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ABSTRACT

Micro-channel flows have been computed to investigate the influence of Navier-
Stokes formulation for the slip-flow boundary condition, and a micro-polar fluid model,
respectively.

The results of the slip boundary condition show that the current methodology is
valid for slip-flow regime (i.e., for values of Knudsen number less than approximately
0.1). Drag reduction phenomena apparent in some micro-channels can be explained by
slip-flow theory. These results are in agreement with some computations and
experiments.

An ad hoc micro-polar fluid model is developed to investigate the influence of
micro effects, such as micro-gyration, in micro-scale flows. The foundation of the ad hoc
micro-polar fluid is based on Eringen’s micro simple fluid, and is simplified for
incompressible, two-dimensional, iso-thermal, and micro-isotropic case. Our model
contains two material constants, i and x, one scale parameter, mxKn, and one boundary
condition parameter n. The number of parameters is significantly reduced from general
micro-polar fluid model and makes the theory practical.

The scale parameter mxKn introduces the Knudsen number into the micro-polar
fluid dynamics by statistical explanation. Therefore, the effect of rarefaction can be

accounted into the model by modeling this parameter.

iii
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The parameter p is classical bulk viscosity. The vortex viscosity k is related to
micro-gyration, and needs modeling at current time. It affects the flow field in two
aspects, by modifying the apparent viscosity and by introducing the effect of micro-
gyration. In the simplest case of fully-developed channel flow, the overall effect is
equivalent to lessen the Reynolds number by (1+k/2).

The current micro-polar fluid model explains the drag increase phenomenon in
some micro-channel flows from both experimental and computational data. This result is
exactly opposite to that predicted by slip-flow theory. The existence of micro-effect
needs to be taken into account for the micro-scale flow.

A projection method is used as a numerical technique for both models to solve the
difficulty of implicit pressure equation, with the help of staggered grids. An explicit Euler

scheme is used for solving the steady flow.

iv
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NOMENCLATURE

c coefficient for variation for the mean

C* normalized friction factor

Cr friction coefficient

d characteristic length of microstructure
diameter of sensitive volume element

D/Dt material derivative operator

dM  mass in volume element

dv theoretical volume element

dv sensitive volume
dv’  atomic volume
f Darcy friction coefficient
physical property of a particle
f mean of
g gyration component normal to x-y plane

& &k gyration vector
H h  channel height

micro-inertia moment constant
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Tiom micro-inertia moment tensor

J micro-inertia moment constant
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Jkm

Vi

micro-inertia moment tensor

K/p

Knudsen number

flow characteristic length

model parameter

the normal coordinate unit to the boundary
the normal coordinate at the wall
number of molecules

parameter related to micro-gyration vector and shear stress
pressure

flowrate

standard deviation

time

first stress moment tensor
Reynolds number

characteristic velocity

velocity component in x direction
velocity vector

variance

velocity component in y direction
velocity vector

velocity component in z direction

channel width

Xviii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



x the Cartesian coordinate in streamwise direction

y the Cartesian coordinate in normal direction

z the Cartesian coordinate in spanwise direction
o material constant

B material constant

X atmoic volume element spacing

At time interval

AV volume element

AV limiting volume element
Ax grid spacing in x direction
Ay grid spacing in y direction
Sy Kronecker delta

€ small number

€jc  third order alternating tensor

r boundary

Y material constant

K vortex viscosity

A mean free path of molecules
material constant

11 dynamic viscosity
\Y kinematic viscosity

Vij gyration tensor
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p density

c tangential momentum accommodation coefficient
Q domain

C parameter

Superscript

° material derivative operator

* non-dimensional variable

provisional variable

n iteration step
Subscript
L at outlet; at reference point

k differential operator in space direction &k

i index of grid in x direction
tensor index

J index of grid in y direction
tensor index

k tensor index

l tensor index

m tensor index

r tensor index

s tensor index
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CHAPTER 1

INTRODUCTION

1.1. General Overview

Micron-size mechanical devices are becoming more prevalent, both in
commercial applications and in scientific inquiry. Research on micro-fluidic devices,
fabricated with micro-mechanics technology, has its origin more than two decades ago.
At IBM, integrated planar silicon ink-jet printer nozzles were developed (Bassous et al.,
1977). Within the last decade, a dramatic increase in research activities has taken place,
mostly due to the rapidly expanding growth of applications in the areas of MEMS
(Microelectromechanical Systems), bioengineering, chemical systems, and advanced
energy systems. Micro-components currently in development include micro-channel heat
exchangers, gas absorbers, liquid-liquid extractors, chemical reactors, micro-flow-
sensors, and micro-actuators for pumps, valves and compressors (Gass et al., 1993;
Wegeng & Drost, 1994; Caruana, 1996). At present, micro-manufacturing technology
provides mechanical parts of micron size, batch-fabricated in large quantities, and
integratable with electronics (Ho & Tai, 1996). These features may even allow coupling
of MEMS to macro-scale flow systems. More encouragingly, MIT developed a MEMS-
based gas turbine generator whose 1 cm diameter by 3 mm thick SiC heat engine was

designed to produce 10-20W of electric power while consuming 10 grams/hr of H,. Their
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second version was to produce up to 100W using hydrocarbon fuels (Epstein et al.,
1997). |

Typical scales for micro-mechanical devices range from microns to millimeters,
spanning the range of scales that also includes microelectronics, ultrasonics, visible and
infrared radiation, and biological cells and tissues. Figure 1.1 shows the general

comparison between these compact systems with their conventional counterparts

(Wegeng et al., 1996).

Typical Microchannel Widths
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Figure 1.1 Sizes/Characteristics of micro-components comparison to other items

Micro-mechanics is a multidisciplinary research area. In this new area, with the

application systems under development becoming more complex and much smaller, there

are increasing new phenomena and hence increasing demands both for theoretical and
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experimental work on fundamental physical and chemical mechanisms. Fluid mechanics
is one of the many disciplines to be further explored (Gravesen et al., 1993).

With these new features, a whole class of low Reynolds number flows needs to be
revisited. The continuum assumption used in classical Navier-Stokes fluid dynamics may
not be accurate enough when the flow scale becomes refined and comparable with the
mean molecule free path. That phenomenon has also been demonstrated by much
evidence. Several effects, normally neglected in conventional flow, may exist in micro-
scale flow (Bailey et al., 1995). For example, two and three dimensional transport effects
are significant as micro-structure characteristic lengths are reduced to the same order of
magnitude as the boundary layer thickness; therein the momentum and heat transfer in
normal and span-wise directions increase significantly (Ma & Gerner, 1993). A slip-flow
boundary condition may exist and has sound explanations in micro-channel flow but has
no counterpart in macro-scale flow (Beskok & Karniadakis, 1992, 1993, 1994; Pong &
Ho, 1994; Arkilic et al., 1994; Chen et al., 1998).

One of the most important flow dynamic characteristics is the pressure drop or
alternative friction factor through the fluid-carrying components as it directly engages the
energy efficiency of the system. Experimental studies have been performed in an effort to
vetter understand this flow characteristic, but the currently available experimental data for
micro tubes and channels are inconclusive.

Wu and Little (1983; 1984) used silicon and glass channels ranging in depth from
28 to 65 microns for nitrogen, argon, and helium flows. The data showed substantially

higher friction factors than predicted by classical theory. The silicon channels showed up

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to 60% deviation from the Moody chart, while the glass channels gave results that were
over 3 times those of the Moody chart.

However, the later investigation of Choi et al. (1991) demonstrated the exact
opposite. Their experiments were performed for nitrogen flow through micro-tubes
having inside diameters ranging from 3 to 81 microns and relative roughness ranging
from 0.00017 to 0.0116. The measured friction factors were below those predicted by the
Moody chart. The friction coefficient C, ( i.e., the product of Darcy friction coefficient f
times Reynolds number Re ) was 53. This result is 20% lower than the theoretical value
of 64 based on the Moody diagram.

Pfahler et al. (1991) conducted experiments for both liquids and gases in silicon
channels ranging in depth from 0.5 to 50 micron. For both liquids and gases, they
reported lower friction coefficients than those predicted by theory. The liquids studied
were isopropanol and silicon oil. The isopropanol data showed the reduction in C; as
channel depth decreased and was independent of Re, whereas the silicon oil data showed
that the reduction in C, was independent of channel depth and increased with decreasing
Re. The gases used in the study were helium and nitrogen. The results showed that the
reduction in Cj, contrary to the liquid tests, decreased as channel depth decreased for both
gases. In the smallest channel studied, both the nitrogen and helium data showed Re
dependence for C, where C, decreases for low Re.

Peng and Wang (1994) reported forced flow convection results for water and
methanol through rectangular micro-channels having heights of 700 microns and width
ranging from 200 to 800 microns. The laminar and transient heat transfer behaviors were

strongly affected by fluid temperature, velocity, and channel size. Peng et al. (1994a,
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1994b) performed a water flow through stainless steel channels ranging in hydraulic
diameter from 0.133 to 0.367 mm, and their results showed that C, decreased with an
increase in Re.

Harley er al. (1995) conducted experimental and theoretical investigations of
subsonic, compressible flow in micro-size long conduits. The Knudsen number was less
than 0.38, and the data were within 8% of theoretical predictions of the friction constant
based on isothermal, locally developed flow and incorporating a single coefficient wall-
slip model. Their experimental uncertainty is 12%.

One possible explanation for these observed effects is that they are largely due to
the limitation of continuum assumption used in classical fluid dynamics. The constitutive
equation, based on the continuum assumption, may be no longer valid to describe the
physical characteristic of fluid volume. Various models are thus needed to investigate

micro-scale flow.

1.2. Classical Fluid Dynamics for Micro-Scale Flow

Slip-flow models are naturally considered .to be a simple extension of
conventional fluid dynamics to micro-scale flows. A slip-flow model may retain the
Navier-Stokes equations as the governing equations in the flow field but replaces the non-
slip wall boundary condition with slip condition. This model was originally used in
rarefied gas dynamics.

The effect of flow scale on the continuum assumption is well measured by a
dimensionless parameter, Kn, which is the ratio of the mean free path of the fluid

molecules (1) to the flow characteristic length scale (L). Mean free path A varies with the
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temperature and pressure in the gas state. The Kn number relates to the collision
probability among the fluid molecules and hence affects the molecular statistical
properties, based on which continuum is assumed in classical fluid mechanics. Rarefied
gas dynamics show that the continuum assumptions are invalid when the mean free path
of the gas is on the order of the characteristic dimension, or when the Kn number is of
O(1). This condition rarely happens for conventional fluid mechanics applications, but it
may occur in micron flow depending on the fluid, flow condition, and channel size.
Rarefied dynamics theories focus on the flow of molecules near a solid surface
(Grad, 1949; Cercignani, 1975; Kogan, 1972). Although it is not clear what the velocity
distribution of the molecules near the solid boundary, three kinds of boundary conditions
are assumed, i.e., specular, diffuse, and Maxwell’s. For perfectly specular surfaces,
molecules are reflected at the same angle as the incidence angle. For diffuse surfaces, the
molecule can be reflected in any direction regardless of the incidence angle. Maxwell’s
boundary condition treats a portion of the reflection as specular and the other as diffuse.
In reality, most engineering surfaces are diffuse so some momentum is always lost at the
wall. For a continuum flow, where the mean free path is very short, there are many
molecules in the region very close to the wall. Momentum exchange between the
molecules is more likely to occur. This interaction results in a zero velocity or non-slip
condition at the wall. On the other hand, free molecular flow exhibits the other extreme
where interaction between molecules rarely occurs. There is little build-up of l;iolecules
near the wall, as in a continuum flow. This situation causes the flow to move along the
surface due to a net velocity in the flow direction. Slip flow occurs between these

extremes when there are slight rarefaction effects.
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It is not completely clear when slip flow becomes important as fluid convection
systems are reduced in size. A number of researchers have used analytical or
computational models along with experiments in micro-channel flows. Ebert & Sparrow
(1965) determined the velocity and pressure-drop characteristics of moderately rarefied
gas flow in rectangular and annular ducts. It was found that the effect of slip flattened the
velocity distribution relative to that for a continuum flow. Also, the axial pressure
gradient was diminished under slip conditions. It was found that compressibility
increased the pressure drop primarily through an increase in viscous shear rather than
through an increase in momentum flux.

Arkilic er al. (1994) developed a two-dimensional model for rarefied gas flow
through micro-channels by solving the Navier-Stokes equation using a velocity slip
boundary condition, allowing for specification of a tangential momenium accommodation
coefficient. It showed that the effect of rarefaction caused the pressure distribution to be
nonlinear in the axial direction.

The reduced friction effects measured by Pfahler et @l (1991) and Choi et
al.(1991) were verified by Beskok and Karniadakis (1994) through a computational
model of slip-flow in micro-channels. The two-dimensional predictions closely matched
the friction factors of Pfahler; however, the analysis provided no basis for Re dependence
of friction coefficient in micro-channels. Reduced skin friction was also calculated using
a three-dimensionat model of a rectangular channel having a 3:1 aspect ratio for Re=1.0
with Knudsen number Kn as a parameter. In their papers (Beskok & Karniadakis, 1992,
1993, 1994, 1995, 1997; Beskok et al. 1996), Beskok and his co-investigators extended

their work to include compressibility effects in addition to using higher order boundary
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conditions. In his recent paper, Beskok (1996) showed that for a large pressure drop in
airflow, the compressibility effect was dominant, and in more rarefied flows such as
helium flow, the effect of rarefaction negated compressibility.

Kavehpour et al. (1997) used a two-dimensional flow and heat transfer model to
study gas compressibility and rarefaction in micro-channels assuming a slip-flow regime.
The numerical methodology is based on the control volume finite difference scheme. The
computations were performed for a wide range of entrance Kn and Re numbers. It was
found that the friction coefficient was substantially reduced for slip-flow compared with
that of the continuum flows. The velocity and temperature distributions were flattened
compared with a continuum flow, and the axial variation of pressure became nonlinear. It
was shown that the effect of compressibility was important for high Re and that the effect
of rarefaction was significant for lower Re.

Chen et al.(1998) adopted a slip boundary to study nitrogen and helium flow in
micro-channels. The Knudsen numbers at the channel outlet ranged from 0.055 to 0.165.
The differences between the numerical results and experimental data were within 1.15%
for pressure drop and 3.13% for mass flow rate.

To relax the continuum assumption, a Direct Simulation Monte Carlo method
(DSMC) was performed for flows related to MEMS by some researchers (Piekos &
Breuer, 1996; Bird, 1994). The model makes no continuum assumption. Instead, they
modeled the flow as it physically exists: a collection of discrete particles, each with a
position, a velocity, an internal energy, a species identity, etc. These particles move and
are allowed to interact with the domain boundaries in small time steps during the

computation. Intermolecular collisions are all performed on a probabilistic basis at the
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end of each time step to minimize computational work. Macroscopic quantities, such as
flow speed and temperature, are then obtained by sampling the microscopic state of all
particles in the region of interest. Unfortunately, in low-speed flow which is the case of
most MEMS, the inlet and outlet flow conditions make DSMC difficult. DSMC’s
statistical nature makes the determination of its macroscopic state from an instantaneous
sample inaccurate due to the unacceptable statistical scatter. Another drawback of DSMC
is that it needs many more computational resources than classical computational fluid

dynamics methodology.

1.3. Development of Micro-Polar Fluid Model

To remedy the drastic limitations of the concepts of the continuum field approach
on the extent to which continuum descriptions of macroscopic behavior can mirror the
fine structure of the medium, a micro-continuum fluid mechanics concept has been
developed originally for such rheologically complex fluids as liquid crystals, polymeric
suspensions, animal blood, etc. The outstanding reviews of the development and
application of this model were made by Ariman et al. (1973, 1974). A systematic
description of fluids with micro-structure was presented by Stokes (1984).

The earliest formulation of a general theory of fluid micro-continua was attributed
to Eringen (1964) in which the mechanics of fluids with deformable micro-elements are
considered. In his paper, a simple micro-fluid concept was presented. This article: was the
first complete work which originated the micro-fluid theory. Eringen;s simple micro-fluid
is “a fluent medium whose properties and behaviour are affected by the local motions of

the material particles contained in each of its volume element.” The simple micro-fluid
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possesses local inertia. The laws of classical continuum mechanics are augmented with
additional equations which account for conservation of micro-inertia moments and
balance of first stress moments which arise due to consideration of microstructure in a
medium. New kinematic variables, e.g., the gyration tensor and micro-inertia moment
tensor, are introduced. Simple micro-fluids are isotropic, viscous fluids and need 22
viscosity and material coefficients to characterize the constitutive equation in the simplest
linear case.

The theory was extended by Eringen (1972) to take into account thermal effects
and was termed as the theory of thermo-micro-fluids. The exact nonlinear theory is
presented and restricted by the axioms of constitution. The complete system of field
equations and accompanying jump conditions result from the linear theory. It also
discussed several internally constrained classes of these fluids, which include micro-polar
fluids and inertia rateless fluids.

Eringen introduced various subclasses of simple micro-fluids, from which, as a
special class, is micro-polar fluids. In micro-polar fluids, the local fluid elements are
allowed to undergo only rigid rotations without stretch. In this way, the gyration tensor is
to be considered skew-symmetric and to be reduced to one vector g. Structured fluids
consisting of dumb-bell molecules or short rigid cylindrical elements are properly
represented by this model. The characteristic of our micro-scale flow may suggest itself
to be in this category.

Eringen (1969) also extended micro-polar fluids to allow the micro-elements of
the fluid to deform, and that was termed micro-polar fluids with stretch. He gave this kind

of application to Newtonian fluids with polymeric additives, certain liquid crystals, and
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blood plasma. He also developed a theory of anisotropic micro-polar fluids (1980).
Anisotropic fluids occur in nature as either chemically stable substances or fluids that
carry suspensions. The theory considers the fluid orientable at the outset rather than the
interactive motions of its constituents. Eringen & Okada (1995) proposed a lubrication
theory under the micro-structure framework. Non-local viscosity moduli were determined
disregarding the inner structure of the fluid. The theoretical calculations for thin liquid
films were in good agreement with several experimental observations.

Theories similar to Eringen’s were presented by many researcher according to
their own approaches. Allen et al. (1967) employed a continuum approach to develop the
kinematics appropriate to media with deformable microstructure referred to as “simple
deformable directed fluids.” Kline & Allen (1970) developed a thermo-dynamical theory
of fluid suspensions of deformable particles. They found that their theory qualitatively
predicted the observed unsteady shear-flow behavior of dilute suspensions of randomly
coiling macromolecules, such as solutions of polyisobutylene. This apparent successful
prediction of experimental observations gives strong support in favor of the micro-
continuum approach for describing the rheological behavior of fluid suspensions.
Ciarletta (1995) established the linear theory of heat-conducting micro-polar fluids based
on Eringen’s framework.

Stokes recompiled different versions of micro-continua theories and presented a
connected account of them in a common notation (1984). It made the theories clear in the
physical concept. He suggested two main physical concepts —-- couple stresses and
internal spin -— that go into building theories of fluids with microstructure in addition to

the conventional fluid mechanics. He also suggested a kinematic concept, micro-
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structure. The couple stresses and micro-structures are conceptually different. The first
concept deals with mechanical interaction, whereas the second one deals with the
kinematic. Whereas in a general theory of fluids with micro-structure, couple stresses and
internal spin may be present simultaneously, theories of fluids in which couple stresses
are present, but micro-structure is absent, are also possible. Similarly, micro-structure
may be considered in the absence of couple stresses. The effect of couple stresses in
fluids was considered in his early paper (Stokes, 1966).

The successful application of the micro-continuum fluid theories covers a wide
variety of flow problems. Ariman et al. (1974) gave a comprehensive review for early
applications. These flow problems were categorized into six major divisions, namely,
fluids with rigid non-spherical or deformable micro-elements, micro-polar fluids, polar
and dipolar fluids, couple stress fluids, anisotropic fluids, and liquid crystals. In the
micro-polar fluids division, applications include steady shearing flows like Couette flows,
poiseuille flows; nonsteady flows like oscillatory flows, boundary-layer flows; stability
analyses; suspension viscosity studies; turbulence studies; blood flow studies; and other
flow studies.

Ariman & Cakmak (1967) applied couple stress and micro-polar theories to the
problems of Couette and Poiseuille flows between two parallel plates and results were
compared. Ariman et al.(1967) considered the micro-polar fluids flow between concentric
cylinders for the case-of Couette and Poisseuille flows. Kline & Allen (1970) investigated
nonsteady flows of fluids with micro-structure. For paraliel flows, a decomposition of
velocity and micro-structure spin fields was given and used to reduce the governing

equations to two uncoupled parabolic partial differential equations. These equations are
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solved for the suddenly accelerated plane wall problem. For the boundary condition at the
wall, they considered two limiting cases. In the first case, a rotational surface friction was
neglected and slip condition applied; in the second case, a fluid-solid interaction was set
so strong that no rotation permitted and non-slip condition applied. They also considered
the effects of fluid micro-structures in two limiting cases. The first case was interpreted
physically as dilute suspensions flow, where the characteristic micro-structure length
becomes increasingly small with respect to the characteristic flow field length. This
characteristic leads to the classical solution or small Knudsen like continuum flow
solution. The second case is just the opposite, where the micro-structure characteristic
length dominates the corresponding flow field length. In this case, the boundary-layer
thickness is increased due to the effect of the ratio of vortex viscosity to classical
viscosity. In other words, vortex viscosity influences the flow behavior as much as the
classical shear viscosity. We will extensively investigate this behavior in a later chapter.

Experimental determination of material micro-polar fluid constants was made by
Kolpashchikov et al. (1983). Their results of viscometric measurements allowed the
determination of two characteristic parameters, i.e., viscosity coefficients, of a micro-
polar fluid.

However, most recent works are still restricted to theoretical investigation.
Olmstead & Majumdar (1983) used micro-polar fluid model to examine steady,
incompressible Oseen flows in two dimensions. The solution of the fundamental problem
was obtained in explicit form under a certain restriction on the physical parameters of the
problem. Ahmad (1976) obtained a self-similar solution of incompressible micro-polar

boundary layer low concentration suspension flow over a semi-infinite flat plate. In his
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method, the partial differential equations of motion are reduced to two couple differential
equations. Rees & Bassom (1996) considered the Blasius boundary layer flow of a micro-
polar fluid over a flat plate. They assumed the micro-inertia density to be constant, and
non-zero micro-rotation vector on a solid surface. An asymptotic analysis was performed.
Can et al. (1989) studied the convective motion in a micro-polar fluid. It was shown that
the principle of exchange of stabilities holds for the convective motion in a micro-polar
fluid, and the convective motion is less stable for micro-polar than for Newtonian viscous
fluid. Easwaran & Majumdar (1990) constructed some causal fundamental solutions for
the slow two-dimensional flow of a micro-polar fluid. An explicit solution required the
factorization of a fourth order partial operator into two quadratic operators, which was
achieved under a certain condition on the parameters of the problem. Das & Sanyal
(1990) discussed unsteady flow of a micro-polar fluid with a periodic pressure gradient
through a rectangular channel. Hung ef al. (1996) used a perturbation method to
investigate analytically the nonlinear stability behavior of a thin micro-polar liquid film
flowing down a vertical plate. They analyzed the effect of the vortex viscosity with the
classical bulk viscosity.

Of more importance to this work is the paper by Papautsky et al. (1998). The
authors employed micro-polar fluid theory to investigate numerically micro-channel fluid
flow behavior, and experimentally verified the model. The significance of Papautsky’s
work is that it is the first time the micro-polar model is applied to the area of micro-scale
flow. The feature of micro-scale flow poses the micro-polar fluid a new challenge. The
flow they considered was two dimensional, steady, and incompressible. However, they

did not indicate clearly other assumptions such as unidirectional flow or small Reynolds

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

number flow. They used momentum and angular momentum equations that do not
contain the convection terms and that may be deduced only by small Reynolds
assumption or unidirectional flow assumption, and this factor makes their theory severely
bounded. They also specified the pressure drop in their computations so as to avoid the
difficulty of solving the pressure equation in the case of incompressible flow. At the same

time, their model was not applicable to a general case of non-pressure-driven flow.

1.4. Objectives

With the forementioned drive to explore the micro-scale flow and the current
research progress in micro-polar fluid flow, it is inspiring to develop an ad hoc micro-
polar fluid model to better suit the micro-channel flow. Our interest is in extending the
micro-polar fluid model to a steady, incompressible, two dimensional flow in a micro-
channel. The flow behavior will be our concern and will be compared to the classical
Navier-Stokes solution. A numerical scheme from conventional computational fluid

dynamics for incompressible flow, will be used in this investigation.

1.5. Organization of the Dissertation

This dissertation is organized as follows: In chapter 2, we present the governing
equations and slip boundary conditions for a slip-flow model based on classical fluid
dynamics. In chapter 3, we present the details of the micro-polar fluid model, the
simplifying assumptions for modeling, an exact solution obtained for unidirectional flow,
and nondimensionlization. In chapter 4, we discuss the numerical method including

numerical schemes and various computation details. In chapter 5, we describe the specific
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simulation problem and computational results. In chapter 6, we give a conclusion and

discussion.
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CHAPTER 2

SLIP-FLOW MODEL

2.1. Introduction
Typically, a flow is considered to be in one of four regimes according to its
Knudsen number. Different authors defined these regimes using slightly different
Knudsen number ranges. For gas flow, Beskok & Karniadakis (1992) proposed the

following classification:

Kn <0.001 Continuum Flow
0.001<Kn<0.1 Slip Flow
0.1<Kn<10 Transition Flow
Kn>10 Free Molecular Flow

We follow this classification as have other researchers (Bailey er al., 1995; Kavehpour et
al., 1997; Chen et al., 1998).

For continuum flow, the Navier-Stokes equations govern the flow. In the slip-flow
regime, deviations from the state of continuum are relatively small, and the flow is still
governed by the Navier-Stokes equations. The rarefaction effect is modeled through the
partial slip at the wall using Maxwell’s velocity slip and von Smoluchowski’s
temperature jump boundary condition. The validity of this kind of model was assessed by

various authors (Beskok, 1996; Chen et al., 1998). For flows in the high transition or free

17
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molecular regimes, the Navier-Stokes equations break down and have to be substituted
either by the Boltzmann equation, which is valid at the microscopic level, or by
continuum approximations.

The aspect ratio, defined as channel width to channel height, of a micro-channel
often is large. If we neglect flow change in the direction of width, usually achieved when
the aspect ratio is greater than 7, then the flow can be reasonably assumed to be two-
dimensional in the streamwise direction. It can be shown that for flows with a large

aspect ratio the three dimensional flow rate is calculated to the leading order by
Osp = 0,,(1-h*/w?), where h and w are channel height and width, respectively (Chen

etal., 1998) .

2.2. Governing Equations and Boundary Conditions

The steady, two dimensional, isothermal, incompressible flow is governed by the

Navier-Stokes equations, i.e.:

Continuity:
ou ¥ _o @2.1)
ox oy
Momentum (x direction):
2 2
yH 1P, [O0u, ou 22)
x ¥y pox ox” Oy
Momentum (y direction):
2 2
DAL Y [ A @3)
&x & poy ox” oy
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where, x, y are the Cartesian coordinates in streamwise and normal direcﬁon; u, v are the
velocity components corresponding to x, y; p, the pressure; p, the fluid density; v, the
fluid kinematic viscosity.

In the slip-flow regime, the Navier-Stokes equations (2.1, 2.2, 2.3) are solved

subject to the first order velocity slip boundary conditions at the wall given by:

Uer _2=C o (0u/U | 2.4)
U o /L),, ’

where, U is the characteristic velocity; Kn, local Knudsen number; L, the characteristic
length, the channel height in this case; o, the tangential momentum accommodation
coefficient.

The normal gradient of the tangential velocity shows the effect of vorticity on the
velocity itself at the wall. The nature of the momentum exchange between impinging
fluid molecules and the surface is reflected by the accommodation coefficient. For
example, ¢ =0 corresponds to specular reflection and o =1 corresponds to diffuse
reflection. In the first case, the tangential velocity of the molecules reflected from the
walls is unchanged, and the normal velocity of the molecules is reversed due to the
normal momentum transfer to the wall. In the second case, the molecules are reflected
from the walls with zero average tangential velocity. The diffuse reflection in particular is
an important phenomenon for tangential momentum exchange and thus friction of the
fluid with the walls. Equation (2.4) assumes slip even for the diffuse reflection case. The
non-slip conditioxi on the walls is obtained only when Kn=0. The accommodation
coefficient depends on the fluid and the surface roughness, temperature, local pressure,

and possibly the velocity and the mean direction of the local flow.
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Several authors assumed o =1(Chen et al., 1998; Kavehpour et al., 1997) as
experiments with gases over variuous solids and fluid surfaces show that o is
approximately equal to 1.0. It is possible to obtain higher-order corrections to the velocity
slip boundary conditions by retaining higher-order terms in the Taylor series expansion of
the tangential velocity near the wall (Beskok, 1996).

In this research, o is varied between 0 and 1.

The other boundary conditions at the walls are

v=0 (2.5)
@ =
=0 (2.6) |

where, n is the normal coordinate at the wall.

The flow at the inlet is assumed to be of a parabolic velocity profile as well as a
uniform profile. The parabolic velocity profile is not physically necessary but may
accelerate the convergence of the solution as compared with a uniform flow. The flow at

the outlet is assumed fully developed. Thus, the mathematical representations are

Inlet:
u(0,y)=U(1-y%) 2.7)
v(0,y)=0 (2.8)
p(0,0)=0  (as reference point ); 2.9)
Outlet:
%afy_) -0 (2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

V(x.>Y) _
= 0 (2.11)

)
P(xa¥) _ (2.12)
ox

To better understand the effect of slip condition, we need to simulate a non-slip

condition as a benchmark. The non-slip wall boundary conditions are

u=v=0 (2.13)
% _
™ =0 (2.14)

The other boundary conditions are the same as for the slip-flow.
Introducing flow characteristic length L, characteristic velocity U, we non-
dimensionalize the above governing equations by setting
x*=x/L, y*=y/L, uw*=ulU, v*=v/U, p*=(p-p ) (pU?)
where, the * indicates non-dimensional variables. Hence, the final non-dimensional

equations are as follows (omitting *):

%%:o 2.15)
2 2
o, ou_ op 1[0u 0u (2.16)
&x dy ox Relax? o
2 2
u%H%:-%q-é@x_ygy_‘;) .17

where Re is the Reynolds number defined by

Re=PUL _UL (2.18)
n v

The boundary conditions are nondimensionalized in a similar way.
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CHAPTER 3
MICRO-POLAR FLUID MODEL

3.1. Introduction

In continuum theories the mass is assumed to be a continuous measure, so that a
continuous mass density p exists in a volume element dV that is infinitesimally sm.;xll.
However, this continuum concept of density breaks down when the volume compares
with the cube of the mean free path, say AV . Thus mathematical idealization is
meaningful only when d¥ models AV such that AV>AV" . This continuum hypothesis is
well illustrated by Batchelor (1967) under the conditions of everyday experience. In
reality, the volume element d¥ cannot be infinitesimally small, but it should at least be
insensitive to current available measuring instrument. Batchelor used term “sensitive”
volume to describe this volume element, and we will follow this terminology in this
thesis. The theory of micro-continuum fluids attempts to account for the microstructure
that exists for AV <AV by using a continuum description. The limiting volume AV~ could
also be interpreted as a volume, containing microstructures such as suspended particles or
even turbulent structures, for which the effects of microstructure cannot be accounted for
by a continuum distribution.

In order to account for the microstructure that exists in the case of AV <AV", the
deformations of the material within AV have to be considered. The macro mass element

dM is assumed to contain continuous mass distributions such that the total macro mass
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dM is the sum of all the masses in dV. Thus a continuous mass distribution is assumed to
exist at each point of the macro element dV, such that the sum of the local masses over dV
gives the total mass dM, and implies that the continuum theory is valid at each point of a
macro element dV. Statistical averages then have to be taken to obtain the micro
deformation theory of continuous media.

Eringen (1964) introduced an important tensor called the gyration tensor v; to
determine the motion of a micro element relative to the center of mass of a macro
element. This gyration tensor determines the motion at the micro element level. A micro-
inertia moment i,,, was correspondingly defined for the deformed body.

The kinematics of deformation measures for micro elements are established with
the help of five theorems related to:

1. Micro-inertia moments, which satisfy specific partial differential equations
that are the complements to the continuity equations of the hydrodynamics for
micro-fluids and are named as the equations of conservation of micro-inertia
moments

2. The material derivative of micro-displacement differentials

3. The material derivative of the square of arc length in the deformed body

4. A necessary and sufficient condition for micro-rigid motion, which is that
both deformation rate tensor and the second order micro-deformation rate
tensor are zero

5. A property of the micro-deformation rate tensors, which are objective tensors

New principles are added to the basic principles of classical fluid dynamics,
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which deal with:

1. Conservation of micro-inertia moments;

2. Balance of first stress moments.

A fluent medium called a simple micro fluid is defined by Eringen (1964) based
on the property of its constitutive equations. It is a viscous fluid and in the simplest case
of constitutively linear theory, this fluid contains 22 viscosity coefficients. The nonlinear
Stokesian fluid turns out to be a special class of simple micro fluids.

The simple micro fluid is very general and allows for a wide variety of
microstructures through the gyration tensor. It is almost untractable. A simpler subclass
of micro fluids, in which a microstructure is still present, which is obtained by restricting
the form of the gyration tensor, and which is more tractable, is the class of micro-polar
fluids.

A fluid is micro-polar if , for all motions,

bum = —lims Vu=-Vg (3.1

where ¢, is the first stress moment tensor and v,, the gyration tensor. Such fluids

exhibit only micro-rotational effects and can support surface and body couples.

3.2. General Micro-Polar Fluid Model

In the general case of a micro fluid, the gyration tensor has nine independent

components. For micro-polar fluids, the assumption of the skew-symmetry of v,

reduces the number of independent components to three, so that, in addition to their usual

convection due to the motion of the fluid element, points contained in a small element of
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fluid can rotate about the centroid of the volume element in the average sense described
by the gyration tensor v, = —v, . From theorem 3 of Eringen’s paper (1964), micro-
stretch of particles is not possible for this case so the directors are rigid.

The governing equations of the micro-polar fluid for isothermal, no body force,
and couples flow are following in tensor forms, and their complete expansion form in
Cartesian coordinates is in the appendix.

Continuity:

op
_67+(pv")* =0 3.2)

Conservation of micro-inertia:

%)} . . .
#—".Jkl,mvm +(8krs-]ri +81rs.]sk)g: = O (3'3)

Balance of momentum:
=Dt A+u)yy +(pn+x Wiy +XK €4 8ms — pv, =0 (€X:Y

Balance of momentum moments:

(@ +B)8u+Y 8u+KEypVauy —2€ & ~PJu8 =0 (3.5)
where ¢ is time; p is mass density; v, velocity vector; p pressure; g, micro-rotation vector;

Ju micro-inertia moment tensor; o, 3, v, Kk, A and p are the material constants; the

notation ,k denotes the differential operator in space; — the operator of the material
derivative; €, is the third order alternating pseudo tensor. The micro-rotation vector g,

and micro-inertia moment tensor j are defined based on the relations with the gyration

tensor and the micro-inertia tensor, respectively.
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Vi = CumEm 3.6)
Ju =iy~ G.7)

The equations for conservation of energy and entropy inequality are omitted under
the framework of isothermal fluid assumption.

The problem is now formulated in terms of a system of 17 partial differential
equations. The above field equations are subjécted to initial conditions and boundary
conditions.

A useful concept termed micro-isotropic is introduced to simplify the model
further. A micro fluid is said to be micro-isotropic if the micro-inertia moment is
isotropic, i.e. if

i, =id,, or Ju =704 3.8)
where i, j are scalars and §,, the Kronecker delta. Then, from equation (3.1) and

Eringen’s theorem 1 (1964), we have

D . D .

= Gm) =0, or —(i)=0 3-9)
and

D D

—({w.)=0, —((j)=0 3.10

Dt(.]bn) or Dt(J) (3.10)
Thus , on material lines,

N

1=Ej=const (.11

For micro-isotropic micro-polar fluids, the equation of conservation of micro-

inertia is satisfied identically.
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After applying micro-isotropic constraints, the equation number is reduced to 8

from 17 with 7 matenial coefficients.

3.3. Ad hoc Two-Dimensional Micre-Polar Fluid Model
The equations (3.2), (3.4), (3.5) with the corresponding initial and boundary
conditions are still too complex to be practical. One main reason is that there are still 7
material constants (J, a, B, v, , A, and p ) that appear in the equations, and some of them
are not so easily determined for a real fluid. We try to simplify further the micro-polar

fluid onto our ad hoc two-dimensional micro-polar fluid model.

3.3.1. Basic Assumptions and Formulations

In addition to the isothermal, no body force, and micro-isotropic assumptions,
additional constraints are assumed for this micro-polar fluid model.

Flow is steady. Thus all the terms with partial derivative with respect to time
vanish.

Fluids are assumed incompressible. In this case p =constand therefore the
continuity equation reduces to

Ve, =0. (3.12)

The term (A +u)v,, in the momentum equations represents the effect of

compressibility of fluid, and thus vanishes. The A, second-order viscosity coefficient,
will not appear in the equations. This assumption agrees with the result of the

incompressible case of Navier-Stokes equations.
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Flows are two-dimensional. We consider the flows (%,v) in the x-y plane, and then
only the component normal to the x-y plane (k=3) of the micro-rotation vector g, appears

in the momentum equation, and the other components will not be taken into account.

The term (o +PB)g,,, in the equation of momentum moments vanishes as k=3

from the two-dimension assumption. Therefore, the spin gradient viscosity coefficient, ct,
8 will not appear in the equations.

Thus the unknowns of the ad hoc theory are now 4 in number, namely,

u v g p-
satisfying 4 reduced equations with 4 material coefficients, which are (omitting the
subscript 3 of g ):
Continuity:

Z¥: 2% 0 (3.13)

Balance of momentum (x- component):

2 2
u6u+ ou_l1lop —(P-'*' )6 u 61; +Kag (3.14)
ox 6y pox ox* dy poy
Balance of momentum (y- component):
2 2
w22y 2V 10p L pf T2, O V) k08 (3.15)
0x Oy poy p ox* 0y*) pox

Balance of angular momentum:

2
u6g+v6g=_21<g+y rou g, o' g g, ¥ ov _du (3.16)
O0x Jdy pJ o x* ay pj\dx Oy
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where x,y are the coordinates in streamwise and normal directions, respectively. u,v are
the corresponding velocities in x,y directions, p the pressure, g the component of the
gyration vector normal to the x-y plane, and j the micro-inertia density. Further, p is the
fluid density, p the classical bulk viscosity, x the micro-rotation parameter (also known
as the coefficient of gyro-viscosity and as the vortex viscosity), and y is the spin-gradient
viscosity.

The momentum equations simplify to the Navier-Stokes equations when k=0 .

3.3.2. Relations among the Material Constants

The above viscosity parameters are not independent. A further analysis can give

useful relations among them.

It is clear that g is the total spin of the microstructure of fluid media in the flow
field. It is possible that in some cases the microstructure effects become negligible and
the flow behaves like a regular viscous flow. Therefore, if we demand that g be a possible
solution, then it is only possible if

Yy =(u+x/2)j (3.17)
which gives some relationship between the coefficients of viscosity and micro-inertia. All
material constants j, {4, K, Y are non-negative.

The derivation of this relationship has been given by Olmstead and Majumdar

(1983) for the Oseen flow problem, and also by Ahmadi (1976).

The micro-inertia density j is defined as

2
pdv=2q, paxdv (3.18)
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where dv and dv’ are the sensitive volume and micro atomic volume elements,
respectively, and y is the distance measured from the mass center of the sensitive volume
element. p’ is the mass density at any point inside it. Two densities are identical since the
flow is in single-phase in our consideration. Assume the sensitive volume element is
spherical and its diameter is d, evaluating the integral yields

j=d*/10. | (3.19)

It is then that the micro-inertia is proportional to the square of the length scale of
the sensitive volume element. The length scale of that sensitive volume element or
microstructure element is defined as the smallest volume for which average quantity,
such as velocity, density, gyration, has statistical meaning.

Let f be a property of a particle; then the average or statistical mean of f in the

micro sensitive volume element is

n

D/
F=la (3.20)
n

where £, represents the property f of individual molecules, and » represents the total
number of molecules in the microstructure element.

The variance of the f has relation with the variance of the mean of f:
VD _veh. (3.21)
n

Further, assume c to be the coefficient for variation for the mean, we have

Vi)

f_{' —c. (3.22)

-,
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Introducing another parameter, standard deviation s, as

s=yV(f), (3.23)

we have

2
n= (ﬁ) ) 3.29)

We assume ¢ = 0.005, s/ f = 0.2, then n = 1600. This assumption means that the micro-
element must have at least 1600 molecules in the “sensitive volume” to make the
variation in the mean not greater than 0.5%.

If Loschmidt’s number applies, then the sensitive volume characteristic length d
can be determined from n.

However, the difficulty still exists in determining the microstructure characteristic
length. For most suspension flows, determination of this length scale was proposed by
Eringen (1980). The magnitude order is about 10? to 10° cm for flow characteristic
length L> 1 cm and flow characteristic velocity U>1 cm/sec. Kolpashchikov et al. (1983)
deduced formulae for micro-polar fluid material constants as well as a boundary
condition parameter from experimental data. What was needed were measurements of the
volumetric flow rate and the pressure gradient in channel flow with different channel
dimensions. The explicit microstructure characteristic length still remains unanswered.
Kline and Allen (1970) discussed the effects of fluid microstructure on the unsteady flow.
They investigated especially the limiting cases, i.e., maximum effects of microstructare
and dilute suspensions. However, what the appropriate length scale is in-between was

unanswered. For micro-scale flows, even these kinds of relations are untouched. Clearly,
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two limiting constraints for micro-scale flow exist. The minimum effect of microstructure
is shown when its length scale decreases until it approaches the order of magnitude of the
free path length while its length approaches the flow length.

We introduce the relation of free path length to the microstructure characteristic
length with the help of another parameter m as follows,

d=m\ ' (3.25)
where, A is the molecule free path length. Since the microstructure characteristic length is
less than the flow characteristic length, d < L , where L is the flow characteristic length;

substituting Knudsen number Kn = A/L, we have

Kn<— (3.26)
m

The upper bound of the reciprocal of parameter m may be determined statistically
from d.

Therefore, two different length scales appear in the model, the flow characteristic
length and the microstructure characteristic length. In micro-scale flow, such as micro-
channel flow, the characteristic length scale of the flow usually may be chosen as the
height (or width) of the ch@el since it accommodates well the length scales including
gradients of density, velocity, pressure, and temperature within the flow. The
microstructure characteristic length may vary with the modeling parameter m and will be

examined under the simulation tests.

3.3.3. Non-Dimensionalized Version

We now can non-dimensionalize equations (3.13 —3.16 ) by setting
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x*=x/L, y*=y/L, u*=ulU, v¢=v/U (3.27)

g*=gL/U, p*=(p-p.)(pU*)
where, the * indicates non-dimensional variables, L is the flow characteristic length, U
the velocity, p. is some representative value of the modified pressure in the field. Hence,
the final non-dimensional equations are as follows (omitting *):

Continuity:

ou _0v _g (3.28)

Balance of momentum ( x-component)

2 2
du vau__6p+1+k(6u auJ k dg

u—+ = s+ —s |+ ——= (3.29)
dx Oy 0x Rel\dx" oy Redoy

Balance of momentum ( y-component)

2 2
u6v+v6v=_ap+l+k 6\;_{_6 \; _kog (3.30)
0x Jdy 0y Reldx" 0oy Redx
Balance of angular momentum:
2 2
u8g+vag=_ 20k 2g+1+k/2 o §+6 % . 10k _ dv du 3.31)
dx 3dy Re (mKn) Re \dx" dy Re(mKn)*{dx Oy
where Re is the Reynolds number defined by
Re=PYL (3.32)
71
and £ is the ratio of vortex viscosity to translational viscosity, i.e.
k= (3.33)

L3
n
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3.3.4. Boundary Conditions

Equations (3.28 — 3.31) are subjected to boundary conditions. The solution
domain has three kinds of boundaries present, namely inlet, outlet, and walls.

Along the inlet boundary, all conventional fluid and flow properties must be
known and prescribed like that of a Navier-Stokes solution. The specification of the
micro-rotation variable is not so direct since we lack physical information. Hence, we
assume it is determined from other flow properties by satisfying the equation of angular
momentum. For a long channel flow, the fully developed condition may apply.

Across the outlet, the flow direction must be uniformly out of the domain. In
channel flow, the boundary is usually positioned in such a way that the flow there can be
assumed to be reasonably fully developed. In this case, zero streamwise gradients of all
properties may be implemented with little danger of any adverse effects far upstream of
that boundary.

At the walls, the velocity, including both the #, v components, is zero. The micro-

rotation variable is assigned a relation with the surface shear stress, as

g=-—n (3.34)

y

where, n is a parameter reiated to micro-gyration vector and the shear stress. The value
n=0 corresponds to the case where the particle density is sufficiently great that micro-
elements close to the wall are unable to rotate. The value n=0.5 is indicative of weak
concentrations, and when n=/ flows are believed to represent turbulent boundary layers
(Rees & Bassom, 1996). n lies between these two extremes.

The gradient of pressure normal to the wall surface is assumed to be zero.
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3.3.5. Unidirectional Flow Solution
It is important to know whether the model has a physical solution or not. We
choose a steady locally fully developed micro-channel flow as a test. After applying the
locally fully developed flow assumption, the term dw/0x, dv/dx, dg/Ox vanish, and dp/Ox
becomes constant. The partial differential operator /9y is identical to the differential
operator d /dy. Substituting 0w/Ox into the continuity equation, it follows at once that v=0.

Thus flow is unidirectional. The governing equations, given by (3.29 —3.31), reduces to

dp d*u dg
——E r(u+ +x—=2=0 3.35
P (» K)dy2 dy (3.35)
2
-2k g+Y d %—K ﬂ=O (3.36)
dy y

The corresponding boundary conditions are

At center line:

y=0 : du/dy=0, g=0 (3.37)
At upper wall:
y=1 : u=0, g=-nduldy. (3.38)

The solution of this problem is

1 op|_ k(2n+1) Ly . <y . kn+1)(e* +e°)

- 2u+K6x[ L —eym—r - Y T ey —x - )
(3.39)

and

__1 op|_ 2n+Du+x TN

& 2|,l+1c6x|: @& e —m © ¢ ) y] (49
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where,

C= W/EQLK) (3.41)

7(B +x)

The solution of a plane Poiseuille flow may be obtained by putting k=0 in
equation (3.39), in which case, equations (3.35) and (3.36) are decoupled and the solution
of g is solved by equation (3.36) and thus solution (3.40) does not apply. It follows that
the velocity will not be affected by the micro-rotation and vice versa. The value of x is a
measure of the effect of the microstructure on the macroscopic velocity and stress fields.

If y=0, the solution of g is immediately obtained from equation (3.36), and it is
identical to the local vorticity. Thus, the couple stress will be zero irrespective of
variation of velocity and micro-rotation g fields.

Even though all the effects are present simultaneously, the motion may be
assumed to be affected by three parts. First, viscous action, measured by pu; second, the
effect of couple stresses, measured by y; and third, the direct coupling of the
microstructure to the velocity field, measured by x. These three constants can have any
nonnegative value and then the ratio of any two of them, which can measure the relative
strength of their property effects, can have any nonnegative value.

The boundary condition coefficient » can also affect the solutions (3.35) and
(3.36). But since the variation of n is confined between 0 and I, the effect will not
change the characteristic of the solution, and is not significant. An arbitrary chosen value
of n should reflects the property of the solution.

The variation of the velocity profile with x/u for n=1/2 and y=/ is shown in

Figure 3.1.
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The maximum velocity # occurs at y=0 and it varies with x/u. It is not necessary

to have a maximum for x=0.
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Figure 3.1. Variation of the velocity u(y) with x/u for n=1/2 and y
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CHAPTER 4
NUMERICAL METHOD

4.1. Introduction

The govemning equations of micro-polar fluid possess similar properties to the
Navier-Stokes equations, where the equations of the balance of momentum can be
divided according to convection, diffusion, and source terms. Therefore, classical CFD
methods are applicable to this kind of system.

Among the various numerical methods for computing incompressible flows, the
primitive variable approach offers the fewest complication in extending two-dimensional
calculations to three-dimensions. It also has the advantage of obtaining directly the
solution of commonly known physical variables, velocity and pressure. A difficulty with
this approach is in solving the pressure field due to the absence of an equation explicitly
governing the pressure. Rather, the pressure is implied by the continuity equation, which
imposes a compatibility condition on the velocity field. Patankar (1980) introduced a
revised version of an algorithm for handling the velocity-pressure linkage, namely, the
"Semi Implicit Method for Pressure Linked Equations”, which is widely used in turbulent
flow and heat transfer computations. )

Another treatment of solving the pressure field is by the projection method,
proposed independently by Chorin in 1968 and by Temam in 1969. The explicit version

of such a method was presented by Fortin et al. in 1971, and detailed by Peyret and

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Taylor (1990). We employ this method in this work.

4.2. Pseudo-Time-Dependent Method

We rewrite the governing equations for both the Navier-Stokes system in chapter

2 and the micro-polar fluid model in chapter 3 as follows:

V-V=0 ‘ .1
Vp+F(V,g)=0 4.2)
G(V,g)=0 (4.3)

where, F(V,g) is all terms except pressure for balance of momentum equation and g is
null in the case of the Navier-Stokes system; G(V,g) expresses all terms for balance of
angular momentum and appears only for the micro-polar fluid model. Thus, the
governing equations for these two models are unified and our discussion will be made in
general.

The main difficulties associated with the solution of equations (4.1-4.3) are the

following:

First, the presence of the constraint V-V =0, which must be satisfied at any time,
does not allow the use of a simple explicit method that avoids solution of an algebraic
system of equations.

Second, there is a lack of boundary condition for the pressure.

We notice the fact that the solution of a steady equation can be obtained by

solving its associate unsteady equation as the limit when the steady state /0 ¢ is reached.

The method is then called the pseudo-time-dependent method because the time ¢ involved
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has no physical meaning.

Equations (4.2 ) and (4.3) then become:

%—‘: +Vp+F(V,g)=0 4.4
aa—f +G(V,2)=0 4.5)

Equations (4.1), (4.4), and (4.5) become the governing equations of the pseudo-
time-dependent problem.

The object of the pseudo-time-dependent method is to obtain a steady state

solution, characterized by

1 n+l n l n+l n 1 n+l n l n+l n
— —_— < s —— v -V <8V7_ — <g , — — <
Atlu u |<e, At! l Atlp P l<g, Atlg g" I<g,

where ¢,, €, €,, and g, are small numbers. The possibility of obtaining convergence is
based upon two facts: (1) the solution of a perturbed time-dependent fluid dynamic
system is toward the solution of the steady problem concerning the limit when t - o ;
and (2) the consistency and stability of the scheme employed in the projection method.

The consistency follows from the construction of the finite-difference scheme.

4.3. Projection Method

The most common method used to solve the unsteady equations deals with a
Poisson equation for the pressure and with the momentum equations for the computation
of velocity. A method called the projection method, in some cases where explicit schemes

are used, is the prototype of such an implementation.

The projection method is a fractional step method in time. It can be explicit with
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first-order accuracy in time.

Introducing a provisional value V, we split the equation (4.4) as

X—A—TV_+ F(V",g")=0 (4.6)

n+l o
\4 -V n+t

+V =0 4.
= 2 | (4.7)

Equation (4.6) is the momentum equation without a pressure gradient. Note that only the
discretization in time is considered here. Equation (4.7) establishes the relation between
the correction of velocity and the pressure gradient. Equation (4.1) is expressed as
vV.v™* =0 (4.8)
to help enclose the equations.

By taking the divergence of equation (4.7) and by making use of (4.8) which
states that V™' must be a divergence-free vector, we get the Poisson equation for

pressure p, i.e.:

1 .
Vip"™l=—vV.V 4.9
P = (4.9)
After that, equation (4.5) is also explicitly discretized in time by the Euler’s
scheme as
n+l __ _on
ng-+G(V",g")=0 (4.10)

The boundary condition for p is obtained by projecting the vector equation (4.7)

on the outward normal unit N to the boundary I'. Thus, we obtain the Neumann condition
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—— (Ve - V)N @.11)

is the value of V' on I', and V' is not yet defined. The condition of

compatibility for the Neumann problem is

1 . 1 n+l .
— | V-V ds=—— | (V" -V)-Ndl 4.12
At’l‘"‘ Ati( ) ( )

where Q is the domain bounded by I'. It expresses the factor that the velocity on the

boundary I" has a zero total flux. It is important that the discretization with respect to

space conserves the above compatibility condition.

The algorithm is then derived as follows,

1.

2.

3.

4.

5.

6.

Initialize the variables at time ¢ or step n;

Solve equation (4.6) to obtain V*;
Solve equation (4.9) to obtain p"*/;
Solve equation (4.7) to obtain V**/;
Solve equation (4.10) to obtain g™*/;

Go to step 2 until the convergent condition is met.

For the case of the Navier-Stokes equations, step 5 should be skipped. That step 5

can be performed simultaneously with step 2 to step 4 depends on the adopted scheme.

The projection method has a feature that the numerical solution is independent of

the value V; ; in another word, we do not need the boundary condition for V*. This

assertion is clear because (1) V* at inner points is independent of V. since it is calculated

by an explicit scheme; (2) the value V.-N appears in the Neumann problem
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simultaneously in the right-hand side of the Poisson equation (4.9), and in the Neumann
condition (4.11) and it cancels identically.

To prove this assertion, it is sufficient to analyze the discretization of (4.9) for
points near the boundary I, since V; appears in the problem only for these points.
Applying the staggered grids storage, the discretization of (4.9) is

I n+l

n+| n+ 1 n4+ . n+ n+
Ax? (Pl — zpi.ll + Pmtn) + Xy—z'(Pi,ol -2pi; '+ Pi,zl)
171 I (4.13)
| ) )|
tl Ax T b Ay ‘'3 2
and the Neumann condition (4.11) is
1 n+l n+l 1 n+l .
Z—};(Pi,l —Dig )= “E’(Vi,o ~Vio) (4.14)

Figure 4.1 shows the geometrical distribution of grids.

1[ i,2

3 1,372

i-1,1 i1 i+1,1

i,0

Figure 4.1 Geometrical distribution of grids near a boundary.
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The quantity v, 12 1s the value of v. at boundary point (i, %). Now, it is easy to see
that, when the value of p];' — p/s' given by (4.14) is substituted into (4.13), the unknown
quantity v, 12 cancels froin both sides of equation (4.13). From this, one concludes that
the solution is independent of the value v;,,, or v . In particular, we can choose

vis! =v;, and get a zero normal difference for the pressure on I. However, it must be

clear that this zero-derivative condition is purely numerical and does not imply that the
real pressure gradient is zero.
It is worth note that the time split scheme is equivalent to solving the momentum

equation as one equation. If V* is eliminated from (4.6) and (4.7) we obtain the scheme-

n+l - n
N =V RV, gV =0 415)

which is a first-order approximation in time of the momentum equation. Therefore, the
stability of the projection method is the stability of the difference equation associated
with (4.15). The stability conditions depend partly on the discretization approximation of

the convective term in F.

4.4. Discretization
Since time has no physical meaning here, a very simple explicit first-order scheme
in time as discussed above is considered. The spatial discretization makes use of the
staggered grids, which is extended from conventional CFD applications, such as TEAM
(Huang & Leschziner, 1984), MAC (Marker-And-Cell). The different physical variables

are stored in different location on the grids, and are shown in Figure 4.2.
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The approximation of the convective terms employs first-order upwind scheme;

the approximation of the diffusive and the other terms uses second-order centered

scheme.
y Juf _ 1 ( -
axl. . = X; u; ; (ui,j - “i-l,j) Sgn(ui,j) + (ui+l.j - ui,j) *Sgn(“uij)) (4.16)
i,j '
7 1 e \i, ?V g N
i-1j - &
— > - o L5
¢ <O T o
i-1j-1 ; ij-1 |
— e —+ @ —
\ }
_______ L - ~ N e wm wr wm ws * - — L4 !
T
| |
Figure 4.2 The staggered grids
v ou 1 ( .
3y L = A—y Vielrz,j-112 (ui.j - ui.j—l) Sgn(V,-H,z,j-uz) + (u,J+, - u,.'j) * Sgn(-vi+1/2,j-uz ))
4.17)
where
v 1
212 = Z v, Vi TVija Vi, j—l) (4.18)
8%u _ 1
Py i = (Ax)z (ui-l.j -zui.j + “m,j) 4.19)

d without permission.



8% u| __1
a}’zli,j (Ay)

og 1
=—(gi; = 8ij1)
dy i j Ay
ov 1
Ox ij A
where

1
Ui joira = Z (u;; + Ui ;U g U 0)

Jol L
dy ij Ay
%v _ 1
. =
ox ij (Ax)
v 1
3y, . = (Ay)? (Vi jou —2v; +V; i)
i,j
og 1
=—(g:;— 8iaj)
Ox ij Ax
u og
ox ij Ax
where

U jo12 = E (ui.j +u; j+l)
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= Vij ((v,.'j = Vi) * 580V, ;) + (v, 5y —vi ;) *sgn(-v, ))

3 (v,._l' j —2v,.' Vi j)

1
== Ujun ((gi,j — &)t sen(y; i, 0) + (&) — gj;)* sgn(—¥; ;1 ))
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(4.20)

(4.21)

= Ax Ui 112,012 ((vi.j = Vi) ¥ sgn(_y,, ) F Wi, — Vs ;) ¥sen(=u,_ jlr2 ))

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
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0 1

v ai = _A_; Vierz,j ((gi.j =80 *s8n(, ;) +(8ju — g)* Sgn(—v,-ﬂ,z‘j)) 4.30)
i,J

where

1

Viewz,j = '2_ (Vi.j + Vi+1/2,j) 4.31)

d*g 1

pyey (—A;)T(gi-., j =28+ 8iny) (4.32)
1,]

o? 1

ayz o =ay_)z_(gi.j—l —zgi,j +gi,j+l) 4.33)
i,j

ov |

— = e—— (vi+l.j -— vi.j) (4.34’)

Ox ij Ax

Ou 1

— =,y (4.35)

oy ij Ay

The function sgn(x) is defined as

if x<0

0
sgn(x) = {1 if x>0 (4.36)

4.5. Treatment of Boundary Conditions

We need to make a special treatment of boundary conditions for staggered grids.
Since the variables are not stored at the same points, virtual points are needed for some
variables in implementation. Figure 4.3 shows the distribution of boundary I" and grids of
the lower-left corner.

The boundary I" coincides with the storage location of « and g for i=0, and does
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so also with the storage location of v and g for j=0 . Therefore, the pressure p is not
defined on the boundary and this fact is essential: solving the pressure field via the
Poisson equation can be applied to the first points adjacent to the boundary without
modification. But we may fix a reference point for p at any location for numerical reason.
The algorithm allows the computation of the pressure without requiring the explicit
prescription of boundary conditions for it. The variable g is defined at boundaries and

thus no special numerical treatment of boundary conditions is needed for it.

r
4
l
o —t»
4 4 :
vou I g, Vlll 81,1 !
® —p [ J g [ ] —m
Po,1 Yo,1 P11 U
4 4 4 4
Voo | 0 210 U &0 I g r
vVi,0 V2.0 V30
® ol ® ———p ® -—td @ ——l
Poo Yo P1o UYi,0f P20 Wo| P30 W0

Figure 4.3 The staggered grids near a boundary

The staggered grids bring disadvantages in velocity boundary treatment. As seen

in Figure 4.3, difficulties occur when computing »;; and v,;. A way so-called reflection
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technique is used here by introducing virtual values u;, and v,,.

Along j=1I, we write the velocity component u,, on as the mean value of the two
velocities #, and u,, so that
Uy =2uy,, —u, (4.37)
i.e., u, is defined by a linear extrapolation.

Same treatments apply to the other boundaries.
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CHAPTER S

TWO-DIMENSIONAL MICRO-CHANNEL FLOW

5.1. Description of Simulations

To illustrate the use of the present methods, we apply them to the developing flow
in a two dimensional micro-channel, as shown in Figure 5.1. This flow situation is found
in micro-components, and in many experiments. It was also analyzed by many authors,

and we have their solutions for comparison.

y
X
Figure 5.1 Physical domain for micro-channel flow

Flow parameters cover Reynolds number that ranges from 10 to 2000. The
channel length is 20 times its height, and the flow is assumed fully developed at the exit.
Typical resuits show that this value of ratio of channel length to channel height is large
enough to obtain a fully-developed flow. Examples in Peyret & Taylor (1990) also gave a

similar conclusion for the Navier-Stokes solution in the case of non-slip flow.

51
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No apparent Knuden number needs to be specified since the characteristic length
is given, but its effect will be in the model parameters.

Numerical computations have been performed for both slip-flow and micro-polar
fluid models. The computations were performed on a SUN/Sparc workstation with four
450MHz processors at Louisiana Tech University. C++ was used in programming, and
TECPLOT in data post-processing. A uniform rectangular grid of 502x27 nodes was used
for all runs except those made to examine the effect of the grid size. The solution is
regarded as steady state when the pseudo-time reaches 10 with time interval 0.0001,
where £<107 is satisfied. Typically, 20 hours of CPU time is needed for each run. The

CPU time is one of the main reasons for us to choose the current grid number.

5.2. Simulation Results of Slip-Flow Model

Figure 5.2 presents the prediction of pressure variation for various grid sizes. As
can be expected, the successive refinement of the grid takes us asymptotically towards the
correct solution. We can conclude that a 25 grid in the y direction gives us a sufficiently
accurate solution for this problem.

Figure 5.3 shows the variation of the pressure with the distance along the channel
for various Reynolds numbers. Non-slip boundary conditions are prescribed by setting
Kn=0 in boundary condition treatments. The linear pressure variation means a constant
pressure drop. The result is in agreement with the analytical prediction.

Figure 5.4 shows the variation of the pressure with the distance along the channel

for various Knudsen numbers. The Reynolds number is 100. The momentum
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Figure 5.2. Effect of grid size
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accommodation factor 6=0.5 is used for slip condition. The pressure drop is apparently
affected by the variation of Kn. When Kn=0.001, the difference from non-slip condition
is small. As Kn increases, the deviation becomes large. Numerically an adjusting zone
appears near the entrance boundary since the incompatibility of the prescribed velocity
field at entrance. The pressure may be adverse in that zone but drops after that. The
pressure drop becomes gentle compared with the small Kn case, and is steady after the
adjustment. The adjustment distance for Kn=0.01 is less than one channel in height, but
changes to about 5 times of the channel height for Kn=0.1. We may suggest that the
model is applicable for Kn=0.01 and marginally :acceptable for Kn=0.1. For much larger
Kn, the pressure is always higher than that of the entrance in our computational region
and is not shown in Figure 5.4. Similar results are shown for o=1 in Figure 5.5.
Compared with 6=0.5, the effect of slip boundary condition is less significant and much
larger Kn can be explored at this time.

. Re
The normalized friction factor C*, defined as C =?I1—{— , iIs tabulated in
e

theory
Table 5.1. The C* value is less than 1, which is tendentially in agreement with most
authors, such as Beskok and Karniadakis (1994), Kavehpour et al. (1997). They used gas
as the work medium and thus the Re number and compressibility are not comparable.
Pfahler (1992) performed liquid transport experiment in micron size channel, and his C*
is around 0.85 for the 24.5 pm deep channel in which Re is about 100. But since it is still
unclear about the Kn number in liquid flow, no Kn number can be given from his
experiments, and we can conclude only that the agreement holds. Other comparable test

includes water flow in a tube performed by Yu et al. (1994) in which C* was 0.78.
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The effect of the slip-boundary condition in the velocity field is also shown.
Figure 5.6 shows the velocity profile in an arbitrary section. In the case of small Kn
number Kn=0.001, the velocity profile differs little from that of non-slip boundary
condition. When Kn increases to 0.01, the difference of the velocity profile becomes
obvious. In that case, the maximum velocity obtained at the centerline is smaller than that
from the non-slip boundary condition. At the same Kn, big ¢ usually corresponds to
small deviations in that profile since it implies bigger friction drag at the walls. When Kn
is 0.1, the velocity profile changes significantly, the maximum velocity is much smaller,
and the slip velocity at the walls are significant. The velocity profile explains the

corresponding pressure changes shown in Figure 5.4 and 5.5.

Table 5.1 The normalized friction factor C* varies with Kn and o

Kn
c 0.001 0.01 0.1 1
05 0.97 0.86 0.35 N/A
1.0 0.99 0.96 0.67 0.14
0.96 (Beskok) | 0.77(Beskok)
0.96 (Kavehpour) | 0.75(Kavehpour)
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Figure 5.6. Velocity profile for various Kn and o (Slip-Flow Model)
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1.0 (Slip-Flow Model)

Figure 5.7. Velocity field for Kn =0.001and o
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Figure 5.9 Velocity field for uniform entrance flow (Slip-Flow Model)
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Figure 5.11. Velocity field for impinging jet flow (Micro-Polar Fluid Model, Re=100, k=0.1)
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The vector plots of the velocity field are shown in Figure 5.7 and 5.8. Figure 5.7
is for the case of Kn=0.001, and Figure 5.8 for Kn=0.1. In both cases, 6=1. The velocity
variation along the channel for different Kn is clear. The decreasing of the maximum
velocity at centerline is compensated for by the increase in the velocity at the walls. The
figures of velocity also show evidence that the flow is fully-developed.

To verify that the prescribed channel length is long enough for fully-developed
exit assumption in this computational domain, we calculated cases where a uniform
velocity profile or impinging jet profile is set in the entry of the channel. Figure 5.9
shows the velocity field of uniform entry profile. Near the entrance, the velocity near the
wall is retarded due to the friction, and flow is pushed off the wall, which increases the
velocity in the middle core. It forms a parabolic profile at a short distance downstream.
The changing distance is less than 4 compared to channel height 1 in this calculation. The
v- compbnent velocity better illustrates the entrance adjustment. When flow is pushed,
velocity component v becomes visible and reaches maximum halfway from the wall to
the core. The v is back to quiescence after the flow becomes unidirectional again. Figure
5.10 shows the v contour for this case.

An impinging jet flow through a straight channel is computed via the micro-polar
fluid model for the same purpose. The flow can also reach a fully developed state in less
than S channel height distance downstream. Figure 5.11 shows the velocity field for
Re=100 and k=0.1. The effect of different k on the flow is also investigated. The v-

component contours are shown for various k through Figure 5.12, 5.13, 5.14 and 5.15. A
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general result is that with the increase of the micro-gyration k, the vortex length is

shortened and thus the flow is more quickly adjusted to a fully-developed state.

5.3. Simulation Results of Micro-Polar Fluid Model

The computations are performed for the micro-polar fluid model using the same

strategy as the slip-flow model. The Re=100 is extensively used as a flow parameter. The

modeling parameter m x Kn is adopted as 0.1 except those made to examine the effect of this

parameter. Another modeling parameter n which appeared in the boundary condition is set to

0.5.

Figure 5.16 shows the pressure variation for various modeling parameter mxKn.
mxKn = 0.1, 0.01 and 0.005 are used in these scenarios. Other parameter includes
Re=100, and 4=1. The plot shows that this parameter has little effect on the computation
for the chosen mxKn. Each of them is acceptable in this computation. A higher-resolution
plot shows little difference between that of 0.1 and the other two cases, and the latter two
cases have much closer results. This result is shown in Figure 5.17.

Figure 5.18 shows the variation of pressure for various nondimensional viscosity
k. k ranges from O to 10. £=0 presents the Navier-Stokes solution. The vortex viscosity or
micro gyration viscosity increases as & increases, and when k=10, the micro effect due to
the vortex viscosity dominates the flow. The pressure drop changes predictably with that
feature of k. When k is within 0.1, the deviation from the Navier-Stokes prediction is
small. When £ is large, a large pressure drop is apparent, and the pressure drop changes

significantly when finally vortex viscosity dominates the flow.
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Figure 5.19 shows the magnified plot near k=0.
The normalized friction factor C* is calculated for all cases and is tabulated in

Table 5.2.

Table 5.2 The normalized friction factor C* varies with &

k 0.01 0.05 0.1 0.25 0.5 1 2 5 10

C* 1.01 1.03 1.05 1.12 1.25 1.5 2 35 6

The effect of vortex viscosity does not only affect the apparent Reynolds number,
which is presented in diffusion term in the momentum equation, but also comes from the
micro-rotation term in the same equation. The apparent Reynolds number may be
expressed as Re/(1+k), and the big vortex viscosity seems to decrease the Re, and thus
enhances the friction. The micro-rotation term, on the other hand, lessens the effect of
vortex viscosity, and reduces the friction.

For the almost fully-developed channel flow, with our assumed material

parameter relationship (Chapter 3), we substitute the angular momentum equation by

og
—==0, v=0 5.1
5 v (5.1)
to obtain
2 2
__ 20k 2g+l+k/2 7] §'+6 § + 10k _ Ov Jdu 5.2)
Re (mKn) Re |o0x® 0Oy Re(mKn)*\dx 0Oy
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Since mxKn<1 , the middle term in the above equation may be neglected as compared to

the other terms, and thus we obtain

_1fov_ou
iy

Substituting g in the x-component momentum equation, we obtain

7 a2 ~2
au_*_vau__ap_*_l-i-k/ZLa u 8 u) (5.4

“ox 8y ox Re 6x2+6y2
This equation means that the whole effect of micro-gyration is equivalent to decreasing
the Re by (1+4/2), and thus increasing the friction factor by this same factor. Table 5.2
shows this relation.

Experiments performed by Papautsky et al. (1998) showed that the normalized
friction coefficient was approximately 1.45. This result may be achieved by setting k=0.9.
Since the authors did not give the flow parameters, specific comparisons seem difficult to
make. The micro-polar fluid model is also capable of predicting results which are in
agreement with the experimental data from Pfahler (1992) for a channel depth of 41.5 um
for isopropanol and 38.7 um for silicon oil. The large normalized friction coefficients
(greater than 1) were obtained by them but cannot be explained by the slip-flow theory.

The corresponding velocity profile is shown in Figure 5.20. The velocity profile
varies a little with k&. When £ increases, the maximum velocity obtained at the center line
becomes smaller.

The micro-rotation g field is also shown in Figure 5.21. g is x independent and
varies in the y direction for a straight channel flow.

The vector plot of the velocity field is shown in Figure 5.22.
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The variation of pressure for the different Re when k=0./ and k=1 are also shown
in Figure 5.23 and 5.24, respectively.

Flow through a s@ght channel with sudden restriction is of great interest in
experimental research. We computed three cases with three restriction ratios (passage
height in restriction over channel height) 0.2, 0.44, and 0.6, respectively, using the micro-
polar fluid model. Other flow parameters include Re=100, and £=0.1, k=1, =5 as well as
=0.

Figures 5.25 to 5.30 show the result for restriction ratio 0.2. Velocity fields are
plotted in Figure 5.25, 5.26, 5.27, and 5.28 for the entire computation domain with
respect to k=0, k=0.1, k=1, and k=5, respectively. In each case, the flow is almost
unidirectional before the restriction protrusion and has a sudden contraction in the
beginning of the restriction block. Sudden accelerated flow passes the orifice, and
diverges after res‘triction. In the rear of the restriction, a pair of vortices is formed to pad
the flow into a suddenly enlarged space.

Big pressure losses in this restriction are clearly shown in Figure 5.29, which plots
the variation of the pressure at the centerline with the downstream distance. The pressure
loss in the restriction area is much larger than the usual friction loss along the wall and
becomes the major pressure loss if the channel is not very long. Similar to the result of
the channel without restriction, pressure loss is always large for large £. In this respect,
we may conclude that large micro-gyration increases the flow drag. -

Figure 5.30 shows the contours of v- component velocity according to varied
micro-gyration k. A pair of increasing zone of v- component velocity is clearly shown in

the front corner of the restriction block, and so is the circulation zone in the rear of the
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block. The back vortex varies its length with the micro-gyration strength. The vortex
length becomes short as the micro-gyration parameter k& increases. Also, the maximum
value of v- component velocity decreases with an increase in k. The maximum value of
the v- component is generally larger from the Navier-Stokes solution than from this
micro-polar fluid model.

Figure 5.31, 5.32, 5.33, 5.34, and 5.35 show the result for restriction ratio 0.6.
Similar to the last case, velocity fields are plotted in Figure 5.31 to to 5.34 for case 4=0,
k=0.1, k=1, and &=S. In Figure 5.35, pressures at the centerlines along the downstream
distance are shown for this restriction ratio. Compared to restriction ratio 0.2, the
restriction effect is weaker, but the back vortices are still visible as well as the sudden
pressure drop in the restriction region. The pressure loss is substantially reduced from the
last case.

In-between the above two restrictions, cases for restriction ratio 0.44 are also
computed and the results are shown in Figures 5.36 to 5.40. The results fall, as expected,

between the last two cases.
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Figure 5.16. Effect of the parameter mxKn
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Figure 5.22. Velocity field for Re=100, =1

81



—_
N
oo
o008 o
000009 S
TN NO N e
AR AR
2002090008
rreexen
I R 7]
NEREN 0
. [ —‘_
REREN
_
; Jdo x
:
; L2
.
§ -
i
| I N S | o
Q
N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.23. Variation of pressure with channel distance for 4=0.1
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Velocity field for flow through a straight channel with restriction 0.2, k=1
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Variation of pressures with the downstream distance for flows through a straight channel with restriction 0.6
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Figure 5.40

Variation of pressure with the downstream distance for flows through a straight channel with restriction 0.44
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CHAYTER 6

CONCLUSION AND DISCUSSION

Micro-channel flows have been computed to investigate the influence of the
Navier-Stokes formulation for the slip-flow boundary condition, and the micro-polar fluid
model, respectively.

Results of the slip boundary condition show that the current methodology is valid
for slip-flow regime (i.e., for values of Knudsen number less than approximately 0.1).
Drag reduction phenomena apparent in some micro-channels can be explained by the
slip-flow theory. These results are in agreement with some computations and experiments
in the literature.

We also developed an ad hoc micro-polar fluid model to investigate the influence
of the micro-gyration in micro-scale flows. Our model contains a new flow variable,
micro-gyration g, as well as other conventional fluid dynamic variables. There are also
two material constants, p and k, one scale parameter, mxKn, and one boundary condition
parameter n in this model. Compared with the general micro-polar fluid model, the
parameter number is significantly reduced, making the model practical.

The scale parameter mxKn introduced the Knudsen number into the micro-polar
fluid dynamics by a statistical argument. By introducing this parameter, the effect of

rarefaction can be accounted for in the model.
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The parameter p is the classical bulk viscosity and needs little explanation. The
vortex viscosity k is related to micro-gyration, and needs modeling at current time. It
affects the flow field in two aspects, by modifying the apparent viscosity and by
introducing the effect of micro-gyration. In the simplest case of fully-developed channel
flow, the overall effect is equivalent to lessening the Reynolds number by (7+4/2).

The relationship between the material constants may need to be further examined
in the micro-scale range, as well as the parameter » in the boundary condition.

The current micro-polar fluid model explains the drag increase phenomena in
some micro-channel flows from both experimental and computational data. This result is
exactly opposite to that predicted by slip-flow theory. The existence of micro effect needs
to be taken into account for the micro-scale flow.

In the numerical analysis, a projection method solves the difficulty of an implicit
pressure equation and also has the advantage of being extended to three dimensional and
unsteady flow. A four variable (u, v, p, g) staggered grid is specifically developed here to
suit the micro-polar fluid model. An explicit Euler scheme is used for solving the
pseudo-time-dependent flow, which is equivalent somehow to an iteration method. It is
recommended that one use the implicit scheme to improve the computation efficiency.

Computations for a straight channel with a restriction block are extended in this
thesis. The flow restriction ratio, defined as the narrowest passage height to the standard
channel height, varied from 0.2 to 0.6. In the case where the restriction ratio was smallest,
the largest pressure drop was observed around the restriction block, which agrees with the
Navier-Stokes solution. For the same restriction, pressure drop varied with the micro-

gyration: the larger the micro-gyration, the larger the pressure drop. The velocity field is
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also affected by the micro-gyration parameter. When the micro-gyration increases, the
length of the back vortex in the down stream from the restriction decreases. The pair of

back vortices attained maximum length down stream when no micro-gyration existed.

Table 6.1 AP across orifice vs. kand r/d

r/d=0.2 r/d =0.44 r/ld=0.6
k=0 -15.5 -2.0 -0.76
k=0.1 -16.9 2.1 -0.80
k=1.0 -19.7 -2.5 -0.90
k=5.0 -31.9 -3.7 -1.44

Micro-scale effects on orifice pressure drop may be significant and play an
important role in developing micro flow meter as shown in Table 6.1. This data can be
useful for the placement of pressure sensing ports before and after the orifice in a flow
measuring device.

Flow of impinging jet into straight channel is also computed via micro-polar fluid
model. The effect of micro-gyration is similar to that down stream after the restriction
block in the straight channel flow with restrictions.

The effect of micro-gyration differs depends on the flow geometries. The micro-
polar flow in a complex geometrical configuration may deviate significantly from its
corresponding Navier-Stokes solution. There is no explicit expression of the effect of
micro-gyration on the friction factor in general geometries, but the overall effect is that

the micro-gyration increases the friction factor.
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By inheriting the general concepts of classical fluid dynamics, such as field
analysis and volume element, the micro-polar fluid model may share the same
methodology uséd in Navier-Stokes dynamics. In a very specific circumstance, it even
can employ a similar scheme in numerical simulation. For instance, we use the projection
method to treat the implicit pressure difficulty in both models. On the other hand, since
the micro-polar fluid model relaxes the restriction of infinitesimal fluid point with more
general microstructure concept, it may make a breakthrough in a much finer world, e.g., a
micron scale flow. With this promising perspective of benefits, commensurate difficulties
do exist not only in the dramatically increased size of the variable and the equation, but
also in understanding the physical meaning of the flow variables and the material
parameters.

In terms of future work, applications of the current model for flows in complex
geometrical configurations are the next natural step. For example, grooved-channel flows
with periodic boundary condition, which may simulate the flow in a micro-bearing
device, may be extended from the current numerical package with a little change of the
boundary condition treatment.

Experimental work is also strongly suggested to verify the principle of the current
model and improve the model parameters. In fact Dr. Hegab has been performing some
related flow measurements which will definitely help to achieve this goal.

Another interesting extension from this work is combining a micro-polar fluid
model and slip-flow boundary condition. The micro-polar fluid model extends the

continuity assumption in the flow field, and slip-flow boundary treatment focuses on the
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micro effect of the flow scale on the solid-fluid interface. Their combination may better

encompass the general micro-scale flow.
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Balance of momentum:
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