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ABSTRACT

DNA microarray is an efficient biotechnology tool for scientists to measure the 

expression levels of large numbers of genes, simultaneously. To obtain the gene 

expression, microarray image analysis needs to be conducted. Microarray image 

segmentation is a fundamental step in the microarray analysis process. Segmentation 

gives the intensities of each probe spot in the array image, and those intensities are used 

to calculate the gene expression in subsequent analysis procedures. Therefore, more 

accurate and efficient microarray image segmentation methods are being pursued all the 

time.

In this dissertation, we are making efforts to obtain more accurate image 

segmentation results. We improve the Segment Based Contours (SBC) method by 

implementing a higher order of finite difference schemes in the partial differential 

equation used in our mathematical model. Therefore, we achieved two improved methods: 

the 4th order method and the 8th order method. The 4th order method could be applied to 

segment both the cDNA microarray images and the Affymetrix GeneChips, while the 8th 

order method could be applied to segment only the cDNA microarray images, due to the 

limitation of the current image resolution.

th  thThe mathematical derivation shows that both our 4 order method and 8 order 

method are better approximating the C-V model [Chan & Vese, 2001] than the SBC 

method, which means they will offer more accurate segmentation results than the SBC



iv

method. Besides mathematical proof, we do the practical experiments to double check the 

conclusion drawn from the mathematical derivation. Both the 4th order method and the 8th 

order method are used to segment microarray images, and the output segmentation results 

-the intensities of each probe cell in the microarray image-are being compared to the 

results from the SBC method and two other mainstream microarray image segmentation 

methods, the Globaly Optimal Geodesic Active Contours (GOGAC) method and the 

GeneChip Operating System (GCOS) software, for more valid evaluation.

To give the ground true values of intensities as the standard for different 

segmentation methods comparison, a microarray image simulator is introduced to 

generate the simulated images used in our experiments. The simulated microarray images 

have all the characteristics that real microarray images have, and the true intensity values 

of each probe spot in the image are provided by this simulator. Intensity values 

segmented by those segmentation methods are compared to the true intensity values. 

Therefore, we could evaluate that one segmentation method is more accurate than the 

other methods if its intensity values are closer to the true values.

We conduct several analysis procedures in the segmentation results comparison 

part to convince our analysis results. Intensity analysis, paired t-test and Unweighted Pair 

Group Method with Arithmetic Mean (UPGMA) hierarchy cluster experiments are 

applied to analyze intensity values of those methods. The segmentation output analysis 

results show that our 4th order method and the 8 th order method could offer more accurate 

segmentation than the SBC method, the GCOS method and the GOGAC method on some 

kinds of the microarray images. There are accuracy improvements achieved with the 8th 

order method over the 4th order method on the cDNA microarray image. On the Bovine



type AfFymetrix GeneChip image, there is no significant difference between the 4th order 

method and the 8th order method.
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CHAPTER 1

INTRODUCTION

1.1 Overview

DNA microarray is an efficient biotechnology tool for scientists to measure the 

expression levels for a large number of genes, simultaneously. There is a collection of 

DNA spots attached to the surface of the microarray, and each spot contains a specific 

DNA sequence known as a probe. Labeled target DNA sequences are hybridized to these 

probes, and this probe-target hybridization is used to detect and quantify the associative 

gene expression [Roger, 2013].

To obtain the performance of the gene expression, we need to analyze the DNA 

microarray image. There are three principle steps for DNA microarray image analysis: 

Addressing, Segmentation, and Information extraction. The research in this dissertation is 

focused on the segmentation step, which is to identify the foreground of each DNA spot 

in the image from the background of each spot. To be more specific, segmentation is to 

detect the boundary of the bright part of each spot. The GeneChip Operating System 

(GCOS) by Affymetrix, Inc. and the Global Optimal Geodesic Active Countours 

(GOGAC) method [Appleton & Talbot, 2006] are the two most widely used microarray 

image segmentation methods in the world. More detailed descriptions of these two 

methods are described in Section 2.3.

1
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Since segmentation is a fundamental step in the microarray image analysis and the 

segmentation accuracy has significant influence on the subsequent gene expression 

generation, more accurate and efficient segmentation algorithms are being pursued all the 

time. The SBC method [Ni et al., 2009] is modified from the ACWE method [Chan & 

Vese, 2001], which has been shown to be more accurate in terms of segmentation than the 

GCOS method and the GOGAC method.

1.2 Objective of the Research

The objective of this research is to develop more accurate microarray image 

segmentation methods than the SBC method [Ni et al., 2009] based on the current 

resolution of the microarray images. To achieve this objective, the following research 

plan is pursued:

(1) Develop the numerical algorithms of our improved segmentation method and 

deduce the truncation errors for the numerical approximation.

(2) Simulate cDNA microarray images and Affymetrix GeneChip images, which 

are used to evaluate our improved segmentation methods.

(3) Apply our two improved DNA microarray image segmentation methods to the 

simulated images, and then compare the performance of our method to the SBC, the 

GCOS, and the GOGAC methods.

1.3 Organization of the Dissertation

Chapter 2 introduces the fundamental information about DNA microarray and 

DNA microarray image analysis procedures. Two widely used DNA microarray image



segmentation methods are mentioned. We use these discussions to help understand our 

research in the subsequent chapters.

Chapter 3 describes how we simulated the cDNA microarray image and 

Affymetrix GeneChip images that are used in our experiment. The image simulator 

[Nykter, 2006] can generate microarray images with all the realistic characteristics that a 

real microarray image contains. What is more important is that this simulator gives the 

ground true intensity values of each spot in the image. Therefore, we can compare our 

improved method with different segmentation algorithms.

In Chapter 4, we give a detailed description on how we improved the SBC

♦Vi thmethod to obtain our two methods: the 4 order method and the 8 order method. The 

reason why we use the fourth order forward, backward, central finite difference schemes, 

and the eighth order forward, backward, central finite difference schemes to implement 

the C -  V model [Chan & Vese, 2001] is discussed. The associated truncation errors in 

terms of space and time are deduced to evaluate the numerical approximation accuracy.

th thIn Chapter 5, we apply the 4 order and the 8 order method to a simulated cDNA 

microarray image. Intensity analysis, paired t-test and UPGMA hierarchy cluster are 

implemented to compare our methods to the GOGCA method and the SBC method.

In Chapter 6, we apply the 4th order method to two simulated Affymetrix 

GeneChip images. To evaluate how the 4th order method and the 8th order method 

perform on Affymetrix arrays, we apply them to two simulated expanded Affymetrix 

GeneChip images. The same intensity analysis, paired t-test and UPGMA hierarchy 

cluster are implemented to compare our methods to the GCOS method and the SBC 

method. Conclusions and future work are addressed in Chapter 7.



Chapter 2 

BACKGROUND AND PREVIOUS WORK

2.1 DNA and RNA

DNA is a double-stranded molecule of genetic material that stores information 

regarding its own replication and the order in which amino acids are to be joined to make 

a protein [Mader, 2010]. All living cells on Earth, without any known exception, store 

their hereditary information in DNA [Alberts et al., 2002] [Sheeler & Bianchi, 1980].

DNA is a long unbranched pair of polymer chains always formed from the same 

four types of monomers: A, T, C, and G. These monomers are strung together in a long 

linear sequence that encodes the genetic information. Each molecule, that is, each 

nucleotide, consists of two parts: a sugar (deoxyribose) with a phosphate group attached 

to it, and a base, which may be either adenine (A), guanine (G), cytosine (C), or thymine 

(T), as shown in Figure 2.1.

phosphate
sugar

I

+ ■
sugar base 

phosphate nucleotide

Figure 2.1: Building block of DNA from [Alberts et al., 2002],

4
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Each sugar is linked to the next via the phosphate group, creating a polymer chain 

composed of a repetitive sugar-phosphate backbone with a series of bases protruding 

from it. A single DNA strand is formed in this way. The bases protruding from the 

existing strand bind to the bases of another strand being synthesized, according to a strict 

rule defined by the complementary structures of the bases: A binds to T and C binds to G. 

In this way, a double-stranded structure is created, consisting of two exactly 

complementary sequences [Alberts et al., 2002]. The two strands twist around each other, 

forming a double helix, as shown in Figure 2.2.

©  phosphate 

sugar

| nitrogan- 
contalntng

Figure 2.2: The structure of DNA from Encyclopadia Britannica, Inc., 2007.

The replication process allows the DNA to make a copy of itself. During the 

process the base pairs of the two strands in a DNA open and each strand acts as a
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template. Two complement strands are reproduced which achieve the DNA duplication 

process.

In order to carry the genomic information, the DNA sequence must undergo the 

process of replication and transcription with the help of RNA (ribonucleic acid) and 

protein. RNA has the similar intermediary structure with the DNA strand stored in the 

cytoplasm. There are, however, some differences in RNA compared with DNA. In RNA, 

the backbone is formed by ribose instead of deoxyribose. In addition, those four bases are 

the same with one exception: U (uracil) replaces T (thymine) [Alberts et al., 2002] 

[Sheeler & Bianchi, 1980]. Thus, in RNA, A is paired with U and C is paired with G.

This process starts from the transcription, as the DNA sequence is treated as the 

template for RNA synthesis. The genetic information in a specific sequence is transferred 

into a complementary special sequence of messenger RNA (mRNA) as seen in Figure 2.3. 

Three bases in RNA transcripts are considered as the genetic code called “codon.” 

Several of these triplet codons guide the synthesis of polymers of protein, which is the 

translation process. Thus, from DNA to protein, hereditary information is deciphered, as 

shown in Figure 2.4.
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i . - i  - j j . j
'nUGIBOOQB DHnQ IQOvU

tothe3' endof ttwRNA

L - - L J J  1----npraragui
tttttftmGdKrtaite

Figure 2.3: DNA transcription from Pearson Education, Inc., 2012.

DNA

Template 
strand of DNA

Synthesis of RNA 
(transcription)

mRNA

Polypeptide NH

Synthesis of polypeptide 
(translation) 

►COOH

Figure 2.4: From DNA to protein [DNA to protein from Northeastern University],

Each DNA sequence experiences three stages: the replication, the transcription 

and the translation, and genetic information is passed down through this process. The
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subsequence of DNA that is transferred into the protein is called a “gene” [Lakhotia, 

1997]. Thus, this process is called the “gene expression”. In the genetics field, gene 

expression is the most significant and basic foundation for transforming the genotype to 

the phenotype. Different organism phenotype is caused by controlling the different 

properties of the gene expression [Rockman & Kruglyak, 2006]. By using DNA 

microarray technology, scientists are able to monitor and manage thousands of genes’ 

expressions, simultaneously.

2.2 DNA Microarray and DNA Microarray 
Image Analysis

DNA microarray is an efficient biotechnology tool for scientists to monitor 

thousands of genes’ expressions, simultaneously. It is a tiny silicon chip with a collection 

of DNA spots attached to its surface. Each spot contains a specific DNA sequence known 

as a probe. Labeled target DNA sequences are hybridized to these probes. This 

probe-target hybridization is used to detect and quantify the associative gene expression 

[Roger, 2013]. With the manufacturing method, there are two types of DNA microarrays: 

spotted microarray and oligonucleotide microarray.

Spotted microarrays are cheap and the polymerase chain reaction (PCR) method 

is used to produce the sequences on the array spots. The probes in the arrays are long 

cDNA sequences. Oligonucleotide microarrays are expensive and the spot probes in the 

arrays are short oligonucleotide sequences. For the spotted array, the DNA sequence may 

or may not be known, and there is little control of the amount of DNA in a spot. For the 

oligonucleotide array, the DNA sequence is known as a perfect match (PM) and 

mismatch (MM). PM and MM are paired and used as controls of DNA. Since an
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oligonucleotide array has more probe controls in the microarray than that of the spotted 

array, the oligonucleotide microarray is more efficient than the spotted microarray; this is 

the same reason why the oligonucleotide microarray is more expensive than the spotted 

array.

2.2.1 cDNA Microarray

cDNA microarray is a kind of spotted microarray, as shown in Figure 2.5. To 

make a cDNA microarray, the RNA sequence from both the control sample (normal 

sample) and the experimental sample (diseased sample) are isolated. Next, reverse 

transcription process is operated, which allows it to convert the RNA sequences of 

interest into cDNAs. After the reverse transcription, the cDNAs will be labeled with 

fluorescent probes, Cy3 for the control sample, and Cy5 for the experiment sample. The 

Cy3 is in a green channel with 530 nm wave length, and Cy5 is in a red channel with 630 

nm wavelength [Yang et al., 2002]. When finishing the labeling process, cDNA 

microarray is scanned both at the -540 nm and -630 nm for each channel, respectively. 

Two 16-bit monochromatic images are generated after scanning, which are red and green 

images, as shown in Figure 2.6. In these two images, each spot represents a specific gene 

[Gohlmann & Talloen, 2009] [ cDNA microarray experiment from SQL, 2006].
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Figure 2.5: cDNA microarray (left) and cDNA microarray image (right).

Typically, a cDNA microarray experiment [cDNA microarray experiment from 

SQL, 2006][cDNA microarray experiment by Jeremy Buhler, 1998] includes the 

following six steps, as shown in Figure 2.6:

(1) In the sample preparation step, a normal sample and a disease sample are 

selected.

(2) In the nucleic acid isolation and purification step, the mRNA sequences of the 

two samples are extracted.

(3) In the reverse transcription step, mRNAs are transcribed to cDNAs.

(4) In the hybridization step, the cDNAs are tagged with fluorescent dye. Tagged 

cDNA sequences are hybridized to a microarray. The excess tagged cDNAs are washed 

away from the microarray.

(5) In the laser scanning step, the microarray is scanned in two channels.

(6) In the analysis step, the spot intensities are generated and the gene expression 

analysis is implemented.
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-j o  ^  C o m p a r a t i v e
^  * *  Hybridization

Experiment

Figure 2.6: cDNA microarray experiment process [cDNA microarray experiment by 
Jeremy Buhler, 1998].

2.2.2 Affymetrix GeneChip Microarray

The Affymetrix GeneChip is a kind of oligonucleotide mcroarray, as shown in 

Figure 2.7. Mentioned in the late 1980s, Fodor et al. introduced the semi-conductor 

technique for a biological setting in the microarray fabrication process. This process 

helped to construct a system to measure more and more various mRNA sequences in one 

sample. In addition, Affymetrix microarray introduced small oligonucleotide sequences 

(probes) containing 25-nucleotides located variously in their sequence composition. 

These small probes could bring a better discrimination between similarly related 

transcripts over long oligonucleotides, especially when mRNAs are highly abundant 

[Cheng, 2013].



Figure 2.7: Affymetrix GeneChip (left) and part of its image (right).

The Affymetrix uses a probe that is paired with the Perfect Match (PM) and the 

Mismatch (MM), as shown in Figure 2.8. These two probes are exactly the same, except 

for the one base in the middle. To illustrate, PM has 25-nucleotides, which are perfectly 

hybridized to the mRNA sequences, whereas MM has the same 25-nucleotides, except 

the only one base in the middle of the 25 bases that is different from what the PM has. 

Each PM should be uniquely different from each other. In this case, false signals 

transcription caused by similar complete sequences were completely eliminated, and MM 

was used to help scientists to learn and control the unspecific signal and background 

signal.



13

mRNA reference sequence

/  y■// ......................................
probe set [

spaced probe pair

. . . TGTGATGGTGGGAATGGGTCAGAAGGACTTCTATGTGGGTGACGAGGCC. . .
~T T ACCCAGTC TTCCTGAAGATACACCC AC PM prob*

TTACCCAGTCTTGCTOAAGATACACCCAC MMprob*

perfect match probe cells 
mismatch probe cells

fluorescence intensity image

Figure 2.8: GeneChip expression array design from Affymetrix, Inc.

Normally, an Affymetrix experiment contains the following six steps, as shown in 

Figure 2.9:

(1) First, a sample of interest is selected.

(2) The RNA sequences are isolated and purified. After checking the quality of 

RNA sequences, good quality RNA sequences are labeled. These mRNAs experience the 

reverse transcription to cDNA.

(3) In Vitro Transcription (IVT), the cDNA sequences are transcribed to cRNA 

sequences, and these cRNA sequences are labeled and fragmented to short pieces.

(4) Hybridization is performed on the gene microarray platform under specific 

temperature and hours.

(5) After complete hybridization, the microarray is scanned by a special laser, 

generating the Affymetrix GeneChip image in 16-bit gray level.



(6) The intensity of each pixel on the chip is recorded according to the emission of 

the fluorescent dye.

2.2.3 DNA Microarray Image Analysis

There are three principle procedures to analyze a DNA microarray image [Yang et 

al., 2002]: Addressing, Segmentation, and Information extraction.

When we deal with an image, we need to transfer the visualized image into digital 

values for calculating and analyzing. Addressing is to find the exact geometry location of 

each probe spot in the microarray image, and then to arrange each spot into a grid with 

coordinates.

Figure 2.9: GeneChip experiment process from Affymetrix, Inc.



Since the target DNA sequences are labeled with fluorescent dyes, the 

hybridization part of each spot will be bright in the image, and the other part will remain 

dark. Therefore, segmentation is the procedure to identify the bright part, which is the 

foreground, from the dark part, which is the background. To be more specific, 

segmentation is to identify the pixels either as the foreground or as the background and 

get the exact boundary of the foreground pixels.

Information extraction is to generate the foreground and the background intensity 

value of each spot, and then summarize these intensity values into the signal values to 

analyze the associative gene expression.

2.3 Previous Work on DNA Image 
Segmentation Methods

There are two widely used DNA microarray image segmentation methods: one is 

the GOGAC method [Appleton & Talbot, 2006] for cDNA microarray images, and the 

other one is the GCOS software from Affymetrix, Inc. for Affymetrix GeneChip images.

2.3.1 The GOGAC Segmentation Method

Globally Optimal Geodesic Active Contours (GOGAC) was first proposed in 

[Appleton & Talbot, 2006]. It is a kind of adaptive shape segmentation technique and can 

be used on cDNA microarray image segmentation. GOGAC searches the geodesic active 

contours with globally minimal energy containing an internal point p ial. A general 

algorithm of GOGAC is presented with the following steps:
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1. Initialization:

• Assign the root search cut node R ( P™°‘) with 00 as the lower bound

• Mark P™' as open

• Enqueue R

2. Priority First Search (infinite loop):

• Delete the search cut node n of the least lower bound from the priority queue

• If n is marked as closed:

-Assign the minimal closed geodesic corresponding to n 

-H alt

• Calculate the surface of the minimal action U in the helical surface space S 

from the start of set n

— Halt the calculation early when at least one element of each end set of X\

and Z* has been checked

• Find out the end of the geodesic: p end = sxgM {U(pend) | p end e  Pend}

• Obtain the minimal geodesic Cmn and the start point p starl for n by gradient 

descent from Pend to p slart

3. For each child % of the search tree:

• Assign Pslarl , Pend to be the start set and end set of x  

•Let x  be a lower bound min{£/(pend)| p end ePend}

• Mark x  as closed if p start and pend are both located in x  and are connected 

in the discrete grid

• Enqueue x
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The proposed GOGAC algorithm was implemented using Spot software 

developed by CSIRO, Inc. Spot is a package installed in the R software. The interface of 

Spot is shown in Figure 2.10. The user needs to create the batch files and set up the 

parameters and a template by himself, according to the cDNA microarray image that is 

being segmented. The top left grid point needs to be pointed manually in the image by the 

user. After the segmentation, a SPOT format file and a JPG format file are generated. The 

former file contains the intensity value of each spot, and the latter file displays the grid 

finding and the segmentation results. The weakness of this method is that it prefers to 

produce circles and cannot prevent overlap.
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uW IWUî l CpBDW

SsgmsntatJooopttes

^  *—■**——   iMrann spoons

Output spoons

SMsctai I Ssmsstungs m Go!

Figure 2.10: The Spot interface window.

2.3.2 The GCOS Segmentation Software

All the Affymetrix GeneChip images can be analyzed by the GeneChip Operating 

System (GCOS) software, which is developed by Affymetrix, Inc. It provides an intuitive 

set of tools for instrument control and data management used in the processing of 

GeneChip Arrays. The software summarizes probe cell intensity data, generates the gene
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signal values, and enables sample and array registration, data management, and 

instrument control as well as automatic and manual image gridding.

The raw image information was stored in a DAT format file and we use the GCOS 

software to open this DAT format file. Alignment and addressing are automatically 

performed and intensity values of each probe spots are written into a CEL format file. 

With the intensity values obtained, the GCOS software implements the MAS 5 algorithm 

to analyze the CEL format file and related CDF format file to calculate the gene signal 

value for each probe set. This gene signal value is stored in the CHP format file and the 

TXT format file. One was in a special format in the CHP file. The other one was in text 

format in the TXT file. The workflow of the GCOS software is illustrated in Figure 2.11.

Scan GCOS MAS5

EXP file

DAT file CEL file

CDF file

Hybridized
GeneChip

CHP file

TXT file

Figure2.11: GCOS microarray image analysis flow.

In a Affymetrix GeneChip image, each probe spot cell contains n x n  pixels 

depending on the experiment design. For the microarray image segmentation and 

intensities extraction step, after identifying the position of each probe, the GCOS 

software omits the outer boundary pixels. Only the inner ( « - l )x (n -T )  pixels are
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included and considered to be within the foreground area. The GCOS software chooses 

the 75 th percentile of the inner pixels to represent the intensity for each probe.

We illustrate how the GCOS software computes the intensity of one spot in Table 

2.1. Table 2.1 contains the pixels’ matrix of one spot in the microarray image. The outer 

highlighted pixels are dropped off by the GCOS software. The remaining 75th percentile 

of the inner pixels is recorded as the intensity value for the spot. The reason why the 

GCOS software omits the outer pixels is that it is believed that such pixels are not reliable 

and may carry some noise and errors, for they may be located by the misalignment in the 

scanning process, or they may be influenced by the neighboring probes which have a 

large amount of emission.

Table 2.1: Pixel matrix for one probe spot in a Affymetrix GeneChip image.

256 166 413 301 309 473

294 256 166 234 204 286

166 204 166 256 196 174

196 369 279 458 219 264

181 166 241 286 451 376

234 219 249 376 166 219

Zuzan et al. [Zuzan et al., 2001] showed in their research that with the increasing 

pixel values, the variance would become unstable when choosing the 75 th percentile as 

the probe intensity. It is not robust enough when dealing with different qualities of cells.



CHAPTER 3

SIMULATED DNA MICROARRAY IMAGES

In this chapter, we use a DNA microarray image simulator to simulate the cDNA 

microarray images and the Affymetrix GeneChip images. The simulated images have all 

the characteristics that the real microarray images have. More importantly, we can have 

the ground true intensity values for each spot, which enable us to evaluate the 

performances of different segmentation methods.

3.1 DNA Microarray Image Simulator

The DNA microarray image simulator, proposed by Nykter et al. in 2006, is used 

to validate different kinds of data analysis algorithms. It can simulate both spotted 

two-channel and oligonucleotide one-channel microarrays, by using the true intensity 

values of each probe spot as an input. This simulator contains all the steps that affect the 

quality of real microarray data. To illustrate, those steps include the simulation of 

biological ground truth data, applying biological measurement technology specific error 

models, and simulating the microarray slide manufacturing and hybridization. With this 

in mind, the simulated data has realistic biological and statistical characteristics. 

Therefore, we use this simulator to simulate the microarray images used in our 

experiment.

20
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The simulation model [Nykter et a l, 2006] contains six main modules, which are 

data input, slide manufacturing, biological noise, slide hybridization, slide scanning, and 

image reading, as shown in Figure 3.1. Each module is independent of the others, and can 

be easily replaced or modified. Each module has several parameters that can be 

established. By operating the module parameters, the simulation process will provide 

three different quality images, which are high, normal, and bad. It should be pointed out 

that the simulator is written into a Matlab program, with each module as a separate 

function file.

Slide
scanninginput noise

Slide
hybridization

Slide
manufacturing

Image
reading

Figure 3.1: Block diagram of the microarray simulation model from [Nykter et al., 2006].

Before we write the input information into the file, we need to set up the module 

parameters according to the type and quality of the image we want. The available 

parameters and their values are listed in Tables 3.1- 3.4. Table 3.1 lists the noise options 

that can help the users control the statistical properties of the data. Table 3.2 lists the slide 

manufacturing parameters, which have an effect on how the simulated slide looks. For 

instance, we can set up the number of blocks we want in an image, or the number of
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pixels in each direction we want to arrange in each spot. Table 3.3 lists the slide 

hybridization parameters that control the quality of the slide. We can control the 

background noise by setting the parameters in this table. Table 3.4 lists the scanning 

parameters that are used to set up the virtual scanner. For the detailed description of each 

parameter, we refer the reader to [Nykter, 2006].

Table 3.1: List of noise parameters.

Kernel Kernel used to model the population effect.

Copies Number of times the population effect is applied. 

Error model Error model to be used: each error model 

has its own parameters 

Simple noise model (0.01,0.001)

SNR noise model (0,10)

Dror noise model (1,0.01,0,36,13,0.76,0,0.21)

Hartemink noise model (0.2,0.01,1)

Hierarchical error model (0.012,0.010,0.085,0.094,0.011)

Rocke noise model (5,0.1,1,1)

Hein noise model (0.341,0.335,0,50,0.5,1,0.5,10)



Table 3.2: List of slide manufacturing parameters.
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Good Normal Bad Affymetrix

Stype cdna cdna cdna oligo

Sspot circle gussian gaussian

Spix 12 12 12 10

Smovprob 0.01 0.1 0.5 0.1

Smov 0 1 2 1

5 5 5 4

0.001 0.01 0.1 0.01

P 0 1 1

Pp 0.0 0.5 0.9

Ph 0 3 3

Pw 0 2 2

Pb 0 1 2

Cprob 0 0.1 0.25

Cnum 0 4 8

Ccut 0 3 6

B [4,2] [4,2] [4,2] [1,1]

Bspace 50 50 50

Bcurve 0 1 2

Bmaxc 0 3 10



Table 3.3: List of hybridization parameters.
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Good Normal Bad Affymetrix

0.001 0.01 0.1 0.01

Herrors 1 1 1 1

Hbgnoise 10 30 50 20

Hbgvar 0.001 0.01 0.03

Hbggrad 1 1 1 1

Hnoscratch 0 1 3 0

HSlength 0 0.3 0.9

HSwidth 0 3 5

Hnoair 0 1 3

K a ir 0 15 30

1 10 20

Hbleed 0 2 10

Hbleedsize 0 5 10

Hbleeddist 0 0.4 0.4



Table 3.4: List of scanning parameters.

25

Good Normal Bad

Rpower 1 10 20

Rb 16 16 10

Req 0 0 0

Rth 7 5 3

RRch 2 2 2

RGch 1 1 1

Rerrors 0 1 1

Rangle 0 0.1 1

Rmra 0 0 1

After all the parameters are set, we need to prepare the input data as required. 

There are seven different variables that are required for the input data: data (intensity 

matrix), time, name, info.genes, info.spots, type, and scale [Nykter et al., 2006]. After 

these seven variables are saved, the simulator could be run to generate the microarray 

images as required. Next, we will discuss these variables one by one.

1. Data: this variable contained the intensity matrix of each probe spot in the 

microarray image. Each column corresponds to one sample tissue of the microarray. 

These intensities are the ground true values that are used to evaluate different 

segmentation algorithms in Chapter 4 and Chapter 5.
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2. Time: this variable contains the time instants for different microarray 

experiments. Time scale can vary. The total length of this vector should equal the number 

of rows in the Data matrix. In our experiment, we set time as 1.

3. Name: this string variable indicates the name of the experiment dataset.

4. Info.genes: this array variable stores the name of the genes/probes.

5. Info.spots: this matrix variable contains the locations of each spot in the slide.

6. Type: this string variable indicates the type of the input data: ratios, expression 

or intensity. Ratios represent the gene expression type. Expression represents the cDNA 

microarray type. Intensity represents the Affymetrix microarray type.

7. Scale: this string variable indicates the scale of the input data: linear or log. 

These two options indicate whether the input data is in log scale or linear scale.

3.2 Dataset for Microarray Image Simulation

The original cDNA microarray images can be downloaded from the public 

website for Stanford University’s Yeast Cell Cycle Analysis Project. The cDNA 

microarray image file and grid file used in our simulation are from Elutriation 

Experiments, at 390 minutes. The downloaded image is in TIFF format and the grid file 

contains the location of each spot in the order of left, top, right, and bottom.

The original Affymetrix GeneChip images can be downloaded from the data 

resource center of the Affymetric Company’s website. The Affymetrix GeneChip image 

file used in our simulation is from Bovine Data file, which contains replicate probe array 

files for the Bovine Genome Array. The download file is in DAT format.
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3.3 Simulation on cDNA Microarray Image and 
Affymetrix GeneChip Image

3.3.1 Simulation on cDNA Microarray Image

We rewrite the downloaded grid file into a TXT format file with the same order of 

each spot’s location. This TXT file and the downloaded cDNA TIFF format image file are 

taken as the input of the SBC segmentation method. After the segmentation by the SBC 

method, we obtained the intensity values of each spot in the image. These intensities are 

written into the variable data as the input data of the simulator. It should be pointed out 

that these intensities are also the ground true values for the future evaluation analysis in 

Chapter 4 and Chapter 5.

In the meantime, the other six input variables are written according to the 

downloaded grid file and the characteristics of the cDNA microarray. Parameters in 

different modules are set in the type of cDNA microarray image simulation, with values 

of good slide quality. After the simulation, we obtain a simulated cDNA microarray 

image in .tiff format, with the ground true intensity values we know. Figure 3.2 is an 

example of the simulated cDNA microarray image. Since the simulation will lay the spots 

in the locations where the assocaited parameters are set, we can write a new grid file for 

the simulated cDNA microarray image for further use.
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Figure 3.2: A simulated cDNA microarray image.

3.3.2 Simulation on Affymetrix GeneChip Image

We transfer the DAT file downloaded from Affymetrix Company’s website into 

the GCOS software. Therefore, we obtain a DAT file and a CEL file. The DAT file 

contains the Affymetrix GeneChip image’s information like the pixel values of the image. 

Also, the CEL file contains the intensity values of each probe spot. These intensities are 

written into the variable Data as the input data of the simulator. A Matlab program written
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by Ni is used to extract each probe spot’s location information from the DAT file, and to 

write the location information into a TXT grid file for further use [Ni, 2009].

Similar to the argument for cDNA microarray image simulation, the other six 

input variables are written according to the grid file and the characteristics of the 

Affymetrix GeneChip microarray. Parameters in different modules are set in the type of 

oligonucleotide microarray image simulation, with values of good slide quality. After the 

simulation, we obtain a simulated Affymetrix microarray image in TIFF format, with the 

ground true intensity values that we know. Figure 3.3 is an example of the simulated 

Affymetrix GeneChip image.

Figure 3.3: The top-left comer of a simulated Affymetrix GeneChip image.
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In order to compare the segmentation output intensities by the GCOS method to 

the true intensity values, we need to use the GCOS software to analyze the simulated 

GeneChip image. However, the Affymetrix GCOS software cannot analyze the 

microarray image in the format of JPG or TIFF directly. In order to allow the Affymetrix 

GCOS software to analyze the simulated image, we need to rewrite the simulated TIFF 

microarray image file into a DAT file that the GCOS software can read. The DAT file 

contains the 16-bit grey level image pixel data matrix, header information, layout 

information, and so on. The pixel data matrix is stored as a 16-bit unsigned integer value 

at byte 512 following the header. The DAT file for the simulated microarray image 

contains the same information as the original DAT file except for the image pixel data 

matrix of the simulated image. Thus, we extract the new simulated pixels data and write 

them into the original DAT file and keep any other layout information the same. In this 

case, we get a new DAT file corresponding to the new simulated microarray image. 

Therefore, we can use the GCOS software to analyze this DAT file and obtain the 

corresponding CEL file, which contains the segmentation intensities of the simulated 

GeneChip image.

Due to the resolution of the Affymetrix GeneChip images, we could only apply 

the 4th order method. In order to compare the performance of the 4th order method and the 

8th order method on the Affymetrix Genechip images, we simulate two expanded 

GeneChip images. We take the one-sixteenth top-left comer of the simulated GeneChip 

image, and copy each pixel four times in the expanded image to make it twice the 

resolution than the original Genechip image. Therefore, the two expanded GeneChip
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images are 12x12 each. Figure 3.4 is an example of a simulated expanded Affymetrix 

GeneChip image.

Figure 3.4: A simulated expanded Affymetrix GeneChip image.



CHAPTER 4

THE 4™ ORDER METHOD AND 

THE 8th ORDER METHOD

In this chapter, we first introduce the ACWE method in Section 4.1 and the SBC 

method in Section 4.2 that we use to obtain our two new methods: the 4th order method 

and the 8th order method. In Section 4.3, we state the detailed procedures of how we 

achieve our two methods by improving the SBC method. Improvments of our methods 

over the SBC method on mathematical derivation are listed in Section 4.4. Parameters 

definitions and application instruction are stated in Section 4.5.

4.1 Active Contours Without Edges Method

The Active Contours Without Edges (ACWE) model [Chan & Vese, 2001] is a 

new model for active contours to segment objects in a given image. This method is based 

on the techniques of the curve evolution, the Mumford-Shah functional for segmentation, 

and level sets. The authors give a numerical algorithm for the model using finite 

differences.

The conventional active contours model needs a stopping edge function, which 

depends on the image gradient, to detect the boundary of an object in an image. The

32
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involving curve stops when the edge function indentifies the points where the image 

brightness changes sharply or there is discontinuity. However, most of these edge 

functions are sensitive to noise and inaccurate segmentation over the boundary [Lakshmi 

& Sankaranarayanan, 2010].

The ACWE method Chan and Vese proposed does not depend on the gradient of 

the image for the stopping process. Its stopping term is based on Mumford-Shah 

segmentation techniques [Mumford & Shah 1989], Therefore, the ACWE model can 

detect contours either with or without gradient. This makes the ACWE method capable of 

detecting objects with very smooth boundaries or even with discontinuous boundaries. In 

addition, the ACWE model has a level set formulation, interior contours are automatically 

detected, and the initial curve can be anywhere in the image [Chan & Vese, 2001].

With all these advantages, the ACWE method is now a frequently used 

segmentation method for general images. Moelich and Chanin developed a tracking 

algorithm based on the ACWE segmentation algorithm that is able to handle changes that 

result from deformations in the object that is tracked [Moelich & Chanin 2003]. Almhdie 

et al. presented a method based on ACWE algorithm as a segmentation method used for 

mouse brain MRI images [Almhdie et al., 2009], and Salman introduced an image 

segmentation algorithm based on the ACWE used to extract individual components from 

a medical image [Salman, 2006] [Yuan, 2013].

The basic idea of the ACWE method [Chan & Vese, 2001] is to assume that the 

image u0 can be divided by two regions of approximately piecewise-constant intensities

of distinct values: one region inside the object is denoted by the region with the value u‘Q,

and the other region outside the object is with the value u°0 . The defined Co is the
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boundary of the object. Then inside the objects there exists w0 » u‘0 (or inside(C0)), and 

outside the objects there exists u0 « Uq (or outside(CQ) ). The fitting term is as follows:

Fl (C ) + F2 (C) = J  ,m,de(C)\u0 (x, y ) - c {f  dxdy + J  outslde(C) \uQ (x, y ) - c 2f  dxdy ,(4.1)

where C is the variable curve and constants c\, C2, depending on C, are the averages of 

u0 inside C, and outside C, respectively. C0 is the minimizer of the fitting term

inf{FJ(C) + F2(C)} * 0 » F l(C0) + F2(C0). (4.2)

Adding some regularizing terms like the length of the curve and the area inside 

the C , the energy function F(c,, c2, C) in the ACWE model is defined as

F(c,, c2, C) = fj..Length(C)+ v.Area(inside(C))

,mide(C)|M0 ( x , y ) - c l\2dxdy + A7j outside(C) |Mo (x? y) ~ c 2 f  dxdy, (4.3)

where // > 0, v > 0, \ ^  > 0 are constants.

The ACWE model with v -Q ,Ax,A2 = A isa  particular case of the Mumford-Shah 

minimal partition problem, in which the best approximation u of u0 is pursued.

average(u0) outside C

This particular case of the minimal partition problem can be formulated and

solved using the level set method [Osher & Sethian, 1988]. In this level set method,

C cz Q is represented by the level set function ̂ : Q -> R .

C = do) = {(x ,y )e  Q : ^(x,^) = 0}, 
inside(C) = a> = {(x,y) g Q : ^(x,y) >0} (4.5)

outside(C) = Q \ 0) = {(x, y) e Q : ^(x, y) < 0}
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By using the Heaviside function H  and Dirac function S0 as follows:

(4.6)

the terms in the energy function F(c{,c2,C) can be rewritten as follows:

F (c„c2,0) = aS(<j)(x, y)) | V </>(x, y)\ dxdy + v j a H{</)(x,y))dxdy

+ 4 J n h (*>y ) C1 r H y))dxdy + ̂ J a |w0 ( x ,y ) - c21 (1 - H y ) ) ) d x d y
(4.7)

where the variable C is replaced by variable <j>.

Let H e and 8£ be the regularization of H  and 8  . Keeping c, c2 fixed, we

minimize FE(cv c2,<f>) with respect to <j) . By computing the Gateaux derivative and

using the Riesz Representation Theorem, we obtain the associated Euler-Lagrange 

equation for <j> as follows:

of (j> at the boundary. This partial differential equation is called the C-V model. When 

we implement this model using the finite difference schemes, we can obtain a numerical 

algorithm of the model.

dt i j v ^ j

0(0,x,y)  = <f>0(x ,y)  in Q , (4.8)

V0| dn

dd>
where n is the exterior normal to the boundary dQ , and —  is the normal derivative

dn
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The algorithm of the ACWE method is as follows:

1. Initialize by <f>0, n = 0.

2. Compute and c2(^") by

f u0 (x, y ) H ( 0 ( x ,  y ))d x d y  
c, (* ) = & — ------------------------------- , (4.9)

L Mo (*» >0(1 -  H  {</>{x, y)))dxdy
c2^ )  = ^ -  , (4.10)

H{(/)(x,y)))dxdy

where Equations (4.8) and (4.9) are obtained by calculating the partial derivative of 

Fe(c,,c2,(j>)on c,,c2, respectively.

3. Solve the PDE in <j> from Equation (4.8) to obtain tf>n+l.

4. Reinitialize ^ locally to the signed distance function to the curve (this step is 

optional).

5. Check whether the solution is stationary. If not, n = n+1 and repeat.

4.2 Segmentation Based Contours Method

The ACWE method does not depend on the edge function to determine the 

object’s boundary, can avoid the evolving curve passing through the objects’ boundary, 

can place the initial curve at any position within an image, and can segment objects in a 

very noisy image [Chan & Vese, 2001], With all these advantages, the ACWE method can 

be more useful when compared to the current segmentation methods in the DNA 

microarray segmentation [Ni, 2009]. To apply the ACWE method to the DNA microarray 

image segmentation, Ni implements some adjustments on the ACWE method as follows:
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1. Make the ACWE to segment each spot patch one at a time. A DNA microarray 

may contain a half million spots. If we would apply the ACWE method to segment the 

image as a whole picture, then it would not give the correct segmentation result and it 

would use a lot of memory. Also, since the ACWE will segment all the spots as a whole 

region, it is very difficult to extract each spot intensity value if using the whole image for 

segmentation.

2. Use the grid file as an input which gives the approximate spot locations. This 

will help to save some computation time since some areas in the image will be neglected 

because there are no spots in these areas.

3. Decrease the number of iterations 100 times to make computing fast.

4. Adjust the fi value and find more tiny spots.

Having made the ACWE method applicable on the DNA microarray images, Ni 

improves the accuracy of the ACWE method by using a higher order of finite difference 

schemes in the numerical algorithm of the ACWE method. The second order forward and 

backward finite difference schemes are used to replace the first order finite difference 

schemes in the ACWE method, and the fourth order central finite difference schemes are 

used to replace the second order finite difference schemes in the ACWE method. The 

detailed finite difference schemes Ni used are given in the next section.

This modified ACWE method is called the Segmentation Based Contours (SBC) 

method. Experimental results show that the SBC method can segment more accurately 

than the GOGAC method for cDNA microarray image and GCOS method for Affymetrix 

GeneChip image [Ni, 2009].
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4.3 The 4th Order Method and the 8th Order Method

Chan and Vese use the following C*(Q) regulation of H  and S0 to make the

algorithm capable of computing a global minimizer of the energy [Chan & Vese, 2001]. 

In this way, the algorithm is independent of the position of the initial curve.

To discrete the partial differential equation in <j> in Equation (4.8), we use the 

finite difference schemes. First, we recall some usual notations: Let h be the space step, 

At be the time step, and (x;,y ;) = (ih,jh) be the grid points for 1 < i , j  < M  . Let

x,,y :)be an approximation of</>(t,x,y) withn > 0,<f° = <j>a .

To implement the finite differences in the C-V model, we expand the partial 

differential equation in the model to get its detailed form.

i f  2 z )
H e(z) = — 1 + — arctan(—)

2  ̂ n  s  j
(4.11)

Se(z) = ^ H £(z) (4.12)

= SE(<j>) judiv -------------- v -^ (w 0- c ,) 2+^(m 0- c 2)

< W d l >

(  (  \  
d</>

= Se($) ** dx i t y l  + fy
{ [ f d x ) V

—V — (u0 — C[) + Aj (w0 — ̂ 2 )

dy
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=«.(#)

d<f> d$ d<f>
dx1 dy1 dx dx dy dy ^ dx dy dxdy

dx dy y dx 

- v  -  \  (u0 -  c, )2 + X2 (u0 -  c2 )2

'dy'

The forward and backward finite difference schemes Chan and Vese 

Equation (4.13) are as follows:

A\n - A n
+  0(h) ,

+ 0(h)

d(f){ri) - c
dx h

d<f>(ri) c +. - c
dy h

d<J>(n)
dx h

d(f)(ri) 6 - 6 " .  .t i ,J t i ,j -  1

+  0 (h )

+ 0 (h )
dy h

The central finite differences Chan and Vese use are as follows:

d<f>(ri) _  0"j+i ~<f>lj-

Sx 2h

d(j>{n) _  C i j  ~ C u  

dy 2h
0 ( h 2) .

(4.13) 

use in

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)



After substituting Equation (4.14-4.19) into Equation (4.13), we get
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'',j Yij
At + 0(At) = 5 M J

A^"+1
+ r l , J

aiC

fl\\2

+ 0{hvl). (4.20)

The SBC method aims to reach a more accurate approximation, so Ni et al. use 
the second-order forward and backward finite difference schemes and the fourth-order 
central finite difference schemes to replace the lower ones in the ACWE method [Ni et al., 
2009]. The forward and backward finite differences are as follows:

d<j)(n) - C 2 j  + 4C i j  ~ 3C  ,n ( h 2\
— J-  + 0 ( h ) ,  (4 .21)

dx 2h

dy 2 h

d<j>(n) C 2j _ 4 C i j +3C

+ 0 ( h ) t (4 .22)

+ 0 (h 2), (4.23)
dx 2h

, + M n
+ G (M , (4.24)

d(j>{n) C - 2 _ 4 C - i +3C  , nrO
dy 2 h

and the central finite differences are as follows:

d ftn ) _ K $ J + 1 - $ j - i ) - % +2 - f l j - i )  

dx 12 h

d m

dy \2h

+ 0 (/l4) , (4 .2 5 )

+ 0(/l4) (4.26)
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which in the end gives Equation (4.13) the first-order accuracy in space and first-order 

accuracy in time as follows:

When we apply the numerical algorithm to the DNA microarray images, we take

the resolution of the microarray image is the determining factor for the order of finite 

differences used in the C-V model. Given the current resolution of the microarray images, 

we can further improve the accuracy of the SBC method by implementing a higher order 

of finite difference schemes in the C-V model.

4.3.1 The 4th Order Method

The higher the order of finite difference schemes are used, the more accurate the 

approximation. When we choose the order of finite difference schemes to approximate 

the partial differential equation in the C-V model, we should pay attention to the 

relationship between the resolution of the microarray images and the number of 

difference points of the finite difference schemes used in the C-V model. If the number 

of difference points is larger than the number of pixel points in each spot patch, it will 

cause overlapping or error in the algorithm, so it is meaningless to use that segmentation 

method.

+ 0(h).  (4.27)

each pixel point in the image as the grid point for the finite difference schemes. Therefore,
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For Affymetrix microarray images, the common resolutions are 6 x 6, 7 x 7 and 8 

x 8 pixels in each spot patch in the array images. For cDNA microarray images, there are 

usually 1 0 x 1 0  pixels in each spot patch. According to the order of the finite difference 

schemes used in the SBC method, we need at least three and at most four difference 

points in the computing process, which means that we need at least 4 x 4  pixels in each 

spot in the microarray images. Since both Affymetrix GeneChip images and cDNA array 

images meet this requirement, the SBC segmentation method can be applied to both 

images.

Depending on the resolution of the common microarray image, there are upper 

limitations of the order of the finite difference schemes that we can use to approximate 

Equation (4.13). So for Affymetrix microarray images, we choose the fourth-order 

forward, backward and central finite difference schemes to replace the lower ones that are 

used in the SBC method. We name the new method the 4th order method. Therefore, the 

finite difference schemes used in the 4th order method are as follows:

d $ (n + 1) 1

dx 12h
- 2 5 t f  + 4 8 C i ~ 3 < C j  + 1 « C - 3 C J + 0 ( h ‘ ) , (4.28)

= E h [25^ ' _ 4 8 C J + 36^ i - > 6C '  + 3 C ' ] + 0 ( h 4). (4.29)

^ ^  = I ^ [- 2 5 C , + 4 M n; l - 36C 2 +1^ - 3C ] + ° ( h4) , (4.30)

1 [ 2 ^ ; > - 4 ^ > (4.31)
dy 12 h

d(j>(n + 1 )  8 ( $  +1 -  (f)l H )  -  ( $  .+2 -  $  2 )  4
+ U{h ) ,  (4.32)

dx 12 h
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d(j>{n + 1 )  8 {$+XJ -  <j>ni A j )  -  (fl+2J -  $__2 j )

dy 12/2
+ 0 ( h 4). (4.33)

After substituting Equation (4.28-4.33) into Equation (4.13), we get the 

second-order accuracy in space and the first-order accuracy in time as follows:

in+1<bn+l-i"
".7

At
+ 0( At)

K4.
X ̂ «+l

j

A lC '

# u - C u )2/(2/t)2+ ( A X ) 2/ ( ^ )  

V  -  A  'C 1 ( 0 "  ) ) 2 +  ^  'C2 ( ^ "  ) ) 2

(4.34)

+ 0 (/22)

For the finite difference schemes used in the 4th order method, at least four and at 

most five difference points are needed, so we need at least 5><5 pixels in each spot in the 

microarray images. Similar to the discussion in the SBC method, the 4th order method can 

be used both in the segmentation of the Affymetrix GeneChip images and the cDNA

microarray images.

4.3.2 The 8th Order Method

The cDNA microarray images have a higher resolution, as a 10 x 10 in each spot 

patch, so we can choose a higher order of finite difference schemes to approximate 

Equation (4.13) to get better segmentation. We increase the order of forward, backward 

and central finite difference schemes used to discrete Equation (4.13) to the eighth order 

of finite differences, which are as follows:
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Therefore, we call this new improved method the 8th order method. After we 

implement Equation (4.35-4.40) into Equation (4.13), we get the fourth order accuracy 

approximation in space and the first order accuracy in time as follows:

<f+1 - f  n,j y‘,j
At

+ O(Ar)

m i )

A x jn
A .
x j i n+1

j

AyJ n+l+ r t j

/ m 1 h w ' jY  Hh2)

V  ~  \  ( u 0 , i j  -  Cl i f  ) ) 2 + ̂  ( U 0,,,J -  C2 i f  ) f

(4.41)
+ 0(h4)

According to the finite difference schemes used in the 8th order method, we need 

at least eight and at most nine difference points, which means at least 9 x 9  pixels in each 

spot are required in the microarray images. Thus, we can only apply the 8th order method 

into the segmentation of cDNA microarray images based on the existing image 

resolution.

4.4 The Comparison of the Perfo rmance between the Modified 
ACWE Method, the SBC Method, the 4th Order Method 

and the 8th Order Method

We summarize the orders of the truncation error term in space and the order of the 

truncation error term in time in the numerical approximation of the C-V model in the 

ACWE method, the SBC method, the 4th order method, and the 8th order method, 

respectively. Table 4.1 gives a clearer realization of the accuracy of each segmentation 

method in approximating the C-V model.
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Table 4.1: Comparison in respect to the order of error term in the numerical equation of 
the C-V model between four segmentation methods.

Method The ACWE 

method

The SBC 

method

The 4 th order 

method

The 8*11 order 

method

The order of error 

term in space

1/2 1 2 4

The order of error 

term in time

1 1 1 1

In Table 4.1, the powers of the order of the error term present how well the 

numerical equation approximates the partial differential equation in the C-V model in 

[Chan & Vese, 2001]. The larger the power is, the more accurate the numerical 

approximation. So according to Table 4.1, the 4th order method and the 8th order method 

are better than the modified ACWE method and the SBC method in giving the microarray 

image segmentation. Furthermore, the 8th order method should be more accurate than the

th4 order method.

4.5 Application of the Algorithms on the Segmentation 
of Simulated DNA Microarray Images

The algorithms of the SBC method, the 4th order method and the 8th order method 

are written into executable programs in Java language. We choose the parameters as 

^  ^  =  1,l> = 0 , / i  = 1, A/ = 0.1 [Chan & Vese, 2001]. For the length parametern  , it

has a scale role. If we want to detect as many objects as possible, then // should be small. 

However, if we want to detect only larger objects, and not detect small objects, n  should
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be larger. In our experiment, we take / /  = 0.01*255*255 for segmenting cDNA 

microarray images, and / /  = 0.025 *255 *255 for segmenting Affymetrix GeneChip 

microarray images [Ni et al., 2009]. Once all these parameters are set up in the program, 

it is not necessary to adjust them during the segmentation.

We also increase iterations of the algorithms of the 4 order method and the 8 

order method from 100 times, that is, the iterations in the SBC algorithm to 1000 times. 

This iteration number is chosen after we compare the segment results with 100, 1,000, 

and 10,000 iterations on all five microarray images used in our experiment. The results 

with 100 iterations are quite with the results as with 1,000 iterations, while the results 

with 1,000 iterations have the same characteristics with the results with 10,000 iterations. 

Therefore, the algorithms of the 4th order method and the 8th order method with at least

1,000 iterations can be considered as time indepent.

Intensities generated by the segmentation methods discussed in our research are 

compared with the true intensity values. Therefore, we can evaluate the performance of 

each method by how close their intensities are to the true values.

For a cDNA microarray image, we take the mean of the pixel values within the 

segmentation boundary of each spot as the intensity value for that spot. For an Affymetrix 

GeneChip image, we take the 75 percentile of the pixel values within the segmentation 

boundary of each spot as the intensity for that spot.

Each probe spot in a microarray image consists of a relative small fixed number 

of pixels. For instance, in our experiment, there are 6 * 6 pixels in each spot of an 

Affymetrix GeneChip image, and 10 * 10 pixels in each spot of a cDNA image. When
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the image is being segmented, those spots are being processed one by one. Therefore, the 

algorithm is linear in complexity with a large constant.



CHAPTERS

SEGMENTATION RESULTS ON SIMULATED CDNA 

MICROARRAY IMAGES

As we introduced in Chapter 2, the simulated cDNA microarray image has the 

same characteristics as the proto cDNA image. Each probe spot in the simulated cDNA 

image has 10 x 10 pixels, and each pixel in the horizontal direction and the vertical 

direction can be used as a difference point when being segmented. Since the 4th order 

method needs five difference points in each direction and the 8th order method needs nine 

difference points in each direction, both methods can be used to segment the simulated 

cDNA image. In the meantime, the GOGAC method and the SBC method are also being 

applied on the simulated cDNA image. All of the output intensities from the above four 

methods will be compared to the true intensities of the image and therefore evaluated.

5.1 Segmentation Output Intensities Comparison

There are 7,744 probe spots total in the simulated cDNA image. For each

segmentation method mentioned above, we calculated the absolute difference between

the output intensity and the true intensity of each probe spot. We then compare any two

above segmentation methods by counting the number of spot in one method that has a

larger, equal, and smaller difference than the number of spots in the other method,

49
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respectively. The percentages of that number among the total spot number are as well 

calculated for a more clear view. As we discussed in Section 4.5, we perform the 4th order 

method and the 8th order method with three different iterations: 100 times, 1,000 times, 

and 10,000 times.The data are summarized in Tables 5.1-5.3.

Table 5.1: Performance of the GOG AC method, the SBC method, the 4 th order method, 
and the 8th order method on the simulated cDNA microarray image. The 4th order method 
and the 8th order method are with 100 iterations.

Total spots number:7744 dl>d2 dl=d2 dl<d2

SBC vs GOGAC 3177(41.03%) 0 (0%) 4567(58.97%)

4th order vs GOGAC 3174(40.99%) 0 (0%) 4570(59.01%)

8th order vs GOGAC 3174(40.99%) 0 (0%) 4570(59.01%)

4th order vs SBC 234(3.02%) 7119(91.93%) 391(5.05%)

8th order vs SBC 245(3.16%) 7038 (90.88%) 461(5.95%)

8th order vs 4th order 135(1.74%) 7427 (95.91%) 182(2.35%)
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Table 5.2: Performance of the GOGAC method, the SBC method, the 4th order method, 
and the 8th order method on the simulated cDNA microarray image. The 4th order method 
and the 8th order method are with 1,000 iterations.

Total spots number:7744 dl>d2 dl=d2 dl<d2

SBC vs GOGAC 3177(41.03%) 0(0%) 4567(58.97%)

4th order vs GOGAC 3149(40.66%) 0(0%) 4595(59.34%)

8th order vs GOGAC 3152(40.70%) 0(0%) 4592(59.30%)

4th order vs SBC 945(12.20%) 4891(63.16%) 1908(24.64%)

8th order vs 4th order 960(12.40%) 4845(62.56%) 1939(25.04%)

8th order vs 4th order 112(1.45%) 7489(96.71%) 143(1.85%)

Table 5.3: Performance of the GOGAC method, the SBC method, the 4th order method, 
and the 8th order method on the simulated cDNA microarray image. The 4th order method 
and the 8th order method are with 10,000 iterations.

Total spots number:7744 dl>d2 dl=d2 dl<d2

SBC vs GOGAC 3177(41.03%) 0(0%) 4567(58.97%)

4th order vs GOGAC 3127(40.38%) 0(0%) 4617(59.62%)

8th order vs GOGAC 3130(40.42%) 0(0%) 4614(59.58%)

4th order vs SBC 1181(15.25%) 4294(55.45%) 2269(29.30%)

8th order vs SBC 1183(15.28%) 4281(55.28) 2281(29.46%)

8th order vs 4th order 79(1.02%) 7568(97.73%) 98(1.27%)

In Tables 5.1-5.3, dl stands for the absolute difference between the spot intensity 

from the former segmentation method listed in the first column of each row and the true 

spot intensity. Similarly, d2 stands for the absolute difference between the spot intensity
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from the latter segmentation method listed in the first column of each row and the true 

spot intensity.

When we compare the results in Tables 5.1-5.3, we observe that the results with

1,000 iterations are consistent with the results with 10,000 iterations, which means that 

the algorithms of the 4th order method and the 8th order method can be considered time 

independent with at least 1,000 iterations. Therefore, we use the segmentations results 

with 1,000 iterations for analysis.

Since we expect our 4th order method and 8th order method are better than the 

GOGAC method and the SBC method, we would like the percentage in the fourth 

column to be larger than the one in the second column. Table 5.2 shows that SBC method, 

the 4th order method, and the 8th order method have more spot intensities that are closer to 

the true intensities than the GOGAC method, respectively; the 4th order method and the 

8th order method have more spot intensities that are closer to the true intensities than the 

SBC method, respectively; the 8th order method has more spot intensities that are closer 

to the true intensities than the 4 order method.

5.2 Statistical Analysis on Segmentation Output Intensities

In order to have a more comprehensive understanding of the performances of the 

4th order method and the 8th order method, we implement statistical analysis on the 

segmentation output intensities from the four segmentation methods and the true intensity 

values.

One-tailed paired t-test is selected in our research. Therefore, in each experiment 

we could test whether the two methods are equally close to the true values, or one method
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is closer to the true values than the other method. All the segmentation methods are tested 

pairwise.

The UPGMA hierarchy cluster is sleeted because it is the most widely used 

cluster method in microarray image analysis. Hierarchy cluster is an approach to group 

the items with the most similarities. The UPGMA hierarchy cluster, which is an average 

linkage hierarchical clustering method, takes the average distance between two groups as 

the standard to measure that similarity, and the two groups with the smallest average 

distance would be grouped into one cluster [Rencher, 2002], The dendrogram given by 

the cluster analysis presents both steps of grouping and the distances at which each 

grouping happened. Paired t-test and UPGMA hierarchy cluster results are applied in 

Chapters 5 and 6.

In the paired t-test experiment, we first calculate the absolute difference dl and d2 

as we explained in Table 5.2, which dl stands for the absolute difference between the 

spot intensity from the former segmentation method listed in the first column of each row 

and the true spot intensity, and d2 stands for the absolute difference between the spot 

intensity from the latter segmentation method listed in the first column of each row and 

the true spot intensity. Those differences are the samples of our test. We let /i, represent

the difference between the former method and the true value, while fJ,2 represents the 

difference between the latter method and the true value. The null hypothesis is 

H o : > //,, and the alternative hypothesis is H x: <  //, .  The significance level is a

= 0.05. Therefore, the rejection of the null hypothesis will show that the latter 

segmentation method has the spot intensity closer to the true intensity than the former
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segmentation method, which means that the latter method is more accurate than the 

former method.

Table 5.4 shows that the SBC method, the 4th order method and the 8th order 

method has spot intensities closer to true intensities than GOGAC method, respectively, 

and the 4th order method has spot intensities closer to true intensities than the SBC 

method. In addition, there is no significant difference between the performance of the 

SBC method and the 8th order method, and the performance of the 4th order method and 

the 8th order method.

Table 5.4: Paired t-test result on the GOGAC method, the SBC method, the 4th order
th  tVimethod, and the 8 order method on the simulated cDNA microarray image. The 4 order 

method and the 8th order method are with 1,000 iterations.

Two methods on t-test p-value Null Alternative Reject null

hypothesis hypothesis hypothesis

GOGAC vs SBC <0.0001 H\ ■ Lh < Mi Yes

GOGAC vs 4th order <0.0001 =cAl?153° H x:ju2 < hx Yes

GOGAC vs 8th order <0.0001 £ £ IV £ H x \fL1 <f l x Yes

SBC vs 4th order 0.00028 is £ IV £ H x ' M2<Ml Yes

SBC vs 8th order 0.00028 is £ IV > H x 1^2 <M Yes

4th order vs 8th order 0.4053 is £ IV £ H x -.^2 <M No

The UPGMA hierarchy cluster results in Figure 5.1 show that the GOGAC 

method generates spot intensities closer to true intensities than the other three methods. 

The SBC method has very little improvement on the accuracy than the 4th order method
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and the 8th order method. There is no significant difference between the 4th order method 

and the 8th order method.
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in
o
+
4)CN

in
o
+

o
o+
©

o

Cl

d
hdust(*, "average")

Figure 5.1: UPGMA hierarchy cluster result of comparing the GOGAC method, the SBC 
method, the 4th order method and the 8th order method on the simulated cDNA microarray 
image. The 4th order method and the 8th order method are with 1,000 iterations.



CHAPTER 6

SEGMENTATION RESULTS ON SIMULATED 

AFFYMETRIX GENECHIP IMAGES

Similar with what we implemented in Chapter 5 on cDNA microarray image, we 

simulate two Affymetrix GeneChip images using the simulator introduced in Chapter 3. 

The simulated Affymetrix GeneChip images have the same characteristics as the original 

image, which has at least 6 x 6 pixels in each spot in the image. Since the 4th order 

method needs five difference points in each direction and the 8th order method needs nine 

difference points in each direction, and limited by the pixel number in each spot, we can 

only apply the 4th order method on Affymetrix Genechip images.

Even so, with the development of the image scanning technology, the resolution 

of the DNA microarray image will be higher. Based on the discussion in Chapter 4, the 

8th order method should be more accurate than the 4th order method. Therefore, we

thimplement the 8 order method on Affymetrix GeneChip image as well to compare the 

performance of both the two method at the same condition. Therefore, we simulate two 

pixel-expended Affymetrix Genechip images, as stated in Chapter 3, which have 12 x 12 

pixels in each probe spot in both images

56
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6.1 Segmentation Results on Simulated Good 
Affymetrix GeneChip Image

In the research [Cheng, 2013], Cheng applies the SBC method on 50 simulated

Affymetrix GeneChip images, and the SBC method performs better on some of the

images than the GCOS, but worse on the remaining images. Therefore, we apply the 4th

order method on two simulated Genechip images: one is the image from Cheng’s

research for which the SBC method is better, and the other is the image from Cheng’s

research for which the SBC is worse. In the meanwhile, the SBC method and the GCOS

method are also applied to offer comparisons

6.1.1 Segmentation Output Intensities 
Comparison on Simulated Good 
Affymetrix GeneChip Image

Like the discussion in Section 5.1, for each segmentation method mentioned 

above, we calculated the absolute difference between the output intensity and the true 

intensity of each probe spot. There are 535,824 probe spots total in the simulated good 

Affymetrix GeneChip image. We then compare any two above segmentation methods by 

counting the number of spots in one method that have larger, equal, and smaller 

differences than one of the other methods, respectively. As the same argument we did in 

Section 5.1, we we perform the 4th order method and the 8th order method with three 

different iterations: 100, 1,000 and 10,000 times. The data is summarized in Tables 

6.1-6.3. And we take the data with 1,000 iterations for the following analysis procedures.
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Table 6.1: Performance of the GCOS method, the SBC method, and the 4th order method 
on the simulated good Affymetrix GeneChip image. The 4th order method is with 100 
iterations.

Total spots dl>d2 dl=d2 dl<d2

number: 535824
SBC vs GCOS 114365(21.34%) 2562(0.48%) 418897(78.17%)

4th order vs GCOS 112964(21.08%) 2585(0.48%) 420275(78.44%)

4th order vs SBC 6687(1.25%) 511326(95.42%) 17811(3.32%)

Table 6.2: Performance of the GCOS method, the SBC method, and the 4th order method 
on the simulated good Affymetrix GeneChip image. The 4th order method is with 1,000 
iterations.

Total spots dl>d2 dl=d2 dl<d2
number: 535824
SBC vs GCOS 114365(21.34%) 2562(0.48%) 418897(78.17%)

4th order vs GCOS 113506(21.12%) 2570(0.48%) 419748(78.34%)

4th order vs SBC 8570(1.60%) 512980(95.74%) 14274(2.66%)

Table 6.3: Performance of the GCOS method, the SBC method, and the 4th order method 
on the simulated good Affymetrix GeneChip image. The 4th order method is with 10,000 
iterations.

Total spots 
number: 535824

dl>d2 dl=d2 dl<d2

SBC vs GCOS 114365(21.34%) 2562(0.48%) 418897(78.17%)

4th order vs GCOS 113644(21.21%) 2579(0.48%) 419601(78.31%)

4th order vs SBC 9568(1.79%) 511952(95.54%) 14304(2.67%)

In Tables 6.1-6.3, dl stands for the absolute difference between the spot intensity 

from the former segmentation method listed in the first column of each row and the true
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spot intensity. Similarly, d2 stands for the absolute difference between the spot intensity 

from the latter segmentation method listed in the first column of each row and the true 

spot intensity.

Table 6.2 shows that the SBC method and the 4th order method have more spot 

intensities that are closer to the true intensities than the GCOS method, respectively, and 

the 4th order method has more spot intensities that are closer to the true intensities than 

the SBC method.

6.1.2 Statistical Analysis on Segmentation 
Output Intensities on Simulated 
Good Affymetrix GeneChip Image

Paired t-test and UPGMA hierarchy cluster results are applied on the 

segmentation output intensities from the three segmentation methods, and the true 

intensity values aim to give a more comprehensive understanding of the performances of 

the 4th order method.

In the paired t-test experiment, we first calculated the absolute difference dl and 

d2, which dl stands for the absolute difference between the spot intensity from the former 

segmentation method listed in the first column of each row and the true spot intensity, 

and d2 stands for the absolute difference between the spot intensity from the latter 

segmentation method listed in the first column of each row and the true spot intensity. 

Those differences are the samples of our test. We let represent the differenjce between 

the former method and the true value, while H2 represents the difference between the 

latter method and the true value. The null hypothesis is / / 0 : //j > //,, and the alternative 

hypothesis is The significance level is a  = 0.05. Therefore, the rejection

of the null hypothesis will show that the latter segmentation method has the spot intensity
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closer to the true intensity than the former segmentation method, which means that the 

latter method is more accurate than the former method.

Table 6.4 shows that the SBC method and the 4th order method has spot intensity 

closer to true intensity than the GCOS method respectively, and the 4th order method has 

spot intensity closer to the true intensity than the SBC method. The UPGMA hierarchy 

cluster result in Figure 6.1 shows that the 4th order method and the SBC method generate 

spot intensities closer to true intensities than the GCOS method.

Table 6.4: Paired t-test result on the GCOS method, the SBC method, and the 4th order 
method on the simulated good Affymetrix GeneChip image. The 4th order method is with 
1,000 iterations.

Two methods on t-test p-value Null

hypothesis

Alternative

hypothesis

Reject null 

hypothesis

GCOS vs SBC <0.0001 # 0  : /“ 2 ^ Ml Hi 'M2 <M Yes

GCOS vs 4th order <0.0001 <A
! H x < / / , Yes

SBC vs 4th order <0.0001 A
i

nf H x :^  < / / , Yes
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Figure 6.1: UPGMA hierarchy cluster result of comparing the GCOS method, the SBC 
method, and the 4th order method on the simulated good Affymetrix GeneChip image.
The 4th order method is with 1,000 iterations.

6.2 Segmentation Results on Simulated Bad 
Affymetrix GeneChip Image

6.2.1 Segmentation Output Intensities 
Comparison on Simulated Bad 
Affymetrix GeneChip Image

Like the discussion in Section 6.1.1, for each segmentation method mentioned 

above, we calculate the absolute difference between the output intensity and the true 

intensity of each probe spot. There are 535,824 probe spots total in the simulated bad 

Affymetrix GeneChip image. We compare any two above segmentation methods by 

counting the number of spots in one method that has larger, equal, and smaller differences
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than one of the other methods, respectively. We then perform the 4th order method and the 

8th order method with three different iterations: 100,1,000 and 10,000 times. The data are 

summarized in Tables 6.5-6.7. Furthermore, we take the data with 1,000 iterations for the 

following analysis procedures.

Table 6.5: Performance of the GCOS method, the SBC method, and the 4th order method 
on the simulated bad Affymetrix GeneChip image. The 4th order method is with 100 
iterations.

Total spots dl>d2 dl=d2 dl<d2

number: 535824

_ _ _ _ _ _ _  360199(67.22%) 13144(2.45%) 162481(30.32%)

4th order vs GCOS 358450(66.90%) 13389(2.50%) 163985(30.60%)

4th order vs SBC 6644(1.24%) 514795(96.08%) 14385(2.68%)

Table 6.6: Performance of the GCOS method, the SBC method, and the 4th order method
thon the simulated bad Affymetrix GeneChip image. The 4 order method is with 1,000 

iterations.

Total spots 
number: 535824

dl>d2 dl=d2 dl<d2

SBC vs GCOS 360199(67.22%) 13144(2.45%) 162481(30.32%)

4th order vs GCOS 359071(67.01%) 13292(2.48%) 163461(30.51%)

4th order vs SBC 6894(1.29%) 516959(96.48%) 11971(2.23%)

I
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Table 6.7: Performance of the GCOS method, the SBC method, and the 4th order method 
on the simulated bad Affymetrix GeneChip image. The 4th order method is with 10,000 
iterations.

Total spots 
number: 535824

dl>d2 dl=d2 dl<d2

SBC vs GCOS 360199(67.22%) 13144(2.45%) 162481(30.32%)

4th order vs GCOS 359300(67.06%) 13260(2.47%) 163264(30.47%)

4th order vs SBC 7357(1.37%) 516572(96.41%) 11895(2.22%)

In Table 6.6, dl and d2 have exactly the same meanings as those in Table 6.2.

Table 6.6 shows that the SBC method and the 4th order method have less spot intensities

that are closer to the true intensities than GCOS method, respectively. However, the last

row in the table shows that the 4th order method has more spot intensities that are closer

to the true intensities than the SBC method.

6.2.2 Statistical Analysis on Segmentation 
Output Intensities on Simulated 
Bad Affymetrix GeneChip Image

Exactly the same paired t-test and UPGMA hierarchy cluster experiments utilized 

on simulated good Affymetrix GeneChip image are applied on the segmentation output 

intensities from the three segmentation methods and the true intensity values of simulated 

bad Affymetrix GeneChhip image.

Table 6.8 shows that the GCOS method has spot intensity closer to the true 

intensity than the SBC method and the 4th order method, respectively. However, the 

rejection of the null hypothesis on the last row shows that the 4th order method has spot 

intensities closer to true intensities than the SBC method. The UPGMA hierarchy cluster
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result in Figure 6.2 shows that the GCOS method generates spot intensities closer to true 

intensities than the 4th order method and the SBC method.

Table 6.8: Paired t-test result on the GCOS method, the SBC method, and the 4th order 
method on the simulated bad Affymetrix GeneChip image. The 4th order method is with 
1,000 iterations.

Two methods on t-test p-value Null Alternative Reject null

hypothesis hypothesis hypothesis

GCOS vs SBC 1 A
l

St? No

GCOS vs 4th order 1 IV > H x < u No

SBC vs 4th order <0.0001 A
l$tx? ■ Mi < Mi Yes
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Figure 6.2: UPGMA hierarchy cluster result of comparing the GCOS method, the SBC 
method, and the 4th order method on the simulated bad Affymetrix GeneChip image. The 
4th order method is with 1,000 iterations.
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6.3 Segmentation Results on Simulated Expanded 
Affymetrix GeneChip Images

As performed in Sections 6.1 and 6.2, we evaluate in this section the

th thperformance of the the 8 order method, the 4 order method, and the SBC method on 

expanded Affymetrix GeneChip images. The two simulated images used in this section 

are expanded from the same images used in Sections 6.1 and 6.2, respectively. But only 

the top-left comers of the original GeneChip images are expanded as described in Section 

3.3.2. Hence, each simulated expanded image has 33,489 probe spots total.

Specifically, there is one thing that needs to be claimed here. The GCOS software 

can only read and segment the type of GeneChip images that have already existed in its 

library. Since the expanded GeneChip images have different attributes from the original 

images, we cannot use the GCOS software to segment the simulated expanded images. In
i t  jL

this section, we are comparing the 4 order method and the 8 order method to the SBC 

method.

6.3.1 Segmentation Results on Simulated 
Good Expanded Affymetrix 
GeneChip Image

The same segmentation output intensity analysis procedures that were 

implemented in Section 6.1 are also implemented in Sections 6.3.1, including intensity 

analysis, paired t-test analysis, and UPGMA cluster analysis.

6.3.1.1 Segmentation Output Intensities Comparison on Simulated Good 

Expanded Affymetrix GeneChip Image. For each segmentation method mentioned above, 

we calculated the absolute differences between the output intensity and the true intensity 

of each probe spot. There are 33,489 probe spots total in the simulated good expanded 

Affymetrix GeneChip image. We compare any two above segmentation methods by
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counting the number of spots in one method that have larger, equal, and smaller 

differences than one of the other methods, respectively. Next we perform the 4th order 

method and the 8th order method analysis with three different iterations: 100, 1,000 and

10.000 times. The data is summarized in Tables 6.9-6.11. Also, we take the data with

1.000 iterations for the following analysis procedures.

Table 6.9: Performance of the SBC method, the 4th order method, and the 8th order 
method on the simulated good expanded Affymetrix GeneChip image. The 4th order 
method and the 8th order method are with 100 iterations.

Total spots 
number: 33489

dl>d2 dl=d2 dl<d2

4th order vs SBC 9300(27.77%) 16204(48.39%) 7985(23.85%)

8th order vs SBC 9468(27.27%) 16206(48.39%) 7815(23.34%)

8th order vs 4th order 1412(4.22%) 30941(92.39%) 1136(3.39%)

Table 6.10: Performance of the SBC method, the 4th order method, and the 8th order 
method on the simulated good expanded Affymetrix GeneChip image. The 4th order 
method and the 8th order method are with 1,000 iterations.

Total spots 
number: 33489

dl>d2 dl=d2 dl<d2

4th order vs SBC 9165(27.37%) 16245(48.51%) 8079(24.12%)

8th order vs SBC 9351(27.92%) 16215(48.42%) 7923(23.66%)

8th order vs 4th order 1333(3.98%) 31108(92.89%) 1048(3.13%)
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Table 6.11: Performance of the SBC method, the 4th order method, and the 8th order 
method on the simulated good expanded Affymetrix GeneChip image. The 4th order 
method and the 8th order method are with 10,000 iterations.

Total spots 
number: 33489

dl>d2 dl=d2 dl<d2

4th order vs SBC 9204(27.48%) 16202(48.38%) 8083(24.14%)

8th order vs SBC 9389(28.04%) 16166(48.27%) 7934(23.69%)

8th order vs 4th order 1333(3.98%) 31119(92.92%) 1037(3.10%)

Table 6.10 shows that there is no significant difference in the segmentation 

accuracy between the SBC method, the 4th order method, and the 8th order method. For 

comparison, we take out the intensities of the spots in the top-left comer that used to 

expand in the original image, and calculate the performance of each method on these 

spots in Table 6.12. Comparing Table 6.10 and Table 6.12, we find that the 4th order 

method performs better than the SBC method on the good bovine image than on the 

expanded good bovine image.

Table 6.12: Performance of the SBC method, and the 4th order method on the top-left 
comer of the original simulated good Affymetrix GeneChip image. The 4th order 
method is with 1,000 iterations.

Total spots dl>d2 dl=d2 dl<d2

number: 535824

4th order vs. SBC 414(1.24%) 32010(95.58%) 1065(3.18%)
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6.3.1.2 Statistical Analysis on Segmentation Output Intensities on Simulated 

Good Expanded Affymetrix GeneChip Imaee.Table 6.13 summarizes the paired t-test 

results on the SBC method, the 4th order method, and the 8th order method. The results 

show that the spot intensities generated by the SBC method, the 4th order method and the 

8th order method are significantly close to the true intensities. There is no significant 

difference of the segmentation accuracy between the above three methods on good 

expanded bovine image.

Table 6.13: Paired t-test result on the SBC method, the 4th order method, and the 8th order 
method on the simulated good expanded Affymetrix GeneChip image. The 4th order 
method and the 8th order method are with 1,000 iterations.

Two methods on t-test p-value Null

hypothesis

Alternative

hypothesis

Reject null 

hypothesis

SBC vs 4th order 1 £ £ IV > H 0 No

SBC vs 8th order 1 is £ IV £ Ho : M2 < Mi No

4th order vs 8th order 1 is £ IV > H 0 ‘M2<Ml No

Figure 6.3 is the UPGMA cluster result on the SBC method, the 4th order method 

and the 8th order method. It shows that there is no significant difference of the 

segmentation accuracy between the above three methods on good expanded bovine 

image.
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Figure 6.3: UPGMA hierarchy cluster result of comparing the SBC method, the 4th order 
method, and the 8 th order method on the simulated good expanded Affymetrix GeneChip 
image. The 4th order method and the 8 th order method are with 1,000 iterations.

6.3.2 Segmentation Results on Simulated 
Bad Expanded Affymetrix 
GeneChip Image

The same segmentation output intensity analysis procedures performed in Section

6.2 are implemented in Sections 6.3.2, including intensity analysis, paired t-test analysis, 

and UPGMA cluster analysis.
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6.3.2.1 Segmentation Output Intensities Comparison on Simulated Bad Expanded

Affymetrix GeneChip Image. For each of the SBC method, the 4th order method, and the 

8  order method, we calculate the absolute difference between the output intensity and 

the true intensity of each probe spot. There are 33,489 probe spots total in the simulated 

bad expanded Affymetrix GeneChip image. Then we compare any two above 

segmentation methods by counting the number of spots in one method that have larger, 

equal, and smaller differences than one of the other methods, respectively. We we 

perform the 4th order method and the 8 th order method with three different iterations: 100,

1,000 and 10,000 times. The data is summarized in Tables 6.14-6.16. Futhermore, we 

take the data with 1 , 0 0 0  iterations for the following analysis procedures.

Table 6.14: Performance of the SBC method, the 4th order method, and the 8 th order 
method on the simulated bad expanded Affymetrix GeneChip image. The 4th order 
method and the 8 th order method are with 1 0 0  iterations.

Total spots 
number: 33489

dl>d2 dl=d2 dl<d2

4th order vs SBC 1244(3.71%) 31038(92.68%) 1207(3.61%)

8th order vs SBC 963(2.88%) 31217(93.21%) 1309(3.91%)

8th order vs 4th order 799(2.39%) 31520(94.12%) 1170(3.49%)
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Table 6.15: Performance of the the SBC method, the 4th order method, and the 8th order
method on the simulated bad expanded Affymetrix GeneChip image. The 4th order
method and the 8th order method are with 1,000 iterations.____________________

Total spots 
number: 33489

dl>d2 dl=d2 dl<d2

4th order vs SBC 1353(4.04%) 30467(90.98%) 1669(4.98%)

8th order vs SBC 1078(3.22%) 30714(91.71%) 1697(5.07%)

8th order vs 4th order 819(2.45%) 31543(94.19%) 1127(3.36%)

Table 6.16: Performance of the the SBC method, the 4th order method, and the 8 th order 
method on the simulated bad expanded Affymetrix GeneChip image. The 4th order 
method and the 8 th order method are with 1 0 , 0 0 0  iterations.

Total spots 
number: 33489

dl>d2 dl=d2 dl<d2

4th order vs SBC 1390(4.15%) 30376(90.70%) 1723(5.15%)

8th order vs SBC 1115(3.33%) 30621(91.44%) 1753(5.23%)

8th order vs 4th order 821(2.45%) 31536(94.17%) 1132(3.38%)

Table 6.15 shows that there is no siginificant difference of the segmentation 

accuracy between the SBC method, the 4th order method, and the 8 th order method.

Table 6.17 offers a comparison analysis to the same spots in the top-left comer of 

the original bad bovine image. Comparing Table 6.15 and Table 6.17, we find that the 4th 

order method performs better than the SBC method both on the bad bovine image and 

expanded bad bovine image.
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Table 6.17: Performance of the SBC method, and the 4th order method on the top-left
comer of the original simulated bad Affymetrix GeneChip image. The 4th order
method is with 1,000 iterations.

Total spots dl>d2 dl=d2 dl<d2

number: 535824

4th order vs SBC 443(1.32%) 32097(95.84%) 949(2.83%)

6.3.2.2 Statistical Analysis on Segmentation Output Intensities on Simulated Bad 

Expanded Affymetrix GeneChip Image.We implement paired t-test to give a pairwise 

comparison on the performance of the SBC method, the 4th order method and the 8 th 

order method, following with a UPGMA hierarchy cluster experiment to make the 

comparison more thoughtful.

Table 6.18 summarizes the paired t-test results on the SBC method, the 4th order 

method, and the 8 th order method. The results show that the spot intensities generated by 

the SBC method, the 4th order method and the 8 th order method are significantly close to 

the true intensities. There is no significant difference of the segmentation accuracy 

between the above three methods on good expanded bovine image. The UPGMA 

hierarchy cluster results in Figure 6.4 show consistent findings with the paired t-test 

experiment result. There is no significant difference of the segmentation accuracy 

between the above three methods on good expanded bovine image.
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Table 6.18: Paired t-test result on the SBC method, the 4th order method, and the 8th order
method on the simulated bad expanded Affymetrix GeneChip image. The 4th order
method and the 8th order method are with 1,000 iterations.

Two methods on t-test p-value Null

hypothsis

Altenative

hypothesis

Reject null 

hypothesis

SBC vs 4th order 0.8777 5t
A

l$ No

SBC vs 8th order 0.8006 £ IV > No

4th order vs 8th order 0.3115 is £ IV £ No
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Figure 6.4: UPGMA hierarchy cluster result of comparing the SBC method, the 4th order 
method, and the 8 th order method on the simulated bad expanded Affymetrix GeneChip 
image. The 4th order method and the 8 th order method are with 1,000 iterations.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have improved the SBC method to get two more accurate 

microarray image segmentation methods, the 4th order method and the 8 th order method. 

In Chapter 4, it is proven that by implementing a higher order of finite difference 

schemes to discrete the C-V model provided in the ACWE method, the 4th order method 

and the 8 th order method have higher order error terms with respect to space than the SBC 

method, which means that the 4th order method and the 8 th order method should perform 

more accurate segmentations when applied on the microarray images.

In Chapter 5 and Chapter 6 , we apply the 4th order method and the 8 th order to the 

simulated cDNA microarray image and the simulated Affymetrix GeneChip images, 

which have all the characteristics that real microarray images do. Therefore, the 

performance of the 4th order method and the 8 th order method could be compared with the 

SBC method and two other mainstream methods: the GOGAC method for cDNA 

microarray image segmentation, and the GCOS software for Affymetrix GeneChip image 

segmentation.

True intensity values of each probe spot in the simulated microarray images are 

provided. For valid evaluation, all the segmentation methods mentioned above are

74
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conducted to segment the same image at each time. Their output intensity values of each 

spot are compared to the true intensity values, using statistical tools. The segmentation 

method whose spot intensity values are closer to the true value is more accurate than the 

other method.

A simulated cDNA microarray image, two simulated Affymetrix GeneChip 

images, and two simulated expanded Affymetrix GeneChip images are used in our 

experiment. Paired t-test and UPGMA hierarchy cluster are implemented to analyze the 

intensities output by those segmentation methods.

For the simulated cDNA microarray image, the intensity comparison and paired

tfi tVit-test show that the 4 order method and the 8  order method provide more accuarate 

segmentation than the GOGAC method and the SBC method. The 8 th order method 

performs better than the 4th order method on this microarray image. The UPGMA 

hierarchy cluster result shows that the GOGAC method is more accurate on 

segmentation.

For the simulated good Affymetrix GeneChip image, the intensity comparison, 

paired t-test and UPGMA hierarchy cluster results all show that the 4th order method is 

more accurate than the GCOS method and the SBC method, while the GCOS method is 

more accurate than the 4th order method on the simulated bad Affymetrix GeneChip 

image.

For the simulated expanded good and bad Affymetrix GeneChip images, the 

intensity analysis results show that there is no big significant difference of the 

segmentation accuracy between the SBC method, the 4th order method, and the 8 th order 

method.
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The Affymetrix GeneChip images we used in our research are the Bovine type 

GeneChip images. There are three other types of GeneChip images are available to 

implement our segmentation methods. They are Canine, Yeast, and Vitis. In the future, we 

will apply more segmentation on these three types of GeneChip images to see the 

performance our segmentation methods.

In the work of DNA microarray image analysis, even a small improvement in the 

image segmentation process could lead to a significant influence on gene expression 

analysis. Therefore, we have some future directions that we could work on. We could 

change the value of parameter // to an even smaller one to check the subsequent 

influence. For the t-test analysis, since the sample size is relatively large in our 

experiment, it may cause a large variance that could affect our analysis results. We may 

figure out a way to break our microarray image into several smaller pieces to do the 

paired t-test. In addition, we would try to implement the 4th order method and the 8 th 

order method on Affymetrix Exon arrays, which is a new kind of microarray that is able 

to detect both the gene-level expression and the exon-level expression at the same time.



APPENDIX A

CLASS CODE FOR THE 8™ ORDER 

SEGMENTATION METHOD
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/*
Class Code for the 8 th order method. This program is an improvement of the SBC method 
proposed by Shenghua Ni and Yuan Cheng. Modified by Yang Li. The class code for the 
4th order method is similar to this one.

*/

class segment 
{

// initial variables 
int xpels, ypels; 
int startx, starty; 
int lastx, lasty; 
double cl, c2  ; 
int n toreinit, n doreinit; 
double [] sign d ; 
double [] area mapping; 
double [] gridcombine mapping;
double [] forw_dx, back_dx, forw_dy, back_dy, cent_dx, cent_dy ; 
double [] intensity ;

double h ; 
double d t ; 
double e ; 
double w ;

// The Dirac delta funtion 
double dirac(double d)
{

double result=l/(Math.PI*e*(l+(d/e)*(d/e))); 

return result;
}

void initsigned_dist(double h,int m,int n,int a)
{

double [] center; 
center = new double [2 ]; 
double r ; 
int i, j ; 
center[0 ]=0 ; 
center[l]=0 ; 

center[0]=Math.floor(m/2*h);
center[ 1 ]=Math. floor(n/2 * h);
r=Math.min((m*h-center[0]-a*h),(n*h-center[l]-a*h));
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r=Math.max(r,0);

for (j=0 ; j<ypels;j++) 
for (i=0 ;i<xpels;i++)

sign_d[i+xpels*j]=r-Math.sqrt(Math.pow((center[0]-i*h),2)+Math.pow((center[l]-j*
h),2));

}

//compute cl,c2  value using average 
void meancl_c2 ()
{

int i,j, counter; 
double suml, sum2  ; 
suml=0 ; 
sum2 =0 ; 
counter=0 ;

for (j~0 ;j<ypels;j++) 
for (i=0 ;i<xpels;i++)
{

if (sign_d[i+xpels*j] >= 0 )
{
counter=counter+l;
sum 1 =sum 1 +intensity [i+xpels*j ];

}
else

sum2 -sum 2 +intensity [i+xpels*j ];
}

if (counter != 0 ) 
cl=suml/counter; 

if ((xpels*ypels-counter) != 0 ) 
c2 =sum2 /(xpels*ypels-counter);

}

void get_diff_results()
{

int i, j ;

for (j=l; j<ypels-ly++) 
for (i=l ;i<xpels-l ;i++)

{
forw_dx[i+xpels*j]:::::(sign_d[i+ 1 +xpels*j]-sign_d[i+xpels*j])/h; 
if (forw_dx[i+xpels*j] =  0 )
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forw_dx [i+xpels *j ]=Math. po w(2,-2 3); 
back_dx[i+xpels*j]=(sign_d[i+xpels*j]-sign_d[i- 1 +xpels*j])/h; 
if (back_dx[i+xpels*j] == 0 ) 

back_dx[i+xpels*j]=Math.pow(2,-23);

cent_dx[i+xpels*j]=(sign_d[i+l+xpels*j]-sign_d[i-l+xpels*j])/(2 *h); 
if (cent_dx[i+xpels*j] == 0 ) 

cent_dx[i+xpels*j]=Math.pow(2,-23);

forw_dy[i+xpels*j]=(sign_d[i+xpels*(j+l)]-sign_d[i+xpels*j])/h; 
if (forw_dy[i+xpels*j] —  0 ) 

forw_dy[i+xpels*j]=Math.pow(2,-23);

back_dy[i+xpels*j]=(sign_d[i+xpels*j]-sign_d[i+xpels*G-l)])/h; 
if (back_dy[i+xpels*j] —  0 ) 

back_dy[i+xpels*j]=Math.pow(2,-23);

cent_dy[i+xpels*j]=(sign_d[i+xpels*(j+l)]-sign_d[i+xpels*(j-l)])/(2 *h); 
if (cent_dy[i+xpels*j] == 0 ) 

cent_dy[i+xpels*j]=Math.pow(2,-23);

}

for (j=8 ; j<ypels-8 y++) 
for (i=8 ;i<xpels-8 ;i++)

{

forw_dx[i+xpels*j]=(-1522/560*sign_d[i+xpels*j]+8*sign_d[i+l+xpels*j]-14*sign_d[i+ 
2+xpels*j]+56/3*sign_d[i+3+xpels*j]-35/2*sign_d[i+4+xpels*j]+56/5*sign_d[i+5+xpels 
*j]-14/3*sign_d[i+6+xpels*j]+8/7*sign_d[i+7+xpels*j]-l/8*sign_d[i+8+xpels*j])/(h); 

if (forw_dx[i+xpels*j] == 0 ) 
forw_dx[i+xpels*j]=Math.pow(2,-23);

back_dx[i+xpels*j]=(1522/560*sign_d[i+xpels*j]-8*sign_d[i-l+xpels*j]+14*sign_d[i-2+ 
xpels*j]-56/3*sign_d[i-3+xpels*j]+35/2*sign_d[i-4+xpels*j]-56/5*sign_d[i-5+xpels*j]+ 
14/3*sign_d[i-6+xpels*j]-8/7*sign_d[i-7+xpels*j]+l/8*sign_d[i-8+xpels*j])/(h); 

if (back_dx[i+xpels*j] == 0 ) 
back_dx[i+xpels*j]=:Math.pow(2,-23);



cent_dx[i+xpels*j]=(4/5*(sign_d[i+l+xpels*j]-sign_d[i-l+xpels*j])-l/5*(sign_d[i+2+xp
els*j]-sign_d[i-2+xpels*j])+4/105*(sign_d[i+3+xpels*j]-sign_d[i-3+xpels*j])-l/280*(sig
n_d[i+4+xpels*j]-sign_d[i-4+xpels*j]))/(h);

if (cent_dx[i+xpels*j] == 0 ) 
cent_dx[i+xpels*j]=Math.pow(2,-23);

forw_dy[i+xpels*j]=(-1522/560*sign_d[i+xpels*j]+8*sign_d[i+xpels*(j+l)]-14*sign_d[i
+xpels*(j+2)]+56/3*sign_d[i+xpels*(j+3)]-35/2*sign_d[i+xpels*(j+4)]+56/5*sign_d[i+x
pels*(j+5)]-14/3*sign_d[i+xpels*(j+6)]+8/7*sign_d[i+xpels*(j+7)]-l/8*sign_d[i+xpels*(
j+ 8 )])/(h);

if (forw_dy[i+xpels*j] =  0 ) 
forw_dy[i+xpels*j]=Math.pow(2,-23);

back_dy[i+xpels*j]=(1522/560*sign_d[i+xpels*j]-8*sign_d[i+xpels*(j-l)]+14*sign_d[i+
xpels*(j-2)]-56/3*sign_d[i+xpels*(j-3)]+35/2*sign_d[i+xpels*(j-4)]-56/5*sign_d[i+xpels
*(j-5)]+14/3*sign_d[i+xpels*(j-6)]-8/7*sign_d[i+xpels*(j-7)]+l/8!,tsign_d[i+xpels*(j-8)])
/(h);

if (back_dy[i+xpels*j] == 0 ) 
back_dy[i+xpels*j]-Math.pow(2,-23);

cent_dy[i+xpels*j]=(4/5*(sign_d[i+xpels*(j+l)]-sign_d[i+xpels*(j-l)])-l/5*(sign_d[i+xp 
els*G+2)]-sign_d[i+xpels*(j-2)])+4/105*(sign_d[i+xpels*(j+3)]-sign_d[i+xpels*(j-3)])-l/ 
280*(sign_d[i+xpels*(j+4)]-sign_d[i+xpels*(j-4)]))/(h); 

if (cent_dy[i+xpels*j] —  0 ) 
cent_dy[i+xpels*j]=Math.pow(2,-23);

}
}

void set_dt_e_w(double p_dt, double p_e, double p_w)
{

dt=p_dt;
e=p_e;
w=p_w*255*255;

}

void set_init_curve(int a)
{

initsigned_dist(h,xpels,ypels,a);
}

void create(int x, int y,int sxl,int syl,int sx2 ,int sy2 ,double [] data_intensity)
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{
int i, j ; 
dt=0 .1 ; 
e=l;
w=0.01*255*255;
h=l;
n_toreinit=40;
n_doreinit=8 ;
xpels=x;
ypels=y;
startx=sxl;
starty=syl;
lastx=sx2 ;
lasty=sy2 ;

area_mapping=new double[xpels*ypels]; 
sign_d=new double[xpels*ypels]; 
forw_dx=new double [xpels* ypels]; 
forw_dy=new double[xpels*ypels]; 
back_dx=new double[xpels*ypels]; 
back_dy=new double[xpels*ypels]; 
cent_dx=new double[xpels*ypels]; 
cent_dy=new double[xpels*ypels]; 
intensity=new double [xpels* ypels]; 
initsigned_dist(h,xpels,ypels,4); 
for 0 =0 ;j<ypels;j++) 

for (i=0 ;i<xpels;i++)
intensity [i+xpels*j ]=data_intensity [i+xpels*j ];

}

void segment()
{

int i, j ; 
double t ;
double [] ea, fa, ga, h a ; 
int t_max=1 0 ;

ea = new double[xpels*ypels]; 
fa = new double[xpels*ypels]; 
ga = new double[xpels*ypels]; 
ha = new double[xpels*ypels];

//sign_d = new double[xpels*ypels];

t=0;
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while (t <= t_max)
{
meancl_c2 ();
get_diff_results();

for (j=l ;j<ypels-l ;j++) 
for (i^l ;i<xpels-l ;i++)

{

ea[i+xpels*j ] =dt* dirac(sign_d[i+xpels*j ]) * w/(h* h* Math. sqrt(forw_dx [i+xpels*j ] * forw_ 
dx[i+xpels*j]+cent_dy[i+xpels*j]*cent_dy[i+xpels*j]));

fa[i+xpels*j]=dt*dirac(sign_d[i+xpels*j])*w/(h*h*Math.sqrt(back_dx[i+xpels*j]*back_d
x[i+xpels*j]+cent_dy[i+xpels*j]*cent_dy[i+xpels*j]));

ga[i+xpels*j]=dt*dirac(sign_d[i+xpels*j])*w/(h*h*Math.sqrt(forw_dy[i+xpels*j]*forw_
dy[i+xpels*j]+cent_dx[i+xpels*j]*cent_dx[i+xpels*j]));

ha[i+xpels*j]=dt*dirac(sign_d[i+xpels*j])*w/(h*h*Math.sqrt(back_dy[i+xpels*j]*back_
dy[i+xpels*j]+cent_dx[i+xpels*j]*cent_dx[i+xpels*j]));

}

for(j=l;j<ypels-l;j++)
for (i=l ;i<xpels-l ;i++)
{

sign_d[i+xpels*j]=(sign_d[i+xpels*j]+ea[i+xpels*j]*sign_d[i+l+xpels*j] 
+fa[i+xpels*j]*sign_d[i-l+xpels*j]+ga[i+xpels*j]*sign_d[i+xpels*(j+l)] 
+ha[i+xpels*j] * sign_d[i+xpels*(j -1  )]+dt*dirac(sign_d[i+xpels*j])

* (-(intensity [i+xpels*j ]-c 1 )* (intensity[i+xpels*j ] -c 1 )+(intensity[i+xpels*j ] -c2 )*(intensity 
[i+xpels*j]-c2 )))

/(l+ea[i+xpels*j]+fa[i+xpels*j]+ga[i+xpels*j]+ha[i+xpels*j]);
}

for (i=0 ;i<xpels;i++)
{
sign_d[i]=sign_d[i+xpels]; 

sign_d[i+xpels*(ypels-l)]=sign_d[i+xpels*(ypels-2 )]; 
}

for (j=0 y<ypelsj++)
{
sign_d[0 +xpels*j]=sign_d[l+xpels*j];



sign_d[xpels-l+xpels*j]=sign_d[xpels-2 +xpels*j];
}
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// if ((Math.floor(t/dt)%n_toreinit == 0) && (t != 0))
// reinitial(n_doreinit);

t=t+dt;

}
for ( j- 0 ;j<ypels;j++) 

for (i=0 ;i<xpels;i++)
area_mapping[i+xpels*j ]=sign_d[i+xpels*j ];

ea=null;
fa=null;
ga=null;
ha=null;

}

void reinitial(int n)
{

int i, j, k ; 
double[] grad_d;

g rad d  = new double[xpels*ypels]; 
for (k= 1 ;k<n+ 1 ;k++) 

for 0 = 1 ;j <ypels- 1 y ++) 
for (i=l ;i<xpels-l ;i++)
{

grad_d[i+xpels*j]=Math.sqrt(((sign_d[i+l+xpels*j]-sign_d[i-l+xpels*j])/(2*h))*((si 
gn_d[i+l+xpels*j]-sign_d[i-l+xpels*j])/(2 *h))+((sign_d[i+xpels*G+l)]-sign_d[i+xpels*( 
j - 1)] ) / ( 2  * h)) * ((sign_d[i+xpels* (j+ 1 )] -sign_d[i+xpels * 0  -1 )] ) / ( 2  * h)));

sign_d[i+xpels*j]=sign_d[i+xpels*j]+dt*(sign(sign_d[i+xpels1|!j])*(l-grad_d[i+xpels

}

}

double sign(double argl)
{
double result;
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if (argl < 0 ) 
result = - 1 ; 
else if (argl > 0 ) 

result = 1 .0 ; 
else 

result = 0 .0 ;

return result;
}

void adjust_boundary(int direct,double step,int sel_startx,int sel_starty,int
sel_lastx,int sel_lasty)

{
int i, j ; 
int x, y ; 
int x l ,x 2 , y l ,y 2 ; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else

yl=starty; 
if ((sel_lastx < lastx)) 

x2 =sel_lastx; 
else

x2 =lastx; 
if ((sellasty < lasty)) 

y2 =sel_lasty; 
else 

y2 =lasty;

x=x2 -x2 +l;
y=y2 -yl+ l;

for (j=0 ;j<ypels;j++) 
for (i=0 ;i<xpels;i++)

area_mapping[i+xpels*j ]=sign_d[0 ];

if (direct —  - 1 )
{

for (j=0 ;jcy;j++) 
for (i=0 ;i<x;i++) 
{
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if (sign_d[i+xl-startx+xpels*(j+yl-starty)] < step) 
area_mapping[i+x 1 -startx+xpels*(j+y 1 -starty)]=-1 ; 

else
area_mapping [i+x 1 -startx+xpels* (j+y 1 -starty)]=1 ;

}
}

else if (direct == 1 ) 
for (j=0 ;j<y;j++) 

for (i=0 ;i<x;i++)

if (sign_d[i+xl-startx+xpels*(j+yl-starty)] > step) 
area_mapping[i+x 1 -startx+xpels* (j+y 1 -starty)]= 1 ; 

else
area_mapping[i+x 1 -startx+xpels*(j+y 1 -starty )]=-1 ;

}

double areainfo(int sel_startx, int sel_starty, int sel lastx, int sel_lasty) 
{

double result; 
int i, j ; 
int x, y ; 
int x l ,x 2 , y l ,y 2 ; 
if ((sel_startx > startx)) 

xl=sel_startx; 
else

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else

yl=starty; 
if ((sel lastx < lastx)) 

x2 =sel_lastx; 
else 

x2 =lastx; 
if ((sel_lasty < lasty)) 

y2 =sel_lasty; 
else 

y2 =lasty;

x=x2 -x l+ l;
y=y2 -y l+ l;
result=0 ;

for (j=0 ;j<y;j++) 
for (i=0 ;i<x;i++)
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{

if (sign(area_mapping[i+xl-startx+xpels*(j+yl -starty)]) > 0 ) 
result=Math.round(result+l);

}
return result;

}

double area_intensitymean(int sel startx, int sel starty, int sel_lastx, int sel lasty) 
{

double result; 
int i j  ; 
int x, y ; 
int x l ,x 2 , y l ,y 2 ; 
int n ;
if ((sel_startx > startx)) 

xl=sel_startx; 
else

xl=startx; 
if ((sel_starty > starty)) 

yl=sel_starty; 
else

yl=starty; 
if ((sel lastx < lastx)) 

x2 =sel_lastx; 
else

x2 =lastx; 
if  ((sellasty < lasty)) 

y2 =sel_lasty; 
else 

y2 =lasty;

x=x2 -x l+ l;
y=y2 -yl+ l;

result=0 ;
n=0 ;

for (j=0 ;j<y;j++) 
for (i=0 ;i<x;i++)
{

if (sign(area_mapping[i+xl-startx+xpels*(j+yl-starty)]) > 0 )
{

result=result+intensity[i+xl-startx+xpels*(j+yl-starty)];
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n=n+l;
}

}
if (n != 0 )

result=Math.round(result/n); 
return result;

}

void initialize(int x, int y, int sxl, int syl, int sx2 , int sy2 ,double [] 
dataintensity)

{
int i, j ;
dt=0 .1 ;
e - 1 ;
w=0.025*255*255;
h=l;
n_toreinit=40;
n_doreinit=8 ;

xpels=x;
ypels=y;
startx=sxl;
starty=syl;
lastx=sx2 ;
lasty=sy2 ;

areamapping = new double[xpels*ypels]; 
sign_d=new double[xpels*ypels]; 
forw_dx=new double[xpels*ypels]; 
forw_dy=new double[xpels*ypels]; 
back_dx=new double[xpels*ypels]; 
back_dy=new double[xpels*ypels]; 
cent_dx=new double [xpels* ypels]; 
cent_dy=new double[xpels*ypels]; 
intensity^new double[xpels*ypels]; 
initsigned_dist(h,xpels,ypels,4); 
for (j=0 ; j< ypels;j++) 

for (i=0 ; i<xpels;i++)
intensity[i+xpels*j]=data_intensity[i+xpels*j];

}

double area_intensity_75pvalue(int sel_startx,int sel_starty,int sel_lastx,int 
sellasty)

{

double result;
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int ij,k; 
int x,y;
in tx l,x 2 ,yl,y2 ; 
int n;
double [] data;

if  ((sel_startx > startx)) 
xl=sel_startx; 

else
xl=startx; 

if ((selstarty > starty)) 
yl=sel_starty; 

else
yl=starty; 

if ((sel_lastx < lastx)) 
x2 =sel_lastx; 

else
x2 =lastx; 

if ((sel_lasty < lasty)) 
y2 =sel_lasty; 

else
y2 =lasty;

x=x2 -x l+ l;
y=y2 -y l+ l;

n=0 ;
for (j=0 ;j<y;j++) 

for (i=0 ;i<x;i++)
{

if (sign(area_mapping[i+xl-startx+xpels*(j+yl -starty)]) > 0 ) 
n=n+l;
}

k=0 ;
if (n != 0 )

{
data=new double[n];

for (j=0 ;j<y;j++) 
for (i=0 ;i<x;i++)
{

if (sign(area_mapping[i+xl-startx+xpels*(j+yl-starty)]) > 0 )
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{
data[k]=intensity[i+xl -startx+xpels*(j+y 1 -starty)]; 
k=k+l;
}

}

quicksort(data);

result^datafXint) Math.round(n*0.75)-1 ];

}
else

{
data=new double[x*y];

for 0 “ 0 y<y;j++) 
for (i=0 ;i<x;i++)

{
data[k]=intensity[i+xl -startx+xpels *(j+yl -starty)]; 
k=k+l;

}

quicksort(data);

result=data[(int) Math.round(x*y*0.75)-1 ];

}
return result;

}
public static void quicksort(double[] a) { 

shuffle(a); // to guard against worst-case
quicksort(a, 0 , aJength - 1 );}

// quicksort a[left] to a[right]
public static void quicksort(double[] a, int left, int right) { 

if (right <= left) return; 
int i = partition(a, left, right); 
quicksort(a, left, i-1 ); 
quicksort(a, i+1 , right);
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// partition a[left] to a[right], assumes left < right 
private static int partition(double[] a, int left, int right) { 

int i = left - 1 ; 
int j = right; 
while (true) {

while (a[++i]<a[right])

while (a[right]<a[—j]) 
if (j =  left) break; 

if (i >= j) break; 
exch(a, i, j);

}
exch(a, i, right); 
return i;

// find item on left to swap
// a[right] acts as sentinel 

// find item on right to swap
// don't go out-of-bounds 
// check if pointers cross 
// swap two elements into place

// swap with partition element

// exchange a[i] and a[j]
private static void exch(double[] a, int i, int j) {

double swap = a[i]; 
a[i] = a[j]; 
a[j] = swap;

}

// shuffle the array a[] 
private static void shuffle(double[] a) { 

int N = a.length; 
for (int i = 0; i < N; i++) {

int r = i + (int) (Math.random() * (N-i)); // between i and N-l
exch(a, i, r);

}
}

double background_intensitymedian(int sel_startx,int sel_starty,int 
sel_lastx,int sel_lasty)

{
double result; 
int ij,k; 
int x,y;
in tx l,x 2 ,yl,y2 ;
intn;
double [] data;
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if ((selstartx > startx)) 
xl=sel_startx; 

else
xl=startx; 

if ((sel_starty > starty)) 
yl=sel_starty; 

else 
yl=starty; 

if ((sel_lastx < lastx)) 
x2 =sel_lastx; 

else 
x2 =lastx; 

if ((sel_lasty < lasty)) 
y2 =sel_lasty; 

else 
y2 =lasty;

x=x2 -x l+ l;
y=y2 -y l+ l;

result=0 ;
n=0 ;
for G=0 ;j<y;j++) 

for (i=0 ;i<x;i++)
{

if (sign(area_mapping[i+xl-startx+xpels*(j+yl-starty)]) <= 0 ) 
n=n+l;

}

k=0 ;
if (n != 0 )

{
data=new double[n]; 
for (j~0;j<y;j++) 
for (i=0 ;i<x;i++)

{

if (sign(area_mapping[i+x 1 -startx+xpels*(j+y 1 -starty)]) <= 0 ) 
{
data[k]=intensity[i+xl -startx+xpels*(j+y 1 -starty)];
k=k+l;

}
}
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quicksort(data); 
if ((n%2 ) =  0 ) 

result=Math.round(data[n/2]); 
else

result=Math.round((data[Math.round(n/2)]+data[(n-1 )/2])/2);

}
return result;

}

double background_intensity_75pvalue(int sel_startx,int 
sel_lastx,int sel_lasty)

{

double result; 
int ij,k; 
int x,y;
int xl,x 2 ,yl,y2 ; 
int n;
double [] data;

if ((sel_startx > startx)) 
xl=sel_startx; 

else
xl=startx; 

if ((sel_starty > starty)) 
yl=sel_starty; 

else 
yl=starty; 

if ((sel lastx < lastx)) 
x2 =sel_lastx; 

else 
x2 =lastx; 

if ((sel lasty < lasty)) 
y2 =sel_lasty; 

else
y2 =lasty;

x=x2 -x l+ l;
y=y2 -y l+ l;

n=0 ;
for (j=0 y<y;j++) 

for (i=0 ;i<x;i++)
{

sel_starty,int



if (sign(area_mapping[i+xl-startx+xpels*(j+yl-starty)]) <= 0) 
n=n+l;
}

k=0;
if (n != 0)

{
data=new double [n];

for (j=0;j<y;j++) 
for (i=0;i<x;i++)
{

if (sign(area_mapping[i+xl-startx+xpels*(j+yl-starty)]) <= 
{
data[k]=intensity[i+x 1 -startx+xpels* (j +y 1 -starty)]; 
k=k+l;
}

}

quicksort(data);
result=data[(int) Math.round(n*0.75)-1 ];

}
else

{
data=new double [x*y];

for (j=0y<y;j++) 
for (i=0;i<x;i++)

{
data[k]=intensity[i+xl -startx+xpels*(j+y 1 -starty)]; 
k=k+l;

}

quicksort(data);

result=data[(int) Math.round(x*y*0.75)-1 ]; 

}
return result;

}
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