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ABSTRACT

Direct and inverse scattering problems have wide applications in geographical 

exploration, radar, sonar, medical imaging and non-destructive testing. In many 

applications, the obstacles are not smooth. Comer singularity challenges the design of a 

forward solver. Also, the nonlinearity and ill-posedness of the inverse problem challenge 

the design of an efficient, robust and accurate imaging method.

This dissertation presents numerical methods for solving the direct and inverse 

scattering problems for domains with multiple comers. The acoustic wave is sent from 

the transducers, scattered by obstacles and received by the transducers. This forms the 

response matrix data. The goal for the direct scattering problem is to compute the 

response matrix data using the knowledge o f the shape of the obstacles. The goal for the 

inverse scattering problem is to image the location and geometry o f the obstacles based 

on the response matrix data. Both the near field and far field cases are considered. For the 

direct problem, the challenges o f logarithmic singularity from Green’s functions and 

comer singularity are both taken care of. For the inverse problem, an efficient and robust 

direct imaging method similar to the Multiple Signal Classification algorithm is 

proposed. Multiple frequency data are combined to capture details while not losing 

robustness. The near field and far field response matrices are compared and their singular 

value patterns are compared as well. The singular value perturbation is carefully studied. 

Extensive numerical results demonstrate that our forward solver is capable o f handling 

domains with multiple comers by solving a linear system with low condition numbers



generated from a boundary integral equation, that our inverse problem solver is efficient, 

accurate and robust. It could handle response matrix data with noise.
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C H A P T E R  1

INTRODUCTION

Scattering theory is a significant part of mathematical physics in the twentieth 

century. Scientists and mathematicians are attracted by these scattering phenomena. 

Basically, scattering theory is about analyzing the effect an inhomogeneous medium has 

on an incident particle or wave. The incoming acoustic or electromagnetic wave can be 

scattered by the target and transducers can receive it. The classical scattering problem can 

be separated into two parts: direct scattering problem and inverse scattering problem.

In direct scattering problem, the total field is viewed as the sum of an incident 

field u 1 and a scattered field u \  The goal is to determine u s from the knowledge of u' 

and the differential equation governing the wave motion.

In inverse scattering problem, the refractive index ii(x) or the geometry of the 

target is unknown. Using the information of incident waves and the scattered waves 

recorded by the transducers to find out the target’s location and geometry is the main 

objective o f the inverse scattering problem.

For the forward problem, the smooth target case is studied by [l] using Nystrom 

discretization and boundary integral method. Exponential convergence is exhibited. A 

target with one comer is also studied by [l]. A change of variable technique is used to 

generate graded mesh to resolve the comer. High order convergence is observed.
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Berenger [39] used a different approach, the perfectly matched layer technique, to 

truncate the unbounded domain to be a bounded domain. The finite difference method is 

used, and across the perfectly matched layer (PML), the solution has exponential decay 

and no reflection.

For the inverse problem, in [25], a direct imaging algorithm, the Multiple Signal 

Classification (MUSIC) algorithm is introduced for extended targets with near field data. 

In [26], the far field data is considered. In [27], multi-tone imaging method is introduced. 

Unlike the projection type MUSIC method, this method keeps phase information and 

combine multiple frequency data. In [29], an iterative continuation method is introduced 

by utilizing the MUSIC algorithm as an initial guess. It is an optimization method that 

minimizes the residual by solving many forward and adjoint problems. In [28], the linear 

sampling method is used to solve the inverse scattering problems. It uses a factorization 

o f the far field operator. The method is closely related to the MUSIC algorithm.

In this dissertation research, for the forward problem, we study the more 

challenging problem with domains having multiple corners. The problem, though having 

wide applications, is not well-studied in the literature. If we strictly follow the idea from 

the previous work in [1] for a domain with one comer, the linear system would have a 

large condition number. The goal is to develop a well-conditioned forward solver. For the 

inverse problem, the MUSIC algorithm in [25] is a projection algorithm that does not 

keep the phase information. It is not meaningful to combine multiple frequency data 

directly. The goal is to use an efficient, robust and accurate direct imaging algorithm 

similar to the MUSIC algorithm while keeping the phase information to image a target 

containing multiple targets with comers.
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The organization o f the dissertation is as follows. In Chapter 2, the background of 

direct and inverse scattering problems are discussed. In Chapter 3, the method for the 

dissertation research is introduced. In Chapter 4, numerical results are presented. In 

Chapter 5, a summary and future work is presented.



C H A P T E R  2

BACKG RO UND

We present the background of our research in this chapter. Our research is divided 

into two parts: direct scattering problem and inverse scattering problem. For direct 

scattering problem, we describe the methodology in [1] for the domains with a smooth 

boundary in Section 2.1. Our research is for domains with multiple comers. For inverse 

scattering problem, we describe several approaches for imaging methods in Section 2.2. 

Our imaging method is similar to the MUSIC algorithm [25, 26] or the multi-tone 

imaging algorithm [27].

2.1 The Direct Scattering Problem

Let u be the total field, ul be the incident field, and u s be the scattered field. Here, 

ul comes from one position or one direction. The total field u can be written as Eq. 2-1:

u  =  u '  +  u a. Eq. 2-1

Determining the scattered field u s from the knowledge o f the u\  the shape o f the 

target, and the differential equation governing the wave motion is called the direct 

scattering problem. There are two basic direct scattering problems: the scattering o f time- 

harmonic acoustic or electromagnetic waves by a penetrable inhomogeneous medium of

4
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compact support and by a bounded impenetrable obstacle. The impenetrable problem also 

has two different cases: sound soft case and sound hard case.

The total field should satisfy the Helmholtz equation:

A u +  k 2u =  0, Eq. 2-2

where the wave number k  is given by the positive constant k =  w/c,  c is the speed of 

sound and uj is the frequency.

There are two different kinds of impenetrable objects. For a sound-soft target, the 

pressure of the total wave vanishes on the boundary. When we consider the scattering of 

a given incoming wave u{ by a sound-soft target D, the total wave u must satisfy the 

wave equation in the exterior K2 \  dD  of D and a Dirichlet boundary condition u =  0 on 

dD,  In the same way, the scattering from sound-hard target leads to a Neumann boundary 

condition =  0 on dD  since here the normal velocity o f the acoustic wave vanishes on 

the boundary. So in general, an impedance boundary condition for the Helmholtz 

equation with a positive constant A can be written as:

O n
—  +  i \ u  =  0, on dD.  Eq. 2-3

For a penetrable obstacle D with constant density/;/; and speed of sound Co,  the 

density and speed o f sound are different from the same properties o f the surrounding 

medium R 2 \ d D .  This change will lead to a transmission problem. The total field 

u =  u' +  us should satisfy the Helmholtz equation with wave number k. = uj/c., where a1 

is the incoming wave and the scattered wave is u a in the surrounding medium. In addition, 

a transmitted wave in D need satisfy the Helmholtz equation with the wave number



kp — ui/ cp.  It should be noticed that kD ^  k.  In order to keep the continuity o f the

pressure and of the normal velocity across the interface, transmission conditions also 

need to be met. The conditions can be seen in Eq. 2-4:

1 du  1 dv

Arnold Sommerfeld defined the condition of radiation for a scalar field satisfying 

the Helmholtz function in 1912, which can be described mathematically as Eq. 2-5:

The sommerfeld radiation condition is used to ensure the uniqueness for the solutions to 

the scattering problems. If we consider a point source in three dimensions, the function 

/ ,  presenting the bounded source o f energy, is written as f ( x )  =  8 (x — x 0) in the 

Helmholtz equation. <5 is the Dirac delta function. Then the only solution that satisfies the 

Sommerfeld radiation condition is

This is Green’s function, the fundamental solution of the Helmholtz equation.

Below, we briefly explain the layer approach in [1] that solves the direct 

scattering problem for smooth targets. The solution of the Helmholtz equation is u by 

finding the density in the layer potential. First, observe the single- and double-layer 

potential.

Eq. 2-4

Eq. 2-5

Eq. 2-6
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Given a function p  £ C(dil) ,  the function

p{y)^{x,y)d.s(y). Eq. 2-7J OD

is called the acoustic single-layer potential with density p.  The function

Eq. 2-8

is called the acoustic double-layer potential with density p. We assume to unite normal v

is also a solution to the Helmholtz equation.

These two potentials are solutions to the Helmholtz equation in D and in R2 \  dD.  

Meanwhile, they also satisfy the Sommerfeld radiation condition. Green’s formulas show 

that any solution of the Helmholtz equation can be represented as a combination of 

single- and double-layer potential.

Assume we have continuous densities p. The behavior of the surface potential at 

the boundary is described as “jump relations”. We have the following theorem form [1]: 

Theorem: Let dD  be of class C 2  and let p  be continuous. Then the single-layer potential 

u  with density p  is continuous throughout R3 and

H a l l o o , f t - 1 — C H ^ H o o . y D i  

for some constant C depending on dD.  On the boundary, we have

to be directed into the exterior domain R2 \  dD.  We note that the double-layer potential u

p{y)<t>{x,y)ds(y), x  6 dD



where

d u ±
(:r) := lim v{x) ■ grad u,(x ±  hi'(x)),

du  /i—»+0

is to be understood in the sense of uniform convergence on dD  and where the 

integral exists as improper integrals. The double-layer potential v  with density 

p  can be continuously extended from D  to D  and from R:i \ D  to R.:! \  D with 

limiting values

v± (x) = !  p { y )<}\ ^ r ' f  ds(y) ±  x  £ dD,
J  6 d  M jj)  2

where

v±(x) := lim v ( x ± h u ( x ) ) ,
h.-*+0

and where the integral exists as an improper integral. Furthermore,

l l ^ l l o o . D  —  C , | | v 7 | | o c , t f / 3 i  

H a l l o o ,  R * \ D  <  C\\p\\ oo.OD 5

for some constant C  depending on dD  and

r \  r )

lim { t t - ( x  + hu(x)) -  (-7p~{x -  hv(x))}  = 0, x  £ dD,  
h->+o^dv du

uniformly on dD

Based on the above theorem, our single layer potential takes the same form on the 

boundary:

u\(x) /  p(y)d>(x. y)d.s(y). x  £ dD.
J i ) D

Eq. 2-9



However, the double-layer potential is changed to

"*(* ) _  +  ^  X € d °  E q.2-1#

We define the single- and double-layer operators S  and K,  which can be described as

(Stp)(x) = 2  J  <f>(.r, y)<p(y)ds(y). x  £ dD,  E(J 2. n

=  2 /  Jd

d $(x ,  y)
m  Eq-2-12

( Kp) ( x )  = 2 — — <p(y)ds(y), x  £ dD.

The existence o f the solution o f the exterior Dirichlet problem is based on 

boundary integral equations. In the method “layer approach”, we choose the combined 

single- and double-layer potential approach so that the integral equation is uniquely 

solvable. The approach is represented as

U^  =  L d ^ M v ) ~  v ( v ) d s ( y ) ,  x G R  2 \ d D , Eq. 2-13

where y  is a coupling parameter.

Combining the operators S,  K  (Eq. 2-11 and Eq. 2-12) and the jump relation 

(Eq. 2-10), the approach can be rewritten in the form of

p  + K<p- i r ] Sp  = 2f ,  x e d D .  Eq. 2-14

In order to find the numerical solution in 2D, rewrite the above equation in parametric
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where

V’(t) = <P(-c(t))> {/(*) = 2 /( .r (0 ).

The kernels are given by

L ( ^, r )  := ^ { 4 (t )[x i (t ) -  x ^ t ) }  -  x \ { t )[x 2{t ) -  x 2( t ) } } ~ - 1 ,
2 f{t .T)

Note that <F(x, y) := , for t ^  r , we have the set

r ( t , r )  := { [ x } ( t )  -  x ^ t ) } 2 +  [x2 {t )  -  x 2 { t ) } 2 } ^  . Eq. 2-16

From the expansion for the Neumann functions [1], we see that the kernels L and 

M have logarithmic singularities at t  =  t . Hence, for their proper numerical treatment, 

following Martensen [2] and Kussmaul [3], we split the kernels into

L ( t , r )  =  L i(f,T )ln(4sin2 — ~ )  +  L 2( t , r ) ,  Eq.2-17

M ( t , r )  =  M \ ( t ,  t ) ln(4 sin2 Eq. 2-18

where

:= £-{x '2{T)[xi{t) -  Xi(r)] -  x,1(r)[x2(/,) -  x2( t ) } } ' - ^ ~ ^ ^ - ,
2 ix

L 2( t ,T) :=  L( t , r )  -  L ^ t ,  r )  ln(4sin2 —jj—),
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m - T) ■= - ^ M k r { t , T n i x [ ( T ) } 2  +  [ 4 ( t ) R 1/2,

-  M ( t , r )  -  A/, if. 7 ) ln(-l .siir ' J  )

The kernels L x, L 2, M\  and M 2 turn out to be analytic. Use Bessel’s functions of 

order n.  We can reduce the diagonal terms as

1 x[(t)x^(t) -  x'2 {t)x'l(t)
L 2 (t, t) = L(t,  t) =

2?r [x,1 (t ) ] 2 + [4 (f)]5

W ' t ) ( j { K ( ( ) ] 2 + 1 4 « )]2} ) \  { (4 (()]2 +  ( 4 ( f ) ] T ,

where the Euler constant is C = 0.57721566.

Despite the continuity o f kernel L , it is good to separate the logarithm part o f L 

since the derivatives of L  fail to be continuous at

/
27T

K( t , T) ^ (T)dr  = g(t), 0 < t < 2tt, Eq. 2-19

where the kernel K  is:

K ( t , r )  := K i ( t , r )  ln(4sin2 l- ~ )  +  K 2 (t,T).

There are three basic numerical methods of integral equations o f the second kind: 

Nystrom, collocation and the Galerkin method. The Nystrom method is more practical 

when we deal with ID or 2D problem because this method requires less computational 

effort. The Nystrom method only evaluates the kernel function for the evaluation o f each 

o f the matrix elements o f the linear system. This method consists of the straightforward



approximation of the integrals by quadrature formulas using the quadrature rule:

f  ln(4sin2 t- ^ ) f { r ) ( h  «  R {-l) ( t ) f { t3), 0 <  t < 2tt, Eq. 2-20

with quadrature weights given by

2 rr n~l 1
R ^ \ t )  := — -  — cos rn(t -  tA -  cosn(t  -  t.A. j  = 0 , 2 n -  1,

J n  rn i r
m = l

and the trapezoidal rule:

„2tt 2 n -  1

J ,  / M ^ - g / R ) .  E q 2 . 21

The integral equation is replaced by the approximating equation:

2 n - 1

« “ '(«) -  E  -  m -  Ea 2 - 2 2
j = 0

The solution of Eq. 2-22 reduces to solving a finite dimensional linear system. 

For any solution from Eq. 2-22, the values ^ jn) =  * =  0,..., 2n  -  1, at the

quadrature points trivially satisfy the linear system:

2n  — 1
( r t )

—  »  * 1 1 .  . r  % 1 1 # /  . - I  —t— —  r  \  n  1 f  .* /  .• » > 1 1 1 .  ~ ~  r / 1  1 - 1

Eq. 2-23J=0

where
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which means the solution can be defined as

For the far field we have the formula:

and the near field we have the formula:

u d<t>(x,y)
dv{y)

-  irpJ>(.r, y) > (p(y)ds(ij), x  € R2 \  dD.

Provided the integral equation Eq. 2-19 itself is uniquely solvable and the kernels 

K\  and K 2 and the right hand side 9 are continuous, a complicated error analysis shows 

that

1. The approximating linear system Eq. 2-23, i.e., the approximating equation Eq. 2-22, 

is uniquely solvable for all sufficiently large n\

2. As n  —>■ oo, the approximate solutions converge uniformly to the solution i/’ of 

the integral equation;

3. The convergence order o f the quadrature errors for Eq. 2-20 and Eq. 2-21 carries 

over to the error — V'-

The latter means that in the case of analytic kernels Ii \  and A'2 and analytic right 

hand sides g, the approximation error decreases exponentially, i.e., there exist positive
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constants C  and a  such that

| v /n)(f) -  ip{t) I < Ce~1UT, Q < t <  2tr, 

for all n. This is exponential convergence.

The above discussion is for smooth targets. Our research is focused on non

smooth targets with multiple comers. It will be described in the next chapter.

2.2 The Inverse Scattering Problem

The inverse problem has progressed since the 1980’s. In most cases, the inverse 

scattering problem is inherently nonlinear and, more seriously from the point of view of 

numerical computations, improperly posed. As a result of this, recovering the refractive 

index n(x)  in the whole domain is a difficult task.

Here, if  we consider the target medium is homogeneous, the n(x)  is a constant 

inside the target. Then we can turn the inverse problem into a geometric problem by 

reconstructing the shape o f the target.

Inverse scattering problem is widely used in the industry such as: underground 

mine detection, target detection using radar or sonar system, ultrasound imaging, and 

reflection seismology. There are two main types o f numerical method for the inverse 

problem: the direct imaging method and the iterative method.

In the iterative method, the boundary o f the target is updated to minimize the 

residual o f the scattered field. Well-known methods are the Newton method, the 

Landweber method and least square fits. These methods use the model of the full forward 

problem for the solution o f the inverse problem. Because these techniques take advantage 

of all the information about the forward problem, they usually get quite good
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reconstructions. However, due to the fact that they are required to solve the forward 

problem many times for information, the iterative method is computationally intensive. 

What is more, it is difficult to obtain a localized reconstruction in a limited problematic 

data setting.

In the direct imaging method, the geometry o f the target is given by designing an 

imaging function based on the response matrix. This is the most recent class of 

algorithms for the inverse problem. The most significant advantage of these techniques is 

that they can be applied without knowing whether the scatterer is impenetrable, or it is an 

inhomogeneous medium.

Decomposition algorithms consist o f the methods that split the inverse problem 

into an ill-posed part to reconstruct the scattered field and a well-posed part to find the 

unknown scatterer due to the boundary condition. Well known method includes dual 

space method [4,5], the technique o f Kirsch and Kress [1] and the point source method of 

Potthast [7,8,9].

The linear sampling method, first proposed in [42], is one of the direct imaging 

algorithms for inverse problems. This method is based on a characterization o f the range 

of the scattering operator for the far field pattern. The far field pattern o f a point source 

located inside the object should be in the range of the scattering operator.

The domain of an unknown scatterer by the behavior o f the solution to the integral 

equation is

Kirsch then developed a factorization of the scattering operator and uses it for imaging:

J u 0 0 (x,y)g{y)ds(y)
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(Fg){x)  := ^ u x-(./•• y) g(y)ds ( y )> € S.

By using the operator, Kirsch proposed to solve the equation

(F*F)Wg{x)  = eiki's , x  e  S.

For all z on the sampling grid, the equation is solvable if and only if z is the interior of 

the unknown scatterer.

Ikehata and Potthast proposed two independent related algorithms, the probe 

method [10] and the method of singular source [9]. These methods are different from the 

linear sampling method of Kirsch because they use different quantities that blow up when 

approaching the boundaries of some scatterers. The probe method o f Ikehata uses 

Green’s function to define an indicator function. This indicator function blows up when 

the virtual source touches the targeted obstacle. The singular sources method o f Potthast 

uses a different functional that blows up at the boundary of the obstacle. However the 

basic concepts o f these two methods are the same.

After the probe method, Ikehata’s developed enclosure method [11, 12] enables 

us to use very limited data to finish the reconstruction process. He uses a special 

harmonic incident field:

v  __ ftTX-iu + iu;1)

To construct the indicator function:

-Tt r ,du,  . . ,du,  . . ,
L { r , t )  = e { { ^ d a M a a )  ~  (-Q^dGMoci)},  r  > 0 , t € R,

where uj a direction vector, u is the unknown solution and G is some domain containing 

the unknown scatterer. Ikehata shows that at the comers o f polygonal scatterers, this



function becomes unbounded. Then he exploits this property to uniquely reconstruct the 

scatterer. The enclosure method is a method independent of the material properties o f the 

scatterer.

Luke and Potthast developed another technique for locating a scatterer from a 

single incident wave that also exploits the behavior of a special indicator function in the 

neighborhood of a scatterer. The method is called the no response test. Compared to the 

enclosure method, the no response test does not make use of, nor place any particular 

constrains on, the geometric properties of the scatterer.

MUSIC algorithm is a method of characterizing the range of a self-adjoint 

operator. MUSIC is an abbreviation for multiple signal classification. Because we know a 

self-adjoint matrix A’s noise subspace is orthogonal to the range. If a vector /  is in the 

range, its projection onto the noise subspace is zero. This is the basic idea of MUSIC 

algorithm.

With full provided aperture data given, the generalized MUSIC algorithm for a 

single frequency is capable of imaging different types of targets with efficiency, 

robustness and accuracy. However, the results are typically not very good for limited 

aperture. Multiple frequencies should be used to complement the lack of spatial aperture. 

The MUSIC algorithm is based on the singular value decomposition of the response 

matrix. We know that this decomposition allows for an arbitrary complex phase. As a 

result o f that, combining different frequencies in a phase coherent way is not direct.

In [27], multi-tone imaging algorithm is introduced to make use o f coherent 

information in both phase and space. This multi-tone algorithm takes the advantage of
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phase coherence from multiple frequency data to improve both resolution of robustness 

of the imaging procedure. There are two crucial points in the multi-tone algorithm.

1. Physically based factorization of the response matrix that transforms a passive target 

detection problem to an active source detection problem.

2. A phase coherent imaging function that can superpose multiple tones and multiple 

frequencies to take advantage o f both spatial diversity of the array and/or the 

bandwidth of the probing signal.

This multi-tone method is simple and efficient because no forward solver or 

iteration is needed. Because this method takes advantage of multiple frequencies, the 

imaging is enhanced and it is robust with respect to noise. Thus, this method can deal 

with limited or synthetic aperture data naturally as well as with different material 

properties and different types o f illuminations and measurements.

The general inverse problem approach to the whole medium is regarded as the 

unknown. That means an inverse or pseudo-inverse of the forward operator has to be 

approximated and computed. The inverse problem is also nonlinear even if the forward 

problem is linear in most cases. Iterations are required to solve this kind o f nonlinear 

optimization problem. It also involves solving an adjoint forward problem at each 

iteration. What is more, the inverse problem is often ill-posed and regularization has to 

be introduced. Thus, imaging the whole medium using the general inverse problem 

approach may be too complicated and too expensive to be practical in the applications if 

there exists a large imaging domain.

In [25], Hou found that if  the background medium is homogeneous and some 

simple boundary condition is satisfied at the boundary of the target, the inverse problem



can be turned into a geometric problem. This means that it changes to a problem of 

determining the shape of the target from the scattered wave field pattern. In this case, the 

number o f degrees o f freedom will be greatly reduced from imaging the whole medium.

As just discussed the inverse medium scattering problems have two major 

difficulties: the ill-posedness and the presence o f many local minima. To overcome these 

difficulties, stable and efficient regularized recursive linearization methods are developed 

in [15, 16, 17, 18] for solving the 2D Helmholtz equation and the 3D Maxwell’s equation 

[19, 20] in the case of full aperture data. These methods start from the weak scattering, 

where Bom approximation may be used to produce initial guesses. Even if the methods 

yield stable and accurate computational results, they nonetheless rely on the weak 

scattering assumption for initial guesses. Unfortunately, if  the weak scattering assumption 

is violated, the Bom approximation might lead to an initial guess with which the 

continuation approach would converge slowly or even diverge. To solve the problem 

which Bom approximation may not be valid, [29] proposed a continuation approach 

starting from an initial guess via the MUSIC algorithm and a level set representation at a 

fixed wave number. The method requires multiple frequencies scattering data and the 

recursive linearization is a continuation procedure on the wave numbers.

In [25], a very important algorithm is introduced. The algorithm is based on a 

physical factorization o f the response matrix of a transducer array and the MUSIC 

imaging function is used to visualize the result. This algorithm is simple and efficient 

since no forward solver or iteration is needed and multiple-frequency information 

improves both resolution and stability o f the algorithm.
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The direct imaging algorithm in [25] can image both location and geometry of 

extended targets. The motivation o f this method is to locate or visualize dominant 

scattering events. In homogeneous media, this is equivalent to finding the boundary o f a 

target that has some contrast from the background. For heterogeneous media, whether 

this method can clearly locate or visualize the boundary depends on two factors:

1. To what extent the scattering at the boundary of the target dominates other scattering 

events in the medium.

2. Knowledge about the background medium. With a physically based thresholding, this 

direct imaging algorithm can deal with quite strong measurement noise.

This direct imaging method’s physical model is the Helmholtz equation for 

harmonic waves. An array of transducers that can send out waves and record scattered 

waves is used to probe the medium. The response matrix is built by the measurement data. 

This response matrix contains all the information about the medium that can be obtained 

with the transducer array. Based on a physical factorization o f the scattered field, the 

Singular Value Decomposition (SVD) is characterized for extended targets. A direct 

imaging function base on the SVD then is designed and a thresholding strategy for 

regularization based on the physical resolution o f the array and the noise level is 

introduced.

Another physical motivation o f the algorithm is that strong scattering events can 

be considered as sources for the scattered field. In time reversal, the received wave field 

is time reversed and back propagated into the medium. Then the retransmitted wave will 

focus on the sources. If we want to detect a target, the target is illuminated by a probing 

wave first, and then the time reversed wave will focus on dominant scatters. However,
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the standard time reversal procedure can only locate the most dominant scattering event 

associated with the largest singular value or dominant events associated with different 

singular values one by one. As a result of that, for an extended target, we need to use the 

SVD to extract the dominant events that characterize the information of the shape.

The imaging function is a similar form as the MUSIC imaging function. The 

MUSIC algorithm can only locate a small target. However, for extended targets, the 

response matrix has a more complicated structure. In order to locate an extended target, a 

physical representation of the scattered field and the corresponding response matrix is 

produced. Then a thresholding strategy is also developed based on the resolution o f the 

array and the SVD of the response matrix. Using these two ideas, important contributions 

to the scattered field simultaneously form the SVD of the response matrix can be 

extracted.

It should be noticed that this algorithm is different from the algorithm in [22]. In 

[2 2 ], the method is using a shape optimization to match all measurements in the response 

matrix.



C H A P T E R  3

METHODS

In this chapter, we propose forward and inverse problem solvers from domains 

with multiple comers. For the forward problem, the work introduced in the previous 

chapter is for the smooth target case. We will first discuss the idea in [1] for domains 

with one comer. Then we will explain our improvement to treat domains with multiple 

comers. For the inverse problem, we will discuss how to use MUSIC and other direct 

imaging algorithms to solve the inverse problem for domains with multiple comers. This 

research work is published in [43],

3.1 The Forward Problem

Consider a time-harmonic plane wave, «' — eikx"1, incident on a scatterer Q. e  R2 

with multiple comers, where k  is the wave number and d 6 S '  is the incident direction. 

Let dkl be the boundary of the scattered. We consider the obstacle scattering problem. 

The total field u satisfies the Helmholtz equation:

A u +  k2u =  0 in R2 \  U, £q# 3_j

■u =  0 on d i  I . Eq. 3-2

The total field consists o f the incident field and the scattered field

u -- u' +  id . Eq. 3-3

22
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The incident field satisfies the homogeneous equation:

A n '  +  k 2 u'  =  0. Eq. 3-4

It follows from Eq. 3-1 to Eq. 3-3 that the scattered field satisfies

Aws +  k 2u s =  0 in R2 \  H, Eq. 3-5

us =  - i t 1 on Oi l .  Eq. 3-6

In addition, the scattered field is required to satisfy the following Sommerfeld radiation 

condition

( dns
r ™  t k u j  =  ° ’ r  =  l'7'1’ Etl- 3 -7

uniformly in x/\x\ .  The uniqueness of the solution to the obstacle scattering problem is 

discussed in [1].

Given a function^ e  C(dQ),  the function

u { x ) =  t p ( y ) $ ( x , y ) d s ( y ) ,  Eq. 3-8
J B D

is called the acoustic single-layer potential with density ip. Since for i e R 2 \  dD,  we 

can differentiate under the integral sign. The solution of the Helmholtz equation is u.

The function

v ( x ] = Eq. 3.»

is called the acoustic double-layer potential with density ip. We assume to unite normal u

to be directed into the exterior domain R2 \  dD.  We note that the double-layer potential u

is also a solution to the Helmholtz equation.
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We use the combined single- and double-layer potential approach [23] so that the 

integral equation is uniquely solvable. For simplicity of notation, we first assume there is 

one comer at x0 then

du(y)
ds(y ),

$o(x',2/) := 77-  In ,---- ------r, x  ±  y ,2ir | x  — y  I

4>(x,y) := - i k \ x - y \

Hq (k\x -  y\), d =  2

d = 3.

Eq. 3-10

Eq. 3-11

Eq. 3-12
47r|x — y  | ’

By using the jump relation [1], we have the integral equation

d<P(x,y)
p{x)  -  (p{xQ) +  2/ {*Jan I du{y)

iy<i>(x,y) p(y)ds(y)

- 2 /Jan
d$o (x,y)  

dv{y)

Eq. 3-13
<p{x0)ds(y) =  2f (x) ,  x  € dD.

We use the change o f variable and trapezoidal rule as follows [1]. Roughly speaking, 

about half o f the points are equally distributed while the other half is accumulated near 

the comer

r2n  p2np i  7r p i n

/  f ( t )d t  = /  v/ (s ) f (w(s ) )ds ,
Jo Jo

J O

2 n —1

f ( t ) d t  «  -  ai f { S3)>
ft „J=0

Eq. 3-14

Eq. 3-15

aj =  w , ( — ), S j = w (  —  ), j  =  l , . . . , 2n -  1, 
n n

Eq. 3-16
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w(s) — 2 /T " —  ----- —--------- — , 0 < ,s < 2?r,
+  [v (2tt -  ,s)]?'

1 \  /  7T — .S \  3 1 .S — 7T 1
,;W  - [ p - 2 j  [ - r )  +  i ,— + 2 ’

where we use p =  8 in our numerical experiments.

We define:

' 1 4 ( T) M 0  -  x l(T)l -  •j;l(7-)[^2(0 -  J*2(t)]
7r [.Xi(t) -  x \(t )}2 + [x2(0  -  a'2(7-)]2

1 x'?(t)xUt) — a;, (t)x2 (t)IV 7 1W JV / t - r , /. ^  0 , 2 tt.
2tt [.Xj(t)]2 + [x2(0 ] 2

We set i =  w(s) and r  =  uj(cr) to obtain

K ( w (s) , w {<j )) =  Ki ( s , o ) )  ln(4sin2 'S 17) +  K 2{s,a),

where

AT( s\ ct) =  A' i (w; ( s) , ' w(a) ) ,

K 2(s, s)  =  lim[A'(.s,<r) -  A'i (s, a )  ln(4 sin2 - ) ,
< 7 — » .S  2

A^(s> <?) =  A'(w(s), w(a)) -  A'i(.s,cr) ln(4sin2 - - - - -  ), s ^  a,

^ (•s , *') =  K 2(w (s ), w(s )) + 2 In iv (a-)A'i («'(**), ^ ( s ))- 

These lead to a linear system

2 n - l

4 n )  -  4 n )  - -  X ]  { / ? | ' ‘ )j 1A ' 1 ( . s ! . , s / )  +  7^ K 2 ( s n  .s’j )  |  

2n - 1

V  (st , .sJ)aj ^ ((") =  i = 2 n -  1 .
j=i

Eq. 3-17 

Eq. 3-18

Eq. 3-19

Eq. 3-20

Eq. 3-21 

Eq. 3-22

Eq. 3-23 

Eq. 3-24

Eq. 3-25
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The condition number is an important concept for linear systems. It is defined as

k ( A )  =  ||A ||||A_1||. Eq. 3-26

If the condition number is large, then a small change in the data could lead to a large

change in the solution o f a linear system with the coefficient matrix A.

In [1], the algorithm using graded mesh for solving direct scattering problem for 

sound-soft obstacle with one comer is presented. However, if we follow the same steps to 

treat the problem with multiple comers, large condition number for the linear system is 

observed (see Section 4.1). We propose a method to reduce the condition number. In [1], 

a notationally advantageous modification is made to the integral equation by inserting 

terms involving the fundamental solution to the Laplace equation. We observed that if 

this particular modification is not made, then the condition number is reduced 

significantly (see Section 4.1).

The right hand side o f the linear system g depends on the incident field. We could 

have plane incident wave or have a point source. These give two possibilities. From the 

solution to the linear system (the density function), we could integrate and obtain both the 

near field data and the far field data. These also give two possibilities. Overall, there are 

four possibilities as follows:

1. Plane incident wave, far field data

2. Plane incident wave, near field data

3. Point source, far field data

4. Point source, near field data
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The following formulas show the data for the four cases:

The formula for far field data is

e l7,l'x f
«oo(i )  -  - •  x +  '/}'■ ’k:,"y(p(y)ds{ti), I .r | 1. E q .  2 - 2 7

The formula for near field data is

u{x)  =  j f  |  v) |  < p ( y ) d s { y ) , X  e R2 \  D D .  Eq. 3-28

We place the transducers at (r cos 0, r  sin 0)  for near field. Let y  =  (.X], x2) be a point on 

the target boundary d D . ' W e  have

x  =  ( r  cosO . r s in 6), Eq. 3-29

y = ( x l , x 2). Eq. 3-30

Let

r  =  x  -  y  =  ( r  cos 9  -  x , , r  sin 9  -  x2). Eq. 3-31

The distance is

\x -  y\ =  |r | =  \ / ( r c o s 9  -  x j )2 +  (7's in 0 - x2)2. Eq. 3-32

The Green’s function is

< f ( x , y ) = ‘- H l01\ k \ z - y \ } =

= -  .I, )2 +  (rain# -  :r2)2).

We take the derivative and directional derivative:

8
- H £ \ k r )  =  — H ^ \ k y / ( r  cos9 -  x , ) 2 +  (rsinfl -  x 2)2)

Eq. 3-33

Ox i
, X\ — rcosfl Eq. 3-34

• k  - ..........    —
(r cos 9 — x \ )2 +  (r sin 9 — x 2)2
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—k H \ l\ k ^ / ( r  cos 9 — .xi)2 +  (rshiO — x2)2) Eq. 3-35

\ J  (r cos 0 — ,T] )'2 +  (7’ sin 0 — X2)2

with these details, we are able to compute both terms in Eq. 3-10. Another issue is that

Above, we discussed how to compute near field or far field data based on point 

source or plane incident wave. These are four cases with four response matrices:

1. P I : Plane incident wave, far field data

2. P2: Plane incident wave, near field data

3. P3: Point Source, far field data

4. P4: Point Source, near field data

We have the following response matrix relations:

for point source incident instead of plan wave we replace elkxd with ~ / / / / ’(At).

-i~r(P2 + 0 (tj—f?))’
“  IMI

1
p\ = Eq. 3-36

x

c ik ||i|i j
. . d - i  ( P 4 +  0 ( Tj— ) ) ,

X 2 llx ll

Eq. 3-37
P3 =

P2 = (jpT. Eq. 3-38
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The corresponding singular values o f the response matrices have the relations

1 ~  2i Eq. 3-39

Eq. 3-40

Eq. 3-41

In fact, ai,i > - ^ 0 \,2, a *,3 > 7̂̂ 1,4 because the singular value perturbation tends to have

a bias to be larger with an unbiased perturbation of the matrix. The explanation is in 

Section 3.2. We will verify these relations numerically in Section 4.1.

Shape reconstruction has important applications in radar, sonar, and geophysical 

exploration, in medical imaging, and in nondestructive testing [1]. The nonlinearity and 

illposedness make it a challenging problem. There are two types o f methods for solving 

the problem. The direct methods [24, 25, 26, 27, 28] are efficient but less accurate; the 

iterative methods [20, 22, 29, 31, 32, 33, 34, 35, 36] are accurate but more expensive. 

Typically, the forward and adjoint problems have to be solved in each iteration.

Figure 3-1 shows a typical configuration for such a problem. The background 

medium is assumed to be homogeneous.

3.2 The Inverse Problem
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PML

transducers

Figure 3-1: Setup for Inverse Problems.

The response matrix is a collection of the scattered field data received at the 3th 

transducer which originated at the i tb transducer. There are two ways to obtain data for 

the response matrix. One is to do physical measurements. The other is to solve the 

forward problem given the target shapes. One way to solve for the scattered field is to 

truncate the unbounded domain to a bounded domain using the perfectly matched layer 

(PML) technique [39, 40]. This layer is shown in Figure 3-1. In this dissertation, we use 

our forward solver in Section 3.1 using a boundary integral formulation. As we discussed 

earlier, we expect our forward solver to have slower than exponential convergence, but 

accurate enough to use as input data for inverse problems.

The response matrix is complex symmetric due to the reciprocity relation in [1]

below:
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Theorem. The far field pattern for sound-soft obstacle scattering satisfies the reciprocity 

relation

■u0c(x; d) =  tix (-d]  —x), x , d e  H. Eq. 3-42

Proof. By Green’s theorem, the Helmholtz equation for the incident and the 

scattered wave and the radiation condition for the scattered wave we find

p  r \  r \

/  {?/'(•;d)-— u l( - \ - x )  -  «*(•; d)}ds = 0 ,
JDD OV OP

and

J 0 d ^ ds

We have

1 f  r , du1 f  , . . de  J du . . . . .

m 't )  =  a  j L ^ ’ W  "  >,fa(!/)' 1 6  a

It can be deduced that

47tu0o(x; d) = J  {“ *(•; d ) - i ) “  u‘('5 rf) K s>
’dD

and interchanging the roles o f x  and d,

47r?;,00
’ 0D

We now subtract the last equation from the sum of the three preceding 

equations to obtain

f  d c)
4n{«oo(x;d) -  u ^ - d ;  - i ) }  = /  {ti(-;d)— u(-; -x )  -  «(•; -  r)— «(-;d)}d.s.

Eq. 3-42 follows by using the boundary condition

u (•; d) =  u(-; —x) =  0 on dD.
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We next review some properties o f the Singular Value Decomposition of the 

response matrix [25, 26], First, we review the concept singular value decomposition. Any 

complex matrix P  can be written as P  = UTiV11, where U and V  are unitary, and

UUH = L  V V H =  / ,

_  diag(oi) 0
[ 0 O '

Depending on the target size compared with the array resolution, the singular value 

decomposition of the response matrix can have the following three patterns.

For point targets with sizes much smaller than the array resolution, the number of 

significant singular values equals to the number o f targets. In this case, the response 

matrix only contains location information. It is unrealistic to expect to recover shape 

information.

For small targets whose sizes are smaller than, but comparable to the array 

resolution, the pattern of singular values becomes more complicated [41]. The response 

matrix contains location and some size information.

For extended targets whose sizes are larger than the array resolution, the response

matrix contains both location and geometry information o f the target. It is no longer clear

in the singular value plot how many singular values correspond to one target. In [25], a 

direct imaging algorithm is developed for extended target. The key idea in the imaging 

algorithm is to determine the illumination vector based on a physical factorization of the 

scattered field and the signal space as well as its dimension using resolution analysis.

We consider both near field and far field data. Therefore, the illumination vector 

should take the form in [25] and [26]. Here, we outline the procedure for far field data.
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For near field it is similar. We consider sound-soft targets. For simplicity, we assume 

here that the outgoing directions we measure are the same as the incoming directions,

91, . . . ,  9n. The scattered far field is then [1]

eW4 f  1 ) 1 1 s Eq. 3-43u^ )  =  — /f, 7 , ; / l 'x'y<Hy)iy/Sir I k I Jim ou

where dkl  is the boundary of the targets, x  is a unit vector that defines the far field 

direction, u is the total field, and v is the outer normal direction on the boundary o f the 

targets. In our setup, the element o f the response matrix p,j corresponds to the far field 

pattern o f the scattered field in the j th direction due to an incident wave coming from the 

i ,h direction:

- M M i )  —  / f m  /  E q ' 3 ‘44y /87T I k \ Jon VIS

where the total field is due to incident plane wave coming from the direction 9t. In matrix 

form

e47r/ 4 f  d u , n . . . , . Eq. 3-45, , j 7r / 4  r  11,7

7 m T \ L ^ i i v ) d s i v ) '

where

g(y) =  [elk®l 'y, . . . ,  Eq. 3-46

and u  is the vector o f total fields corresponding to the incident plane waves from

9 1, . . . ,  9n. Eq. 3-24 gives a physical factorization o f the scattered field into known and 

unknown parts. The far field pattern is a superposition o f the far field patterns o f point 

sources located on the boundary of the target; however, we do not know the weight 

function which depends on the total field. In other words, the scattering at the target 

boundary acts as sources for the scattered field. In this far field setup, it is natural to use
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g (y) as the illumination vector. The signal space of the response matrix should be well 

approximated by the span of the illumination vectors g (y) with y  on the well-illuminated 

part o f the boundary o f the targets.

The next step is to determine the signal space, which is spanned by appropriate 

singular vectors of the response matrix. It has been shown in [25] (for near field data) and 

[26] (for far field data) that by using a resolution analysis based thresholding, we could 

determine a threshold r and use the first r singular vectors to image the shape o f the 

targets.

Let g°(x) =  [G°(£i. x ) , . . . ,  G 0 (£n> x)]Tbe the near field illumination vector. It 

is a collection o f homogeneous Green’s functions from the transducers to a search point x. 

For the far field, the illumination vector is

g(x) = [eik§'-x , . . . , e lk§»'x)r , 

where §i are incident plane wave directions.

Let wj, « 2, ..., u h  be the set of singular vectors that span the signal space V s . The 

imaging function for MUSIC for near field is defined by

F( ) -  1 1
w  i i $ w - i i ^ s w  i i s ° ( * r - E " , i ? ( * ) - a ; i 2' E q - 3' 47

For far field, we just use the far field illumination vector.

In [25], resolution analysis is discussed to estimate the dimension o f the signal 

space M. We use a kite shape example below to demonstrate what would go wrong if we 

have an underestimate or an overestimate for the dimensions o f the signal space. In 

Figure 3-2, we could see with an underestimate o f the signal space that the imaging 

function seems to be representing a collection o f some point targets. With an
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overestimate, the imaging function would provide a larger image than it should be and 

the shape is distorted. However, there is a safe zone o f choices o f acceptable estimated 

dimensions. For instance, in this example, using M from 18 to 36 seems to provide 

acceptable images.

Figure 3-2: Imaging Results (M = 1, 5, 18, 24 for Row 1 and M = 30, 36, 42, 48 for Row 
2). [25]

In this dissertation, we propose to use the singular values as the natural 

weight to get around the above thresholding procedure. The imaging function 

we use is

N
h { x )  = (g°(x))HPg°(x) = ( g ° ( x ) ) H { ^ 2  W k v U f f l i x ) .  Eq. 3-48

fc=i

This imaging function is motivated by the following idea: From the reciprocity 

relation [1], we know the response matrix is complex symmetric: P  =  P T. We have the 

following special singular value decomposition P  =  UYJJT. In other words, U = V.  The
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essential part o f the MUSIC algorithm is

M
Eq. 3-49

k- 1

The idea of multi-tone imaging is to remove the absolute value to keep the

phase information for U — V  case:

Eq. 3-50
k= 1

The general form of multi-tone imaging function takes the form

Eq. 3-51

Now if we use singular values as natural weight, we could sum from 1 to N instead and

get Eq. 3-48. The phase information is kept since no absolute value is taken (unlike the 

MUSIC algorithm) and the singular values serve as natural weight so that resolution 

analysis is not necessary.

One major drawback o f the MUSIC-type algorithms [25, 26] is that such 

algorithms are projection algorithms that remove the phase information. It is not 

meaningful to combine multiple frequency projection results. For full aperture data, the 

MUSIC-type algorithms work so well that the drawback is disguised. However, for 

synthetic aperture data, which is more realistic in some applications, the results from the 

MUSIC algorithms degenerate. It is crucial to take advantage o f the phase coherence to 

overcome the challenge o f lack o f data [27]. We will show in Section 4.2 that numerical 

the results using low frequency data are more robust but less accurate; numerical results 

using high frequency data are more accurate but less robust. By combining multiple 

frequency results while keeping the phase information, we could generate accurate and
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robust results. Furthermore, efficiency is guaranteed since there is no need for iteration. 

The evaluations at different grid points are also independent, making it easy to be 

parallelized.

Singular Value Decomposition (SVD) is a very important process in the direct 

imaging method. We briefly describe two important theorems, Mirsky’s Theorem and 

G.W. Stewart’s Theorem, as they are significant previous work to estimate the 

perturbation o f singular values.

For the m-by-n (m < n) matrix A, there exists no more than m non-zero singular 

values (Ji(A). If we define Ai >  A2 >  ... >  Am as matrix A ’s ordered eigenvalues, we 

simply can have

(Ji{A) — \ J \ , { A r A). where i = 1,2 ,3 .... m.  Eq. 3-52

In Mirsky’s Theorem [6 , 30, 37, 38], the perturbation of singular values are

estimated by a unitarily invariant norm of the matrix perturbation. In particular, for

2 -norm we have

Maxi \oi{A + E)  -  a t{A)\ <  | |£ | |2, for i =  1,2,3..., m. Eq. 3-53

Mirsky’s Theorem gives us an estimate for all singular values. However, the signal space 

in a direct imaging method is only spanned by the first few singular values. The estimate 

from Mirsky’s Theorem is not sharp enough for its need in the direct image method.

G.W. Stewart’s Theorem [13, 21] can be described as follows:

Let F be a matrix valued function for matrix A. For another given matrix E, which is 

presumed to be small, we are trying to approximate F ( A + E)  by bounding the norm of 

(F(A + E)  — F(A))  in terms o f the norm of E.
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This theorem has two basic ideas. The first one is to assume that F is

differentiable at A with a derivative function FA. Then we have

F ( A  + E)  = F(A)  +  Fa (E)  + o(\\E\\). Eq.3-54

In this case, for sufficiently small E , FA(E)  is the required approximation and the

problem can be reduced to finding tractable expressions for EA(E). The second idea is to 

use the perturbation size as an overestimated upper bound.

However, from these two basic ideas, we acknowledge that the Stewart’s 

Theorem is based on the assumption of small perturbation. In the case where noise has 

large perturbation, the basic assumption of the theorem cannot be satisfied.

Since Mirsky’s Theorem and Stewart’s Theorem could not completely solve our 

problem, we need new estimates for singular values. Based on a fact that the 2-norm of a 

matrix is exactly the largest singular value of the matrix, we use matrix norms to estimate 

the singular value. The 1 -norm and oo-norm can be computed as

in

\\A 111 =  max Y ]  |a, j | , Eq. 3-55
K j < n ^%-1

771

\\A 11 °o =  5 1 1 fly I • Eq. 3-56
~l~n 3 = 1

From the formulas, the summation corresponds to averaging. The “max” gives a 

bias. Following the Central Limit Theorem given certain conditions, the mean of a 

sufficiently large number of independent random variables, each with finite mean and 

variance will be approximately normally distributed. Therefore, the 1 -norm and oo-norm 

have a “normal distribution with bias”.
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The first singular value rrl equals the matrix 2-norm \\A\\2 . For 2-norm, we have 

the norm equivalence:

P l l o o / v ^  <  P l |2 <  V ^ P I I o c . ,  Eq. 3-57

I P I h / v ^  <  IPII2 <  x /^ tP l i i -  Eq. 3-58

Thus, the lower and upper bounds for 2-norm, when perturbed, have normal distribution 

with bias. So we expect 2-norm to have normal distribution with bias, and tend to be 

larger as well. If this property can be proven, we can successfully estimate the singular 

value. Unfortunately, the property is not a deterministic property: for example, we could 

perturb all elements by 100% to be zeros and the singular values have large perturbation. 

This means the robustness o f singular value holds in a probability sense: it is highly 

likely that the singular value is robust. Such property is extremely difficult to prove

rigorously, or even state rigorously. Therefore, we rely on numerical test instead.

Figure 3-3 shows 10,000 realizations for the first singular value o f perturbed 

matrices with 100% noise. In most o f the realizations, the singular value is only perturbed 

by less than 15%. The Figure 3-4 shows how many realizations fall into each interval. 

This figure clearly exhibits the normal distribution. The first singular value before a 

100% perturbation is 4.1726. The average of 10,000 realizations o f perturbed singular 

values is 4.9486. This clearly demonstrates a bias (tends to be larger), as explained earlier.

From the above discussion, we know the singular values are robust with respect to 

noise. That is the reason why our direct imaging algorithm can handle large measurement 

noise. This will be illustrated in Section 4.2.
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Figure 3-3: Singular Value Perturbation for 10,000 Realizations.
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Figure 3-4: Singular Value Count Falling into Consecutive Intervals with Equal 

Spacing.



C H A PT E R  4

RESULTS

In this chapter, we present some numerical examples to demonstrate the 

effectiveness of our method.

4.1 The Forward Problem

We first present results for a smooth target, reproducing the work from [1], 

Figure 4-1 shows the geometry of a “kite” with grid points on its boundary. Table 4-1 

shows the error of max(max( \pn — P m |)) where n  = 16, 32, 64, where 2n  is the number 

o f points used on the boundary o f the kite shape. Exponential convergence is exhibited 

since the number o f correct digits doubles when n  doubles. Note that for the fine grid 

n  = 64 compared with n  = 128, the error reaches machine precision. The result is 

consistent with [1], For most applications, 2nd order convergence is already a desired 

result for a numerical method. Exponential convergence is much faster than 2nd order 

convergence. The equation for the kite-shaped is

x(t)  =  (cost + 0.65cos2/ — 0 .65,1.5sin/.), 0 < / < 27t.

41
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Figure 4-1: The Mesh for “Kite” Shape.

Table 4-1: Error of “Kite” with Grid Number n  = 16, 32, 64.

Grid Number n  = 16 n = 32 n -  64

Error o f Max 2.1299e-05 9.3405e-l 1 1.8595e-14

Next, we present an example with three comers. In [1], an example with one 

comer was presented. However, if we follow the procedure to treat three comers, a large 

condition number is observed. By using the method in Section 3.1, we reduced the 

condition number. Figure 4-2 shows the geometry of “three comers” with grid points on 

its boundary. Note that we used graded mesh. About half of the grid points are near the 

comers. Table 4-5 shows the error o f max{max{\ptl — p i2s|)) f°r n ~ 16, 32, 64, where n
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is the number of points on one of the three arcs. Table 4-2 to Table 4-4 show the errors 

for eight incident directions and eight scattering directions.

Due to the comer singularities, we no longer have exponential convergence. Still, 

high order convergence is exhibited. The equations for each arc of the three-comers are:

6 7r
.r =  c o s ( -  +

• f t!/ =  Sm ( -  +  - ) ,

0  TT y / 3  
x =  c o s ( -  +  - )  +  T ,

0  7r 1

9 57r
X  — cos ( -  +  —

. ,9 577
y = s in ( -  +  y )  +  1.

Table 4-2, Table 4-3, Table 4-4 and Table 4-5 list the response matrix error of 

“Three Comers”.

Table 4-2: Response Matrix Error (n = 16) (xlO'3).

0.5327 0.6086 0.5931 0.4569 0.4684 0.4241 0.5487 0.7204
0.7073 0.6458 0.5717 0.2678 0.4976 0.4501 0.2841 0.5558
0.4694 0.4532 0.4189 0.4174 0.3970 0.0538 0.3638 0.3704
0.4102 0.1147 0.3591 0.7374 0.3591 0.1147 0.4102 0.4539
0.3638 0.0538 0.3970 0.4174 0.4189 0.4532 0.4695 0.3704
0.2841 0.4503 0.4976 0.2678 0.5717 0.6458 0.7073 0.5558
0.5487 0.4241 0.4684 0.4569 0.5931 0.6086 0.5327 0.5327

L0.6897 0.3566 0.1882 0.3091 0.1882 0.3566 0.6897 0.997lJ
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Table 4-3: Response Matrix Error (n = 32) (xlO-4).

0.5327 0.6086 0.5931 0.4569 0.4684 0.4241 0.5487 0.7204
0.7073 0.6458 0.5717 0.2678 0.4976 0.4501 0.2841 0.5558
0.4694 0.4532 0.4189 0.4174 0.3970 0.0538 0.3638 0.3704
0.4102 0.1147 0.3591 0.7374 0.3591 0.1147 0.4102 0.4539
0.3638 0.0538 0.3970 0.4174 0.4189 0.4532 0.4695 0.3704
0.2841 0.4503 0.4976 0.2678 0.5717 0.6458 0.7073 0.5558
0.5487 0.4241 0.4684 0.4569 0.5931 0.6086 0.5327 0.5327

Lo.6897 0.3566 0.1882 0.3091 0.1882 0.3566 0.6897 0.9971-1

Table 4-4: Response Matrix Error (n = 64) (x l0 ‘6).

0.2326 0.2642 0.2802 0.2058 0.2040 0.2055 0.2402 0.2836
0.3195 0.3006 0.2062 0.1300 0.2371 0.2022 0.1140 0.2707
0.2377 0.2309 0.1334 0.2532 0.1806 0.0391 0.2002 0.1972
0.1912 0.0361 0.1903 0.3373 0.1922 0.0316 0.2022 0.2062
0.2002 0.0300 0.1806 0.2574 0.1354 0.2220 0.2297 0.1910
0.1131 0.2022 0.2441 0.1393 0.2062 0.3007 0.3231 0.2622
0.2402 0.2138 0.2040 0.2025 0.2804 0.2697 0.2376 0.2780

1-0.2930 0.1844 0.1140 0.1020 0.1063 0.1860 0.2907 0.3517-1
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Figure 4-2: “Three Comers” with Graded Mesh.
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Table 4-5: Error o f “Corners” with Grid Number (n  = 16, 32, 64).

Grid Number n=16 7i=32 n=64

Error o f Max 9.9706e-04 2.208 le-05 3.517e-07

Next, we present a more complicated example with the geometry o f a butterfly 

with many comers. The equations for each arc of the butterfly are:

1
y

x

( :r — l ) 2 +  1 ,

( y - i ) 2 +  i,

2 V2 2

X =  _  8 3 3 ’

3 2 2
v = 4 { x - 3 >  3'

3 2 2 2
^ 4 ( x + 3> 3

3 / 2 2
X = 8 ( v + 3 ) 3 ’

* =  \ ( v -  ! )2 -  i. 

y = + 1)2 +1-

We first denote n to be the number o f points on the shortest arc. By using the ratio 

between arc lengths, we could assign the number of points on each arc. Then we have an 

equal partition for a parameter with ranges between [0,2ir]. Finally, we map the points to 

the graded mesh in Section 3.1. Figure 4-3 shows the butterfly geometry with graded 

mesh. Table 4-8 shows the error of max(max( \pn — /%]| )) for n  = 16, 32, where n  is the 

number of points on the shortest arc. Again, high order convergence is exhibited.
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The response matrices of “Butterfly” are shown in Table 4-6 to Table 4-8:

Table 4-6: Response Matrix Error (A: = 7, n ~ 16).

r0.0006 0.0005 0.0007 0.0007 0.0002 0.0003 0.0005 0.0005
0.0016 0.0010 0.0013 0.0016 0.0005 0.0006 0.0015 0.0014
0.0015 0.0016 0.0021 0.0016 0.0003 0.0011 0.0020 0.0011
0.0013 0.0006 0.0012 0.0012 0.0005 0.0006 0.0013 0.0010
0.0003 0.0003 0.0005 0.0004 0.0003 0.0005 0.0004 0.0003
0.0005 0.0002 0.0006 0.0004 0.0003 0.0005 0.0004 0.0003
0.0006 0.0005 0.0007 0.0005 0.0002 0.0004 0.0006 0.0004
0.0002 0.0003 0.0005 0.0001 0.0000 0.0002 0.0004 0.0001

Table 4-7: Response Matrix Error (A; == l , n  = 32) (x 1 O’4).

0.2611 0.2138 0.3008 0.2723 0.0696 0.1436 0.2726 0.2005
0.6779 0.4829 0.7068 0.6794 0.1895 0.3368 0.7190 0.5358
0.8289 0.7203 0.9910 0.8372 0.1892 0.4822 0.9633 0.6278
0.5266 0.3520 0.5518 0.5200 0.1469 0.2628 0.5633 0.4061
0.1456 0.1024 0.1961 0.1651 0.0438 0.1137 0.1925 0.1248
0.1724 0.1194 0.1880 0.1507 0.0668 0.1285 0.1507 0.1229
0.2108 0.1752 0.2126 0.1853 0.0714 0.1412 0.1977 0.1481

Lq.1052 0.1035 0.1600 0.0985 0.0223 0.0739 0.1561 0.0625

Table 4-8: Error o f “Butterfly” with n  = 16, 32.

Grid Number n -  16 71 = 32

Error o f Max 0.0023 1.060e-04



Figure 4-3: “Butterfly” with Graded Mesh.

Now we demonstrate the relation among the response matrices for near field and 

far field data. We compare the following four cases.

1. Plane incident wave, far field data

2. Plane incident wave, near field data with r  = 5

3. Point source with r = 5, far field data

4. Point source with r  = 5, near field data with r = 5

Here, r means the radius of the circle on which the transducers are placed.

In Section 3.1, we derived the relation among the above matrices. Now we use a 

numerical example to verify the results. We choose the butterfly shape as the obstacle.

Figure 4-4 contain the plots for the singular values o f the four response matrices.
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Figure 4-4: Singular Value Plots for Near and Far Field Response Matrices.

They clearly share the same pattern with different scales. Next, we justify the 

relations Eq. 3-39-Eq. 3-41, numerically. We use the butterfly shape. We find that

ctij =  0.0G56,

^<7i,2 =  0.0653,

( TX 3 -  2 . 7 3 8 7 ,
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^ < rM =  2.7250,

<t1j2 =  0.1460,

v b ^  = ° -1460’

max(rnax(\p2  — = 7.0647 x 10"5.

Note that > ^ 04 ,2, The reason is that with a perturbation of matrix

elements without bias, the singular values are more likely to get larger.

Now we present numerical results to justify our claim in Section 3.1 for the 

condition number. For the shape with three comers with n  = 32, the condition number for 

the two methods are 14 and 47,135. For the butterfly shape, with n  = 32, they are 90 and 

6,353. Clearly, by modifying the method in [10], the condition number is significantly 

reduced. This justifies our claim that the method in [1] for one comer needs to be slightly 

modified for the case with multiple comers.

4.2 The Inverse Problem

We now use some numerical examples to demonstrate the accuracy, efficiency 

and robustness o f our method in Section 3.2 for solving the inverse obstacle problem.

Our first example is the butterfly shape. The response matrix is generated by the forward 

solver in Section 3.1.

In the previous discussion, we found the similarity among the response matrices 

for four cases: point source or plane wave incident, near field or far field data. Therefore, 

we expect the inverse problem solver to produce similar results for the four cases. The 

only place we need to make change is the form o f illumination vector for the source and 

the receiver. Figure 4-5 shows the low frequency, middle frequency, high frequency and
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multiple frequency results for a butterfly shape target with plane incident wave and far 

field data.

Low Frequency: k  = 1 Middle Frequency: A: — 14

High Frequency: k  = 21 Multiple Frequencies

Figure 4-5: “Butterfly” with Plane Incident Wave, Far Field Data.

The low frequency result is robust but not accurate: the background clearly 

separates from the target. The target boundary is not sharp, however. The high frequency 

result is more accurate but less robust: the background has some artifacts. The target 

boundary is sharper. By combining multiple frequency data, the result is both accurate



and robust. We are able to overcome the challenges in inverse problems: the nonlinearity 

and ill-posedness. Also, note that the butterfly shape is not convex and multiple scattering 

between the concave edges makes imaging a difficult task. Still, our result is promising. 

Figure 4-6 shows the low frequency, middle frequency, high frequency and multiple 

frequency results for a butterfly shape target with Plane incident wave, near field data 

with r  = 5

20 40 ao 00 20 40 00 80 100

Low Frequency: k  = 7 Middle Frequency: k  = 14

High Frequency: k = 2l  Multiple Frequencies

Figure 4-6: “Butterfly” Plane Incident Wave, near Field Data with r  = 5.
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Figure 4-7 shows the low frequency, middle frequency, high frequency and 

multiple frequency results for a butterfly shape target with point source with r  = 5, far 

field data.

zo 40 ao ao ioo 20 40 00 00 100

Low Frequency: k  = 7 Middle Frequency: k, = 14

High Frequency: k = 21 Multiple Frequencies

Figure 4-7: “Butterfly” Point Source with r -  5, Far Field Data.

Figure 4-8 shows the low frequency, middle frequency, high frequency and 

multiple frequency results for a butterfly shape target with point source with r  = 5, near 

field data with r  = 5.



Low Frequency: k  = 7 Middle Frequency: k  = 14

|2

k e 10

1.6 20

1.4 30

1.2 40

1 SO

0.8 60

0.6 70
0 A 80

0J 80

1 »

High Frequency: k = 21 Multiple Frequencies

Figure 4-8: “Butterfly” Point Source with r  = 5, near Field Data with r  = 5.

To demonstrate the robustness o f our method, we add 20% noise to the response 

matrix. To be more precise, let Pjj =  P^ -F iP-j be one element o f the response matrix,

where P[p P f  are real and imaginary parts. Let Pij = P[j * a + iP-j * b where a, b are 

random numbers uniformly distributed in [1 — 0.2,1 -F 0.2], i. e. , [0.8,1.2]. Figure 4-9 to 

Figure 4-12 show the results after adding noise to the response matrices.
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Figure 4-9: “Butterfly” with Plane Incident Wave, Far Field Data with Noise.
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Low Frequency: k  = 7 Middle Frequency: k  = 14

High Frequency: A; = 21 Multiple Frequencies

Figure 4-10: “Butterfly” Plane Incident Wave, near Field Data with r = 5 with Noise.



56

Low Frequency: k  = 7 Middle Frequency: k =  14

High Frequency: A; = 21 Multiple Frequencies

Figure 4-11: “Butterfly” Point Source with r = 5, Far Field Data with Noise.
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Low Frequency: k - 1 Middle Frequency: k  = 14

High Frequency: k  = 21 Multiple Frequencies

Figure 4-12: “Butterfly” Point Source with r  = 5, near Field Data with r  = 5 with 

Noise.
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We also presented another complicated example with the geometry o f a “Paw” 

with many comers, see Figure 4-13. In this example, we only process low frequency, 

middle frequency, high frequency and multiple frequency results for a “Paw” shape target 

with plane incident wave and far field data. Notice that we use lower frequencies 

compared with the cases for “Butterfly” because the “Paw” is larger, corresponding to 

larger wavelength and thus lower frequency, for the same resolution.

3

2 5 .X x.

/ \

-0.5

-1.5

-2  1 ‘ 1 1 -1------------------
-2.5 -2 -1.5 -1 -0.5 0 0.5 1.5 2 2.5

Figure 4-13: “Paw” with Graded Mesh.

The equations for each arc of the “Paw” are:

y  =  ~y  +  sin e,

x =  cos 8,



The response matrices error compared with fine grid n  = 64 o f “Paw” are listed in Table 

4-9 and Table 4-10. High order convergence is observed, though not as good as 

exponential convergence for the smooth target case.

Table 4-9: Response Matrix Error (k = 4, n = 16)

0.0184 0.0051 0.0042 0.0080 0.0129 0.0110 0.0111 0.0141
0.0079 0.0021 0.0065 0.0046 0.0045 0.0108 0.0019 0.0027
0.0005 0.0088 0.0281 0.0004 0.0040 0.0066 0.0093 0.0066
0.0049 0.0008 0.0060 0.0067 0.0143 0.0100 0.0069 0.0104
0.0126 0.0052 0.0011 0.0093 0.0186 0.0222 0.0117 0.0074
0.0107 0.0083 0.0030 0.0078 0.0226 0.0325 0.0185 0.0102
0.0087 0.0028 0.0079 0.0047 0.0150 0.0207 0.0034 0.0040
0.0081 0.0019 0.0042 0.0084 0.0055 0.0097 0.0016 0.0047-1

Table 4-10: Response Matrix Error (k = 4 ,n  = 32) (xlO'5)

0.0911 0.0254 0.0130 0.0121 0.0566 0.1247 0.1134 0.0731]
0.0318 0.0214 0.0220 0.0094 0.0572 0.1300 0.1035 0.0640
0.0183 0.0276 0.0791 0.0194 0.0308 0.1345 0.1712 0.0956
0.0329 0.0141 0.0226 0.0215 0.0314 0.0622 0.0736 0.1118
0.0283 0.0117 0.0168 0.0514 0.0955 0.1109 0.1063 0.0579
0.0690 0.0412 0.0477 0.0510 0.0714 0.2107 0.0767 0.0201
0.0730 0.0270 0.0707 0.0284 0.0697 0.1654 0.0762 0.0885
0.0735 0.0248 0.0391 0.0412 0.0661 0.0886 0.1238 0.1174-1
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Table 4-11: Response Matrix Error ii = 16)

r0.8698 0.4196 0.2543 0.2915 0.3348 0.2221 0.1374 0.2425
0.1707 0.1970 0.0767 0.3016 0.2849 0.2178 0.1841 0.2734
0.2203 0.1015 0.2467 0.2579 0.0581 0.1432 0.2819 0.1617
0.3603 0.2876 0.2826 0.5804 0.3007 0.1418 0.0931 0.2100
0.3004 0.3245 0.1513 0.0518 0.8034 0.3260 0.2449 0.2108
0.2814 0.3015 0.0607 0.0567 0.1797 0.7652 0.4636 0.2064
0.1767 0.1392 0.3385 0.2292 0.1358 0.5007 0.0239 0.4479
0.2623 0.1648 0.1438 0.3322 0.1642 0.1731 0.2737 0.2779

Table 4-12: Response Matrix Error (k  = 7, n  = 32)

0.0002 0.0000 0.0001 0.0004 0.0009 0.0013 0.0006 0.0004
0.0000 0.0001 0.0001 0.0000 0.0005 0.0007 0.0001 0.0001
0.0002 0.0001 0.0001 0.0000 0.0002 0.0006 0.0008 0.0003
0.0005 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0008
0.0008 0.0006 0.0001 0.0001 0.0003 0.0003 0.0007 0.0009
0.0014 0.0007 0.0005 0.0002 0.0003 0.0003 0.0002 0.0004
0.0006 0.0002 0.0011 0.0002 0.0008 0.0003 0.0005 0.0005
0.0003 0.0002 0.0004 0.0008 0.0011 0.0003 0.0005 0.0003

Figure 4-14 shows the result of the inverse problem for “Paw” shape using far 

field response matrix data. Again, the low frequency result is robust but not accurate. The 

high frequency result is accurate but not robust, with quite some numerical artifacts. The 

multiple frequency result is both accurate and robust.



Low Frequency: k = 4 Middle Frequency: k = 7

20 40 00 BO 100 20 40 00 80 100

High Frequency: k -  10 Multiple Frequencies

Figure 4-14: “Paw” with Plane Incident Wave, Far Field Data.

We next present an example with multiple targets. Figure 4-15 shows the result 

using low frequency data. It allows us to localize the five shapes, but with no details. 

Figure 4-16 shows the high frequency result with details, but less robustness. With the 

help from low frequency result, we would zoom the five regions one by one. For 

example, Figure 4-17 shows the zoomed result for the butterfly shape in the middle using 

high frequency data.



Figure 4-15: Low Frequency Result for Multiple Targets.

Figure 4-16: High Frequency Result for Multiple Targets.



Figure 4-17: Zooming the Butterfly Shape Part using High Frequency.



CHAPTER 5 

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

We proposed numerical methods for solving the direct and inverse scattering 

problems for domains with multiple comers. For the forward problem, we extended the 

method in [1]. The resulting method is well-conditioned. Instead of exponential 

convergence for the smooth target case, high order convergence is observed for the case 

with multiple comers. For the inverse problem, we proposed a method similar to the 

MUSIC algorithm in [25] and [26], but we keep the phase information so that multiple 

frequency data can be combined. Numerical results showed that our method is efficient, 

accurate and robust. We also studied the response matrix relations for near and far field 

data, as well as singular value perturbation.

5.2 Future Work

There are several future directions we could work on. First, we could consider the 

Neumann problem instead of the Dirichlet problem. Although the smooth target case for 

the Neumann problem has been solved with exponential convergence, the challenging 

problem with multiple comers remains open.
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Second, we could consider the three dimensional direct and inverse scattering 

problems. The concept o f signal space and noise space as well as illumination vectors can 

be generalized to three space dimensions. The MUSIC algorithm or multi-tone algorithm 

or other methods of such type could therefore be generalized to solve three-dimensional 

problems as well. A forward solver could also be developed for three-dimensional 

problems.

Third, we could work on the problem with random background medium by using 

the effective Green’s function; [14] has some preliminary work in this area and our 

imaging algorithm could be modified using effective Green’s function to replace 

homogeneous Green’s function.
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