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ABSTRACT

Micro-channel flows have been computed to investigate the influence of Navier- 

Stokes formulation for the slip-flow boundary condition, and a micro-polar fluid model, 

respectively.

The results o f the slip boundary condition show that the current methodology is 

valid for slip-flow regime (i.e., for values o f Knudsen number less than approximately 

0.1). Drag reduction phenomena apparent in some micro-channels can be explained by 

slip-flow theory. These results are in agreement with some computations and 

experiments.

An ad hoc micro-polar fluid model is developed to investigate the influence of 

micro effects, such as micro-gyration, in micro-scale flows. The foundation o f the ad hoc 

micro-polar fluid is based on Eringen’s micro simple fluid, and is simplified for 

incompressible, two-dimensional, iso-thermal, and micro-isotropic case. Our model 

contains two material constants, p. and k, one scale parameter, mxKn, and one boundary 

condition parameter n. The number o f parameters is significantly reduced from general 

micro-polar fluid model and makes the theory practical.

The scale parameter mxKn introduces the Knudsen number into the micro-polar 

fluid dynamics by statistical explanation. Therefore, the effect of rarefaction can be 

accounted into the model by modeling this parameter.

iii
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The parameter p. is classical bulk viscosity. The vortex viscosity k  is related to 

micro-gyration, and needs modeling at current time. It affects the flow field in two 

aspects, by modifying the apparent viscosity and by introducing the effect of micro- 

gyration. In the simplest case o f fully-developed channel flow, the overall effect is 

equivalent to lessen the Reynolds number by (1 +/c/2).

The current micro-polar fluid model explains the drag increase phenomenon in 

some micro-channel flows from both experimental and computational data. This result is 

exactly opposite to that predicted by slip-flow theory. The existence o f micro-effect 

needs to be taken into account for the micro-scale flow.

A projection method is used as a numerical technique for both models to solve the 

difficulty o f implicit pressure equation, with the help o f  staggered grids. An explicit Euler 

scheme is used for solving the steady flow.

iv
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CHAPTER 1 

INTRODUCTION

1.1. General Overview

Micron-size mechanical devices are becoming more prevalent, both in 

commercial applications and in scientific inquiry. Research on micro-fluidic devices, 

fabricated with micro-mechanics technology, has its origin more than two decades ago. 

At IBM, integrated planar silicon ink-jet printer nozzles were developed (Bassous et al., 

1977). Within the last decade, a dramatic increase in research activities has taken place, 

mostly due to the rapidly expanding growth of applications in the areas of MEMS 

(Microelectromechanical Systems), bioengineering, chemical systems, and advanced 

energy systems. Micro-components currently in development include micro-channel heat 

exchangers, gas absorbers, liquid-liquid extractors, chemical reactors, micro-flow- 

sensors, and micro-actuators for pumps, valves and compressors (Gass et al., 1993; 

Wegeng & Drost, 1994; Caruana, 1996). At present, micro-manufacturing technology 

provides mechanical parts o f micron size, batch-fabricated in large quantities, and 

integratable with electronics (Ho & Tai, 1996). These features may even allow coupling 

o f MEMS to macro-scale flow systems. More encouragingly, MIT developed a MEMS- 

based gas turbine generator whose 1 cm diameter by 3 mm thick SiC heat engine was 

designed to produce 10-20W of electric power while consuming 10 grams/hr of H2. Their

l
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second version was to produce up to 100W using hydrocarbon fuels (Epstein et al., 

1997).

Typical scales for micro-mechanical devices range from microns to millimeters, 

spanning the range o f  scales that also includes microelectronics, ultrasonics, visible and 

infrared radiation, and biological cells and tissues. Figure 1.1 shows the general 

comparison between these compact systems with their conventional counterparts 

(Wegeng etal., 1996).

Typical MicroChannel Widths

Micro Pumps and Valves 

M icromotor Rotors frficrochanael Reactors

M cro Therm al and Chem ical Systems 

Single T ransisto r on IC  i c  C hip Personal C om puter

1 A 1 m b  1 pm  1 mm I m 1 km

Smog

Gas Molecules Tobacco Sm oke Beach Sand C ouveutioaal Pumps and Valves

A tmospheric Dnst

Bacteria

Virus

Conventional Reactors & H ea t Exchangers 

Conventional Therm al &  Chem ical Plants

Radius of Most Cells Humaa Hair Msa |

Figure 1.1 Sizes/Characteristics o f micro-components comparison to other items

Micro-mechanics is a multidisciplinary research area. In this new area, with the 

application systems under development becoming more complex and much smaller, there 

are increasing new phenomena and hence increasing demands both for theoretical and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

experimental work on fundamental physical and chemical mechanisms. Fluid mechanics 

is one of the many disciplines to be further explored (Gravesen et a i ,  1993).

With these new features, a whole class of low Reynolds number flows needs to be 

revisited. The continuum assumption used in classical Navier-Stokes fluid dynamics may 

not be accurate enough when the flow scale becomes refined and comparable with the 

mean molecule free path. That phenomenon has also been demonstrated by much 

evidence. Several effects, normally neglected in conventional flow, may exist in micro­

scale flow (Bailey et a i ,  1995). For example, two and three dimensional transport effects 

are significant as micro-structure characteristic lengths are reduced to the same order of 

magnitude as the boundary layer thickness; therein the momentum and heat transfer in 

normal and span-wise directions increase significantly (Ma & Gemer, 1993). A slip-flow 

boundary condition may exist and has sound explanations in micro-channel flow but has 

no counterpart in macro-scale flow (Beskok & Kamiadakis, 1992, 1993, 1994; Pong & 

Ho, 1994; Arkilic et a i ,  1994; Chen et al., 1998).

One of the most important flow dynamic characteristics is the pressure drop or 

alternative friction factor through the fluid-carrying components as it directly engages the 

energy efficiency o f the system. Experimental studies have been performed in an effort to 

better understand this flow characteristic, but the currently available experimental data for 

micro tubes and channels are inconclusive.

Wu and Little (1983; 1984) used silicon and glass channels ranging in depth from 

28 to 65 microns for nitrogen, argon, and helium flows. The data showed substantially 

higher friction factors than predicted by classical theory. The silicon channels showed up
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to 60% deviation from the Moody chart, while the glass channels gave results that were 

over 3 times those o f the Moody chart.

However, the later investigation of Choi et al. (1991) demonstrated the exact 

opposite. Their experiments were performed for nitrogen flow through micro-tubes 

having inside diameters ranging from 3 to 81 microns and relative roughness ranging 

from 0.00017 to 0.0116. The measured friction factors were below those predicted by the 

Moody chart. The friction coefficient Cp ( i.e., the product o f Darcy friction coefficient/  

times Reynolds number Re ) was 53. This result is 20% lower than the theoretical value 

of 64 based on the Moody diagram.

Pfahler et al. (1991) conducted experiments for both liquids and gases in silicon 

channels ranging in depth from 0.5 to 50 micron. For both liquids and gases, they 

reported lower friction coefficients than those predicted by theory. The liquids studied 

were isopropanol and silicon oil. The isopropanol data showed the reduction in Cf  as 

channel depth decreased and was independent o f Re, whereas the silicon oil data showed 

that the reduction in Cf  was independent of channel depth and increased with decreasing 

Re. The gases used in the study were helium and nitrogen. The results showed that the 

reduction in Cfi contrary to the liquid tests, decreased as channel depth decreased for both 

gases. In the smallest channel studied, both the nitrogen and helium data showed Re 

dependence for Cfi where (^decreases for low Re.

Peng and Wang (1994) reported forced flow convection results for water and 

methanol through rectangular micro-channels having heights of 700 microns and width 

ranging from 200 to 800 microns. The laminar and transient heat transfer behaviors were 

strongly affected by fluid temperature, velocity, and channel size. Peng et al. (1994a,
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1994b) performed a water flow through stainless steel channels ranging in hydraulic 

diameter from 0.133 to 0.367 mm, and their results showed that Cf  decreased with an 

increase in Re.

Harley et a l  (1995) conducted experimental and theoretical investigations of 

subsonic, compressible flow in micro-size long conduits. The Knudsen number was less 

than 0.38, and the data were within 8% o f theoretical predictions o f the friction constant 

based on isothermal, locally developed flow and incorporating a single coefficient wall- 

slip model. Their experimental uncertainty is 12%.

One possible explanation for these observed effects is that they are largely due to 

the limitation o f continuum assumption used in classical fluid dynamics. The constitutive 

equation, based on the continuum assumption, may be no longer valid to describe the 

physical characteristic of fluid volume. Various models are thus needed to investigate 

micro-scale flow.

1.2. Classical Fluid Dynamics for Micro-Scale Flow

Slip-flow models are naturally considered to be a simple extension of 

conventional fluid dynamics to micro-scale flows. A slip-flow model may retain the 

Navier-Stokes equations as the governing equations in the flow field but replaces the non­

slip wall boundary condition with slip condition. This model was originally used in 

rarefied gas dynamics.

The effect of flow scale on the continuum assumption is well measured by a 

dimensionless parameter, Kn, which is the ratio of the mean free path of the fluid 

molecules (A.) to the flow characteristic length scale (L). Mean free path X varies with the
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temperature and pressure in the gas state. The Kn number relates to the collision 

probability among the fluid molecules and hence affects the molecular statistical 

properties, based on which continuum is assumed in classical fluid mechanics. Rarefied 

gas dynamics show that the continuum assumptions are invalid when the mean free path 

o f the gas is on the order o f the characteristic dimension, or when the Kn number is of 

0(1). This condition rarely happens for conventional fluid mechanics applications, but it 

may occur in micron flow depending on the fluid, flow condition, and channel size.

Rarefied dynamics theories focus on the flow o f molecules near a solid surface 

(Grad, 1949; Cercignani, 1975; Kogan, 1972). Although it is not clear what the velocity 

distribution o f the molecules near the solid boundary, three kinds o f boundary conditions 

are assumed, i.e., specular, diffuse, and Maxwell’s. For perfectly specular surfaces, 

molecules are reflected at the same angle as the incidence angle. For diffuse surfaces, the 

molecule can be reflected in any direction regardless o f the incidence angle. Maxwell’s 

boundary condition treats a portion o f the reflection as specular and the other as diffuse. 

In reality, most engineering surfaces are diffuse so some momentum is always lost at the 

wall. For a continuum flow, where the mean free path is very short, there are many 

molecules in the region very close to the wall. Momentum exchange between the 

molecules is more likely to occur. This interaction results in a zero velocity or non-slip 

condition at the wall. On the other hand, free molecular flow exhibits the other extreme 

where interaction between molecules rarely occurs. There is little build-up o f molecules 

near the wall, as in a continuum flow. This situation causes the flow to move along the 

surface due to a net velocity in the flow direction. Slip flow occurs between these 

extremes when there are slight rarefaction effects.
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It is not completely clear when slip flow becomes important as fluid convection 

systems are reduced in size. A number o f researchers have used analytical or 

computational models along with experiments in micro-channel flows. Ebert & Sparrow 

(1965) determined the velocity and pressure-drop characteristics o f moderately rarefied 

gas flow in rectangular and annular ducts. It was found that the effect of slip flattened the 

velocity distribution relative to that for a continuum flow. Also, the axial pressure 

gradient was diminished under slip conditions. It was found that compressibility 

increased the pressure drop primarily through an increase in viscous shear rather than 

through an increase in momentum flux.

Arkilic et a l  (1994) developed a two-dimensional model for rarefied gas flow 

through micro-channels by solving the Navier-Stokes equation using a velocity slip 

boundary condition, allowing for specification o f  a tangential momentum accommodation 

coefficient. It showed that the effect of rarefaction caused the pressure distribution to be 

nonlinear in the axial direction.

The reduced friction effects measured by Pfahler et a/. (1991) and Choi et 

al. (1991) were verified by Beskok and Karniadakis (1994) through a computational 

model of slip-flow in micro-channels. The two-dimensional predictions closely matched 

the friction factors of Pfahler; however, the analysis provided no basis for Re dependence 

o f friction coefficient in micro-channels. Reduced skin friction was also calculated using 

a three-dimensional model of a rectangular channel having a 3:1 aspect ratio for Re=1.0 

with Knudsen number Kn as a parameter. In their papers (Beskok & Karniadakis, 1992, 

1993, 1994, 1995, 1997; Beskok et al. 1996), Beskok and his co-investigators extended 

their work to include compressibility effects in addition to using higher order boundary
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conditions. In his recent paper, Beskok (1996) showed that for a large pressure drop in 

airflow, the compressibility effect was dominant, and in more rarefied flows such as 

helium flow, the effect of rarefaction negated compressibility.

Kavehpour et al. (1997) used a two-dimensional flow and heat transfer model to 

study gas compressibility and rarefaction in micro-channels assuming a slip-flow regime. 

The numerical methodology is based on the control volume finite difference scheme. The 

computations were performed for a wide range o f entrance Kn and Re numbers. It was 

found that the friction coefficient was substantially reduced for slip-flow compared with 

that of the continuum flows. The velocity and temperature distributions were flattened 

compared with a continuum flow, and the axial variation o f pressure became nonlinear. It 

was shown that the effect o f compressibility was important for high Re and that the effect 

of rarefaction was significant for lower Re.

Chen et al. (1998) adopted a slip boundary to study nitrogen and helium flow in 

micro-channels. The Knudsen numbers at the channel outlet ranged from 0.055 to 0.165. 

The differences between the numerical results and experimental data w ere within 1.15% 

for pressure drop and 3.13% for mass flow rate.

To relax the continuum assumption, a Direct Simulation M onte Carlo method 

(DSMC) was performed for flows related to MEMS by some researchers (Piekos & 

Breuer, 1996; Bird, 1994). The model makes no continuum assumption. Instead, they 

modeled the flow as it physically exists: a collection o f discrete particles, each with a 

position, a velocity, an internal energy, a species identity, etc. These particles move and 

are allowed to interact with the domain boundaries in small time steps during the 

computation. Intermolecular collisions are all performed on a probabilistic basis at the
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end o f each time step to minimize computational work. Macroscopic quantities, such as 

flow speed and temperature, are then obtained by sampling the microscopic state of all 

particles in the region of interest. Unfortunately, in low-speed flow which is the case of 

most MEMS, the inlet and outlet flow conditions make DSMC difficult. DSMC’s 

statistical nature makes the determination o f its macroscopic state from an instantaneous 

sample inaccurate due to the unacceptable statistical scatter. Another drawback of DSMC 

is that it needs many more computational resources than classical computational fluid 

dynamics methodology.

1.3. Development of Micro-Polar Fluid Model

To remedy the drastic limitations o f the concepts o f the continuum field approach 

on the extent to which continuum descriptions of macroscopic behavior can mirror the 

fine structure o f the medium, a micro-continuum fluid mechanics concept has been 

developed originally for such Theologically complex fluids as liquid crystals, polymeric 

suspensions, animal blood, etc. The outstanding reviews o f  the development and 

application o f this model were made by Ariman et a i  (1973, 1974). A systematic 

description o f fluids with micro-structure was presented by Stokes (1984).

The earliest formulation o f a general theory of fluid micro-continua was attributed 

to Eringen (1964) in which the mechanics o f fluids with deformable micro-elements are 

considered. In his paper, a simple micro-fluid concept was presented. This article was the 

first complete work which originated the micro-fluid theory. Eringen’s simple micro-fluid 

is “a fluent medium whose properties and behaviour are affected by the local motions of 

the material particles contained in each o f its volume element.” The simple micro-fluid
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possesses local inertia. The laws o f classical continuum mechanics are augmented with 

additional equations which account for conservation o f micro-inertia moments and 

balance of first stress moments which arise due to consideration o f microstructure in a 

medium. New kinematic variables, e.g., the gyration tensor and micro-inertia moment 

tensor, are introduced. Simple micro-fluids are isotropic, viscous fluids and need 22 

viscosity and material coefficients to characterize the constitutive equation in the simplest 

linear case.

The theory was extended by Eringen (1972) to take into account thermal effects 

and was termed as the theory o f thermo-micro-fluids. The exact nonlinear theory is 

presented and restricted by the axioms of constitution. The complete system o f field 

equations and accompanying jump conditions result from the linear theory. It also 

discussed several internally constrained classes o f these fluids, which include micro-polar 

fluids and inertia rateless fluids.

Eringen introduced various subclasses o f simple micro-fluids, from which, as a 

special class, is micro-polar fluids. In micro-polar fluids, the local fluid elements are 

allowed to undergo only rigid rotations without stretch. In this way, the gyration tensor is 

to be considered skew-symmetric and to be reduced to one vector g. Structured fluids 

consisting of dumb-bell molecules or short rigid cylindrical elements are properly 

represented by this model. The characteristic o f our micro-scale flow may suggest itself 

to be in this category.

Eringen (1969) also extended micro-polar fluids to allow the micro-elements of 

the fluid to deform, and that was termed micro-polar fluids with stretch. He gave this kind 

o f application to Newtonian fluids with polymeric additives, certain liquid crystals, and
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blood plasma- He also developed a theory of anisotropic micro-polar fluids (1980). 

Anisotropic fluids occur in nature as either chemically stable substances or fluids that 

carry suspensions. The theory considers the fluid orientable at the outset rather than the 

interactive motions o f  its constituents. Eringen & Okada (1995) proposed a lubrication 

theory under the micro-structure framework. Non-local viscosity moduli were determined 

disregarding the inner structure o f the fluid. The theoretical calculations for thin liquid 

films were in good agreement with several experimental observations.

Theories similar to Eringen’s were presented by many researcher according to 

their own approaches. Allen et al. (1967) employed a continuum approach to develop the 

kinematics appropriate to media with deformable microstructure referred to as “simple 

deformable directed fluids.” Kline & Allen (1970) developed a thermo-dynamical theory 

o f fluid suspensions o f deformable particles. They found that their theory qualitatively 

predicted the observed unsteady shear-flow behavior o f dilute suspensions o f randomly 

coiling macromolecules, such as solutions o f  polyisobutylene. This apparent successful 

prediction of experimental observations gives strong support in favor of the micro­

continuum approach for describing the Theological behavior o f fluid suspensions. 

Ciarletta (1995) established the linear theory o f heat-conducting micro-polar fluids based 

on Eringen’s framework.

Stokes recompiled different versions o f micro-continua theories and presented a 

connected account o f them in a common notation (1984). It made the theories clear in the 

physical concept. He suggested two main physical concepts — couple stresses and 

internal spin — that go into building theories o f fluids with microstructure in addition to 

the conventional fluid mechanics. He also suggested a kinematic concept, micro­
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structure. The couple stresses and micro-structures are conceptually different The first 

concept deals with mechanical interaction, whereas the second one deals with the 

kinematic. Whereas in a general theory o f  fluids with micro-structure, couple stresses and 

internal spin may be present simultaneously, theories of fluids in which couple stresses 

are present, but micro-structure is absent, are also possible. Similarly, micro-structure 

may be considered in the absence o f couple stresses. The effect o f  couple stresses in 

fluids was considered in his early paper (Stokes, 1966).

The successful application o f the micro-continuum fluid theories covers a wide 

variety o f flow problems. Ariman et al. (1974) gave a comprehensive review for early 

applications. These flow problems were categorized into six major divisions, namely, 

fluids with rigid non-spherical or deformable micro-elements, micro-polar fluids, polar 

and dipolar fluids, couple stress fluids, anisotropic fluids, and liquid crystals. In the 

micro-polar fluids division, applications include steady shearing flows like Couette flows, 

poiseuille flows; nonsteady flows like oscillatory flows, boundary-layer flows; stability 

analyses; suspension viscosity studies; turbulence studies; blood flow studies; and other 

flow studies.

Ariman & Cakmak (1967) applied couple stress and micro-polar theories to the 

problems o f  Couette and Poiseuille flows between two parallel plates and results were 

compared. Ariman et al. (1967) considered the micro-polar fluids flow between concentric 

cylinders for the case o f Couette and Poisseuille flows. Kline & Allen (1970) investigated 

nonsteady flows o f fluids with micro-structure. For parallel flows, a  decomposition of 

velocity and micro-structure spin fields was given and used to reduce the governing 

equations to two uncoupled parabolic partial differential equations. These equations are
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solved for the suddenly accelerated plane wall problem. For the boundary condition at the 

wall, they considered two limiting cases. In the first case, a rotational surface friction was 

neglected and slip condition applied; in the second case, a fluid-solid interaction was set 

so strong that no rotation permitted and non-slip condition applied. They also considered 

the effects o f fluid micro-structures in two limiting cases. The first case was interpreted 

physically as dilute suspensions flow, where the characteristic micro-structure length 

becomes increasingly small with respect to the characteristic flow field length. This 

characteristic leads to the classical solution or small Knudsen like continuum flow 

solution. The second case is just the opposite, where the micro-structure characteristic 

length dominates the corresponding flow field length. In this case, the boundary-layer 

thickness is increased due to the effect of the ratio o f  vortex viscosity to classical 

viscosity. In other words, vortex viscosity influences the flow behavior as much as the 

classical shear viscosity. We will extensively investigate this behavior in a later chapter.

Experimental determination o f material micro-polar fluid constants was made by 

Kolpashchikov et al. (1983). Their results of viscometric measurements allowed the 

determination o f two characteristic parameters, i.e., viscosity coefficients, o f  a  micro- 

polar fluid.

However, most recent works are still restricted to theoretical investigation. 

Olmstead & Majumdar (1983) used micro-polar fluid model to examine steady, 

incompressible Oseen flows in two dimensions. The solution of the fundamental problem 

was obtained in explicit form under a certain restriction on the physical parameters of the 

problem. Ahmad (1976) obtained a self-similar solution o f incompressible micro-polar 

boundary layer low concentration suspension flow over a semi-infinite flat plate. In his
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method, the partial differential equations of motion are reduced to two couple differential 

equations. Rees & Bassom (1996) considered the Blasius boundary layer flow of a micro- 

polar fluid over a flat plate. They assumed the micro-inertia density to be constant, and 

non-zero micro-rotation vector on a solid surface. An asymptotic analysis was performed. 

Can et al. (1989) studied the convective motion in a micro-polar fluid. It was shown that 

the principle o f exchange o f stabilities holds for the convective motion in a micro-polar 

fluid, and the convective motion is less stable for micro-polar than for Newtonian viscous 

fluid. Easwaran & Majumdar (1990) constructed some causal fundamental solutions for 

the slow two-dimensional flow o f a micro-polar fluid. An explicit solution required the 

factorization o f a fourth order partial operator into two quadratic operators, which was 

achieved under a certain condition on the parameters of the problem. Das & Sanyal 

(1990) discussed unsteady flow o f a micro-polar fluid with a periodic pressure gradient 

through a rectangular channel. Hung et al. (1996) used a perturbation method to 

investigate analytically the nonlinear stability behavior of a thin micro-polar liquid film 

flowing down a vertical plate. They analyzed the effect of the vortex viscosity with the 

classical bulk viscosity.

Of more importance to this work is the paper by Papautsky et al. (1998). The 

authors employed micro-polar fluid theory to investigate numerically micro-channel fluid 

flow behavior, and experimentally verified the model. The significance of Papautsky’s 

work is that it is the first time the micro-polar model is applied to the area of micro-scale 

flow. The feature of micro-scale flow poses the micro-polar fluid a  new challenge. The 

flow they considered was two dimensional, steady, and incompressible. However, they 

did not indicate clearly other assumptions such as unidirectional flow or small Reynolds
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number flow. They used momentum and angular momentum equations that do not 

contain the convection terms and that may be deduced only by small Reynolds 

assumption or unidirectional flow assumption, and this factor makes their theory severely 

bounded. They also specified the pressure drop in their computations so as to avoid the 

difficulty o f solving the pressure equation in the case o f  incompressible flow. At the same 

time, their model was not applicable to a general case o f non-pressure-driven flow.

1.4. Objectives

With the forementioned drive to explore the micro-scale flow and the current 

research progress in micro-polar fluid flow, it is inspiring to  develop an ad hoc micro- 

polar fluid model to better suit the micro-channel flow. O ur interest is in extending the 

micro-polar fluid model to a steady, incompressible, two dimensional flow in a micro- 

channel. The flow behavior will be our concern and will be compared to the classical 

Navier-Stokes solution. A numerical scheme from conventional computational fluid 

dynamics for incompressible flow, will be used in this investigation.

1.5. Organization of the Dissertation

This dissertation is organized as follows: In chapter 2 , we present the governing 

equations and slip boundary conditions for a slip-flow model based on classical fluid 

dynamics. In chapter 3, we present the details o f the micro-polar fluid model, the 

simplifying assumptions for modeling, an exact solution obtained for unidirectional flow, 

and nondimensionlization. In chapter 4, we discuss the numerical method including 

numerical schemes and various computation details. In chapter 5, we describe the specific
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simulation problem and computational results. In chapter 6 , 

discussion.

16

we give a conclusion and
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CHAPTER 2 

SLIP-FLOW MODEL

2.1. Introduction

Typically, a flow is considered to be in one o f four regimes according to its 

Knudsen number. Different authors defined these regimes using slightly different 

Knudsen number ranges. For gas flow, Beskok & Karniadakis (1992) proposed the 

following classification:

Kn < 0.001 Continuum Flow

0.001 < Kn <0.1  Slip Flow

0.1 < Kn < 10 Transition Flow

Kn >10 Free Molecular Flow

We follow this classification as have other researchers (Bailey et al., 1995; Kavehpour et 

al., 1997; Chen et al., 1998).

For continuum flow, the Navier-Stokes equations govern the flow. In the slip-flow 

regime, deviations from the state of continuum are relatively small, and the flow is still 

governed by the Navier-Stokes equations. The rarefaction effect is modeled through the 

partial slip at the wall using Maxwell’s velocity slip and von Smoluchowski’s 

temperature jump boundary condition. The validity o f  this kind of model was assessed by 

various authors (Beskok, 1996; Chen et al., 1998). For flows in the high transition or free

17
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molecular regimes, the Navier-Stokes equations break down and have to be substituted 

either by the Boltzmann equation, which is valid at the microscopic level, or by 

continuum approximations.

The aspect ratio, defined as channel width to channel height, of a micro-channel 

often is large. If  we neglect flow change in the direction o f width, usually achieved when 

the aspect ratio is greater than 7, then the flow can be reasonably assumed to be two- 

dimensional in the streamwise direction. It can be shown that for flows with a large 

aspect ratio the three dimensional flow rate is calculated to the leading order by 

Q3d = Q2D( l - h 2 /  w2) , where h and w are channel height and width, respectively (Chen 

etal., 1998).

2.2. Governing Equations and Boundary Conditions

The steady, two dimensional, isothermal, incompressible flow is governed by the 

Navier-Stokes equations, i.e.:

Continuity:

* i + * = 0  (2.1)
etc dy 

Momentum (x direction):

(2 .2)

Momentum (y direction):

dv dv
u —  + v—  = 

dx dy
--------------r v  -» i ~
p dy dy J

(2.3)
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where, x, y  are the Cartesian coordinates in stream wise and normal direction; u, v are the 

velocity components corresponding to x, y; p, the pressure; p, the fluid density; v, the 

fluid kinematic viscosity.

In the slip-flow regime, the Navier-Stokes equations (2.1, 2.2, 2.3) are solved 

subject to the first order velocity slip boundary conditions at the wall given by:

U a
Kn f d u !U '  

d y /L )
(2.4)

wall

where, U  is the characteristic velocity; Kn, local Knudsen number; L, the characteristic 

length, the channel height in this case; ct, the tangential momentum accommodation 

coefficient.

The normal gradient o f  the tangential velocity shows the effect of vorticity on the 

velocity itself at the wall. The nature of the momentum exchange between impinging 

fluid molecules and the surface is reflected by the accommodation coefficient. For 

example, a  = 0  corresponds to specular reflection and cr = 1  corresponds to diffuse 

reflection. In the first case, the tangential velocity o f the molecules reflected from the 

walls is unchanged, and the normal velocity o f  the molecules is reversed due to the 

normal momentum transfer to the wall. In the second case, the molecules are reflected 

from the walls with zero average tangential velocity. The diffuse reflection in particular is 

an important phenomenon for tangential momentum exchange and thus friction o f  the 

fluid with the walls. Equation (2.4) assumes slip even for the diffuse reflection case. The 

non-slip condition on the walls is obtained only when Kn = 0 . The accommodation 

coefficient depends on the fluid and the surface roughness, temperature, local pressure, 

and possibly the velocity and the mean direction o f  the local flow.
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Several authors assumed o  = 1 (Chen et al., 1998; Kavehpour et al., 1997) as 

experiments with gases over variuous solids and fluid surfaces show that a  is 

approximately equal to 1.0. It is possible to obtain higher-order corrections to the velocity 

slip boundary conditions by retaining higher-order terms in the Taylor series expansion o f 

the tangential velocity near the wall (Beskok, 1996).

In this research, ct is varied between 0 and 1.

The other boundary conditions at the walls are

where, n is the normal coordinate at the wall.

The flow at the inlet is assumed to be o f  a  parabolic velocity profile as well as a 

uniform profile. The parabolic velocity profile is not physically necessary but may 

accelerate the convergence o f  the solution as compared with a uniform flow. The flow at 

the outlet is assumed fully developed. Thus, the mathematical representations are

v =  0 (2.5)

(2.6)
dn

Inlet:

u(0,y) = U ( l - y 2) (2.7)

v ( 0 ,y )  =  0 (2.8)

p (0 ,0 ) = 0  ( a s  reference point); (2.9)

Outlet:

du(x„,y) _ Q 

etc
(2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

dv( x^y)
dx

Sp{xa,y)
dx

=  0

=  0

(2-11)

(2.12)

To better understand the effect o f  slip condition, we need to simulate a non-slip 

condition as a benchmark. The non-slip wall boundary conditions are

u = v = 0

dn

(2-13)

(2-14)

The other boundary conditions are the same as for the slip-flow.

Introducing flow characteristic length L, characteristic velocity U, we non- 

dimensionalize the above governing equations by setting 

x* = x /L , y* = y /L ,  u* = u fU , v* = v / U , p* = ( p - p J / ( p U 2) 

where, the * indicates non-dimensional variables. Hence, the final non-dimensional

equations are as follows (omitting *):

du dv _ 
— + —  =  0 
dx dy

du du dp 1u  hv—  = — — + —
dx dy &  Re

f  j 2d u d u
acr + ^ F

dv dv dp 1 f  d2v d i v
U  +  V  =  — +  r- + -------

dx dy dy Re^dx dy

where Re is the Reynolds number defined by

R e = p U L = UL 
p  v

(2.15)

(2.16)

(2-17)

(2.18)

The boundary conditions are nondimensionalized in a similar way.
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CHAPTER 3 

MICRO-POLAR FLUID MODEL

3.1. Introduction

In continuum theories the mass is assumed to be a continuous measure, so that a 

continuous mass density p exists in a  volume element dV  that is infmitesimally small. 

However, this continuum concept of density breaks down when the volume compares 

with the cube of the mean free path, say AF* . Thus mathematical idealization is 

meaningful only when dV  models AF such that AF>AF* . This continuum hypothesis is 

well illustrated by Batchelor (1967) under the conditions o f everyday experience. In 

reality, the volume element dV  cannot be infinitesimally small, but it should at least be 

insensitive to current available measuring instrument. Batchelor used term “sensitive” 

volume to describe this volume element, and we will follow this terminology in this 

thesis. The theory of micro-continuum fluids attempts to account for the microstructure 

that exists for AV <AV*by using a continuum description. The limiting volume AF* could 

also be interpreted as a volume, containing microstructures such as suspended particles or 

even turbulent structures, for which the effects of microstructure cannot be accounted for 

by a continuum distribution.

In order to account for the microstructure that exists in the case o f AV <AV*, the 

deformations of the material within A V  have to be considered. The macro mass element 

dM  is assumed to contain continuous mass distributions such that the total macro mass

22
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dM  is the sum o f all the masses in dV. Thus a continuous mass distribution is assumed to 

exist at each point o f the macro element dV, such that the sum o f the local masses over dV  

gives the total mass dM, and implies that the continuum theory is valid at each point of a 

macro element dV. Statistical averages then have to be taken to obtain the micro 

deformation theory o f continuous media.

Eringen (1964) introduced an important tensor called the gyration tensor vy to 

determine the motion o f  a micro element relative to the center o f mass o f a macro 

element. This gyration tensor determines the motion at the micro element level. A micro­

inertia moment was correspondingly defined for the deformed body.

The kinematics o f deformation measures for micro elements are established with 

the help o f five theorems related to:

1. Micro-inertia moments, which satisfy specific partial differential equations 

that are the complements to the continuity equations o f the hydrodynamics for 

micro-fluids and are named as the equations of conservation of micro-inertia 

moments

2. The material derivative o f micro-displacement differentials

3. The material derivative o f the square o f arc length in the deformed body

4. A necessary and sufficient condition for micro-rigid motion, which is that 

both deformation rate tensor and the second order micro-deformation rate 

tensor are zero

5. A property o f  the micro-deformation rate tensors, which are objective tensors

New principles are added to the basic principles of classical fluid dynamics,
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which deal with:

1. Conservation of micro-inertia moments;

2. Balance o f first stress moments.

A fluent medium called a simple micro fluid is defined by Eringen (1964) based 

on the property o f its constitutive equations. It is a viscous fluid and in the simplest case 

o f constitutively linear theory, this fluid contains 22 viscosity coefficients. The nonlinear 

Stokesian fluid turns out to be a special class of simple micro fluids.

The simple micro fluid is very general and allows for a wide variety of 

microstructures through the gyration tensor. It is almost untractable. A simpler subclass 

o f micro fluids, in which a microstructure is still present, which is obtained by restricting 

the form o f the gyration tensor, and which is more tractable, is the class of micro-polar 

fluids.

A  fluid is micro-polar if , for all motions,

t/dm  =  ~ ^ km l > V  kl =  Ik (3-1)

where tUm is the first stress moment tensor and vw the gyration tensor. Such fluids 

exhibit only micro-rotational effects and can support surface and body couples.

3.2. General Micro-Polar Fluid Model

In the general case o f a micro fluid, the gyration tensor has nine independent 

components. For micro-polar fluids, the assumption o f  the skew-symmetry o f  v w 

reduces the number o f independent components to three, so that, in addition to their usual 

convection due to the motion of the fluid element, points contained in a small element of
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fluid can rotate about the centroid of the volume element in the average sense described 

by the gyration tensor v„  = -v  tk . From theorem 3 o f Eringen’s paper (1964), micro­

stretch of particles is not possible for this case so the directors are rigid.

The governing equations o f the micro-polar fluid for isothermal, no body force, 

and couples flow are following in tensor forms, and their complete expansion form in 

Cartesian coordinates is in the appendix.

Continuity:

^ ■ + ( p v , ) > = 0  (3.2)

Conservation o f micro-inertia:

+ OWrf + *,Jsk )gs =  0 (3-3)

Balance of momentum:

- P t + i X  + y. )vtJd + (p  +  k )vtJl + k  z Umg mJ -  pv* = 0 (3.4)

Balance of momentum moments:

(« + P )g,ja +J Skjt +<  zumvm j- 2k  gk -  pjug, = 0 (3.5)

where t is time; p is mass density; vk velocity vector; p  pressure; gk micro-rotation vector; 

j u micro-inertia moment tensor; a , (3, y, k, X and p. are the material constants; the

notation ,k  denotes the differential operator in space; —  the operator o f the material 

derivative; z Um is the third order alternating pseudo tensor. The micro-rotation vector g, 

and micro-inertia moment tensor j  are defined based on the relations with the gyration 

tensor and the micro-inertia tensor, respectively.
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V« = -Zklmgm (3-6)

Jkl = irfiu ~ ‘kl (3.7)

The equations for conservation of energy and entropy inequality are omitted under 

the framework o f isothermal fluid assumption.

The problem is now formulated in terms o f  a system o f  17 partial differential 

equations. The above field equations are subjected to initial conditions and boundary 

conditions.

A useful concept termed micro-isotropic is introduced to simplify the model 

further. A micro fluid is said to be micro-isotropic if the micro-inertia moment is 

isotropic, i.e. if

a. or j u = f i u (3.8)

where i, j  are scalars and 8^  the Kronecker delta. Then, from equation (3.1) and 

Eringen’s theorem 1 (1964), we have

— (ikm) = 0 , or — <7) = 0 (3.9)
Dt Dt

and

— O'*J = 0, or — (y ) = 0 (3.10)
Dt Dt

Thus, on material lines,

i = ~ j  = const (311)

For micro-isotropic micro-polar fluids, the equation o f conservation of micro- 

inertia is satisfied identically.
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After applying micro-isotropic constraints, the equation number is reduced to 8 

from 17 with 7 material coefficients.

33 .  A d  hoc Two-Dimensional Micro-Polar Fluid Model

The equations (3.2), (3.4), (3.5) with the corresponding initial and boundary 

conditions are still too complex to be practical. One main reason is that there are still 7 

material constants ( /, a , (3, y, k, A, and p ) that appear in the equations, and some of them 

are not so easily determined for a real fluid. We try to simplify further the micro-polar 

fluid onto our ad hoc two-dimensional micro-polar fluid model.

3.3.1. Basic Assumptions and Formulations

In addition to the isothermal, no body force, and micro-isotropic assumptions, 

additional constraints are assumed for this micro-polar fluid model.

Flow is steady. Thus all the terms with partial derivative with respect to time

vanish.

Fluids are assumed incompressible. In this case p = const and therefore the 

continuity equation reduces to

vM = 0 .  (3.12)

The term (A + p)v/jfc/ in the momentum equations represents the effect of

compressibility o f  fluid, and thus vanishes. The A, second-order viscosity coefficient, 

will not appear in the equations. This assumption agrees with the result of the 

incompressible case o f Navier-Stokes equations.
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Flows are two-dimensional. We consider the flows (u,v) in the x-y plane, and then 

only the component normal to the x-y plane (k=3) of the micro-rotation vector gk appears 

in the momentum equation, and the other components will not be taken into account.

The term (a + (3 )g tM in the equation o f momentum moments vanishes as k=3 

from the two-dimension assumption. Therefore, the spin gradient viscosity coefficient, a , 

P will not appear in the equations.

Thus the unknowns of the ad hoc theory are now 4 in number, namely, 

u, v, gp p.

satisfying 4 reduced equations with 4 material coefficients, which are (omitting the 

subscript 3 o f g  ):

Continuity:

Balance of momentum (x- component):

d u  d u  1 d p  1 .  .u b v  = --------- — + — ( u  + k )
d x  d y  p d x  p

r d2 u d2u ̂  
d x 2+ d y 2

k  d g

(3.13)

p d y
(3.14)

Balance of momentum (y- component): 

d v  d v  1 d p  1u- +  v-
d x  d y  p d y  p 

Balance o f angular momentum:

+ — ( p + K )
f d2 v d2 v ̂  

d x 2+ d y 2
k d g
p d x

(3-15)

d g  d g  2 k  yU—2. + V—— = ------- :g  + - '
d x  d y  p j  p j \ d  x  d y  J

, 5 2 ? ] K r d v  d u '
S y 2J P j <d x  Qy >

(3 .16)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

where x,y are the coordinates in stream wise and normal directions, respectively. u,v are 

the corresponding velocities in x,y directions, p  the pressure, g  the component o f the 

gyration vector normal to the x-y plane, and j  the micro-inertia density. Further, p is the 

fluid density, p. the classical bulk viscosity, k  the micro-rotation parameter (also known

The above viscosity parameters are not independent. A further analysis can give 

useful relations among them.

It is clear that g  is the total spin o f the microstructure o f fluid media in the flow 

field. It is possible that in some cases the microstructure effects become negligible and 

the flow behaves like a regular viscous flow. Therefore, if  we demand that g  be a possible 

solution, then it is only possible if

which gives some relationship between the coefficients o f viscosity and micro-inertia. All 

material constants j, p, k, y are non-negative.

The derivation o f  this relationship has been given by Olmstead and Majumdar 

(1983) for the Oseen flow problem, and also by Ahmadi (1976).

The micro-inertia density j  is defined as

as the coefficient of gyro-viscosity and as the vortex viscosity), and y is the spin-gradient

viscosity.

The momentum equations simplify to the Navier-Stokes equations when k =0 .

3.3.2. Relations among the Material Constants

y = ( p  + k  /2 )y (3.17)

3
(3 .18)
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where dv and dv’ are the sensitive volume and micro atomic volume elements, 

respectively, and % is the distance measured from the mass center o f  the sensitive volume 

element, p’ is the mass density at any point inside it. Two densities are identical since the 

flow is in single-phase in our consideration. Assume the sensitive volume element is 

spherical and its diameter is d, evaluating the integral yields

j  = d 2l  10. (3.19)

It is then that the micro-inertia is proportional to the square o f  the length scale of 

the sensitive volume element. The length scale o f that sensitive volume element or 

microstructure element is defined as the smallest volume for which average quantity, 

such as velocity, density, gyration, has statistical meaning.

Let f  be a  property of a particle; then the average or statistical mean o f /  in the 

micro sensitive volume element is

t f
/  = -i=!—  (3.20)

n

where f  represents the property f  o f individual molecules, and n  represents the total 

number o f molecules in the microstructure element.

The variance o f the/  has relation with the variance of the mean o f f .

= (3.21)
n

Further, assume c to be the coefficient for variation for the mean, we have

V (J )

f
”—  = c . (3.22)
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Introducing another parameter, standard deviation s, as

» = # ( 7 ) , (3.23)

we have

(3.24)

We assume c = 0.005, s !  f =  0.2, then n = 1600. This assumption means that the micro­

element must have at least 1600 molecules in the “sensitive volume” to make the 

variation in the mean not greater than 0.5%.

If  Loschmidt’s number applies, then the sensitive volume characteristic length d  

can be determined from n.

However, the difficulty still exists in determining the microstructure characteristic 

length. For most suspension flows, determination o f this length scale was proposed by 

Eringen (1980). The magnitude order is about 10'3 to 10*s cm for flow characteristic 

length L> 1 cm and flow characteristic velocity U>1 cm/sec. Kolpashchikov et al. (1983) 

deduced formulae for micro-polar fluid material constants as well as a boundary 

condition parameter from experimental data. What was needed were measurements o f the 

volumetric flow rate and the pressure gradient in channel flow with different channel 

dimensions. The explicit microstructure characteristic length still remains unanswered. 

Kline and Allen (1970) discussed the effects of fluid microstructure on the unsteady flow. 

They investigated especially the limiting cases, i.e., maximum effects o f microstructure 

and dilute suspensions. However, what the appropriate length scale is in-between was 

unanswered. For micro-scale flows, even these kinds o f relations are untouched. Clearly,
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two limiting constraints for micro-scale flow exist. The minimum effect o f microstructure 

is shown when its length scale decreases until it approaches the order o f magnitude of the 

free path length while its length approaches the flow length.

We introduce the relation o f free path length to the microstructure characteristic 

length with the help of another parameter m as follows,

d = mX (3.25)

where, A. is the molecule free path length. Since the microstructure characteristic length is 

less than the flow characteristic length, d  < L , where L is the flow characteristic length; 

substituting Knudsen number Kn = AJL, we have

K n< —  (3.26)
m

The upper bound of the reciprocal of parameter m may be determined statistically

ffom<i.

Therefore, two different length scales appear in the model, the flow characteristic 

length and the microstructure characteristic length. In micro-scale flow, such as micro- 

channel flow, the characteristic length scale o f the flow usually may be chosen as the 

height (or width) of the channel since it accommodates well the length scales including 

gradients o f density, velocity, pressure, and temperature within the flow. The 

microstructure characteristic length may vary with the modeling parameter m and will be 

examined under the simulation tests.

3 3 3 .  Non-Dimensionalized Version

We now can non-dimensionalize equations (3 .1 3 -3 .1 6 ) by setting
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x* = x /L ,  y* = y /L ,  u* = u lU , v* = v /U  (3.27)

g* = g L /U , p* = ( p - p ao) / ( p U 2) 

where, the * indicates non-dimensional variables, L is the flow characteristic length, U 

the velocity, /?«is some representative value o f the modified pressure in the field. Hence, 

the final non-dimensional equations are as follows (omitting *):

Continuity:

d u  d v  _
 +  =  0
d x  d y

Balance o f momentum ( x-component)

(3.28)

du d u  u - — hv d p  ' l + Ic( d2 u ' d2 u }  ' k  d g
Re d  yd x  d y  d x  Re ^ 5 x 2 d y 2. 

Balance o f momentum ( y-component)

(3.29)

d v
U  l-V -

d v d p 1 + k ( d2 v d2 v ) k  d g
d y d y Re [ d x 2 d y 2] Re d x

(3.30)

Balance o f angular momentum:

d g  d g  u—— + v- 5
20  k

d x  d y  Re (mKn)'
.g+ :l + k / 2

Re
( d 2 g  , S2 g ) 10 k f d v  d u '
l s * 2 + a / J Re (mKn)2 ^ d x  d y )

(3.31)

where Re is the Reynolds number defined by 

R (3.32)

and k  is the ratio o f  vortex viscosity to translational viscosity, i.e.

(3-33)
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3.3.4. Boundary Conditions

Equations (3.28 -  3.31) are subjected to boundary conditions. The solution 

domain has three kinds o f boundaries present, namely inlet, outlet, and walls.

Along the inlet boundary, all conventional fluid and flow properties must be 

known and prescribed like that o f a  Navier-Stokes solution. The specification o f the 

micro-rotation variable is not so direct since we lack physical information. Hence, we 

assume it is determined from other flow properties by satisfying the equation of angular 

momentum. For a long channel flow, the fully developed condition may apply.

Across the outlet, the flow direction must be uniformly out o f the domain. In 

channel flow, the boundary is usually positioned in such a way that the flow there can be 

assumed to be reasonably fully developed. In this case, zero stream wise gradients o f all 

properties may be implemented with little danger o f any adverse effects far upstream of 

that boundary.

At the walls, the velocity, including both the u, v components, is zero. The micro­

rotation variable is assigned a relation with the surface shear stress, as 

du
S  = - n —  (3.34)

dy

where, n is a  parameter related to micro-gyration vector and the shear stress. The value 

n=0 corresponds to the case where the particle density is sufficiently great that micro­

elements close to the wall are unable to rotate. The value n=0.5 is indicative o f  weak 

concentrations, and when n=l flows are believed to represent turbulent boundary layers 

(Rees & Bassom, 1996). n lies between these two extremes.

The gradient of pressure normal to the wall surface is assumed to be zero.
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33 .5 . Unidirectional Flow Solution

It is important to know whether the model has a physical solution or not. We 

choose a steady locally fully developed micro-channel flow as a test. After applying the 

locally fully developed flow assumption, the term du/dx, dv/dx, dg/dx vanish, and dp/dx 

becomes constant. The partial differential operator d/dy is identical to the differential 

operator d  /dy. Substituting du/dx into the continuity equation, it follows at once that v=0. 

Thus flow is unidirectional. The governing equations, given by (3.29 -  3.31), reduces to

d  x  d  y 2 d  y
(3.35)

(3.36}

The corresponding boundary conditions are

At center line:

y  = 0 : du/dy = 0 , g  = 0; (3.37)

At upper wall:

y  = \ : u = 0 , g  = —n d u /d y . (3.38)

The solution o f this problem is

1 dp ______ k (2 w +  1)
(ec,y -f-e<y) + y 2 +

K(2n + l)(ei; +e < )
2 p + ic  dx C,{eQ — e^X m c-K  -p .)

(3.39)

and

1 dp (2/z +  l ) p + k (ec,y —e<y) —y (3.40)
2 p+Kcbc|_ ^( ec - k - p )
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where,

ik (2)j. +  k )  

y ( H + K )
(3.41)

The solution of a plane Poiseuille flow may be obtained by putting k=0 in 

equation (3.39), in which case, equations (3.35) and (3.36) are decoupled and the solution

the velocity will not be affected by the micro-rotation and vice versa. The value o f k  is a 

measure of the effect o f the microstructure on the macroscopic velocity and stress fields.

If  y=0, the solution of g  is immediately obtained from equation (3.36), and it is 

identical to the local vorticity. Thus, the couple stress will be zero irrespective of 

variation of velocity and micro-rotation g  fields.

Even though all the effects are present simultaneously, the motion may be 

assumed to be affected by three parts. First, viscous action, measured by p; second, the 

effect o f couple stresses, measured by y; and third, the direct coupling of the 

microstructure to the velocity field, measured by k. These three constants can have any 

nonnegative value and then the ratio o f any two o f them, which can measure the relative 

strength of their property effects, can have any nonnegative value.

The boundary condition coefficient n can also affect the solutions (3.35) and

(3.36). But since the variation of n is confined between 0 and 1, the effect will not 

change the characteristic o f the solution, and is not significant. An arbitrary chosen value 

o f n should reflects the property of the solution.

The variation of the velocity profile with kfu  for n=l/2 and y=7 is shown in 

Figure 3.1.

of g  is solved by equation (3.36) and thus solution (3.40) does not apply. It follows that
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The maximum velocity u occurs at y —0 and it varies with k / u .  It is not necessary 

to have a maximum for k - 0.
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CHAPTER 4 

NUMERICAL METHOD

4.1. Introduction

The governing equations o f micro-polar fluid possess similar properties to the 

Navier-Stokes equations, where the equations of the balance of momentum can be 

divided according to convection, diffusion, and source terms. Therefore, classical CFD 

methods are applicable to this kind o f system.

Among the various numerical methods for computing incompressible flows, the 

primitive variable approach offers the fewest complication in extending two-dimensional 

calculations to three-dimensions. It also has the advantage o f obtaining directly the 

solution o f commonly known physical variables, velocity and pressure. A difficulty with 

this approach is in solving the pressure field due to the absence of an equation explicitly 

governing the pressure. Rather, the pressure is implied by the continuity equation, which 

imposes a compatibility condition on the velocity field. Patankar (1980) introduced a 

revised version of an algorithm for handling the velocity-pressure linkage, namely, the 

"Semi Implicit Method for Pressure Linked Equations”, which is widely used in turbulent 

flow and heat transfer computations.

Another treatment of solving the pressure field is by the projection method, 

proposed independently by Chorin in 1968 and by Temam in 1969. The explicit version 

o f such a method was presented by Fortin et al. in 1971, and detailed by Peyret and

39
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Taylor (1990). We employ this method in this work.

4.2. Pseudo-Time-Dependent Method

We rewrite the governing equations for both the Navier-Stokes system in chapter 

2 and the micro-polar fluid model in chapter 3 as follows:

V -V  = 0 (4.1)

Vp + F(Vs<g) = 0 (4.2)

G(V,g) = 0 (4.3)

where, F(V, g) is all terms except pressure for balance o f momentum equation and g  is

null in the case of the Navier-Stokes system; G(V,g) expresses all terms for balance of

angular momentum and appears only for the micro-polar fluid model. Thus, the 

governing equations for these two models are unifled and our discussion will be made in 

general.

The main difficulties associated with the solution o f equations (4.1-4.3) are the 

following:

First, the presence of the constraint V • V = 0, which must be satisfied at any time, 

does not allow the use of a simple explicit method that avoids solution o f an algebraic 

system of equations.

Second, there is a lack o f boundary condition for the pressure.

We notice the fact that the solution o f a steady equation can be obtained by 

solving its associate unsteady equation as the limit when the steady state d/d t is reached. 

The method is then called the pseudo-time-dependent method because the time t involved
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has no physical meaning.

Equations (4.2 ) and (4.3) then become:

^ + V p  + F(V ,|r) = 0 (4.4)
at

^■  + G (V ,g )= 0  (4.5)
ot

Equations (4.1), (4.4), and (4.5) become the governing equations of the pseudo­

time-dependent problem.

The object o f the pseudo-time-dependent method is to obtain a steady state 

solution, characterized by

- i - l a " '  - » •  |< s . .  -J -l V *1 - » "  l < e „  ~ \ P " "  ~ P "  l < s , .  - g ’ l <e .
At A t At A t *

where e„, e„ sp, and eg are small numbers. The possibility o f  obtaining convergence is 

based upon two facts: (1) the solution o f  a perturbed time-dependent fluid dynamic 

system is toward the solution o f the steady problem concerning the limit when t -> qo ; 

and (2 ) the consistency and stability o f the scheme employed in the projection method. 

The consistency follows from the construction of the finite-difference scheme.

4 3 . Projection Method

The most common method used to solve the unsteady equations deals with a 

Poisson equation for the pressure and with the momentum equations for the computation 

o f  velocity. A method called the projection method, in some cases where explicit schemes 

are used, is the prototype o f such an implementation.

The projection method is a fractional step method in time. It can be explicit with
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first-order accuracy in time.

Introducing a  provisional value V*, we split the equation (4.4) as

(4.6)

1 — V*
 —  +  = 0
At

(4.7)

Equation (4.6) is the momentum equation without a pressure gradient. Note that only the

the correction o f velocity and the pressure gradient. Equation (4.1) is expressed as

to help enclose the equations.

By taking the divergence of equation (4.7) and by making use of (4.8) which

states that V"+l must be a divergence-free vector, we get the Poisson equation for 

pressurep, i.e.:

V V +1 = — V-V* (4.9)
At v '

After that, equation (4.5) is also explicitly discretized in time by the Euler’s 

scheme as

The boundary condition for p  is obtained by projecting the vector equation (4.7)

discretization in time is considered here. Equation (4.7) establishes the relation between

V -V B+1 = 0 (4.8)

 ------— -(-G(V",g") = 0 (4.10)

on the outward normal unit N to the boundary T. Thus, we obtain the Neumann condition
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where Vp is the value of V* on T, and V* is not yet defined. The condition o f 

compatibility for the Neumann problem is

boundary T  has a zero total flux. It is important that the discretization with respect to 

space conserves the above compatibility condition.

The algorithm is then derived as follows,

1. Initialize the variables at time t or step n;

2. Solve equation (4.6) to obtain V*;

3. Solve equation (4.9) to obtainp"*';

4. Solve equation (4.7) to obtain Vn+/;

5. Solve equation (4.10) to obtain g”+/;

6 . Go to step 2 until the convergent condition is met.

For the case o f the Navier-Stokes equations, step 5 should be skipped. That step 5 

can be performed simultaneously with step 2 to step 4 depends on the adopted scheme.

The projection method has a feature that the numerical solution is independent o f

the value V'r ; in another word, we do not need the boundary condition for V*. This

assertion is clear because (1) V* at inner points is independent o f  Vp since it is calculated

by an explicit scheme; (2) the value Vp • N appears in the Neumann problem

(4.12)

where Q is the domain bounded by T. It expresses the factor that the velocity on the
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simultaneously in the right-hand side of the Poisson equation (4.9), and in the Neumann 

condition (4.11) and it cancels identically.

To prove this assertion, it is sufficient to analyze the discretization of (4.9) for 

points near the boundary T, since V* appears in the problem only for these points. 

Applying the staggered grids storage, the discretization o f  (4.9) is

and the Neumann condition (4.11) is

(4.14)

Figure 4.1 shows the geometrical distribution o f  grids.

i i i.3/2

i -U i+ U

Figure 4 .1 Geometrical distribution o f  grids near a boundary.
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The quantity v‘1/2 is the value o f v’ at boundary point (i, Zz). Now, it is easy to see 

that, when the value o f  p " f  -  p"$ given by (4.14) is substituted into (4.13), the unknown 

quantity v*1/2 cancels from both sides o f equation (4.13). From this, one concludes that 

the solution is independent o f the value v*1/2 or v* . In particular, we can choose 

v"o' = v’0 and get a  zero normal difference for the pressure on T. However, it must be 

clear that this zero-derivative condition is purely numerical and does not imply that the 

real pressure gradient is zero.

It is worth note that the time split scheme is equivalent to solving the momentum 

equation as one equation. If  V* is eliminated from (4.6) and (4.7) we obtain the scheme' 

V"+l — V"
-  + F(V", g" )+Vpn+l = 0 (4.15)
At

which is a first-order approximation in time o f the momentum equation. Therefore, the 

stability o f the projection method is the stability o f the difference equation associated 

with (4.15). The stability conditions depend partly on the discretization approximation of 

the convective term in F.

4.4. Discretization

Since time has no physical meaning here, a  very simple explicit first-order scheme 

in time as discussed above is considered. The spatial discretization makes use of the 

staggered grids, which is extended from conventional CFD applications, such as TEAM 

(Huang & Leschziner, 1984), MAC (Marker-And-Cell). The different physical variables 

are stored in different location on the grids, and are shown in Figure 4.2.
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The approximation of the convective terms employs first-order upwind scheme; 

the approximation o f the diffusive and the other terms uses second-order centered 

scheme.

u-du
dx h j

=  ~  Ui,j { (u u  ~ u , - u ) * sgnO /.,) + (M m j  ~ u , j  ) * sgn(-Mj y)) (4.16)

du
dy

a y

i-U

-*r •

ij-l

Figure 4.2 The staggered grids

= vM/2J_I/2((uKJ -  Ujj_t) * sgn(v,+I/2J_1/2) + («#J+1 -  u-, j ) * sgn(—v<+I/2y_1/2))
i j

(4.17)

where

(4.18)

d2u
dx2 u  (A*>'

(4.19)
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d2u
d y 2

dg
dy

u  (A'>  

1

1 r K y - . - 2 “ v + « / , + 1)  ( 4 . 2 0 )

i S i j - S i j - x )  • ( 4 . 2 1 )

dv u —  
dx r r  “-U2.J+U2 ((v,j -  v ,-u ) * sgn(w,-1/2.» /2 ) + (?MJ -  vi j ) * sgn(-wM/2y+1/2))i - u * . J + u z \ \  /,y t - u j  /  ~ o ~ \ ~ , - i / 2 ,y+i/ 2  /  1 V 'i+ ! .y  ■ , ,> /  " M /2 ,y + l /2 ;

*>/

( 4 . 2 2 )

w h e r e

u 1
i - I /2 .y + l /2

4

3 v

= T  K /  + u - u  +  u u + i + u t - u + i ) (4-23)

v  
5.y

a 2v
dx2

d v

=  T Z v ‘A v u  ~  v / . y - i )  *  s g n ( v />7 )  -f- ( v i J + l  ~  v , y )  *  s g n ( — v ( J ) )  ( 4 . 2 4 )

J ,/

= - 2v/j + vWJ) (4.25)
/ J  (AX)

dg
dx

U  { A y )
~ y ( v / . j - i  -  2 v , j  +  V;, y + I )  ( 4 . 2 6 )

U  A x
1 ( g , j - g M J )  ( 4 . 2 7 )

3
dx =  7 “  u u * i n [ ( g f J  ~ S i - i j ) *  s g n ( « f,y + l/2  )  +  ( ^ / + u - S T / j ) * s g n ( - «  i.y+ l/2  ) )  ( 4 . 2 8 )

U i  A l

w h e r e

1 ,"/j+i/2 = ^ («/j +  W/j+i > (4-29)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

3
dy

= vm,2j  ((Zij ~  ) * sgn(v/+I/2 y.) + (g iJ+l -  gi j ) * sgn(-v,.+U2J)) (4.30)
U  y

where

1 ,
V/+l/2.y =  2 (y,j +  V,+l/2.y ) (4.3 1)

e 2g
d x2

t j  (AX>

1 ,
—  (gi-xj -  2g,.J + g i+t.y ) (4.32)

? g
d y 2

dv
5x

5m

dy

X— (gij-\ ~ 28 '.j + gi.j+i) (4.33)

=  ( 4 3 4 )
u

= — - ( “ ,.y+1-« ,.y ) (4.35)
i , j  A y

The function sgn(x) is defined as 

fO if  x < 0
sgn(H i  if  , > o  (4-36)

4.5. Treatment of Boundary Conditions

We need to make a  special treatment o f  boundary conditions for staggered grids. 

Since the variables are not stored at the same points, virtual points are needed for some 

variables in implementation. Figure 4.3 shows the distribution o f boundary F and grids of 

the lower-left comer.

The boundary T coincides with the storage location o f  u and g  for i - 0  , and does
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so also with the storage location o f  v and g  for j - 0  . Therefore, the pressure p  is not 

defined on the boundary and this fact is essential: solving the pressure field via the 

Poisson equation can be applied to the first points adjacent to the boundary without 

modification. But we may fix a reference point for p  at any location for numerical reason. 

The algorithm allows the computation o f the pressure without requiring the explicit 

prescription of boundary conditions for it. The variable g  is defined at boundaries and 

thus no special numerical treatment o f boundary conditions is needed for it.

r

tT  
•  —

t t t  ,
v o,i 1 & ,i

•  —
Po.l Uo.l

t

Vl*i S t.i

*  P u  UlT 
t

1

t t  *
v o,o 1 8o,o

•  —
Po.o Uq.O

1 g l.o
v l,0

—► •  —
Pl.O  u l,0

1 §2,0 
v2,0

-* • •  —
P2,0 U2.0

1 §3,0 i 
v3,0

P3,0 u3,0

Figure 4.3 The staggered grids near a boundary

The staggered grids bring disadvantages in velocity boundary treatment. As seen 

in Figure 4.3, difficulties occur when computing uu  and vtJ. A way so-called reflection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

technique is used here by introducing virtual values uj 0 and v0J.

Along j= I, we write the velocity component uin on as the mean value of the two 

velocities u0 and u, , so that

mo = 2  u\ n ~ ux (4-37)

i.e., Ug is defined by a linear extrapolation.

Same treatments apply to the other boundaries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTERS 

TWO-DIMENSIONAL MICRO-CHANNEL FLOW

5.1. Description of Simulations

To illustrate the use o f  the present methods, we apply them to the developing flow 

in a two dimensional micro-channel, as shown in Figure 5.1. This flow situation is found 

in micro-components, and in many experiments. It was also analyzed by many authors, 

and we have their solutions for comparison.

L

H

•y
 X

Figure 5.1 Physical domain for micro-channel flow

Flow parameters cover Reynolds number that ranges from 10 to 2000. The 

channel length is 20  times its height, and the flow is assumed fully developed at the exit. 

Typical results show that this value of ratio of channel length to channel height is large 

enough to obtain a fully-developed flow. Examples in Peyret & Taylor (1990) also gave a 

similar conclusion for the Navier-Stokes solution in the case o f non-slip flow.

51
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No apparent Knuden number needs to be specified since the characteristic length 

is given, but its effect will be in the model parameters.

Numerical computations have been performed for both slip-flow and micro-polar 

fluid models. The computations were performed on a SUN/Sparc workstation with four 

450MHz processors at Louisiana Tech University. C++ was used in programming, and 

TECPLOT in data post-processing. A uniform rectangular grid o f 502x27 nodes was used 

for all runs except those made to examine the effect o f the grid size. The solution is 

regarded as steady state when the pseudo-time reaches 10 with time interval 0 .0001 , 

where e<10's is satisfied. Typically, 20 hours o f CPU time is needed for each run. The 

CPU time is one o f the main reasons for us to choose the current grid number.

5.2. Simulation Results of Slin-Flow Model

Figure 5.2 presents the prediction o f pressure variation for various grid sizes. As 

can be expected, the successive refinement o f the grid takes us asymptotically towards the 

correct solution. We can conclude that a 25 grid in they  direction gives us a sufficiently 

accurate solution for this problem.

Figure 5.3 shows the variation o f the pressure with the distance along the channel 

for various Reynolds numbers. Non-slip boundary conditions are prescribed by setting 

Kn=0 in boundary condition treatments. The linear pressure variation means a constant 

pressure drop. The result is in agreement with the analytical prediction.

Figure 5.4 shows the variation o f the pressure with the distance along the channel 

for various Knudsen numbers. The Reynolds number is 100. The momentum
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accommodation factor <x=0.5 is used for slip condition. The pressure drop is apparently 

affected by the variation of Kn. When Kn=0.001, the difference from non-slip condition 

is small. As Kn increases, the deviation becomes large. Numerically an adjusting zone 

appears near the entrance boundary since the incompatibility of the prescribed, velocity 

field at entrance. The pressure may be adverse in that zone but drops after that. The 

pressure drop becomes gentle compared with the small Kn case, and is steady after the 

adjustment. The adjustment distance for Kn=0.01 is less than one channel in height, but 

changes to about 5 times of the channel height for Kn=0.1. We may suggest that the 

model is applicable for Kn=0.01 and marginally acceptable for Kn=0.1. For much larger 

Kn, the pressure is always higher than that o f the entrance in our computational region 

and is not shown in Figure 5.4. Similar results are shown for a = l in Figure 5.5. 

Compared with a=0.5, the effect o f slip boundary condition is less significant and much 

larger Kn can be explored at this time.

/ R e
The normalized friction factor C*, defined as C = ------------  , is tabulated in

/ R < W

Table 5.1. The C* value is less than 1, which is tendentially in agreement with most 

authors, such as Beskok and Kamiadakis (1994), Kavehpour et al. (1997). They used gas 

as the work medium and thus the Re number and compressibility are not comparable. 

Pfahler (1992) performed liquid transport experiment in micron size channel, and his C* 

is around 0.85 for the 24.5 pm deep channel in which Re is about 100. But since it is still 

unclear about the Kn number in liquid flow, no Kn number can be given from his 

experiments, and we can conclude only that the agreement holds. Other comparable test 

includes water flow in a tube performed by Yu et al. (1994) in which C* was 0.78.
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The effect o f  the slip-boundary condition in the velocity field is also shown. 

Figure 5.6 shows the velocity profile in an arbitrary section. In the case o f small Kn 

number Kn=0.001, the velocity profile differs little from that o f  non-slip boundary 

condition. When Kn increases to 0.01, the difference of the velocity profile becomes 

obvious. In that case, the maximum velocity obtained at the centerline is smaller than that 

from the non-slip boundary condition. At the same Kn, big a  usually corresponds to 

small deviations in that profile since it implies bigger friction drag at the walls. When Kn 

is 0 .1, the velocity profile changes significantly, the maximum velocity is much smaller, 

and the slip velocity at the walls are significant. The velocity profile explains the 

corresponding pressure changes shown in Figure 5.4 and 5.5.

Table 5.1 The normalized friction factor C* varies with Kn and cr

Kn

cr 0.001 0.01 0.1 1

0.5 0.97 0.86 0.35 N/A

1.0 0.99 0.96 

0.96 (Beskok) 

0.96 (Kavehpour)

0.67

0.77(Beskok)

0.75(Kavehpour)

0.14
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The vector plots o f  the velocity field are shown in Figure 5.7 and 5.8. Figure 5.7 

is for the case of Kn=0.001, and Figure 5.8 for Kn=0.1. In both cases, o = l. The velocity 

variation along the channel for different Kn is clear. The decreasing o f the m a x i m u m  

velocity at centerline is compensated for by the increase in the velocity at the walls. The 

figures o f velocity also show evidence that the flow is fully-developed.

To verify that the prescribed channel length is long enough for fully-developed 

exit assumption in this computational domain, we calculated cases where a uniform 

velocity profile or impinging je t profile is set in the entry o f the channel. Figure 5.9 

shows the velocity field o f  uniform entry profile. Near the entrance, the velocity near the 

wall is retarded due to the friction, and flow is pushed off the wall, which increases the 

velocity in the middle core. It forms a parabolic profile at a short distance downstream. 

The changing distance is less than 4 compared to channel height 1 in this calculation. The 

v- component velocity better illustrates the entrance adjustment. When flow is pushed, 

velocity component v becomes visible and reaches maximum halfway from the wall to 

the core. The v is back to quiescence after the flow becomes unidirectional again. Figure 

5.10 shows the v contour for this case.

An impinging je t flow through a straight channel is computed via the micro-polar 

fluid model for the same purpose. The flow can also reach a fully developed state in less 

than 5 channel height distance downstream. Figure 5.11 shows the velocity field for 

Re=100 and k=0.1. The effect o f different k  on the flow is also investigated. The v- 

component contours are shown for various k through Figure 5.12, 5.13, 5.14 and 5.15. A
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general result is that with the increase o f the micro-gyration k, the vortex length is 

shortened and thus the flow is more quickly adjusted to a fully-developed state.

5.3. Simulation Results of Micro-Polar Fluid Model

The computations are performed for the micro-polar fluid model using the same 

strategy as the slip-flow model. The Re=100 is extensively used as a flow parameter. The 

modeling parameter m x  Kn is adopted as 0.1 except those made to examine the effect o f this 

parameter. Another modeling parameter n which appeared in the boundary condition is set to 

0.5.

Figure 5.16 shows the pressure variation for various modeling parameter mxKn. 

mxKn = 0.1, 0.01 and 0.005 are used in these scenarios. Other parameter includes 

Re=100, and k= 1. The plot shows that this parameter has little effect on the computation 

for the chosen mxKn. Each of them is acceptable in this computation. A higher-resolution 

plot shows little difference between that o f 0.1 and the other two cases, and the latter two 

cases have much closer results. This result is shown in Figure 5.17.

Figure 5.18 shows the variation o f pressure for various nondimensional viscosity 

k. k  ranges from 0 to 10. k -0  presents the Navier-Stokes solution. The vortex viscosity or 

micro gyration viscosity increases as k  increases, and when k—10, the micro effect due to 

the vortex viscosity dominates the flow. The pressure drop changes predictably with that 

feature of k. When k  is within 0.1, the deviation from the Navier-Stokes prediction is 

small. When k  is large, a large pressure drop is apparent, and the pressure drop changes 

significantly when finally vortex viscosity dominates the flow.
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Figure 5.19 shows the magnified plot near k=0.

The normalized friction factor C* is calculated for all cases and is tabulated in 

Table 5.2.

Table 5.2 The normalized friction factor C* varies with k

k 0.01 0.05 0.1 0.25 0.5 1 2 5 10

C* 1.01 1.03 1.05 1.12 1.25 1.5 2 3.5 6

The effect o f vortex viscosity does not only affect the apparent Reynolds number, 

which is presented in diffusion term in the momentum equation, but also comes from the 

micro-rotation term in the same equation. The apparent Reynolds number may be 

expressed as Re/(I +k), and the big vortex viscosity seems to decrease the Re, and thus 

enhances the friction. The micro-rotation term, on the other hand, lessens the effect o f  

vortex viscosity, and reduces the friction.

For the almost fully-developed channel flow, with our assumed material 

parameter relationship (Chapter 3), we substitute the angular momentum equation by

^  = 0 , v = 0 (5.1)
ox

to obtain

20  k  \ + k l l ( d 2 g  d1 10£ f d v  d u ^+ j — --------------
Re (mKn) Re Kd x 2 d y L)  R e ^ K n )"1 {d  x  d y

(5.2)
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Since m x.K n< l, the middle term in the above equation may be neglected as compared to 

the other terms, and thus we obtain

1 ( dv du '

8  " A  t y .

Substituting g in  the x-component momentum equation, we obtain

(5.3)

d u  d u d p  \ + k /2  u  + v  = -----— +
d x  d y  d x  Re

5 2 ^u o u
\ d x 2 d y 2

This equation means that the whole effect of micro-gyration is equivalent to decreasing 

the Re by (l+k/2), and thus increasing the friction factor by this same factor. Table 5.2 

shows this relation.

Experiments performed by Papautsky et al. (1998) showed that the normalized 

friction coefficient was approximately 1.45. This result may be achieved by setting k=0.9. 

Since the authors did not give the flow parameters, specific comparisons seem difficult to 

make. The micro-polar fluid model is also capable o f  predicting results which are in 

agreement with the experimental data from Pfahler (1992) for a channel depth o f 41.5 pm 

for isopropanol and 38.7 pm  for silicon oil. The large normalized friction coefficients 

(greater than 1) were obtained by them but cannot be explained by the slip-flow theory.

The corresponding velocity profile is shown in Figure 5.20. The velocity profile 

varies a little with k. When k  increases, the maximum velocity obtained at the center line 

becomes smaller.

The micro-rotation g  field is also shown in Figure 5.21. g  is x  independent and 

varies in the y  direction for a straight channel flow.

The vector plot o f the velocity field is shown in Figure 5.22.

(5.4)
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The variation o f pressure for the different Re when k=0.1 and k=l are also shown 

in Figure 5.23 and 5.24, respectively.

Flow through a straight channel with sudden restriction is of great interest in 

experimental research. We computed three cases with three restriction ratios (passage 

height in restriction over channel height) 0.2, 0.44, and 0.6, respectively, using the micro- 

polar fluid model. Other flow parameters include Re=100, and £=0.1, £= 1, £=5 as well as 

£=0 .

Figures 5.25 to 5.30 show the result for restriction ratio 0.2. Velocity fields are 

plotted in Figure 5.25, 5.26, 5.27, and 5.28 for the entire computation domain with 

respect to £=0, £=0.1, £=1, and £=5, respectively. In each case, the flow is almost 

unidirectional before the restriction protrusion and has a sudden contraction in the 

beginning of the restriction block. Sudden accelerated flow passes the orifice, and 

diverges after restriction. In the rear of the restriction, a pair of vortices is formed to pad 

the flow into a suddenly enlarged space.

Big pressure losses in this restriction are clearly shown in Figure 5.29, which plots 

the variation of the pressure at the centerline with the downstream distance. The pressure 

loss in the restriction area is much larger than the usual friction loss along the wall and 

becomes the major pressure loss if the channel is not very long. Similar to the result of 

the channel without restriction, pressure loss is always large for large £. In this respect, 

we may conclude that large micro-gyration increases the flow drag.

Figure 5.30 shows the contours of v- component velocity according to varied 

micro-gyration £. A pair of increasing zone o f  v- component velocity is clearly shown in 

the front comer of the restriction block, and so is the circulation zone in the rear o f the
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block. The back vortex varies its length with the micro-gyration strength. The vortex 

length becomes short as the micro-gyration parameter k increases. Also, the maximum 

value of v- component velocity decreases with an increase in k. The maximum value of 

the v- component is generally larger from the Navier-Stokes solution than from this 

micro-polar fluid model.

Figure 5.31, 5.32, 5.33, 5.34, and 5.35 show the result for restriction ratio 0.6. 

Similar to the last case, velocity fields are plotted in Figure 5.31 to to 5.34 for case k= 0, 

&=0.1, k= 1, and k=5. In Figure 5.35, pressures at the centerlines along, the downstream 

distance are shown for this restriction ratio. Compared to restriction ratio 0.2, the 

restriction effect is weaker, but the back vortices are still visible as well as the sudden 

pressure drop in the restriction region. The pressure loss is substantially reduced from the 

last case.

In-between the above two restrictions, cases for restriction ratio 0.44 are also 

computed and the results are shown in Figures 5.36 to 5.40. The results fall, as expected, 

between the last two cases.
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y 0.5

Figure 5.30. Plots o f v- component contour for flows through a straight channel 

with restriction 0.2. From top to bottom, k=0, 0.1, 1 and 5, respectively.
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CHAPTER 6 

CONCLUSION AND DISCUSSION

Micro-channel flows have been computed to investigate the influence of the 

Navier-Stokes formulation for the slip-flow boundary condition, and the micro-polar fluid 

model, respectively.

Results of the slip boundary condition show that the current methodology is valid 

for slip-flow regime (i.e., for values o f  Knudsen number less than approximately 0 .1). 

Drag reduction phenomena apparent in some micro-channels can be explained by the 

slip-flow theory. These results are in agreement with some computations and experiments 

in the literature.

We also developed an ad hoc micro-polar fluid model to investigate the influence 

o f the micro-gyration in micro-scale flows. Our model contains a new flow variable, 

micro-gyration g, as well as other conventional fluid dynamic variables. There are also 

two material constants, p. and k , one scale parameter, mxKn, and one boundary condition 

parameter n in this model. Compared with the general micro-polar fluid model, the 

parameter number is significantly reduced, making the model practical.

The scale parameter mxKn introduced the Knudsen number into the micro-polar 

fluid dynamics by a statistical argument. By introducing this parameter, the effect of 

rarefaction can be accounted for in the model.

100
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The parameter p. is the classical bulk viscosity and needs little explanation. The 

vortex viscosity k  is related to micro-gyration, and needs modeling at current time. It 

affects the flow field in two aspects, by modifying the apparent viscosity and by 

introducing the effect o f micro-gyration. In the simplest case o f fully-developed channel 

flow, the overall effect is equivalent to lessening the Reynolds number by (I +k/2).

The relationship between the material constants may need to be further examined 

in the micro-scale range, as well as the parameter n in the boundary condition.

The current micro-polar fluid model explains the drag increase phenomena in 

some micro-channel flows from both experimental and computational data. This result is 

exactly opposite to that predicted by slip-flow theory. The existence o f micro effect needs 

to be taken into account for the micro-scale flow.

In the numerical analysis, a  projection method solves the difficulty o f  an implicit 

pressure equation and also has the advantage o f being extended to three dimensional and 

unsteady flow. A four variable (u, v, p, g) staggered grid is specifically developed here to 

suit the micro-polar fluid model. An explicit Euler scheme is used for solving the 

pseudo-time-dependent flow, which is equivalent somehow to an iteration method. It is 

recommended that one use the implicit scheme to improve the computation efficiency.

Computations for a straight channel with a restriction block are extended in this 

thesis. The flow restriction ratio, defined as the narrowest passage height to the standard 

channel height, varied from 0.2 to 0.6. In the case where the restriction ratio was smallest, 

the largest pressure drop was observed around the restriction block, which agrees with the 

Navier-Stokes solution. For the same restriction, pressure drop varied with the micro- 

gyration: the larger the micro-gyration, the larger the pressure drop. The velocity field is
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also affected by the micro-gyration parameter. When the micro-gyration increases, the 

length o f the back vortex in the down stream from the restriction decreases. The pair of 

back vortices attained maximum length down stream when no micro-gyration existed.

Table 6.1 AP across orifice vs. hand r/d

r/d = 0.2 r/d = 0.44 r/d = 0.6

II o -15.5 -2.0 -0.76

II © i—* -16.9 -2.1 -0.80

k=  1.0 -19.7 -2.5 -0.90

pII•V -31.9 -3.7 -1.44

Micro-scale effects on orifice pressure drop may be significant and play an 

important role in developing micro flow meter as shown in Table 6.1. This data can be 

useful for the placement o f pressure sensing ports before and after the orifice in a flow 

measuring device.

Flow o f impinging je t into straight channel is also computed via micro-polar fluid 

model. The effect o f micro-gyration is similar to that down stream after the restriction 

block in the straight channel flow with restrictions.

The effect o f micro-gyration differs depends on the flow geometries. The micro- 

polar flow in a complex geometrical configuration may deviate significantly from its 

corresponding Navier-Stokes solution. There is no explicit expression o f the effect o f 

micro-gyration on the friction factor in general geometries, but the overall effect is that 

the micro-gyration increases the friction factor.
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By inheriting the general concepts o f classical fluid dynamics, such as field 

analysis and volume element, the micro-polar fluid model m ay share the same 

methodology used in Navier-Stokes dynamics. In a very specific circumstance, it even 

can employ a similar scheme in numerical simulation. For instance, w e use the projection 

method to treat the implicit pressure difficulty in both models. On the other hand, since 

the micro-polar fluid model relaxes the restriction of infinitesimal fluid point with more 

general microstructure concept, it may make a breakthrough in a much finer world, e.g., a 

micron scale flow. With this promising perspective of benefits, commensurate difficulties 

do exist not only in the dramatically increased size of the variable and the equation, but 

also in understanding the physical meaning of the flow variables and the material 

parameters.

In terms o f future work, applications o f the current model for flows in complex 

geometrical configurations are the next natural step. For example, grooved-channel flows 

with periodic boundary condition, which may simulate the flow in a micro-bearing 

device, may be extended from the current numerical package with a  little change of the 

boundary condition treatment.

Experimental work is also strongly suggested to verify the principle of the current 

model and improve the model parameters. In fact Dr. Hegab has been performing some 

related flow measurements which will definitely help to achieve this goal.

Another interesting extension from this work is combining a  micro-polar fluid 

model and slip-flow boundary condition. The micro-polar fluid model extends the 

continuity assumption in the flow field, and slip-flow boundary treatment focuses on the
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micro effect o f the flow scale on the solid-fluid interface. Their combination may better 

encompass the general micro-scale flow.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX 

THE COMPLETE GOVERNING EQUATIONS 

FOR THE MICRO-POLAR FLUID MODEL
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Continuity:

dp ( d(pu) | d(pv) [ d(pw) = Q 
dt dx dy dz

Conservation of micro-inertia:

^LL+ u ^U- + v^ lL  + w^ iL _ ( /3i + j n )g2 + ( jzl + j 3l)g3 = 0  (A.2)
dt dx dy dz

% '  +  w% '  +  v % ' + W % "  +  7" ^ 1 ” ^*32^2 +0*22 - / s i t e s  = °  (A-3)etc cy dr

^  + U^  + Vl T +W^ i r ~ J' lg ' + (Jl1 “ ^ s te s  +723^3 = 0  (A.4)dt dx dy dz

% '  + W% '  + V% L+Vi'% '  + y31^ 1 ” / a ^2 + (/s2 - / u t e s  = 0  (A.5)dt dx dy dz

% -  + « % -  + v + w % -  + ( / 32 + / I2 )g, -  (/«  + 732 te 3 = 0 (A-6)dt dx dy dz

% -  +  W% -  +  V% L + W % -  +  0'33 — y 12 te l +  722*2 +  7lS*S = 0  (A -7)dt dx dy dz

%  + “ %  + V% - +W% ~  721^1 + 0 ‘.l ~ 7*23 )* 2 + 7s3*3 = 0  dt dx dy dz
(A.8)

% ■ + “ % ■ +V% L + w^ r + ^  ” Jzi )g ' + Vi2g2 ~ 733g3 = 0  (A‘9)dt dx dy dz

% '  + W% '  + V% ' +VV% ' _ 0'l3 + 723 te l + 0*13 +723te2 = 0  (A. 10)of etc dy dz
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Balance o f momentum:

du du du du dp
p ^ : + p u ^ : + p v^ r + pw ^ : - i t +dt ox dy dz dx

+(a. + h ]
d 2u d 2v d 2w '
dx2 dxdy dxdz

+ K d2u d 2u d 2u 
dx2 dy2 dz2

+ K r* L - * L  
Kdy dz

=  0

dv dv dv dv dpp  (* p u — + pv 1- pw  —+
dt dx dy dz dy

/ /  d2u d2v ( y v

(1+4 ^ +5 r + 5& J+&1+'cl&
d2v d 2v d 2v ^

dy2 dz2
+ K

dz dx
=  0

(A.11)

(A. 12)

dw dw dw dw dp
P — + P “ — + P y— + p w — - ^ -  + dt dx dy dz dz

M S
d v d w

dxdz dydz dz
+ (p + k ]

d w  d w  d 2w
dx2 dy2 dz2

+ K dgi
dx

dg\
dy

=  0

(A. 13)

Balance o f momentum moments:

— (p /n ^ i +  P J 'n g i  +  P J n g i ) + “ — ( p / u g i  +  p j n g 2 +  py, 3 ^ 3 )+

+  V — ( p j u g x  +  P J 'n g i  +  P J \3g 3 )  +  w - z r { p J u g i  +  P/12S2 +  P / n ^ K

+ (a + p , d gi , d2g 2 ( d 2g 3 
dx2 dxdy dxdz

+y d g, [ d g, , d g.
Sx:2 ay2 &

 ̂ raw  av+ K

(A.14)
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“ f a a S i  +  O J'2282 +  0 / 2 3 8 3 )  + “ - ^ - ( p / u S i  +  R/22^2 +  0 /2 2 8 3 )  +  dt ox

+  v 4 r ( p J 2 i 8 i  +  0 / 2 2 8 2  +  0 / 2 3 8 3 ) +  w - ^ - { p j 2 lg l +  0 /2 2 8 2  +  0 /2 2 8 3 )  +  dy dz

+ i
d28t , ^ 2g 2 , d 2g 3 
dxdy dy2 dydz

^ 2g 2 , gZg 2 , g 2g 2l
dx2 dy2 dz2+ y + K( du dw ' 

dz dx .
- 2k^ 2 = 0

(A. 15)

+  0 /3 2 8 2  +  0 / 3 3 8 3 ) + “ - ^ - ( 0 / 3 1 8 1  +  0 /3 2 8 2  +  0 / 3 3 8 3 ) +  dt dx

+  v ^ - ( o / \ i 8 i +  0 /3 2 8 2  +  0 / 3 3 8 3 ) +  H r ( P ! Z3181 +  OJ3 2 8 2  +  0 / 3 3 8 3 ) +  dy dz

+ ( a + £ i L + £ % i + i % + % + % ' i + K r * i _  9 u
\d x d z  dydz dz J ^ dx dy dz )  î cbc dy

- 2k^ 3 = 0

(A. 16)
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