
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2015

Intrusion Detection System of industrial control
networks using network telemetry
Stanislav Ponomarev
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons, Electrical and Computer Engineering Commons, and
the Language and Literacy Education Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Ponomarev, Stanislav, "" (2015). Dissertation. 199.
https://digitalcommons.latech.edu/dissertations/199

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1380?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/199?utm_source=digitalcommons.latech.edu%2Fdissertations%2F199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

IN TRUSIO N DETECTIO N SYSTEM OF INDUSTRIAL CONTROL

NETW O RK S USING NETW O RK TELEMETRY.

by

Stanislav Ponomarev, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

August 2015

ProQuest Number: 3664531

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 3664531

ProQuestQue

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

May 21,2015
Date

We hereby recommend that the dissertation prepared under our supervision

by Stanislav Olegovich Ponomarev

entitled___

Intrusion Detection System of Industrial Control Networks Using Network

Telemetry.

be accepted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Engineering, with concentration in Cyberspace

of Dissertation :arch

Head of Department

lent

Recommendation concurred in:

Approved:

ior of Graduate Studies

Dean of the College

Advisory Committee

proved:

lean of the Graduate School

GS Form 13a
(6/07)

ABSTRACT

Industrial Control Systems (ICSs) are designed, implemented, and deployed in

most major spheres of production, business, and entertainment. ICSs are commonly

split into two subsystems - Programmable Logic Controllers (PLCs) and Supervisory

Control And Data Acquisition (SCADA) systems - to achieve high safety, allow

engineers to observe states of an ICS, and perform various configuration updates.

Before wide adoption of the Internet, ICSs used “air-gap” security measures, where the

ICS network was isolated from other networks, including the Internet, by a physical

disconnect [1]. This level of security allowed ICS protocol designers to concentrate

on the availability and safety of operation of physical systems while decreasing the

need for many cyber security implementations. As the price of networking devices

fell, and the Internet received global adoption, many businesses became interested

in the benefits of attaching ICSs to wide and global area networks. However, since

ICS network protocols were originally designed for an air-gapped environment, it did

not include any of the security measures needed for a proper operation of a critical

protocol that exposes its packets to the Internet.

This dissertation designs, implements, and evaluates a telemetry based Intrusion

Detection System (IDS). The designed IDS utilizes aggregation and analysis of the

traffic telemetry features to classify the incoming packets as malicious or benign. An

IDS that uses network telemetry was created, and it achieved a high classification

accuracy, protecting nodes from malicious traffic. Such an IDS is not vulnerable to

address or encryption spoofings, as it does not utilize the content of the packets to

differentiate between malicious and benign traffic. The IDS uses features of timing

and network sessions to determine whether the machine that sent a particular packet

and its software is, in fact, a combination that is benign, as well as whether or not

it resides on a network that is benign. The results of the experiments conducted

for this dissertation establish that such system is possible to create and use in an

environment of ICS networks. Several features are recognized and selected as means

for fingerprinting the hardware and software characteristics of the SCADA system

that can be used in pair with machine learning algorithms to allow for a high accuracy

detection of intrusions into the ICS network. The results showed a classification

accuracy of at least 95% is possible, and as the differences between machines increase,

the accuracy increases too.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that “proper request” consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author

A * 2 1 , 2 0 l £Date

GS Form 14
(5/03)

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF TABLES.. ix

LIST OF FIGURES.. x

CHAPTER 1 INTRODUCTION... 1

1.1 ICS Vulnerabilities.. 2

1.2 ICS Protocol Security.. 5

1.3 Intrusion Detection Systems... 6

CHAPTER 2 LITERATURE REVIEW... 8

2.1 ICS Protocols... 8

2.1.1 Modbus.. 9

2.1.2 DNP3.. 11

2.2 ICS Attacks.. 13

2.2.1 SCADA-side A ttacks... 14

2.2.2 PLC-side Attacks... 15

2.3 Intrusion Detection Systems for ICS... 16

2.3.1 State Based ID S.. 16

2.3.2 Rule Based ID S .. 18

2.3.3 Physical Properties Based IDS.. 19

2.3.4 Statistical and Machine Learning IDS..20

vi

2.3.5 Network Telemetry and Metadata Based IDS....................................22

CHAPTER 3 NETWORK TELEMETRY BASED INTRUSION
DETECTION SYSTEM... 27

3.1 Telemetry D a ta ... 29

3.2 Classification Algorithms.. 33

3.3 Data Acquisition... 35

CHAPTER 4 INTRUSION DETECTION OF MALICIOUS SSH CALLS 39

4.1 Experim ent.. 41

4.1.1 Experimental Setup.. 41

4.2 Results.. 42

CHAPTER 5 SESSION INSTANTIATION... 46

5.1 TCP Session Flows.. 46

5.2 Session Duration Based Instantiation.. 48

5.3 Session Length Based Instantiation..52

5.4 Conclusion.. 55

CHAPTER 6 OPTIMAL CAPTURE INTERVAL DERIVATION........................ 56

6.1 Minimizing the Training W indow.. 56

6.2 Accuracy Validation Against a Third Machine... 60

6.3 Conclusion.. 67

CHAPTER 7 SOFTWARE VARIANCES AS FEATURE CONTRIBUTORS... 68

7.1 Hop Relationship.. 72

7.2 Results.. 73

7.2.1 Insider Classification... 73

viii

7.2.2 Outsider Classification... 75

7.2.3 Decreasing Capture Intervals..76

7.2.4 Conclusion... 78

CHAPTER 8 IDS VERIFICATION OVER MULTIPLE PLATFORM
CONDITIONS... 79

8.1 IDS Accuracy for Identical Clients... 81

8.2 IDS Accuracy for Different Programming Languages................................. 85

8.3 IDS Accuracy for Different Operating System s... 90

8.3.1 Gentoo and Windows Classification.. 91

8.3.2 Debian And Windows Classification.. 95

8.3.3 Debian And Gentoo Classification.. 99

CHAPTER 9 CONCLUSIONS.. 104

APPENDIX A CODE LISTINGS.. 107

BIBLIOGRAPHY...110

LIST OF TABLES

Table 2.1: TCP Modbus packet [2].. 11

Table 2.2: DNP3 Frame [3].. 12

Table 5.1: Generated session counts for varying silence intervals........................... 49

Table 5.2: Classification results of varying silence intervals..................................... 50

Table 5.3: Classification results of varying conversation lengths............................ 52

Table 5.4: Classification results of varying conversation lengths............................ 54

Table 6.1: Maximum accuracies and corresponding Capture Times of classifiers
for Classification of two clients... 59

Table 6.2: Maximum accuracies and corresponding Capture Times of classifiers
for Classification of three clients... 63

Table 7.1: Accuracies of separating outsider and insider traffic by varying n 71

Table 8.1: 10-Fold validation of selected classifiers on the dataset of two
identical machines.. 82

Table 8.2: 10-Fold validation of selected classifiers on the dataset of C and
Python based clients.. 87

Table 8.3: 10-Fold validation for Gentoo and Windows Classification................... 91

Table 8.4: 10-Fold Validation for Debian and Windows Classification.................. 95

Table 8.5: 10-Fold Validation for Debian and Gentoo Classification...................... 99

ix

LIST OF FIGURES

Figure 3.1: Client-Server Session Graph.. 28

Figure 3.2: Time delays introduced by spoofing.. 33

Figure 3.3: Average Response time in a session over 1 d a y 35

Figure 4.1: Experimental S etup .. 39

Figure 4.2: Server’s normal operation.. 40

Figure 4.3: SSH RSA handshake...42

Figure 4.4: Packet arrival time differences.. 43

Figure 4.5: Standard Deviation of packet arrival differences.................................... 44

Figure 4.6: Standard Deviation of packet arrival differences during an a ttack 45

Figure 5.1: Client-Server Session Graph... 47

Figure 5.2: Silence Interval Detection session counts.. 49

Figure 5.3: Silence Interval Detection Accuracy.. 50

Figure 5.4: Silence Interval Session Duration and class Distributions for 0.3s
Silence Interval... 52

Figure 5.5: Session Length based extraction counts.. 53

Figure 5.6: Session Length Extraction Accuracy... 53

Figure 5.7: Session Length of 3 Session Duration and class Distributions 55

Figure 6.1: Capture Time Maximization Graph for Classification of two clients.. 57

Figure 6.2: Maximum Accuracy within Tested W indow...59

x

xi

Figure 6.3: Capture Time Maximization Graph for Classification of three clients 61

Figure 6.4: Maximum Accuracy within Tested Window for Classification of
three clients... 64

Figure 6.5: Distribution of Features for the testing dataset. Blue is malicious,
Red is benign.. 65

Figure 6.6: Distribution of Features for the training dataset. Blue is malicious,
Red is benign.. 66

Figure 7.1: Average Response time in a session over 1 d a y 71

Figure 7.2: Classifier Accuracy for Insiders.. 74

Figure 7.3: Classifier Accuracy vs Model Build T im e.. 74

Figure 7.4: Classifier Accuracy for Outsiders... 75

Figure 7.5: Classifier Accuracy vs Time to Build Model for Outsiders................. 76

Figure 7.6: Classifier Accuracy for Insiders for traffic captured over 5-minute
window.. 77

Figure 7.7: Classifier Accuracy vs Time-to-Build Model for Insiders for traffic
captured over 5-minute window.. 77

Figure 8.1: Feature Distribution of the data set for two identical machines.
Blue is malicious and red is benign... 83

Figure 8.2: Accuracies of Different Capture Intervals.. 84

Figure 8.3: Model Build Times for Given Capture Intervals................................... 84

Figure 8.4: Feature Distribution of the data set for C and Python based clients.
Blue is malicious and red is benign.. 88

Figure 8.5: Accuracies of Different Capture Intervals.. 89

Figure 8.6: Model Build Times for Given Capture Intervals................................... 89

Figure 8.7: Accuracy of Gentoo vs Windows classification....................................... 92

Figure 8.8: Model Build Time of Gentoo vs Windows classification...................... 93

Figure 8.9: Accuracy of Classifying Debian With a Gentoo vs Windows Training
Set.. 94

Figure 8.10: Accuracy of Debian vs Windows Classification..................................... 96

Figure 8.11: Model Build Time of Debian vs Windows classification...................... 97

Figure 8.12: Accuracy of Classifying Gentoo With a Debian vs Windows Training
Set.. 98

Figure 8.13: Accuracy of Debian vs Gentoo Classification... 100

Figure 8.14: Model Build Time of Debian vs Gentoo Classification..........................101

Figure 8.15: Accuracy of Classifying Windows With a Debian vs Gentoo Training
Set...102

CHAPTER 1

INTRODUCTION

Industrial Control Systems (ICSs) are designed, implemented, and deployed in

most major spheres of production, business, and entertainment. From orchestrating

advanced maneuvers of the International Space Station to controlling the speed of

a roller coaster, ICSs are able to process complex data and safely perform designed

tasks. Safety is a number one priority when dealing with physical devices [1].

ICSs are commonly split into two subsystems - Programmable Logic Controllers

(PLCs) and Supervisory Control And Data Acquisition (SCADA) systems - to

achieve high safety, allow engineers to observe states of an ICS, and perform various

configuration updates. PLCs are small processing systems which are able to modify

the behavior of the controlled devices and receive input from the system’s sensors. The

SCADA system allows engineers to monitor the ICS state and modify its parameters

as needed.

The communication between PLCs and SCADA system can be transmitted over

a wide variety of protocols and mediums. Originally, ICSs used wired communication

methods tha t utilized serial protocols that were based on RS-232 specification. The

medium was a dedicated transmission channel that could be used only by ICS.

1

2

1.1 ICS Vulnerabilities

Before wide adoption of the Internet, ICSs used “air-gap” security measures,

where the ICS network was isolated from other networks, including the Internet, by a

physical disconnect [1]. To perform an attack on an isolated ICS, an attacker would

have to gain physical access to the ICS’ network, and either penetrate and use the

hardware of the ICS to transm it malicious commands, or attach a new node to the

ICS network. This level of security allowed ICS protocol designers to concentrate on

the availability and safety of operation of physical systems while decreasing the need

for many cyber security implementations.

As the price of networking devices fell, and the Internet received global adoption,

many businesses became interested in the benefits of attaching ICSs to wide and global

area networks. The benefits included engineers gaining an ability to monitor and fix

critical problems remotely. Off site engineers were now able to remotely reconfigure

ICSs, which gave them more time to work on problem solving when the system

malfunctioned. The price of implementing geographically dispersed ICSs, where PLCs

and SCADA systems may be miles away from each other, decreased with the spread

of the Internet. The critical infrastructure Smart Power Grid design implements one

such ICS where each house has its own controller - a smart meter - that transmits

usage information to the power company and may turn off the house’s power for

maintenance or lack of payment [1].

ICSs started to use some of the aspects of business’ networks for their purpose.

Protocols were created to allow system control of ICS machines. One of the most

common protocols used for transmitting ICS data is Modbus. Originally this protocol

3

was created for use over a serial RS-232 communication. To allow for a seamless

integration and merger of ICS and business networks, the Modbus protocol was

wrapped into a Transmission Control Protocol commonly used in computer networking

and became known as Modbus/TCP. Modbus packets could now traverse the Internet

and connect ICS nodes that were miles apart without the need to lay expensive copper

wiring between those nodes.

Since Modbus was originally designed for an air-gapped environment, it did

not include any of the security measures needed for a proper operation of a critical

protocol that exposes its packets to the Internet. The attack vectors for attacking

PLCs and SCADA systems alike include man-in-the-middle, DoS, spoofing, packet

injection, and reconnaissance attacks. However, depending on the direction of packet

flow, these attacks may affect PLCs, SCADA, or both. In addition, there exists many

different ICS protocols. While some standard ICS protocols were created, different

manufacturers choose to use different protocols, which make it difficult to assess

possible vulnerabilities for all ICSs [4].

Possible vulnerabilities can result in an attacker performing many tasks from

planting a virus, to getting systems’ sensitive data or joining a machine to the botnet.

Christodorescu says that it is a “game between malicious code writers and researchers

working on malicious code detection” [5] when talking about the use of malware and

the creation of anti-virus methods, but the same principle applies to many aspects

of security, including network security. Networks transm it any data tha t the nodes

provide. The data transmitted can be any sequence of commands that a host machine

understands, or it can be a machine code used to avert the underlying machine’s logic.

4

Any Turing-complete machine can run malicious code th a t is designed to “harm or

subvert a system’s intended functionality.” Applications utilizing such code are known

as “malware” [6, 7]. Turing-complete machines include a vast set of devices - from

personal computers and cell phones, to machinery automation and utility distribution

controllers that ICS represents. All of these devices can communicate over a network,

which means they can be infected by malicious code without any user interaction.

Non-networked devices can also be compromised by such code through user interaction

- connecting it to a computer, inserting a flash drive that contains infected files, or

transferring data in any other means.

Stuxnet was one of the largest and most complicated attacks deployed that

targeted an industrial control system [8]. Stuxnet was a worm, a malicious application

that is capable of replicating and spreading itself over a network, discovered in June

2010. However, unlike most worms, Stuxnet was developed to target ICS networks.

To hide the worm from the cyber-security community, the attackers prevented it from

inflicting any damage in networks that did not contain specific properties of an ICS

network. Once inside a vulnerable computer with no ICS software, the Stuxnet worm

could propagate using USB drives or network connectivity. Stuxnet was allowed to

duplicate itself only 3 times when propagating over a USB drive, but there was no

limit on network propagation [8, 9, 10]. However, when ICS properties were discovered,

Stuxnet would present itself to PLCs as a SCADA system and perform man-in-the-

middle attacks, reprogramming PLCs to perform different actions, thereby bringing

the system to a critical state. Stuxnet penetrated the SCADA system of Iranian

5

nuclear facilities and caused centrifuge motors to change their spinning frequency,

which destroyed centrifuges [8].

ICSs have been a target of many cyber-attacks. Unlike attacks of information

technology, attacks on ICSs may not only destroy a company’s rating and cause

financial problems, but may also damage equipment and the environment, as well as

present a threat to human lives. When engineers design the logic of ICS controllers,

their primary goal is to maintain system stability and safety. However, as ICS

controllers get attached to wide and global area networks, they become vulnerable to

a multitude of attacks.

1.2 ICS Protocol Security

Network models that are currently implemented allow for easy access to various

networked systems through a multitude of mediums, devices, and implementations.

Cell phones can communicate with high-end servers or even supercomputers over

WiFi, desktops can use cell phone’s cellular networks, smart watches can communicate

with the same servers by using Bluetooth, and cell phone’s connection. Current

approaches have allowed widespread adoption of computer networks. Network models

create abstraction layers and keep some information such as properties of the sender’s

connection, sender’s architecture and configuration, as well as sender’s location, away

from applications. Lack of such information reduces the ability to establish the

authenticity of the host transmitting the data [11]. Additionally, an attacker can

perform data manipulations on the network to achieve penetration of target machines

and spoof the authenticity of the transmitted packets [12].

6

Many protocols have been created since the introduction of Modbus/TCP.

Some of them were adopted from the serial communication over copper wires based on

RS-232 protocol and just like Modbus, were wrapped in a TCP protocol. Others were

specifically designed for use in a new interconnected configuration of ICS networks.

However, there are currently no set standard protocol for use in an ICS environment.

Many manufactures create their own proprietary protocols that are incompatible with

other manufacturers. The ICS market is very segmented, which makes it hard to

secure all of the ICSs due to millions of different vulnerabilities being spread across of

millions of different protocols [13].

1.3 Intrusion D etection System s

One of the approaches to securing the communication of network attached

ICSs is an Intrusion Detection System (IDS). Such a system operates by monitoring

data that is transmitted through the network. At its core, IDSs must be able to alert

system engineers when intrusions are detected, however, some IDSs are also able to

block the malicious traffic, resulting in an intrusion prevention. The state of the art

research of IDSs is covered in Chapter 2. Many current research efforts are attempting

to apply the Information Technology (IT) perspective to the problem of securing ICSs.

However, ICSs have unique features that prevent proper operation of high-confidence

Intrusion Detection Systems. System engineers may sometimes need to execute the

same sequences of commands that an attacker may want to execute in order to deal

damage to the system. For example, an engineer may want to turn a high-speed fan off

for repairs, or an attack may want to turn it off to overheat another part of the control

7

system. Additionally, stability and availability of the ICS is crucial to its operation.

Unlike a business network, an unstable ICS may lead to damaged equipment or even

loss of life.

This dissertation develops and evaluates a machine learning based IDS that

utilizes a unique set of features which allows for a transparent intrusion detection

without affecting the stability of underlying ICS. The author hypothesises that such

system is possible to create and use in an environment of ICS networks. The features

used for traffic classification are obtained by analysis of TCP session flows that will

be covered in detail in Chapter 3. By utilizing TCP session flow it becomes possible

to differentiate between the machines that created TCP packet even if two packets

that originate from different machines contain identical signatures. This means that

many techniques that help the attackers to mask themselves from many IDSs will not

work. In addition, the developed IDS will not need any exception handling for critical

situations such as a component shutdown by an engineer. The IDS identifies packets’

source which is a combination software and hardware as malicious or benign. Benign

packets are allowed to traverse the network while malicious packets are logged and

dropped from the network. The developed IDS is evaluated in Chapters 4-8.

CHAPTER 2

LITERATURE REVIEW

Stuxnet was a wakeup call to many ICS engineers. Securing industrial control

systems from cyber attacks became a top priority [1]. Unlike business networks, an

attack on ICS can result not only in information leak, but a physical damage. As a

result, security of cyber-physical systems is now a world-wide concern, and various

intrusion detection, attack mitigation, and attack obfuscation techniques are being

researched.

Various security implementations for ICSs have been suggested. Sridhar et

al. [14] covers many problems specific to these systems while targeting the security

of electric power grid. Security, forensics, accountability, as well as resilience, and

dependency of the information communication channels are important in the realm of

ICS security. In order to better understand the problem of securing industrial control

systems, the state-of-the-art research, as well as current vulnerabilities and attack

vectors of the Industrial Control Systems will be covered in the following sections.

2.1 ICS Protocols

While much work has been put into the research of Intrusion Detection systems,

research efforts also target the creation of new communication protocols that allow

for safe communication between ICS nodes, avoiding many different attack vectors.

9

Mo et al. [15] suggests the use of physical watermarking for ICS protocols. Physical

watermarking works similar to cryptography, however, it is based on the fact that

many components of an ICS work in tandem, and injecting a specific signal at one

point of a control system will propagate changes throughout all of the sensors used

by the ICS. Mo was able to achieve sensor verification by injecting a crafted noisy

signal and observing the sensor changes reported. Sensors axe deemed malicious if the

reported change did not match the change that has to be created by the input signal.

Creating new, secure protocols allows mitigation of many cyber attacks.

However, the implementation of these protocols often requires replacement of the

controllers currently used as well as inability to use controllers that rely on different

protocols for their security. There are many manufacturers that create incompatible

industrial system controllers. The creation of new control protocols results in even

greater segmentation of the controller market. To prevent segmentation, controller

manufacturers instead use the protocols th a t are compatible with more controllers.

Many cyber-physical system engineers also prefer well-evaluated protocols due to their

reliability [16]. Reliability is the second highest priority while designing most ICSs.

Modbus and DNP3 axe a few of the well established, reliable protocols on the market.

2.1.1 M odbus

Modbus is a control system serial data transmission protocol which originated

in 1979. The first Modbus implementations used bit oriented frame formats that were

transmitted over RS-232 serial communication interface. Modem variants of Modbus

have different implementations that allow it to be transm itted over both wired and

10

wireless communications including ISM, WiFi, SMS, GPRS, and TCP transmissions

[2]. This research will concentrate on M odbus/TCP implementation.

Table 2.1 shows a structure of a Modbus packet sent over TCP network protocol.

Transaction ID is 2 bytes long, and is similar to TCP’s sequence number. Transaction

ID is used to maintain a proper data synchronization between different nodes of the

network. Protocol ID is used to identify the variation of Modbus protocol. TCP

implementation sets this value to zero. The length field specifies the length of the unit

address, function code, and data sections. Unit address represents the address of the

responding PLC or the PLC being queried in situations where information is routed

using the PLCs. Otherwise, this value is set to 255 and is not used. The function

code is used for main device operation and can include functions to read and write

data to and from the PLC’s inputs and output, to upload new logic, or to get current

logic in binary representation, and to perform various diagnostic procedures such as

getting event logs, device ID numbers, and hardware exception status. Depending on

the function, data field may be filled by the communicating SCADA system, or the

PLC during its response. [17]

All Modbus implementations are big-endian, however, different implementations

utilize different data types as value representations. Some of the more common data

types are floating points, 32-bit integers, or bit-fields. TCP implementation uses 8-bit

characters. [18]

Modbus protocol does not implement any security features required for authen

tication, integrity checks, or anonymity. Once inside the control system network, an

11

attacker may inject any packet that follows similar protocol fields into the network,

which will then be accepted by PLCs or the SCADA system as legitimate packets.

T able 2.1: TCP Modbus packet [2]

N am e L ength
(bytes)

Function

Transaction
ID

2 Synchrinization data

Protocol
ID

2 Type of carrier used

Length 2 Bytes in this frame
Unit
address

1 For configurations where
PCSs route packets

Function
code

1 ID of a function to be
executed

Data variable Result of the function ex
ecuted

2.1.2 D N P 3

Distributed Network Protocol (DNP) is a set of control system protocols,

commonly used in utilities’ control sector. DNP3 is the latest revision of the DNP

protocol [19]. Unlike Modbus, DNP3 is more robust, supports protocol encapsulation,

some integrity checking, and routing support. As most utilities can be represented as

geographically dispersed control systems, DNP3 was designed to support communica

tions over a range of various mediums and devices.

Unlike Modbus, DNP3 is separated into the Application Layer, Pseudo Trans

port Layer, and Link Layer. The information transmitted over DNP3 protocol is split

into frames by the Application layer. The DNP3 frame is represented in Table 2.2.

Each frame begins with two bytes of a sync pattern, similar to an Ethernet frame. The

12

length field specifies the length of the remainder of the frame in bytes, ignoring the

CRC length. Link control field is used to coordinate link usage over multiple devices.

DNP3 protocol was designed to operate as a peer-to-peer model, and carries 2 bytes

of source and destination addresses, allowing different nodes to route the information

appropriately. For every 16 bytes of data, a separate CRC value is calculated and

recorded in the CRC field. Data payload can be a maximum of 250 bytes, which

requires 16 different CRC values.

T able 2.2: DNP3 Frame [3]

Name Length
(bytes)

Function

Sync pattern 2 Frame start pattern
Frame length 1 Length in bytes of the rest

of the frame
Link Control 1 Link layer control data
Dst. Address 2 Destination device ID
Src. Address 2 Source device ID
CRC variable Cyclic redundancy check

value for every 16 bytes
of data

Data variable Data transmitted by the
application layer

The data section of the DNP3 protocol is written by the Application layer, and

user-side software, which will vary with different implementations. The data section

will ultimately include the function code and the data passed to or returned from a

proper function. Some implementations support basic encryption, and authentication

fields. Any DNP3 field can be spoofed by software, preventing the server from being

able to determine whether the packets are arriving from an authorized location [20, 21].

13

That is one of the reasons DNP3 allows for encryption based algorithms, to prevent

illegal access and enforce data integrity [22], However, no m atter how secure a

cryptographic function is, it can be attacked with at least a brute force attack [23].

Encryption, while effective in deterring most attackers, can be broken in many different

ways. Hashes can be reversed, users can be tricked into giving their passwords to

phishing sites, and weak passwords can be guessed [24].

While supporting some security measures, DNP3 shows itself to be more robust

than the Modbus, however, all of the security measures must be implemented by

the application used, which offloads security research on the developers of a specific

application. While encryption may deter low level attackers, the ICSs that use the

DNP3 protocol are still vulnerable to more complex attacks, which is unacceptable

due to the high risk of ICS malfunction.

2.2 ICS Attacks

Sayegh et al. [25] documented a wide range of attacks on ICS that include

Denial of Service (DoS), replay, cryptographic, and fragmentation attacks. One type

of DoS attack is a CPU shutdown attack, where an attacker transmits a command

to shut down the CPU of a PLC, requiring an engineer to perform a haxd-reset of

the device. While CPU is shut down, the PLC can not communicate or process any

information, which results in a denial of service.

Zhu et al. created a taxonomy of attacks on ICS in [12]. While most of the

attacks require access to the ICS LAN, malicious applications such as backdoors and

trojans can grant that access to an attacker since most of the SCADA is run on PC

14

architecture machines which commonly run Windows operating system. To better

understand the threat model of the attacks on ICS, threats can be separated into two

categories - SCADA and PLC side attacks.

2.2.1 SC A D A -side A ttacks

SCADA attacks target the packets transmitted to the SCADA system. SCADA

systems are commonly run on PCs [26], which are vulnerable to any attacks on their

operating system. An attacker may acquire protocol-specific SCADA identifiers to

mask themselves as an engineer to inject PLC values into the network that do not

reflect the current network state, and to stall the SCADA machine to prevent the

SCADA engineer from knowing the state of the ICS [12].

Response injection attacks require the knowledge of the underlying control

process, but can drastically change the representation of the control system at the

engineer’s monitoring system [27]. A maliciously crafted response packet may result

in a display of a stable system while the actual physical process is in a critical state.

Since SCADA systems are commonly run on PCs, a vast range of attacks on

the PC of the SCADA system can result in a successful penetration. The Symantec

threat report [28] states that more than 250 million different PC malware applications

were detected in 2013. Even if the malware does not target ICS as its main goal, a

malware present on a SCADA system can result in system malfunction.

If an attacker uses malware to penetrate the PC a SCADA system runs on,

response injection attacks can also be created without the need of transmitting a

malicious packet over the network, since the packet can be sent over a loop-back

15

interface. Other attacks include memory space attacks on the allocated memory of

the SCADA software which can result in full control of the displayed ICS state by the

attacker.

2.2.2 PLC-side A ttacks

PLC attacks target the packets being sent to the controller. Once communi

cation with the controller is established without a proper IDS, an attacker has an

ability to shut down the CPU, disable memory protection and perform code injection.

This allows an attacker to modify the code that the PLC is running, get the state of a

system that PLC is monitoring, find packet structure that the PLC sends to SCADA,

overwrite the values that PLC is reporting to SCADA, and overwrite some or all logic

that is used to control the ICS. While some of these attacks may result in information

leakage, others can damage the physical system being controlled or misrepresent the

system state to the monitoring engineer [29].

Wei et al. [30] developed False Data Injection attacks that target PLCs and do

not require attackers to know the whole underlying topology of the ICS. Such attacks

can result in a predictable malicious outcome, and damage the underlying physical

system such as the substation.

Denial of Service (DoS) attacks covered in [27] pose a danger to both the control

process and the information flow to the engineers. DoS attacks prevent PLCs from

responding to queries and often need a physical (power cycle) reset in order to mitigate

the attack. DoS attacks are present in many forms. Some utilize low throughput of

the devices and overwhelm them with the amount of transmitted packets. Others use

16

ill timed or maliciously crafted packet injections that exploit bugs in the controller’s

code and become unresponsive.

Command injection attacks covered in [27] allow attackers to mask themselves

as engineers and send control requests to the PLCs. Similar to the response injection

attacks covered in Section 2.2.1, command injections utilize protocol vulnerabilities to

allow the attackers to send maliciously formed packets to the PLCs to shift the state

of the underlying control process.

2.3 Intrusion D etection System s for ICS

2.3.1 State Based IDS

Carcano et al. [31] proposes a state-based intrusion detection system, which

listens for the ICS network traffic, maintains an ICS image based on that traffic, and

monitors for a set of state anomalies. In [32], a model based IDS is developed, where

the communication model using Modbus protocol is analyzed and an alarm is raised

when packets with certain fields set are transmitted.

Long et al. proposed methods of mitigating denial of service attacks that

originate from either local or wider area networks by modeling stochastic process of

packet delay jitter and loss [33]. Mitigating attacks on industrial control systems can

be much harder due to the physical nature of damage occurring during an attack.

However, some research into PLC shadowing and data duplication has been done

[26]. Attack mitigation techniques include the use of firewalls, recommended by the

National Institute of Standards and Technology [13], and some protocol modifications

to prevent man-in-the-middle attacks [34].

17

In [19], a state based IDS was developed for Modbus and DNP3 protocols that

could identify multi-packet attacks. While each individual packet of such an attack

can be considered benign, a unique pattern of received packets may send the systems

in a critical state. Critical state is defined as a state of an ICS tha t will result in

damage.

The latest research by Fovino et al [35] developed a critical state based intrusion

detection system that is able to prevent damage to physical plants. For an IDS to

follow the state changes of an ICS, protocols used to transmit the data must be parsed,

and state changes recorded. Fovino’s latest IDS can parse Modbus and DNP3 protocols.

Several filtering and monitoring techniques were developed that can describe unwanted

states of the ICS. However, there is still no single solution that can guarantee the

security of an ICS. While a state-based IDS will monitor the state of the system being

secured, some measures to prevent the attackers from modifying the code run on

PLCs have to be implemented and some of the control packets have to be blocked.

To achieve this, an IDS provides a packet language tha t can describe signatures of

unwanted Modbus and DNP3 packets

The state-based intrusion detection system was evaluated in terms of accuracy

and performance. Since the predicate condition will always be evaluated, the accuracy

of IDS depends on the system capturing every packet and being able to maintain

a synchronous state representation of the underlying ICS. To test the efficiency of

the IDS, SCADA-to-PLC communications were simulated by transmitting 40 read

requests, 50 write requests, and 10 special requests. The IDS was preconfigured with

a set of 2000 rules. The system was able to handle up to 1.215 Mb/s of traffic without

18

losing any alerts. When traffic was higher than 1.215 M b/s, both the packets and

alerts loss increased linearly. [31]

Goldenberg et al. [36] developed an IDS that was able to achieve high accuracy

of detecting response and command injection attacks into the Modbus/TCP protocol

by developing an algorithm to construct an ICS model based on Deterministic Finite

Automaton (DFA). DFA can be constructed due to the periodic and deterministic

nature of an ICS network and Modbus protocol.

2.3.2 R ule Based IDS

Morris et al. [27] wrote a plugin to allow Snort to monitor Modbus over TCP

traffic and apply intrusion detection rules to it. In their research Snort acted as a

rule based firewall that could filter Modbus packets based on a set of rules. Snort is a

multi-use tool for network analysis, intrusion detection, and penetration testing [37].

Snort can utilize various algorithms for intrusion detection such as signature based

intrusion detection - where some features within the packets’ data match signatures

of packets transmitted by an intruder, statistical anomaly based intrusion detection -

detection using stochastic behavior of a previously captured traffic, as well as stateful

protocol analysis - a technique similar to state-based ICS IDS created by [31] and

described above.

In [38], an additional set of rules specific to Modbus protocol is generated. Rules

are applied to the network packet flow using a Snort plugin that allows researchers to

parse M odbus/TCP traffic. Morris et al. developed a set of 50 rules that can detect

19

malicious activity. Each rule is designed to prevent a specific attack, however no

evaluation of the rules is reported.

Parvania et al. [39] created an IDS that utilizes the “hybrid control” rule set

to detect intrusion in Modbus or DNP3 protocols. The researchers created a set of

special rules tha t can detect whether the system is operating in a maintenance state

or state of normal operation, and switch the intrusion detection rule set accordingly.

This approach resolves the problem of activating IDS while performing maintenance

on an ICS network. In their research, a significant timing delay was noticed while

monitoring packet arrival during normal operation of the ICS and an incoming attack.

2.3.3 P h y sica l P ro p e r tie s B ased ID S

Wallace et al. [40] suggests designing an IDS custom-tailored to a specific

ICS, where the underlying physical properties of the objects being controlled manifest

themselves as features of the ICS that can be used to distinguish between the states

of ICS normal operation, and attacks on a given ICS.

By utilizing principal component analysis in [41], high accuracy state classifica

tion of power grid was achieved. The reduced feature set was compared to new power

grid states using Hotelling’s T 2 value. If the value was too high, then the new feature

set could not exist and was determined to be malicious.

Recent research efforts [42] discovered that method execution timing of the

PLC code can be used to determine the authority of the running code. This is a unique

property of cyber-physical systems that allowed Zimmer et al. to achieve tracking of

20

the execution process. The execution timings axe compared to preset bounds, resulting

in a code execution time signatures that can be validated.

Similar to Wallace et al, research effort led by Valenzuela et al. [43] used

principal component analysis of the power flow history generated by a Monte Carlo

simulation of the power system. The researchers tested their IDS on an IEEE 24-bus

and 118-bus reliability test systems. For the majority of the data injection attacks

the IDS was able to achieve an accuracy of more than 90%, while in some instances it

reached an accuracy of 99.8%.

2.3.4 Statistical and M achine Learning IDS

Mantere et al. [44] states tha t machine learning IDS can be very useful in a

deterministic network such as an ICS network. Unlike typical business networks, an

ICS network has a specific periodic packet flow that contains little to no noise during

its normal operation. Mantere et al. proposes the use of throughput, IP address,

average packet size, timing, flow direction, as well as payload data as features used for

machine learning.

In their further work in [45] analyzed many features listed in their original

research, including network timing features - data that is critical to the research of this

dissertation. Mantere et al. was not able to detect useful behavior in timing features

to detect anomalies. However, the presented research did not target any attacks on

the network. The research concluded that ICS networks overall have many anomalies

present in the traffic due to miseonfiguration of the hardware.

21

Most recent research by Mantere et al. [46] focuses on creating a complementary

network security monitoring using Self-Organizing Maps as a means of machine learning.

Their approach targets restricted IP networks and does not use any network timing

features, but uses packet data instead. The research concludes that deterministic

properties of ICS networks make machine learning a viable tool for network anomaly

detection.

Gao et al. [47] used a Neural Network to classify the ICS network traffic as

normal and abnormal based on the operation of MSU SCADA Security Laboratory

waster tank control system. The experiment resulted in a 100% accuracy classification

of negative false data injection, 95% for positive false data injection, and 84.9% for

a random data response injection. Unfortunately, the Neural Network developed

achieved only 12.1% accuracy for a replay attack.

Yoon et al. [48] developed a framework that operates on multi-core systems and

allows real time intrusion detection. The developed framework uses one of the cores

of a multi-core system to operate while protecting the processes running on the other

cores of such system. The underlying IDS uses timing execution data and trace trees

to create a statistical profile of the other working cores. By utilizing core operation

data, researchers were able to achieve high accuracy of code intrusion detection.

Visumathi et al. [49] used a new Fuzzy C-Means clustering and Genetic

Algorithm to create classification based IDS. By using KDD cup’99 data set, researchers

were able to successfully train the classifiers to be able to detect intrusions. The

research concluded that the use of new machine learning algorithms improves intrusion

detection accuracy over previously used methods.

22

2.3.5 Network Telem etry and M etadata Based IDS

The Internet Protocol (IP) commonly utilizes Ethernet frames to forward

packets between multiple nodes of the network until they reach their final destination.

To achieve this, Ethernet frame headers contain the source and destination media

access control (MAC) addresses. While IP addresses are being assigned to different

machine interfaces by network administrators or self-configuration protocols, MAC

addresses are uniquely assigned to each network interface during the manufacturing

process of the interface’s controller circuit [50].

Both IP and MAC addresses can be spoofed by software, preventing the server

from ascertaining whether the packets are arriving from an authorized location [20, 21].

Spoofing is one of the reasons security-critical algorithms implement encryption to

prevent illegal access and enforce data integrity [22], Encryption, while effective in

deterring most attackers, can be broken, and no matter how secure a cryptographic

function can be, it can be attacked with at least a brute force attack [23]. Hashes can

be reversed like in Stuxnet [10], users can be tricked into giving their passwords to a

phishing site, and weak passwords can be guessed [24]. Network telemetry data can

be used to detect a network intrusion when an attacker is using a different machine or

even a different software of the authenticated machine.

There have been various studies in anomaly detection which use data mining

and machine learning facilities to detect anomalies [51]. NetMine is a data mining

application that specializes in understanding traffic data correlations and interactions

[52]. While implementing methodologies similar to the ones used in this research effort,

23

these studies focused on feature generation to improve traffic quality and network

stability rather than network security.

In their works, Erman et al. [53] were able to successfully cluster similar packet

types by analyzing transport layer statistics. By using K-Means and DBSCAN

algorithms they were able to successfully identify protocols being used without

extracting the data from packets [53]. Sheng et al. showed that it is possible to

detect host spoofing by analyzing statistical fluctuations in received signal strength of

the packets transmitted over wireless networks [21].

Alexander et al. [54] proposed to secure critical infrastructures of industrial

control systems by merging the Interface for M etadata Access Points (IF-MAP)

protocol with specification-based intrusion detection protocols. IF-MAP protocol is

an XML based protocol that can be used to transmit events about possible network

intrusions to either humans or machines responsible for ICS security. The Metadata

Access Point aggregates the network metadata transmitted by MAP clients and can

decide whether to raise alarm, store, delete, or ignore given metadata messages. The

ICS nodes then become the carriers of the MAP client code, which allows them to

analyze the incoming traffic and submit event messages to the access point. To gather

the required m etadata, each node encompasses a MAP client, a specification-based

IDS, and an anti-tampering mechanism. Specification-based IDS utilize a compliance

metric that measures a deviation of the current state of a secured device from a

specified compliance state. The proposed anti-tampering protocol is meant to run

seamlessly over the established communication protocol stack, and is not meant to

24

break any communication for any security events, but simply to raise a flag if a

tampered communication was detected.

In [55] a data traffic prediction model was built based on autoregressive moving

average of d a ta ’s time series. The intrusions were observed over a 2.4GHz wireless

link. Researchers were able to achieve a detection ratio of above 90% by utilizing

timing signals used for radio frequency communication. Their IDS was able to detect

a majority of the attacks and secure a wireless sensor network.

Later, researchers proposed an IDS similar to this research in that it uses

temporal packet data to identify traffic anomalies[56]. Different packet signatures were

generated for a given protocol, and probability functions were used to identify if a

given packet was expected to arrive to the SCADA system. The paper targets BACnet

protocol, but mentions that new protocols can be supported without changing the

core functions of the IDS. This approach, however, can produce many false positives

when the anomaly happens in the physical domain of the ICS (damaged plant, broken

wire, low pressure, etc.), and the engineers try to reprogram PLCs to mitigate the

problem.

The developed IDS presents means of detecting malicious traffic over both

wired and wireless networks. The IDS detects address spoofings that originate from

insider and outsider traffic, and it does not generate false positives during critical

states of the supervised ICS. Though the detection approach presented here may not

withstand the dynamics of a typical enterprise LAN, the approach will be beneficial

in the detection of spoofed hosts in control system LANs. Control system LANs

are unique in tha t hosts generally communicate in set intervals set by the polling

25

protocol utilized. [36] The detection scheme developed for this research effort is able to

determine when communication is initiated and maintained outside of these intervals

and, upon detection, will alert on a possible intrusion. Furthermore, with the use of

open source tools that automate the attack process against control systems [57], this

work proves to be fruitful as it can distinguish between malicious and benign packets.

The detection approach utilizes Wireshark, Tcpdump, and Weka applications

for data aggregation and classification. Wireshark is a software network analyzer

which captures network traffic and displays it in real time. This analyzer utilizes the

libpcap library to capture network packets. It also allows system administrators to

save all of the received packets for future analysis and extract useful information about

these packets. Wireshark was used in this research effort to extract packet arrival

times into a comma separated values format used to generate graphs and interpret

the data [58].

Waikato Environment for Knowledge Analysis (WEKA) is an application

developed by the Waikato university of New Zealand that is used to help researchers

utilize machine learning algorithms [59]. WEKA can be used to analyze arbitrary

data sets using a variety of machine learning algorithms. More details about used

algorithms can be found in Section 3.2. WEKA commonly uses ARFF formatted files

as means to store all of the features related to the classification of the data.

Tcpdump is a command-line tool developed as a front-end to the libpcap library

[60]. Tcpdump allows researchers to capture network traffic in a file that can be

processed by libpcap or Wireshark. The captured file format is known as the pcap file,

and contains entries of metadata for every packet received during the capture process

26

as well as all of the data contained in captured packets. The following chapter will

utilize these tools to develop and test a Telemetry based Intrusion Detection System.

CHAPTER 3

NETW ORK TELEMETRY BASED INTRUSION
DETECTION SYSTEM

The designed IDS utilizes aggregation and analysis of the traffic telemetry

features to classify the incoming packets as malicious or benign. Data used for design

and evaluation of the IDS in the following chapters was generated by Conpot - a contol

system honeypot project aimed to simulate an industrial control system network to

attract possible intruders [61]. The SCADA part of the ICS is implemented in Python

and C using the modbus protocol stack - pymodbus and libmodbus. Conpot was set

to simulate a control system network that has two Siemens SIMATIC S7-200 PLCs.

The simulation environment was chosen due to its ability to simulate the CPU of

a PLC. Even though the timing of an actual PLC will differ from a simulated one,

the classification depends on relative timing differences between server and clients,

therefore classification results will not be skewed by simulation of PLCs.

A telemetry based IDS uses the understanding of session flow in a networked

server-client model (Figure 3.1). Experimental scenarios include variations of a benign

SCADA system and a malicious attacker’s machine using different hardware and

software combinations. These systems were also tested while having different network

distances between each other. The origin of control system traffic can change the

27

amount of hops between the nodes as determined by the network’s routing algorithms.

Increased hop length is more likely to introduce packet delays and dropped packets.

The delays and packet counts are used as features for the machine learning environment.

Possible attacks, as well as benign traffic, can originate from within the control system

Local Area Network (LAN), within the corporate LAN, or within the Internet. Control

System LAN traffic can be the result of a normal operation, a benign modification

by the system engineer, or a malicious packet injection by an attacker. ICS traffic

originating from the corporate LAN can be the result of a malicious attack from an

insider, or any benign control and maintenance operation. However, the Department

of Homeland Security recommends not to use corporate LANs as a means of entering

the ICS network. The two should be separated by at least a firewall [1].

Server Client

Time to
respond

Dropped packet

Repeated
transmissions

R epeated
transmissions

Figure 3.1 : Client-Server Session Graph

The goal of Network Telemetry based IDS is to protect PLCs and the underlying

physical plant from malicious activity - unauthorized access and control of PLC

hardware. Therefore, this IDS is implemented as a standalone device that monitors

29

traffic between the PLCs and the rest of the network. This IDS can be launched on

the same machine as the SCADA System to prevent response injection attacks, or

on a dedicated machine that can shield PLCs from command injection, false data

injection, or some denial of service attacks. The IDS must operate at every point of

entry for a potential malicious traffic, therefore, if the secured ICS is localized - only

one machine running this IDS is needed, however, multiple machines are required

to secure distributed systems. Once the intrusion is detected, malicious packets are

removed from the network and saved for future analysis by the system engineers who

are informed about the detected anomaly.

An IDS that uses network telemetry can be created and it can achieve a high

classification accuracy, protecting nodes from malicious traffic. Such an IDS will not

be vulnerable to address or encryption spoofings, as it does not utilize the content

of the packets to differentiate between malicious and benign traffic; rather, it uses

features of timing and network sessions to determine whether the machine that sent a

particular packet and its software is, in fact, a combination that is benign, as well as

whether or not it resides on a network that is benign.

3.1 Telem etry D ata

A list of features was created by analyzing a total of 838,818 packets generated

by the SCADA communication with the honeypot over a period of forty-eight hours.

While the selected period may not be enough to capture all of the network variations

for a business network due to weekly changed in the business’ network users, the

period of two days provides plenty of information about the ICS network as the system

30

is deterministic and usually operates on a period of information flow tha t is in the

order of seconds [4]. The gathered data is the result of capturing the traffic from

designated benign and malicious machines to the PLCs emulated by Conpot using

libpcap - a library created for capturing live networking data. Both malicious and

benign machines ran the same code to achieve similar patterns of packet transmissions,

which represent situations when both an attacker and an engineer want to execute the

same code but for a different purpose - for example, an engineer wants to power a saw

after the maintenance, and an attacker wanting to power a saw during the maintenance,

while workers are in close contact with the saw. The transmission of similar functions

is done to test the accuracy of the IDS for similar packet patterns. Different functions

can have unique transmission patterns which are much easier to detect. The packet

class was identified by packets’ source IP address. This information was only used

for classifier evaluation and IP addresses were not selected as features during the

classification process. The following features were selected and their appropriate labels

are used within this document:

• time it takes the client to respond to server’s message: avgTimeToRespond.

• amount of client-side dropped packets: totalClientRetransmissions.

• amount of server-side dropped packets: totalServerRetransmissions.

• time between the repeated packet transmissions when packet drops happen:

avgClientRetransmissionTime, and avgServerRetransmissionTime.

• Session duration and the amount of packets present in the session: conversation-

Length, and conversationDuration.

31

Figure 3.1 shows the features listed above in a communication session graph.

After the data was captured, the features described above were extracted from the

recorded pcap file, and converted to an ARFF format that can be used with a machine

learning environment. Refer to the end of Chapter 2 for more information about these

files.

A TCP latency model described in [62] was used to determine a set of telemetry

features for the IDS. While Cardwell et al. published their model 15 years ago, it is

still appropriate for modelling short-lived TCP connections such as connection used

by Modbus/TCP protocol [63]. The features were selected based on their variability

from different machines, as well as the level of difficulty for the attackers to modify

those features. The level of difficulty was obtained by judging the amount of time and

money the attacker would have to spend to control these features.

The time to respond feature includes round trip time for the communication

path as well as processing delays introduced by the client’s machine. While an attacker

can introduce delays to his code, speeding up packet delivery times requires relocation

and/or an upgrade of the attacking machine. Moreover, the attacker would have

to know the exact patterns of the captured features the IDS is looking for, which

can only be achieved by attacking the machine tha t runs the IDS or obtaining the

original training set. Additionally, an attacker would have to know that the IDS

utilizes those features for protection. The IDS works transparently, and aside from

dropping malicious packets, does not modify ICS network. The features of the amount

of dropped packets on either side of communication relates to network congestion

and the features of delays between those repetitions provide information about delays

32

introduced by network schedulers. The combination of these two feature sets allow

the classifiers to extract information about the network used for communication. The

attacker can change these values if they have control of all of the nodes between the

malicious and benign machines. Their other option would be to relocate the malicious

machine to a network path that matches the benign path in its congestion. Figure 3.1

shows the relationship of these features.

The selected features are protocol independent and are based on the data that

an attacker has little to no control over. For example, an attacker may be able to

introduce delays into the packet flow of their machine, but the amount of dropped

packets is largely dependent on the state of the network between client and server.

Introduced delays would also have to be adjusted to match the current value of the

IDS system, which would require attacking the IDS system first and acquiring the

data. In addition, if the attacker’s system is not fast enough to match the delays of

the benign software, the only way to speed it up would be to upgrade their system.

Due to the nature of the telemetry data if hardware, software, and network

combination can be matched by an attacker to those used by a benign machine, little

to no anomalies will be detected. However, such matching requires vast knowledge of

the hardware, software, and network performances of the benign machine. In addition,

different attack software used to spoof MAC and IP addresses can introduce different

telemetry signatures. Figure 3.2 shows an average delay between packet arrival on two

similar machines; one uses benign SCADA software to query the PLCs, another uses

a metasploit plugin to spoof mac and IP address and poll the PLCs afterwards. If the

attacker uses the SCADA machines for an attack, Network Telemetry based IDS is

33

one of a few IDS th a t can detect an intrusion, as long as some packet transmitting

software was changed, for example, an added backdoor.

I SCADA (benign)
f Megaspioit (mafiduous)

F ig u re 3.2: Time delays introduced by spoofing

3.2 C lassification A lgorithm s

In order to achieve the highest accuracy, many algorithms were tested. Some

qualities of the data set such as noise and size were taken into account when choosing

classifiers. Aside from individual classifiers, boosting was used as a supervisory

algorithm to reduce the bias of other classifiers. Boosting is an ensemble learning

algorithm that aims to create a strong classifier out of many weak ones. Bayesian

classifiers’ performance is linearly scaled with the data set and can be used in a time

critical code. Bagging is also known as bootstrap aggregating, and is an ensemble

machine learning algorithm that can improve accuracy of its base algorithm. For

this research, REPTree algorithm was used as a base machine learning algorithm.

REPTree uses information variance to build a decision tree, and then prunes it using

34

reduced-error pruning. A set of bagging-aided classifiers was chosen because they

perform well with training sets containing large noise [64]. Several decision tree

based classifiers were also used due to a flow-like dependence of the outcome of the

classification on the features. The following paragraphs describe the algorithms used

in this research with details on their characteristics and implementation.

Naive Bayes classifier assumes that all the features are independent of each

other and follows a Bayesian probabilistic model:

p (C).j,(F „ ,F 1,....F„ |C)
r id F * * ! , . . , *) ---------------------.F.)

where C is the class of dataset, F0, ..., Fn is a set of features, and p() is a probability

function. [65]

Multinomial model of the Bayesian classification, however, is dependent on the

frequency of reappearing features in the data-set. This allows for a higher classification

accuracy of data with some repeating patterns. [66]

Simple Logistic classifier utilizes a binary logistic regression to describe an

outcome in only two possible classes. It takes a set of features and applies regression

analysis to create classification parameters. [67]

Ripple-Down Rule learner generates a default rule and creates an exception

list using weighted error rates. Then exceptions are rated and filtered to remove

conditions that fit multiple exceptions. [68]

A Decision Stump generates a single-feature condition that results in a binary

classification. This results in a high speed classification, but lacks accuracy in a

high-dimensional orthogonal data. [69]

35

J48 is an implementation of C4-5 machine learning algorithm. This algorithm

generates a decision tree based on the information gain ratio if the classification was

split on a given tree node. [70]

3.3 D a ta A cquisition

Classification accuracy of Network Telemetry based IDS highly depends on

processing times introduced by computer hardware, software, and the network com

munication paths between the benign machines, malicious machines, and the server.

Telemetry based measurements are highly dependent on the amount of hops between

the client and server. As nodes are separated by a larger amount of hops, added

network systems introduce different delays into packet propagation. The IDS carries

two classification profiles - for insider traffic and for outsider traffic. Figure 3.3 shows

how the delay increases with the amount of hops.

■ mm
■ max

Malicious lhop MaKdous 2hop Malicious Shop

F ig u re 3.3: Average Response time in a session over 1 day

36

Differentiating between insider and outsider traffic is trivial as an outsider’s

delays are an order of magnitude larger than the insider’s (Figure 3.3). If an outside

attack is further from the PLCs than the system engineer’s outside point of entry,

differentiating between an attack and normal control packets becomes trivial as well.

However, when benign and malicious traffic originates from the same amount of hops

to the PLCs, the system’s hardware is the one that introduces the most important

delays - hardware and software delays become signatures that can be used for traffic

classification. Most of the tested classifiers performed better when analyzing outsider

traffic than the same classifiers analyzing the insider data due to different network

delays present in different network paths used for communication. The results show

th a t the network path adds a significant amount of data to the used feature set to

differentiate between two machines with a high accuracy.

The IDS is designed to notify system engineers of malicious traffic. For this

research malicious traffic is defined as any traffic directed to the PLCs tha t are not

originated from the designated SCADA system. To achieve classification, the IDS

must receive all of the network packets sent to the PLCs. The IDS utilizes libpcap

[71] to capture all the traffic transm itted to the PCLs over the modbus protocol.

For this research Conpot was emulating M odbus/TCP protocol on port 502. The

system maintains a Floating Delay Separation Boundary (FDSB) which separates

traffic fingerprinting methods to outsider and insider classification engines. This is

done to improve the accuracy of classifying traffic originating from local to the ICS

machines, versus the traffic originating from machines on the Internet. For example,

after analyzing Netgear WNDR4500, D-Link DI-604, and Linskys WRT300N routers

37

the delay feature range is under 5 milliseconds while the communication utilizes local

area network, but it can be several orders of magnitude larger if the communication

path connects distant nodes on the Internet. However, not all of the traffic originating

from a distant node can be malicious (as in the example of an engineer using remote

access to troubleshoot an ICS at the remote site). Separation must be established in

order to compare local paths with local paths and distant paths with distant paths.

The floating delay separation boundary is defined as

ICS, O is the set of delay values from the packets originating from the outside of the

ICS, maxi and mini are the ith maximum and minimum values in the given set, and

n is the amount of samples to take for the delay value, which is the same for both

sums. Having a value of n too high will use older network states which may not take

place any more. However, having a value of n too low will result in a lower accuracy

of the threshold calculation. Values n = 5 were determined experimentally to achieve

high accuracy of feature separation while sets of O and I have 50 items. These values

were determined by iteratively running the classification over 5-minute intervals for

all the captured dataset and determining the combination that results in the best

classification. The initial F D S B value was set to 0.025. These values were determined

by analyzing 838,818 packets acquired over two days’ operation of an ICS. Figure 3.3

shows minimum and maximum response times between two different machines on the

same LAN (malicious and benign 1 hop), and the delays introduced by moving the

maxj(I)

F D S B = —
2

where I is the set of delay values from the packets originating from the inside of the

38

same machine further along the communication path (malicious 1 hop, 2 hops, and 8

hops).

Once the packet is identified as outsider/insider and sent to a proper classifier,

its arrival time is recorded and compared against the previous packet that was sent to

the same classifier. Inside-originating packets are only compared with telemetry for

other inside-originating packets, and outside-originating packets axe compared with

other outside-originating packets which allows IDS to mark some external traffic as

benign as in the case of a system engineer working from home. Training traffic to

the PLCs is tagged as inside/outside traffic based on the packet’s IP address. Code

running on the PLCs is assumed benign and IP address spoofing from the PLCs is

not expected.

Several machine learning classifiers have been tested for this IDS as discussed

earlier: Naive Bayes, Multinomial Naive Bayes, Logistics, REPTree, Bagged REPTYee,

DecisionStump, Degged DecisionStump, Ridor, and C4.5. Naive Bayes classifiers were

chosen to determine probability models for telemetry data. Bagging modelling of

REPTrees was chosen because they perform well with training sets containing large

amounts of noise [64].

CHAPTER 4

INTRUSION DETECTION OF MALICIOUS
SSH CALLS

The work described in this chapter was published in [72]. To test the proof

of concept for this research, an attack model was developed tha t contained benign

and malicious clients trying to communicate with a secure server (Figure 4.1) similar

to methodologies of Sheng at al. [21]. However, instead of using received signal

strength of the wireless transceiver, this research effort is aiming to detect malicious

hosts, not only on a wireless network, but in wired networks and networks of various

infrastructures. To achieve this, inter-packet delays were used.

Benign Client

Router
Malicious Client 1m Secure Server

Malicious Client 2

F igure 4.1: Experimental Setup

Unlike the data in an Ethernet packet, the attacker has less control of the

timings of the packets being transmitted. All of the server processed packets were

39

40

captured using wireshark. Those packets were then graphed by time of arrival. Figure

4.2 shows the generated graph. All of the protocols that wireshark was able to identify

are separated into individual categories. After observing the SSH handshake pattern,

it became evident that a classifier can be made to differentiate between hosts.

10000

1000

ft

Time(s)

100

■DB-LSP-DISC
♦ DHCPy6
VHTTP
AS5Hv2
(►synergy
«TCP
MUDP

F igu re 4.2: Server’s normal operation

Looking at the relationships between packets, Erman et al. had to use various

features to be able to cluster similar packets [53]. However, a node fingerprint can

be built simply by observing differences in sequential packet arrival times. There are

many different parameters that can affect packet arrival times. They range from the

CPU load of the node to the load on the network between nodes. Because of these

parameter variations, methodologies presented by this research are better suited to

secure connections over networks of constant or near constant load, such as control

system LANs.

41

To account for variance in the network and machine CPU load, standard

4.1). The authenticated window was built by p G [x — S ^ , x + Sn] where p is the

inter-packet arrival time, Sn is standard deviation, and x is the average inter-packet

arrival time of the benign client.

In the experimental attack scenario, an attacker was able to gain access to a

control system’s LAN. A portable computer was attached to the system’s LAN and

used to execute the attacks. The attacker was able to gain access to the encryption

keys an authorized user had, as well as spoof the workstation’s MAC and IP addresses,

to prevent the secure server from recognizing or logging any potentially malicious

activity. Once the spoofing detection algorithm was established, a second trial from a

different machine is executed to test the intrusion detection algorithm.

4.1.1 Experim ental Setup

The experimental scenario is comprised of several machines. A secure server

was running Gentoo Linux environment on Intel Core 2 Duo E7500 CPU, 2GB RAM,

and Intel’s 82567L-M-3 ethernet controller. A benign client was running on a separate

machine of the same configuration. The first malicious client was running Debian

Linux, on a BCM2835 SoC controller connected to the LAN using RTL8188CUS

deviation was calculated over the received samples of the benign client (Equation

(4.1)

4.1 Experiment

42

802.l l n WLAN Adapter. The second malicious client was running on a Windows

7 AMD Phenom II X2 555 CPU machine, 8GB of RAM, and a Realtek PCIe GBE

family network controller was used. All of the machines were connected with each

other though a Netgear WNDR3500 wireless router (Figure 4.1).

4.2 R esu lts

Tcpdump utility was used on the secure server to log all of the packets captured

by the server’s network card during the experiments. The first experiment determined

a pattern of the proper SSH RSA handshake. The timings of SSH RSA handshake for

the benign machine can be found in Figure 4.3.

10000

1000

m
I
05

100

2.78 2.79 2.8 2.81 2.82 2.83 2.84 2.85 2.86 2.87

7ime(s)

F ig u re 4.3: SSH RSA handshake

To remove the human input timings, an ssh-agent program was used to cache

the RSA decryption key. This allows the RSA public key to be encrypted and does

not require a user input to decrypt it while calling the ssh command.

43

After the handshake pattern was established, both benign and malicious clients

executed an SSH connection command to the secure server, while capturing all the

packets with the tcpdump utility. SSH software was instructed to establish a connection

using a public/private key pair, execute a uname -a command which returns a string

of text and exits.

i # ssh s e c u r e . s e r v e r uname —a

All of the experimental data was recorded in a comma separated values (.csv)

file. The deltas between packet arrival times were calculated using the first SSH

handshake packet as a time zero packet. Time deltas were graphed against the SSH

packet number. (Figure 4.4). The first three benign trials are SSH sessions from the

benign machine to the secure server. RSA Handshake Pattern highlights the packets

tha t are used in authentication. Malicious trials 1 through 3 are from the portable

computer, while Malicious trial 4 is run on the verification machine. Packets of the

benign connection had very small deviation, which improved detection accuracy.

0.3

M Benign Trial 1
♦ Benign Trial 2

Benign Trial 3
M RSA Handshake Pattern
A Malicious Trial 1

'A n- Malicious Trial 2
-a Malicious Trial 3

—X— Malicious Trial 4

1 2 3 4 5 6 7 8 9 10 1 1 1 2
Packet number

Figure 4.4: Packet arrival time differences

44

A classifier was then designed to measure these packet arrival differences, and

decide whether a connected host was authorized or not. The variance in packet arrival

times from an authorized host was measured, and standard deviation was used to

determine whether the connection is authorized or not. Figure 4.5 shows an average

arrival time, as well as the standard deviation window. Each column represents a

packet in a sequence of SSH handshake authentication. Column height shows the

average time between each packet being processed. Window on top of each column

represents the window of benign authentication derived by p € [x — S n , x + S N}.

&
£i=
3

0.045

0.04

0035

0.03

0025

0.02

0.015

0.01

0.005

0

1 : I \
wmm Average
------ Standard Deviation !| I

11 I

I !!
j

......;

■f|
{s 1

m ■ 1.._ ..1..■ _ l

0.045

0.04

0.0%

0.03

0.025

0.02

0.015

0.01

0.005

10
Packet#

F ig u re 4.5: Standard Deviation of packet arrival differences

The same process was applied to the data extracted after a malicious host

attempted to log into the secure server. Figure 4.6 shows packet arrival differences

for one of the malicious login attem pts. All of the times between processed packets

45

were different from the times in the benign trial, allowing to classify this connection

as malicious. These results show that a high accuracy classification can be done using

simple classifiers when the network differences are high.

i i.................... t..............
Malicious Trial 1
Standard Deviation

0.048

ni 0.038

0025
E 008

0.018

II I 0.005

F igure 4.6: Standard Deviation of packet arrival differences during an attack

CHAPTER 5

SESSION INSTANTIATION

One of the critical components of the developed Intrusion Detection System

algorithm is the session capture method. When an attacker is spoofing MAC and

IP addresses, there are two methods for them to inject data to the control system

network - either by using TCP session spoofing, or instantiating new TCP connection.

This section covers the basics of TCP sessions, and discusses experiments performed

to evaluate different session instantiation techniques.

The possibility of spoofed addressing as well as TCP session injections makes

it impossible to differentiate between communication sessions as defined by the TCP

flow model. Therefore, to logically group incoming traffic into sessions a new session

definition must be created. Several session aggregation techniques were selected and

tested for this research.

5.1 T C P Session Flows

An example TCP session flow is shown in Figure 5.1. TCP is a connection

oriented protocol tha t utilizes internal state variables in order to maintain the

connection. TCP session begins with a TCP handshake. The TCP handshake

includes a 3-way packet exchange tha t is commonly explained as SYN, SYN/ACK,

ACK. SYN is a synchronization packet sent from the client to the server. This packet

46

starts a TCP session and asks the server to establish a connection. The server then

responds with a SYN/ACK packet, acknowledging the connection request. Afterwards,

the client acknowledges the server’s acknowledgment with an ACK packet. This

completes the TCP handshake and the data exchange can be started. The TCP

session is closed with a FIN, ACK, FIN, ACK sequence. When the client decides to

terminate the connection, it sends a FIN packet to the server. Server then sends an

ACK packet, acknowledging the request to terminate the connection. After sending

the ACK packet, server has time to release all of the resources used by the connection,

and send a FIN packet of its own to notify the client that all of the resources have been

cleared. The client then sends its final packet - ACK - to acknowledge the connection

termination. TCP sessions axe sets of all of the packets between two nodes that start

with the TCP handshake and end with the FIN, ACK, FIN, ACK packet sequence.

Server C lient

Time to
respond

Dropped packet

Repeated
transmissions

.Repeated
transmissions

F igure 5.1: Client-Server Session Graph

Whenever an attacker wants to spoof and inject information into the TCP

session, he has to inject packets in the middle of an already established TCP connection.

48

But proper network telemetry can only be obtained if the data is extracted from a

session flowr model, rather than a by-packet basis because there is no performance

information can be present in analysis of a single packet. A single packet will only have

the time stamp of its arrival to the server. In order to capture relative performance

information of the TCP communication, two methods have been created and tested

for this research.

5.2 Session Duration Based Instantiation

Silence time based session detection identifies periods of communication silence

when silence is larger than a time threshold. New sessions are defined as a set of

packets between the detected silence intervals when the next packet is sent towards

the server (PLCs). This method was selected to match the periodical silence of the

polling nature of M odbus/TCP SCADA architecture. Silence time threshold was

determined experimentally by using 0.1 second interval increments to maximize C4.5

based classifier accuracy. Table 5.1 and Figure 5.2 show session counts for a given

time interval, while Table 5.2 and Figure 5.3 show accuracies achieved by the C4.5

algorithm as well as Model Build Times (MBT) in seconds.

Malicious session defines a session that has at least one malicious packet. As

the length of the inter-session silence increased, the count of benign sessions decreased,

while the count of malicious sessions increased. This trade off happened due to the

definition of the malicious session. A benign session could not have any malicious

packets at all, while a malicious session could have any number of benign packets, as

long as it had as least one malicious packet.

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Interval (s)

F ig u re 5.2: Silence Interval Detection session counts

T able 5.1: Generated session counts for varying silence intervals

Interval (s) Malicious Session Benign Sessions Total Sessions
0.1 51156 89943 141099
0.2 51021 42125 93146
0.3 50893 29972 80865
0.4 50893 24458 75351
0.5 50891 19430 70321
0.6 50891 14454 65345
0.7 50888 9648 60536
0.8 50886 4869 55755
0.9 50508 403 50911

50

100
99.96

99.96

99.94

99.92

99.9

99.88

99.86

99.84

99.82
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10-Fold Accuracy {%)
10% Spilt Accuracy {%)

Integral (s)

F ig u re 5.3: Silence Interval Detection Accuracy

T able 5.2: Classification results of varying silence intervals

Interval (s) 10-Fold Accuracy (%) 10% Split Accuracy (%) MBT (s)
0.1 99.9922 99.9189 3.33
0.2 99.9914 99.8831 0.87
0.3 99.9913 99.9808 0.42
0.4 99.9920 99.8909 0.33
0.5 99.9986 99.9984 0.29
0.6 99.9985 99.9915 0.25
0.7 99.9983 99.9486 0.17
0.8 100.000 99.9701 0.49
0.9 99.9980 99.9978 0.11

Table 5.2 provides accuracies for two different classification experiments: 10-

Fold validation, and 10% data split, as well as the time the C4.5 classifier took to build

its model. The first experiment takes the dataset and splits it into 10 chunks. The

classifier then uses the first 9 chunks for training, and the last chunk - for accuracy

verification. The chunks are then rotated and the experiment is repeated ten times.

The accuracy value in the table is the average accuracy of classification for all ten

experiments. While this accuracy is not a good estimate of the overall classifier

51

accuracy, it can be used to verify the information distribution of the dataset. If

some parts of the dataset contained lower information about the subject, the 10-

Fold accuracy would be a lower number. Unlike 10-Fold validation, the 10% Split

experiment uses first 10% of the dataset for training, and the other 90% for validation.

The accuracy given in the 10% Split column refers to the classifier accuracy

when classifying 90% of the dataset. 10% of the dataset translates to approximately

2.5 hours of captured traffic. The interval of 0.9 was the last usable interval. Intervals

above 0.9 are not listed because only malicious sessions were created while using such a

large interval. While Classification accuracy seems to increase as the interval increases

(Figure 5.3), The amount of malicious sessions in the data set start to outweigh the

amount of benign sessions drastically. For example, if we take the amounts of sessions

for 0.9 second interval, just choosing a malicious class over all of the data will result in

99.208% accuracy, as there are 50508 malicious features, yet only 403 benign features.

However, selecting a malicious class for 0.3 second interval would result in an accuracy

of 63.936%, while the C4.5 classifier was able to achieve 99.9808% accuracy for a 10%

Split experiment.

For the use of silence interval as a session separation method, best value is

determined to be 0.3 seconds, as it provides high classification accuracy as well as

approximately equal amounts of malicious and benign features. Figure 5.4 shows the

distribution of features based on session duration and features’ class for the value of

0.3 second interval. Figure 5.4 shows a duration based distributions of sessions based

on the silence interval of 0.3 seconds.

52

F igure 5.4: Silence Interval Session Duration and class Distributions for 0.3s Silence
Interval

5.3 Session L eng th B ased In s ta n tia tio n

Session length can be used as an alternative method of extracting sessions from

a non-interruptible TCP traffic flow. In these experiments, sessions were separated by

counting the amount of packets already in the session. If that number is larger than

some length and the next packet was sent to the server, a new session was instantiated.

Tables 5.3 and 5.4 as well as Figures 5.5 and 5.6 present the data from varying session

length separation value.

T able 5.3: Classification results of varying conversation lengths

Length (packets) Malicious Session Benign Sessions Total Sessions
1 343202 255209 598411
2 283280 157384 440664
3 183664 99144 282808
4 167121 53786 220907
5 132017 49889 181906
6 133396 21106 154502
7 120452 16223 136675
8 112428 3897 116325

1 2 3 4 5 6 7 8
Session Length

Figure 5.5: Session Length based extraction counts

100

99 5

96 5

97.5

97
1 2 3 4 5 6 7 8

10-Fold Accuracy (%)
10% Split Accuracy {%)

Session Length

Figure 5.6: Session Length Extraction Accuracy

54

T able 5.4: Classification results of varying conversation lengths

Length (packets) 10-Fold Accuracy (%) 10% Split Accuracy (%) MBT (s)
1 97.0796 97.1679 41.6
2 97.3172 97.2468 20.9
3 99.9346 99.7929 13.5
4 99.9570 99.8521 8.31
5 99.9082 99.7306 6.47
6 99.9663 99.8698 4.28
7 99.9188 99.5699 4.34
8 99.9003 99.8147 1.62

The same trend can be noticed in Table 5.3 as for the silence based extraction

- the larger extracted session are, the less benign features are extracted due to the

benign session being defined as having no malicious packets. However, the amount of

malicious sessions extracted is not as stationary as with the silence based extraction.

As the session length increases, the amount of extracted malicious sessions decreases,

as seen in Figure 5.5.

At no point of using session length as a session detection parameter was there

equal amount of malicious and benign sessions extracted. Moreover, when the amount

of extracted sessions was comparable to each other, the classification accuracy was

significantly lower than that of a silence based extraction. Comparable accuracy is

achieved when the session has at least 3 packets. The 10% Split Accuracy of 99.7929

is achieved however, it takes 13.5 seconds to build the model. When the distribution

of extracted sessions is graphed (Figure 5.7), the majority of the sessions span very

little time in contrast to silence based sessions extraction.

55

Figure 5.7: Session Length of 3 Session Duration and class Distributions

5.4 C onclusion

When an attacker is spoofing their machine’s addresses and injects traffic in

the middle of an already-established TCP session, it becomes impossible to isolate the

attacker’s TCP sessions and TCP sessions from a benign machine. In order to collect

the information tha t can be used for an intrusion detection, two session aggregation

methods were created and tested.

Overall, silence based feature extraction presents better accuracy and efficiency

of detecting network intrusions. Both classification accuracy and model build time

achieved were better for this method in comparison to session length based extractions.

The proportion of benign and malicious features used for classifier training should be

of concern. During the deployment of the developed IDS, the ratio of the benign and

malicious features to the total feature count should be approximate to 0.5.

CHAPTER 6

OPTIMAL CAPTURE INTERVAL DERIVATION

Unlike business networks, ICS networks axe much more predictable and experi

ence little to no changes in their traffic flows [45]. The most changes are experienced

when an exceptional situation requires engineers to modify the ICS by interrupting a

normal ICS flow [44]. Network changes are particularly important when the engineer

communicates with an ICS over a long distance because longer distances are more

likely to include segments of business-like networks where network performances are

susceptible to high magnitude changes.

Optimal capture interval must therefore be large enough to not only include

information about the hardware performance at capture time, but all of the network

changes needed to accurately monitor traffic. To understand the capture time

requirements for a training dataset, machine learning algorithms described in section 3.2

were used on datasets of varying lengths to verify the performance of the classification

and identify the minimal capture times needed for a high accuracy classification.

6.1 M inim izing the Training W indow

Figure 6.1 shows classification accuracies for multiple classifiers as the capture

time increases. The whole dataset was captured in 101,890 seconds or approximately

28 hours. The machines used as SCADA clients were identical in hardware, but

56

10.08 11.34 12.6 13.8615.1216.3817.64 18.9 20.16 2L42 22.68 23.94 25.2 26.46
Capture Time (s)

i C4.5 » .Bagging - REPTree Daggtng - DecisionStump
'* DecisionStump » Logistics *.REPTree

 M' ■ NahreBayes — NaiveBayesMuttinornial m Ridor

F igure 6.1: Capture Time Maximization Graph for Classification of two clients

used two different operating systems - Gentoo and Windows. Silence based session

extraction was used as covered in Chapter 5. Total of 80,865 instances were captures,

out of which 50,893 instances were malicious and 29,972 instances were benign. 10.08

seconds capture interval corresponds to approximately 8 captured instances and 26.46

seconds capture interval corresponds to 21 captured instances. The increment of

1.26 seconds was found to be an average conversation duration for the whole 28-hour

capture segment when using a 0.3 second silence interval detection.

It is interesting to note that Bagging and Ridor classifiers’ accuracies experi

enced a very sharp accuracy increase with an addition of just one more instance to

the training dataset. Since bagging is an ensemble modeling technique that splits the

dataset further into chunks, and the addition of one more feature allowed its chunks

to be split such that the information about the network was present in all of the

chunks. Ripple Down Rule learner (Ridor), however, is not an ensemble modeling

58

based classifier. Ridor creates a default rule and then iterates over the dataset to

create multiple exceptions. The best exceptions are then chosen based on the amount

of data points that the exception encompasses. The additional data point, therefore,

allows new exceptions to encompass more data points than the original default rule.

Decision Stump classifier was able to maintain high accuracy for all the sampling

times. Naive Bayes Multinomial and Decision Stump based Dagging did not exhibit

high accuracy jumps, though Dagging started having accuracy increases on larger data

sets in comparison to the other tested classifiers. This happened due to Dagging’s way

of further splitting the training data for ensemble modeling, but splitting an already

small training data set resulted in loss of critical information.

Table 6.1 and Figure 6.2 show maximum accuracies of classification achieved

within the selected capture time range. When the capture window reached 21.42

seconds, all but two classifiers had an accuracy above 99.88%. Since such a small

window resulted in a very high classification accuracy for the rest of the 28-hour long

capture, a dynamic classification may provide a viable insight as a future work. Past

PLC communication of 20 seconds can be captured in real time and used for training

classifiers to update network changes if such a need arises. But the captured data

shows that ICS network changes so little over time that a 20 second capture acquires

enough information about the environment to accurately classify the rest of 28 hours

of operation.

59

T able 6.1: Maximum accuracies and corresponding Capture Times of classifiers for
Classification of two clients

Classifier Capture Time (s) Maximum Accuracy
C4.5 13.86 99.8837

Bagging - REPTree 13.86 99.8837
Dagging - DecisionStump 26.46 84.3538

DecisionStump 10.08 99.8837
Logistics 20.16 99.8924
REPTree 16.38 99.8837

NaiveBayes 21.42 99.9481
N aiveBayesMultinomial 25.2 86.9219

Ridor 16.38 99.8837

99

97-

95

93

91-

89

87-

85-

83

■ C4.5
■ Bagging - REPTree
• Dagging - DecisionStump
■ DecisionStump
■ Logistics
• REPTree
■ NaiveBayes
• NaiweBayesMuHkromial
■ Ridor

F ig u re 6.2: Maximum Accuracy within Tested Window

60

Machine learning algorithms used were able to achieve very high classification

accuracy. More over such a high accuracy was achieved when only 25 instances were

used for training. The resulted classification models were able to accurately classify

between 80,750 to 80,800 other instances depending on the selected classifier. Overall,

Naive Bayes was able to achieve the highest accuracy of 99.9481% with the training

time of just 21.42 seconds.

Dagging ensemble modeling based on the DecisionStump classifier performed

the worst - at 84.3538% accuracy. Moreover, dagging was not able to classify instances

at all when the capture time was under 12.6 seconds. Dagging utilized breaking the

data in several folds to create an ensemble of classifiers, and at capture time under

12.6 seconds there were too few training instances to be broken apart for ensemble

modeling. Unlike dagging, bagging samples its instances with replacement, which

allows repetition of the instances, so bagging was able to perform better.

6.2 Accuracy Validation A gainst a Third M achine

Classification of a different, testing dataset was used to classify the robustness

of the utilized feature extraction method and the ability to differentiate between

multiple attacking targets. This different dataset contains no instances captured

from the malicious machine used for training the classifiers, but it includes as many

instances of a malicious machine that ran the same software while using a different

operating system. Figure 6.3 shows the performances of selected classifiers when the

training model was built based on the same instances used in the previous section of

61

this chapter. The third machine was the same in hardware configuration as the two

machines used in the previous section, but its operating system was Windows.

Figure 6.3 shows similar or better performances for most classifiers. C4.5

classification algorithm was able to achieve 100% accuracy. After using less than 25

instances to build its training model, C4.5 algorithm was able to accurately classify

all 80,890 instances th a t were not present in the training dataset nor belong to the

malicious machine used for training. Other classifiers achieved very high accuracies

as well. All of the classifiers had accuracies above 94% overall. Such high accuracies

suggest th a t it is possible to accurately detect a set of machines that is larger than

the set of machines used for training. Such a high accuracy of classifying an unknown

machine also leads to possibilities of utilizing the developed IDS to detect intrusions

from unknown machines.

100

90

SO

10 08 11.34 12.6 13.86 1512 16.38 17.64 18.9 2016 21.42 2268 23.94 252 26.46
Training Window (s)

B C4.5 ♦ Bagging - REPTree Dagging - DecisionStump
—«fc— DecisionStump ■■■»" ■ Logistics 4 REPTree
—M— NaiveBayes Naive BayesMuttinomiaJ # Ridor

F igu re 6.3: Capture Time Maximization Graph for Classification of three clients

62

Dagging classifier’s performance fell down to under 50% for classifying 16.38

second capture time. But the accuracy increased above 94% when the classification

range was extended. No steep accuracy increases are also detected. All of the classifiers

are approaching 100% accuracy. Naive Bayes and Logistics classifiers had accuracies

under 99% while the capture window was under 21.42 seconds. All but Dagging

classifier were able to achieve accuracies above 99%. Lower performance is the result

of Dagging’s method of splitting the training data into folds and the training dataset

containing few instances. The accuracies will increase as the training set size increases,

but the point of this experiment was to identify the smallest training dataset size

possible for high accuracy classification.

Though Dagging classifier’s maximum accuracy increased by the use of a new

dataset, its worst accuracy also decreased. Minimal accuracy decreases past 50% are

indicative of a use of a testing dataset tha t differs from the training dataset. For

example, if the amount of instances in one class is bigger than the amount of instances

for another class, but a feature based pattern can not be determined, the classifier can

increase its accuracy by always selecting a class that has more instances in it - that

way the accuracy will equal to the percentage of count difference between instances

of classes. In a newly supplied dataset though, the classifier can not know the class’

instance count difference during the training stage, therefore accuracies under 50%

are possible.

Table 6.2 shows maximum accuracies for selected classifiers and corresponding

window time. C4.5 was able to achieve a 100% accuracy. T hat is, C4.5 was able to

classify 81,100 instances correctly after using 12 instances created from a different

63

machine for training. Though this should not be an expected result for all of the

experiments as C4.5 was achieving 99.8837% accuracy when classifying the same

machines it was trained on.

T able 6.2: Maximum accuracies and corresponding Capture Times of classifiers for
Classification of three clients

Classifier Capture Time (s) Maximum Accuracy
C4.5 15.12 100

Bagging - REPTree 10.08 99.9975
Dagging - DecisionStump 26.46 94.8335

DecisionStump 10.08 99.9975
Logistics 26.46 99.9815
REPTree 10.08 99.9975

NaiveBayes 25.2 99.6005
N ai veBayesMultinomial 10.08 99.9975

Ridor 10.08 99.9975

Figure 6.4 shows the maximum accuracies of the classifiers in a bar graph. All

of the classifiers’ performance increased in comparison to the dataset classification

in the previous section. NaiveBayesMultinomial performance has shown the highest

increase from 86.9219% to 99.9975%. Dagging based classification also increased from

the maximum of 84.3538% for the same machine classification to 94.8335% for the

classification of the new machine. This suggests that some features extracted from

The Windows machine are further away from the multidimensional set of features

between the Debian and Gentoo machines. Such difference will be further evaluated

in Chapter 8.

64

■ C4.5
■ Bagging - REPTree
ss Dagging - DecisionStump
■ DecisionStump
■ Logistics
■ REPTree
■ NaneBayes
■ NajreBayesMiitmomial
■ Ridor

F igu re 6.4: Maximum Accuracy within Tested Window for Classification of three
clients

Figures 6.5 and 6.6 show feature distributions between the Windows based

attacker’s machine and the PLCs and the Debian based attacker’s machine and PLCs

respectively. These graphs list all 8 of the features that describe a conversation. Figure

6.6 shows all of the instances captured from the Debian based machine within the

28-hour period, though, only a maximum of 26.46 second capture was used for training

the classifiers. While some features have no visible patterns, such as conversation

duration or average time to respond, others, such as total client and total server

retransmissions can be seen to vary greatly. These variations are what contributes to

the high accuracy classification of the data.

65

......in |
B j;______ OJUu__..........Q.QLlL
conversatfonDuration nid

F ig u re 6.5: Distribution of Features for the testing dataset. Blue is malicious, Red
is benign.

66

repeatedfTransmissionsn

ii
SA.totalctientRetransmissions

avgTimeToRespond

£
1 1

 _________ JJ.5___ 7
canversationL eng th—

. 0.12,.
awgServerRetranmissionTirae

J l

totalServerftetransmissi

M l.conversationDuratioifr

F igu re 6.6: Distribution of Features for the training dataset. Blue is malicious, Red
is benign.

6.3 Conclusion

The smallest time of packet capture needed to provide enough information

using a 0.3 session instantiation method for a high accuracy classification is under

25 seconds for the majority of tested classifiers. All of the datasets acquired for this

research contain more than 24 hours worth of packet captures, which is 345,600%

longer than the minimum time required for high accuracy classification.

In addition, when testing capture time variations in training dataset against

a dataset that contained features from different malicious machines, the accuracy of

all of the classifiers increased or stayed the same. Such a high accuracy of classifying

an unknown machine leads to possibilities of utilizing the developed IDS to detect

intrusions from unknown machines.

CHAPTER 7

SOFTWARE VARIANCES AS FEATURE
CONTRIBUTORS

Classification accuracy of a Network Telemetry based IDS highly depends on

processing times introduced by computer hardware as well as the network communica

tion paths between the benign or malicious machines and PLCs. For these experiments,

both benign and malicious machines were identical at a given hop-distance, and the

following machines were used:

1-hop Classification
• CPU: Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz

• RAM: 2GB

• NIC: Intel Corporation 82567LM-3 Gigabit Network Connection

• OS: Gentoo Linux, kernel-3.12.13-gentoo

• Python version: 2.7.1

8-hop Classification
• CPU: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz

• RAM: 16GB

• NIC: Broadcom Corporation NetLink BCM57781 Gigabit Ethernet PCIe

• OS: Gentoo Linux, kernel-3.12.13-gentoo

• Python version: 2.7.1

68

69

For all of the experiments, the PLCs were emulated using conpot on a machine

with the following configuration:

• CPU: Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz

• RAM: 2GB

• NIC: Intel Corporation 82567LM-3 Gigabit Network Connection

• OS: Gentoo Linux, kernel-3.12.13-gentoo

• Python version: 2.7.1

The IDS is designed to notify system engineers of malicious traffic. For this

research, malicious traffic is defined as any traffic directed to the PLCs that are not

originated from the designated SC ADA system. To achieve classification, the IDS

must receive all of the network packets sent to the PLCs. The IDS utilizes libpcap [71]

to capture all the traffic transmitted to the PCLs over the Modbus protocol. For this

research, Conpot emulated Modbus/TCP protocol on port 502. The system maintains

a Floating Delay Separation Boundary (FDSB) which separates traffic fingerprinting

methods to outsider and insider classification engines. This is done to improve accuracy

of classifying traffic originating from local to the ICS machines, versus the traffic

originating from machines on the internet. For example, after analyzing Netgear

WNDR4500, D-Link DI-604, and Linskys WRT300N routers, the delay feature range

is under 5 milliseconds while the communication utilizes local area network, but it

can be several orders of magnitude larger if the communication path connects distant

nodes on the internet. However, not all of the traffic originating from a distant node

can be malicious (as in the example of an engineer using remote access to troubleshoot

an ICS a t the remote site). Separation must be established in order to compare

70

local paths with local paths and distant paths with distant paths. The floating delay

separation boundary is defined as

E maXj(l) . ^ minj(Q)
n n

F D S B = ^ ^ ---------
2

where I is the set of delay values from the packets originating from the inside of the

ICS, O is the set of delay values from the packets originating from the outside of the

ICS, maXi and rain* are the ith maximum and minimum values in the given set, and

n is the amount of samples to take for the delay value which is the same for both

sums. Having a value of n too high will use older network states which may not take

place any more. However, having a value of n too low will result in a lower accuracy

of the threshold calculation. For this experiment n — 5 is used, while sets of O and I

have 50 items. These values were determined by iteratively running the classification

over 5-minute intervals for all the captured dataset and determining the combination

that results in the best classification (Table 7.1). The initial F D S B value was set to

0.025. These values were determined by analyzing 838,818 packets acquired over two

days of operation of an ICS. Figure 7.1 shows minimum and maximum response times

between two different machines on the same LAN (malicious and benign 1 hop), and

the delays introduced by moving the same machine further along the communication

path (malicious 1 hop, 2 hops, and 8 hops).

71

T able 7.1: Accuracies of separating outsider and insider traffic by varying n

A ccuracy (%) n
91.2% 2
97.3% 3
100% 4
100% 5
100% 6

0.3

0.25

0.2
§
| 0.15
F

0.1

0.05

0
Malicious lhop Malicious 2hop Malicious 8hop

F ig u re 7.1: Average Response time in a session over 1 day

Once the packet is identified as outsider/insider and sent to a proper classifier,

its arrival time is recorded and compared against the previous packet that was sent to

the same classifier. Inside-originating packets are only compared with the telemetry

of other inside-originating packets, and outside-originating packets are compared with

the telemetry of other outside-originating packets which allows the IDS to mark some

external traffic as benign as in the case of a system engineer working from home.

TVaffic to the PLCs is tagged as inside/outside traffic based on the subnet of the

packet’s IP address. Code running on the PLCs is assumed benign and IP address

spoofing from the PLCs is not expected. However, since the developed IDS uses traffic

■ min
■ max

72

anomalies, it may be possible to detect anomalies on either side of the IDS networks.

Multidirectional attack detection is part of the future work of this research. For the

sets of experiments in this chapter, one side had to be assumed benign to maintain

control of the changing variables in the experiments.

On every new packet arrival, telemetry data discussed in Section 3.1 is extracted

and sent to the classifier. A new session is instantiated on every new packet. However,

the calculations of features is done for all the packets received in the 2-second interval

- the same interval that an experimental SCADA system uses for polling PLCs. For

example, if there were 9 packets received by the classifier in the past 2-seconds, the

first packet of session n + 8 is the last packet of session n.

Several machine learning classifiers have been tested for this IDS as discussed

earlier: Naive Bayes, Multinomial Naive Bayes, Logistics, REPTree, Bagged REPTree,

DecisionStump, Degged DecisionStump, Ridor, and C4.5. Naive Bayes classifiers were

chosen to determine probability models for telemetry data because the features used

for classification can be largely independent from each other. Bagging modeling of

REPTrees was chosen because they perform well with training sets containing large

amounts of noise [64].

7.1 Hop R elationship

Telemetry based measurements are highly dependent on the amount of hops

between the client and server. As nodes are separated by a larger amount of hops, added

network systems introduce different delays into packet propagation; this introduces

73

noise. The IDS carries two classification profiles - for insider traffic and for outsider

traffic. Figure 7.1 shows that the delay increases with the amount of hops.

Differentiating between insider and outsider traffic is trivial as an outsider’s

delays are an order of magnitude larger than the insider’s (Figure 7.1). If an outside

attack is further from the PLCs than the system engineer’s outside point of entry,

differentiating between an attack and normal control packets becomes trivial as well.

However, when benign and malicious traffic originates from the same amount of hops

away from the PLCs, the system’s hardware is the one that introduces the most

important delays. Hardware and software delays become signatures that can be used

for traffic classification. Most of the tested classifiers performed better when analyzing

outsider traffic than insider traffic due to additional network delays present in varying

network paths. The results show that the network path adds a significant amount

of data to the used feature set to differentiate between two machines with a high

accuracy.

7.2 R esults

7.2.1 Insider Classification

The bagging technique of REPTree classifier was able to reach the highest

accuracy of 92.2% when classifying traffic between two computers of different hardware

configuration. These computers were separated by 1 hop. Figure 7.2 shows the

classification accuracy of all used classifiers.

The Bagging method for the REPTree classifier achieves the maximum accuracy.

However, considering the time required to create classification models, REPTree

74

classifier achieves the best accuracy while maintaining lower processing requirements.

Figure 7.3 shows the relationship of classifiers’ accuracy versus the time it took the

classifier to build a classification model. The time axis is logarithmic to better show

model development duration distribution. This telemetry based IDS includes network

load information in its feature set. Therefore classification is a time critical process

that requires fast training of the classifiers and accurate results.

£ 80

■ Bagging - REPTree
■ Dagging - DecisionStump
m DecistonStump
■ Logistic
■ REPTree
■ C4.S
■ NaiveBayes
■ NaiveBayesMuttmomial
■ Ridor

100
95
90
85

£ 80
75
70
65
60
56
50

F ig u re 7.2: Classifier Accuracy for Insiders

i f r

■Bagging - REPTree
♦ Dagging - DecisionStump
▼ DecisionStsjmp
♦ Logistic
►REPTree
4C4.5
M Naive Bayes
X Naive BayesMuttinomial
•Ridor

o .o i a io io o io .oo ioooo iooooo

F igu re 7.3: Classifier Accuracy vs Model Build Time

75

Despite very fast processing speeds of modern computers, differences between

computer hardware manifests itself in network telemetry in such a way that machine

learning classifiers can still detect those differences for a successful classification.

7.2.2 O u ts id e r C lassification

Unlike the Insider classification results, most classifiers were able to achieve

very high accuracy in classifying packets from different machines. The bagging method

of REPTree classifier was able to achieve an accuracy of 99.6%. The C4.5 classifier

fell shortly behind having an accuracy of 99.5% (Figure 7.4).

■ Bagging - REPTree
■ Dagging - DecisionStump
• DecisionStump
■ Logistic
■ REPTree
■ C45
■ NarwBayes
• NaweBayesMuttinomiai
■ Ridor

F igu re 7.4: Classifier Accuracy for Outsiders

The Decision Stump and Naive Bayes classifiers achieved a faster model build

time - 1.71s and 1.41s respectively - while maintaining a high classification accuracy

of 98.3% (Figure 7.5). Having traffic separated into insider and outsider groups also

allows for a mix and match of different classifiers for different tasks.

Features extracted from the communication of machines separated by large

network paths contain enough information to be accurately classified by machine

learning classifiers. It may be further possible to generate signatures based on these

76

features tha t would allow not only to detect an intrusion on an industrial control

system’s network, but to be able to fingerprint an attacker and determine whether

the attacker has attempted intrusions before.

100
95

90

85

80
75

70

65

60

■ Bagging-REPTree
• Dagging - DecisionStump
t DecisionStump
▲ Logistic
► REPTree
« C 4 5
MNaneBayes
X NaweBayesMultinomtal
• Ridor

0.01 0.1 100 1000
Time (s)

F ig u re 7.5: Classifier Accuracy vs Time to Build Model for Outsiders

7.2.3 D ecreasing C a p tu re In terva ls

The results above show classification accuracy for all of the Modbus/TCP traffic

captured by the IDS over a day. However, fluctuations of the network’s congestion

and throughput may reduce the classifier’s accuracy. To account for this, another

traffic capture of the communication separated by 1 hop was performed for an interval

of 5 minutes. Figure 7.6 shows the classifier accuracy for this interval. The accuracy

of Bagging for REPTree, REPTVee, C4.5, and Ridor increased in comparison to the

24-hour capture interval (Figure 7.2). Ridor was able to achieve the highest accuracy

of 94.3%.

The times required to build classification models have all been reduced sig

nificantly (Figure 7.7) in comparison to a 24-hour capture (Figure 7.3). This is an

important result as ICS IDS is processing time critical data. REPTVee was the fastest

77

classifier with a model build time of 6.00 milliseconds, and an accuracy of 92.7%. The

best performing classifier, C4.5 had a model build time of 110 milliseconds which may

still be used for a dynamic classification of incoming packets.

100

_ 80

■ Bagging - REPTree
■ Dagging - DecisionStump
■ DecisionStump
■ Logistic
■ REPTree
■ C4.5
■ NaiveBayes
■ Naive BayesMuttjnorrtial
■ Ridor

F ig u re 7.6: Classifier Accuracy for Insiders for traffic captured over 5-minute window

■ Bagging - REPTree
♦ Dagging - DecisionStump
5 DecisionStump
▲ Logistic
► REPTree
«C4.5
H NaiveBayes
X Naive BayesMuttinomial
• Ridor

0.001 0.01 0.1 1
Time(s)

£

90

80
70

60

50

F ig u re 7.7: Classifier Accuracy vs Time-to-Build Model for Insiders for traffic
captured over 5-minute window

By decreasing the capture window time to 5 minutes, accuracy of many

classifiers was increased while the time to build classification models was reduced

by several orders of magnitude. This goes along with the fact tha t network delays

fluctuate with time due to different usage factors.

78

7.2.4 Conclusion

The developed IDS reaches high accuracy classification even when tasked

to identify malicious behavior between two identical machines. Several classifiers

were able to achieve an accuracy of above 90% of packets, while maintaining low

time demand to build classification models. These results show that the developed

IDS is able to perform well without the need for high performance computations.

Average model build times were approximately 10 seconds. However, this step needs

to be performed only once, during the set up of the IDS. Once the models are built,

classification times of new information is in the order of microseconds, and creates an

insignificant burden on the system.

The results show an important relationship between the inside and outside

classified traffic. Even though the outside machines were identical, the networks

between those machines and the secured PLCs were not, which introduced more

information into the dataset and allowed the classifiers to further increase their

performance.

CHAPTER 8

IDS VERIFICATION OVER MULTIPLE
PLATFORM CONDITIONS

In order to obtain the IDS performances that can be seen in the real world, the

IDS was tested over various intrusion conditions. Since more ICSs are joining typical

business networks, possible insider threats can originate from within the business

LAN. Most businesses buy workstation machines in bulk to lower the price of purchase

[73]. This means that majority of the workstation machines a business owns are the

same hardware and software configuration. Since the developed IDS works under the

assumption tha t the provided features capture a difference between machines and

softwares, it is safe to assume that when the attack originates from a machine that

possesses the same hardware as well as software fingerprints, the IDS will not perform

as well as the results seen prior. However, this scenario is almost impossible since an

attacker must inject some code into a machine in order to gain control of it. The only

scenario when such a condition can occur, is if the attacker has physical access to the

benign machine, as is able to execute its attack without introducing new code. This

scenario can be found in Section 8.1 of this chapter.

It is common for attackers to use software other than the one used by the

SCADA system to launch their attack. If an attacker infiltrates one of the workstations

79

that has access to an ICS, but the attacker wants the attack to stay hidden, some

malicious code has to be used to execute the attack, resulting in modification of

the original SCADA software. Additionally, there exists a multitude of different

programming languages and their architecture. Both benign SCADA software and

malicious attack software can be written in a variety of compiled, interpreted, or

virtualized languages. Section 8.2 covers the IDS performance for an attack launched

by a code created through different programming languages.

Another possibility is for an attack to be launched from a workstation that

utilized a different operating system than the benign SCADA machine. In this

example, the process scheduler, network driver, and network scheduler can be written

by different developers and therefore result in different timing patterns of the output.

Variation of these features will result in increased accuracy of classification for this

IDS. An example of use of such system may be an insider threat where the insider

utilized a “live” image of an operating system. A live image means that the operating

system does not need to be installed on the hard drive of a machine and can be used

as a stealthy source of an attack. In addition, operating systems commonly used for

penetration testing can be launched live, and they contain many scripts necessary to

perform an attack. If an attacker is not knowledgeable enough to create their own

attack software, they can use of such an operating system. The results of the IDS

testing over such a scenario can be found in Section 8.3.

81

8.1 IDS Accuracy for Identical Clients

If the used SCADA software contains vulnerabilities that allow the attacker to

transmit malicious packets from the same system, or an insider manages to obtain

and configure the same SCADA software on a machine that reflects SCADA hardware,

packet signatures extracted by the developed IDS may not contain enough information

to differentiate against such an attack. In this experiment, two machines of identical

configuration were used. The hard drive of one machine was copied to the hard drive

of the other machine. The only thing that was changed was the host name of the

second machine to prevent DNS collisions on the testing network.

For this experiment, training time of 26.46 (the highest accuracy time for all

of the classifiers tested in Chapter 6) seconds as well as training time of 1 minute,

5 minutes, 30 minutes, and 3 hours was used to determine the accuracy of selected

classifiers. This scale was chosen to understand information gains in this experiment

given widespread of capture time. Higher values of the training set capture are not

used due to those times being impractical for an actual IDS deployment.

Table 8.1 shows the 10-Fold validation accuracy of all of the selected classifiers.

For this experiment, the dataset was broken into 10 segments - folds, with each fold

lasting approximately 2.24 hours. Nine folds were used for training and one for testing.

Therefore, this is an equivalent of using 20.1-hour capture for training and 2.24 hours

for testing. While this method does not provide any significant data about the data

set that can be used to improve the IDS, 10-Fold validation provides an approximate

value of how much information the data set contains about the problem.

82

T able 8.1: 10-Fold validation of selected classifiers on the dataset of two identical
machines.

C lassifier 10-Fold A ccuracy (%)
Bagging 80.0208
Dagging 74.1563

DecisionStump 64.073
Logistic 74.8511

REPTVee 79.1979
C4.5 75.69

NaiveBayes 64.292
N aiveBayesMultinomial 64.2699

Ridor 76.8364

Bagging based ensemble modeling of REPTrees was able to achieve the highest

10-Fold accuracy of 80.0208% for the data set, though, the data set is biased. Figure

8.1 shows the distribution of the data set values. There are almost twice as many

malicious sessions as there are benign, therefore, if a classifier was to always choose a

malicious class, it would have an accuracy of 64.2699%.

Figures 8.2 and 8.3 show accuracies and model build time for all of the selected

classifiers while training over a certain period of time. Most classifiers had an accuracy

around 75% while Naive Bayes and Naive Bayes Multinomial were unable to provide

an accuracy higher than blindly choosing a malicious class.

Though there was a distinct drop in classification accuracy for all of the

classifiers, it is a little surprising that some classifiers were able to achieve accuracy as

high as 79%. While the malicious and benign machines were identical in hardware

and software, they were plugged into different ports of the same switch. The switch

also had several other machines plugged in it.

83

rg p ea ted T ran sm ^

'.t l * t

3 £ Jtt-Bltotalclient Retransmissions i awqServerRetranmissionTirne

avgClientRetranmissionTime

totafSeinfeiltetransmisskHis

F igure 8.1: Feature Distribution of the data set for two identical machines. Blue is
malicious and red is benign

84

80

75

60

55
2 5 s 5 m 30 m 3 h

Capture Time
—» Daggmg

> Logistic » REPTree
' NaiveBayes -HE— Naive BayesMultinomiaJ

DedsiorvStump
C4.5
Ridor

F ig u re 8.2: Accuracies of Different Capture Intervals

100

0.1

0.01* -
25s 5 m 30 m 3 h

Capture Time
Bagging
Logistic
NaiveBayes •

■REPTree
■ Naive BayesMultinomial ■

DedsronStunp
C4 5
Ridor

F ig u re 8.3: Model Build Times for Given Capture Intervals

85

The switch’s packet scheduler can introduce some patterns that enabled

classifiers to differentiate between two machines with some however small accuracy.

Classifier accuracy for most of the selected classifiers increased dramatically when

the training time was changed from 25 seconds to 5 minutes, which suggests that

increasing the training window will have accuracy improvements for conditions that

contain little feature difference between the malicious and benign datasets.

Figure 8.3 shows the time required to build the model. The y-axis of the

graph - Model Build Time uses a logarithmic scale to better show the differences

between classifiers. Most of the classifiers had very similar build times despite orders

of magnitude variance of the size of the training data set. Overall, Bagging based

ensemble modeling using REPTVee classification had the best accuracy, but one of the

highest model build times. However, a single REPTree based classifier was able to

maintain high accuracy, while the time it took to build its model is under a second.

8.2 IDS Accuracy for Different Program ming Languages

Often times the attacker may reverse engineer the protocol used by the SCADA

system in order to present its own set of commands to seem like they came from a

fully functional system [74]. Such attacks may often by-pass packet signature based

IDSs as packet signatures become identical to the benign SCADA system. While the

internal content of the packets becomes the same as the benign system, the attackers

are more likely to use a programming language that is different from the one used by

the developers of the SCADA system.

86

This experimental scenario tests the operation of the developed IDS under the

conditions of a malicious SCADA software that was written in a different programming

language being used for the attack. Here, the benign SCADA software was written

in Python and its source code can be found in listing 1 in the appendix. Modbus

protocol was implemented by Python’s PyModbus library. The malicious SCADA

software was written in C and its source code can be found in listing 2 in the appendix.

Both of the codes result in the same logic being transmitted over the network. The

same capture times were used as in the previous section in order to provide a good

comparison of the information gain that results in varying the programming language

used as a part of the experiment.

Table 8.2 shows the 10-Fold accuracies of all but one of the selected classifiers.

C4.5 algorithm was excluded from this experiment. Most of the classifiers were able to

build its models after 15 seconds of operation, however, after 10 minutes of operation

C4.5 classifier was closed by the operating system as it used all of the 8GB of RAM.

Even if C4.5 classifier was able to achieve a high accuracy of classification, the cost of

time and memory needed for proper operation outweigh its benefit. Another outlier

for this experiment was the Logistic classfier. It was able to achieve high accuracy

of 99.1770% for its 10-Fold Validation experiment. Here, the 10-Fold validation

experiment is the same as in the previous section in its times used to train and test

the model.

87

Table 8.2: 10-Fold validation of selected classifiers on the dataset of C and Python
based clients.

C lassifier 10-Fold A ccuracy (%)
Bagging 77.5547
Dagging 61.3923

DecisionStump 60.4182
Logistic 99.177

REPTVee 76.8417
C4.5 N/A

NaiveBayes 60.409
N ai veBayesMultinomial 60.5759

Ridor 75.217

Figure 8.4 shows the feature distribution of the data set for this experiment.

While this distribution looks similar to the one with two identical systems, some of

the differences were enough to be picked up by the Logistic classifier to achieve a very

high accuracy classification. However, there are still more malicious instances than

benign, so the data set is biased. If a classifier was to blindly choose a malicious class,

it would have an accuracy of 60.5759%.

Figures 8.5 and 8.6 show the classifier accuracies and model build times

respectively. Logistic classifier is a clear outlier that was able to achieve a 99.0562%

accuracy for 25 second capture time. Its accuracy increased to 99.4323% for the

capture window of three hours. Other classifiers were able to create its models to be

approximately 75% accurate, while Dagging and Naive Bayes based classification was

as accurate as the bias of the data - at approximately 60.5%.

88

rrcpeatciiTran5inls»ton«~iiawannieToRespond iravqClientRetraninlsslonTling

imw—' i'»wn mn1 h'wpi ■■ ■'!■■>III m .JiiSfcŵ
totalClientRetransniiss!

• ** ' y

4 H* t »

\

1 ' *
î “ “ *........ * r i , " " , i " i > r J - - j

JU L
avqServerHetranmissionTinie; totalSereerftetransmisspns

' - A -

, * A. <■

{
r ' - - ' ' ' i

h{ > - - i .

j : 1
I

* ' 1

1 !
— 1 .

(

T
P

* * i , 1

/ ** ' * j- a I

-....... .1__ — JL5___ m :: a ., a m i • n o i l t _ k
conversationLength^-— ^conwersationDuratlon---- |tdass-

M B

F igu re 8.4: Feature Distribution of the data set for C and Python based clients.
Blue is malicious and red is benign

M
od

el
Bu

ild

Tim
e

(s)

Ac
cu

rac
y

(%
)

100
95
90
85
80
75
70
65
60
55
50

3h5m2 5s

Bagging
. REPTree

Capture Time
> Dagging DecisionStump
Naive Bayes ■ ' Naive BayesMultinomial •

•Logistic
■ Ridof

Figure 8.5: Accuracies of Different Capture Intervals

100

10

1

0.1
2 5 s 5 m 30 m 3h

■ REPTree-

Capture Time
■ Dagging DecisionStump a Logistic
> NaweBayes a ■ NaiveBayesMuitinomial A Ridor

Figure 8.6: Model Build Times for Given Capture Intervals

90

Based on the feature distributions in Figure 8.4, it is hard to say why the

logistic classifier was able to perform so well. However, as the logistic function is

known to perform the best with a binary class system, it may be possible that the

data provided in this dataset had a high multidimensional logistical probability of

belonging to either benign or malicious class.

Figure 8.6 shows the model build times needed to create the models for a given

capture time period. The y-axis of the graph - Model Build Time uses a logarithmic

scale to better show the differences between classifiers. Most of the classifiers had very

similar build times despite orders of magnitude variance of the size of the training

data set. However, the pattern among all of the classifiers changed in comparison to

the previous section. This suggests tha t the model time is more dependent on the

information and entropy present in the data set rather than data set size. The Logistic

classifier was able to achieve both high accuracy classification and an acceptable model

build time - 2.89 seconds for 99.0562% accuracy.

8.3 IDS Accuracy for Different Operating System s

The next step for determining the information present in the chosen features for

the developed IDS is identifying the differences in the operating systems of the benign

and malicious machines. For this experiment, 3 machines with identical hardware were

configured with a version of Windows, Debian, and Gentoo operating systems. For

each of those operating systems, a Python interpreter, PyModbus library, and a test

SCADA software written in python was uploaded and used for communication with

the PLCs protected by the developed IDS. The next three subsections look at accuracy

91

of classifying the difference between two machines, as well as using the developed

model to test the accuracy when the third machine attacks.

8.3.1 G en too an d W indow s C lassification

Table 8.3 Shows the 10-Fold validation of the Gentoo and Windows dataset.

All of the classifiers resulted in a high accuracy classification with the worst accuracy

of 99.4843% for a Naive Bayes Multinomial classifier.

T able 8.3: 10-Fold validation for Gentoo and Windows Classification

Classifier 10-Fold A ccuracy (%)
Bagging 99.9938
Dagging 99.927

DecisionStump 99.8838
Logistic 99.9777

REPTree 99.9963
C4.5 99.9913

NaiveBayes 99.9518
N ai veBayesMultinomial 99.4843

Ridor 99.9975

Figure 8.7 Shows classification accuracies for given capture windows. Most

classifiers performed well, having accuracies above 99%, however, Dagging and Naive

Bayes Multinomial classifiers improved their accuracy when the capture windows

further grew from the maximum 25 seconds used by the experiments in chapter 6.

This suggests that the total information available in 25 second capture is not enough

for these classifiers to achieve their highest possible accuracy.

Capture Time

- • —Bagging —♦—Dagging
 ♦ Logistic » REPTree

H NaiveBayes — NaiveBayesMullinomial

DedsionStump

F igu re 8.7: Accuracy of Gentoo vs Windows classification

Figure 8.8 shows the model build times for all of the selected classifiers for

a given capture time. Once again, the timing changes with the size of the training

dataset are orders of magnitude lower than the actual times, except for Naive Bayes

Multinomial and C4.5 classifiers when changing from a 30-minute to a 3-hour capture

interval. Both of these classifiers have to iterate over the dataset several times in order

to build their models. Both of them were also written in Java for these experiments.

With an increased dataset size it is likely that Java’s garbage collection was activated

in the middle of model building, which resulted in an increased time requirement.

93

0.1

5 m 30 m 3h

Capture Time

Bagging — Dagging — DecisionStump
Logistic » REPTree m C4.S
Naive Bayes — NaiveBayesMuitinomial Ridor

F ig u re 8.8: Model Build Time of Gentoo vs Windows classification

Figure 8.9 shows the accuracy of classifying a Debian machine when the Gentoo

and Windows dataset was used for training. Gentoo was assigned a benign class,

Windows was assigned a malicious class. Then the amount of features corresponding

to the appropriate capture time on the figure was extracted from the data set and

used to train the classifiers. Then, a Debian and Gentoo dataset was used; since

Gentoo was the same OS as in the training data set, Gentoo was once again asigned a

benign class while Debian was assigned a malicious class. The resulting graph shows

the accuracies of classifying the Gentoo and Debian dataset with the Gentoo and

Windows training set.

99

2 5 s 5 m 30 m 3 h

Capture Time

M Bagging ♦ Dagging DecisionStump
 * Logistic — REPTree — C4.5
 M Naive Bayes m Naive BayesMdtinomial ♦ Ridor

Figure 8.9: Accuracy of Classifying Debian With a Gentoo vs Windows Training Set

95

8.3.2 D eb ian A nd W indow s C lassification

Table 8.4 Shows the 10-Fold validation of the Debian and Windows dataset.

All but one of the classifiers resulted in a high accuracy classification. Naive Bayes

multinomial performed the worst, having an accuracy of 65.1597%, however the second

worst accuracy is Dagging based ensemble modeling with 90.7043% accuracy.

T able 8.4: 10-Fold Validation for Debian and Windows Classification

Classifier 10-Fold A ccuracy (%)
Bagging 97.755
Dagging 90.7043

DecisionStump 95.5253
Logistic 90.9226

REPTree 97.7360
C4.5 97.6565

NaiveBayes 91.1266
NaiveBayesMultinomial 65.1597

Ridor 97.5332

Figure 8.10 shows the accuracies of classifiers when classifying the Debian

and Windows dataset. Unlike the Gentoo and Windows results, accuracies given

in this experiment are lower. This suggests th a t the timing patterns of the Debian

operating system are closer to the Windows operating system than Gentoo. However,

the differences are still prevalent in order for the most classifiers to achieve an accuracy

above 90%.

96

5 5 --

50-1----------------------------,----------------------------,----------------------------
25 s 5m 30m 3 h

Capture Time

 ■ Bagging ♦ Dogging DecisionStump

 * Logistic »■■»■■■ REPTree % C4.5

—N— NaiveBayes —*-» NaiveBayesMultinomial # Ridor

F ig u re 8.10: Accuracy of Debian vs Windows Classification

97

Figure 8.11 shows the model build times for the Debian and Windows dataset.

As expected, the times differ with a change in the classifier and not with a change in the

training dataset size. However, model build time of Dagging based ensemble modeling

increased by an order of magnitude in comparison to the Gentoo and Windows dataset.

100

C apture Time

Bagging ♦ Dagging .-ap-« DecisionStump
Logistic - REPTree ■ • C4.5
NaiveBayes » NaiveBayesMuftinomiaJ—* — Rrdor

F ig u re 8.11: Model Build Time of Debian vs Windows classification

Figure 8.12 shows the accuracy of classifying Gentoo machine when the Debian

and Windows dataset was used for training. Though most of the classifiers did not

perform as well, some of them were able to learn enough information using a 3-hour

dataset to achieve an accuracy above 90%. Naive Bayes was also able to achieve an

accuracy of 97.7238% when using 25s of the training data set.

98

100
90

70

60

 X*.

30m 3 h5 m25s
Capture Time

• Bagging » Dagging — DecisionStump — Logistic
■ REPTree — C4.5 M NaiveBayes NaiveBayesMultinomia!
•Ridor

F igure 8.12: Accuracy of Classifying Gentoo With a Debian vs Windows Training
Set

99

8.3.3 D eb ian A n d G en too C lassification

Table 8.5 Shows the 10-Fold validation of the Debian and Gentoo dataset.

Once again, all but the Naive Bayes Multinomial classification was very high, with

the second worst being Naive Bayes, at 98.9167%.

T able 8.5: 10-Fold Validation for Debian and Gentoo Classification

Classifier 10-Fold A ccuracy (%)
Bagging 99.9839
Dagging 99.8875

DecisionStump 96.7971
Logistic 99.9518

REPTree 99.9852
C4.5 99.9815

NaiveBayes 98.9167
N ai veBayesMultinomial 72.3898

Ridor 99.9889

Figures 8.13 and 8.14 show the accuracy variation and model build time for

all of the selected classifiers when varying the capture time. Once again, Dagging

and Naive Bayes Multinomial were the major outliers while the rest of the classifiers

performed well. However, Dagging accuracy increased as the training set capture time

increased to 5-minute interval.

Ac
cu

rac
y

(%
)

100

95

90

70
25 s 5 m 30m 3 h

Capture Time

— Bagging ♦ Dagging - j*-. DecisionSkjmp
—♦ —Logistic - ♦ —REPTree - • - C 4 5
—M— NaiveBayes —* — Naive BayesMuitinomial Ridor

Figure 8.13: Accuracy of Debian vs Gentoo Classification

101

10

1

o .i

o .o i
25 s 5 m 30 m 3 h

Capture Time

Bagging — Dagging DecisionStump
* Logistic ►111 REPTree • C4.5
W NaiveBayes ■»■ NaiveBayesMuItinomial » Ridor

F ig u re 8.14: Model Build Time of Debian vs Gentoo Classification

Finally, Figure 8.15 shows the accuracies of classifying Windows machine with

the training dataset of Debian and Gentoo. The results are much worse for most of

the classifiers. The author speculates that the Windows machine’s features are too

different than the Debian and Gentoo machines, resulting in the confusion of the

classifiers. Dagging was able to achieve the best accuracy of 74.6119% with a training

dataset of 25-second capture time.

102

80

75

70

65

60

1 50

45

40

35

30
25s 5m 30 m 3 h

Capture Time

—■— Bagging »■" Dagging -J*— DecistonStump
—* Logistic » REPTree —# — C4.5
 H NaiveBayes —■— Naive BayesMuttinomiai • Ridor

F igu re 8.15: Accuracy of Classifying Windows W ith a Debian vs Gentoo Training
Set

While the decreased differences of classification of the Windows machine while

using Debian and Gentoo datasets shows potential pitfalls of the IDS, such a condition

occurred only when there were no hardware differences between the machines. Different

hardware should introduce more information to the system that would allow for a more

accurate classification. In addition, the classifiers were only given a single machine as

an example of malicious communication. Increasing the machine count given to the

training stage of classifiers should improve classification accuracy.

The results also show tha t a high accuracy classification of a machine not

present in the training dataset is possible. The IDS can, therefore be trained against

a few malicious machines to be able to differentiate among many machines during the

normal operation. This method makes such an IDS a viable candidate for an ICS

deployment.

CHAPTER 9

CONCLUSIONS

This dissertation covers the development and testing of a Telemetry Based

Intrusion Detection System for Industrial Control Systems. An IDS that uses network

telemetry can be created and it can achieve a high classification accuracy, protecting

nodes from malicious traffic. Such an IDS will not be vulnerable to address or

encryption spoofings, as it does not utilize the content of the packets to differentiate

between malicious and benign traffic; rather, it uses features of timing and network

sessions to determine whether the machine that sent a particular packet is, in fact,

a machine tha t is benign, as well as whether or not it resides on a network that is

benign.

The results of the experiments conducted for this dissertation establish that

such a system is possible to create and use in an environment of ICS networks. Several

features are recognized and selected as means for fingerprinting the hardware and

software characteristics of the SCADA system that can be used in pair with machine

learning algorithms to allow for a high accuracy detection of intrusions into the ICS

network. The features are extracted from the TCP flow model and include:

• Time it takes the client to respond to server’s message.

• Amount of client-side dropped packets.

104

105

• Amount of server-side dropped packets.

• Time between the repeated packet transmissions when packet drops happen.

Several feature extraction parameters are tested and optimized for maximum

performance. To determine session boundaries for feature extraction, silence based

interval of 0.3 seconds was found to result in the best accuracy while maintaining a

high amount of malicious and benign sessions. Each session is considered malicious if

it includes as least one malicious packet.

Then, the IDS was tested against identical machines, machines that were identi

cal in hardware but used different programming languages for SCADA communication

software, machines with different operating systems, machines with different hardware

specifications tha t were located on the same network, and machines with different

hardware specifications that were located on different networks. Majority of results

showed a classification accuracy of at least 95% was possible, and as the differences

between machines increased, the accuracy increased too.

However, during one of the experiments with the operating systems, it was

determined that the Windows machine was too different for the classifiers to perform

accurately when the training dataset contained only linux based machines. The

decreased differences of classification of the Windows machine while using Debian and

Gentoo datasets shows potential pitfalls of the IDS, such a condition occurred only

when there were no hardware differences between the machines. Different hardware

should introduce more information to the system that would allow for a more accurate

classification. In addition, the classifiers were only give a single machine as an example

106

of malicious communication. Increasing the machine count given to the training stage

of classifiers should improve classification accuracy.

The primary goal of further evaluation of the presented research is to test the

developed IDS on more machines at once. Given several malicious machines during the

training stage, the IDS should perform well on a larger amount of unknown machines.

Due to the high accuracy classification of only two machines, however, the author

believes it may be possible to use machine learning to create attack features of any

given machine, allowing the IDS not only to detect an incoming attack, but to verify

if the machine has attem pted an attack before.

A PPENDIX A

CODE LISTINGS

107

108

Source C ode 1 Python version of the polling SCADA System

1 i m p o r t sys , t ime
2 f r o m pymodbus. c l i e n t . sync i m p o r t ModbusTcpClient
3

4 i f l e n (s y s . a r g v) < 2:
5 sys . e x i t (” Usage : %s IP” % s y s . argv [0])
6

7

8 c l i e n t = ModbusTcpClient (sy s . argv [1] , 5502)
9

io w h i l e T r u e :
n t r y :

12 r e s u l t = c l i e n t . r e a d . c o i l s (1 ,20 , u n i t=0x01)
13 tmpStr = ” 20 c o i l s : ”
14 f o r x i n range (1 , 2 0) :
is tmpStr 4-= s t r (r e s u l t . b i t s [x - l]) + ” ”
16 p r i n t tmpStr
17 # t i m e . s l e e p (1)
18
19 r e s u l t = c l i e n t . r e a d _ d i s c r e t e _ i n p u t s (1 0 0 0 1 ,8 , un i t=0x01)
20 tmpStr = ”8 d e s c r e t e i n p u t s : ”
21 f o r x i n range (1 , 8) :
22 tmpStr + = s tr (r e s u l t . b i t s [x - l]) + ” ”
23 p r i n t tmpStr
24 # t i m e . s l e e p (1)
25
26 r e s u l t = c l i e n t . r e a d . i n p u t . r e g i s t e r s (3 0 0 0 1 , 8 , un i t=0x02)
27 tmpStr = ”8 analog v a l u e s : ”
28 f o r x i n range (1 , 8):
29 tmpStr -+-= s tr (r e s u l t . r e g i s t e r s [x —1])+” ”
30 p r i n t tmpStr
31 # t i m e . s l e e p (1)
32
33 r e s u l t = c l i e n t . r e a d . h o l d i n g . r e g i s t e r s (4 0 0 0 1 , 8 , u n i t= 0x02)
34 tmpStr = ”8 h o ld in g r e g i s t e r s : ”
35 f o r x i n range (1 , 8):
36 tmpStr + = s t r (r e s u l t . r e g i s t e r s [x —1])+” ”
37 p r i n t tmpStr
38 t ime . s l e e p (2)
39 e x c e p t K e y b o a r d ln t e r r u p t :
40 p r i n t ’K eyb oard ln terru pt c a u g h t ’
41 b r e a k

42
43
44 # r e s u l t = c l i e n t . r e a d . c o i l s (1 , 1 , un i t =0 x 0 1)
45 # p r i n t r e s u l t . b i t s [0]
46

47 c l i e n t . c l o s e ()

109

S o u r c e C o d e 2 C version of the polling SCADA System

1 # i n c l u d e < s t d i o . h >
2 # i n c l u d e < u n i s t d . h >
3 # i n c l u d e <modbus/modbus. h>
4
5 i n t m a i n (i n t argc , char *args []) (
6 modbus .t *mb;
7 u i n t l 6 - t t a b . r e g [32];
8 u i n t 8 _ t c o i l s [32];
9 i n t i ;

10

11 mb = modbus_new„tcp(” 1 9 2 . 1 6 8 . 1 . 2 7 ” , 502);
12 modbus .connect (mb) ;
13

14 w h i l e (1) {

15 m o d b u s . s e t . s l a v e (mb, 1) ;
16 m o d b u s . r e a d .b i t s (mb, 1, 20 , c o i l s);
17 p r i n t f (” 20 c o i l s : ”);
18 f o r (i = 0 ; i<20; -H-i) {

19 p r i n t f (”%d ” , c o i l s [i]) ;
20 }
21 p r i n t f (” \ n ”);
22

23 m o d b u s . r e a d . i n p u t . b i t s (mb, 10001, 8 , c o i l s);
24 p r i n t f (” 8 d e s c r e t e i n p u t s : ”);
25 f o r (i =0; i <8; -H-i) {
26 p r i n t f (”%d ” , c o i l s [i]) ;
27 }
28 p r i n t f (” \ n ”) ;
29

30 m o d b u s . s e t . s l a v e (mb, 2) ;
31 m o d b u s _r e ad - in p u t . r e g i s t e r s (mb, 30001 , 8 , t a b . r e g) ;
32 p r i n t f (” 8 analog v a l u e s : ”) >
33 f o r (i =0; i <8; -H-i) {
34 p r i n t f (”%d ” , t a b . r e g [i]) ;
35 }
36 p r i n t f (” \ n ”);
37 m o d b u s . r e a d . r e g i s t e r s (mb, 40001 , 8 , t a b . r e g) ;
38 p r i n t f (” 8 ho ld ing r e g i s t e r s : ”);
39 f o r (i =0; i <8; -H-i) {
40 p r i n t f (”%d ” , t a b . r e g [i]) ;
41 }
42 p r i n t f (” \ n ”);
43

44 S l e e p (2 0 0 0) ;
45 }
46 m od b u s .c lo s e (mb) ;

47 m odbus . free (mb) ;

48 }

BIBLIOGRAPHY

[1] Recommended practice: Improving industrial control systems cybersecurity with
defense-in-depth strategies. Technical report, Department of Homeland Security,
2009.

[2] B Drury. The control techniques, drives and controls handbook, volume 57 of
iet power and energy series. The Institution o f Engineering and Technology,
Stevenage, United Kingdom.,, 2009.

[3] Ken Curtis. A dnp3 protocol primer. DNP User Group, 2005.

[4] Jingcheng Gao, Jing Liu, Bharat Rajan, Rahul Nori, Bo Fu, Yang Xian, Wei
Liang, and CL Philip Chen. Scada communication and security issues. Security
and Communication Networks, 7(1):175-194, 2014.

[5] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect
malicious patterns. Technical report, DTIC Document, 2006.

[6] Andrew Hodges. Alan turing and the turing machine. In The Universal Turing
Machine A Half-Century Survey, pages 3-14. Springer, 1995.

[7] Gary McGraw and Greg Morrisett. Attacking malicious code: A report to the
infosec research council. Software, IEEE, 17(5):33-41, 2000.

[8] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White
paper, Symantec Corp., Security Response, 2011.

[9] Bruce Schneier. The story behind the stuxnet virus. Forbes, com, 2010.

[10] Aleksandr Matrosov, Eugene Rodionov, David Harley, and Juraj Malcho. Stuxnet
under the microscope. ESET LLC (September 2010), 2010.

[11] L Todd Heberlein and Matt Bishop. Attack class: Address spoofing. In Proceedings
of the 19th National Information Systems Security Conference, pages 371—377,
1996.

[12] Bonnie Zhu, Anthony Joseph, and Shankar Sastry. A taxonomy of cyber attacks
on scada systems. In Internet of Things (iThings/CPSCom), 2011 International
Conference on and 4th International Conference on Cyber, Physical and Social
Computing, pages 380-388. IEEE, 2011.

110

I l l

[13] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control systems
(ics) security. N IST Special Publication, pages 800-82, 2011.

[14] Siddharth Sridhar, Adam Hahn, and Manimaran Govindarasu. Cyber-physical
system security for the electric power grid. Proceedings of the IEEE, 100(1):210—
224, 2012.

[15] Yilin Mo, Sean Weerakkody, and Bruno Sinopoli. Physical authentication of
control systems: Designing watermarked control inputs to detect counterfeit
sensor outputs. Control Systems, IEEE, 35(1):93-109, 2015.

[16] Juan Lopez. Personal Communication, December 2013.

[17] Modbus Application Protocol Specification Modbus-IDA. V. 1.1 b. Hopkinton,
Massachusetts (www. modbus. org/docs/Modbus Application Proto col VI lb.
pdf), 2006.

[18] Andy Swales. Open modbus/tcp specification.

[19] Igor Nai Fovino, Andrea Carcano, T De Lacheze Murel, Alberto Trombetta,
and Marcelo Masera. Modbus/dnp3 state-based intrusion detection system. In
Advanced Information Networking and Applications (AINA), 2010 24th IEEE
International Conference on, pages 729-736. IEEE, 2010.

[20] Andrey Belenky and Nirwan Ansari. Ip traceback with deterministic packet
marking. IEEE Communications Letters, 7(4):162-164, 2003.

[21] Yong Sheng, Keren Tan, Guanling Chen, David Kotz, and Andrew Campbell.
Detecting 802.11 mac layer spoofing using received signal strength. In INFOCOM
2008. The 21th Conference on Computer Communications. IEEE, pages 1768-
1776. IEEE, 2008.

[22] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated
encryption in ssh: provably fixing the ssh binary packet protocol. In Proceedings
of the 9th ACM Conference on Computer and Communications Security, pages
1-11. ACM, 2002.

[23] Klaas Apostol. Brute-force Attack. SaluPress, 2012.

[24] Yinqian Zhang, Fabian Monrose, and Michael K Reiter. The security of modern
password expiration: an algorithmic framework and empirical analysis. In
Proceedings of the 17th ACM Conference on Computer and Communications
Security, pages 176-186. ACM, 2010.

[25] Naoum Sayegh, Ali Chehab, Imad H Elhajj, and Ayman Kayssi. Internal security
attacks on scada systems. In Communications and Information Technology
(ICCIT), 2013 Third International Conference on, pages 22-27. IEEE, 2013.

112

[26] Graham Clifford Goodwin, Stefan F Graebe, and Mario E Salgado. Control
system design, volume 240. Prentice Hall New Jersey, 2001.

[27] Thomas Morris, Rayford Vaughn, and Yoginder Dandass. A retrofit network
intrusion detection system for modbus rtu and ascii industrial control systems. In
System Science (HICSS), 2012 45th Hawaii International Conference on, pages
2338-2345. IEEE, 2012.

[28] Symantec. Symantec internet security threat report. 2013.

[29] Dillon Beresford. Exploiting siemens simatic s7 pics. Black Hat USA, 2011.

[30] Dong Wei, Livio Dalloro, and Yan Lu. Application layer security proxy for
automation and control system networks, June 17 2014. US Patent 8,756,411.

[31] Andrea Carcano, Alessio Coletta, Michele Guglielmi, Marcelo Masera, Igor Nai
Fovino, and Alberto Trombetta. A multidimensional critical state analysis for
detecting intrusions in scada systems. Industrial Informatics, IEEE Transactions
on, 7(2):179-186, 2011.

[32] Steven Cheung, Bruno Dutertre, Martin Fong, Ulf Lindqvist, Keith Skinner, and
Alfonso Valdes. Using model-based intrusion detection for scada networks. In
Proceedings of the SCADA security scientific symposium, pages 1-12, 2007.

[33] Men Long, Chwan-Hwa John Wu, and John Y Hung. Denial of service attacks on
network-based control systems: impact and mitigation. Industrial Informatics,
IEEE Transactions on, l(2):85-96, 2005.

[34] Sangkyo Oh, Hyunji Chung, Sangjin Lee, Kyungho Lee, Su-Hyun Kim, Im-Yeong
Lee, Shinsaku Kiyomoto, Yutaka Miyake, Hee Bong Choi, Hyuk Joong Yoon,
et al. Advanced protocol to prevent man-in-the-middle attack in scada system.
International Journal o f Security and Its Applications, 8(2): 1-8, 2014.

[35] Igor Nai Fovino, Alessio Coletta, Andrea Carcano, and Marcelo Masera. Critical
state-based filtering system for securing scada network protocols. Industrial
Electronics, IEEE Transactions on, 59(10):3943-3950, 2012.

[36] Niv Goldenberg and Avishai Wool. Accurate modeling of modbus/tcp for intrusion
detection in scada systems. International Journal of Critical Infrastructure
Protection, 6(2):63-75, 2013.

[37] GD Kurundkar, NA Naik, and SD Khamitkar. Network intrusion detection
using snort. International Journal of Engineering Research and Applications,
2(2):1288-1296, 2012.

113

[38] Thomas H Morris, Bryan A Jones, Rayford B Vaughn, and Yoginder S Dandass.
Deterministic intrusion detection rules for modbus protocols. In System Sciences
(HICSS), 2013 46th Hawaii International Conference on, pages 1773-1781. IEEE,
2013.

[39] Masood Parvania, Georgia Koutsandria, Vishak Muthukumary, Sean Peisert,
Chuck McParland, and Anna Scaglione. Hybrid control network intrusion
detection systems for automated power distribution systems. In Dependable
Systems and Networks (DSN), 2014 44th Annual IE EE /IF IP International
Conference on, pages 774-779. IEEE, 2014.

[40] Nathan Wallace, Stanislav Ponomarev, and Travis Atkison. A dimensional
transformation scheme for power grid cyber event detection. In Proceedings of
the CIRSC conference, pages 1-12, 2014.

[41] Nathan Wallace, Sean Semple, and Travis Atkison. Identification of state
parameters for stealthy cyber-events in the power grid using pea. In PES General
Meeting— Conference & Exposition, 2014 IEEE, pages 1-5. IEEE, 2014.

[42] Christopher Zimmer, Balasubramany Bhat, Frank Mueller, and Sibin Mohan.
Intrusion detection for cps real-time controllers. In Cyber Physical Systems
Approach to Smart Electric Power Grid, pages 329-358. Springer, 2015.

[43] Jorge Valenzuela, Jianhui Wang, and Nancy Bissinger. Real-time intrusion
detection in power system operations. Power Systems, IEEE Transactions on,
28(2): 1052-1062, 2013.

[44] Matti Mantere, Ilkka Uusitalo, Mirko Sailio, and Sami Noponen. Challenges of
machine learning based monitoring for industrial control system networks. In
Advanced Information Networking and Applications Workshops (WAINA), 2012
26th International Conference on, pages 968-972. IEEE, 2012.

[45] Matti Mantere, Mirko Sailio, and Sami Noponen. Network traffic features for
anomaly detection in specific industrial control system network. Future Internet,
5(4):460-473, 2013.

[46] Matti Mantere, Mirko Sailio, and Sami Noponen. A module for anomaly detection
in ics networks. In Proceedings of the 3rd International Conference on High
Confidence Networked Systems, pages 49-56. ACM, 2014.

[47] Wei Gao, Thomas Morris, Bradley Reaves, and Drew Richey. On scada control
system command and response injection and intrusion detection. In eCrime
Researchers Summit (eCrime), 2010, pages 1-9. IEEE, 2010.

114

[48] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. Securecore:
A multicore-based intrusion detection architecture for real-time embedded systems.
In Real-Time and Embedded Technology and Applications Symposium (RTAS),
2013 IEEE 19th, pages 21-32. IEEE, 2013.

[49] J Visumathi, KL Shanmuganathan, and KA Muhamed Junaid. Misuse and
anomaly-based network intrusion detection system using fuzzy and genetic
classification algorithms. Fuzzy Systems, 4(4):137-141, 2012.

[50] Fanglu Guo and Tzi-cker Chiueh. Sequence number-based mac address spoof
detection. In Recent Advances in Intrusion Detection, pages 309-329. Springer,
2006.

[51] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Computing Surveys (CSUR), 41(3): 15, 2009.

[52] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, and Vincenzo DElia. Charac
terizing network traffic by means of the netmine framework. Computer Networks,
53(6):774-789, 2009.

[53] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic classification using
clustering algorithms. In Proceedings of the 2006 SIGCOMM workshop on Mining
Network Data, pages 281-286. ACM, 2006.

[54] Otis Alexander, Hagen Lauer, Nicolai Kuntze, and Michael Jager. Enhancing
intrusion detection in substation networks. 2014.

[55] Min Wei and Keecheon Kim. Intrusion detection scheme using traffic prediction
for wireless industrial networks. Communications and Networks, Journal of,
14(3):310-318, 2012.

[56] Naoum Sayegh, Imad H Elhajj, Ayman Kayssi, and Ali Chehab. Scada
intrusion detection system based on temporal behavior of frequent patterns.
In Mediterranean Electrotechnical Conference (MELECON), 2014 17th IEEE,
pages 432-438. IEEE, 2014.

[57] Nathan Wallace and Travis Atkison. Observing industrial control system attacks
launched via metasploit framework. In Proceedings o f the 51st ACM Southeast
Conference, ACMSE ’13, pages 22:1-22:4, New York, NY, USA, 2013. ACM.

[58] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. Wireshark & Ethereal network
protocol analyzer toolkit. Syngress, 2006.

[59] Ian H W itten and Eibe Frank. Data Mining: Practical machine learning tools
and techniques. Morgan Kaufmann, 2005.

115

[60] Pallavi Asrodia and Hemlata Patel. Analysis of various packet sniffing tools for
network monitoring and analysis. International Journal of Electrical, Electronics
and Computer Engineering, l(l):55-58, 2012.

[61] Lukas Rist, Johnny Vestergaard, Daniel Haslinger, and John Smith. Conpot
ics/scada honey pot.

[62] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling tcp latency. In
INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, volume 3, pages 1742-1751.
IEEE, 2000.

[63] Florian Hisch. Performance evaluation of tcp flows. Network, 79, 2014.

[64] Gareth James, Daniela W itten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning. Springer, 2013.

[65] David D Lewis. Naive (bayes) at forty: The independence assumption in
information retrieval. In Machine learning: ECML-98, pages 4-15. Springer,
1998.

[66] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive
bayes text classification. In AAAI-98 workshop on learning for text categorization,
volume 752, pages 41-48. Citeseer, 1998.

[67] David W Hosmer, Stanley Lemeshow, and Rodney X Sturdivant. Introduction to
the logistic regression model. Wiley Online Library, 2000.

[68] C Lakshmi Devasena, T Sumathi, W Gomathi, and M Hemalatha. Effectiveness
evaluation of rule based classifiers for the classification of iris data set. Bonfring
International Journal of Man Machine Interface, 1 (Special Issue Inaugural Special
Issue) :05-09, 2011.

[69] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes, and
Sally Jo Cunningham. Weka: Practical machine learning tools and techniques
with java implementations. 1999.

[70] John Ross Quinlan. C f - 5: programs for machine learning, volume 1. Morgan
Kaufmann, 1993.

[71] Luis Martin Garcia. Programming with libpcapisniffing the network from our
own application. Hakin9-Computer Security Magazine, pages 2-2008, 2008.

[72] Stanislav Ponomarev, Nathan Wallace, and Travis Atkison. Detection of ssh host
spoofing in control systems through network telemetry analysis. In Proceedings
of the CIRSC conference, pages 1-12, 2014.

116

[73] Robert J Kauffman and Bin Wang. Bid together, buy together: On the efficacy of
group-buying business models in Internet-based selling. CRC Press Boca Raton,
FL, 2002.

[74] Nathan Wallace and Travis Atkison. Observing industrial control system attacks
launched via metasploit framework. In Proceedings of the 51st ACM Southeast
Conference, page 22. ACM, 2013.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2015

	Intrusion Detection System of industrial control networks using network telemetry
	Stanislav Ponomarev
	Recommended Citation

	00001.tif

