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ABSTRACT

Accurate epileptogenic focus localization is required prior to surgical resection o f 

brain tissue for treatment o f patients with intractable temporal lobe epilepsy, a clinical 

need that is partially fulfilled to date through a subjective, and at times inconclusive, 

evaluation o f  the recorded electroencephalogram (EEG). Using brain connectivity 

analysis, patterns o f causal interactions between brain regions were derived from 

multichannel EEG o f 127 seizures in nine patients with focal, temporal lobe epilepsy 

(TLE). The statistically significant directed interactions in the reconstructed brain 

networks were estimated from three second intracranial multi-electrode EEG segments 

using the Generalized Partial Directed Coherence (GPDC) and validated by surrogate 

data analysis. A set o f centralities per network node were then estimated. Compared to 

extra-focal brain regions, regions located anatomically within the epileptogenic focus 

(focal regions) were found to be associated with enhanced inward directed centrality 

values at high frequencies (y  band) during the initial segments o f  seizures (within nine 

seconds from seizures onset) and led to correct localization o f the epileptogenic focus in 

all nine patients. Therefore, an immediate application o f the employed novel network 

framework o f analysis to intracranial EEG recordings may lead to a computerized, 

accurate and objective localization o f the epileptogenic focus from ictal periods. The 

proposed framework could also pave the way for studies into network dynamics o f the



epileptogenic focus peri-ictally and interictally, which may have a significant impact 

current automated seizure prediction and control applications.
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CHAPTER 1

INTRODUCTION

Epilepsy is a neurological disorder characterized by a predisposition to recurring 

seizures. This abnormal brain activity causes clinical symptoms to arise, and it is from 

these symptoms and the accompanying electroencephalographic (EEG) activity that 

epilepsy is diagnosed. It is estimated that about 1% o f the global population suffers from 

epilepsy, making epilepsy the fourth most common neurological disorder today after 

stroke, Alzheimer’s, and migraines.

While the causes and neuroanatomical substrates o f  epilepsy are pretty diverse, 

the resulting seizures can be primarily generalized, where seizure activity appears in both 

brain hemispheres simultaneously (according to EEG readings), or focal where the 

seizure (a.k.a. ictal) activity begins in a localized region and subsequently propagates to 

other brain regions. In focal epilepsy, the brain region that first exhibits ictal activity is 

called the epileptogenic focus.

For 60-70% o f people with epilepsy, the occurrence o f seizures can be controlled 

pharmacologically via antiepileptic drugs. For the remaining 30-40% patients with focal 

epilepsy, surgical resection o f the epileptogenic focus may be a viable option. Improving 

the likelihood o f surgical success requires accurate localization o f the epileptogenic focus 

thus minimizing the inherent risks o f brain tissue resection. Surgical removal o f the 

epileptogenic focus yields positive but not always ideal results, with about one-third o f
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patients with mesial temporal lobe epilepsy continuing to have seizures within five years 

o f  surgical intervention. Furthermore, 75% o f patients with remission o f seizures after 

surgery still require the use o f antiepileptic drugs to prevent a relapse o f  epileptic 

symptoms.

Multiple recording modalities (e.g. EEG, MR1, PET, MEG) and clinical 

psychological tests are typically utilized for localization o f the epileptogenic focus at 

specialized epilepsy centers. Noninvasive EEG monitoring followed by invasive long

term EEG monitoring to electrographically capture typical seizures o f patients remains 

the most important clinical tool. The epileptogenic focus is determined by visual 

inspection o f the EEG by a specialist and/or software looking for brain regions that first 

exhibit the onset o f seizure activity, which is the current gold standard for focus 

localization.

In order to improve upon the success o f surgical intervention, better algorithms 

for focus localization from the EEG still need to be developed. Such analytical algorithms 

should ideally be objective and patient independent, and one approach to this problem 

involves Brain Connectivity Analysis (BCA). BCA is a rapidly growing field in the study 

o f complex brain networks from an anatomical and functional perspective. In BCA, the 

connectivity between brain regions can be quantified by a multitude o f measures 

depending on the type o f network features one would like to investigate. Once 

connectivity between every two regions is measured, a network representation o f the 

brain’s activity can be constructed. Using the constructed networks as a model o f brain 

activity during a defined event, metrics from graph theory and network science can be 

employed to further analyze the networks. Metrics that measure the connectivity
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importance o f a given node to all the other nodes in the network fall under the category o f 

centrality measures. Many different centrality metrics exist and provide different 

interpretations o f the function o f a node in the network.

In this study, we employed centrality metrics to identify the characteristic 

behavior o f  the epileptogenic focus in patients with temporal lobe epilepsy undergoing 

phase II EEG monitoring. Statistically significant causal interactions between brain 

regions were determined using the measure o f Generalized Partial Directed Coherence 

(GPDC). Surrogate data analysis was used to further identify only the statistically 

significant causal interactions, and the thus derived brain networks were then analyzed to 

determine the centrality o f  each brain region and subsequently investigate the possibility 

o f localizing the epileptogenic focus on the basis o f its centrality characteristics. Under 

this methodology we were successful in associating certain centrality metrics with the 

epileptogenic focus in all patients.

Chapter 2 covers the primary background information needed to understand this 

research topic. This chapter covers basic concepts o f  the brain and how brain activity is 

measured using electroencephalography (EEG). In Sections 2.3, 2.4 and 2.5. epilepsy, 

focal epilepsy and focus localization are described in further detail. Section 2.6 describes 

the fundamental concept o f Graph Theory, which is an important basis for explaining the 

ideas o f brain connectivity analysis discussed in Section 2.7.

Chapter 3 provides a detailed description o f  the methods used in this research. 

After discussing the EEG data used in this research and any processing performed prior 

to analysis (Sections 3.1 and 3.2), the basic statistical tools needed to analyze the data as 

a time series are discussed in Section 3.3. Section 3.4 covers the theory behind
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Generalized Partial Directed Coherence (GPDC), the measure used to describe the 

connectivity between EEG signals. Section 3.5 covers surrogate data analysis, which is 

the technique used in this research to determine which GPDC values are significant. 

Sections 3.6, 3.7, and 3.8 describe concepts from Graph Theory in more detail, focusing 

primarily on fundamental concepts needed to understand how the significant GPDC 

values can be modeled as a network o f connections and how this network can be 

described using a mathematical structure known as an adjacency matrix. Section 3.9 

describes a series o f  measures known as centralities, and each subsection explains in 

detail how each centrality is measured. Sections 3.10 and 3.11 cover how each measured 

centrality is processed and how it associates with the epileptogenic focus for each patient, 

and Section 3.12 describes the parameters utilized for this research and the rationale for 

the choice o f those parameters.

Chapter 4 is an overview o f the results from this research investigation. An 

example o f  a derived network and its resulting centrality values are described in Section 

4.1. Section 4.2 then describes how centrality values change over the duration o f seizure 

events, and Section 4.3 describes these changes over different frequency spectra. Section

4.4 shows the effects o f averaging centralities over specified windows o f  time and 

frequency bands with respect to localization o f the epileptogenic focus. In Section 4.5, 

the focus localization results from undirected networks reconstruction are compared to 

the results derived from directed networks reconstruction from the recorded EEGs.

Section 4.6 compares the focus localization results when either all seizures or only a 

subset o f clinical seizures from each patient are considered. Lastly, Section 4.7 shows the 

final results obtained in this research.
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Chapter 5 provides a discussion o f the results and the nuances o f this research. 

Section 5.1 covers the primary conclusions made from the results obtained during this 

research. Section 5.2 then explains how these results relate to current clinical and 

neurophysiological evidence on this topic. Section 5.3 then compares the methodology 

and results o f  this research to other similar epilepsy research in the literature, specifically 

research surrounding the concept o f brain connectivity analysis and focus localization. 

Sections 5.4 describes possible challenges that can occur using this methodology, and 

Section 5.5 completes this chapter with descriptions o f other possible 

approaches/extensions to this research.

Finally, two appendices have been added. Appendix A includes additional 

research that was performed on the intracranial EEG data from four o f the patients 

studied. Here, the entire EEG dataset (seizure and non-seizure segments) o f each patient 

was used for analysis to understand where prominent GPDC values arise between pairs o f 

electrodes. Appendix B provides more supporting results similar to the final results 

shown in Section 4.7.



CHAPTER 2

BACKGROUND

2.1 The Brain

The human brain is one o f the most complex systems in existence. Generally 

considered the “control center” o f  the body, the brain is involved either directly or 

indirectly in almost every ongoing process. The complexity o f this system comes from 

amalgamations o f  neurons, that is, cells that communicate by sending electrochemical 

signals (called action potentials) to other cells, especially other neurons. Estimates place 

the total number o f  neurons in the human brain between 86 billion [1] and 100 billion [2]. 

Each neuron communicates with other neurons via synapses, and a single neuron can 

have thousands o f synapses that connect it to other neurons. Even by a low estimate o f

1,000 synapses per neuron, this would mean that the human brain has at least 100 trillion 

synaptic connections [2]. Furthermore, the number and strength o f synapses present in the 

brain are not static but dynamic, maintaining high levels o f plasticity, which allows for 

the brain to adapt to external stimuli, learn, process and memorize information. Overall, 

this vast complex communication system makes the brain central to consciousness, 

cognition, regulation, and behavior.

Figure 2-1 provides a simple representation o f a neuron including labels for the

basic neuron structures. The complex branches emanating from the cell body, called the

soma, are known as dendrites and are the primary place for synaptic input from other

neurons. The neuronal branch surrounded by Schawnn cells is known as the axon, which

6
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is the portion o f the cell specializing in relaying chemical signals to other neurons. The 

chemical signal propagates as a wave (action potential) initiating at the axon hillock, the 

region where the axon connects to the cell body, moves down the axonal fiber, and 

terminates at the axon terminal. This area, known as the presynaptic terminal, releases 

neurotransmitters through a region called the synaptic cleft to a region on dendrites or 

soma o f another neuron, known as the postsynaptic terminal, where the action potential 

may instigate the generation o f an action or field post-synaptic potential in the next 

neuron in line. Note that Schawnn cells are only present on neurons in the peripheral 

nervous system.

Dendrite
Axon Terminal

Node of 
Ranvier

Cell body

Schwann cellAxon
Myelin sheath

Nucleus

Figure 2-1: Basic neuron with labeled structures. (Image source: 
http://commons.wikimedia.org/)

Although the brain is a highly complex system, all brains share common 

structures, which can be roughly divided into the medulla, pons, midbrain, diencephalon, 

cerebellum, and cerebrum, all o f which have differing purposes and developed at 

different stages in evolutionary history. Figure 2-2 provides a sagittal cross section o f the

http://commons.wikimedia.org/


brain with labeled brain structures. The cerebrum with its superficial cortex is the most 

recently developed portion o f  the brain and is the primary driver o f conscious thought and 

cognition. The cerebrum is made o f  two hemispheres which are symmetrical in structure 

and are primarily connected to one another via a structure called the corpus callosum. 

Furthermore, each cerebral hemisphere is subdivided into four regions named after the 

cranial bones that overlay each one: the frontal lobe, the parietal lobe, the occipital lobe, 

and the temporal lobe [3], Each o f these structures and substructures per region performs 

certain tasks (functional segregation) and communicates with the other regions to 

amalgamate these processes into more complex mental faculties (functional integration).

Caratorum CaaatorU oortax

Figure 2-2: Sagittal cross section o f the human brain with labeling o f general brain 
structures. (Image source: http://www.prabusha.com/)

http://www.prabusha.com/
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2.2 Electroencephalography 

Electroencephalography (EEG) is an electrophysiological technique used to 

record the electrical activity o f the brain with the use o f sensors called electrodes. EEG 

measures the internal field potential changes due to ionic currents generated from inter

neuronal communication. Prior to the generation o f an action potential, different 

concentrations o f ions inside and outside o f the cell membrane produce a membrane 

potential, and if  this potential is depolarized sufficiently, rapid flux o f ions into and out o f 

the neuron generates the action potential. EEG takes advantage o f  this phenomena on a 

large scale, recording the electrophysiological behavior o f  thousands to millions o f 

neurons simultaneously. The EEG signals are recorded by measuring the voltage 

potential difference between pairs o f electrodes (channels). If electrodes placed at brain 

sites are compared to an electrode outside o f  the area o f  interest, called the reference 

electrode, each channel measures the activity o f the brain at the site o f interest. EEG can 

be recorded using scalp or intracranial electrodes. Scalp EEG records brain activity using 

electrodes placed on the scalp, whereas intracranial EEG require electrodes to be 

surgically implanted inside or on the surface o f the brain.

Figure 2-3 provides an example o f multichannel scalp EEG data. The data covers 

a period o f  10 seconds o f recorded scalp EEG data taken using a standard electrode 

placement setup known as the 10-20 system. The signal braced in red represents an EEG 

signal that contains oscillatory behavior in the a  frequency band, which ranges between 8 

Hertz (Hz) and 12Hz. Other studied frequency bands include the S (0Hz to 4Hz), 0 (4Hz 

to 8Hz), /? (12Hz to 30Hz), and y  (30Hz to 50Hz) frequency bands. The area braced in 

green is an example o f an eye-opening artifact (muscle movements near the eye, not
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related to brain activity) picked up during the recording process. Artifacts are a major 

challenge when reading and analyzing scalp EEG data.
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Figure 2-3: Example o f multichannel scalp EEG data. The record is over 10 seconds, and 
a ruler (light orange, middle) provides the scale o f  the signals (in microvolts).

Although scalp EEG is noninvasive and cost effective, the signal quality is not 

ideal. Voltage potentials measured by scalp electrodes are attenuated in amplitude and 

frequency due to the low conductivity and low-pass characteristics o f the skull. 

Furthermore, the voltage potential o f a given brain region is often also picked up by a 

multitude o f neighboring electrodes, so finding the exact source o f given brain activity is 

difficult by scalp EEG. Scalp EEG is also riddled with artifacts, signal data from sources 

other than brain activity, such as voltage potentials generated from the muscles involved
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in eye blinks (see Figure 2-3). Such factors make scalp EEG signals difficult to analyze. 

To minimize these issues, intracranial EEG (iEEG) can be employed.

In iEEG, strips or grids o f  electrodes are surgically implanted directly onto the 

brain surface to record highly local brain activity (see Figure 2-4), and electrodes 

embedded along the length o f  a needle probe can be inserted into the brain tissue to 

record deep brain activity. This recording method provides the best quality signal, but 

because o f  the risks involved in surgical implantation o f electrodes, iEEG is only 

performed when it is deemed absolutely necessary.

Sensory area Motor area
Surgical opening

Electrocorticography

Figure 2-4: An artistic representation o f a grid o f electrodes covering the sensory and motor 
brain regions for intracranial EEG recording. (Image source: http://en.wikipedia.org/)

EEG has been the most widely adopted technique for monitoring brain activity for 

research purposes and in clinical practice. First and foremost, EEG can record signals 

derived from the electrophysiological phenomena unique to neurons. Along with EEG, 

neuroimaging has become a common class o f techniques designed to image the structural

http://en.wikipedia.org/
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and functional characteristics o f the nervous system; many neuroimaging techniques rely 

on secondary processes caused by the neurophysiological activity. For example, 

functional Magnetic Resonance Imaging (fMRI) measures the amount o f oxygen present 

in the blood throughout the brain; higher levels o f blood oxygen in a given brain region 

are associated with increased metabolic activity, which is in turn related to increased 

electrophysiological activity in that brain region. Because o f the relative simplicity o f 

EEG machines, EEG recording devices are fairly affordable for most hospitals, and o f 

greater portability compared to other machines (i.e. MRI). EEG recording systems also 

have the ability to record data with very high sampling rates (up to 20,000 Hz, currently), 

meaning that EEG data has a very high temporal resolution. EEG also has disadvantages 

which make its use not ideal for certain situations. Because a limited number o f 

electrodes that can be placed on the scalp or implanted into the brain, EEG tends to have 

very low spatial resolution compared to other techniques. Furthermore, EEG electrodes 

are very sensitive; and therefore, electrodes tend to capture a significant amount o f noise 

extraneous to the desired signals generated by the brain. This means that measures must 

be taken to mitigate the sources o f noise. Also, surgical implantation o f electrodes may 

cause problems (e.g. cerebral hemorrhage) to patients. Ultimately, the advantages o f EEG 

still far outweigh their disadvantages, especially in the field o f epilepsy research.

2.3 Epilepsy

Epilepsy is a broad class o f neurological disorders characterized by a person’s 

predisposition to recurrent seizures. The International League Against Epilepsy (ILAE) 

defines an epileptic seizure as “a transient occurrence o f signs and/or symptoms due to 

abnormal excessive or synchronous neuronal activity in the brain” [4]. This excessive
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neuronal activity lies outside the voluntary control o f  the person, and it is through this 

activity that clinical symptoms arise in the patient. Clinical symptoms can vary widely as 

well, ranging from brief loss o f  awareness (absence seizures) to complete loss o f 

consciousness with loss o f bodily control (tonic-clonic seizures). Furthermore, different 

clinical manifestations may arise depending on where this activity occurs in the brain.

The type o f epilepsy for a given person is based on the general behavior o f  his/her 

seizures. If seizure events initiate in a particular region o f the brain, epilepsy is deemed as 

partial or focal, and if  seizures initiate across the whole brain simultaneously, the patient 

is diagnosed with generalized epilepsy.

In the United States, roughly 2.2 million Americans have been diagnosed with 

epilepsy, and approximately 150,000 new cases are diagnosed annually [5]. From a 

financial standpoint, the direct medical cost o f epilepsy in the U.S. is about $9.6 billion 

annually [6], and based on estimates from 1995, the annual total cost (direct and indirect) 

o f epilepsy in the U.S. is $12.5 billion [7], [8]. Adjusted for inflation, that value comes up 

to $19.7 billion as o f 2016. Global estimates reveal that about 1% o f the global 

population suffers from some form o f epilepsy, making epilepsy the fourth most common 

neurological disorder today [5]. Causes for the manifestation o f epilepsy can vary widely, 

but most epilepsy cases can be categorized into either genetic predispositions, congenital 

conditions, or acquired through events such as Traumatic Brain Injury (TBI). The 

recurrence o f seizure events has a profoundly negative impact on the cognitive, 

psychological, and social well-being o f those suffering from the condition, and therefore 

methods for controlling seizure generation are the primary treatment plan for people with 

epilepsy.
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To diagnose a person with epilepsy physicians must observe the brain's 

electrophysiological behavior during a seizure event (also known as the ictal period).

This electrical activity o f the brain across different regions is observed using EEG. In 

about 70% o f people diagnosed with epilepsy, the occurrence o f seizures can be 

controlled via antiepileptic drugs (AEDs). The remaining 30-40% o f patients have 

medically refractory (intractable) epilepsy, where AEDs have no or little beneficial effect 

[9], For the subset o f these people who suffer from focal epilepsy a viable option may be 

surgical intervention.

2.4 Focal Epilepsy

Focal epilepsy is the recurrence o f  seizures that have been electrographically 

observed to initiate in a specific brain region before (possibly) propagating to other brain 

regions. Focal epilepsies are often categorized by the location in the brain where seizures 

are initiated. For example, seizures in people with temporal lobe epilepsy are initiated in 

either the left or right temporal lobe. Electrographically, the type o f focal seizure 

generated can be further described based on the degree o f  propagation that occurred 

relative to the seizure focus. If the seizure activity remains in the brain region in which it 

was initiated, the ictal event is called a simple partial seizure. Complex partial seizures 

initiate in a given region and spread throughout the same hemisphere and are often 

accompanied by a loss o f  consciousness. Secondarily generalized seizures initiate at the 

focal region, but then spread to both ipsilateral and contralateral hemispheres. Sampling 

statistics have shown that approximately 60% o f people with epilepsy have some form o f 

focal epilepsy [10]. For people with medically refractory partial epilepsy, surgical 

resection o f the brain tissue involved in seizure generation has been found to be a more
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effective means o f controlling seizures than continued treatment with AEDs [11]. 

Regardless, resection o f brain tissue is an incredibly high-risk endeavor, so an accurate 

determination o f  the epileptogenic focus is o f  utmost importance.

2.5 Focus Localization 

Multiple modalities and tests are utilized in order to localize the epileptogenic 

focus. Brain imaging techniques such as magnetic resonance imaging (MRI) can be 

utilized to reveal the existence o f a malformation and determine its location. Single

photon emission computed tomography (SPECT) is another common technique for 

finding the epileptogenic focus. Like fMRI, SPECT takes advantage o f  the fact that blood 

flow in the brain is closely related to local brain metabolism. In this method, a gamma 

emitting radioisotope is injected into the patient at the moment o f seizure initiation, and 

the SPECT scanner records the path o f the radioisotope throughout the brain. This is an 

effective method for focus localization since the epileptogenic focus has increased 

metabolic activity around the period o f seizure initiation. However, this method requires 

physicians and assistants to remain vigilant at the side o f the patient in order to inject the 

radioisotope into the blood stream o f the patient very close in time to seizure initiation. 

Although the two aforementioned methods are some o f the most commonly used today, 

the gold standard for focus localization remains a two-stage (phase I and II) EEG 

monitoring performed at an Epilepsy Monitoring Unit (EMU).

Phase I EEG involves long-term monitoring o f the brain activity by scalp EEG. 

The patient is monitored over a sufficient period o f  time so that several ictal events 

(seizures) occur. Even though visual inspection o f  phase I EEG gives a rough indication 

o f the location o f the epileptogenic focus, heavy signal attenuation occurs through the
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skull because o f the low conductive properties o f bone and thus localization o f the focus 

can be done usually at a much more extended region than desired. Patients who exhibit 

epileptogenic foci validated in Phase I EEG recordings, and the focus location renders 

them good candidates for surgery, typically undergo Phase II monitoring to more 

accurately localize the focus. Phase II EEG monitoring requires placement o f electrodes 

onto or inside the cerebrum. Placement o f  the intracranial electrodes is typically guided 

by the results o f  Phase I monitoring. Because o f the vast enhancement in signal quality, 

intracranial EEG allows for improved understanding o f the focal epilepsy o f each patient. 

Optional video monitoring o f the patient may be performed to help correlate clinical 

symptoms with the recorded EEG signals. Based on the results o f Phase II monitoring 

and various other neurophysiological tests, physicians decide which tissue should be 

resected. In both phases o f  EEG monitoring, the epileptogenic focus is primarily 

determined by visual inspection o f the EEG by an expert neurologist and often 

accompanied by computational analysis o f  the EEG via commercially available signal 

processing software; typically, the first location in which highly synchronous activity 

arises during the ictal period is deemed the focal region for that given seizure. Figure 2-5 

is an example o f  a clinical seizure recorded during a Phase II multichannel iEEG 

monitoring in a patient with temporal lobe epilepsy. For this seizure, lasting roughly 30 

seconds (framed by the green vertical bars), electrodes inserted near the left hippocampus 

(red brace) presented high amplitude and high frequency oscillatory behavior at the 

beginning o f the seizure. Since this high frequency behavior was initiated at these 

electrodes, the epileptogenic focus likely was within or near this region.
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Figure 2-5: Intracranial EEG data o f a clinical seizure.

Surgical removal o f the epileptogenic zone has yielded an overall positive 

outcome in patients. However, about one-third o f  patients with mesial temporal lobe 

epilepsy continue to have seizures within five years o f surgical intervention [12]-[14]. 

Furthermore, 75% o f patients showed remission o f seizures after surgery but still required 

the use o f  antiepileptic drugs to prevent a relapse o f  seizure events [12]. Surgeries for 

extratemporal lobe epilepsies tend to have even less success, with only 50% o f patients 

being seizure-free two years after surgery [15], [16].

As stated above, visual inspection o f the iEEG to determine the epileptogenic 

focus is the current gold standard used prior to brain resection, and the need for better 

localization o f  the epileptogenic focus is still considered an important goal in epilepsy
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research. Visual inspection is an inherently subjective diagnostic tool requiring extensive 

training o f  the EEG reviewer. Additionally, EEG activity can be difficult to interpret due 

to the variability o f  ictal events as well as the quality o f EEG recordings, especially in 

Phase I/scalp EEG. For example, inspection o f ictal scalp EEG data recorded prior to 

surgery from patients who were seizure free two years after surgery found that up to 20% 

o f temporal seizures and 40% o f extratemporal seizures could not be lateralized [17]. 

Also, in patients who underwent brain surgery guided by intracranial EEG monitoring, 

only -45%  were seizure free up to three years after surgery [18], [19].

To improve upon the success o f  the surgical intervention, more defined 

algorithms for focus localization need to be developed. Underlying brain activity 

indicative o f the interactions between brain regions is not readily detectable visually and 

requires the use o f  advanced computational tools. In addition, any analytical algorithms 

should ideally be completely objective. A promising approach that could satisfy the needs 

o f such a brain connectivity analysis is methodology derived from concepts from Graph 

Theory.

2.6 Graph Theory

Graph Theory, in general terms, is the study o f the relationships that exist within a 

set o f  discrete objects. A wide array o f phenomena can be modeled using graphs 

including physical structures such as roadways, electrical circuits, and the internet 

infrastructure and less tangible interactions like social relationships, predator-prey 

interactions, and citation networks. All o f these data types can be modeled using a 

combinatorial structure known as a graph, where the objects are represented as nodes 

(also called vertices) and the relationships between objects are represented by edges
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joining these nodes. Figure 2-6 provides as example o f a simple graph containing 10 

nodes and 38 edges connecting them. Additional characteristics can be included in the 

graph such as numerical weights for the nodes and/or edges, the existence o f multiple 

edges between two nodes, edges joining a node to itself, or directionality present in the 

edge. The choice to include any o f these characteristics is dependent on the set o f objects 

being studied along with the relationship that the researcher wishes to observe.

Figure 2-6: Graph example. The nodes are colored green with black lines line segments 
representing edges.

While pure graph theory looks to understand mathematically the general nature o f 

graphs, a subset o f  graph theory called Network Science uses the concept o f graphs as the 

basis for modeling real-world phenomena, and the constructed networks can be studied in 

order to better understand the system under investigation. Brain connectivity analysis is a 

field that uses network science to study the brain as networks.

2.7 Brain Connectivity Analysis 

Brain Connectivity Analysis (BCA) has been a rapidly growing field in recent 

years, looking to study the complex network structure o f the brain from anatomical,
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functional, and/or effective perspectives using various neuroimaging techniques. 

Anatomical studies in BCA aim to study the structural pathways linking neural elements, 

which can range from the local circuitry o f  a few neurons up to the axonal fiber tracts in 

the brain acting as a “wiring diagram” connecting different brain regions. This “wiring 

diagram” between brain regions, coined the connectome, can be obtained using 

neuroimaging techniques such as diffuse tensor imaging (DTI) [15], which measures the 

direction o f diffusive motion o f water molecules, and 3D polarized light imaging (3D- 

PL1) [16]. Recent advances have improved the spatial resolution o f the imaging 

techniques down to lOOjum. Furthermore, the connection between neural elements can be 

considered either a static or dynamic system, depending on the time scale utilized by the 

researcher. Functional connectivity relies on the statistical dependencies that arise 

between brain regions and is often utilized to determine which brain regions are 

interacting during a given task. The primary datatype used in functional connectivity 

studies comes from time series data derived from neural recordings. Effective 

connectivity investigates the cause-effect relationship between neural elements. Like 

functional connectivity, effective connectivity uses time dependent data, but infers a 

causal relationship between neural elements either by finding temporal precedence 

between neural elements in the time series data or via a structural model such as 

anatomical pathways used in conjunction with statistical analysis o f functional 

interactions. Figure 2-7 provides a flowchart o f the brain connectivity analysis process 

divided into three fundamental steps. First, data are collected that capture the behavior 

that is o f interest. The acquired data are then processed in such a manner that 

relationships between different brain regions can be extracted and the behavior is
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modeled at the network level. Lastly, the derived network is studied in order to determine 

if  any qualities o f the network are associated with the observed behavior.

1) Data are acquired for study

INKM

2) Data are modeled as a 
network o f  brain connections

3) Network is analyzed to 
determine presence o f  
interesting features

Figure 2-7: Flowchart representing the general process for studying the connectivity o f 
different brain regions.

For both functional and effective connectivity, researchers have employed a 

multitude o f  electrophysiological and neuroimaging techniques, each having tradeoffs in 

terms o f the characteristics o f  the data acquired. On one end o f the spectrum, fMRl uses 

blood oxygen level dependent (BOLD) signals as a method to elucidate functional 

connectivity between voxels o f brain tissue. Although fMRI has the advantage o f high 

spatial resolution, fMRI imaging has a low sampling frequency, requiring studies to use 

analytical techniques that utilize static connectivity patterns. Neuroimaging techniques
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that can collect data with a high sampling frequency, such as EEG and 

magnetoencephalography (MEG), allow for the creation o f multiple networks spanning a 

short period o f time, providing an opportunity to study the dynamic behavior o f the brain. 

The tradeoff with current EEG recording techniques is the lack o f high spatial resolution 

which is inherent in fMRI. Regardless o f the neuroimaging technique being employed, 

the next common aspect for many BCA studies is the creation o f a network derived from 

the neuroimaging data.

Along with the various datatypes/modalities employed in BCA, researchers have 

utilized a multitude o f measures to quantify the connectivity between brain regions. 

Typically, these measures estimate the pair-wise relationship between neural elements 

using the signals generated by the given technique. Correlation, for example, estimates 

interaction between brain regions in the time domain, whereas coherence estimates 

similar interactions in the frequency domain. However, more advanced measures such as 

Directed Transfer Function (DTF) [20] or Partial Directed Coherence (PDC) [21] have 

been developed to allow for the observation o f the interaction between brain regions 

while accounting for the possible effects o f contributing interactions from all other 

regions. Measures can provide directional information, that can be used to infer causal 

relationships between brain regions, and may consider all interactions, whether direct or 

indirect, as in the case for DTF, or only direct interactions, as in the case o f PDC. 

Furthermore, modifications to the above methods, such as the Generalized Partial 

Directed Coherence (GPDC), have been developed to better model specific aspects in the 

data [22],
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The type o f connectivity measure used can, however, restrict the type o f network 

that can be reconstructed. Connectivity estimates from coherence, for example, can only 

be used to create undirected networks unless parameters relating to the anatomical 

structure can also be implemented to account for directionality (a possible approach o f 

effective connectivity). Another consideration is whether to provide edge weights in the 

network. If weighted networks are desired, then the weights can be taken directly from 

the estimated measure. To create unweighted networks, a thresholding method can be 

used such that only connections above a threshold are considered for the reconstructed 

network. Conversely, connectivity values below the threshold are considered 

insignificant and are not present in the network. Therefore, directed networks can be used 

to create undirected networks by removing the directionality present in directed networks, 

which can be useful when measuring certain characteristics o f a network.

Once a network model is reconstructed from the measures o f connectivity 

between brain sites, metrics from graph theory and network science can be utilized to 

further analyze it. These metrics can then be reinterpreted as characteristics o f  the 

connectivity behavior o f the brain. Metrics that summarize the adjacency o f  a given node 

to all other nodes in the network fall under the category o f centrality measures. Many 

different centrality measures exist, each providing a different perspective o f the 

importance (or centrality) o f a node in the network. A node may be important if it is 

adjacent to many other nodes, or may be important on a global scale, that is, important to 

the overall structure o f the network. On the other side o f the network analysis, measures 

such as small-worldness and clustering describe characteristics o f the network as a whole. 

These measures quantify topological characteristics o f the network, and may reflect the
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overall functional behavior o f the network and therefore the brain. In BCA, extensive 

research has gone into the small-world nature o f the brain network [23]—[25] as well as 

its possible scale-free architecture [26].

In epilepsy research, brain connectivity analysis using EEG has recently become a 

popular approach for epilepsy diagnosis, seizure prediction, and epileptic focus 

localization, and has advanced the understanding o f the functional behavior o f  the 

epileptic brain. Using interictal scalp EEG recordings, knowledge o f characteristics 

derived from weighted functional networks has been shown to improve diagnostic 

accuracy in children with partial epilepsy [27]. Furthermore, the overall connectivity 

structure o f  the functional brain networks derived during resting state recorded scalp EEG 

from patients with temporal lobe epilepsy seem to have noticeable differences compared 

to healthy controls [28], a result that is also seen in resting state functional MRI (rsfMRI) 

[23], For focus localization, a significant portion o f research has focused on the 

functional behavior o f the seizure onset zone. One research group found high correlation 

between the seizure onset zone and increased information outflow in higher brain 

frequency bands (/?: 13 — 30Hz; y: 30 — 50Hz)  when measuring the connectivity o f the 

brain using DTF from EEG signals taken from the ictal periods o f patients with neo- 

cortical onset epilepsy, and more importantly, showed that graph measures can provide 

information related to the seizure onset zone [29], which was supported some years later 

when another group found similar results using a modified DTF function estimated from 

a time-variant vector autoregressive model to develop the network, with increased out- 

degree values associated with the ictal onset zone [30], [31]. Dynamic behavior o f the 

functional network during ictal events has also been studied in partial epilepsy, revealing



that connectivity patterns can be associated with finite, sequentially progressive brain 

states where the seizure onset zone is more isolated from the rest o f the network at 

seizure initiation [32]. For a more in-depth review o f the functional brain connectivity 

analysis and graph theory in epilepsy research, we refer to [33] for an overview o f the 

topic, to [34] using EEG and to [35] using rsfMRl.



CHAPTER 3

METHODOLOGY

3.1 Materials

For this research, all EEG data analyzed comes from the EEG database o f the 

Brain Dynamics Laboratory at Louisiana Tech University. The EEG data were obtained 

from patients diagnosed with temporal lobe epilepsy (TEE) who were admitted to an 

epilepsy monitoring unit (EMU) for Phase II monitoring in order to determine the 

location o f  their seizure onset zone. Every patient used in this research had a minimum of 

four clinical seizures recorded during their stay at the EMU. Strip electrodes on the 

cortex and needle electrodes near the hippocampus were surgically implanted in a 

stereotactic fashion. The data originated from two different EMUs: Shands Hospital in 

Gainesville, Florida (electrode montage A) and Barrow Neurological Institute in Phoenix, 

Arizona (electrode montage B). EEG data from Shands Hospital were recorded with a 

200Hz sampling frequency, and the data from Barrow Neurological Institute were 

recorded with a sampling frequency o f  400Hz. All data are currently stored using the 

European Data Format, a common format used to exchange and store multichannel 

biological signals. Figure 3-1 shows the placement o f electrodes for the two montages as 

well as 10 seconds o f  multichannel EEG signal taken from 1 second prior to 9 seconds 

after seizure initiation. Table 3-1 provides patient data relevant for this research.

26
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Setup A Ictal Onset Example Setup B Ictal Onset Example
• I
l'l

Figure 3-1: Top panel: Intracranial electrode montages that were used for the iEEG 
monitoring. EEG montage A on the left with 28 electrodes from four electrode strips (four 
electrodes per strip) on the left/right orbitofrontal (LOF/ROF) and left/right subtemporal 
(LST/RST) brain regions and two left/right temporal depth (LTD/RTD) 1-dimensional 
electrode arrays (six electrodes per array) inside the hippocampus. Montage B on the right 
with 64 electrodes from four electrode strips (eight electrodes per strip) in the left/right 
frontal (LF/RF) and left/right orbitofrontal (LOF/ROF) regions, and four depth 1- 
dimensional electrode arrays (eight electrodes per array) in the amygdala and temporal lobe 
(LA/RA) and hippocampus (LTD/RTD). For all depth electrode arrays, contact #1 is the 
most anterior one and for the strip electrodes the most mesial one. Bottom panel: Two 
examples o f  EEG recordings around seizure onset by montage A (left) from patient P7 (28 
electrodes used), and montage B (right) from patient P2 (40 out o f  64 electrodes were 
actually used in this recording).
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TABLE 3-1: PATIENT INFORMATION

Patient
Electrode

Setup

iEEG Recording 

Duration (days)

Subclinical

Seizures

Analyzed

Clinical

Seizures

Analyzed

Number o f  

Seizures 

Analyzed

Number o f  

Electrodes 

Utilized

Clinically Determined 

Focus/Foci

P! B ~2 0 26 26 36 Lett Amygdala (LA)

P2 B - 1 .4 2 5 7 40
Right Amygdala (RA) 

Right Hippocampus (RTD)

P3 A - 1 1 .7 0 6 6 28 Right Hippocampus (RTD)

P4 A - 3 .6 0 23 23 28 Right Hippocampus (RTD)

P5 A - 1 3 .9 6 8 14 28 Right Hippocampus (RTD)

P6 A -3 .5 0 4 4 28 Right Hippocampus (RTD)

P7 A -6 .5 17 5 22 28
Led Subtemporal (LST) 

Lett Hippocampus (LTD)

P8 A - 6 10 9 19 28 Right Hippocampus (RTD)

P9 A -0 .7 5 0 6 6 28 Lett Hippocampus (LTD)

3.2 Preprocessing

Due to the quality o f the signals obtained using intracranial EEG monitoring, 

minimal prepossessing was required. No filtering was performed on the data, but if  an 

EEG channel was found to have a low quality recorded EEG signal in a given patient, 

that channel as well as the contralateral one were removed prior to analysis. In this case, a 

total o f four channels were removed from patient PI. Also, the recordings from the 

Barrow Neurological Institute were downsampled to 200Hz to keep them consistent with 

the data from Shands Hospital. Lastly, seizure times were obtained from the de-identified 

clinical reports written by the attending physicians that were provided with the EEG data.

3.3 Time Series

EEG data represents the potential difference between two electrodes over time, 

and therefore can be considered a realization o f a time series process which can be
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modeled using statistical techniques from time series analysis. In order to model EEG 

data as a stochastic process using classical time series techniques the data must be

stationary. In general, if  {Xt} is a stochastic process where Fx (xti+r, . . . ,xt +T) represents

the cumulative distribution function o f the joint distribution function o f {Xt } for times 

t l f ..., tn, then {Xt } is a strictly stationary stochastic process if Fx (x t +T, . . . ,* t„+r) =  

Fx (x t l , ..., x tn) for all t 1(..., tn and integer t .  Simply put, the stochastic process {Xt } is a 

strictly stationary process if the joint probability distribution o f Xlt ..., Xt does not change 

when the process is shifted by any integer r . A weaker definition o f stationarity exists, 

which only requires the time series process to remain constant over time for the first and 

second statistical moments. In this case, a process is called second-order stationary (or 

weakly stationary) if  the process maintains constant mean and autocovariance for any lag 

r  such that

E[Xt] =  n (3.1)

and

Cov{Xt ,X t+x) =  Cov(X0>Xr) (3.2)

where E[Xt ] represents the expected value o f  Xt such that E[Xt ] =  x ( t ) f x ( t )d t .

The previous definitions o f  stationarity are defined for univariate time series. For 

the case o f  multivariate time series, stationarity is satisfied if each o f  the univariate 

signals o f  the multivariate process is stationary. One notable time series process, called 

the white noise process, is defined as a sequence o f independent, identically distributed 

random variable {e t}. White noise is characteristically strictly stationary, and has the 

quality that the autocovariance o f the process is equivalent to the variance o f {e(}, and the
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covariance at any nonzero lag is zero. White noise are not themselves very interesting, 

but are very important for constructing many useful models.

Assuming that a given time series satisfies at least second-order stationarity, the 

series may be modeled using one o f many models derived from a general linear process.

A general linear process (GLP), {ft }, is a stationary time series process which can be 

represented as a weighted linear combination o f present and past white noise terms such 

that

00

f t =  et +  1piet_ i . (3.3)
i = l

For the above equation to have meaning and allow for a reasonably manageable

model, the coefficients o f  the process should satisfy the condition that

00

^  xpf <  co (3.4)
i = l

which ultimately implies that the process is stationary. For this condition to be satisfied

either a finite number o f  xp coefficients can be nonzero, some sequence o f xp coefficients

must exponentially decay towards zero, or some combination o f these cases must occur.

One o f  the most common processes modeled in time series analysis is the

autoregressive processes. An autoregressive process {Kt } o f order p satisfies the equation

v

Yt =  e t +  Y J ^ Y t- k (3.5)
k=1

where the current value o f  Yt is a linear combination o f the p previous values plus a white 

noise term et , independent from the past values o f Yt , that accounts for the variance in the 

data that is not be explained by the previous values. For the case o f  multivariate time 

series such as multichannel EEG data, the autoregressive process for each individual time
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series might not only take into account the past values o f  the individual time series, but 

also the past values o f other time series in the multivariate process. Such a multivariate 

autoregressive process can be modeled using a Vector Autoregressive Model. Let X ( t )  =  

[x1( t ) , x 2( t ) , x 3(t) , . .. ,x N( t) ] ' be an /V-dimensional time series vector representing the 

recorded iEEG signals at N brain sites, where each vector component x t ( t)  denotes the 

iEEG signal recorded at the i th brain site. Then, a vector autoregressive model (VAR) o f 

order p can be constructed for X as

where B ( k ) is the m odel’s N x  N coefficient matrix at lag fc, and e ( t ) is the residual 

vector o f  the model following a multivariate Gaussian white-noise process if the EEG 

signal from each brain site is at least weakly stationary.

In order to develop a VAR model for the given set o f  time series, it is necessary to 

first determine the optimum model order p for the best fitting model. Several model 

selection criteria exist that may accomplish this task, but typically Bayesian Information 

Criterion is often considered the most accurate for this [36], Formally, Schwarz Bayesian 

Information Criterion (B1C) is defined as

where L is the maximum value for the likelihood function, k is the number o f free 

parameters to be estimated, and n  is the number o f observations used to develop the 

model. The likelihood function is itself a function o f the model parameters 6 given the 

known data x  and is equivalent to the probability o f  the obtaining x given the parameters 

0, i.e. L(6\x)  =  P{x\9).  Furthermore, the number o f free parameters depends on the

p

X{i )  =  V B ( k ) X ( t  - k )  +  e ( t ) (3.6)

BIC =  —2 • ln ( I )  +  k • ln (n ) (3.7)
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number o f multivariate signals being modeled N and the model order size being tested p 

such that k =  N 2 - p. The number o f  observations n  is dependent on the number of 

signals being modeled N and the number o f  time samples s  being observed such that n  =  

N • s. The primary idea behind BIC is that maximum likelihood values become larger as 

the order o f the model is increased, making for increasingly negative BIC values but is 

counteracted by the punitive effects o f k ■ ln (n ) since increasing the tested model order 

increases k. This leads to a sequence o f  BIC values that behave as a function o f  tested 

model orders p. Therefore, the best fitted model is derived by taking the model order p 

which provides the smallest BIC value. For this research, it was desired to use a single 

model order for all estimated time windows, so BIC was performed for several time 

windows to determine which model order gave the smallest BIC value among the tested 

samples.

Once the order o f the model is selected, we proceed to estimate the model 

coefficients o f the VAR model. Many methods exist for estimating the model coefficients 

such as ordinary least squares (OLS) and Yule-W alker estimation, however, many o f the 

classical techniques cannot handle adequately the statistical phenomenon o f 

multicollinearity. Multicollinearity is the phenomenon that occurs when model 

coefficients in a multivariate dataset are highly correlated such that one variable can be 

modeled as a linear combination o f  other variables in the model, which can relate to large 

fluctuations in the estimation o f model coefficients when small changes occur in the data. 

To resolve this potential issue when estimating the VAR model coefficients, one solution 

is to use a stepwise regression technique such as the Viera-M orf Method [37] with 

unbiased covariance estimation, which has been found to provide the most accurate
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model estimates compared to other model estimation techniques [38]. The method works 

by first initializing forward and backward predictor matrices A and B so that

A ~ x — ^ 0,0 —

r T

Li = l

r T - 1

Z y , y I
i=0

( 3 . 8 )

( 3 . 9 )

where y t is the m-vector construction o f  the m  signals at time t. Then, a for-loop from 

n  =  0 to sample size N initializes, which in one cycle

-computes the normalized errors generated from the forward and backward predictor 

matrices

n

-n,t — A n>kt  — 7  A n , k y t - k  

k=Q

n

( 3 . 1 0 )

rn,t ~  ^  | B n .n -k Y t-k  ( 3 - 1 1 )
k=0

-estimates the normalized reflection coefficients used to generate the VAR coefficients

T

K n =  £  e n. t e l t  ( 3 - 1 2 )
t=n+i

T

t= n+ 1 

T

R n =  Y j e ^ r l t - X
t=n+1

p „+1 =

-updates the normalized predictors P and Q such that

( 3 . 1 3 )

( 3 . 1 4 )

( 3 . 1 5 )
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Pn+l =  I ~~ P n + l P n + l  ( 3 . 1 6 )

Qn+l —  ̂ — P n + l P n + l  ( 3 - 1 7 )

-runs a nested for-loop from k =  0 up to n +  1 in order to update the forward and 

backward predictor matrices

__i

^n+l.fc “  Pn + i [^n,k —' P n + l^ n ,n -k + i \  ( 3 . 1 8 )

_1
Bn+l,k =  Qn+ —' Pn+ l^n,n - fe+l ]  ( 3 . 1 9 )

and, lastly, n  is incremented up by one step to complete a single loop in the algorithm. 

Upon completion, the forward and backward predictors A and B give the same and 

unique estimate o f  the power spectral matrix, thus producing a stable VAR model.

With the help o f the modeling methodology described above we determine, based 

on provided data, the existence or not o f causal relations between the various signal 

processes o f  the multivariate time series. As defined by Clive W.J. Granger, two signals 

have a causal relation if  the prediction o f one signal is improved when knowledge o f the 

other signal is taken into account. Formally, let {i4t} be a stationary stochastic process, Ut 

be all the information in the universe up to time t  — 1, let Ut — Bt denote all information 

in the universe, except that from process Bt , and let At represents any set {At^j\ j  =

1,2, ...,°o}. Also, let a 2(A\B)  be the variance o f  the error derived by predicting series At 

using information from Bt . If <r2(At \Ut ) <  a 2(At \Ut — Bt ), then signal Bt is said to 

cause signal At . Furthermore, if  a 2(At \Ut ) <  a 2(At \Ut — Bt) and a 2(Bt \Ut) <  

o 2(Bt \Ut — A t ), then each signal influences the other, and, in this case, there exists 

feedback between the two signals. For example, assume a matrix Z composed o f  two
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weakly stationary stochastic processes Z =  [X t , Yt ]' are modeled using a vector 

autoregressive equation o f  order p =  1 such that

Z( t )  =  \a b] z ( t - l )  +  e( t ) .  (3 .20)
tc  a t

If the coefficient b ±  0, then it may be said that there existed information in past values 

Yt that can be used to better predict the future values o f  X t , and therefore Yt causes X t . 

Using the same logic, if  the coefficient c =£ 0, then X t causes Yt .Therefore, non-diagonal 

entries o f  the coefficient matrix for the VAR model which are nonzero provide some idea 

o f the causal relationships that arise between stochastic processes. However, approaching 

the problem from the time domain prevents the researcher from finding underlying 

aspects o f the causal relationship present in the data. First, the values o f the non-diagonal 

entries are not directly related to the strength o f  the causal relationship between two 

signals. Second, weakly stationary processes, like EEG, often have oscillatory behavior, 

and analyzing these processes in the frequency domain allows for linearly causal 

relationships to be measured not only by their relative strengths but also at which 

frequencies these causal relations arise. A spectral representation o f these stationary 

processes ultimately leads us to the causal connectivity measure used in this research, the 

Generalized Partial Directed Coherence.

3.4 Generalized Partial Directed Coherence 

For stationary process {Kt}, the autocovariance o f the signal at lag k,  denoted yfc, 

measures the similarity in behavior o f  the signal Yt with the signal Kt_k and is defined as 

y k =  Cov(Yt , Kt_k) =  £ [(V t — — P y ) ] -  The autocorrelation function, defined as

Pk =  Y k /Y o i  *s a normalization o f  the covariance to values between -1 and 1. For p k , 1 

represents identical behavior occurring between the signal at the lag k,  and -1 represents



exactly opposing behavior. For a multivariate time series X( t )  =

[X1( t ) , X2( t ) , X3(t),  ...,X w( t) ] r  where E [X j(t)] =  0 for i =  1 , A/, the autocovariance 

and cross-covariances are given as functions o f  lag k using the covariance matrix R(k)  =  

E[X( t )XT(t  -  k)],  and each element r iy (/c) o f  the covariance matrix can be normalized 

to a (auto or cross) correlation coefficient as

ra(k)
P i j W  =  '  ■ (3.21)

•Jru(k)ru (.k)

Furthermore, the partial correlation, defined as the correlation between signals when 

associations arising from the influence o f other signals is excluded, comes from the 

inverse o f the covariance matrix /?(fc)_1 which is normalized in the same manner as the 

correlation coefficient. Both matrices have frequency-domain counterparts which allow 

for spectral analysis o f the multivariate process. Taking the Fourier Transform (FT) o f  the 

covariance matrix R(k)  gives the spectral density matrix, denoted S ( / ) .  The inverse 

spectral density matrix P ( / )  can be obtained directly from the inverse o f  S ( / )  (i.e.

P ( / )  =  5 ( / ) _1) or by taking the FT o f  the inverse covariance matrix. Normalizing the 

elements o f  the spectral matrices S ( f ) and P ( / )  in the same manner used to create the 

correlation coefficient give the measures known as coherence and partial coherence, 

respectively.

For any VAR process, spectral analysis o f the signal can also be performed by 

taking the FT o f the coefficient matrix o f the VAR model such that
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The spectral factorization theorem [39] allows the partial coherence matrix P ( f )  to be 

written in terms o f  the Fourier Transformed coefficient matrix B { f ) as

P ( f )  =  (3.23)

where B ( f ) =  /  — B ( f ) ,  H represents the Hermitian transpose (taken as the complex 

conjugated elements o f the transposed matrix), and XT1 is the inverse o f the covariance 

matrix o f  the white noise e ( t)  taken from the VAR model. Note that I  is treated as a 

diagonal matrix since the created model should not have remaining structural behavior 

residing in e( t ) ,  and therefore the i th diagonal element o f E-1 is 1 /o f .  From here, the 

element-wise definition o f  the inverse spectral density between signals X, and X, is

N

Pi, i f )  =  £  (3.24)
n= 1

which leads to the partial coherence between the signals X{ and Xj defined as

P ( f )
n u ( f )  =  —   _ (3.25)

; W O W

A(i)s;,(/)(i)gnja)
=  - >  2 ^ ----------- (3.26)ti Tw) -JW)

N

=  - ^ < i ( / K ; ( / ) -  (3-27)
n=l

The element in the above equality n nj ( / )  contains the Generalized Partial 

Directed Coherence (GPDC) from signal Xj to signal X, at frequency f  and is defined as

©  \BM
GPDCH I ( f )  =  ity(0  =  ! = = = = •  (3.28)
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Thus, through the decomposition o f  the (symmetric) partial coherence matrix F I(/), an 

asymmetric matrix in the form o f GPDC, it, is derived. This provides a measure o f the 

directional influence o f  one signal onto another while excluding the influences generated

by other signals. Furthermore, GPDC has the properties that 0 <  |7ri7( / ) |  <  1 and

Xm=i|7rn ; ( / ) |  =  1- Thus, the value 7Tj j is a normalized measure o f the coupling from Xj 

onto Xi relative to the coupling from Xj to all other s ig n a ls X jN (including coupling to 

Xj itself) [21], [22], [40].

In Figure 3-3 an example o f GPDC values is shown. Six channels o f EEG data 

over a period o f three seconds (Figure 3-2) are used, and GPDC value between each 

directional pair o f signals is estimated for frequencies from 0Hz to 50Hz. Figure 3-3 

shows the GPDC estimates with an exploded view o f GPDC5_,6 ( / )  for all estimated 

frequencies.

Multichannel EEG Signal
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3

4 A/ -/ V w  V '  "V~'\S  'V-x/v -'v "■
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0 2 31
Time (sec)

Figure 3-2: Six signals taken from multichannel intracranial EEG data.
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Figure 3-3: (Left Panel) GPDC estimated from signals shown in Figure 3-2. (Right Panel) 
Exploded view o f the GPDC estimated from signal 5 to signal 6.

Ultimately, because generalized partial directed coherence measures the relative 

signal strength arising from one structure to another, the measure is treated as a spectral 

interpretation o f Granger causality, and thus, in this research, is related to directional 

connectivity between brain structures. Compared to other popular connectivity measures, 

GPDC also has the advantage o f  measuring partialized coupling strengths between brain 

structures. In other words, GPDC measures the direct connectivity between pairs o f  brain 

structures while ignoring the common effects from other sources, thus abating values o f 

coupling strength between brain structures that are connected indirectly. However, the 

inverse spectral density matrix P ( / )  from which GPDC is derived does not have a clear 

relationship to the physiological behavior in the brain. Therefore, a technique is required 

that would allow for the utilization o f  the direct coupling values o f GPDC and for only 

the significant connections to be considered important and used for further analysis.
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3.5 Surrogate Data Analysis

Surrogate data analysis is a statistical technique used in this research to determine 

which directional connectivity interactions are considered statistically significant based 

on the GPDC values o f the given data. Surrogate data analysis is a proof by contradiction 

method used commonly to determine if  a time series has non-linearity, but has been 

repurposed to test if  the measured GPDC values are statistically different from the 

distribution o f simulated GPDC values. Since the distribution o f  simulated GPDC values 

is not directly known, Monte Carlo simulation methods can be utilized on the time series 

to generate M surrogate time series which are used to generate a probability distribution 

for each GPDC values [41]. The Monte Carlo simulations used to generate surrogate data 

can be used to determine if a feature o f the time series is significant. For our study, we 

assume that we have the null hypothesis

To generate the M surrogate data sets, we used the improved amplitude-adjusted 

Fourier Transform (iAAFT) algorithm [42], which provides randomized time series data 

that share the same amplitude distribution and power spectrum with the original time 

series. The algorithm uses an iterative process performed individually to each time series 

in the multivariate process. First, the power spectrum o f A )(t) is estimated using the 

squared amplitudes o f its Fourier transformation o f  X, ( t)  as

Then, the order o f the values in A )(t) are randomly selected in time without replacement

H0:GPDCj^i(f)  =  0. (3.29)

N 2

(3.30)
t=i

to generate x £ ° \ t ) ,  a random shuffling o f the original time series. By shuffling ^ )( t ) ,  the
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phase angles associated with each frequency x [ 0)( / ) ,  denoted 0® ( / ) ,  are randomized. 

However, the power spectrum o f X ^ ° \ t )  needs to be adjusted so that it matches the 

power spectrum o f A) ( t) . This is accomplished via an iterative process where a new 

signal is generated by taking the inverse Fourier transformation o f  the power

spectrum Xt( / )  with phase angles 9? ( / ) .  Then, a new sequence Xf'x( t )  is generated by 

replacing the values X^’°( t )  with the rank-ordered equivalent values from A j(t) (i.e. the 

lowest value o f X f ’°( t )  is replaced by the lowest value in the highest value o f 

X?'°(t)  is replaced by the highest value in A j(t), etc). Finally, new phase angles 0 f +1( / )  

are estimated from Xf  'x(t).  This iterative process terminates when either q =  1000 

iterations are completed or the rank-order o f X f ‘x(t )  is equivalent to the rank order of 

Xf  '°(t).  Through the iAAFT algorithm, a random time series process is generated that 

maintains similar power spectra and probability distribution to Xt (t)  but different phase 

angles for each frequency component. Furthermore, because the iAAFT algorithm is 

performed for each time series in the multivariate process independently, no causal 

relationship between the time series should remain since any phase relationships should 

be destroyed. Therefore, GPDC values estimated from the generated surrogate dataset 

will produce estimates corresponding to unrelated (no underlying causal relationship) 

pairs o f signals. Figure 3-4 provides an example o f a set o f time series data that is run 

through the iAAFT algorithm to provide surrogate time series. As shown in the two right 

panels, the power spectrum o f the surrogate data remains mostly the same as the power 

spectrum o f the original time series.
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Figure 3-4: Example o f surrogate data output from iAAFT.

For M =  30 surrogate datasets, GPDC values are estimated and stored for each 

GPDCj_,i(f)  from signals and Xj as =  1 ,2 ,..., M. The mean Hij(f)  and

standard deviation are estimated such that Hij(f)  =  ^Y. m=i n ™ ( / )  an(i aij ( / )

~  ’ respectively. Assuming that the GPDC values follow a

normal distribution, statistical hypothesis testing is performed with the null and 

alternative hypotheses set as:
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(3.32)

(3.31)

and is tested using a critical value c,y( / )  =  +  1.96<ri ; ( / )  which provides an a  =

0.05 significance level (5% chance o f  Type 1 error, i.e. rejecting a true H0). If n i; ( / )  >  

Cij(f),  then there is sufficient deviation from the mean to reject H0, and, therefore, a 

causal relationship from signal Xj ( f )  to A )(/)  is deemed to exist.

Because GPDC values are limiting in their ability to clearly describe 

physiological behavior o f the brain, further analysis of the relationships arising between 

brain regions is considered using the above hypothesis testing in order to identify the 

presence o f a significant causal connection between brain regions. In this manner, a new 

matrix A ( f )  =  ^  N can be derived based on the above hypothesis test such that

This derived matrix A { f ) is a binary adjacency matrix describing the significant causal 

connections that occur between brain regions when observing a given epoch o f time 

series data (further discussion about adjacency matrices is given in the Section 3.8). 

Figure 3-5 represents the entire surrogate data analysis process as a flowchart using two 

EEG signals over a three second epoch. The directional connection from signal 2 to 

signal 1 is estimated throughout the figure for integer frequencies from 0Hz to 50Hz.

I Reject  H0 
0 Do Not  Reject  H0

(3.33)
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Figure 3-5: Flowchart o f surrogate data analysis to find significant causal connections from 
channel 2 to channel 1 across frequencies (0Hz to 50Hz).
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3.6 Graph Theory

Graph Theory is the study o f a set o f  discrete objects and the relationships that 

exist between these objects. In order to discuss graphs in the context o f brain networks, it 

is important to define basic terminology required to understand how the brain networks 

will be analyzed. To start, a graph G =  ( V, E) is a mathematical structure consisting o f 

two sets V and E. The set V contains the elements called nodes (or vertices) and represent 

the discrete objects to be studied, which in our case are the brain regions surrounding 

electrode recording sites, and the elements in the set E are called edges and are comprised 

o f pairs o f  node elements which represent the endpoints o f  the edges. Considering the 

relationship between nodes and edges, two nodes are called adjacent if  they are joined by 

a common edge, and a node v  is incident to an edge e if  it is an endpoint o f e, and also e 

is therefore incident on v.

Although the set o f nodes V in graph G are consistent across different types o f 

graphs, by redefining the rules for what may exist in the edge set E, different types o f 

graphs may be studied. For example, if  the edge set is allowed to have repeated but 

unordered node pairs, meaning multiple edges can join two nodes, or node pairs where 

each element is the same node, known as self-loops, then the type o f  graphs studied are 

called multigraphs. When these types o f node pairs are not allowed in the edge set, then 

the type o f  graphs studied are called simple graphs, which may also be called undirected 

graphs. Furthermore, if  the edge set is defined such that the node pairs are ordered with 

the first node representing the beginning, or tail, o f the edge and the second node 

designating the end, or head, o f the edge, then the edges are called directed edges, and the 

resulting graph is called a directed graph (or digraph). Lastly, the edges o f the graph can
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have numerical values associated with each edge and are said to be weighted. Likewise, 

one can also place weights on the nodes or on both nodes and edges. Typically, the use o f 

weighted networks is dependent on the phenomena that is being studied. For example, a 

graph representing a road map may find it useful to use weighted edges where the weight 

reflects the distance between nodes, which could represent cities. Graphs where the 

weight o f the edge is not necessary, or the researcher wishes to only see where edges are 

present in the graph, may simply use binary graphs where the presence on an edge 

between nodes is given a value 1 and no edge presence is given a value 0.

Figure 3-6 is a flowchart showing the generation o f the brain connectivity 

network starting with a projection o f the iEEG electrodes onto the underside o f a brain 

producing six iEEG signals over a three second epoch. The signal is analyzed using 

GPDC, and surrogate data analysis is utilized to determine which directional connections 

are significant at integer valued frequencies from 0Hz to 50Hz. In this visualization, three 

connectivity networks from 5Hz, 15Hz, and 50Hz are projected back onto the electrodes 

on the brain with blue edges representing bidirectional connections and red edges being 

unidirectional edges. An edge joining two nodes represents a connection between the 

corresponding brain regions.
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Figure 3-6: Flowchart o f the network creation process.

3.7 Fundamental Graph Characteristics 

A multitude o f measures exists that measure characteristic qualities o f  the graph. 

The three fundamental graph characteristics for comparison o f a single node to other 

nodes are degrees, walks, and paths. It is important to note that if  a graph Gx =  (V, ED) 

consists o f two nodes V =  { v lt v 2} and directed edge set ED =  { ( v 1, v 2), (v 2, t^ )}  and 

graph G2 =  ( V, £ „ )  has the same vertex set V but an undirected edge set Ev =  v xv 2 with 

both edge sets having equivalent weighted edge relations, all three o f  the above 

mentioned measures (degrees, walks, and path) will be similar. However, the definitions 

for these characteristics are slightly altered with respect to the type o f edge set being used 

(directed or undirected). For example, the degree o f a node v  is the number o f edges 

incident to v,  but for directed graphs, this definition o f  degree for each node v  is
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separated into in-degree, the number o f edges directed towards v,  and out-degree, the 

number o f  edges directed away from v.  Relative to a graph G, in order to travel from one 

node to another, one must travel a sequence o f  nodes and edges. Formally, this traversal 

from node Vj to node vt- is referred to as a walk and is written as an alternating sequence 

Wij =  (vj, em d , vmi , ..., emsms_v  vms, ..., eims, v t ) where vms is the m th node o f the 

graph traversed at the s  e  {1,... ,5} step o f the sequence. From this definition, walks 

allow for any node to be traversed more than once as long as there exists an edge that 

permits the traversal to occur, and multiple sequences Wd  may exist that satisfy the 

conditions for a walk. Furthermore, the length o f a walk Wtj is equal to the number o f 

edge-steps S in the sequence. Paths are another traversal upon the graph G. but include 

more stringent restrictions as to how G can be traversed. A path P,y, by definition, is a 

walk from node Vj to node v t where no node in the sequence can repeat. Note also that a 

cycle is a graph where the removal o f any edge is a path. Like walks, multiple paths may 

exist that connect Vj to v if and the length o f a path is the number o f  edge steps in the 

sequence. For paths, one additional measure o f importance is the geodesic distance, or 

shortest path length, defined as the length o f the path P;y between nodes v t and v;- with 

the fewest number o f edge-steps S. Note that more than one path P(; may exist having the 

shortest path length between and Vj [43],

3.8 Adjacency Matrix 

Because o f the abstract nature o f  graphs, structural characteristics o f the graph can 

be difficult to calculate using the set or graphical representations. Fortunately, simple 

directed and undirected graphs have an efficient representation known as the adjacency
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matrix. For a given graph G =  ( V, E) with node set V =  { v v  ..., v N], an adjacency matrix 

A is an N x  N (square) matrix whose elements represent a value o f  the edge from Vj 

to Vi. The elements can have any numerical value if it represents a weighted graph, or 

can be 0 or 1 if  the network is binary, showing the absence or presence o f  an edge from 

Vj to Vi, respectively. Furthermore, matrix symmetry provides insight into the directional 

characteristics o f the network. If the adjacency matrix is asymmetric, then it represents a 

directed graph, while symmetric matrices are used for undirected graphs. As mentioned 

above, the adjacency matrix used in this research represents the network o f significant 

causal connections that arises between brain networks at given points in time for 

observed frequencies, as determined via GPDC and surrogate data analysis, with 

a.ij(f) =  1 if  a significant connection is observed from site j  to site i , and a ^ f )  =  0 

otherwise. O f course, it is possible to convert directed networks into undirected networks 

by making the adjacency matrix symmetric, which is accomplished by setting a;i =  1 if 

and only if  =  1. In this case, the edges o f the network represent the presence o f  a 

significant connection, or coupling, between sites i and j .  Figure 3-7 shows the 

relationship between a directed graph (top) generated from GPDC at 50Hz (see 

Figure 3-6) and its associated adjacency matrix. By making the directed adjacency matrix 

symmetric, an undirected graph (bottom) is produced.
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Figure 3-7: Directed and undirected graphs and their respective adjacency matrices. The 
undirected graph is created by generating a symmetric matrix from the directed graph's 
adjacency matrix.

Lastly, two operations performed upon adjacency matrices should be noted. First, 

the transpose o f a n m x n  matrix A is the n  x  m  matrix i47created by interchanging the 

rows and columns o f  A such that element a 1; replaces element a;( for all i 6 1 ,..., m  and 

J E 1, . . . ,  n. For directed adjacency matrices, this becomes equivalent to changing the 

direction for each edge present in the graph. Since undirected adjacency matrices are 

square and symmetric, AT =  A and no change occurs. Second, the number o f unique
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walks o f length k between vertices i and j  can be found by taking the adjacency matrix to 

the k th power (A k). For directed graphs, the walks must follow the direction o f the edges, 

and in that case the ( i , j )  element o f  the matrix A k is the number o f  unique directed walks 

o f  length k starting at node j  and ending at node i [44],

3.9 Centrality

The significant part o f network science is the study o f  the topological 

characteristics o f  a graph in order to better understand the underlying system which it 

represents. Although network science stems from the field o f  Graph Theory, slightly 

different terminology has been adopted in the literature for the exact same concepts.

From here on out, the term “network” will be used in place o f  “graph”, and the terms 

“edge” and “connection” will be used interchangeably to weave together the concepts o f 

edges joining adjacent nodes in graphs and causal connections between EEG signals 

constructing brain networks.

One topological characteristic o f networks, centrality, measures relative 

importance o f each node in the network based on how it is joined to other nodes in the 

network. In our research, the type o f  centrality most often associated with the 

epileptogenic focus is unknown, so multiple centrality measures were estimated for each 

node in the estimated networks. A total o f seven different centrality measures were 

estimated for both directed and undirected networks: Degree centrality [45], Eigenvector 

centrality [46], PageRank centrality [47], Hyperlink Induced Topic Search (HITS) [48], 

Katz Centrality [49], Harmonic centrality [50], and Betweenness centrality [51], For 

directed networks, centralities can be described with respect to the edge coming into the 

node (inward centralities) or the edges coming from a node (outward centralities). For the
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sake o f  consistency, when both element-wise and matrix equations clearly define the 

given centrality measure, the matrix equation form will be used. When using matrix 

equations, the vector x  =  [xx, x 2l —, x N]T where each x, will represent the given 

centrality values for each node i E {1,... N} in the network, which is represented via the 

N x  N adjacency matrix A. Lastly, both undirected centrality measures and inward 

centrality measures can be defined simultaneously using the same matrix equation; 

outward centrality measures, however, are defined slightly different, using the transposed 

adjacency matrix AT.

3.9.1 Degree Centrality

Degree centrality is synonymous with the measure degree mentioned in Section 

3.7 and is considered the most fundamental centrality measure, with the degree o f a node 

being equal to the number o f edges incident to that node, with in-degree defining the 

number o f  edges coming into a node, and out-degree centrality being the number o f edges 

coming from a node. The matrix equations for in-degree (degree) and out-degree are 

written as

x  =  A l  (3.34)

and

x  =  At 1 (3.35)

respectively, with 1 being the unitary vector o f  length N,  which equates to taking the sum 

o f the rows o f the adjacency matrix A for in-degree (degree) and sum o f the columns o f A 

for out-degree.
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3.9.2 Eigenvector Centrality

Eigenvector centrality measures a node's importance in the network by 

accounting for the importance o f  the nodes to which the given node is connected. The 

equation for eigenvector centrality is the exact same equation used to determine 

eigenvalues and eigenvectors associated with a given matrix where

Ax =  Xx, (3.36)

where A is the adjacency matrix, x  is the vector estimating the eigenvector centrality o f 

each node, and X is the largest dominant (magnitude) eigenvalue associated with its given 

eigenvector. For undirected networks, a node has high eigenvector centrality if  it is 

connected to many other nodes or is connected to a few nodes that are themselves 

connected to many nodes. Similarly, in directed networks, a node has high inward 

(outward) eigenvector centrality if  it has edges coming from (going to) nodes with high 

inward (outward) eigenvector centrality. In other words, the eigenvector centrality o f a 

given node is proportional to the eigenvector centrality o f the nodes to which it connects. 

Like out-degree centrality, outward eigenvector centrality is found by transposing the 

adjacency matrix A and solving the equation ATx  =  Xx for x  using the largest magnitude 

eigenvalue X.

3.9.3 Katz Centrality

Katz centrality, developed by Leo Katz in 1953 for social network analysis, 

measures node importance based on the total number o f  possible walks across the graph 

in which the given node initiates or terminates, and typically provides results that are 

similar to eigenvector centrality. The main idea o f the measure is that the number o f 

possible walks o f  length k that exists between two nodes in the network is related to how
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much those two nodes interact, but longer walks should occur with lower probability.

This creates a type o f “communication matrix” C that describes the interrelatedness o f 

two nodes such that

00

C =  I +  ^  a kAk =  ( /  -  a A Y K  (3 .37)
k=l

Therefore, the Katz centrality o f  the nodes x  for the adjacency matrix A is defined

as

x = ( l - a A ) ~ 1l  (3 .38)

where /  is an identity matrix, 1 is a unitary vector, and a  is an attenuation factor

arbitrarily chosen such that a  <  Q ) , where X is the largest dominant eigenvector o f  A.

Hence, the Katz centrality o f node i is found by summing the elements in row i o f  the 

communication matrix C.

3.9.4 PageRank Centrality

Among all o f the centrality measures used in this research, PageRank centrality is 

the most recently developed. The centrality measure is used by Google for their web 

ranking technology, and considers user behavior when traversing web pages, assuming 

that a user may reach a web page via hyperlinks (edge traversals) or by entering a URL 

(random leaps to different nodes). The equation for PageRank centrality is

x  =  ( I - a A D - 1)~1l  =  D ( D - a A ) - 1l  (3 .39)

where / ,  A, and 1 are defined as in Katz Centrality, D is a diagonal matrix with diagonal 

elements Du =  ma x ( k f ut, 1) where k ° ut is the out-degree o f node i, and the attenuation 

factor a  is chosen to be less than the largest eigenvalue o f A D -1 . Note that a typically 

used value for the attenuation factor is a  =  0.85.
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3.9.5 The Hyperlink Induced Topic 
Search (HITS) Algorithm

When applied to directed networks, all o f  the previous centrality metrics consider 

a given node to have high centrality under similar logical reasoning. That is, a node has 

high inward (outward) centrality if  it either has many edges to (from) that node or that 

node has connections from (to) a few nodes which have high inward (outward) centrality. 

However, another way to consider node having high inward centrality is if  it points to a 

node with high outward centrality, and vice-versa. In this manner, two nodes can have 

distinct roles in the network, defined by a different (inward/outward) directional 

centrality characteristic, but their mutual interaction increases their given centrality. This 

centrality was first implemented by the Hyperlink Induced Topic Search (HITS) 

algorithm where the two types o f central nodes were denoted authorities and hubs. Here, 

authorities have many connections from nodes with high hub scores and hubs have many 

connections to nodes with high authority scores. A citation matrix, for example, has 

papers as nodes and the references to other papers as edges. In this network review papers 

would have a high hub score since they reference many papers which are authoritative on 

a given subject matter. From this, nodes with high authority scores are related to nodes 

with high inward centrality, and hubs are nodes with high outward centrality. The 

authority scores and hub scores for nodes are defined by the vectors x  and y ,  

respectively, from the equations

A A t x  =  Ax (3 .40)

A JA y  =  Ay  (3 .41)
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where X is the dominant eigenvalue o f  each equation. We note that hubs and authorities 

do not exist in undirected networks where no directional relationship between nodes 

exists.

3.9.6 Harmonic Centrality

Harmonic centrality is a measure that considers node importance relative to the 

length o f the paths going to or coming from that node. The measure uses the shortest path 

length, or geodesic distance, between nodes to determine node importance. Let d (y denote 

the shortest path length between nodes i and j  (for undirected networks) or from node j  to 

node i (for directed networks), where =  oo if  no path (undirected or directed) exists. 

Then, the inward (or undirected) harmonic centrality x t for node i is

where n  is the number o f nodes in the network.

3.9.7 Betweenness Centrality

Like harmonic centrality, betweenness centrality utilizes the shortest path lengths 

that exist between nodes but in a different manner. Conceptually, betweenness centrality 

estimates centrality o f a given node by counting the number o f shortest paths that pass 

through that node. In this way, nodes with higher betweenness centrality are very 

important in efficiently traversing the network. Unlike the other centrality measures 

utilized in this study, betweenness centrality by construction cannot be estimated from

(3.42)

and the outward harmonic centrality y} for node j  is

(3.43)
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the perspective o f directed inward and outward connections since this measure is 

concerned with the number o f paths traveling through a node and not the direction o f said 

paths. However, directed and undirected versions o f  this measure can be considered since 

directed and undirected networks may have different shortest paths between nodes. Let 

n lst be the number o f unique shortest paths between nodes s  and t  that pass through node 

i, and let pst be the total number o f  shortest paths between nodes s  and t. Then the 

betweenness centrality x t for node i is

Xi =  Y ^ i  (3.44)
4 - 1 PstSt

where n lst / p st =  0 if  both nlst and pst are zero. In this form, if  multiple shortest paths 

exist between nodes s and t, then the number o f paths passing through node i is 

proportional to the total number o f  shortest paths.

3.10 Centrality Feature Processing 

As mentioned, these networks are derived using significant connections found via 

GPDC, from epochs taken from the ictal, or seizure event, recorded using iEEG in 

patients with temporal lobe epilepsy. For a given ictal event, GPDC values were 

estimated from three second non-overlapping windows (epochs) for discrete frequencies 

from 0 to 50Hz. Networks were then derived for each frequency and epoch using 

surrogate data analysis, and each o f the previously mentioned centralities was estimated 

for each node. Because o f  the large number o f centralities that are estimated, averaging 

was utilized in order to summarize the behavior o f  each node over given time frames and 

frequencies. Once the centralities were averaged, two selection criteria were tested in
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order to determine which centrality metric would be associated with the epileptogenic 

focus: maximum averaged value and absolute majority voting.

within seizures was averaged, as well as across seizures per patient. Let C* s ( / ,  t)  =

frequency /  and time epoch t  for seizure s  at brain site i =  {1,..., N }. If ft =  

{f\>h> — >fm) is a set ° f  discrete frequencies within a frequency band, and T =  

[ t 1, t 2, ..., tn} is a set o f epochs within a given seizure, then

represents the mean centrality values for each node i o f the given seizure s over a set o f 

frequencies H and set o f  epochs T, which values from each node can be written as the 

vector c , s (fi, T). Then, for a given patient P with w  recorded seizures (s =  1 ,..., w)

is the grand average o f the estimated centrality over a specified frequency band H and 

epoch T over all seizures for a given patient at brain site i, creating a vector C* P(fl,T ) 

Estimation o f Cl (il, T) was performed for fl being any o f  the traditional EEG 

frequency bands and for two epochs: early ictal and total ictal period, where early ictal 

consisted o f the first three epochs o f the ictal event and total ictal was all three second 

epochs within the ictal period. The thus derived grand average centrality values at

3.11 Averaging Strategy 

The centrality values per recording site over sets o f  time epochs and frequencies

[c*,s (f> t ) , ..., c+s( f ,  t)] be the vector o f the cl  s centrality m etric’s values estimated for

(3.45)
w en tet

W

(3.46)
5 = 1
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different brain sites were then studied in an attempt to detect discemable centrality values 

at the epileptogenic focal region versus the rest o f brain regions.

3.11.1 Absolute Majority Voting

Absolute majority voting is a selection criterion choosing an alternative if it 

obtains more than half o f the ‘votes’. In the case o f this research, absolute majority voting 

was used to determine if  certain centrality metrics were associated with the epileptogenic 

focus in the majority o f  seizures for a given patient. For the selection criteria, let

jt e {1,..., N } and  q  =  max (c* S(H, T )) j be the index o f the component o f  c* s (fl, T)

having the maximum averaged centrality value for seizure s  o f a given patient. Let G =  

idi> - > 9 n }  be the nodes o f  the network, and V(G')  c  F(G ) represent the nodes that are 

in the region declared by the physician as being the epileptogenic focus for the given 

patient. If g~t E V(G'),  then c*s (n ,T )  is a centrality metric that successfully localizes the 

focal region for seizure s  at frequency band H. If c* s (ft,T ) successfully localized the 

focal region in more than half o f the seizures in the given patient, then that centrality 

metric was deemed successful in localizing the epileptogenic focus in patient P at 

frequency band fl using epoch set T.

3.11.2 Maximum Average Centrality

The maximum value o f the averaged centrality values across seizures was tested 

for association with the epileptogenic focus in each patient. For the selection criteria, let

11 G {1,..., N] and  q  =  max ^C* P( n ,T ) ) j  be the index o f the component o f

C*P(fi,T ) having the maximum averaged centrality value across all seizures for a patient 

P. Let G =  { g x, --^gn}  be the nodes o f the network, and V(G')  c  F(G ) represent the
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nodes that are in the region declared by the physician as being the epileptogenic focus for 

the given patient. If g~t E V(G'),  then C*P(ft,T ) is a centrality metric that successfully 

localizes the focal region for patient P at frequency band ft using epoch set T.

3.12 Methodological Considerations 

In order to create networks accurately representing brain activity, several factors 

had to be considered, particularly, the connectivity measure to use, the window size o f 

the multivariate time series data, and the frequencies which to analyze. Once the 

networks were derived and centralities are estimated, averaging was utilized for centrality 

metrics to summarize the results.

3.12.1 Measuring Brain Connectivity

Generalized Partial Directed Coherence is one o f a multitude o f  measures for 

characterizing brain connectivity, and GPDC was chosen for this research after 

considering three general criteria o f brain connectivity measures. First, like many 

connectivity measures, GPDC is a linear function. Linear functions are typically 

preferred in this type o f research due to their computational efficiency. However, one 

hindrance o f  linear connectivity measures is that they capture linear relationships in 

systems that may operate in a nonlinear fashion. GPDC is measured using a vector 

autoregressive process, a linear set o f  relations, and the observed linear relationship 

between brain regions at each considered frequency may lack some important qualities 

that tie more closely to actual nonlinear brain behavior. Nonlinear measures may provide 

more insight as to how the brain behaves over time, but these methods are 

computationally prohibited to apply in a meaningful way.
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Second, GPDC creates a connectivity network o f directed edges, meaning that the 

connectivity measured from site i to site j  may not be equal to the connectivity measures 

from site j  to site t. Common frequency-based connectivity measures such as coherence 

and partial coherence observe the general relationship between signals based on the 

power spectra and inverse power spectra, which are symmetric matrices where 

directionality cannot be seen. However, as seen in the methodology, these power spectra 

can be decomposed in a manner that allows for underlying directionality to be observed. 

From a physiological perspective, this closely follows the behavior o f  neurons that send 

signals to other neurons via unidirectional synaptic clefts. By considering directionality, a 

better picture o f  the connections arising in the brain can be found.

Third, GPDC is a multivariate connectivity measure, meaning that the 

relationships between all signals is considered prior to measuring the connectivity 

relationship between two given signals. The advantage o f using a multivariate method is 

that the values o f the measured connections represent solely the connectivity between the 

two given regions by accounting for the connectivity that arises from other brain regions. 

Other popular measures, such as Directed Transfer Function, tend to fail in this task, as 

the values o f connectivity they provide are in fact an amalgamation o f  direct connectivity 

between the two brain regions and indirect connectivity arising from a secondary 

connection generating a cascade effect.

GPDC measures not only the strength o f  the direct connection between two brain 

sites but also considers the direction in which the connection occurs, GPDC could be 

considered a pure distillation o f  the underlying brain network as seen from the 

perspective o f  the linear relationships between signals at a given frequency.
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3.12.2 Window Sampling Size

The selection o f window size for this research followed two important criteria. 

First, the window size had to be sufficiently large to allow the dataset to be considered 

stationary over its entire duration. This would allow for the creation o f a stable vector 

autoregressive model to estimate GPDC values. Second, a window size was desired that 

provided the highest possible temporal resolution, thus providing enough epochs over the 

seizure event so that dynamic behavior could be observed. Sliding non-overlapping 

windows o f three seconds were chosen and VAR models o f order p =  7 were used, 

which were in agreement with model orders used in previous analyses o f  brain dynamics 

[52], [53], For this data, the selection o f three seconds also satisfied the requirements 

described in [54] such that

cd »  c 2p, (3.47)

where c is the number o f channels, d  is the number o f  data points in each channel, and p 

is the model order. Each three second iEEG epoch contained 600 data points per channel 

for all 28 or 40 channels, both o f which satisfy the above condition when using a VAR 

model o f  order p =  7. Thus, this epoch duration was sufficiently long for the model to be 

reliably constructed from the EEG, and sufficiently short to maximize temporal 

resolution and abide with possible nonstationarities o f the EEG in epilepsy [53],

3.12.3 Frequencies Estimated

The selection o f the frequencies used for estimation o f GPDC was the 

integer values from 0Hz to 50Hz, based on four criteria. First, based on the Nyquist 

Theorem, which states that the theoretical maximum frequency that could be considered 

must be less than half the sampling frequency o f the data, the highest frequencies for



63

which GPDC values could be considered would be at 100Hz since the sampling 

frequency o f  the iEEG data was 200Hz (although two patients (PI and P2) had iEEG data 

sampled at 400Hz, these datasets were downsampled to 200Hz to keep them consistent 

with the remaining seven patients). Second, electrophysiological sampling data often 

suffer from noise generated at 60Hz since electrical lines in the United States transmit 

power at this frequency. If the data are unfiltered, GPDC estimates near this frequency 

are inaccurate due to a significant line noise artifact, while filtering out the noise around 

this frequency can lead to overfitting o f the VAR process generating the GPDC values. 

Therefore, in practice, estimations near the power line frequency are avoided. Note that in 

Europe, line noise occurs at 50Hz, which can lead to issues in estimating the higher y  

frequencies. Third, the frequencies chosen for estimation coincided with the traditional 

EEG frequency bands used in clinical practice. O f course, this is not a requirement o f 

selecting EEG frequencies, but the traditional bands are standard in clinical practice, and 

therefore, our averaging technique would be easily adopted in the clinical setting.

Last, only integer frequencies were used because o f the gradual change in 

networks which were derived from GPDC. However, using integer frequencies over 

traditional EEG frequency bands raises one other concern that should be addressed: EEG 

frequency bands are not the same length. While the lower 6, 0,and a  frequency bands use 

four different integer frequencies, the /? and y  frequency bands use 18 and 20 integer 

frequencies, respectively. Therefore, different sample sizes could potentially affect the 

outcome o f the final results. This is not the case as seen in our results with the gradual 

changes o f  centralities over frequencies. In fact, if more frequencies were used to 

estimate the lower frequency bands, it is more likely that over-fitting would occur in the



64

final results. In the same manner, using fewer frequencies to estimate the /? and y  

frequency bands would likely lead to under-fitting o f these results. Therefore, although 

non-integer frequencies could have been utilized as well, no additional information would 

likely be derived.

3.12.4 Averaging Epochs

Once centrality estimation was completed, averaging over specified epoch sets 

and frequency bands helped summarize the data. For frequencies, it has been established 

that averaging frequency bands was the most reasonable approach. The choice o f epoch 

sets, however, needs to be discussed further. The use o f total ictal averaging was the first 

approach considered in this research. Considering every epoch set for each seizure 

seemed to be the simplest approach. Furthermore, the number o f  epochs in each seizure 

varies widely from a minimum of three epochs to a maximum of 107 epochs. Because o f 

the dynamic centrality behavior found in some seizures, averaging longer seizures 

reduces the centrality values o f nodes associated with the epileptogenic focus found near 

the beginning o f the seizure. The initial decision to use three epochs was based on the 

fact that the shortest seizure had only three epochs.



CHAPTER 4

RESULTS

4.1 Epileptogenic Network and Centrality Metrics 

An example o f the results obtained using the given methodology from a directed 

binary graph is shown in Figure 4-1. The adjacency matrix was constructed from the first 

3-second iEEG epoch after the onset o f  a secondarily generalized seizure in patient P7 

(electrode setup A) on the basis o f GPDC values estimated at the frequency value o f 

30Hz. As we have observed, the network structures, and the underlying centrality 

characteristics, do not change much for nearby frequencies. Only statistically significant 

directed edges following surrogate data analysis are shown here. The nodes o f the 

network that are colored red correspond to electrode sites within the epileptogenic focus, 

determined by a physician to be the left hippocampus (LTD) and left subtemporal (LST) 

region in patient P7. It is apparent that the network is quite intricate with a large number 

o f directed edges representing the interactions between electrode sites at seizure onset. 

Because o f this intricacy, elucidating any significant information is difficult, which 

explains the need for centrality metrics, so that the interactions between nodes and the 

relative importance o f  each node in the network can be better understood.

65
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Figure 4-1: Example network o f binary directed connections obtained from the 3-second 
epoch immediately after initiation o f a secondarily generalized seizure in patient P7. This 
network is derived from GPDC values measured at a frequency o f 30Hz. Nodes colored in 
red indicate the electrodes located within the region o f the epileptogenic focus.

In Figure 4-2, the estimated centrality measures from the network shown in 

Figure 4-1 are estimated and shown as bar graphs with the left column being the inward 

directed centrality measures (along with betweenness centrality) and the right column 

showing the outward directed centrality values from the network. Red bars indicate the 

electrodes associated with the epileptogenic focus (LTD and LST), and the bar with green 

stripes indicates the node having maximum value for that centrality metric. For these 

results, we first note that the scale o f each bar graph is not the same, showing that each
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measure actually produces different values. Regardless, the relative centrality values 

between nodes was the most important consideration when looking at importance o f each 

node in the network; the actual values o f  the centrality metrics were not o f  interest in this 

research. By focusing on relative node importance, it is revealed that certain centrality 

metrics may behave similarly for a given network, as seen by comparing degree, 

eigenvector, and Katz centralities for both the inward and outward cases. Each o f these 

centralities has the maximum value associated with the same electrode within the 

epileptogenic focus (LTD4) for inward connections, and for the outward centralities, the 

same electrode (RST1) is shown to have maximum centrality in all three metrics. 

Although the authority and hub scores and harmonic centralities did not have quite the 

same relative node centrality behavior as was seen in degree, eigenvector, and Katz 

centralities, they also showed the maximum value associated with the same electrode 

within the epileptogenic focus (LTD4) for inward connections and the same electrode 

(RST1) for outward connections. For this network, only PageRank centrality was 

revealed to have the maximum value associated with an electrode found within the 

epileptogenic focus for both inward and outward centralities, though the nodes were 

associated with different recording electrodes. Overall, all inward-based centralities, as 

well as betweenness centrality and the outward directed PageRank centrality, exhibited 

maximum values at electrode sites within the region o f the epileptogenic focus, even 

though these sites were not the same across seizures in the same patient. From Figure 4-2 

its apparent that the rest o f the outward centrality measures failed to identify any 

characteristic quality o f the focus, showing maximum centrality values at an electrode 

contralateral to the focal region (RST1).
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Figure 4-2: Bar graphs o f  the values o f different directed centrality measures per electrode 
site estimated from the network in Figure 4-1. Red bars indicate the electrodes associated 
with the clinically assessed epileptogenic focus. Bars with green stripes indicate the nodes 
that exhibit maximum centrality value in the network.

4.2 Centrality Dynamics within Ictal Periods and across Patients 

Centrality values at brain sites change over time as expected since brain networks 

are dynamic. The results from this research support this notion, showing wide variations
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in network centrality values over time within individual seizures and across patients. 

Primary findings o f this nature are seen in Figure 4-3 showing three representative 

examples using both inward and outward degree centralities. In particular, the degree 

centralities were estimated at 30Hz from sequential three second EEG epochs over the 

entire ictal period o f  three clinical seizures, one seizure from each o f three o f our patients. 

Each panel was normalized between 0 and 1 with the x-axis representing time epochs and 

the y-axis representing the electrodes. The color o f the square intersecting a time epoch 

and electrode represents the relative centrality value o f that node in the network at the 

given time epoch with red color being associated with larger/maximum centrality values 

and blue colors indicating low relative centrality for the node. Red arrows to the left o f 

each panel indicate which electrode sets are associated with the epileptogenic focus.
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Figure 4-3: Directed degree centrality values estimated over the full ictal periods in clinical 
seizures from (Top Panels) patient P7 seizure #21, (Middle Panels) patient P5 seizure #7, 
and (Bottom Panels) patient PI seizure #22. The respective brain networks were created 
from GPDC values estimated at the discrete frequency o f 30 Hz over three second non
overlapping EEG epochs throughout the ictal period o f the seizures. Illustrated values of 
centralities were normalized with respect to their maximum per seizure for visualization 
purposes.

In the top panels o f Figure 4-3, inward and outward degree centralities come from 

a secondarily generalized seizure in patient P7 (focus in EST/LTD). At the ictal onset, 

determined by the physicians, higher values o f the inward degree centrality are observed
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at the left depth hippocampal (LTD) electrodes, that quickly spread over time to other 

electrodes (LST and LOF) within the left hemisphere. Midway through this seizure, 

inward degree centrality in the left hemisphere dramatically drops, with a slight increase 

observed in the right hemisphere that intensifies to almost all brain areas except the focal 

area at seizure’s end. In the same seizure, outward degree centrality (top right panel) 

shows nearly complementary behavior to its inward degree counterpart, with higher 

outward degree centrality presenting right hippocampus (RTD) and right subtemporal 

(RST) regions, dropping around the same time as seen in inward degree centrality (time 

epoch #38) with an increase outward centrality spreading to left hemisphere contacts near 

the end o f the seizure (time epoch #61).

The middle panels o f Figure 4-3 show a different behavior for inward and 

outward centrality values during a seizure from patient P5 (focus in RTD). In the left 

panel, inward degree values for all electrodes remain relatively low at the seizure onset 

and increase across all electrodes around the 13th epoch. After, the electrodes with the 

highest inward degree at each epoch seem random. For outward degree centrality (middle 

right panel), increased values are observed in the right hippocampal electrodes during 

seizure onset and remain elevated throughout the event. Similar to the activity seen in the 

middle left panel, outward centrality values increase in all electrodes around the 13th 

epoch and decay around the 25th epoch. However, increased outward centrality is seen in 

the right orbitofrontal (ROF) brain region during the 10th epoch and remains elevated 

until seizure termination. Furthermore, near the end o f the seizure event, increased 

outward centrality is observed in both regions near the hippocampus (LTD/RTD) with 

more prominence in the right hippocampal electrodes.
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Patient PI (bottom panels) shows again different behavior o f degree centralities 

over the duration o f  a complex partial (focal) seizure (focus in LA). Inward degree values 

are shown to gradually increase in both the left amygdala (LA) and right hippocampal 

(RTD) regions, peaking in the left amygdala (LA) at the 23rd epoch and shortly after the 

25th epoch in the right hippocampus (RTD). Like the seizure presented in the top panels, 

the inward and outward centralities o f  this seizure behave in a complementary fashion, 

with elevated outward degree values in all regions, excluding the left amygdala and right 

hippocampus, for the duration o f  the seizure.

To study further the differences and similarities o f centrality metrics, Figure 4-4 

shows the dynamic behavior o f the authority and hub scores for the same seizures taken 

from GPDC estimates at the same frequency (30Hz). The behavior o f authority and hubs 

scores is very similar to their degree centrality counterparts shown in Figure 4-3 with the 

exception o f  the seizure presented in patient P5 (middle panels) which does not show the 

increase in centrality over all electrodes that was seen in both inward and outward degree 

centralities.
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Figure 4-4: Authority and Hub scores estimated over the full ictal periods in clinical 
seizures from (Top Panels) patient P7 seizure #21, (Middle Panels) patient P5 seizure #7, 
and (Bottom Panels) patient PI seizure #22.

From these simple examples some important general results can be derived. First, 

the behavior o f seizures across patients can be highly dissimilar. This is particularly 

troublesome since all patients studied herein have been diagnosed with some form o f 

temporal lobe epilepsy leading one to assume that the behavior o f the seizures should be 

similar, which is obviously not the case. Second, inward and outward centrality metrics
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can behave in either a complementary fashion or present similar behaviors. Lastly, the 

dynamics o f seizures are highly varied with some seizures presenting highly dynamic 

changes arising throughout the seizure event and other seizures presenting behavior the 

remains relatively constant as the event transpires. This evidence leads to two different 

temporal cases to be considered for determining the epileptogenic focus: the centrality 

behavior during the seizure onset period (early ictal) and the centrality behavior across 

the entire seizure event (total ictal).

4.3 Centrality Dependence on EEG Frequencies 

Centrality is estimated from the network reconstructed by GPDC, where GPDC 

quantifies the effect o f the activity at a source node on the activity o f a receiver node in 

the frequency domain. Hence, another important observation is how networks and the 

centralities produced from those networks change with respect to frequency. Figure 4-5 

shows the dependence o f  the degree centrality values on the frequency content o f the 

EEG from the first epoch o f the seizures (previously presented in Figure 4-3).
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Figure 4-5: Degree centrality values estimated over all analyzed frequencies for clinical 
seizures from (Top Panels) patient P7 seizure #21, (Middle Panels) patient P5 seizure #7, 
and (Bottom Panels) patient PI seizure #22. The respective brain networks were created 
from GPDC values estimated the first three second non-overlapping EEG epochs o f each 
ictal event. Illustrated values o f  centralities were normalized with respect to their maximum 
over all frequencies for visualization purposes.

For patient P7 (top panels), high inward degree centralities are observed for lower 

frequencies in the right orbitofrontal region (ROF), and as frequency increases, inward 

degree values increase in multiple EEG electrodes, many originating in the epileptogenic 

focus. For outward degree centrality, increased values arise in electrodes within the focal
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region and one electrode contralateral to the focus (RST1) starting at 18Hz. For 

electrodes LTD5, LST3, and RST1, these centrality values peak in the higher frequencies 

at around 48Hz, 37Hz, and 30Hz, respectively.

The middle panels o f Figure 4-5 (patient P5), show very different behavior, with 

high inward degree centrality arising at lower frequencies in the two electrodes in 

contralateral positions (LTD1 and RTD1), with higher values appearing in the non-focal 

electrode (LTD1), and high outward degree centrality values are also seen on other 

electrodes in LTD, peaking in two different ranges, 18Hz to 28Hz and 44Hz to 48Hz. 

Lastly, patient PI (bottom panels) show another example o f the differing behavior over 

frequencies. Here elevated inward degree centralities arise in both high and low 

frequencies in electrodes located in the right hemisphere, opposite o f the focal region 

(LTD), and inward degree values increase in a focal electrode (LTD1) from 25Hz and 

likely continues to increase past 50Hz. For outward degree, centrality values seem to 

increase in most electrodes in the left hemisphere and a few electrodes in the right 

hemisphere as frequency increases.

To compare the similarities and differences o f centrality values, authority and hub 

scores for the same seizures at the first epoch are presented in Figure 4-6. Although the 

authority scores (left panels) behave similarly to their inward degree centrality 

counterparts (Figure 4-6: left panels), the images are much less saturated with elevated 

centrality scores. The same is observed for the hub scores; however, patients P7 (top right 

panel) and PI (bottom right panel) present elevated activity in multiple electrodes 

seemingly unrelated to the focal region in lower frequency ranges.
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Figure 4-6: Authority and hub scores estimated over all measured frequencies (0-50Hz) 
from the first epoch in clinical seizures from (Top Panels) patient P7 seizure #21, (Middle 
Panels) patient P5 seizure #7, and (Bottom Panels) patient PI seizure #22.

Overall, the centrality values, and the underlying networks, do seem to depend 

heavily on the frequencies used to generate the network. Lastly, considering the inward 

centrality metrics (inward degree and authority scores), both show lower centrality values 

at lower frequency ranges.
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4.4 Average Centrality o f  Clinical Seizures for Epileptogenic Focus Localization 

Due to the observed variability o f centrality values across time epochs and 

frequencies o f clinical seizures, and the large number o f clinical seizures that needed to 

be studied in each patient, averaging centrality values over traditional EEG frequency 

bands and certain sets o f epochs helped to determine associations between nodes in the 

network and the electrodes within the epileptogenic focus. Figure 4-7 shows the 

averaging process as done over frequencies for the first epoch from seizure #20 o f patient 

PI when using authority scores. In the left panel, authority scores for discrete frequencies 

are presented with horizontal red line separating the traditional EEG frequency bands (8: 

M H z , 9: 5-8Hz, a: 9-12Hz, /?: 13-30Hz, y: 31-50Hz). The top right panel illustrates the 

authority score at all brain areas averaged over the 8  frequency band (1 — 4Hz). 

Centrality assumes its highest value at one o f  the electrodes contralateral to the focal 

region (right hippocampus -  RTD). The same electrode exhibits the highest centrality in 

the 9 frequency band (5 — 8Hz). In the a  (9 — 12Hz) and /? (13 — 30Hz) frequency 

bands, the authority score is maximum at one o f the focal electrodes (left amygdala - 

LA). The electrode that exhibits highest centrality in the y (31 — 50Hz) frequency band 

is different from the one in the a  and /? bands but it is still within the epileptogenic focus 

(LA). In summary, centrality values clearly change across frequencies, the biggest 

difference being obtained between low and high frequency bands, with higher frequency 

bands exhibiting higher focus localization potential.
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Figure 4-7: Centrality dependence on frequency. (Left Panel) Authority scores over EEG 
frequency bands per electrode site estimated from the EEG epoch right after the onset o f 
clinical seizure #20 from patient P I . Frequency bands are separated by horizontal red lines. 
(Right Panels) Authority values at individual frequencies were averaged over the respective 
frequency bands. Red bars indicate the electrodes associated with the clinically assessed 
epileptogenic focus. Bars with green stripes indicate node(s) having maximum value in 
each authority score profile. It is observed that maximum authority scores o f electrode sites 
within the clinically assessed focus are ones estimated from the higher frequency bands.

Figure 4-8 provides an example o f two averaging schemes performed on the 

authority scores derived from the networks created using the 25Hz  GPDC values from

the sixth clinical seizure from patient PI. Seizure 6 o f patient PI behaves similarly to
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other presented seizures from this patient with elevated authority scores present in the 

epileptogenic focus (the left amygdala - LA), and in the contralateral electrodes found in 

the right hippocampus (RTD). For this seizure, averaging over the first three epochs 

(early ictal period, bottom left panel) gave elevated average authority scores for multiple 

electrodes with maximum values presenting in the epileptogenic focus (left amygdala -  

LA) o f patient P I. Averaging over the entire seizure event (total ictal, bottom right panel) 

provided elevated average authority scores for the epileptogenic focus and the right 

hippocampus and orbitofrontal brain regions, but the maximum averaged authority score 

appeared contralateral to the focal region. Although this seizure showed that averaging 

over epochs present in the beginning o f the seizure event provided a maximum value 

located in the focus, there exists seizure events where the early ictal averaging fails to 

localize the focus and/or averaging over the entire ictal period presents a maximum value 

within the focus.
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Figure 4-8: Centrality dependence over time. (Top Panel) Authority scores over time 
epochs per electrode site estimated from the EEG frequency o f 25Hz over seizure #6 from 
patient P I . (Bottom Left Panel) Authority values averaged over the first three time epochs 
(early ictal). (Bottom Right Panel) Authority values averaged over the all estimated time 
epochs (total ictal).

As shown, a given centrality can be averaged over the time or frequency domains, 

but further summarization can be done by averaging over the two ranges simultaneously. 

For example, Figure 4-9 shows the authority score averaged first over the y  frequency 

band per epoch and then over the first three epochs (9 sec) o f the ictal periods for each o f
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all six clinical seizures recorded from patient P3 (focus RTD -  right hippocampus). It is 

noted that, although high centrality values were obtained within the epileptogenic area, 

the maximum centrality value corresponds to electrodes in the focal area in only three out 

o f the six seizures in this patient.
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Figure 4-9: Authority scores averaged over the y frequency band over the first three epochs 
for the six seizures analyzed for patient P3. Red bars represent the electrodes located within 
the epileptogenic focus, and the bar with green stripes is the electrode have maximum 
authority score.
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Since only three o f the six seizures had maximum values located within the focal 

region o f  patient P3, challenges arise when using absolute majority voting as described in 

Subsection 3.11.1. Using this approach, more than half o f  the seizures must have the 

maximum value within the focal region. Therefore, for patient P3, authority score using 

early ictal epochs at the y  frequency band would fail to localize the focus. However, if 

the authority scores for each seizure are averaged (i.e. CAuth 3(y, Tstart)),  as seen in 

Figure 4-10, the maximum value occurs on one o f the focal electrodes, and, in this case, 

the focus would be localized under the given parameters for patient P3.

P3 Average Authority Score
0.35 i--------- 1---------- 1------'------- 1----- 1------1--------- 1---------'------- '------- '-----1-----

0.3 f 

0.25 

0.2 

0.15 

0.1 
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0
| LTD | LST | LOF | RTD | RST | ROF |

Figure 4-10: Authority score averaged for each seizure o f patient P3 where the authority 
score o f each seizure is averaged for the y frequency band over the first three epochs o f 
each seizure.

4.5 Undirected Networks 

All o f the centrality measures observed until this point come from directed 

networks, but undirected networks were also considered during this research, because o f
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the complementary behavior between inward and outward degree seen in seizures shown 

in Figure 4-3, Figure 4-11 shows the (undirected) degree centrality over time for the same 

set o f seizures used in Figure 4-3 (P7 seizure #21, P5 seizure #7, and PI seizure #22) at 

an EEG frequency o f  30Hz. Using degree centrality, the seizure from patient P7 (top 

panel) still shows changes in centrality behavior over time. However, this change in 

behavior seems to occur over all electrodes simultaneously, so deciphering unique 

qualities o f the focal electrodes is unlikely. Like patient P7, the seizure from P5 also 

shows dynamic changes, but the change occurs again over all electrodes simultaneously, 

so focus localization from these results is difficult. Lastly, the seizure presented for 

patient PI shows no relevant changes in behavior over time or electrode. Each o f  these 

images is in essence a combination o f  the inward and outward degree centralities shown 

in Figure 4-3, and therefore no characteristic qualities over time are found that could 

reveal the epileptogenic focus from these seizures.
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Figure 4-11: Degree centrality values estimated over the full ictal periods in clinical 
seizures from (Top Panels) patient P7 seizure #21, (Middle Panels) patient P5 seizure #7, 
and (Bottom Panels) patient PI seizure #22. Illustrated values o f centralities were 
normalized with respect to their maximum per seizure for visualization purposes.

Figure 4-12 shows the degree centrality o f the networks over all analyzed 

frequencies taken from the first epoch o f  the seizures used in Figure 4-11. When 

observing the degree centrality over frequencies, higher centrality values seem more 

associated with the focal electrodes at higher frequencies, as seen in the seizures from 

patient P7 and PI but not in P5.
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Figure 4 -12: Degree centrality values estimated over frequencies 0Hz to 50Hz from the 
first epoch o f recorded in clinical seizures from (Top Panels) patient P7 seizure #21, 
(Middle Panels) patient P5 seizure #7, and (Bottom Panels) patient PI seizure #22. 
Illustrated values o f centralities were normalized with respect to their maximum per seizure 
for visualization purposes.

To summarize the undirected centralities and determine how successful an

undirected centrality metric is at localizing the focus, centrality values were estimated per 

epoch and averaged over all epochs for the duration o f each seizure (total ictal) and all 

frequencies within the traditional EEG frequency bands (6: M H z , 9: 5-8Hz, a : 9-12Hz,
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/?: 13-30Hz, y: 31-50Hz). Using the majority voting approach for selection and all 127 

seizures, if  more than 50% o f the seizures from a given patient had the maximum average 

centrality value in a frequency band associated with the clinically assessed focus, that 

centrality metric was declared to have successfully localized the epileptogenic focus for 

that patient at that frequency band. Table 4-1 shows the number o f patients (out o f nine) 

with foci associated with maximum centrality values for each frequency band for the 

degree (DC), eigenvector (EVC), Katz (KC), PageRank (PRC), and betweeenness (BC) 

centrality metrics. The best results were obtained for Katz Centrality in the 6 band, where 

eight out o f nine patients had their clinically assessed foci corresponding to the nodes 

having maximum Katz centrality in more than half o f  their seizures. The second best was 

degree centrality in the y band and eigenvector centrality in the 6 band (agreement with 

the focus in seven out o f the nine patients). PageRank and betweenness centrality showed 

at most six out o f  nine patients having an association between the region with maximum 

centrality values and the clinically assessed focus.

TABLE 4-1: NUMBER OF PATIENT (OUT OF NINE) WHOSE FOCI EXHIBITED 
MAXIMUM VALUE OF CENTRALITY IN MORE THAN 50% OF THEIR SEIZURES 
USING UNDIRECTED CENTRALITY MEASURES

Undirected Centrality Measures
Frequency

Bands
DC EVC KC PRC BC

Delta 6 6 6 6 6
Theta 6 7 8 6 6
Alpha 5 4 4 4 3
Beta 5 3 6 5 4

Gamma 7 6 6 6 6

To compare to the success o f  directed centrality measures, Table 4-2 shows the 

success o f  directed centrality measures under the same parameters. The best results
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shown in this table come from betweenness centrality averaged over the S frequency 

band where eight out o f  nine patients had more than 50% o f seizures exhibiting 

maximum value on one o f  the focal electrodes. For inward based degree, eigenvector, 

Katz and betweenness centrality, five instances occurred where seven out o f nine patients 

had maximum centrality associated with the epileptogenic focus.

TABLE 4-2: NUMBER OF PATIENTS (OUT OF NINE) WHOSE FOCI EXHIBITED 
MAXIMUM VALUE OF CENTRALITY IN MORE THAN 50% OF THEIR SEIZURES 
USING DIRECTED CENTRALITY MEASURES

Directed Centrality Measures
Frequency DC EVC KC PRC BC

Bands In Out In Out In Out In Out
Delta 5 6 6 5 4 3 3 5 8
Theta 5 5 6 5 7 5 4 3 7
Alpha 6 3 6 3 6 3 4 4 5
Beta 5 2 5 1 4 1 6 1 5

Gamma 7 4 7 3 7 3 6 3 5

Compared to undirected centrality measures, the results o f directed measures do 

not seem to improve the success o f centrality measures for localizing the focus. However, 

it is important to note that the success o f  inward and outward centrality measures is 

mutually exclusive, meaning that for a given patient at a given frequency band, either 

one, both, or neither directional centrality may localize the focus. Therefore, directed 

centralities may work better than undirected centralities if  both inward and outward 

measures are considered simultaneously, something that is shown in Table 4-3 using the 

same parameters as the two previous tables (betweenness centrality was included for 

consistency). Here, results are vastly improved over undirected centrality measures with 

maximum success (nine out o f nine patients) occurring using directed degree centralities
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over the S frequency band. However, combining both inward and outward centralities 

create new problems which must be solved before reasonable implementation could 

occur. In particular, more research must be focused on a technique for selecting which 

directional metric should be used per patient. This is important because, in practice, 

inward and outward centrality metrics may determine that the focus exists in two 

different brain regions, and without a technique for selecting which directional centrality 

to use, the focal region will remain undetermined. Therefore, although the results o f 

Table 4-3 are promising for using centralities for focus localization, here they are to 

support the idea that directed centralities outperform undirected centralities for focus 

localization.

TABLE 4-3: NUM BER OF PATIENTS (OUT OF NINE) WHOSE FOCI EXHIBITED 
MAXIMUM VALUE OF CENTRALITY IN MORE THAN 50% OF THEIR SEIZURES 
USING COMBINED DIRECTED CENTRALITY MEASURES

Combined Directed Centrality Measures
Frequency

Bands
DC EVC KC PRC BC

Delta 9 8 6 6 8
Theta 7 7 8 5 7
Alpha 8 7 8 8 5
Beta 6 6 5 7 5

Gamma 8 8 8 8 5

4.6 Subclinical Seizures 

In the previous section, the success o f  undirected networks was determined based 

on all 127 analyzed seizures. However, among these 127 seizures there exists a class o f 

seizures, known as subclinical seizures, that present clear epileptiform activity recorded 

onto the EEG but the patient shows no clinical change in behavior. Also, not all patients 

exhibit subclinical seizures, so localization o f the epileptogenic focus is primarily
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determined using their clinical seizures. Because 35 o f  the 127 analyzed seizures were 

deemed subclinical events (see Table 3-1), it was important to determine whether 

subclinical seizures will help localize the epileptogenic focus using the techniques 

presented herein.

Figure 4-13 provides examples o f the inward and outward degree centrality 

measures, taken from an EEG frequency o f  30Hz, from three subclinical seizures coming 

from patients P2, P5, and P8. Patient P2 (top panels) has an epileptogenic focus covering 

electrodes in both the right amygdala (RA) and hippocampal (RTD) regions. Here, 

inward degree centrality is elevated briefly in the focal region during the middle o f the 

event, and outward degree centrality remains elevated over the whole event with 

maximum values occurring sporadically for the majority o f electrodes. Patient P5 (middle 

panel; focus RTD) presents no elevated or particularly interesting values for any 

electrode in either inward or outward degree centralities. For patient P8 (bottom panel), 

slightly more elevated inward degree centrality is present in the right hemisphere 

electrodes, ipsilateral to the focus (right hippocampus -  RTD), and outward degree values 

remain consistently elevated in the right subtemporal (RST) electrodes, but neither 

measure provides sufficient evidence o f the focal region. Overall, subclinical seizures do 

not have the same dynamic behavior as observed in clinical seizures, tending to behave 

consistently for the duration o f the event.
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Figure 4-13: Degree centrality values estimated over the full ictal periods in subclinical 
seizures from (Top Panels) patient P2 seizure #3, (Middle Panels) patient P5 seizure #8, 
and (Bottom Panels) patient P8 seizure #15. The respective brain networks were created 
from GPDC values estimated at the discrete frequency o f 30 Hz over three second non
overlapping EEG epochs throughout the ictal period o f the seizures. Illustrated values o f 
centralities were normalized with respect to their maximum per seizure for visualization 
purposes.

To observe the behavior o f subclinical seizures for different frequencies, Figure 

4-14 shows the behavior o f  the seizures seen in Figure 4-13 as observed from the first 

epoch o f each ictal events. Patient P2 shows increasing inward and outward centrality
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values as frequency increases; patient P5 has sporadic increases in both inward and 

outward degree centrality across frequencies; and, patient P8 shows elevated inward 

degree centrality values present across frequencies in the left hemisphere and high 

outward degree centrality seen in the right subtemporal (RST) brain region for higher 

frequencies (/? and y  frequencies). Again, using these research methodology, subclinical 

seizures do not seem to provide supporting evidence o f  the location o f the epileptogenic 

focus.
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Figure 4-14: Degree centrality values estimated over all analyzed frequencies for 
subclinical seizures from (Top Panels) patient P2 seizure #3, (Middle Panels) patient P5 
seizure #8, and (Bottom Panels) patient P8 seizure #15. The respective brain networks were 
created from GPDC values estimated on the first three second non-overlapping EEG 
epochs o f each ictal event. Illustrated values o f centralities were normalized with respect 
to their maximum over all frequencies for visualization purposes.

Lastly, to show that not only do subclinical seizures provide no supporting 

evidence as to the location o f the epileptogenic focus but also hinder focus localization, 

Table 4-4 and Table 4-5 were generated. To create these tables, directed centrality 

metrics were estimated for the total ictal period as well as for the traditional EEG
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frequency bands. Then, for each patient, the average centrality for each seizure was 

averaged over all seizures o f a given patient to provide a grand average centrality for that 

patient. If the maximum value o f this grand average centrality was observed for one o f 

the electrodes within the epileptogenic focus for a given patient, that measure, for the 

given frequency band, was considered to successfully localize that patient's focus. Hence, 

these tables provide the number o f patients whose focus was successfully localized. Table 

4-4 shows the success o f each centrality when all seizure events, clinical and subclinical, 

are averaged in each patient. Table 4-5 is the success o f each centrality when only clinical 

events are considered.

In Table 4-4, eight out o f  nine patients had maximum averaged centrality in a 

focal electrode with Katz Centrality (KC) in the y  band, authority score (Auth) in the a  

band, and betweenness centrality (BC) in the S band. The next best results (seven out o f 

nine) came from using the inward forms o f degree (DC), eigenvector (EVC), PageRank 

(PRC), HITS, and harmonic (HC) centralities. For outward directed centralities, the best 

results came from degree centrality in the 6 frequency band (5Hz to 8Hz).

TABLE 4-4: NUMBER OF PATIENTS (OUT OF NINE) WHOSE FOCI EXHIBITED 
MAXIMUM VALUE AFTER AVERAGING CENTRALITIES ACROSS ALL 
SEIZURES OF EACH PATIENT FOR THE TOTAL ICTAL PERIOD

Directed Centrality Measures
Frequency DC EVC KC PRC HITS HC BC

Bands In Out In Out In Out In Out Auth Hub In Out
Delta 6 5 7 5 3 2 7 5 6 5 7 5 8
Theta 6 6 6 5 4 2 7 5 6 4 7 3 6
Alpha 7 3 7 3 5 1 6 3 8 4 6 3 6
Beta 6 2 7 2 6 1 4 3 6 2 6 2 6

Gamma 7 3 7 4 8 4 6 3 7 4 7 3 6
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Table 4-5 contained the first result where all nine patients had a focal electrode 

associated with maximum centrality value, which occurred using betweenness centrality 

over the S frequency band (1 Hz to 4Hz). This was an encouraging result as it supported 

the idea that centrality metrics may be useful for accurately and objectively localizing the 

epileptogenic focus. When using only clinical seizures 18 different measures showed 

improved results compared to when all seizures were used. In 11 instances, using all 

seizures lead to improved results, however, 9 o f the 11 results only lead to a maximum of 

six patients with accurately localized foci; the remaining two were from the measures 

where eight o f  nine foci were accurately localized (inward Katz and Authority scores).

TABLE 4-5: NUMBER OF PATIENTS (OUT OF NINE) WHOSE FOCI EXHIBITED 
MAXIMUM VALUE AFTER AVERAGING CENTRALITIES USING ONLY THE 
CLINICAL SEIZURES OF EACH PATIENT FOR THE TOTAL ICTAL PERIOD.

Directed Centrality Measures
Frequency DC EVC KC PRC HITS HC BC

Bands In Out In Out In Out In Out Auth Hub In Out
Delta 6 5 7 4 4 2 7 5 6 5 7 5 9
Theta 6 5 6 4 4 2 7 4 5 4 7 3 8
Alpha 7 3 7 3 6 1 6 3 7 2 6 3 6
Beta 7 2 7 2 7 1 6 2 5 2 7 2 7

Gamma 7 5 8 5 7 3 7 5 8 5 7 4 7

Overall, it seems that using only clinical seizures improved the success o f inward 

based centralities for localizing the epileptogenic focus. Furthermore, removal o f 

subclinical seizures resulted in the first instance where a given centrality measure 

successfully localized the epileptogenic focus in all nine patients, ultimately leading to 

the removal o f  subclinical seizures when trying to determine the epileptogenic focus.
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4.7 Final Results

In the previous subsection, overall results have only been shown where 

centralities were averaged across the entire ictal period. For each seizure this duration can 

vary, and as seen in previous results, dynamic behavior across the seizure can lead to 

averaging data that may not be related to the actual activity o f epileptogenic focus. The 

second averaging scheme, denoted “early ictal” or Ts ta r t , uses only the first three epochs 

o f each seizure, equivalent to nine seconds o f  seizure data, to localize the focus.

Figure 4-15 shows the CAuthP(Y, T star t) grand average authority score per 

electrode for all patients P1-P9 where individual centralities estimated over the y  

frequency band per epoch were averaged over the first three epochs o f each seizure and 

across clinical seizures per patient. We observe that for each patient, the site with the 

highest grand average o f  authority score was located within the clinically assessed focus. 

Appendix B provides similar figures for each centrality measure at each frequency band.
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Figure 4-15: Authority scores estimated from all clinical seizures for each o f nine patients 
with temporal lobe epilepsy.

The results o f the above analysis for all different inward and outward centrality 

measures employed per EEG frequency band and per patient are summarized in Table 

4-6. For all patients, all inward-based centrality metrics, except for the inward degree and 

PageRank centralities, estimated in the y band had the brain site that exhibited maximum 

grand average centrality value located within the clinically assessed epileptogenic focal 

region. The betweenness centrality metric had brain sites with maximum centrality value
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associated with focal regions after averaging over 0 and y frequency bands in eight out o f 

nine patients. Inward degree in the y band and hub scores in the a  band provided the next 

best results, having maximum grand average centrality values associated with the focal 

region in seven o f nine patients. Outward centrality metrics had maximum values found 

within the epileptogenic focus in at most six o f nine patients.

TABLE 4-6: NUM BER OF PATIENTS (OUT OF NINE) WHOSE FOCI EXHIBITED 
MAXIMUM VALUE AFTER AVERAGING CENTRALITIES USING ONLY THE 
CLINICAL SEIZURES OF EACH PATIENT FOR THE EARLY ICTAL PERIOD.

Directed Centrality Measures

Frequency DC EVC KC PRC HITS HC BC
Bands In Out In Out In Out In Out Auth Hub In Out

Delta 2 5 5 3 3 3 3 2 4 3 3 2 4

Theta 4 6 6 5 4 3 3 6 5 6 4 6 8
Alpha 5 6 6 6 5 6 6 3 6 7 4 5 4
Beta 5 4 5 2 5 4 5 4 5 4 6 2 4

Gamma 7 5 9 6 9 6 5 5 9 6 9 6 8

Considering a binomial distribution where a centrality metric either does or does 

not localize the focus in a patient and given the number o f analyzed electrodes used in each 

setup, the probability o f  correctly localizing the focus purely by chance in all nine patients 

is p =  2.017 x  10-6 . This probability value was found by taking the product o f the ratios 

o f the number o f  the clinically assessed focal electrodes over the number o f  total electrodes 

analyzed per patient. Furthermore, the result o f correctly identifying the focus in nine out 

o f  nine patients corresponds to a Jeffrey’s 95% confidence interval o f (7 6 .2 ,100 )% . [55], 

meaning that if  this methodology was replicated under the same parameters, 95% o f the 

replications should have success rates o f at least 76.2%.



CHAPTER 5

DISCUSSION

5.1 Conclusions

In this research investigation a novel framework for an objective and robust 

analysis o f  the ictal iEEG for localization o f  the epileptogenic focus in patients with 

epilepsy was developed. In particular, the measure o f Generalized Partial Directed 

Coherence was employed to estimate the strength o f the directional interactions between 

brain sites, selecting only the statistically significant interactions via surrogate data 

analysis. Centrality metrics were then measured from the constructed epileptic networks 

from a total o f 127 epileptic seizures in nine patients with focal (temporal lobe) epilepsy. 

From the results provided, several conclusions can be derived.

First, many clinical seizures present dynamic behavior over both time and 

frequency domains per brain site, and different dynamic behaviors are seen across 

seizures even in the same patient. To account for this dynamic behavior and reduce the 

presented variability, centrality values per brain site were averaged over predetermined 

time epochs and frequency bands for a given seizure, and focus localization results from 

seizures for a given patient were either averaged or underwent a majority voting scheme 

to evaluate the potential o f  a centrality metric to conclusively localize the focus in each 

patient.

Second, both directed and undirected networks were derived from GPDC.

Although undirected networks did show dynamic behavior over time and frequency, they

99
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did not provide clear centrality distinctions between focal and non-focal electrodes over 

time epochs but showed potential localization in certain frequency bands. When 

undirected centralities were compared to their directed centrality counterparts under the 

majority voting scheme, no individual directed centrality seemed to produce more 

promising results. However, when inward and outward centralities were taken together, 

directed centralities generally outpaced undirected centralities by a large margin.

Third, because 35 o f  the 127 seizures analyzed were subclinical seizures, it was 

important to determine if these seizures were also useful for focus localization. The 

centrality metrics taken over subclinical seizures did not present dynamic behavior over 

time, but centrality metrics per brain site did change over the frequency domain.

However, the removal o f subclinical seizures did markedly improve focus localization 

results.

Fourth, averaging schemes were considered over two sets o f epochs, the entire set 

o f  epochs for each ictal event and the first three epochs from each ictal event.

Considering only the early ictal epochs led to the best localization results where it was 

found that, during the early ictal period up to nine seconds after seizure onset, the 

epileptogenic focus in all patients exhibited inward-type centralities in the high frequency 

(y) band.

5.2 Relationship to Clinical/Neurophvsiological Evidence

It is widely accepted that the mechanism behind generation o f seizures is related 

to intermittent hyperexcitation o f  the epileptogenic focus [56], This hyperexcitation may 

be due to increased excitation from excitatory neurons, reduction in the activation o f 

inhibitory neurons, or reduced activation o f  intermediate excitatory/inhibitory neurons
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that control inhibitory/excitatory neurons, respectively [57], [58]. The focal region, being 

unstable, responds abnormally to excessive input activity from other brain regions, and 

may then manifest erratic behavior (seizures, interictal epileptiform activity, etc.). If the 

epileptogenic focus is “over-reacting” to input activity from other brain regions or, in 

other words, if  inputs from other brain sites have a great (destabilizing) effect on the 

focus, its inward centrality will be elevated with respect to the one o f other brain sites, 

especially at seizure onset. Alternatively, and given that focal seizures are believed to not 

occur abruptly but typically after a prolonged preictal period o f minutes to hours [59], 

[60], the observed high values o f  inward centrality at the beginning o f  seizures in the 

focus area may be due to the last “effort” o f its “surrounding at large” area to keep it 

under control in a similar scheme described in [61 ]—[64], Furthermore, the presence o f 

enhanced activity in the frequency ranges above 20Hz at the time o f seizure onset has 

been previously documented [58], [65], [66]. Our findings o f elevated inward centrality 

values in the focal region, especially in the high frequency band and the beginning o f 

seizures, are in agreement with the above scenarios and those prior frequency-related 

findings.

5.3 Comparison to Other Epilepsy Research using Brain Connectivity Analysis 

Studying epilepsy using brain connectivity analysis has been a major focus in the 

last decade, approaching the problem from many directions. For example, in order to 

understand the connectivity o f the brain in patients with temporal lobe epilepsy having 

epileptogenic foci in either the left or right hemisphere, James et al. [67] studied fMRl 

data from 23 control participants, seven patients with left-sided epileptogenic foci, and 

eight patients with right-sided epileptogenic foci. In this study, voxels o f fMRI data taken
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from participants in a wakeful resting state were subdivided into anatomical brain regions 

o f interest (ROI) to determine any differences present in the default mode network 

(DMN) o f each test group, using the ROI as the nodes o f the generated DMN. Through 

this process it was found that left and right focal patients had lower connectivity between 

regions o f interest compared to healthy participants. In particular, they found that patients 

had reduced connectivity between the hippocampus and parahippocampus in the 

hemisphere associated with the epileptogenic focus. Although this approach allowed for 

the focus to be lateralized to a single hemisphere with some degree o f  certainty, our 

method successfully not only lateralized but localized the focus.

In 2012, Tang et al. analyzed iEEG data using visibility graphs [68] and graph 

index complexity (GIC) [69] and found that GIC values were comparatively higher in 

signals associated with the epileptogenic focus [70]. This research took a different 

approach to the problem, treating each data point o f a signal as a node in a graph, with the 

GIC measuring connectivity complexity o f each signal to itself, ignoring interactions 

between multiple signals. Although this nonlinear approach did localize the focus in a 

very limited pool o f patients, this would not necessarily be considered brain connectivity 

analysis in the classical definition since interactions between brain regions was not 

considered, only the complexity at each brain site.

In an article published in 2014 by Bums et al. the dynamic behavior o f  seizure 

events were closely studied using graph theoretic techniques on iEEG data taken before, 

during, and after seizure events [32]. Using modifications to the coherence measure, 

weighted-undirected networks were generated over three second epochs, and the 

eigenvector centrality o f each node was estimated. Then, K-means clustering grouped the
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centrality metrics over time, identifying multiple distinct brain states occurring over the 

entire seizure event. Through this research it was discovered that the brain undergoes a 

relatively consistent sequence o f  brain states and that a subset o f nodes in the network 

associated with the epileptogenic focus are more isolated at the beginning o f the seizure 

event and grow increasingly connected towards seizure termination, which is in 

agreement with part o f  our own findings concerning the dynamic behavior seen in several 

clinical seizures in our dataset.

Determining the network via a connectivity measure and then analyzing the 

network relative to the epileptogenic focus has been applied before. In 2009, Wilke et al. 

used the connectivity measure Directed Transfer Function (DTF) on multivariate iEEG 

data from two patients with neocortical-onset epilepsy and found a correlation between 

the out-degree measured over ictal data and the clinical foci [29]. In their research, DTF 

was used to produce weighted-directed networks from six-second epochs o f the ictal data, 

and for both patients, only the 200 strongest connections were considered when finding 

the out-degree (commonly denoted the ‘outward strength’ when using weighted 

networks). Using the 200 strongest connections can be problematic. First, the two 

patients used in this study had different numbers o f electrodes used in their analysis with 

one patient having 32 electrodes (992 possible connections) and the other 56 electrodes 

(3080 possible connections), meaning a larger percentage o f  connections are considered 

when calculating the out-degree in the first patient. Second, choosing the 200 strongest 

connections is an arbitrary approach to generate the network. Instead, using an adaptive 

thresholding technique such as the surrogate data analysis used in our research ensures 

that only significant connections are considered when analyzing the networks.
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In 2011, Wilke et al. published results o f their continued research into focus 

localization for patients with neocortical-onset epilepsy, expanding their data to 25 

patients, but instead chose to analyze the estimated networks using betweenness 

centrality. Through this study, they found a decrease in betweenness centrality in the 

epileptogenic focus over the course o f the seizure in frequency spectra above 3Hz [71]. 

Again, DTF estimated networks were used to generate weighted-directed networks, but 

here, the inverse o f the DTF estimates were used to estimate betweenness centrality based 

on the notion that higher DTF connection strengths are associated with shorter path 

lengths. In that investigation, they chose to use the top 5% strongest connections 

produced from DTF estimation, which is an improvement over the arbitrary 200 strongest 

connections, but an adaptive thresholding technique could provide more accurate results. 

In our research, networks were generated from GPDC in the delta frequency band as 

well, which is where the maximum betweenness centrality averaged over the entire ictal 

period correlated to the epileptogenic focus.

In 2013, van Mierlo et al. published similar focus localization results, showing 

that out-degree estimated from brain networks generated from a modified DTF were 

highest in regions associated with the epileptogenic focus [31]. Spectrum-weighted 

adaptive directed transfer function (swADTF) was estimated using time-variant 

autoregressive (TVAR) models from epochs starting five seconds prior to seizure onset to 

20 seconds into the seizure event. One advantage o f their technique is that TVAR models 

allow networks to be generated for every time point. However, obtaining accurate results 

from this approach requires large amounts o f data. Furthermore, this research chose to 

obtain swADTF values by averaging over frequencies from 3Hz to 40Hz, thus losing the
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ability to study time and frequency domains simultaneously. Binary-directed networks 

were created using an adaptive threshold by comparing the estimated seizure data to 10 

randomly chosen 25 second interictal epochs estimated in the same manner. Adaptive 

thresholding allows for only significant connections to be considered in the network, but 

surrogate data analysis as used in our research determines significant connections using 

the data that is to be analyzed, and, therefore, avoids the use o f random or arbitrarily 

chosen data for the sake o f  comparison. Similar to our research, correlations between 

centrality estimates and the epileptogenic focus are primarily seen in earlier ictal stages.

For most o f the above described approaches for focus localization, DTF was used 

as the connectivity measure to create networks. Because DTF is a connectivity measure 

that also includes both direct and indirect connections, centrality estimates from the 

derived networks likely produce different outcomes, which may explain why these 

researchers found the high outward directed centrality to be associated with the 

epileptogenic focus. Furthermore, two o f  the above studies used patients with neocortical 

epilepsy and the epileptogenic focus being close to the brain surface, whereas our patients 

had mesial temporal lobe epilepsy with foci located in deeper brain structures, which 

could be another explanation for the differences in results. Lastly, the patients used in our 

research had electrodes placed symmetrically in both brain hemispheres, a more objective 

measure for focus identification if lateralization is unknown, which was not the case in 

the other studies. This could have significant impact on the networks that are generated.
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5.4 Challenges o f  Research

5.4.1 Network Connectedness and
Centrality Estimations

For many o f the centrality metrics that are related to eigenvalue decomposition o f 

the adjacency matrix used in this research, a structural characteristic known as graph 

connectedness can influence centrality estimation. This structural characteristic relates to 

walk traversals throughout the graph. From the perspective o f nodes o f the graph, node v  

is said to be reachable from node u if  there exists a walk from u to v.  For an undirected 

graph to have a connection, there must exist a walk between every pair o f nodes within 

the graph, or every node must be reachable from any other node. For directed graphs, 

graph connectedness is divided into two types. A directed graph is weakly connected if 

the underlying undirected graph is connected, and a directed graph is strongly connected 

if  every node is reachable from every other node in the directed graph; in other words, 

there exists at least one directed walk from every node u  to node v.  In matrix terms, the 

adjacency matrix o f connected undirected graphs and strongly connected directed graphs 

correspond to irreducible matrices, and the eigenvector centrality o f such graphs are 

clearly determined from the Perron-Frobenius Theorem. According to the Perron- 

Frobenius Theorem, an irreducible n x n  matrix A  with nonnegative elements has a real 

positive eigenvalue with multiplicity one and positive corresponding eigenvector, 

meaning that the matrix has a unique dominant eigenvalue with all positive elements in 

the eigenvector. However, if  the matrix is reducible, these qualities may not hold true. 

Challenges occur when the multiplicity o f the dominant eigenvalue is greater than one, 

where the eigenvector does not possess the abovementioned qualities, and, therefore, the 

eigenvector centrality o f the underlying network is then ambiguous.
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For this research, network connectedness was an issue when measuring certain 

centralities in networks derived from lower frequencies (within the S and 9 frequency 

bands). These problems occurred because o f a markedly lower edge density compared to 

higher frequency derived networks. In general, the edge density increased as the 

frequency used to generate the network was also increased, and, in some cases, networks 

generated from lower frequency GPDC estimations had too few significant connections 

to generate a connected network.

In order to solve these issues, a few possible approaches could be taken to 

alleviate estimation errors. First, a minimum number o f connections could be added to 

the network to make it strongly connected. However, the inclusion o f these connections 

would be artificial, and since each network is created from a methodical rule-set which is 

meant to represent the connectivity behavior o f the brain for a given epoch, inclusion o f 

too many artificial connections breaks down the integrity o f what the network represents. 

Second, the threshold/critical value chosen for the test o f  significance for edges in the 

network could be lowered sufficiently such that enough edges arise that make the 

network strongly connected. However, the amount o f  reduction needed to bring the 

critical value low enough to make the network strongly connected is unknown and would 

be unique for each network, so a consistent critical value for each network would not be 

feasible. Furthermore, reducing the critical value leads to an increased significance level, 

therefore, an increase in Type I error would occur, meaning that newly added edges into 

the network could in fact be false positives from a statistical standpoint. One could argue, 

however, that determination o f  the critical value needed to make each network strongly 

connected could be a metric o f brain behavior itself. With these issues arising from
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possible solutions to this problem, it may be the case that certain centrality metrics just do 

not perform ideally under non-ideal connectivity circumstances, which may support the 

use o f spectral centrality metrics such as PageRank centrality and the HITS algorithm 

which were designed to be used on directed networks. Lastly, with all the centrality 

estimation issues that may occur, and taking in consideration that the vast majority o f 

generated networks from this methodology did not suffer from these issues, averaging the 

centralities for each network over time epochs and frequencies should minimize the 

overall effect o f  these errors per patient.

5.4.2 Possible Patient Issues

Although a centrality metric was discovered which localized the epileptogenic 

focus in all nine patients studied, it is a very real possibility that certain issues can occur 

that were not present in our dataset, particularly different electrode placements and 

different forms o f  epilepsy, both o f which may drive the need for more patient-specific 

approaches.

For all nine available patient EEG data, the symmetrically positioned sets o f 

electrodes produced networks with nodes symmetrically spaced throughout the brain. As 

mentioned in the prepossessing section, whenever one electrode produced signals with a 

low signal to noise ratio, that signal as well as the signal from the contralateral electrode 

were removed from our analysis. This was done to ensure that no subset o f  electrodes 

dominated the network and produced possible biases during centrality estimation.

One obvious but important requirement for this methodology to succeed is that 

electrodes must be placed so that at least one electrode is located near the epileptogenic 

focus. If no electrode is located near the focus, our method will still consider the node
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having maximum centrality to be the epileptogenic focus, regardless. Unfortunately, if  

electrodes are placed away from the focus, our method will not localize the actual focus. 

Another issue relating to electrode placement, is the use o f high density electrodes placed 

on a region o f the brain. If this is the case, more than one spatially close electrodes would 

likely show higher connectivity. One possible solution could be to consider only a few 

sparsely distributed electrodes throughout the recorded regions to find the region to focus 

our attention. Then, the electrodes located in that specific area could be analyzed to gain 

an improved location o f the focus.

All o f the patients provided had some type o f mesial temporal lobe epilepsy. 

Because all patients had similar forms o f  epilepsy, our results may not necessarily be 

similar if the methodology is applied to patients with other types o f  epilepsy. This may 

occur because (1) the neurophysiological behavior o f the epileptogenic focus may behave 

differently when located in other brain regions or (2) since the general location o f the 

epileptogenic focus in Phase I monitoring drives the placement o f Phase II intracranial 

electrodes, electrode placement may be inadequate for our method to succeed. 

Furthermore, it was found that some patients in our dataset had a stronger tendency to 

associate the focus with outward centrality measures. This may point to a need to 

incorporate a patient specific element to our methodology, where the centrality metric 

used for each patient, or even for each seizure, is determined prior to connectivity 

analysis. O f course, such a selection process would require a much deeper understanding 

o f the neurophysiological dynamics o f  each seizure and the type o f epilepsy.
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5.4.3 The Gold Standard

For epileptic focus localization, the current gold standard, as stated in the 

introduction, requires a registered EEGer and epileptologist specialist to visually inspect 

the recorded EEG data and determine which electrode first exhibits initiation o f multiple 

typical seizures in a given patient. Using this information, the epileptologist forms a 

conclusion as to the location o f  the epileptogenic focus so that the affecting brain tissue 

can be resected. Even though our method was able to successfully localize the focus, the 

location o f the focus had to be initially given by the specialist so that our method could 

be tested and fine-tuned. Therefore, as is currently stands, our method may be able to 

reach the success rate o f  the gold standard but cannot surpass it. To determine if  this 

method could prove better than the standard, animal studies would need to be performed 

where animals are inflicted with some form o f epilepsy that can be clearly defined and 

understood. Then, EEG data could be collected from these test animals, and the accuracy 

o f our method could be compared to the accuracy o f  the gold standard by double blinded 

experiments.

5.5 Further Research 

One o f  the most powerful aspects o f brain connectivity analysis is its versatility. 

Making changes to a single part o f the methodology or the type o f  data studied has the 

potential to produce new and interesting results. Herein, potential research directions will 

be discussed, including variations to the networks derivation process, different network 

analysis methods, and other potential techniques that could be applied to this research.
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5.5.1 Data

As with any study, the type o f  data used has a major impact on the type o f tools 

that can be utilized for analysis. Intracranial EEG data, with its high temporal resolution 

and low spatial resolution, has been thoroughly discussed for epileptic focus localization. 

However, epilepsy research also includes other aspects, such as seizure detection, seizure 

prediction, and ictogenesis, all o f  which could benefit from studies looking at the network 

structure o f  the brain. Furthermore, the same research could be tested on different types 

o f epilepsy or even the similar types o f epilepsy with different electrode setups.

Due to its noninvasive nature, studies using scalp EEG data could be implemented 

on larger populations on a wide array o f topics. However, the lower signal to noise ratio 

present in EEG data promotes a big challenge to the researcher. Like scalp EEG data, 

fMRl data is noninvasive, and the high spatial resolution means that connectivity analysis 

studies with fMRI can study more precisely brain regions. However, fM RFs low 

temporal resolution limits certain aspects o f brain connectivity research such as analysis 

in the high frequency domain.

Recently interest has risen for use o f magnetoencephalography (MEG) in brain 

connectivity research since MEG has both high temporal and high spatial resolution. This 

increased level o f  resolution in both domains could provide deeper understanding o f the 

dynamics o f  the brain over many types o f functional characteristics. However, in addition 

to increased cost, movement artifacts are a major factor in MEG data quality, so our 

analysis within epochs with high quantity o f movement artifacts, like a clinical seizure, 

may not be feasible without appropriate preprocessing o f the data.

In principle, any research towards understanding the functional behavior o f the 

brain can employ our techniques o f measuring and analyzing brain connectivity.
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including Alzheimer’s disease, dementia, psychological disorders, or cognitive behaviors 

like learning and memory.

5.5.2 Network Derivation

To derive a connectivity network, many factors must be considered. In order to 

decide which connectivity measure to use, the researcher must decide on the use o f a 

linear or nonlinear measure, to consider connections between signals (bivariate case) or 

all signals simultaneously, direct connections or allow the inclusion o f indirect 

connections, and whether the measure should produce directed or undirected networks. 

GPDC, for example, is a linear measure considering multivariate connections o f all 

signals to produce directional connectivity networks including only direct connections. 

DTF is similar to GPDC but also includes indirect connections between nodes. 

Furthermore, GPDC and DTF fall into a category o f measures that require a model such 

as a multivariate autoregressive model to work, but other models, such as a time variant 

autoregressive model could be used to generate more networks over time. Nonlinear 

measures like mutual information, which produces undirected networks, or transfer 

entropy, which produces directed networks, are only able to consider bivariate 

interactions between signals, so cascade effects are typically included in these networks. 

Furthermore, those methods are computationally expensive. When computers and 

technology advance sufficiently to allow nonlinear methods to be applicable on large 

datasets and multiple signals, nonlinear connectivity measures may become the standard.

Lastly, more recently developed measures, such as cross frequency coupling 

(CFC), could be utilized to investigate how brain regions may connect/interact across 

frequencies.
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Thresholding is also an important aspect o f network reconstruction. Thresholding 

the connectivity matrix could be as simple as taking a percentage o f  the strongest 

connections or using an adaptive method such surrogate data analysis. Once thresholding 

is done the retained values o f the connectivity matrix can be utilized to produce a 

weighted network or the retained edges can be simplified into an unweighted network. O f 

course, it’s also possible to not threshold the connectivity matrix and analyze a fully 

connected weighted network, but this approach would ultimately disregard graph theory 

concepts.

5.5.3 Measures o f  a Network

Network analysis is a very large field o f  study, and many measures have been 

developed to understand the topological structure o f any given network. The choice o f 

network measure typically depends on what is being studied. For this research, centrality 

estimates were chosen since the desire was to locate a local brain region which is 

associated with the epileptogenic focus, and, o f  course, this set o f research did not cover 

every existing centrality measure. A multitude o f  centrality metrics have been devised 

across a bevy o f fields studying network science, and as these new metrics are defined, 

they can be embodied in our framework o f analysis. O f course, each newly proposed 

centrality measure should be studied prior to its employment to determine if  it makes 

sense in terms o f each application. For example, percolation centrality is a good centrality 

metric for studying the spread o f a disease through networks, but requires weights to be 

provided for each node in the network.

Centrality metrics measure node importance, but many other graph measures have 

been created that could study brain networks from different perspectives. For example,
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characteristic path length and global efficiency when applied to brain networks will 

measure brain’s integration, and have been used to study how anatomically different 

brain regions interact to process information. Measures o f brain segregation, such as 

modularity, clustering coefficient, and transitivity, are used to study the clustering 

behavior that occurs within separate brain regions. Together, the measures o f integration 

and segregation help create an image o f the global functional behavior o f the brain. 

Combining the clustering coefficient and characteristic path length o f the network 

provides a measure o f the small-world behavior o f  the brain, providing information about 

its global topological structure. For epilepsy research, such measures have been used to 

study the diagnosis o f epilepsy, and how the dynamics o f global topological behavior can 

be utilized for seizure detection or prediction. Even for focus localization this approach 

could be tried. For example, sets o f  spatially local electrodes could be treated as modules 

or subsets o f the network, and inter-regional and intra-regional behavior o f the modules 

could be studied.

5.5.4 Other Techniques

Additional techniques that one could use to improve or better automate the 

analytical process also exist. Change detection, or change point analysis, is a technique 

from time series analysis that locates the points in time where a dynamic system 

undergoes changes. These methods are commonly used in industrial applications to 

ensure that the manufacturing process continues to run smoothly. Many papers have been 

published on this concept for general purposes [72]—[74j as well as specifically for EEG 

data [75], by extracting specific features from time series data and pinpointing when 

those features undergo drastic changes using a technique such as cumulative sum
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(CUSUM) [76]. In a future extension o f our research, change detection could be an 

effective means o f  determining the different brain states that occur throughout the seizure 

event, much like the work performed in [32], however, instead o f  clustering a given 

feature o f the network over time, these techniques point out the time in which changes 

occur. With such a method, selection o f time windows for averaging relevant subsections 

o f seizure events could be automated and possibly improve the accuracy and recue the 

variance o f focus localization. Furthermore, the actual dynamic behavior o f individual 

seizures per patient could then be more deeply studied.

In recent years, another growing field o f network research is temporal network 

centrality, which considers the importance o f  network evolution and dynamics o f the 

behavior o f a given system [77]—[79]. Although our research allowed for the study o f 

network dynamics, the generation and analysis o f  network behavior only within specified 

EEG epochs (e.g. beginning o f seizures) constitutes a snapshot o f the behavior o f the 

network. The goal o f temporal network analysis is to minimize the intrinsic separation 

that arises between snapshots and, in doing so, provides a more accurate and continuous 

perspective o f  the dynamic behavior o f the network being studied. With the growing 

interest in temporal networks, metrics have been devised to better analyze networks 

under this perspective, and many o f which have been adapted from the traditional 

perspective o f  networks [80]—[83]. For example, broadcast and receiver centralities are 

evolutions o f the classic Katz centrality modified to consider the importance o f a node as 

its connections change over successive networks, thus measuring node importance 

through time, a centrality metric that may work for epileptogenic focus localization [81]. 

In general, many metrics currently use successive snapshots o f the network over time but,
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as this field o f  study grows, more connectivity measures will be developed to close the 

gap between successive networks, which could potentially lead to a new set o f techniques 

for the study o f seizure dynamics and epileptogenic focus localization.



APPENDIX A

FREQUENCY DEPENDENCE OF FOCAL 
LOCALIZATION USING GPDC

Although the majority o f this research involved estimations from the ictal events

presented in the EEG datasets, one study was performed that took the entire EEG dataset

into account. In this study, the iEEG recordings from four o f  the nine patients were

measured using GPDC. Table A -l provides relevant patient information for this study.

For consistency, the patient labels have remained the same as was in the rest o f  this

research.

TABLE A -l: PATIENT INFORMATION

Patient Electrode Setup
Total EEG 

Recording Duration 
(hours)

Number of 
Electrodes Utilized

Clinically Determined 
Focus/Foci

PI B 47 40 Left Amygdala (LA)

P2 B 34 40
Right Amygdala (RA) 

Right Hippocampus (RTD)

P6 A 49 28 Right Hippocampus (RTD)

P7 A 156 28
Left Subtemporal (LST) 

Left Hippocampus (LTD)

Using 10 second iEEG windows, a VAR model o f order p =  7 was estimated 

using the Vierra-M orf algorithm and GPDC values were estimated for integer frequencies 

from 0Hz to 50Hz in the same manner as shown in the methodology. Following

117
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estimation o f GPDC values between all possible pairs o f sites at each frequency, the sum 

o f inflows (IF) from the rest o f  the sites into a brain site i for successive epochs T o f 10 

second duration each was estimated per epoch T and frequency/as:

n

i F i ( T . n =  Y j CPDCi ^ T, n

where GPDC; _ I(7’, / ’) is the inflow into site i from site j  at epoch T and frequency / .  

Then, the brain site with the maximum inflow for each epoch T and frequency /  was 

found. Finally, histograms HI Ft ( / )  o f  the percentage o f  time that each site manifests the 

maximum inflow over all epochs T were constructed per frequency /  In previous work 

[52], by taking in consideration the full frequency band (i.e. H/F, not as a function o f/), 

the brain region that exhibited the most frequent maximum average inflow across the full 

frequency band related well with the clinically determined epileptogenic focus.

To ensure the statistical significance o f  the derived W/F, ( / ) ,  the G rubb's test for 

outliers [84] was used. Defined under the hypotheses H0:no outl iers  vs.

/ / :  a t  leas t  one outl ier ,  the one-sided test was performed at each frequency across sites 

to determine at which particular frequencies a site could be considered as the location o f 

the epileptogenic focus using a significance level o f a  =  0.01.

The results o f  our study are presented in Figure A -l (results normalized to 0 — 1). 

Patient PI (first row, left panel) shows increase in occurrence o f maximum inflows 

beginning at 5Hz at the focus (left amygdala - LA) that continually increases in 

prevalence as frequency increases beyond 5Hz. This is also observed in the left 

hippocampus (LH) beyond 25Hz. Statistically significant occurrence o f maximum 

inflows to LA (first row, right panel) begins at 10Hz with a gap between 17Hz and 23Hz.
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Significant occurrence o f maximum inflow is observed in the left hippocampus (LH) at 

32-33Hz.

Patient P2 clinical foci were in the right amygdala (RA) and right hippocampus 

(RH) (Table 1) and did show increased occurrence o f maximum inflow (second row, left 

panel): in the right amygdala at low frequencies up to 20Hz and the right hippocampus 

beyond 20Hz. Statistically significant occurrence o f maximum inflows (second row, right 

panel) occurs in the right amygdala for frequencies up to 18Hz and in the right 

hippocampus for frequencies greater than 28Hz.

Patient P6 (third row, left panel), an increase in the occurrences o f maximum 

inflow begin at 5Hz at the clinically determined focus (RTD). This increase in the 

occurrences o f maximum inflow continues at higher than 5Hz frequencies. Gradual 

increase o f occurrence o f  maximum inflow with frequency also occurs at one site o f the 

contralateral hippocampus (LTD), peaks at around 35Hz and then decreases. Statistically 

significant higher occurrence o f  maximum inflows (third row, right panel) are first 

detected at 10Hz at the focus. Detection o f statistically significant outliers is found 

intermittently as frequency increases. Gaps in significance occur when multiple brain 

sites show frequent maximum inflow.

For patient P7 (forth row, left panel), high occurrence o f  maximum inflow values 

was found in LST, LTD, and RTD. However, statistically (forth row, right panel), these 

were not deemed outliers, implying inability o f the algorithm to localize to one focal 

region at confidence level a  =  0.01 (due to the fact that LTD and RTD are both highly 

active). Although the clinically defined focus for patient P7 was defined to be the left 

subtemporal (LST) and left hippocampus (LTD) areas, patient P7 was the only patient o f
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these four patients who presented with clinical and subclinical seizures in the right 

hippocampus (RTD) as well.

In summary, in all patients, increased occurrence o f maximum inflow was 

observed at the clinically assessed foci at frequencies greater than 10Hz. For three o f four 

patients, significant occurrence o f maximum inflows was also found at the clinically 

assessed foci at frequencies greater than 10Hz.
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Figure A - l : Left panels: Percentage o f time over the duration o f the whole EEG recording 
(HIFi (f) values) that each brain site i exhibits maximum information inflow from the rest 
o f brain sites as a function o f EEG frequencies f. Blue color denotes infrequent and red 
color most frequent maximum inflow. Right panels: Illustration with red color o f  only the 
sites with statistically significant percentages o f  time with maximum inflow (HIFi (f)) as a 
function o f EEG frequencies f. Red arrows in right panels denote the clinically determined 
focus (foci) for each patient.



APPENDIX B

FINAL METHODOLOGICAL RESULTS FOR EACH 
CENTRALITY METRIC

Figures B-l through B-5 show the show the grand average inward degree 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, Q, a,  /?, and y  frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. In patient P9, inward degree centrality worked 

for all frequency bands, and for many patients, higher frequency bands provided higher 

centrality values in the epileptogenic focus compared to non-focal brain regions.
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Figure B -l: In-degree centrality averaged for delta frequencies (l-4H z) over early ictal
epochs for each patient.
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Figure B-2: In-degree centrality averaged for theta frequencies (5-8Hz) over early ictal 
epochs for each patient.
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Figure B-3: In-degree centrality averaged for alpha frequencies (9-12Hz) over early ictal
epochs for each patient.
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Figure B-4: In-degree centrality averaged for beta frequencies (13-30Hz) over early ictal 
epochs for each patient.
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Figure B-5: In-degree centrality averaged for gamma frequencies (31-5()Hz) over early
ictal epochs for each patient.
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Figures B-6 through B -10 show the show the grand average outward degree 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, 6, a,  /?, and y frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. As frequency increases, we see the focal 

electrodes for patients P2 through P7 have markedly higher centrality. However, in 

patient P3, non-focal electrodes are higher, causing our selection process to fail to 

localize the focus in this patient. In patient P8, centrality values in the high frequency 

regions are dominated by the right subtemporal electrodes which are relatively close to 

the focal region (right hippocampus), and in patient P9, outward degree centrality is 

generally lower in the focal electrodes compared to the non-focal electrodes in each 

frequency band.
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Figure B-6: Out-degree centrality averaged for delta frequencies (M H z )  over early ictal
epochs for each patient.
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Figure B-7: Out-degree centrality averaged for theta frequencies (5-8Hz) over early ictal 
epochs for each patient.
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Figure B-8: Out-degree centrality averaged for alpha frequencies (9-12Hz) over early ictal
epochs for each patient.



127

FI - OvftUg rte  - 0 F2  • Ovtt!cgrc< • 0 PJ • On f tk f  r te  - 0

M|H 1^4 i | | |
LA L T D L O P L F  RA R TD IRO FR F °  LA U t iL O P  LF RA R T O tO flR F  °  LTD  1ST  LOF RTD  RST [ ROF

P4 - O v td q rN  - 0   ̂ P5 - O a td c fm  - 0  P* - O w ftk fm  - 0

kjy
I T D  LST LOF RTD  RST ROF LTD  LST LOF RTD  RST ROF IT D  1ST  i O F  RT D  R S T 'R « *

P7 - O atd cg m  • 0  PR - O t t f c f m  - 0   ̂ P9 » OvNkgrvc > 0

I T I )  1ST I O F  R T !) RST ROF I T D  1ST  I O F R n »  RST ROF l i t )  1ST I OF R I D  RST i ROF

Figure B-9: Out-degree centrality averaged for beta frequencies (13-30Hz) over early ictal 
epochs for each patient.
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Figure B-10: Out-degree centrality averaged for gamma frequencies (31-50Hz) over early
ictal epochs for each patient.



128

Figures B-l 1 through B-l 5 show the show the grand average inward eigenvector 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, 9, a, /?, and y  frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. In lower frequency bands, the centrality within 

each set o f  electrodes is sporadic. However, for many o f these patients the electrodes 

within the focal region are in general elevated compared to non-focal electrodes, but the 

fact remains that one non-focal electrode has maximum centrality, causing focus 

localization to fail. For higher frequency bands, the electrodes within the focus remain 

elevated compared to non-focal electrodes, and fewer non-focal electrodes are markedly 

higher than others in their electrode set. This trend continues in the gamma frequencies 

(Figure B-l 5) where all patients have maximum centrality at one o f the focal electrodes.
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Figure B-l 1: Inward eigenvector centrality averaged for delta frequencies (M H z ) over
early ictal epochs for each patient.
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Figure B-12: Inward eigenvector centrality averaged for theta frequencies (5-8Hz) over 
early ictal epochs for each patient.
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Figure B-13: Inward eigenvector centrality averaged for alpha frequencies (9-12Hz) over
early ictal epochs for each patient.
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Figure B-14: Inward eigenvector centrality averaged for beta frequencies (13-30Hz) over 
early ictal epochs for each patient.
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Figure B-15: Inward eigenvector centrality averaged for gamma frequencies (31-50Hz)
over early ictal epochs for each patient.
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Figures B-16 through B-20 show the show the grand average outward eigenvector 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, 9, a, /?, and y  frequency bands, respectively. The first three epochs o f  each 

clinical seizure were averaged per patient. For outward eigenvector centralities at lower 

frequencies, no set o f electrodes seems markedly higher than other sets. In higher 

frequencies, the focal electrodes do become elevated, with maximum outward 

eigenvector centrality located at the focal electrodes in patients P2 through P7. In patients 

PI and P8, the centrality o f the focal electrodes is generally outpaced by other nearby 

electrode sets in the gamma frequency band, and for patient P9, centrality for focal 

electrodes seems markedly lower than most other electrodes.
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Figure B-16: Outward eigenvector centrality averaged for delta frequencies (M H z )  over 
early ictal epochs for each patient.
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Figure B-17: Outward eigenvector centrality averaged for theta frequencies (5-8Hz) over 
early ictal epochs for each patient.
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Figure B-18: Outward eigenvector centrality averaged for alpha frequencies (9-12Hz) over
early ictal epochs for each patient.
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Figure B -19: Outward eigenvector centrality averaged for beta frequencies (13-30Hz) over 
early ictal epochs for each patient.
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Figure B-20: Outward eigenvector centrality averaged for gamma frequencies (31-50Hz)
over early ictal epochs for each patient.
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Figures B-21 through B-25 show the show the grand average inward Katz 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, 6, a , /3, and y frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. Figures B-21 and B-22 show good examples o f 

issues that arise because o f  network connectivity as discussed in Subsection 5.4.1. Here, 

relatively lower edge density leads to networks that may not be weakly connected, which 

ultimately leads to issues with Katz centrality estimation. For networks derived from 

higher frequency bands, edge density is relatively higher leading to more well connected 

networks, which reduces the risk that networks estimation issue will occur that negatively 

affect our focus localization methodology. For gamma frequencies (Figure B-25), these 

issues have become minimal, leading to successful focus localization for each patient.
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Figure B -21: Inward Katz centrality averaged for delta frequencies (1 -4Hz) over early ictal
epochs for each patient.
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Figure B-22: Inward Katz centrality averaged for theta frequencies (5-8Hz) over early ictal 
epochs for each patient.
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Figure B-23: Inward Katz centrality averaged for alpha frequencies (31-50Hz) over early
ictal epochs for each patient.
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Figure B-24: Inward Katz centrality averaged for beta frequencies (13-30Hz) over early 
ictal epochs for each patient.
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Figure B-25: Inward Katz centrality averaged for gamma frequencies (31 -50Hz) over early
ictal epochs for each patient.
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Figures B-26 through B-30 show the show the grand average outward Katz 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, 8, a ,/? , and y  frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. Similar to the issues seen in inward Katz 

centrality, lower frequency networks lead to estimation issues that negatively affect focus 

localization in the delta and theta frequency bands, and again, these issues disappear in 

higher frequency bands where higher edge density leads to more connected networks. 

However, outward Katz centrality does not have the same success as inward Katz 

centrality in the higher frequency bands. In the gamma frequency (Figure B-30) focus 

localization fails for patients P I, P8, and P9.
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Figure B-26: Outward Katz centrality averaged for delta frequencies (l-4H z) over early 
ictal epochs for each patient.



LA L T D IO R L F  RA R TD W O FRF

P4 ■ K id  • Oat • #

LA U H .O P L F  RA R T tH O f lR r

K, P S -K a t t-O a t-P

L m  LSI  LOF R n >  RST RtR

t% - K au  - Oat - $

 ̂11 _  u  i
I T D  1ST I O F  RTD RST ROF

P7 - KaU ()al l

1 TT> 1ST I O f  RTD RST ROF

PR - KaU - Oat - P

LTD LST I O F  RTD RST RtIf-

PR- KaU -O a t-P

I T D  IST  I O F  RTD RST ROT I I I )  I M  I OF R I D  KSI  ROF I I I )  I M  t i l l  K ID  RSI ROf

Figure B-27: Outward Katz centrality averaged for theta frequencies (5-8Hz) over early 
ictal epochs for each patient.
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Figure B-28: Outward Katz centrality averaged for alpha frequencies (9-12Hz) over early
ictal epochs for each patient.
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Figure B-29: Outward Katz centrality averaged for beta frequencies (13-30Hz) over early 
ictal epochs for each patient.
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Figure B-30: Outward Katz centrality averaged for gamma frequencies (31-50Hz) over
early ictal epochs for each patient.
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Figures B-31 through B-35 show the show the grand average inward PageRank 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the S, 6, a, ft, and y  frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. In higher frequencies, patients P2 and P9 

shows markedly higher centrality values compared to non-focal electrodes, but in 

general, focus localization does not provide consistent localization results for other 

patients.
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Figure B -31: Inward PageRank centrality averaged for delta frequencies (1 -4Hz) over early 
ictal epochs for each patient.
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Figure B-32: Inward PageRank centrality averaged for theta frequencies (5-8Hz) over early 
ictal epochs for each patient.
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Figure B-33: Inward PageRank centrality averaged for alpha frequencies (9-12Hz) over
early ictal epochs for each patient.
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Figure B-34: Inward PageRank centrality averaged for beta frequencies (13-30Hz) over 
early ictal epochs for each patient.
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Figure B-35: Inward PageRank centrality averaged for gamma frequencies (31 -50Hz) over
early ictal epochs for each patient.
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Figures B-36 through B-40 show the show the grand average outward PageRank 

centrality per electrode for all patients P1-P9 where individual centralities were estimated 

over the 5 ,8, a, /?, and y frequency bands, respectively. The first three epochs o f each 

clinical seizure were averaged per patient. For higher frequencies, patients P3, P4, P6, 

and P7 show comparatively higher centrality values compared to non-focal electrodes, all 

o f which have a maximum centrality in the focal electrodes, leading to successful focus 

localization in these patients. Furthermore, these mentioned patients including patient P5 

seem to have centrality results that are complementary to what is seen in inward 

PageRank centrality.
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Figure B-36: Outward PageRank centrality averaged for delta frequencies (l-4H z) over
early ictal epochs for each patient.
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Figure B-37: Outward PageRank centrality averaged for theta frequencies (5-8Hz) over 
early ictal epochs for each patient.
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Figure B-38: Outward PageRank centrality averaged for alpha frequencies (9-12Hz) over
early ictal epochs for each patient.
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Figure B-39: Outward PageRank centrality averaged for beta frequencies (13-30Hz) over 
early ictal epochs for each patient.
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Figure B-40: Outward PageRank centrality averaged for gamma frequencies (31-50Hz)
over early ictal epochs for each patient.
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Figures B-41 through B-45 show the show the grand average authority scores 

from the HITS algorithm per electrode for all patients P1-P9 where individual centralities 

were estimated over the S, 9, a, /?, and y frequency bands, respectively. The first three 

epochs o f each clinical seizure were averaged per patient. Like many o f the previously 

shown centrality measures, certain patients show comparatively higher centrality values 

in the focal electrode in the lower frequency bands, and these electrodes gain 

comparatively higher centrality values than non-focal electrodes in higher frequency 

networks. In this case, authority scores lead to successful focus localization in all 

observed patients.
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Figure B-41: Authority scores averaged for delta frequencies (M H z )  over early ictal
epochs for each patient.
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Figure B-42: Authority scores averaged for theta frequencies (5-8Hz) over early ictal 
epochs for each patient.
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Figure B-43: Authority scores averaged for alpha frequencies (9-12Hz) over early ictal
epochs for each patient.
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Figure B-44: Authority scores averaged for beta frequencies (13-30Hz) over early ictal 
epochs for each patient.

FI • A itkarily Score • 7 FI - Aotfcority Score • 7

LA L ID L O FIL L  RA IRTDIROFRF 

F4 • Aotfcority Score - 7

LA L T D tO F L F  RA R T W O H  RF

W • Aotfcority Score • 7

LTD  LST LOF RTD  RST ROF

F7 • Aotfcority Score - 7

LTD  LST LO F RTD  RST ROF

F t - Aotfcority Score • 7

F3 • Aotfcority Score • 7

LTD  LST LOI R ID  R S ! ROF

F t - Aotfcority Score • 7

M l )  1ST I O F  RTD R S I KOF I FI) 1ST  I O F  RTD  RST ROF

LTD  LST LOF RTD  RST ROF

F t • Aotfcority Score • 7

iLit
1 i n  1 s r  1 o f  R e n  r s t  r o f

Figure B-45: Authority scores averaged for gamma frequencies (31-50Hz) over early ictal
epochs for each patient.
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Figures B-46 through B-50 show the show the grand average hub scores from the 

HITS algorithm per electrode for all patients P1-P9 where individual centralities were 

estimated over the 6 ,0 , a, /?, and y frequency bands, respectively. The first three epochs 

o f each clinical seizure were averaged per patient. In patients P3, P6, and P7, focus 

localization based on hub scores is successful in all frequency bands except for the delta 

band, and for patient P5, focus localization is successful in all frequency bands except for 

the beta band. For patient P4, focus localization is successful at each frequency band.
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Figure B-46: Hub scores averaged for delta frequencies (1 -4Hz) over early ictal epochs for
each patient.



150

PI -H ab  S ta rt  *0 ^  P 2 -H a b S e a r t-0  P 3• H ubS cort♦ 9

iLiki
LA L T D L O flL F  RA R  T O R  O F RF LA  L T D L O P L F RA RTE R O R R ! LTD  LST LOF RTD  RST ROF

( P4 • l la b  Scare • t  i|U  M  - Hab Scare - 0 ^  P* - Flub Score - #

i l ^ J I ^  jU L h I i ^  J J L  j
. . . ■ h H |  . . ■ ■  J U A y l

L TD  LST LOF RTD  RST ROF °  LT D  LST I O F  RTD  RST ROF "  I T D  LST I O F RTD  RST ’ ROF

M P? • Hab Score* 0 ( PR - H ab Score • 0 PR - Hab Score - $

Mlifc . ill IIMlAll
I T D  [S T  IO F  RTD RST ROF "  I TD  IS T  IO F  RTD RST R oF  "  I I'D IS T  IO F  RTD  R S T IR O F

Figure B-47: Hub scores averaged for theta frequencies (5-8Hz) over early ictal epochs for 
each patient.
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Figure B-48: Hub scores averaged for alpha frequencies (9-12Hz) over early ictal epochs
for each patient.
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Figure B-49: Hub scores averaged for beta frequencies (13-30Hz) over early ictal epochs 
for each patient.
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Figure B-50: Hub scores averaged for gamma frequencies (31-50Hz) over early ictal
epochs for each patient.
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Figures B-51 through B-55 show the show the grand average inward harmonic 

centrality values per electrode for all patients P1-P9 where individual centralities were 

estimated over the S, 9, a, (3, and y  frequency bands, respectively. The first three epochs 

o f each clinical seizure were averaged per patient. For all patients except patient P9, the 

variation o f inward harmonic centrality values decreases for higher frequency spectra, 

with the maximum value moving into the epileptogenic focus. In the gamma band, the 

focus is successfully localized in all patients based on our methodology.
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Figure B-51: Inward harmonic centrality averaged for delta frequencies (1 -4Hz) over early
ictal epochs for each patient.
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Figure B-52: Inward harmonic centrality averaged for theta frequencies (5-8Hz) over early 
ictal epochs for each patient.
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Figure B-53: Inward harmonic centrality averaged for alpha frequencies (9-12Hz) over
early ictal epochs for each patient.
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Figure B-54: Inward harmonic centrality averaged for beta frequencies (13-30Hz) over 
early ictal epochs for each patient.
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Figure B-55: Inward harmonic centrality averaged for gamma frequencies (31-50Hz) over
early ictal epochs for each patient.
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Figures B-56 through B-60 show the show the grand average outward harmonic 

centrality values per electrode for all patients P1-P9 where individual centralities were 

estimated over the S, Q, a, /?, and y  frequency bands, respectively. The first three epochs 

o f each clinical seizure were averaged per patient. For higher frequency bands, patients 

P3 through P7 show relatively higher outward harmonic centrality values in the set o f 

focal electrodes compared to non-focal electrodes with the gamma band showing 

successful focus localization based on our methodology for these patients. For patient P9, 

the opposite behavior is seen in outward harmonic centrality values for increasing 

frequency bands as compared to the behavior o f inward harmonic centrality with the 

focal electrodes having relatively smaller outward centrality values than the non-focal 

electrodes as frequency increases.
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Figure B-56: Outward harmonic centrality averaged for delta frequencies (l-4H z) over
early ictal epochs for each patient.
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Figure B-57: Outward harmonic centrality averaged for theta frequencies (5-8Hz) over 
early ictal epochs for each patient.
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Figure B-58: Outward harmonic centrality averaged for alpha frequencies (9-12Hz) over
early ictal epochs for each patient.
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Figure B-59: Outward harmonic centrality averaged for beta frequencies (13-30Hz) over 
early ictal epochs for each patient.
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Figure B-60: Outward harmonic centrality averaged for gamma frequencies (31-50Hz)
over early ictal epochs for each patient.
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Figures B-61 through B-65 show the show the grand average betweenness 

centrality values per electrode for all patients P1-P9 where individual centralities were 

estimated over the S, 6, a, /?, and y frequency bands, respectively. The first three epochs 

o f each clinical seizure were averaged per patient. For patients P2 and P9, betweenness 

centrality in the delta frequency band shows markedly higher values in the focal 

electrodes compared to non-focal electrodes, but for higher frequency bands, this 

prominent behavior seems to is lost for patient P9 and remains for patient P2. For patients 

P3 through P7, betweenness centrality becomes relatively higher in focal electrodes 

compared to non-focal electrodes as frequency increases. For patient P I, relative 

betweenness values between electrodes does not seem to change dramatically for any 

frequency band.
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Figure B -61: Betweenness centrality averaged for delta frequencies (1 -4Hz) over early ictal
epochs for each patient.
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Figure B-62: Betweenness centrality averaged for theta frequencies (5-8Hz) over early ictal 
epochs for each patient.
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Figure B-63: Betweenness centrality averaged for alpha frequencies (9-12Hz) over early
ictal epochs for each patient.
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Figure B-64: Betweenness centrality averaged for beta frequencies (13-30Hz) over early 
ictal epochs for each patient.
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Figure B-65: Betweenness centrality averaged for gamma frequencies (31-50Hz) over
early ictal epochs for each patient.
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