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ABSTRACT

In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper 

sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were 

analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial 

exhibited great potential for infrared (IR) sensing and energy harvesting.

The hybrid nanomaterial was synthesized with the non-covalent bond technique to 

functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of 

the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS 

nanoparticles were formed as a thin film structure using the vacuum filtration method. 

Two conductive wires were bound on the ends of the thin film to build a thin film device 

for measurements and analyses. Measurements found that the hybrid nanomaterial had a 

significantly increased light absorption (up to 80%) compared to the pure SWNTs. 

Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal 

switching effect, which could be further enhanced up to ten times with asymmetric 

illumination of light and thermal radiation on the thin film devices instead of symmetric 

illumination. A simple prototype thermoelectric generator enabled by the hybrid 

nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. 

In addition, CuS nanoparticles have great optical absorption especially in the near- 

infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for 

IR sensing applications.



The first application to be covered in this dissertation is the IR sensing application. 

IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were 

fabricated. The IR response in the photocurrent of the hybrid thin film sensor was 

significantly enhanced, increasing the photocurrent by 300% when the IR light 

illuminates the thin film device asymmetrically. The detection limit could be as low as 

48mW mm'2. The dramatically enhanced sensitivity and detection limit were due to the 

temperature difference between the two junctions formed by the nanohybrid thin film and 

copper-wire electrodes under asymmetric IR illumination, and the difference between the 

effective Seebeck coefficient of the nanohybrid thin film and that of the Cu wires. The IR 

sensor embedded in polydimethylsiloxane (PDMS) layers was also fabricated and tested 

to demonstrate its potential application as a flexible IR sensor.

In another application, energy harvesting, a new type o f thermoelectric 

microgenerator enabled with the SWNTs-CuS nanoparticles hybrid nanomaterial, was 

fabricated. This type of microgenerator did not require any cooling or heat sink element 

to maintain the temperature difference or gradient in the device. Instead, the integrated 

nanomaterials in the device enhanced the local temperature and thus produced and 

maintained an intrinsic temperature difference or gradient across the microgenerator, 

thereby converting light and heat directly into electricity. In order to enhance the 

maximum output voltage, the incoming light had to be focused on the thin film region. A 

tunable lens was fabricated to collect and focus the ambient light on the thin film to 

enhance the output voltage of the microgenerators. The tunable lens was fabricated with a 

flexible polymer, PDMS. Therefore, the focal length of the tunable lens can be adjusted 

by pumping oil into the lens chamber to deform a PDMS membrane, resulting in the



changed focus o f the lens. In order to enhance the output power, two different arrays of 

thermoelectric generators in series and in parallel were fabricated. A hybrid nanomaterial 

thin film was also used to enhance the temperature gradient o f the thermoelectric 

generators. For the devices in series, the generated voltage o f all thermoelectric 

generators was combined together to enhance the output voltage. With the device in 

parallel, it can be used to combine all of the current o f thermoelectric generators together 

to enhance the output current.
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CHAPTER 1

INTRODUCTION

Nanotechnology is the science of synthesizing nanomaterials and functionalizing 

nanostructures [99,100]. Nanotechnology has been discovered since the 4th century [27]. 

The Roman Lycurgus cups are one of the examples. In ancient Rome, Artisans ground 

the gold or silver materials into very fine powders to form colloid gold or silver solutions 

which were then sealed into the transparent wall of glass cups to generate the various 

colors on the wall o f the cups. According to the light emitting directions, the wall o f the 

cups showed different translucent colors [27]. The attractive optical phenomenon of the 

nanomaterials was first presented by those finely ground material powders. In recent 

years, nanotechnology has become one of critical knowledge, more and more unique 

phenomenons are discovered and attract scientists to study. A lot o f reports have 

indicated much unique potential for various applications.

Typically, nanomaterials are defined as the scale of one dimension between lnm 

to lOOnm. At that range, most physical properties o f nanomaterials cannot be considered 

the same as bulk materials due to some important effects in the small scale, such as 

surface plasmon resonance, quantum confinement, and some quantum mechanical effects. 

Due to these effects, nanotechnology reveals many remarkable properties which have 

been used in many popular areas, such as IR sensing and energy harvesting applications.

1



2

1.1 Nanomaterials

According to the size, shape, and material differences, uncountable nanomaterials 

have been created and studied in recent years. Among them, two types o f the 

nanomaterials, the fullerenes and nanoparticles, have been widely studied and related 

research is mostly reported. The fullerenes are pure carbon molecular structures in 

honeycombed order and can be formed in many different shapes, such as atom-size sheets 

(graphene) and cylindrical tubes (carbon nanonanotubes CNTs).

1.1.1 Graphene and CNTs

Graphene and CNTs are the most popular fullerenes for many applications and 

which have been investigated and discussed for many years due to their remarkable 

structures and electronic and optical properties. Table 1-1 shows Basic structure 

properties o f natural diamond, graphene, and CNTs at room temperature.

Table 1-1 Basic structure properties of natural diamond, graphene, and CNTs at room 
temperature [22,23]

Natural diamond Graphene Carbon nanotube
Thermal

conductivity
-2200 Wm-'k’1 2000-4000 W m-'k'1 -3500 Wm-'k*

Electron mobility 2200 cm2/(V-s) 15000 cm2/(V-s) 100000 cm2/(V-s)
Young’s modulus -1.2 TPa -  lTPa l-5TPa
Tensile strength >1.2GPa 130 GPa 13-53 GPa

The basic structure of graphene is a two-dimension hexagonal carbon sheet 

formed as a fine sheet. The thickness of graphene is as thin as an atom and as light as 

0.77mg/m2. Although graphene is so thin that it is translucent, graphene has a very strong 

structure even better than natural diamond due to the carbon structure and very strong 

carbon covalent bonds. It shows almost 100 times the tensile strength o f natural diamond
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and three times that of CNTs [22][23]. On the other hand, the structure o f CNTs is similar 

to graphene, but more like the graphene sheet rolled up and forming a cylindrical tube. In 

fullerenes, CNTs also have the strong carbon covalent bonds that make the CNTs stiff 

and straight. According to fabrication methods differences, the length o f CNT can be 

fabricated up to millimeters and the width of CNT are only in 1 to 10 nanometers. The 

high ratio of the CNTs length to width causes the CNTs to be not only firm but also 

elastic [24].

The structure strength is not the only outstanding property of graphene and CNTs. 

They also exhibit remarkable electrical, optical and thermal properties. In comparing the 

electronic structures o f graphene and CNTs, graphene is a semi-metal which has very 

good electrical conductivity and fast electron mobility. In addition, CNTs have different 

electronic structure than graphene. CNTs are formed by rolling up graphene sheets, and 

depending on the direction in which they are rolled up, the electronic structure of CNTs 

are changed to semi-metal, semiconductor, or semi-insulator. The geometrical structure 

can be indexed by the CNTs pair of atoms (n,m). If n=m, CNTs display no gap 

semiconductors the same as graphene. If n-m is equal to a multiple o f three, the gap of 

CNTs is closer and become narrow-gap semiconductors. In other situations, CNTs 

become wide-gap semiconductors [12].

For energy harvesting and optical sensing applications, graphene and CNTs 

exhibit excellent thermal and optical properties. There are many reports showing that 

both o f them have excellent thermal conductivity, 2000-4000Wm'1k '1 and 3500Wm‘1k '1, 

respectively, at room temperature. This high thermal conductivity shows the potential for 

harvesting thermoelectricity for transfer to useful energies. Moreover, graphene and



4

CNTs also have great optical absorption. In nanotechnology, graphene has only one 

atom-size thickness, but it is still able to absorb about 2.3% of light based on the Fine 

Structure Constant (FST). In this fine structure, the amount o f absorption is able to 

congregate together. If two graphene thin films overlap together, the absorption value is 

increased almost as much as 2.3%. For CNTs, when large numbers o f CNT congregate 

together to form a CNT thin film, the structure of the CNTs thin film is similar to a black 

body. Ideally, a pure black body exhibits 1.0 o f absorptivity and emissivity over a wide 

range of wavelengths. In recent years, it has been reported that vertically aligned CNTs 

have great absorptivity and emissivity close to 0.99 over a wide wavelength from 200nm 

to 200pm [25].

1.1.2 Nanoparticles

In addition to fullerenes, a variety o f nanoparticles are also of the scientific 

interest due to their wide potential applications, such as optical, electrical, and biomedical 

applications. Depending on the size scale and materials differences, nanoparticles exhibit 

remarkable property differences compared to bulk and molecular materials because of 

surface plasmon resource and quantum confinement effects.

In biomedical science, some metallic nanoparticles, such as Au, Pt, and Ag 

nanoparticles (NPs), have been used in drug delivery, tumor detecting, optical sensing for 

DNA, and as photothermal agents. The nanoparticles have large surface to volume ratio 

and stable surface foundation that can be synthesized and functionalized with various 

chemical agents to allow them to be combined with antibodies, drugs, and ligands. For 

drug delivery, the delivery speed of drug-nanoparticles is fast because the nanoparticles,
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such as colloidal gold, can uniformly suspend in solution very well. Therefore, the drugs 

can diffuse and reach the target fast rather than accumulate together.

Due to the localized surface plasmon resonance, metallic nanoparticles are of a 

size-dependent property. When the sizes o f the Au nanoparticles are below lOOnm, the 

absorption wavelength is shifted, so the colors of the nanoparticles become red instead of 

natural yellow. After the Au nanoparticles absorb the incoming light, the oscillatory 

plasmon is generated on the surface o f the Au nanoparticles. The plasmon moves and 

decays along the surface of the nanoparticles cause a heat is generated on the surface 

[17].

Also, some metallic nanoparticles have magnetic properties, such as FeO, Fe2C>3, 

and Fe3C>4 nanoparticles. The nanoparticles are able to combine with chemical agents 

which can track tumors and be injected into the human body to detect the tumors by 

magnetic detectors [28].

Different from metallic nanoparticles, the semiconducting nanoparticles also have 

some unique electrical and optical properties due to the quantum confinement effect. 

When the sizes of the nanoparticles decrease to below lOOnm, especially lOnm, the 

electron-hole pairs (excitons) are compressed resulting in the quantum confinement. The 

energy levels are discrete and the energy gap is increased. The electrons need higher 

energy to jump across the energy gap, so the nanoparticles have excellent light absorption 

and specific absorption peaks. For example, CuS NPs have specific absorption peaks at 

near infrared region. Moreover, the width o f the energy gap is size-dependent. If the sizes 

o f the nanoparticles are decreased, the absorption peak of nanoparticles exhibits a blue- 

shift [17].
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1.1.3 Hybrid Nanomaterials

As aforementioned, for the past decades, many different nanomaterials and 

nanostructures have been synthesized and functionalized, such as metallic nanoparticles, 

semiconducting nanoparticles, graphene, and carbon nanotubes. Considering their unique 

and various properties, the nanoparticles exhibit great potential for biomedical, optical, 

and electrical applications. However, the use o f a single nanomaterial has been studied 

over many years and it is hard to conspicuously improve the efficiencies. In order to 

enhance the efficiency of the nanomaterials, research has found that two different 

nanomaterials have the ability to combine together forming a new hybrid nanomaterial 

which can combine the unique properties o f the two nanomaterials or even create new 

properties for scientific applications [35,55,89].

Due to the cylindrical structures of CNTs, the CNTs have the potential for 

attaching many nanomaterials on the surface o f the CNTs to create new hybrid 

nanomaterials. Nanoparticles are one of the popular nanomaterials that have been used to 

combine with CNTs, because the nanoparticles have great catalytic properties for various 

chemical reactions. Moreover, various nanoparticles have their specific optical, thermal, 

and electrical characteristics to obtain more derivative properties for more applications.

In order to attach the nanoparticles on the surface o f CNTs, there are several 

methods to deposit the different types o f nanoparticles on the CNTs. For example, CNTs- 

based hybrid nanomaterials are often used as chemical agents to functionalize the surface 

of CNTs to form a charge to attract oppositely charged nanoparticles creating a strong 

force to stably attach the nanoparticles to the CNTs. This bonding method is called a non- 

covalent bond. The non-covalent bond presents a stable bonding structure and both atom
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structures are not changed, so the bonding method does not destroy the characteristics of 

CNTs and nanoparticles.

According to the different materials o f nanoparticles, the CNTs based hybrid 

anomaterials have various properties. For optical and energy harvesting applications, 

semiconducting nanoparticles, such as Copper Sulfide (CuS) nanoparticles, are an 

excellent nanoparticles to use to combine with CNTs to enhance the optical absorption 

value for harvesting from wider range o f optical sources. The CuS NPs also exhibit an 

excellent optical absorption range at the near-infrared region which has the potential for 

detecting an infrared source [16].

1.2 Applications of Hybrid Nanomaterial 

In recent years, the single-wall carbon nanotubes based nanoparticles (SWNTs- 

NPs) have been discovered with many excellent optical, thermal, and electrical properties 

that are even better than the SWNTs or the nanoparticles. The SWNTs-CuS nanoparticels 

(SWNTs-CuS NPs) are a great hybrid nanomaterial which exhibits fast electrons mobility, 

high optical absorption, specific optical absorption peaks at the near-infrared region, 

conversion of light to heat, and excellent thermal conductivity. Due to their unique 

properteies, SWNTs-CuS NPs have vast potential for many applications, especially 

infrared sensing and energy harvesting. For these applications, the SWNTs-NPs can also 

be fabricated as ultra-thin films to attach to the different micro\nano devices to create 

more functions or enhance the efficiency of the micro\nano devices.

1.2.1 Infrared Sensing

Light is electromagnetic radiation and human eyes can see or detect light energy 

between 400nm to 700nm wavelength. If the wavelength is over 700nm or 1mm, the



radiation is called infrared (IR) radiation. The range of wavelength also covers most 

thermal radiation. The history of the IR radiation was started in 1800, when Royal 

Society’s William Herschel first discovered it in sunshine. He found the sun is generating 

not only visible light but also some invisible light with thermal energy [29],

The IR radiation can be found everywhere on the earth. Sunshine, humans, 

animals, and some objects have IR radiation. Generally, the IR radiation sources are 

broadly classified into four divisions: actinic range, hot object region, calorific region, 

and warm region. Table 1-2 shows brief descriptions of different IR regions [29]. In IR 

technology, IR sensing is the most critical science for the IR related devices. According 

to different IR targets, the sensitivity and detecting ranges o f IR sensors must match the 

IR devices. Due to different ranges of IR radiation, the IR radiations have different 

characteristics. ISO 20473 divides IR radiation into three areas: near-infrared (NIR), 

middle-infrared (MIR), and far-infrared (FIR). Every IR region exhibits different 

characteristics which can be used in many different applications, such as scientific, 

industrial, military, and medical applications. Table 1-3 shows the IR wavelength 

division with ISO 20473.
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Table 1-2 The brief descriptions of different IR regions [29]

IR sources Descriptions
Actinic region The radiation range is from visible light range to IR light. It is 

generated from actinic objects, such as Tungsten filament lamp 
and Sun. Actinic range is also called Photochemical reaction area.

Hot object region The radiation is generated from non-actinic objects, such as 
electric iron and other heat generating devices. The average 
temperature is about 400°C.

Calorific region The radiation is generated from boiling water and evaporating 
devices. Calorific region is also called non-actinic region. The 
average temperature is below 200°C.

Warm region The radiation is generated from human bodies, animals, and 
terrestrial heat.

Table 1-3 The IR wavelength division with ISO 20473

IR regions Wavelength Purposes
Near-Infrared 0.78pm -  3pm Fiber optical commutations and IR image 

intensifier
Middle-Infrared 3pm -  50pm Guided missile technology and high temp, thermal 

image
Far-infrared 50pm -  1000pm Far infrared laser

Because the IR radiation is invisible, the IR sensors are developed to detect the IR 

radiation and measure the heat of the objects. The related IR devices can be found 

everywhere, including TV remote, night vision, thermal imaging, and 

telecommunications. Typically, IR sensors can be separated into two major types, the 

thermal IR sensor and the photonic IR sensor [102].

The basic principle of a thermal IR sensor is detecting temperature change. The 

thermal IR sensor absorbs IR radiation to raise the temperature o f the thermal element. 

According to the temperature change, the temperature-dependent thermal IR sensor can 

convert a thermal change to an IR radiation value. This thermal IR sensor can continue to
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work without waiting to cool. However, the IR sensor has a longer response time because 

the thermal element has to wait until the photons convert to heat energy [101,102],

On the other hand, the photonic IR sensor works on photovoltaic and 

photoconductive effects. When a volume of incident photons excite the semiconducting 

material, the photons generate excitons (pairs o f hole and electron) and the electrons 

move across the band gap to the conduction band to generate an electrical current or 

voltage. The electronic dependent photonic IR sensor can monitor IR radiation by the 

electrical current or voltage change. Because the photonic IR sensor can directly convert 

the photons into electronic signals, the photonic IR sensor is faster than the thermal IR 

sensor. However, temperature is the problem of the photonic IR sensor that affects the 

accuracy of the sensor. Therefore, the photonic IR sensor has to cool down for accurate 

measurements. [29,102]

1.2.2 Energy Harvesting

For many years, nuclear energy has been one of the major energy sources to 

supply electricity for human life because of its powerful and inexpensive properties. 

However, this powerful energy also brings with it an unstable factor to threaten the 

environment. The Fukushima Daiichi nuclear disaster is one o f the terrible examples, the 

earthquake causing fatal radiation leak out from the nuclear power plant in 2011. The 

strong radiation exposed over ten km of surrounding area and affected over 300,000 

people.

In order to avoid an accident happening again, searching for safe and stable 

energies instead o f nuclear energy becomes the necessary issue. Many reports have 

indicated on green natural energies, such as solar, wind, heat, and tide, have great
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potential to be the alternative energy because the green energies present clean and safe 

sources. Moreover, they are endless and everywhere on the Earth. Therefore, the topic of 

harvesting green energies has been attracting scientific interest for many years.

Typically, the major convertible types of green energy include light, thermal, and 

mechanical energies. According to the different energy sources, many suitable devices 

have been created to harvest the green energies and convert them into electricity or other 

useful energies. Even though the green energies are strong and endless, they still cannot 

totally replace nuclear and depleting energies due to some technical limitations o f the 

harvesting devices. Table 1-4 shows introduction o f different types o f green energies

Table 1-4 Introducing the different types of green energies

Energy types Sources
Light Energy Sunshine and tungsten filament lamps.
Thermal Energy Sunshine, Geothermal Energy, waste thermal energy, and 

heater.
Mechanical Energy Vibration and mechanical stress or pressure.
Electromagnetic Energy Solar radiation and inductor.
Fluid Energy Ocean current and Wind flow.
Human body Human body can generate both thermal and mechanical 

energy from the constant warm body and body actions such as 
running.

Other Energy Bio-medical and chemical reactions.

According to the harvesting differences, engineering faces many issues 

concerning the increase in the efficiency of the energy harvesting devices. For the 

external issues, some green energies cannot support constant and strong power to drive 

the harvesting devices. Wind energy is one of the cases. If the local wind is too slow, a 

wind farm cannot be driven to generate electricity. Even some green energies, such as 

solar energy, which can support strong and endless energy in daytime, research still faces
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some technical issues. For example, solar cell development is the hottest energy topic and 

it has been discovered and developed for many years due to strong and infinite light and 

thermal sources. However, development costs and solar-electricity conversion efficiency 

limitations restrict the ability of the solar cell. The conversion efficiency o f common solar 

cells is still less than 50% and the higher efficiency of solar cells also has associated high 

costs. Therefore, how to reduce the development costs and increase the conversion 

efficiency becomes the biggest issue to develop green energies. Usually, the major optical 

energy harvesting devices work based on such mechanisms as piezoelectricity, 

electromagnetic induction, thermoelectric effect, and photovoltaic effect.

Piezoelectricity. Piezoelectricity was discovered by the French researchers 

Jacques and Pierre Curie in 1880. Based on the piezoelectric effect, piezoelectricity is 

described as the conversion between the electrical charge and mechanical stress in 

piezoelectric materials, such as quartz crystals. When the materials suffer external stress 

to deform the body structure, a polarized charge is generated on the surface resulting in a 

potential difference between two surfaces and generating voltage. In addition, 

piezoelectricity also exhibits reversible characteristic because the piezoelectric effect is 

mechanically converting the two energies in piezoelectric materials [30].

After piezoelectricity was discovered, over 20 species o f natural piezoelectric 

materials were found and the efficiency of the material piezoelectricity was defined by 

piezoelectric constants using tensor analysis in 1910. During the World War I, the 

piezoelectric materials were used in submarines. They used piezoelectricity and 

hydrophone technologies to build the first ultrasonic submarine detector to emit a high- 

frequency sound and detect the returned echo from another submarine. In order to
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enhance the detection efficiency in World War II, researchers fabricated the first 

synthetic piezoelectric material, ferroelectrics, which exhibit much higher piezoelectric 

efficiency than the natural materials. After the wars, piezoelectricity technology has 

continuously interested scientists to develop new materials and devices for wide 

application areas. Lead zirconate titanate (PZT) is one of the popular synthetic 

piezoelectric materials with a higher piezoelectric constant. Many reports have indicated 

that PZT has great potential for pressure sensors and pressure energy harvesting devices 

[30].

Electromagnetic Induction. The electromagnetic phenomenon was first reported 

by Michael Faraday in 1831. Electromagnetic induction is based on Faraday’s Law. 

When a conductor is applied to an electromagnetic force, an electrical voltage is 

generated, and the electrical current follows the electromagnetic force and moves on the 

conductor [32]. The electromagnetic induction is the basic model to build some energy 

harvesting machines, such as turbine power generation for the wind or hydraulic power 

generators. For a wind power generator, when a strong wind continuously blows, the 

power generator is driven by spinning huge fans to generate an electromagnetic force and 

directly convert it to an electrical voltage or current which is then stored in high capacity 

cells.

Thermoelectric Effect. The thermoelectric effect was first discovered by Thomas 

Seebeck in 1821, so the thermoelectric effect is also called the Seebeck effect. The basic 

thermoelectric device uses two materials, which have different Seebeck coefficients, 

which are connected together forming junctions. When the junctions have a temperature 

difference, an electrical voltage is generated between the two junctions. The Seebeck
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coefficient is defined by the potential difference (AV) developed per unit temperature 

difference (AT) between two end sides of a material [33]:

S =  — (1-1)
A T  v J

In considering the electronic movement of the thermoelectric effect, when a 

temperature gradient exists in the material, the temperature difference generates the 

electrical carriers. The electrons move from the hot end side to the cold end side 

generating a current flow in the material. In addition, the Seebeck coefficient could be 

either positive or negative due to the diffusion speed of the electrons. If the mean free 

path o f the electrons is short, the Seebeck coefficient is positive because the higher lattice 

vibration results in electrons flipping back to the hot side. If the mean free path of 

electrons is long, the Seebeck coefficient is negative because the lower lattice vibration 

causes the electrons to accumulate at the cold end side. Generally, the thermoelectric 

generators use the thermoelectric effect to convert the heat into electricity directly. If the 

Seebeck coefficient difference between two joined materials is larger, the thermoelectric 

generator can generate larger electrical voltage. On the other hand, if the temperature 

difference between two junctions is higher, than the generated voltage also becomes 

larger. Equation 1-2 shows the relations between temperature, Seebeck coefficient and 

voltage [33]:

V — (Sm ateriall — Sm ateriate) X (T materiall — Tj^gtgrjg^) 0 " 2 )

Thermoelectric generators have been widely used to harvest heat energy. The 

generators can use the waste heat from furnaces, heaters, and consumer electronics to 

make a temperature gradient and generate electricity.
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Photovoltaic Effect. The photovoltaic effect was first discovered by Edmund 

Bequerel in 1839. The photovoltaic device can harvest light and directly convert it to an 

electrical voltage or current without heat or other energy sources. The photovoltaic effect 

is based on the photoelectric effect. When sufficient light hits on the surface of the 

material, the valence band absorbs the photons and generates excitons (electron and hole 

pairs). The electrons gain enough energy and jump across the band gap to the conduction 

band becoming free electrons to generate an electrical current [34].

Since the first photovoltaic device was fabricated in 1880, related objects have 

attracted much scientific interest. In 1930, Walter Schottky and his group developed the 

first metal-semiconductor barrier called the Schottky barrier which can enhance the 

efficiency o f photovoltaic devices. In 1950, the silicon wafter-based p-n junctions are 

fabricated leading to the formation of higher efficiency photovoltaic devices. Silicon- 

based solar cells are the most popular photovoltaic devices in the energy harvesting 

technology. The silicon-based solar cell started to be used to support power on low power 

consumption remote devices and satellites in space. During these times, the reports found 

the III-V compound semiconductor could enhance the solar cells more by the specific 

band structure. After 1970, more and more synthetic materials, such as polycrystalline 

silicon, amorphous silicon, and organic conductors, were fabricated for high efficiency 

and lower cost solar cells. Until now, research is still working on reducing the fabrication 

cost and to enhance the efficiency of solar cells for instant consumption and nuclear 

energies [34],



1 6

1.3 Previous Work and Problems

1.3.1 Infrared Sensing

As discussed above, IR sensing is the critical technology for a variety of 

applications, such as remote sensing, thermal imaging, night vision, thermal 

photovoltaics and optical communications. In nanotechnology, CNTs, graphene, CNTs 

nanoparticles, and CNTs composites have been used to develop thin film IR sensors to 

detect the near IR (NIR) region [35]. Figure 1-1 shows the rough structure o f a thin film 

IR sensor. A micro-size thick thin film is formed with the nanomaterial which is sensitive 

to NIR. Two conductive wires are directly bound at two end sides o f the thin film to form 

the electrodes to connect with the voltage meter. When the NIR radiation hits the surface 

o f the thin film, a voltage is generated and measured by the voltage meter.

M m n M M M H I
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Figure 1-1 shows a basic structure o f CNTs thin film IR sensor and the small image 
shows the surface o f the thin film [35].

Reports have described how CNTs exhibit great potential to apply to optical 

devices to enhance the efficiency o f the devices. CNTs thin film IR sensor is a 

remarkable device due to their unique optical properties. According to the black body 

effect, the CNTs thin film exhibits great optical absorption which can support a strong IR
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radiation signal for the CNTs thin film IR sensors. Morever, CNTs thin films have a fast 

photoresponse characteristic because the excitons which are generated from sufficient 

incoming photons are easily separated resulting in a fast transfer to other carriers in the 

CNTs electronic structure. A CNTs thin film IR sensor with 0.5mm width, 3.5mm length, 

and one pm thickness has been fabricated by Mikhail and his group. When a 0.12pW 

NIR radiation is exposed to the IR sensor, it shows a fast response time o f about 502ms. 

Generally, the IR radiation also brings thermal energy. The thermal energy can also 

support extra energy to separate excitons and increase the photoconductivity. When the 

NIR radiation is exposed to the CNTs IR sensors, the resistance o f the sensors is reduced 

by 0.7% [36].

When the IR radiation strikes the CNTs IR sensor, some o f the electrical and 

thermal energies could diffuse out of the CNTs thin film to cause unnecessary energy 

waste. Therefore, Basudev Pradhan and his group report a new type o f CNTs thin film IR 

sensor. They coated an electrical and thermal insulating polymer matrix on the CNTs to 

form CNTs-Polymer nanocomposite (CP) thin film IR sensors. This CP IR sensor whose 

thickness is about 25-60pm, also exhibits fast response time, about 60ms under 

0.7mW/mm2 NIR power and a strong conductivity charge o f about 4.26%. [35].

Due to the surface plasmon resonance and quantum confinement effect, the 

nanoparticles have also shown potentials for IR sensors. Longyan and his group used the 

carbon nanoparticles embedded in Polydimethylsiloxane (PDMS) substrate to form a 

flexible IR sensor. The flexible IR sensor has a very elastic structure because the PDMS 

substrate is a transparent and flexible polymer. Therefore the flexible IR sensor shows the 

advantage which can be integrated with different shaped devices. Moreover, the flexible
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IR sensor exhibits a stronger current change than the CNTs and CP IR sensors, the 

highest current change being about 52.9%, which is 75 times larger than a CNTs IR 

sensor in vacuum and 12 times larger than a CP IR sensor. It can detect the IR power as 

low as 58pW mm2 [37],

However, for IR sensing, the existing carbon nanomaterials thin film IR sensors

have intrinsic limitations. Firstly, the carbon element has great optical wavelength

absorption. The wavelength is not only the NIR wavelength, but also the visible

wavelength. The IR sensors are not very sensitive to the NIR region. Secondly, the

current change rate of the thin film IR sensors still has room to be improved. Increasing

the current change rate can also improve the efficiency o f the thin film IR sensor and the

IR detecting limit.

1.3.2 Solar and Thermal Energy 
Harvesting

As can be seen from the history o f energy harvesting, scientists are continuously 

seeking to improve the efficiency o f existing harvesting devices and to develop new 

devices. In order to harvest different green energies, various energy harvesting devices 

have been fabricated. For optical energy harvesting, solar cells are the main photovoltaic 

product which can be classified into three generations by the cost and efficiency of the 

solar cells.

The first generation of the solar cell exhibits higher light-electricity conversion 

efficiency than the Shockley-Queisser solar cell but also higher fabrication cost. In the 

Shockley-Queisser limit of a single-junction solar cell, the solar conversion rate is about 

31% to 41% depending on the concentration of the incoming light source [38]. The first
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generation solar cell uses extremely pure silicon material to fabricate the single-junction 

solar cell, so the fabrication cost is more expensive.

Since the pure silicon material is expensive to market, the next generation o f solar 

cells was fabricated in 1970 and used semiconducting material to fabricate a thin film by 

the deposition process rather than the expensive pure silicon. This solar cell successfully 

reduced the fabrication cost, but it was not produced as much as the first generation due 

to its low efficiency. It is only suitable for a large area to absorb enough light energy [39]. 

The third generation is fabricated based on a p-n junction solar cell. The efficiency of the 

solar cells is limited by the Shockley-Queisser limit. So the efficiency is only about 

33.7%, if the band gap of the solar cell is l.leV . However, the third generation is 

fabricated in a nano-scale to enhance its efficiency over the Shockley-Queisser limit. The 

new type o f solar cells include intermediate-band, hot carrier, and multi-junciton cells 

[40].

For thermal energy harvesting, the thermoelectric generators basically rely on the 

thermoelectric effect. Since the first thermoelectric generator was fabricated in 1960, 

scientists have been trying to improve the generator. However, the efficiency o f general 

thermoelectric generators is still within the range o f pW and mW which is lower than 

other energy harvesting devices. In recent years, scientists have focused on synthesizing 

new material to improve thermoelectric generators. They found that when the sizes of the 

materials are reduced to the nano-scale, nanomaterials exhibit better thermoelectric 

efficiency which can be used to improve thermoelectric generators.

In order to replace those high consumption energies, such as petroleum, coal and 

nuclear energy, harvesting clean and endless green energies is the first priority. Scientists
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continuously improve the efficiency o f energy harvesting devices. In recent years, 

research has found some nanomaterials that have the ability to absorb not only light 

energy but also thermal energy to increase the efficiency of energy harvesting devices.

1.4 Dissertation Objectives 

The aim of this dissertation research is to develop and investigate a novel hybrid 

nanomaterial with unique optical properties to improve sensitivity of thin film IR sensing 

and to enhance the efficiency of green energy harvesting applications. In the beginning, a 

hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs 

-CuS NPs), will be introduced to exhibit its potential for these applications. Then, the 

hybrid nanomaterial is used to form a thin film ultra-sensitive IR sensor to demonstrate 

the thin film IR sensor’s characteristics. After that, micro thermoelectric generators will 

be fabricated and the hybrid nanomaterial thin film will be embedded on the generators to 

enhance the efficiency o f the generators. Further considerations for how to optimize the 

devices and improve their efficiencies will be analyzed.

1.5 Organization o f Dissertation 

Chapter 1 introduces nanomaterials and the potential applications o f IR sensing 

and energy harvesting. Some common nanomaterials, such as CNTs, graphene, metallic 

nanoparticles, semiconducting nanoparticles, and hybrid nanomaterials are introduced. 

The next section reviews IR sensing and the two major types of IR sensors: photoelectric 

and thermoelectric IR sensors. After that, is a review of energy harvesting and 

introduction to the major types of energy harvesting mechanisms: piezoelectricity, 

electromagnetic induction, thermoelectric effect, and photovoltaic effect. The last section
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is to analyze the advantages and the disadvantages o f the existing thin film IR sensors 

and green energy harvesting devices.

Chapter 2 will go deep into the knowledge and the unique properties of CNTs and 

nanoparticles. The outstanding structure and, electronic, optical, and thermal properties of 

CNTs are covered and discussed. The next section is to explain two major phenomena in 

nano-scale: quantum confinement and surface plasmon resonance effects and discuss the 

size-dependent properties o f metallic and semiconducting nanoparticles.

Chapter 3 will introduce a new hybrid nanomaterial, carbon nanotubes-copper 

sulfide nanoparticles (SWNTs-CuS NPs). Methods for synthesis of the SWNTs-CuS NPs 

hybrid nanomaterial and fabricating of SWNTs and SWNTs-CuS NPs thin films are 

introduced. The unique optical and thermal properties of the hybrid nanomaterial are 

discovered and discussed which shows the great potential for IR sensing and energy 

harvesting applications.

Chapter 4 will discuss the first application: IR sensing. An ultrasensitive SWNTs- 

CuS NPs thin film IR sensor is discovered and introduced. The methods o f fabricating the 

thin film and flexible thin film IR sensors and the measurement set up are explained. 

After that, the results o f the measurements are discussed.

Chapter 5 will discuss second application: energy harvesting. A new type of 

thermoelectric microgenerator based on SWNTs-CuS NPs thin film is fabricated and 

introduced. Its fabrication process and measurement results of the micro-scale energy 

harvesting device are discussed.

Chapter 6 will have a conclusion and summary for the whole dissertation. 

Suggestions for future work will be further discussed.



CHAPTER 2

CARBON NANOTUBES AND COPPER 

SULFIDE NANOPARTICLES

2.1 Carbon Nanotubes 

Since the discovery o f carbon nanotubes (CNTs) in 1991, CNTs have been 

attractive to study because of their unique properties, such as extremely high thermal and 

electrical conductivity, strong mechanical strength, and high optical absorption, all of 

which show the great potential for many useful applications [1]. Table 2-1 shows the 

basic physical characteristics o f CNTs. Basically, CNTs have two common structures; 

single-wall carbon nanotubes (SWNTs) in Figure 2-1A and multi-wall carbon nanotubes 

(MWNTs) in Figure 2 -IB. A CNT can form with a rolled up graphene; the structure is 

similar to a hollow cylinder structure with long micro-scale lengths and extremely narrow 

nano-scale widths. Chemical vapor deposition (CVD), laser vaporization, and electrical 

arc to co-vaporization are commonly used to fabricate CNTs [3]. For the quality o f the 

CNTs, the CVD process can make purer and longer CNTs than the laser vaporization 

process. The electrical arc to co-vaporization process requires higher temperature than 

other processes and both laser vaporization and electrical arc to co-vaporization processes 

are difficult to control the chirality and purity o f CNTs [3].

2 2



Figure 2 -1(A) shows a sketch of single SWNT and (B) shows a sketch o f single MWNT 
[5].

Table 2-1 Important characteristics of CNTs [2]

Electrical conductive Metallic or semiconducting
Electrical transport Ballistic, no scattering
Maximum current density ~1010 A/cm2
Thermal conductivity 600 W • K - 1
Diameter lnm to lOOnm
Length Up to millimeter

2.2 Properties of Carbon Nanotubes 

The outstanding properties o f CNTs can be classified as mechanical, electrical, 

thermal, and optical properties. Every unique property has been deeply studied and 

reported since 1991 and applied to many different application fields, such as energy 

harvesting devices, micro-sensors, micro-probe, hydrogen storage for batteries, field 

emission devices, nano-electrical devices, and electrochemical devices [6].The structure 

of a single CNT is like a graphene sheet but rolled up to becomes a tube. According to 

different fabrication processes, the CNTs have two different types: single-wall (SWNT) 

and multi-wall CNT (MWNT). SWNT only has a single wall to form the tube and the 

diameter is about 0.2nm. MWNT has 2 to 20 walls which overlap together to form a
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multi-wall tube and the diameter can reach from 5nm to lOOnm. In some cases, the two 

ends can be capped for some different applications.

2.2.1 Mechanical Properties o f CNT

CNTs are an allotrope like carbon fullerene, but unlike the ball style. A CNT is 

rolled up with 2-D graphene sheet. The atomic structure of a graphene sheet is a carbon- 

carbon bond which is the strongest bonding type in the world, as strong as diamond. 

Hence, many applications, such as composite reinforcement or lubrication, are using 

CNTs to enhance the structure strength. The ratio of their width to length can achieve 

1:1000[3]. In some specific cases, the length o f CNTs can be made as long as 18.5cm by 

the CVD process [7], Usually, metals which have strong structure are inflexible in use; 

however, CNT has extremely strong structures, but also is more flexible than other hard 

metals because o f the remarkable hollow cylinder structure, strong but flexible 

[8] .Compared with stainless steel, CNTs exhibit an extremely firm body but also have 

great tensile strength. Table 2-2 shows the comparison o f young’s modulus and tensile 

strength between SWNT, MWNT, and stainless steel [10].

Table 2-2 The comparison of young’s modulus and tensile strength between SWNT, 
MWNT, and stainless steel [10].

Young’s modulus(TPa) Tensile strength(GPa)
SWNT 2.8-3.6 13-52
MWNT 1.7-2.4 11-63
Stainless steel 0.18 0.86

2.2.2 Electronic Properties of CNT

A CNT presents unique electronic structures similar to a one-dimensional 

graphene sheet, but rolled up to becomes a hollow cylindrical body. CNT is the sp2
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hybridization structure; each carbon atom is bonded with three other neighbor carbon 

atoms to form a honeycomb structure and extend the same structure periodically to build 

up a CNT. Figure 2-2 shows the typical the sp2 hybridization structure o f CNT. 

Compared with a single carbon atom structure, the sp2 hybridization structure of CNTs 

gives totally different electronic properties [10].

Figure 2-2 The sp2 hybridization structure of CNT [5]

The carbon atom bonding structure o f a CNT and a graphene sheet are almost the 

same, but a CNT has a cylinder structure rather than a sheet. For the electronic CNT 

property, the rolled up vector o f CNTs could affect the electronic property and become 

different from a graphene sheet. Equation 2-1 shows the relation between the vector and 

the electronic property change, r is the rolling up vector, a and b are the linear pair in the 

lattice structure, and n and m are the pair of atoms[10].

r =  na +  mb (2-1)

According to the vector of pair atoms (n and m) difference, the CNT shows three 

different geometry structures; zigzag, armchair, and chiral, which is shown in Figure 2- 

3A [11], When m=0, the CNT is called zigzag CNT, as shown in Figure 2-3Ba. When 

n=m, the CNT is called armchair CNT, as shown in Figure 2-3Bb. In another situation,
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the CNT is called chiral CNT, as shown in Figure 2-3Bc [11]. For the electronic property 

o f CNT, the rolled up vector also affects the energy gap of CNT causing the CNT to be a 

metallic or semiconductor structure. When the n=m (armchair), the electronic property of 

the CNT is similar to metal which has great conductivity because the CNT has no energy 

gap. When n-m=multiple of 3(chiral), the energy gap of the CNTs is very close; therefor, 

the CNT becomes a semiconductor. In other situations (zigzag), CNTs become wide-gap 

semiconductors because the energy gap o f CNT is larger than the chiral structure [12]. 

Figure 2-4 shows three different electronic states of CNT,a zigzag CNT (8, 0), a chiral 

CNT (7, 1), and an armchair CNT (8, 0) [12].

(Ba) (Bb) (Be)

Figure 2-3(A) shows the definition of CNT geometry structure by change the rolling up 
vector o f CNT; zigzagCNT (0 =  0 ) ,  chiral CNT (0 between 0 to 30) , armchair 
CNT (0 =  30). (Ba) is zigzag structure, (Bb) is chiral CNT, (Be) is armchair CNT [11].
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Figure 2-4 (8,0) shows CNT is metallic. (7,1) shows CNT is a narrow gap semiconductor. 
(5,5) shows CNTs is a wide gap semiconductor [12].

2.2.3 Thermal Properties

Due to the tiny size and sp2 hybridization structure, the CNT presents unique 

thermal properties which include variable thermal conductivity, thermal expansion, and 

thermopower. The thermal properties of CNT depend on temperature, tube length, 

diameter, and rolling up vector [12] [13].
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2.2.4 Thermal Conductivity

Due to the hollow cylinder sp2 structure, the thermal conductivity o f a CNT is 

greater than the in-plane thermal conductivity o f graphite [12], and the thermal 

conductivity o f CNT is depending on the heat transfer (photon transfer) rather than 

electron transport. Therefore, there is no specific effect between the electrical and 

temperature conductivity o f CNT. The main parameters that can affect the temperature 

conductivity o f CNTs are changed in temperature, dimension, and the crystal rolling up 

vector rather than electrical characteristics. Figure 2-5 shows the relation between the 

thermal conductivity o f CNTs and temperature in longer lengths o f CNT. Longer lengths 

of CNTs have higher thermal conductivity at around 500K. Thermal conductivity will 

achieve saturation when the photons start colliding in CNTs. Depending on the 

temperature change, only long wavelength photons can be excited at low temperature; 

moreover longer CNTs can suffer more photon collisions than short CNTs at low 

temperature. Hence, when temperature becomes higher, the thermal conductivity of 

longer CNTs have no bigger difference than with short CNTs. Figure 2-6 shows the 

simulation o f the relation between the thermal conductivity o f CNTs and temperature 

with shorter lengths o f CNTs [14].
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Figure 2-5 The simulation of the relation between the thermal conductivity of CNTs and 
temperature with different lengths o f CNTs [14]
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Figure 2-6 The simulation of the relation between the thermal conductivity o f CNTs and 
temperature with shorter lengths o f CNTs [14]

Besides, the different geometry structures o f CNTs which are zigzag (20,0), chiral 

(10,13), and armchair (11,11), can also affect the thermal conductivity change. Figure 2-7 

shows the relation between temperature and thermal conductivity for different geometry 

structures of CNTs [13]
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Figure 2-7 The relation between Temperature and thermal conductive in different CNT 
structures [13]

2.2.5 Optical Properties of CNTs

The optical properties of CNTs can be specifically described by absorption and 

Raman spectroscopy. Raman spectroscopy is the better way to detect and measure the 

CNTs. It has perfect spatial resolution and sensitivity to CNTs. In Raman spectroscopy, 

the CNTs are shown in the two different regions in Figure 2-8. At the region 1500 to 

1600, it called G mode or G-band. The G-band can split into several peaks, because it 

depends on the structure of CNTs and excitation state. The G-band also can estimate the 

tube diameter and whether the tube is metallic or semiconducting.

In addition, the zigzag and chiral semiconducting structure o f CNTs also present 

the photovoltaic property as a solar cell. When stronger energy photons, which can cross 

the band gap, excite the CNTs and generate pairs of electrons and holes, electrons will be 

able to jump cross the band gap and generating direct current electricity.
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Figure 2-8 The Raman spectroscopy of single-wall carbon nanotube

2.3 Nanoparticles

Since 1994, the first publication describes the applications o f nanoparticles. They 

show remarkable properties which are different than bulk or molecular materials and 

interested researchers in focusing on this brand-new research direction in nanotechnology.

For the fabrication, the lithographic and chemical methods are used to synthesize 

nanoparticles. Usually, the chemical method is the newer technology and can work on 

smaller size nanoparticle synthesis. In nanotechnology, when the sizes o f materials are 

formed between lOOnm to lnm, they are called nanoparticles. Quantum dots specifically 

define the size of nanoparticles below 1 Onm. When the sizes o f the nanoparticles become 

smaller, the quantum confinement and surface plasmon resonance effects occur in the 

nanoparticles, the electronic structure o f nanoparticles are changed to affect the optical 

and electrical properties of the nanoparticles. The properties are size-dependent. For 

example, when the sizes of the nanoparticles are smaller, the colloidal nanoparticles show 

the different emission colors, because a blue-shift o f the optical wavelength absorption 

occurs in the nanoparticles. The Figure 2-9 shows the Ag nanoparticles in solution
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[16][17]. Every tube has different sizes of Ag nanoparticles. The left tube has bigger Ag 

nanoparticles and the right tube has smaller Ag nanoparticles.

Figures 2-9 Color changed in different sizes o f nanoparticles [18].

2.3.1 Surface Plasmon Resonances

Another critical phenomenon that affects the size-dependent properties is surface 

plasmon resonances. This phenomenon occurs frequently on the surface dielectric/metal 

or vacuum/metal interfaces. When photons emit and stimulate the surface, the surface 

electromagnetic waves are generated and oscillate coherently along the interface [21].

For metal nanoparticles, when photons stimulate the surface o f the nanoparticles, 

the surface electromagnetic waves lead the conduction electrons to oscillate collectively 

with the waves. Figure 2-10 shows the sketch o f the surface plasmon resonance effect on 

metal nanoparticles [21]. Moreover, the surface plasmon resonances can efficiently 

enhance the optical absorption in colloidal metal nanoparticles. Comparing the bulk metal 

to metal nanoparticles, the metal nanoparticles have much larger surface area than the 

bulk surface area for the same volume. When the photons irradiate on the nanoparticles, 

the nanoparticles can absorb more incoming wavelength on the surface.
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Figure 2-10 The sketch of the surface plasmon resonance effect on metal nanoparticles 
[21].

2.3.2 Quantum Confinement

One of the reasons, the nanoparticles are size-dependent and different compared 

to bulk and molecular materials, which is because the quantum confinement affects the 

semiconductor nanoparticles, such as Si, CdSe, or CuS nanoparticles. In CdS 

nanoparticles, when the sizes o f the CdS nanoparticles reduce from 4.15nm to 0.6nm, the 

emission wavelength has a blue-shifit from red color to blue color and the optical 

absorption is stronger. Moreover, the bandgap energy become higher from 1.88eV to 

3.02eV and the electrons need more energy to jump from the valence band to the 

conduction band [19].

For the macro-size semiconductor, the bound state o f the electronic exciton 

(electron-hole pair) is unrestricted because the dimension of the macro-size 

semiconductor crystallite is much larger than the exciton Bohr radius. When the size of 

the semiconductor reduces to nano-size, the dimension of the nano-size semiconductor is 

smaller than the exciton Bohr radius which results in the exciton being squeezed and 

confined into one dimension. This phenomenon is called the quantum confinement effect.
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Due to the quantum confinement effect, the energy level becomes discrete and the energy 

band-gap becomes larger to generate a blue-shifit in the optical emission. Figure 2-11 

shows the quantum confinement effect in bulk semiconductors and nano-size 

semiconductors [20].
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Figure 2-11 The quantum confinement effect in (A) buck semiconductor and (B) nano
size semiconductor of the spatial electronic state [20].

2.4 CuS Semiconducting Nanoparticles 

Generally, nanoparticles can be divided into two groups: metal and semiconductor 

nanoparticles. Copper sulfide nanoparticles (CuS nanoparticles) are one of the 

semiconductor nanoparticles which exhibit unique optical, thermal, and structural 

properties because o f the quantum confinement effect and other nano-phenomena. Due to 

these properties, CuS nanoparticles have great potentials to benefit cancer therapy, 

optical sensing, and renewable energy applications [16].

2.4.1 CuS Nanoparticles Synthesis

In the beginning, 17mg of Copper(II) chloride (C uC h^fbO ) and 14.2pl of 

thioglycolic acid (HSCH2CO2H) were added into 100ml of distilled water (D1 water).
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Thioglycolic acid is an organic compound that is used to stabilize the chemical reaction 

of CuS nanoparticles synthesis. A small amount o f 1M NaOH solution was added into the 

Copper(II) chloride solution with stirring until the pH value reached 9.0 and then using 

argon bubbling degasification to promote the reaction for 20 min. After the bubbling 

degasification, the solution was mixed with 8 mg of thioacetamide which is dissolved 

into 20ml of DI water and heated up at 60°C for two hours for CuS nanoparticles to form 

[16]. Figure 2-12 shows the basic equipment to synthesize the CuS nanoparticles.

2.4.2 Optical and Thermal Property

Particle-wave duality is the fundamental phenomenon is used to explain why the 

nanoparticles properties differ from to bulk materials. Every particle exhibits particle and 

wave characteristics. In a macro-size, particle characteristics are easily observed but their 

wave characteristics, because the wavelength is in the nano-scale which is much smaller 

than the particle size, the wave characteristic is very difficult to perceive. When the

Inert gas

Cooling system

thermometer J?.reairsofr
injection

kU SN Ps
solution

Heater

Figure 2-12 The equipment for synthesize the CuS nanoparticles.
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particle size reduces to nano-scale and the wavelength function is larger than the particle 

size, the wave characteristics become easier to observe than the particle characteristics. 

When the particle sizes are smaller than the wavelength, the free electrons are confined in 

the structure resulting in the free electrons needing stronger energy to cross the energy 

gap and a blueshift o f the absorption wavelength in semiconductor nanoparticles [17] [20]. 

Figure 2-13 shows a UV-vis-NIR absorption spectrum of CuS nanoparticles in which the 

particle sizes are about 3nm [16]. A blueshift can be observed in the CuS nanoparticles. 

The minimum light absorption location shifts from approximately 600nm (bulk CuS) to 

500nm wavelength (CuS nanoparticles) [16][21]. The CuS nanoparticles exhibit great 

light absorption range from 450nm to 1050nm. Especially in the near-infrared (NIR) 

range, the maximum absorption of the CuS nanoparticles is at 900nm wavelength [16].

2

1
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1050450 650 850250
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Figure 2-13 A UV-vis-NIR absorption spectra o f CuS nanoparticles [16],

As a nanostructure, CuS nanoparticles can absorb the wavelength and generate the 

specific heat. In Figure 2-14, an experiment shows the CuS nanoparticles have a unique
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thermal property. The gray points are the control solution (pure DI water) and the dark 

green points are DI water with amount of CuS nanoparticles. Both solutions are exposed 

to NIR light (808nm) for 15 min. The temperature of the CuS nanoparticles solution is 

increased 12.7°C, which is much higher than the control solution. According to the 

optical and thermal properties of CuS nanoparticles, the CuS nanoparticles have great 

potential to apply to energy harvesting devices and IR sensing detectors [16].
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Figure 2-14 A heat generating experiment to measure the temperature change in control 
and CuS nanoparticles solutions. The two solutions are exposed to NIR light for 15 min 
[16].



CHAPTER 3

OPTICAL AND THERMAL PROPERTIES OF 

SWNTs-CuS HYBRID NANOMATERIAL

3.1 Introduction

Carbon nanotubes (CNTs), particularly a single-walled carbon nanotubes 

(SWNTs) thin film, shows excellent absorption o f light and thermal radiation, which can 

be potentially used as the basis for constructing light and thermal energy cells [46-48]. 

The light and thermal absorption of the SWNTs and its thin film can be possibly further 

modified, optimized and enhanced by attaching some other nanomaterials (e.g. 

nanoparticles (NPs)) to the SWNT. In the past few years, a variety of SWNTs and NPs 

hybrid nanomaterials have been synthesized [49-58], mainly being achieved by utilizing 

either covalent or non-covalent binding mechanisms between NPs and SWNTs. Among 

these approaches, the non-covalent approach to synthesize the SWNTs-NPs hybrid 

nanomaterials is quite attractive since the attached NPs essentially do not change much 

the electronic structure o f the SWNTs [49], while the covalent approach might induce 

some tremendous changes. The properties, particularly their optical properties, of this 

type o f hybrid nanomaterials have been extensively studied, indicating their potential as 

the basic building blocks for tunable optoelectronic devices, thin film optic switches, 

optical chemical sensors and solar cells [49-53]. Recent work also found that

38
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uponexposure to light and thermal radiation, the SWNT film can be used as a local 

temperature enhancer for the generation o f thermoelectric power [46]. Nevertheless, little 

work has been done to evaluate the thermal (e.g. IR radiation) response o f this type of 

hybrid nanomaterial. Hence, studies o f the thermal response o f the hybrid nanomaterials 

become necessary for the design and optimization o f thermoelectric power generation 

and IR sensing applications.

This type o f hybrid nanomaterial usually uses expensive noble metal NPs, such as 

Pt, Au or Ag NPs being attached to SWNTs, thereby modifying the electric and optical 

properties o f SWNTs [49, 50]. These types o f metal NPs clearly are unfavorable for 

synthesizing inexpensive hybrid nanomaterials for lowcost applications. To this end, 

some other compounds and relatively inexpensive nanomaterials, such as CdSe, CdS and 

PdS NPs have been utilized to replace noble metal NPs [55,57,58], However, the toxic 

and harmful properties o f cadmium, lead and their compounds are not favorable for the 

synthesis o f ‘green’ hybrid nanomaterials, hence it is becoming critical to have low-cost 

and environment-friendly nanomaterials to replace these expensive or toxic ones.

One of the ideal and promising materials is copper sulfide (CuS) NPs, which are 

both eco-friendly and inexpensive. In addition, CuS NPs have a broad absorption of light 

from 400 to 1 lOOnm [59, 60]. Some CuS-based hybrid nanomaterials, such as CuS=ZnS 

and CuS=ZnO heterostructures, have been synthesized and their optical properties have 

been evaluated, exhibiting remarkable photocatalytic stability [51,55]. The photoresponse 

o f multi-walled carbon nanotubes-copper sulfide (MWNT-CuS) hybrid nanomaterials 

has also been reported [53]. In this case, the hybrid nanomaterials were formed by using 

acid-functionalized MWNTs as templates, copper sulfate pentahydrate (CuS04'5H20)
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and thiourea (N2H4SC) as a copper source and a sulfur source, respectively. Using a 

hydrothermal method, MWNTs-CuS hybrid nanomaterials have been synthesized.

Experiments found that the hybrids can generate significant photocurrent while 

pure MWNTs and CuS NPs alone do not show any light responses, suggesting that the 

photocurrent only results from the combined effect o f MWNTs and CuS NPs. 

Experiments also found that the hybrids show a clear rectifying effect, indicating that 

Sehottky junctions are formed between MWNTs and CuS NPs. However, the rectifying 

characteristics might limit the applications o f the as-synthesized MWNTs-CuS hybrid 

nanomaterials, especially as the building blocks for constructing some electronic and 

optoelectronic devices [61]. Additionally, similar to other hybrid nanomaterials, the 

thermal or IR response of this type of hybrid nanomaterial has not been studied either.

Finally, to the best o f our knowledge, there is no report on the optical and thermal 

response of the SWNTs-CuS hybrid nanomaterials, especially the SWNTs-CuS hybrid 

nanomaterials without rectifying effects. Herein, synthesis o f SWNTs-CuS NPs hybrids 

of metal-like electrical conductivity by simple non-covalent chemical route using 

oleylamine molecules as the linker molecules is reported. Studies o f the photoresponse 

and thermoresponse o f the hybrid nanomaterials compared to SWNTs thin film under 

light illumination and thermal radiation are reported. In addition, as a technical 

demonstration, a prototype thermoelectric generator enabled by the SWNTs-CuS NP 

nanohybrids is also reported.
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3.2 Experiments Setup and Measurements

3.2.1 Materials

SWNTs powder was purchased from Carbon Solutions, Inc. and used without any 

further purification. Toluene solution was purchased from Sigma-Aldrich, Inc. (MO, 

USA). Oleylamine was purchased from Fluka (Sigma-Aldrich, MO, USA). Thioglycolic 

acid (TGA), CuCl2-2H20 and thioacetamide were purchased from Sigma-Aldrich (MO, 

USA). CuS nanoparticles were synthesized using a procedure similar to previously 

reported approach from other research groups [59,62]. Specifically [59], a certain amount 

(0.017048 g) of CUCI2 2 H2O was dissolved within 100ml distilled water, followed by 

adding 0.2 mmol of TGA under constant stirring. The solution’s pH was adjusted to 9.0 

by adding a 1M solution o f NaOH. The solution, contained in a three-necked flask fitted 

with a septum and valves, was degassed for 20 min by argon bubbling, followed by 

adding a solution containing 8.0mg thioacetamide in 20ml distilled water. The mixture 

was then heated at 50°C for two hours to promote CuS nanoparticle growth.

3.2.2 Synthesis of SWNTs-CuS NPs
Hybrid Nanomaterial

For the synthesis of the SWNTs-CuS NPs hybrid nanomaterial, oleylamine 

molecules were used. The oleylamine molecules allowed for the functionalization of the 

surface of the SWNTs. This process allows for the creation o f an electrical charge on the 

surface of the SWNTs. This charge attracts the CuS NPs (due to their opposite electrical 

charge). The process used lOmg of SWNTs powder that was mixed in a solution of 150pl 

o f oleylamine molecules and 100ml of toluene. This solution was stirred under a pure 

nitrogen atmosphere overnight to functionalize the surface of the SWNTs. After the 

completion of chemical reaction, the functionalized SWNTs (f-SWNTs) solution was
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placed in a centrifuge (5000 r.p.m. for 30 min) to separate the f-SWNTs powder and the 

toluene solution. Next, the f-SWNTs powder had to be washed two times in 100ml of 

isopropyl alcohol (IPA) and sonicated for one hour to clean the f-SWNTs and remove 

any of residual oleylamine. After two cycles o f IPA cleaning, the f-SWNTs powder was 

mixed again with a new solution of 100ml toluene solution. The f-SWNTs powder was 

uniformly suspended in toluene solution under sonication for one hour. Now, the f- 

SWNTs solution is ready to be bonded with the CuS NPs. The prepared CuS NPs 

solution can be directly added and suspended in the f-SWNTs solution, which can then be 

sonicated overnight to form the SWNTs-CuS NPs hybrid nanomaterial solution. Then, 

the SWNTs-CuS NPs hybrid nanomaterial was precipitated by adding a small amount of 

methanol [22]. Figure 3-1 shows the brief processes of synthesis SWNTs-CuS NPs.

In this dissertation, three different SWNTs-CuS NPs hybrid nanomaterial 

solutions were prepared. For the preparation o f the SWNTs-CuS NPs solutions, the same 

amount o f the functionalized SWNTs was dispersed in 100ml toluene in three beakers 

separately, followed by adding three different concentrations (100, 200, 300pl) o f CuS 

NPs solution to the three beakers to obtain three types o f hybrid nanomaterials.

I  I  ofcyhmm« I  I  cus

SWNTs Functionalized SWNTs SWNTs -CuS NPs
Hybrid Nanomaterial

Figure 3-1 The brief processes o f synthesis SWNTs-CuS NPs
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3.2.3 Fabrication of Devices Based on 
SWNTs-CuS NPs Hybrid 

Nanomaterials

Thin films of both SWNTs-CuS NPs hybrid nanomaterials and SWNTs were 

prepared on a mixed cellulose ester (MCE) membrane using a vacuum filtration method 

published in the literature[53]. Briefly, the nanohybrid and SWNTs suspensions were 

vacuum filtered separately through a mixed cellulose ester (MCE) filter (47mm in 

diameter). The resulting thin film on the filter was rinsed twice with isopropyl alcohol 

and deionized water and then dried at 80°C for two hours to remove any remaining 

organic residues in the film. After drying, the thin film sheet can then be either peeled off 

the filter or transferred onto a solid or flexible substrate after being cut into desirable 

sizes.

Two-Terminal Thin Film Devices. The thin film, measuring 1.5cm (length) x 

1 .Ocm (width) x 25pm (thickness), was anchored on a glass substrate, with two ends 

connected with Cu wires using Cu conductive glue forming two electrodes (Anders 

Product, Inc). The thin film devices were then measured under different light and thermal 

(heat) radiations.

Prototype Thermoelectric Generator Devices. Cu strips and Si strips diced from a 

p-type silicon wafer with 500pm thickness were used to construct prototype 

thermoelectric generator devices on a glass substrate. The Seebeck coefficient o f Cu is 

~1:84pV K"1 and the Seebeck coefficient of Si (the p-type Si doped with boron at a 

concentration in the range of 3 x 1018 to 2 x l 0 19cm‘3) is ~300pV K '1 [19]. Cu strips and 

a Si strip were connected by Cu conductive glue (Anders Product, Inc.). One junction 

between the Cu and Si strip was embedded in the SWNTs-CuS nanohybrid thin film,
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while the other junction was exposed to air. For comparison, other devices with the same

dimensions were fabricated, but with both junctions exposed to air.

3.2.4 Synthesis the Hybrid Nanomaterial 
Thin Films

For different applications, both the SWNTs and the SWNTs-CuS NPs 

nanomaterial can be formed into thin film structures by the vacuum filtration method. 

The preparation o f the SWNTs-CuS NPs solutions has been explained in Section 3.2.2. 

Figure 3-2 (a) shows the synthesized SWNTs-CuS NPs solutions. For the SWNTs 

solutions, the SWNTs powder can directly mix with isopropyl alcohol (IPA) to 

synthesize the SWNTs solution. lOmg of SWNTs powder and 100ml of IPA can 

synthesize about a 20-25pm thick SWNTs thin film. The thicknesses of the thin films are 

able to be increased by increasing the volume of SWNTs used. Before the synthesis of 

the SWNTs or SWNTs-CuS NPs thin films, the mixture solutions had to be sonicated 

overnight to make uniformly mixed SWNTs or SWNTs-CuS NPs solutions. For the setup 

o f the vacuum filtration, which is shown in Figure 3-2 (b), a Whatman ME-24 mixed 

cellulose ester (MCE) membrane was mounted between two flasks; the diameter of the 

MCE is 48mm and has pore size of about 200nm. A vacuum pump was connected to the 

bottom flask by a plastic tube to draw the solution down into the bottom flask. For 

forming the thin film, the solution was poured into the top flask and the vacuum pump 

draws the liquid down into the bottom flask and only leaves the SWNTs or SWNTs CuS 

NPs hybrid nanomaterial to deposit a uniform and tight thin film on the MCE membrane. 

Figure 3-2 (c) shows the top view of the top flask and (d) shows the SWNTs CuS NPs 

hybrid nanomaterial thin film deposited on the MCE membrane.
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Figure 3-2 (a) shows a 100ml o f the SWNTs-CuS NPs hybrid nanomaterial solution, (b) 
shows the vacuum tube is drawing the liquid down to the bottom flask, (c) shows a 
SWNTs-CuS NPs thin film uniformly deposited on the top of the MCE membrane, (d) 
shows the MCE membrane with the SWNTs-CuS NPs thin film.

3.2.5 Characterizations

The surface morphology of the samples was characterized using a scanning 

electron microscope (SEM, HITACHI S-4800) and a transmission electron microscope 

(TEM, ZEISS Libra 120). The chemical composition of the samples was analyzed from 

the Raman spectra using a SENTERRA Raman Microscope (Bruker Optics, Inc.). The 

reflectance spectra were recorded using optic-fiber-based reflectance measurement 

system (Ocean Optics, Inc.). The light and thermal radiation source used in the 

experiments was the Olympus TL-2 incandescent lamp. The cold light source used in the 

experiment was an XD-301 series 150W halogen lamp cold light source. The light power 

was measured using a CCD optical power meter (Thorlabs PM 100). The light intensity 

was calculated by the measured light power divided by the CCD sensing area. The 

temperature from the lamp was measured with a thermocouple (Omega HH306). The 

current-voltage (I-V) curves o f the thin film devices were measured using an electrical 

measurement probe station (Keithley Instruments). The currents or voltages generated by 

the thin film devices and prototype thermoelectric generator devices upon exposure to a
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lamp, or a cold light, or a heat source were measured using a digital multimeter (Agilent 

U1253B). Based on these measurements, the power generated by the prototype 

thermoelectric generator was obtained.

3.3 Results and Discussion 

The TEM images of the hybrid nanomaterials are given in Figure 3-3(a). It is 

clear that the CuS NPs are attached to the SWNTs, which provide and facilitate the direct 

pathways for charge transfer between NPs and SWNTs. The SEM image o f the SWNTs- 

CuS NP nanohybrid thin film is shown in Figure 3-3(b). It also reveals that the SWNTs 

are decorated with CuS NPs. Raman spectra o f the SWNTs-CuS NP hybrid nanomaterial 

and the SWNTs are shown in Figure 3-3(c). As expected, the major spectra between 

nanohybrids and pure SWNTs show little difference, suggesting that the electronic 

structure o f the SWNTs remains essentially unchanged, thus the electrical property o f the 

nanohybrids should be similar to that of the SWNTs but definitely different from that of 

the SWNT-CuS NPs hybrid nanomaterials that were synthesized differently [53],
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Figure 3-3 (a) shows TEM image of SWNTs-CuS NPs hybrid nanomaterial, (b) shows 
SEM image of SWNT-CuS NPs hybrid thin film, (c) shows Raman spectra o f SWNTs- 
CuS NPs hybrid nanomaterial and SWNTs.

The light absorption capability of the nanohybrid thin film has been evaluated. 

The measured reflectance from different thin films on glass substrates is shown in Figure 

3-4. The reflectance from the SWNT thin film and the nanohybrid thin films o f the same 

thickness of -25  pm decreases tremendously, indicating the strong absorption o f the 

visible and near IR light by the SWNTs thin film [47] and the nanohybrid thin films. In 

addition, it was found that the reflectance further decreases, thus the absorption of the 

light further increases, with the increased amount o f the CuS NPs decorated with SWNTs 

as compared to the pure SWNTs, which is as shown in Figure 3-4(b). The enhanced 

absorption of the photons by the hybrid nanomaterial is due to the strong absorption of 

the photons by the CuS NPs attached to SWNTs from the visible to the near IR range (e.g.
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400-1 lOOnm) [59, 50]. Hence, it is anticipated that the heat generated by the nanohybrids 

due to the quantum effect o f the NPs and the unique thermal properties of SWNTs can be 

further enhanced, as compared to a pure SWNTs thin film [65, 66].
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Figure 3-4. (a)-(b) show reflectance measurements of a SWNTs thin film and three 
SWNTs-CuS NP hybrid thin films made by decorating SWNTs with three different 
amounts o f CuS NPs (SWNTs-CuS 1: lOmg SWNTs decorated with 100pl CuS NPs 
solution; SWNTs-CuS 2: lOmg SWNTs decorated with 200pl CuS NPs solution; 
SWNTs-CuS 3: lOmg SWNsT decorated with 300pl CuS NPs solution) in the spectrum 
range from UV-visible to near IR. The inset in (a) shows the measurement setup: the light 
illuminates perpendicularly to the thin film/glass surface and the reflected light is 
measured.

A schematic and a photo o f a hybrid nanomaterial thin film device on a glass 

substrate are shown in Figures 3-5(a)-(b), which has two Cu-wire electrodes connected to 

both ends to form a two-terminal device. The current generated by the thin film device, 

when a lamp (Olympus TL-2 incandescent lamp) is positioned to illuminate different 

regions of the device, has been measured, as shown in Figure 3-5(c). In addition, the 

current generated, when one electrode is covered by a polydimethylsiloxane (PDMS) slab, 

has also been measured. The measured current is zero before the lamp is turned on. When 

the lamp is positioned at and illuminates the center of the device, as illustrated in Figure 

3-5(c-l), a stable current is generated and is stable at about 0.3 IpA. This current is due to
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the photovoltaic and thermovoltaic effect o f the nanohybrid thin film, since no 

temperature difference exists between the two electrodes [48, 67]. When the lamp is off 

and removed, the current returns to zero. However, when one electrode is covered by a 

4mm thick PDMS slab, as show in Figure 3-5(c-2), under the same experimental 

conditions, the generated current measured to be about 0.50pA after the lamp is on but, 

eventually the current decreases and reaches the same level as that o f the device without 

the PDMS slab. This observed phenomenon suggests that the temperature at the electrode 

covered by a PDMS slab is a little lower than that of the other electrode at the beginning 

when the lamp is first turned on. Thus, a thermoelectric voltage is also generated [35] and 

added to the voltage generated only by the nanohybrid thin film, resulting in an increase 

in the current (i.e. from 0.31 to 0.50pA). After a certain time, when the heat diffuses 

through the PDMS layer and reaches the electrode underneath, the temperature difference 

between the two electrodes decreases. As a result, the thermoelectric voltage also 

decreases as well. Eventually the current becomes the same level as that o f the device 

without a PDMS slab. When the lamp is removed, the current drops and becomes about - 

0.24pA for a while before the current returns to zero. This is due to the fact that for the 

electrode covered by the PDMS slab, its temperature is maintained and is higher than that 

at the other electrode for sometime before the two electrodes reach the same temperature. 

If the lamp is positioned at and illuminates one of the electrode regions o f the device 

without applying a PDMS slab, the so-called asymmetric illumination in Figures 3-5(c-3), 

the measured current is about 3.6pA, which is about one order o f magnitude larger than 

that of the aforementioned case (i.e. 0.31 pA), suggesting that the asymmetric illumination 

can greatly enhance the current generation, thereby improving the sensitivity o f the
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nanohybrid thin film devices. The light intensity is 1 .OmW mm'2 and thermal radiation 

(temperature change) is 17.6°C for all three experiments.
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Figure 3-5 (a) shows schematic o f the nanohybrid thin film device, (b) shows photo o f a 
SWNTs-CuS NP hybrid thin film device on a glass substrate, (c) shows measured current 
when the light and heat source illuminates the nanohybrid thin film device at different 
regions.

In the following, the asymmetric illumination technique has been utilized to 

evaluate the optical and thermal response o f the nanohybrid thin film device. The setup 

for evaluating the photoresponse, thermoresponse and photothermoresponse of the thin 

film devices is illustrated in Figure 3-6(a). In order to analyze the photoresponse of the 

nanohybrids, the photocurrents o f the thin film device have been measured using a cold 

light source with light intensity of 0.57mW mm'2 and a thermal radiation (temperature
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change) of 2.4°C. In this case, the thermal radiation from the light source is minimized. 

Thus, the optical effect on the nanohybrids is dominant and can be evaluated. I-V 

measurements o f the SWNTs-CuS NPs nanohybrid and the pure SWNTs-based thin film 

devices are shown in Figure 3-6(b). The measured I-V curves exhibit high linearity, 

confirming the metal-like electrical properties of nanohybrids. It has been found that the 

I-V slope (conductance) increases when the optical source is turned on and will go back 

to its original position if the optical source is off, with excellent repeatability.

For the pure SWNTs thin film device, the conductivity change before and after 

turning on the light is quite small at about 4.3%, which is consistent with the results 

previously reported in the literatures [53, 55], while the changes for the nanohybrid thin 

film devices are much larger, in the range o f 28.7% to 57.2%. Basically, the more the 

CuS NPs are decorated with SWNTs, the larger the conductivity. In other words, the 

resistance o f the thin film devices decreases when the light is on compared to when the 

light is off. The resistance further decreases when the light is on if the number o f CuS 

NPs decorated with SWNTs increases, as shown in Figure 3-6(c). The aforementioned 

optical switching characteristics of the nanohybrid material have been further observed 

and are shown in Figure 3-6(d). In these measurements, no voltage is applied on the thin 

film device and the light source is turned on and off periodically with varied duration. 

The photocurrent shows clear modulation and switching characteristics. It is well known 

that the origin of the photocurrent involves the following process: absorption o f photons, 

creation o f excitons (electron-hole pairs) and transfer o f charges [69]. As previously 

reported, the functionalization o f SWNTs with oleylamine molecules makes it an n-type 

material, thereby making the electrons the major carriers in the hybrid nanomaterial [55,
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56]. The optical switching behavior of the hybrid nanomaterial under light illumination is 

thus due to these aforementioned processes in CuS NPs and SWNTs [69], Specifically, 

upon light illumination, excitons (electron-hole pairs) are generated in CuS NPs and 

SWNTs. While the holes would remain in the CuS NPs, the electrons will transfer to the 

SWNTs. As a result, an enhanced photocurrent is generated and enhanced conductivity of 

the hybrid nanomaterial is achieved.
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Figure 3-6 (a) shows experimental setup: a source (e.g. light, heat or a lamp source) 
illuminates the thin film devices; the inset shows the electron creation and transfer from a 
CuS NP to a SWNTs. (b) show photon response: I-V curves o f SWNTs and SWNTs-CuS 
NP nanohybrid thin film devices with light on and off. (c) shows modulated resistance 
(normalized to the resistance of the pure SWNTs thin film device) for different numbers 
of CuS NPs in the nanohybrids with light on and off; the inset shows that more and more 
CuS NPs are attached to SWNTs. (d) shows modulated photocurrent for the nanohybrid 
thin film device made of SWNTs-CuS 2 (lOmg SWNTs decorated with 300pi CuS NPs 
solution) with light on and off using a SWNTs thin film device as a reference.

The thermoresponse from the nanohybrids has also been evaluated experimentally. 

The thin film devices for the experiments are the same as those in the optical experiments.
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In this case, the lamp is covered with A1 foil, thus only the thermal radiation will reach 

the devices. The thermal radiation (temperature change) is 18.0°C for the experiments. 

Thermocurrent measurements o f nanohybrid and SWNTs thin film devices are shown in 

Figures 3-7(a)-(c). The observed I-V behaviors of the devices are similar to those o f the 

photoresponse, but the conductivity change is much larger. Specifically, the change is 

about 90.5% for SWNTs and from -110.2% to -166.3%  for nanohybrids. 

Correspondingly, the resistance of both the SWNTs and the nanohybrid thin film devices 

decreases dramatically when the heat is turned on. The resistance of the nanohybrid thin 

film devices further decreases with SWNTs that are decorated with the increased amount 

of CuS NPs. All these measurements show the thermal switching behavior o f the SWNTs 

and nanohybrids. This unique behavior of this type o f nanohybrid suggests that their 

sensitive response to the thermal illumination can be potentially used for infrared (IR) 

sensing applications [35], The origin of the thermocurrent in the SWNTs and the hybrid 

nanomaterial thin film devices should involve phonon absorption and exciton (electron- 

hole pair) creation and dissociation, resulting in free electrons and holes and charge 

transfer [70, 71]. As previous report, the change in conductivity or resistivity o f SWNTs 

thin film is largely due to the temperature change in the thin film, but not due to the 

presence of photoexcited holes and electrons [70]. This phenomenon has also been 

observed in our nanohybrid material system.
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Figure 3-7 (a) shows thermoresponse: I-V curves of SWNTs and SWNTs-CuS 
nanohybrid thin film devices with heat on and off. (b) shows modulated resistance 
(normalized to the resistance of the pure SWNTs thin film device) for different numbers 
of CuS NPs in the hybrids with heat on and off. (c) shows modulated thermocurrent for 
the nanohybrid thin film device made o f SWNTs-CuS 2 (lOmg SWNTs decorated with 
300pl CuS NPs solution) with heat on and off using a SWNTs thin film device as a 
reference, (d) shows modulated hybrid current for the nanohybrid thin film device made 
o f SWNTs-CuS 2 (lOmg SWNTs decorated with 300pl CuS NPs solution) with lamp 
(light and heat) on and off using a SWNTs thin film device as a reference.

For instance, compared to the measured resistance change on the same thin film 

device in Figures 3-6(c) and 3-7(b), the resistance change shows a big difference under 

light and thermal (IR) illumination, respectively. Under light illumination, the resistance 

change of an SWNTs thin film device is only about 4.3%. In contrast, the change is much 

more significant, at about 47.5%, under thermal irradiation. This is due to the fact that 

under light illumination, even though electrons and holes can be efficiently generated in 

SWNTs, the temperature in the SWNTs thin film only has a small change, resulting in a 

very small change in resistance [70]. However, even under light illumination, but with the
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increased amount of CuS NPs attached to SWNTs, the resistance change becomes larger 

(Figure 3-6(c)) since the temperature of the thin film increases more due to the increased 

amount o f CuS NPs.

This suggests that the optical sensitivity o f the nanohybrid thin film devices can 

be improved dramatically by attaching NPs to the SWNTs. The photo-thermoresponse of 

the nanohybrid thin film has also been evaluated. In this case, the lamp is used to provide 

a source o f both light and heat. It was found that there was a similar response for the 

photoresponse and thermoresponse o f the thin film devices, as shown in Figure 3-7(d). 

Obviously, in this case, the nanohybrid thin film interacts with both the light and thermal 

radiation, and thus the generated current results from the combined effects from photons 

and thermal radiation.

Usually, in order to build a thermoelectric generator to convert thermal/heat 

energy into electricity, a temperature difference or gradient needs to be formed and 

maintained across the device [68, 72]. Ideally, a temperature difference or gradient across 

a thermoelectric generator can be self-maintained when it is exposed to a light or a 

thermal radiation source. As a technical demonstration, a prototype thermoelectric 

generator enabled by the SWNTs-CuS NPs hybrid nanomaterials has been designed, 

constructed and tested. The prototype device, shown in Figure 3-8(a), consists o f Junction 

I formed by a Cu and a silicon strip embedded in the hybrid nanomaterial thin film, and 

Junction II formed by a Cu and a silicon strip open to the air. Since there is a difference 

between the Seebeck coefficients o f Si and Cu, a voltage will be generated if the 

temperature between Junctions I and II is different. When a light source is uniformly 

illuminated on the whole device, the two junctions have an intrinsic temperature
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difference due to the higher local temperature at Junction I embedded in the hybrid 

nanomaterial. As a result, a voltage will be generated.
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Figure 3-8 (a) shows sketch and photo o f a prototype thermoelectric generator, (b) shows 
measured current when the lamp illuminates the Junction I region of the devices with and 
without nanohybrid thin film, (c) shows measured current when the lamp uniformly 
illuminates the devices with and without nanohybrid thin film, (d) shows measured power 
generation of the prototype thermoelectric generator.

For comparison, two ‘identical’ devices have been fabricated except that one has 

nanohybrid material and the other does not. In Figure 3-8(b), the measured current when 

the illumination of a lamp is focused on the Junction I region is given. As can be seen, for 

both devices, the currents have been clearly generated but the current is larger for the 

device with the integrated nanohybrid in the Junction I region than that without the 

nanohybrids. In Figure 3-8(c), the lamp uniformly illuminates the whole device. As can 

be seen, the device with integrated nanohybrids has much larger current generation than
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that without nanohybrids, which has essentially negligible current generation since the 

temperature difference between Junctions I and II is close to zero. In contrast, for the 

device with nanohybrids, the temperature difference exists intrinsically between the two 

junctions due to the significant thermoresponse and photoresponse of the nanohybrids. 

The measured power generation of the prototype device, as shown in Figure 3-6(d), is in 

the range of nano-watts, which can be scaled up to the range of micro-watts or even milli

watts by cascading a series o f these types o f structures. This technical demonstration 

indicates that this new route for designing thermoelectric generators requires no heat-sink 

and cooling components, but the temperature difference in the generators can be formed 

and thus intrinsically maintained by integrated nanomaterials or nanostructures.

3.4 Summary

In summary, single-walled carbon nanotube-copper sulfide nanoparticle 

(SWNTs-CuS NP) hybrid nanomaterials have been synthesized and their properties have 

been characterized. Compared to the SWNTs thin film devices, the hybrid nanomaterial 

thin film devices exhibit clearly enhanced optical and thermal switching characteristics, 

light absorption, photocurrent and thermocurrent generation under light illumination 

or/and thermal radiation. A prototype thermoelectric generator enabled by the hybrid 

nanomaterials has been designed and demonstrated, providing a new route to obtain 

thermoelectricity without any cooling or heat-sink component.



CHAPTER 4

ULTRASENSITIVE THIN FILM INFRARED 

SENSORS ENABLED BY HYBRID 

NANOMATERIALS

4.1 Introduction

Infrared (IR) sensing is an important technology for a variety o f applications in 

energy, environmental science, and medical engineering, such as energy metering [73], 

pollutant monitoring in environments [74,75], remote sensing [76], thermal imaging [77], 

night vision [78], thermal photovoltaic [79], medical imaging [80] and optical 

communication [81]. Silicon and some organic materials are sensitive to IR but not 

sensitive beyond 800nm. In order to extend the IR detection range, some nanomaterials, 

such as carbon nanotubes (CNTs), CNT composites, carbon nanoparticles and grapheme 

thin films have been explored for IR sensing. The reported sensitivity o f nanomaterial- 

based IR sensors is in the range of 0.7% to 52.9% [82,35,37,83,84]. Specifically, Haddon 

and his co-workers have evaluated the IR sensing ability of a suspended pure CNTs thin 

film. It was found that the IR response can be greatly improved if the CNTs film is 

suspended in a vacuum, which is about a 0.7% change in its resistance [82], Chen and co

corkers have utilized CNTs composites to build a thin film IR sensor; experiments found 

that IR response in terms of conductivity change is about 4.26% [35]. Recently, Wang

58
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and co-workers have developed a simple way to fabricate carbon nanoparticle thin film 

IR sensors and experimental results demonstrate a photocurrent change of up to 52.9%, 

and the lowest IR intensity which can be detected is ~45pWmm'2 [37].

Due to their unique optical, electrical and thermal properties, CNTs and their thin 

films have been used for a great number of applications, including light and thermal 

energy harvesting [84,47,48]. Previous research also found that the optical and electrical 

properties of CNTs and their films can be modified, optimized and enhanced by 

decorating CNTs with some other nanomaterials, such as nanoparticles. Over the past 

years, a variety of CNTs and nanoparticle hybrid nanomaterials have been synthesized by 

either a covalent or non-covalent bonding mechanism between nanoparticles and CNTs 

[92,50,51]. The widely used nanoparticles are Pt, Au NPs. However, these metallic 

nanoparticles are not favorable in the UV to visible light absorption range o f 350nm to 

600nm [85,86]. Additionally, these types of metallic nanoparticles clearly are 

unfavorable for synthesizing inexpensive hybrid nanomaterials for low coat applications. 

Recently, some other compounds and relatively inexpensive nanomaterials, such as 

CdSe, CdS, and pdS have been utilized to decorate the CNTs [55,57,87], These 

nanoparticles are also mainly favorable for UV and visible light absorption from 250nm 

to 500nm [88,89]. In addition, the toxic property of cadmium, lead and their compounds 

are unfavorable for synthesis o f “green” hybrid nanomaterials. Excellent IR light 

absorption and being nontoxic, would be an ideal choice. One of the promising materials 

is copper sulfide (CuS) nanoparticles, which are both eco-friendly and inexpensive. 

Moreover, CuS NPs have a broad near IR absorption from 800nm to 1400nm [45]. 

Herein, a new type of IR sensor based on SWNTs-CuS hybrid nanomaterials offering up
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to 300% sensitivity is reported. The IR response of this type of IR sensor has been 

significantly enhanced by using hybrid nanomaterials and an asymmetric IR illumination 

strategy.

4.2 Experiment Setup and Measurements 

The hybrid nanomaterials were prepared by using oleylamine molecules as the 

linker molecules between SWNTs (Carbon Solutions, Inc.) and CuS NPs. lOmg of the 

SWNTs in 100ml toluene solution containing 0.1% (v/v) oleylamine was sonicated in a 

nitrogen atmosphere and consequently stirred overnight. The oleylamine-functionalized 

SWNTs were isolated by centrifugation and rinsed with ethanol. The same amount o f the 

functionalized SWNTs was dispersed in 100ml toluene in three beakers separately, 

followed by adding solutions o f CuS nanoparticles with three different amounts (100, 200, 

300pl) to three beakers to obtain three types o f hybrid nanomaterials. Each of the three 

mixtures was again gently sonicated for 1.5 hours at room temperature. Then the 

SWNTs-CuS NP hybrid nanomaterials were precipitated by adding a small amount of 

methanol. Specifically, three types of nanohybrids have been synthesized including 

Nanohybrid 1 (lOmg SWNTs+lOOpl CuS NPs), Nanohybrid 2 (lOmg SWNTs+200pl 

CuS NPs), and Nanohybrid 3 (lOmg SWNTs+300pl CuS NPs). Thin films o f both 

SWNT-CuS NP hybrid nanomaterials and SWNTs were prepared on a mixed cellulose 

ester (MCE) membrane using the vacuum filtration method [14,16]. Briefly, the 

nanohybrid nanomaterial and SWNTs suspensions were vacuum-filtered through a mixed 

cellulose ester (MCE) filter (47mm in diameter), separately. The resulting thin film on 

the filter was rinsed twice with isopropyl alcohol and deionized water and then dried at 

80°C for two hours to remove any remaining organic residues in the film. After drying,
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the thin film sheet can be either peeled off the filter or transferred onto a solid or flexible 

substrate after being cut into desirable sizes.

4.2.1 Fabrication o f IR Sensors on a
Glass Substrate

The hybrid nanomaterial thin film with a size o f 2 cm (length) X 0.8 cm (width) X 

25pm (thickness) was attracted to a glass substrate, with two ends connected with Cu 

wires using Cu conductive glue forming two Cu-wire electrodes (Anders Product, Inc). 

Fabrication o f Flexible IR Sensors Embedded in PDMS. A piece o f PDMS layer is 

formed on a glass substrate and then peeled off from the substrate. A hybrid nanomaterial 

thin film with a size of 2cm (length) x  0.8cm (width) x 25mm (thickness) is placed on 

the PDMS layer, with two ends connected with Cu wires using Cu conductive glue to 

form two Cu-wire electrodes (Anders Product, Inc). Then, PDMS is poured on the thin 

film and cured. As a result, the flexible IR sensor is embedded in PDMS.

4.2.2 IR Light Source and IR Sensing
Measurements

The IR light source is provided by a xenon light bulb (XNiteFlashSTG, LDP, 

LLC) filtered by a long-pass, near IR filter (X-Nite lOOOnm filter) with lOOOnm cutoff at 

50% and 1300nm passband >90%. The power of the IR radiation is measured by a 

Newport power meter model 1918-C with an IR detector 918DIR- OD3. All 

measurements were carried out when the IR radiation was perpendicular to the surface of 

the IR detector. Unless otherwise mentioned, no voltage was applied on the IR sensor for 

the measurements. In this case, the photocurrents generated by the IR sensors upon 

exposure to an IR source were measured using a digital multimeter (Agilent U1253B). To 

determine the photocurrent change of the IR sensor under IR radiation, a voltage of



6 2

0.2mV was applied to the IR sensor. In this case, the current-time curves o f the IR 

sensors were measured using an electrical measurement probe station (Keithley 

Instruments).

4.3 Results and Discussion 

The sketch of the hybrid nanomaterial thin film IR sensor is given in Figure 4 -1(a). 

A photo of a fabricated device on a glass substrate is given in Figure 4 -1(b) and a photo 

of a fabricated device embedded in PDMS is shown in Figure 4 -1(c), which is a prototype 

o f a flexible IR sensor. For both types o f the IR sensors, the size of the hybrid 

nanomaterial thin film measures 20mm (length) x  8mm (width) x  25mm (thickness). 

The TEM images o f the hybrid nanomaterials are given in Figure 4 -1(d). It is clear that 

the CuS NPs are attached to SWNTs, which provide and facilitate the direct pathways for 

charge transfer between NPs and SWNTs. The SEM image of SWNTs-CuS NP 

nanohybrid thin films with 25mm thickness is shown in Figure 4 -1(e). The SWNTs are 

clearly decorated with CuS NPs. CuS NP aggregation is clearly observable, [55] which 

can be mitigated by diluting the concentration of CuS NPs during the synthesis o f the 

hybrid nanomaterial.
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Figure 4-1 (a) shows sketch of a hybrid nanomaterial thin film IR sensor: Junction I and 
Junction II formed between the Cu-wire electrodes and the hybrid nanomaterial thin film, 
(b) shows photo of a fabricated thin film IR sensor on a glass substrate, (c) shows photo 
of a flexible IR sensor embedded in PDMS before and after deformation. The size o f the 
thin film measures 20mm (length) x 8mm (width) x  25mm (thickness), (d) shows TEM 
image of the SWNTs-CuS NP hybrid, (e) shows SEM image of the hybrid nanomaterial 
thin film, (f) shows XRD patterns of the as-synthesized SWNTs-CuS NP composite thin 
film.

The X-ray diffraction (XRD) patterns of the as synthesized SWNTs-CuS 

nanocomposite using an X-Ray Diffractometer (D8 DISCOVER, Bruker) are given in 

Figure 4- 1(f). The XRD patterns have mixed characteristic peaks o f carbon nanotubes [93] 

and CuS NPs,[16] indicating that the SWNTs have been indeed decorated with CuS NPs.

Usually for the thin film IR sensor devices, the IR illumination on the device is 

symmetric, which means all regions o f the device are uniformly exposed to an IR source 

or only the center of the thin film sensor is exposed to an IR source [35,37,82,83]. In our 

experiments, two IR illumination schemes on the IR sensor have been examined. As
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shown in Figure 4-2(a) and (b), the measured photocurrents of the same IR sensor, 

without applying any voltage, under symmetric and asymmetric IR illumination are given.
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Figure 4-2 IR testing schemes: (a) shows symmetric illumination and (b) shows 
asymmetric illumination on a thin film IR sensor fabricated from Nanohybrid 3. (c) 
shows photocurrents for four different devices fabricated with pure SWNT and 3 
different nanohybrids. For all cases, no voltage is applied on the IR sensor, (d) shows one 
representative photocurrent measurement before and after the IR light is on with different 
IR exposure times (10, 20, 30, 40, 50 sec, 60 s, 70 s). A voltage o f 0.2mV is applied on 
the IR sensor and the IR light intensity is 7mW mm 2, (e) shows the maximum 
photocurrent change under different IR light exposure times.

In the asymmetric illumination scheme, only the part of the IR sensor including 

one Cu-wire electrode is illuminated by the IR source, as shown in the inset in Figure 4- 

2(b). As can be seen, under asymmetric illumination, the photocurrent is much larger, 

which can be up to one order o f magnitude larger, than that under symmetric illumination. 

As a result, the sensitivity of the IR sensor can be dramatically improved. This
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observation suggests that this IR illumination strategy can be used for enhancing the IR 

sensor's performance.

The physical mechanism behind this enhancement can be explained as follows: 

when the IR sensor is under symmetric IR illumination, the photocurrent generated is 

only due to the photovoltaic and thermovoltaic effect of the nanohybrid thin film, since 

no temperature difference exists between the two junctions formed between the 

nanohybrid thin film and the two Cu-wire electrodes [84,45,90]. In contrast, if the IR 

sensor is under asymmetric IR illumination, a temperature difference is formed between 

the two junctions, as shown in Figure 4-2(b). The nanohybrid thin film is connected to 

these two Cu-wire electrodes, forming a simple circuit, which can generate a voltage due 

to the different Seebeck coefficients o f the Cu wire and the hybrid nanomaterial thin film, 

provided that a temperature difference can be formed between the two junctions[94]. It is 

anticipated that the Seebeck coefficient o f the hybrid nanomaterial is different from that 

of the Cu. For instance, the measured Seebeck coefficient o f the carbon nanotube film is 

reported to be 10 to 50 mV K '1 [91], which is different from that of the Cu wire/electrode 

of about 1.84 mV K '1 [33]. Hence, if the thin film IR sensor is under asymmetric 

illumination, the thermoelectric voltage or current will be generated in addition to the 

photocurrent generated, due to the photovoltaic and thermovoltaic effect o f the 

nanohybrid thin fillm. As a result, the total current will be larger than that under 

symmetric illumination. The photocurrents of four devices have been measured under 

asymmetric IR illumination and are shown in Figure 4-2(c). As can be seen, the 

photocurrents of the nanohybrid thin film devices are larger than those of the pure 

SWNTs thin film devices, as expected [45]. In addition, the more the amount o f CuS NPs
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attached to SWNTs, the larger the photocurrent generated. The physical mechanism for 

this observation can be explained as follows. The origin of the photocurrent involves the 

following process: absorption of photons, creation of excitons (electron-hole pairs) and 

transfer o f charges [82], The functionalization o f the SWNTs with oleylamine molecules 

makes it an n-type material, thereby making the electrons the major carriers in the hybrid 

nanomaterials [55]. Specially, upon IR light illumination, excitons (electron and hole 

pairs) are generated in CuS NPs and SWNTs. While the holes would remain in the CuS 

NPs, the electrons will transfer to SWNTs. As a result, the enhanced photocurrent is 

achieved, as compared to the SWNTs thin film devices. In order to evaluate the 

percentage change of the photocurrent (i.e., the sensitivity) before and after the IR 

irradiance is available, a DC voltage o f 0.2mV is applied to the IR sensor. One 

representative measurement is shown in Figure 4-2(d). For comparison with previously 

reported IR sensors [35], the IR light intensity is chosen to be 7mW mm'2, while the 

illumination time is varied from 10 sec to 70 sec. The measured temperature difference 

between the two junctions o f the IR sensor is about 20°C under this IR light intensity, 

which is monitored using a thermocouple (Omega HH306). All measurements show that 

the rapid IR response o f the sensor and the IR response patterns under different IR 

illumination times are very consistent. As expected, the longer the illumination time, the 

larger the change o f the photocurrent, as shown in Figure 4-2(e). Typically the change of 

the photocurrent is from 150% for 10 sec IR illumination to 380% for 70 sec IR 

illumination, which is much larger than those o f the previously reported nanomaterial 

thin film sensors with an IR response change from 0.7% to 52.9% [82,35,37]. The 

relationship between photocurrent generation and the IR intensity has also been evaluated.
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Representative photocurrent measurement under IR illumination with different intensities 

is shown in Figure 4-3(a) and (b), which shows good linearity, similar to those previously 

reported nanomaterial-based IR sensors. In addition, the measured response time of the 

IR sensors is in the range of 60-70 ms, which is similar to the carbon nanotube composite 

IR sensors and carbon nanoparticle IR sensors [82,35,37].
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Figure 4-3 No voltage is applied on the IR sensor for all themeasurements: (a) shows 
measured photocurrent under different intensities o f the IR source, (b) shows relationship 
between measured photocurrent vs. IR source intensity for a nanohybrid thin film IR 
sensor fabricated from Nanohybrid 3, showing good linearity, (c) shows detection limit: a 
representative measurement o f the photocurrent by reducing the IR light density to 
48mW mm2, suggesting that the detection limit o f the IR sensor is about 48mW mm2, (d) 
shows flexible IR nanosensor: measured photocurrent after different cycles of bending of 
the IR sensor.

The photocurrent measurements have been carried out by reducing the IR light 

intensity until the photocurrent due to IR illumination becomes non-distinguishable to
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determine the detection limit o f the IR sensor. Specifically, the measured photocurrents 

are regarded as distinguishable signals if  they are at least two times the noise level of the 

test equipment (digital multimeter, Agilent U1253B). It has been found that the noise 

level o f the test equipment is -0.01 mA. As shown in Figure 4-3(c), the generation of 

photocurrent can be clearly observed at the IR intensity o f 48mW mm'2. However, when 

the IR light intensity reduces to 34mW mm'2, the photocurrent generation becomes 

negligible, which indicates that the detection limit o f the IR sensor is ~48mW mm'2.

Flexible IR sensors using the same hybrid nanomaterial have been developed. The 

detailed fabrication process is described in the Experimental section. Photos o f one 

flexible IR sensor embedded in PDMS and the deformed IR sensor are shown in Figure

4-1(c). The photocurrent responses of a fresh flexible IR sensor and after being deformed 

60 cycles under IR illumination are given in Figure 4-3(d). It shows that the change o f the 

photocurrent is essentially negligible as far as the nanohybrid nanomaterial thin film is 

not damaged. Experiments found that the photocurrent reduces if the thin film has some 

cracks after deformation.

4.4 Summary

IR sensors, based on SWNTs-CuS NP hybrid nanomaterials, have been 

successfully developed. The IR response in the photocurrent o f the SWNTs-CuS NP 

hybrid thin film devices is significantly enhanced when the IR illuminates the thin film 

device asymmetrically. The change of photocurrent is up to 300%, which is ten times to 

100 times larger than those o f other reported nanomaterial-based IR sensors. The 

detection limit is as low as 48mW mm"2, among the lowest of the previously reported IR 

nanosensors. In addition, the IR sensors embedded in polydimethylsiloxane (PDMS)
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layers have been fabricated and tested, indicating their potential application as flexible IR

sensors.



CHAPTER 5

USING NANOMATERIALS FOR LOCAL 

TEMPERATURE ENHANCEMENT 

FOR THERMOELECTRIC 

MICROGENERATORS

5.1 Introduction

Due to technical progress, electronic devices have been developed to be more 

portable and smaller. How to supply light and continuous power to drive those devices 

has become an important issue [43]. Micro-size, green energy harvesting devices are the 

options to fabricate a small power source to supply low consumption devices. Different 

from consumption energies, such as petroleum, coal and nuclear energy, the green 

energies, such as wind, light, and heat, are clean, safe, and renewable, which indicates 

that green energies have the potential to be built as a micro-size energy generator. 

Recently, different green energy harvesting devices have been developed, and the 

thermoelectric generator is one of them [44],

Thermoelectric generators (TEGs) are based on the Seebeck effect to convert 

heat, specifically the temperature difference, into electricity [95]. This technology has 

been widely and successfully used for scavenging many types o f thermal radiation 

energies, including the wasted heat from different sources [68]. In order to scale down

70
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TEGs and thus make them easier to integrate with microdevices and microsystems, in 

recent years, different types of MEMS TEGs have been developed [44,96,97,98]. Even 

though the structural materials of the microdevices play a very important role in the heat- 

to-electricity conversion efficiency [68], another very important issue is how to 

efficiently dissipate the heat and thus create and maintain the temperature difference or 

gradient across the TEGs.

To this end, usually cooling or heat sinking elements are usually required and thus 

must be integrated to improve the conversion efficiency of TEGs [44,96,97,98], 

indicating the need for possible extra power consumption to maintain the temperature 

difference or gradient between the “hot” and the “cold” parts in the thermocouples. 

Evidently, the ideal case is that the temperature difference or gradient can be intrinsically 

generated and maintained by the TEGs themselves. In nanotechnology, many 

nanomaterials, such as carbon nanotubes (CNTs), graphene, and nanoparticles, have 

revealed their outstanding optical and thermal properties [24,35,36]. The nanomaterials 

can absorb the light and thermal radiation significantly, and efficiently convert them into 

heat [48,47,48,84]. In order to enhance their unique properties, the SWNTs can be 

functionalized with a chemical reagent, oleylamine, to attach CuS NPs on the surface o f 

the SWNTs to form a hybrid nanomaterial. The hybrid nanomaterial exhibits wide and 

great optical wavelength absorption and directly transfers the absorbed energy into heat 

[45], This new type of hybrid nanomaterial can be integrated with a thennoelectric 

microgenerator to enhance the local temperature causing a larger and continuous 

temperature difference or gradient in the microdevice. A clean and renewable source of 

electricity is generated.
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Besides, an external tool, a tunable lens whose radian is adjustable, is fabricated 

and set on top of the SWNTs-CuS NPs nanohybrid thin film of the microgenerator. When 

light impinges on the microgenerator, the radian of the tunable lens can be adjusted to 

focus ambient light specifically on the thin film to increase the temperature difference on 

the microgenerator causing the enhancement of voltage generation.

5.2 Thermoelectric Microgenerators Embedded 
Hybrid Nanomaterial

5.2.1 Device and Its Operation Principle

The schematic of a thermoelectric microgenerator is showed in Figure 5-1. It is a

layered-structure and consists of a layer of Au deposited on a p-type silicon substrate, a

layer o f silicon nitride, and a layer of Au deposited on silicon nitride. One region is

coated with a SWNTs-CuS nanohybrid thin film, which is covered by SU8.
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Figure 5-1 A sketch o f a thermoelectric microgenerator with integrated nanohrbrid thin 
film: (top) angled topside view; (bottom) cross-section showing the Junction I and II 
formed between silicon substrate and Au layer

Figure 5-2 shows a basic Seebeck effect structure, with two different materials 

connected to form two junctions. When the temperature is different between two 

junctions, an electrical voltage is generated with the microgenerator. Compared to Figure

5-1, the bottom Au layer forms the junctions between the p-type silicon. Specifically, 

Junction I and Junction II are labeled in the cross-sectional sketch of the thermoelectric 

microgenerator. The top Au layer is electrically isolated from the silicon substrate by the 

silicon nitride layer underneath, serving as a metal wire connection to Junction I. The 

Seebeck coefficient (Ssi) of the p-type Si doped with boron at a concentration in the range 

o f 3><1018 to 2x10]9 cm'3 is -300 pV/K, while the Seebeck coefficient ( S au)  of Au is 

1.94pV/K [33]. If a temperature difference (ATi-n) between Junction I and II exists, a
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thermoelectric voltage between them will be generated between them, which is 

approximately given by:

V = ( S s i - S Au) x b  T,_„, (5-1)

Au

Cold Hot

Si

Au

JunctionII ~ u /stV r3  Junction!

Figure 5-2 The basic structure o f Seebeck effect device [103]

5.2.2 Fabrication Process for Thermoelectric 
Microaenerators

The fabrication process has two main steps: (i) synthesis o f hybrid nanomaterials; 

(ii) integration o f the nanomaterials with the micrcodevices.

Synthesis Procedure of Hybrid Nanomaterial. The SWNTs-CuS NPs hybrid 

nanomaterial is obtained by using a simple non-covalent bonding synthesis technique. 

Specifically, the hybrid nanomaterial is prepared by using the oleylamine as the linker 

molecules between SWNTs and CuS NPs [54]. A certain amount (lm g) of the SWNTs 

contained within a 10ml toluene solution containing 0.1% (v/v) oleylamine was sonicated 

in a nitrogen atmosphere and stirred overnight. Then, the oleylamine-functionalized 

SWNTs were isolated by centrifuge and rinsed with ethanol. The functionalized SWNTs 

were dispersed in 10ml toluene followed by adding a 30pl solution of CuS nanoparticles. 

The mixture was sonicated for 1.5 hours at room temperature. Then, the SWNTs-CuS 

NPs hybrid nanomaterials were precipitated by adding a small amount of methanol. Thin
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films of both SWNTs-CuS NPs hybrid nanomaterials and SWNTs are prepared on a 

mixed cellulose ester (MCE) membrane using the vacuum filtration method [84]. Briefly, 

the nanohybrid and SWNTs suspension are vacuum-filtered through a mixed cellulose 

ester (MCE) filter, separately. The resulting thin film on the filter is rinsed twice with 

isopropyl alcohol and deionized water and then dried at 80°C for two hours to remove 

any remaining organic residues in the film. After drying, the film sheet can be either 

peeled off the filter or transferred onto a solid substrate.

The Microgenerator Fabrication and Integration. The fabrication process flow is 

illustrated in Figure 5.3. Specifically, starting from a p-type silicon wafer, using a lift-off 

process, the bottom 250nm thick Au layer is patterned on a silicon substrate with 200nm 

Ti as the adhesion layer. Then, a layer o f 400nm thick silicon nitride is deposited and 

patterned. Using a lift-off process, the top Au layer o f 250nm is deposited and patterned. 

Then, the thin film of the hybrid nanomaterial is transferred on to the top Au layer. SU8 

is spin-coated and patterned as a mask, followed by the etching o f the thin film of the 

hybrid nanomaterial. As a result, the hybrid nanomaterial is integrated in the Junction I 

region, as shown in Figure 5-3(f).



(e)

Nanohybnd
( f t i

SU8

Figure 5-3 The fabrication process flow: (a) Start with ptype silicon wafer, (b) Au pattern 
is formed on the silicon substrate, (c) Silicon nitride is deposited and then patterned, (d) 
top Au pattern is formed, (e) SWNTs-CuS nanohybrid thin film is transferred on the 
substrate and SU8 layer is patterned, (f) the hybrid nanomaterial thin film is patterned 
using SU8 as a mask.

5.2.3 Experiment Setup and Measurements

A TEM image o f SWNTs-CuS NPs hybrid nanomaterial is given in Figure 5-4(a). 

The SWNTs decorated with CuS NPs is clearly visible. A SEM image of the thin film of 

hybrid nanomaterial is shown in Figure 5-4(b). Again it is clear that the SWNTs are 

decorated with CuS NPs. A photo of a microdevice with integrated SWNTs-CuS NPs 

nanohybrid thin film in the Junction I region is shown in Figure 5-5.
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Figure 5-4 (left) the TEM image of SWNTs-CuS NPs hybrid nanomaterial; (right) the 
SEM image of the SWNTs- CuS NPs thin film.

Figure 5-5 Photo o f a fabricated thermoelectric microgenerator. The nanohybrid thin film 
was integrated in the Junction I region.

The experimental setup is shown in Figure 5-6. An Olympus TL-2 incandescent 

lamp was used to provide the light and thermal radiation source, while the measured 

voltages were recorded and stored in real time by a laptop computer.
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Figure 5-6 The experimental setup for the measurements of voltages and currents by the 
thermoelectric microgenerators.

As a comparison, for a microdevice without the integrated nanohybrid thin film, 

the measured open circuit voltage was about O.OlmV, as shown in Figure 5-7 under 

uniform illumination o f the lamp. The uniform illumination means that all regions/parts 

o f each microdevice were exposed by the lamp to uniform light intensity and heat 

radiation. Under the same experimental conditions, Figure 5-7 also gives the measured 

open circuit voltage o f the microdevice with the integrated nanohybrid thin film. Its open 

circuit voltage was 0.08mV, which was eight times the voltage generated by the 

microdevice without nanohybrid thin film. As a reference, without turning on the lamp, 

the voltage was essentially zero. Evidently, the nanohybrid thin film enhances the local 

temperature in the Junction 1 region by absorbing the light and thermal radiation. Hence 

the temperature difference between the Junction I and the Junction II increases. As a 

result, the generated voltage increases as expected.
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Figure 5-7 Measured open circuit voltage o f a thermoelectric microgenerator with and 
without Nanohybrids under uniform lamp illumination

Figure 5-8 shows the measured open circuit voltages of these two types of devices 

when the lamp moves forward to illuminate the nanohybrid thin film region. As can be 

seen, the devices with the integrated nanohybrid thin film can generate larger voltages. 

This again confirms that the nanohybrid thin film enhances the local temperature o f the 

Junction I region. Thus, the measured voltage is higher than that of the microdevices 

without the integrated nanohybrid thin film.

E 0 4

~l)

o 0.2 >

0
0 50 100 150

Time (s)

Figure 5-8 Measured open circuit voltage when the lamp illumination is only on the 
Nanohybrids region compared to a device without the integrated Nanohybrids
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Finally, the output power of the microdevice has been measured. In this case, the 

light intensity and heat radiation was varied by changing the distance between the lamp 

and the microdevice. The lamp illuminated the Junction I region. Figure 5-9 gives the 

measured peak power by a microdevice under different light intensity and heat radiation. 

The output power was in the range to several or tens o f nanowatts.
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Figure 5-9: Measured peak power by the thermoelectric microgenerator under different 
light intensity and temperature o f the lamp by changing the gap between the device and 
the lamp

All above measurements suggest that the NTF plays an important role in the 

enhanced local temperature and thus the power generation. Specifically, as evidenced in 

the measured results in Figure 5-7, the intrinsic temperature difference or gradient 

between Junction I and Junction II was generated and maintained in the microdevice with 

the integrated nanohybrid thin film even though the microdevice was illuminated 

uniformly by the lamp, which offers us a new route to design thermoelectric generators. It 

was anticipated that by optimizing the optical and thermal properties of the nanohybrid 

thin film, the generated voltage and power can be improved for each single device.

Device
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Furthermore, the output voltage and output power can be further improved by fabricating 

hundreds of this type of microdevices and electrically connecting them together.

5.3 Tunable Lens Fabrication and the Measurement Results 

Figure 5-10 shows a tunable lens in which blue water was injected into the 

chamber. A two layer SU-8 pattern on a silicon wafer was built to form the tunable lens. 

The first SU8 layer used SU8-10 negative photoresist to form a about a 20pm thickness 

channel pattern which is shown in Figure 5-11(a). The second layer used SU8-2050 

negative photoresist to build a about 200pm thickness chamber pattern which is shown in 

Figure 5-11(b). Before exposing the pattern to 365nm UV-light, the pattern was put on a 

flat table for 30 min until photoresist was uniformly coated on the silicon wafer. After the 

pattern was ready to be used, polydimethylsiloxane (PDMS) was stirred with a curing 

agent in the ratio of 10:1 and poured on the pattern which is shown in Figure 5-11(c). 

Then the wafer with the PDMS was baked at 65°C for 1.25 hours in an oven to dry it out. 

After the baking, the dried PDMS membrane, with channel and chamber patterns, was 

peeled off from the pattern. Then, an oxygen treatment bonding process was used to bond 

the PDMS membrane on a glass substrate which is shown in Figure 5-11(e). Two thicker 

PDMS anchors were bound on the two ends of the PDMS channel panel and two 

channels are punched through the PDMS anchors (Figure 5-11(b)) and membrane for 

pumping oil or solutions into the chamber to create the tunable lens which is shown in 

Figure 5-11(f).
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Figure 5-10 A tunable lens which the radius is 45mm with blue dyed water in the 
chamber.

SU8 pattern Glass sub stratiSilicon wafer

PDMS

Figure 5-11 The tunable lens fabrication steps.

5.3.1 Measurement Setup and Results

Figure 5-12 shows the experimental setup with a tunable lens positioned between 

a lamp and the devices. A pump was used to push a syringe and inject oil into the tunable 

lens to increase the angle of the tunable lens and to specifically focus light on the 

nanohybrid thin film specifically. Optical contact angle equipment (Future Digital 

Scientific, OCA 15/20 Static Contact Angle Measurement) was use to observe the angle 

change between the flat region and then bulged region on the tunable lens. When oil was 

pumped into the chamber of the tunable lens, the PDMS membrane was expanded and
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bulged up, resulting in the angle o f the tunable lens becoming larger. The measurement 

result is shown in Figure 5-13. Oil was pumped into the lens chamber from Opl to 140ul. 

The angle of the tunable lens was increased from 0° to 59.9°.

Figure 5-12 The experimental setup with a tunable lens between a lamp and devices for 
the measurement o f voltages and currents. A channel was connected with the syringe and 
the tunable lens, Oil flowed through the channel into the tunable lens.
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Figure 5-13 A contact angle measurement, when more oil is injected into the lens 
chamber, the angle of the tunable lens is increased.

For the measurements o f the generated voltages and currents with the 

thermoelectric microgenerators with a tunable lens, six tests were competed with 

different amounts of oil in the lens chamber (0, 30, 60, 90, 120, 150pl). As can be seen 

from Figure 5-14, the microdevice without oil in the tunable lens showed that the lowest 

open circuit voltage is -0 .1 7mV under uniform illumination of the lamp. Uniform 

illumination means that all regions o f the microdevice are assumed to be exposed by the 

lamp to uniform light intensity and heat radiation. Under the same experimental 

conditions, Figure 5-14 also gives the measured open circuit voltage of the microdevice 

with different amounts of oil in the tunable lens. The highest open circuit voltage was 

~0.27mV (150pl of oil in the tunable lens). The open circuit voltage of the microdevice 

with 150pl of oil in the tunable lens is increased over 58% than the microdevice with Opl 

of oil in the tunable lens. When oil started to be pumped into the tunable lens, the 

generated open circuit voltage became larger. The surrounding light was collected and 

focused specifically on the hybrid nanomaterial thin film region resulting in an increasing
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temperature difference between two junctions. Therefore, the open circuit voltage of the 

microdevice was increased by the tunable lens.
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Figure 5-14 A Measured open circuit voltage when the lamp illumination is only on the 
hybrid nanomaterial thin film region with different amount of oil in the lens chamber.

5.4 Array of Thermoelectric Microgenerator Fabrication 
and The Measurement Results

In this dissertation, a single microgenerator can generate ~0.08mV under uniform 

illumination. Flowever, the voltage could be increased by changing the structure of the 

microgenerator and even arraying many microgenerators together. New structures of 

microgenertors were fabricated to analyze and optimize the efficiency of series or parallel 

connected microgenerators.

For the fabrication process, a silicon layer on an insulator (SOI) wafer where the 

thickness of the silicon layer is ~ lpm , was used for the substrate of the new microdevices. 

An Si02 insulating layer was used to isolate each microgenerator independently. The 

silicon layer was etched using an inductively coupled plasma etching system (Alcatel, 

A601E Inductively Coupled Plasma (ICP) etcher.). ICP is one type of the dry etching
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equipment which provides great etching quality and side-wall protection. The silicon 

material can be etched with SF6 gas, the etching rate being ~0.9pm/min using the etching 

recipe SF6: 40, pressure: 20%, source: 1000W, and substrate: 30W. The SOI wafer was 

put in the ICP to etch for 40 sec to etch one pm thickness silicon to form many pieces of 

rectangle shaped silicon structures which become the substrates for the microdevcies. 

Before etching, a 1.7pm thickness o f 1813 positive photoresist was used to protect the 

silicon layer o f the microdevices. The etching rate o f the photoresist was ~0.086pm/min. 

Therefor, the photoresist could protect the silicon layer o f the microdevices because the 

photoresist would not be etched away before the target region etched out. After the first 

layer o f the microdevices was formed, the second layer was the electrode layer. The lift

off process was used to form the electrodes of the microdevices and 20nm Cr and 2.3pm 

A1 were directly deposited on the SOI wafer using e-beam deposition equipment (CHA, 

four-pocket, electron beam deposition system.). The 20nm Cr was used for surface 

adhesion enhancement. The junctions o f the thermoelectric microgenerators were created 

between the A1 and silicon layers. The basic structures for series or parallel microdevices 

were fabricated. Next, was to fabricate the hybrid nanomaterial thin film and bond it on 

one junction region of each microgenerator. About a two pm thickness o f hybrid 

nanomaterial thin film on the MCE filter were fabricated and the thin film side was put in 

contact with one junction region. A 3.5 liter beaker full of water as a weight was placed 

on the thin film and the wafer in an oven at 65°C all night. A surface tension offers a 

sufficient adhesion to directly transfer the hybrid nanomaterial thin film to the junction 

region. After that, the thin films were bound to the microdevices and the MCE filter 

could be dissolved out with acetone. Finally, the hybrid nanomaterial thin films were
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protected with an SU8 layer and the redundant hybrid nanomaterial thin films were 

etched out with ICP dry etching for 50 minutes. Because the main structure o f the thin 

films were SWNTs, SWNTs can be etched out by O2 gas and the etchant rate is 

~0.047p/min. Figure 5-15 shows the fabrication steps for the thermoelectric 

microgenerators in series and Figure 5-16 shows the fabrication steps for the 

thermoelectric microgenerators in parallel.

Figure 5-15 Top view of the frabrication steps for the thermoelectric microgenerators in 
series, a) 58 pieces of rectangle silicon sticks were formed on the top of the SiCh layer, b) 
an A1 layer was deposited on the silicon sticks to form the electrodes and connect all 
microdevices together in series, c) After the deposition of the A1 electrodes, the hybrid 
nanomaterial thin films were directly bound on a junction and an SU8 layer was coated 
on the top of the thin film to protect the thin films.
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Figure 5-16 Top view for the fabrication steps for the thermoelectric microgenerators in 
parallel, a) 32 pieces o f rectangle shape silicon sticks were formed on top o f the SiCh 
layer, b) An A1 layer is deposited on the silicon sticks to form the electrodes and connect 
all microdevies together in series, c) After deposition of the A1 electrodes, the hybrid 
nanomaterial thin films were directly bound on a junction and a SU8 layer was coated on 
the top of the thin film to protect the thin films.

5.4.1 Measurement Results and Analysis

The array of thermoelectric microgenerators in series and parallel was fabricated 

to form energy harvesting devices. The measurement setup was similar to Figure 5-6. An 

Olympus TL-2 incandescent lamp was used to provide the light and thermal radiation 

source, while the measured voltages or current were recorded and stored in real time by a 

laptop computer. For the open circuit voltage measurements, Figure 5-17 shows a 

comparison of the devices in series with and without the hybrid nanomaterial thin film. 

As can be seen, the device in series without a thin film can generate -50  mV when the 

light source illuminates a junction region. Moreover, when the thin film was attached on 

the junction region, the device could generate ~72mV, which is 44% higher than the 

device without the thin film under the same conditions. On the other hand, Figure 5-18 

shows a comparison of the devices connected in parallel with and without the hybrid 

nanomaterial thin film. The device in parallel without a thin film can generate -1 .14mV 

and the device with the thin film can generate ~2.2mV when the light source illuminates
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a junction region which has the thin film on top. The efficiency of the device in parallel 

was also improved over 92% with the thin film. Comparing the device in parallel to the 

device in series, the device in parallel shows much lower generated voltage. However, the 

device in parallel can be used to improve the current generation. Figure 5-19 shows the 

comparison o f the single device and the devices in parallel. The device in parallel can 

generate much higher current than the device in series.
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Figure 5-17 An open circuit voltage measurement when the light source only illuminated 
the hybrid nanomaterial thin films region compared to a device in series without the 
hybrid nanomaterial thin films.
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Figure 5-18 An open circuit voltage measurement when the light source only illuminated 
on the hybrid nanomaterial thin films region compared to a device in parallel without the 
hybrid nanomaterial thin films.
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Figure 5-19 A current measurement of a single thermoelectric generator and 
thermoelectric generators in parallel.

The device in series was also used to measure open circuit voltage with sunshine 

and a commercial lens was used to enhance the efficiency o f the device. Figure 5-20(a) 

shows the outdoor measurement setup as sunshine was focused on the thin film region 

with the lens. Figure 5-20(b) shows the measured result. This measurement has two parts,
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Part I was the measurement without a lens and Part II was the measurement with a lens to 

focus the sunshine on the junction region. In the beginning, the device was covered to 

provide a dark reference and the measured voltage was almost zero. When the cover was 

taken off, a voltage was generated without the lens and sunshine was uniformly 

illuminated on the device. The surface temperature o f the device was 30°C and the 

generated voltage was ~1 lmV (Part I). After the device was covered again, the measured 

voltage returned back to almost zero. Further, when the cover was taken away again and 

the lens was used to focus sunshine on the one junction region, the generated voltage was 

increasing and reaching to ~ 0.2V (Part II) which is 18 times greater than the device 

without the lens and the temperature changed from 30°C to 85°C. During the 

measurement with the lens (part II), the measured voltage decreased in the beginning 

because the focus point was not well directed on to the junction region. When the sun 

was moving, the voltage was decreasing.

r«ne(VK)

Figure 5-20 a) shows the measurement setup, b) shows voltage measurement with and 
without a lens on the device (outdoor temperature was 30°C).
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5.5 Summary

A new type o f thermoelectric microgenerator has been fabricated and tested. The 

new feature of this type of microdevice is that the nanohybrid thin film was integrated 

with the microdevices, serving as a local temperature enhancer. As a result, when these 

microdevices were exposed to light and thermal radiation, an intrinsic temperature 

difference or gradient across the thermoelectric microgenerator can be formed and 

maintained, resulting in continuous power generation even without integrating some 

specific heat sinking or cooling elements with the microdevices, which offers a new 

approach to design thermoelectric power generation devices. Moreover, a tunable lens 

was also fabricated to enhance the efficiency of the microdevices. The focus o f the 

tunable lens can be adjusted by pumping oil into the lens chamber to focus light directly 

on the NTF region and increase the temperature difference between two junctions. For 

enhancing the generated voltage or current, two types of arrayed of microgenerators, 

devices in series and parallel, were fabricated. The device in series can generate higher 

voltage than the device in parallel. Due to the parallel structure, the generated voltage of 

the device in parallel is equal to one single microgenerator. Therefore, the generated 

voltage is lower than the device in series, but the device in parallel can generate higher 

current flow. For future applications, the microgenerators could be integrated in series 

and parallel together to optimize the device and generate higher output power.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this dissertation, a hybrid nanomaterial and its applications and a new type of 

hybrid nanomaterial, SWNTs-CuS NPs, were developed and analyzed for two 

applications: IR sensing and energy harvesting. Further more, a SWNTs-CuS NPs-Based 

thin film IR sensor and a SWNTs-CuS NPs enhanced thermoelectric generator were 

fabricated and tested. This hybrid nanomaterial exhibits specific wavelength absorption 

peaks at NIR radiation range which can be used to build an ultrasensitive IR sensor. 

Moreover, the hybrid nanomaterial shows excellent optical and thermal properties which 

can be used to enhance local temperature to generate electricity by a thermoelectric 

generator.

In recent years, many nanomaterials, such as fullerenes and nanoparticles, have 

been synthesized and analyzed. Due to their small dimensions and particular properties, 

SWNTs have attracted much intense interest to study their particular properties, such as 

crystal structure and mechanical, electrical, thermal and optical properties for many 

applications. For optical application, SWNTs have the potential for optical sensing and 

optical energy harvesting due to high optical absorption and electronic properties.

When the sizes o f metal and semiconducting particles are reduced below 1 OOnm,

the small particles are called nanoparticles and they exhibit size-dependent properties.
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For various applications, different metal and semiconducting nanoparticles have been 

synthesized. CuS NPs are one of the semiconducting nanoparticles which have 

outstanding optical absorption from 400nm to 11 OOnm and specific optical absorption 

peaks at in the NIR range. Due to these attractive properties, CuS NPs show the potential 

to combine with SWNTs to create a new type of hybrid nanomaterial, SWNTs-CuS NPs, 

for optical applications, such as IR sensing and energy harvesting.

SWNTs-CuS NPs is a new type o f hybrid nanomaterial. SWNTs and CuS NPs 

can be bound together by a chemical reagent, oleylamine. It is used to functionalize the 

surface o f the CNTs to attract CuS NPs to tightly attach to the surface o f SWNTs. This 

binding method is called a non-covalent bond. After the synthesis, the electron structures 

of SWNTs and CuS NPs still kept the same properties because the two targets are bound 

together by opposite electric charges attracting rather than exchanging electrons or 

sharing electrons. Therefore, the unique properties of SWNTs and CuS NPs are still kept 

in the SWNTs-CuS NPs nanomaterial. In order to analyze and test the optical, electronic 

and thermal properties o f the SWNTs-CuS NPs nanomaterial, the hybrid nanomaterial 

can be formed as a thin film by the vacuum filtration method.

For analysis and testing the hybrid nanomaterial, three different concentrations of 

the hybrid nanomaterial thin films have been prepared which are lOmg of SWNTs with 

100, 200, and 300pl o f CuS NPs solution. After the vacuum filtration processes, the 

thickness o f the thin films was -2 5 pm and the thin films were cut into 10mm x 15mm 

rectangles. The hybrid nanomaterial thin films were anchored on the glass substrates for 

testing and two conductive wires are bonded at two ends of each of the thin films to form 

prototype devices. As can be seen from the measurement results, the hybrid nanomaterial
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thin film devices exhibit clearly enhanced optical and thermal switching characteristics, 

optical absorption, photocurrent and thermocurrent generation under light illumination 

or/and thermal radiation. Moreover, high concentrations of the hybrid nanomaterial thin 

films show better optical absorption and higher electrical current generation which 

indicate that the CuS NPs are effective for enhancing the efficiencies of SWNTs. For the 

applications, the thin films also exhibit great NIR radiation absorption which can be 

applied to enhance the sensitivity to NIR radiation to build an ultra-sensitive sensor. 

Moreover, a prototype thermoelectric generator enabled by the hybrid nanomaterials has 

been designed and demonstrated, providing a new route to obtain thermoelectricity 

without any cooling or heat-sink components. Measurements also found that the hybrid 

nanomaterial thin film devices exhibit a clear optical and thermal switching effect, which 

can be further enhanced up to ten times by asymmetric light illumination and thermal 

radiation on the thin film devices instead of symmetric illumination.

IR sensing is an important technology with applications in renewable energy, 

environmental science and medical engineering. Herein, environment-friendly IR sensors, 

based on the SWNTs-CuS NPs hybrid nanomaterials, were fabricated. The IR response in 

the photocurrent o f a SWNTs-CuS NP hybrid thin film sensor is significantly enhanced 

when the IR light illuminates the thin film device asymmetrically. Measurement results 

show the change rate of photocurrent is up to 80%, which is larger than those of other 

reported nanomaterial-based IR sensors[35-37]. The detection limit can be as low as 

48mW mm2, which is lower than the previously reported IR nanosensors. The 

dramatically enhanced sensitivity and detection limit are due to the temperature 

difference between the two junctions formed by the nanohybrid thin film and Cu-wire
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electrodes under asymmetric IR illumination, and the difference between the effective 

Seebeck coefficient of the nanohybrid thin film and that of the Cu wire. The IR sensor 

embedded in flexible polydimethylsiloxane (PDMS) layers was fabricated and tested, 

indicating its potential application as a flexible IR sensor.

For energy harvesting application, a new type o f thermoelectric microgenerator 

enabled by SWNTs-CuS NPs hybrid nanomaterial thin film was fabricated. The 

thermoelectric microgenerator is based on the Seebeck effect to convert the heat, 

specifically the temperature difference, directly into electricity. Moreover, a SWNTs-CuS 

NPs nanomaterial thin film which can absorb light and heat is attached to one side o f the 

microgenerator. The thin film will enhance the local temperature and thus cause and 

maintain an intrinsic temperature difference or gradient which does not require any 

cooling or heat sinking element across the microgenerator, thereby directly converting 

light or heat into electricity. For testing microgenerators, three different concentrations of 

SWNTs-CuS NPs (100, 200, and 300pl) with the same amount o f SWNTs were formed 

as three different thin films and attached to the three microgenerators. When the same 

light source illuminates on each of the thin films, the high concentration thin film can 

generate higher voltage, which means the high concentration thin film can absorb more 

energy to generate a bigger temperature gradient in the microgenerator. This result also 

proves that CuS NPs can effectively enhance the efficiency o f SWNTs.

In addition, a tunable lens was fabricated and used to focus incoming light on the 

thin film region to increase the temperature difference on the microgenerator. The tunable 

lens was built with a soft and flexible polymer, Polydimethylsiloxane (PDMS) which was 

used to form a chamber with a membrane on top [41]. Oil or other solutions can be
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injected into the chamber to control the curvature of the lens resulting in the focus change. 

After injecting about 140pl o f oil into the lens, the efficiency for generating voltage was 

enhanced over 76% in the microgenerator with the SWNTs-CuS NPs thin film.

6.2 Future Work

The synthesis o f SWNTs-CuS NPs has been successfully used for IR sensing and 

energy harvesting applications. For the energy harvesting application, the fabricated 

thermoelectric microgener still has room for improving the efficiency o f voltage 

generation.

In order to generate higher electrical voltage with a thermoelectric generator, 

some important parameters, such as the Seebeck coefficient o f the materials and the 

temperature gradient, have to be considered for future work. According to the Seebeck 

effect, a basic thermoelectric generator can be built with two different materials 

connected together to form two junctions at the two end sides o f the materials. When the 

generator has a larger Seebeck coefficient difference for the two materials or a larger 

temperature gradient between the two junctions, the generator can generate higher 

voltage. For the microgenerator with a SWNTs-CuS NPs thin film, p-type silicon and Au 

were used to form the basic Seebeck structure, the Seebeck coefficients o f the two 

materials are ~300pV/K and ~1.94pV/K. Respectively, the Seebeck coefficient 

difference is -298.06, which is a large amount for a Seebeck device. Therefore, how to 

increase the temperature gradient has become an important issue for efficient 

enhancement.

The interest in the idea o f embedding a thermal isolator into the thermoelectric 

microgenerator is growing. The thermal isolator can be fabricated between two junctions,
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which is shown in Figure 6-1, to restrict the hot/cold region diffusion to the cold/hot 

region.

su-s
CXT-CuS 

Top Electrode 
SiiN-t

Bottom Electrode

Figure 6-1 A thermoelectric generator with a thermal isolator (SiCh). Silicon and Au (red 
color) are used to form the generator. SWNTs-CuS thin film is used to enhance local 
temperature, and SU-8 layer is for protecting the thin film.

The isolator should use a material, such as SiC>2 (0.014W/cm-K) or SiN4 [42] 

which has extremely low thermal conductivity. In order to understand the efficiency o f a 

thermoelectric generator after adding the isolator between two materials, the COMSOL 

software was used to simulate the thermoelectric generator with the thermal isolator. A 

simulated prototype thermoelectric generator was shown in Figure 6-2. For the 

simulation, a thermoelectric effect module was built to simulate three prototype 

thermoelectric generators: a generator without thermal isolator, a generator with a 200nm 

thick thermal isolator, and a generator with a 500nm thick thermal isolator. Two 

temperature parameters are set at the two ends o f each generator and three temperature 

differences (10°C, 20°C, 30°C) between the two ends were applied. The simulation 

results were shown in Table 6.1. As can been seen, when the temperature differences 

were applied to the generators, electrical voltages were generated between the two ends 

o f each generator. Moreover, if  the generator with the thicker thermal isolator was 

embedded in the generator, the voltage difference became larger.
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Thermal isolator (S i0 2 )^ ^

Figure 6-2 A prototype thermoelectric generator with embedded thermal isolator.

Table 6-1 Simulation results of different thickness of isolator layer in thermoelectric 
generators

Thermoelectric generator 0°C 10°C 20°C 30°C
Without a thermal isolator 
(pV)

0 154.3 308.7 463

With a 200nm thick 
thermal isolator (pV)

0 196 391.9 584.7

With a 500nm thick 
thermal isolator (pV)

0 311 621.5 931.7

In this research, the thermoelectric microgenerator with SWNTs-CuS thin film 

could generate -0.01 mV which is not quite enough to drive high consumption devices. 

However, the microgenerator is very small and has the potential to build hundreds and 

thousands o f microgenerators together in parallel or series to enhance current or voltage 

generation. In addition, some other potential future work is to study the fundamental 

physics and modeling for the thin film IR sensor and the thermoelectric generator. The
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understanding of fundamental physics will help to optimize and redesign the next 

generation of the hybrid nanomaterial-based applications.
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