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ABSTRACT

Industrial Control Systems (ICSs) are designed, implemented, and deployed in 

most major spheres of production, business, and entertainment. ICSs are commonly 

split into two subsystems - Programmable Logic Controllers (PLCs) and Supervisory 

Control And Data Acquisition (SCADA) systems - to achieve high safety, allow 

engineers to observe states of an ICS, and perform various configuration updates. 

Before wide adoption of the Internet, ICSs used “air-gap” security measures, where the 

ICS network was isolated from other networks, including the Internet, by a physical 

disconnect [1]. This level of security allowed ICS protocol designers to concentrate 

on the availability and safety of operation of physical systems while decreasing the 

need for many cyber security implementations. As the price of networking devices 

fell, and the Internet received global adoption, many businesses became interested 

in the benefits of attaching ICSs to wide and global area networks. However, since 

ICS network protocols were originally designed for an air-gapped environment, it did 

not include any of the security measures needed for a proper operation of a critical 

protocol that exposes its packets to the Internet.

This dissertation designs, implements, and evaluates a telemetry based Intrusion 

Detection System (IDS). The designed IDS utilizes aggregation and analysis of the 

traffic telemetry features to classify the incoming packets as malicious or benign. An 

IDS that uses network telemetry was created, and it achieved a high classification



accuracy, protecting nodes from malicious traffic. Such an IDS is not vulnerable to 

address or encryption spoofings, as it does not utilize the content of the packets to 

differentiate between malicious and benign traffic. The IDS uses features of timing 

and network sessions to determine whether the machine that sent a particular packet 

and its software is, in fact, a combination that is benign, as well as whether or not 

it resides on a network that is benign. The results of the experiments conducted 

for this dissertation establish that such system is possible to  create and use in an 

environment of ICS networks. Several features are recognized and selected as means 

for fingerprinting the hardware and software characteristics of the SCADA system 

that can be used in pair with machine learning algorithms to allow for a high accuracy 

detection of intrusions into the ICS network. The results showed a classification 

accuracy of at least 95% is possible, and as the differences between machines increase, 

the accuracy increases too.
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CHAPTER 1

INTRODUCTION

Industrial Control Systems (ICSs) are designed, implemented, and deployed in 

most major spheres of production, business, and entertainment. From orchestrating 

advanced maneuvers of the International Space Station to controlling the speed of 

a roller coaster, ICSs are able to process complex data and safely perform designed 

tasks. Safety is a number one priority when dealing with physical devices [1].

ICSs are commonly split into two subsystems - Programmable Logic Controllers 

(PLCs) and Supervisory Control And Data Acquisition (SCADA) systems - to 

achieve high safety, allow engineers to observe states of an ICS, and perform various 

configuration updates. PLCs are small processing systems which are able to modify 

the behavior of the controlled devices and receive input from the system’s sensors. The 

SCADA system allows engineers to monitor the ICS state and modify its parameters 

as needed.

The communication between PLCs and SCADA system can be transmitted over 

a wide variety of protocols and mediums. Originally, ICSs used wired communication 

methods tha t utilized serial protocols that were based on RS-232 specification. The 

medium was a dedicated transmission channel that could be used only by ICS.

1
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1.1 ICS Vulnerabilities

Before wide adoption of the Internet, ICSs used “air-gap” security measures, 

where the ICS network was isolated from other networks, including the Internet, by a 

physical disconnect [1]. To perform an attack on an isolated ICS, an attacker would 

have to gain physical access to the ICS’ network, and either penetrate and use the 

hardware of the ICS to transm it malicious commands, or attach a new node to the 

ICS network. This level of security allowed ICS protocol designers to concentrate on 

the availability and safety of operation of physical systems while decreasing the need 

for many cyber security implementations.

As the price of networking devices fell, and the Internet received global adoption, 

many businesses became interested in the benefits of attaching ICSs to wide and global 

area networks. The benefits included engineers gaining an ability to monitor and fix 

critical problems remotely. Off site engineers were now able to remotely reconfigure 

ICSs, which gave them more time to work on problem solving when the system 

malfunctioned. The price of implementing geographically dispersed ICSs, where PLCs 

and SCADA systems may be miles away from each other, decreased with the spread 

of the Internet. The critical infrastructure Smart Power Grid design implements one 

such ICS where each house has its own controller - a smart meter - that transmits 

usage information to  the power company and may turn off the house’s power for 

maintenance or lack of payment [1].

ICSs started to use some of the aspects of business’ networks for their purpose. 

Protocols were created to  allow system control of ICS machines. One of the most 

common protocols used for transmitting ICS data is Modbus. Originally this protocol
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was created for use over a serial RS-232 communication. To allow for a  seamless 

integration and merger of ICS and business networks, the Modbus protocol was 

wrapped into a Transmission Control Protocol commonly used in computer networking 

and became known as Modbus/TCP. Modbus packets could now traverse the Internet 

and connect ICS nodes that were miles apart without the need to lay expensive copper 

wiring between those nodes.

Since Modbus was originally designed for an air-gapped environment, it did 

not include any of the security measures needed for a  proper operation of a critical 

protocol that exposes its packets to the Internet. The attack vectors for attacking 

PLCs and SCADA systems alike include man-in-the-middle, DoS, spoofing, packet 

injection, and reconnaissance attacks. However, depending on the direction of packet 

flow, these attacks may affect PLCs, SCADA, or both. In addition, there exists many 

different ICS protocols. While some standard ICS protocols were created, different 

manufacturers choose to use different protocols, which make it difficult to assess 

possible vulnerabilities for all ICSs [4].

Possible vulnerabilities can result in an attacker performing many tasks from 

planting a virus, to getting systems’ sensitive data or joining a machine to the botnet. 

Christodorescu says that it is a “game between malicious code writers and researchers 

working on malicious code detection” [5] when talking about the use of malware and 

the creation of anti-virus methods, but the same principle applies to many aspects 

of security, including network security. Networks transm it any data tha t the nodes 

provide. The data transmitted can be any sequence of commands that a host machine 

understands, or it can be a machine code used to avert the underlying machine’s logic.
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Any Turing-complete machine can run malicious code th a t is designed to “harm  or 

subvert a system’s intended functionality.” Applications utilizing such code are known 

as “malware” [6, 7]. Turing-complete machines include a vast set of devices - from 

personal computers and cell phones, to machinery automation and utility distribution 

controllers that ICS represents. All of these devices can communicate over a network, 

which means they can be infected by malicious code without any user interaction. 

Non-networked devices can also be compromised by such code through user interaction 

- connecting it to a computer, inserting a flash drive that contains infected files, or 

transferring data in any other means.

Stuxnet was one of the largest and most complicated attacks deployed that 

targeted an industrial control system [8]. Stuxnet was a worm, a malicious application 

that is capable of replicating and spreading itself over a network, discovered in June 

2010. However, unlike most worms, Stuxnet was developed to target ICS networks. 

To hide the worm from the cyber-security community, the attackers prevented it from 

inflicting any damage in networks that did not contain specific properties of an ICS 

network. Once inside a vulnerable computer with no ICS software, the Stuxnet worm 

could propagate using USB drives or network connectivity. Stuxnet was allowed to 

duplicate itself only 3 times when propagating over a USB drive, but there was no 

limit on network propagation [8, 9, 10]. However, when ICS properties were discovered, 

Stuxnet would present itself to PLCs as a SCADA system and perform man-in-the- 

middle attacks, reprogramming PLCs to perform different actions, thereby bringing 

the system to a critical state. Stuxnet penetrated the SCADA system of Iranian
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nuclear facilities and caused centrifuge motors to change their spinning frequency, 

which destroyed centrifuges [8].

ICSs have been a target of many cyber-attacks. Unlike attacks of information 

technology, attacks on ICSs may not only destroy a  company’s rating and cause 

financial problems, but may also damage equipment and the environment, as well as 

present a threat to human lives. When engineers design the logic of ICS controllers, 

their primary goal is to maintain system stability and safety. However, as ICS 

controllers get attached to wide and global area networks, they become vulnerable to 

a multitude of attacks.

1.2 ICS Protocol Security

Network models that are currently implemented allow for easy access to various 

networked systems through a multitude of mediums, devices, and implementations. 

Cell phones can communicate with high-end servers or even supercomputers over 

WiFi, desktops can use cell phone’s cellular networks, smart watches can communicate 

with the same servers by using Bluetooth, and cell phone’s connection. Current 

approaches have allowed widespread adoption of computer networks. Network models 

create abstraction layers and keep some information such as properties of the sender’s 

connection, sender’s architecture and configuration, as well as sender’s location, away 

from applications. Lack of such information reduces the ability to establish the 

authenticity of the host transmitting the data [11]. Additionally, an attacker can 

perform data manipulations on the network to achieve penetration of target machines 

and spoof the authenticity of the transmitted packets [12].
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Many protocols have been created since the introduction of Modbus/TCP. 

Some of them were adopted from the serial communication over copper wires based on 

RS-232 protocol and just like Modbus, were wrapped in a TCP protocol. Others were 

specifically designed for use in a new interconnected configuration of ICS networks. 

However, there are currently no set standard protocol for use in an ICS environment. 

Many manufactures create their own proprietary protocols that are incompatible with 

other manufacturers. The ICS market is very segmented, which makes it hard to 

secure all of the ICSs due to millions of different vulnerabilities being spread across of 

millions of different protocols [13].

1.3 Intrusion D etection  System s

One of the approaches to securing the communication of network attached 

ICSs is an Intrusion Detection System (IDS). Such a system operates by monitoring 

data that is transmitted through the network. At its core, IDSs must be able to alert 

system engineers when intrusions are detected, however, some IDSs are also able to 

block the malicious traffic, resulting in an intrusion prevention. The state of the art 

research of IDSs is covered in Chapter 2. Many current research efforts are attempting 

to apply the Information Technology (IT) perspective to the problem of securing ICSs. 

However, ICSs have unique features that prevent proper operation of high-confidence 

Intrusion Detection Systems. System engineers may sometimes need to execute the 

same sequences of commands that an attacker may want to execute in order to deal 

damage to the system. For example, an engineer may want to turn a high-speed fan off 

for repairs, or an attack may want to turn it off to overheat another part of the control
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system. Additionally, stability and availability of the ICS is crucial to its operation. 

Unlike a  business network, an unstable ICS may lead to damaged equipment or even 

loss of life.

This dissertation develops and evaluates a machine learning based IDS that 

utilizes a  unique set of features which allows for a transparent intrusion detection 

without affecting the stability of underlying ICS. The author hypothesises that such 

system is possible to create and use in an environment of ICS networks. The features 

used for traffic classification are obtained by analysis of TCP session flows that will 

be covered in detail in Chapter 3. By utilizing TCP session flow it becomes possible 

to differentiate between the machines that created TCP packet even if two packets 

that originate from different machines contain identical signatures. This means that 

many techniques that help the attackers to mask themselves from many IDSs will not 

work. In addition, the developed IDS will not need any exception handling for critical 

situations such as a component shutdown by an engineer. The IDS identifies packets’ 

source which is a combination software and hardware as malicious or benign. Benign 

packets are allowed to traverse the network while malicious packets are logged and 

dropped from the network. The developed IDS is evaluated in Chapters 4-8.



CHAPTER 2

LITERATURE REVIEW

Stuxnet was a wakeup call to many ICS engineers. Securing industrial control 

systems from cyber attacks became a top priority [1]. Unlike business networks, an 

attack on ICS can result not only in information leak, but a physical damage. As a 

result, security of cyber-physical systems is now a world-wide concern, and various 

intrusion detection, attack mitigation, and attack obfuscation techniques are being 

researched.

Various security implementations for ICSs have been suggested. Sridhar et 

al. [14] covers many problems specific to these systems while targeting the security 

of electric power grid. Security, forensics, accountability, as well as resilience, and 

dependency of the information communication channels are important in the realm of 

ICS security. In order to better understand the problem of securing industrial control 

systems, the state-of-the-art research, as well as current vulnerabilities and attack 

vectors of the Industrial Control Systems will be covered in the following sections.

2.1 ICS Protocols

While much work has been put into the research of Intrusion Detection systems, 

research efforts also target the creation of new communication protocols that allow 

for safe communication between ICS nodes, avoiding many different attack vectors.
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Mo et al. [15] suggests the use of physical watermarking for ICS protocols. Physical 

watermarking works similar to cryptography, however, it is based on the fact that 

many components of an ICS work in tandem, and injecting a specific signal at one 

point of a control system will propagate changes throughout all of the sensors used 

by the ICS. Mo was able to achieve sensor verification by injecting a crafted noisy 

signal and observing the sensor changes reported. Sensors axe deemed malicious if the 

reported change did not match the change that has to be created by the input signal.

Creating new, secure protocols allows mitigation of many cyber attacks. 

However, the implementation of these protocols often requires replacement of the 

controllers currently used as well as inability to use controllers that rely on different 

protocols for their security. There are many manufacturers that create incompatible 

industrial system controllers. The creation of new control protocols results in even 

greater segmentation of the controller market. To prevent segmentation, controller 

manufacturers instead use the protocols th a t are compatible with more controllers. 

Many cyber-physical system engineers also prefer well-evaluated protocols due to their 

reliability [16]. Reliability is the second highest priority while designing most ICSs. 

Modbus and DNP3 axe a few of the well established, reliable protocols on the market.

2.1.1 M odbus

Modbus is a control system serial data transmission protocol which originated 

in 1979. The first Modbus implementations used bit oriented frame formats that were 

transmitted over RS-232 serial communication interface. Modem variants of Modbus 

have different implementations that allow it to  be transm itted over both wired and
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wireless communications including ISM, WiFi, SMS, GPRS, and TCP transmissions 

[2]. This research will concentrate on M odbus/TCP implementation.

Table 2.1 shows a structure of a Modbus packet sent over TCP network protocol. 

Transaction ID is 2 bytes long, and is similar to TCP’s sequence number. Transaction 

ID is used to maintain a proper data synchronization between different nodes of the 

network. Protocol ID is used to identify the variation of Modbus protocol. TCP 

implementation sets this value to zero. The length field specifies the length of the unit 

address, function code, and data sections. Unit address represents the address of the 

responding PLC or the PLC being queried in situations where information is routed 

using the PLCs. Otherwise, this value is set to 255 and is not used. The function 

code is used for main device operation and can include functions to read and write 

data to and from the PLC’s inputs and output, to upload new logic, or to get current 

logic in binary representation, and to perform various diagnostic procedures such as 

getting event logs, device ID numbers, and hardware exception status. Depending on 

the function, data  field may be filled by the communicating SCADA system, or the 

PLC during its response. [17]

All Modbus implementations are big-endian, however, different implementations 

utilize different data types as value representations. Some of the more common data 

types are floating points, 32-bit integers, or bit-fields. TCP implementation uses 8-bit 

characters. [18]

Modbus protocol does not implement any security features required for authen

tication, integrity checks, or anonymity. Once inside the control system network, an
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attacker may inject any packet that follows similar protocol fields into the network, 

which will then be accepted by PLCs or the SCADA system as legitimate packets.

T able 2.1: TCP Modbus packet [2]

N am e L ength
(bytes)

Function

Transaction
ID

2 Synchrinization data

Protocol
ID

2 Type of carrier used

Length 2 Bytes in this frame
Unit
address

1 For configurations where 
PCSs route packets

Function
code

1 ID of a function to be 
executed

Data variable Result of the function ex
ecuted

2.1.2 D N P 3

Distributed Network Protocol (DNP) is a set of control system protocols, 

commonly used in utilities’ control sector. DNP3 is the latest revision of the DNP 

protocol [19]. Unlike Modbus, DNP3 is more robust, supports protocol encapsulation, 

some integrity checking, and routing support. As most utilities can be represented as 

geographically dispersed control systems, DNP3 was designed to support communica

tions over a range of various mediums and devices.

Unlike Modbus, DNP3 is separated into the Application Layer, Pseudo Trans

port Layer, and Link Layer. The information transmitted over DNP3 protocol is split 

into frames by the Application layer. The DNP3 frame is represented in Table 2.2. 

Each frame begins with two bytes of a sync pattern, similar to an Ethernet frame. The
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length field specifies the length of the remainder of the frame in bytes, ignoring the 

CRC length. Link control field is used to coordinate link usage over multiple devices. 

DNP3 protocol was designed to operate as a peer-to-peer model, and carries 2 bytes 

of source and destination addresses, allowing different nodes to route the information 

appropriately. For every 16 bytes of data, a separate CRC value is calculated and 

recorded in the CRC field. Data payload can be a maximum of 250 bytes, which 

requires 16 different CRC values.

T able 2.2: DNP3 Frame [3]

Name Length
(bytes)

Function

Sync pattern 2 Frame start pattern
Frame length 1 Length in bytes of the rest 

of the frame
Link Control 1 Link layer control data
Dst. Address 2 Destination device ID
Src. Address 2 Source device ID
CRC variable Cyclic redundancy check 

value for every 16 bytes 
of data

Data variable Data transmitted by the 
application layer

The data section of the DNP3 protocol is written by the Application layer, and 

user-side software, which will vary with different implementations. The data section 

will ultimately include the function code and the data passed to or returned from a 

proper function. Some implementations support basic encryption, and authentication 

fields. Any DNP3 field can be spoofed by software, preventing the server from being 

able to determine whether the packets are arriving from an authorized location [20, 21].
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That is one of the reasons DNP3 allows for encryption based algorithms, to prevent 

illegal access and enforce data  integrity [22], However, no m atter how secure a 

cryptographic function is, it can be attacked with at least a brute force attack [23]. 

Encryption, while effective in deterring most attackers, can be broken in many different 

ways. Hashes can be reversed, users can be tricked into giving their passwords to 

phishing sites, and weak passwords can be guessed [24].

While supporting some security measures, DNP3 shows itself to be more robust 

than the Modbus, however, all of the security measures must be implemented by 

the application used, which offloads security research on the developers of a specific 

application. While encryption may deter low level attackers, the ICSs that use the 

DNP3 protocol are still vulnerable to more complex attacks, which is unacceptable 

due to the high risk of ICS malfunction.

2.2 ICS Attacks

Sayegh et al. [25] documented a wide range of attacks on ICS that include 

Denial of Service (DoS), replay, cryptographic, and fragmentation attacks. One type 

of DoS attack is a CPU shutdown attack, where an attacker transmits a command 

to shut down the CPU of a  PLC, requiring an engineer to perform a haxd-reset of 

the device. While CPU is shut down, the PLC can not communicate or process any 

information, which results in a denial of service.

Zhu et al. created a taxonomy of attacks on ICS in [12]. While most of the 

attacks require access to the ICS LAN, malicious applications such as backdoors and 

trojans can grant that access to an attacker since most of the SCADA is run on PC
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architecture machines which commonly run Windows operating system. To better 

understand the threat model of the attacks on ICS, threats can be separated into two 

categories - SCADA and PLC side attacks.

2.2.1 SC A D A -side A ttacks

SCADA attacks target the packets transmitted to the SCADA system. SCADA 

systems are commonly run on PCs [26], which are vulnerable to any attacks on their 

operating system. An attacker may acquire protocol-specific SCADA identifiers to 

mask themselves as an engineer to inject PLC values into the network that do not 

reflect the current network state, and to  stall the SCADA machine to prevent the 

SCADA engineer from knowing the state of the ICS [12].

Response injection attacks require the knowledge of the underlying control 

process, but can drastically change the representation of the control system at the 

engineer’s monitoring system [27]. A maliciously crafted response packet may result 

in a display of a stable system while the actual physical process is in a critical state.

Since SCADA systems are commonly run on PCs, a vast range of attacks on 

the PC of the SCADA system can result in a successful penetration. The Symantec 

threat report [28] states that more than 250 million different PC malware applications 

were detected in 2013. Even if the malware does not target ICS as its main goal, a 

malware present on a SCADA system can result in system malfunction.

If an attacker uses malware to penetrate the PC a SCADA system runs on, 

response injection attacks can also be created without the need of transmitting a 

malicious packet over the network, since the packet can be sent over a loop-back
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interface. Other attacks include memory space attacks on the allocated memory of 

the SCADA software which can result in full control of the displayed ICS state by the 

attacker.

2.2.2 PLC-side A ttacks

PLC attacks target the packets being sent to the controller. Once communi

cation with the controller is established without a proper IDS, an attacker has an 

ability to shut down the CPU, disable memory protection and perform code injection. 

This allows an attacker to modify the code that the PLC is running, get the state of a 

system that PLC is monitoring, find packet structure that the PLC sends to SCADA, 

overwrite the values that PLC is reporting to SCADA, and overwrite some or all logic 

that is used to control the ICS. While some of these attacks may result in information 

leakage, others can damage the physical system being controlled or misrepresent the 

system state to the monitoring engineer [29].

Wei et al. [30] developed False Data Injection attacks that target PLCs and do 

not require attackers to know the whole underlying topology of the ICS. Such attacks 

can result in a predictable malicious outcome, and damage the underlying physical 

system such as the substation.

Denial of Service (DoS) attacks covered in [27] pose a danger to both the control 

process and the information flow to the engineers. DoS attacks prevent PLCs from 

responding to queries and often need a physical (power cycle) reset in order to mitigate 

the attack. DoS attacks are present in many forms. Some utilize low throughput of 

the devices and overwhelm them with the amount of transmitted packets. Others use
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ill timed or maliciously crafted packet injections that exploit bugs in the controller’s 

code and become unresponsive.

Command injection attacks covered in [27] allow attackers to mask themselves 

as engineers and send control requests to the PLCs. Similar to the response injection 

attacks covered in Section 2.2.1, command injections utilize protocol vulnerabilities to 

allow the attackers to send maliciously formed packets to the PLCs to shift the state 

of the underlying control process.

2.3 Intrusion D etection  System s for ICS

2.3.1 State Based IDS

Carcano et al. [31] proposes a state-based intrusion detection system, which 

listens for the ICS network traffic, maintains an ICS image based on that traffic, and 

monitors for a set of state anomalies. In [32], a model based IDS is developed, where 

the communication model using Modbus protocol is analyzed and an alarm is raised 

when packets with certain fields set are transmitted.

Long et al. proposed methods of mitigating denial of service attacks that 

originate from either local or wider area networks by modeling stochastic process of 

packet delay jitter and loss [33]. Mitigating attacks on industrial control systems can 

be much harder due to the physical nature of damage occurring during an attack. 

However, some research into PLC shadowing and data  duplication has been done 

[26]. Attack mitigation techniques include the use of firewalls, recommended by the 

National Institute of Standards and Technology [13], and some protocol modifications 

to prevent man-in-the-middle attacks [34].
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In [19], a state based IDS was developed for Modbus and DNP3 protocols that 

could identify multi-packet attacks. While each individual packet of such an attack 

can be considered benign, a unique pattern of received packets may send the systems 

in a critical state. Critical state is defined as a state of an ICS tha t will result in 

damage.

The latest research by Fovino et al [35] developed a critical state based intrusion 

detection system that is able to prevent damage to physical plants. For an IDS to 

follow the state changes of an ICS, protocols used to transmit the data must be parsed, 

and state changes recorded. Fovino’s latest IDS can parse Modbus and DNP3 protocols. 

Several filtering and monitoring techniques were developed that can describe unwanted 

states of the ICS. However, there is still no single solution that can guarantee the 

security of an ICS. While a state-based IDS will monitor the state of the system being 

secured, some measures to prevent the attackers from modifying the code run on 

PLCs have to be implemented and some of the control packets have to be blocked. 

To achieve this, an IDS provides a packet language tha t can describe signatures of 

unwanted Modbus and DNP3 packets

The state-based intrusion detection system was evaluated in terms of accuracy 

and performance. Since the predicate condition will always be evaluated, the accuracy 

of IDS depends on the system capturing every packet and being able to maintain 

a synchronous state representation of the underlying ICS. To test the efficiency of 

the IDS, SCADA-to-PLC communications were simulated by transmitting 40 read 

requests, 50 write requests, and 10 special requests. The IDS was preconfigured with 

a set of 2000 rules. The system was able to handle up to 1.215 Mb/s of traffic without
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losing any alerts. When traffic was higher than 1.215 M b/s, both the packets and 

alerts loss increased linearly. [31]

Goldenberg et al. [36] developed an IDS that was able to achieve high accuracy 

of detecting response and command injection attacks into the Modbus/TCP protocol 

by developing an algorithm to construct an ICS model based on Deterministic Finite 

Automaton (DFA). DFA can be constructed due to the periodic and deterministic 

nature of an ICS network and Modbus protocol.

2.3.2 R ule Based IDS

Morris et al. [27] wrote a plugin to allow Snort to monitor Modbus over TCP 

traffic and apply intrusion detection rules to it. In their research Snort acted as a 

rule based firewall that could filter Modbus packets based on a set of rules. Snort is a 

multi-use tool for network analysis, intrusion detection, and penetration testing [37]. 

Snort can utilize various algorithms for intrusion detection such as signature based 

intrusion detection - where some features within the packets’ data match signatures 

of packets transmitted by an intruder, statistical anomaly based intrusion detection - 

detection using stochastic behavior of a previously captured traffic, as well as stateful 

protocol analysis - a technique similar to  state-based ICS IDS created by [31] and 

described above.

In [38], an additional set of rules specific to Modbus protocol is generated. Rules 

are applied to the network packet flow using a Snort plugin that allows researchers to 

parse M odbus/TCP traffic. Morris et al. developed a set of 50 rules that can detect
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malicious activity. Each rule is designed to prevent a specific attack, however no 

evaluation of the rules is reported.

Parvania et al. [39] created an IDS that utilizes the “hybrid control” rule set 

to detect intrusion in Modbus or DNP3 protocols. The researchers created a set of 

special rules tha t can detect whether the system is operating in a maintenance state 

or state of normal operation, and switch the intrusion detection rule set accordingly. 

This approach resolves the problem of activating IDS while performing maintenance 

on an ICS network. In their research, a significant timing delay was noticed while 

monitoring packet arrival during normal operation of the ICS and an incoming attack.

2.3.3 P h y sica l P ro p e r tie s  B ased  ID S

Wallace et al. [40] suggests designing an IDS custom-tailored to a specific 

ICS, where the underlying physical properties of the objects being controlled manifest 

themselves as features of the ICS that can be used to distinguish between the states 

of ICS normal operation, and attacks on a given ICS.

By utilizing principal component analysis in [41], high accuracy state classifica

tion of power grid was achieved. The reduced feature set was compared to new power 

grid states using Hotelling’s T 2 value. If the value was too high, then the new feature 

set could not exist and was determined to be malicious.

Recent research efforts [42] discovered that method execution timing of the 

PLC code can be used to determine the authority of the running code. This is a unique 

property of cyber-physical systems that allowed Zimmer et al. to achieve tracking of
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the execution process. The execution timings axe compared to preset bounds, resulting 

in a code execution time signatures that can be validated.

Similar to  Wallace et al, research effort led by Valenzuela et al. [43] used 

principal component analysis of the power flow history generated by a Monte Carlo 

simulation of the power system. The researchers tested their IDS on an IEEE 24-bus 

and 118-bus reliability test systems. For the majority of the data injection attacks 

the IDS was able to achieve an accuracy of more than 90%, while in some instances it 

reached an accuracy of 99.8%.

2.3.4 Statistical and M achine Learning IDS

Mantere et al. [44] states tha t machine learning IDS can be very useful in a 

deterministic network such as an ICS network. Unlike typical business networks, an 

ICS network has a specific periodic packet flow that contains little to no noise during 

its normal operation. Mantere et al. proposes the use of throughput, IP address, 

average packet size, timing, flow direction, as well as payload data as features used for 

machine learning.

In their further work in [45] analyzed many features listed in their original 

research, including network timing features - data that is critical to the research of this 

dissertation. Mantere et al. was not able to detect useful behavior in timing features 

to detect anomalies. However, the presented research did not target any attacks on 

the network. The research concluded that ICS networks overall have many anomalies 

present in the traffic due to miseonfiguration of the hardware.
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Most recent research by Mantere et al. [46] focuses on creating a complementary 

network security monitoring using Self-Organizing Maps as a means of machine learning. 

Their approach targets restricted IP networks and does not use any network timing 

features, but uses packet data instead. The research concludes that deterministic 

properties of ICS networks make machine learning a viable tool for network anomaly 

detection.

Gao et al. [47] used a Neural Network to  classify the ICS network traffic as 

normal and abnormal based on the operation of MSU SCADA Security Laboratory 

waster tank control system. The experiment resulted in a 100% accuracy classification 

of negative false data injection, 95% for positive false data  injection, and 84.9% for 

a random data response injection. Unfortunately, the Neural Network developed 

achieved only 12.1% accuracy for a replay attack.

Yoon et al. [48] developed a framework that operates on multi-core systems and 

allows real time intrusion detection. The developed framework uses one of the cores 

of a multi-core system to operate while protecting the processes running on the other 

cores of such system. The underlying IDS uses timing execution data and trace trees 

to create a statistical profile of the other working cores. By utilizing core operation 

data, researchers were able to achieve high accuracy of code intrusion detection.

Visumathi et al. [49] used a new Fuzzy C-Means clustering and Genetic 

Algorithm to create classification based IDS. By using KDD cup’99 data set, researchers 

were able to successfully train the classifiers to be able to detect intrusions. The 

research concluded that the use of new machine learning algorithms improves intrusion 

detection accuracy over previously used methods.
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2.3.5 Network Telem etry and M etadata Based IDS

The Internet Protocol (IP) commonly utilizes Ethernet frames to forward 

packets between multiple nodes of the network until they reach their final destination. 

To achieve this, Ethernet frame headers contain the source and destination media 

access control (MAC) addresses. While IP addresses are being assigned to different 

machine interfaces by network administrators or self-configuration protocols, MAC 

addresses are uniquely assigned to each network interface during the manufacturing 

process of the interface’s controller circuit [50].

Both IP and MAC addresses can be spoofed by software, preventing the server 

from ascertaining whether the packets are arriving from an authorized location [20, 21]. 

Spoofing is one of the reasons security-critical algorithms implement encryption to 

prevent illegal access and enforce data integrity [22], Encryption, while effective in 

deterring most attackers, can be broken, and no matter how secure a cryptographic 

function can be, it can be attacked with at least a brute force attack [23]. Hashes can 

be reversed like in Stuxnet [10], users can be tricked into giving their passwords to  a 

phishing site, and weak passwords can be guessed [24]. Network telemetry data can 

be used to detect a network intrusion when an attacker is using a different machine or 

even a different software of the authenticated machine.

There have been various studies in anomaly detection which use data mining 

and machine learning facilities to detect anomalies [51]. NetMine is a data mining 

application that specializes in understanding traffic data correlations and interactions 

[52]. While implementing methodologies similar to the ones used in this research effort,
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these studies focused on feature generation to improve traffic quality and network 

stability rather than network security.

In their works, Erman et al. [53] were able to successfully cluster similar packet 

types by analyzing transport layer statistics. By using K-Means and DBSCAN 

algorithms they were able to successfully identify protocols being used without 

extracting the data  from packets [53]. Sheng et al. showed that it is possible to 

detect host spoofing by analyzing statistical fluctuations in received signal strength of 

the packets transmitted over wireless networks [21].

Alexander et al. [54] proposed to secure critical infrastructures of industrial 

control systems by merging the Interface for M etadata Access Points (IF-MAP) 

protocol with specification-based intrusion detection protocols. IF-MAP protocol is 

an XML based protocol that can be used to transmit events about possible network 

intrusions to either humans or machines responsible for ICS security. The Metadata 

Access Point aggregates the network metadata transmitted by MAP clients and can 

decide whether to raise alarm, store, delete, or ignore given metadata messages. The 

ICS nodes then become the carriers of the MAP client code, which allows them to 

analyze the incoming traffic and submit event messages to the access point. To gather 

the required m etadata, each node encompasses a MAP client, a specification-based 

IDS, and an anti-tampering mechanism. Specification-based IDS utilize a compliance 

metric that measures a deviation of the current state of a secured device from a 

specified compliance state. The proposed anti-tampering protocol is meant to  run 

seamlessly over the established communication protocol stack, and is not meant to
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break any communication for any security events, but simply to raise a flag if a 

tampered communication was detected.

In [55] a data traffic prediction model was built based on autoregressive moving 

average of d a ta ’s time series. The intrusions were observed over a 2.4GHz wireless 

link. Researchers were able to achieve a detection ratio of above 90% by utilizing 

timing signals used for radio frequency communication. Their IDS was able to detect 

a majority of the attacks and secure a wireless sensor network.

Later, researchers proposed an IDS similar to  this research in that it uses 

temporal packet data to identify traffic anomalies[56]. Different packet signatures were 

generated for a given protocol, and probability functions were used to identify if a 

given packet was expected to arrive to the SCADA system. The paper targets BACnet 

protocol, but mentions that new protocols can be supported without changing the 

core functions of the IDS. This approach, however, can produce many false positives 

when the anomaly happens in the physical domain of the ICS (damaged plant, broken 

wire, low pressure, etc.), and the engineers try  to reprogram PLCs to mitigate the 

problem.

The developed IDS presents means of detecting malicious traffic over both 

wired and wireless networks. The IDS detects address spoofings that originate from 

insider and outsider traffic, and it does not generate false positives during critical 

states of the supervised ICS. Though the detection approach presented here may not 

withstand the dynamics of a typical enterprise LAN, the approach will be beneficial 

in the detection of spoofed hosts in control system LANs. Control system LANs 

are unique in tha t hosts generally communicate in set intervals set by the polling
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protocol utilized. [36] The detection scheme developed for this research effort is able to 

determine when communication is initiated and maintained outside of these intervals 

and, upon detection, will alert on a possible intrusion. Furthermore, with the use of 

open source tools that automate the attack process against control systems [57], this 

work proves to be fruitful as it can distinguish between malicious and benign packets.

The detection approach utilizes Wireshark, Tcpdump, and Weka applications 

for data aggregation and classification. Wireshark is a software network analyzer 

which captures network traffic and displays it in real time. This analyzer utilizes the 

libpcap library to capture network packets. It also allows system administrators to 

save all of the received packets for future analysis and extract useful information about 

these packets. Wireshark was used in this research effort to extract packet arrival 

times into a comma separated values format used to generate graphs and interpret 

the data [58].

Waikato Environment for Knowledge Analysis (WEKA) is an application 

developed by the Waikato university of New Zealand that is used to help researchers 

utilize machine learning algorithms [59]. WEKA can be used to analyze arbitrary 

data sets using a variety of machine learning algorithms. More details about used 

algorithms can be found in Section 3.2. WEKA commonly uses ARFF formatted files 

as means to store all of the features related to the classification of the data.

Tcpdump is a command-line tool developed as a front-end to the libpcap library 

[60]. Tcpdump allows researchers to  capture network traffic in a file that can be 

processed by libpcap or Wireshark. The captured file format is known as the pcap file, 

and contains entries of metadata for every packet received during the capture process
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as well as all of the data  contained in captured packets. The following chapter will 

utilize these tools to develop and test a  Telemetry based Intrusion Detection System.



CHAPTER 3

NETW ORK TELEMETRY BASED INTRUSION  
DETECTION SYSTEM

The designed IDS utilizes aggregation and analysis of the traffic telemetry 

features to classify the incoming packets as malicious or benign. Data used for design 

and evaluation of the IDS in the following chapters was generated by Conpot - a contol 

system honeypot project aimed to simulate an industrial control system network to 

attract possible intruders [61]. The SCADA part of the ICS is implemented in Python 

and C using the modbus protocol stack - pymodbus and libmodbus. Conpot was set 

to simulate a control system network that has two Siemens SIMATIC S7-200 PLCs. 

The simulation environment was chosen due to its ability to simulate the CPU of 

a PLC. Even though the timing of an actual PLC will differ from a simulated one, 

the classification depends on relative timing differences between server and clients, 

therefore classification results will not be skewed by simulation of PLCs.

A telemetry based IDS uses the understanding of session flow in a networked 

server-client model (Figure 3.1). Experimental scenarios include variations of a benign 

SCADA system and a malicious attacker’s machine using different hardware and 

software combinations. These systems were also tested while having different network 

distances between each other. The origin of control system traffic can change the
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amount of hops between the nodes as determined by the network’s routing algorithms. 

Increased hop length is more likely to introduce packet delays and dropped packets. 

The delays and packet counts are used as features for the machine learning environment. 

Possible attacks, as well as benign traffic, can originate from within the control system 

Local Area Network (LAN), within the corporate LAN, or within the Internet. Control 

System LAN traffic can be the result of a normal operation, a benign modification 

by the system engineer, or a malicious packet injection by an attacker. ICS traffic 

originating from the corporate LAN can be the result of a malicious attack from an 

insider, or any benign control and maintenance operation. However, the Department 

of Homeland Security recommends not to use corporate LANs as a means of entering 

the ICS network. The two should be separated by at least a firewall [1].

Server Client

Time to 
respond

Dropped packet

Repeated
transmissions

R epeated
transmissions

Figure 3.1 : Client-Server Session Graph

The goal of Network Telemetry based IDS is to protect PLCs and the underlying 

physical plant from malicious activity - unauthorized access and control of PLC 

hardware. Therefore, this IDS is implemented as a standalone device that monitors
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traffic between the PLCs and the rest of the network. This IDS can be launched on 

the same machine as the SCADA System to prevent response injection attacks, or 

on a dedicated machine that can shield PLCs from command injection, false data 

injection, or some denial of service attacks. The IDS must operate at every point of 

entry for a potential malicious traffic, therefore, if the secured ICS is localized - only 

one machine running this IDS is needed, however, multiple machines are required 

to secure distributed systems. Once the intrusion is detected, malicious packets are 

removed from the network and saved for future analysis by the system engineers who 

are informed about the detected anomaly.

An IDS that uses network telemetry can be created and it can achieve a high 

classification accuracy, protecting nodes from malicious traffic. Such an IDS will not 

be vulnerable to  address or encryption spoofings, as it does not utilize the content 

of the packets to differentiate between malicious and benign traffic; rather, it uses 

features of timing and network sessions to determine whether the machine that sent a 

particular packet and its software is, in fact, a  combination that is benign, as well as 

whether or not it resides on a network that is benign.

3.1 Telem etry D ata

A list of features was created by analyzing a total of 838,818 packets generated 

by the SCADA communication with the honeypot over a period of forty-eight hours. 

While the selected period may not be enough to capture all of the network variations 

for a business network due to weekly changed in the business’ network users, the 

period of two days provides plenty of information about the ICS network as the system
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is deterministic and usually operates on a period of information flow tha t is in the 

order of seconds [4]. The gathered data is the result of capturing the traffic from 

designated benign and malicious machines to  the PLCs emulated by Conpot using 

libpcap - a library created for capturing live networking data. Both malicious and 

benign machines ran the same code to achieve similar patterns of packet transmissions, 

which represent situations when both an attacker and an engineer want to execute the 

same code but for a different purpose - for example, an engineer wants to power a saw 

after the maintenance, and an attacker wanting to power a saw during the maintenance, 

while workers are in close contact with the saw. The transmission of similar functions 

is done to test the accuracy of the IDS for similar packet patterns. Different functions 

can have unique transmission patterns which are much easier to detect. The packet 

class was identified by packets’ source IP address. This information was only used 

for classifier evaluation and IP addresses were not selected as features during the 

classification process. The following features were selected and their appropriate labels 

are used within this document:

• time it takes the client to respond to server’s message: avgTimeToRespond.

•  amount of client-side dropped packets: totalClientRetransmissions.

•  amount of server-side dropped packets: totalServerRetransmissions.

•  time between the repeated packet transmissions when packet drops happen: 

avgClientRetransmissionTime, and avgServerRetransmissionTime.

• Session duration and the amount of packets present in the session: conversation- 

Length, and conversationDuration.
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Figure 3.1 shows the features listed above in a communication session graph. 

After the data was captured, the features described above were extracted from the 

recorded pcap file, and converted to an ARFF format that can be used with a machine 

learning environment. Refer to the end of Chapter 2 for more information about these 

files.

A TCP latency model described in [62] was used to determine a set of telemetry 

features for the IDS. While Cardwell et al. published their model 15 years ago, it is 

still appropriate for modelling short-lived TCP connections such as connection used 

by Modbus/TCP protocol [63]. The features were selected based on their variability 

from different machines, as well as the level of difficulty for the attackers to modify 

those features. The level of difficulty was obtained by judging the amount of time and 

money the attacker would have to spend to control these features.

The time to respond feature includes round trip time for the communication 

path as well as processing delays introduced by the client’s machine. While an attacker 

can introduce delays to his code, speeding up packet delivery times requires relocation 

and/or an upgrade of the attacking machine. Moreover, the attacker would have 

to know the exact patterns of the captured features the IDS is looking for, which 

can only be achieved by attacking the machine tha t runs the IDS or obtaining the 

original training set. Additionally, an attacker would have to know that the IDS 

utilizes those features for protection. The IDS works transparently, and aside from 

dropping malicious packets, does not modify ICS network. The features of the amount 

of dropped packets on either side of communication relates to  network congestion 

and the features of delays between those repetitions provide information about delays
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introduced by network schedulers. The combination of these two feature sets allow 

the classifiers to extract information about the network used for communication. The 

attacker can change these values if they have control of all of the nodes between the 

malicious and benign machines. Their other option would be to relocate the malicious 

machine to a network path that matches the benign path in its congestion. Figure 3.1 

shows the relationship of these features.

The selected features are protocol independent and are based on the data that 

an attacker has little to  no control over. For example, an attacker may be able to 

introduce delays into the packet flow of their machine, but the amount of dropped 

packets is largely dependent on the state  of the network between client and server. 

Introduced delays would also have to be adjusted to match the current value of the 

IDS system, which would require attacking the IDS system first and acquiring the 

data. In addition, if the attacker’s system is not fast enough to match the delays of 

the benign software, the only way to speed it up would be to upgrade their system.

Due to the nature of the telemetry data if hardware, software, and network 

combination can be matched by an attacker to those used by a benign machine, little 

to no anomalies will be detected. However, such matching requires vast knowledge of 

the hardware, software, and network performances of the benign machine. In addition, 

different attack software used to spoof MAC and IP addresses can introduce different 

telemetry signatures. Figure 3.2 shows an average delay between packet arrival on two 

similar machines; one uses benign SCADA software to query the PLCs, another uses 

a metasploit plugin to spoof mac and IP address and poll the PLCs afterwards. If the 

attacker uses the SCADA machines for an attack, Network Telemetry based IDS is
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one of a few IDS th a t can detect an intrusion, as long as some packet transmitting 

software was changed, for example, an added backdoor.

I SCADA (benign) 
f Megaspioit (mafiduous)

F ig u re  3.2: Time delays introduced by spoofing

3.2 C lassification A lgorithm s 

In order to achieve the highest accuracy, many algorithms were tested. Some 

qualities of the data set such as noise and size were taken into account when choosing 

classifiers. Aside from individual classifiers, boosting was used as a supervisory 

algorithm to reduce the bias of other classifiers. Boosting is an ensemble learning 

algorithm that aims to create a strong classifier out of many weak ones. Bayesian 

classifiers’ performance is linearly scaled with the data set and can be used in a time 

critical code. Bagging is also known as bootstrap aggregating, and is an ensemble 

machine learning algorithm that can improve accuracy of its base algorithm. For 

this research, REPTree algorithm was used as a base machine learning algorithm. 

REPTree uses information variance to build a decision tree, and then prunes it using



34

reduced-error pruning. A set of bagging-aided classifiers was chosen because they 

perform well with training sets containing large noise [64]. Several decision tree 

based classifiers were also used due to a flow-like dependence of the outcome of the 

classification on the features. The following paragraphs describe the algorithms used 

in this research with details on their characteristics and implementation.

Naive Bayes classifier assumes that all the features are independent of each 

other and follows a Bayesian probabilistic model:

p (C ).j,(F „ ,F 1,....F„ |C )
r id F * * ! , . . , * ) ---------------------.F.)

where C  is the class of dataset, F0, ..., Fn is a set of features, and p() is a probability 

function. [65]

Multinomial model of the Bayesian classification, however, is dependent on the 

frequency of reappearing features in the data-set. This allows for a higher classification 

accuracy of data with some repeating patterns. [66]

Simple Logistic classifier utilizes a binary logistic regression to describe an 

outcome in only two possible classes. It takes a set of features and applies regression 

analysis to create classification parameters. [67]

Ripple-Down Rule learner generates a default rule and creates an exception 

list using weighted error rates. Then exceptions are rated and filtered to remove 

conditions that fit multiple exceptions. [68]

A Decision Stump generates a single-feature condition that results in a binary 

classification. This results in a high speed classification, but lacks accuracy in a 

high-dimensional orthogonal data. [69]
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J48 is an implementation of C4-5 machine learning algorithm. This algorithm 

generates a decision tree based on the information gain ratio if the classification was 

split on a given tree node. [70]

3.3 D a ta  A cquisition

Classification accuracy of Network Telemetry based IDS highly depends on 

processing times introduced by computer hardware, software, and the network com

munication paths between the benign machines, malicious machines, and the server. 

Telemetry based measurements are highly dependent on the amount of hops between 

the client and server. As nodes are separated by a larger amount of hops, added 

network systems introduce different delays into packet propagation. The IDS carries 

two classification profiles - for insider traffic and for outsider traffic. Figure 3.3 shows 

how the delay increases with the amount of hops.

■ mm
■ max

Malicious lhop MaKdous 2hop Malicious Shop

F ig u re  3.3: Average Response time in a session over 1 day
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Differentiating between insider and outsider traffic is trivial as an outsider’s 

delays are an order of magnitude larger than the insider’s (Figure 3.3). If an outside 

attack is further from the PLCs than the system engineer’s outside point of entry, 

differentiating between an attack and normal control packets becomes trivial as well. 

However, when benign and malicious traffic originates from the same amount of hops 

to the PLCs, the system’s hardware is the one that introduces the most important 

delays - hardware and software delays become signatures that can be used for traffic 

classification. Most of the tested classifiers performed better when analyzing outsider 

traffic than the same classifiers analyzing the insider data due to different network 

delays present in different network paths used for communication. The results show 

th a t the network path adds a significant amount of data to the used feature set to 

differentiate between two machines with a high accuracy.

The IDS is designed to notify system engineers of malicious traffic. For this 

research malicious traffic is defined as any traffic directed to the PLCs tha t are not 

originated from the designated SCADA system. To achieve classification, the IDS 

must receive all of the network packets sent to the PLCs. The IDS utilizes libpcap 

[71] to capture all the traffic transm itted to the PCLs over the modbus protocol. 

For this research Conpot was emulating M odbus/TCP protocol on port 502. The 

system maintains a Floating Delay Separation Boundary (FDSB) which separates 

traffic fingerprinting methods to outsider and insider classification engines. This is 

done to  improve the accuracy of classifying traffic originating from local to  the ICS 

machines, versus the traffic originating from machines on the Internet. For example, 

after analyzing Netgear WNDR4500, D-Link DI-604, and Linskys WRT300N routers
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the delay feature range is under 5 milliseconds while the communication utilizes local 

area network, but it can be several orders of magnitude larger if the communication 

path connects distant nodes on the Internet. However, not all of the traffic originating 

from a distant node can be malicious (as in the example of an engineer using remote 

access to  troubleshoot an ICS at the remote site). Separation must be established in 

order to compare local paths with local paths and distant paths with distant paths. 

The floating delay separation boundary is defined as

ICS, O is the set of delay values from the packets originating from the outside of the 

ICS, maxi and mini are the ith  maximum and minimum values in the given set, and 

n  is the amount of samples to take for the delay value, which is the same for both 

sums. Having a value of n  too high will use older network states which may not take 

place any more. However, having a value of n  too low will result in a lower accuracy 

of the threshold calculation. Values n = 5 were determined experimentally to achieve 

high accuracy of feature separation while sets of O and I  have 50 items. These values 

were determined by iteratively running the classification over 5-minute intervals for 

all the captured dataset and determining the combination that results in the best 

classification. The initial F D S B  value was set to 0.025. These values were determined 

by analyzing 838,818 packets acquired over two days’ operation of an ICS. Figure 3.3 

shows minimum and maximum response times between two different machines on the 

same LAN (malicious and benign 1 hop), and the delays introduced by moving the

maxj(I )

F D S B  = —
2

where I  is the set of delay values from the packets originating from the inside of the
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same machine further along the communication path (malicious 1 hop, 2 hops, and 8 

hops).

Once the packet is identified as outsider/insider and sent to a proper classifier, 

its arrival time is recorded and compared against the previous packet that was sent to 

the same classifier. Inside-originating packets are only compared with telemetry for 

other inside-originating packets, and outside-originating packets axe compared with 

other outside-originating packets which allows IDS to  mark some external traffic as 

benign as in the case of a system engineer working from home. Training traffic to 

the PLCs is tagged as inside/outside traffic based on the packet’s IP address. Code 

running on the PLCs is assumed benign and IP address spoofing from the PLCs is 

not expected.

Several machine learning classifiers have been tested for this IDS as discussed 

earlier: Naive Bayes, Multinomial Naive Bayes, Logistics, REPTree, Bagged REPTYee, 

DecisionStump, Degged DecisionStump, Ridor, and C4.5. Naive Bayes classifiers were 

chosen to  determine probability models for telemetry data. Bagging modelling of 

REPTrees was chosen because they perform well with training sets containing large 

amounts of noise [64].



CHAPTER 4

INTRUSION DETECTION OF MALICIOUS
SSH CALLS

The work described in this chapter was published in [72]. To test the proof 

of concept for this research, an attack model was developed tha t contained benign 

and malicious clients trying to communicate with a secure server (Figure 4.1) similar 

to methodologies of Sheng at al. [21]. However, instead of using received signal 

strength of the wireless transceiver, this research effort is aiming to detect malicious 

hosts, not only on a wireless network, but in wired networks and networks of various 

infrastructures. To achieve this, inter-packet delays were used.

Benign Client

Router
Malicious Client 1m Secure Server

Malicious Client 2

F igure  4.1: Experimental Setup

Unlike the data in an Ethernet packet, the attacker has less control of the 

timings of the packets being transmitted. All of the server processed packets were

39
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captured using wireshark. Those packets were then graphed by time of arrival. Figure

4.2 shows the generated graph. All of the protocols that wireshark was able to identify 

are separated into individual categories. After observing the SSH handshake pattern, 

it became evident that a classifier can be made to differentiate between hosts.
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F igu re  4.2: Server’s normal operation

Looking at the relationships between packets, Erman et al. had to use various 

features to be able to cluster similar packets [53]. However, a node fingerprint can 

be built simply by observing differences in sequential packet arrival times. There are 

many different parameters that can affect packet arrival times. They range from the 

CPU load of the node to the load on the network between nodes. Because of these 

parameter variations, methodologies presented by this research are better suited to 

secure connections over networks of constant or near constant load, such as control

system LANs.
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To account for variance in the network and machine CPU load, standard

4.1). The authenticated window was built by p G [x — S ^ , x  + Sn ] where p  is the 

inter-packet arrival time, Sn  is standard deviation, and x  is the average inter-packet 

arrival time of the benign client.

In the experimental attack scenario, an attacker was able to gain access to a 

control system’s LAN. A portable computer was attached to the system’s LAN and 

used to execute the attacks. The attacker was able to  gain access to the encryption 

keys an authorized user had, as well as spoof the workstation’s MAC and IP addresses, 

to prevent the secure server from recognizing or logging any potentially malicious 

activity. Once the spoofing detection algorithm was established, a second trial from a 

different machine is executed to test the intrusion detection algorithm.

4.1.1 Experim ental Setup

The experimental scenario is comprised of several machines. A secure server 

was running Gentoo Linux environment on Intel Core 2 Duo E7500 CPU, 2GB RAM, 

and Intel’s 82567L-M-3 ethernet controller. A benign client was running on a separate 

machine of the same configuration. The first malicious client was running Debian 

Linux, on a BCM2835 SoC controller connected to  the LAN using RTL8188CUS

deviation was calculated over the received samples of the benign client (Equation

(4.1)

4.1 Experiment
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802.l l n  WLAN Adapter. The second malicious client was running on a  Windows 

7 AMD Phenom II X2 555 CPU machine, 8GB of RAM, and a Realtek PCIe GBE 

family network controller was used. All of the machines were connected with each 

other though a Netgear WNDR3500 wireless router (Figure 4.1).

4.2 R esu lts

Tcpdump utility was used on the secure server to log all of the packets captured 

by the server’s network card during the experiments. The first experiment determined 

a pattern of the proper SSH RSA handshake. The timings of SSH RSA handshake for 

the benign machine can be found in Figure 4.3.
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F ig u re  4.3: SSH RSA handshake

To remove the human input timings, an ssh-agent program was used to cache 

the RSA decryption key. This allows the RSA public key to be encrypted and does 

not require a user input to decrypt it while calling the ssh command.
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After the handshake pattern was established, both benign and malicious clients 

executed an SSH connection command to the secure server, while capturing all the 

packets with the tcpdump utility. SSH software was instructed to establish a connection 

using a public/private key pair, execute a uname -a command which returns a string 

of text and exits.

i #  ssh s e c u r e . s e r v e r  uname —a

All of the experimental data was recorded in a comma separated values (.csv) 

file. The deltas between packet arrival times were calculated using the first SSH 

handshake packet as a time zero packet. Time deltas were graphed against the SSH 

packet number. (Figure 4.4). The first three benign trials are SSH sessions from the 

benign machine to the secure server. RSA Handshake Pattern highlights the packets 

tha t are used in authentication. Malicious trials 1 through 3 are from the portable 

computer, while Malicious trial 4 is run on the verification machine. Packets of the 

benign connection had very small deviation, which improved detection accuracy.

0.3

M Benign Trial 1 
♦  Benign Trial 2 

Benign Trial 3
M RSA Handshake Pattern
A Malicious Trial 1

'A n- Malicious Trial 2 
-a  Malicious Trial 3 

—X— Malicious Trial 4

1 2 3  4 5 6 7 8 9  10 1 1 1 2
Packet number

Figure 4.4: Packet arrival time differences
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A classifier was then designed to measure these packet arrival differences, and 

decide whether a connected host was authorized or not. The variance in packet arrival 

times from an authorized host was measured, and standard deviation was used to 

determine whether the connection is authorized or not. Figure 4.5 shows an average 

arrival time, as well as the standard deviation window. Each column represents a 

packet in a sequence of SSH handshake authentication. Column height shows the 

average time between each packet being processed. Window on top of each column 

represents the window of benign authentication derived by p  €  [x — S n , x +  S N}.
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F ig u re  4.5: Standard Deviation of packet arrival differences

The same process was applied to the data  extracted after a malicious host 

attempted to log into the secure server. Figure 4.6 shows packet arrival differences 

for one of the malicious login attem pts. All of the times between processed packets
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were different from the times in the benign trial, allowing to classify this connection 

as malicious. These results show that a high accuracy classification can be done using 

simple classifiers when the network differences are high.

i ................... i.................... t..............
Malicious Trial 1 
Standard Deviation
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F igure  4.6: Standard Deviation of packet arrival differences during an attack



CHAPTER 5 

SESSION INSTANTIATION

One of the critical components of the developed Intrusion Detection System 

algorithm is the session capture method. When an attacker is spoofing MAC and 

IP addresses, there are two methods for them to inject data to the control system 

network - either by using TCP session spoofing, or instantiating new TCP connection. 

This section covers the basics of TCP sessions, and discusses experiments performed 

to evaluate different session instantiation techniques.

The possibility of spoofed addressing as well as TCP session injections makes 

it impossible to differentiate between communication sessions as defined by the TCP 

flow model. Therefore, to  logically group incoming traffic into sessions a new session 

definition must be created. Several session aggregation techniques were selected and 

tested for this research.

5.1 T C P Session Flows

An example TCP session flow is shown in Figure 5.1. TCP is a connection 

oriented protocol tha t utilizes internal state variables in order to maintain the 

connection. TCP session begins with a TCP handshake. The TCP handshake 

includes a 3-way packet exchange tha t is commonly explained as SYN, SYN/ACK, 

ACK. SYN is a synchronization packet sent from the client to the server. This packet
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starts a  TCP session and asks the server to establish a connection. The server then 

responds with a SYN/ACK packet, acknowledging the connection request. Afterwards, 

the client acknowledges the server’s acknowledgment with an ACK packet. This 

completes the TCP handshake and the data exchange can be started. The TCP 

session is closed with a FIN, ACK, FIN, ACK sequence. When the client decides to 

terminate the connection, it sends a FIN packet to the server. Server then sends an 

ACK packet, acknowledging the request to terminate the connection. After sending 

the ACK packet, server has time to release all of the resources used by the connection, 

and send a FIN packet of its own to notify the client that all of the resources have been 

cleared. The client then sends its final packet - ACK - to acknowledge the connection 

termination. TCP sessions axe sets of all of the packets between two nodes that start 

with the TCP handshake and end with the FIN, ACK, FIN, ACK packet sequence.

Server C lient

Time to 
respond

Dropped packet

Repeated
transmissions

.Repeated
transmissions

F igure  5.1: Client-Server Session Graph

Whenever an attacker wants to spoof and inject information into the TCP 

session, he has to inject packets in the middle of an already established TCP connection.
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But proper network telemetry can only be obtained if the data is extracted from a 

session flowr model, rather than a by-packet basis because there is no performance 

information can be present in analysis of a single packet. A single packet will only have 

the time stamp of its arrival to the server. In order to capture relative performance 

information of the TCP communication, two methods have been created and tested 

for this research.

5.2 Session Duration Based Instantiation

Silence time based session detection identifies periods of communication silence 

when silence is larger than a time threshold. New sessions are defined as a set of 

packets between the detected silence intervals when the next packet is sent towards 

the server (PLCs). This method was selected to match the periodical silence of the 

polling nature of M odbus/TCP SCADA architecture. Silence time threshold was 

determined experimentally by using 0.1 second interval increments to maximize C4.5 

based classifier accuracy. Table 5.1 and Figure 5.2 show session counts for a given 

time interval, while Table 5.2 and Figure 5.3 show accuracies achieved by the C4.5 

algorithm as well as Model Build Times (MBT) in seconds.

Malicious session defines a session that has at least one malicious packet. As 

the length of the inter-session silence increased, the count of benign sessions decreased, 

while the count of malicious sessions increased. This trade off happened due to the 

definition of the malicious session. A benign session could not have any malicious 

packets at all, while a malicious session could have any number of benign packets, as 

long as it had as least one malicious packet.
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Interval (s)

F ig u re  5.2: Silence Interval Detection session counts

T able  5.1: Generated session counts for varying silence intervals

Interval (s) Malicious Session Benign Sessions Total Sessions
0.1 51156 89943 141099
0.2 51021 42125 93146
0.3 50893 29972 80865
0.4 50893 24458 75351
0.5 50891 19430 70321
0.6 50891 14454 65345
0.7 50888 9648 60536
0.8 50886 4869 55755
0.9 50508 403 50911



50

100
99.96

99.96

99.94

99.92

99.9

99.88

99.86

99.84

99.82
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10-Fold Accuracy {%) 
10% Spilt Accuracy {%)

Integral (s)

F ig u re  5.3: Silence Interval Detection Accuracy

T able 5.2: Classification results of varying silence intervals

Interval (s) 10-Fold Accuracy (%) 10% Split Accuracy (%) MBT (s)
0.1 99.9922 99.9189 3.33
0.2 99.9914 99.8831 0.87
0.3 99.9913 99.9808 0.42
0.4 99.9920 99.8909 0.33
0.5 99.9986 99.9984 0.29
0.6 99.9985 99.9915 0.25
0.7 99.9983 99.9486 0.17
0.8 100.000 99.9701 0.49
0.9 99.9980 99.9978 0.11

Table 5.2 provides accuracies for two different classification experiments: 10- 

Fold validation, and 10% data split, as well as the time the C4.5 classifier took to build 

its model. The first experiment takes the dataset and splits it into 10 chunks. The 

classifier then uses the first 9 chunks for training, and the last chunk - for accuracy 

verification. The chunks are then rotated and the experiment is repeated ten times. 

The accuracy value in the table is the average accuracy of classification for all ten 

experiments. While this accuracy is not a good estimate of the overall classifier
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accuracy, it can be used to verify the information distribution of the dataset. If 

some parts of the dataset contained lower information about the subject, the 10- 

Fold accuracy would be a lower number. Unlike 10-Fold validation, the 10% Split 

experiment uses first 10% of the dataset for training, and the other 90% for validation.

The accuracy given in the 10% Split column refers to the classifier accuracy 

when classifying 90% of the dataset. 10% of the dataset translates to approximately 

2.5 hours of captured traffic. The interval of 0.9 was the last usable interval. Intervals 

above 0.9 are not listed because only malicious sessions were created while using such a 

large interval. While Classification accuracy seems to increase as the interval increases 

(Figure 5.3), The amount of malicious sessions in the data set start to outweigh the 

amount of benign sessions drastically. For example, if we take the amounts of sessions 

for 0.9 second interval, just choosing a malicious class over all of the data will result in 

99.208% accuracy, as there are 50508 malicious features, yet only 403 benign features. 

However, selecting a malicious class for 0.3 second interval would result in an accuracy 

of 63.936%, while the C4.5 classifier was able to achieve 99.9808% accuracy for a 10% 

Split experiment.

For the use of silence interval as a session separation method, best value is 

determined to be 0.3 seconds, as it provides high classification accuracy as well as 

approximately equal amounts of malicious and benign features. Figure 5.4 shows the 

distribution of features based on session duration and features’ class for the value of 

0.3 second interval. Figure 5.4 shows a duration based distributions of sessions based 

on the silence interval of 0.3 seconds.
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F igure  5.4: Silence Interval Session Duration and class Distributions for 0.3s Silence 
Interval

5.3 Session L eng th  B ased  In s ta n tia tio n

Session length can be used as an alternative method of extracting sessions from 

a non-interruptible TCP traffic flow. In these experiments, sessions were separated by 

counting the amount of packets already in the session. If that number is larger than 

some length and the next packet was sent to the server, a new session was instantiated. 

Tables 5.3 and 5.4 as well as Figures 5.5 and 5.6 present the data from varying session 

length separation value.

T able 5.3: Classification results of varying conversation lengths

Length (packets) Malicious Session Benign Sessions Total Sessions
1 343202 255209 598411
2 283280 157384 440664
3 183664 99144 282808
4 167121 53786 220907
5 132017 49889 181906
6 133396 21106 154502
7 120452 16223 136675
8 112428 3897 116325
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Figure 5.5: Session Length based extraction counts
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Figure 5.6: Session Length Extraction Accuracy
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T able 5.4: Classification results of varying conversation lengths

Length (packets) 10-Fold Accuracy (%) 10% Split Accuracy (%) MBT (s)
1 97.0796 97.1679 41.6
2 97.3172 97.2468 20.9
3 99.9346 99.7929 13.5
4 99.9570 99.8521 8.31
5 99.9082 99.7306 6.47
6 99.9663 99.8698 4.28
7 99.9188 99.5699 4.34
8 99.9003 99.8147 1.62

The same trend can be noticed in Table 5.3 as for the silence based extraction 

- the larger extracted session are, the less benign features are extracted due to the 

benign session being defined as having no malicious packets. However, the amount of 

malicious sessions extracted is not as stationary as with the silence based extraction. 

As the session length increases, the amount of extracted malicious sessions decreases, 

as seen in Figure 5.5.

At no point of using session length as a session detection parameter was there 

equal amount of malicious and benign sessions extracted. Moreover, when the amount 

of extracted sessions was comparable to each other, the classification accuracy was 

significantly lower than that of a silence based extraction. Comparable accuracy is 

achieved when the session has at least 3 packets. The 10% Split Accuracy of 99.7929 

is achieved however, it takes 13.5 seconds to build the model. When the distribution 

of extracted sessions is graphed (Figure 5.7), the majority of the sessions span very 

little time in contrast to  silence based sessions extraction.
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Figure  5.7: Session Length of 3 Session Duration and class Distributions

5.4 C onclusion

When an attacker is spoofing their machine’s addresses and injects traffic in 

the middle of an already-established TCP session, it becomes impossible to isolate the 

attacker’s TCP sessions and TCP sessions from a benign machine. In order to collect 

the information tha t can be used for an intrusion detection, two session aggregation 

methods were created and tested.

Overall, silence based feature extraction presents better accuracy and efficiency 

of detecting network intrusions. Both classification accuracy and model build time 

achieved were better for this method in comparison to session length based extractions. 

The proportion of benign and malicious features used for classifier training should be 

of concern. During the deployment of the developed IDS, the ratio of the benign and 

malicious features to the total feature count should be approximate to 0.5.



CHAPTER 6

OPTIMAL CAPTURE INTERVAL DERIVATION

Unlike business networks, ICS networks axe much more predictable and experi

ence little to no changes in their traffic flows [45]. The most changes are experienced 

when an exceptional situation requires engineers to modify the ICS by interrupting a 

normal ICS flow [44]. Network changes are particularly important when the engineer 

communicates with an ICS over a long distance because longer distances are more 

likely to include segments of business-like networks where network performances are 

susceptible to high magnitude changes.

Optimal capture interval must therefore be large enough to not only include 

information about the hardware performance at capture time, but all of the network 

changes needed to  accurately monitor traffic. To understand the capture time 

requirements for a training dataset, machine learning algorithms described in section 3.2 

were used on datasets of varying lengths to verify the performance of the classification 

and identify the minimal capture times needed for a high accuracy classification.

6.1 M inim izing the Training W indow

Figure 6.1 shows classification accuracies for multiple classifiers as the capture 

time increases. The whole dataset was captured in 101,890 seconds or approximately 

28 hours. The machines used as SCADA clients were identical in hardware, but
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F igure  6.1: Capture Time Maximization Graph for Classification of two clients

used two different operating systems - Gentoo and Windows. Silence based session 

extraction was used as covered in Chapter 5. Total of 80,865 instances were captures, 

out of which 50,893 instances were malicious and 29,972 instances were benign. 10.08 

seconds capture interval corresponds to approximately 8 captured instances and 26.46 

seconds capture interval corresponds to 21 captured instances. The increment of 

1.26 seconds was found to be an average conversation duration for the whole 28-hour 

capture segment when using a 0.3 second silence interval detection.

It is interesting to note that Bagging and Ridor classifiers’ accuracies experi

enced a very sharp accuracy increase with an addition of just one more instance to 

the training dataset. Since bagging is an ensemble modeling technique that splits the 

dataset further into chunks, and the addition of one more feature allowed its chunks 

to be split such that the information about the network was present in all of the 

chunks. Ripple Down Rule learner (Ridor), however, is not an ensemble modeling
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based classifier. Ridor creates a default rule and then iterates over the dataset to 

create multiple exceptions. The best exceptions are then chosen based on the amount 

of data points that the exception encompasses. The additional data point, therefore, 

allows new exceptions to encompass more data points than the original default rule. 

Decision Stump classifier was able to maintain high accuracy for all the sampling 

times. Naive Bayes Multinomial and Decision Stump based Dagging did not exhibit 

high accuracy jumps, though Dagging started having accuracy increases on larger data 

sets in comparison to the other tested classifiers. This happened due to Dagging’s way 

of further splitting the training data for ensemble modeling, but splitting an already 

small training data set resulted in loss of critical information.

Table 6.1 and Figure 6.2 show maximum accuracies of classification achieved 

within the selected capture time range. When the capture window reached 21.42 

seconds, all but two classifiers had an accuracy above 99.88%. Since such a small 

window resulted in a very high classification accuracy for the rest of the 28-hour long 

capture, a dynamic classification may provide a viable insight as a future work. Past 

PLC communication of 20 seconds can be captured in real time and used for training 

classifiers to  update network changes if such a need arises. But the captured data 

shows that ICS network changes so little over time that a 20 second capture acquires 

enough information about the environment to  accurately classify the rest of 28 hours 

of operation.
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T able 6.1: Maximum accuracies and corresponding Capture Times of classifiers for 
Classification of two clients

Classifier Capture Time (s) Maximum Accuracy
C4.5 13.86 99.8837

Bagging - REPTree 13.86 99.8837
Dagging - DecisionStump 26.46 84.3538

DecisionStump 10.08 99.8837
Logistics 20.16 99.8924
REPTree 16.38 99.8837

NaiveBayes 21.42 99.9481
N aiveBayesMultinomial 25.2 86.9219

Ridor 16.38 99.8837
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Machine learning algorithms used were able to achieve very high classification 

accuracy. More over such a high accuracy was achieved when only 25 instances were 

used for training. The resulted classification models were able to accurately classify 

between 80,750 to 80,800 other instances depending on the selected classifier. Overall, 

Naive Bayes was able to  achieve the highest accuracy of 99.9481% with the training 

time of just 21.42 seconds.

Dagging ensemble modeling based on the DecisionStump classifier performed 

the worst - at 84.3538% accuracy. Moreover, dagging was not able to classify instances 

at all when the capture time was under 12.6 seconds. Dagging utilized breaking the 

data  in several folds to  create an ensemble of classifiers, and at capture time under

12.6 seconds there were too few training instances to be broken apart for ensemble 

modeling. Unlike dagging, bagging samples its instances with replacement, which 

allows repetition of the instances, so bagging was able to perform better.

6.2 Accuracy Validation A gainst a Third M achine

Classification of a different, testing dataset was used to classify the robustness 

of the utilized feature extraction method and the ability to differentiate between 

multiple attacking targets. This different dataset contains no instances captured 

from the malicious machine used for training the classifiers, but it includes as many 

instances of a malicious machine that ran the same software while using a different 

operating system. Figure 6.3 shows the performances of selected classifiers when the 

training model was built based on the same instances used in the previous section of
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this chapter. The third machine was the same in hardware configuration as the two 

machines used in the previous section, but its operating system was Windows.

Figure 6.3 shows similar or better performances for most classifiers. C4.5 

classification algorithm was able to achieve 100% accuracy. After using less than 25 

instances to build its training model, C4.5 algorithm was able to accurately classify 

all 80,890 instances th a t were not present in the training dataset nor belong to the 

malicious machine used for training. Other classifiers achieved very high accuracies 

as well. All of the classifiers had accuracies above 94% overall. Such high accuracies 

suggest th a t it is possible to accurately detect a set of machines that is larger than 

the set of machines used for training. Such a high accuracy of classifying an unknown 

machine also leads to possibilities of utilizing the developed IDS to detect intrusions 

from unknown machines.
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62

Dagging classifier’s performance fell down to under 50% for classifying 16.38 

second capture time. But the accuracy increased above 94% when the classification 

range was extended. No steep accuracy increases are also detected. All of the classifiers 

are approaching 100% accuracy. Naive Bayes and Logistics classifiers had accuracies 

under 99% while the capture window was under 21.42 seconds. All but Dagging 

classifier were able to achieve accuracies above 99%. Lower performance is the result 

of Dagging’s method of splitting the training data into folds and the training dataset 

containing few instances. The accuracies will increase as the training set size increases, 

but the point of this experiment was to identify the smallest training dataset size 

possible for high accuracy classification.

Though Dagging classifier’s maximum accuracy increased by the use of a new 

dataset, its worst accuracy also decreased. Minimal accuracy decreases past 50% are 

indicative of a use of a testing dataset tha t differs from the training dataset. For 

example, if the amount of instances in one class is bigger than the amount of instances 

for another class, but a feature based pattern can not be determined, the classifier can 

increase its accuracy by always selecting a class that has more instances in it - that 

way the accuracy will equal to the percentage of count difference between instances 

of classes. In a newly supplied dataset though, the classifier can not know the class’ 

instance count difference during the training stage, therefore accuracies under 50% 

are possible.

Table 6.2 shows maximum accuracies for selected classifiers and corresponding 

window time. C4.5 was able to achieve a 100% accuracy. T hat is, C4.5 was able to 

classify 81,100 instances correctly after using 12 instances created from a different
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machine for training. Though this should not be an expected result for all of the 

experiments as C4.5 was achieving 99.8837% accuracy when classifying the same 

machines it was trained on.

T able 6.2: Maximum accuracies and corresponding Capture Times of classifiers for 
Classification of three clients

Classifier Capture Time (s) Maximum Accuracy
C4.5 15.12 100

Bagging - REPTree 10.08 99.9975
Dagging - DecisionStump 26.46 94.8335

DecisionStump 10.08 99.9975
Logistics 26.46 99.9815
REPTree 10.08 99.9975

NaiveBayes 25.2 99.6005
N ai veBayesMultinomial 10.08 99.9975

Ridor 10.08 99.9975

Figure 6.4 shows the maximum accuracies of the classifiers in a bar graph. All 

of the classifiers’ performance increased in comparison to  the dataset classification 

in the previous section. NaiveBayesMultinomial performance has shown the highest 

increase from 86.9219% to 99.9975%. Dagging based classification also increased from 

the maximum of 84.3538% for the same machine classification to 94.8335% for the 

classification of the new machine. This suggests that some features extracted from 

The Windows machine are further away from the multidimensional set of features 

between the Debian and Gentoo machines. Such difference will be further evaluated 

in Chapter 8.
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Figures 6.5 and 6.6 show feature distributions between the Windows based 

attacker’s machine and the PLCs and the Debian based attacker’s machine and PLCs 

respectively. These graphs list all 8 of the features that describe a conversation. Figure

6.6 shows all of the instances captured from the Debian based machine within the 

28-hour period, though, only a maximum of 26.46 second capture was used for training 

the classifiers. While some features have no visible patterns, such as conversation 

duration or average time to  respond, others, such as total client and total server 

retransmissions can be seen to vary greatly. These variations are what contributes to 

the high accuracy classification of the data.
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6.3 Conclusion

The smallest time of packet capture needed to provide enough information 

using a 0.3 session instantiation method for a high accuracy classification is under 

25 seconds for the majority of tested classifiers. All of the datasets acquired for this 

research contain more than 24 hours worth of packet captures, which is 345,600% 

longer than the minimum time required for high accuracy classification.

In addition, when testing capture time variations in training dataset against 

a dataset that contained features from different malicious machines, the accuracy of 

all of the classifiers increased or stayed the same. Such a high accuracy of classifying 

an unknown machine leads to  possibilities of utilizing the developed IDS to detect 

intrusions from unknown machines.



CHAPTER 7 

SOFTWARE VARIANCES AS FEATURE  
CONTRIBUTORS

Classification accuracy of a Network Telemetry based IDS highly depends on 

processing times introduced by computer hardware as well as the network communica

tion paths between the benign or malicious machines and PLCs. For these experiments, 

both benign and malicious machines were identical at a given hop-distance, and the 

following machines were used:

1-hop Classification
•  CPU: Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz

•  RAM: 2GB

• NIC: Intel Corporation 82567LM-3 Gigabit Network Connection

•  OS: Gentoo Linux, kernel-3.12.13-gentoo

• Python version: 2.7.1

8-hop Classification
•  CPU: Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz

•  RAM: 16GB

•  NIC: Broadcom Corporation NetLink BCM57781 Gigabit Ethernet PCIe

•  OS: Gentoo Linux, kernel-3.12.13-gentoo

•  Python version: 2.7.1
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For all of the experiments, the PLCs were emulated using conpot on a machine

with the following configuration:

•  CPU: Intel(R) Core(TM)2 Duo CPU E7500 @ 2.93GHz

• RAM: 2GB

• NIC: Intel Corporation 82567LM-3 Gigabit Network Connection

• OS: Gentoo Linux, kernel-3.12.13-gentoo

• Python version: 2.7.1

The IDS is designed to  notify system engineers of malicious traffic. For this 

research, malicious traffic is defined as any traffic directed to the PLCs that are not 

originated from the designated SC ADA system. To achieve classification, the IDS 

must receive all of the network packets sent to the PLCs. The IDS utilizes libpcap [71] 

to capture all the traffic transmitted to the PCLs over the Modbus protocol. For this 

research, Conpot emulated Modbus/TCP protocol on port 502. The system maintains 

a Floating Delay Separation Boundary (FDSB) which separates traffic fingerprinting 

methods to outsider and insider classification engines. This is done to improve accuracy 

of classifying traffic originating from local to the ICS machines, versus the traffic 

originating from machines on the internet. For example, after analyzing Netgear 

WNDR4500, D-Link DI-604, and Linskys WRT300N routers, the delay feature range 

is under 5 milliseconds while the communication utilizes local area network, but it 

can be several orders of magnitude larger if the communication path connects distant 

nodes on the internet. However, not all of the traffic originating from a distant node 

can be malicious (as in the example of an engineer using remote access to troubleshoot 

an ICS a t the remote site). Separation must be established in order to compare
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local paths with local paths and distant paths with distant paths. The floating delay 

separation boundary is defined as

E maXj( l )  . ^  minj(Q)  
n n

F D S B  = ^ ^ ---------
2

where I  is the set of delay values from the packets originating from the inside of the 

ICS, O is the set of delay values from the packets originating from the outside of the 

ICS, maXi and rain* are the ith  maximum and minimum values in the given set, and 

n is the amount of samples to  take for the delay value which is the same for both 

sums. Having a value of n  too high will use older network states which may not take 

place any more. However, having a value of n too low will result in a lower accuracy 

of the threshold calculation. For this experiment n — 5 is used, while sets of O and I  

have 50 items. These values were determined by iteratively running the classification 

over 5-minute intervals for all the captured dataset and determining the combination 

that results in the best classification (Table 7.1). The initial F D S B  value was set to 

0.025. These values were determined by analyzing 838,818 packets acquired over two 

days of operation of an ICS. Figure 7.1 shows minimum and maximum response times 

between two different machines on the same LAN (malicious and benign 1 hop), and 

the delays introduced by moving the same machine further along the communication 

path (malicious 1 hop, 2 hops, and 8 hops).
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T able 7.1: Accuracies of separating outsider and insider traffic by varying n

A ccuracy  (%) n
91.2% 2
97.3% 3
100% 4
100% 5
100% 6
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F ig u re  7.1: Average Response time in a session over 1 day

Once the packet is identified as outsider/insider and sent to a proper classifier, 

its arrival time is recorded and compared against the previous packet that was sent to 

the same classifier. Inside-originating packets are only compared with the telemetry 

of other inside-originating packets, and outside-originating packets are compared with 

the telemetry of other outside-originating packets which allows the IDS to mark some 

external traffic as benign as in the case of a system engineer working from home. 

TVaffic to  the PLCs is tagged as inside/outside traffic based on the subnet of the 

packet’s IP  address. Code running on the PLCs is assumed benign and IP address 

spoofing from the PLCs is not expected. However, since the developed IDS uses traffic

■ min
■ max
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anomalies, it may be possible to detect anomalies on either side of the IDS networks. 

Multidirectional attack detection is part of the future work of this research. For the 

sets of experiments in this chapter, one side had to be assumed benign to maintain 

control of the changing variables in the experiments.

On every new packet arrival, telemetry data discussed in Section 3.1 is extracted 

and sent to the classifier. A new session is instantiated on every new packet. However, 

the calculations of features is done for all the packets received in the 2-second interval 

- the same interval that an experimental SCADA system uses for polling PLCs. For 

example, if there were 9 packets received by the classifier in the past 2-seconds, the 

first packet of session n + 8 is the last packet of session n.

Several machine learning classifiers have been tested for this IDS as discussed 

earlier: Naive Bayes, Multinomial Naive Bayes, Logistics, REPTree, Bagged REPTree, 

DecisionStump, Degged DecisionStump, Ridor, and C4.5. Naive Bayes classifiers were 

chosen to determine probability models for telemetry data because the features used 

for classification can be largely independent from each other. Bagging modeling of 

REPTrees was chosen because they perform well with training sets containing large 

amounts of noise [64].

7.1 Hop R elationship

Telemetry based measurements are highly dependent on the amount of hops 

between the client and server. As nodes are separated by a larger amount of hops, added 

network systems introduce different delays into packet propagation; this introduces
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noise. The IDS carries two classification profiles - for insider traffic and for outsider 

traffic. Figure 7.1 shows that the delay increases with the amount of hops.

Differentiating between insider and outsider traffic is trivial as an outsider’s 

delays are an order of magnitude larger than the insider’s (Figure 7.1). If an outside 

attack is further from the PLCs than the system engineer’s outside point of entry, 

differentiating between an attack and normal control packets becomes trivial as well. 

However, when benign and malicious traffic originates from the same amount of hops 

away from the PLCs, the system’s hardware is the one that introduces the most 

important delays. Hardware and software delays become signatures that can be used 

for traffic classification. Most of the tested classifiers performed better when analyzing 

outsider traffic than insider traffic due to additional network delays present in varying 

network paths. The results show that the network path adds a significant amount 

of data to the used feature set to differentiate between two machines with a high 

accuracy.

7.2 R esults

7.2.1 Insider Classification

The bagging technique of REPTree classifier was able to reach the highest 

accuracy of 92.2% when classifying traffic between two computers of different hardware 

configuration. These computers were separated by 1 hop. Figure 7.2 shows the 

classification accuracy of all used classifiers.

The Bagging method for the REPTree classifier achieves the maximum accuracy. 

However, considering the time required to  create classification models, REPTree
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classifier achieves the best accuracy while maintaining lower processing requirements. 

Figure 7.3 shows the relationship of classifiers’ accuracy versus the time it took the 

classifier to build a classification model. The time axis is logarithmic to better show 

model development duration distribution. This telemetry based IDS includes network 

load information in its feature set. Therefore classification is a time critical process 

that requires fast training of the classifiers and accurate results.
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Despite very fast processing speeds of modern computers, differences between 

computer hardware manifests itself in network telemetry in such a way that machine 

learning classifiers can still detect those differences for a successful classification.

7.2.2 O u ts id e r C lassification

Unlike the Insider classification results, most classifiers were able to achieve 

very high accuracy in classifying packets from different machines. The bagging method 

of REPTree classifier was able to achieve an accuracy of 99.6%. The C4.5 classifier 

fell shortly behind having an accuracy of 99.5% (Figure 7.4).
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■ C45
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F igu re  7.4: Classifier Accuracy for Outsiders

The Decision Stump and Naive Bayes classifiers achieved a faster model build 

time - 1.71s and 1.41s respectively - while maintaining a high classification accuracy 

of 98.3% (Figure 7.5). Having traffic separated into insider and outsider groups also 

allows for a mix and match of different classifiers for different tasks.

Features extracted from the communication of machines separated by large 

network paths contain enough information to be accurately classified by machine 

learning classifiers. It may be further possible to generate signatures based on these
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features tha t would allow not only to  detect an intrusion on an industrial control 

system’s network, but to be able to fingerprint an attacker and determine whether 

the attacker has attempted intrusions before.
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7.2.3 D ecreasing  C a p tu re  In terva ls

The results above show classification accuracy for all of the Modbus/TCP traffic 

captured by the IDS over a day. However, fluctuations of the network’s congestion 

and throughput may reduce the classifier’s accuracy. To account for this, another 

traffic capture of the communication separated by 1 hop was performed for an interval 

of 5 minutes. Figure 7.6 shows the classifier accuracy for this interval. The accuracy 

of Bagging for REPTree, REPTVee, C4.5, and Ridor increased in comparison to the 

24-hour capture interval (Figure 7.2). Ridor was able to achieve the highest accuracy 

of 94.3%.

The times required to  build classification models have all been reduced sig

nificantly (Figure 7.7) in comparison to a 24-hour capture (Figure 7.3). This is an 

important result as ICS IDS is processing time critical data. REPTVee was the fastest
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classifier with a model build time of 6.00 milliseconds, and an accuracy of 92.7%. The 

best performing classifier, C4.5 had a model build time of 110 milliseconds which may 

still be used for a dynamic classification of incoming packets.
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By decreasing the capture window time to 5 minutes, accuracy of many 

classifiers was increased while the time to build classification models was reduced 

by several orders of magnitude. This goes along with the fact tha t network delays 

fluctuate with time due to  different usage factors.
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7.2.4 Conclusion

The developed IDS reaches high accuracy classification even when tasked 

to identify malicious behavior between two identical machines. Several classifiers 

were able to achieve an accuracy of above 90% of packets, while maintaining low 

time demand to  build classification models. These results show that the developed 

IDS is able to perform well without the need for high performance computations. 

Average model build times were approximately 10 seconds. However, this step needs 

to be performed only once, during the set up of the IDS. Once the models are built, 

classification times of new information is in the order of microseconds, and creates an 

insignificant burden on the system.

The results show an important relationship between the inside and outside 

classified traffic. Even though the outside machines were identical, the networks 

between those machines and the secured PLCs were not, which introduced more 

information into the dataset and allowed the classifiers to further increase their 

performance.



CHAPTER 8 

IDS VERIFICATION OVER MULTIPLE 
PLATFORM CONDITIONS

In order to obtain the IDS performances that can be seen in the real world, the 

IDS was tested over various intrusion conditions. Since more ICSs are joining typical 

business networks, possible insider threats can originate from within the business 

LAN. Most businesses buy workstation machines in bulk to lower the price of purchase 

[73]. This means that majority of the workstation machines a business owns are the 

same hardware and software configuration. Since the developed IDS works under the 

assumption tha t the provided features capture a difference between machines and 

softwares, it is safe to assume that when the attack originates from a machine that 

possesses the same hardware as well as software fingerprints, the IDS will not perform 

as well as the results seen prior. However, this scenario is almost impossible since an 

attacker must inject some code into a machine in order to gain control of it. The only 

scenario when such a condition can occur, is if the attacker has physical access to the 

benign machine, as is able to execute its attack without introducing new code. This 

scenario can be found in Section 8.1 of this chapter.

It is common for attackers to use software other than the one used by the 

SCADA system to launch their attack. If an attacker infiltrates one of the workstations
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that has access to  an ICS, but the attacker wants the attack to stay hidden, some 

malicious code has to be used to execute the attack, resulting in modification of 

the original SCADA software. Additionally, there exists a multitude of different 

programming languages and their architecture. Both benign SCADA software and 

malicious attack software can be written in a variety of compiled, interpreted, or 

virtualized languages. Section 8.2 covers the IDS performance for an attack launched 

by a code created through different programming languages.

Another possibility is for an attack to be launched from a workstation that 

utilized a different operating system than the benign SCADA machine. In this 

example, the process scheduler, network driver, and network scheduler can be written 

by different developers and therefore result in different timing patterns of the output. 

Variation of these features will result in increased accuracy of classification for this 

IDS. An example of use of such system may be an insider threat where the insider 

utilized a “live” image of an operating system. A live image means that the operating 

system does not need to be installed on the hard drive of a machine and can be used 

as a stealthy source of an attack. In addition, operating systems commonly used for 

penetration testing can be launched live, and they contain many scripts necessary to 

perform an attack. If an attacker is not knowledgeable enough to create their own 

attack software, they can use of such an operating system. The results of the IDS 

testing over such a scenario can be found in Section 8.3.
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8.1 IDS Accuracy for Identical Clients

If the used SCADA software contains vulnerabilities that allow the attacker to 

transmit malicious packets from the same system, or an insider manages to  obtain 

and configure the same SCADA software on a machine that reflects SCADA hardware, 

packet signatures extracted by the developed IDS may not contain enough information 

to differentiate against such an attack. In this experiment, two machines of identical 

configuration were used. The hard drive of one machine was copied to the hard drive 

of the other machine. The only thing that was changed was the host name of the 

second machine to prevent DNS collisions on the testing network.

For this experiment, training time of 26.46 (the highest accuracy time for all 

of the classifiers tested in Chapter 6) seconds as well as training time of 1 minute, 

5 minutes, 30 minutes, and 3 hours was used to determine the accuracy of selected 

classifiers. This scale was chosen to understand information gains in this experiment 

given widespread of capture time. Higher values of the training set capture are not 

used due to those times being impractical for an actual IDS deployment.

Table 8.1 shows the 10-Fold validation accuracy of all of the selected classifiers. 

For this experiment, the dataset was broken into 10 segments - folds, with each fold 

lasting approximately 2.24 hours. Nine folds were used for training and one for testing. 

Therefore, this is an equivalent of using 20.1-hour capture for training and 2.24 hours 

for testing. While this method does not provide any significant data about the data 

set that can be used to  improve the IDS, 10-Fold validation provides an approximate 

value of how much information the data set contains about the problem.
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T able  8.1: 10-Fold validation of selected classifiers on the dataset of two identical 
machines.

C lassifier 10-Fold A ccuracy  (%)
Bagging 80.0208
Dagging 74.1563

DecisionStump 64.073
Logistic 74.8511

REPTVee 79.1979
C4.5 75.69

NaiveBayes 64.292
N aiveBayesMultinomial 64.2699

Ridor 76.8364

Bagging based ensemble modeling of REPTrees was able to achieve the highest 

10-Fold accuracy of 80.0208% for the data set, though, the data set is biased. Figure

8.1 shows the  distribution of the data set values. There are almost twice as many 

malicious sessions as there are benign, therefore, if a classifier was to always choose a 

malicious class, it would have an accuracy of 64.2699%.

Figures 8.2 and 8.3 show accuracies and model build time for all of the selected 

classifiers while training over a certain period of time. Most classifiers had an accuracy 

around 75% while Naive Bayes and Naive Bayes Multinomial were unable to provide 

an accuracy higher than blindly choosing a malicious class.

Though there was a distinct drop in classification accuracy for all of the 

classifiers, it is a little surprising that some classifiers were able to achieve accuracy as 

high as 79%. While the malicious and benign machines were identical in hardware 

and software, they were plugged into different ports of the same switch. The switch 

also had several other machines plugged in it.
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The switch’s packet scheduler can introduce some patterns that enabled 

classifiers to  differentiate between two machines with some however small accuracy. 

Classifier accuracy for most of the selected classifiers increased dramatically when 

the training time was changed from 25 seconds to 5 minutes, which suggests that 

increasing the training window will have accuracy improvements for conditions that 

contain little feature difference between the malicious and benign datasets.

Figure 8.3 shows the time required to build the model. The y-axis of the 

graph - Model Build Time uses a logarithmic scale to  better show the differences 

between classifiers. Most of the classifiers had very similar build times despite orders 

of magnitude variance of the size of the training data set. Overall, Bagging based 

ensemble modeling using REPTVee classification had the best accuracy, but one of the 

highest model build times. However, a single REPTree based classifier was able to 

maintain high accuracy, while the time it took to build its model is under a second.

8.2 IDS Accuracy for Different Program ming Languages

Often times the attacker may reverse engineer the protocol used by the SCADA 

system in order to present its own set of commands to seem like they came from a 

fully functional system [74]. Such attacks may often by-pass packet signature based 

IDSs as packet signatures become identical to the benign SCADA system. While the 

internal content of the packets becomes the same as the benign system, the attackers 

are more likely to use a programming language that is different from the one used by 

the developers of the SCADA system.
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This experimental scenario tests the operation of the developed IDS under the 

conditions of a malicious SCADA software that was written in a different programming 

language being used for the attack. Here, the benign SCADA software was written 

in Python and its source code can be found in listing 1 in the appendix. Modbus 

protocol was implemented by Python’s PyModbus library. The malicious SCADA 

software was written in C and its source code can be found in listing 2 in the appendix. 

Both of the codes result in the same logic being transmitted over the network. The 

same capture times were used as in the previous section in order to provide a good 

comparison of the information gain that results in varying the programming language 

used as a part of the experiment.

Table 8.2 shows the 10-Fold accuracies of all but one of the selected classifiers. 

C4.5 algorithm was excluded from this experiment. Most of the classifiers were able to 

build its models after 15 seconds of operation, however, after 10 minutes of operation 

C4.5 classifier was closed by the operating system as it used all of the 8GB of RAM. 

Even if C4.5 classifier was able to achieve a high accuracy of classification, the cost of 

time and memory needed for proper operation outweigh its benefit. Another outlier 

for this experiment was the Logistic classfier. It was able to achieve high accuracy 

of 99.1770% for its 10-Fold Validation experiment. Here, the 10-Fold validation 

experiment is the same as in the previous section in its times used to train and test 

the model.
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Table 8.2: 10-Fold validation of selected classifiers on the dataset of C and Python 
based clients.

C lassifier 10-Fold A ccuracy  (%)
Bagging 77.5547
Dagging 61.3923

DecisionStump 60.4182
Logistic 99.177

REPTVee 76.8417
C4.5 N/A

NaiveBayes 60.409
N ai veBayesMultinomial 60.5759

Ridor 75.217

Figure 8.4 shows the feature distribution of the data set for this experiment. 

While this distribution looks similar to the one with two identical systems, some of 

the differences were enough to be picked up by the Logistic classifier to achieve a very 

high accuracy classification. However, there are still more malicious instances than 

benign, so the data set is biased. If a classifier was to blindly choose a malicious class, 

it would have an accuracy of 60.5759%.

Figures 8.5 and 8.6 show the classifier accuracies and model build times 

respectively. Logistic classifier is a clear outlier that was able to achieve a 99.0562% 

accuracy for 25 second capture time. Its accuracy increased to 99.4323% for the 

capture window of three hours. Other classifiers were able to create its models to be 

approximately 75% accurate, while Dagging and Naive Bayes based classification was 

as accurate as the bias of the data - at approximately 60.5%.
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Based on the feature distributions in Figure 8.4, it is hard to say why the 

logistic classifier was able to perform so well. However, as the logistic function is 

known to perform the best with a  binary class system, it may be possible that the 

data provided in this dataset had a high multidimensional logistical probability of 

belonging to either benign or malicious class.

Figure 8.6 shows the model build times needed to create the models for a given 

capture time period. The y-axis of the graph - Model Build Time uses a logarithmic 

scale to better show the differences between classifiers. Most of the classifiers had very 

similar build times despite orders of magnitude variance of the size of the training 

data set. However, the pattern among all of the classifiers changed in comparison to 

the previous section. This suggests tha t the model time is more dependent on the 

information and entropy present in the data set rather than data set size. The Logistic 

classifier was able to achieve both high accuracy classification and an acceptable model 

build time - 2.89 seconds for 99.0562% accuracy.

8.3 IDS Accuracy for Different Operating System s

The next step for determining the information present in the chosen features for 

the developed IDS is identifying the differences in the operating systems of the benign 

and malicious machines. For this experiment, 3 machines with identical hardware were 

configured with a version of Windows, Debian, and Gentoo operating systems. For 

each of those operating systems, a  Python interpreter, PyModbus library, and a test 

SCADA software written in python was uploaded and used for communication with 

the PLCs protected by the developed IDS. The next three subsections look at accuracy
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of classifying the difference between two machines, as well as using the developed 

model to test the accuracy when the third machine attacks.

8.3.1 G en too  an d  W indow s C lassification

Table 8.3 Shows the 10-Fold validation of the Gentoo and Windows dataset. 

All of the classifiers resulted in a high accuracy classification with the worst accuracy 

of 99.4843% for a Naive Bayes Multinomial classifier.

T able 8.3: 10-Fold validation for Gentoo and Windows Classification

Classifier 10-Fold A ccuracy  (%)
Bagging 99.9938
Dagging 99.927

DecisionStump 99.8838
Logistic 99.9777

REPTree 99.9963
C4.5 99.9913

NaiveBayes 99.9518
N ai veBayesMultinomial 99.4843

Ridor 99.9975

Figure 8.7 Shows classification accuracies for given capture windows. Most 

classifiers performed well, having accuracies above 99%, however, Dagging and Naive 

Bayes Multinomial classifiers improved their accuracy when the capture windows 

further grew from the maximum 25 seconds used by the experiments in chapter 6. 

This suggests that the total information available in 25 second capture is not enough 

for these classifiers to achieve their highest possible accuracy.
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Figure 8.8 shows the model build times for all of the selected classifiers for 

a given capture time. Once again, the timing changes with the size of the training 

dataset are orders of magnitude lower than the actual times, except for Naive Bayes 

Multinomial and C4.5 classifiers when changing from a 30-minute to a 3-hour capture 

interval. Both of these classifiers have to iterate over the dataset several times in order 

to build their models. Both of them were also written in Java for these experiments. 

With an increased dataset size it is likely that Java’s garbage collection was activated 

in the middle of model building, which resulted in an increased time requirement.
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Figure 8.9 shows the accuracy of classifying a Debian machine when the Gentoo 

and Windows dataset was used for training. Gentoo was assigned a benign class, 

Windows was assigned a malicious class. Then the amount of features corresponding 

to  the appropriate capture time on the figure was extracted from the data set and 

used to train the classifiers. Then, a Debian and Gentoo dataset was used; since 

Gentoo was the same OS as in the training data set, Gentoo was once again asigned a 

benign class while Debian was assigned a malicious class. The resulting graph shows 

the accuracies of classifying the Gentoo and Debian dataset with the Gentoo and 

Windows training set.
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Figure 8.9: Accuracy of Classifying Debian With a Gentoo vs Windows Training Set
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8.3.2 D eb ian  A nd  W indow s C lassification

Table 8.4 Shows the 10-Fold validation of the Debian and Windows dataset. 

All but one of the classifiers resulted in a high accuracy classification. Naive Bayes 

multinomial performed the worst, having an accuracy of 65.1597%, however the second 

worst accuracy is Dagging based ensemble modeling with 90.7043% accuracy.

T able 8.4: 10-Fold Validation for Debian and Windows Classification

Classifier 10-Fold A ccuracy  (%)
Bagging 97.755
Dagging 90.7043

DecisionStump 95.5253
Logistic 90.9226

REPTree 97.7360
C4.5 97.6565

NaiveBayes 91.1266
NaiveBayesMultinomial 65.1597

Ridor 97.5332

Figure 8.10 shows the accuracies of classifiers when classifying the Debian 

and Windows dataset. Unlike the Gentoo and Windows results, accuracies given 

in this experiment are lower. This suggests th a t the timing patterns of the Debian 

operating system are closer to the Windows operating system than Gentoo. However, 

the differences are still prevalent in order for the most classifiers to achieve an accuracy 

above 90%.
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Figure 8.11 shows the model build times for the Debian and Windows dataset. 

As expected, the times differ with a change in the classifier and not with a change in the 

training dataset size. However, model build time of Dagging based ensemble modeling 

increased by an order of magnitude in comparison to the Gentoo and Windows dataset.
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F ig u re  8.11: Model Build Time of Debian vs Windows classification

Figure 8.12 shows the accuracy of classifying Gentoo machine when the Debian 

and Windows dataset was used for training. Though most of the classifiers did not 

perform as well, some of them were able to learn enough information using a 3-hour 

dataset to achieve an accuracy above 90%. Naive Bayes was also able to achieve an 

accuracy of 97.7238% when using 25s of the training data set.
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8.3.3 D eb ian  A n d  G en too  C lassification

Table 8.5 Shows the 10-Fold validation of the Debian and Gentoo dataset. 

Once again, all but the Naive Bayes Multinomial classification was very high, with 

the second worst being Naive Bayes, at 98.9167%.

T able 8.5: 10-Fold Validation for Debian and Gentoo Classification

Classifier 10-Fold A ccuracy  (%)
Bagging 99.9839
Dagging 99.8875

DecisionStump 96.7971
Logistic 99.9518

REPTree 99.9852
C4.5 99.9815

NaiveBayes 98.9167
N ai veBayesMultinomial 72.3898

Ridor 99.9889

Figures 8.13 and 8.14 show the accuracy variation and model build time for 

all of the selected classifiers when varying the capture time. Once again, Dagging 

and Naive Bayes Multinomial were the major outliers while the rest of the classifiers 

performed well. However, Dagging accuracy increased as the training set capture time 

increased to 5-minute interval.
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Finally, Figure 8.15 shows the accuracies of classifying Windows machine with 

the training dataset of Debian and Gentoo. The results are much worse for most of 

the classifiers. The author speculates that the Windows machine’s features are too 

different than the Debian and Gentoo machines, resulting in the confusion of the 

classifiers. Dagging was able to achieve the best accuracy of 74.6119% with a training 

dataset of 25-second capture time.
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While the decreased differences of classification of the Windows machine while 

using Debian and Gentoo datasets shows potential pitfalls of the IDS, such a condition 

occurred only when there were no hardware differences between the machines. Different 

hardware should introduce more information to the system that would allow for a more 

accurate classification. In addition, the classifiers were only given a single machine as 

an example of malicious communication. Increasing the machine count given to the 

training stage of classifiers should improve classification accuracy.

The results also show tha t a high accuracy classification of a machine not 

present in the training dataset is possible. The IDS can, therefore be trained against 

a few malicious machines to be able to differentiate among many machines during the 

normal operation. This method makes such an IDS a viable candidate for an ICS 

deployment.



CHAPTER 9 

CONCLUSIONS

This dissertation covers the development and testing of a Telemetry Based 

Intrusion Detection System for Industrial Control Systems. An IDS that uses network 

telemetry can be created and it can achieve a high classification accuracy, protecting 

nodes from malicious traffic. Such an IDS will not be vulnerable to address or 

encryption spoofings, as it does not utilize the content of the packets to differentiate 

between malicious and benign traffic; rather, it uses features of timing and network 

sessions to determine whether the machine that sent a particular packet is, in fact, 

a machine tha t is benign, as well as whether or not it resides on a network that is 

benign.

The results of the experiments conducted for this dissertation establish that 

such a system is possible to create and use in an environment of ICS networks. Several 

features are recognized and selected as means for fingerprinting the hardware and 

software characteristics of the SCADA system that can be used in pair with machine 

learning algorithms to allow for a  high accuracy detection of intrusions into the ICS 

network. The features are extracted from the TCP flow model and include:

•  Time it takes the client to respond to server’s message.

•  Amount of client-side dropped packets.
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•  Amount of server-side dropped packets.

•  Time between the repeated packet transmissions when packet drops happen.

Several feature extraction parameters are tested and optimized for maximum 

performance. To determine session boundaries for feature extraction, silence based 

interval of 0.3 seconds was found to result in the best accuracy while maintaining a 

high amount of malicious and benign sessions. Each session is considered malicious if 

it includes as least one malicious packet.

Then, the IDS was tested against identical machines, machines that were identi

cal in hardware but used different programming languages for SCADA communication 

software, machines with different operating systems, machines with different hardware 

specifications tha t were located on the same network, and machines with different 

hardware specifications that were located on different networks. Majority of results 

showed a classification accuracy of at least 95% was possible, and as the differences 

between machines increased, the accuracy increased too.

However, during one of the experiments with the operating systems, it was 

determined that the Windows machine was too different for the classifiers to perform 

accurately when the training dataset contained only linux based machines. The 

decreased differences of classification of the Windows machine while using Debian and 

Gentoo datasets shows potential pitfalls of the IDS, such a condition occurred only 

when there were no hardware differences between the machines. Different hardware 

should introduce more information to the system that would allow for a more accurate 

classification. In addition, the classifiers were only give a single machine as an example
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of malicious communication. Increasing the machine count given to the training stage 

of classifiers should improve classification accuracy.

The primary goal of further evaluation of the presented research is to test the 

developed IDS on more machines at once. Given several malicious machines during the 

training stage, the IDS should perform well on a larger amount of unknown machines. 

Due to  the high accuracy classification of only two machines, however, the author 

believes it may be possible to use machine learning to create attack features of any 

given machine, allowing the IDS not only to detect an incoming attack, but to verify 

if the machine has attem pted an attack before.



A PPENDIX A 

CODE LISTINGS
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Source C ode  1 Python version of the polling SCADA System

1 i m p o r t  sys , t ime
2  f r o m  pymodbus. c l i e n t  . sync i m p o r t  ModbusTcpClient
3

4 i f  l e n ( s y s . a r g v ) <  2:
5 sys  . e x i t  ( ” Usage : %s IP” % s y s .  argv [0])
6

7

8 c l i e n t  =  ModbusTcpClient  ( sy s  . argv [1] , 5502)
9

io w h i l e  T r u e :
n  t r y :

12 r e s u l t  =  c l i e n t  . r e a d . c o i l s  (1 ,20 , u n i t=0x01 )
13 tmpStr =  ” 20 c o i l s :  ”
14 f o r  x i n  range ( 1 , 2 0 ) :
is tmpStr 4-= s t r  ( r e s u l t  . b i t s  [ x - l ] ) + ” ”
16 p r i n t  tmpStr
17 # t i m e . s l e e p  (1)
18
19 r e s u l t  =  c l i e n t  . r e a d _ d i s c r e t e _ i n p u t s  ( 1 0 0 0 1 ,8  , un i t=0x01)
20  tmpStr =  ”8 d e s c r e t e  i n p u t s :  ”
21 f o r  x i n  range ( 1 ,  8) :
22  tmpStr + =  s tr  ( r e s u l t  . b i t s  [ x - l ] ) + ” ”
23  p r i n t  tmpStr
24 # t i m e  . s l e e p  (1)
25
26  r e s u l t  =  c l i e n t  . r e a d . i n p u t . r e g i s t e r s  ( 3 0 0 0 1 ,  8 ,  un i t=0x02)
27 tmpStr =  ”8 analog  v a l u e s :  ”
28  f o r  x i n  range ( 1 ,  8):
29  tmpStr -+-= s tr  ( r e s u l t  . r e g i s t e r s  [x —1])+” ”
30  p r i n t  tmpStr
31 # t i m e  . s l e e p  (1)
32
33  r e s u l t  =  c l i e n t  . r e a d . h o l d i n g . r e g i s t e r s  ( 4 0 0 0 1 ,  8 ,  u n i t= 0x02 )
34  tmpStr =  ”8 h o ld in g  r e g i s t e r s :  ”
35 f o r  x i n  range ( 1 ,  8):
36 tmpStr + =  s t r  ( r e s u l t  . r e g i s t e r s  [x —1])+” ”
37  p r i n t  tmpStr
38 t ime . s l e e p  (2 )
39 e x c e p t  K e y b o a r d ln t e r r u p t :
40 p r i n t  ’K eyb oard ln terru pt  c a u g h t ’
41 b r e a k

42
43
44 # r e s u l t  =  c l i e n t . r e a d . c o i l s  ( 1 , 1 ,  un i t =0 x 0 1 )
45 # p r i n t  r e s u l t . b i t s  [ 0]
46

47 c l i e n t  . c l o s e  ()
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S o u r c e  C o d e  2  C version of the polling SCADA System

1 # i n c l u d e  < s t d i o . h >
2 # i n c l u d e  < u n i s t d . h >
3 # i n c l u d e  <modbus/modbus. h>
4
5 i n t  m a i n ( i n t  argc , char *args [ ] )  (
6 modbus .t  *mb;
7 u i n t l 6 - t  t a b . r e g  [32];
8 u i n t 8 _ t  c o i l s  [32];
9 i n t  i ;

10

11 mb =  modbus_new„tcp(” 1 9 2 . 1 6 8 . 1 . 2 7 ” , 502);
12 modbus .connect  (mb) ;
13

14 w h i l e  ( 1 )  {

15 m o d b u s . s e t . s l a v e  (mb, 1) ;
16 m o d b u s . r e a d .b i t s  (mb, 1,  20 , c o i l s );
17 p r i n t f ( ” 20 c o i l s :  ” );
18 f o r  ( i = 0 ;  i<20;  -H-i) {

19 p r i n t f (”%d ” , c o i l s  [ i ] ) ;
20 }
21 p r i n t f ( ” \ n ” );
22

23 m o d b u s . r e a d . i n p u t . b i t s  (mb, 10001,  8 , c o i l s  );
24 p r i n t f ( ” 8 d e s c r e t e  i n p u t s : ” );
25 f o r  ( i =0; i <8; -H-i ) {
26 p r i n t f ( ”%d ” , c o i l s  [ i ] ) ;
27 }
28 p r i n t f ( ” \ n ” ) ;
29

30 m o d b u s . s e t . s l a v e  (mb, 2 ) ;
31 m o d b u s  _r e ad - in p u t  . r e g i s t e r s (mb, 30001 ,  8 ,  t a b . r e g ) ;
32 p r i n t f ( ” 8 analog  v a l u e s :  ” ) >
33 f o r  ( i =0; i <8; -H-i ) {
34 p r i n t f  (”%d ” , t a b . r e g [ i ] ) ;
35 }
36 p r i n t f ( ” \ n ” );
37 m o d b u s . r e a d . r e g i s t e r s  (mb, 40001 ,  8 , t a b . r e g ) ;
38 p r i n t f ( ” 8 ho ld ing  r e g i s t e r s : ” );
39 f o r  ( i =0; i <8; -H-i) {
40 p r i n t f  (”%d ” , t a b . r e g [ i ] ) ;
41 }
42 p r i n t f ( ” \ n ” );
43

44 S l e e p ( 2 0 0 0 ) ;
45 }
46 m od b u s .c lo s e  (mb) ;

47 m odbus . free  (mb) ;

48 }
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