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ABSTRACT

Currently, the most commonly used treatm ents for cancerous tum ors (chemother

apy, radiation, etc.) have almost no method of monitoring the adm inistration of the 

treatm ent for adverse effects in real time. W ithout any real time feedback or control, 

treatm ent becomes a “guess and check” method with no way of predicting the effects 

of the drugs based on the actual bioavailability to the patient’s body. One particular 

drug may be effective for one patient, yet provide no benefit to another. Doctors and 

scientists do not routinely attem pt to  quantifiably explain this discrepancy.

In this work, mathematical modeling and analysis techniques are joined to

gether with experimentation to  gain further insight into the challenges of nanoparticle 

uptake and retention in the bloodstream. Several models are presented here which 

predict both the uptake and retention phases of the experiment. There does exist 

a commonly accepted model of drug clearance in the pharmacokinetics community, 

and it is demonstrated here that this model provides an accurate reflection of reality, 

as observed in experiments, for delivery of gold-coated nanorods. This model is then 

utilized in a state space feedback control framework to regulate the nanoparticle con

centration in the bloodstream. An equal time delay is also introduced in both the 

state and control input for the purpose of studying alternate dosing strategies. This 

study will aid in the prediction of the effects of the drugs in a patien t’s body, thus 

leading to better models for drug regimen and administration.
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CHAPTER 1

INTRODUCTION

Though cancer therapies can be effective, there is almost no way to predict 

the effect that a particular therapy will have on any one individual [34]. As current 

treatm ent dosages are largely determined by the weight of the subject, there is 

almost no way of predicting the efficacy or any adverse effects while the drug is 

being administered. M athematical models and controls have been applied towards 

developing strategies which would determine when and how much of a drug to  inject to 

produce a prolonged and effective therapeutic result [10], [11], [12], [23], [39]. However, 

the combination of mathematical models with real-time clinical da ta  could assist in 

providing better quality control in dosing. Predictive models could further help in 

identifying adverse events prior to the onset of signs and symptoms.

In recent years, clinical studies have been carried out for measurements of the 

uptake and clearance of engineered gold nanoparticles in the tissues of dosed mice 

[18], [26], [27], [28], [29]. These devices are under consideration for a new therapy for 

cancerous tumors. Clinical trials in animals are currently underway to  investigate the 

therapeutic bioavailability of nanoparticles used in the treatm ent of these tum ors in a 

technique known as nanoparticle-assisted phototherm al cancer therapy, such as in [26] 

and [27]. The research presented here investigates the development of m athem atical
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models to estimate in real-time the circulation param eters of models, from which we 

calculate the area-under-the-curve (AUC) and half-life towards a clinical application. 

These particular variables can be telling of the overall retention of the nanoparticles 

[17], [28], as will be discussed in Chapter 2.

In this dissertation, we present a framework for the least error models of the 

experiments th a t can be created in real tim e (that is, within the tim e of which the 

experiment is run). Many different modeling methods were considered for this work 

that dealt with separating the body into different compartments (i.e. the reticulo

endothelial system, the tumor, the lungs, etc.) [17], [20], [37], [38] and also those 

that dealt with only a single compartment (the entire body a t once) [5], [9], [14], 

[15], [22]. It was decided, for this work, to model a single compartment. This is due 

to a lack of clinical data for accumulation in the tum or, clearance by the Reticulo 

Endothelial System, etc. W ithout this data  is not possible to accurately model what 

is happening in the separate compartments of the body. Several different models are 

presented, each of which provides a best fit for different times in the experiments. 

We start with a rational function model which mimics models th a t were found in the 

literature that include both the uptake and retention phases [17]. We then show the 

exponential model in order to have a model which focuses strictly on the retention 

phase of the experiment. Also, in an effort to  improve upon the skewed rational model, 

an absolute value model is presented. Finally, a piecewise function is presented which 

combines a certain desired shape for the injection phase of the experiment and the 

already found exponential best fit for the retention phase.
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Upon completion of these models, statistical tests were employed to  determine 

if the data were correlated enough to take averages without losing generality. The 

Spearman Ranked Correlation test was done on several different pairs of data  sets to 

determine whether or not certain experimental variables were related. The Wilcoxon 

Signed Rank test was then performed to ensure that every value within each individual 

data set was statistically similar. We then averaged each model for each set of data 

and created confidence bounds and prediction intervals. These averaged models, or 

‘Master Mice’, were calculated, along with the confidence and prediction intervals, so 

that, in future experiments, adverse reactions (such as allergic reactions or significant 

clearance rates) may be detected within the time of the  experiment and changes in 

dosage rates can be made accordingly. The ‘M aster Mice’ also provide appropriate 

data sets to test using the controllers th a t are discussed in Chapters 4 and 5.

A Linear Quadratic Regulator (LQR) tracking controller (as discussed in [7] 

and [4]) was then applied to the averaged models, or ‘Master Mice’. This controller 

was implemented on a delay differential equation model and included a tracking fea

ture to regulate the bloodstream nanoparticle concentration to  a desired absorbance 

value (measured in OD). Currently, the controller is only applied to the exponential 

model as this is the most commonly referenced model in the literature. However, as a 

delay differential equation takes the history of the function into account, the injection 

phase of the piecewise model is included here. This controller is further analyzed by 

changing the amount of the initial injection in order to investigate the possibility 

of limiting the total amount of nanoparticles required experimentally. Dirac delta 

functions are then used in place of the continuous tim e controller to  determine the
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efficacy of a discrete amount of injections to control the absorbance level as opposed to 

the continuous injection used in the LQR controller. Finally, a Proportional Integral 

Derivative (PID) controller for a delay differential equation (similar to those discussed 

in [33]) is applied to  the problem in an attem pt to control not only the absorbance 

value (in OD) over time but the area under the curve as well.

The goal of this work is to be able to use the model and controller in real 

time during the injection and elimination phase of nanoparticle adm inistration to a 

subject. The use in real time situations would provide feedback in case of adverse 

reaction or if the dose needs to be increased or decreased according to the subject’s 

reaction. Ideally, the feedback controller would also be used during the experiment 

so that the optimal level of nanoparticles would circulate through the bloodstream 

for the maximum allowable time.

Chapter 2 contains background information of the experimental work th a t is 

has been done to obtain the data  and also describes each of the least error models, 

along with the method that was employed to obtain the models. Chapter 3 describes 

the statistical tests th a t were run on the data  and discusses what the results represent, 

along with a description of the average models with the corresponding confidence and 

prediction intervals. The control strategies and results are discussed in Chapters 4 

and 5. Finally, in Chapter 6  we conclude with observations and future work.



CHAPTER 2 

LEAST ERROR MODELS

2.1 E xperim ental D esign

The objective of the pre-clinical experiment from which the da ta  reported here 

was obtained was to investigate the pharmacokinetic properties of therapeutic gold 

nanorods. These 40-nm diameter gold nanorods were manufactured by Nanospectra 

Biosciences, Inc (NBI) (Houston, TX) and are used for the phototherm al ablation of 

tum or cells [1], [32]. That is, the nanorods are first injected into the bloodstream; 

then, upon collection in the tum or, the nanorods are given laser treatm ent th a t causes 

them to heat to the point of killing the vasculature of the tumor, thus killing the tumor. 

They are used in the experiments from which the da ta  is collected specifically with 

murine colon carcinomas. These tumors are grown on the flank of the mouse just 

beneath the skin until the tum or reaches the desired size. Once the tum or was the 

appropriate size, the nanorods were injected and circulation da ta  was collected.

The data was collected by the O ’Neal group in the Biomedical Engineering 

program at Louisiana Tech University in collaboration with NBI. The real-time blood 

concentration of the nanorods was monitored using a novel non-invasive optical device 

similar to a pulse oximeter [26], [27], [28]. This experimental pulse photometer,

5
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also referred to  as the ‘NanoTracker’, uses the  technique of multi-wavelength pho

toplethysmography [1]. The NanoTracker measures the attenuation of near-infrared 

wavelengths as nanorods are introduced into the  pulsatile bloodstream of the subject 

and quantifies the circulating dose in near real-time in terms of optical density units 

(OD) [26], [27], [28]. An OD unit refers to the quantity of absorbance of the nanorods. 

The quantity of absorbance of the nanorods is indicative of the actual concentration 

of nanorods circulating a t th a t time.

The experiment in which the d a ta  was collected employed two groups of ~20g 

BALB/c mice to examine the variability of nanorod circulation param eters and their 

effects on related clinical pharmacokinetic variables such as tum or uptake. The ~100 

OD nanorods were intravenously injected at dosages of either 4.5/xL/gm (lx ) or 

9 /zL/gm (2x) body weight at the rate of 18/rl/min. At discrete time points post

injection, the NanoTracker was placed on the tail of the mouse and measurements 

were taken a t regular intervals until which time the observed optical density reached 

a level of 1 OD ±10%. The data  was later used to produce a bioavailability curve 

and to compute typical measurements of performance such as AUC and half-life. The 

bioavailability curve th a t was produced here is not the same as th a t which is found 

by any of the least error models presented in this chapter.

2.2 Least Error M odels

It is im portant to be aware that, as the measurements were taken at discrete 

time intervals and not continuously for the duration of the experiment, the highest 

or lowest points in the observed data  do not necessary reflect the actually highest
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and lowest points tha t occur in reality. For this reason, more points are interpolated 

using the observed data points. This process is described in Subsection 2.2.1. The 

data is separated into two phases: the injection phase, or uptake, and the elimination 

phase, or retention, which refers to how long the nanoparticles are actually staying 

in the body. Currently, the literature mostly focuses on modeling the retention phase 

by itself [17]. As it is im portant for this study to  model both phases of the data, 

three different models are created and a minimal search algorithm  is performed 

using MATLAB® in order to  find the best fit between the experimental da ta  and 

the mathematical models.

2.2.1 Error D eterm ination

The function against which the respective models were compared was a piece- 

wise exponential function. This was created by determining an exponential function 

which fit each pair of consecutive experimental da ta  points. The algorithm was 

written to insure the function started at zero for each set of da ta  and also term inated 

at the final data point (as opposed to assuming an exponential decay or rise past that 

point). For the sake of conciseness, this function will be defined as A(t).

Initially, the error was calculated using the standard Euclidian norm, shown

where N  :=  total number of points in A(t).  y — y := the error in the y-direction

This calculation evolved to evaluating the error using the  standard R-squared value

in (2 .1 )

between the model to be found and the approximated experimental function A(t).
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for ease of comparison to  other models in the literature and also because this is the 

more generally accepted error calculation. The R-squared value is defined in (2.2)

r>2 _ i £ < ((*  — Vi)2) fn o\R =  1"  r.Mvi - m ’ ( 2 ' 2 )

where y — y := the error in the y-direction between the model to be found and the 

approximated experimental function A(t )  and yi — y  :=  the difference between the 

function A(t)  and the mean value of .4(f). A model which yields an R-squared value 

close to one is considered a good fit and implies low errors.

Though utilizing the calculated R-squared as the value to  be minimized when 

finding each model was appropriate for comparison purposes, it proved to be a weak 

determination of overall error between a model and A(t )  as it only took the error 

in y-direction into account. It was observed in the models th a t though there may

have been a large difference in the y-direction, the values in the x-direction were

quite close. In order to better represent the overall error for each model, the Total 

Least Squared (TLS) method given in [30] was performed. This m ethod found the 

orthogonal distance between each point on the particular model and the nearest point 

(considering both the x and y-directions) in A(t).  The to tal error in this method was 

defined as the sum of these distances squared. As this value is comparable to  the 

numerator of (2 .2 ), in order to  be able to compare each error calculation with ease, 

the ‘TLS-squared’ value is calculated by replacing the numerator of (2.2) with the 

TLS error value. Both the R-squared and ‘TLS-squared’ error values are calculated 

for each model that is presented and values close to one imply good fits.
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2.2.2 R ational M odel

Both the uptake and retention phases of the data  were initially modeled using 

a rational expression. As this expression models both the uptake and the retention 

phase, it is particularly useful for predictive purposes such as early diagnosis of 

adverse reactions to the nanoparticles. After considering several different functions 

(polynomials of varying degrees, logistic equation, and trigonometric functions), the 

following equation was found to  represent the experimental data  well and yielded low 

error when the aforementioned minimal search algorithm was performed:

with a,P,  and 7  being real-valued param eters determined from the minimal search 

algorithm and t time (in minutes). As an example, Figure 2.1 shows this model with 

its corresponding R-squared value for one particular mouse.

Mouse 20111104B-3 Mouse 20111104B-3
4.5

 Experimental curve

35'

8
1 2 .5

z
I
a.
z

1000 1200 1400200
time (minutes)

 Expenmental curve
O Dala points_______

3.5*

8

Error- 0 32883

0.5

200 400 600 1000 1200 1400

Figure 2.1: Approximated rational curve found using R-squared (left) and TLS 
(right)
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This function yields acceptably low R-squared values and gives a good esti

mation of the uptake and retention phases of the nanoparticles. However, the peak 

absorbance value (in OD units) is skewed towards the right of the experimental peak 

for each mouse modeled, and it also tends to show too sharp of a drop immediately 

following the peak absorbance when compared to  experimental observations.

2.2.3 E xponential M odel

Though the rational model is useful for predictive purposes, an exponential 

decay which models only the elimination of nanoparticles from the bloodstream  is the 

more generally accepted model in pharmacokinetics [17]. Of course, even though the 

nanoparticles are not drugs and are generally inert, they must still clear them, so the 

exponential model which highlights the elimination phase was naturally considered as 

a possibility. This model begins at the peak d a ta  point, where the nanoparticles are 

at the highest observed concentration in the bloodstream. Dr. O ’Neal and his team 

theorize that the reason for the sharp drop in concentration after the nanoparticle 

peak in the algebraic model is because of poorly coated nanoparticles th a t are in 

the batch. As the nanoparticles must be coated with something to keep the body 

from eliminating them immediately upon detection, the nanoparticles th a t are not 

properly coated (and there are some in every batch), and therefore easily detected by 

the body’s reticulo-endothelial system, will be eliminated very quickly. This model 

helps to lessen that drop off by not taking the improperly coated nanoparticles into 

account as much as (2.3). An exponential decay function is used:
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C B( t ) = a * e ~ 0*t , (2.4)

where a and 0  are real-valued param eters and t is time (in minutes). These parame

ters were found in the same way as those for (2.3) while only using the experimental 

data  from the retention phase. As with the rational model, this yielded low error 

when compared to the experimental data. Figure 2.2 shows the exponential plot for 

the same mouse as depicted in Figure 2.1. It is also of interest to  find the area under

Mouse 20111104B—3 Mouse 201111048-3

3 5

8 2 5§
%23 Error- 01
Z

0.5

time (minutes)

Exponential curve
 Experimental curve

O Data points35

R-SquarecU 0.89122~  2.5

0.5

1200 1400600 800 
time (minutes)

Figure 2.2: Approximated exponential curve found using R-squared (left) and TLS 
(right)

the curve (AUC) of each fit for each mouse as it can be telling of the to tal uptake of 

the nanoparticles in the body. W ith th a t in mind, while finding the best fit models, 

code was also run to find the maximum values for the rational fit, the area under the 

curve for both fits, and the half-life for the nanoparticle circulation in the bloodstream. 

Just as the uptake can be found using the area under the curve, the retention is seen 

by looking at the half-life [17]. The area under the curve was found using Simpson’s
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quadrature with the best fit array and the half-life by finding the time a t which the 

absorbance is half tha t of the maximum value of the best-fit model.

2.2.4 A bsolu te V alue M odel

The rational model was useful in predictions but, though it yielded good R- 

squared values, was found to be skewed towards the elimination phase of the curve. 

That is, it took more time on average in the prediction models to reach the maximum 

absorbance than was actually being observed in experiments. In an attem pt to solve 

this problem, a new model was used th a t showed a sharper rise to help account more 

properly for the accumulation phase of the curve. This function has been found 

to yield similar R-squared values overall but showed a more realistic shape when 

compared to the experimental data. Several exponential values were tested before 

arriving at the equation:

CB(t) = -
2 3

a * t 3 —(3 + /?  +  7  *<4, (2.5)

with a,  j3, and 7  being real-valued parameters and t is time (in minutes). The 

constants are found in the same way as those of (2.5) and (2.4). Figure 2.3 shows a 

plot of this fit for the same mouse displayed in Figures 2.1 and 2.2.

2.2.5 P iecew ise M odel

In order to obtain a model th a t would have a still better fit for both the uptake 

and retention phases, a concatenation of functions to create a piecewise function was 

done. As it is the goal of this project to  be able to  create these models in real time, 

it was necessary at this point to use functions th a t had already been found to  yield a
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Figure 2.3: Approximated absolute value curve found using R-squared (left) and 
TLS (right)

good fit for either the uptake or retention phase. W ith th a t in mind, the exponential 

fit was used for the retention phase and different injection profiles were considered 

for the uptake.

Four injection profiles per dosage group are considered in this work. The first 

is linear, thus indicating a linear rate, the second is a positive quadratic, indicating an 

increase in the rate of injection as time progresses, the third is a negative quadratic, 

indicating a faster rate of injection initially th a t levels off toward the end of the 

injection time window, and the last is an exponential curve, indicating an exponential 

rate. The four injection profiles per dosage, denoted /*(£) with i =  1 ,2,3, 4, were 

designed to satisfy the same conditions as those specified for (2.4), thus yielding

h ( t )  =  (^)t  +  a,

h { t )  =  ( f ) ( t  +  v)2,
( 2 .6 )

h { t )  =  +  a,

I4(t) =  e ^ M - l ,
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with q from (2.4), t is time, and 77 equal to the injection time (10 minutes or 0.1667 

hours unless otherwise specified). These profiles are shown for the average mouse 

in each data set ( lx  and 2x) in Figure 2.4 and are described further in Chapter 3. 

Each of these profiles are used to  represent the injection phase of the experiment with

4.5

2.5

05

-0.5

I (hours)

4.5

3.5

2.5

0 5

t (hours)

F ig u re  2.4: Injection Profiles for lx  Mouse (left) and 2x Mouse (right) (in OD)

the already found exponential function representing the retention phase. In order to  

have a more ideal control effort, the negative quadratic injection profile is used here 

yielding the equation

CB(t) =
■($)t2 + a  : 0 < t < t i

(2.7)
q  * e 4i) : t > ti

where a  and rj are the same as in (2.6). This gives the model shown in Figure 2.5. As 

this model is actually a concatenation of functions and is not found using a  minimal 

search algorithm, it is not necessary to compare the different error term s in this case. 

These error calculations have essentially already been found during the calculation of 

the exponential model. For th a t reason, this model is only shown with its respective 

R-squared value.
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Figure 2.5: Approximated piecewise curve 

2.3 R esu lts

There were several different models presented and each gave a different insight 

into how the experimental data  behaves in real time. The R-squared values for each 

model for each mouse were found using the residuals in the y-direction with the 

interpolation experimental data  points vs. the points found in each best fit model, as 

described in Subsection 2.2.1. These values are shown in Table 2.1.

When analyzing the mean and median shown in Table 2.1 we can see th a t the 

values for each model set are quite close with the exception of the piecewise models 

where the mean= .759 and the m edian= .915. This discrepancy most likely implies 

outliers in the data  set for th a t model which are assumed to  be caused by the weakness 

in the R-squared value. It is im portant to note th a t, since only the vertical values 

are considered in the R-squared calculation, some of th e  values may be quite low 

even though the figures show th a t model appears accurate. The vertical values were
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Table 2.1: R-Squared Values per Mouse

Mouse Rational
R 2

Abs. Value 
R2

Exponential
R 2

Piecewise
R 2

20111104A-1 0.681 0.809 0.998 0 . 2 1 2

20120120C-3 0.499 0.861 0.867 0.947
2 0 1 1 1 2 0 2 A- 0 0.558 0.936 0.993 0.908
20120120C-5 0.559 0.862 0.972 0.771
20111104A-3 0.479 0.945 0.928 0.925
2 0 1 1 1 2 0 2 A- 1 0.438 0.933 0.972 0.892
20111202B-1 0.562 0.941 0.989 0.915
20111202A-2 0.734 0.704 0.919 0.276
20120120A-0 0.185 0.815 0.933 0.931
20111104B-1 0.819 0.672 0.984 0.132
20111104A-5 0.665 0.672 0.979 0.350
20111202B-3 0.802 0.652 0.992 0.639
20111104B-3 0.793 0.936 0.997 0.947
20111202B-2 0.711 0.853 0.991 0.987
20120120D-0 0.580 0.963 0.978 0.958
20120220A-3-5 0.563 0.920 0.983 0.979
20120220A-5 0.537 0.961 0.982 0.976
Mean R2 

Median R2

0.596
0.563

0.850
0.862

0.969
0.982

0.759
0.915

considered as well in the TLS method (as discussed in Subsection 2.2.1) though using 

these considerations tended to produce very similar models as those found using the 

R-squared calculation. T hat being said, the mean and median values shown for the 

exponential models are considerably close to one, meaning that model is consistently 

accurate. It makes sense tha t this model shows the most accurate results as it only 

models the elimination phase when the injection phase appeared to be the main source 

of error for the other models. Due to the lower R-squared values for the models that 

show both the injection and elimination phases it can be assumed th a t the injection 

phase of the experiment is more difficult to predict than  the elimination phase. This 

is most likely because of the lack of experimental d a ta  points for this phase of the
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experiment. The sparse data  collection during the injection forces the models to 

make more assumptions than are needed during the elimination phase where more 

data points were given. The absolute value model appears to be the most accurate 

model which takes both the injection and elimination phase into account. However, 

as discussed above, the piecewise model appears to  describe the da ta  accurately as 

well, with the exception of the few values in the da ta  set already discussed.



CHAPTER 3 

STATISTICAL EVALUATIONS

W ith the best fits found as described in Chapter 2 for each of the mice for 

each of the models, it is necessary to perform statistical evaluations to ensure first 

that the results make biological sense and also to make certain th a t averages of each 

data set can be taken. The Spearman Rank Correlation test, described in Section 3.1, 

was chosen to test how well certain values in the data  compared to  others which is 

descriptive of the raw data  found in the experiment. The Wilcoxon Signed Rank test 

described in Section 3.2 showed whether all of the least fits for a particular model 

could be averaged to create a “m aster mouse” w ithout loss of generality. The non- 

parametric tests were chosen due to the small da ta  sets and lack of normality within 

the sets [31]. The freeware program R was used for this analysis.

3.1 Spearm an R ank C orrelation

The first test run was the Spearman rank correlation in order to investigate 

how well certain values within the da ta  correlated. The results are shown in Table 3.1, 

with a p close to  ±  1 implying a high correlation. The value p is a nonparam etric 

measure of statistical dependance between any two variables. As can be seen in 

Table 3.1, almost none of the data  comparisons yielded high correlation coefficients.

18
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While these results are of interest to  the biological portion of the experiment, they 

do not have a negative effect on this analysis.

Table 3.1: Spearman Rank Correlation Results

D ata Sets Tested P
*max absorbance for lx  rational model vs. 
AUC for lx  rational model

0.2771084

*max absorbance for lx  abs. value model vs. 
AUC for lx  abs. value model

0.3012048

max absorbance for 2 x rational model vs. 
AUC for 2 x rational model

0.6727273

max absorbance for 2 x abs. value model vs. 
AUC for 2 x abs. value model

0.60

*AUC for lx  exp. model vs. 
AUC for lx  abs. value model

0.5421687

*AUC for lx  exp. model vs. 
AUC for lx  rational model

0.5421687

AUC for 2x exp. model vs. 
AUC for 2 x abs. value model

0.8545455

AUC for 2 x exp. model vs. 
AUC for 2 x rational model

0.8545455

The * in Table 3.1 implies th a t the exact p-value could not be computed with 

ties. As this warning came up when the test was run, it was appropriate to report it 

here. However, since the outcome of the test is dependent on p and not p, the fact th a t 

the p-value could not be computed on some of the tests is irrelevant. The first set of 

tests run evaluated the level of correlation between the maximum values calculated in 

the models and the AUC for the respective model. As the highest of these correlations 

found was 0.6727 it is clear th a t there exists no clear correlation between these values. 

This result is not what was expected as it would seem reasonable th a t the higher 

the maximum value of the model is, the higher the AUC would be as well. That

assumption, however, is not supported by this analysis.
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The second group of values (the bottom  four in Table 3.1) test the correlation 

between the AUC for the exponential models and the AUC for rational or absolute 

value models. Though the values for the lx  models are quite low, the 2x models 

seem to have a high correlation. It is unusual th a t the different initial dosages would 

produce such different results in this test but it is expected that the exponential model 

would have a good correlation with the other two. This analysis is taken into account 

in Chapters 4 and 5 in the discussion of the different controllers th a t are presented.

3.2 W ilcoxon  Signed R ank

The Wilcoxon Signed Rank Test was performed on each individual set of data, 

testing if the mean of the data is statistically equal to the median. The null hypothesis 

for the test on each da ta  set was th a t the median is equal to the mean, which would 

imply th a t the data is closely related with the alternative hypothesis being th a t mean 

and median are not equal, or th a t the da ta  is not closely related. The null hypothesis 

was rejected if the found p-value was less than a  (which was chosen to  be 0.05) and 

was accepted otherwise. The results of this test are quite significant as negative 

results would prevent the analysis from moving forward for th a t particular data  set. 

The results from this test are shown in Table 3.2 with * implying the same warning as 

was in Table 3.1. It is shown th a t the da ta  within each set are statistically similar as 

the p-value that was found was higher than the chosen a.  Though the exact p-value 

could not be determined for certain sets, the close calculation which was found was 

determined to be a good estimate. As the sets were all found to be statistically similar 

we are now able to average each set without concern of misrepresenting the data.
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Table 3.2: Wilcoxon Signed Rank Test Results

D ata Set Tested p-value
max absorbance for 2 x rational models
max absorbance for 2 x abs. value models
AUC for 2 x rational models
AUC for 2 x exponential models
AUC for 2x abs. value models
max absorbance for lx  rational models
max absorbance for lx  abs. value models
AUC for lx  rational models
AUC for lx  exponential models
AUC for lx  abs. value models

0.7695
1.0

0.9219
0.9219
0.9219
*0.9441
*0.9441
*0.9441

* 1.0
*0.9441

3.3 C onfidence and P red ic tion  Intervals

As all of the mice within each individual da ta  set were found to  be statistically 

similar, an average of each data  set could be performed to create a “m aster mouse” 

of all of the models. W ith these “m aster mice” , confidence and prediction intervals 

were calculated using MATLAB®.

The difference between confidence and prediction intervals is an im portant 

distinction to make. As an example, an 80% confidence interval implies th a t if 100 

similar samples were drawn, in 80 out of 1 0 0  tests, the mean absorbance measure 

would fall in th a t interval. The confidence interval is a good indication of how well 

the mean of the data  has been determined. A prediction interval gives a range of 

where the next data point sampled can be expected. T hat is, for example, for an 85% 

prediction interval, there is an 85% probability th a t the next sampled data  point will 

fall within th a t range. This interval tells about the distribution of the data, rather 

than the uncertainty in determining the mean [2], [24].
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The confidence intervals were calculated at 80% and 90% for each d a ta  set. 

To find these intervals within each set, the absorption values a t each time point were 

first averaged in order to create the m aster mouse for th a t d a ta  set. The standard 

deviation was then found using the built in MATLAB® function. For the lx  data 

sets, the 80% intervals were calculated at each time point by taking the average 

absorbance ±  1.383 x standard deviation and the 90% bounds by average absorbance 

±  1.833 xstandard deviation. And for the 2x data sets: 80% bounds by average 

absorbance ±  1.415*standard deviation, 90% by average absorbance ±  1.895*stan- 

dard deviation. Each of these values were found in the standard t-distribution table 

according to the number of mice in each data  set.

The prediction intervals for each data  set were calculated a t 85% for each time 

value so th a t a mostly smooth function was created for the upper and lower bounds 

of the intervals. In order to calculate the intervals, the absorbance values for each 

time set first had to be arranged in increasing order. Once the data  was in increasing 

order, the central 85% of the data  was taken to  be the prediction set for th a t time 

point.

For ease of comparison, the exponential models with their confidence and 

prediction intervals are shown in Figure 3.1. Figure 3.2 shows the lx  and 2x rational 

models with their respective confidence and prediction intervals, found in the same 

manner as the exponential intervals. Similarly found were the absolute value models 

for the lx  and 2x data sets, shown in Figure 3.3 and the piecewise models shown in 

Figure 3.4. The intervals for these figures are shown with 90% confidence intervals 

being the outer dashed lines and the 80% confidence intervals being the inner dotted
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line. The 85% prediction intervals are represented by the two solid lines surrounding 

the center line (with the center line being the model itself).
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Figure 3.1: Exponential lx  Model (left), Exponential 2x Model (right)
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Figure 3.2: Rational lx  Model (left), Rational 2x Model (right)
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F ig u re  3.3: Abs. Value lx  Model (left), Abs. Value 2x Model (right)
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F ig u re  3.4: Piecewise lx  Model (left), Piecewise 2x Model (right)

The prediction intervals are different from the confidence intervals as they give 

a range of where the next experimental data  point should fall as opposed to where 

the mean of future data  sets would fall. The fact th a t the different intervals are close 

in value is a good indication the experimental da ta  sets are closely related. Each of 

these intervals can be useful for the identification of untoward reactions when applied 

in an experimental setting by comparing data  points measured in real time with the 

‘Master Mouse’ for the respective dosage and its confidence and prediction intervals.
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D ata points falling outside of these intervals would be a flag for further investigation 

to determine untoward reactions and /o r to change to  dosage scheme accordingly.



CHAPTER 4

LQR TRACKING CONTROL

As the least error m athem atical models have been found in Chapter 2 and 

confirmed through the statistical evaluations in Chapter 3, we will now show how the 

exponential model is utilized in a sta te  space feedback control framework to regulate 

the nanoparticles in the bloodstream. An equal time delay is also introduced in both 

the state and control input for the purpose of studying the  alternate dosing strategies 

shown in (2.6). While only the exponential model is being controlled, the inclusion 

of the dosing strategies to account for the time delay creates a piecewise function 

which is identical to the piecewise function described in Chapter 2.

Clearly, (2.4) is the solution to  the simple first order, linear ordinary differential 

equation

C B{t) = - 0  C B(t), (4.1)

where Cs{t)  =  -—7 --  , Cb(£ =  0) =  7 G IR in (2.4), — 0  G IR is the exponential 
at

decay rate, and time t =  0  corresponds to the time when the nanoparticles are at 

their highest concentration in the bloodstream, which occurs a t some delayed time 

after the nanoparticle injection. The two specific quantities of interest for comparison 

between the experimental da ta  and the model are the nanoparticle half-life and the 

AUC, referring to area under the bloodstream nanoparticle concentration curve. The

26



half-life can be used to quantify nanoparticle retention, or how long the nanoparticles 

remain in the body. The area under the curve is im portant because it describes the 

total uptake of nanoparticles by the body. Table 4.1 shows a comparison between the 

experimental data  and the model for these two quantities of interest with an * implying 

irrelevant results due to unrefined data, meaning th a t the set of experimental da ta  

points did not provide enough information to appropriately calculate the AUC. W ith

T ab le  4.1: Comparison Between Model and Experimental Results

Mouse
ID

Model
R 2

Model
AUC

(OD*min)

Exper.
AUC

(OD*min)

Model
1 / 2 -life
(min)

Exper. 
1 / 2 -life 
(min)

20111104A-1 1 .0 0 2163 1981 507 488
20120120C-3 0.87 2725 2446 505 444
2 0 1 1 1 2 0 2 A- 0 0.99 1978 1747 465 499
20120120C-5 0.97 2916 2628 562 533
20111104A-3 0.93 1982 1828 305 347
2 0 1 1 1 2 0 2 A- 1 0.97 1931 1716 409 444
20111202B-1 0.99 2088 1851 349 350
20111202A-2 0.92 1769 1480 349 248
20120120A-0 0.93 2553 2300 496 444
20111104B-1 0.98 1 1 0 0 743 339 365
20111104A-5 0.98 1880 1609 356 367
20111202B-3 0.99 964 701 234 247
20111104B-3 1 .0 0 961 773 177 205
20111202B-2 1 .0 0 915 * 283 272
20120120D-0 0.98 1815 1610 276 309

20120220A-3-5 0.98 1521 1 2 1 2 326 330
20120220A-5 0.98 1206 1024 282 304

mean 0.97 1792 1603 366 370
median 0.98 1978 1788 349 350

the mean and median for each data  set shown in Table 4.1 being close together we 

can assume that the data within each set do not have any extraneous values throwing 

off the set as a whole. The controller presented later in this chapter and also those 

presented in Chapter 5 aim to maximize the AUC and also lengthen the half life of



28

the mouse (increasing the AUC and lengthening the half-life would theoretically go 

hand in hand). After the half-life and area under the curve results were found for 

each mouse, statistical tests for similarity and correlations were run as described in 

Chapter 3.

Because it is of interest to investigate different injection rates, the rate effects 

on nanoparticle bioavailability, and maintaining the bloodstream nanoparticle con

centration within an established therapeutic window, (4.1) is posed as a controlled, 

delay differential equation (DDE). Specifically of interest is the optim al control of the 

system with equal delays in both the state and control input. The general theory for 

the LQR control problem related to delay systems can be found in [6 ], [8 ], [13], [35], 

[36]. The model and control frameworks presented here will follow the more recent 

formulation presented in [7]. The system of interest is given by

CB(t) = ~ P C B{t - h ) +  bu(t -  h ), (4.2)

subject to the history function C B(s) = 4>(s) G C({—h, 0]; IR1) for all s G [—h, 0], 

where h is the time delay in hours, C B(t) G IR1 is the system sta te  representing 

concentration of nanoparticles in the bloodstream, u(t) G IR1 is the control input, 

6 is a real-valued constant control input multiplier, and — (3 G IR is the exponential 

decay rate. W ith the inclusion of a delay in the  state, (4.2) is an infinite-dimensional 

system (see, for example, [25]). This means th a t the function space has a basis set 

which is infinite which further means th a t the function cannot be represented using a 

finite set of simpler functions. From a practical standpoint, note th a t the time delay, 

h, will correspond to the length of tim e over which the nanoparticle injection is given,
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and different history functions (p(s) (the same as those functions given in (2 .6 )) will 

correspond to the different injection profiles being considered.

4.1 C ontrol S trateg ies

W ith (4.2) being a linear system, standard linear quadratic control techniques 

will be employed. The solution to this control problem, with equal tim e delays found 

in both the state and input, is found in [7] and summarized here, with appropriate 

modifications made to include tracking, similar to the derivation in [16]. The specific 

control objective of interest includes output tracking, for the purpose of regulating the 

bloodstream nanoparticle concentration to lie within a specified therapeutic window. 

This will be analyzed for multiple injection profiles, i.e. rates.

In considering a general linear system with tim e delay

with the usual assumptions as described in [7], the control implementation involves 

a Linear Quadratic Regulator (LQR) state tracking design, where the quadratic cost 

function to be minimized is

and the tracking problem reduces to  a disturbance-rejection problem of the form

(4.3)

J  = jM O l’VMO] + J  J  u t ( s ) R ( s ) u ( s ) d s

(4.4)

(4.5)
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where xi(t)  =  x(t  — h) = £(f — h) — £(t — h ), ui(t)  =  u(t  — h), w(t)  is represented by

w(t)  =  |  ^  0, (4.6)

f  is the state of some original dynamical linear system of interest,

i ( t )  = A 0(t)€(t -  h) +  B 0(t)u(t -  h) + z, (4.7)

£ is the known desired state target of (4.7), and 2  is zero-mean, Gaussian, white noise. 

The Hamiltonian for the optimal control problem (4.4), (4.5) is defined as 

H ( x , u , q . t ) =  ~uT R( t )u + ^ x T L(t)x

(4.8)

+qT [A(t)xi + B( t )ui  +  w\.

For the purpose of minimizing the Hamiltonian with respect to  u, the gradient of

(4.8) is set equal to zero. Then solving for u yields the optimal control

u* = - R r \ t ) M T{t)BT{t)q(t), (4.9)

du (f 1
where M(t)  := ——̂—. Selecting a general quadratic form 

du

J*(x, t) = ^-xT (t)Q(t)x(t)  + bT(t)x(t)  +  c(t) (4-10)

for the solution to the Hamilton-Jacobi optimization equation, to account for the

disturbance term w(t),  yields the co-state

8 J*(x t)
Q(t) = -  =  ~Q(t )x( t )  -  b{t). (4.11)
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Then, with arguments of variables om itted from this point forward in the derivation 

for conciseness, the Hamilton-Jacobi optimization equation becomes

1 i.T„ x ____ j  , L,T;-x Qx — b x  — c = min < - x  Lx  + - u  Ru  
2 u I 2 2

+(•—Qx — b)T(Ax\  +  B ti\ +  >

thereby yielding the optimal control

(4.12)

u* = R - ' M 1 B 1 (Qx + b). (4.13)

Therefore, values for Q , M, and b must be determined. To determine Q, consider the

. dq{t) d H  , . , u
co-state equation —;— =  —-r—, which yields 

at ox

Qx + Qx + b = Lx  + A  M i q , (4-14)

Qx i
where Mi :=  ——. Now substituting (4.11), (4.5), and then (4.13) into (4.14) yields 

ox

Qx  +  QAx( t  - h )  + Q B ( R ~ l M TB TQx + R~lM TB Tb)
(4.15)

+Qw + b = L x -  A TM l Qx  -  A TM 1b.

Differentiating (4.15) with respect to x  and simplifying because M  is the identity

m atrix per the argument in [7] produces the quasi-Riccati equation

Q = - Q M XA  -  Q B R ~ l B TQ + L -  A t M 1Q, (4.16)

where M x =  0 for t G [0, h) and Mi =  /  for t > h, per [7]. Note th a t while the co-state 

selected in this work differs from th a t in [7], to accommodate for a  control tracking 

objective here, the arguments to determine the values of M  and M\  are identical. 

To determine b, the optimal control (4.13) is substituted into the Hamilton-Jacobi 

equation optimization (4.12) and different powers of x  are equated to obtain

b = [ A  + B R ~ 1B TQ}Tb + Qw.  (4.17)
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Note th a t the solution for c in (4.10) is irrelevant for the control design sought here, 

and thus, the differential equation is not shown. Because of the boundary conditions 

J*(x, T) = ^ [ x ( T ) ] t i / j [x(T)]  for all x,  there also exist the boundary conditions Q ( T ) = 

—ip and b(T) =  0. After the computation of Q  and b, the optimal control law is w ritten 

as

u* = R - l B TQ { ^ - i )  + R ~ 1B Tb, (4.18)

which is then implemented in (4.5).

4.2 N um erical R esu lts

The numerical results presented here correspond to each of the ‘M aster Mice’ 

presented in Chapter 3. This is because it is desired to consider the predictability of 

nanoparticle bioavailability for individual ‘patients’ and, therefore, predicting for the 

average mice is the most appropriate way to test the method. The param eters of best 

fit for (4.1) were determined to  be

7  -  (3.2475,4.1573), /? =  (0.135, 0.095), (4.19)

for the respective lx  and 2 x models following an injection th a t began ten  minutes 

earlier with the injection profiles described in (2.6). Because gold nanoparticles are 

devices, as opposed to medications, and only activated through laser, there is no 

maximum nanoparticle level for a patient. However, because it is desired to  expand 

this analysis to many drugs and treatm ents, it is im portant to minimize the excess 

dosages of the nanoparticles. It also efficient from an industrial point of view to
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limit the total dose as nanoparticles do cost money to  create. Also, the system is 

not controlled on the time interval (0,0.1667) hours, so the area under the control 

curve is only computed on [0.1667,20] hours. It was decided to end the model at 

2 0  hours as the absorbance value has dropped below functional levels by th a t time. 

The controller plots for each of the injection profiles can be found in Figures 4.1 and

4.2 for the lx  and 2x ‘Master Mice’, respectively. The plots show no distinguishable 

visual difference between the controllers required by each of the injection profiles.
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right), / 1 3 (f) (lower left), / 1 4 (f) (lower right),

To calculate the control effort required to  achieve each of the injection profiles 

and steer the bloodstream nanoparticle concentration to .5*maxiinum absorbance over 

the course of a 2 0  hour time interval, the area under the absolute value of the control
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right), / 2 3(f) (lower left), / 2 4 (f) (lower right),

curve u(t) is added to the area under the corresponding injection profile curve. These 

results are found in Table 4.2. The required control effort is quite similar for each of 

the injection profiles, with the positive quadratic rate requiring the least amount of 

nanoparticles for each dosage group. Note th a t for all t, the control effort required 

for the various profiles follows the order I2 < I 4 < I\ < I3 for each dosage group. 

However, for t G [—0.1667, 0], the control effort required for / 3 is the largest of all the 

injections for each dosage group while for t G [0.1667, 20], the control effort for / 3 is 

the smallest of all the injection profiles. It appears th a t the negative quadratic rate 

of injection found through using the / 3 profile allows the bloodstream nanoparticle 

concentration to “build up” so th a t fewer nanoparticles are needed later to achieve
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the desired target, thus providing for a more efficient use of resources. I\  follows

a similar pattern for each dosage group and therefore also appears to provide for a

more efficient injection. Given these results, it was determined th a t using the negative 

T ab le  4.2: Control Efforts for Corresponding Injection Profiles (OD)

Injection t e  [-0.1667,0] t € [0.1667,20] Total Effort
I h ( t ) 0.2707 64.3755 64.6462
I h ( t ) 0.1805 64.4558 64.6363
I h ( t ) 0.3609 64.2951 64.6560
i u ( t ) 0.2076 64.4321 64.6397
/ 2 i(f) 0.3465 97.2718 97.6183
/ 2 2(<) 0.2310 97.3561 97.5871
/ 2 3 ( 0 0.4620 97.1875 97.6495
I24(t) 0.2558 97.3386 97.5944

quadratic injection profile is the most efficient. Using this injection, (4.2) was plotted 

and shown in Figures 4.3 and 4.4 with their respective uncontrolled models for ease 

of comparison.

Controlled Exponential Model Uncontrolled Exponential Model
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F ig u re  4.3: Controlled lx  Model (left), Uncontrolled lx  Model (right)

4 .3  D o sag e  C o n v e rs io n

These models control the absorbance level (in OD) of the nanoparticles over 

time but it is necessary to convert the values from the measurement to  /uL else, as
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F ig u re  4.4: Controlled 2x Model (left), Uncontrolled 2x Model (right)

injections are measured in fiL and not OD, the results are not useful in a real time 

experiment. In order to accomplish this, the peak absorbance values from the lx  

and 2x ‘Master Mice’ along with the /jL injected were plotted and different functions 

were fitted to the plot. The exponential function (4.20) was found to be the most 

reasonable:

f ( x )  =  0.6533x°'3564, (4.20)

where f ( x ) =absorbance in OD and x  =am ount injected in y L. Inversely (4.21)

f ( y )  =  3.3019z/2'8058, (4.21)

gives the opposite conversion where f ( y )  =  amount injected in //L and y =aborbance 

value in OD. These equations yield values consistent with what is expected exper

imentally as the absorbance value rises quickly with the initial injection and then

begins to level off over time. A sample table of points is given in Table 4.3 and the

plot of (4.21) is given in Figure 4.5.
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F ig u re  4.5: OD to  /xL Conversion 

T ab le  4.3: Sample Values using the OD to  /xL Conversions

£fL injected Resultant absorbance (OD)
0 0.6533
90 ( lx  dose) 3.2475
180 ( 2 x dose) 4.1575
360 ( 4x dose) 5.3233
720 ( 8 x dose) 6.8150

Using (4.21), the total amount of /xL needed to maintain the controller in the 

model given in (4.2) was calculated and those values are given in Table 4.4 along 

with the amounts used in experiments for the purpose of comparison. These values 

were determined by first converting the absorbance values from OD to /xL for both 

the controlled and uncontrolled models, then summing the difference between the 

controlled and uncontrolled models of the converted values. The injection was found 

this way because, as the uncontrolled model gives the absorbance values when no 

injection (outside of the initial bolus injection) is made, the converted values from 

the uncontrolled model need to be subtracted from the calculation to ensure that
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only the actual injection amount necessary in the controlled model is found. We are 

basically finding the area between the pL curves for the controlled and uncontrolled 

models.

T ab le  4.4: pL of Nanoparticles Required per Model

initial target uncontrolled model controlled model
absorbance (OD) absorbance (OD) to tal dose (/rL) to ta l dose (fiL)

3.2475 1.6238 90 234.64
4.1573 2.0789 180 1080.92

The values in Table 4.4 reveal th a t using this method with the same initial 

injection as is used in the uncontrolled model we see th a t the controller requires quite 

a  bit more fih to be injected than is ideal. However, as the absorbance level was kept 

a t an ideal point with this method, it is worth investigating further to  a ttem pt to 

lower the overall control effort and, therefore, lower the necessary injection amount.



CHAPTER 5

CONTROLLER ANALYSIS

Because, in an experimental setting, each patient will have different reactions 

to a treatm ent and will need to  be treated accordingly, it is im portant to  investigate 

several different control strategies. This will provide more tools th a t can be called 

upon when this analysis is applied in real-time in an experimental setting. Using 

different strategies also helps to analyze the efficacy of any specific controller.

5.1 Further Investigation  in th e LQ R C ontroller

Since the controller presented in Chapter 4 tracked efficiently, it was also of 

interest to consider a lower initial injection so th a t the to tal injection over time could 

be kept to minimum. Though it is unlikely th a t the amount of gold nanoparticles 

could ever build to a lethal level, it is im portant to look ahead to other treatm ents 

that may be able to be used with this analysis. Minimizing the injected amount 

needed will also help to reduce cost of treatm ent regardless of the treatm ent being 

used. W ith this in mind, each model was also run with an initial injection set to  half 

of the original maximum absorbance of the respective models. T ha t is, as the goal 

of the controller is to track to half the maximum absorbance, these models are now 

trying to track to the initial injection value. These plots are shown Figures 5.1 and

5.2 with their respective uncontrolled models. These models show th a t the applied

39
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controller is able to  to maintain the absorbance level of the nanoparticles a t a  level 

which is more acceptable than the uncontrolled models. As the LQR controller is 

designed to run in an optimal time frame, it is encouraging th a t the controller has an 

effect on the exponential decay model. The dosages required for these control efforts

Controlled Exponential Model
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Uncontrolled Exponential Model
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Figure 5.1: Controlled lx  Model (left), Uncontrolled lx  Model (right)
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Figure 5.2: Controlled 2x Model (left), Uncontrolled 2x Model (right)

are presented in Table 5.1 along with those from the controller shown in C hapter 4 

for ease of comparison. The dosages are found using the same process as th a t for 

the controller described in Chapter 4. The injections over time are shown in Figure 

5.3. The values presented in Table 5.1 show th a t using a lower initial dose gives a
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F ig u re  5.3: Controlled lx  Model (left) and 2x Model (right), in n L 

T ab le  5.1: Total Dose of Each Control Strategy

lx 2 x half lx half 2 x
initial 

absorbance (OD) 3.2475 4.1573 1.6238 2.0789
target 

absorbance (OD) 1.6238 2.0789 1.6238 2.0789
LQR control 

total dose (fiL) 234.64 1080.92 65.25 299.1

significantly more efficient method of control in terms of total injection. For the 2x 

model, the percent error between the controlled model and the tracking target is only 

18.53%. However, for the lx  model, the calculated percent error is 50.15%. The low 

percent error for the 2 x model is promising but the high error for the lx  model shows 

th a t this method may not be reliable when many different dosage groups are being 

considered. A model which requires a  slightly higher overall injection but consistently 

keeps the absorbance closer to the tracking target may be preferred. Of course, too 

high of an overall injection is not ideal either.
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5.2 A nalysis o f  ‘C on tro l’ U sin g  D irac D elta  Functions

Though the controller discussed in Section 4.1 is interesting mathematically, it 

can not be easily replicated in a real time experiment with mice (which is im portant to 

realize as animal testing must be performed to  confirm results before human testing 

can take place), mainly because the controller is a continuous feedback controller 

rather than a discrete controller. A discrete controller may also be useful in human 

testing as it may be simpler to detect untoward reactions with this type of control 

strategy than it would be with a continuous time control. W ith the injection not 

happening continuously, any untoward reaction would also be minimized when using 

this strategy. For these reasons, a good next step was to control the exponential 

function described in (4.1) using several Dirac delta functions to m athem atically 

replicate bolus injections given at different tim e intervals. This equation is similar to 

(4.1) and is given by

Cs{t) — — 0Cs{t )  +  m\5( t  — h) + m2<5(f — 2 h) + m^8{t — 3 h)
(5.1)

+ m 4(5(t — Ah) +  m^8(t  — 5 h) +  m(,8{t — 6h),

where Cb {1) =  =  0) =  7  G IR in (4.1), — {3 e  IR is the exponential

decay rate, h is the time delay for the injections in hours, and m* corresponds to the 

magnitude of the corresponding injection (represented by the Dirac delta functions) 

and is measured initially in OD and then converted to  /iL. m i, m 2, m3, m 4, m 5, ra6, 

and h were found by minimizing the TLS error that is calculated by comparing the 

solution to (5.1) against a constant function which was set equal to  half the maximum 

value (which is considered to be in the therapeutic window for the nanoparticles),
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following the examples in [21]. Finding these param eters proved to  be more difficult 

than using the search algorithm described for the models in C hapter 2. First, (5.1) 

was solved analytically with a differential solver in MATLAB® and then evaluated 

using different values for each unknown param eter until a minimum error was found. 

The resulting plots over time are shown in Figures 5.4 and 5.5 for the lx  and 2x 

models, respectively. These plots show th a t several discrete injections are capable 

(for both the lx  and 2 x models) of m aintaining the absorbance value (in OD) at a 

level which would be considered within the therapeutic window of treatm ent for much 

of the experimental time frame.

Absorbance Over Time with Dirac Delta Functions
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Figure 5.4: lx  Exponential Decay with Dirac Delta Functions

Table 5.2 shows the time between each injection given and the am ount per 

injection. It was decided to  limit the number of injections to six plus the initial 

injection. This was done for the purpose of feasibility in a real world setting. Of 

course, infinitely many injections would provide practically no error but th a t is not
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F ig u re  5.5: 2x Exponential Decay with Dirac Delta Functions

currently experimentally replicable. The time between injections was also restricted 

to be a constant value instead of varied. Tests were run with variable times between 

injections but these (much like having more injections) showed to  take longer to  run 

than would be reasonable in a real world setting. Having variable tim e steps, despite 

the longer time, did not provide significantly more effective ‘control’ of the exponential 

decay when compared to the constant time step. In the case of Dirac delta functions, 

the total injection amount is a simple sum of the each individual injection as this is not 

a continuous time controller. It is obvious from the values found in this analysis that 

having multiple smaller injections should provide a more efficient m ethod of keeping 

the nanoparticle concentration within the assumed therapeutic window and would 

theoretically require a smaller injection amount overall than the original m ethod of 

only one injection. When comparing the values from Tables 4.4 and 5.2 it seems clear
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Table 5.2: Results Using Dirac Delta Functions

Time between injections 1.053hrs 0.567hrs
Initial Injection 
2nd Injection (mi) 
3rd Injection (m2 ) 
4th Injection (m3 ) 
5th Injection ^ 4 ) 
6 th  Injection (m 5 ) 
7th Injection (m$)

16.172/iL
3.395//L
2.561^L
2.581^L
3.015/^L
4.184//L

34.161^L

28.722pL
4.480^L
4.840^L
4.120^L
3.869//L
12.833^tL
56.939^L

Total Injection Amount 66.069/iL 115.802/xL
Experimental Injection 45.0/iL 90.0/iL

that the use of the Dirac delta functions as opposed to one continuous time controller 

is a more efficient choice in terms to tal amount of /iL of nanoparticles needed.

5.3 P ID  Tracking C ontrol o f  th e  E xp on en tia l D ecay

The controller presented in Chapter 4 was determined to be appropriate for the 

given model. However, it was also of interest to  investigate the use of a PID tracking 

control as it is a common control strategy used in the engineering and industrial 

settings [19]. W ith a PID tracking control like the one presented in [33] we can 

evaluate the possibility of tracking the model to  a specific absorbtion value and also 

limiting the area under the curve so th a t the to tal injection is kept to a  minimum. 

The model to  be controlled is the same as th a t in C hapter 4 and given by (4.1).

5.3.1 Setup o f th e  P ID  C ontroller

For this controller, the delay is only included in the control function and the 

model (in the time domain) is then generally presented as

x(t) = A( t )x( t )  + B( t )u( t  — d ), (5-2)
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where d represents the time delay. Unlike the LQR controller presented in 4.1, the PID 

controller utilizes three different gains, kp, kt1 and kd which represent the proportional 

gain, integral gain, and derivative gain, respectively. The control function u in the 

time domain is given by

where kp, kr, and kd are the gains to be found later and e(t) is measured reference 

error time signal given as e(t) r — y with r  being the target output and y  the actual 

output. Each gain has a  different purpose within the control setting, as discussed in

[19]. The proportional control, kp, is used when the action of the  controller needs to 

be proportional to the magnitude of the error signal, e(t). The integral control, ki, is 

used in order for the controller to correct for any steady offset from a reference signal 

value. The derivative control, kd, uses the rate of change of the error signal, e(t), to 

increase the overall control effort.

Solving this problem in the time domain is overly complex; however the use 

of a Laplace transform into the frequency domain converts (5.2) into an algebraic 

equation, such as in [4]. As (5.2) and (5.3) are linear combinations of functions (even 

though those functions are not necessarily linear) and thanks to the linearity property 

of the Laplace transform (as described in [4]), the transform of each of these equations 

is equivalent to linear combination of transforms. T hat is, the transform  of a linear 

combination is a linear combination of transforms. Transforming (5.2) yields

(5.3)

(5.4)
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Solving for X  (s). (5.4) is represented by

(5-5)

with A: =  —j ,  L =  d, and T  =  — U. .4 < 0, &,T > 0 ensures th a t the problem is 

open loop stable by the theorems set forth in [33] and can therefore be solved using 

the described methods in the text. U (s) is found by transforming (5.3) yielding

U(s) = kpE(s)  +  k i E ( s ) -  +  kdsE(s)] (5.6)
5

therefore the control transfer function is given by

C(s) = ^ \  = kp + ^ +  kds , (5.7)
E(s)  s

which is now an algebraic equation and not an integro-differential equation. Using 

the Laplace transform has also taken the delay term  in (5.2) and transformed it to 

an exponential decay in (5.4).

5.3.2 S tabilization  o f  P ID  Param eters

Following a main result in [33], we know th a t the range of kp values for which 

the open-loop stable problem can be stabilized using a PID controller is given by the 

condition
i i  Tt  1

(5.8)1 , 1 
~ k < k ’ < k

T
—a sin (a )  — cos(a)
Lj

where a  satisfies the equation

T
tan (a ) =  -  (5.9)
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with the restriction a  £ (0, 7r); a  is found using the Bisection m ethod in this work. 

These values of kp are then used in

T
kkp +  cos(z) — —z  sin(z) =  0. (5.10)

where the value 2  is also found using the bisection method. As there is a  range of 

possible values of kp, it stands to reason th a t there are also many solutions to  (5.10). 

These solutions, z j , are then used in

f 1 12

r  t  i  ( 5 ' n )sin (zj) +  —Zj cos (zj)
Lj

bj (z j )  =  L
kzj

with distinct solutions being found for each solution of (5.10). W ith these values, we 

now have all the necessary information to determine the conditions for the stabilizing 

regions ki and kd- For all whole number values of j  where j  £ [l,length(fcp)], these 

conditions are given by

ki >  0

kd > m- j ki +bj , (5.12) 

kd < m 2jki  +  b2j

The following algorithm was coded in MATLAB® to  find each set of possible values 

and is given in [33].

1. Initialize kp = — £ and step =  77^ ;,  where N  is the desired number of points;

2. Increase kp as follows: kp +  step (this was done using a while-loop);

3. If kp <  ku then go to step 4. Else, term inate the algorithm;

4. Find the roots zx and z2 of (5.10);
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5. Compute the parameters rrij and bJ: j  =  1,2 associated with the previously 

found Zj by using (5.11);

6 . Determine the stabilizing region in the ki — kd space using (5.12);

7. Go to step 2 ;

Following these conditions creates different trapezoidal or triangular shaped planes 

for each value of kp. These planes are shown in Figure 5.6 for the system under 

consideration here.

A r» » o f S ttO z t to n  Aiwe ef 8 W * z e M n

F ig u re  5.6: Areas of Stabilization for the lx  model (left) and 2x model (right)

5.3.3 R e su lts  U sing  th e  P ID  C o n tro l

W ithin the areas of stabilization shown in Figure 5.6, all values of kp, kx, and kd 

will provide a solution of (5.2) and (5.3); this means th a t, since the param eters are real 

values, there are as many solutions as there are combinations of the parameters. To 

be certain th a t a solution of minimal error was found, each combination of param eters 

was considered and the overshoot (in regards to the target of the tracking control) 

was found. Also, the norm of the difference of each solution vector and the tracking 

target was calculated. Each solution was first found by solving (5.5) in the frequency
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domain and then performing a numerical inverse Laplace transform using the code 

found in [3], which then provides the solution to (5.2) and (5.3) in the time domain. 

The overshoot, plotted against the respective function’s kt and kp values is shown 

in Figure 5.7. This figure shows the wide range of overshoot values th a t are found 

when each combination of param eters is considered. The average overshoot for each 

model is on the magnitude of a t least 1 0 14 meaning th a t the choice of param eters is 

of utmost importance when using this control design.

Overshool vs. k and k. Overshoot vs. k and kp i  p i
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F ig u re  5.7: Overshoot for lx  (left) and 2 x (right) models

The solution sets utilizing of ku kp, and kd th a t provided the lowest norm 

calculation were considered desirable and are plotted in Figures 5.8 and 5.9. The 

solution set with the lowest norm was chosen in an effort minimize the stabilizing 

time of the model and that with the lowest overshoot was chosen in an effort to 

minimize the overall required injection. The values in the solution set were then 

converted from OD to fj,L using (4.21) and plotted in Figures 5.10 and 5.11. It would 

also be considered appropriate to use the overshoot as the performance criteria for 

this controller because it is desired to limit the to ta l injection amount while still
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tracking the absorbance to a desired value and limiting the overshoot accomplishes 

this. However, limiting the overshoot will not necessarily lessen the stabilizing time of 

the model and therefore may not allow the nanoparticles to build in the bloodstream.

The plots shown in Figures 5.8 and 5.9 show th a t the controller tracks to the 

desired value within the time frame of the experiment and with the initial absorbance 

value of 0 OD. The initial absorbance value for this controller is set to zero in order 

to more closely follow the examples given in the literature. However, because the 

initial absorbance value will typically be zero in an experimental setting, this is an 

appropriate condition to follow. There is also very little oscillation in the plots shown 

in Figures 5.8 and 5.9 and it stabilizes to  the target very quickly. W ith the absorbance 

values initially being below the target (unlike past strategies), it is likely th a t the level 

of required injection would be lower when compared to the other strategies.
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F ig u re  5.8: Controlled lx  with min norm (left) and with min overshoot (right) (OD), 
varied axes

While the models that give the minimum norm calculation do not necessarily 

show a faster stabilizing time than those with the minimum overshoot, they do show 

quick stabilizing times and are an appropriate way to guarantee a minimal (if not



52
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F ig u re  5.9: Controlled 2x with min norm (left) and with min overshoot (right) (OD), 
varied axes

the most minimal) stabilizing time when used with future models. Calculating the 

injection over time for these models was a two part process: the first to account for the 

injections made before the model stabilizes and the second is for the tim e following 

the stabilization of the model (when measured in OD). For the first portion of the 

calculation, the injection was found using the conversion given by (4.21) with the 

absorbance value at each time point. The injection am ount necessary to build to the 

absorbance at any one time point is then equal to difference between /iL at th a t time 

point and the //L at the preceding time point. Once the controlled model stabilizes 

to the tracking target, this method to find the injection amount is no longer useful as 

the difference in n L between one time point and the next would be very close to zero 

and, therefore, not an accurate description of the nanoparticles needed to maintain 

the absorbance at a particular value. For this reason, once the model reaches the 

point of stabilization, the amount of nanoparticles needed is found in the same way 

as it is for the LQR controller. That is, we are basically finding the area between 

the /rL curves for the controlled and uncontrolled models, where the uncontrolled
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model is the exponential decay function given by (2.4) with an initial value equal to 

the tracking target and a horizontal translation to account for the time taken for the 

model to stabilize to that target. The values found are shown in Figures 5.10 and 

5.11 and the total injection amounts are given in Table 5.3.
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5.4 C om parison o f  th e  M eth od s o f  C ontrol

Aside from simply comparing the plots produced by each m ethod of control, 

the only way to properly compare the models is to compare the to tal error for each 

model (which is found using the Total Least Squares method in [30]) along with the 

required overall dose (in /iL) for each model. Each of those values was found and 

given in Tables 5.3 and 5.4, respectively. Judging by the error alone, it would seem

Table 5.3: Total Dose of Each Control Strategy

lx 2 x half lx half 2 x
initial 

absorbance (OD) 3.2475 4.1573 1.6238 2.0789
target 

absorbance (OD) 1.6238 2.0789 1.6238 2.0789
LQR control 

total dose (/iL) 234.64 1080.92 65.25 299.1
Dirac delta 

to tal dose (/iL) 127.3 235.33 66.07 115.08
PID control(w/0 initial OD) 

total dose (/iL) *
w /m in norm 

w /m in overshoot
242.58
222.80

498.25
467.31

Table 5.4: Total Error According to Initial Absorbance

Initial /  Target No PID Control PID Control
Absorbance (OD) Control w /m in w /m in

overshoot norm
0 /  1.6238 * 2.4529 0.2957
0 /  2.0789 * 0.3820 0.5666

LQR Dirac
Control delta

3.2475 /  1.6238 430.81 178.47 285.73
4.1573 /  2.0789 472.66 539.72 432.52
1.6238 /  1.6238 572.93 140.89 39.44
2.0789 /  2.0789 695.07 26.53 105.9

that the PID control (whether by using the minimum overshoot or the minimum

norm) is the most efficient. However, because of the methods involved in stabilizing
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the PID controller, it requires several minutes to  hours to  run; as opposed to the other 

strategies which require seconds to minutes. The PID controller also requires a rather 

high total dose which is expected as it is the only m ethod of control analyzed th a t 

held the absorbance level to the desired target. This is not ideal when future work is 

considered as we would want to apply the controller during a real-time experiment. 

W ith this being said, it would appear using Dirac delta functions as the m ethod of 

control is the most efficient as it provides low error and a low to tal injection. This 

method is also able to keep the absorbance level close to  the target for the bulk of the 

experiment (as can be seen in Figures 5.4 and 5.5) and should be easily replicable in 

an experimental setting with some animals when a continuous infusion is not possible. 

When a continuous infusion is a possibility, the LQR control strategy is an efficient 

choice as well.



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Sum m ary and C onclusions

In this work, several different models are presented to represent the  nanopar

ticle concentration in the bloodstream over time via absorbance measurements. The 

algebraic model is described in (2.3) and plotted for the particular mouse in Figure 

2.1. Though it was a good starting point, this model was found to have a low R- 

squared value for each mouse modeled. It was determined that, overall, this model 

skewed the time of maximum absorbance to a later tim e point; it also tended to  yield 

low maximum absorbance predictions. For those reasons, a new model was used.

The absolute value model described in (2.5) and plotted for the particular 

mouse in Figure 2.3 has shown to improve upon the issues found with the rational 

model. As the absolute value model is capable of a much faster rise in the dependant 

variable, the skew of the time of maximum absorbance shown in Figure 2.1 was 

better accounted. This model also showed better overall predictions of the maximum 

absorbance. However, much like the algebraic model, this model was unable to 

account for the false ‘peak’ in nanoparticle uptake; this refers to the high maximum 

absorbance that quickly drops off, most likely due to  poor coating of some of the

56
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injected nanoparticles. As neither the algebraic nor the rational model were able to 

account for this perceived error, the exponential model was created.

Figure 2.2 plots (2.4) for the same particular mouse of the above two models. 

This exponential model not only accounts for the false ‘peak’ of nanoparticles, but 

also gives a more ‘close up’ view of the retention phase of the experiment; this is of 

particular interest for the control effort portion of this research. As the goal of the 

control effort for the current model is to maximize the retention of nanoparticles in 

the bloodstream, the control effort is focused on the exponential model only. Using 

this model and the injection profiles described in (2 .6 ), the piecewise model was found 

and further used for the control effort described in C hapter 4.

Upon running the statistical tests it was found th a t the d a ta  within the lx  

and 2 x models were statistically similar and, therefore, we were able to  create average 

models, or ‘Master Mice’, for the lx  and 2x best fits of each model presented in 

Chapter 2. Confidence and prediction intervals were then found for each ‘Master 

Mouse’ for each model. These plots are now theoretically able to be used in real time 

in order to see adverse reactions and other possible issues during the experiment.

Several different control strategies were analyzed in Chapters 4 and 5. Initially, 

in Chapter 4 a tracking LQR controller with a DDE is used assuming the same 

initial injection as is used experimentally. Then, in Chapter 5 this same controller 

is used with different initial injections for the purpose of limiting the overall amount 

of nanoparticles required for the entire experiment. Then, the use of Dirac delta 

functions as a control strategy was analyzed to observe if a discrete number of 

injections would be at least as effective as the continuous injection in the LQR
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controller. Finally, as it is a more commonly used controller in the engineering or 

industrial settings, a tracking PID controller was used on the DDE. Each strategy 

was found to be efficient and proficient a t tracking to a  desired target (in this case, 

tracking to a desired absorbtion). The to tal am ount of required nanoparticles (in /iL) 

was found along with the error for each model and these values are given in Tables 

5.1 and 5.4, respectively. Each strategy required a different amount of nanoparticles 

to reach the desired target. However, as the error and oscillation of the different 

solutions also varied, it is not entirely clear which strategy is the most efficient for 

experimental use.

While each method was shown to  be effective, the Dirac delta functions ap

peared to be the most efficient as it yielded low error with minimal to tal injection 

and short run time. This control method was also able to  keep the absorbance value 

very close to  the target for the m ajority of the length of the experiment.

6.2 D iscussion  and Future W ork

Each control effort, with the possible exception of the PID control, applied to 

the exponential decay model shown runs within the tim e frame for which it could be 

used in an experimental setting. Currently, the confidence and prediction intervals 

described in Chapter 3 are in the beginning stage of being implemented for use in real 

time during the run of the experiments. W ith the models being created in real time 

it would be possible to see adverse reactions as they are happening and thus better 

treat the patient. Once this is accomplished, it is the goal to  implement a control 

strategy in an experimental setting as well. Each controller shows a different method
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with different results to  consider so the choice of control strategies to implement will 

most likely depend on the specific needs of the individual patient.

These models only show a single biological compartment (that is, they model 

the entire body at one time). Ideally, several different compartments will be added, 

such as the tumor, reticulo endothelial system, and bloodstream (similar to the 

models discussed in [IT]). Currently the experimental data does not provide the 

necessary information to show a multi-compartment model. The addition of these 

compartments will provide much better insight into where the nanoparticles are 

actually accumulating once they enter the body. The additional models will also 

provide more opportunities for control design strategies to  be applied. It would be of 

specific interest to minimize the nanoparticle elimination by the reticulo endothelial 

system and to maximize the nanoparticle uptake in the tumor. Ideally, these methods 

can also be used with other treatm ent strategies than  the nanoparticle dosages if 

enough data were provided for those methods.
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