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ABSTRACT

Orthopedic and oro-maxillofacial implants have revolutionized treatment o f bone 

diseases and fractures. Currently available metallic implants have been in clinical use for 

more than 40 years and have proved medically efficacious. However, several drawbacks 

remain, such as excessive stiffness, accumulation o f  metal ions in surrounding tissue, 

growth restriction, required removal/revision surgery, inability to carry drugs, and 

susceptibility to infection. The need for additional revision surgery increases financial 

costs and prolongs recovery time for patients. These metallic implants are bulk 

manufactured and often do not meet patient’s requirements. A surgeon must machine 

(cut, weld, trim or drill holes) them in order to best suit the patient specifications.

Over the past few decades, attempts have been made to replace these metallic 

implants with suitable biodegradable materials to prevent secondary/revision surgery. 

Recent advances in biomaterials have shown multiple uses for lactic acid polymers in 

bone implant technology. However, a targeted/localized drug delivery system needs to be 

incorporated in these polymers, and they need to be customized to treat orthopedic 

implant-related infections and other bone diseases such as osteomyelitis, osteosarcoma 

and osteoporosis. Rapid Prototyping (RP) using additive manufacturing (AM) or 3D 

printing could allow customization o f constructs for personalized medicine. The goal o f 

this study was to engineer customizable and biodegradable implant materials that can 

elute bioactive compounds for personalized medicine and targeted drug delivery.



Post-operative infections are the most common complications following dental, 

orthopedic and bone implant surgeries. Preventing post-surgical infections is therefore a 

critical need that current polymethylmethacrylate (PMMA) bone cements fail to address. 

Calcium Phosphate Cements (CPCs) are unique in their ability to crystallize calcium and 

phosphate salts into hydroxyapatite (HA) and hence is naturally osteoconductive. Due to 

its low mechanical strength, its use in implant fixation and bone repair is limited to non

load-bearing applications. Novel CPCs were formulated and were doped with drug 

loaded Halloysite Nanotubes (HNTs) to enhance their mechanical and anti-infective 

properties.

In this study we also explored the use o f  customized biopolymer filaments and 3D 

printing technology to treat bone diseases such as osteomyelitis, osteosarcoma, and 

osteoporosis. Biopolymer filaments were successfully loaded with antibiotics, 

chemotherapeutics and hormones (female sex hormones). Using a Fused Deposition 

Modeling (FDM)-based 3D printer, these customized filaments were fabricating into 3D 

scaffolds. Constructs with variable mechanical strengths and porosities were successfully 

designed and 3D printed. Scanning electron microscopy was used to study the surface 

architecture o f the scaffolds. Compression and flexural testing was conducted for testing 

the mechanical strength o f  the constructs. Bacterial and suitable cell culture studies were 

applied to test bioactivity o f the constructs. From above experiments, this study showed 

that 3D printing technology can be used to fabricate bioactive biopolymers for 

personalized medicine and localized drug delivery.
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CHAPTER 1

INTRODUCTION

1.1 Bone Implant Technology

Bone fractures are the most common injuries resulting from accidents, age, and 

bone-related diseases. As bone is a metabolically active tissue, it undergoes continuous 

interplay between the bone-resorbing osteoclast and the bone-forming osteoblast cells 

throughout life, enabling it to repair small defects [1], However, bone tissue cannot repair 

large bone defects and severe fractures. The choice o f treatment modality depends on the 

severity o f the fracture. When a bone cannot regenerate itself, bone grafts are implanted. 

Bone grafting is defined as “a surgical procedure that places new bone or a replacement 

material into spaces between or around broken bone (fractures) or in holes in bone 

(defects) to aid in healing” [2]. Bone implants are also used to treat bone disorders such 

as osteomyelitis and osteosarcoma, where the infected parts o f the bone are resected and 

filled with drug eluting bone implants.

Autograft, allograft, and synthetic materials are the three material choices used in 

modem grafting procedures. A graft made from a patient’s own bone (usually hip bones 

or ribs) is called an autograft. To obtain a piece o f  bone for an autograft, the patient is 

subjected to surgery under general anesthesia, and the bone is removed, typically from 

the iliac crest. An incision is made, the bone is removed, and the wound site is closed. An
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allograft uses bone taken from a cadaver or, less frequently a living donor, and frozen and 

stored [2, 3], Chemical compounds, such as calcium phosphate (CP), PMMA and 

polyether ether ketone (PEEK) are used as synthetic materials to fill the fractured spaces

[4].

An ideal bone graft should have the bioactive properties o f osteogenesis (the 

formation o f new bone), osteoinduction (the chemical process o f  inducing a conversion 

o f patient’s osteoprogenitor cells into osteoblasts), and osteoconduction (providing a 

scaffold for cells to form new bone) [3],

1.2 Need for Improved Implant Technology

A surgeon places the graft by making an incision in the skin over the bone defect 

and shapes the replacement material into the graft site. Pins, plates, or screws are used to 

position the graft, and the incision is stitched closed. The supply o f allografts and 

xenografts is limited. These materials can be rejected by the host’s immune system, can 

transmit diseases, and pose a high risk o f contamination.

Currently available metallic implants have been used clinically for more than 40 

years and have been medically efficacious. However, in spite o f their success, they are 

subject to several drawbacks, such as excessive stiffness, accumulation o f metal ions in 

the surrounding tissue, growth restriction, required removal/revision surgery, inability to 

carry drugs, and susceptibility to infection [5, 6, 7], Moreover, additional revision surgery 

results in increased financial costs and prolonged recovery time for patients.

The search for an alternative to replace these metal implants has been largely 

focused on bioabsorbable materials. Many biopolymers such as poly-lactic acid and poly 

glycolic acid have showed multiple o f uses in the implant technology. However, these
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polym er’s properties such as mechanical strength and time o f degradation need to be 

customized according to the site o f implantation [6], Biopolymers when used as implants 

will not necessitate a secondary surgery and they can also be engineered to degrade at the 

rate o f new tissue formation, transforming the load gradually from implant to the newly 

formed tissue. In addition, they are widely available in different forms (solids, gel, fibers) 

and can be easily molded into different shapes and compositions. Therefore, there is a 

need to replace the traditional metallic implants with biodegradable materials.

Contamination during the medical process can be caused by many factors, such as 

biomaterial chemistry o f the implant material, their surface physical properties, design o f 

the medical device, anatomical site o f implantation, the extension o f surgical invasion, 

and the time o f application [8], In orthopedic surgeries, use o f biomaterials involves a 

high risk o f developing infections [9]. Because bacteria can attach to these biomaterials 

and develop resistance by forming biofilms, treating these infections systemically is 

difficult and localized treatment was proven efficient [10]. High-infection rate also 

imposes a high financial cost [11]. It is therefore important to prevent infection during 

bone implantation.

In medical conditions such as osteomyelitis, where bone is infected by 

microorganisms, the infected parts o f the bone are resected and filled with antibiotic 

eluting implants. Bone cements added with anti-infective agents molded in the shape o f 

beads or pellets are commonly used for this purpose [12]. Similarly, in osteosarcoma, 

cancerous bone is resected and voids are filled with chemotherapeutic eluting implant 

materials [13]. Commercially available Poly Methyl Methacrylate (PMMA) bone 

cements have good mechanical properties, but they are not biodegradable. They cause
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cytotoxicity to the surrounding tissues due to the methyl methacrylate monomer release. 

So replacement o f the currently available bone implant material with biodegradable or 

bioresorbable implants would be beneficial.

Most bone cements currently used undergo a chemical reaction within the mixture 

and form micro pores o f different sizes. These pores can act as a starting point o f  cracks 

and cause premature failure o f the cement. To avoid this pore formation, cement can be 

mixed under vacuum conditions. Unfortunately, when cement is mixed under vacuum, it 

leads to reduction in volume during polymerization, causing high shrinkage and worse 

adhesion when compared to non-vacuum mixed cement [9],

Several approaches have been used to fabricate anti-infective bone cement. 

Different antimicrobial agents have been used, as well as different ways to bind these 

agents within the bone-cement matrix. Typically, drugs are dry mixed with the bone 

cement and administered into the body. However, the addition o f antibiotics reduces 

mechanical properties in the bone cement. Furthermore, the release o f the antibiotic is 

short-lived and results in less than maximal antibiotic release [14].

The use o f nanoparticle technology as a drug delivery system is a well established 

strategy for enhancing the bioavailability, allowing targeted drug delivery and improved 

therapeutic efficacy. Currently, many nanoparticles are under investigation for treatment 

o f diseases, more specifically for chemotherapeutic and antibiotic drug delivery. Due to 

unique features, such as large surface to mass ratio, ability to load a vast variety o f 

compounds and biocompatibility, nanoparticles such as Carbon Nanotubes (CNT) and 

Halloysite Nanotubes (HNT) are widely used for medical purposes. Gomol et al. replaced 

micro-particles (usually barium sulfate or zirconium oxide) with nanoparticles on
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commercially available PMMA bone cement and found a 41% increase in tensile strain- 

to-failure and a 70% increase in tensile work-of-fracture. They attributed the increase in 

mechanical properties to crack-tip blunting. It is phenomenon where a propagating crack 

is deflected or stopped when a solid particle obstructs its path [ 15].

Currently available metallic implants and therapeutic drugs are bulk manufactured 

and often do not meet the patient’s requirements many times. A surgeon needs to modify 

them (cut, weld, trim, or drill holes for implants and change dosages for drugs) to suit the 

patient’s specifications. Every individual has unique physiology and reacts differently to 

drugs and therapies. Generic medicines do not account for these individual differences. 

Personalized medicine can modify the methods o f therapies and drug delivery to best suit 

the individual. This personalization may help reduce the failure o f treatments and 

improve the functionality o f the tissue. Major advances in biomedical engineering have 

led to new patient’s specific technologies which treat diseases with controlled drug 

delivery and/or replace wounded tissue with biocompatible materials. The 3D printing 

using FDM is one o f them. FDM printing’s high speed, accuracy, affordability, and 

feasibility have led to its increased use in medicine and biotechnology. This technology is 

used in printing prosthesis, human tissues, medical devices, and surgical implants for 

dental and orthopedic applications.

1.3 Objectives

The objective o f  all three projects is to design customizable and biodegradable 

materials that are cytocompatible and can elute bioactive compounds such as antibiotics, 

chemotherapeutics and hormones. The following objectives will be the core focus o f this 

research:



6

1. To formulate novel calcium phosphate cements (CPC) with enhanced mechanical 

properties and sustained anti-infective drug release profiles using doped HNTs.

2. To engineer novel methods for fabricating customized anti-infective and 

chemotherapeutic implant materials using biodegradable polymers.

3. To design bioactive polymers enhanced with hormones for personalized medicine 

and hormone replacement therapy.

1.3.1 CPCs Doped with HNTs

CPCs are well known for their osteoinductive and osteoconductive nature, but 

their usage is limited to non-load bearing regions because they have poor mechanical 

properties. Whereas commercially available PMMA bone cements have good mechanical 

strength, they are non-degradable and do not have osteoinductive properties. Moreover, 

their cytotoxicity, caused by the release o f  MM A monomer, and their excessive stiffness 

are undesirable qualities. A crucial need exists to increase the mechanical properties o f 

CPCs. Novel calcium phosphate bone cements are formulated with various combinations 

o f calcium phosphate salts mixing with different aqueous solutions. Natural polymers 

will be added to these combinations to achieve anti-washout properties and increase the 

mechanical strength. They will be allowed to set at ambient temperatures and checked for 

their anti-washout properties. HNTs will be used to increase the mechanical properties 

and also as a drug delivery system.

Change in mechanical properties will be evaluated by compression and flexural 

testing. Surface modifications due to the addition o f  HNTs will be studied using SEM. 

Antibiotic drugs will be loaded in HNTs using vacuum loading techniques and drug 

elution studies will be done to compare anti-infective compound release over time.
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Cytocompatibility o f  these formulated cements will be checked by conducting XTT assay 

on osteoblast cells cultured along with the CPC scaffolds. Bacterial testing using E. coli 

will be performed to check the antibacterial activity.

1-3.2 3D Printing Antibiotic and Chemotherapeutic Constructs

The objective o f  this research is to develop a novel method o f 3D printing 

customized implants using biodegradable materials doped with drugs such as antibiotics 

and chemotherapeutics. Filaments used in a 3D printer will be customized accordingly in 

order to achieve this objective. ExtrusionBot filament extruder will be used to extrude 

bioplastics doped with drugs. These customized extruded filaments will be used in 

MakerBot 3D printer for printing constructs. The goal will also focus on the capability to 

customize the 3D printing parameters in order to match the modified materials.

Thermoplastics are heated for extrusion and printing processes, thermal 

degradation o f  bioactive compounds doped in them may occur. So to test their activity 

bacterial cultures for antibiotic constructs and osteosarcoma cultures for 

chemotherapeutic constructs will be done. Images o f the extruded filaments and printed 

constructs will be taken to study the surface morphology. Compression and flexural 

strengths o f the constructs with and without drugs are compared in order to study the 

effect o f drug doping on the mechanical properties.

In most o f the bone diseases and disorders, the surgeon resects the infected bone 

and fills the resected area with drug eluting implants. Using patient’s data such as X-ray 

or CT scan, defective parts can be processed, 3D printed, and used as implant material.

To test the proof o f principle, defects will be made on the cow femur bone and scanned
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using a 3D scanner. These scanned files will be processed, imported as STLs and will be 

printed with the customized filaments.

1.3.3 3D Printing Hormones

The objective o f this study is to 3D print customizable implant materials which 

can elute hormones for personalized medicine and targeted drug delivery. In this part o f 

the research, hormones (female reproductive hormones) will be coated on to the 

biodegradable thermoplastic materials and filaments o f the required dimensions will be 

extruded. These extruded filaments will be 3D printed and the scaffolds will undergo a 

series o f tests. For surface morphology, SEM will be used; for drug elution profiles, 

spectroscopy will be used, and for testing the bioactivity o f the scaffolds, cell culture 

using estrogen reporter stable cell line will be used.

1.4 Organization of Dissertation

This dissertation is comprised o f six chapters. Chapter 1 is a brief introduction o f 

bone implant technology and its problems, the need for improving the implant 

technology, and the objectives o f this research. Chapter 2 is a detailed review o f bone 

biology, bone diseases and their current treatment modalities. It also focuses on 3D 

printing technology and its applications in the medical field. Chapter 3 focuses on HNTs 

as a potential additive material for enhancing the mechanical properties o f CPCs and also 

as drug delivery system. Chapter 4 covers the novel 3D printing techniques that involves 

manufacturing o f customized biodegradable implants that can elute anti-infective and 

chemotherapeutic drugs and tests for their bioactivity. Chapter 5 investigates 3D printing 

o f hormone eluting implantable materials and their tests for bioactivity. Chapter 6 draws 

conclusions and describes potential future work.



CHAPTER 2 

BACKGROUND

2.1 Bone

The bone is a skeletal connective tissue which provides a structural framework for 

the body. It is a dynamic and highly vascularized tissue that undergoes remodeling, a 

process involving local resorption and formation o f  bone, throughout the lifetime o f an 

individual [16]. It also serves as a mineral reservoir, protects internal organs, creates 

motion by opposing muscular contractions, and is a site o f hematopoiesis. It is made up 

o f both organic and inorganic matter. Bone, like most biological tissues, is hierarchically 

structured to provide the maximum strength with a minimum of material [ 17], In order to 

expedite a full characterization o f the bone, each separate constituent o f the bone that 

contributes to the whole system must be evaluated.

2.1.1 Types o f  Bone

Based on the different proportions o f osseous tissue, bone is classified into 

compact (cortical) and spongy (cancellous). Compact bone is dense, smooth, and 

homogeneous. It also stores calcium and has 70-80% of its matrix calcified [18],

Compact bone is composed o f many cylindrical shaped units called osteons, or haversian 

canals. This type o f bone is abundant in the diaphysis region o f long bones and plays a 

mechanical and protective role [18, 19].

9
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On the other hand, spongy bone does not contain osteons. It has needle-like bony 

structures with an irregular lattice o f thin columns and plates called trabeculae [20], This 

type o f  osseous tissue has low density and strength but has a high surface area and forms 

the inner cavity o f the epiphyses called bone marrow [19, 21, 22], Bone formation and 

deposition depend upon the mechanical stress applied to them [16, 22], In a study 

conducted by Rubin and Lanyon, functionally isolated avian bone showed an increased 

bone deposition on an application o f rigid-external load and a substantial remodeling on 

removal o f it [23, 24],

2.1.2 Bone Cells

Osteogenic cells, osteoblasts, osteoclasts and osteocytes are the four different 

types o f cells present in the bone. Osteogenic cells are stem cells that undergo mitosis and 

develop into osteoblasts. These are also called osteoprogenitor cells and are present on all 

non-resorptive bone surfaces. They form the deep innermost layers o f the periosteum and 

endosteum.

Osteoblasts are single-nucleated, cuboidal shaped cells that secrete extracellular 

matrix. They also secrete many non-collagenous proteins, such as osteocalcin and 

osteopontin that initiate bone mineralization and maintain calcium homeostasis [25]. The 

lifespan o f  osteoblasts is about eight weeks in humans. These cells are anchorage- 

dependent and rely on extensive cell-matrix and cell-cell contacts to maintain its cellular 

functions. Some osteoblasts get trapped in their own calcified matrix and change their 

phenotype to develop into osteocytes [22].

Osteoclasts are macrophages and are derived from hematopoietic stem cells.

These highly migratory, multinucleated and polarized cells carry lysosomal enzymes. The
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most intriguing feature o f  osteoclasts is the presence o f apical membrane which can form 

a tight seal with the calcified matrix. An activated osteoclast can resorb 20,000 pm3 o f 

bone minerals per day [22],

Osteocytes are smaller in size than osteoblasts, contain fewer organelles and have 

a high nucleus-to-cytoplasm ratio [22]. They have a high number o f filopodia or 

cytoplasmic extensions interconnecting other osteocytes. These help in the exchange of 

nutrients and waste [18],

2.1.3 Extracellular Matrix (ECM)

Bone extracellular matrix consists o f both organic and inorganic compounds. 

Organic matrix forms 30% o f the complete bone. It contains proteoglycans, 

glycosaminoglycans, osteonectin (anchors bone minerals to collagen) and osteocalcin (a 

calcium binding protein). During the process o f mineralization, glycoproteins, such as 

osteopontin and osteonectin are expressed more and hence serve as the markers for the 

matrix mineralization. Bone has collagen fibers dispersed all over the matrix, providing 

strength and resilience. The inorganic matrix is primarily composed o f mineral salts with 

almost 70% being apatites o f calcium and phosphate. This mineral crystal form, called 

hydroxyapatite, precipitates around collagen fibers o f  osteoids and makes the bone hard, 

resistant to crushing [19].

2.2 Osteosarcoma

Osteosarcomas are the most common primary malignancy o f connective tissue, 

with approximately 900 cases reported every year in the United States [26]. The etiology 

o f this disease remains unknown. Although, several risk factors such as age, gender, use 

o f tobacco and alcohol increase the incidence o f osteosarcoma. People with inherited
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genetic conditions such as retinoblastoma, Li-Fraumeni syndrome, bloom and wemer 

syndrome have an increased risk o f developing this disease [26, 27]. The incidence o f 

osteosarcoma has a bimodal age distribution, having the first peak during adolescence 

and the second peak in the seventh and eighth decade o f  life [27, 28],

The most common primary sites o f osteosarcoma are usually the distal femur and 

the proximal tibia (around knee joints). Pain and swelling in the affected area are the 

common symptoms o f this disease. Pain may become worse, especially during physical 

activity or at night. Several weeks after the pain starts, lumps may be formed at the 

affected site and bones become fragile and vulnerable to fractures. Accurate diagnosis is 

an essential prerequisite for treating the osteosarcoma. Imaging and histological 

confirmation are the two current techniques used for diagnosis. An MRI o f the entire 

bone in which the primary tumor is located, is the first diagnosis test that an 

osteosarcoma patient receives. A Computer Tomography (CT) scan o f the chest will be 

performed to detect any lung metastases. Bone scintigraphy using technetium (commonly 

called as bone scan) o f  the whole body is employed to check any distant spread o f the 

disease and a biopsy o f the tumor is done finally to characterize the type and stage o f the 

tumor [26, 29, 30].

For a successful treatment o f  osteosarcoma, both surgery and chemotherapy are 

necessary. Chemotherapy is administered as neoadjuvant (preoperative) and adjuvant 

(post operative) therapies. Neoadjuvant therapy is used to measure the chemo- 

responsiveness o f  the tumor, attempt to shrink the tumor and avoid extensive surgical 

procedures. This therapy is administered for a period o f  8-10 weeks before the surgery 

[31]. Following the surgery, adjuvant therapy is administered for 12-29 weeks [32], High
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doses o f drugs methotrexate, doxorubicin, cisplatin and ifosfamide are used in both 

phases. Chemotherapy on its own cannot eradicate primary cancer. Therefore, surgical 

treatment is necessary. Amputational and limb-salvage surgeries are the two most 

common, currently performed surgical strategies for osteosarcoma. Due to the recent 

advances in imaging techniques and novel drug delivery systems, approximately 80% of 

osteosarcoma surgeries are performed by limb-salvage surgery [30]. Reconstructions in 

these surgeries are possible with orthopedic implants such as rods, plates, screws, bone 

cements, and other osteoarticular grafts. Amputational surgeries are conducted only in 

severe cases.

Recurrence rate for cancers are generally high. A total o f 30-40% o f patients 

suffer localized osteosarcoma recurrence [33]. For this reason, novel surgical implants 

with drug-eluting capabilities became the focus o f  several studies [34],

2.3 Osteomyelitis

Osteomyelitis is one o f the devastating infectious disease o f the bone, and it 

remains a challenge to the physicians in both diagnosis and treatment [35]. Bones can be 

infected in many ways; infection may spread to the bone from another part o f the body 

through the blood stream, fracture and/or open wound can expose the bone, and 

peripheral vascular diseases or bacteremia can occur. Bones o f  the lower extremity (foot 

and ankle) tends to be more susceptible to infections due to thin soft tissue layers, boney 

prominences, and poor vascular supply. Certain chronic conditions such as diabetes, 

sickle cell anemia and hemodialysis increase the risk o f osteomyelitis [36]. The annual 

incidence o f osteomyelitis is about 54.6 per 100,000 individuals, as per the statistics
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conducted in 2012 [37]. The risk o f  foot ulceration is high in diabetic patients, and these 

ulcerations are often complicated by osteomyelitis [38, 39, 40],

Bone infections begin with adhesion o f bacteria (or any other infectious 

organism) to the bone matrix. The attached organism causes inflammatory responses 

leading to bone necrosis. In addition, inflammatory factors such as IL-1 and TNF trigger 

the osteoclast activity, causing demineralization o f  bone [41], Osteomyelitis is classified 

as acute or chronic, based on the duration o f infection. Acute myelitis occurs over a 

period o f a few days to weeks and has symptoms o f localized pain, edema and redness at 

the site o f  infection. Chronic myelitis is a prolonged recurrence o f  an acute case and is 

characterized by ischemia and bone necrosis [42], Most o f the osteomyelitis is 

polymicrobial in nature. Microbes such as Staphylococcus aureus, Escherichia coli and 

Pseudomonas aeruginosa are the most robust. Staphylococcus aureus is the most 

common causative microorganism for osteomyelitis [43].

The success o f these microbes is due to their ability to form biofilms which 

inhibits wound healing process and increases the susceptibility o f  the host to 

osteomyelitis. In addition, these biofilms are tough and do not allow easy penetration o f 

antibiotics into their matrix, making them more resistant to anti-infective agents [35]. 

Thus, a method is needed to treat the biofilms in the wound and on the surface o f  the 

surgical implants in order to prevent osteomyelitis.

Since osteomyelitis is a progressive destructive process, accurate and early 

detection is necessary. Physical examination o f the wound and microbiology o f the bone 

biopsy are the two modalities used in combination to diagnose osteomyelitis. Swelling, 

redness, drainage from the wound, and deep chronic pain are common symptoms o f this
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disease. Bone fragmentation and necrosis with purulent drainage are the strong 

indications o f the bone infection. Imaging techniques such as x-ray and CT scans are 

used to know the extent o f  debridement within the body.

To treat osteomyelitis efficiently, both medical and surgical methods are used 

either individually or in combination, depending upon the severity o f the infection. The 

choice o f antibiotic therapy depends on microbiology o f bone biopsy. If the microbiology 

cannot be determined, broad spectrum antibiotics are administered parenterally for 5-6 

weeks and then a prolonged course o f oral administration is suggested. When antibiotic 

therapy is not adequate and a considerable amount o f necrotic tissue is present, a surgical 

intervention o f the wound is necessary. A surgeon cuts open the wound and removes all 

the necrotic bone and infected soft tissue around it. Despite the use o f surgical 

intervention and prolonged course o f antibiotic therapy, chronic recurrence o f 

osteomyelitis is about 30% within a year o f primary treatment [44], To avoid this 

recurrence, the surgeon fills the resected area with antibiotic loaded spacers that elute 

antibiotics for an extended period o f time preventing the biofilm formation and thus 

avoiding chronic recurrence o f osteomyelitis [45].

2.4 Osteoporosis

Osteoporosis is a systemic bone disorder represented as one o f  the major health 

problem in the medical field. It is a skeletal disease characterized by a decrease in bone 

mass and deterioration o f  osseous tissue resulting in increased risk o f bone fractures [46]. 

It occurs in both middle aged males and females, but is most common in post

menopausal women [47], Depending upon the etiology, this disorder is classified as 

primary and secondary osteoporosis. Primary osteoporosis, also known as senile
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osteoporosis, is caused by aging and accelerates at menopause. Its etiology is not clearly 

understood. Secondary osteoporosis is caused by nutritional factors and medical 

conditions such as hypogonadism, endocrine or hematological disorders, and auto

immune diseases [48],

Currently, about 200 million people suffer with osteoporosis worldwide. 

Approximately one-third o f the female population above 60 years o f age are commonly 

affected [49]. Several clinical studies have demonstrated that primary cause o f 

osteoporosis in post menopausal women is due to sex-hormone deficiency, particularly 

due to estrogen deficiency [50]. Estrogen deficiency leads to down regulation o f pro- 

inflammatory cytokines synthesis leading to increased formation o f pre-osteoclast cells. 

These pre-osteoclast cells resorb bone minerals into blood causing osteoporosis. 

Approximately 2% o f bone loss per year occurs within the first couple o f years after 

menopause, clearly increasing the risk for fracture [51].

Long term Hormone Replacement Therapy (HRT) is generally prescribed to treat 

osteoporosis in elderly women. Estrogens are a group o f female sex hormones 

responsible for the development and maintenance o f  normal sexual characteristics and 

functions. The three main types o f estrogens are estrone (E l), estradiol (E2) and estriol 

(E3). E2 is the major estrogen produced in the ovaries and, in small quantities, in the 

adrenal glands and fat cells. It is the most active and predominant form o f all estrogens 

and is responsible for most o f the estrogenic effects. E2 and El are interconvertible. El is 

less potent than E2 and is mostly produced by adipose cells. E3 is secreted during 

pregnancy by the placenta and is the least potent o f  all the hormones. Depending upon the
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individual hormone levels, HRT is prescribed as either estradiol alone or in combination 

with other hormones such as E l , E3, and progesterone.

2.5 Calcium Phosphate Bone Cements

Brown and Chow were the first to propose the use o f calcium phosphate cement 

in bone repair [52], In 1920, Albee reported the first successful medical application o f 

calcium phosphate bio-ceramics in humans [52]. These cements are easily moldable, set 

at physiological temperatures, and have HA as their end product. These properties make 

them advantageous over other cements in the market. In addition, HA (its end product) is 

easily resorbed by the osteoclast cells leading to new natural bone formation at the bone- 

implant interface. This process is called osteotransductivity [53].

All CPCs are formulated by mixing a solid and a liquid component. The solid 

component consists o f two or more calcium phosphate salts. The liquids can be water, 

alginates, chitosan, or sodium phosphates. To obtain maximum biological use, these 

components are mixed in predetermined proportions to form HA. Resorbability o f the 

CPCs completely depends on its end product [4], The physicochemical reactions that 

occur during mixing are complex.

The solid phase usually consists o f a basic and an acidic salt, which react together 

in an aqueous medium and precipitates HA as a final product. In Eq. 1, Tetra-calcium 

phosphate (TTCP, Ca4(P04)20 ,  basic salt) reacts with p-Tri-calcium phosphate (p-TCP, 

Ca3(P 0 4)2, acidic salt) in the presence o f water and precipitates HA (Caio(P0 4 )6(OH)2), 

whereas in Eq. 2, TTCP reacts with Di-calcium phosphate dehydrate (DCPD, 

CaHP0 4 .2 H20 ), an acidic salt in an aqueous medium and precipitates HA [54].
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Ca4(P0 4 )2 0 +2Ca3(P0 4 )2+H2 0 -> C a1(,(P0 4 )6(0 H)2 Eq. 1

2Ca4(PO4)2O+2CaHPO4.2H2O^Cai0(PO4)6(OH)2+4H 2O Eq. 2

In this process, water is a dissolving agent and is not a reactant in the setting 

process. It allows dissolution o f particles and precipitation o f the products. Relatively low 

strength, high brittleness, inadequate adaptability in clinics, and a high possible rate o f 

dissolution at the initial setting stages due to formation o f unstable phases are common 

disadvantages o f water when used as a setting liquid [55], These properties o f water limit 

its use in clinical applications. It cannot be used for treating defects with bleeding or with 

the continuous flow o f tissue liquids, like saliva, nor can it be used where the bone defect 

is at mechanical load bearing site.

Adding water soluble biocompatible polymers in the calcium phosphate cement 

either in the liquid or solid form increased properties such as cohesion, toughness, 

biological response, and resorption o f  material [56]. If the cement does not set and 

disintegrates, it provokes an inflammatory response and may lead to cell apoptosis at the 

site o f cement application [57].

The introduction o f gelatin or chitosan as a mixing liquid can affect the kinetics o f 

setting and hardening o f  CPCs [58]. Chitosan is a linear copolymer o f N-acetyl D- 

glucosamine and o f  D-glucosamine [54]. An increase in flexural strength o f CPC 

composite reported when 15-20 wt% chitosan was incorporated in it [54, 56], No 

cytotoxicity was found in chitosan containing CPCs. In addition, a considerable increase 

in ALP activity was observed when mesenchymal stem cells were cultured on TTCP- 

DCPA composite [56]. These bioactive properties have led to an increased use o f 

chitosan in CPC.
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Cement setting time depends on factors such as solid-liquid composition, liquid- 

to-powder ratio, and particle size o f the powder. Setting conditions also influence the 

mechanical properties o f the cement [59],

2.6 Nanoparticle Technology

Pathogens, even a small fraction, can induce devastating effects on humans. 

Antibiotic usage is an effective treatment for infections. However, recurrence o f the 

infection is commonly seen and it tends to develop into a chronic problem in no time. In 

order to guarantee sufficient protection against microbes, developing novel therapeutic 

approaches to treat infections is o f utmost importance [60]. The use o f nanoparticle 

technology as a drug delivery system is a well established strategy for enhancing the 

bioavailability, allowing targeted drug delivery and improved therapeutic efficacy. 

Currently, many nanoparticles are under investigation for the treatment o f diseases, more 

specifically for chemotherapeutic and antibiotic drug delivery. Due to unique features, 

such as large surface to mass ratio, ability to load a vast variety o f compounds and 

biocompatibility, nanoparticles such as Carbon Nanotubes (CNT) and Halloysite 

Nanotubes (HNT) are widely used for medical purposes.

CNTs are graphite sheets commonly found as single-wall nanotubes (SWNTs) 

and multi-wall nanotubes (MWNTs). Due to their good mechanical, electrical, and 

electrochemical properties, they are widely used as biosensors [61]. Though CNTs are 

potential carriers for drug delivery, they cause toxicity due to the presence o f ferric 

impurities, degree o f functionalization, physical form, and agglomeration state [62], 

Research conducted by Yang et al. on mice showed adverse effects due to accumulation 

o f CNTs in major organs, such as the liver, spleen and lungs [62, 63]. Due to their high
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cost, reduced availability and toxic effects, CNTs are less likely to be used than other 

nanotubes.

HNTs are commercially inexpensive, bi-layered aluminosilicate nanotubes found 

naturally as raw mineral deposit. These are commercially made by dehydrating 15-20 

clay layers, which rolls up to form a hollow tubule capable o f carrying drugs. The inside 

o f the lumen is positively charged, and the external surface is negatively charged, 

permitting additional functional modifications o f these surfaces. This charge on both 

outer and inner surfaces affects the efficiency o f  loading the drugs and other chemical 

agents. Substances with overall negative charge can be easily loaded into the lumen when 

compared to positively charged particles. The size o f HNTs varies from 500-1000 nm 

with an inner diameter o f 15-100 nm depending on the deposit [64],

Due to physical properties such as nanosized lumens, high L/D (length to 

diameter) ratio, low hydroxyl group density, low cost and abundant natural deposits, 

HNTs are studied as sustained drug releasing agents. They also reported improved 

mechanical performances and stability when used in the fabrication o f polymer 

nanocomposites [65], Loading HNTs with pharmaceuticals showed low initial release 

concentrations, preventing an initial outburst and uniform drug delivery (particularly with 

drugs, such as antibiotics, chemotherapeutics, hormones and other growth factors). The 

drugs gentamicin sulfate, nitrofurantoin, dexamethasone, furosemide and nifedipine gave 

an extended 6-10 hr release profile [66]. Under optimal conditions, a maximum loading 

o f 12% volume (very close to theoretical capacity) was obtained [66]. When HNTs are 

added without an active agent, they act as skin-cleansing agents due to adsorptive
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properties. HNTs adsorb dead skin cells and unpleasant oils from the skin, resulting in a 

fresh and healthy look [67].

2.7 Additive Manufacturing

3D printing is a process o f making three-dimensional objects from a digital file. It 

can be achieved by either subtractive or additive manufacturing. In subtractive 

manufacturing, an object is created by removing sections from a block o f material by 

cutting or drilling away the excess material. This type o f prototyping is limited by cutting 

and routing technology, cannot create hollow parts from a single block o f material, and 

generates excess material waste [68], In additive manufacturing, the product is created by 

adding materials layer by layer until the final product is obtained. As shown in Figure 

2- 1, the desired construct is built by assembling many thin cross sectional layers, offering 

the ability to build complex and intricate designs [69]. Since the object is made in layers, 

a slicing software is required to slice the object’s digital file into multiple layers. Each 

layer can be then analyzed separately and the set o f  instructions given to the machine can 

be customized as necessary. Depending on the form o f material used, this process is 

categorized into solid based, liquid based, and powder based manufacturing. Presently, 

selective laser sintering (SLS), stereolithography (SLA), fuse deposition modeling 

(FDM), and laminated object manufacturing (LOM) are the widely used additive 

manufacturing techniques.
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SUBTRACTIVE MANUFACTURING

Figure 2-1: Types o f rapid prototyping [69],

SLS uses high power laser beam to selectively fuse powdered materials (plastic, 

metal, ceramic or glass powders) into a desired 3D object [70]. Here, the laser beam act 

as a heat source to sinter the powders in pre-determined size and shape. After the first 

layer is selectively sintered, rollers deposit the second layer o f loose powder from the 

feed bins, as shown in Figure 2-2, and the process is repeated from bottom to top until 

the desired object is formed.
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Figure 2-2: Selective Laser Sintering (SLS).

The performance o f SLS process depends on laser power, thickness o f the powder 

layer, roller speed and print bed’s heating/cooling rate [71]. A wide range o f materials
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can be used for this process and the unused powder can be recycled. In order to avoid 

oxidation and to maintain the process at a constant melting point temperature, an inert gas 

atmosphere must be maintained [72],

SLA is a liquid based additive manufacturing process which uses precise and 

sufficiently powered UV laser beam to solidify photo-reactive polymer resin. Laser beam 

illuminates the surface o f the resin in the shape o f  the desired object, as shown in Figure 

2-3, resulting in solidification o f polymer and adhering to the platform. Once the first 

layer is solidified, the support platform descends, allowing the liquid resin o f calculated 

thickness to flow over the built layer and the process is repeated until desired artifact is 

built [73]. Excess liquid resin is drained or re-used. For better mechanical properties, 

finished objects are often exposed to the UV light, a process called post resin-curing. This 

process is limited only to photosensitive polymers such as low-molecular weight poly 

acrylate and epoxy macromeres.
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Figure 2-3: Stereolithography (SLA).

FDM is a solid based additive manufacturing technique. It builds 3D objects by 

depositing thin layers o f thermoplastic filament on to a platform in layer-by-layer fashion
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as shown in Figure 2-4. Plastic filaments including Acrylonitrile butadiene styrene 

(ABS), Polylactic acid (PLA), Polyamide (Nylon), Polyethylene terephthalate (PET), and 

Thermoplastic polyurethane (TPU) are commonly used for FDM. This method does not 

need any chemical post processing or resin-curing. Due to their cost effectiveness and 

wide range o f material use, this type o f prototyping is advantageous over others and is 

widely used. In this current study, 3D printer based on FDM principles are used.

In LOM, layers o f  adhesive-coated material is glued together and cut into the 

required shape using a laser beam to obtain a 3D object. Materials used in this process 

include glued paper, plastic and metal sheets. A heated roller runs through a thin layer o f 

adhesive material to make sure it adheres to the substrate properly as shown in Figure 

2-5. A laser cutter traces through the sheet into the desired shape and then another layer
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Figure 2-4: Fused Deposition Modeling (FDM) [74],
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o f the material is rolled over it. This process is repeated until the final artifact is built. 

Since the objects printed have wood like characteristics, this process is used to make 

relatively large subjects and additional drilling and machining o f the parts are required. 

As paper and glue are used in this process, external factors like temperature and humidity 

affect the structure and composition o f the part.

FDM is an additive manufacturing technology developed by Scott Crump in the 

late 1980s. Later in 1990, Stratasys Inc. patented and commercialized it as a technology 

[76], In this process, a plastic filament is melted through a nozzle tip o f the required 

diameter and laid on a platform in layer-by-layer fashion to build a three dimensional 

construct o f the required shape as shown in Figure 2-4 [74], Plastic filaments including 

Acrylonitrile butadiene styrene (ABS), Polylactic acid (PLA), Polyamide (Nylon), 

Polyethylene terephthalate (PET), and Thermoplastic polyurethane (TPU) are commonly

S h e e t m a te n a lB lo c k

P h u fo iii)

Figure 2-5: Laminated Object Manufacturing [75].

2.8 Fused Deposition Modeling (FDM)
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used for FDM. A computer aided design (CAD) model is used to guide the nozzle tip 

accordingly to lay the material in the required shape.

For a 3D CAD model to be printed as 3D object, it has to go through the 

following steps as shown in Figure 2-6.

CAD M odel 3D O bject

V
3D Cad 
Model

V /

STL Slicing
Fite Software

Layer Slices & 3D 30
Tool Path Printer Object

Figure 2-6: Steps involved in making a 3D object from a CAD model.

2.8.1 Stereolithography Files (STL)

STL also has several backronyms such as “Standard Tessellation Language” and 

“Standard Triangle Language” . In order to interact with FDM machines, data files are 

saved as STL file format. It is a triangulated representation o f  a 3D CAD model. This 

format approximates the surface o f an object with many triangles. For a simple object 

like a cube as shown in Figure 2-7, its surface is approximated with 12 triangles. As the 

complexity o f the object increases, more number o f triangles are used to estimate the 

surface.
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IX

Figure 2-7: A) 3D model o f a cube, B) STL format o f a cube, C) STL file of a
complex design.

Most o f the CAD software currently available are capable o f producing an STL 

file. AutoDesk, Solidworks, IronCAD are some o f the widely used CAD software for 

making an STL model.

2.8.2 Computer Aided Design (CAD)

CAD is a program which helps users to create STL files. It helps in designing, 

analyzing and optimizing 3D models. This software helps in designing ideas and 

visualizing the concepts through photorealistic renderings. They also simulate the 

performance o f the design in the real world. Solidworks 2015 and AutoCAD are the two 

softwares used in this research to design constructs o f required shape and dimensions.

2.8.3 Sheer

Slicer is a software which cuts a CAD model into many horizontal slices (layers). 

It generates tool path by converting the design data into movement o f the filament 

deposition head o f  the 3D printer along the X, Y, and Z axis over the build area. Printing 

parameters such as deposition head speed, rate o f material flow from the head, and 

cooling fan speed can be modified according using this software. In the current research, 

slic3R and ReplicatorG were used for slicing the designed constructs.
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2.9 Applications o f 3D Printing in Implant Technology

High degree o f  freedom to produce custom medical devices is the greatest 

advantage o f  a 3D printer in the biomedical field [77]. This technology has been applied 

in the medical field since the early 2000, when custom dental implants and prostheses 

were first 3D printed and implanted surgically [78], In 2011 Kaiba Gionfriddo, a six 

months old boy form Ohio, stopped breathing and turned blue. He was diagnosed with a 

rare condition called tracheobronchomalacia in which periodical collapse o f the windpipe 

due to weakening o f tracheal cartilage was observed, preventing him from normal 

breathing. Dr. Glenn Green, an associate professor o f pediatric otolaryngology and his 

colleague Dr. Scott Hollister, professor o f biomedical engineering and associate professor 

o f surgery at the University o f Michigan, were able to 3D print a custom tracheal-splint 

implant from CT scan data o f the patient’s trachea. These splints were made on a laser- 

based 3D printer using biodegradable polymer and was surgically implanted into the 

patient. The splint printed had a slit along its length in order to expand as the child grows. 

The baby recovered and within three years a full resorption o f  the implant occurred. 

Before this procedure, newborn babies with tracheobronchomalacia had no cure and little 

chance o f  survival. Now this procedure was patented and successfully replicated with 

three other babies having similar conditions [79].

Since Kaiba’s story, 3D printing for biomedical applications has been gaining 

more importance. Customization o f  implants and surgical tools can have a positive 

impact on the success o f  the surgery, time required for surgery, and patient recovery time 

[80]. Another benefit o f this technology is the ability to build the objects at low cost on a
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small-scale production. The following are some o f the applications o f 3D printing in 

biomedical engineering.

2.9.1 Bioprinting Tissues and Organs

Allotransplantation from either a deceased or living donor is the current treatment 

for organ or tissue failure. There is always shortage o f human organs available for 

transplant. Additionally, finding tissue which matches the host body is a difficult task.

For the organ donor shortage, tissue engineering and regenerative medicine are 

considered as potential solutions. In tissue engineering, pluripotent cells are isolated, 

multiplied by adding external growth factors, seeded onto scaffolds, inducing cell 

differentiation and developing into a required functioning tissue [81]. 3D bioprinting 

offers additional advantages to this method by highly customizing the parameters such as 

precise placement o f cells, cell concentration, drop volume and diameter o f printed cells 

[82]. In this technology, print head is filled with living cells and are deposited onto the 

substrate to reproduce tissue or organ. To fabricate a heterogeneous tissue or organ, 

multiple print heads each filled with different types o f cell lines can be used. Researchers 

at Cornell University used this technique to fabricate a living aortic valve that have 

similar anatomical features as that o f the native valve. They used multiple print heads 

filled with smooth muscle cells and valve-interstitial cells suspended in an alginate- 

hydrogel system. They could successfully fabricate living heart valve conduits with a 

strong resemblance to the original value [83].

Similarly, many researchers have provided proof o f concept to build bone, 

cartilage, spinal discs, artificial ear, and other types o f  tissues using bioprinting.

However, if  the bioprinted tissue has a thickness greater than 200 pm, the oxygen
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diffusion between the host and transplanted tissue will be limited. In order to avoid this, 

organs with precise vascular network should be bioprinted, which has not yet been done 

[78],

2.9.2 Customized Implants and Prostheses

Traditionally, a surgeon had to modify standard implants according to the 

patient’s anatomy by cutting pieces o f metal/plastic to a desired shape, size and fit. 

Currently, CAD programs can convert digital files such as x-ray, MRI or CT scan into 

STL files and can be easily printed used a 3D printer. Due to this ability, 3D printing 

technology has been used in the health care sector to print complex, customizable 

prostheses and implants. For the first time technicians at the Biomedical Research 

Institute o f Hasselt University in Belgium, 3D printed a titanium mandibular prosthesis 

and successfully implanted it to an 83-year-old woman [84], This implant was made by 

fusing layers o f titanium powder using a high power laser beam. In 2013, FDA approval 

for 3D printing polyetherketoneketone (PEKK) was received by Oxford Performance 

Materials and a skull implant was successfully printed and implanted in the same year 

[84],

The ear canal is structured differently in every individual and use o f 3D printing 

allows making customizable ear prosthesis efficiently and cost-effectively. Using 

biomaterials such as silicon, silver nanoparticles and chondrocytes suspended in collagen, 

a prosthetic ear which can detect electromagnetic frequencies and anatomically similar to 

a human ear has been 3D printed successfully [85]. Use o f  3D printing in orthodontics 

made the dental procedures cheaper and more efficient. To make dentures, crowns and 

bridges, all that is needed is a 3D digital scanner and a 3D printer. This process skips the
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step o f casting physical molds o f patient’s oral cavity and makes the surgical procedures 

less invasive and more accurate.

2.9.3 Anatomical Models and Tools for Surgical Preparations

Gaining insight into a patient’s anatomy prior to a surgical procedure is o f utmost 

importance for a successful surgery. Current imaging procedures such as MRI, CT scans 

and x-rays, which are viewed in 2D, are the only source to study and simulate surgery. 

Cadavers are also used for this purpose, but they lack appropriate pathology and provide 

more o f  an anatomy lesson than a representation o f surgical procedure [77, 85], Using 3D 

printer tangible models with exact patient specific anatomy can be printed. In Kobe 

University Hospital, Japan, surgeons started using 3D printed replica’s o f patient’s liver 

to determine how to best carve a donor liver with minimal tissue loss, preserving its 

function and to best fit it in the abdominal cavity. In complex cases, like in neurosurgery, 

where a small error can even lead to potentially devastating consequences, 3D models 

with exact anatomy o f the patient will help a lot in studying the case thoroughly and 

simulate surgery prior to operating on the patient. Clear or partially transparent materials 

with water content and texture similar to human tissues such as acrylic resins or polyvinyl 

alcohol were used to maximize the simulation conditions [78],

2.10 Biopolymers

Polymers were first synthesized from glycolic acid in the 1920s. At that time, 

polymer degradation was viewed negatively since they have a tendency to deteriorate 

eventually and are not suitable for long-term industrial uses [6]. However, this instability 

has proven to be greatly important in the medical field in the last four decades. In the late 

1960s, the application o f biodegradable implants using PLA biopolymer was introduced
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by Kulkami et al. [5], Later in 1984, Rokkanento first used this material as the internal 

fixation device for treating fractured ankles [86]. Since then, many polymers such as poly 

lactic acid (PLA), polyglycolic acid (PGA), polyethylene glycol (PEG), poly (glycolide- 

co-lactide) (PLGA), and other lactic/glycolic copolymers have been used for medical 

purposes. An ideal bioimplantable polymer must be easily sterilizable, does not evoke 

any inflammatory reaction, and should be metabolized in the body completely without 

leaving any traces [6],

Traditionally used metal implants have been clinically efficacious, but they are 

excessively stiff, stay at the site o f implantation permanently, need secondary revisions, 

and require surgical removal upon healing [5]. Biopolymer implants do not need 

additional or revision surgery, available in different forms and can be customized into 

different shapes and and compositions.

2.10.1 Types o f  Biopolymers

Biopolymers and bioplastics are often confused for one another. Polymers that are 

obtained from renewable sources are biopolymers and synthetic materials manufactured 

from biopolymers are called as bioplastic. Based on their origin, biodegradable polymers 

are classified as natural and synthetic polymers.

2.10.1.1 Natural Biodegradable Polymers

Collagen and chitosan are the two major natural biodegradable polymers available 

abundantly and widely used. In addition to those, fibrin, gelatin, chitin, silk and starch are 

the other natural polymers been under research interest currently. Collagen is a high 

molecular weight polymer (M „=300 KDa) with a long helical shaped structure (length = 

300 nm). It is enzymatically degraded by collagenase enzyme in the body. The rate o f
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degradation can be customized by altering the cross-linkings in the polymer chain. Its 

osteoinductive, osteoconductive, and osteogenic properties have led to a wide use in bone 

implant technology. Because a large portion o f  human bone minerals consists of HA and 

collagen, collagen is coupled with other biomaterials such as calcium phosphates to 

obtain a complete biomimetic system for osseous replacement [87],

Chitosan is a linear polysaccharide made o f glucosamine and N-acetyl 

glucosamine. Depending on the processing method and its source, it has a molecular 

weight ranging from 250 to 1000 KDa. Chitosanase degrades this polymer in vitro. In 

vivo degradation is regulated by hydrolysis o f acetylated residues in the presence o f 

enzyme lysozyme. The biodegradation o f chitosan depends on its molecular weight and 

degree o f  polymer crystallinity [88, 89], Its good mechanical properties and 

osteoconductivity have led to increased use in calcium phosphate cements for orthopedic 

surgery. Researchers have shown that the scaffolds made o f calcium phosphate cements 

mixed with nano-crystalline chitosan have 20-fold greater surface area and roughness 

when compared with calcium phosphate cements alone [90].

2.10.1.2 Synthetic Biodegradable Polymers

Among synthetic biodegradable polymers, Poly (a-hydroxy acid) class polymers 

are most extensively investigated and widely used. PLA, PGA and PLGA are few o f the 

biopolymers o f  this class used extensively for medical purposes. Their biodegradable and 

biocompatible nature account for their wide use in implant technology. These polymers 

undergo in vivo degradation through de-esterification process mediated by hydrolysis and 

the monomer end products are removed through excretory pathways [91, 92], Several 

factors including crystallinity, chemical structure and composition, physical dimensions
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o f implant, surface area and site o f implantation affect the rate o f polymer 

biodegradation.

PLA is an aliphatic thermoplastic polyester which melts around 175°C and has a 

glass transition temperature o f 60-65°C. It is formed by the polymerization o f cyclic 

diester o f  lactic acid (lactide). Lactide exists in two optical isomer forms, D and L- 

lactide. PLA made from L-lactide are more crystalline in nature and biodegrade at a low 

pace when compared to PLA made out o f D-lactide. Due to this reason L-PLA is used 

more in orthopedic surgeries. Wide use o f this polymer, than any others, is due to its 

excellent mechanical and thermal properties added with biocompatible and biodegradable 

nature. PLA in the body is hydrolyzed into lactic acid, which enters into citric acid cycle 

and subsequently excreted as carbon dioxide from the lungs [93], Research conducted by 

Brady et al. showed an absorption rate o f about 1.5 years for 50-90 mg o f radiolabeled 

PLA implanted in a rat’s abdominal wall [94]. In another research, L-PLA bone implants 

attached to a sheep femora showed small traces o f the polymer still after 4 years o f 

implantation [95]. However, in both cases, PLA is well tolerated by the surrounding 

tissue and most o f the polymer is primarily metabolized through respiration.

PCL is a semi-crystalline aliphatic polyester, melts at 65°C and has a glass 

transition temperature o f  -60°C. It is formed by the ring opening polymerization process 

o f  e-caprolactone. In the body, PCL degrades in two phases. It first undergoes hydrolysis 

o f esters bonds and form fragments o f  caprolactone oligomers. These oligomers are then 

engulfed by macrophages and they undergo degradation inside phagosomes by lysozyme 

enzymes [95]. Since this polymer exhibits low mechanical strength, its use in implant 

technology is limited to non-load bearing regions only.
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NANO-ENHANCED CALCIUM PHOSPHATE BONE CEMENTS

Currently available PMMA bone cements cause tissue damage around the 

bone/cement interface due to the release o f toxic methylmethacrylate (MMA) monomers 

[96, 97]. These cements exhibit a high exothermic setting temperature ranging from 70°C 

tol20°C  [98]. In an experiment conducted by Stancyk and Rietbergen, on bovine 

cancellous bone, the temperature exposure o f 70°C by a fraction (10%) o f the bone at 

bone/cement interface was recorded [99], In addition, PMMA cements lack elasticity and 

have dense structure which does not allow bone growth inside the cement.

CPCs, on the other hand, are osteoconductive and osteogenetic [57]. They set 

endothermically at body temperature. They have even shown an x-ray diffraction spectra 

similar to the mineral phase o f the bone [4], In addition low shrinkage, durability, density 

or porosity (depending on site o f  injury), and formability (ability to fill cavities of 

complex configurations) are positive qualities o f  CPCs [55].

Risk o f contamination is common in all implantable biomaterials used. The 

objective o f the present study is to increase the mechanical properties o f the CPCs along 

with inculcating anti-infective properties to it. HNTs were used to enhance mechanical 

properties and to introduce anti-infective nature to the CPCs. The basic foundation for 

this work was a part o f  a group project with Uday Jammalamadaka. Data obtained from 

mechanical testing and SEM were shared with Uday Jammalamadaka.

35
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3.1 Materials and Methods

Different compositions o f calcium phosphate salts were mixed, and formulated 

CPCs were tested for their compression strengths. Formulation with highest compression 

strength was selected and further used. HNTs were loaded with antibiotics: Gentamicin 

Sulfate (GS) and Neomycin sulfate (NS). Surface morphology was studied using SEM 

imaging. For evaluating mechanical properties, compression testing and flexural testing 

were conducted. Escherichia coli and Pseudomonas aeruginosa were used to evaluate the 

anti-infective properties o f the HNT loaded CPCs.

3.1.1 Materials

Calcium phosphate dibasic anhydrous (H C a04P, DCPA, Catalog no. 21177), (3-tri 

calcium phosphate (Ca3 0 sP2, (3-TCP, Catalog no. 16483), calcium phosphate monobasic 

monohydrate (H4CaOsP2.H20, MCPM, Catalog no. 21053), chitosan oligosaccharide 

lactate (Catalog no. 523682), chitosan (low molecular weight. Catalog no. 448869), 

polycaprolactone (CfTLoCh, PCL, Catalog no. 440744), calcium L-lactate 

(CfdLoCaOfi.xEhO, Catalog no. L4388), HNTs (Catalog no. 685445) were from Sigma- 

Aldrich, St. Louis, MO. Tetra calcium phosphate (Ca40 4P, TTCP, Catalog no. 010813A) 

was ordered from CaP Biomaterials, E. Troy, WI. Cupric chloride (CuCl2, Catalog no. 

SA09487M) and calcium carbonate (CaCOj, Catalog no. SA09409M) were delivered 

from Nasco, Fort Atkinson, WI. Sodium phosphate dibasic (Na2HP04, Catalog no. 

7782856) was from Fisher Scientific Company, Waltham, MA.

3.1.2 Formulation o f  CPCs

Different types o f calcium phosphate salts were mixed in different proportions 

using various liquid phases and were labeled as shown in Table 3-1.
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All samples were hand mixed, using mortar and pestle, under ambient conditions 

(room temperature and atmospheric pressure). The powder phase was mixed thoroughly 

until all o f the salts were uniformly dispersed. To this phase, the liquid phase was added 

in small quantities and triturated until the mixture became a thick, moldable paste. This 

paste was molded into compression cylinders o f 6 mm in diameter and 12 mm in length 

in accordance with ASTM F451-99a [100], These samples were left to set for 24hours, 

then removed from the molds.

The compression testing was performed using ADMET expert 2600 universal 

testing machine with an axial cross-head speed o f 1 mm/min [54]. To minimize the error, 

five samples for each formulation were tested and an average was calculated. The 

formulation with the best compressive strength was chosen and used for further testing.
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Table 3-1: Formulation number, composition o f calcium phosphate salts and the type o f 
setting liquid used.

Formulation
number

Solid phase (weight in gm) Liquid phase 
(volume in ml)

1 MCPM (2) Na2HP04(l)

2 DCPA (2) Na2HP04(l)

3 MCPM (1) + DCPA (1) Na2HP04(1.8)

4 CaC03(1.5) + MCPM (0.5) Na2HP04(1.5)

5 MCPM (1) + DCPA (1) + HNTs (7%) Na2HP04 (0.6)

6 MCPM (1) + DCPA (1) + HNTs (5%) Na2HP()4 (0.6)

7 DCPA (2) + PCL (5%) Na2HPO4(0.6)

8 MCPM (0.4) + DCPA (0.4) + p-TCP (0.1) + Chitosan 
(0.1)

Na2HP04(1.6)

9 MCPM (0.4) + DCPA (0.4) + p-TCP (0.1) + Na2HP04(1.6)

10 MCPM (0.45) + DCPA (0.45) + P-TCP (0.1) Na2HP04 (0.9)

11 MCPM (0.45) + DCPA (0.45) + p-TCP (0.05) + HNTs 
(0.05)

Na2HPO4(0.9)

12 MCPM (0.75) + DCPA (0.75) + CaCO,(0.5) Na2HPO4(0.9)

13 MCPM (0.45) + DCPA (0.45) + CaCO3(0.5) + 
Chitosan (0.5)

Na2HP04 (1.2)

14 MCPM (0.47) + DCPA (0.48) + CaCOj (0.5) Na2HP04(1.2)

15 MCPM (0.5) + DCPA (0.5) Na2HP04 (0.4)

16 MCPM (0.5) + DCPA (0.5) Na2HPO4(0.4) + 
PCL (0.4)

17 MCPM (0.4) + DCPA (0.4) + PDDA (0.2) 1% Chitosan (1.2)

18 MCPM (0.4) + DCPA (0.4) + Alginate (0.2) 5% Chitosan Lactate 
(1.2)

19 TTCP (1.5) + DCPA (0.5) 5% Chitosan lactate 
(1.4)

20 MCPM (0.4) + DCPA (0.4) + P-TCP (0.1) + PDDA 
(0.1)

10% Chitosan lactate 
(1.4)

21 TTCP (1.5) + DCPA (0.5) 10% Chitosan lactate 
(1.2)

22 TTCP (1.4) + DCPA (0.4) + p-TCP (0.2) 10% Chitosan lactate 
(1.2)



39

Molds o f  inner dimensions 65 mm x 10 mm x 4 mm were prepared using 

paraffin wax in accordance with the ASTM F417-78 standards [101]. Using the same 

machine, flexural strength, using three-point bending test, was conducted at a cross-head 

speed o f 0.75 mm/min with 20 mm distance between two consecutive points. Three 

samples for each concentration o f HNTs were used and an average was calculated.

Flexural strengths o f CPCs were calculated using the formula in Eq. 3 and the 

peak force values obtained from the three-point bending test:

_  3 FL Eq. 3
~~ 2b d 2 '

where a  is the flexural strength; F is the peak force; L is the distance between extreme 

points; b is the sample’s width; d is the sample’s height.

For cell-culture techniques, specimens 5 mm x  1 mm were made using steel 

molds. The liquid phase used in this process was prepared from sterile deionized water. 

After setting, the samples were removed from the molds, dipped in alcohol and dried 

under a class II hood. Samples o f  size 5 mm X 1 mm were cast in steel molds, then 

alcohol treated and dried for use in bacterial culture studies.

3.1.3 Loading HNTs

A 500 mg o f Gentamicin Sulfate (GS) (Catalog no. G3632, Sigma, MO, US) was 

dissolved in 10 ml o f deionized water, then sonicated until the drug was completely 

dissolved and a clear solution was formed. To this solution, 1 gm o f HNT powder was 

added and sonicated for 30 minutes. This solution was then kept under the vacuum for 20 

minutes, then kept at room atmosphere for 20 minutes. This process o f alternate vacuum 

and room atmosphere was repeated three times. It was then washed with water to remove 

the drug on the surface o f the HNTs and dried under open air, until it took a powder form.
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The same procedure was followed for loading Neomycin Sulfate (NS) (Catalog no. 

21810031, Gibco, NY, US).

3.1.4 Mechanical Properties

Different concentrations o f HNTs were added to the strongest formulation and 

tested for both compression and flexural strengths. Data from these samples were 

compared. Figure 3-1 shows the ADMET expert 2600 universal testing machine used to 

test the mechanical properties o f the CPC scaffolds.

Figure 3-1: Admet 2600 Dual Column Bench Top Universal Testing Machine.
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3.1.5 Scanning Electron Microscopy (SEM)

To observe the surface properties o f the CPC samples, a scanning electron 

microscope was used. Images were taken o f the fracture interface o f  the cement samples 

using a S4800 Field Emission SEM, HITACHI Scanning Electron Microscope. A 3 nm 

layer o f gold was coated on to the surface o f the scaffolds prior to imaging to make the 

samples conductive. Images were taken for samples with and without HNTs, and also for 

different concentrations o f HNTs in CPC scaffolds.

3.1.6 XTT Assay

XTT or (2,3-Bis-(2-M ethoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5- 

Carboxanilide) is a sensitive and reliable quantitative assay. It is a colorless or slightly 

yellow color tetrazolium dye which gets converted into bright orange color formazan 

upon reduction. When this dye is used in cell cultures, the dehydrogenase enzymes 

produced from the mitochondrial cycle o f  actively respiring cells reduces the dye to an 

orange color formazan. This assay is greatly improved by adding an electron accepting 

agents such as PMS (N-methyl dibenzopyrazine methyl sulfate). Unlike MTT, this assay 

does not require to go through laborious procedures such as solubilization prior to 

quantization, making this process quick and easy.

To check the cytocompatibility o f  the formulated scaffolds, XTT was performed 

on Human Osteoblast Cells (HOB) C-12760 purchased from PromoCell, Heidelberg, 

Germany. XTT assay kit (X4751) with 1% PMS was ordered from Sigma-Aldrich. CPC 

discs o f 5 mm x  1 mm dimensions were molded using different concentrations o f HNTs
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(5%, 10% and 15%). Control discs without any HNTs and blank cell lines were also 

cultured for comparative studies.

Osteoblast cells, upon reaching to 90% confluency, were trypsinized and re

suspended into culture media. In a 96 well plate, 100 pi o f cell suspension was added in 

each well and incubated for 24 hours. Activated XTT solution (20 pi) was then added to 

each well and incubated for 2 hours and optical densities were measured using Phenix 

LT-4000 absorbance microplate reader at 450 nm.

3.1.7 Drug Release Profile

A total o f 50 mg o f loaded HNTs (GS and NS separately) were transferred to 1.5 

ml eppendorf tubes. Simulated body fluid (SBF, 1 ml) was added and placed on a rocker 

for continuous movement o f the liquid. Samples were collected at 5, 10, 15, 20, and 30 

minutes, as well as 1 ,2 ,4 , 6, 12, and 24 hours for the first day and then one sample a day 

for 7 days. To avoid HNTs in the collected samples, eppendorf tubes were centrifuged for 

2 minutes at 5000 rpm. The same amount o f fresh SBF was replaced into the tubes each 

time the sample was removed and was vortexed until the sediment o f  HNTs was 

redispersed. The same procedure was followed for sampling the CPC scaffolds. Discs o f 

10 mm x  2 mm were used for the drug release profiles.

As GS cannot be detected directly by UV-Visible spectroscopy, an indirect 

method o f detection by ophthalaldehyde reagent was used. This reagent was prepared by 

adding 250 mg o f ophthalaldehyde powder (Sigma, MO, US) to 6.25 ml o f 95% 

methanol. This mixture was sonicated for 30 minutes until a clear solution was obtained. 

0.3 ml o f 2- hydroxy ethyl mercaptan (Catalog no. M6250, Sigma, MO, US) was added 

to 56 ml o f 0.04 M sodium borate (Catalog no. B9876, Sigma, MO, US) and mixed



43

thoroughly [102], Both o f these mixtures were added, then sonicated for 15 minutes 

before being stored in an amber color container for 24 hours. A total o f 1 ml each o f the 

collected gentamicin sample, isopropanol (to prevent sedimentation) and ophthalaldehyde 

reagent, were mixed and left undisturbed for 20 minutes at room temperature [103]. The 

absorbance for the GS was measured at 333 nm using a Thermo Scientific NanoDrop 

2000c spectrophotometer.

Spectrophotometric determination o f NS was performed using copper chloride. 

This reagent was prepared by dissolving 12.5 mg copper chloride (sigma, MO, US) in 25 

ml o f a water-ethanol (4:1) mixture, then sonicating until a clear solution was formed 

[104], Collected sample (1 ml) was diluted with deionized water to 10 ml. To this sample, 

2 ml o f copper chloride solution was mixed and absorbance values were measured at 277 

nm [104],

3.1.8 Bacterial Cultures

Bacterial strain Escherichia coli and Pseudomonas aeruginosa were used in this 

study. Both were clinical grade strains kindly provided by Dr. Giomo, Department of 

Biological Sciences, Louisiana Tech University, LA. A single colony from each plate 

was picked using a sterile toothpick and was inoculated separately into 3 ml o f liquid 

broth (LB) medium. These cultures were incubated at 37°C for 24 hours with gentle 

rocking. From this medium, 50 pi was pipetted into LB-agar plates and spread using 

sterile glass beads. Discs o f 5 mm x 2 mm with different concentrations o f HNTs loaded 

with the drug were placed on the plates, then incubated at 37°C for 24 hours in an 

incubator. Inhibition zones were determined by measuring the diameter o f the inhibited 

area at three different points and averaged. The measured zones included the sample at



44

the center. Three agar plates were tested for each sample. The principle objective o f this 

study was to determine the effectiveness o f antibiotics in HNTs incorporated into CPCs 

by means o f measuring the release profiles and determining the zone o f inhibition.

3.2 Results and Discussion

3.2.1 Mechanical Properties

3.2.1.1 Compression Strength

All formulations were subjected to compression testing. Five samples were tested 

for each formulation and the average was taken. Table 3-2 shows the compression 

strengths o f  all compositions. Most o f the samples washed o ff when they were immersed

in water for a day. Specimens 1 ,2 ,3 ,  4, and 7 were brittle and were broken before they

could be removed from the molds. Sample 11 was strong enough and showed great 

mechanical properties, but it was washed out in a day when immersed in water for testing 

the cohesive property (anti-washout property). None o f the samples which used sodium 

phosphate as a setting liquid could give a good anti-washout property. When 5% w/v 

chitosan lactate was used, the samples were hard, flexible and cohesive (Sample 18). 

Chitosan lactate, 10% w/v, was already a thick viscous liquid and hence higher 

concentrations o f it was not attempted.
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T able 3-2: Table showing the values o f peak load and compression pressure for each 
specimen.

Formulation No. Peak Load (Kg) Compression Pressure (Mpa)

1 0 0

2 0 0

3 0 0

4 0 0

5 78.84 11.72

6 107.93 11.82

7 0 0

8 18.57 2.78

9 40.41 6.32

10 38.07 4.90

11 81.97 14.18

12 1.79 0.23

13 17.28 2.25

14 22.45 3.10

15 29.51 3.81

16 33.00 9.85

17 76.00 8.32

18 32.5 3.61

19 70.00 7.86

20 58.27 6.65

21 119.00 15.10

22 72.00 8.11
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Sample 21 gave the largest compression strength. This composition, TTCP (1.46 

gm) and DCPA (0.54 gm) mixed in 10% w/v chitosan lactate, showed a cohesive nature 

and remained solid without disintegrating for several days when suspended in water. This 

formulation was used for all further experiments.

When HNTs were added to this formulation, an increase in compressive strength 

was recorded. This strengthening may be caused by crack-tip blunting [15], a process 

where a propagating crack is either deflected, cracked or stopped because o f solid particle 

obstruction. Different concentrations o f  HNTs in this formulation were subjected to 

compression testing, and the composition with 5% wt o f HNTs showed the highest 

compression resistance than the others. Figure 3-2 shows the stress-strain curves of 

individual CPC scaffolds with different concentrations o f  HNTs and Figure 3-3 shows 

the compression strengths o f CPCs with different HNT concentrations.
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Figure 3-2: Stress-Strain curves for different trails o f  CPC constructs.
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The compressive stress-strain curves for all the constructs had increasing strain 

until breakage o f the sample. With the increasing stress, all the scaffolds showed initial 

fast increase followed by a slow decrease in strain. For all the control CPC constructs, the 

increasing strain curve was much smaller than HNT loaded CPCs. The stress-strain curve 

for 5% wt HNT CPC scaffolds had elongated, increasing the strain followed by a slow 

decrease. Upon further addition o f HNTs, the stress-strain curves showed a similar trend 

as that o f the control CPCs. This indicates that the compression strengths o f the CPCs 

were increased upon the addition o f 5% wt HNTs.

15

10

0
0% 5% 10% 15%

Concentration o f  H N T s (wt%) in CPCs

Figure 3-3: Compressive strengths o f CPC samples with different concentrations o f 
HNTs (mean ± SD, n = 5). Statistical significant differences are marked with * for 
p < 0.05 [105, 106],

A one-way ANOVA was conducted on these samples and a significant difference 

in the mean values among groups was seen. Using Tukey’s post hoc analysis, the highest 

average among the groups were identified as 5% wt HNT. Control CPC scaffolds had 

11.65 ± 2.24 MPa compressive strength, whereas CPCs with 5% wt HNTs had 16.5 ±
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0.95 MPa o f compressive strength. A 41% increase in strength upon the addition o f 5% 

wt HNTs were observed.

Upon further increasing the concentration o f HNTs, compressive strength 

decreased. Samples with 10% and 15% wt HNTs had 14.43 ± 1.64 MPa and 13.54 ± 1.67 

MPa o f compressive strength, respectively. Compressive strength o f both 10% and 15% 

wt HNT scaffolds was smaller than that o f the 5% wt HNT scaffolds but higher than that 

o f the controls. The reduced strength may be due to uneven distribution o f HNT particles 

or may be due to hindering the HA formation around their surfaces.

3.2.1.2 Flexural Strength

Figure 3-4 shows the flexural strength values o f CPCs scaffolds with and without 

HNTs added to them. The Control group (0% HNT) showed a strength o f 13.9 ± 2.5 

MPa, whereas 5% wt HNT samples had 17.1 ± 2.5 MPa o f flexural strength. Three 

samples for each batch were subjected to flexural testing. One-way ANOVA was 

conducted on these samples at 0.05 significance level. No significant difference among 

the mean values was observed. However, mean values o f the groups showed a 23.51% 

increase in flexural strength o f the samples upon addition o f  5% wt HNTs to the CPC 

samples. Similar to the compression strength values, further addition o f HNTs decreased 

the flexural strength o f the samples.
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Figure 3-4: Flexural strengths o f CPC samples with different concentration o f HNTs 
(mean ± SD, n = 3). Statistical significant differences are marked with * for p < 0.05 
[105, 106],

3.2.2 Morphology o f CPC Scaffolds

The SEM images in Figure 3-5 show the surface morphology o f CPCs with and 

without HNTs. These scaffolds showed compact polygonal shaped microstructures o f 

varied sizes ranging from 5 pm to 15 pm. These highly aggregated microstructures had 

clearly visible interconnecting micropores. All cement formulations had rough surfaces. 

These rough surfaces may improve cell attachment and viability, making the scaffolds 

good substrates for cell conduction. Additionally, these micropores promote propagation 

o f cells within the scaffold.



Figure 3-5: SEM o f CPC scaffolds with different concentrations o f HNTs. A) 0%, B) 
5%, C) 10%, and D) 15% [105],

Upon further magnification, traces o f HNTs were found on the surface o f the 

scaffolds. Figure 3-6 shows the cluster o f HNTs on the CPC surface.

Figure 3-6: SEM showing cluster o f HNTs on the surface o f the CPC-HNT (5% wt) 
scaffolds. Image B was also used in Uday Jamm alam adaka’s dissertation [106].
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3.2.3 XTT Assay

The viability o f human osteoblast cells on the surface o f  the CPC scaffolds was 

analyzed at days 3, 7 and 14 (Figure 3-7). Higher absorbance values indicate greater cell 

viability. Six wells o f each batch were tested and one-way ANOVA was conducted to 

analyze the significant changes among the groups. The mean values o f absorbance varied 

strongly with HNT concentration. On day 3, a 20.35% increase in absorbance values was 

observed for control CPC scaffolds when compared to wells containing only cells. On 

addition o f 5% HNTs to the CPC scaffolds, a 28.3% significant increase in absorbance 

value was noticed. For 10% and 15% HNTs, absorbance was 9.8% and 12.8% larger, 

respectively. However, when compared with control CPC scaffold (no HNTs added), 

8.7% and 6.1% decrease in absorbance values for 10% and 15% CPC-HNT scaffolds 

were seen.

0.05 r 

0.04

Day 3 Day 7 Day 14

□ Cells ■ 0% ’'5% 110%  1115%

Figure 3-7: Cell viability assessed in human osteoblast culture on different CPC-HNT 
scaffolds (mean ± SD, n = 6). Statistical significant differences are marked with * for p 
< 0.05.
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On day 7, absorbance was larger for CPC scaffolds than for control wells. Wells 

containing 5% HNT samples showed 26.7% larger absorbance compared to CPC samples 

without HNTs. CPCs with 10% HNTs had the highest absorbance value.

On day 14, all wells containing CPC scaffolds showed higher absorbance values 

than the control wells and it was largest in scaffolds with 15% HNTs.

The absorbance values o f  the XTT assay reflects the mitochondrial activity o f the 

live cells. The results suggest that CPC scaffolds do not cause cyto-compatibility issues 

instead, they enhance the viability o f  the osteoblast cells. In addition, further increase in 

viability was seen upon addition o f  HNTs to the cement samples.

3.2.4 Drug Release Profile

An elution study was performed to estimate the amount o f drugs released over 

one week. A NanoDrop 2000c Spectrophotometer was used to measure GS absorbance at 

333 nm and NS at 277 nm. From the standard-graph curve, an equation was derived and 

was used to back calculate the amount o f drugs released. Figure A -l in the Appendix 

section shows the standard graph and linear equation used to back calculate the unknown 

samples concentration.

Figure 3-8 and Figure 3-9 shows the cumulative concentrations o f GS and NS 

released from HNTs and CPC-HNT scaffolds. Both scaffolds exhibit a burst release o f 

drugs for the first 24 hours, followed by an extended and sustained release.
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Figure 3-8: Cumulative concentration o f GS released from HNTs and CPC-HNT 
scaffolds (mean ± SD, n = 3) [105].

Within 24 hours, 1.9 mg/ml o f drug was released from HNTs and 0.9 mg/ml from 

the CPC scaffolds. This initial outburst may be caused by release o f drug from the surface 

o f the HNTs. Only a small amount was released thereafter, but it was steady and 

extended. Once the release amount reached 0.94 mg/ml by 48 hours, the release rate 

decreased. Scaffolds could only release 0.05 mg/ ml from 48-120 hours, which was 

within the working concentration (4 fag/ml) o f  the drug.
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Figure 3-9: Cumulative concentration o f NS released from HNTs and CPC-HNT 
scaffolds (mean ± SD, n = 3) [105],

The NS showed 1.04 mg/ml o f drug release from CPC scaffolds within 24 hours, 

whereas HNTs alone showed 2.39 mg/ml release. A cumulative concentration o f 1.12 

mg/ml was released from scaffolds for a total o f 120 hours. In all the samples, even after 

120 hours o f release, NS released from the constructs did not drop below the minimum 

inhibitory concentration (16 pg/ml). The graph in Figure A-2 o f the Appendix shows the 

standard curve and linear equation used to calculate the NS concentrations from the 

unknown samples.

The two graphs show that after 24 hours o f  release, elution decreased steadily. 

This decrease might be because the anti-infective agent inside the HNTs present on the 

surface o f  the scaffolds would have already emptied, and those HNTs entrapped inside 

the scaffold matrix might have not been exposed to sampling liquid. The antibiotic 

release might have continued if  the scaffolds were left to degrade.
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3.2.5 Bacterial Culture

Images in Figure 3-10 shows the inhibition zones for E. coli and P. aeruginosa 

incubated with CPC scaffolds loaded with different concentrations o f HNT-GS. Control 

samples (0% HNT) exhibited no inhibition zones. Images in Figure 3-10 (A-B) shows 

the inhibition diameters for E.coli and (C-D) for P. aeruginosa. Clearly delineated 

inhibition zones were seen in all the CPC-HNT-GS scaffolds. With the increase in 

concentration o f HNTs, inhibition diameter also increased.

■
1

■

1I■
Figure 3-10: Inhibition zones o f CPCs loaded with different concentrations o f  HNT-GS 
against E. coli (A-B) P. aeruginosa  (C-D).

Images in Figure 3-11 shows the inhibition zones o f CPC scaffolds loaded with 

different concentrations o f HNT-NS. Control sample (0% HNT) had no inhibition zones. 

Images in Figure 3-11 (A-B) shows the inhibition diameters for E.coli and (C-D) for P. 

aeruginosa. Similar to HNT-GS, clear delineating inhibition zones were seen in all the
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CPC-HNT-NS scaffolds. Inhibition diameter also increased with the increase in HNT 

concentration.

•  •
[SB 100% 111 25%

Figure 3-11: Inhibition zones o f CPCs loaded with different concentrations o f HNT-NS 
against E. coli (A-B) and P. aeruginosa (C-D).

All these experiments were conducted in multiples o f three and one-way ANOVA 

was conducted at the significance level o f 0.05. Inhibition diameters were significantly 

different among the groups containing different concentrations o f HNT’s. Figure 3-12 

shows the Inhibition values o f different concentrations o f  CPC-HNT-GS against E.coli 

and P. aeruginosa. With the increase in HNT-GS concentration, zone o f inhibition 

diameters also increased for both E.coli and P. aeruginosa.
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Figure 3-12: Inhibition diameters for E. coli and P. aeruginosa at different 
concentrations o f HNT-GS in CPC scaffolds (mean ± SD, n = 3).

Graph in Figure 3-13 shows the inhibition diameters for CPC scaffolds loaded 

with HNT-NS. Inhibition zones for E.coli and P. aeruginosa were also compared.
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Figure 3-13: Inhibition diameters for E. coli and P. aeruginosa at different 
concentrations o f  HNT-NS in CPC scaffolds (mean ± SD, n = 3).
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One-way ANOVA conducted on these samples showed a significant difference 

among mean values at the significance level o f  0.05. With increase in HNT-NS 

concentration, zone o f  inhibition diameters also increased.

3.3 Conclusions and Future W ork

3.3.1 Conclusions

Calcium-phosphate cements have been investigated for several decades, and in 

this study, we have manipulated the formulations to yield enhanced mechanical 

properties and extended-drug release. Previous studies had shown that incorporation o f 

antibiotics directly into the cement yielded an improper drug release and reduced 

mechanical strength [107]. This reduced strength might be caused by a change in the 

crystal’s structure or the dissolution o f antibiotics to leave pores [14]. The cement must 

be formulated such that it can give an antibiotic property to the cement without 

compromising the mechanical properties. This result was achieved by the addition o f 

HNTs in the CPC mixture. HNTs worked here both as the drug carrier and mechanical 

property enhancer.

In this study, addition o f HNTs to the cement mixture increased compression and 

flexural strengths. SEM imaging reveals that the CPC scaffolds have rough surface with 

embedded micro-pores. This surface roughness might increas the cell attachment and the 

micro-pores aid in propagation o f  cells within the scaffold making the cement 

osteoconductive.

Cell viability assay on human osteoblast cells with CPC-HNT scaffolds showed 

no deleterious effects on the cells, proving that formulated CPC scaffolds do not cause 

harm in vivo. In addition, an increased viability was recorded with the addition o f  HNTs.
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As HNTs are hollow and have high length/diameter ratio, they naturally have the 

ability to be loaded with substances and to yield a prolonged release. Because o f this 

property, when HNTs loaded with antibiotics are mixed with the CPCs, they gave 

extended-release profiles. As the loaded HNTs are also present inside the scaffolds, we 

believe drug release would continue for several days when cement starts degrading to 

form bone. Zone o f inhibition studies show that the scaffolds were able to inhibit 

bacterial growth and provide an anti-infective field at the site o f implantation.

3.3.2 Future Work

In this study, only antibiotics were used for testing the anti-microbial properties o f 

the CPCs. Multiple anti-infective agents such as anti-viral and anti-fungal can also be 

loaded into HNTs for synergistic and wide range anti-microbial properties. Bone growth 

hormones such as BMP-2, BMP-6 and others can also be loaded in the HNTs and can be 

used to promote bone healing along with providing an anti-infective field around it.

The present in vitro study showed that CPC scaffolds are osteoconductive and can 

be considered as a potential implant material. These scaffolds can be tested in vivo in 

mice, rats or other suitable specimens.



CHAPTER 4

3D PRINTING ANTIBIOTIC AND CHEMOTHERAPEUTIC 
LOADED BIODEGRADABLE SCAFFOLDS

4.1 Introduction

Currently used implants include metallic rods, pins, plates, screws, and acrylic 

cements which support the injured bone and hold it in position. Although these 

traditionally used implants have been proved clinically efficacious, they stay at the site o f 

implantation permanently, need secondary revisions and surgical removal upon healing 

[5]. Metal implants are often removed to prevent or correct complications such as 

accumulation o f metals in tissues [108], cessation o f tissue growth in and around the 

implant [109], trauma, and implant migration [110]. Most o f these implants are bulk 

manufactured, do not account for individual differences, and must often be machined 

according to the patient’s requirements. This approach could increase both operative time 

and cost.

Additionally, the risk o f microbial infection, especially for open-fractured bone 

fixation and joint-revision surgeries, is always high [111]. Sources o f the infection 

include bacteria on the patient’s skin, microbes already residing in the patient’s body, 

surgical equipment used, environment o f the operating room, and clothing worn by 

medical and paramedical staff [112], Current implant technology could be improved to 

make the implants more biocompatible and anti-microbial in nature.

6 0
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Recent advances in biomaterials for medical use have offered a promising 

alternative to these permanent implants. Biodegradable implants offer economical and 

clinical advantages over metal implants [113]. They can provide a necessary amount o f 

mechanical strength, and degrade at a pace similar to new tissue formation. These 

implants can transfer the load safely to the newly formed bone and eliminating the need 

for revision/removal surgery [114]. Permanent implants including metals (titanium 

alloys, stainless steel, cobalt-chromium alloy), ceramics, acrylic cements and rigid 

synthetic plastics (polyethylene and polyurethane) are often cited for stress shielding due 

to their rigid nature [115] and interfere with the imaging techniques during post-operative 

analysis.

In the present work, methods to introduce anti-infective and chemotherapeutic 

properties to the filaments used in 3D printing were fabricated. Different constructs 

resembling the medical implants currently used, such as beads and catheters, were 3D 

printed. Changes in compression and flexural strengths with print orientation, infill ratio 

and drug addition were studied. Surface morphology was studied using SEM. Bacterial 

culture and osteosarcoma cell culture were performed to test the bioactivity o f the 

constructs.

The basic foundation for this work was a part o f a group project with Jeffery 

Weisman. Data obtained from SEM imaging, bacterial inhibition cultures and XTT assay 

were shared with Jeffery Weisman.

4.2 Materials

All plastic wares such as 2 ml Eppendorf tubes, 96 well plates, and pipettes were 

purchased from Mid Scientific, St. Louis, MO. Dulbecco’s Phosphate Buffered Saline
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(DPBS), Dulbecco’s Modified Eagle’s Medium (DMEM), Fetal Bovine Serum (FBS), 

and penicillin-streptomycin-amphotericin (PSA) antibiotics were purchased from Life 

Technologies, Grand Island, NY. For bacterial culture, 100 mm Mueller Hinton agar 

plates were purchased from Fischer Scientific (Hampton, NH) and Escherichia coli 

ATCC 1 1775 Vitroids 1000 CFU were from Sigma Aldrich (St. Louis, MO). 

Methotrexate (MTX), Gentamicin Sulfate (GS), tobramycin and nitrofurantoin were 

ordered from Sigma Aldrich (St. Louis, MO). PLA pellets used for extruding filaments 

were obtained from Push Plastic (Springdale, AR), KJLC 705 silicone oil used for 

coating pellets was purchased from Kurt J. Lesker Company (Jefferson Hills, PA). 

ExtrusionBot filament extruder was bought from ExtrusionBot, LLC (Pheonix, AZ), 

MakerBot replicator 3D printers were purchased from MakerBot (Brooklyn, NY), 

Nanodrop used for spectrophotometry was from Thermo Scientific (Wilmington, DE), 

and the Vulcan A550 series benchtop Muffle furnaces from Thomas Scientific 

(Swedesboro, NJ) was used for heating biomaterials. OPTA reagent, isopropyl alcohol 

and sodium tetra borate were ordered from Sigma Aldrich (St. Louis, MO). For modeling 

3D constructs, Solidworks 2015 was used. For 3D scanning o f objects, A Roland 

Corporation LP-250 desktop 3D scanner (Osaka, Japan) was used.

4.2.1 Bioplastics

PLA is an aliphatic polyester, approved by the US Food and Drug Administration 

(FDA) for direct contact with biological fluids [116]. Pellets with diameters 3-5 mm were 

ordered from Push Plastic, Springdale, AR. Figure 4-1 shows the chemical structure o f 

PLA and a bag o f pellets.
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Figure 4-1 : A bag o f PLA pellets and its molecular structure.

In this study, these PLA pellets were used for extruding filaments and 3D printing 

constructs with drugs loaded.

4.2.2 Computer Modeling

The Solidworks 2015 was used to desgin all the constructs required for testing the 

properties o f  printed scaffolds. Figure 4-2 shows the interface o f the program with a stent 

design.
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Figure 4-2: Solidworks 2015 interface showing a design o f the stent.

All the constructs designed in this CAD program were saved in STL format in 

order to make these files readily available for the 3D printer to print.

4.2.3 Filament Extruder

For extruding filaments out o f  coated PLA pellets, a first generation ExtrusionBot 

filament extruder, shown in Figure 4-3A, was used.
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Figure 4-3: A) ExtrusionBot filament extruder, B) Piston based auger system inside 
ExtrusionBot.

This device works on a principle o f piston based auger mechanism. Plastic pellets 

were fed into the hopper at the top o f  the device. The piston pushes the pellets down to 

the metallic die through heated element as shown in Figure 4-3B. Sensors arranged 

around this heating element regulate the temperature. Dies o f different diameter at the 

bottom o f the device can be used to customize the thickness o f the extruded filament. 

4.2.4 3D Printer

MakerBot 1st generation and MakerBot 5th generation, shown in Figure 4-4A and 

B, respectively, were used to print the extruded filaments.
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Figure 4-4: A) MakerBot Replicator 1st Generation, B) MakerBot Replicator 5th 
Generation.

These printers work on FDM principle. These devices provide a three-axis 

movement consisting o f two simultaneous translational movements o f a printer-head 

along the x and y axes and an additional movement by the printer platform along the z 

axis. Inside the printer-head lies a metallic barrel where filaments are electrically heated 

and extruded under computer control through a nozzle. Figure 4-5 shows the interface of 

the Makerware software and its customizable settings.
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Figure 4-5: Screenshot o f Makerware software showing customizable settings.

The MakerBot replicator 1st Generation has two printer heads, whereas the 5th 

Generation has only one head attached. Both o f these require filament o f 1.75 mm in 

diameter to print objects. They are designed to print PLA and ABS plastics. The 

temperature they used to print is typically 220°C for PLA and 235°C for ABS. As with 

the temperature, the resolution o f the object to be printed can also be customized within 

the range o f  50-400 microns. The percentage o f  infill for the constructs can also be 

modified.

4.2.5 3D Scanner

A Roland LP-250 desktop 3D scanner was used (Figure 4-6) to scan 3D objects.
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Figure 4-6: Roland LP-250 desktop 3D scanner.

This scanner uses a software called PICZA to convert the scanned data into a STL 

file for either CAD program or a 3D printer to read. An object is placed on the rotating 

bed o f  the scanner and it rotates the object 360°. At the same time, a laser beam travels 

vertically upwards collecting the data from the object into a digital file. For complex 

shaped objects, it scans multiple times and merges all the scans to generate an accurate 

representation.

4.3 Extruding Drug Loaded Filaments

Loading drugs into biopolymers and engineering them into a suitable form for 

printing into constructs was a challenge. Added to that, PLA is not available



commercially as fine powder. It is obtained easily in the form o f pellets o f  different 

shapes and sizes. Since these are plastic, grinding them into fine powder was a difficult 

task. Freeze fracturing pellets into powder is an expensive and difficult option. We have 

come up with the following method to coat pellets with the drugs and these coated pellets 

were extruded into filaments o f  1.75 mm in diameter for 3D printing constructs.

4.3.1 Coating Pellets with Drugs

To enable an even dispersion o f drugs on the surface o f the commercially 

available PLA pellets, an oil coating method was used. Figure 4-7 shows an illustration 

o f oil coating method. To surface coat pellets, KJL 705 silicone oil was chosen because 

o f its thermal stability at extrusion temperatures (170-180°C). The method required 20 

gm batch o f  pellets, to which was added 15 pL o f  silicone oil and then vortexed to make 

sure all the pellets were evenly and completely coated. Once vortexed, the pellets were 

transferred to another container in order to avoid loss o f drug powder due to sticking to 

the surface o f the oil coated mixing container. After switching containers, a calculated 

amount o f a drug in powdered form (gentamicin sulfate for anti-infective filament and 

methotrexate for chemotherapeutic filament) was added and vortexed again.
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Figure 4-7: The process o f coating PLA pellets with drugs. A) Coating oil is added, B) 
Tube is vortexed, C) Pellets are transferred to a new tube, D) Drug is added, E) Tube is 
vortexed, F) Coated pellets are removed [117].

Using this method, l% w t GS-PLA pellets and l% w t MTX-PLA pellets were 

made as shown in F igure 4-8. To make sure o f uniform distribution, drugs were 

grounded with mortar and pestle prior to the addition.



Figure 4-8: Drug coated PLA pellets. A-B) Control PLA, C-D) 1% wt GS coated 
pellets, E-F) 1% wt MTX coated pellets [117].

In addition to this, other methods such as direct mixing o f  drugs during extrusion 

and atomizer based coating were tried. These methods resulted in non-uniform coating o f 

drugs.

4.3.2 Filament Extrusion

For extruding these coated pellets, an ExtrusionBot filament extruder was used. 

Since the 3D printer used requires a filament with a diameter o f 1.75 mm to print, we 

have used metal die o f the same diameter to extrude the filament. Each 20 gm o f GS and
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MTX coated PLA pellets were extruded at 170°C maintaining the outcoming filament 

diameter as 1.75 mm. We also tried extruding below 170°C, but that slowed down the 

extrusion speed and resulted in thicker filament which could not be used for printing. At 

higher temperatures, PLA melts down completely and flows through the metal die 

causing thermal runaway. Since this equipment works on piston based auger system, back 

pressure was necessary. Small batches o f pellets could not provide sufficient pressure and 

stayed inside the extruder for a longer time period, resulting in excessive heating o f  the 

pellets and thin filament extrusion. For PLA, 20 gm batches extruding at 170°C were 

optimum conditions for getting a filament with a 1.75 mm diameter.

4.4 Optimization o f 3D Printing Parameters

A 3D printer based on FDM is a very delicately balanced machine. If filament 

temperature, speed o f  extrusion and speed o f the printer-head are not balanced together, it 

does not yield constructs o f the required shape. Also, an optimized 3D printing process 

involves complex integration between hardware, software and material properties. 

Preliminary trials revealed that the printer head temperature and filament feed rate have a 

direct influence on the material flow for the fabrication o f the scaffolds. For this reason, 

optimization o f printing parameters for PLA was focused mostly on printer-head 

temperature and filament feed rate. We first determined the minimum temperature o f  the 

printer-head that could print PLA, and then we adjusted the filament extruding rate 

accordingly.

On the MakerBot l sl generation 3D printer, PLA could print at a lowest 

temperature o f 215°C, and to compensate this, we had to decrease the printer-head speed 

from a default 40 mm/s to 10 mm/s and increase the filament feed rate from a default 18



73

mm/s to 23 mm/s. The workable range o f parameter for a 1.75 mm diameter PLA 

filament was determined to be a 215°C printing temperature, 20-23 mm/s o f filament 

feed rate and 12-8 mm/s printer-head speed.

4.5 Scaffold Design and Fabrication

All 3D CAD models were designed using Solidworks 2015 and Blender software. 

PLA scaffolds were fabricated for two sets o f experiments. The first set o f experiments 

was to study the effect o f infill and printing axis on the mechanical properties o f the 

scaffolds. The second set was to investigate the printed construct’s bioactivity.

For the first set, compression cylinders with dimensions 6 x 1 2  mm and dumb-bell 

(dog bone) shaped bars o f 75 x 1 0 x 4  mm were designed in solidworks CAD software. 

These models were sliced using replicatorG software and exported as .stl and .x3g 

formats for the printer to read. A honeycomb pattern o f infill was used for all the 

constructs. To determine the effect on physical properties, scaffolds with different infill 

ratios 25%, 50%, 75%, and 100% were printed. Scaffolds were printed along different x, 

y and z axes, to check if  the printing axis has any effects on mechanical strength.

For the second set, antibiotic loaded discs o f 5 x 1 mm were printed for bacterial 

studies and chemotherapeutic discs o f the same dimensions for osteosarcoma culture 

were printed. To replicate the currently used bone cement implants, beads o f 6 mm 

diameter and 14 French catheters o f  30 mm in length were also printed and tested for 

drug release and bacterial cultures. All the fabrication conditions were maintained the 

same as the first experimental set, except that these scaffolds were all printed at a default 

10% infill.
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4.6 Thermal Decomposition Testing

For extruding PLA filaments from pellets, they were run through the extruder at 

170°C and for printing these extruded filaments, the printer-head needs a temperature o f 

220°C. To test the thermal stability, small batches o f  drugs (1 mg each) were heated in a 

Vulcan oven for five minutes at different temperatures ( 175°C, 195°C, 205°C, 215°C, 

225°C, and 235°C) and were subjected to bioactivity testing. For antibiotics, standard 

muller hinton agar plates were used and for chemotherapeutics, a XTT assay on an 

osteosarcoma cell line was performed. All these samples were investigated in triplicate.

4.7 Scaffold Characterization

4.7.1 Morphology

For external morphology studies, the S4800 Field Emission SEM, HITACHI 

(Schaumburg, IL) at different magnifications was used. Extruded filaments, 3D printed 

constructs (discs, beads, and catheters) and controls were subjected to SEM.

4.7.2 Mechanical Properties

An ideal implant should have a proper balance o f mechanical and physical 

properties. The optimization o f properties such as hardness, elasticity, yield stress, 

wearability and time o f  degradation completely depends on type and functionality o f the 

implant [118]. For example, sutures, catheters, surgical meshes and other smaller 

implants such as cochlear or vascular grafts do not need strong mechanical properties, 

whereas dental and orthopedic implants need higher load bearing capabilities. Due to this, 

we aim to customize the properties o f the implants by changing the printing parameters to 

make them available for wide applications.
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Scaffolds with different infill ratios, different orientations and with drugs loaded, 

as shown in Figure 4-9 and Figure 4-10, were printed. These constructs were subject to 

compression and flexural testing.

0% 10% 25%

- ' * *

5 0
7 100%

X axis Y axu

Z axis

Figure 4-9: Printing PLA constructs with A) Different Infill ratios, B) Different 
Orientations.



Figure 4-10: Printing PLA constructs. A) MTX-PLA mechanical testing samples,
B) GS-PLA mechanical testing samples.

For testing the mechanical properties, both compression and flexural testing was 

performed using an Admet 2600 Dual Column Bench Top Universal Testing Machine.
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For data acquisition and analysis, MTESTQuattro software was used and this was 

company equipped along with the instrument. For both tests, ASTM F451-99a 

(characterization o f mechanical properties o f  bioresorbable scaffolds) guidelines were 

followed. Load capacity o f 1 KN was laid on the scaffolds at a rate o f 1 mm/min. The 

flexural testing three-point bending method, as shown in Figure 4-11, was followed.

Figure 4-11: Image showing three point bend testing performed on PLA samples.

4.7.3 Drug Release Profile

For drug elution profiles, a NANODROP 2000 UV-Visible Spectrophotometer 

from Thermo Scientific was used. Drug loaded extruded filaments (1 cm length), beads, 

catheters and control PMMA beads were subjected to this study. Simulated Body Fluid 

(SBF) was used to collect the samples from the constructs periodically. The time intervals 

for collecting samples were 1 minute, 2 minutes, 5 minutes, 10 minutes, 20 minutes, 40
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minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, and then daily for a week. For MTX, 

direct detection at 300 nm was performed. Since GS could not be directly detected, 

indirect determination using OPTA reagent was done. Equal volumes o f collected 

sample, isopropyl alcohol and OPTA reagent were added, and this mixture was analyzed 

using spectrophotometer at 330 nm. SBF was used as a blank for all these tests. Measured 

quantities o f drugs were used to draw standard graphs and from these absorbance values, 

the amount o f  drug eluted in the collected samples were back calculated. The graphs in 

Error! Reference source not found, and Error! Reference source not found, o f the 

Appendix section were used as standards for calculating concentrations o f GS and MTX 

from unknowns, respectively.

4.7.4 Bacterial Cultures

To assess the bacterial activity o f GS, zone o f inhibition studies were conducted 

on standard Muller Hinton Agar Plates using E.coli and S. aureus. For repeatability, 

vitroids o f these two bacterial strains were ordered from Sigma Aldrich and used. These 

vitroids were rehydrated and inoculated into agar plates as per the procedures suggested 

in the manual. Plain PLA pellets, coated PLA pellets, extruded PLA filament, GS loaded 

PLA filament, beads and constructs were tested. To make sure there was no 

contamination among agar plates, a blank plate was cultured. An agar plate with just the 

bacteria acting as negative control and another with standard GS disc as positive control 

were also cultured. Under aseptic conditions, samples were inoculated along with the 

bacteria in the plates and incubated at 37°C for 24 hours. The diameter o f inhibition 

zones was measured at three different points including the samples at the center o f the 

zone and averaged.
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4.7.5 Osteosarcoma Cell Culture

To test the chemotherapeutic activity o f MTX, osteosarcoma cell line (CRL 2836) 

bought from ATCC (Manassas, VA) was used. These cells were incubated in complete 

DMEM having 10% FBS and 1% PSA at 37°C until they were confluent. These 

confluent cultures were passaged and seeded on to 96 well plates containing test 

scaffolds. A XTT assay was conducted on the third day o f the experiment.

For this assay, control filaments, MTX coated filaments, control 3D printed discs 

and MTX PLA 3D printed discs were cultured along with the cells in 96 well plates. The 

XTT assay procedure was conducted as per the manufacturer’s protocol. After aspiration 

o f the media, each well was added with 100 pL buffer and 20 pL XTT dye. These plates 

were then incubated for 4 hours and photometric absorption o f  each well was measured 

using Phenix LT-4000 absorbance microplate reader at 450 and 690 nm. The 

manufacturer’s protocol followed for this assay is mentioned in Appendix B.

4.7.6 Statistics

All mechanical testing samples were studied in multiples o f five to make sure the 

results are consistent, reproducible and not altered by random events. For comparing the 

means o f the strengths among the different groups, the one-way ANOVA test was 

performed at a significance level o f 0.05. Post hoc analysis was used to calculate the 

highest average among the groups. Standard deviation was calculated and used in the 

graphs as error bars.

For drug elution studies and bacterial cultures, three samples o f each batch were 

tested. Standard deviation o f the means was calculated and used as error bars in the 

graph.



80

4.8 Results and Discussion

PLA pellets were successfully coated with drugs GS and MTX using oil coating 

methods. Optimization o f the amount o f silicone oil used to coat the pellets was 

challenging. Excess oil resulted in clumping o f pellets together and clogging the extruder 

during extrusion process. However, low amounts o f oil would only allow pellets to hold 

small proportions o f drugs on to their surface. For a batch o f 20 gm pellets, 10-15 pL of 

silicone oil was found to yield the best results. Filaments o f 1.75 mm diameter were 

successfully extruded from coated pellets using the ExtrusionBot extruder at 170°C. 

These filaments were used in MakerBot 3D printers and scaffolds were printed. Figure 

4-12 shows images o f scaffolds 3D printed using custom extruded bioactive filaments.

Figure 4-12: A) 1% wt GS-PLA catheters, B) 1% wt MTX-PLA catheter, compression 
cylinder and bead, C) 1% wt GS-PLA beads, D) 1% wt MTX-PLA beads.
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4.8.1 Scanning Electron Microscopy (SEM)

SEM was used for studying the surface morphology o f the coated pellets, 

extruded filaments and printed scaffolds. Figure 4-13 shows images o f pellets coated 

with drugs. GS particles were round in shape and the spheres had a wide range o f 

diameters (from 1 pm to more than 50 pm), whereas MTX particles were polygonal in 

shape and are varied in sizes.

1.00 mm

Figure 4-13: SEM o f A) Control pellet, B) GS powder, C) 1% wt GS-PLA pellet,
D) MTX pellet, E) 1% wt MTX-PLA pellet. Images D and E were also used in Jeffery 
W eism an’s dissertation [117, 119].

Extruded filaments comprise a cylindrical shape with a 1.75 mm diameter. The 

SEM images in Figure 4-14 show the surface morphology o f Control, GS and MTX 

filaments.



Figure 4-14: SEM o f A) Control filament, B) 1% wt GS-PLA filament, C) 5% wt GS- 
PLA filament, D) 1% wt MTX-PLA filament, E-F) MTX crystals on the surface o f 
filament at different levels o f magnification. Images D and F were also used in Jeffery 
W eisman’s dissertation [117, 119].

The images o f control and l% w t GS filaments does not show much difference 

between them. However, increasing the concentration o f GS showed distortion on the 

surface o f the filament as shown in Figure 4-14 C. This might be the reason for 5% wt 

GS filaments to be brittle and not print smoothly. The surface o f  the 1% wt MTX 

filaments were also smooth, cylindrical in shape and deep yellow in color. On further 

magnification, trace amounts o f MTX crystals were seen on the surface o f the 1 % wt 

MTX filament.

SEM images in Figure 4-15 shows the surface morphology o f 3D fabricated 

beads and catheters.



Figure 4-15: SEM o f A) 1% wt MTX-PLA bead, B) MTX powder on surface o f the 
bead, C) 1 % wt MTX-PLA catheter, D) 1 % wt GS-PLA catheter, E) GS on the surface 
o f the catheter, F) 1% wt GS-PLA bead. Images D-F were also used in Jeffery 
W eism an’s dissertation [119],

These images show the layers o f filament being deposited on top o f each other 

like a stack o f rope. These filament layers comprise a cylindrical shape with 300 pm in 

diameter and good sintering between the layers. The image in Figure 4-15 (A) shows the 

sintered layers o f  the 1% wt MTX-PLA bead, on increased magnification MTX particles 

can be seen on the surface. Similarly, the image in Figure 4-15 (D) shows the surface o f 

the sintered layers o f 1% wt GS-PLA catheter and upon further magnification individual 

GS particles can be seen on its surface in Figure 4-15 (E).

4.8.2 Mechanical Properties

The flexural strengths o f different 3D printed control PLA scaffolds with different 

infill ratios and orientations are summarized in Figure 4-16.
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Figure 4-16: Flexural strengths o f PLA constructs printed in different infill ratios and 
orientations (mean ± SD, n = 5). Statistical significant differences are marked with * for 
p < 0.05.

There was no significant difference seen between 25%, 50% and 75% infill 

samples and the 100% infill samples had the highest flexural strengths. Among different 

orientations, samples printed along the Y axis showed high flexural strengths. Samples 

printed along the X axis had 8% less and along the Z axis had 26% less flexural strengths 

when compared to Y axis prints. This might be due to the alignment o f filament layers 

along the length o f  the specimens, whereas in other orientations, filaments were sintered 

with each other perpendicular to the length o f  the specimen.

The graph in Figure 4-17 shows the flexural strengths o f  PLA samples printed 

with and without drugs. Extruded control PLA prints had mean flexural strength o f  78 

MPa. Samples printed with GS and MTX showed a 14.4% and 17.1% decrease in 

strengths, respectively.
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Figure 4-17: Flexural strengths o f control, GS and MTX-PLA constructs, (mean ± SD, 
n = 5). Statistical significant differences are marked with * for p < 0.05.

Unlike flexural strengths, compression strengths o f  the samples printed with 

different infill ratios showed a significant difference in their mean values. Graph in 

Figure 4-18 shows the stress-strain curves o f PLA constructs and Figure 4-19 shows the 

compression strengths o f samples printed with different infill ratios and in various 

orientations. Samples printed at 100% infill ratio showed the highest compression 

resistance among other infills. There was no significant difference in means o f 

compressive strengths printed at different orientations.
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Figure 4-18: Stress-Strain curves for different trails o f PLA constructs.
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Figure 4-19: Compression strengths o f PLA constructs printed at different infill ratios 
and orientations (mean ± SD, n = 5). Statistical significant differences are marked with * 
for p < 0.05.



87

The graph in Figure 4-20 shows the compression strengths o f PLA samples with 

different drugs. The control PLA scaffolds had compression pressure o f  67.66 MPa. 

Scaffolds with GS and MTX had 48% and 42% reduction in compression strength, 

respectively.
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Figure 4-20: Compression strengths o f  control, GS and MTX-PLA constructs (mean ± 
SD, n = 5). Statistical significant differences are marked with * for p < 0.05.

4.8.3 Drug Release Profiles

The graph in Figure 4-21 shows the cumulative concentration o f  drug released 

from the 3D printed PLA-GS scaffolds and PMMA bead at different intervals o f time. 

The cumulative concentration o f drugs released were plotted with respect to time. As it 

can be seen, all scaffolds showed an initial outburst during the first few hours followed 

by a steady release. This initial burst may be due to rapid diffusion o f drug from the 

external surface o f  the scaffolds. The following steady release may be attributed to
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diffusion o f drug from the scaffold matrix. The active ingredient dissolves into the liquid 

within the scaffold matrix and then diffuses into the bulk medium.

The amount o f GS released from the 3D printed bead was less when compared to 

a GS loaded PMMA bead. Even after a week, all the scaffolds were still releasing GS 

within the working concentration.
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Figure 4-21: Cumulative concentration o f GS eluted from 3D printed PLA bead, 
catheter and hand mold PMMA bead (mean ± SD, n = 3).

For MTX release study, 3D printed bead and catheter along with PMMA bead 

was used. Among these samples, only 3D printed catheter and PMMA bead were eluting 

drug within the detectable range. This might be due to hydrophobic nature o f the drug or 

may be drug-polymer interactions. Higher concentrations (2.5% wt and 5% wt) o f  MTX 

filaments were extruded, catheters were 3D printed and used for elution. Graphs in 

Figure 4-22 and Figure 4-23 show the cumulative drug elution from different 

concentrations o f PLA-MTX catheters and PLA-PMMA bead.
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Figure 4-22: Cumulative concentration o f MTX released from 3D printed PLA 
catheters (mean ± SD, n = 3).
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Figure 4-23: Cumulative concentration o f  MTX eluted from PMMA bead (mean ± SD, 
n = 3).
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The release profile o f MTX from PMMA was similar to GS-PMMA elution. At 

the end o f 120 hours, 34.57 pg/ml (cumulative concentration) o f drug was released from 

the PMMA bead, whereas 2.5% and 5% MTX 3D printed catheters could elute only 5 

pg/ml and 12.5 pg/ml (cumulative concentration) o f MTX, respectively.

4.8.4 Bacterial Culture

For a PLA thermoplastic to be extruded and 3D printed, it has to undergo heating 

process up to 170°C for filament extruding and 215°C for 3D printing. So studying the 

thermal degradation o f drugs used is necessary. GS batches o f each 100 mg were heated 

at different temperatures for five minutes in a Vulcan oven and 1 mg o f it is incubated 

along with the E. coli in agar plates. All these experiments were performed in multiples 

o f  three. F igure 4-24 shows the zones o f inhibition for GS heated at different 

temperatures.

F igure 4-24: Zone o f  Inhibitions for GS heated at different temperatures on E. coli 
cultures A) Controlled uncooked, B) 175°C, C) 195°C, D) 205°C, E) 215°C, F) 225°C 
and G) 235°C.
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The average zone o f inhibition for control GS was 37.39 mm and for GS heated at 

175°C was 36.62 mm. ANOVA analysis showed no significant difference between the 

two means. Figure 4-25 shows the mean zone o f inhibition values for GS heated at 

different temperatures for five minutes. A total o f 11.07% reduction in inhibition 

diameter for GS heated at 195°C when compared with control. Similar inhibitions were 

recorded for 195°C and 205°C heated GS groups. Makerbot 3D printer used temperature 

o f 215°C for printing PLA filaments. For GS group, heated at 215°C, at total o f 21.03% 

reduction in inhibition zone and 54.2% reduction for 235°C group was recorded.
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Figure 4-25: Zone o f  inhibition for GS heated at different temperatures (mean ± SD, n 
3).

The images in Figure 4-26 shows the zone o f  inhibition for GS coated pellets, 

filaments and 3D printed discs. PLA pellets coated with 2.5% wt GS showed an average 

o f  29.04 mm diameter zone o f inhibition. Control PLA and PMMA filaments, as shown

in Figure 4-26 A, did not show any kill zones. Clear demarcating inhibition zones were
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seen for PLA and PMMA filaments loaded with GS. The mean zone o f inhibition for 

2.5% wt PLA-GS was 23.13 mm and 2.5% wt PMMA-GS was 22.58 mm. ANOVA 

analysis showed no significant difference between the two means.

Similarly, the mean zone o f inhibition diameters o f 3D printed discs and hand 

mold PMMA discs were 21.36 mm and 22.02 mm, respectively. ANOVA analysis 

showed no significant difference in the mean values o f both groups.

20 rnm

Figure 4-26: Zone o f  Inhibitions for E. coli cultures A) PLA-GS pellet, B) PLA and 
PMMA filaments with and without GS, C) PLA and PMMA discs with and without GS. 
Image A was also used in Jeffery W eism an’s dissertation.

The 3D printed beads and catheters also showed a clear demarcating zone o f 

inhibitions. Figure 4-27 shows the inhibition zones for PLA-GS beads and catheters

incubated with E. coli.
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Figure 4-27: Zone o f Inhibitions for PLA-GS bead and catheter on E. coli.

The same method was followed for fabricating tobramycin-PLA constructs. The 

tobramycin laden discs showed no zones o f inhibition as shown in Figure 4-28. 

However, clear zones were seen for PMMA-tobramycin discs. This may be due to low 

melting o f  tobramycin or its interactions with the polymer.

Figure 4-28: A) 1 wt% tobramycin PMMA disc, B) 1 wt% tobramycin PLA disc, 
C) 2.5 wt% tobramycin PMMA disc, D) 2.5 wt% tobramycin PLA disc [119, 117].
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4.8.5 Osteosarcoma Cell Culture

Since bioactive compounds undergo fabrication process involving temperatures 

up to 215°C, thermal stability study was necessary. Figure 4-29 shows the absorbance 

values o f XTT assay performed on osteosarcoma cells at day one. It is to be noted that 

these absorbance values correspond to the growth o f  the cells. The absorbance o f the well 

was directly proportional to the susceptibility o f the cells. Five wells o f each sample was 

used for the assay. Both control MTX and heated MTX showed significant differences in 

absorbance values when compared to control cells. A total o f a 65.41% reduction in 

absorbance values was recorded for groups containing MTX. ANOVA was performed 

and there was no statistical difference between the mean values o f MTX control and 

MTX heated.
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Figure 4-29: Absorbance values o f  XTT assay performed on osteosarcoma cells with 
different MTX groups at day one (mean ± SD, n = 3).

MTX enhanced PLA filaments were also tested on 96 well plates. In this study, 

eight test groups with six wells each were used: control cells, control MTX, heated MTX,
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control PLA pellet, oil coated PLA pellet, MTX coated PLA pellet, control PLA filament, 

MTX PLA filament. An enhanced cell growth was recorded in groups lacking MTX as 

shown in F igure 4-30.
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Figure 4-30: Absorbance values o f XTT assay performed on osteosarcoma cells with 
different PLA scaffolds enhanced with MTX (mean ± SD, n = 6) [ 117],

PLA pellets coated with silicon oil and uncoated PLA pellets showed no statistical 

differences in their mean absorbance values when compared with control cells. There was 

no significant difference between PLA filament and control cell groups either. Wells 

containing MTX pellets and MTX filaments showed a significant decrease in cell 

proliferation when compared to both the control well and PLA filament control well. A 

total o f 43.15% and 31.72% reduction in absorbance values was shown in MTX pellets 

and MTX filament groups. ANOVA analysis confirms statistical differences between 

XTT viability assays o f  the methotrexate enhanced filament/pellet and the respective 

control groups.
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4.8.6 Scanning Bone Defects

In bone diseases such as osteomyelitis and osteosarcoma, affected regions o f the 

bone will be debrided out by the surgeon and those defects could be refilled with drug 

eluting spacers. Using CT scans o f the bone, defective parts can be identified and spacers 

can be 3D printed with accurate dimensions before the physician could even start surgery. 

This process will help in reducing the total duration o f time taken for the surgery. In this 

part o f  the study, a cow femur was used to model this concept. Irregular and standard 6 

mm defects were made using drill press machine on the femur bone as shown in Figure 

4-31.

Figure 4-31: A) Cow femur with irregular bone defect, B) Cow femur with 6 mm 
diameter defects 1 wt% [119].

Using the Roland Desktop 3D scanner, the bone was scanned and defective 

regions were manually processed using blender and solidworks software. These 

processed bone defects were saved as STL files and 3D printed using customized drug
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loaded filaments. Figure 4-32 shows the images o f  a 3D scan o f the bone, processed 

bone plugs and 3D printed bone plugs.

ID mm

Figure 4-32: A) 3D raw scan o f cow femur showing 360 degrees o f defect in 180 
degree image, B) CAD rendering o f  negative 6 mm diameter defect, C) CAD rendering 
o f negative o f  irregular defect, D) 1 wt% gentamicin print o f irregular defect with 
control, E) MTX print o f  irregular defect. Images in A-D were also used in Jeffery 
W eism an’s Dissertation.

Control PLA, GS-PLA and MTX-PLA bone defects were printed and test fitted 

over the defects. 3D fabricated bone plugs were found to fit the defects precisely. Images 

in Figure 4-33 shows bone plugs fitted into the bone defects.

Figure 4-33: A) Femur with irregular defect, B) Femur with control-PLA fitted insert, 
C) Femur with GS-PLA fitted insert [119].
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4.9 Conclusion

Recent advances in additive manufacturing and biomaterials provide the potential 

to 3D fabricate custom constructs for personalized medicine with targeted drug delivery. 

A novel method for coating biodegradable PLA pellets with bioactive compounds and 

extruding them as filaments o f required diameter was developed. These extruded 

filaments were successfully printed into constructs o f required shapes such as beads, 

catheters and others. Antibiotic coated pellets, extruded filaments and 3D printed beads 

were tested in bacterial cultures to confirm their anti-infective property. The results 

indicated that the GS loaded constructs retained their bioactivity and provided clear anti- 

infective regions around them. Similarly, XTT assay performed on osteosarcoma cells 

showed significant reduction in cell growth among groups containing MTX filaments and 

printed discs when compared to control groups.

SEM images showed coating o f drugs on the surface o f the pellets. These images 

also showed the presence o f  bioactive compounds on the surfaces o f the extruded 

filaments and 3D printed constructs. Comparison testing done with PMMA bone cements 

showed equivalent or superior bioactive properties o f these fabricated scaffolds.

There was a significant reduction in mechanical strengths o f the PLA constructs 

due to addition o f bioactive compounds. Increasing the strengths o f  the constructs using 

nanoparticle technology or by using other additive polymers should be further 

investigated. Drug elution data showed a burst release o f  bioactive compounds for the 

first couple o f hours and then a steady release for 144 hours. Furthermore, by regulating 

the 3D printing parameters such as infill ratio and resolution, external surface area and
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hollowness o f  the constructs vary and thus increase or decrease the amount o f drug 

elution.

Finally, novel techniques were engineered to 3D scan and print custom constructs 

using bioactive filaments. These techniques show the potential o f 3D printing to create 

personalized medicines with targeted drug delivery.



CHAPTER 5

3D PRINTING HORMONES LOADED BIODEGRADABLE
CONSTRUCTS

5.1 Introduction

Osteoporosis is a critical bone health issue with devastating effects, especially for 

the aging population. Estrogen deficiency causes postmenopausal women to be at high 

risk o f  developing osteoporosis and subsequent bone fractures [120]. Estrogen is a crucial 

hormone in the pathogenesis o f osteoporosis, although the exact mechanism by which 

estrogen deficiency causing bone-mineral loss is not clearly understood [121, 122], Some 

studies have focused on the role o f estrogens in down-regulating the proinflammatory 

cytokines (IL-1, IL-6, TN F-a, PGE2 and other macrophage colony-stimulating factors) 

that aids in osteoclast functions and increases the bone resorption [123, 124]. Other 

studies have found that estradiol prevents the activation o f  caspase-3 enzyme, which is a 

crucial initiating factor for apoptosis o f  osteoblast cells [125, 126], Cenci et al. reported 

an increased bone loss/bone resorption in ovariectomized (OVX) mice, mediated by 

TN F-a [127]. These authors also showed that administration o f estrogen hormones 

prevented ovariectomy-induced bone loss.

Flormonal Replacement Therapy (HRT) with estrogen is the most common and 

effective FDA approved pharmacotherapy used to treat postmenopausal osteoporosis 

[125], Estrogens are available in various formulations and are administered via different

100
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routes such as intramuscular, subcutaneous, percutaneous, transdermal, vaginal, and oral. 

Depending on the patient’s profile and requirement, HRT is administered either as short

term (2-4 years) or in long-term (usually more than 5 years) therapy. HRT implants are 

usually in the shape o f a small pellet or apple pips, made by fusing pure crystals o f 

hormones, and they are available in doses o f 50 mg -100 mg. These pellets are 

administered subcutaneously (under the fat lining o f the skin) to provide a steady release 

o f drug for a long period o f time [125, 128], Thigh, upper leg or lower abdomen are the 

common locations for implantation. In some cases, continuous administration o f  estrogen 

alone may cause uterus hyperplasia [129], To prevent this, a combination therapy o f 

estrogen and progesterone is prescribed.

In addition to osteoporosis, estrogen along with progesterone can cure vasomotor 

symptoms such as hot flashes, night sweats, dyspareunia and atrophic vaginitis. HRT is 

also used for a woman who has undergone hysterectomy (surgery where w om an’s uterus 

is removed) and for contraceptive effects. Intrauterine devices (IUDs) are considered to 

be excellent long-term birth control implants because o f their safe, effective, and easy to 

use properties [130], These are small T-shaped devices, as shown in Figure 5-1, made o f 

flexible plastic and are placed directly into the uterus, releasing small amounts o f 

hormones (estrogen and/or progesterone) for up to 12 years. These devices work by 

impairing sperm functions and preventing the fertilization o f egg.
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Uterus

Figure 5-1: IUD positioned in the uterus [131].

Anatomically, the uterus is positioned in the pelvic region with various muscle 

tissues and ligaments. Age, pregnancy, or estrogen deficiency cause these muscles to 

weaken in some women, and the uterus drops into the vaginal canal causing a prolapsed 

uterus. Pessaries are medical devices used to treat these pelvic organ prolapses by 

providing structural support to the uterus, vagina, bladder, rectum and deliver female sex 

hormones locally [132]. These devices are made in different sizes and shapes as shown in 

Figure 5-2. A physician decides the best fit o f  the pessary to the patient by a trial and 

error testing procedure [133]. Locally released estrogen could strengthen the pelvic floor 

tissues by making the muscles stronger and thicker [134],
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Figure 5-2: Pessaries o f different shapes and sizes [135],

Currently available HRT implants are bulk manufactured with fixed doses, 

whereas every individual is unique and needs varied amounts o f hormones.

Commercially available HRTs do not account for the differences between individuals. 3D 

printing technology has simplified the generation o f customized medications for patients. 

The advantage o f customizing HRT is that it can be modeled specifically to fit the 

individual’s body and hormone level. In this part o f  the research, methods to fabricate 

customized hormonal implants will be discussed. These printed constructs will be tested 

for external morphology, hormonal elution profiles and therapeutic efficacy.

The Polycaprolactone (PCL) pellets used for filament extrusion were purchased 

from Sigma Aldrich (St. Louis, MO). Estrogen hormone El (SLE 1048) was purchased 

from ScienceLab.com, Inc. (Houston, TX). E2 (CAS 57-63-6) and E3 (CAS 50-27-1)

5.2 Materials
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were obtained from U.S. Pharmacopeia (Rockville, MD). Cell culture plates and other lab 

plastics were purchased from MidSci, St. Louis, MO. Rosewell Park Memorial Institute 

Medium (RPMI), Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum 

(FBS), and penicillin-streptomycin-amphotericin (PSA) antibiotics were obtained from 

Life Technologies, Carlsbad, CA. Estrogen receptor luciferase reporter T47D stable cell 

line (S1-0002-NP) was purchased from Signosis, Inc. (Santa Clara, CA). KJLC 705 

silicone oil used for coating the beads prior to extrusion was purchased from Kurt J. 

Lesker Company (Jefferson Hills, PA). The 3D printing equipment consists o f an 

ExtrusionBot extruder purchased from ExtrusionBot, LLC (Pheonix, AZ) and a 

MakerBot Replicator 5th Generation Desktop 3D printer (Brooklyn, NY). The nanodrop 

spectrophotometer was from Thermo Scientific (W ilmington, DE). The Solidworks 2015 

student edition 3D CAD program Dassault Systemes (Waltham, MA) and Blender 

(Amsterdam, NL) were used for modeling. ELISA kits for E2 and E3 were purchased 

from Enzo Life Sciences (Farmingdale, NY). To analyze ELISA assays, a SpectraMax 

M2e Multimode mircroplate reader purchased from Molecular Devices (Sunnyvale, CA) 

was used. The SEM was a hitachi S-4800 (Schaumburg, IL).

The filament extrusion devices, 3D printers, modeling software were previously 

described in Chapter 4. New materials are described in detail below.

5.2.1 Bioplastics

PCL was used as a thermoplastic polymer for loading hormones due to its lower 

melting temperature. It has a glass transition temperature o f -60°C and melting point at 

60°C. It starts to melt and flow between 80°C to 110°C depending upon the pressure 

applied.
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5.2.2 Hormones

Synthetic female sex hormones E l, E2 and E3 were used for this research. These 

hormones are commercially available in powdered form, have chemical structures similar 

to natural hormones and act by competitively attaching to the estrogen receptors in the 

body. They have high melting temperatures o f El (255°C), E2 (180°C), E3 (280°C) and 

are thermally stable [136],

5.2.3 Micro-plate Reader

A SpectraMax M2e multimode microplate reader from Molecular Devices was 

used to measure the absorbance values o f the ELISA kits. Like any other plate reader, 

this works on principles o f Beer-Lambert’s law. SoftMax Pro software was used to run 

this machine. It also has the ability to run standards and calculate the concentrations o f 

unknowns from the standard values. Figure 5-3 shows the image o f the microplate 

reader.

Figure 5-3: SpectraMax M2e multimode multiplate reader.
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5.2.4 ELISA Kits for Hormone Quantification

ELISA kits for E2 and E3 were ordered form Enzo Life Sciences, Farmingdale, 

NY. There are no current active suppliers for El-ELISA  kits. These kits were competitive 

immunoassays for quantitative determination o f hormonal concentrations in the samples. 

These kits use polyclonal antibodies to bind competitively to hormones present in the 

sample. After incubating at room temperature, excess reagents were removed, the 

substrate was added and the process was halted using stop solution. The optical density o f 

the substrate was measured using microplate reader, and from those readings, 

concentration o f hormones in the samples were calculated.

5.2.5 Estrogen Receptor Luciferase Reporter Cell Line

Estrogen receptors belong to the nuclear receptor family. They are wide spread 

and are responsible for varied physiological functions. Estrogen receptor luciferase 

reporter T47D stable cell lines were purchased from Signosis, Santa Clara, CA. In these 

cell lines, when estrogen or similar stimulants attach to the estrogen receptors in the 

nucleus, dimerization o f these receptors takes place. These dimerized receptors attach to 

specific elements, located at the promoter site o f genes, known as Estrogen Response 

Elements (EREs). Upon attachment with these EREs, genes get activated and start 

expressing. These particular cell lines express luciferase on estrogen stimulation and thus 

provide a sensitive and responsive in vitro system to detect estrogen activity.

5.3 Fabricating Hormone Loaded Scaffolds

For filament extrusion and 3D printing, methods mentioned in Chapter 4, Sections

4.3.1 and 4.3.2 were followed. PCL thermoplastic was used for loading hormones due to 

its low melting temperatures and excellent biodegradable and biocompatibility properties.
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5.3.1 Extruding Hormone Loaded Filaments

PCL pellets were coated with calculated amounts o f hormones and extruded using

ExtrusionBot filament extruder in similar manner to PLA. Each 20 gm batches o f E l, E2 

and E3 were extruded at 90-100°C. Filaments extruded were more flexible when 

compared to PLA. Unlike PLA, to maintain the filament diameter o f 1.75 mm, manual 

regulation o f temperatures between 90°C tol00°C  were needed.

5.3.2 Optimizing 3D Printing Parameters

These extruded filaments were used in MakerBot 1st generation desktop 3D 

printer to print constructs. All E l, E2 and E3 constructs were printed at 110°C at a 

printer-head speed o f  10 mm/s. A constant filament-feed rate o f 23 mm/s was maintained 

throughout the printing process.

5.3.3 Scaffold Design and Fabrication

All 3D models such as lUDs and pessaries were designed using Solidworks 2015 

CAD designing software. Discs o f 5 x 1 mm dimensions were printed for drug elution 

testing and in vitro cell cultures. lUDs and pessaries o f different dimensions and shapes 

were also printed using the extruded filaments.

5.4 Scaffold Characterization

The 3D printed hormonal scaffolds were subjected to physical and bioactive 

testing. Surface morphology o f the constructs were studied using SEM, ELISA kits were 

used to study hormonal release from scaffolds and Luciferase assay was conducted to test 

the bioactivity o f  the hormonal discs.
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5.4.1 Morphology

Extruded filaments and printed discs o f different hormones were subjected to 

SEM using S4800 Field Emission SEM, HITACHI (Schaumburg, IL) at different 

magnifications. The surfaces o f  the constructs were nano-coated with the gold particles 

before imaging to make them conductive.

5.4.2 Hormone Elution Profiles

To calculate the amount o f hormone eluting from the constructs, an elution study 

was conducted. Saline was used for sample collection. Samples from E2 and E3 were 

collected at periodic intervals for a week. These collected samples were analyzed using 

respective ELISA kits. From the pilot studies we could determine that the concentration 

o f  E2 eluting from the scaffolds was over the maximum detection level and all the 

reading were near saturation. A ten-fold dilution o f the E2 samples and ELISA was 

performed. E3 samples had absorbance values within the ELISA detection range and 

were not diluted. The SpectraMax M2e multimode microplate reader was used to read the 

96 well plates absorbance values. From the absorbance values o f standards, the four 

parameter logistic (4PL) nonlinear regression model was drawn and concentrations o f 

unknown samples were back calculated. For all the assays, the absorbance values at 405 

nm were measured and recorded. The manufacturer’s protocol followed for this assay is 

mentioned in Appendix B.

5.4.3 Estrogen Receptor Luciferase Cell Culture

This study was conducted to test the hormonal activity in the 3D printed scaffolds. 

Plain PCL pellets, saline and different concentrations o f E2 were used as controls. 

Extruded filaments and 3D printed discs were used as unknowns. Before these scaffolds



were seeded, 90% confluent cells were detached from the culture tubes and suspended 

into RPMI medium. Each well was filled with 10 pi o f  suspension and incubated for 24 

hours for attachment. Scaffolds were added to these wells and incubated for another 16 

hours. Lysis buffer was added to each well and incubated for two minutes. In a new 96 

well plate, 20 pi o f  this lysate was transferred and 100 pi o f  luciferase substrate is added. 

Optical density o f each well is immediately read using a luminometer. The 

manufacturer’s protocol followed for this assay is described in Appendix B.

5.5 Statistical Analysis

For the ELISA assay, three samples o f each batch was tested and averaged for 

reproducibility. Standard deviation o f the means was calculated and mentioned in the 

elution profile graphs as error bars. For the in-vitro study, measurements from five wells 

o f each group were averaged. A one-way ANOVA was conducted to analyze the 

significant difference between the means among the groups. The standard deviation o f 

the mean was calculated and represented as error bars in the graphs.

5.6 Results and Discussion

PCL pellets were successfully coated with E l, E2 and E3 hormones. Each 20 gm 

batches o f  1.75 mm diameter filaments were extruded and required constructs were 

successfully printed. Figure 5-4 shows images o f  PCL constructs printed with and 

without hormones using Makerbot 3D printer. Constructs containing a combination o f 

hormones can be printed using this technique. Figure 5-4 D shows a donut shaped 

pessary printed with unloaded PLA filament (red) and with PCL filament loaded with E2 

hormone.
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Figure 5-4: 3D printed constructs A) Control donut shaped pessary, B) Control 
gellhom shaped pessary, C) Control IUD, D) Pessary printed combinations o f filaments 
(red- PLA and white- PCL-E2), E) PCL-E1 IUD, and F) PCL-E2 IUD.

5.6.1 Scanning Electron Microscopy (SEM)

SEM was used to study the surface morphology o f the coated pellets, filaments 

and printed discs. Figure 5-5 shows the images o f estrogen hormones E l, E2, and E3.

Figure 5-5: SEM images o f  A) E l, B) E2, C) E3.



All these hormones contain irregular shaped particles o f varied sizes. The 

estimated largest size o f these particles was around 5 pm. Filaments extruded from 

ExtrusionBot were cylindrical in shape and had a smooth external surface. The image in 

Figure 5-6 show hormone loaded PCL filaments extruded using ExtrusionBot filament 

extruder.

2.00 mm

Figure 5-6: SEM images o f  A) E l , B) E2, C) E3.

These filaments were used in Makerbot 3D printer to print discs o f 5 mm x  1 mm 

dimensions. Images in Figure 5-7 A-C shows 3D printed discs used for ELISA and cell 

culture. On further magnification, hormone particles were seen on the surfaces o f these 

discs. Images in Figure 5-7 D, E and F shows E l, E2, and E3 particles on the surfaces o f 

the discs at 100X magnification.



Figure 5-7: SEM images o f (A,D) PCL-FJ Disc, (B,E) PCL-E2 Disc, (C,F) PCL-E3 
Disc.

5.6.2 Quantification through ELISA

Preliminary studies showed the release o f hormones were in nanograms 

concentration. A ten-fold dilution o f  the samples were done to meet the ELISA kits 

detection range. Samples were collected, one for each day. To calculate the 

concentrations o f E2 and E3 released from the constructs, standard graphs shown in 

Figure A-5 and Figure A-6 of the Appendix A were used, respectively. Table 5-1 shows 

the concentration o f  hormone E2 released from 3D printed PCL-E2 discs at a given time 

period. For the first two days, 35% o f total hormone was released from the scaffolds. The 

release o f  the hormones from the 3D printed constructs can be regulated by altering infill 

ratio. Using dual head 3D printer, layers o f the constructs can be printed in alternating 

hormone loaded and unloaded pattern.
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Table 5-1: Concentration o f E2 hormone released from PCL-E2 discs for individual 
days, (mean ± SD, n = 3)

Time (Day) Concentration (ng/ml)

1 30.0

2 57.3

3 34.3

4 32.5

5 27.2

6 21.5

7 12.8

The graph in Figure 5-8 shows the concentration o f hormone E2 released over a 

period o f  one week. A total o f 215 ng/ml o f cumulative concentration o f E2 hormone was 

released at the end o f  day seven. Even after seven days, small quantities o f hormone 

release within the working concentration (2 ng/ml -5 ng/ml) were measured.
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Figure 5-8: Cumulative concentration o f  E2 released from PCL-E2 discs (mean ± SD, 
n = 3).

The resolution o f  the 3D printed constructs can be changed by altering the layer 

height o f the filament deposited. With decrease in layer height o f the filament, surface 

area o f  the construct increases and in turn increases the hormonal release. All the 

hormone loaded discs were 3D printed at 300 pm resolution. T able 5-2 shows the 

concentration o f  hormone E3 released per day from 3D printed discs. Preliminary tests 

showed the release o f  E3 hormones from the constructs were within the detectable range 

o f the ELISA kits. So no further dilution o f  these samples were done. For the first two 

days, 46% o f total hormone was released from the scaffolds. On day seven, 1.3 ng/ml 

hormone was released.
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Table 5-2: Concentration o f  E3 hormone released from PCL-E3 discs for individual 
days.

Time (Day) Concentration (ng/ml)

1 22.7

2 55.1

3 24.1

4 16.1

5 6.5

6 7.6

7 1.3

Figure 5-9 shows the cumulative concentration o f  E3 released from PCL 

scaffolds for a period o f seven days. All samples were tested in multiples o f  three. Error 

bars in the graph are standard deviations. A standard graph plotted from the known 

concentration was used to yield four parameter logistic curve as shown in Figure A-6. E3 

release increased during the first four days, after which hormonal elution was steady and 

extended. A total o f 118 ng/ml (cumulative concentration) o f E3 hormone was released 

by the end o f day four. After that, only 5 ng/ml and 10 ng/ml per day was released.
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Figure 5-9: Cumulative concentration o f E3 released from PCL-E3 discs (mean ± SD, 
n = 3).

5.6.3 In vitro Assay

Figure 5-10 shows the Relative Light Unit (RLU) values o f luciferase activity in 

response to estrogen stimuli. Five wells o f each group were tested and ANOVA analysis 

was conducted. The difference between the control cells and control PCL pellets was not 

statistically significant, indicating that the PCL pellets are biocompatible and do not 

promote any estrogen induced pathways. The group containing E2 showed a robust 

increase in RLU values when compared to groups without inducing agent, indicating the 

presence o f bioactive compounds in the fabricated constructs. Wells containing 100 

pg/ml concentration o f  E2 showed a total o f 84.6% more luciferase activity. Luciferase 

activity for extruded filaments (1 cm length) and 3D printed discs (5 mm X 1mm) 

increased by 80.85% and 74.9%, respectively, when compared to the control cells 

activity.
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Figure 5-10: RLU values o f Estrogen receptor luciferase reporter cells incubated with 
different groups o f  E2 scaffolds (mean ± SD, n = 5).

5.7 Conclusions

Fused deposition modeling was used for the first time to fabricate hormone loaded 

biodegradable implant materials. Female sex hormones (E l, E2, and E3) were coated on 

to PCL pellets and filaments o f required dimensions were successfully extruded. With 

these bioactive enhanced filaments, constructs o f required shapes such as IUD, different 

sizes and shapes o f  pessaries were 3D printed using MakerBot 3D printer.

SEM images showed extruded filaments were smooth and cylindrical in nature. 

The study o f release kinetics using ELISA assay showed that the hormones E2 and E3 

were released at a steady rate from the scaffolds over an extended period.

In vitro assays conducted on estrogen receptor luciferase reporter cell lines show 

that scaffolds fabricated were biocompatible. Groups enhanced with hormones showed 

robust luciferase activity, indicating the presence o f bioactive inducing substance (E2) in 

the scaffolds.
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The ability to 3D print estrogen-loaded biodegradable implants holds huge 

potential in personalized medicine. Using these methods, IUDs and pessaries can be 

tailored to a patient’s specific needs in aspects o f the unique anatomy o f the individual, 

hormone dosage and period o f hormone therapy.



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Novel CPCs enhanced with doped HNTs were successfully formulated and 

evaluated. The addition o f HNTs up to 5%wt increased the compressive and flexural 

strengths o f the scaffolds. A further increase in the concentration o f HNTs did not yield 

higher mechanical strength statistically. SEM showed an increase in surface roughness 

upon addition o f HNTs to the CPC composition. Drug-loaded HNTs added in the CPC 

scaffolds showed an initial outburst o f the bioactive compounds and then an extended 

release up to a week. CPC discs loaded with different concentrations o f HNTs showed 

clear demarcating zone o f inhibitions for E.coli and P. aureus.

This study demonstrated the novel methods to fabricate 3D constructs with 

bioactive properties using a desktop 3D printer. Filaments o f required bioactive agent 

(antibiotic, chemotherapeutic or hormone) were successfully prepared using 

ExtrusionBot filament extruder. This work highlights the advantages and difficulties 

associated with this novel fabricating technique. SEM was used to characterize the 

morphology o f  the extruded filament and 3D printed scaffolds. Traces o f  bioactive 

materials were observed on the surface o f the scaffolds via SEM. Scaffolds with different 

mechanical strengths were constructed using different infill ratios. Compression and

119
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flexural strengths increased with an increased infill ratio. Drug release profiles from the 

3D printed PLA and PCL scaffolds showed initial outburst and then extended steady 

release for a week. XTT assays on a human osteoblast cell line confirmed 

biocompatibility o f these fabricated constructs.

E.coli bacterial cultures demonstrated the anti-infective properties o f  the GS 

loaded PLA scaffolds. XTT assay conducted on osteosarcoma cell lines confirmed 

chemotherapeutic ability o f MTX loaded PLA constructs. Similarly, luciferase assay 

conducted on estrogen receptor luciferase reporter cell line showed estrogen hormone 

activity among E2 loaded PCL scaffolds.

Antibiotic- and chemotherapeutic-loaded beads and catheters were successfully 

printed, and their bioactivity on bacterial and osteosarcoma cell cultures, respectively, 

was confirmed. lUDs and Pessaries o f different shapes and dimensions were printed 

using estrogen loaded PCL filaments.

Critical defects were made on a cow ’s femur bone using standard drilling 

machine. Defects were 3D scanned, processed and 3D printed successfully using custom 

extruded drug loaded filaments. Additionally, this study demonstrated strategies for 

adopting 3D printing technology to fabricate scaffolds for tissue regeneration. The 3D 

printed constructs were optimized and used as supporting materials to generate live 

vascular prostheses. The dimensions o f  these vessels can be customized in terms o f its 

length, diameter and wall thickness by varying dimensions o f the scaffolds. The same 

technique can be used to fabricate complex or branched vascular grafts.
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6.2 Future W ork

Novel 3D printing machines using additive manufacturing techniques allows the 

design o f the patient’s specific prosthetic implants to suit individual anatomy, improve 

functionality and reduce implant failures. However, much work and research remains to 

be accomplished. Among a large variety o f biopolymers, only PLA and PCL were used in 

this study. This study can be conducted using other biodegradable polymers such as PLG 

(poly glycolides) and PLGA (poly (lactic-co-glycolic acid)). Additionally, in vivo animal 

studies can be done. The following are some o f the ongoing projects on 3D printing.

6.2.1 Surgical Mesh

Surgical mesh is a medical device used to provide mechanical support to damaged 

or weakened tissues. These devices are used in procedures such as pelvic organ prolapse, 

inguinal hernia, and others. These devices are intended to stay at the site, provide support 

to the tissues and gradually degrade allowing the formation o f  neotissue at the site.

Depending upon the place o f  the implantation, various meshes with different 

weights, filament size, pore size and weaving structures are used. A 3D printer can be 

used to print biodegradable, and biocompatible meshes can be printed with customizable 

parameters and inculcating bioactive nature. F igure 6-1 shows the 3D printed PLA 

meshes and zone o f inhibition o f E.coli by 1% wt GS-PLA mesh.
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Figure 6-1: A) 3D printed Plain PLA surgical mesh, B) zone o f inhibition o f l% wt 
GS-PLA on E. coli bacterial plate.

6.2.2 Live Vascular Grafts

Vascular prosthesis or grafts are medical devices used to replace or bypass 

damaged or diseased blood vessels. Biological grafts do not cause immunological 

responses and are preferred over synthetic prosthesis. 3D printing can be used to fabricate 

vascular scaffolds with a wide variety o f shapes and dimensions. Treating these scaffolds 

chemically can make their surface suitable for cell attachment and growth. Figure 6-2 

shows the process o f fabricating a live vascular graft.



Figure 6-2: A) CAD model o f vascular stent, B) 3D printed stent using PVA,
C) Seeding cells on to the scaffold, D-E) Cells growing on the stent.

Scaffolds for vascular grafts were 3D printed from a PVA thermoplastic. These 

scaffolds were sterilized, and the surfaces were chemically treated for cell attachment. 

Placental stem cells in a collagen matrix were seeded on to the scaffolds and incubated in 

a cell culture medium. Images in F igure 6-2 D) and E) show the stem cell layer growing 

around the vascular scaffold.



APPENDIX A

STANDARD GRAPHS FOR DRUG ELUTION PROFILES

Standard Graphs for GS and NS Used in CPC Evaluation 

Figure A -l shows the standard graph plotted with absorbance values o f  known 

concentration o f GS. From the graph linear equation was derived and all the unknown 

concentration o f the samples are back calculated from their absorbance values. Similarly, 

Figure A-2 was used to calculate unknown values NS from CPC-NS.
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Figure A -l: Standard graph used for calculating GS concentration for CPC samples.
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Figure A-2: Standard graph used for calculating NS concentration for CPC samples.

Standard Graphs for GS and MTX Used in PLA Evaluation

The graph in Figure A-3 was plotted with known values o f GS concentrations 

against their absorbance values. Best fit equation was derived from it and unknown 

concentrations are back-calculated using the equation.
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Figure A-3: Standard graph used for calculating GS concentration from 3D printed 
constructs.

Similarly, Figure A-4 was used to calculate the best fit equation from the 

absorbance values. With this equation, the unknown concentrations were back calculated.
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Figure A-4: Standard graph used for calculating MTX concentration from PLA-MTX.
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Standard Graphs for E2 and E3 ELISA 

Graphs in Figure A-5 and Figure A-6 are standard graphs used to calculate the 

unknown concentrations o f hormones E2 and E3 respectively. These graphs were 

generated using softmax-pro software o f micro-plate reader.
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Figure A-5: Standard graph used for calculating E2 concentration from PCL-E2 Discs.
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APPENDIX B

PROTOCOLS FOR CELL CULTURE TECHNIQUES

XTT Assay Protocol for Osteoblast and Osteosarcoma Cells

A 96 well plate was used for this assay. Five wells were set as blank with just 

medium and without cells. This assay was performed on Days 3,7 and 14.

• Well plates were taken out o f  the incubator and aspirated completely.

•  Each well was added with 80 pi o f PBS and 20 pi o f XTT stock solution.

• These plates were incubated for 2 hours.

• Absorbance values from wells were read at 450 nm using multiplate reader.

ELISA Protocol for E2 and E3 Hormones

All reagents required for the assay such as assay buffer, E2 standards and 

conjugates were supplied by the manufacturer and were prepared according to the 

manufacturers protocol.

• Non-specific binding (NSB) wells were filled with 150 pi o f assay buffer and 100 

pi o f  assay buffer into the remaining wells.

•  Each 100 pi o f standard known concentrations o f the samples were added into the 

specified wells.

• All wells, except for blank wells, were added with 50 pi o f blue conjugate.
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•  Immediately, all wells except for blanks and NSB wells, were added with 50 pi o f 

yellow antibody.

•  This plate was sealed and kept on a rocker for two hours at 500 rpm.

•  All the contents o f the wells were emptied and washed 3-4 times using wash

buffer.

•  All wells were then added with 200 pi o f  substrate solution.

•  These plate was then incubated for one hour without shaking.

•  All wells were then added with 50 pi o f  stop solution.

• Optical densities o f the wells were read immediately at 405 nm.

Luciferase Assay Protocol for Estrogen Receptor Cells

Estrogen receptor luciferase reporter T47D stable cell line was used to perform 

the luciferase assay. As soon as cells were shipped, entire contents o f the vial were 

thawed and transferred into a culture dish using RPMI medium. On 90% confluent 

growth, cells were split and used for assay.

• The cells were seeded on a 96 well plate for overnight with DMEM medium 

containing 10% FBS and incubated.

• Inducing agents or test samples were added to each well directly and incubated 

for 16 hours.

• Media was aspirated and 100 pi o f PBS was added to each well.

• After 5 minutes, media was aspirated again and 50 pi o f  lysis buffer was added to

each well.

• Cells were incubated in lysis buffer for 20 minutes at room temperature.
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• To ensure complete lysis o f  the cells, plate was rock cultured for 5 minutes at 500 

rpm.

• One freeze-thaw cycle at -80°C and room temperature was performed to ensure 

complete lysis o f the cells.

• A new 96 well plate was taken and 20 pi o f lysate is transferred from each well.

• To this new plate, 100 pi o f  luciferase substrate was added and gently pipetted up 

and down for thorough mixing.

• Plate was read under luminometer immediately.
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