k is predicted
by the maximal reliability expressed by Equation (5.8); (d)-(f) k is
predicted by the desired performance with fixed workload expressed
by Equation (5.9); (g)-(i) k is predicted by the desired performance
with scalable workload expressed by Equation (5.10)..............................68

Figure 5.4: Time between two consecutive checkpoints for the case study when:
(a)-(c) k is predicted by the maximal reliability expressed by Equation
(5.8); (d) (f) k is predicted by the desired performance with fixed
workload expressed by Equation (5.9); (g)-(i) k is predicted by the
desired performance with scalable workload expressed by Equation
(5.10).. 70

Figure 5.5: Comparison of application performance for the case study when:
(a)-(c) k is predicted by the maximal reliability expressed by Equation
(5.8); (d)-(f) k is predicted by the desired performance with fixed
workload expressed by Equation (5.9); (g) (i) k is predicted by the
desired performance with scalable workload expressed by Equation
(5.10).. 71

Figure 6.1: Memory access pattern categories: (a) Coalesced memory access,
(b) Single stride uncoalesced memory access, and (c) Double stride
uncoalesced memory access... 77

Figure 6.2: Array B transformation associated to the sample code in Listing 6.4
and 6.5 (a) The original array; (b) The 2D matrix is constructed;
(c) The transformed array..80

Figure 6.3: Transformation of the 2D matrix tha t only the elements on the
diagonal line are accessed as given by Listing 6.7; (a) Original
Layout, (b) Modified matrix with the width of n B + 1........................ 81

Figure 6.4: 3D M atrix.. 82

Figure 6.5: ID array with double strides where di < dy, (a) The original layout,
(b) The 3D matrix with m = dt, n = d^fd^ (c) Permuted 3D matrix
with the order of [2,3,1], and (d) The final layout................................... 83

Figure 6.6: ID array with double strides where di > d2\ (a) The original layout,
(b) The 3D matrix with m = di/dj, n = d3, (c) Permuted 3D matrix
with the order of [2,1,3], and (d) The final layout.................................. 84

Figure 6.7: 2D matrix with double strides; (a) The original layout, (b) The
final layout after 3D matrix permutation with the order of [2,1,3]...... 85

xiv

Figure 6.8: Tiled 2D matrix transposition where (a) is the original matrix and
(b) is the transposed m atrix..88

ACKNOWLEDGMENTS

This dissertation would not have been possible without the great advice of my

advisor, Dr. Chokchai (Box) Leangsuksun, who has been patiently supporting me

throughout my doctoral study. He has guided me in every aspect of my research and

career, including writing and presenting research, providing critical feedback, giving

me opportunities to work with several researchers from many scientific areas, and

encouraging me to always move forward.

I would like to acknowledge Dr. Raja Nassar for his guidance in probability

and statistics and his patience in editing the technical papers. I am sincerely grateful

to Dr. Mihaela Paun for discussing ideas and validating my research in statistics, Dr.

Weizhong Dai for advising me through the CAM program, and Dr. Zeno Greenwood

for his valuable comments.

In personal, I would like to thank Nichamon Naksinehaboon and Narate Taerat

for helping me throughout the study and for living in Ruston. I would also like to

thank Thanadech Thanakornworakij for giving moral suggestions during my hard

times. Most importantly, I would like to express my deepest gratitude to my mother,

Suvimol Laosooksathit, who always taught me to be patient and persistent; my father,

Dr. Surin Laosooksathit, who is my role model to persue a doctoral degree and always

loves and supports me unconditionally; and my sister, W ipada Laosooksathit, who is

my morale and always believes in me.

xv

CHAPTER 1

INTRODUCTION

Exascale computing demands higher computational power and massive paral

lelism. In response to this demand, many organizations have upgraded their computa

tional infrastructures. Oak Ridge National Laboratory (ORNL)’s Titan has also been

upgraded and has become the world’s fastest supercomputer. T itan’s computational

power is mainly from the newest NVIDIA’s graphic cards [1]. Therefore, to make the

most efficiency from a system with Graphics Processing Units (GPUs), the application

performance on such a system and the GPU system reliability should be carefully

studied.

1.1 Overview of GPUs

GPUs were first introduced for graphics computation. Due to the ability to

accelerate computation by massive data-parallelism, GPUs have been deployed for

non-graphic applications, known as General-Purpose computation on GPU (GPGPU)

[2]. The paradigm to exploit both CPU (Central Processing Unit) and GPU is also

known as heterogeneous computing.

For a node-wise system, since a GPU works as a co-processor of a CPU, the

CPU is referred to as the host, and the GPU as the device. First the data set has

to be prepared on the host side and transferred to the device. This process is called

1

2

host-to-device memory copy. Once host-to-device memory copy finishes, the program

is executed on the device side. A part of the program that will be executed on the

device is called a kernel. After the kernel execution finishes, the results are transferred

back to the host. This process is called device-to-host memory copy [3] [4]. Note that

a host thread can handle only one GPU device.

Once the kernel is invoked, a kernel grid is created inside the GPU. The grid

contains thread blocks tha t are distributed to the GPU streaming multiprocessors

(SMs). Each thread block contains a number of threads that will execute instructions

on an SM. A new set of thread blocks is launched on the SMs again as previous thread

blocks terminate [3].

1.2 G PG PU Performance and Optimization

By estimating cost benefit of GPGPU computing, the programmers will be

able to find ways to optimize their parallel program for a better use of both CPU

and GPU in a single application. Therefore, a performance model for GPGPU has

become more crucial in order to gain an insight into speed improvement issues from

a High Performance Computing (HPC) software development perspective.

In order to estimate an application completion-time, the memory transfer time

between the GPU and the CPU, and the kernel execution time must be obtained.

Thus, one can make a decision whether the GPU is worth participating in the

computation and can further improve the heterogeneous computing application.

Furthermore, the performance model can also help to improve the efficiency

of fault tolerance techniques for GPGPU, such as checkpoint/restart mechanisms,

3

especially for a large GPU cluster. One of the major problems in this area is

checkpoint scheduling. To find an optimum checkpoint placement, the time-to-failure

(TTF) of the system and the completion-time of the application must be taken into

account. The system TTF can be obtained by a failure prediction technique, while the

completion time of the application can be estimated by the performance model. The

details of the performance model for a GPGPU application is illustrated in Chapter

4.

Even though deploying many computing elements can increase the computing

power, a very large system is prone to fail. Both soft and hard failures can cause

interruptions to applications running on the system at that time. Thus, Chapter 5

will describe an interplay between the performance of a GPGPU application and the

reliaibilty of a GPU system. The model to find an optimal number of nodes that will

satisfy both criteria is also proposed.

In addition, an optimization technique tha t aims toward performance im

provement in GPGPU applications is presented in Chapter 6. Since one of the

major concerns in GPGPU optimization is coalescing in global memory, this work

proposes memory rearrangement techniques to remedy uncoalesced global memory

access patterns by using 2-dimensional matrix transpose and 3-dimensional matrix

permutation. The proposed techniques can be applied to many common memory

access patterns. The cost benefit of these techniques will also be discussed in details.

Moreover, the analytical results reveal that the proposed techniques are beneficial if

the transformed array/m atrix is frequently accessed.

4

1.3 Checkpoint/Restart Mechanism

Since a large-scale GPU cluster is the main focus system in this dissertation,

fault tolerance is an important issue that should not be omitted.

Checkpoint/restart is a fault tolerance mechanism that has been used in many

system platforms. Instead of restarting computation from the beginning when a

failure occurs, with checkpoint/restart, a process can be rolled back from the last

checkpoint and can be migrated to a healthier node or system [5] [6].

However, GPU fault tolerance has recently been a concern in HPC. There are

very few existing works that address resilience issues in a GPU environment. However,

with the popularity of large GPU systems, it is anticipated that reliability will be quite

critical for its future success.

In a GPU system, any failure that occurs during kernel execution will normally

cause a loss of kernel computation. Figure 1.1 shows a two-step checkpoint protocol

that first transfers checkpoint data and GPU status from the GPU to the CPU

memory and then saves the software state to either a reliable storage or a healthier

node.

5

Figure 1.1: Two-level checkpoint for a heterogeneous system

To improve the utilization of the checkpoint/restart mechanism, there are

two major concerns: reducing the costs of checkpoint and recovery processes, and

finding optimal checkpoint placements. To reduce the costs of checkpoint and recovery

processes, the two-level checkpoint/restart protocols are further discussed in Chapter

3. These protocols utilize a latency hiding strategy to reduce the memory transfer

time. Moreover, the checkpoint scheduling model for finding a sequence of optimal

checkpoint placements is presented in Chapter 5. The proposed model aims to reduce

the wasted time, which is an aggregation of checkpoint costs, recovery costs, and

recomputing time, while increasing the application performance in case of failure.

2

BACKGROUND AND RELATED WORKS

This chapter discusses the related work on a checkpoint/restart mechanism,

performance model, and application optimization for GPGPU.

2.1 Checkpoint/Restart Mechanism

A checkpoint/restart mechanism is a process to improve the application re

silience. By saving the application state and considerable data in the checkpoint file,

the process can be restarted from that state later. Therefore, the recomputing time

- the time spent to re-execute the work due to a failure - can be reduced. There are

many existing works that have been implemented for checkpoint/restart [5] [7] [8] [9].

BLCR [8] is a checkpoint/restart mechanism for Linux systems. It is developed

for checkpointing at the operating system-level, which allows the system preemption.

Periodic and preemptive checkpointing can be used in response to the precursors of

a possible failure.

VCCP [5] provides a transparent checkpoint/restart mechanism for virtual

machines (VMs). It uses a hypervisor-based coordinated checkpoint/restart protocol

so that the guest OS does not have to be changed.

For GPGPU resiliency, CheCUDA [6] is a checkpoint/restart mechanism for

NVIDIA’s CUDA (Compute Unified Device Architecture). However, it results in

6

reduction of system performance due to the checkpoint overhead, particularly, for a

large data set. This cost is mainly produced by memory transfer.

HiAL-Ckpt [10] is also a checkpoint/restart mechanism for GPGPU. However,

it is implemented based on Brook+ programming language and allows the program

mer to do checkpoints at the application level. Although its idea of the hierarchical

checkpoint is similar to our previous work [11], the overhead optimization is not

considered.

2.2 Checkpoint Scheduling and System Reliability

There have been existing checkpoint scheduling models that aim to minimize

wasted time. Liu et al [12] have proposed a scheme to derive a sequence of checkpoint

placements that uses the theory of stochastic renewal reward process. Although their

model targets a large-scale HPC system, it can be applied to any system as long as

the system reliability is derivable.

Paun et al [13] have presented a scheduling model for incremental checkpoints.

An incremental checkpoint mechanism has been introduced to reduce the checkpoint

cost. They have proposed a scheme to find an optimal number of incremental

checkpoints for any failure intensity function.

Since the aforementioned checkpoint scheduling models rely on a system relia

bility model, for an HPC system, Gottumukkala et al [14] have proposed a reliability

model of a system of k nodes where each individual node follows a Weibull distribution.

Their model also considers the excess life of survival nodes. The results have shown

that their model is more accurate than previous models used in literature.

8

Thanakornworakij et al [15] have proposed a new reliability model that is an

extension of Gottumukkala’s work [14]. Their work is based on the reliability of a

system of k nodes with simultaneous failures. Their model considers the correlation

between nodes, which can make the nodes in the system fail simultaneously.

2.3 GPGPU Performance Models

Today, as GPUs have become popular in the HPC area, there have been

existing works that model GPGPU performance by estimating the kernel execution

time [16] [17] [18] [19].

Hong and Kim [16] have introduced two metrics, Memory Warp Parallelism

(MWP) and Computation Warp Parallelism (CWP) in order to describe the GPU par

allel architecture. This performance model aims to predict the GPGPU performance

from CPU code skeletons.

Zhang and Owens [18] have developped a quantitative performance model

based on their microbenchmarks so that they can identify bottlenecks in the program.

Nevertheless, this model does not incorporate the cache model, bank-conflict, thread

synchronization, and non-perfect pipeline in an SM.

Baghsorkhi et al [19] have presented an analytical model to predict the per

formance based on a GPGPU work flow graph. The model allows a compiler to

determine the benefit of parallelization mathematically. Moreover, the model can

identify the bottlenecks to guide the compiler through the optimization process.

Furthermore, Wong et al [20] have developped a suite of microbenchmarks to

obtain the architectural characteristics of an NVIDIAs GPU. They have also investi

gated the architectural details of the processing cores and the memory hierarchies.

2.4 Memory Optimization

In scientific and mathematical problem domains, a lot of application data sets

are organized and operated as arrays and matrices. For example, iterative methods

are commonly used for solving scientific problems. However, those methods require

high data communication, which may cause bottlenecks in parallelization [21] [22].

2.4.1 Memory Optimization in HPC

There have been many attempts to optimize the cost of data communication.

Data alignment problems are an issue that aims to assign data and computations to

a set of virtual processors [23] [24]. David Bau et al [23] have proposed a strategy to

solve alignment problem by using elementary linear algebra. They have claimed that

their strategy is able to achieve communication-free alignment.

In a distributed environment, such as grid computing, the data are scattered

in different locations. Chervenak et al [25] have discussed the effect of data placement

policies and workflow management systems in a grid environment. Ranganathan et

al [26] have presented a data scheduling framework and data movement operations

that address resource utilization, response time, resource locality, etc.

However, those strategies may not be able to directly apply to a co-processor

environment such as GPGPU. In GPGPU, the data are resided in a memory unit

10

called global memory. There have been many studies that aim to reduce the global

memory access time.

Yang et al [27] have introduced an optimization compiler for GPGPU. Their

compiler analyzes off-chip memory access patterns and optimizes the memory accesses

through vectorization and coalescing by using shared memory. Then it analyzes data

dependencies and identifies possible data sharing across threads and thread blocks

and merges threads and/or thread blocks to improve memory reuse. After that, it

uses a data prefetching technique from temporary variables to overlap global memory

latency with computation.

Bader et al [28] have proposed a CUDA library for a set of data rearrangement

operations. They address four types of generic kernels. (1) The first type consists

of basic read/write routines. They are kernels that provide optimal read/write

accesses from the global memory by allowing for data transfer as per common access

patterns. (2) The second type consists of data reordering routines, which are kernels

for rearranging TV-dimensional array into M-dimensional array, where M < N , by

employing an offset/striding approach and shared memory. (3) The third are interlace

and de-Interlace kernels. An interlace kernel combines multiple data-sets to form a

single data-set. A de-interlace kernel splits a single data-set into multiple smaller data

sets. (4) Forth, a generic stencil computation kernel provides a generic and optimal

framework for stencil computations, where each point in a 2D grid is updated with

weighted contributions from its neighbors (e.g. in PDE solvers).

The techniques proposed in Chapter 6 aim to achieve an optimization at the

compile-time under a condition that the data size is predetermined. In the case that

11

the data size is unknown before the run-time, matrix transpose/permutation during

the compile-time is impossible. Hence, the proposed techniques must be applied

during run-time with a condition of the trade-off between optimization overhead

versus performance gain, i.e. the overall uncoalesced memory access time to such

a data set is longer than the time for matrix transformation.

2.4.2 Memory Optimization in GPGPU

Since GPGPU performance has become crucial, especially for big-data com

puting, the techniques to minimize memory latency due to memory access at any

level are essential in GPGPU computing.

2.4.2.1 G PU -C PU Memory Latency Hiding

Masuhara et al [29] have described that the latency hiding is a technique to

eliminate time to wait for the remote message by overlapping local computation and

remote communication. They show two versions of the sample function, which are

different in the number of requests that are sent in advance of the actual use of the

data. One only requests for the element that is used in the next iteration. Another

one requests for all the elements before the computation. This paper also shows how

the mechanisms are implemented.

NVIDIA’s CUDA has introduced a latency hiding technique, called stream.

Since the GPU is idle during the memory transfer, this technique allows overlapping

between kernel execution and memory transfer [3]. The details of CUDA stream are

discussed in Section 3.1.

12

2.4.2.2 G PG PU Memory Hierarchy

When a part of the program that runs on the GPU is invoked, a collection of

threads called “grid” is created. There are a specific number of thread blocks in a grid,

and each block has a specific number of threads. The threads in a block are managed

in a group of threads call a warp. Threads in a warp will dispatch an instruction and

access the memory simultaneously. Furthermore, there are multiple memory spaces

in GPGPU as illustrated in Figure 2.1.

Host Memory

Device Global Memory
v — ... ~ 7 —

*

Kernel 0 Kernel 1
, . , ,

. . .

, , ,

. . .

Thread 0 Thread 1 - Thread0 Thread 1 |T hreads Thread 1 Thread d j (Thread 1 —

f t f t I F " 0 f t f t # it
Shared Memory / Shared Memory | ; Shared Memory | Shared Memory

Block 0 Block 1 Block 0 Block 1

GPU

Figure 2.1: Memory hierarchy in GPGPU

In Figure 2.1, global memory is accessible by all threads in the kernel, and

even across kernels. The data to be executed by the kernel have to be transfered from

the CPU (host) memory and stored in the GPU (device) global memory. Once the

threads in a warp are active, the data required by those threads will be simultaneously

read from the global memory to the register memory. Likewise, the results from the

active threads will be writen to the global memory at the same time. Besides the

registers, shared memory is visible to all threads in the same block as long as the

block is active. This memory unit acts as a cache where a bulk of data read from the

global memory can be temporarily stored.

CHAPTER 3

TWO-LEVEL CHECKPOINT/RESTART FOR GPGPU

In a very large scale system, a fault tolerance is critical to mitigate the

failures in a long running application. Checkpoint/restart is of popular fault tolerance

techniques. By saving data and essential information e.g., software state, into a

checkpoint file, the system can be recovered from the saved software state instead of

recomputing from the beginning of the program.

This chapter presents the checkpoint/restart mechanism for GPGPU. The idea

centers around transferring checkpoint data first from the GPU (device) memory

to the CPU (host) memory and then from the CPU either to a reliable storage or

another healthier node when a failure occurs. The saved software state will be used for

recovery. The proposed checkpoint/restart protocol on the GPU utilizes the latency

hiding strategy in order to improve overall performance.

3.1 CUDA Streams

NVIDIAs CUDA has introduced a latency hiding technique called CUDA

stream that enables an overlap between the memory copy and kernel execution [3].

The performance models in [4] show that the stream technique can reduce the kernel

execution times while the applications may require more data transfer between device

and host. Moreover, it suggests that the stream technique is more suitable for the

14

applications in which the data are independent so that both host-to-device and device-

to-host memory transfer can be carried on without kernel interruption.

In NVIDIA’s CUDA, streams usage is illustrated by an application called

simpleStreams. The application initializes an array, each assigned a specific value.

In the experiment that renders the results as shown in Figure 3.1, each value

in the array is initialized as an integer, for example 5. The host and the device

memories are then allocated to the array of size n , which varies from 64 thousand to

16 million integers. Then the integer and the array are synchronously copied to the

device memory. In addition, the number of streams (s) varies between 1, 2, 4, 8 , 16,

32, 64, and 128.

S tream E xperim ent

—* - 16M
8M
4M

- e - 2M
- + - 1M

512K
256K
128K

- a - 64K

8 0 -

£ 7 0 -

.2 6 0 -

5 0 -

4 0 -

64 1281 16 32

Number of S tream s

Figure 3.1: The results of simpleStreams application with various numbers of streams
and array sizes

16

First, the experiment synchronously performs a number of actions: it operates

the kernel, copies memory from device to host, and collects the elapsed time. The

execution time for s is then recorded as the kernel and memory copies that are

operated asynchronously. The elapsed times are then averaged over 10 repetitions.

The simpleStreams has been implemented in NVIDIA CUDA SDK 2.0 [30]. The

hardware environment utilized in this experiment is a GeForce 8800 GT with Intel(R)

Pentium(R) D 2.80 GHz CPU.

Figure 3.1 shows that the execution times for a large data set, e.g., 16 million

integers, are extremely high when these applications are run without streams. These

execution times get lower when running with 2, 4, and 8 streams, respectively. These

times then begin to increase again as the number of streams subsequently increases.

Thus, for the purposes of this experiment, data execution time could be reduced to

its minimum value when 8 streams are utilized. This value is suspected to depend

on the specification of the hardware. Other parameters that affect the results are the

sizes of the respective blocks and grids.

3.1.1 Performance Model o f CUDA Streams

Even though streams can be utilized to improve performance as shown in the

experiment in the previous section, there are other factors that affect the execution

times of the GPGPU applications. The GPU memory transfer and execution times

are also major factors in improving performance. In this section, the performance

models for CUDA streams will be introduced in order to study the effects of those

two factors.

17

Assuming that there are two execution blocks in a grid, hereinafter and in

the following figures referred to as ”block 1” and ’’block 2", these two blocks will

be executed in parallel, and each block has to wait for the data from host-to-device

memory copies. Another assumption is that the time to execute operations in each

block and the time of transferring data to be executed are the same. The time diagram

of non-streamed execution is shown in Figure 3.2.

- * —
p a ta group I|_

p a ta group \

H-D memcopies

Block 1
Block 2

Kernel

Result group! 1
[Result group! 2

D-H memcopies

Figure 3.2: Time diagram of non-streamed execution

In Figure 3.2, the kernel waits until all data are copied from the host to the

device memory and then operates on those data. Thus, the results are copied back

to the host again. However, each block in the kernel may process data independently.

The data can be grouped as data group 1 and data group 2, which are operated by

kernel block 1 and block 2. Then, the result group 1 and result group 2 are generated,

respectively. The total execution time, Tq . can be considered as stated in Equation

(3.1) where Thd represents the time of data transfer from the host to the device, TK

is the kernel execution time, and Tdh is the time of data transfer from the device to

the host.

Tg — Thd + Tk + Td h ■ (3.1)

18

Due to independent data and operations in each kernel execution, which means

the operations and memory copies can be done at the same time, streams allow

memory copy to overlap with kernel execution. Therefore, the total execution time

of the program can be reduced. This strategy can be described by the time diagrams

in Figure 3.3.

pata group-'!^
pata group X \

\ | Block 1 ^ 1

Block 2

H-D memcopies

Kernel

Result group 1
Result group! 2

D-H memcopies

pata group I|_
pata group \

H-D memcopies

(a)

pata group \ ' r''
pata group %

*
Block I

Block 2 |
•*.—►;'Result grow

! Result groui 2
H-D memcopies

Kernel

D-H memcopies

Block 1
/ r —
(| Block 2 |

\Jpesult group !^
[Result group 2

Kernel

D-H memcopies

(b)

(c)

Figure 3.3: Time diagram of streamed execution: (a) asynchronous memory copies
from host to device, (b) asynchronous memory copies from device to host,
and (c) asynchronous memory copies in both directions.

According to the time diagram in Figure 3.3 (a), once the data group 1

transaction completes, the kernel block 1 starts operating on those data at the

same time that the data group 2 is transferred to the device memory. The time

of transferring data group 2 to the device memory is consequently hidden and can be

19

considered in Equation (3.2)

Tg = — + T k + Td h . (3.2)

Figure 3.3 (a) describes the ability of kernel and memory copies overlapping

after each kernel block execution is completed. The data group 1 and group 2 are

sequentially copied from the host to the device. The kernel block 1 and block 2 then

operate those data, respectively. As the kernel block 1 completes its operation, the

result group 1 is copied back to the host memory at the same time as the kernel

block 2 is operating data group 2. The total execution time can be considered as in

Equation (3.3) [30]

Ta = THD+ T K + ^S ii. (3 .3)
s

In these two cases, the device is still idle during the time that the data are

sequentially copied. Then they can be combined together for better performance as

illustrated by the diagram shown in Figure 3.3 (c). It is obvious that the time of

transferring data group 2 and result group 1 are hidden. Then the total execution

time can be reduced as in Equation (3.4)

la s . + Tk + Tss.. (3 .4)
s s

However, the total time of execution also depends on how complicated the

operations in the kernels are (kernel execution time) and dependency of operations

and data. Figure 3.4 shows the time diagram of execution time when the time of

memory copies are longer than kernel executions.

20

Data group 1
i i i i i i i i L fc-l 1 fc-l 1

Block ll__ ^

ClockC ,

Data group 2

\ j Result group 1
1 1 Result group 2

H-D memcopies Kernel ! D-H memcopies

(a)

Data group 1
Data group 2

kloeKfi" _ !I t 1 C'
' i 'Block‘2

; ''-{Jgesull group V / + ».
 j | Result group 2

RemellKemel

H-D memcopies D-H memcopies

(c)

Data group L-
f | D at^groupf

V tz ti
x^Blockj 1

! Kernel

H-D memcopies

Blockj2
) Result group 1

Kernel
Result group 2|

(b)

Data group i
,'*■

/ | Data group !T |

f M■Block! 1
\ ! ;
X 1

Kernel

D-H memcopies

1—fr;
'Block'2

S Result gro'

kernel
{ Result group 2{

H-D memcopies D-H memcopies

(d)

Figure 3.4: Time diagram of execution time when the time of memory copies
are longer than kernel executions: (a) synchronous memory copies,
(b) synchronous memory copies from host to device, (c) asynchronous
memory copies from device to host, and (d) asynchronous memory copies
in both directions.

Compared to the asynchronous memory copies in Figure 3.4 (a), the diagrams

in Figure 3.4 (b), (c), and (d) show how the kernel execution and memory copies

overlapped in the case tha t kernel execution times are shorter than memory copies.

The total execution time for the cases shown in Figure 3.4 (b) and (c) can be

considered in Equation (3.5). As shown in Figure 3.4 (d), the kernel execution time

can be neglected no m atter how many streams it uses. The model in this case is

described in Equation (3.6)

Tg = Thd H— — + Tdh s

Thd + Td h -

(3.5)

(3.6)

21

The time diagram in Figure 3.5 (b), (c), and (d) shows the performance of

streams when the kernel execution times are longer than the time of memory copies

compared to the diagram in Figure 3.5 (a). The total execution times of each diagram

can be considered as in Equations (3.2), (3.3), and (3.4), respectively. In Figure 3.5

(d), if the memory copy time in a stream is much less than the kernel execution time,

it supposes that there is only kernel execution time to be considered as the total

execution time.

Data group

Data grou

Block 1
Block 2

suit grout) 1

KernelH-D memcopies D-H memcopies

(a)

data group! I
Qata grouf} 2

Block 1 Block 2

'{Result grfmp 1 A
! 1-II Result gr()up 2

{D-H men)copies D-H memcopies

H-D memcopies Kernel

(c)

Data groupU^ !
/EJata group* 2

''•j. Block 1 Jf*

H-D memcopies

Block 2
Result group 1

Rjesult groijp 2
j D-H memcopies ;

Kernel

(b)

Data grotr
/ 1 Data group 2

\! Blqck 1

H-D memcopies

\
; \

Block 2

Result group !_
Result grpup 2

rr r i< >>
T>H merAcopies SD-H menjcopies

Kernel 1 1

(d)

Figure 3.5: Time diagram of execution time when the time of kernel executions
are longer than memory copies: (a) synchronous memory copies, (b)
synchronous memory copies from host to device, (c) asynchronous
memory copies from device to host, and (d) asynchronous memory copies
in both directions.

22

3.1.2 Benchmarks

In this section, the GPGPU matrix multiplication application is introduced in

order to demonstrate the utilization of streams on an application.

When two matrices A and B with dimensions of n x rn and m x p are multiplied,

the dimension of the result matrix C is n x p. Each element of matrix C, Cij, is the

summation of each element in row i of matrix A. a**., multiplied by each element of

column j of matrix B, bkj, as shown in Equation (3.7).

To implement matrix multiplication in CUDA programming, each thread in

tion in Cij. All elements in row i of matrix A and column j of matrix B are transferred

to the corresponding thread [3].

In this experiment, the multiplication of two squared matrices is considered.

The size of the matrices varies from 64 x 64 elements to 2400 x 2400 elements. Both

matrices are copied from the host memory to the device memory. Then the kernel

multiplies those two matrices and the result matrix is copied back to the host memory.

This application also runs on a GeForce 8800 GT system with Intel(R) Pentium(R)

D 2.80 GHz CPU.

The operation times of matrix multiplication recorded by CUDA Events are

shown in Table 3.1. The results suggest that the kernel times are longer as the sizes

of matrices are larger. The times of transferring two matrices from the host to the

device are also about twice that of transferring a result matrix from the device to the

m
(3.7)

the device computes each element of matrix C, i.e., each thread computes the summa-

23

host. Since streams allows overlapping on the GPU, we use the values in Table 3.1

with the performance model described in Section 3.1.1 to evaluate the performance

increase.

Table 3.1: Times spent by operations of matrix multiplication, measured by CUDA
Events

Matrix H-D memory copy
(ms)

Kernel execution
(ms)

D-H memory copy
(ms)

64 x 64 0.16 0.05 0.05
160 x 160 0.24 0.15 0.09
320 x 320 0.64 0.83 0.28
800 x 800 3.28 11.76 1.61

1600 x 1600 12.79 94.45 6.34
2400 x 2400 28.63 319.35 14.23

When the sizes of matrices are 64 x 64 and 160 x 160, the time of transferring

data from the host to the device memory is longer than the kernel execution time.

This case matches the time diagram in Figure 3.4 (a). Others match the time diagram

in Figure 3.5 (a). The corresponding performance model for the streams applied on

both host-to-device and device-to-host memory copies is described in Equation (3.6).

Table 3.2 shows non-stream execution time versus 8-stream execution time. The

percentage of performance increase from streams is discussed.

24

Table 3.2: Total execution times with non-stream and the expected total execution
time with 8-stream are calculated from the operational times on Table 3.1

Matrix Non-stream execution
(ms)

8-stream execution
(ms)

% of performance
increase

64 x 64 0.26 0.21 19.23
160 x 160 0.48 0.33 31.25
320 x 320 1.76 0.95 46.02
800 x 800 16.65 12.37 25.71

1600 x 1600 113.58 96.84 14.74
2400 x 2400 362.21 324.71 10.35

From Table 3.2, it can be seen that when the size of matrices are small, such

as 64 x 64, the performance of matrix multiplication slightly increases. However,

when the sizes of matrices are 320 x 320, the performance of the application with 8

streams increases 46.02 percent of the application performance without stream. The

performance starts to drop as the sizes of the matrices are larger because the gaps

between memory transfer times and kernel execution times are extended.

Since the latency of data transfer between the host and the device is one

of the major factors that impacts the performance of a GPGPU application, there

are some strategies to eliminate this factor. Streaming is one of the strategies that

aims to reduce the latency by overlapping kernel execution with data transfer. The

proposed performance models and time diagrams show that streams can hide kernel

execution time in the case that the application consumes more time on data transfer

and that streams can hide memory transfer time when the device is occupied by

kernel execution. However, this strategy performs well on the application when the

kernel execution time and the time of memory transfer are not too much different.

The results suggest that streaming strategy is effective when the application data

25

are independent because it can be applied on both host-to-device and device-to-host

memory transfers.

3.2 Two-Level Checkpoint/Restart Protocols

This section describes the GPU checkpoint/restart (CPR) protocols with CUDA

stream utilization [11] [31]. First of all, the GPU checkpoint concept is based on the

following assumptions:

1. Kernel execution is sufficiently long such that the checkpoint will finish before

the kernel completes. Otherwise the idea would not be beneficial.

2. The data is independent such that a transfer of data input of the next execution

block can be overlapped with an execution of the current code block.

3. There is a thread in the CPU that handles the checkpoint process.

Figure 3.6 illustrates the streamed checkpoint protocol. The checkpoint cost

is a result of host memory allocation and device-to-host memory copy after a thread

synchronization. W ith CUDA streams, the kernel continues executing while the

checkpoint data are copied to the host. Once the memory copy finishes, the host

dumps all the checkpoint data to a checkpoint file, which is handled by the underlying

CPR mechanism. When using CUDA streams, the data set is split into chunks.

The first chunk is copied to the host before the next kernel is invoked. Then, the

subsequent chunk is copied while the kernel is executing after the first chunk transfer

completes [4].

26

CPU

Process starts

H-D memory copy

HostM emAllocJ

Underline CPR,
mechanism

*

t

Host MemAllocJ
£

Underline CPR.
mechanism

4 r

D-H memory copy

Process ends r

GPU

Kernel starts

' < ThreadSynchronization/Checkpoint

. ^C heckpoint Overhead

' ThreadSynchronization/Checkpoint

Checkpoint Overhead

Kernel completes

Figure 3.6: The checkpoint protocol for GPU streamed CPR

Figure 3.7 shows the streamed restart protocol. When a failure occurs while

the kernel is executing, the device application context, including the device memory,

is destroyed. Therefore, to restore the application, the device context has to be

recreated along with device memory, and host-to-device memory has to be copied

again. The restart process begins by reading the checkpoint file to host memory.

However, reading the checkpoint file is handled by the underlying mechanism and the

duration of this process depends on the speed of reading from the hard drive, I/O or

network storage. Those factors are not considered in the GPU recovery cost. The

27

recovery cost includes the overhead of device memory allocation and host-to-device

memory copy. CUDA streams are beneficial by starting the kernel execution while

the rest of the checkpoint data is being transferred. The experiments based on the

proposed CPR protocols are presented in the next section.

CPU

Host MemAllocJ

Underline
mechanism^^^^^H

Underline I
m echanism l

GPU

JhreadSynchron i2ation()A^heckpoint

heckpoint O verhead

Failure O ccurrence

Device MemAlloc

iestart Overhead

Figure 3.7: The restart protocol for GPU streamed CPR

3.3 Experiments

To study the cost of checkpoint and restart processes, the behavior of the

protocols presented in the previous section is simulated and the checkpoint costs,

recovery costs, and wasted time, which is the summation of checkpoint cost, recovery

cost, and recomputing time due to a failure, are collected. The experiments are done

on various sizes of a large array addition application with three types of GPU CPR

mechanisms: non-streamed, 4-streamed, and 8-streamed CPRs.

28

Listing 3.1 illustrates the simulation based on the protocols in Figures 3.6 and

3.7. Since the checkpoint process takes place on the host, the kernel of the iterated

array addition is split into three parts: k e rn e l-1 (), kernel_2(), and kernel_3(),

which are prolonged by I, m, and n loops of iterative array addition (C = A + B),

respectively. We assume that k e rn e l_ l() is the computation before a checkpoint,

kernel_2 () is the computation between the checkpoint and a failure, and kernel-3 ()

is the computation after the failure until the application finishes. Then when a failure

occurs, it has to recompute only kernel_2() instead of restarting from the beginning.

L isting 3.1: The pseudo code imitating GPU streamed checkpoint and restart
protocols

x / / Begin computing
2 Do host-to-device memory copy of array A and B.
3 Execute kernel-1 () with I iterations.

4 / / Checkpoint process
5 Synchronize all threads to prepare for memory copy.
6 Allocate host memory for data checkpoint, i.e., for array A, B , and C.
7 Do device-to-host memory copy of array A, B , and C.

s Execute kernel_2() with m iterations.

9 / / Failure occurrence
10 Free all device memory

n / / Restart process
12 Reallocate device memory for array A, B, and C.
13 Do host-to-device memory copy of array A , B , and C.

14 / / Recompute kernel_2()
15 Re-execute kernel_2() with m iterations.

16 Execute kernel_3() with n iterations.

17 Do device-to-host memory copy of the result array C.

29

The experiments are done on an NVIDIA GeForce GTX 295 system, which

has compute capability 1.3. The heuristics of NVIDIA’s graphic card with compute

capability 1.x indicate that the maximum number of blocks in a grid is 65535, and

the maximum number of threads in a block is 512 [3]. Then, the maximum number

of threads is 65535 x 512, or 225 — 29. For the purpose of load balancing and data

correctness while invoking the kernel with streams, we vary the size of arrays from

210 to 224. If the size of arrays reaches 225, the number of iterations in the kernel will

be influenced.

In a non-streamed case, the memory copy and the kernel execution are done

consecutively. However, in 4-streamed and 8-streamed cases, those instructions are

done simultaneously. The checkpoint cost is obtained by timing host memory alloca

tion and device-to-host memory copy. The recovery cost is obtained by timing device

memory reallocation and host-to-device memory copy. The wasted time is obtained

by the summation of those costs and the time of kernel_2() execution. The results

are shown in Figure 3.8.

30

Checkpoint Cost Improvement Recovery Cost Improvement

o .

* m • 4-streamed over non-streamed
8-streamed over non-streamed

”2v
8aE
o
c
3
I

s • « • 4-streamed over non-streamed
8-streamed over non-streamed

I °
.

f 7

i

Size of Arrays

(a)

Size of Arrays

(b)
Wasted Time Improvement

• « • 4-streamed over non-streamed
- e - 8-streamed over non-streamed

8 -"H0)
E

IQ.
E
*5
c

Size of Arrays

(c)

Figure 3.8: The percentage of performance improvement in terms of (a) checkpoint
cost, (b) recovery cost due to a failure occurrence, and (c) wasted time
due to a failure occurrence

Figure 3.8 (a) illustrates percentage of the performance improvement of streamed

CPR in terms of checkpoint cost. When the size of arrays is less than 219, the

percentage of improvement is negative since the streamed CPR has no advantage

over non-streamed CPR. However, it becomes positive when the size of arrays is 219.

When the size of arrays is 224, 4-streamed and 8-streamed CPRs gain advantage over

non-streamed CPR with the percentages of 29.790 and 32.699, respectively.

31

Similar to the checkpoint cost, as shown in Figure 3.8 (b), the recovery cost of

4-streamed CPR is smaller than non-streamed CPR when the size of arrays is at least

219. Also, the recovery cost of 8-streamed CPR gains advantage over 4-streamed CPR

when the size of arrays is at least 221. As the size of arrays is 224, the percentages of

improvement of 4-streamed and 8-streamed CPR are 66.743 and 74.305, respectively.

This similarity is because both checkpoint and recovery costs depend mainly on the

duration of memory copy.

The wasted times due to a failure occurrence on an application with non-

streamed, 4-streamed, and 8-streamed CPRs are illustrated by Figure 3.8 (c). Since

the wasted time is the aggregate of checkpoint cost, recovery cost, and recomputing

time, the performance improvement in the aspect of wasted time is similar to the

checkpoint and recovery costs.

In this experiment, the benefits of the streamed CPR mechanism with only

one checkpoint and one failure is studied. To study the benefits of streamed CPR on

real-world applications, the simulation on a long-run application and its results will

be presented in the next section.

3.4 Simulation

In the simulation to study the benefits of streamed CPR on a long-run ap

plication, despite various checkpoint intervals, the mean-time-to-failures (MTTFs)

must be considered. Due to the fact that a large scale GPU cluster system, such as

ORNL’s Titan, LLNL’s Sequoia, etc. [1] is a heterogeneous system with a significant

number of GPUs, the MTTF of the system depends on the MTTF of other modules

32

or nodes in the system. In this study, the MTTFs are varied from 12 hours to 7

days with the checkpoint interval of 30 and 120 minutes. The application length is

fixed at 1000 hours. Since both 4-streamed and 8-streamed CPR have an advantage

over non-streamed CPR when the size of arrays is over 219, the simulation is done for

the array size of 224. The performance is observed in three different aspects: (1) the

percentage of total checkpoint costs compared to wasted time; (2) the percentage of

total recovery costs compared to wasted time; and (3) the percentage of wasted time

compared to the completion time, which is the summation of the application length

and the wasted time. Figure 3.9 illustrates the percentages of total checkpoint costs,

while Figures 3.10 illustrates the percentages of total recovery costs, and Figures 3.11

shows the percentages of wasted time.

Percentage of Checkpoint Costs
Compared to Wasted Time

N o n -stream ed
4 -s tre a m e d
8 -s tre a m e dCOoO

CD
CO

§
o
c
8I—

CL

96 120 144 16836 6012
MTTF (hours)

(a)

Percentage of Checkpoint Costs
Compared to Wasted Time

to
CN
©

N o n -stream ed
4 -s tre a m e d
8 -s tre a m e doCvJo

o
o
o

o
d
oo
d

50 100 150 200 250 300 350

C heckpoint Interval (m inutes)

(b)

Figure 3.9: The percentages of total checkpoint costs compared to wasted time of the
application with non-streamed, 4-streamed, and 8-streamed CPRs, when
the size of arrays is 224 and (a) the checkpoint interval is 30 minutes, and
(b) the MTTF is 12 hours.

33

Percentage of Recovery Costs
Compared to Wasted Time

N on -stream ed
4 -s tre a m e d
8 -s tre a m e d

o

«

o

o - o

96 120 144 16812 36 60

MTTF (hours)

(a)

Percentage of Recovery Costs
Compared to Wasted Time

cooo
d

N o n -stream ed
4 -s tre a m e d
8 -s tre a m e d

o SCO o
.o o

oop -H-
° 30 150 210 270 33090

Checkpoint Interval (m inutes)

(b)

Figure 3.10: The percentages of total recovery costs compared to wasted time of the
application with non-streamed, 4-streamed, and 8-streamed CPRs, when
the size of arrays is 224 and (a) the checkpoint interval is 30 minutes, and
(b) the MTTF is 12 hours.

Percentage of Wasted Time
Compared to Completion Time

od
N on-stream ed
4 -s tre a m e d
8 -s tre a m e d

ISep
V)

#
o
c
5
Cl

96 120 144 16836 6012
MTTF (hours)

(a)

Percentage of Wasted Time
Compared to Completion Time

o j
co

N o n -stream ed
4 -s tre a m e d
8 -s tre a m e d

© - ® CM CO
I
o ^
c

I o _
£

in -

30 90 150 210 270 330

C heckpoint Intrval (m inutes)

(b)

Figure 3.11: The percentages of wasted time compared to completion time of the
application with non-streamed, 4-streamed, and 8-streamed CPRs, when
the size of arrays is 224 and (a) the checkpoint interval is 30 minutes, and
(b) the MTTF is 12 hours.

Figure 3.9 illustrates the percentages of total checkpoint costs compared to

wasted time when the size of arrays is 224. According to Figure 3.8 (a), when the size

of arrays is 224, the checkpoint cost of 8-streamed CPR is the smallest. As a result,

8-streamed CPR performs better than non-streamed and 4-streamed CPRs in term of

total checkpoint overheads, particularly when there are more checkpoints. In addition,

the CPRs with the checkpoint interval of 30 minutes, shown in Figure 3.9 (a), produce

larger total checkpoint costs when the M TTF increases. Moreover, with various

checkpoint intervals, shown in Figure 3.9 (b), the total checkpoint overheads are

smaller for the larger checkpoint interval. As non-streamed CPR generates the most

checkpoint costs in both cases, the total checkpoint costs are very small compared to

the wasted time with no more than 5 percent.

Figure 3.10 illustrates the percentages of total recovery costs compared to

wasted time when the size of arrays is 224. Since the number of failures depends on

MTTF, when the M TTF increases, both recovery costs and wasted time decrease. As

a result, the graphs slightly change. That is between 0.006 - 0.008 percent for the

non-streamed CPR, 0.0020 - 0.0025 percent for the 4-streamed CPR, and 0.0015 -

0.0020 percent for the 8-streamed CPR (as shown in Figure 3.10 (a)). On the other

hand, when the MTTF is fixed at 12 hours, by varying the checkpoint intervals (as

shown in Figure 3.10 (b)), the graphs drop due to the increase of checkpoint costs,

which makes the wasted time increase. Furthermore, in both cases, streamed CPR

obviously performs better than non-streamed CPR. However, the recovery costs do

not have much effect on the performance of the application since the percentages of

total restart overheads are less than 0.01 percent of wasted time in any cases.

35

Figure 3.11 illustrates the percentage of wasted time compared to completion

time, which is the summation of wasted time and application length. When the

checkpoint interval is fixed at 30 minutes (shown in Figure 3.11 (a)), as the MTTF

increases, the percentage of wasted time tends to be smaller. However, when the

M TTF is fixed at 12 hours (shown in Figure 3.11 (b)). as the checkpoint interval

increases, the percentage of wasted time also increases because the recomputing time

increases. Nevertheless, the costs of non-streamed, 4-streamed, and 8-streamed CPUs

are relatively small compared to the recomputing time and completion time. Thus

the difference of wasted time between those three types of CPRs is insignificant.

3.5 Conclusion

Even though the checkpoint/restart mechanism can improve the application

resilience, it reduces the performance by the cost of the checkpoint process. In this

study, the GPU checkpoint/restart protocol that aims to reduce the fault tolerance

cost is proposed. The experiments have revealed that the streamed CPR can reduce

the checkpoint cost when the size of checkpoint data is large enough. Additionally, it

can improve the restart process by reducing the recovery cost.

The simulation has shown that the streamed CPR can reduce the cost of

the checkpoint process. However, in a long-run application, since the costs of both

checkpoint and restart processes are relatively small compared to the recomputing

time and the completion time, streamed CPR may not be beneficial on a single node

GPU system.

CHAPTER 4

PERFORMANCE MODEL FOR GPGPU

Although a GPU is considered an accelerator for a CPU, the architectures of

a GPU and a CPU are quite different [3] [32]. In order to estimate an application

completion-time, the kernel execution time on a GPU has to be estimated. Thus,

a programmer can make a decision whether the GPU is worth participating in the

computation and can further improve the heterogeneous computing application. In

addition, the performance model can also help to increase the efficiency of fault

tolerance techniques for a GPGPU application, such as checkpoint/restart mecha

nisms, especially for a large GPU cluster. One of the major problems in this area is

checkpoint scheduling. To find an optimum checkpoint placement, the time-to-failure

(TTF) of the system and the completion-time of the application must be taken into

account. The system TTF can be obtained by a failure prediction technique, while

the completion time of the application can be estimated by the performance model.

In this study, a novel performance model is proposed. The model based

on the current state-of-the-art model by Hong and Kim [16]. However, Hong and

Kim’s model is limited by an assumption that a latency due to every global memory

instruction is the same. Nonetheless, the empirical results reveal tha t the memory

latencies are varied depending on the data type and the type of memory access.

36

37

Figure 4.1 shows that a global memory write operation takes much longer than a

global memory read operation in every case. Also, 4-byte word accesses take longer

than 1-byte word accesses. Thus it is important to consider various memory access

costs tha t will impact GPU performance outcome.

Latency of global memory access
to

io -
•o
i *
8 u> o COo

® CM
E
t-

■ Col write 1 -byte word
■ Col read 1-byte word
13 Uncol read 1 -by te word
■ Col write 4 -by te word
■ Col read 4 -by te word
■ Uncol read 4 -b y te word

1 2 4 8 16 32

Number of w arps per SM

Figure 4.1: Memory latency on GPU NVIDIA GeForce GTX 295

Since the detailed architecture of a Graphic Double Data Rate (GDDR) mem

ory is not public, the actual memory latencies are measured. Then instead of using

fixed memory latencies like in Hong and Kim’s model, the latencies from an actual

benchmark are used in our model as described in Section 4.1.1.

Moreover, Hong et al [16] considers a latency for a shared memory instruction

to be the same as a computation instruction. In fact, a computation instruction

usually takes approximately 20 clock cycles while a shared memory takes 38 cycles

according to [20], and 40 cycles according to the experiment.

38

Due to the aforementioned reasons, our model does not rely on P T X code - an

assembly-like code that is generated by compiling with nvcc - to obtain the number

of registers, the number of computations, and memory instructions [3] [33]. On the

other hand, those instructions can be counted from CUDA code.

4.1 Performance M odelling

In this section, the important parameters in the proposed performance model

are defined. Then, the model notations in a general case and in cases with synchro

nization functions are described. Furthermore, the impacts of branch divergence and

bank conflicts are also discussed in detail.

4.1.1 Parameters

In GPGPU programming, parallel instructions are executed by multiple threads.

These threads are maintained as thread blocks that will be assigned to stream proces

sors (SMs) as illustrated in Figure 4.2(a). The thread blocks are also organized into

a grid of a kernel. Moreover, Figure 4.2(b) shows th a t threads in a block executed in

an SM are managed in a group of parallel threads called a warp.

39

GPU
M ultiprocessor

M ultiprocessor

M ultiprocessor

W arp S ch ed u le r

R eg ister file
S h a re d
M em ory

D ev ice M em ory (DRAM)

H ost M emory

(a)

S h ared Mem R egisters

C ores

W arpSciheduier

M i n i M i n i

, „

"■j1' . ' fj.

!-

T hread

W arp

(b)

Figure 4.2: GPU architecture: (a) programming model; (b) warp scheduling in an
SM

Let Sq be the number of blocks in a grid (so called grid size), and the number

of SMs be N s m • Then the number of blocks assigned to an SM is defined by

N b = N.S M
(4.1)

However, not all assigned blocks can be resided into an SM. The new blocks will

be assigned to an SM as it completes the execution of the previous blocks [3] [34]. Let

Nrb be the number of blocks that can be resided into an SM, which is called resident

blocks, and N P be the number of groups of blocks assigned to a multiprocessor. Then,

Np can be defined as

N P =
N ,

R B
(4 .2)

40

Moreover, N RB is restricted by hardware limitation, i.e., the maximum number

of resident blocks (NRB>max), the maximum number of resident warps {NRWrnax), and

the limitation of resources, such as the amount of shared memory and registers [3]

[34]. Let each block assigned to an SM have SR threads. Those threads are grouped

into warps, where each warp has Sw threads. Then NRB is defined by

N rb = min < N b , N RB>max, NHWjnaxSw r Me ilvlb,max Rmax
S B Msb

1 R b }■
(4.3)

where M stmax and Rmax are the maximum amount of shared memory (in bytes) and

the maximum number of 32-bit registers per SM, respectively. These values are

hardware specifications while MBB and R B are the amount of shared memory and

the number of registers required by a block, respectively. Both M sb and R B can be

estimated mathematically as described in the NVIDIA Programming Guide [3].

Furthermore, the number of resident warps is defined by

n r b s b
N rw — (4.4)

Sw

Note that there is a limit to the number of threads per block and to the number

of blocks per grid. That is, So and SB cannot exceed the hardware heuristics.

Furthermore, there are 4 additional parameters to be introduced in this section:

(1) the operation time required by the total set of computational operations, Tc; (2)

the operation time due to the last set of computational operations, Tql'i (3) the

memory latency resulted from the total set of memory instructions, TM; and (4) the

memory latency lost by the last memory instruction in the kernel, TML.

From Figure 4.3, suppose that there are 2 resident blocks assigned to an SM,

each resident black has 2 warps, and there are 5 instructions to be executed by each

41

thread. Since I I , 13, and 14 are computational instructions, Tc is a summation of the

operation times due to I I , 13, and 14, where TCl is an aggregation of the operation

times due to 13, and 14. Also, TM is the memory latency resulted by 12 and 15,

while Tml is a result of memory access in 15 only.

List of Instructions
^ B2W212 B2W215

B2W1 12 B2W1 IS
^ B1W2I2 B1W2I5

„ B1W1 12 ^ ^ ___B1W1 15

11 compute
12 memory access
13 compute
14 compute
15 memory access

B1W111 B1W2|11 B1W1
13

B1W1
14

BfW2
13

B1W2
H a T

(b)(a)

Figure 4.3: The instruction list in (a) transforms into the timeline in (b).

Since T = C x FP, where T is the operation time, C is the number of clock

cycles required by an operation, and FP is the frequency of an SM, the number of clock

cycles has to be determined in order to evaluate the operation time or the memory

latency. The number of clock cycles due to the set of computational operations

can be analyzed and derived from the kernel code, which is detailed in the NVIDIA

Programming Guide [3].

Nonetheless, evaluating the memory latency is more complex. For a global

memory access, the global memory latency is varied depending on the size of data,

memory bandwidth, and the number of transactions required by a memory instruc

tion (memory coalescing). According to the NVIDIA Programming Guide [3], a

global memory latency can be as high as 400 to 800 clock cycles per memory access.

42

The CUDA C Best Practices Guide [32] also states that the latency for reading an

uncached data from local or global memory ranges from 400 to 600 clock cycles.

For these reasons, instead of using a fixed number of clock cycles, the operation

time from the measurement divided by Np is considered in order to estimate the global

memory latency.

4.1.2 Performance Model in a General Case

In this section, the performance model is described by assuming that there is

no branch convergence in a warp. Thus, every thread in a warp executes the same

set of instructions. Then the computation times and memory latencies are the same

for each warp. Moreover, assuming that there is no synchronization instruction, the

idle time does not depend on the time that a warp waits for other warps to complete

the instructions prior to the barrier, but depends only on memory access.

Figure 4.4(a) illustrates the case that Tc is longer than Tm , or N RW is large

enough to hide the idle time. The execution time of the kernel T(K) can be defined

as

T (K) = (TMl + T c N r w) NP. (4.5)

43

Time

B1W1 1 B1W1 stalls | B1W1 B1W1 stalls
.

I B 1 W 2 iB l B1W2 stalls

~B2Wi~[h?w i staHs B2W1 stalls B2W1 stalls

B2W2 stalls

! T_CL | T ML

(a)

Time

i i

B1W1 | B1W1 stalls B tW t| B1W1 state | ...

1 B2W1 I U2W1 stalls I 2W1 | B2W1 stalls

r « — Idle—

SIW1 B1W1 s

B2W1 stalls

■ »»
! T_C L! T_ML

(b)

Figure 4.4: Diagrams show the execution time when: (a) there is no idle time; (b)
there is idle time. A shaded box indicates that the warp is being executed.
A white box indicates that the warp is waiting for the memory access.

However, in Figure 4.4(b), N Rw is not large enough to fill the idle time [3] [32],

Hence,

T (K) = (Tm + Tc + Tcl (N rw - 1)) NP. (4.6)

To determine whether N RW is large enough to hide the idle time, Equation (4.5)

is subtracted from Equation (4.6) to find the idle time and set to zero. Consequently,

Tm ~ TmlNrw = ^ +1. Therefore, if N RW >
’■CL -CL

+ 1 , there will not be an

idle time.

4.1.3 Performance Model in a Case with Synchronization

In this section, a model that considers synchronization in a kernel is described.

It is an extension from the model for a general case presented in the previous section.

44

A synchronization function or __synchthread() acts as a barrier at which

threads in a block must wait until every thread hits this point before they are allowed

to execute the next instruction. However, threads from different blocks do not have to

wait [3]. In general, if there are multiple resident blocks scheduled in an SM (N rb >

1), the compiler will try to fill the idle clock cycles with warps from the other blocks.

As a result, the impact of synchronization functions can be omitted. Nonetheless, if

there is only one resident block in an SM (Nrb = 1), the amount of execution time

will be increased by the waiting time resulted by the synchronization function. The

time diagrams in Figure 4.5 describe impacts of synchronization functions.

B1W1 stallsB1W1 stalls

B1W2 B1W2 stalls B1W2 stalls

B1W3 stallsB1W3 stalls

B1W4 stalls B1W4 stalls

| Extra clock cycles |

B1W1 stalls

B1W2 stalls B1W2 stalls

Extr'a clock cycles

(b)

Figure 4.5: Diagrams show the execution time when: (a) a synchronization function
causes extra time between two consecutive computational instructions;
(b) a synchronization function causes extra time between memory and
computational instructions. Again, a shaded box indicates that the warp
is being executed. A white box indicates tha t the warp is waiting for the
memory access.

Figure 4.5(a) is the diagram extended from Figure 4.4(a), which is the case

that it originally does not have idle time. In this case, the synchronization function

generates an extra time, Tsyn+TM,syn> where TSyn is the operation time for executing

the synchronization function, and T M Ŝyn is the memory latency due to the memory

instructions before or after the synchronization function. Let the number of syn

chronization functions be Nsyn• Therefore, the extra time caused by synchronization

functions for each block is (TSyn + TM,syn) Nsyn- Then the kernel execution time

defined by Equation (4.5) can be improved as follows

T (K) — [TmL + TcN rw + (Tsyn + TM,Syn) Nsyn} Np. (4.7)

Figure 4.5(b) is the diagram modified from Figure 4.4(b). It illustrates the

extra time due to a synchronization function in the case that it originally has idle time.

The extra time generated by the synchronization function is Tsyn + Tctsyn (N r w — 1) ,

where Tc,syn is the time due to the set of computational instructions between the

memory instructions and the synchronization function. Therefore, the kernel execu

tion time defined by Equation (4.6) can be improved as

T (K) = \Tm + Tc + Tc l (N rw - 1) + (TSyn + Tc,Syn (NRW - 1)) NSyn} N P. (4.8)

4.1.4 Control Flow Cases

In kernels, control flow statements, such as i f , e lse , sw itch, fo r, do, and

w hile, may cause branch divergence in a warp, meaning that threads in a warp

execute different code paths. Once threads in a warp hit a diverging point, the

warp sequentially executes each branch path taken by disabling threads that are not

on that path. When all paths complete, the threads re-converge back to the same

46

execution path [3] [35]. Consequently, branch divergence prolongs the execution time

by increasing the number of instructions.

L isting 4.1: An example of pseudo code that results in branch divergence
1 tid = threadldx.x;
2 if t i d is an even number th en
3 operation A;
4 else
5 operation B;
6 end

For instance, the code in Listing 4.1 describes that half of the threads in a

warp do operation A, another half do operation B. Suppose that there are 8 threads

in a warp, once they hit the i f statement, t l , t3, t5, and t7 have to wait until tO, t2,

t4, and t4 finish operation A. Then t l , t3, t5, and t7 will do operation B. If operations

A and B take 4 clock cycles each, the warp will take 8 clock cycles to execute the

operations in the i f - e ls e statement.

Another possible issue that may occur when using shared memory is bank

conflicts. Since shared memory in an SM is separated into a certain number of banks,

there is a possibility that two or more threads may access different data in the same

bank and cause threads to sequentially access that bank. Therefore, the time to

access shared memory is prolonged depending on the hardware architecture.

47

4.2 Results and Discussion

In this section, the code analysis using the example of CUDA code is described.

Additionally, naive and tiled matrix multiplications are used as benchmarks to val

idate the proposed models. The GPU that is used in this experiment is NVIDIA

GeForce GTX 295.

4.2.1 Code Analysis

To illustrate how we obtain the parameters introduced in Section 4.1, the

kernel code of a matrix multiplication listed in Listing 4.2 is analyzed. Suppose

that the programmer specifies the number of blocks and the number of threads in

a block as equal to the dimension of square matrices to be multiplied (dim), which

in this example is 128. Then, Sg = S b = 128. The values of other parameters are

summarized in Table 4.1. Since the shared memory is not used in this kernel, Ms,max

and M sb in Equation (4.5) are omitted.

L isting 4.2: The kernel code of simple matrix multiplication in CUDA
1 int i = blockldx.x;
2 int j = threadldx.x;
3 int dim = blockDim.x;

4 float Cvalue = 0.0;
5 for in t k = 0; k < d im ; k + -I- do
e Cvalue + = A[i*dim+k] * B[k*dim+j];
7 en d
8 C[i*dim+j] = Cvalue;

48

Table 4.1: The values of experimental parameters validated in the model

Parameters Descriptions
N s m — 30 Hardware specification

lOII
i-----
oCO00CMll Equation (4.1)

N RB,max 3 Hardware specification
N rw ,max — 1024 Hardware specification
S w — 32 Hardware specification
Rmax = 16384 Hardware specification
R b = 1024 There are 10 registers required by this kernel. The

CUDA C Programming Guide [3] also shows how
to determine R b -

N rb = min{5,8, [1024 x
32/1281, [16384/1024]}

Equation (4.3)

£ II

"e
r? Equation (4.2)

N r w = [5x128/32] = 20 Equation (4.4)
Tc = 14.5894 Code analysis
Tcl = 0.0644 Code analysis
Tm = 121.0543 Code analysis
Tml = 4.9199 Code analysis

From the pseudo code in Listing 4.2, one can see that each thread declares

five parameters and calculates the position of matrix A and matrix B. Also, when the

thread executes for-loop, there are seven computations in each iteration. Then, the

thread computes the position of matrix C that takes three more computations. Since

each computation takes 20 clock cycles, and the frequency of NVIDIA GTX 295 is

1242 MHz, Tc = (7 +128 x 7 + 3) x 20/1242 = 14.5894 *xs, and TCL = 4 x 20/1242 =

0.0644 ns.

Furthermore, in each iteration of the kernel computation, there are two global

memory accesses: one is reading elements from matrix A, which is coalesced, while the

other is reading elements from matrix B, which is uncoalesced. From our experiment,

a coalesced memory read takes 0.4289 fis and an uncoalesced memory read takes

49

0.4784 /xs. Finally, each thread writes a value of matrix C to the global memory,

which takes 4.9199 /is. Therefore, TM = (0.4289 + 0.4784) x 128 + 4.9199 = 121.0543

/xs, and Tml = 4.9199 /xs.

From the experimental parameters in Table 4.1, one can determine whether

there are idle times by [(Tm — Tm l) / (T c — Tc l)J + 1 = 70, which is more than the

number of resident warps, N r w • Hence there are not enough resident warps to hide

the idle time. Thus T (K) = (121.0543+14.5894 + 0.0644(20-1)) x 1 - 138.8673 /is.

4.2.2 Results

We use naive and tiled matrix multiplications as benchmarks to validate our

model. The sizes of squared matrices vary from 32 x 32 to 512 x 512. The results are

shown by the graphs in Figures 4.6 and 4.7.

Kernel execution time of naive matrix multiplication Kernel execution time of tiled matrix multiplication

o _ o
GO Model

- • - Measured
Model
Measured

o o .

1 1 .
8 £©
<0
20
1
<D § -E §P

•o CO

o _ o
CM

Oo -

32x32 64x64 128x128 256x256 512x51232x32 64x64 128x128 256x256 512x512
Matrix size

(a)

Matrix size

(b)

Figure 4.6: The kernel execution time from the performance model compared to
the measurement of: (a) naive matrix multiplication; (b) tiled matrix
multiplication

50

Percentage of error
oo

Naive Matmul
- Tiled Matmulo _

00

CTlg-« <o
co>

o _

£

o _

o -
32x32 64x64 128x128 512x512

Matrix size

Figure 4.7: Percentage of error of the performance model compared to the measure
ment for both benchmarks

Figure 4.6(a) illustrates the kernel execution time of the naive matrix multipli

cation estimated by the proposed performance model compared to the measurement.

For the matrix size of 32 x 32, the execution time from the model is only 0.005

millisecond different from the measurement, and 0.015 millisecond different for the

matrix size of 64 x 64, even though the graph in Figure 4.7 indicates that the

percentage of error is relatively high. This is because the execution times for both

cases are very small. For the matrix size o f5 1 2 x 5 1 2 , the execution time from the

model is 1.3 ms different from the measurement, or approximately 16% error.

Figure 4.6(b) illustrates the kernel execution time of the tiled matrix multipli

cation estimated by the model compared to the measurement. Again, the analytical

execution time from the model differs from the measurement by 0.002 millisecond for

the matrix size of 32 x 32, and 0.003 milliseconds for the matrix size of 64 x 64. For

the matrix size of 512 x 512, it differs from the measurement by 0.175 millisecond, or

approximately 11% error.

Both Figures 4.6(a) and 4.6(b) also indicate that the execution time from the

model follows the measurement will. Figure 4.7 shows that, for both benchmarks, our

model is more accurate when the size of the matrix is practically large enough.

In conclusion, the proposed performance model shows improvements of the

kernel execution time estimation for a GPGPU application, which considers memory

access types and the impacts of other important factors such as synchronization

functions, branch divergence, and bank conflicts. It has also suggested that the global

memory latency is varied depending on the type of memory access and the data type.

The results have also indicated tha t our performance model is more accurate when

the data size is practically large enough.

CHAPTER 5

GPU APPLICATION PERFORMANCE VS
CHECKPOINTS

Since a checkpoint restart mechanism can sustain application execution and

performance by reducing the recomputing time when failures occur [11], [31], the

purpose of this work is to optimize fault tolerance costs, while balancing the cost

factors and the application performance. We propose mathematical models to address

the following:

1. An optimal number of nodes for maximum system reliability and the desired

application performance.

2. Near optimal checkpoint placements that mitigate system failures but still

maintain the desired performance level.

In previous work [11], [31], a checkpoint/restart protocol that aims to reduce

the GPU checkpoint cost and rollback using a latency hiding strategy has been

proposed. Additionally, it has been argued, [31], that only cost reduction is not

enough to minimize the wasted time due to a system failure. This is because the

wasted time is dominated by the recomputing time.

There are existing checkpoint scheduling models that aim to minimize wasted

time. Liu et al [12] proposed a scheme to derive a sequence of checkpoint placements

52

53

that uses the theory of a stochastic renewal reward process. Although their model

targets a large-scale HPC system, it can be applied to any system as long as the

system reliability is derivable.

The study here is based on the reliability models presented by Gottumukkala

and Thanakornworakij [14] [15]. However, the fc-node system is extended such that

each node has a co-processor, for instance, a GPU. In addition, the proposed check

point scheduling model is an enhancement of Liu et al [12] and Niehamon et al [13]’s

models in the sense that the system is a heterogeneous system and the model relies

on the two-step checkpoint/restart protocol.

5.1 Application Performance and System Reliability

Since the system to be considered is a GPU cluster, the major factor that

impacts the performance and reliability of the system is the number of nodes, denoted

by k. Theoretically, when k increases the application performance increases, but the

reliability decreases. Thus, the performance improvement can be determined as

PT = = 1 - (5.1)
T s Ts ’ v '

where Ts is the completion time on a single-node, and Tp is the completion time on

a k-node system. For single kernel GPU programming, T s is the sum of the kernel

execution time (Tk), host-to-device memory copy (7 h d), device-to-host memory copy

(T d h), the execution time on the host (Tc) , and the overhead caused by parallelization,

such as data communication between nodes (TPo) [36].

For a node-wise GPU environment, the sequential completion time is defined

as

Ts = Tk + Thd + Tdh + Tc . (5.2)

Assuming that the computation is data parallelizable with load balancing

(the data to be executed are equally distributed across the compute nodes), Tk is

completely parallelizable; i.e., it is divisible by k. Yet, the data transfer time between

the CPU and the GPU on each node depends on the amount of data the node receives.

Therefore, only parts of TpD and TDH can be reduced by the distribution. Moreover,

Tc can also be partially divisible by k. Let f HD, f dh, and f c be the fractions of THd ,

Td h , and Tc that can be distributed, respectively. Amdahl’s law [37] suggests that

Tp > - (Tk + JhdThd + JdhTdh + f c T c)

+ (1 — fHD)TnD + (1 — }dh)Tdh + (1 ~ fc)Tc + TPo ■ (5.3)

To describe the system reliability, the time-to-failure (TTF) for each node is

assumed to follow a Weibull distribution. For simplicity and without loss of generality,

the failure rates are assumed to be equal (A = Aj = A2 = A3 = . . . = \ k). Also, once a

node fails, the entire computation is assumed to fail. Therefore, the probability that

the system will survive beyond time t is expressed as

S(t) = e~kXiC, (5.4)

where t is measured from the moment that the system starts until the application is

completed, and c is the shape parameter of the Weibull distribution for each node

55

For the purpose of estimating Tp and S(t), where t = Tp, the proportions

of Tk , Thd, Td h , Tc , and TPo to Ts are assumed to be 0.75, 0.02, 0.01, 0.20, and

0.02, respectively. However, these numbers are just an example to demonstrate the

applicability of the model. The parallelizable fractions are fuD = 1, foH = 1, and

f c — 0.90. Moreover, Ts is scaled to an extended period of time (e.g., 15 days) in

order to study the impact of the system reliability.

To determine if an application has acceptable performance and reliability,

the graphs of the application performance against the system reliability are plotted.

Figure 5.1 shows the probability of survival for different values of the Weibull shape

parameter, c, the number of nodes, k, and the failure rates, A. The y-axis represents

the survival probability of the system. The x-axis represents the number of nodes in

a logarithmic scale. The percentage of performance improvement for each value of k

is presented in parentheses beneath log10 k.

In Figure 5.1, the study shows that the system reliability, S(t), can increase

with a growth in k before it ultimately decreases. This can be interpreted as being

due to the fact that Tp depends on k. The completion time Tp decreases with an

increase in k. Moreover, as c becomes larger, the system tends to be less reliable.

There is evidence, [14] and [15], that time-to-failure follows a Weibull distribution. It

is known that for large c values, the Weibull becomes more symmetric, approximating

a normal distribution. Hence, in this work, we consider the values of c between 1 and

2, where the Weibull failure rate decreases with time (c > 1) and c is not large enough

for the Weibull to approximate normal. Additionally, we consider the system from

the start to the first failure.

56

c -1 .1

Performance
Lambda = 1/(1000 years)
Lambda = 1/(100 years)
Lambda = 0.00005
Lambda = 0.0001

0 0.8 -

1 0.6 -

1 * 5 0 .4 -

•0 .2 -

0 .0 -

2 3.53275437899250 1

Iog10 (k)

(a)

c « 1 .3

Performance
Lambda 9 1/(1000 years)
Lambda 9 1/(100 years)
Lambda 9 0 00005
Lambda 9 0.0001

0 0.1

*5 0.4 -

0 2

0.0

2 3.53275437899250 1
log 10 (k)

(c)
c»1.T

Performance
Lambda 9 1/(1000 years)
Lambda = 1/(100 years)
Lambda 9 0.00005
Lambda = 0.0001

0.8 •

ts.
xj *5 0.4 -

•0.2 -

0 .0 -

2 3.53275437899250 1

loglO (k)

(e)

Performance
Lambda = 1/(1000 years)
Lambda = 1/(100 years)
Lambda 9 0.00005
Lambda 9 0.0001

2 o 0.4 -

.0.2 -

0.0 -

2 3.53275437899250 1
Iog10 (k)

(b)

Iog10 (k)

(d)

c ■ 1.5

Performance
Lambda = 1/(1000 years)
Lambda 9 1/(100 years)
Lambda = 0.00005
Lambda 9 0.0001

2 *6 0.4 -

0.2 -

0 .0 -

0 1 2 3.5327543789925

c* 2 .(

Performance
Lambda 9 1/(1000 years)
Lambda = 1/(100 years)
Lambda 9 0.00005
Lambda 9 0.0001

0 0.1

2 *5 0.4 -

.0.2 -

0.0
2 3.53275437899250 1

togiO (k)

(f)

Figure 5.1: Probability of survival for different values of c and k from Equation (5.4)

57

The graphs in Figure 5.1 also show the system reliability of the given applica

tion for different values of A. Since the system reliability decreases and application

performance increases with a growth in the number of nodes, one can identify a

number of nodes k that has acceptable levels of reliability and performance. For

instance, from Figure 5.1, one can choose, for a given curve, a value for k that would

give an acceptable reliability and performance. For example, it is seen from the curve

in Figure 5.1 (a), for A = l/1000yrs that one can choose a k value with performance

close to 96 percent that has a reliability close to 1.

5.1.1 Predicting the System Size from the Maximum System Reliability

Let p be the parallelizable part of the program, defined by

P = Tk + / h d Thd + Jd h Tdh + f c T c , (5.5)

and s be the sequential (non-parallelizable) part of the program, defined by

s = (l - I h d) Thd + (1 - f DH) Tdh + (1 - f c) T c + T P 0 . (5.6)

Therefore, by Amdalh’s law [37], the parallel application completion time can

be expressed as

Tp = 1 + s - (5-7)

To find the optimum k that maximizes S(Tp,k), one must solve the following

equation
r\

— S{TP, k) = -A { k c T cP lT'P + 7 » e - * A7> = 0,
OK

(k cT'p + TP) T c~l = 0.

58

Because T'p = —p /k 2,

fcCr P + r P = - ^ + (| + s) = o .

Hence,

k = (5.8)

Since k must be at least 1, Equation (5.8) indicates that, for the system

reliability with a Weibull-distributed failure intensity, c must be larger than 1. In

addition, the proportion of p over s must also be at least l / (c — 1). Furthermore, one

can predict the improvement in application performance from Equations (5.1) and

(5.3).

5.1.2 Predicting the System Size from an Expected Performance

In the previous section, we have proposed a model to determine the optimum

k that gives the maximum system reliability. However, typical programmers focus

on the performance improvement without considering the system reliability when

deploying parallel programming on a large scale system. In this section, a model that

identifies the optimal k value for a desired performance level is proposed.

The application problems are categorized into two cases: non-scalable and

scalable workload. Since Amdahl’s law is used for explaining the speed improvement

when the execution time is related to the problem size, Amdahl’s law is applied to

the former case. For the latter case, Gustafson’s law is used because Gustafson’s law

states that for a scalable problem that maintains a fixed execution time, the speedup

is a linear function of system size.

59

5.1.2.1 Non-scalable Workload

For a fixed problem size, the workload does not grow when more nodes are

deployed. Therefore, the completion time decreases as the number of nodes increases.

According to Amdahl’s law [37], Ts = p + s — Tpo, and TP = p / k + s. Since

Pr = 1 — Tp/Ts, Tp = Ts(1 — Pr)• As a result,

where Ts(1 — Pr) — s > 0. Hence, Pr < 1 - s/Ts-

5.1.2.2 Scalable Workload

For a scalable problem, more nodes are added to the system as the problem

size increases. Gustafson’s [38], [39] suggests that if the workload is scalable according

to the number of nodes, Tp is fixed, while Ts is scaled by k. Let Tp — Tk + Thd +

TDh + Tc + Tp0 = p + s. Consequently,

where Pr ^ 1.

Once k and Tp are determined by the models indicated by Equations (5.9),

and (5.10), the system reliability can be predicted by Equation (5.4). However, if

Ts — k(TK + I h d Thd + I d h T d h + IcTc)

+ (1 — Jh d)Thd + (1 — /d h)T d p + (1 — f c)T c

kp + s + Tp0 ■

From Pr = 1 — Tp/Ts> Ts — TP/(1 — Pr). Thus,

(5.10)

the reliability is unacceptably low, meaning that the survival probability is below

the baseline specified by the programmer, the checkpoint/restart mechanism may be

needed in order to increase the system reliability.

5.2 Checkpoint Scheduling

In a GPGPU environment, a checkpoint will have to be performed on both

GPU and CPU during the GPGPU kernel execution. Besides, a typical checkpoint is

performed only on the CPU. In addition, to maintain data correctness, a checkpoint

must not be allowed during data transfer.

To find an optimal checkpoint placement, we enhance an original optimal

checkpoint model [12], [13] for an HPC system. Let Cq and Cc be checkpoint costs

from the GPU to the CPU, and from the CPU to a reliable storage on a A;-node

system, respectively. However, the GPU checkpoint latency (the time to transfer

the data from the GPU to the CPU on a /c-node system) can be estimated by the

device-to-host memory transfer time. Therefore, Cq is defined as

Ca = Og + + (1 _ f DH)TDH, (5.11)

where 0% is the time spent on a checkpoint process.

Moreover, the proportion of kernel execution on k nodes is T x / k T P . The

proportion of CPU execution on k nodes is [fcTc + k (1 - f c) T c] / k T P . Thus, the

checkpoint cost for a GPGPU application becomes

61

Furthermore, let R c be the CPU recovery cost of a k-node system. Then, the

GPU recovery cost of the k-node system is estimated by

Ra = Og + ! hd^ md + (1 - f „ D)Th d , (5.13)

where Oq is the time spent on a recovery process.

Similarly, the recovery cost can be evaluated by

R = VFp [Tk R g + {Tk + f c Tc + k (l - f c) T c) R c]. (5.14)

Let n(t) be the checkpoint frequency function, such that

ptm
1 = / n(t)dt, (5.15)

" t m —1

where tm, (m = 1 ,2 ,3 ,...) is the m th checkpoint placement, and to = 0. Let Tj

be a random variable representing the TTF, and ip be a rollback coefficient that is

ranged between 0 and 1. Note that the rollback coefficient can be estimated by the

algorithm presented by Liu et al [12]. The number of checkpoints from the system

start until a failure occurs is given by C J0T/n(t)df. Also, according to [12] and [13],

the recomputing time can be approximated by

(5.16)

Consequently, the wasted time is expressed as

W(T,) = C / n(T)dT + - £ r - + R. (5.17)
Jo r cG/ j

Let f (t) be the probability density function (pdf) of the system TTF. The

expected wasted time becomes

/•oo r f t

E [w] - [\ c L n{T)iT+W)+R. (5.18)

62

Therefore, the optimal checkpoint frequency function that minimizes the ex

pected wasted time can be expressed as

(5.19)
c] j s (t y

From the probability of survival described by Equation (5.4), the distribution

of time-to-failure can be expressed as

c— 1 *—k\tcf (t) = k \ c t c e

Therefore, from Equations (5.4), (5.19), and (5.20), we have

n

From Equation (5.15), it is seen that

i = f \ f lVkx^dt
Jtm-i V ^

c T 1
2 I k X c i p i ^c+i

C

tn

tm—1 j

2c + 1 V c

Thus, tm can be obtained by

c + 1
tm

C s±i
+ tm- 1

2
c+1

k X a p

Since tQ = 0,
2

c+1

and

t%
c + 1 C

k \ c (p
+

ctp

c + 1 C_
k\c<p

c+1

(5.20)

(5.21)

(5.22)

Therefore, by induction, we obtain

t”' = (m — \ J l x ^ J ■ <5-23)

That is, for the selected A and c, the sequence of optimal checkpoint placements

tm, m — 1 ,2 ,3 ,..., where t0 = 0, can be obtained by Equation (5.23).

The graphs that illustrate the influence of k , as predicted by Equations (5.8),

(5.9), and (5.10), on the checkpoint interval, are shown in Figure 5.2.

From Figure 5.2 (a) (c), the results show that, as k increases, the checkpoint

frequency decreases. On the other hand, when the application performance becomes

a criterion (Figure 5.2 (d)-(i)), more nodes are needed in order to improve the

performance, resulting in lower reliability. Hence, more checkpoints are needed to

mitigate the effects of failures, leading to a smaller checkpoint interval. It can also

be seen that the checkpoint interval decreases when A increases (an increase in A

decreases the reliability of the system). Furthermore, when comparing the graphs

horizontally, it is seen that as c increases, the checkpoint interval decreases because

the system becomes less reliable. Therefore, more checkpoints are needed.

64

\ 40-

\ 2 0 -

— Lambda ■ 0.001
----- Lambda - 0.0005
----- Lambda ■ 0.0002

Lambda * 0.0001

(a)

5 2 .0 -

§1 .5 -

l10'
c 0.5 -

8 0.0 -

k - 95

----- Lambda® 0.001
—— Lambda 0.0005
— Lambda® 0.0002
— Lambda* 0.0001

1 3 5 7 9 11 14 17 20 23 26

(d)
c * 1 .1 , k - 20

| 12

% 10
% 8

Lambda * 0.001
Lambda * 0.0005
Lambda * 0.0002
Lambda = 0.0001

4 5 6 7 8 9

(g)

14
Lambda * 0.001
Lambda * 0.0005
Lambda = 0.0002
Lambda = 0.0001

I 12

6

4

m

(b)

Lambda * 0.0002

2 0.0

m

(e)
c - 1.5, k*

B 8

8

4

2

0
m

(h)

Lambda * 0.001
Lambda ■ 0.0005
Lambda = 0.0002

1 *
6
4

2

1 3 5 7 9 11 13 15 17 19 21

(c)
c * 1 . 7 , 9 5

.2 .0 - Lambda * 0.001

0.0

m

(f)

B Lambda * 0.0005
Lambda * 0.00026

4

2

* 0
1 3 5 7 9 11 13 15 17 19 21

(i)

Figure 5.2: The time between two consecutive checkpoints when: (a)- (c) k is
predicted by the maximal reliability expressed by Equation (5.8); (d)-(f)
k is predicted by the desired performance with fixed workload expressed
by Equation (5.9); (g)-(i) k is predicted by the desired performance with
scalable workload expressed by Equation (5.10).

5.3 Performance

In Section 5.1, the mathematical models (Equations (5.8), (5.9), and (5.10))

to derive the optimal number of nodes based on different criteria have been presented.

The previous models did not consider the effect of a failure on the application per

formance. However, it is possible that there will be failure occurrence during the

65

computation. This will impact the application performance due to the recomputing

time. As a result, both the effect of reliability and application performance are

considered in this section. Thus, the reliability-aware performance model can be

denoted as follows:

p = i _ T.L f . (5 24)
Ts + E[Tbly

where E[Tbk] is the expected recomputing time for an application running on k nodes,

and Tfci is the expected recomputing time for an application running on a single node.

These recomputing times can be expressed as
rTp
/ t f (t , k) d t

E\Tm) = -------A ? ! -------- <5-25>
i d£

pip
/ /(*,*:)<

Jo

and

c (k \ y / c \ c ’ J k \
1 _ e - fcATp

7 | - ,A 2 ?)

(5.26)

cAi/c ' V c ’_ y a

1 — eE[Tbi] = -^ ---------------------------, (5.27)

fvwhere 7 (z, y) is a lower incomplete gamma function, 7 (z, y) = I t z~l dt.
Jo

Despite the costs of checkpoint and recovery, it would be of interest to deter

mine if the checkpoint/restart mechanism can increase the application performance

by shortening the recomputing time.

Let E[Wk] and E\W\] be the expected wasted time on a k-node and a single

node systems, respectively. If the ith node is replaced at the j th restart, by substituting

66

Equations (5.20) and (5.21) into Equation (5.18), we obtain

E[Wk] = j ° ° C 1 ‘J ^ V k X c T ^ d r + „>

“ /Jo c + 1

C
ipk X c tc~l

y / C p k X c t^~ kXct°~l e~kxtCdt

+ R k \ c t c *€

+
C<p

k X c t c~l
k X c t c- l e~kxtCdt

POO

+ / R k X c f - lc~kxtCdt.
Jo

Let u = k X t c. Thus,

E[Wk)
c + 1

+

^ ^ f (n)
C (P / ° Y _ M

J o U A /

c + 1
2c

e u d«

c — 1
2c

A: A c
e “ du

+ R ' du
poo

/ e " “Jo
y c

c + 1 (k X) ^

Ck x) ^ /
o/o

= - ^ - V C y : l A- r°u(s£+1)-1e-'tdu
Jo

k Xc
u 2c e “ dw

Therefore,

E{wt } = ^ . ^ r (c+ ± + i) + J c * --------
c + 1 (A;A)2c \ 2c y V c (A;A)

where T(z) is a gamma function.

1
2c J

From the property of the gamma function (r(z + 1) = zT{z)) ,

^ + 0 = £^ r f t r) He nc e ’

E[Wk] =
{k x y .

~kXtc dt

(5.28)

(5.29)

(5.30)

we have

(5.31)

67

Similarly,

The application performance can be expressed as

Therefore, the change in performance is given by the following expression:

? p Tp + E p k) TP + E[Wt]
' Ts + B [r„] Ts + E{W, } ' '

To study the impacts of checkpoints on the application performance for the

predicted k values, Figure 5.3 illustrates the reliability-aware performance that the

application will achieve during deploying or not deploying checkpoints (evaluated by

Equations (5.24) and (5.33)). Again, Figure 5.3 (a)-(c) illustrates the performance

for various values of c and A when k is predicted by Equation (5.8); Figure 5.3 (d)-(f)

shows the performance when k is predicted by Equation (5.9); and Figure 5.3 (g) (i)

presents the performance when k is predicted by Equation (5.10). It is obvious that,

on a large scale system, when deploying checkpoints, the application performance is

better than it will be without checkpoints.

68

■ Perfw/ockpt ■ Perfw/ockpt ■ Perfw/ockpt
«■ 1.1 ■ Perfwithckpt C« 1.5 ■ Perfwithckpt ■ Perfwithckpt

§ 5

I
0.0005 0.0002

Lambda
0.0005 0.0002

lambda
0.0005 0.0002

Lambda

(a) (c)
■ Perfw/ockpt ■ Perfw/ockpt ■ Perfw/ockpt

€■ 1.1 ■ Perf with ckpt c ■ 1.5 ■ Perfwithckpt • Perfwithckpt

m
0.0005 0.0002

Lambda
0.001 0.0005 0.0002 0.0001

m u
0.001 0.0005 0.0002 0.0001

(d) (e) (f)
■ Perfw/ockpt ■ Perfw/ockpt ■ Perfw/ockpt

c ■ 1.1 ■ Perf with dept c * 1.5 ■ Perf with ckpt ■ Perfwithckpt

I I
0.0005 0.0002

Lambda
0.0005 0.0002

Lambda
0.0005 0.0002

Lambda

(g) (h) (i)

Figure 5.3: Comparison of application performance when: (a)-(c) k is predicted by
the maximal reliability expressed by Equation (5.8); (d)-(f) k is predicted
by the desired performance with fixed workload expressed by Equation
(5.9); (g)-(i) k is predicted by the desired performance with scalable
workload expressed by Equation (5.10).

Additionally, in Figure 5.3 (a), the system can gain less performance than that

shown in other figures because, for the maximal reliability, Equation (5.8) suggests

very few number of nodes.

69

5.4 R eal-W orld Case S tu d y

In this simulation, the optimized matrix multiplication algorithm given by [30]

is analyzed as a case study, where the matrix size is 223 x 223 elements. Therefore,

Ts is approximately 30 days; i.e., twice as long as the previous example. Moreover,

the proportions of TK, THD, TDH, Tc , and TPO to Ts are 0.7458, 0.0122, 0.0172,

0.2247, and 0.05, respectively. In addition, f n o — I d h = 1 and f c = 0.78. These

numbers are obtained by the performance model and code analysis presented in [40].

Furthermore, we assume that both host and device memory units are very large.

To illustrate the influence of k values that are predicted by Equations (5.8),

(5.9), and (5.10) on the checkpoint interval, we plot the graphs shown in Figure 5.4.

Similar to Figure 5.2, from Figure 5.4 (a)-(c), our study shows that, as k

increases with c, the checkpoint interval decreases. Although, as shown by Figure 5.4

(d) - (i), k does not increase with c, more nodes are suggested in order to improve

the performance. As a result, the reliability decreases, and more checkpoints are

needed, which leads to smaller checkpoint intervals. Furthermore, as A is also a critical

factor in the reliability model, when A is very small; for instance, A = l/(1000yrs),

checkpoints may not be needed (as shown by Figure 5.4 (a) and (g)). On the other

hand, when A is large, the checkpoint interval is very small, indicating that the system

may take too much computation for checkpointing and may cause a performance drop.

70

Lambda = 1/1000yre
Lambda * 1/100yrs
Lambda » 0.00005
Lambda * 0.0001

I i

1 2 3 4 5 6 7 8 9 10 11
m

(a)
e * 1 1 . k * 1651

I
Lambda * 1/1000ym

— Lambda *1/100yra
— Lambda * 0.00005

Lambda * 0.0001

267 609 9S1 1331 1748 2165 2582

(d)

—— Lambda “ 1/1000yr»
 Lambda *1/100yra
 Lambda-0.00005
 Lambda = 0.0001

1 3 5 7 9 11 14 17 20 23

(g)

Lambda - 1/1000yrs
Lambda * 1/100yr*
Lambda * 0.00005

' Lambda * 0.0001

1 5 9 14 19 24 29 34 39 44 49 54

(b)
e - 1 .5 ,k * 1651

 Lambda * 1/1000yrs
—— Lambda *1/100yr*
— Lambda * 0.00005
— Lambda * 0.0001

1 1242 2949 4656 6363 8070 9777 11639

(e)

Lambda * 1/1000yrs
— Lambda = 1/100yrs
----- Lambda « 0.00005

I — Lambda * 0.0001
\

1 7 15 24 33 42 51

(h)

— Lambda * 1/1000yrs
 Lambda * 1/100yra
—— Lambda * 0.00005
— Lambda *0.0001

C:
1 6 12 19 26 33 40 47 54 61 68 75

(c)
c * 1 .7 ,k * 1651

Lambda * 1/1000yra
Lambda* 1/100yre
Lambda *0.00005
Lambda * 0.0001

1 1658 4412 6966 9520 12306 15324

(f)

V

— Lambda » 1/1000yra
 Lambda *1/100yra
 Lambda * 0.00005
— - Lambda * 0.0001

1 8 17 27 37 47 57 67 77 87 97

(i)

Figure 5.4: Time between two consecutive checkpoints for the case study when: (a)-
(c) k is predicted by the maximal reliability expressed by Equation
(5.8); (d)-(f) k is predicted by the desired performance with fixed
workload expressed by Equation (5.9); (g)-(i) k is predicted by the desired
performance with scalable workload expressed by Equation (5.10).

To study the impacts of checkpoints on the application performance for the

predicted k values, Figure 5.5 illustrates the reliability-aware performance that the

application will achieve during deploying or not deploying checkpoints (evaluated by

Equations (5.24) and (5.33)).

71

■ Perfw/ockpt ■ Perfw/ockpt ■ Perf w/o ckpt
■ Perf with ckpt k - 4 ■ Perf with ckpt k - e ■ Perf with ckpt

f '

l l l l
1/100yre 0.00005 0.0001 1/1000yrs 1/100yre 0.00005 0.0001 ° 1/1000yrt 1/100yr* 0.00005 0.0001

Lambda Lambda Lambda

(a) (b) (c)
■ Perf w/o ckpt ■ Perfw/ockpt c * 1.7 ■ Perfw/ockpt

k> 1651 ■ Perf with ckpt k « 1651 ■ Perfwithckpt k - 1651 ■ Perfwithckpt

■ i m n i m i
1/100yrs 0.00005 0.0001 ° 1/1000yrs 1/100yra 0.00005 0.0001 ° 1/1000yre 1/100yr» 0.00005 0.0001

Lambda Lambda Lambda

(d) (e) (f)

e® 1.1 ■ Perfw/ockpt I c * 1.5 ■ Perf w/o ckpt I c « 1.7 ■ Perf w/o ckpt
k - 10 ■ Perfwithckpt I k - 10 ■ Perfwithckpt 1 k - 10 ■ Perfwithckpt

- m b i n u m
1/100yrs 0.00005 0.0001

Lambda
1/IOOOyr* 1/100yr» 0.00005 0.0001

Lambda
1/100ym 0.00005

Lambda

(g) (h) 0)

Figure 5.5: Comparison of application performance for the case study when: (a)- (c) k
is predicted by the maximal reliability expressed by Equation (5.8); (d)-(f)
k is predicted by the desired performance with fixed workload expressed
by Equation (5.9); (g)-(i) k is predicted by the desired performance with
scalable workload expressed by Equation (5.10).

Figure 5.5 (a) (c) illustrates the performance for various values of c and A,

when k is predicted by Equation (5.8). As Equation (5.8) gives k = 1 when c = 1.1,

there is no performance gain. Besides, since k increases with c, the performance in

Figure 5.5 (c) is larger than in Figure 5.5 (b). Nontheless, the checkpoint can be

advantageous only when A and c are small.

72

Figure 5.5 (d) (f) shows the performance when k is predicted by Equation

(5.9). In this case, k is large, leading to high performance but very low reliability.

The system spends too much time handling the checkpoint processes. Therefore, the

checkpoint can be beneficial only when c is small enough and A is very small.

Similarly, Figure 5.5 (g)-(i) presents the performance, when k is predicted by

Equation (5.10). Since k suggested by Equation (5.10) is not as large as that by

Equation (5.9), the performance is lower. However, in this case, the checkpoint can

be more advantageous when A is small.

In Section 5.1, the system that can function until the first failure has been

considered. In reality, however, after a failure occurs at one node, the other nodes

continue to function. As a result, after the j th restart, the time-to-failure, x tJ, of the

ith node that did not fail has an excess life distribution [14], [15]. Hence, the failure

intensity can be described as

5.5 The Model with an Excess Weibull

k \ c t c *e kXtc if the ith node is replaced

at the j th restart,
f (t) = <

Ac (%ij + t)c Je A£>=i[(XiJ+<) if the ith node is not replaced

V
at the j th restart,

(5.35)

and the probability of survival can be expressed as

if the ith node is replaced at the j th restart,

if the ith node is not replaced at the j th restart.

(5.36)

73

If the ith node is not replaced at the j Ul restart, the checkpoint frequencyth

function becomes

n(t) =
' \

C — 1 (5.37)
i = 1

Again, substituting Equation (5.37) into Equation (5.15), we obtain

l (p \ c rin
1 =

C

ft-m

” tm — 1\
+ *)c_l dt- (5.38)

i = 1

Equation (5.38) can be solved numerically by varying tm and fm_i . Moreover,

the performance of the application can be evaluated as described by Equations (5.24)

and (5.33). However, in this case, the expected recomputing time on a /e-node system,

E[Tbk], becomes

Ac / +
Jo *=lE[Tbk) = (5.39)

1 _ e - x T,i=i[(xa + t)c- xij]

For a single-node system, the excess time after the j th restart is denoted by

Xj. Therefore, E[Tbi] becomes

E[Tbl]

eXxi
cA<

T p e - ^ +Tp)e~xi]

1 _ e -A!(^+Tp)c-x5]

where 7 (z, y) is a lower incomplete gamma function.

In addition, The expected wasted time J5[H4] and E[IFi] becomes

E[Wk) = 1/ C v? A3 c3

, (5.40)

/•OO fe f t

/ y] (x i j + <)c_1 e_AEl=l (l ^ +t)c / *
Jo [i=1 Jo \

/OO

X] + r) c- 1d r
i = i

dt

y (x i j + t)c-1e dt

+ R , (5.41)

By solving Equations (5.39), (5.40), (5.41), and (5.42) numerically, one can

determine, from Equation (5.34), the change in application performance due to the

checkpoint/restart mechanism.

5.6 Conclusion

In the real world, application performance and system reliability are key factors

that influence large scale HPC applications. However, as the application performance

increases with the number of nodes, the system reliability decreases. The impacts of

these two critical factors on a heterogeneous HPC system, where the failure intensity

of each node follows a Weibull distribution, are studied. Several models have been

proposed in order to determine an optimal number of nodes based on three different

criteria: maximal reliability, the desired performance of an application with a fixed

problem size, and the desired performance of an application with a scalable problem

size. In addition, a checkpoint scheduling model for a heterogeneous system with

k nodes has been presented. Moreover, we have shown that the checkpoint/restart

mechanism based on our checkpoint scheduling model can increase the performance

of an application when failures occur as long as c and A are small.

CHAPTER 6

GPGPU OPTIMIZATION

One of the major concerns in GPGPU optimization is coalescing in global

memory. The data to be operated by the GPU multiprocessors are stored in the

GPU’s DRAM called global memory. Since the global memory is an off-chip memory

unit, global memory access is very expensive. In some cases [3], it may take over 400

clock cycles to read coalesced data (the data that are aligned properly in the global

memory) required by all threads in a “warp” , which is a group of threads that execute

instructions simultaneously (See more detail in Section 6.1.). For uncoalesced data

access, it will take much longer due to multiple round-trip accesses. Consequently, un

coalesced global memory access prolongs the memory latency, resulting in a decrease

in GPGPU application performance [3].

There are several existing techniques that attem pt to reduce the latency due to

uncoalesced global memory access. A common way to solve this issue is to promote

the use of shared memory. However, shared memory is much smaller than global

memory and can lead to bank conflicts in shared memory. This happens when the

bandwidth of the shared memory is too small to serve multiple data accesses at a

time [3].

75

76

Another performance improvement technique is memory rearrangement. This

technique aims to re-align data in global memory such that they are coalesced before

data access during kernel execution.

This research proposes memory rearrangement techniques to remedy uncoa

lesced global memory access patterns by using 2-dimensional matrix transpose and

3-dimensional matrix permutation. The proposed techniques can be applied to many

common memory access patterns. The cost benefit of these techniques will also

be discussed in detail. Moreover, the analytical results reveals that the proposed

techniques are beneficial if the transformed array/matrix is frequently accessed.

6.1 Coalescing VS Uncoalescing

To understand the memory access patterns in the GPU, there are two termi

nologies that have to be introduced in this section: coalescing and uncoalescing.

For the most efficient data access, the data requested by threads in a warp

should be aligned properly in the same segment, which is called coalesced memory

alignment.

Figure 6.1 illustrates the coalesced and uncoalesced memory access patterns.

Figure 6.1 (a) shows the array/matrix elements required by threads in a warp (rep

resented by light blue arrows) are aligned in the same segment 0 - 3 1 . This access

pattern is called coalesced memory access. On the other hand, Figure 6.1 (b) shows

a single stride uncoalesced memory access pattern with an offset of / and a stride

of d. That is the array/m atrix elements accessed by threads in a warp start at the

77

f th element, and each access is skipped by d elements. Listing 6.1 shows the sample

GPU code that generates this single stride memory access pattern.

31.32

(c)

Figure 6.1: Memory access pattern categories: (a) Coalesced memory access, (b) Sin
gle stride uncoalesced memory access, and (c) Double stride uncoalesced
memory access

L isting 6.1: GPU code that generates a single stride memory access pattern
1 idx = blockldx.x * bloekDim.x + threadldx.x;
2 C[idx] = A[idx] + B[d * idx + f];

For a double stride uncoalesced memory access pattern, as illustrated by Figure

6.1 (c), there are two stride parameters, di and dj. Again, the array/m atrix elements

requested by threads start at the f th element, and the two consecutive accesses are

separated by dj elements. However, the next thread block will request for the set of

elements that is di separated from the previous set of elements. The sample GPU

78

code that generates a double stride memory access pattern is shown in Listing 6.3,

which is translated from the CPU code with double loops (two iterative parameters)

in Listing 6.2.

L isting 6.2: CPU code with a double stride memory access pattern
1 for i = 0; i < CountJ; ++i do
2 for j = 0; j < CounLj; ++j do
3 C[i+j] = B[d_i*i + d_j*j];
4 end
5 end

L isting 6.3: GPU code that translated from the CPU code in Listing 6.2, which
generates a double stride memory access pattern
1 xidx = blockldx.x * blockDim.x + threadldx.x;
2 yidx = blockldx.y * blockDim.y + threadldx.y;
3 C[xidx + (n_C * yidx)] = B[(d_l * xidx) + (d_2 * n_B * yidx) + f];

Since the uncoalesced memory access pattern causes the data needed by a

warp to be scattered in the memory, the warp needs multiple round trips in order to

access all the data required. Consequently, the memory latency is prolonged, which

decreases the application performance.

6.2 M em ory R earran g em en t

In this section, the techniques for solving uncoalesced global memory, called

memory rearrangement, are described. These techniques deploy matrix transpose

for a 2D matrix and permutation for a 3D matrix. The uncoalesced memory access

problems are categorized by the number of strides. In this research, only two problem

cases are discussed: single stride and double stride access patterns.

79

6.2.1 S ingle S tride

From the GPU code in Listing 6.1, the elements of matrix B are read by the

stride d and the offset / . To eliminate the uncoalesced global memory access, a 2D

matrix is constructed such that the width of the 2D matrix is equal to the stride d.

Note that, for the best utilization, Count should be a multiple of a warp size, Sw-

The example is given by Listing 6.5, which is the GPU code translated from the CPU

code in Listing 6.4, and illustrated by Figure 6.2.

L isting 6.4: Array access pattern with a single stride (CPU code)
1 for i = 0; i < Count; ++i do
2 C[i] = A[i] + B[3 * i + 5];
3 en d

L is tin g 6.5: Array access pattern with a single stride (GPU code that is a
parallel version of the CPU code in Listing 6.4)
1 idx = blockldx.x * blockDim.x + threadldx.x;
2 C[idx] = A[idx] + B[3 * idx + 5];

The CPU code in Listing 6.4 can be written in parallel GPU code as shown

in Listing 6.5. The elements of matrix B are read by the stride d = 3 and the offset

/ = 5 as shown in Figure 6.2 (a). Figure 6.2 (b) shows the 2D matrix with the width

equal to the stride d = 3. The 2D matrix is transposed, resulting in the transformed

array with the coalesced access pattern illustrated in Figure 6.2 (c).

80

 o i i m 3iin 7 w m w zmMm aM*vm pr\nM
(a)

(c)

Figure 6.2: Array B transformation associated to the sample code in Listing 6.4 and
6.5 (a) The original array; (b) The 2D matrix is constructed; (c) The
transformed array.

Similarly, each of the matrices in Listing 6.6 has a stride d — 3. Therefore, the

technique illustrated in Figure 6.2 must be applied to arrays A, B, and C.

L isting 6.6: Array access pattern with a single stride in a loop-statement
1 for i = 5; i < Count; i += 3 do
2 C[i] = A[i] + B[i];
3 end

In a specific case as shown by Listing 6.7, B is a 2D matrix in which only

the elements in the diagonal line will be accessed. Hence, the reference address of an

element in B can be determined by r e f = B[inB + i] = B[(nB + 1)i], where n B is the

width of matrix B. That is, the stride d = n B + 1. Then the technique illustrated in

Figure 6.2 can also be applied to this case as shown in Figure 6.3.

81

Listing 6.7: An access pattern that requires only elements on the diagonal line
of a 2D matrix___
1 for i = 0; i < Count; ++i do
2 C[i] = B [i] [i];
3 end

n B+ 1

13 14 I

1 2 3 4
6 7 8 9
11 12 13 14

(a) (b)

Figure 6.3: Transformation of the 2D matrix that only the elements on the diagonal
line are accessed as given by Listing 6.7; (a) Original Layout, (b) Modified
matrix with the width of n# + 1.

6.2.2 Double Strides

For this problem category, a 3D matrix structure has to be introduced in order

to further describe the double stride memory access patterns.

From a 3D matrix shown in Figure 6.4, the reference address of an element in

the matrix can be determined by r e f = xnp + yp + z, where x is the counter that

counts along the height (m) of the matrix, y is the counter that counts along the

width (n) of the matrix, and k is the counter that counts along the depth (p) of the

matrix. This implies that the threads in a warp will access elements along fc-direction.

Given a CPU code shown in Listing 6.2 with two iterative parameters, where di is the

stride on the outer-loop and dj is the stride on the inner-loop, this problem category

can be classified into two sub-categories: when di < dj and di > dj.

82

n

m<

Figure 6.4: 3D Matrix

From the sample code shown in Listing 6.8, there are two strides di = 2 and

dj = 6, i.e., di < dj. A 3D matrix should be constructed such that the depth of

the matrix (/^-dimension) p — Data.Size , where the height m = di and the width

n = dj/di. In addition, since p implies the number of elements required by threads

in a block, p should be equal to a multiple of Sw-

L isting 6.8: An access pattern where di < dj
1 for i = 0; i < Count J ; ++i do
2 for j = 0; j < Count-j; ++i do
a C[i+j] = B[2*i + 6*j];
4 end
5 end

Figure 6.5 shows the outcome of 3D matrix permutation associated with the

sample CPU code in Listing 6.8. From the original layout illustrated by Figure 6.5

(a), the 3D matrix is constructed as shown by Figure 6.5 (b) and permuted by the

order of [2,3,1]. Normally, the dimensional order of a 3D matrix is represented by

[1,2,3], i.e., 1 represents the height, 2 represents the width, and 3 represents the depth

of the 3D matrix, respectively. In this case, the 3D matrix is permuted with the order

83

of [2,3,1], which means that the height of the matrix becomes the depth, the width

becomes the height, and the depth becomes the width. Therefore, the permuted 3D

matrix is presented by Figure 6.5 (c), where the final memory layout is shown by

Figure 6.5 (d).

(a)

(b)

1 I 7 113| 19

5 11 17 23

5 I 11 I 17123*1

(d)

Figure 6.5: ID array with double strides where di < dj; (a) The original layout, (b)
The 3D matrix with m = di, n = dj/di, (c) Permuted 3D matrix with the
order of [2,3,1], and (d) The final layout.

For the case that di > dj (The sample code is shown by Listing 6.9 and the

memory layout is illustrated by Figure 6.6 (a).), the 3D matrix can be constructed

such that m = ck/dj, n — dj, and p — DataSize
di as shown in Figure 6.6 (b). Then

the permutation can be performed with the order of [2,1,3] as shown in Figure 6.6 (c).

Hence, the outcome of the proposed technique is presented by Figure 6.6 (d).

84

L isting 6.9: An access pattern where di > dj
1 for i = 0; i < Count J; ++i do
2 for j = 0; j < Count-j; ++j do
s C[i+j] = B[8*i + 2*j];
4 end
5 end

(d)

Figure 6.6: ID array with double strides where d, > dj\ (a) The original layout, (b)
The 3D matrix with m — di/dj, n — dj, (c) Permuted 3D matrix with
the order of [2,1,3], and (d) The final layout.

To describe an access pattern of a 2D matrix as shown by the sample code in

Listing 6.10, let the dimension of matrix C b e n e x m c, and the dimension of matrix

B be ub x tub- From the code in Listing 6.10, the index of C can be determined

by inc + j- If nc is a multiple of warp size, Sw, C is coalesced. Otherwise, C is

uncoalesced and should be reconstructed, such that n c x m e = n'c x m'c , where n'c

is equal to a multiple of S w •

85

Listing 6.10: Access pattern of a 2D Matrix
1 for i = 0; i < CountJ; ++i do
2 for j = 0; j < Count-j; ++j do
3 C[i][j] = B[3*i][2*j];
4 end
5 end

As shown by Listing 6.10, the index of B can be determined by 3in s + 2j .

That is, the strides dt = 3Ub , and dj = 2. Therefore, di > dj. Thus, the technique

shown in Figure 6.6 can be applied to this case as shown in Figure 6.7. Additionally,

every warp will be coalesced if Count j is the a multiple of Sw-

(a)

1 3 5 7
9 11 13 15
17 19 21 23
25 27 29 31
33 35 37 39
41 43 45 47
49 51 53 55

(b)

Figure 6.7: 2D matrix with double strides; (a) The original layout, (b) The final
layout after 3D matrix permutation with the order of [2,1,3].

After performing the rearragement process, the outer-loop i can be distributed

among thread blocks, while the inner-loop j is distributed among threads in a block.

In summary, the algorithm explaining the proposed technique is given by

Listing 6.11. This algorithm describes the approach to solve both single stride and

double stride global memory access patterns.

86

Listing 6.11: An algorithm of matrix transformation to eliminate an uncoa
lesced global memory access pattern
1 Detect whether it is a single-stride or a double-strides access pattern by the

depths of the nested loop
2 if single-stride th en
3 Detect the stride d and the offset f
4 Construct a 2D matrix, where:
5 1. n ~ d
6 2. the first position of the matrix = /
7 Transpose the 2D matrix
8 end
9 else if double-strides then

10 Detect the stride d* and d j , and the the offset f
11 if di < dj th en
12 Construct a 3D matrix, where:
13 1. m = di
14 2. n = dj/di
15 3. the first position of the matrix = /
16 Permute the 3D matrix with the order of [2,3,1]
17 end
18 else if di > dj then
19 Construct a 3D matrix, where:
20 IIr—H

21 2. n = dj
22 3. the first position of the matrix = /
23 Permute the 3D matrix with the order of [2,1,3]
24 end
25 end

6.3 Analytical Models

To discuss the cost of matrix transpose/permutation in order to eliminate

uncoalesced global memory access patterns, it has to be considered whether the data

size is known (predetermined) or unknown before the GPGPU run-time.

6.3.1 Predetermined Data Size

In case the data size is predetermined before the run-time, the proposed

technique can be done during the compile-time on the CPU. In the case of a single

87

stride access pattern, an algorithm of the 2D matrix transpose as shown by the

algorithm in Listing 6.12 yields the complexity of 0(nm).

L isting 6.12: An algorithm for 2D matrix transposition on a CPU
1 for x = 0; x < m ; ++x do
2 for y = 0; y < n; ++y do
a A_t[y][x] = A[x][y];
4 end
5 end

In the case of a double stride access pattern, a 3D matrix permutation algo

rithm on a CPU with the order of [2,3,1] is given by Listing 6.13. Therefore, the

complexity of a 3D matrix permutation is 0(nm p).

L isting 6.13: An algorithm for 3D matrix permutation on a CPU with the
order of [2,3,1]
1 for x = 0; x < m; ++x do
2 for y = 0; y < n; ++y do
3 for z = 0; z < p; ++z do
4 A_p[y][z][x] — A [x] [y] [z];
5 end
e end
7 end

In summary, if the data size is predetermined, the complexity of the compile

time will increase by 0(nm) for a single stride access pattern, and 0 (n m p) for a

double stride access pattern. It is possible that n, m, and p will multiply the matrix

transformtion overhead, but the transformation is done only once. Therefore, the

break-even point between the performance gain from the matrix transformation and

the overhead have to be considered.

88

6.3.2 Unknown Data Size

If the data size is not predetermined before the run-time, the proposed tech

niques have to be applied during the run-time. This section describes the cost analysis

to determine the break-even point and benefit of the proposed technique.

6.3.2.1 Single Stride

For the single stride access pattern, the 2D matrix transpose is performed

to eliminate the uncoalesced global memory access. An optimized matrix transpose

program is illustrated by Figure 6.8 and given in CUDA SDK [30].

TILE DIM

(a)

TILE_DIM
r ^---- \

BLOCKROW S
r*-1

2
3.

m

(b)

Figure 6.8: Tiled 2D matrix transposition where (a) is the original matrix and (b) is
the transposed matrix

89

In t h e p e r f o r m a n c e m o d e ls in t h e p r e v io u s w o rk , w h ic h p r e s e n ts t h e m a t h e

m a t ic a l m o d e ls fo r e s t im a t in g t h e GPU r u n - t im e w ith t h e e f f e c t s o f m a n y p a r a m e te r s

a n d c h a r a c te r is t ic s [40], t h e k e r n e l e x e c u t io n t im e d e p e n d s o n t h e fo l lo w in g fa c to r s :

71771
• T h e g r id s iz e , Sn = ------------n, w h e r e n a n d m a r e t h e w id t h a n d h e ig h t o f

6 ’ TILE_DIM2 6

t h e m a tr ix , r e s p e c t iv e ly . In a d d i t io n , t h e sh a r e d m e m o r y s iz e is TILE_DIM x

TILE-DIM .

• T h e b lo c k s iz e , S b = TILE_DIM x BL0CK-R0WS, w h e r e TILE_DIM is a n in t e g r a l

m u lt ip le o f BLOCK-ROWS. F u r th e r m o r e , BL0CK_R0WS is a n in te g r a l m u lt ip le o f t h e

o mi r i i i i ii TILE-DIMw a r p s iz e , o w . I h e r e to r e , e a c h t h r e a d h a n d l e s ------------------ e le m e n ts .
BL0CK-R0WS

• T h e m e m o r y la t e n c y in t h e k e r n e l,

_ TILE_DIM „ «
T m = ------------------ (CoaLread + b m e m -w n te + G o a l-w n te + Smerruread),

BLOCK-ROWS V

w h e r e CoaLread is t h e t im e t h a t a w a r p r e a d s t h e d a t a fr o m g lo b a l m e m o r y

c o a le s c e d ly , a n d CoaLwrite is t h e t im e t h a t a w a r p w r i t e s t h e d a t a t o g lo b a l

m e m o r y c o a le s c e d ly . M o r e o v e r , Sm em jread is t h e t im e a w a r p r e a d s t h e d a t a

fr o m s h a r e d m e m o r y , a n d Sm em jw rite i s th e t im e a w a r p w r ite s t h e d a t a t o

s h a r e d m e m o r y .

TILE_DIM
• T h e c o m p u t in g t im e in t h e k e r n e l, T c is a fu n c t io n o f

BLOCK-ROWS

M o s t ly , t h i s m a t r ix t r a n s p o s e p r o g r a m s p e n d s m o r e t im e t o m o v e d a t a in a n d

o u t o f g lo b a l a n d s h a r e d m e m o r y . T h e r e fo r e , t h e k e r n e l e x e c u t io n t im e o f t h e m a t r ix

t r a n s p o s e , Ttrans, i s a fu n c t io n o f m e m o r y a c c e s s e s , TILE_DIM , BL0CK_DIM, a n d t h e

m a t r ix s iz e a s d e s c r ib e d b y E q u a t io n (6 .1) .

m nm CoaLread + CoaLwrite + Smerruread + Sm em jwrite
1 trans

N s m N r b TILE.DIM X BLOCK-ROWS
(6-1)

90

6 .3 .2 .2 Double Strides

The double stride access pattern can be eliminated by 3D matrix permutation,

which can be considered in two cases: permuting the matrix by the order of [2,1,3] and

permuting the matrix by the order of [2,3,1]. For permuting the matrix from [1,2,3]

to [2,1,3] the third dimension is fixed. Hence, the 2D matrix transpose can be applied

to each slice along the third dimension [41]. Therefore, Ttrans can be approximated

by Equation (6.2).

^ _ map CoaLread + CoaLwrite + Smemjread + Sm em jw rite (a ^
tTanS ~ N s M N Rb TILE_DIM x BL0CK_R0WS ' ̂ '

However, for permuting the matrix from [1,2,3] to [2,3,1], the grid size can be

71
a p p r o x im a t e ly d e te r m in e d b y S g ~ ------------- n { p + TILE_DIM — l) (m + TILE_DIM — 1) .

t i l e _ d i m 2V a ’

Thus, Ttrans can be approximated by Equation (6.3).

_ nra»(T IL E _D IM) \
Ttrans ~ t ; — zz— ■,----------------~• (CoaLread+ Coal_write+ bm em j'ead+ bm em jvnte).

N s m N r b (BL0CK_R0WS) V ’

(6.3)

6.4 Results and Cost Analysis

In this section, the effects of uncoalesced memory access are studied based on

the proposed technique using sample code in Listing 6.5. They are analyzed in two

cases: when the data sized is known and unknown before the run-time. However, in

the double stride case, the outer-loop can be distributed across thread blocks, the

analytical results of single and double stride cases are not significantly different.

91

6.4.1 Predetermined Data Size

Assuming that the data size is known before the run-time, the matrix transpose

is done during compile-time and is not taken into account here. The results are shown

in Table 6.1. It is obvious that the kernel execution time with the original memory

access is longer than the kernel execution time with the access to the transformed

memory alignment. For instance, to access 218 elements, the original memory latency

is 0.03 ms longer than the transformed memory latency. Additionally, the original

memory access to 220 elements access takes 0.09 ms longer than the transformed

memory access. Thus, the performance gain is on average over 25 percent.

Table 6.1: The comparison between the kernel execution times based on our technique
using the sample code in Listing 6.4 with the original memory access and
transformed memory access.

Count
(elements)

Original memory
latency (ms)

Transformed memory
latency (ms)

Performance gain
(%)

64K 0.03 0.02 33.3
128K 0.04 0.03 25.0
256K 0.08 0.05 37.5
512K 0.14 0.10 28.6

1M 0.27 0.18 33.3

6.4.2 Unknown Data Size and Break-even Analysis

In the case that the data size is unknown before the run-time, the time of

matrix transpose has to be considered. Table 6.2 shows the effect of transformed

memory access using 2D matrix transpose. It is seen that the 2D matrix transpose

(Run-time overhead) takes longer than the time gained from transformed memory

access. Thus, this technique will not be beneficial if the transformed memory is

92

accessed only once or twice. However, it can be beneficial if the transformed memory

is accessed frequently.

For example, to access 218 elements, the 2D matrix transpose takes 0.091 ms,

which is over 3 times the performance gain from the transformed memory access.

Hence, the proposed technique is beneficial if the transposed matrix is accessed at

least 4 times.

Table 6.2: The comparison between the performance gain from the transformed
memory access to the time of 2D matrix transpose

Count
(elements)

Performance gain
from the transformed memory access (ms)

Run-time overhead
(ms)

64K 0.01 0.028
128K 0.01 0.048
256K 0.03 0.091
512K 0.04 0.173
1M 0.09 0.340

6.5 C onclusion

Optimization is a challenging problem. Uncoalesced memory access is one

of the issues that decreases the performance of GPGPU applications. To reduce

memory latency due to uncoalesced memory access patterns, the memory rearrange

ment techniques using matrix transpose/permutation are proposed. The patterns are

categorized by the number of strides. For a single stride memory access pattern, a

2D matrix associated with the stride is constructed. Then 2D matrix is transposed

to rearrange the data in global memory. For a double stride memory access pattern,

a 3D matrix is constructed and 3D matrix permutation is performed. The analytical

models have been discussed, considering whether the data size is predetermined. If

the data size is known before the run-time, the proposed techniques can be applied

during the compile-time. Otherwise, the proposed techniques have to be performed

at the run-time. Our analytical results have shown the performance gain and the

break-even point for the proposed techniques.

Since the proposed techniques can be the most advantageous when the data

size is predetermined, the future work is to predict the data size required by a GPU

kernel execution and detect memory uncoalescing that may occur during the kernel

execution.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Due to the rapid increase in computational performance required to handle

massive data sets, GPUs have been deployed in several HPC systems. GPUs can pro

vide highly parallel computation via several multithreaded processors. However, there

are a few studies that give an insight on both GPGPU performance and reliability.

This dissertation has presented streamed checkpoint/restart (CPR) protocols

for GPGPU that utilize CUDA stream to reduce the checkpoint and recovery costs

in order to minimize the total wasted time. Furthermore, the study has revealed

that even though the costs can be reduced, streamed CPR may not be beneficial in a

long-running application since the wasted time is dominated by the recomputing time.

Consequently, a checkpoint scheduling model to minimize the recomputing time has

also been proposed.

In order to derive effective checkpoint scheduling models, an application run

time is required. Therefore, a performance model for predicting a GPGPU application

run-time has been proposed in this dissertation. This performance model improves the

kernel execution time estimation by considering different memory access types and

the impacts of other factors such as synchronization functions, branch divergence,

and bank conflicts. The results have shown that this performance model can achieve

94

95

higher accuracy when the data size is predetermined and especially, practically large

enough.

Furthermore, in this dissertation, the impacts of application performance and

system reliability on a heterogeneous HPC system have been studied. Due to the

fact that the application performance increases with the number of nodes while the

system reliability decreases, the models to determine an optimal number of nodes

have been proposed. These models are created based on three different criteria:

maximal reliability, the desired application performance with a fixed problem size

and a scalable problem size. In addition, the analytical results have indicated that

the checkpoint/restart mechanism based on the proposed checkpoint scheduling model

can increase the application performance when failures occur.

Moreover, this dissertation has presented an optimization technique to reduce

memory latency caused by uncoalesced memory access patterns. This technique uses

matrix transformation to rearrange data resided in the GPU’s global memory. The

optimization overhead can be estimated by the proposed analytical model. The

analytical results have shown that this technique can be beneficial when the data

size is predetermined or the transformed data are frequently accessed.

In the future, we hope that the models proposed in this dissertation will be

implemented at compiler level to achieve automatic checkpoint and optimization tools

at compile-time.

BIBLIOGRAPHY

[1] Top 500 Supercomputing Sites, http://www.top500.org. Online: Accessed: Dec,

2012 .

[2] General-Purpose Computation on Graphics Hardware, http://gpgpu.org. Online;

accessed: Dec, 2012.

[3] NVIDIA. CUDA C Programming Guide Version 4.0, May 2011.

[4] S. Laosooksathit, A. Baggag, and C. Chandler. Stream Experiments: Toward

Latency Hiding in GPGPU. In Proceedings of the 9th IASTED International

Conference, volume 676, page 240, 2009.

[5] Hong Ong, Natthapol Saragol, Kasidit Chanchio, and Chokchai Leangsuksun.

VCCP: A Transparent, Coordinated Checkpointing System for Virtualization-

based Cluster Computing. In IEEE Cluster, 2009.

[6] Hiroyuki Takizawa, Katsuto Sato, Kazuhiko Komatsu, and Hiroaki Kobayashi.

CheCUDA: A Checkpoint/Restart Tool for CUDA Applications. In PDCAT,

pages 408-413, 2009.

[7] John W. Young. A first order approximation to the optimum checkpoint interval.

Commun. ACM, 17(9):530-531, September 1974.

[8] Paul H Hargrove and Jason C Duell. Berkeley lab checkpoint/restart (blcr) for

linux clusters. Journal of Physics: Conference Series, 46(1):494, 2006.

96

http://www.top500.org
http://gpgpu.org

97

[9] Adam J. Ferrari, Stephen J. Chapin, and Andrew S. Grimshaw. Process intro

spection: A heterogeneous checkpoint/restart mechanism based on automatic

code modification. Technical report, Charlottesville, VA, USA, 1997.

[10] X. Xu, Y. Lin, T. Tang, and Y. Lin. HiAL-Ckpt: a hierarchical application-level

checkpointing for CPU-GPU hybrid systems. In 5th International Conference on

Computer Science and Education (ICCSE), pages 1895-1899, 2010.

[11] S. Laosooksathit, N. Naksinehaboon, C. Leangsuksan, A. Dhungana, C. Chan

dler, K. Chanchio, and A. Farbin. Lightweight Checkpoint Mechanism and

Modeling in GPGPU Environment. Computing (HPC systems), 12:13, 2010.

[12] Yudan Liu, Raja Nassar, Chokchai Leangsuksun, Nichamon Naksinehaboon,

Mihaela Paun, and Stephen L. Scott. An optimal checkpoint/restart model for

a large scale high performance computing system. In IPDPS. IEEE, 2008.

[13] Mihaela Paun, Nichamon Naksinehaboon, Raja Nassar, Chokchai Leangsuksun,

Stephen L. Scott, and Narate Taerat. Incremental Checkpoint Schemes for

Weibull Failure Distribution. International Journal of Foundations of Computer

Science, 21(03):329, 2010.

[14] N.R. Gottumukkala, R. Nassar, M. Paun, C.B. Leangsuksun, and S.L. Scott.

Reliability of a System of k Nodes for High Performance Computing Applications.

Reliability, IEEE Transactions, 59(1):162-169, 2010.

[15] Thanadech Thanakornworakij, Raja Nassar, Chokchai Leangsuksun, and Mi

haela Paun. Reliability Model of a System of k Nodes with Simultaneous Failures

for High Performance Computing Applications, accpted at the International

Journal of High Performance Computing Applications, Oct 2012.

98

[16] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture

with memory-level and thread-level parallelism awareness. SIGARCH Comput.

Archit. News, 37:152-163, June 2009.

[17] Kishore Kothapalli, Rishabh Mukherjee, Suhail Rehman, Suryakant Patidar, PJ

Narayanan, and Kannan Srinathan. A performance prediction model for the

CUDA GPGPU platform. In HiPC, pages 463-472, Kochi, India, December

2009. IEEE.

[18] Yao Zhang and John D. Owens. A Quantitative Performance Analysis Model for

GPU Architectures. In Proceedings of the 17th IEEE International Symposium

on High-Performance Computer Architecture (HPCA 17), pages 382-393. IEEE,

February 2011.

[19] Sara S. Baghsorkhi, Matthieu Delahaye, Sanjay J. Patel, William D. Gropp,

and Wen-mei W. Hwu. An Adaptive Performance Modeling Tool for GPU

Architectures, pages 105-114, 2010.

[20] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and

Andreas Moshovos. Demystifying GPU Microarchitecture through Microbench

marking. 2010 IEEE International Symposium on Performance Analysis of

Systems & Software (ISPASS), pages 235-246, March 2010.

[21] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,

V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition.

SIAM, Philadelphia, PA, 1994.

99

[22] James W. Demmel, Michael T. Heath, and Henk A. van der Vorst. Parallel Nu

merical Linear Algebra. Technical Report UCB/CSD-92-703, EECS Department,

University of California, Berkeley, Oct 1992.

[23] David Bau, Induprakas Kodukula, Vladimir Kotlyar, Keshav Pingali, and Paul

Stodghill. Solving alignment using elementary linear algebra. In Proceedings of

the 7th Annual Workshop on Languages and Compilers for Parallel Computers,

pages 46-60. Springer-Verlag, 1994.

[24] Weng-Long Chang, Jih-Woei Huang, and Chih-Ping Chu. Using elementary

linear algebra to solve data alignment for arrays with linear or quadratic

references, volume 15, pages 28-39, Piscataway, NJ, USA, January 2004. IEEE

Press.

[25] Ann Chervenak, Ewa Deelman, Miron Livny, Mei-Hui Su, Rob Schuler, Shishir

Bharathi, Gaurang Mehta, and Karan Vahi. Data Placement for Scientific

Applications in Distributed Environments. In Proceedings of the 8th IEE E/A CM

International Conference on Grid Computing, GRID ’07, pages 267-274, Wash

ington, DC, USA, 2007. IEEE Computer Society.

[26] Kavitha Ranganathan and Ian Foster. Decoupling computation and data

scheduling in distributed data-intensive applications. In Proceedings of the 11th

IEEE International Symposium on High Performance Distributed Computing,

HPDC ’02, page 352, Washington, DC, USA, 2002. IEEE Computer Society.

[27] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. A GPGPU Compiler

for Memory Optimization and Parallelism Management. In PLDI, pages 86-97,

2010.

100

[28] Michael Bader, Hans-Joachim Bungartz, Dheevatsa Mudigere, Srihari

Narasimhan, and Babu Narayanan. Fast GPGPU Data Rearrangement Kernels

using CUDA. volume abs/1011.3583, 2010.

[29] Hidehiko Masuhara, Satoshi Matsuoka, and Akinori Yonezawa. Implementing

parallel language constructs using a reflective object-oriented language, 1996.

[30] NVIDIA, online, http://www.nvidia.com/object/cuda_home_new.html.

[31] S. Laosooksathit, N. Naksinehaboon, and C. Leangsuksan. Two-level check

point/restart modeling for GPGPU. In 2011 9th IEEE/AC S International

Conference on Computer Systems and Applications (AICCSA), pages 276-283.

IEEE, December 2011.

[32] NVIDIA. CUDA C Best Practices Guide, May 2011.

[33] NVIDIA. PTX: Parallel Thread Execution ISA Version 2.1, April 2010.

[34] Chapter 3 CUDA threads.

[35] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic

Warp Formation and Scheduling for Efficient GPU Control Flow. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 40, pages 407-420, Washington, DC, USA, 2007. IEEE Computer

Society.

[36] Blaise Barney. Introduction to Parallel Computing. Online; Accessed: Jan, 2013.

https://computing.llnl.gov/tutorials/parallel_comp/.

[37] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era. In

IEEE Computer Society, pages 33-38, July 2008.

h ttp : / / www. cs. wise. edu / multifacet / papers / ieeecomputer 08_amdahl _multicore. pdf.

http://www.nvidia.com/object/cuda_home_new.html
https://computing.llnl.gov/tutorials/parallel_comp/

101

[38] John L. Gustafson. Reevaluating Amdahl’s Law. volume 31, pages 532-533,

1988.

[39] John L. Gustafson, Gary R. Montry, Robert E. Benner, C. W. Gear, John L.

Gustafson, Gary R. Montry, Robert, and E. Benner. Development of Parallel

Methods for a 1024-Processor Hypercube. SIAM Journal on Scientific and

Statistical Computing, 9:609-638, 1988.

[40] S. Laosooksathit and C. Leangsuksun. A Performance Model for Predicting

Completion-time of a GPGPU Application. Technical report, 2012. Unpublished

manuscript.

[41] Lung-Sheng Chien. Matrix transpose.

http://oz.nthu.edu.tw / d947207/index_3Ddata.htm.

http://oz.nthu.edu.tw/

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Winter 2014

	Performance modeling and optimization techniques for heterogeneous computing
	Supada Laosooksathit

	00001.tif

