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ABSTRACT

In this dissertation, two numerical methods with high order accuracy, Spectral 

Element Method (SEM) and Discontinuous Galerkin Finite Element Method (DG-FEM), 

are chosen to solve problems in Computational Fluid Dynamics (CFD). The merits o f 

these two methods will be discussed and utilized in different kinds o f  CFD problems. The 

simulations o f  the micro-flow systems with complex geometries and physical 

applications will be presented by SEM. Moreover, the numerical solutions for the 

Hyperbolic Flow will be obtained by DG-FEM. By solving problems with these two 

methods, the differences between them will be discussed as well.

Compressible Navier-Stokes equations with Electro-osmosis body force and slip 

boundary conditions are solved to simulate two independent models. The third order 

Adams-Bashforth method on time splitting, and up to the eighth order SEM on space 

analysis are utilized in our cases o f  the electro-osmosis flow (EOF). To solve the body 

force caused by EOF, simplification o f the Poisson-Boltzmann is discussed in details. 

Results show that SEM can clearly simulate the electric double layers in EOF. Compared 

with the finite element method, which uses h-refmement to increase resolution, SEM has 

obvious advantages by using hp-refmement.

The other case for SEM is the simulations o f drug delivery through the micro 

needle. The drug flowing inside the needle is treated as a micro-flow system with 

complex geometry, while the process o f  drug fluxing in human skin is developed as in the



case o f  CFD problem in porous media. Incompressible Navier-Stokes equations and 

Darcy-Brinkman equations are solved to simulate the drug flowing inside the needle and 

diffusing in human skin, respectively. Results are compared with COMSOL simulation, 

experimental data, and numerical solutions from Smoothed Particle Hydrodynamics 

(SPH). The high order DG-FEM method is chosen to do research on Hyperbolic Flow.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

The errors in numerical methods are defined by two sources: round-off error and 

truncation error. Since round-off error is generated by computer rounding o f  decimal 

quantities, it happens to all computer based numerical analysis. Moreover, truncation 

error is the difference between the numerical solution o f partial differential equations 

(PDEs) and their exact quantities. To reduce this truncation error and get a higher order 

o f  accuracy, there are three main approaches: h-refinement, p-refmement, and hp- 

refinement. The h-refinement stands for introducing more elements while fixing the order 

o f interpolating polynomials. As an alternative, the p-refinement [ 1 ] stands for increasing 

the order o f  the basis functions and keeping the number o f  sub domains. Then by 

combining the advantages o f  both refinements, an hp-version o f  the finite element is 

implemented by [2], In this version, the number o f  elements and order o f  the basis 

functions can be increased simultaneously.

There are many numerical methods that can be used to solve problems o f 

computational fluid dynamics. The Finite Difference Method (FDM), one o f  an h- 

refmement method, is treated as the dominant approach to get the numerical solution for 

PDEs [3], Deriving from Taylor’s polynomial, FDM is efficient to obtain a high 

resolution scheme by requiring a larger number o f  elements. Moreover, the Compact

1



Finite Difference Method (CFDM) [4-7] is frequently chosen to solve problems based on 

Navier-Stokes equations, and hyperbolic equations as well. The first order accuracy can 

be obtained by both forward and backward difference formulae, and the second order o f 

accuracy can be achieved by the central difference formulae.

The Finite Element Method (FEM), developed from the variation method, is also 

a kind o f  h-refinement method. The merits o f  FEM are discussed in [8, 9] as: Flexibility 

for complex geometry and physics, suitable for materials with different properties, clear 

representation o f  whole simulation and critical areas. This method was first introduced to 

CFD problems in the 1970s [10, 11]. Till now, it becomes a basic algorithm for most o f 

the numerical simulation software such as COMSOL and ANSYS. However, FEM is 

limited by its availability in h-refinement. To achieve higher resolution, the mesh o f  the 

model needs to be refined, that is to say, more elements will be introduced to critical 

areas.

Besides methods o f  h-convergence, spectral method, a formulation o f  h-version, 

was developed by [1] in 1977. In this method, the tensor product o f  one-dimensional 

discretizations in different coordinate axles is formulated to build matrices for m ulti­

dimensional simulations. Then this method was introduced to CFD in 1988 [12] by 

Canuto et al. Simultaneously, four years before Canuto’s research, Patera [13] in his 

paper illustrated the Spectral Element Method (SEM). In [14-16], the numerical solution 

o f  the Navier-Stokes equations is stated in detail. Compared with the FEM, the SEM 

spans tensor product space by nodal basis functions supporting inside elements associated 

with Gauss-Lobatto points. Because o f  these zero points on both ends o f the integration 

domain, it will be much easier for SEM to impose boundary conditions. Due to its high
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performances in simulations o f  complex geometries and physics, SEM becomes a popular 

choice for numerical analysis o f  CFD [17-20].

However, the SEM has its limitation. In [21], it claims that due to the lack o f 

upwind treatment, the SEM may carry out unstable results for strong hyperbolic problems. 

In this situation, the Finite Volume Method (FVM) [22], a formulation with close relation 

to FDM, is introduced. This method provides a good way to deal with strong advection 

problems, meanwhile, retains flexibility for complex geometries. In FVM, it images the 

numerical flux entering the volume surrounding each nodal point on the mesh identically 

leaving its contiguous volume. So the FVM is conservative, and integrates the solution by 

the cell’s average. Nevertheless, this method is still short o f  high-order accuracy and 

hp-adaptivity. This drawback had continuously remained, until a genius opinion about the 

combination o f  the FEM and the FVM came out. In [23-27], Discontinuous Galerkin 

Finite Element Method (DG-FEM) is created to satisfy the requirement o f high-order 

accuracy as well as the flux similar to the FVM. The Table 1-1 shows the overall 

comparison o f those methods mentioned in this section. A “Y” mark means the method is 

suitable for holding such kind o f models, while an “N” mark stands for a short-coming, 

and an “NF” indicates that the method, with some adjustment, can solve these problems, 

but when compared with the other methods on the list, it is not for the first choice.



4

Table 1-1: Comparison o f  the FDM, FEM, SEM, FVM and DG-FEM.

Complex

Geometries

Complex

Physics

High-order

Accuracy

Explicit semi­

discrete form

Conservation

Laws

Elliptic

Problems

FDM N Y Y Y Y Y

FEM Y Y Y N NF Y

FVM Y Y N Y Y NF

SEM Y Y Y Y NF Y

DG-
Y Y Y Y Y NF

FEM

1.2 O bjectives

The objective o f  this dissertation is to solve some CFD problems using the SEM 

and the DG-FEM. Based on our self-generated codes, the main goals are indicated in 

details by the following:

1. Show the accuracy o f  our codes. By comparison our numerical solution with 

exact solution or solution from the published paper, the accuracy o f  our codes 

will be proved.

2. Implement the miu-flow code with complex geometries. The compressible 

Navier-Stokes equations with Electroosmosis body force will be solved in 

complex geometries.

3. Provide the numerical simulation o f  the Micro-needle with the SEM. The 

model o f  the Micro-needle will be built and simulated by solving Navier- 

Stokes equations with slip boundary conditions and Darcy-Brinkman
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equations. The results will be compared with the one from COMSOL and the 

Smoothed Particle Hydrodynamics method.

4. Illustrate the advantages and drawbacks o f  the DG-FEM. The numerical 

solution o f  a particular model o f  CFD problem will be compared with the 

SEM.

1.3 Outline o f Dissertation

The Chapter 1 introduces the motivation and some overall background knowledge 

o f  this research work. The research goal and the structure o f  this dissertation are indicated. 

The Chapter 2 gives a brief literature review covering the background required for this 

dissertation: the SEM and the DG-FEM. The Chapter 3 gives two three-dimensional 

cases o f  the environmental flow presented to show the high order accuracy o f  the SEM 

for solving the Navier-Stokes equations. The Chapter 4 describes the modeling o f 

electroosmotic flow by the SEM. Here, the slip boundary condition and body force 

caused by electrical potential are imposed to the two-dimensional Navier-Stokes 

equations. The Chapter 5 describes a three-dimensional simulation o f  medical application. 

The result is compared with the reference data and our discrete modeling. The Chapter 6 

gives simulation o f the CFD problems with high Reynolds number, the DG-FEM scheme 

is chosen and discussed. The Chapter 7 concludes the results o f  the dissertation, and 

recommends some future works.



CHAPTER 2

LITERATURE REVIEW

2.1 Spectral Element Method

In 1984, the SEM was first introduced by [13], who combined the generality o f 

the FEM with h-refinement with the high order accuracy o f  the spectral method to solve 

Laminar flow in a channel expansion, and further developed into the CFD problems by 

[15,28-32],

Since the SEM is an hp-refinement approach, the convergence o f simulation can 

either be achieved by introducing finer meshes or by increasing the polynomial order o f  

the basis functions. Figure 2-1 is the 15th order accurate numerical solution o f two- 

dimensional Helmholtz equation with Dirichlet boundary condition. The original 

equation is set as Uxx + Uyy + U = f, and the exact solution is U = e cos (x) + cos (y>.

6
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0)3
£

Ia>
E3
Z

0.5

1.5-0.5 0.5
-0.5

X

Figure 2-1: The SEM solution o f two-dimensional Helmholtz equation with Dirichlet 
boundary condition.

F igure 2-2 is the log-scale o f L2 error o f  Helmholtz equation with p-refmement 

and h-refinement, respectively. From this figure, it seems that, due to the round-off 

error, when the order o f  the basis functions increases to eight and higher, the 

accumulated error will not decrease any more. At the same time, it shows that the 

results get convergent faster in the way o f p-refinement than h-refinement. Moreover, 

from the line o f  20 elements, we can find that the more elements we have, the accuracy 

limitation due to the round-off error will show earlier. In the case with five elements, 

the log-scale o f L2 error will not reduce until the 11th order o f Legendre polynomials; 

however, when the number o f  elements increases to 20, the convergent result appears at
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the fifth polynomial order.

-*—  5 elements with h-convergence 
-a— 10 elements with h-convergence 
■e— 15 elements with h-convergence 
H—  20 elements with h-convergence

8<n
8*
C
Urn

2<D
3

-10

-12

-14

Polynomial order of basis functions

Figure 2-2: The h-convergence test with increasing number o f  elements.

2.1.1 Basis Function

There are two types o f basis function in the SEM -  the modal basis and the nodal 

basis. Unlike the modal SEM, which is based on the Lobatto polynomials, the Lagrange 

polynomials associated with the Gauss-Lobatto-Legendre or Chebyshev quadrature nodes 

are defined as the basis functions o f the nodal SEM [33]. The solutions that come from 

the modal scheme is the summation o f polynomials multiplied by the modal coefficients. 

Moreover, for nodal scheme, the solutions are directly defined on multiple nodes. That is 

to say, the solution can be immediately obtained by multiplying the right hand side o f  the



9

equation by the inverse o f  the system matrix. The basis functions o f  the modal SEM are 

shown in Figure 2-3 as an example.

\ M

2-t?- •*?? .

’ A  ’’ 
■TAG ■!

Figure 2-3: The Lobatto polynomials as the basis functions o f  the modal SEM.

For the modal basis, the nth order Jacobi polynomial is represented by:

C " 0 0  =  (1 -  x ) - “ ( l  +  x ) - ^  [(1 -  x ) - d  +  x)P+"]
Eq. 2-1

ot, P >  - 1 ,

then for the Legendre polynomial ( a  =  P =  0) -» Ln(x) =  P°’°, and for the Chebychev 

polynomial ( a  =  p =  -> Tn(x) = L ^ ~ P n 2’ 2(x).

For the nodal basis, the nth order o f  Lagrange polynomial (a  =  P =  0) is represented by:
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w hen x ^  Xj
Eq. 2-2

w hen  x =  xi

In my research, the nodal SEM is chosen with Legendre polynomials. The 

recursion relation between Jacoby polynomials o f  different orders is indicated as below, 

and the Matlab code for this part is shown in Appendix A.

a„ = 2(n +  l) (n  +  a  +  p +  l)(2 n  + a  + (3),

a„ = (2n + a  + p + l ) ( a 2 -  p2),

a^ = (2n + a  + P)(2n +  a  + p +  l)(2 n  + a + p +

2),

a£ = 2(n +  a)(n  + p)(2n + a  + p +  2).

=  bS(x)P„“-p(x) +  bJ(x)P„“? ,(x )  

bJi(x) =  (2n  +  a  +  P ) ( l  -  x2)

In Eq. 2-2, we suppose that Pn(x) is the polynomial o f order n with zeros at the (n+1) 

nodal points Xj (j = 0 ,..., n-1). The zeros-finding algorithm is applied to the equation:

Simultaneously, the first derivative o f P“'^(x j) is achieved as the following, and the 

Matlab code is shown in Appendix B.

Eq. 2-4

b£(x) =  n [a  -  P -  (2n  +  a  +  P)x] 

bn(x) =  2 (n  +  a ) (n  +  P).



The Matlab code for Eq. 2-4 is shown in Appendix C. Moreover, since the Gauss- 

Lobatto integration requires the nodal points including both ends o f  the integration 

interval, which means that for the standard interval (the values o f  x are defined between - 

1 to 1), the points x = ±  1 will be included. So, the zeros points and weights for Gauss-

Lobatto-Jacobi formulae are described in Eq. 2-5 and Eq. 2-6, respectively:

' - 1  i =  0

Xi =  ] x i-Hi!Q-21 i =  1....... Q - 2 ,  Eq. 2-5
1 i =  Q - 1

(P + 1)CJ£ 2 i = o
C“qP_2 i =  l  Q — 2. Eq. 2-6«,P 

w i = <

( a  +  1)C 5_% _2 i =  Q -  1

cj g
The Cj Q_2is determined by:

p 2“̂ 1r(a +  Q)r(P +  Q)

W" 2 ( Q - l ) ( Q - l ) i r ( o  +  p +  Q +  l ) [ P j? t (X|)]J ' E q 2 ‘7

Meanwhile, the Matlab code for zeros and weights are shown in Appendix the 

subroutines GLJzp.m and GLJwe.m. When all the zeros and weights are calculated, the 

two-dimensional and three-dimensional cases are implemented by the inner product o f  

one-dimensional Legendre polynomial in standard interval.

2.1.2 System Matrices

In the last section, we briefly described how to generate the basis functions, zeros 

and weights in the SEM. Now we need to analyze the procedures o f  building mass and 

stiffness matrices.
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Let us take two-dimensional case as an example. The tensor product o f  two one­

dimensional Lagrangian h(^) and h(rj) will be used to present as the basis functions o f  a 

single element. The local mass matrix is calculated as Eq. 2-8:

Me[i][j] =  (<J>I.<t.i)n e =  f  l i f t n W W I d W n
Jn „

n

W k ^ h i C y ^ h j C y j ^  < 8 > ^  (ok ^  hi ( q k)  ^  hj ( q k) Jn ,

k=0 i=0 j=0 k=0 i=0 j=0

n n

n n ✓ n \  n n ✓ n \I I I  ^ k S i k S j k l ^ k  j  ®  H r  W k S jk S jk J ,,  k  J
j=0 i=0 \k=0 /  j=0 i=0 Vk=0 }

k=0 i=0 j=0

n n /  n

Eq. 2-8

in which the diagonal mass matrix o f  two-element 15th order Helmholtz case is taken as 

an example shown in Figure 2-4: Mass matrix o f  Helmholtz equation solving by the 

nodal SEM.. Me is the elemental mass matrix, f le is the elemental region, u(d>p, O q) is 

the inner product o f two one-dimensional basis, 1; and rj are the values o f  x and y from an 

arbitrary element project to the standard quadrilateral element. The local stiffness matrix 

is generated as Eq. 2-9:

Le [i][j] =  (4>i,cb j) ne =  f  w u m u m d n

fist

n 11  f t  f t  r t  f t

Uk K  {$k) ^  hj (Zk)Jt,k (*>k h[ (rjk) hj Oik)Jv>k
i=0 j =0 k- 0 t=0 j =0

Eq. 2-9

Based on the equations from Eq. 2-1 to Eq. 2-9, the stiffness matrix, which is shown as a 

diagonal matrix, and the mass matrix, which in the SEM is presented as a symmetric
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matrix can be obtained. The stiffness matrix from the same case as F igure 2-4 is shown 

in F igure 2-5.

150

200

250

300

350

400

450

0 100 200 300 400
nz = 496

Figure 2-4: Mass matrix o f Helmholtz equation solving by the nodal SEM.

=i*S ^ nn\ \ nnn\ nnn: '

s \ \ \ \ \ V

0 100 200 300 400
nz = 15616

Figure 2-5: Stiffness matrix o f  Helmholtz equation solving by the nodal SEM.



2.1.3 Time Splitting

The Adams-Bashforth method is used for time splitting. Before the third time step, 

the first and the second order Adams-Bashforth method are implemented, and after that 

the third order scheme is fixed for time integration.

When the time step = 1, the first order Adams-Bashforth Method (Euler Method) 

is carried out:

y n+i = y n + h f ( t n, yn). Eq. 2-10

When the time step = 2, the second order Adams-Bashforth Method is used:

Vn+2 =  Vn+1 +  h [ l f ( t n+1,y n+1) - i / ( t n,y„)]. Eq. 2-11

When the time step is larger than 2, the third order is implemented:

r23 4 5 1
Vn+3 =  yn+2 +  h [— /(/n+2.yn+2) -  3  / ( W  yn+1) +  Eq. 2-12

2.2 Discontinuous Galerkin Finite Element Method

In these problems o f which the convection plays a role o f  importance, such as 

aero acoustics, water je t flow, weather forecasting and gas dynamics, the SEM becomes 

less efficient for the reasons that the discontinuities appear in the exact solutions o f  the 

convective problems; meanwhile, the numerical solutions near these discontinuities might 

show a rich and complicated structure [34], To overcome this challenge, a numerical 

method with the requirement o f  physically relevant discontinuities in the approximate 

solutions, and guarantee o f avoiding spurious oscillations, as well as maintenance o f 

sufficient accuracy is introduced and named as the Discontinuous Galerkin Finite 

Element Method (DG-FEM). The DG-FEM incorporates the numerical flux, filter and 

slope limiter from the FEM and the FVM into the FEM framework [35-37], With the
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combination o f  the FDM, the FVM and the FEM, it is capable o f  the following merits: 

firstly, this method is an hp-refinement scheme. Moreover, it is highly parallelizable due 

to the block diagonal o f  the mass matrix. Thirdly, the DG-FEM can deal with models o f 

complex geometries with simple treatment o f  the boundary conditions.

Table 2-1 shows the cumulative error o f  hp-convergence o f  Poisson equation

. 7
with L log scale, in which k is the polynomial order, N is the number o f  element.

Table 2-1: Two-dimensional Poisson equation with exact solution o f  sin (xy).

\ N  

k \
5 10 20 30 40

3 -2.3903 -3.2204 -4.0911 -4.6239 -5.0125

4 -3.5533 -4.9640 -6.3292 -7.1225 -7.6847

5 -4.7104 -6.1254 -7.5692 -8.4348 -9.0595

6 -6.0874 -8.1074 -10.0774 -11.2142 -11.5642

7 -7.3647 -9.3716 -11.3097 -11.5255 -11.0523

8 -8.8821 -11.4950 -12.1599 -12.0845 -11.1563

9 -10.2532 -12.3747 -11.4703 -11.0284 -11.1151

After the hp-analysis o f  Poisson equation, the one-dimensional Burger’s equation: 

|  +  | ( y 2) =  0, x e  [ -1 ,1 ] ,  

with the CFL = 0.25 and the discontinuous initial condition:

, y. , ny (2, X <  - 0 .5  yo( x ) = y ( x ,0 )  =  {0i x > _ a s .
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The solution from the fifth order nodal DG-FEM with 40 elements is shown in Figure

2-6 below.

2.5 

2

1.5

> .

1

0.5 

0
-1 -0.5 0 0.5 1

X

Figure 2-6: Numerical solution o f one-dimensional Burger’s equation.

2.2.1 Numerical Flux

The numerical flux /*  is highly related to the accuracy o f  simulations o f  purely 

convective fluids. Eq. 2-13 gives its expression:

/ '  =  (au)* =  {{au}} +  |a | lu l ,  Eq- 2-13

in which a  is a parameter to reflect the boundary conditions. In the case o f  a  >  0, the left 

side flux is f L =  0 and the right side flux is f R =  auh(Xr ). When a  <  0, we have 

f L =  - a u ^ x f )  and f R =  auh(xjf). The a  is defined in the interval[0,l]- If a  =  0, the 

flux only takes information from its upwind, and if  a =  1, the flux is the arithmetic

t=.3s| t=.6s t=.9s
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average o f  the two solutions. The {{au}] =  a  u is the average o f  the interior (u~) and

exterior (u +) information o f  the local solution. The jum p along a normal, n , is defined as 

M  =  n~ u~ +  n +u +.

2.2.2 Basis Functions

The same as the SEM, there are also the nodal and modal DG-FEM. In this 

dissertation, the nodal DG-FEM is chosen. According to [37], in the triangle scheme, the 

nodal basis functions are built with the assistance o f the modal bases. First o f  all, for an 

element o f  arbitrary triangle, a group o f  points with equal space will be projected to the 

isosceles’ right triangle with Eq. 2-14:

(^i» ̂ 3 ) =  ( n  ' n )  ' =  1 — ^  — ^3» j) ^  0, i +  j <  N,

Eq. 2-14

Then the Lagrangian polynomial l(r, s) is constructed from the modal bases s)

through the Vandermonder matrix V, according to Eq. 2-15:

Vij =  <Pj-i(r ,s)j,
Eq. 2-15

VTl(r ,s )  =  <K r,s),

l+ r
in which, a =  2 —  — 1, b =  s; r and s are the coordinates o f  the two right-angle sides, 

and the Jacobi polynomial 4>n(r, s) is calculated by Eq. 2-16:

4>n(r ,s )  =  V2Pja^(a )p .2i+10(b ) (1 -  b ) ‘. Eq. 2-16

The nodal basis functions are shown in F igure 2-7[21],



Figure 2-7: The nodal basis functions in the triangle element.

2.2.3 Elemental Matrix

The local mass matrix is generated as:

M =  (Oi (r, s), <*>j (r, s ))„e =  f  It (5. r|)lj (5. n)J d?dr|
n st

N N N

k=0 i=0 j=0

N  N  N

I I I{j=o i=o U=o

I  Wk(X  1 ^ 1  hj(Tlk)  j  It,,i

<8>

k=0

N  N

N N

1=0 j=0 Eq. 2-17

r  N

I I I  wk 8 ikfykJri,k
j =o i=o U=o
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2.2.4 Time splitting

The Low-storage Runge-Kutta scheme [38, 39] is chosen for the time integration.

The coefficients are shown as below [37]:

rk4a = [0.0, -0.417890, -1.192152, -1.697785, 1.514183], 

rk4b = [0.149659,0.379210, 0.822955, 0.699450, 0.153057], 

rk4c = [0.0, 0.149659, 0.370401, 0.622256, 0.958282],



CHAPTER 3 

THE NAVIER-STOKES EQUATIONS 

AND SIMULATIONS OF ENVIRONMENTAL FLOWS

3.1 The Navier-Stokes Equations

In this chapter, the Navier-Stokes equations are solved to simulate the cases o f 

environmental flows. The Navier-Stokes equations, which are named after Claude-Louis 

Navier and George Gabriel Stokes, describe many physical phenomena in the 

computational fluid dynamics, such as the ocean current, air flows, and water in a 

specific channel. The Navier-Stokes equations are defined with varieties o f  boundary and 

initial conditions, unknown variables and body forces.

For the incompressible flow, the Navier-Stokes equations are shown as follows. 

The Momentum equation:

For the compressible flow, the Navier-Stokes equations are shown below. 

The Momentum equation:

Eq. 3-1

with the Continuity equation:

V ■ u  =  0, on Oil. Eq. 3-2

—  (pu) +  p u  ■ Vu =  -V p  +  pV2 (u ) +  f ,  ot
Eq. 3-3

20
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with the Continuity equation:

dp
—  +  V • (pu ) =  0. Eq. 3-4
or

Meanwhile, if  the energy conservation needs to be considered, then the Energy equation 

(Eq. 3-5) is shown:

dE
—  +  V • (Eu -  <tu +  q) =  f u, Eq. 3-5
Ot

where /  is the external force defined by different nodes, a  is the stress tensor determined 

by Eq. 3-6, and q  is the heat flux vector calculated by Eq. 3-7 as follows:

o =  - p i  +  p[Vu +  (Vu)T] +  £(V • u )I, Eq. 3-6

q  =  — fcVT, Eq. 3-7

where I is the unit tensor, k is the thermal conductivity, which is actually a tensor o f a 

function o f  the temperature T. Moreover, the part o f  the second coefficient o f  viscosity £ 

is determined by the Stokes hypothesis: 2p  +  3^ =  0.

Taking the two-dimensional compressible Navier-Stokes equations with Energy 

equation, which is an equation set o f  Eq. 3-3, Eq. 3-4 and Eq. 3-5, as an example, there 

are four equations with six unknown variables: u(x, y), p, p, E, and T. So the compressible 

fluid is treated as the ideal gas, the energy is re-written in the form o f E =  ^ u ■ u,

and the pressure is calculated as: p =  pRT. R is the ideal gas constant, the ratio o f

Q
specific heats y =  the Cp and cr are the specific heat capacity with constant pressure cr

and volume conditions respectively. Simultaneously, the heat capacity ratios for some 

gases are shown in T able 3-1.
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Table 3-1: Heat Capacity Ratio for Some Gases [40, 41].

Temp(°C) Gas Y Temp(°C) Gas Y

20 h 2 1.410 0 Dry Air 1.403

100 1.404 20 1.400

400 1.387 100 1.401

20 He 1.660 200 1.398

20 h 2o 1.330 400 1.393

100 1.324 1000 1.365

200 1.310 2000 1.088

-181 o 2 1.450 0 c o 2 1.310

-76 1.415 20 1.300

20 1.400 100 1.281

100 1.399 400 1.235

200 1.397 1000 1.195

400 1.394 c h 4 20 1.410

3.2 Simulations with Incompressible Navier-Stokes Equations

In this section, two models o f  flows in the channels o f  complex geometries are 

presented to show the numerical solutions o f  Navier-Stokes equations without body force 

and slip boundary conditions. The first simulation shows the fluid goes through a 

rectangular channel with a submerged cylinder inside. And the second model shows the 

water flows inside a L-tum channel.
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3.2.1 Submerged Cylinder in Rectangular Channel

The first example is a submerged cylinder in a rectangular channel. This is the 

model built as simulation cases try to publish in [ 19]. The dimensionless sizes o f the 

models are set as [-3, 3], [-3, 3], and [-4, 10] on x, y, z direction, respectively; the radius 

o f  the cylinder is 1.0. The model has the element number o f  1928, and polynomial order 

o f  four with the periodic boundary condition on y =  ±3 .0 , the w all’s boundary condition 

on the cylinder’s surface, and the v boundary condition on x =  ± 3 .0 , the xy-crosssection 

at z = -4.0 is set as the inlet with the Reynolds number o f  20, the scaled density p and 

dynamic viscosity fi equal to 1, non-driven force and the initial velocity on z-direction 

from 10.0 linearly decreasing to 0.0 along the top to the bottom o f the x-direction, and the

dwxy-plane at z = 10.0 is set as the outlet with a Neumann boundary condition o f —  =  0.

The model is shown in Figure 3-1, in which the mesh is divided into eleven blocks: two 

at the inlet and outlet presented as dark blue and orange, respectively, four around the 

cylinder, and five on top o f  the cylinder. Figure 3-2 shows the slices o f mesh, and Figure

3-3 shows the contour o f the velocity on z-direction in different layers.



Figure 3-1: The three-dimensional environment flow in rectangular channel.
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(a): The mesh o f  layer on xz-crosssection at y = 0.01.
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(b): The mesh o f layer on yz-crosssection at x = 0.01.
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(c): The mesh o f  layer on yz-crosssection at x = 5.01.

Figure 3-2: The three-dimensional environmental flow-meshes on xz- and yz- 
crosssections at y = 0.01, x = 0.01 and x = 5.01, respectively.
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X

Figure 3-3: The three-dimensional environmental flow-velocity contour on z-direction 
in yz-planes o f  x = 0.01, 1.99, 4.01, and 5.99.

Besides the fourth order scheme, the third and fifth order schemes are also run 

with the same element number. From the third to fifth order test o f  10,001 time steps, the 

models are performed on a single Fedora 23 system with Intel i-5 2320 processors and 16 

GB RAM with running times o f  0:37:34, 0:58:50, and 3:02:18. The dimensionless drag 

force on top o f  the cylinder is convergent to -314.201 on the y-direction.

3.2.2 A sphere inside an L-tum channel

Here, another model o f  a sphere inside an L-tum channel is simulated as shown in 

Figure 3-4. The fluid channel on three dimensions is defined as —3.3566 <  x <  

14.1100, —2 <  y  <  2 ,-1 4 .1 1 0 0  <  z  <  3.3566, with the internal radius Rj = 7.46 and 

the external radius R0 =11.46. Meanwhile, the center o f a sphere with radius r = 1.0 is 

located at x = 3.4734, y = 0, and z = -0.0840. At the inlet, which is the zy-cross section at 

z = -14.1100, the initial velocities are set as u x =  0,uy =  0, a n d  u z =  10(3 .3566  +  

x) (0 .6434 — x ) /4 ,  so the maximum initial velocity ux„max =  10 is imposed at the
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middle layer. At the outlet, which is the yz-cross section at x = 14.1100, the Neumann 

boundary condition o f  the velocity is = 0, and the Dirichlet boundary condition o f 

pressure p = 0. The mesh is divided into eight blocks -  the inlet and the outlet blocks and 

another six blocks around the sphere as shown in Figure 3-7. The mesh around the 

sphere is refined, which means the sizes o f  the element are reduced while they are getting 

closer to the surface o f  the sphere. Moreover, in Figure 3-6, three different layers for 

contours o f  velocity on x are as shown. Simultaneously, the pressure and the velocities on 

x, y, z directions in the form o f u, v, w are presented in Figure 3-5.

Figure 3-4: The three-dimensional environmental flow in a rectangular L-Tum 
channel.
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Figure 3-5: The mesh o f the three-dimensional environmental flow in a rectangular L- 
Tum  channel at xz-cross section on y = 0.01.
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Figure 3-6: The velocity on z-direction o f a three-dimensional environmental flow in a 
rectangular L-Tum channel at xz-cross section on y = 0.01, 1.01, and 1.99.
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Figure 3-7: The contours o f  velocities on x, y, z direction (u, v, w) and the pressure (p) 
o f  three-dimensional environmental flow in a rectangular L-Tum channel at xz-cross 
section on y = 0.01.

Besides the case with the polynomial order o f  three, the cases with various 

element numbers and orders are also shown in Table 3-2. When we built a model with 

element number o f 2944, the time consuming increased from about two hours to more 

than seven hours. To get results with higher resolution, the cost for personal computer 

seems too expensive. The high performance computing is needed in our future models.
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Table 3-2: The comparison o f  the numerical solutions with 20,001 time steps.

Number of 
Element

Polynomial
Order

Maximum  
Drag Force

Time
consuming

Number of 
nodes

768 3 28.8582 00:50:02 26112

768 4 29.6857 03:42:37 96000

2944 3 29.5515 01:56:43 188416

2944 4 29.6113 07:12:16 368000



CHAPTER 4

ELECTROOSMOTIC DRIVEN 

MICRO FLOWS

4.1 Introduction

Applications o f  the micro-scale flow widely exist in our daily life. As the rapid 

development in micro fabrication technologies, to observe and simulate the phenomenon 

o f this kind o f  flow, many mathematical models and numerical methods have been 

founded and carried out, for example, the finite difference method [42], the Lattice 

Boltzmann method [43], the DSMC method [44], and the spectral element method [45]. 

Micro flow system can be found in medical, biological, pharmaceutical, micro-electronic, 

and environmental monitoring applications. Examples o f  these applications are 

diagnosing medical conditions on earth and in space studied by NASA, micro flow 

imaging (MFI) in pharmaceutical companies, research on DNA computer [46, 47], and 

miniaturized flow cytometer in a microgravity environment. The design and development 

o f these experiments are all based on the theoretical and experimental foundation o f  the 

micro fluids. Meanwhile, researches in [48-50] about micro flow for both numerical 

simulations and applications have been published in recent years.

The electrioosmotic flow, which is a particular example in the micro flow regime,

was first reported in 1809 [51], then experiments and studies for this topic were carried

out. In 1879, Helmholtz [52], in his classic theoretical analysis o f  the streaming potential

concept, developed the electric double layer theory. According to his theory, in 1977, the

32
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Boltzmann distribution o f  the ion density variation was discovered due to statistical 

mechanical consideration [53]. Then the Poisson-Boltzmann equation becomes part o f 

the body force when solving the Navier-Stokes equation o f  the electroosmotic flow. The 

paper [54, 55] indicated how the PB equation was linearized based on Debye- Huckel 

linearization. Based on the linearization, the numerical simulation o f  complex geometries 

for T-junctions and Y-splitting electrokinetically driven micro flow are analyzed in [56, 

57].

The mathematic model o f  our micro flow systems is the numerical solution o f 

compressible Navier-Stokes equation with the spectral element method. The spectral 

element method in CFD has been explained in [15]. For each model, a two-dimension 

domain is broken into small elements, which is the same as the finite element method (p 

refinement); however, meshes are provided with the basis functions o f  Legendre 

polynomials (h refinement). A spectral expansion defined by Gauss-Lobatto-Legendre 

points is used to represent fields and data.

In this chapter, complex geometries with Knudsen numbers (Kn =  - )  o f  valuesh

between 0.01 to 10, which contain slip flow and transitional flow with electroosmotic 

body force, are chosen. The mean free path (A) is the average distance o f  a moving 

particle travelled through successive impacts which can affect its energy, velocity and 

other properties, and the L is the representative physical length scale. Detail explanation 

o f  micro scheme o f  this flow is introduced in [45]. Our research is focusing on the 

continuum and slip regimes with the micro system and electro kinetic models.
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4.2 Methodology

There are four categories o f  electrokinetic phenomena [58]: the Electrophoresis, 

the Streaming Potential, the Sedimentation Potential and the Electroosmosis, in which the 

electroosmotic flow is generated due to the interaction between the external applied 

electric field and the electric double layer (EDL). The body force is created when the 

external electric field has an effect on the charged icons in the EDL. In this chapter, the 

compressible Navier-Stokes equations with electroosmotic body force are taken as the 

governing equations:

d(fifu ) ,
— ^ —  +  p f u  • Vu =  -V p  +  pV2u  +  peE, Eq. 4-1

at  '

dP f „ ,  \ _ Eq. 4-2- ^  + v-(p /U) = o,

-T- +  V • ( t /u  — a u  + q)  =  peE • u , ^
at

in which Eq. 4-1 and Eq. 4-3 are the compressible continuity equation (Eq. 3-4), and the 

compressible Momentum equation (Eq. 3-3) and the Energy equation (Eq. 3-5) with 

electro osmotic body force. According to Santiago [59], the governing equations can be 

normalized as below:

f  v '  -  *  1 , ’ -  u n' -  ZL
‘ ~ ? ' x  ~ 7 ' u  - r P r ~ i ’

n i _________  pi    — n'______

P ~  (lV-’ ~  £*’ Pe ~  g*£’

where t, x, u, P p E, and peare time, position vector, velocity vector, fluid density, 

pressure, electric vector field and net electric charge density, respectively. All these 

variables are nondimensionalized by t*, d, V,p,p,  E*, and e, which are characteristic time
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scale, microchannel hydraulic diameter, characteristic flow velocity, characteristic fluid 

density, dynamic viscosity, characteristic electric field, and electrical permittivity.

The electric double layer, which is the region o f mobile ions near the interface, is 

formed because o f  the chemical equilibrium between the boundary and the electrolyte 

solution. As the thickness o f  the EDL is very small, when compared with the width o f the 

channel, we reduce the element size beside the boundary and also try to use the basis 

functions with a higher order. In Figure 4-1, the boundary conditions are set the same on 

each side o f  the cross section, and the values o f the electro-osmotic potential are 

normalized by its maximum value, the difference o f  the external electric potential is 

determined as 100 V/m to show as an example. Figure 4-2 has the same boundary 

condition but with opposite values on each side. Since the EDL double layer is too thin, 

we set the thickness o f  EDL to 1/10 o f  the width o f  the cross section to make it easy for 

observing.
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Figure 4-1: Normalized Electro-osmotic potential and its related body force on cross 
section o f wall boundary.
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Figure 4-2: Normalized Electro-osmotic potential with opposite values on each side 
and its related body force on the cross section o f  w all’s boundary.
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Electric Potential Distribution

Distance From Energy Source

Figure 4-3: The numerical solution o f  the electric potential on a rectangular area.

It seems that Eq. 4-5 is a Poisson equation with Dirichlet boundary conditions. 

The numerical solution shows the driving force caused by electrical potential is linearly 

dependent with the absolute distance from the electrical source. In this chapter, all these 

electrical potentials are set as 0.0 at the outlet. As a result, this part o f the driving force at 

a specific node can be easily calculated by the potential multiplied by its absolute 

distance to the outlet. However, the other part o f  Eq. 4-4 shows its difficulty. Since the 

driving force o f  the electro osmotic flow is generated by the external electric field 

(normally on the input and output o f  flow) that interacts with the EDL, its body force is a 

function o f  the net electric charge density on the surface and electric field. As a result, the 

velocity o f this flow is very slow [60], The body force is combined with a function o f  

Is'and p'e, which are determined by Poisson-Boltzmann equation as follows:



as Is'in Eq. 4-4 can be divided into two parts where <f> and \p stand for the electric 

potential o f  the fluid, and the electro osmotic potential. Eq. 4-5 is a Poisson equation with 

Dirichlet boundary conditions, which is easy to solve, and Eq. 4-6 is one equation with 

two unknown variables that cannot be solved directly. Its simplification and linearization 

is shown below.

By the physical definition, the charge density can be represented as:

Pe =  CiZiF,  E q  4 _7
i

where cu z t, and F are the molar concentration o f  species i (mol/L), the net quantity o f 

the electric charge and the elementary electric charge (charge/mol), respectively. In Eq.

4-7, by Boltzmann relation:

ct =  Cjoo exp ( -  Eq. 4-8

in which is the ambient concentration o f the i-th ion species far away from the 

particles; e is the molar potential energy; T is Kelvin temperature; R is the universal 

molar gas constant. For these parameters, Cfo and T are known for the given solution, R 

is constant, and e can be represented as:

e =  ZiFxl). Eq. 4-9

When combining Eq. 4-7 with Eq. 4-9, the Poisson-Boltzmann equation is shown as:



Then according to Debye-Huckel approximation, if  in Eq. 4-10, F 2i/> «  RT, the 

linearized Poisson-Boltzmann equation is obtained:

since Eq. 4-11 is the linear form o f Poisson-Boltzmann equation. The Reynolds number 

(Re) and Strouhal number (St) are defined as:

In this section, two different models with compressible electro osmotic flow are 

presented: (1) straight channel with a width o f  100 pm with a narrower length o f  the 

channel o f  50 pm by 50 pm in the middle, and (2) a channel with a curvature wall 

boundary. The first case is used to test the effect o f  the density change and electro 

osmotic driving force on flow rate. The second case is used to check the simulation for

Eq. 4-11

where the k 2 and pe can be obtained by:

Eq. 4-12

Pe =  ~Ek2\p, Eq. 4-13

Eq. 4-14

Eq. 4-15

Then the nondimensionalized form o f the momentum equation becomes:

4.3 Results and Discussion
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the model with a curvature boundary. A two-dimensional C++ code is developed to 

simulate all these models. The main subroutines o f  this code are presented in Appendices 

F-O, and Table 4-1 below shows their functions. Appendix F is a library function that 

can generate the Gauss-Lobatto-Legendre points and weights. The function ZWGLL can 

be called with three variables: zeros points, weights and the polynomial order.

Appendices G-K are called in Appendix L to calculate the coefficients which are needed 

to build system matrix. Appendices M and O are the processes o f  nondimensionalization 

and recovery o f  nondimensional values to dimensional ones. Appendix N is the function 

that finds the CFL condition in the models. When the value o f  the CFL condition is larger 

than reference number, a warning will be shown in the screen to indicate that the initial 

conditions or the mesh may need to be refined.
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Table 4-1: The important subroutines used for solving the compressible Navier-Stokes 
equations by the SEM.

Name
Appendix

number
Function

ZWGLL.h F Gauss-Lobatto-Legendre points and weights

DGLL G GLL derivative matrix

HGLL H GLL lagrangian interpolant

IGLLM I Interpolation operator

PNLEG J Generate Legendre polynomial o f  degree N

PNDLEG K Derivative o f  Legendre polynomial o f  degree N

COEF L Compute coefficients needed in code

FORTIC M Nondimensionalization

DTDECIDE N Compute CFL condition

POST O Recover the nondimensional values to dimensional ones

4.3.1 Grooved- channel

In this case, we choose the model with obvious density changes. At the middle of 

the channel, the width o f  the channel directly decreases to half at the inlet and outlet. We 

adjust the strength o f  the external electric field as well as the density at the input and 

output to simulate the process o f  electro osmotic phenomenon. The boundary conditions 

are set as the wall during the narrow part and period at the other sides. Figure 4-4 is the 

result o f  the sixth order spectral nodal element method with the electric field lines at 

critical part.
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It seems that when the driving force from pressure gradient is large, the effect 

from electro osmosis field can be ignored. That is to say the electro osmosis phenomenon 

is a slow process which can be covered by the large value o f  input velocity, pressure 

gradient, and all the parameters that make the model a quick process. In Figure 4-4 the 

densities o f  fluid are set as 1.0 and 0.9, respectively, at the inlet and outlet. Point A and E 

are all at the middle o f  the channel. A is at the middle near the inlet. There is no slip 

boundary condition, and the driving forces caused by density change and electro osmosis 

field are not large. This point can be used as a reference for the other points. Point E is at 

the middle o f  the narrow part. The velocity o f  E is the highest in all points. Point B, as it 

is shown in Figure 4-4, is located near the dead end along the velocity direction.

Figure 4-4: The lines o f  the electric field and velocity contour for the model o f 
Grooved-channel on y-direction.
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The points from A to E are the history points tracked in F igure 4-5. When the 

input velocity is large, the effect o f  the electro osmotic driving force can be ignored. The 

value o f  the input velocity and external electric field are set to 0.0 m/s and 10 KV/m. We 

zero the initial velocity because the velocity o f pure electro osmosis flow is very small, 

then the large input velocity will cover the velocity change due to electro osmosis field. 

Test run shows that the convergent results (including energy, velocity, pressure, 

temperature) o f  the fixed points under the compressible flow model and compressible 

electro osmosis flow model almost have no difference when the compressibility ratio is 

larger than 1:0.85-density o f  1.0 at inlet and 0.85 at outlet. That is to say, in these 

situations, the effect o f the driving force from the electro osmosis field is overlapped by 

pressure gradient. The difference between these two models is about 0.1 %.
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Figure 4-5: Velocities track over five history points.
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As a result, the velocity at this point is nearly 0.0. For point C, this point is near 

the wall inside the EDL, on which both slip boundary condition and electro osmosis field 

have an effect. Slip boundary condition decreases velocity and electro osmosis field, 

works with external electric potential, and increases velocity. Simultaneously, due to the 

compressibility o f  the fluid at this part, pressure gradient also provides the driving force. 

The velocity for point C is relatively smaller than the point near the inlet and outlet o f  the 

EDL. Point D is outside o f the EDL between point E and C, the velocity o f  which is 

larger than C and smaller than E. Simultaneously, the contours for velocities on x 

directions (v), density (Rho), energy (e) and temperature (Temp) are shown as follow in 

Figure 4-6.
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Figure 4-6: The contours for velocity o f  y-direction (u), density (Rho), energy (e), and 
temperature (Temp) at critical area.



45

4.3.2 Curvature-channel

According to the discussion o f  case 1, we set the same boundary and initial 

conditions. The density at the inlet and outlet is set as 1.0 and 0.9 with the channel aspect 

ratio o f  20:1. The purpose o f  this model is to test the compressible electro osmosis flow 

in a rough channel, and to reduce the density change caused by geometry. In Figure 4-7, 

there are 80 elements in the whole model, and only 2 elements in the cross section. We 

reduce the number o f elements and increase the polynomial order o f  the basis function to 

10; that is to say there are 121 zero points in each element.

4- 4 -

5
4 44444
3 88889 
3 33333 
2 77778 
2 22222  
1 66667 
1 1 11 1 1  
0 555556 
0

4

Figure 4-7: Electric field and contour for velocity on y-direction.
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In this case, the initial velocity is set as 0, and the driving forces come from the 

pressure caused by the density change at the inlet and the outlet, and the electrical 

potential. The results show the contour for velocity on y-direction. It seems that although 

on the boundary value o f  the electro osmotic potential reaches maximum, the drag force 

imposed by the slip boundary still reduces the velocity near the wall, which means even 

when the external driving force is larger in the area near the wall than that in the middle 

o f  the channel, it still cannot overcome the drag force o f  the slip layer. As a result, the 

flow rate near the boundary is almost zero, which is the same as what happened in case 1. 

Therefore, the velocity for the whole flow field is very slow. With the electrical field o f 

10 kV/m, the max velocity is only 0.374 mm/s.

4.4 Conclusions

In electro osmotic flows, the thickness o f  the electric double layer is much smaller 

than both the characteristic length o f  the channels and the curvature radius o f the models. 

Since they are compressible models, the numerical simulations for mix electro osmotic 

and the pressure driving flow are discussed. The effect on the flow rate from pressure 

change is much larger than the electro osmotic driving force. For the pure electro osmotic 

driving flow, the velocity field can be divided into inner and outer flow regions due to the 

slip boundary layer. Inside the inner region, the driving force caused by the electro 

osmotic potential and the shear force results in slip boundary condition (including 

velocity gradient, thermal creep and temperature jum p) need to be considered. For the out 

region, the main driving force is generated by pressure because o f  volume change and 

velocity gradient.



47

To get results with higher accuracy, firstly, the h/p refinement is carried out. Near 

the wall’s boundary regions, the mesh elements should be smaller than those in the 

middle, and the polynomial order o f  the basis function can be set as 5 or 6. Secondly, 

since for the flow rate the effect o f density change is more serious than the electro 

osmotic force, if  the density change is too large, its effect will cover the effect which is 

caused by the electro osmotic force. Normally, the mobilities o f pure electro osmotic 

flow are the order o f 10~8 m 2V-1 s -1 by electrical field strength o f  5 to 20 kV/m [60], 

The flow rate is relatively very small when compared to the large electric potential.

As a result, for the compressible flow, we need to reduce the inlet and outlet 

velocity or the driving force to see the electro osmotic phenomenon. All in all, due to the 

lack o f  physics model and experiment for compressible electro osmotic flow, we are 

trying to simulate the complex geometries with density change, slip boundary conditions, 

and electro osmotic effect for future applications.



CHAPTER 5

CONTINUOUS AND DISCRETE SIMULATIONS OF 

MICRO-NEEDLES FOR EPIDERMAL DRUG DELIVERY

5.1 Introduction

Traditional injection uses a syringe to insert liquid into the body. The purpose o f 

medical injection is to pierce the material into the sufficient depth o f  the skin. This kind 

o f  injection needs to use a large number o f  syringe needles, and according to [61 ], clients 

reported that an average o f 8.7% o f injections employed shared syringe needles. Data 

from the Coalition for safe Community Needle Disposal showed that in 2011, 13.5 

million people in the United States produced 7.8 billion used sharps (needles, syringes, 

etc.) outside the traditional healthcare, and 1 million to 1.5 million o f  needles were used 

for illegal drug injections. Since blood borne infections, like HIV, HBV, and HCV, can 

be commonly spread by sharing intravenous syringes, a large number o f  substandard and 

illegal use o f  needles compares to the shared rate o f  8.7%; the potential spread o f  these 

infections cannot be ignored. On the other hand, the application o f  the micro needle can 

to a large extent eliminate this from its source.

Micro needles, which are recently developed by the Georgia Institute o f 

Technology and the Centers for Disease Control and Prevention (CDC) [62, 63], are 

small patches that can be administered by untrained users. Small needles are placed on 

the patch o f  about one square centimeter. Instead o f  asking a nurse for a muscle injection,

48



49

only with a press o f  a thumb, this kind o f  needle can be used for vaccine inoculation and 

local anesthesia.

In this paper, both the spectral element method and the smoothed particle 

hydrodynamics method are applied to simulate the models o f  the micro needle. The 

Spectral element method used in computational fluid dynamics is explained in [15] and 

[45]. For spectral element models o f  the micro needle, the process is divided into two 

parts, the model o f  the flow in the micro-needle and the model o f  the solution flux inside 

human skin. Incompressible Navier-Stokes equations with slip boundary condition are 

solved inside the micro needle. The human skin is treated as porous media, so the Darcy- 

Brinkman equation is solved to simulate this process. At the same time, the output data o f 

the micro needle are taken as the initial conditions o f  the Darcy-Brinkman model.

SPH was first proposed in 1977 by Gingold, Monaghan and Lucy. At the 

beginning, this method was used to solve the problem o f high-speed collisions o f 

astrophysics. After that, the method has been applied to solve fluid dynamics and solid 

mechanics problems. Presently, depending on its advantages in incompressible flows, 

fluid-solid interaction, solid mechanics, and explosion simulation, SPH was widely used 

[64], The SPH method is suitable for solving an expanding range o f  applications in the 

field o f  Computation Fluid Dynamics. Particles are used to represent interactions between 

flow and structures, as well as the flow o f large deformation with moving boundaries.

The mesh free method for large deformation problems o f  fluid simulation 

compared with the traditional grid method has obvious advantages, the traditional method 

unable to deal with a large deformation problem o f fluid, because the local grid 

deformation is too large and will cause the computation result to distort. This simulation



50

uses the SPH algorithm to simulate the movement o f  a drug’s molecule in the porous 

medium o f the dermis after a single micro needle pierced skin. Micro needle compared 

with the traditional needle injection has obvious merits. Besides reducing the piercing 

pain, the drug will penetrate more uniform and faster. Two models illustrate these 

characteristics. Some o f the original data come from students’ report [71], and all the 

parameters shown in Table 5-1 are confirmed from their citations.

Table 5-1: Reference parameters o f simulations.

Convection and Diffusion

Diffiisivity Coefficient o f  Lidocaine, D 1.38 x  10“8 m2/ s  [65]

Fluid Flow

Density o f  Lidocaine, p 999 k g /m 3 [66]

Dynamic Viscosity o f  Lidocaine, 77 0.001 Pa * s  [67]

Porosity, <I> 0.5 [68]

Intrinsic Permeability o f  Skin, k 10~17 m 2 [69]

Minimum Concentration Required at Nerves 0.004267 m o l/m 3 [70]

Initial Concentration at output o f  nee le 42.67 m o l/m 3 [71]

5.2 Methodology

5.2.1 Continuous Modeling

The Spectral Element Method is chosen to build and solve the continuous 

modeling system o f the micro needle. The first part o f  our spectral element model is the 

simulation o f  the solution inside the micro needle. Slip boundary condition is considered
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in this model with incompressible Navier-Stokes equations. After moving out o f  the 

needle, the process o f solution diffusing inside human skin is built as the second model.

5.2.1.1 Part 1: Medicine Liquid Flow throush Micro-needle

In a three-dimensional domain Q, the incompressible Navier-Stokes equations are 

written as:

( d u  \
p +  (u  • V)uJ =  -V p  +  pV2u  +  / ,  Eq. 5-1

V • u  =  0, on dSl, Eq. 5-2

where u = (u, v, w) is the fluid velocity, p represents the pressure, and p is the dynamic 

viscosity o f  the fluid. There are four equations with four unknown variables: u, v, w, and 

p. The energy equation is ignored in this case. The boundary and initial conditions are 

shown as follows:

u  (needle wall, t)  =  0, 

u (n eed le  inlet, t  =  0) =  0, 

u (in sid e  needle, t  =  0) =  0, 

p (need le  inlet, t) =  PAppiied =  10 kPa» 

p (need le  boundary , t)  =  0.

For Part 1, The Navier-Stokes equations are normalized as follows:

t  x , X

t* ' =  d'

U , pd

U 'P pU'

where t, x, u, and p are time, position vector, velocity vector, and pressure, respectively. 

These variables are non-dimensionalized by t \  d, U, and p, which are characteristic time
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scale, micro-channel hydraulic diameter, characteristic flow velocity, and dynamic 

viscosity.

5.2.1.2 Part 2: Medicine Diffusion Under Skin

In this part, human skin is treated as porous media. The outputs o f the previous 

model are used as the input initial conditions o f  this section. Moreover, the process o f 

solution diffusing under the skin is simulated by the Darcy-Brinkman equations:

fcO
u  =  —  [-V p  +  p eV2u], Eq. 5-3

P

V ■ u  =  0, Eq. 5-4

and the mass transport equation:

dc _
—  +  u  • Vc =  DV2c, Eq. 5-5
at

where p, u, k are pressure, superficial velocity vector, and permeability o f  porous 

medium, respectively, 0  is porosity, and pe is dynamic viscosity for Brinkman term. 

When we compare Eq. 5-1 with Eq. 5-3 and Eq. 5-5, it seems that Eq. 5-3 and Eq. 5-5 

are modified and simplified forms o f the Navier-Stokes equation. In Eq. 5-3, the 

convection part and external force have been ignored, the variation o f  velocity has been 

changed to steady form, and some coefficients are replaced to satisfy the porous medium. 

In Eq. 5-5, the convection and pressure part have also been canceled, and the velocity in 

the diffusion and variation term is replaced with the concentration.

The boundary and initial conditions for the Darcy-Brinkman equations are shown

as:

u  (skin boundary , t)  =  0, 

u  (skin  to p  wall, t)  =  0,
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U (skill inlet, t  0) Applied ^NeedleOutlet' 

p  (sk in  boundary , t)  =  0 kPa, 

p  (skin inlet, t  =  0) =  pApphed =  p Needieoutiet, 

and for the Mass Transport equation, the boundary and initial conditions are:

c (skin bo ttom  wall, t  =  0) =  0 m o l/m 3, 

dc
—  (skin boundary , t)  =  0, 
o z

c (skin  tissue, t  =  0) =  0 m o l/m 3, 

c (skin  inlet, t  =  0) =  42.67 m o l/m 3.

5.2.2 Discrete Modeling

The Smoothed Particle Hydrodynamics is a weighted interpolation method [72] 

used to describe the motion o f  solid, liquid or gas in space with a discrete interpolation. 

The interpolating function is denoted as W (r  — r ' , h) where h is the radius o f  the 

influenced region around position r '.  The interpolating function is essentially a 

probability density function [73]:

j  W ( r - r ' , h ) d r '  =  1, Eq. 5-6

\ i m W ( r - r ' , h )  =  S ( r - r ' ) ,  Eq. 5-7

when limitation o f h equals to 0.0, the equation can be simplified to S(r  — r ') .  Based on

the above functions, a property I at location r  could be described as [73]:

/ ( r ) =  J  I (r ' )W (r  — r ' ,h )d r '  =  J  ^ ^ W ( r  -  r ’,h ) p ( r ’)dr',  E q.5-8

Hr)  *  ^  m ( r ')  W (r  -  r ', h). Eq. 5-9
r'-» 0

The gradient o f  I at the point could be computed as [74]:
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V/ “  X  VW(r  ~  r>' E tl- 5"10
r'-» 0

Because both the Interpolating function and I approach to 0, the surface integral term 

could be eliminated [75].

5.2.2.1 Drug Particles

The Navier-Stokes equations are written in the Lagrange form:

d v  1— = - -  VP +  pAv +  fex, Eq. 5-11

where P, fex, p  are pressure, external force, and fluid density. For stability and other 

considerations, the pressure term is changed to

1 / P \  P
-  VP +  pAv  =  - V  J -  —  Vp +  pAv. Eq. 5-12

Now the Navier-Stokes equations are in its discrete form [76] as shown below:

T F  = I m > ( %  + 7? +  n
Eq. 5-13

where i and j are indices o f  current fluid particles within the radius o f  influence and 

neighbor particles, respectively. Density and pressure are given as the following [77]:

P = X  mi Wip Eq. 5-14

ID
where flij is the viscous pressure [78]

'—acfiij +

n =
(Pi +  p j ) /2 , if Vij ■ ri; <  0, Eq. 5-16

10 , otherwise
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( a  =  0,0 <  /? <  1, for low Mach number flow
( a  = 0, /? > 1, for high Mach number flow. ***

5.2.2.2 Solid Particles

In this two-dimensional micro needle model, we use fixed points which are

randomly distributed to represent the porous media o f  the dermal layer. Molecules move

into a porous medium dermis, collide with porous media, and disperse in the dermis layer

gradually. Human dermal thickness is generally around 2 mm; the model o f  the porous

media thickness is 4 mm; the length o f  the micro needle is 600 pm; the base diameter is

400 pm. When the depth o f  molecular particles is around 2 mm, they have entered

subcutaneous tissue and capillaries, and throughout the blood flow. By measuring the

number o f  particles beyond 2 mm, we can calculate the concentration o f  the drug

molecules in units o f  blood.

The momentum equation, containing stress tensor a , in the component form is

shown as the following [79]:

d v a 1 d a ab
+ f a, Eq. 5-18

d t p  d x b 1 M

where a, b stand for Cartesian components, f a is the body force, and the tensor stress

o ab is consisted o f the deviatoric stress Sab and the volumetric stress PSab. Since the

volumetric stress is easy to calculate, occurs the following equation descripts how the

change rate o f the deviatoric stress occurs

dSab /  1 \
=  2p ( e ab -  - SabeabJ + Sacn bc + n acS cb, Eq. 5-19

in which f2ab and e ab are calculated by



The derivatives o f  velocity in Eq. 5-20 and Eq. 5-21 are calculated according to [80]:

d v a V „ „ \ dWn
=  "  Z  ^  ~ Vj  ̂1 $ '  E(»' 5'22

where p i;- =

The momentum equation for the SPH scheme is:

d v f  / o f ft t f b\  dWi<
+ E l- 5-23

5.2.2.3 Particles Interaction

Interactions between particles are described with a pair-wise force field similar to 

the Lennard-Jones potential [80]:

. p 1 /  „  \ P 21

f i j  — C0 (ra) -(ra) —  Eq. 5-24
V

where rSj =  rt — rj, r 0 is the initial distance between two different particles i and j .  In this 

case, pi = 12, p2 = 6, Co is an adjustable constant.

5.2.2.4 Velocity Evaluation

The motion o f  the particle i is described in the equation below[82]:

dri
d tf =  Vi +  e ^  rrij Wij> Eq. 5-25

j

in which, e (0 <  £ <  1 according to different case) is a factor that averages the velocity 

o f  influence.
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5.3 Results and Discussion

The three-dimensional model o f the anesthetic injection was developed according 

to the procedures detailed in the Introduction. This section will discuss the results from 

the Spectral Element Method (SEM) and the Smoothed Particle Hydrodynamics (SPH) 

Method.

5.3.1 Results for the SEM

As it is mentioned before, the simulation o f  the solution flowing from the syringe 

into human skin is divided into two parts. In this section the shape o f  the needle and some 

suitable models for porous media will be determined by comparing the numerical results 

and their costs.

5.3.1.1 Solution for Simulation o f  Micro-Needle

In the first part, the length o f  the needle is set at 1 mm, the radii are set as 50 pm 

at the bottom and 25 pm  at the sharp (for rectangular cross-section, the widths o f bottom 

and sharp are set as 50 pm and 25 pm). W e set the flow as the pressure driven flow. As a 

result, the initial velocity at the inlet is set at 0.0, the pressure o f  the inlet is set at 10.0 

kPa, and the outlet is imposed with the Neumann boundary condition.

Figure 5-1 shows the models o f  the needles with circular and rectangular cross 

sections. By comparing the results from both o f  these two models, and mapping their data 

as the initial conditions to our second part o f  the simulation, numerical solution o f  the 

Darcy-Brinkman equations, the results are almost the same. In this section, we take the 

data o f the pressure and velocity from the circular cross-section.
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Figure 5-1: The models o f  needles with circular and rectangular cross sections.

After the results are converged, Figure 5-2 shows the velocity contour on xz- 

cross section, with the initial pressure o f  10 kPa, the normalized velocity comes with a 

maximum value o f  35.9 at the outlet.
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Figure 5-2: The velocity on z direction on xz-cross section.

Figure 5-3 shows the contour o f pressure on the xz-cross section. Since the 

pressure is the only driving force o f  this model, the pressure reduced from its maximum 

value from the inlet to its minimum value at the outlet.
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Figure 5-3: The pressure on xz-cross section.

Figure 5-4 shows the normalized velocity o f  z-direction at the inlet and the outlet. 

Due to the slip boundary conditions, the velocity near the wall is much smaller than at the 

middle area.
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Figure 5-4: The contours o f velocity on z-direction at the inlet (up) and outlet (down).

Figure 5-5 shows the contours o f  pressure at the inlet and outlet o f  the needle. 

Figure 5-2 to Figure 5-5 come from the simulation o f the model with third order. As 

mentioned before, the data from the outlet o f  the needle will project to become the 

input boundary and initial conditions o f  the next model. The polynomial order o f  the
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basis functions need to be the same. For example, the third order scheme o f the needle 

can only match the third order model o f  human skin. When the fifth order simulation 

for human skin is analyzed, the order for the needle will also be increased to the fifth 

order.

I

Figure 5-5: The contours o f  pressure at the inlet (up) and outlet (down).



5.3.1.2 Solution for Simulation o f Human Skin

In this section, human skin is simplified as a cylinder. The top o f  the cylinder is 

treated as the cross section o f the skin where needle pierces. The bottom represents the 

interface o f  dermis and fat layer. In this case, we do not need to simulate all these areas 

from the surface o f  the skin to the bottom o f the fat layer. It can largely reduce the 

number o f  elements in our models, which in turn will save time on running the code. 

There are two different schemes for simulation. The first one is single needle with the 

same number o f elements and different order o f  the basis functions and initial conditions. 

The other one is multiple needles with a different number o f  elements, and the same order 

o f the basis functions and initial conditions.

5.3.1.2.1 Single Needle

Figure 5-6(a) shows the contour map o f the initial concentration for the single 

needle case. At time = 0, the initial concentration at the surface o f  the skin is set at 42.67 

mol/m3 according to Table 5-1. By doing some tests on different models, we find that by 

changing the ratio o f the needle’s input area to the area o f  the x-y cross section o f the 

model, the result’s range (maximum and minimum values o f models) will also be 

seriously changed (see Figure 5-7). The result will become convergent when the ratio 

decreases to about 0.05. However, if  we built models with a ratio o f  0.05 or less, it will 

largely increase the number o f elements or the order o f  the basis functions, which will 

take a much longer time to run our codes.
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a): The model o f  human skin with a single needle at a ratio o f  0.05

(b): The model o f  human skin with a single needle at a ratio o f  0.1.

F igure 5-6: The initial contours o f  concentration with a different ratio o f  a needle’s 
input area to the area o f  x-y cross section o f  model.
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a): The concentration o f  fourth order bases and 75 elements with a ratio o f  0.05.

(b): The concentration o f  sixth order bases and 45 elements with a ratio o f  0.1.

Figure 5-7: Contour maps for single-needle model at t = 60 sections with different 
ratios o f  needle input area to the area o f  the x-y cross section.

In F igures 5-7 (a) and (b), the maximum and minimum concentrations o f the first 

cases are 6.730 X 10“ 4 and 1.000 X 10~5 m ol/m 3. On the other hand, for the second 

case the maximum and minimum concentrations are 7.318 X 10“ 4and 5.843 X 

10-4 m ol/m 3, respectively. It seems that for this type o f  model, with every parameter
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due to references, the result for the concentration is much less than its necessary 

value 4.267 X 10-3 m o l/m 3. Since the critical area for this model is the concentration at 

the interface between the dermis and the fat layers, we decide that instead o f  reducing the 

ratio, we will focus on the concentration o f  the critical area directly under the needle. To 

improve the result for our model, there are two possible ways. The first one is increasing 

the initial concentration, and the second way is keeping the sizes o f the model but using 

multiple needles. Since even if  the concentration requirement can be achieved by the first 

approach, the practical application needs not only concentration, but also enough dose.

W e decide to develop a model with four micro needles on top. Simultaneously, in this 

model, the critical area is the cross section o f  the dermis-fat layer interface under and 

between the needles. We try to find the concentration o f  the drug in this area, which is 

affected by multiple needles. The following paragraph will discuss the results from the 

models with four needles.

5.3.1.2.2 Multiple Needles

Based on the Single-Needle model, we develop another model with 4 needles. 

Figure 5-8 shows the modified models o f  the sixth order bases with 75 and 243 elements. 

By comparing the results from these two models, the maximum and minimum 

concentration have the differences o f  4.32% and 4.12%; however, the running time o f the 

code increased from 2:28:37 to 5:54:13. Due to this fact, it seems unnecessary to increase 

the number o f  elements or the order o f  the basis functions anymore.
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I

(a): The model with 75 elements.

I

(b): The model with 243 elements.

Figure 5-8: The initial models o f  human skin with 4 needles.

After the result converges, the contour maps o f concentration with the 6th order 

accuracy are shown in Figure 5-9. In Figure 5-9(a), the minimum value o f concentration 

is 1.670 X 10-3 m o l/m 3, which is lower than the minimum necessary value, while the 

maximum concentration is 5.296X 10“ 3 m o l/m 3, which is beyond the required value.
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Moreover, from Figure 5-9(b), the highest concentration located at the middle o f  the 

critical layer is also the middle o f  the 4 needles. The value is 5.151 X 10“ 3 m o l/m 3, 

which is 20.71% larger than the required concentration.

(a) Concentration with 6th order accurac;

(b) Concentration at interface o f  the dermis and the fat layer.

F igure 5-9: Contour maps for 4-needle model at t = 60 sections.

5.3.2 Results for SPH

In this section, we simulate a two-dimensional SPH model for the micro needle 

and compare the results with other modeling data. The total number o f  drug particles is
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1200. Due to the effect o f  body fluids, a 0.0005 N downward force is added on the drug 

particles. The drug particles and porous media particles have the same value o f  the mass. 

Blue particles are used to represent drug molecules, while white particles as a random 

distribution o f  the fixed point are used to simulate the porous medium. After the micro 

needle pierces the surface o f  the skin, particles o f  the internal drug will go through the 

porous medium and then get into the capillaries and transport to all parts o f  the body via 

blood flow. Figure 5-10(a) indicates the initial conditions for the micro needle 

simulation. In Figure 5-10(b) and Figure 5-10(c), drug particles dispersed in most o f  the 

upper part. With time increasing Figure 5-10(d), drug particles dispersed everywhere in 

the porous medium. Figure 5-11 is the number o f particles with a depth beyond 2000 pm, 

which equals to the concentration change in the lower part o f  the middle. It is similar 

compared with [71] which come from the spectral element method. SPH model has a 

0.0005 N downward force which signifies this model is closer to the actual situation.

There are still some reasons that cause system errors. Firstly, error is caused by using 

fixed random distribution particles to build the dermal layer o f  the porous medium 

structure. Secondly, due to random distribution o f  the particles, the results have small 

differences every time. Thirdly, for the continuous modeling, the permeability o f  the skin 

can be defined exactly by a parameter; however, for the discrete modeling, it is hard to 

control this parameter with accurate measurement.



(a) Initial at t = 0 (b) t = 10 sec

(c) t = 20 sec (d) t = 30 sec

F igure 5-10: The motion process o f  drug molecules.
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Figure 5-11 : The number o f particles that has a depth beyond 2000 pm.

5.4 Conclusions

Compared with traditional injection syringes, micro needles are painless, easy to 

operate, and a possible alternative to avoid the spreading o f  blood borne infections. To 

search online, there are already micro needle products. Different kinds and shapes o f 

needles [81, 82] and their clinical trials [83] are discussed in detail based on experimental 

tests and investigations. In this paper, numerical methods with high order accuracy are 

conducted to show a good agreement with these reference experimental data.

This paper developed virtual models to simulate the flux o f  Lidocaine from the 

needle into human skin. The drug in the micro needle is simulated as pressure driven 

Navier-Stokes equations with slip boundary condition. Also drug spread in human skin is 

treated as the Darcy-Brinkman equations. Since there are not too many numerical results 

to compare with, we do convergent tests for both h-refinement, p-refmement (SEM), and
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discrete method (SPH). The result shows the micro needle patch that with the current 

parameters, the drug can fully transfer to the required concentration.

At the same time, our two-dimensional model o f  the SPH method also shows the 

match o f  concentration at the interface o f  the dermis and the fat layers with SEM and 

reference. The differences happen due to the initial setting o f the model. Since there is a 

very small initial and boundary condition o f  pressure, all the drag particles are driven 

towards for the bottom o f the model. To minimize the error occurring by this setting, we 

just account for the number o f  particles moving through the critical section during 0 to 25 

seconds. The results show that at 20 seconds, the number o f  drag particles below the 

interface satisfies the requirement.



CHAPTER 6

DISCONTINUOUS GALERKIN SIMULATION OF 

HYPERBOLIC FLOW

6.1 In troduction

The DG-FEM in this chapter is used to simulate the models with incompressible 

Navier-Stokes equations [84], A two-dimensional case o f  a circle inside a straight 

channel, and a three-dimensional case o f  a sphere inside a rectangular channel will be 

presented.

6.2 N um erical M ethods

The incompressible Navier-Stokes equations are considered in this chapter.

/d u  \
p  +  ( u  ■ V )uJ =  -V p  +  pV2u  =  0, Eq. 6-1

V • u  =  0, on dfi, Eq. 6-2

in Eq. 6-1, the body fo rc e / is  ignored.

6.2.1 Time Splitting

In our code, Eq. 6-1 is divided into two parts. The pressure and velocity are 

calculated separately by the time splitting scheme o f the second order Adams-Bashforth 

scheme:

y u  -  a 0u n -  a i u ”" 1 , ^  ,  .
 ----------------------   =  -(30V -F n - l l 1V -F n- \  Eq. 6-3

At

73



74

in which F is the flux form o f  convection. The two-dimensional form as an example is 

shown in the equation below:

F =  K  u?l. Eq. 6-4
IUV

Therefore, the term o f  the internal source for pressure is solved as a Poisson equation in 

the function o f velocity u :

V ■ u  =  0, Eq. 6-5

V2pn+1 = - ^ V - u ,  Eq. 6-6
At

in which the u  and u  are the intermediate velocity field that is updated by:

u  — u
y ———  =  —Vpn+1. Eq. 6-7

The implicit integration o f  the viscous term is:

u n+1 -  u p
y   -=  -  Am" , Eq. 6-8
'  At p

so by combining Eq. 6-3, Eq. 6-7, and Eq. 6-8, we obtain the second order scheme in 

time:

y u n+1 -  a0u n -  a^u”-1 
At

Eq. 6-9

=  - /? 0V ■ Fn -  • Fn_1 -  V p ^ 1 +  ^ Aun+1.

6.2.2 Internal Penalty Flux

As discussed in Section 2.2.1, the internal penalty flux required to analyze the 

jum ps between the convection time steps.
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6.3 Results and Discussions

6.3.1 Two-dimensional simulation o f  a low Reynolds number flow

In this section, a two-dimensional simulation o f  the flow passing around a circle 

inside a straight channel is presented. The model is designed with the normalized size o f  

width 0.4, length 2.0, with a circle’s diameter o f  0.1. The slip boundary condition is 

considered at the walls o f  the channel and the circle’s surface. The Neumann boundary

condition o f  =  0 is conducted on the walls and the inlet, and at the outlet, the pressure

p is set at 0. For the velocity, the initial condition for the inlet is U =  s in ( i t t /

8 )(6 y (0 .4  — y), 0), 0 <  y <  0.4, and at the outlet, the Neumann boundary condition for

velocity is ^  =  0. The Reynolds number in this case is set at 10, with At =  0.001. The

simulation is solved with a polynomial order o f  3 and element number o f  552. Figure 6-1 

to Figure 6-3 show the velocity on the x and y direction, and the pressure at time t = 2s. 

The results are highly matched when compared with [85].
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Figure 6-1: The velocity on x-direction at t = 2s.
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Figure 6-2: The velocity on y-direction at t = 2s.
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Pressure

Figure 6-3: The pressure at t = 2s.

6.3.2 Three-dimensional Simulation with a Flow with Reynolds Number o f  200 

In this section, a three-dimensional model with a sphere inside a straight channel 

is generated. The mesh is built with 0 <  x <  6, —3 <  y <  3, —4 <  z <  10. A sphere with 

a radius o f 1.0 is located at x = 3, y = 0, and z = 0. The non-slip boundary condition is set 

at the walls o f  the channel and the sphere. At the inlet, the velocity on z-direction is set at 

10 m/s at the top and linearly reduces to 0 at the bottom. At the same time, at the inlet,

the Neumann boundary condition o f  — =  0 is defined. For the pressure, Dirichlet

boundary condition o f  p = 0 is set at the outlet, while, at the wall and inlet, the Neumann

boundary condition is imposed as =  0. Figure 6-4 presents the contours o f  the

velocity and pressure on the z-direction. Three slices, which are the cross section at x = 

2.99, y = 0.01, and z = 0.01, are shown here. Moreover, when the Reynolds number is 

larger, we are more interested in the vorticity. Figure 6-5 shows the contours o f  the



78

velocity on the z-direction and the related vorticity on the yz-cross section at x = 2.99. 

There are streamlines o f  vorticity that can be noticed, although the Reynolds number is 

only 200. Table 6-1 below shows the comparison o f  the results with increasing 

polynomial order.

Table 6-1: The maximum velocity (m/s) and pressure (Pa) on cross section o f  x = 3 due 
to different order o f  basis function.

Order Maximum u Maximum v Maximum w Maximum p

3 0.837 2.216 5.935 16.652

4 0.825 2.199 5.813 16.620

5 0.844 2.236 6.012 16.691
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Figure 6-4: The Three-dimensional model o f  flow passing a sphere inside a straight 
channel.
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Figure 6-5: The contours o f velocity on the z-direction and its streamline.

6.4 Conclusions

The two models presented in this chapter show numerical simulations solved by 

the DG-FEM scheme. The first case is generated with the same size and boundary and 

initial conditions o f  the existing reference data to prove the accuracy o f  this code. The 

second case shows that this scheme can simulate the model with a relatively high 

Reynolds number.

When the number o f  elements or polynomial order o f  the basis functions 

increased, the running time for simulation increased even longer. The fifth order model
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with 1552 elements o f three-dimensional scheme needs almost a whole day to run on an 

i-5 processor, with 8 GB memory. As a result, it seems that the parallel or other high 

performance computing will be needed if  we plan to have research on models with the 

Reynolds number over 2000 or even larger.
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, two kinds o f  numerical approaches are discussed for solving 

flows with different boundary conditions and scales in complex geometries and for 

complex physics. In Chapter 2, literature reviews for both the spectral element method 

and the discontinuous Galerkin finite element method are discussed separately. In 

Chapter 3, two three-dimensional cases o f  the environmental flow are presented to show 

the high order accuracy o f  the SEM for solving the Navier-Stokes equations. Chapter 4 is 

the modeling o f  electro osmotic flow by the SEM. Here, the slip boundary condition and 

body force caused by electrical potential is imposed to the two-dimensional Navier- 

Stokes equations. Moreover, in Chapter 5, a three-dimensional simulation o f  the medical 

application is processed, and the result is compared with the reference data and our 

discrete modeling. To solve problems with a high Reynolds number, the DG-FEM 

scheme is chosen and discussed in Chapter 6.

7.2 Future Work

Future work will focus on the following areas:

1. The SEM solver for the micro flow problems need to be developed to three- 

dimensional availability;
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2. The general DG-FEM solver for three-dimensional cases;

3. Research for hyperbolic flows with high Reynolds numbers is needed with the 

application o f  high performance computing.



APPENDIX

IMPORTANT FUNCTIONS AND LIBRARY

A. pabx.m

function f=pabx(alf,bet,ord,x) 
p( 1,: )=factorial(x * 0); 
p(2,:)=0.5*(alf-bet+(alf+bet+2)*x); 
for i= l:o rd-l 

a 1 =2 * (i+ 1) * (i+al f+bet+1)*(2 * i+alf+bet); 
a2=(2*i+alf+bet+l)*(alfA2-betA2); 
a3=(2*i+alf+bet)*(2*i+alf+bet+l)*(2*i+alf+bet+2); 
a4=2*(i+alf)*(i+bet)*(2*i+alf+bet+2); 
p(i+2,:)=((a2+a3*x).*p(i+l,:)-a4*p(i,:))/al; 

end
f=p(ord+l,:);

B. dpabx.m

function f=dpabx(alf,bet,ord,x) 
if(ord==0) 

f=x*0; 
else

f=l /2*(alf+bet+ord+1 )*pabx(alf+1 ,bet+1 ,ord-1 ,x); 
end

C. zeros.m

function f=zeros(alf,bet,ord) 
for i=0:ord-l 

xz(i+1 )=-cos((2*i+1 )*pi/2/ord); 
end

for k=l :ord 
r=xz(k); 
if(k>l) 

r=(r+xz(k-l))/2; 
end

84
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for j= l:100  
s=0;
for ii= l:k -l

s=s+l/(r-xz(ii));
end
del=-pabx(alf,bet,ord,r)/(dpabx(alf,bet,ord,r)-pabx(alf,bet,ord,r)*s);
r=r+del;
if(d eK le -lO )

break;
end

end
xz(k)=r;

end
f=xz;

D. GLJzp.m

function f=GLJzp(alf,bet,ord)%% calculation o f the zeros points
zp( l )= -1;
zp(ord)=l;
zp(2 :ord-1 )=epzero(alf+1 ,bet+1 ,ord-2); 
f=zp;

E. GLJwe.m

function f=GLJwe(alf,bet,ord) 
zp=GLJzp(alf,bet,ord);
cord=2A(alf+bet+l)*prod(l :alf+ord-l)*prod(l :bet+ord-l)/(ord-l)/prod(l :ord-
1 )/prod( 1 :alf+bet+ord)./(pabx(alf,bet,ord-1 ,zp).A2);
we(2: ord-1 )=cord(2: ord-1);
we( 1 )=(bet+1 )*cord( 1);
we(ord)=(alf+1 )*cord(ord);
f=we;

F. ZWGLL.h

#include <stdio.h>
#include <iostream>
#include <cmath>
#include <stdlib.h>
void sort(double* zeros, unsigned int dim)
{

for ( unsigned int i= 0; i<dim -1; i++)
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for (unsigned int j=  i+1; j<dim ; j++) 
if  ( zeros[i] > zeros[j])
{

double t= zeros[i]; 
zeros[i]= zeros[j]; 
zeros[j]= t;

}
}
double JacobiPolynomial(double alpha,double beta,int n,double _x)
{

if( n < 0)
{

printf("illegal order.\n"); 
exit(0);

}
if  (n == 0)

return 1; 
else if  (n == 1)

return 0.5*(alpha-beta+(alpha+beta+2)*_x);

double a_ l=  2*n*(n+alpha+beta)*(2*n-2+alpha+beta),
a_2= (2*n-1 +alpha+beta)*(alpha*alpha - beta*beta), 

a_3= (2*n-2+alpha+beta)*(2*n-l+alpha+beta)*(2*n+alpha+beta), 
a_4= 2*(n-1 +alpha)*(n-1 +beta)*(2*n+alpha+beta); 

return ((a_2+a_3 *_x)* JacobiPolynomial(alpha,beta,n-1 ,_x)- \
a_4*JacobiPolynomial(alpha,beta,n-2,_x))/a_l;

}

void zerosGuess( unsigned int order, double* zeros )
{

if  (order < 1) 
return; 

if  (zeros == NULL )
{

printf("Null pointer.\n"); 
exit(0);

}

unsigned int n= order+1; // zeros has n elements. 
zeros[0]= -1; 
zeros[order]= 1;

for (int i= 2; i<order+ l; i++)
zeros[i-l]= (l-3*(n-2)/(8*(n-l)*(n-l)*(n-l)))*cos((4*i-3)* \ 

3 .1415926/(4*(n-l)+ l)); 
sort(zeros,order+1);
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}

void computeZeros(unsigned int order,double* zeros)
{

zerosGuess(order,zeros); // zeros has order+1 elements.

unsigned int n= order+1;

//LegendrePolynomial lp 1 (order-1 ),lp(order);

for (unsigned int k= 1; k<order; k++)
{

double e= 0.0; 
double r= zeros[k]; 
int MAX= 500; 
w hile(M A X -)
{
double y= (n-l)*(JacobiPolynom ial(0.,0.,order-l,r)- \

r*JacobiPolynomial(0.,0.,order,r)),
dy= (2*r*y-(n-l )*n*JacobiPolynomial(0.,0.,order,r))/(l -r*r), 
ddy= (2*r*dy-(n*(n-l)-2)*y)/(l-r*r);

e= 2*y*dy/(2*dy*dy-y*ddy); 
r -= e;
if  (-1 e -10<e && e< le-10 || (MAX == 0)& & (-le-6<e && e< le -6 ) )

{
zeros[k]= r; 
break;
}

}
if  (MAX < 0 )
{
printf("Root finding can not coverge. ! \n"); 
exit(0);
}

}
sort(zeros,n);

}

void ZWGLL(double* zeros, double* weights, unsigned int num) // For standard element
{

if  ( weights == NULL || num < 1)
{

printf("illegal order or empty pointer. \n"); 
exit(0);

}
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//zeros= (double* )malloc(sizeof(double) * num); 
com puteZeros(num -l, zeros);

for (int i= 0; i<num; i++)
{

double w= JacobiPolynomial(0.,0.,num-l,zeros[i]); 
weights[i]= 2./(num*(num-l)*w*w);

}
}

G. DGLL

void DGLL(double* M,double* DM,double Z[],int NZ,int NZD)
{
// Compute the derivative matrix D and its transpose DT 
// associated with the Nth order Lagrangian interpolants 
// through the NZ Gauss-Lobatto Legendre points Z.
// Note: D and DT are square matrices, 
int i j ;
int N=NZ-1; 
double W[LX1];
ZWGLL(Z, W,LX 1); 
if(NZ>65)

{
printf("Subroutine DGLL\n"); 
printf("Maximum polynomial degree = 64\n"); 
printf("Polynomial degree = %d\n",N);
}

if(N Z==l)
*M=0.0; 

double D0=N*(N+1.0)/4.0; 
for(i=0;i<NZ;i++)for(j=0;j<NZ;j++)

{
*(M+i*NZ+j)=0.0;
if(i!=j)*(M+i*NZ+j)=PNLEG(Z[i],N)/(PNLEG(Z[j),N)*(Z[i]-Z[j]));
if(i=j& & i==0)*(M +i*NZ+j)=-D0;
if(i“ j&&i==NZ-l)*(M +i*NZ+j)=DO;
*(DM+j*NZ+i)=*(M+i*NZ+j);
}

}

double PNDLEG(double Z,int N )//pl39 
{
//Compute the derivative o f  the Nth order Legendre polynomial at Z. 
//(Simpler than JACOBF)
//Based on the recursion formula for the Legendre polynomials.
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double P3; 
double P I=1.0; 
double P2-Z; 
double P1D=0.0; 
double P2D=1.0; 
double P3D=1.0; 
int k;
double PNDLEG1; 
for(k=l;k<N;k++)

{
P3=((2.0*k+1.0)*Z*P2-k*P 1 )/(k+1.0); 
P3D=((2.0*k+1.0)*P2+(2.0*k+1.0)*Z*P2D-k*PlD)/(k+1.0);
P1=P2;
P2=P3;
P1D=P2D;
P2D=P3D;
}

PNDLEG1=P3D; 
return PNDLEG1;
}

H. HGLL

double HGLL(int i,double Z,double ZGLL[],int NZ)
{
// Compute the value o f  the Lagrangian interpolant HGLL through 
// the NZ Gauss-Lobatto Legendre points ZGLL at the point Z. 
double EPS=pow(1.0,-8); 
double HGLL1 ,ALFAN,DZ; 
int N;
DZ=Z-ZGLL[i];
if(fabs(DZ)<EPS)

HGLL1=1.0;
else

{
N=NZ-1;
ALFAN=N*(N+1.0);
HGLLl=-(1.0-Z*Z)*PNDLEG(Z,N)/(ALFAN*PNLEG(ZGLL[i],N)*(Z-ZGLL[i])); 
//if(abs(DZ)<EPS)HGLLl=l .0;
}

printf("% f\n",HGLLl); 
return HGLL1;
}

1. IGLLM
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void IGLLM(double* I I2,double* IT12,double Z l[],double Z2[],int N Z l,in t NZ2,int 
N D l,in tN D 2)
{
//Compute the one-dimensional interpolation operator (matrix) 112 
// ands its transpose IT 12 for interpolating a variable from a 
// Gauss-Lobatto Legendre mesh (1) to a another mesh M 
(,INVEDG[27],LIST[20][LELT][ 15]2).
// Z1 : LZ1 Gauss-Lobatto Legendre points.
// Z2 : LZ2 points on mesh M.
//double 112[ND2][ND 1 ],IT 12[ND 1 ] [ND2];
//double Z1[ND1],Z2[ND2]; 
int i,j; 
double ZI; 
for(i=0;i<NZ2;i++)

{
ZI=Z2[i];
for(j=0;j<NZ 1 ;j++)

{
if(i==j)

*(I12+i*NZl+j)=1.0;
else

*(112+i*NZ 1 +j)=0.0;
*(IT 12+i*NZ 1 +j)=*(112+j*NZ 1 +i);
}

}
if(N Z l= = l)

{
for(i=0;i<NZ2;i++)for(j-0;j<NZl;j++)

{*(I12+i*N Zl+j)=l.;*(IT12+i*N Zl+j)=l.;}
}

}

J. PNLEG

double PNLEG(double Z,int N)
{
// Compute the value o f the Nth order Legendre polynomial at Z.
//(S im pler than JACOBF)
// Based on the recursion formula for the Legendre polynomials, 
double P 1,P2,P3,PNLEG 1; 
int k;
P 1=1.0;P2=Z;P3=P2; 
for(k=0;k<N-l ;k++)

{
P3=((2.0*(k+1.)+1,0)*Z*P2-(k+1 ,)*P 1 )/(k+1.+1.0);
P1=P2;



91

P2=P3;
}

PNLEG 1=P3; 
return PNLEG 1;
}

K. PNDLEG

double PNDLEG(double Z,int N )//pl39
{
//Compute the derivative o f  the Nth order Legendre polynomial at Z. 
//(Simpler than JACOBF)
//Based on the recursion formula for the Legendre polynomials.
double P3;
double P l=1.0;
double P2=Z;
double P1D=0.0;
double P2D=1.0;
double P3D=1.0;
int k;
double PNDLEG 1; 
for(k=l ;k<N;k++)

{
P3=((2.0*k+1.0)*Z*P2-k*P 1 )/(k+1.0);
P3D=((2.0*k+l ,0)*P2+(2.0*k+l ,0)*Z*P2D-k*Pl D)/(k+l .0); 
P1=P2;
P2=P3;
P1D=P2D;
P2D-P3D ;
}

PNDLEG 1=P3D; 
return PNDLEG 1;
}

L. COEF

void COEF()
{
//Generate
// -Derivative operators,INVEDG[27],LIST[20][LELT][15)
// -Interpolation operators 
// -Weights 
// -Collocation Points 
//Associated with the
// -Gauss-Legendre Lobatto Mesh (Suffix M l)
// -Gauss-Legendre Mesh (Suffix M2)
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// (1) Gauss-Legendre Lobatto mesh (Suffix M l)
// Generate collocation points and weights 
ZWGLL(ZGM 11 ,WXM 1 ,LX 1);
ZWGLL(ZGM 12,WYM 1 ,LY 1);
ZWGLL(ZGM 13,WZM 1 ,LZ1); 
int ij,k ;
for(j=0;j<LYl ;j++)for(i=0;i<LXl ;i++)

{
W 3M l[i][j]-W X M l[i]*W Y M l[j];
}

//Compute derivertivee matrices 
double *D=new double[LXl *LX1]; 
double *DT=new double[LX l*LX l];
DGLL(D,DT,ZGM 11 ,LX 1 ,LX 1); 
for(i=0;i<LXl ;i++)for(j=0;j<LXl ;j++)

{
D XM l[i][j]=*(D+i*LX l+j);
DXTM l[i][j]=*(D T+i*LX l+j);
}

DGLL(D,DT,ZGM 12,LY 1 ,LY 1); 
for(i-0;i<LX  1 ;i++)for(j=0;j<LX 1 ;j++)

{
D YM 1 [i][j]=*(D+i* LY 1 +j);
DYTM 1 [i][j]=*(DT+i*LY 1 +j);
}

DGLL(D,DT,ZGM 13,LZ 1 ,LZ 1); 
for(i=0;i<LZ 1 ;i++)for(j=0;j<LZ 1 ;j++)

{
D ZM l[i][j]-*(D +i*LZl+j);
D ZTM l[i][j]=*(D T+i*LZl+j);
}

// (1) Gauss-Legendre Lobatto mesh (suffix M2)
// Generate collocation points and weights 
ZW GLL(ZGM 21 ,WXM2,LX2);
ZWGLL(ZGM22,WYM2,LY2);
ZWGLL(ZGM23,WZM2,LZ2);
// (3) Gauss-Legendre Lobatto mesh (suffix M3).,INVEDG[27],LIST[20][LELT][15] 
// Generate collocation points and weights 
ZW GLL(ZGM 31 ,WXM3,LX3);
ZWGLL(ZGM32,WYM3,LY3);
ZWGLL(ZGM33,WZM3,LZ3);
//for(k=0;k<LZ3;k++) 
for(j=0;j<LY3 ;j++)for(i=0;i<LX3 ;i++)

W3M3[i][j]=WXM3[i]*WYM3[j];
//Compute derivative matrices
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DGLL(D,DT,ZGM 31 ,LX3,LX3); 
for(i=0;i<LX3;i++)for(j=0;j<LX3;j++)

{
DXM3[i][j]=*(D+i*LX3+j);
DXTM3[i][j]=*(DT+i*LX3+j);
}

DGLL(D,DT,ZGM32,LY3,LY3); 
for(i=0;i<LY3 ;i++)for(j=0;j<LY3 ;j++)

{
DYM3[i][j]=*(D+i*LY3+j);
DYTM3[i][j]=*(DT+i*LY3+j);
}

DGLL(D,DT,ZGM33,LZ3,LZ3);
for(i=0;i<LZ3;i++)for(j=0;j<LZ3;j++)

{
DZM3[i][j]=*(D+i*LZ3+j);
DZTM3[i][j]=*(DT+i*LZ3+j);

}
// (4) GENERATE INTERPOLATION OPERATORS FOR THE STAGGERED MESH

IGLLM(D,DT,ZGM 11 ,ZG M 21 ,LX 1 ,LX2,LX 1 ,LX2); 
for(i=0;i<LXl;i++)for(j=0;j<LX2;j++)

{
IXM12[i][j]=*(D+i*LXl+j);
IXTM 12[i][j]=*(DT+i*LXl+j);
}

IG LLM(D,DT,ZGM 12,ZGM22,LY 1 ,LY2,LY 1 ,LY2); 
for(i=0;i<LY 1 ;i++)for(j=0;j<LY2;j++)

{
IYM 12[i][j]=*(D+i*LYl+j);
IYTM 12[i][j]=*(DT+i*LYl+j);
}

IGLLM(D,DT,ZGM 13,ZGM23,LZ 1 ,LZ2,LZ 1 ,LZ2); 
for(i=0;i<LZ2;i++)for(j=0;j<LZl;j++)

{
IZM 12[i][j]=*(D+i*LZl+j);
IZTM 12[i][j]=*(DT+i*LZl+j);
}

//NOTE: The splitting scheme has only one mesh 
IGLLM (D,DT,ZGM 21 ,ZGM 11 ,LX2,LX 1 ,LX2,LX 1); 
for(i=0;i<LX2;i++)for(j=0;j<LX2;j++)

{
IX M 21 [i][j]=*(D+i*LX2+j);
IXTM21[i][j]=*(DT+i*LX2+j);
}

IGLLM(D,DT,ZGM22,ZGM 12,LY2,LY 1 ,LY2,LY 1);
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for(i=0;i<LY 1 ;i++)for(j=0;j<LY 1 ;j++)
{
IYM 21[i][j]=*(D+i*LYl+j);
IYTM 21 [i][j]=*(DT+i*LY 1 +j);
}

IGLLM(D,DT,ZGM23 ,ZGM 13 ,LZ2,LZ 1 ,LZ2,LZ 1); 
for(i=0;i<LZ2;i++)for(j=0;j<LZl ;j++)

{
IZM 21[i][j]=*(D+i*LZl+j);
IZTM 21 [i][j]=*(DT+i*LZ 1 +j);
}

//Compute interpolation operators for the geometry mesh M3 
IGLLM(D,DT,ZGM 11 ,ZGM 31 ,LX1 ,LX3,LX1 ,LX3); 
for(i=0;i<LXl ;i++)for(j=0;j<LXl ;j++)

{
IXM 13[i][j]=*(D+i*LXl+j);
IXTM 13[i][j]=*(DT+i*LXl+j);
}

IGLLM(D,DT,ZGM 12,ZGM32,LY1,LY3,LY 1 ,LY3); 
for(i=0;i<LY 1 ;i++)for(j=0;j<LY 1 ;j++)

{
IYM 13[i][j]=*(D+i*LYl+j);
IY TM 13[i][j]-*(DT+i*LY 1 +j);
}

IGLLM(D,DT,ZGM13,ZGM33,LZ1 ,LZ3,LZ1 ,LZ3); 
for(i=0;i<LZ3 ;i++)for(j=0;j<LZl ;j++)

{
IZM 13[i][j]=*(D+i*LZl+j);
IZTM13[i][j]=*(DT+i*LZ3+j);
}

IGLLM (D,DT,ZGM 31 ,ZGM 11 ,LX3,LX 1 ,LX3,LX 1); 
for(i=0;i<LXl ;i++)for(j=0;j<LXl ;j++)

{
IXM 31 [i][j]=*(D+i*LX 1 +j);
IXTM 31 [i][j]=*(DT+i*LX 1 +j);
}

IGLLM(D,DT,ZGM32,ZGM 12,LY3,LY 1 ,LY3 ,LY 1); 
for(i=0;i<LY 1 ;i++)for(j=0;j<LY 1 ;j++)

{
IYM 31 [i]U]=*(D+i*LY 1 +j);
IYTM 31 [i][j]—*(DT+i*LY 1 +j);
}

IGLLM(D,DT,ZGM33,ZGM 13,LZ3,LZ 1 ,LZ3,LZ 1); 
for(i=0;i<LZl;i++)for(j=0;j<LZ3;j++)

{
IZM 31 [i][j]=*(D+i*LZ3+j);
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IZTM 31 [i][j]~*(DT+i*LZ3+j);
}

}

M. FORTIC

void FORTICQ
{
double PI=3.1415926536; 
double VELT,VELTOT;
//Fortran function initial conditions 
double AL=fabs(XM 1 [0] [0] [0]-XM 1 [LX 1 -1 ] [0] [LELT]); 
int IEL,i,j,k; 
double X ,Y ;
for(IEL=0;IEL<LELT;IEL++)for(i=0;i<LXl ;i++)for(j=0;j<LY 1 ;j++)

{
X =XM l[i][j][IEL];Y=YM l[i][j][IEL];
VX[i](j][IEL]=UO;VY[i][j][IEL]=VO;
VELTOT=VX[i][j][IEL]*VX[i][j][IEL]+VY[i][j][IEL]*VY[i][j][IEL];
TEMP[i][j][IEL]=TO;
RHO[i][j][IEL]=RO;
PR[i][j][IEL]=(GAM-1.0)*CV*RHO[i][j][IEL]*TEMP[i][j][IEL];
ENER[i][j][IEL]=RHO[i][j][IEL]*(CV*TEMP[i][j][IEL]+0.5*VELTOT);
//Now find non-dim values
VELT=pow(UO*UO+VO*VO,0.5);
AA=RO*VELT*VELT/(pow(RO,GAM));
RHO[i][j][IEL]=RHO[i][j][IEL]/RO;
PR[i][j][IEL]=RHO[i]|j][IEL]/RO/VELT/VELT;
TEMP[i][j][IEL]=TEMP[i][j][IEL]/TA;
ENER[i][j][IEL]=ENER[i][j][IEL]/RO/VELT/VELT;
VY[i][j][IEL]-VY[i][j][IEL]/VELT;
VX[i][j][IEL]=VX[i][j][IEL]A/ELT;
RXVEL[i][j][IEL]=VX[i][j][IEL]*RHO[i][j][IEL];
RYVEL[i][j][IEL]=VY[i][j][IEL]*RHO[i][j][IEL];
VISC[i][j][IEL]=l .0;
AMACH[i][j][IEL]=l .0/pow(GAM*(GAM -l .0)*TEMP[i][j][IEL],0.5);
}

}

N. DTDECIDE

void DTDECIDE(double DT,int ITER)
{
int i,j,k,IEL;
double CFL,VELMAX,VICOS,VELO,DIF; 
if(ITER==0)GRIDSET(DZ);
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//Choose according to CFL condition 
VELM AX=-1000.0;
VICOS-2.0/REYN;
for(IEL::=0;IEL<LELT;IEL++)for(i=0;i<LXl ;i++)for(j=0;j<LY 1 ;j++)

{
VELO=pow(VX[i][j][IEL]*VX[i]Q][IEL]+VY[i][j][IEL]*VY[i][j][IEL],0.5); 
VELO=VELO*( 1.0+1.0/AMACH[i][j][IEL]); 
if(VELMAX<=VELO)VELMAX=VELO;
}
CFL=VELMAX*DT/DZ;
DIF=VICOS*DT/DZ/DZ;
printf("CFL,DIFF NUM BER =% f %f\n",CFL,DIF);

}

O. POST

void POST(FILE* fp)
{
int IEL,ij,k; 
double VELTOT;
for(IEL=0;IEL<LELT;IEL++)for(i=0;i<LX 1 ;i++) 
for(j=0;j<LY 1 ;j++)

{
//Turn o ff the energy equation 
VX[i][j][IEL]—RXVEL[i][j][IEL]/RHO[i][j][IEL]; 
VY[i][j][IEL]=RYVEL[i][j][IEL]/RHO[i][j][IEL]; 
VELTOT=pow(VX[i][j][IEL],2)+pow(VY[i][j][IEL3,2); 
PR[i][j][IEL]=(GAM-1.0)*(ENER[i][j][IEL]-0.5*RHO[i][j][IEL3*VELTOT); 
TEMP[i][j][IEL]-(ENER[i][j][IEL]/RHO[i]Lj][IEL]-0.5*VELTOT); 
AMACH[i][j][IEL]=pow(VELTOT/(GAM*PR[i][j][IEL]/RHO[i]U][IEL]),0.5); 
}

}
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