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ABSTRACT

There is an important need for improvement in both cost and efficiency of
photovoltaic cells. For improved efficiency, a better understanding of solar cell
performance is required. An analytical model of thin-film silicon solar cell, which can
provide an intuitive understanding of the effect of illumination on its charge carriers and
electric current, is proposed. The separate cases of homogeneous and inhomogeneous
charge carrier generation rates across the device are investigated. This model also
provides for the study of the charge carrier transport within the quasi-neutral and
depletion regions of the device, which is of an importance for thin-film solar cells. Two
boundary conditions, one based on a fixed charge carrier surface recombination velocities
at the electrodes and another based on intrinsic conditions for large size devices are
explored. The device’s short circuit current and open circuit voltage are found to increase
with a decrease of surface recombination velocity at the electrodes. The power
conversion efficiency of thin film solar cells is observed to depend strongly on impurity
doping concentrations. The developed aﬁalytical model can be used to optimize the
design and performance of thin-film solar cells without involving ﬁighly complicated
numerical codes to solve the corresponding driﬁ-diﬂ’usion equations.

The third generation polymer photovoltaic solar cells, the first generation includes
monocrystalline silicon solar cells and second generation being thin-film solar cells, and

photodetectors are researched widely in the last few years due to their low device
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iv
processing cost, mechanical flexibility, and lightweight. Organic photovoltaic materials
such as poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3H1:
PCBM) blend are usually cheaper than inorganic materials, but have a limitation of lower
power conversion efficiency (PCE) than their inorganic (for example, Si) counterparts.
These organic devices need to be optimized to achieve the maximum possible PCE. One
way to do this is to achieve the optimal thickness of the optically active layer of
P3HT:PCBM while fabricating these organic photovoltaic devices. The influence of the
active layer’s thickness of P3HT:PCBM blend on performance of polymer solar cells and
photodetectors are experimentally investigated. The fabricated device structure is
glass/ITO/PEDOT:PSS/P3HT:PCBM/AI, where ITO is the indium tin oxide, and
PEDOT:PSS stands for poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) used as
a buffer layer to collect holes effectively at the ITO anode. Aluminum is used as a
cathode. Chlorobenzene is used as a solvent to prepare the polymer-fullerene blend. Spin
coating technique was utilized to deposit the active layer and the concentration of P3HT,
PCBM, and spin-coating speeds were varied to achieve a wide range of the active layer’s
tllicknesses from 20 nm to 345 nm. The PCE of solar cell devices and the external
quantum efficiency (EQE) of the photodetectors are found to increase with the thiékness
of the active layer. The maximum PCE of 1.09% is obtained for the active layer’s
thickness of 345 nm.

The ongoing advanced space explorétion requires the novel eﬁergy sources that
can generate powerr for extreme duration without need of refill. The need for sﬁch
extreme-duration lightweight power sources for space and terrestrial applications

motivates the study and development of polymer-based betavoltaic devices. The



betavoltaic devices based on the semiconductive polymer-fullerene blend of P3HT:ICBA,
where ICBA is indene-Cgy bisadduct, are demonstrated here for the first time. Both direct
and indirect energy conversion methods were explored. For the indirect conversion
method, a scintillator intermediate layer of cerium-doped yttrium aluminum garnet
(Ce:YAG) was used. A high open circuit voltage of 0.56 V has been achieved in the
betavoltaic device fabricated on polyethylene terephthalate (PET) substrate with the
indirect energy conversion method at 30 keV electron kinetic energy. The directional and
external interaction losses are significantly reduced using thin PET substrates. The
maximum output electrical power of 62 nW was achieved at 30 keV input electron beam
energy. The highest betavoltaic PCE of 0.78% was achieved at 10 keV of electron beam
energy.

The performance of two different scintillators, Ce:YAG and Thallium doped
Cesium lodide (CsI:Tl), were compared in the indirect conversion betavoltaic devices
experimentally and the interaction of electron beam with Ce:YAG and CsI:T1 was studied
using Monte Carlo simulations. The catholuminescence profiles from simulation showed
that CsI:Tl is more-efficient to generate photons when hit by electron beam compared to
Ce:YAG, which is further verified experimentally with 20% PCE enhancement using
CsL.TI at 30 kV e-beam compared to betavoltaic devices with Ce:YAG. The directional
loss in the indirect conversion devices is further reduced by applying thin reﬂecting '
aluminum film on top of the scintillator. The PCE increased by 26.7% with 30 nm thin
aluminum film on top of Ce:YAG scintillator at 30 keV electron beam energy. The
experimental resuits showed that the ‘output eiectricai power from betavoltaic devices

increased with the increase in incident electron beam energy.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There is a growing need for clean and sustainable energy due to population
growth, industrialization, economic development, and expanding access to the electronic
gadgets around the world. Energy information administration (EIA) predicted that the
global energy consumption will increase by 56% in 2040 compared to 2010 as shown in
Figure 1-1 [1]. While the energy consumption is increasing day by day, currently a
considerable percentage of the population in the world are out of reach of energy. In
2013, 1.2 billion people, about 17% of the world’s population, did not have access to
electricity [2]. Therefore, there is a big challenge to address the growing energy demands

and the need of focused research on novel energy sources to fulfill these demands.

Worild energy consumption
quadrilion Bty

600 history projections
500 :

400 non-OECD
300 _
200 OECD
100

0~

1990 2000 2010 2020 2030 2040
Figure 1-1: The EIA global energy consumption projection by 2040 [1].




The current primary source of energy is based on fossil fuels that are in limited
supply and have negative environmental impact such as carbon emission, climate change
and global warming. About 67% of the electricity generated in the USA in 2014 is from
fossil fuels [3]. The carbon emission in 2013 was 61% over compared to 1990 as shown

in Figure 1-2 [4]. As the energy demand increase the carbon emission increases

accordingly.
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Figure 1-2: Global carbon emission trend [4].

Use of renewable energy sources such as solar, wind, etc. helps to fulfill the
future energy demand and protects the environment from carbon emission resulting from
burning fossil,fuelﬁ. Harvesting of solar energy using photovoltaic sdlar cells is one of the
clean and sustainable energy sources. These solar cells are virtually non-polluting with
low operating cost and long duration power sources for terrestrial and space applications.
At each moment, Earth receives ~l.2‘><10l7 W of solar power while oﬁr total energy
consumption is only ~1.3x10"* W [5]. A small portion of the solar energy is sufficient to

fulfill the global energy demand. Another advantage of solar energy is its open access at




any location in the Earth’s surface and is not limited by the transportation facilities, inter-
country relationship, etc. On the other hand, the fossil fuels are only available at certain
locations and require extensive transportation facilities to transfer from one place to
another.

Despite the abundance of solar energy and large benefits of photovoltaic solar
cells, the use of photovoltaic solar cells (usually Silicon based) is limited due to their high
production cost and lower average efficiency. Scientists are working to reduce the
production cost and increase efficiency of solar cells from the last few decades. One way
to reduce the cost of silicon Vbased inorganic solar cells is the development of less
material consuming thin-film solar cells. However, the efficiency of solar cells also
reduces while using a thin absorbing layer. The modeling approach can be used to
understand the working principle of the device and optimize the device’s parameters to
achieve the highest possible efficiency for thin-film solar cells. Other efficiency
enhancement schemes such as light trapping, surface plasmon, etc. can be used to further
enhancer the performance of thin-film solar cells.

Solar cells based on cohjugated polymers are the other classes of solar cells made
from low cost, lightweight and flexible semiconductive polymer materials with reduced
fabrication cost. The efficiency is still below 12% for these polymer solar cells [6].
However, the discovery and applications of new conjugated polymers in recent research
, presented the polymer photovoltaic as a very promising field for solar energy harvesting.

Solar cells are required to be exposed to sunlight all the time to generate
electricity. Under certain circumstances such as the shadow or dark regioné, inside

* buildings, spaceships and outside the solar system, the use of solar cell is not viable.




Unlike the solar cells, betavoltaic devices are not affected by the weather such as clouds,

snow, rain, etc. Betavoltiac devices that harvest kinetic energy of beta particles from

radioisotopes into electricity can be the ideal candidates for long duration power sources

for space and terrestrial applications.

1.2 Objectives and Outline

The main purpose of this research is to explore and study the thin-film

photovoltaic solar cells (silicon or organic) and betavoltaic devices as an alternate source

of clean energy to address the growing energy demand. The objectives of this research

are:

—t

. To develop a generation dependent analytical model of thin-film silicon solar cell.

To study the role of the device’s dimensions and other parameters of thin-film
silicon solar cell such as doping concentration, carrier lifetime, surface
recombination velocity, etc. on the device’s performance. |
To investigate the role of active layer thickness of P3HT:PCBM based polymer
solar cells and photodetectors on the device’s perfonnancé.

To providey the guidelines for fabricating polymer solar cells and photodetectors
via process development.

To study the use of conjﬁgated polymer in polymer betavoltaic devices.

To investigate the optical properties of phosphor material and semiconducting

polymer to ensure the greatest possible efficiency of the betavoltaic devices.

To study the degradation of the conjugated polymer from exposure to beta.

sources.




8. To investigate the various loss mechanisms in betavoltaic devices and minimize
them by modifying the device architecture to enhance performance.

This dissertation is divided into five chapters. Chapter 2 describes the analytical
model of thin-film p-n junction silicon solar cells. First, the homogeneous generation rate
is considered to compute and plot the carrier concentration profiles and current-voltage
characteristics. Then, the more realistic inhomogeneous generation case is used to
develop the model.r In both cases, two boundary conditions, intrinsic and surface
recombination boundary conditions, are studied.

Chayer 3 discusses the experimental optimization of the active layer thickness of
P3HT:PCBM polymer solar cells and photodetectors. The role of P3HT:PCBM active
layer thickness on optical properties, different solar cell parameters, such as short circuit
current density, fill factor, power conversion efficiency, etc. and photodetector
patameters, such as external quantum efficiency, etc. is investigated experimentally by
fabricating and characterizing the polymer devices with various thickness.

Chapter 4 presents the design and development of P3HT:ICBA based polymer
befavoltaic devices. Diréct and incirect conversion betavoltaic devices were designed,
fabricated and tested under various e-beam powers. The loss mechanism in betavoltaic
devices were 'investigated and minimized. Diﬁ'efent device modification schemes were
utilized to further enhance the performance of the betavoltaic devices. Monte-Carlo
simulations were utilized to study the interaction of high-energy e-beam with
scintillators.

Finally, Chapter 5 provides the overall conclusion of the research Work presented

in this dissertation and future recommendations.




CHAPTER 2

ANALYTICAL MODEL OF THIN-FILM SILICON SOLAR CELLS

2.1  Introduction

The growing demand of énergy with rapid population growth and economic
development attracts the attention of the scientific cdmmunity in the photovoltaic related
research. The fossil fuel based energy sources provide about 80% of the total energy
demand in our society [7]. These fossil fuels that are limited in supply cannot address
future energy demands andralso contribute to the 90% of greehhouse gas emission [7].
These competing trends demand the utilization of novel sources bf energy such as solar,
wind, etc. The photovoltaic solar cells have potential as a sustainable future global energy ‘
resource with pollution free environment. The photovoitaic solar cells have been used to
harvest the solar energy into electricity and gone through substantiél technical
developments in the past few years [8]-[10]. The photovoltaic (PV) p-n junction solar
cell is the main optoelectronic element used to harness the energy of the sun. Upon
absorption of the photon, the exciton pair is formed within the PV cell, whicﬁ dissociates
almost instantaneously into free electrons and holes. The charge carriers then diffuse and
drift under the influence of an internal electric field to the electrddes, and an electrical

current can be released on a load. The silicon-based solar cells are still dominating the



photovoltaic industry due to its abundance existence, non-toxicity, high efficiency, long-
term stability and well established technology [11}-{14].

Despite being a relatively well-developed technology, maximum efficiency of
these silicon solar cells is still low. The highest PCE reported so far for crystalline silicon
and thin-film amorphous silicon solar cells are below 26% and 11%, respectively [15].
Also, the cost of silicon solar cells is high due to its highly sophisticated production
technology [16]. There are challenges on both the theoretical and experimental aspects of
silicon-based solar cells to increase the PCE and decrease the production cost. Thin-film
solar cells have been introduced in recent years due to its low cost [17]-[19]. These thin-
film solar cells use less semiconductor material and can be cost effective [20] thus
reducing the payback period to less than a year [21]. However, thin-film solar cells rely
on a thin layer of absorbing material; hence, light management and device optimization
are very crucial in this technology [22]-[24]. Different efficiency enhancement
techniques based on light trapping and surface plasmon resonances has been proposed
[13], [25]-[27]. Nanophotonic techniques [28], [29] are very effective for the light
trapping since they provide flexibility to control the flow of light on the scale of several
100 nm to a few micrometers, which is best suited for thin-film solar cells [30].

To better understand the working mechanism of a solar cell, it is crucial to be able
to model the behavior of the electrons and holes under different illumination and spatial
conditions. An analytical model explicitly helps to study the critical parameters and
working conditions that may lead to improved performance. It also provides insight
regarding the dependencies of electrical current and PCE oh various device parameters

such as the device’s thickness, minority carrier lifetime, impurity concentration, surface



recombination velocity of the charge carrier, etc. The dependency of short-circuit current
in silicon solar cells on various device parameters is reported by Rostron [31]. The short-
circuit current increases almost linearly with the minority carrier diffusion length but
decreases with increase in surface recombination velocity, showing a surface region
contribution up to 13% on the short-circuit current [31]. The thickness of the active layer
has an important role in the device’s performance, which is more dominant in thin-film
solar cells as shown by McElheny et al. in their research [23]. Therefore, the solar cell
device modeling has the advantage of investigating the critical issues and optimizing
them before the manufacturing of high performing solar cells.

Computational time consuming numerical approaches have been used extensively
to study the behavior of solar cell devices [32]-[39]. Ringhofer et al. have modified the
Gummel method for iterative solution of the basic semiconductor device equation by
approximating the Jacobian matrix to improve the convergence [33]. Significantly
smaller growth rate of convergence with increased bias voltage was obtained comparéd
with the Gummel method, and the quadratic convergence was demonstrated compared to
the linear convergence of Gummel scheme for 0.6 V forward bias {33]. The finite-
element approach has been applied to study the influence of various device parameters on
performance of p-n junction solar cells, and the increase of PCE was reported with an
increase in dopant concentration and a decrease of emitter width [39]. The increase in
PCE was shown with a decrease in surface recombination velocity of the charge carriers
at the surface, suggesting the materials with low surface recombination velocity must be

used as electrodes for high performing solar cells [40].



Despite the accuracy offered by the numerical calculations of solar cell devices,
they require more sophisticated software tools that need to be specifically modified for a
particular device architecture [32], and they also require more computational time. The
other major disadvantage of numerical calculations involving solar cell analysis is that
they do not provide the explicit mathematical relationship between electrical current or
PCE with various device parameters and illuminations conditions, and limit the
understanding about the physical insight of the device’s operation. In that case, the
analytical modeling can provide the explicit analytical theory of solar cell device.
Specifically, it provides the analytical expressions of total current density within the
device that can explain the dependency of PCE on different device parameters such as the
device’s thickness, generation rate, surface recombination velocities, carrier lifetime, etc.

This chapter focuses on the analytical modeling of thin-film silicon solar cell for
homogeneous and inhomogeneous generation rates. The concept of thin-film solar cell is
introduced to reduce the cost per watt of photovoltaic power by reducing the thickness of
the device. However, the traditional modeling approach of bulk solar cell does not
provide the accuracy while applying a similar modeling approach to the thin-film solar
cell. The more feasible boundary conditions must be applied while studying thin-film
solar cells. Also, the thickness of the thin-film device and other critical parameters must
be optimizéd to achieve maximum PCE. Here, two different boundary conditions, one
based on surface recombination of the charge carrier at the electrode and another based
on intrinsic boundary conditions are proposed. The analytical model describing the
carrier transport in all regions of a p-n junction based device with analytical expressions

of electron and hole carrier profiles is presented. In addition, the analytical expressions
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for the generation dependent electrical current and PCE is developed. Moreover, the
effect of the boundary conditions and various device parameters on the device’s

performance are explored.

2.2  Background

Photovoltaic is a process of generating electricity directly from electromagnetic
(light, including infrared, visible, and ultraviolet) energy by the optoelectronic device
called solar cell [42]. Photovoltaic effect is first discovered by Edmund Becquerel in
1839 [43] and has been through tremendous technological advancement in the last few
decades [10] [44]-[48]. The underlying electronic process for the operation of solar cell
is generation of free electron-hole pair upon the absorption of a photon. The sun
generates a tremendous amount of light energy via nuclear fusion converting a huge
amount of hydrogen into helium. Before it reaches the Earth’s surface, the solar energy
attenuates while passing through the atmosphere. The solar irradiance is represented m
terms of air mass (AM) which accounts for attenuation, other losses in the Earth’s
atmosphere and global tilt. If @ is the angle of the sun to the zenith, the air mass is given
by AM = (cos 8)~! [41). The AMO represents extraterrestrial spectrum of solar radiation
outside the Earth’s surface. The AM1.5 is the widely accepted standard solar irradiation
on the Earth’s surface with 1000 W/m’ power density. The Figure 2-1 shows the solar

spectral power density for black body radiation at 6000 K, AM0 and AML1.5 solar

radiations.



11

~
»

- - »
o » o
Y Y |

Spectral power demsity [kW/(m? pm))
&
1

0 02 o044 08 OG8 10 12 14 W8 W8 20
Wavelength (pm]

Figure 2-1: Solar spectral power density with AM0 and AM1.5 solar radiations [41].

2.2.1 Inorganic Photovoltaic

The crystalline silicon (c-Si) is the widely used inorganic semiconductor material
for solar cell applications due to high PCE. The bandgap of c-Si is 1.1 eV [43]. The
maximum PCE of c-Si solar cell is more than 25% [6]. Thé c-Si has proper order in
atomic structure and minimum defects, which results in high mobility of charge carriers
and minimum recombination loss. The Figure 2-2 explains the generation of electrical
pbwer from p-n junction based solar cell, which is governed by four steps, absorption of
photon, generation of free electron-hole pair, separation of electron and hole, and

collection of electron and hole at the electrodes.
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Figure 2-2: Physics of p-n junction solar cell.

If the photon of energy Epp, = E;, where E, is the bandgap energy, incidents on
the solar cell, it gets absorbed and an electron-hole pair generates by the excitation of an
electron from the valence band to the conduction band. Then the electron-hole pair
dissociates instantaneously due to the thermal energy at room temperature. The electron
and hole are then collected at cathode and anode, respectively, via diffusion and drift
under the influence of the internal electric ﬁeld at p-n junction. As the photon energy
depends on the wavelength, E,, = hc/A, where h is Planck constant, ¢ is the speed of
light and A is the wavelength of the photon, not all photons can geherate' an electron-hole
pair. If the energy of the photon is less than the bandgap energy, it is not absorbed, and if
it is higher than the bandgap energy, the excess energy is lost in thermalization. This
photon energy mismatch with the bandgap energy of the solar cell materialr is the
principal limitation of solar cell efficiency. Figure 2-3 shows the maximum PCE as a

function of bandgap energy of solar cell material [49).
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Figure 2-3: Maximum PCE of the solar cell for the black body spectrum at 6000 K, the

AMO and AM1.5 solar radiation spectra as a function of bandgap energy of absorber
layer limited by spectral mismatch [49].

Despite the high efficiency of the crystalline silicon solar cells, the high
production cost limits its application in wide range. The low cost production process such
as evaporation and sputtering can be used to deposit pure silicon but with disordered
atomic structure resulting in amorphous silicon. Amorphous silicon is a low cost material
but has high defect density (10'° defects/cm®) due to the presence of dangling bonds [12].
HoWever, the defects density can be significantly reduced to 10' defects/crbn3 by
passivating with hydrogen in hydrogenated amorphous silicon (a-Si:H) [12]. The a-Si:H
has a higher absorption coefficient in the visible range due to the presence of extendedb
states in the forbidden gap or band gap, and only 1 um thick a-Si:H is enough to absorb
90% of the solar spectrum [50]. The a-Si:H has a bandgap of 1.7 eV [48]. Figure 2-4
shows the absorption coefficient of the different types of silicbn as a function of photon
energy. Due to the presence of higher defects in a-Si:H, usﬁally it is used in thin-film
solar cells to ensure the efficient collection of photo-generated charge carriers, further

reducing the cost of the solar cells. The a-Si:H also has low mobility of charge carriers,
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so p-i-n type solar cells are used to extend the inter electric field and immediately

separate electrons and holes to avoid recombination loss [12].

Wavelength [micrometers}
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Figure 2-4: Absorption coefficient for different types of silicon as a function of photon
energy {50].

Photovoltaic technologies based on other types of inorganic materials including
cadmium iellﬁride (CdTe) and cadmium sulphide (CdS), copper indium gallium
diselenide (CIGS), etc. have been developed [44], [48]. The tandem and multi-junction

- solar cells implementing different semiconductor materials with different bandgap to
absorb maximum optical power have been explored [52] [12]. Each of these technologies
has its own benefits and limitations. Figure 2-5 shows the market share of the different
types of inorganic photovoltaic technologies in 2014 [51]. Figure 2-6 shows the progress
of various photovoltaic technologies and maximum efficiency achieved in each of these

technologies [9].
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Figure 2-5: Market share of different inorganic photovoltaic technologies in 2014 [51}].
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Figure 2-6: Progress of various photovoltaic technologies [9].

2.2.2 Solar Cell Characterization and Parameters
Figure 2-7 shows the typical J-¥ and P-V characteristics of a solar cell. The solar
cell is generally characterized by plotting the current-voltage relationship under

illumination. The fourth quadrant of the J-V characteristics under illumination is the
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working region of the solar cell. The primary parameters to characterize the solar cell
under illumination are short circuit current, open circuit voltage, maximum power point,

series and shunt resistances, fill factor, and power conversion efficiency.

0 Voltage Vier Ve
>

£
[
a Power curve
g
£
£
£
S

y P

lsc Plllll

J-V Curve
v

Figure 2-7: Typical J-V and P-¥ characteristics of a solar cell.

Short circuit current density, Jsc (mA/cm?): It is the current density retrieved
from the solar cell when the electrodes are shorted. In J-V characteristics, it is the current
density when the bias voltage is zero. The short circuit current density is linearly
dependent on generation rate and incident optical power density.

Open circuit voltage, Voc (V): It is the voltage developed across the electrodes

of the solar cell when no load is connected and no current is flowing through the circuit.

Open circuit voltage is the theoretical maximum voltage that can be released to a load.

The open circuit voltage depends on the work functions of the electrodes and energy level
of the active layer.
Maximum power point, Jyp (mA/cm?) and V,p (V): The electrical power

density generated by the solar cell is the product of current density and voltage. The




17

maximum power point is the peak value in the P-V curve, which corresponds to the

current density and voltage at which maximum power from the solar cell is harvested.
Series, Rg (2) and shunt resistance, Rgy (2): The series resistance represents

the inverse of the slope of the I-V curve at open circuit voltage point and shunt rgsistance

represents the inverse of the slope of the I-V curve at short circuit current point given as

Re = (dV)
ST \dl  yayy,

Reu = (),

Fill factor, FF (%): The fill factor is the charge extraction capability of the solar

Eq. 2-1

Isc

cell. It is the ratio of maximum power produced by the solar cell to the theoretical

maximum power it could produce based on the /5. and V¢, and is given by

FF = ]MPVMP ]
]SCVOC

Power conversion efficiency, PCE (%): It is the ratio of maximum electrical

Eq. 2-2

power generated to the total incident optical power; Since the solar cell generates the
maximum electrical power at maximum power point, if Py, is the incident optical power
density, then PCE is given by

ImpVap _ JscVocFF

PCE=TF P Eq. 2-3
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2.3  Device Architecture

The p-n junction diode is the primary architecture of the silicon solar cell in which
an n-type semiconductor layer is sandwiched with a p-type semiconductor layer creating
a depletion region at the junction as shown in Figure 2-8. The device architecture is
divided into four regions: n-type quasi-neutral region (n-QNR), n-type depletion region
(n-DR), p-type depletion region (p-DR), and p-type quasi-neutral region (p-QNR). The
transport of charge carriers, electrons and holes, in the p-n junction based solar cell is
mainly governed by two mechanisms: drift under the influence of the internal electric
field, and diffusion due to uneven carrier concentration profiles throughout the device.
Under illumination, a generation of charge carriers creates new free electrons and holes,
and the recombination process annihilates the free electrons and holes within the device.
The direction of the internal electric field developed at the depletion region is from the n-
regioh to the p-region. This electric field drifts photo-generated electrons towards the n-
region and holes towafds the p-region developing a potential difference across the p-n
junction, which releases the electric power to the external load connected across the

device.

n-Region , p-Region

X

Figure 2-8: Device architecture of p-n junction solar celi for the analytical model.
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24  Analytical Modeling
2.4.1 Ambipolar Transpori Equations
The general steady state drift-diffusion equations of electron and hole including

the effect of generation and recombination process in a p-n junction silicon solar cell are

(53]

D d*n(x) N d{n(x)E(x)]
n dxz I‘n dx

D d’p(x)  dip(x)E(X)]
P dx2 Hp dx

= Rp(x) + Gp(x) =0
Eq. 2-4

—Rp(x) +Gp(x) =0

Where D,(Dp) is the diffusion coefficient for the electron (hole), py(i1p) is the electron
(hole)  mobility, Ry(x) = (n(x) ~ npo)/tn (Rp () = (P(x) = pno)/1p) is  the
recombination rate of the electrons (holes), G,(G,) is the generation rate of the eiectrons
(holes), nyg(Pno) is the equilibrium eléctron (hole) minority concentration, T, (7p) is the

electron (hole) minority carrier life-time, and E(x) is the internal static electric field

given as [53], [54]
Wp+x
Z_ Wn <x<0
E(x)=V,{, "2 : Eq. 2-5
Wy — X
Lyp

Where V, = kT/q is thermal voltage, L, = ’e;:;’vtr and Lpp = ’ ‘;‘;:T are electron and
a .

hole Debye lengths, respectively, w, is the depletion width in n-side, and Wy is the

depletion width in p-side given as [55]
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Where Vp; = Vi In(N,Ny/n?) is the build-in potential [54], V is the external bias voltage,
n; is the intrinsic concentration, and N, and Ndr are the acceptor and donor impurity
doping concentrations, respectivély. The total depletion width of the p-n junction
isw=wp+w,
2.4.2 Intrinsic Boundary Condition for Thick Devices

The transport equations of electron and hole in QNR require two boundary
conditions each. The widely used intrinsic boundary condition to solve transport
equations in p-n junction diodes assumes that the device is infinitely thick. Here, inirinsic
refers to the traditionally used boundary condition. Namely, the minority carrier
concentrations are assumed to have a finite values, as the device’s thickness tends to
reach infinity. Due to this assumption, intrinsic boundary condition is only suitable for
thick devices and is inappropriate for thin-film solar cells. The intrinsic boundary

conditions for electron and holes in the analysis of bulk p-n junction solar cells are given

as [53] [56]

1) = pa(e"/% = 1), (x> c0) = me

. Eq. 2-7
p(—wy) = pno(ev/vt -1), p(x—= =) =py

2.4.3 Surface Recombination Boundary Condition

As mentioned above that the intrinsic boundary condition is not physical for thin
devices, one must be careful when considering short devices. In that case, it is probably

more meaningful to consider a finite surface recombination velocity based boundary
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condition. The recombination process of the charge carriers at the surface of the solar cell
due to the presence of defects and dangling bonds is called surface recombination and the
speed at which the charge carriers recombine at the surface is known as surface
recombination velocity. The surface recombination boundary condition has no limitation
for the device dimension instead, the physical phenomenon explaining the surface
recombination of the charge carriers at the surface near to the electrodes is considered.
With surface recombination velocity of electron S, [cm™] and surface recombination
velocity of hole §,, [cm™'], the surface recombination boundary condition for electron and
holes are given as [56], [57]

n(wp) =npo(e"”" = 1), qDd[N(X)]| x=x, = ~qn(xp)Sn
p(—wp) = Pro(e"% = 1), D3, [p(0)]| z=-s, = aP(~%,)S,

Eq. 2-8
2.44 Homogeneous Generation

The generation of free charge carriers upon absorption of photons by the solar cell
material is the basis for the generation of electrical power via photovoltaic. The
generation rate decays exponentially as the optical power gets absorbed while penetrating
inside the solar cell. However, for the thin-film solar cells, where the device’s thickness
is smaller than the photon penetration depth d,, = 1/a, where @ = Im(wVe/c) is the
absorption coefficient of solar cell material, the homogeneous generation can be
assumed. In such case, the homogeneous generation rate due to the infinitesimal band of

wavelength AA in a solar spectrum centered at any wavelength A can be approximated as

P,T(A)A

G (/1) = (_xp+_x,,)7zz Pd (A)M Eq. 2-9
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Where h is Planck’s constant, c is the speed of light, P, = 100 mW/cm? is the total solar
power density for AML.5, T is the transmission coefficient at the front face of the solar

cell and P; is the Planck’s distribution of solar spectrum given as

e A
Bic

Where kg is Boltzmann constant, T, is temperature at the surface of the sun

and f:° P; dA = 1. For normal incident [58],

2
_ N | 2ngr |

Ngir Mgy + ng + iKgl

Eq. 2-11

Where n,;, and ng; are refractive indices of surrounding media and solar cell material,
respectively, and kg; is the extinction coefficient of solar cell material, silicon in this case.
2.4.4.1 Solution in ONR

In quasi-neutral regions, the internal electric field is zero (E = 0) and the drift-
diffusion equations given in Eq. 2-4 simplifies to diffusion equation only. The solution of
the hole diffusion only transport equation in n-QNR and electron transport equation in p-

QNR using intrinsic boundary condition (Eq. 2-7) with homogeneous generation rate G

are given as
n-QNR
Wntx :
p(x) =Gty +ppo—e » (Gt,, +Pno(1 - eV/Vt)). Eq. 2-12
p-ONR

Wy =X
n(x) = Gty + nyo — ¢ bn (Gt,, +nyo(1 —e¥/ Vt)). Eq. 2-13
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Where L, =\[t,D and L, = t,D, are electron and hole diffusion lengths,
respectively.
2.4.4.2 Solution in DR

After finding the solution of charge transport equations in quasi neutral regions,
the transport equations in depletion regions with electric field are calculated in quasi

neutral regions. The solution of electron and hole transport equations in the depletion

regions are given by

n-DR
—-X(2Wn+X
-—‘—}'——2 GL? Gw, w,+x
nx)=e 2 ¢;——24 V2, (c1 ") D, JLL ] Eq. 2-14
n nd
Wnt+X x(2wp+X
L“-;—L Gw, wy + GLZ, J—i‘——z
p(x) = J_L de 2ina (c1+ ") rf ‘/"_L x]+ 24 ce 2na . Eq. 2-15
nd P
p-DR
(W J‘) ~x(2Wp—X)
Gw x—wp] GL34 ——
n(x) = J_ Lpae 7 ,, l’) erf 7 "]+ d4ce 25 | Eq 2-16
pd Dy,
x(2wy~x)
GL Gw xX—Ww,
p(x)=e %ra ¢, ——D;—+\/" Lpa (c3 D:)D*[ ZL,,:]' Eq. 2-17

Where D, is the Dawson function. Each of the solution of the electron and hoie transport
equations in the depletion region have four constant parameters c,, ¢;, c3, and ¢,. As the
solution of the electron and hole transport equations are already obtained in QNR, to
calculate the charge carriers concentration profiles in the depletion regions, the continuity

of the charge concentrations and currents are enforced at the boundaries of n-QNR, n-

DR, p-DR and p-QNR.
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Different parameters, their values and units used in the model are listed in Table
2-1. Figure 2-9 shows the electron and hole concentration profiles at (a) zero, (b) forward
and (c) reverse bias in all regions. Since the majority concentration are not much affected
by the generation of charge carriers, the majority carrier concentrations are assumed to be
the same as the impurity doping concentrations, such as the electron concentration in n-
QNR region is N; and hole concentration in p-QNR region is N,. A constant generation
rate of 102 m?s"! is used in the calculations, which is the typical generation rate for
AML1.5 solar irradiation. When the p-n junction solar cell is forward biased, the width of
the depletion region decreases and the majority carriers make it across the junction, thus
increasing the minority carrier concentration on the other side of the junction. On the

other hand, reverse bias decreases the number of minority carriers and restricts the

current flow through the device.



Table 2-1: Numerical parameters and properties of mC-Si used in model [59].

Parameter Symbol Value Unit
Permittivity of vacwam 'S 8.854x10°12 F/m
Dielectric constant of Ersi 11.7
monocrystalline silicon
Beltzmana consiant ks 1.38x10% JK
Planck constant h 6.626x10 Is
Speed of light in space c 3x10* m's
Intrinsic concentration of i 1x10'¢ m>
silicon
Desior (Phespherws) Ny 102~ 107 m®

atration
Acceptor (Boron) N, 102 -10% m’
concentration
n-type layer thickness X, 300 nm
p-type layer thickness Xp 200 pm
Eloctron mebility of me-Si b 1360 c’/(Vs)
Hole mobility of me-Si oy 450 cm?/(Vs)

Joctrin |

Diffusion coefficient of hole D, 12 cm’/s
Hole (clseiron) surfice 855(S) 10-10* /s
Minority carrier lifetime of Tn 23.5x10° s
electron
Minerity carrier lifetime of T 1.5x10° s
hole
Operating temperature To 300 K

25
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Figure 2-9: Electron and hole concentration profiles at the homogenous generation rate
of 10* m3s! for a) zero bias, b) forward, and c) reverse bias.
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2.4.4.3 Current Calculation

Once the analytical expressions of the charge carriers were obtained, an analytical
expression for the current depending on the generation rate was calculated. The electron
and hole diffusion currents are calculated at the edge of the depletion regions using
solution of electron and hole transport equations in QNR. The electron diffusion current
Jn is calculated at wy, the hole current j,, is calculated at —wy, and the total current j; is
the summation of electron and hole current, j; = j, + jp. The optical power in the solar
spectrum is distributed in a band of wavelength. Therefore, the total current is the
summation of currents contributed by each wavelength which can be expressed as

je= Y (i@ = i = 1)) = ) jaa® —js(e"" ~1).  Eq. 2-18

=0 i=0

Where the wavelength dependent generation current and saturation current are introduced

as

. | L, L,
jea(d) = gGQA) (L,,tanh [2_1.,:] + Lytanh Z_Lp])

. Pnolp In]  npoln [lp] |
]s-q( T COth[Lp + T coth L

Eq. 2-19

Where I, = x, — wy, and [, = x,, — wp, the homogeneous generation rate G(4) is given
in Eq. 2-9. At zero generation (G = 0) and large devices (I, » L, + L, and [, » L, +
L), the standard p-n junction diode response in dark can be obtained because coth() =
1. Here, the total current is linearly dependent on the generation rate and is independent
of the device spatial characteristics. This is an expected deficiency of fhe model, which
follows directly from the assumption for a position independent generation of carriers,

i.e. homogeneous generation rate. As the total current is linearly dependent on generation,
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to demonstrate this relationship, the J-V characteristics are calculated and plotted for
three different constant generation rates of 10** ms™, 5x10* m>s" and 10* m?™. In
this case, the generation is assumed to be both wavelength and positon independent.
Figure 2-10 shows the J-V characteristics of solar cell under dark condition and with
various constant generation rates. From Figure 2-10, it is seen that with an increase in the

charge generation rate the short circuit current density and open circuit voltage increased.
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Figure 2-10: J-V characteristics of a p-n junction silicon solar cell for constant
generation rates of 102 m>s™, 5 x 10** m”s™ and 10® m?s™.

The generation and recombination currents in the depletion region are calculated
to include the effect of generation and recombination within the depletion region in the
total electrical current from the solar cell. Assuming the homogeneous generation in the
depletion region with thin dépletion width (w), the generation and recombination current

in the depletion region can be written as

jeron@) = q f * G()dx = qQWG(A)

. : Eq. 2-20
JrRorR =4 R(x)dx = qWR oy
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Where R,,,, is the recombination rate at the center of the depletion region and is given as

n(x)p(x) — nf

Rmax = R(x = 0) = Tp(n(x) + ny) + T (p(x) + n;) .

Eq. 2-21

The concentration of charge carriers at the center are given as n(x = 0) = p(x = 0) =

n;e¥/?Vt_ which simplifies Rypqy as

n
Tp+Tn

Rmax =

(e¥/2ve - 1). Eq. 2-22

Now the recombination current simplifies to

qwn,
Tp + Tn

JrorR = (eV/™ — 1) = jp(e¥/? —1). Eq. 2-23

Hence, including generation and recombination currents at the depletion region, the total

electrical current from the solar cell in Eq. 2-18 modifies to

o
e =) (joa@ + Joaoa@) ~ Jo(e"/" — 1) ~ ju(e"/% ~ 1).  Eq. 2-24
=0

From Eq. 2-19, it is demonstrated that for large devices (I, > Ly + Lp and [, >
Ln + Lp), the generation and saturation curents obtained with the intrinsic boundary
conditions has finite values due to the facts that coth(e) =1 and tanh(oo) = 1.
However, for thin devices, I, < Ly, I, « Ly, the saturation current tends to blow up and
attained very high unphysical value as coth(0) = o. This shows that the traditional
* intrinsic boundary condition is not the right choice when considering thin devices. This is
due to the assumption of an infinitely thick device in such boundary conditions as
explained before. For thin devices, the surface recombination boundary condition is
probably more physical. Next, the surface recombination boundary conditions are used to

find the solution of the electron and hole tranport equations, and calculate the total
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current form the solar cell. The total current from the solar cell is given in Eq. 2-24,

where the surface recombination boundary condition based generation and saturation

currents are given as

i) = 60| L, qn + tanh [71;%] — qnsech [{%] L qp + tanh [ll-':] — gpsech [{?:-]

l L4 l
a3
1+ gutanh [I’:_,] 1+ gytanh [L,,]
1+ gz'tanh L 1+ qp'tanh [11]
T LLn I‘P
Js = qSaNpo T3t 45pPno T Eq. 2-25
i+ gptanh [—l-f’—] 1+ gptanh L—"-]
n [&p

Where qp = L;Sp/Dp = ThSn/Ln, 4qp = LpSp/Dp = 1,Sp/Ly. The saturation and
generation currents with surface recombination boundary condition are now finite for thin
devices. If S, = S, for thin devices, jg3 = qG(A)(L, + Lp) and js = qSp(npo + Pno)-
Figure 2-11 compares the a) J-V characteristics and b) P-J characteristics of silicon solar
cell for surface recombination (SR) and intrinsic boundary (IB) conditions for
homogeneous genération under AM1.5 solar irradiation with 100 mW/cm? power density.
The surface recombination velocity of 10 m/s was used for calculation. The surface
recombination boundary condition is not only more practical to use for thin-film solar

cells, but also delivers more electrical current and power from the device as shown in

Figure 2-11.
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Figure 2-11: a) J-¥ characteristics, and b) P-V characteristics of silicon solar cell for

surface recombination (SR) and intrinsic boundary (IB) conditions for homogeneous
generation under AM1.5 solar irradiation with 100 mW/cm? power density.

As the analytical expression of the total electrical current from the solar cell is
already obtained in Eq. 2-24, it is significant to express the optimal electrical power
analytically. This optimal electrical power corresponds to the maximum power point in
the J-¥ characteristic and peak value in the P-V characteristic of the solar cell. The output
electrical power from the solar cell is given by Poye = Vj;. As it is known that the P-V

characteristic has a peak value, the optimal voltage can be obtained by using the maxima-
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minima calculation. At the optimal voltage, the derivative of output electrical power with
respect to the voltage is zero. Neglecting the recombination current at the depletion
region in total electrical current j, given in Eq. 2-24, the optimal voltage V,p,, and the

optimal electrical current j,,,, and power P, from the solar cell are given by

Vopt = Vi(Wlej/js] — 1) :
Jope = je(L + W ej/js]) : Eq. 2-26
Pope = JeVe@ — Wleje/js) — w_llejt/js])

Where W is ProductLog or Lambert W-function and e is Euler’s number.
24.5 Inhomogeneous Generation

The homogeneous generation of charge carriers within solar cell is considered in
previous section to simplify the analysis of the device operation. However, the optical
power in the solar spectrum is distributed in a band of wavelength given by solar pbwer
density specttum P4(), defined by Planck’s law of black body radiation. Also, for the
real solar cell device, the incident optical power décays exponentially as it progresses
within the solar cell, governed by Beer-Lamberts law resulting in the position and

wavelength dependent carrier generation rate and is approximated as

PoT(1)a(A)AP4(A)A1 e-alx.

= —-a()x —
G(A,x)=G(A)e e

Eq. 2-27
Where a = (4mk)/A is the absorption coefficient and k is the extinction coefficient of
the solar cell material. The optical characteristics of the solar cell material are important
for the device’s performance. Different optical constants of crystalline silicon (c-Si) used
in the model are depicted in Figure 2-12. Figure 2-12 shows the a) Refractive index and

extinction coefficients of c-Si, and b) transmittance and reflectance of c¢-Si-Air interface.
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The spectral generation rate within c¢-Si for inhomogensous generation under AM1.5

solar irradiance of 100 mW/cm? optical power density is shown in Figure 2-13.
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Figure 2-12: (a) Refractive index and extinction coefficients of c-Si, and (b)
Transmittance and Reflectance for c-Si-Air interface.




34

%1026
1.8} 1
N
L
E
g 10}
3
.Q
§ o .
&
Q
o‘ob L A A A A PP WP 1 A A i Y et
200 300 400 500 600 700 800

Wavelength [nm]

Figure 2-13: Spectral generation rate fot inhomogensous generation under AM1.5 solar
irradiance of 100 mW/cm’ optical power density.

The electron and hole transport equations in QNRs with the position and

wavelength dependent inhomogeneous generation rate are given as

n(x) —
D,n""(x) - -—(—)t—r—l?-g + G(Qe2Wx = g, Wy <x <X
n

p(x) = Pno
Tp

Eq. 2-28

D,p" (x) - +GA)e X =0, —x, <x<-w,

The similar approach is used here for inhomogeneous generation as in the
homogeneous generation case to solve the electron and hole transport equations using
intrinsic and surface recombination boundary conditions, and the total electrical current
from the solar cell is calculated. The total electrical current from the solar cell is still the
same as given in Eq. 2-24 where the generation (jz1, jgapr) and saturation (j) currents
using intrinsic boundary condition for inhomogeneous generation are given in Eq. 2-29.

From Eq. 2-29 it is discovered that even for inhomogeneous generation, the saturation
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current with intrinsic boundary condition tends to attain very high unphysical value for

thin devices.

e—aw aL, + coth [%’-'—] — e%nesch [%z_]
] = —alp P P
Jea(2) = qG(A)e Lng7 i +L, T T
wp 1—eve . Eq. 2-29
Jeapr(1) =q f G(x,)dx = qG(A)e % —
L L l
Js=4q (npo n Pno%s oth [—"])

Once again, it proved that the intrinsic boundary condition is not applicable for
thin devices. Next, the surface recombination boundary condition is applied at the front
where holes are the minority carriers. The total electrical current from the device in the
case of surface recombination boundary condition is given by Eq. 2-24 where the
generation current in depletion region jg; pg is given in Eq. 2-29, and generation jg; and
saturation j; currents are given as

oW
"1+al,
Jea(d) = . (qp + aL,) (cosh [{%] - e“‘n) + (1 + aqpl,)sinh [ll.lp']
’ (1-a213) (cosh [%';] + gpsinh [{—’;]) . Eq.2-30

1+ qptanh [%E]
P

qG(1)e % (L +

, L
Js=q -n—”f-ﬂ + qSpPno

n 1+ gptanh [%'1-‘;]

Figure 2-14 shows the a) J-V characteristics and b) P-¥ characteristics of silicon
solar cell with position and wavelength dependent inhomogeneous generation rate for
intrinsic (IB) and surface recombination (SR) boundary conditions under AM1.5 solar

irradiation with 100 mW/cm® optical power density. It is seen that the solar cell
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performed better with surface recombination boundary condition and better matched with
the experimental data of 8.75 cm? single crystalline silicon solar cell presented by Tsuno

et al. [60].
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Figure 2-14: a) J-V characteristics and b) P-V characteristics of silicon solar cell for
intrinsic (IB) and surface recombination (SR) boundary conditions with inhomogeneous
generation rate under AMI1.5 (100 mW/cm?) solar irradiation plotted against
experimental data by Tsuno et al. [60].

2.5 Results and Discussion
The simplified analytical model is developed for thin-film silicon solar cells for

both intrinsic and surface recombination boundary conditions. It is worthy to study the
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relationship between these two types of boundary conditions and their significance with
physical properties of solar cells. The intrinsic boundary condition is revealed as a
limiting case of surface recombination boundary condition with infinite surface
recombination velocity. When the surface recombination velocity of the charge carrier
approaches infinity, S, = 0 = q, = L,S,/D, = o, the electrical currents from the
solar cell with surface recombination velocity, given in Eq. 2-25 for homogeneous
generation and Eq. 2-30 for inhomogeneous generation, approach the electrical currents
obtained for the intrinsic boundary condition shown in Eq. 2-19 for homogeneous
generation and Eq. 2-29 for inhomogeneous generation, respectively. This relation is
shown in Figure 2-15 for the inhomogeneous generation case.

In Figure 2-15, as the surface recombination velocity S, increases, the short
circuit current density in the case of surface recombination (SR) boundary condition
tends to reach the short circuit current density for intrinsic (IB) boundary condition. This
confirms that the intrinsic boundary condition is the limiting case of surface
recombination boundary condition with infinite surface recombination velocity. The
electrical current obtained with intrinsic boundary condition is independent of surface
recombination velocity. That is why the short circuit current is constant with IB in Figure
2-15. In the other extreme case with zero recombination velocity, S, = 0 = g, = 0, the
generation current in Eq. 2-30 simplifies to

oW aly (1 — e%lngech [{l;-]) + tanh [Tl‘:-]

— ~aly,
Jea = q6Me™ | Ln g+ L 1-a2l?

Eq. 2-31
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Figure 2-15: Short circuit current density for intrinsic and surface recombination
boundary conditions in the case of inhomogeneous generation for various surface
recombination velocities.

Another important conclusion from this analysis is that the performance of the
solar cell is reduced with higher surface recombination velocity as it is shown that the
short circuit current decreased for higher surface recombination velocity. Figure 2-16
shows the J-V characteristics for different surface recombination velocities S, for
inhomogeneous generation and surface recombination boundary condition. Figure 2-16
demonstrates that the solar cell offers higher short circuit cﬁrrent and open circuit voltage
for small surface recombination velocity which agreed with the results in publication
{40]. Higher recombination velocity could lead to higher recombination loss at the
surface of solar cell material or at electrode interface resulting in lower performance,
which suggests that the material for electrbdes in the solar cell need to be chosen in such
a way that it provides lower surface recombination velocity in order to fabricate highly
efficient solar cells. The various factors influencing surface recombination velocity are

surface roughness, surface contamination, oxidation temperature, ambient gases during
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oxidation, post-oxidation annealing, and surface doping concentration [61]. Different
passivation schemes were used to reduce the surface recombination velocity of solar cell

emitters [62]-[65].
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Figure 2-16: The J-V characteristics for different surface recombination velocities for
inhomogeneous generation and surface recombination boundary condition.

The external quantum efficiency (EQE) gives the ratio of number of charge
carriers extracted from the device to the number of incident photons of the particular
wavelength A and is givenas

ji/q

EQE(X) = P)A/he’

Eq. 2-32

Where P(A) is the optical power density at wavelength A in the solar spectrum. The EQE
accounts for both absorption of photons within solar cell and extraction of charge carriers
at the electrode. It also helps to understand the response of solar éell to different
wavelengths in solar spectrum. Figure 2-17 shows the external quantum efficiency of thé
silicon solar cell with inhomogeneous generation atV = 0 (zero bias) for intrinsic and

surface recombination boundary conditions. The EQE plot shows that the surface
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recombination boundary condition is more effective for lower wavelength to generate and

extract charge carriers compared to intrinsic boundary condition.
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Figure 2-17: EQE for intrinsic and surface recombination boundary conditions with
inhomogeneous generation at zero bias.

The light management scheme is very essential in thin-film solar cells. For this
purpose, the front layer thickness, n-layer in this case, has a critical role in the
performance of solar cell. If this layer is too thin, the depletion width reduces (if
thickness is smaller than the width of depletion region in n-region), and if too thick, most
of the light absorbed before reaching the depletion region and cannot contribute to the
electrical current. The optimal thickness of front layer needs to be investigated to design
the highly efficient thin-film solar cell. Figure 2-18 shows the optimal current density
from the solar cell plotted against the thickness of the front (n-layer) and back (p-layer)
layers. The optimal current jqp, is given in Eq. 2-26. The optimal thickness of the front
layer is found to be around 300 nm; however, the back layer thickness has no optimal
value. This could be due to the fact that most of the light gets absorbed within front layer

and depletion region.
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Figure 2-18: The optimal current for various front and back layers thicknesses of thin
film solar cell.

Furthermore, the dependent of the performance of solar cell on minority carrier’s
lifetime is studied. For this purpose, the minority carrier’s lifetime of five different solar
cell materials are used. The minority carrier lifetime for monocrystalline silicon (mC-Si)
is 37.2 ps, poly-crystalline silicon (pC-Si) is 3.68 ps, amorphous silicon (a-Si) is 11.29
ps, gallium nitride (GaN) is 6.5 ns and indium gallium arsenide (Ing 14Gag ssAs) is 110 ns
[66])-[68]. Figure 2-19 shows the J-V characteristics of p-n junction solar cell with
minority carrier lifetime of monocrystalline silicon, poly-crystalline silicon, amorphous
silicon, gallium nitride, and indium gallium arsenide solar cell materials. The short circuit
current and open circuit voltage increased with a higher minority carrier’s lifetime which
can be proved analytically using total current expression given in Eq. 2-24 for any
boundary condition. With a higher minority carrier’s lifetime, the diffusion length
increases so that many of the photo-generated charge carriers can contribute to the output

electrical current.
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Figure 2-19: The J-V characteristics for different minority carrier lifetimes,
monocrystalline Si (37.2 us) [66], poly-crystalline Si (3.68 ps) [66], amorphous Si(11.29
ps) [66], GaN (6.5 ns) [67], Ing 14Gao s6As (110 ns) [68].

Other important solar cell parameter to be considered for the analysis is impurity-
doping concentration. The internal electric field, build-in voltage and depletion width
depend on impurity doping concentration. Therefore, impurity-doping concentration
influences the external voltage across the solar cell electrodes delivered to the load by a
solar cell. Figure 2-20 shows the effect of donor doping concentrations for fixed acceptor
concentration, and Figure 2-21 shows the effect of acceptor doping concentrations for
fixed donor concentration, in the current density and voltage generated by a solar cell.
The short circuit current density is nét much affected by the doping concentration;
however, the open circuit voltage increased significantly with higher doping. The
important point to note from Figures 2-20 and 2-21 is that the open circuit voltage

increases when both donor and acceptor impurity are higher. For a small concentration of
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one type of impurity, the open circuit voltage remains the same even as the other type of

impurity is increased.
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Figure 2-20: The J-V characteristics of PN junction silicon solar cell for various donor
impurity concentrations N4 for a) N, = 102 m~3, and b) N, = 10?2 m3,
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Figure 2-21: The J-V characteristics of PN junction silicon solar cell for various acceptor
impurity concentrations N, for a) Ny = 1026 m™3, and b) Ny = 1022 m™3.

2.5.1 Surface Plasmon Enhanced Thin-Film Silicon Solar Cell

The thin-film solar cell technology is emerged in the effort to reduce the cost.
However, due to the thin absorber layer in thin-film solar cells, the absorption of light
energy is reduced. The surface plasmon technology is one way to enhance the absorption
in thin-film solar cell and enhance the performance [13]. The surface plasmon

enhancement with thin inhomogeneous semi-continuous metal-dielectric composite
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(MDC) was investigated using the analytical model of thin-film silicon solar cell. Figure
2-22 shows the basic device schematic of surface plasmon enhanced thin-film silicon
solar cell. The 20 nm MDC layer with silicon as dielectric and gold nanoparticles is used
between ITO electrode and Si active layer to enhance the light absorption and eventually
the PCE of solar cell. The thickness of the active layer and metal concentration in MDC

were varied to observe the improvement in light absorption in the active layer.

Figure 2-22: Schematic of the glass/ITO/MDC/Si/ZnO/Al based surface plasmon
enhanced thin-film silicon solar cell. .

The metal nanoparticles in MDC enhance the local field intensities by exhibiting
energy localization under illumination which corresponds to the excitation of localized
surface plasmon (SP) modes. At critical metal concentration in MDC called percolation
threshold, extraordinary light absorption can be achieved. The light incidents on the glass
sidle and reach to the MDC through the transparent ITO electrode. At MDC SP
resonances trap electromagnetic radiation and enhanced optical absorption at silicon

active layer. The effective permittivity of the inhomogeneous MDC layer is calculated
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using the effective medium theory [69] and the optical absorption within the active layer
is calculated based on effective permittivity of the MDC layer. The percentage of incident
light energy absorbed in the active layer gives the optical efficiency and is varied for |
active layer thickness and metal concentration in MDC. Figure 2-23 shows the optical
efficiency of device structure of glass/ITO/MDC/Si/ZnO/Al as a function of active
layer’s (Si) thickness and metal concentration in 20 nm MDC. The maximum optical
efficiency is about 35% for active layer’s thicknesses of 80 nm, 180 nm, 280 nm etc. with
20% metal concentration in MDC layer. The optical efficiency enhancement is about

150% using MDC layer with periodic behavior for active layer’s thickness.
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Figure 2-23: Optical efficiency of glass/ITO/MDC/Si/ZnO/Al solar cell as a function of
the silicon active layer’s thickness and metal concentration in 20 nm MDC layer.
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Once the absorption of the light energy A(d, m), as a function of the active layer
thickness (d) and metal concentration (m), in the active layer is obtained from the optical
model, the homogeneous generation rate is calculated as

PoA(d, m)

Gd,m) =4

P,(2)AA. Eq. 2-33

The SP enhanced homogeneous generation rate given in Eq. 2-33 obtained from
the optical model can be used in the analytical model for homogeneous generation case
developed in the previous section to compute the electrical current and power generated
by the solar cell. The optimal electrical power generated by the surface plasmon
enhanced silicon solar cell is calculated using Eq. 2-26. The total electrical current j, is
given in Eq. 2-24, and generation and saturation currents for homogeneous generation
case are given in Eq. 2-25. Once the optimal electrical power is obtained, the optimal
PCE of surface plasmon enhanced silicon solar cell is computed with 100 mW/cm’ input

optical power density (P;,) as

% PCE = ::" x 100 % = P,p;. Eq. 2-34

Figure 2-24 shows the optimal electrical efficiency of the surface plasmon
enhanced solar cell of structure glass/ITO/ MDC/Si/ZnO/Al as function of the active
layer’s (Si) thickness and metal concentration in 20 nm MDC. The optimal efficiency
corresponds to the maximum power point in the J-V curve. The maximum optimal PCE
is about 14% for active layer’s thickness of 80 nm with 20% to 40% metal concentrations

in MDC layer. The enhancement in PCE is about 100% using MDC layer with periodic

behavior for active layer’s thickness as seen in optical efficiency enhancement.
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Figure 2-24: Optimal PCE of glass/ITO/ MDC/Si/ZnO/Al surface plasmon enhanced

solar cell as a function of the silicon active layer’s thickness and metal concentration in
20 nm MDC.

26 Conclusions

The performance of thin-film silicon solar cell is optimized by developing
analytical model. Two boundary conditions, one based on surface recombination velocity
and another intrinsic boundary condition are studied. The surface recombination
boundary condition is more practical for thin-film solar cells and the performance of solar
cell was better with surface recombination velocity boundary condition. The
homogeneous and inhomogeneous generation cases are also investigated separately for
both types of boundary conditions. In addition, the performance of thin-film silicon solar
cell is studied for different solar cell parameters such as a device’s thickness, minority
carrier’s lifetime, impurity doping concentration, surface recombination velocity, etc.,

and optimized them. The short circuit current and open circuit voltage increased with
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lower surface recombination velocity. The performance of solar cells enhanced with
higher minority carrier lifetime and the open circuit voltage increased when the impurity
doping concentration was increased. This model can be further extended to the different
solar cell architectures, such as p-i-n, multijunction, bulk heterojunction, etc. and for
different solar cell materials, such as amorphous silicon, GaN, InGaAs, conjugated

polymers etc.



CHAPTER 3

POLYMER SOLAR CELLS AND PHOTODETECTORS

3.1  Introduction

Photovoltaic cells based on conjugated polymers and fullerene derivatives have
been explored extensively [70]-[74] in the last ten years and have attracted much
attention due to their potential of harnessing solar energy in a cost effective way [75],
[76]). Polymer solar cells have the advantage of low cost of fabrication, ease of
processing, light weight, versatility of chemical structure, and mechanical flexibility
[771-[79]. Despite such tremendous features, the efficiency of the organic solar cell is
lower than the inorganic solar cell [15]; as a result, the application of the organic solar
cell has been limited in commercial use. Unlike the inorganic semiconductor, that
generates free electron and hole upon absorption of photons at room temperature, an
organic conjugated semiconductor generates excitons (bound electron-hole pairs) {80].

The major boost in the efficiency of the organic solar cell came up with the
introduction of bulk heterojunction structure. In the bulk-heterojunction polymer solar
cell, the semiconductive polymer (donor) and fullerene (acceptor) interface are required
to dissociate the bound electron-hole pair (exciton) in two separate charge carriers [80] in
order to release the electrical power at the load. In this structure, the semiconducting

polymer is mixed with the fullerene derivative producing phase separation on a

50
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nanometer scale [81]. The bulk heterojunction solar cell not only provides high surface
contacts for charge separation, but also an efficient network for charge separation {82].
The polymer blend of poly (3-hexylthiophene) (P3HT) with fullerene derivative
[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is widely used for polymer solar
cells with effective blend bandgap of about 1.8 eV (maximum light wavelength absorbed
around 680 nm, shown in Figure 3-17b). The molecular structure of P3HT and PCBM is
shown in Figure 3-1 [83], [84]. There has been a tremendous amount of research
conducted to enhance the efficiency of the polymer solar cell. For example, Beck et al.
have demonstrated the improvement in fill factor (FF) of organic boron
subphthalocyanine chloride (SubPc)/Cgy photovoltaic devices using suboptical-
wavelength nanostructured electrodes [85]. These nanostructured electrodes efficiently
collect charge carriers, thus reducing recombination loss in low mobility organic
semiconductors resulting in the improved FF [85]. The choice for metal electrode in
organic solar cell contributes to improved performance. Vassileva et al. compared
aluminum (Al) and silver metal electrodes for organic solar cells [86]. The thermally
evaporated Al electrodes gave the best results and the post production annealing further
improved the performance of P3HT:PCBM devices by eliminating S-shape in I-¥
characteristics [86]. The acidic poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS), which is generally deposited between indium-tin-oxide (ITO) electrode
and P3HT:PCBM active layer to collect holes efficiently, etches the ITO in the long run
reducing the lifetime of the polymer solar cells [87]. Graphene oxide has been used as a
hole extracting layer instead of PEDOT:PSS to improve the life time of organic

P3HT:PCBM solar cells [88], [89].
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Figure 3-1: The molecular structure of P3HT (left) [83] and PCBM (right) [84].

Some novel techniques have also been used to study the loss mechanisms of
polymer devices showing its promising opportunities as a competitive candidate for solar
energy harvesting in the near future. Awartani et al. have implemented a completely new
approach to study the charge recombination losses in bulk-heterojunction organic
P3HT:PCBM solar cells by aligning the polymer semiconductor in the plane of the film
- by applying strain [90]. This study allows the investigation of the morphological origin of

recombination losses providing tremendous opportunity to improve the performance of
organic solar cells [90]. The new acceptor, Indene-Cgo Bisadduct (ICBA), has been
introduced by He et al. for high performance polymer P3HT:PCBM solar cells [91). The
ICBA has shown stronger visible absorption and higher LUMO energy level compared to
PCBM, resulting in higher open circuit voltage and greatly improving the overall
performance of the solar cells [91].
In addition to the different aspects of polymer solar cells mentioned above that led
to the improvement of performance, the thickness of the active polymer-fullerene layer of
“organic solar cell has a critical role in the performance of the PSHT:PCBM [92]-{96] and
MEH-PPV:PCBM [97] devices. In order for the device to be highly efficient, the solar
radiation needs to be efficiently absorbed; thus, the active layer thickness of the

P3HT:PCBM device needs to be increased [98]. A substantial amount of work to
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understand the effect of surface morphology, temperature, light intensity and optical
absorption on the performance of the P3HT:PCBM [70}, [91], [99]-{101] and MDMO-
PPV:PCBM [100], [102] solar cell has been carried out. However, only several studies
have been done on the influence of the active layer thickness to the P3HT:PCBM [92]-
[96], MEH-PPV:PCBM [97], Si-PCPDTBT:PC;BM [103] and MDMO-PPV:PCBM
[104] polymer solar cell performance. Moule et al. in their research demonstrated the
effect of active layer thickness on the performance of the bulk-heterojunction
P3HT:PCBM solar cells [92]. The authors demonstrated increment in the power
conversion efficiency (PCE) and short circuit current with P3HT:PCBM thickness with
some periodic behavior, but the open circuit voltage remained almost the same [92]. It iS
worthy to study the dependence of the performance of polymer devices on its active layer
thickness in order to achieve highly efficient polymer solar cells and photodetectors. In
addition, it is least complicated and cost effective to control the thickness of the active
layer of polymer devices rather than using other techniques discussed above for
performance enhancement.

In this chapter, the experimental study of the dependence of the PCE, external
quantum efficiency (EQE) and other characteristics of P3HT:PCBM photovoltaic and
photodetecting devices are presented. This research project was Aaimed to address the
demand of efficient and cost-effective organic solar cells and photodetectors. This was
carried out by fabricating the polymer devices with the basic structure of
glass/ITO/PEDOT:PSS/P3HT:PCBM/AI by a solution-processed process with various
active layer thicknesses. The optical behavior of different thicknesses of P3HT:PCBM

blend, which is the most important characteristics for solar cells and photodetectors, was
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explored. In addition, the effect of active layer thickness on device resistance, short

circuit current, fill factor, and open circuit voltage were studied.

3.2 Background

3.2.1 Conjugated Polymers

Conjugated polymers are the category of polymers having a backbone chain with
alternating double and single bonds [105]. Under certain circumstances, they exhibit
semiconductive properties like their inorganic counterparts. Therefore, theoretically they
can be used in any optical and electronic devices, such as diodes, solar cells,
photodetectors, LEDs, and transistors, the same as inorganic semiconductors [105]. In
2000, Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa received the Nobel
Prize in chemistry for their contribution in the discovery and development of conductive
polymer [106]. This discovery changed the general concept about the polymers as the
insulator. The semiconducting property of a conjugated polymer is due to the movement
of n-electrons from one bond to the other in their backbone chain. The conductivity of the
conjugated polymers can be controlled via doping the same as inorganic semiconductors,

and conjugated polymers with a wide range of conductivity can be synthesized as shown

in Figure 3-2.
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Figure 3-2: The wide range of conductivity of conjugated polymers from insulator to
conductor [106].
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Analogous to the valance band and conduction band in the inorganic
semiconductors, organic semiconductors (conjugated polymers) have the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). The difference between HOMO and LUMO gives the optical bandgap of these
conjugated polymers [80]. The main advantage of conjugated polymer for the electronic
devices is their low cost fabrication process. The thin-films of solution processed
conjugated polymers used in optoelectronics devices can be fabricated using spin-
coating, screen printing, doctor blades, etc. The mass production using roll-to-roll
processing is feasible with these devices. In addition, these are extremely flexible and
light weight. Some common conjugated polymers are polyacetylene (PA), poly(3-
hexylthiophene) (P3HT), polythiophene (PT), polypyrrole (PPy), alkoxy-substituted poly
(p-phenylene vinylene) (MEH-PPV), etc. The polyacetylene has metal-like conductivity
but has poor thermal stability and processability [108]. MEH-PPV is used in
optoelectronics devices such as optical sensors, solar cells, LEDs, etc. due to its
environmental stability.

Figure 3-3 shows the common conjugated polymers. In polythiophene along with
the alternate double and single bounds, carbon atom are connected by a sulfur atom
forming thionyl ring resulting in the shift of the bandgap to the blue and UV range. PT
has excellent thermal stability (42% weight loss at 900) and gobd conductivity of 3.4 x
10 t0 1.0 x 10" S/cm when doped with iodine [105]. However, PT lacks processability.
P3HT is the widely used conjugated polymer for organic solar cells and photodetectors.
Unlike other conjugated polymers with inherent disorder causing low carrier mobility,

P3HT has self-organization of the polymer chains with interchain distance on the order
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of 3.8 A and room temperature mobility up to 0.1 cm?/V.s [105]. However, the mobility
of P3HT depends on the processing environment and varies from 0.2 cm?/V.s when
processed in inert atmosphere to the poor mobility of 0.045 cm’/V.s when processed in
ambient condition [105]. Conjugated polymers are donors in the organic photovoltaic
solar cell similar to the p-type semiconductor in inorganic solar cells. These generate

electron-hole pair (exciton pair) of absorption of the photon.
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Figure 3-3: Common conjugated polymers [107].

3.2.2 Fullerene Derivatives

After diamond and graphite, fullerene (a closed shell of carbon atoms) is the third
allotropic form of carbon. Robert F. Curl, Harold W. Kroto and Richard E. Smalley
received the Nobel Prize in chemistry in 1996 for their discovery of fullerenes. Fullerene

derivatives are used in bulk heterojunction organic devices as an acceptor similar to the
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n-type semiconductor in inorganic devices. Common fullerene derivatives are [6,6]-
phenyl-Cq-butyric acid methyl ester (PCeBM), PC,BM, indene Cg bis-adduct
(ICBA), and IC7BA as shown in Figure 3-4 [109]. The major role of fullerene
derivative is to provide the junction with conjugated polymer in organic devices to
dissociate the exciton pair. For this reason, the fullerene derivative must possess two
properties. It needs to be soluble in the same solvent as the conjugated polymer to make a
solution, and it should have low LUMO energy level compared to conjugated polymer to
accept electrons from conjugated polymer. PCBM is the widely used fullerene derivative,
especially with P3HT due to its solubility in organic solvent like chlorobenzene and
lower LUMO than P3HT. The maximum efficiency of P3HT:PCBM solar is up to 5%
[105]. The new fullerene derivative, ICBA is introduced with 0.17 eV higher LUMO

energy level compared to PCBM to achieve higher open circuit voltage of up to 0.84 V
[91].
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Figure 3-4: Different fullerene derivatives with LUMO and HOMO energy levels used in
organic solar cells and photodetectors [109].
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3.2.3 Polymer Solar Cells

The basic architecture of polymer solar cells consists of bulk heterojunction of
conjugated polymer with high ionization potential (donor) and fullerene derivative with
high electron affinity (acceptor) sandwiched between PEDOT:PSS coated ITO positive
electrode and a low work function metal negative electrode [80]. The polymer thin-film
solar cells are considered as third generation (3G) solar cells following large scale, single
junction, bulk silicon wafer based first generation (1G) solar cells, and low-cost thin-film
solar cells based on amorphous silicon, Culn(Ga)Se;, CIGS, CdTe/CdS on low-cost
substrates in second generation (2G) [80]. Four main steps in electrical power generation
from the polymer solar cells are absorption of photon, generation of exciton-pair,
dissociation of electron and hole at the junction of donor conjugated polymer and
acceptor fullerene derivative, and collection of carriers at the electrodes. When the
photon of energy equal to or higher than the bandgap of conjugated polymer incident on
the active layer of the organic solar cell, it gets absorbed and generates an electron-hole
pair (exciton pair). Unlike in silicon, the bond energy of exciton in conjugated polymer is
higher, and it does not dissociate due to thermal energy at room temperature. This exciton
pair in organic solar cells acts as a single neutral entity and diffuses to the heterojunction
of polymer and fullerene, where the electron is transferred to the LUMO of the acceptof
(fullerene derivative) and the hole remains in the HOMO of the donor (conjugated
polymer) due to the energy level difference. Finally, the electron is collected at negative
low workfunction metal electrode and the hole is collected at the ITO positive electrode.
Being a neutral entity, the exciton pair does not care about the electric field. It moves

towards junction only due to diffusion. Figure 3-5 shows the overall process of
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electricity generation in organic solar cell following the photon absorption, exciton

generation, exciton diffusion, exciton dissociation, and carrier collection at the electrodes.

Vacuum Level

Energy

@ Exciton pair

Figure 3-5: The electrical power generation process in polymer solar cell following

photon absorption, exciton pair generation, exciton pair dissociation, and carrier
collection.

One of the advantages of the organic solar cells compared to the inorganic
counterpart is that, on one side only one type of charge carrier (either electron or hole)
exists and there is no risk of recombination loss except at the junction. As the dissociation
of exciton pair at the junction is key in the organic solar cells, the device architecture of
polymer-fullerene active layer needs to be designed to provide proper junction. Three
device structures with polymer-fullerene active layer are planer heterojunction (bilayer
like in p-n junction), checkerboard type (ideal architecture) with alternate pillars of
polymer and fullerene, and bulk heterojunction [110] as shown in Figure 3-6. The

checkerboard type is the ideal architecture but difficult to fabricate. The planar
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heterojunction has minimum junction area, and most of the exciton pairs are lost in

recombination due to their short lifetime before reaching the junction.

a) b) p-type €)  p-type

n-type n-type n-type

Figure 3-6: Three device architectures of polymer solar cells, a) planar heterojunction, b)
checkerboard type architecture, and c) bulk heterojunction architecture.

The bulk heterojunction is most suitable as it provides junctions randomly
distributed everywhere to dissociate exciton pairs efficiently, and is easy to fabricate
using solution processed deposition techniques. Postproduction annealing has an
important role in creation of randomly distributed junction in heterojunction. Annealing
helps to segregate the same type of material together and provides the semicontinuous
network of donor and acceptor to the electrodes to collect carriers avoiding charge trap
islands. However, if the time and temperature of annealing is high, ultimately planar
heterojunction is resulted due to the complete segregation of fullerene on one side and
polymer on the other side [110]. This is the one reason for the short lifetime of the

organic solar cells, as they slowly undergo segregation of donor and acceptor due to the

outside temperature under the sun for a long time.
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3.24 Polymer Photodetectors

Photodetector is the device used to detect the presence of light by converting the
optical energy into an elecirical signal. The device architecture and electrical power
generation process in the photodetector is similar to the one in the solar cells; however,
the principle of operation is different. Solar cell generates the electrical power for the
external load and no external bias is required. However, in the photodetector, external
reverse bias is applied and the photo-generated carriers are collected, which is
proportional to the incident optical power. The fourth quadrant represents solar cell
operation in I-V curve while the third quadrant is for photodetector. The Figure 3-7
shows the equivalent circuit model of the photodetector, where Ip, is the photocurrent, I,
is the dark current and I, is the total output current released to the load [111]. Under
dark condition, when the photodetector is reversed biased very small dark current flows
which depends on the temperature and properties of the material. When the photodetector
is illuminated with light, absorption of photons creates more charge carriers increasing

the output current at the load. The photocurrent in the circuit is given by

'pD = Iout - ID' Eq. 3-1
Series | Extemnal
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Figure 3-7: Equivalent circuit model of photodetector [111}.
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3.2.5 General Device Characterization and Parameters

3.2.5.1 Solar Cell

The solar cell is characterized by the J-V curve under illumination and important
parameters of the solar cell are short circuit current density, open circuit voltage,
maximum power current density and voltage, series and shunt resistances, fill factor, and
PCE. Please see Section 2.2.2 for detail.
3.2.5.2 Photodetector

The photodetector is the device that generates electrical power when a photon
with a specific wavelength incidents on it. The photodetector is characterized by the J-V
curve in the third quadrant with monochromatic light. Different parameters to consider
while characterizing the photodetector are photocurrent density, responsivity, internal
quantum efficiency, and external quantum efficiency.

Photocurrent density, J,» (A/cm’): The photo-induced current density when the
photon of a specific wavelength incidents on the photodetector. The photocurrent density
depends on the wavelength of the incident photon, the incident optical power and external
bias voltage. If the current density under dark is /, and the current density under light is
J., then the photocurrent density is

Jon =J1 = Jp- Eﬁ- 3-2

Responsivity, R (A/W): It is the ratio of the electrical current ‘generated to the

incident optical power. It is the response of the photodetector per unit incident optical

power. It depends on the wavelength of light and bias voltage. If P, is the incident

optical power density at particular wavelength, then

el

P Eq. 3-3
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External Quantum Efficiency, EQE (%): It is the ratio of number of charge
carriers extracted from the device to the number of incident photons of particular

wavelength and given by

Jon/e ke
-—_Pol/hc = R/le' Eq. 3-4

EQE =
Where J, is the photocurrent density, P, is the input optical power density at particular
wavelength A, e is the elementary charge and h is the Planck’s constant.

Internal Quantum Efficiency, IQE (%): The ratio of the number of charge
carriers coilected at the electrode to the number of absorbed photons within the
photodetector. Not all incident photons get absorbed within the photodetector; some of
them reflected back and some transmitted through the device. If R is the reflected and T

is the transmitted portions of the incident opticai power, then the IQE is given by

EQE

RE=1T"r=T

Eq. 3-5

3.3 Experimental Methods

3.3.1 Fabrication

The fabrication of polymer solar cells and photodetectors with P3HT:PCBM
active layer was carried via microfabrication techniques. “"he air-processed fabrication
process of the polymer devices was used [112]. The basic structure of the polymer solar
cell and photodetector consists of glass/ITO/PEDOT:PSS/P3HT:PCBM/AL; the cross-
section of the device is shown in Figure 3-8. The CB-40IN indium tin oxide (ITO),
thickness of 150-200 nm and sheet resistance of 4-10 Q/sq, on 25 x 25 x 1.1 mm boro-
aluminosilicate glass substrate (Delta Technologies) was used as an anode [113]. The

water soluble hole transport layer, pcly (3,4-ethylenedioxythiophene):
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poly(styrenesulfonate) (PEDOT:PSS), (Sigma-Aldrich and Heraeus Holding GmbH,
shown in Figure 3-8) was deposited between the active layer and ITO to collect photo-
generated holes at anode effectively. The blend of Poly(3-hexylthiophene):[6,6]-phenly-
C61-butyric acid methyl ester (P3HT:PCBM) (Sigma-Aldrich) [83], [84] was used as an
active layer of the device. The thermally deposited aluminum thin film was used as a
cathode. Figure 3-9 shows the energy band diagram of the polymer device which
explains the dissociation of photo-generated exciton pair due to the difference of works
function of various layers, resulting in the collection of the hole at ITO and the electrons
at aluminum. The fabrication process consists of ITO patterning, polymer-fullerene
solution preparation, active layer deposition, and electrode deposition and contact wiring.

Each step of the fabrication process is described in detail.

Figure 3-8: Glass/ITO/PEDOT:PSS/P3HT:PCBM/AI device cross section and charge

generation and separation when illuminated with light (left) and molecular formula of
PEDOT:PSS (right).
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Figure 3-9: Energy level diagram of ITO/PEDOT:PSS/P3HT:PCBM/AL solar cell [80].

ITO patterning using photolithography

The standard photolithography technique was used to pattern ITO on a glass

substrate such that six independent devices were fabricated on each substrate. The ITO

patterning procedure follows as:

a.

ITO substrate cleaning by rinsing with acetone, isopropyl alcohol (IPA) and
Deionized (DI) water, and drying the substrate with nitrogen blow.

Spin-coating (CEE 100 spin coater) ITO substrate with Shipley PR 1813 positive
photoresist @ 1500 RPM, 504 RPM/sec for 30 seconds.

Soft baking (pre baking) the photoresist film on a hot plate (IKA RCT BASIC S1) @
90°C for 5 minutes. |
Aligning the transparency plastic mask, shown in Figure 3-10 (left), on top of the
photoresist film. The white region defines the ITO etch region and ITO remains only
on the dark region.

Exposure of the photoresist film aligned with the transparency mask under 365 nm

ultraviolet light (BLAK-RAY B 100 AP UV lamp) for 18 minutes.
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f. Development of the exposed photoresist film in MF-319 developer bath followed by
DI water rinse, and drying with N, blow. The photoresist was completely removed
from the exposed region. This process takes about 1-2 minutes.

g. Hard baking of developed photoresist film on the hot plate @ 110°C for 10 minutes
to remove any residue.

h. ITO etching from exposed portions by submersing in 20% hydrochloric acid (HCI)
bath warmed at 75°C for 3 minutes or until the targeted ITO etched away completely.

i. Removing the remaining photoresist with an acetone rinse.

[ L

-

Figure 3-10: Shared anode transparency mask for photolithography to pattern ITO on
glass substrate (left), and stainless steel shadow mask to define cathode regions (right).

I

After patterning the ITO, the substrate was cleaned thoroughly by sonicating
(BRANSON 2510 Ultrasonic) with acetone, IPA and DI water baths in petri dishes, 10
minutes each. Then the substrate was dried on a hotplate @ 150°C for 15 minutes after a
N; blow. The substrate was now ready for active layer deposition.

Polymer-fullerene (P3HT:PCBM) solution preparation
a. P3HT and PCBM were measured (AND HR-60 scale) within N; glovebox in separate
vials, based on the desired concentration and quantity of the solution. The same

amount of P3HT and PCBM was used to get a 1:1 ratio wt. of P3HT and PCBM.
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b. Chlorobenzene solvent was added in each vial of P3HT and PCBM based on the
desired concentration and quantity of the solution with magnetic stir bar.

c. Both vials were taken out of the glovebox and placed on the stirring hotplate @ 50°C
for 15-18 hours.

d. Both solutions were then filtered with 0.45 pm polytetrafluoroethylene (PTFE) filters
and mixed in a single new vial with a new magnetic stir bar, and allowed to stir for an
additional 1 hour on the hotplate @ 50°C.

The amount of P3HT, PCBM and chlorobenzene were calculated based on the
desired concentration and quantity of the final PSHT:PCBM blend solution. For example,
to prepare 4 ml of the blend solution with 9 mg/ml concentration of both P3HT and
PCBM (1:1 ratio by wt.), 4 ml of chlorobenzene and 36 mg (9 times 4) of each P3HT and
PCBM is required.

Active layer deposition

The PEDOT:PSS was transferred in a new vial from the refrigerstor, képt in room
temperature for 30 minutes, and sonicated for 10 minutes before deposition.
Approximately, 1 ml of PEDOT:PSS is required for a 25 x 25 mm substrate.

a. Inside a class 100 clean room, PEDOT:PSS was filtered with 0.45 pm pelyvinylidene
fluoride (PVDF) filter and spin-coated with a micropipette (ACURA 815) onto a
substrate @ 3500 RPM for 30 seconds to deposit about 50 nm film.

b. PEDOT:PSS was washed away at one edge to define common ITO contact as anode
with water using swab.

c. Then the PEDOT:PSS thin film was annealed @ 110°C for 10 minutes to remove

water residue.
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d. The P3HT:PCBM solution was then dynamically dispensed with a micropipette
(ACURA 825) while the substrate was rotating to deposit a uniform film.
Approximately, 200 ul is required for a 25 x 25 mm substrate.

e. P3HT:PCBM was washed away at one edge, the same location from where
PEDOT:PSS was washed away in the previous step, for common ITO contact with
chlorobenzene (or, chloroform) using a swab.

f.  The P3HT:PCBM thin film was baked @ 70°C for 5 minutes to remove any solvent.

The speed of spin-coating in rounds per minute (RPM), and the concentration of
P3HT and PCBM in the solution influence the thickness of the active layer in the
polymer device. The polymer devices of various thicknesses from 20 nm to 345 nm were
fabricated by varying P3HT:PCBM concentrations from 9 mg/ml to 18 mg/ml, and spin
coating speed from 600 to 2500 RPM. Figure 3-11 shows the thickness of the polymer
device for various polymer-fullerene concentrations and spin-coating RPM. The
temperature and humidity inside the clean room during the device fabrication were
20.9°C + 1.6% and 53% t 6.7%, respectively. Table 3-1 gives the fabrication parameters

for solar cells and photodetectors.



Table 3-1: Fabrication parameters for solar cells and photodetectors.

Parameter/Material Value/type

Solvent Chlorobenzene

P3HT Concentration 9 mg/ml - 18 mg/ml

P3HT:PCBM Ratio 1:1 wt.

Additive (OT) 0% vol.

Spin Coating Recipe 600 RPM - 2500 RPM for 50 s
Thickness 20 nm - 345 nm (Surface Profiler)
PEDOT:PSS 3500 RPM, 30 s, ~ 50 nm

Ambient Conditions 20.9°C £ 1.6%, 53% = 6.7% Humidity
Aluminum 100 nm, 0.4 nm/s, 10"® Torr (Thermal evaporator)
Annealing 150°C, 15 min (Post-production)
Contact Wire 0.25 mm dia. Copper wire

Epox

_ Conductive sil epo

400 -
350 \ ~&- 9 mg/ml
300 - ‘., A - 12 mg/ml
T 250 {@ .. . @ 15 mg/ml
‘g’ 200 4 .\“s‘\ 0 -@- 18 mg/ml
g 1s04 B " A .‘“," .oy LTI
F 100 - S ~aae. o N
5:. ."".—.'- '.. ..._.'
550 1050 1550 2050 2550

Spin coating speed (RPM)
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Figure 3-11: P3HT:PCBM active layer thickness, versus spin coating speed with

concentration processing solution of both P3HT and PCBM in chlorobenzene as a
parameter.

Electrode deposition and contact wiring

a. After active layer deposition, the sample was placed on a sample holder and aligned

with the stainless steel shadow mask shown in Figure 3-10 (right).
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b. The sample was transferred inside the Denton DV-502A thermal evaporator to

deposit the 100 nm thin film of aluminum cathode electrode. The deposition was

carried at the base pressure of 10 Torr at the rate of 4 A/sec.

c. Substrate was annealed @ 150°C for 15 mins.

d. Copper wires were connected at the anode and cathode electrodes using a conductive

silver epoxy (Electron Microscopy Sciences), and finally the epoxy was cured @

75°C for 20-25 minutes.

Figure 3-12 shows the step-by-step fabrication process of PSHT:PCBM polymer

device. Six independent devices each with active an area of 3 mm x 3.5 mm with shared

anode architecture were fabricated on each substrate. The Figure 3-13 shows the top

view of six devices on a single substrate and cross-section of a single device, and ready to

test device.

&

Steps

| 8

2.5cm x 2.5 cm ITO coated
glass substrate
Photolithography, wet etching
of ITO with HCL.

Patterned ITO

Spin-coating PEDOT:PSS
Spin-coating P3HT:PCBM
blend

Aluminum thermal deposition

Glass

ITO

Photoresist (51813)
PEDOT:PSS
P3HT:PCBM Blend
Aluminum

Figure 3-12: The step-by-step fabrication process of photovoltaic stack with

P3HT:PCBM active layer.
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Figure 3-13: The top view of six polymer devices on a single substrate and cross section
of a single device (left), and ready to test device (right).

3.3.2 Test Setup
3.3.2.1 Solar Cell Testing

The solar cells were tested under solar simulator and /-V characteristics were
measured with the Keithley 2400 sourcemeter. The schematic of the solar cell testing is
shown in Figure 3-14. A Spectra Physics 66900 solar simulator with 100 W xenon arc
lamp powered by Oriel 69907 power supply was utilized to simulate the AM1.5 solar
spectrum. The AM1.5 represents the standard solar spectrum at the Earth’s surface which
accounts for global tilt as well as the various sources of absorption in the atmosphere.
The output power density from solar simulator was measured with Oriel 91150V
calibrated reference solar cell and adjusted to 1000 W/m? (corresponding to AM1.5). The
solar cells were mounted on a sample holder and placed beneath the opening of the solar
simulator where simulated solar spectrum incidents on it. The anode and cathode of the
solar cells were connected with Keithley 2400 sourcemeter to measure I-V characteristics
of the solar cells. The Keithley sourcemeter was operated from the PC equipped with

LabView program. The bias voltage was typically swept from -1 V to +1 V in increments



72

of 0.05 V. Then each measured current (/) value were divided by the active area of the
device, 10.5 mm?, to obtain the current density (J). The J-V characteristics were analyzed
to calculate various solar cell parameters such as short circuit current, open circuit

voltage, series and shunt resistances, and fill factor and power conversion efficiency.

]

R

Display

Spectra-Physics |
Solar
Simulator

PC with LabView

___

Keithley 2400

Solar Cell Sourcemeter

Figure 3-14: Schematic of the solar cell testing setup.

3.3.2.2 Photodetector Testing

The electrical characterization of polymer photodetectors was carried out with the
monochromator, which illuminated the polymer device with selected single wavelengths
ranging from 350 nm to 750 nm. The schematic for the polymer photodetector testing is
shown in Figure 3-15. The light from HLX 64625 100 W quartz tungsten halogen source
in an Oriel 60005 housing was launched into the Oriel Cornerstone 265 1/4m
monochromator (model 74100) through a slit of 0.35 inches wide. Inside the
monochromator, the mirrors and the grating system splits the light into constituent colors.

The monochromatic light then exits via another 0.35-inch wide slit and focuses on the
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polymer photodetector with the help of the lens setup. Before each polymer photodetector
testing, the spectral optical power density was measured with Newport 818-UV calibrated
silicon1 photodiode (placed in same position as the photodetector) and Newport 1936-R
power meter, and was recorded in the PC through LabView software. During
photodetector testing, the Keithley 2400 sourcemeter remotely controlled with the
LabView software was used to measure the /-V characteristics from -4 V to +1 V in
increments of 0.2 V for each wavelength from 750 nm to 350 nm in intervals of 10 nm.
These I-V characteristics and spectral optical power density were then used to calculate

the photocurrent density, responsivity and EQE of the photodetector at particular bias

voltage and wavelength.

Power a =5
supply -

HLX 64625
Halogen
Lamp

Cornerstone 265
Monochromator

Rail LabView

Figure 3-15: Schematic of the photodetector testing setup.
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3.4  Results and Discussion

3.4.1 Imaging of Surface Morphology of P3HT:PCBM Film

The surface morphology of P3HT:PCBM thin film on the quartz substrate was
studied using LEICA DM4000 M optical microscope and Hitachi S-4800 scanning
electron microscope (SEM). Figure 3-16 shows, a) optical microscope image of the top
view of P3HT:PCBM thin film at 100x magnification, b) optical microscope image of
P3HT:PCBM and aluminum cathode interface at 20x magnification, c) SEM image of the
top view of P3HT:PCBM, and d) a cross-section view of PET/ITO/PEDOT:PSS/P3HT:

PCBM/AL film under SEM. The beam voltage of SEM was set to 1 kV and the working

distance was 5 mm.

Figure 3-16: a) Optical microscope image of P3HT:PCBM thin film surface at 100x
maghnification, b) Optical microscope image of the interface of P3HT:PCBM film and
aluminum cathode at 20x magnification, c) Top view of SEM image of P3HT:PCBM

blend layer under SEM, and d) Cross-section of PET/ITO/PEDOT:PSS/P3HT:PCBM/AI
film under SEM.
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3.4.2 Optical Characterization

The light interaction properties of the semiconductive materials used in optical
devices such as solar cell and photodetector are important to define and understand the
device’s performance. The optical parameters such as reflectance, transmittance,
absorbance, refractive index, and extinction coefficient of the thin film material must be
studied prior to their application in the solar cell and the photodetector. These optical
properties determine the amount of light absorbed within the material when light
incidents on it. The Filmetrics F10-RT reflectometer was used for optical characterization
of P3HT:PCBM active layer. Filmetrics is easy to operate, very precise and non-
destructive tool for the optical characterization of thin films. It measures the spectra of
reflectance and transmittance of the sample simultaneously. It can measure the refractive
index, extinction coefficient and thickness of the film precisely with the proper recipe.
Different materials have their own Filmetrics recipe, which is a model developed for
particular material using reflectance and transmittance information. The F10-RT model
of Filmetrics can measure the thickness in the range of 15 nm to 70 um and operates in
the wavelength range of 380 nm to 1050 nm. Once the reflectance (R) and transmittance
(T) spectra were obtained from Filmetrics, the absorbance (4) was calculated using A =
1—(R+T). |

The effect of P3HT:PCBM active layer’s thickness on the optical characteristics
was investigated. Figure 3-17 shows the transmittance and absorbance spectra of various
thicknesses of P3HT:PCBM thin films on a quartz substrate, and the optical
characteristics (transmittance, reflectance and absorbance) of the quartz substrate itself.

As the thickness of P3HT:PCBM film increased absorption within the film is also
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increased with the reduction in transmittance. Thicker film provides more material that
absorbs more light compared to thinner films. This suggests that thicker films of
P3HT:PCBM probably perform better as a solar cell and photodetector where high
absorption of incident light is desired. The absorbance spectrum in Figure 3-17(b) shows
that the longest wavelength absorbed by P3HT:PCBM blend is around 680 nm, which
gives the effective bandgap of P3HT:PCBM blend Qf about 1.8 eV. The bandgap energy
is the minimum photon energy that gets absorbed and can be wﬁtten in terms of
wavelength (A), Planck’s consfant (h) and speed of light (c) as

h
E=2% Eq. 3-6

A

The complex refractive index of any material is defined mathematically as [17],
n=n+ik. Eq. 3-7

Where n is the real pért of the complex refractive index, called the refractive index,

which indicates phase velocity, and & is the imaginary part called the extinction

coefficient. The extinction coefficient is related to the absorption coefficient (a) of the

material and wavelength (A) as

a=—k. | Eq. 3-8
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Figure 3-17: a) Transmittance, and b) Absorbance spectra. of various thicknesses of
P3HT:PCBM thin-films on a quartz substrate, c) Transmittance, reflectance and
absorbance of quartz substrate measured with Filmetrics F10-RT reflectometer.
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Figures 3-18(a) and 3-18(b) show the optical constants » and k of P3HT:PCBM
blend of various thicknesses, respectively. The absorption coefficient (o) can also be
calculated from transmittance knowing that the thickness (f) of the film using Beer-
Lambert law as

_ —In[T]
Tt

. Eq. 3-9

Figure 3-18(c) shows the absorption coefficient calculated from extinction coefficient
using Eq. 3-8 and Figure 3-18(d) shows the absorption coefficient calculated from

transmittance using Eq. 3-9.
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Figure 3-18: Optical constants of P3HT:PCBM blend of various thicknesses, a)
refractive index (n), b) extinction coefficient (k), ¢) absorption coefficient (a) calculated
from extinction coefficient, and d) absorption coefficient (a) calculated from
transmittance.
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3.4.3 Thickness Measurement

The thickness of P3HT:PCBM thin films on the quartz substrates were measured
with Veeco Dektak 150 Surface Profiler and Filmetrics F10-RT using a recipe of
P3HT:PCBM 1:1 wt. provided by filmetrics.com. The Veeco Dektak 150 Surface Profiler
uses contact stylus technique and has a vertical resolution of 1 A maximum. The contact
profilometer has an advantage in dirty environments where contact with the surface
avoids the error in measurement caused by any surface contaminants. The F10-RT model
of Filmetrics can measure the thickness in the range of 15 nm to 70 pm.
3.44 Solar Cell Electrical Characterization

The photovoltaic J-V characteristics were measured for electrical characterization
of polymer solar cells of structure glass/ITO/PEDOT:PSS/P3HT:PCBM/AI for various
thicknesses of P3HT:PCBM active layer. Figure 3-19 shows the J-V characteristics and
P-V characteristics of polymer solar cell for various P3HT:PCBM active layer thickness.
The J-V characteristics show the short circuit current density and the open circuit voltage,
whereas P-V characteristics show the trend of the harvested output electric power density
P versus the voltage across the solar cell V. The electrical current and harvested electrical
power from polymer soiar cell was found to have increased with the active layer’s
thickness. Table 3-2 shows the solar cell characteristics, such as short circuit current
density (Jsc), open circuit voltage (Voc), maximum power point current density (Jyp) and
voltage (Vyp), power conversion efficiency (PCE), fill factor (FF), series resistance (Rs)
and shunt resistance (Rsy), for various thickness of P3HT:PCBM active layer. The role of
the active layer’s thickness was investigated on various ksolar cell parameters. The

measurement error calculation is shown in Appendix B.
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Figure 3-19: a) J-V characteristics, and b) P-¥ characteristics of polymer solar cells for
different P3HT:PCBM active layer’s thicknesses.



Table 3-2: Solar cell characteristics for different P3HT:PCBM active layer’s thickness.

Thickness Jsc Voc J MP VMp PCE FF Rs Rs*

nm mA/cm’ mA/cm’ %o % k0
36.2

26 0.72 0.57 047 033 0.16 +0.8 594 18.0
420

70 3.54 0.58 2.40 0.36 0.86 +0.9 064 428
38.0

90 3.79 0.58 2.33 036 0.83 +0.8 061 3.08
194

140 4.03 0.57 1.82 025 044 105 334 138
41.7

190 3.67 0.56 2.38 036 0.85 +0.9 0.53 3.86
220

230 4.63 0.55 2.79 020 0.56 +0.7 287 1.75

330 4.80 0.53 3.20 030 0.96 3:?); 065 3.86

3.4.4.1 Effect of Active Layer Thickness on Short Circuit Current

 The short circuit current density (Jsc) increased with the device’s thickness. The
thicker film has more semiconduéting material and absorbs more light compared to a
thinner film, resulting in more photo-generated exciton pairs, and more exciton

generation eventually results in higher current from the solar cell. Figure 3-20 shows
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increasing short circuit current density while an active layer’s thickness of solar cell

increases.
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Figure 3-20: Short circuit current density (Jsc) and open circuit voltage (Voc) of
P3HT:PCBM polymer solar cells for various active layer’s thicknesses.

3.4.4.2 Effect of Active Layer Thickness on Open Circuit Voltage

The open circuit voltage (Voc) across the polymer solar cell was reported to have
almost the same value with a small drop as thickness increased as seen in Figure 3-20.
The energy level difference between the LUMO of PCBM and the HOMO of the P3HT
limits the maximum achieved Voc in P3HT:PCBM based solar cells [91], [95], [114].
Since the open circuit voltage depends mostly in the difference of work functions of
- electrodes, the thickness of the active layer does not affect it much. However, for thick
devices, series resistance increase [92] and the internal electric field decreases due to the
larger distance between electrodes, and the open circuit voltage dropped slightly. It
should be noted that the internal voltage developed within the polymer device is the same

for both thinner and thicker devices due to the same difference of work functions of
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electrodes, but the internal electric field is determined by the distance between electrodes,
which is stronger for thinner devices compared to thicker.
3.4.4.3 Effect of Active Layer Thickness on Resistance

The series resistance increased with the active layer’s thickness due to the rise in
the total number of charge traps within the active layer volume that increases the
probability of the recombination loss of the charge carriers. Also, the thicker active layer
has a more complicated and longer charge extraction network, which Vmeans there is
difficulty in charge transport towards the electrodes and an increase in carrier drift length
[104]. Figure 3-21 shows the increase in the series resistance with an increase in the
active layer’s thickness. The higher shunt resistance indicates more leakage current. The

morphology of the active layer also affects the shunt resistance which could come from

material and fabrication defect.
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Figure 3-21: Series and shunt resistance for various active layer thicknesses of fabricated
P3HT:PCBM polymer solar cells.
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3.4.4.4 Effect of Active Layer Thickness on FF and PCE
The major parameter to consider for the performance of the solar cell is the power
conversion efficiency (PCE). The PCE of the polymer solar cell was calculated at

maximum power point using the relationship

PCE = Y.‘L'E!“_'E.
P,

Eq. 3-10
Where Vypand Jyp are the voltage and current density at maximum power point,
respectively, and P,, is the input optical power density which was set to 100 mW/cm®
during device testing. Figure 3-22 shows the PCE of polymer solar cells of various
device thicknesses. Although the PCE showed some oscillatory behavior, overall it
increased with the active layer thickness. The signilicant drop in PCE was seen around
150 nm active layer thickness, which could be due to the destructive interference within
the device’s layers at this thickness [92]. Another important metric of the solar cell is the
fill factor (FF). The FF gives the charge extraction efficiency of the solar cell and was

calculated as

4
FF = mpImup .
Voc/sc

As seen in Figure 3-22, the fill factor remained mostly unaffected with a valley

Eq. 3-11

from 100 nm to 200 nm. FF decreased slightly after 300 nm of active layer thickness due

to the increase in series resistance in thicker devices causing problems in charge

extraction.
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Figure 3-22: Power conversion efficiency (PCE) and fill-factor (FF) of P3HT:PCBM
heterojunction polymer solar cells for various active layer thicknesses.

3.4.5 Photodetector Electrical Characterization

The polymer devices of the structure glass/ITO/PEDOT:PSS/P3HT:PCBM/AI
with various P3HT:PCBM active layer thicknesses were measured separately as
photodetector to study the effect of active layer thickness on photocurrent density (Jpp),
responsivity (R) and external quantum efficiency (EQE). The expressidn of EQE is given
in Eq. 3-4. Figure 3-23 gives the optical power density of the 100 W tungsten halogen
white light source of monochromator used in photodetector testing measured with the
calibrated silicon photodiode (Newport 818-UV) and power meter (Newport 1936-R).
The fourth quadrant of J-V characteristics, i.e. reverse biased region, gives the
photodetector response. Figure 3-24 shows the spectral photocurrent density of the
photodetectors at reverse bias voltage of -4 V and J-V characteristics of each device
measured with a solar simulator with various P3HT:PCBM active layer thicknesses. The

photocurrent density increased with an active layer thickness. The photocurrent denSity
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for 345 nm thick device was about 220% greater compared to 26 nm thick device at bias
of -4 V and the wavelength of 580 nm. This is due to the increased absorption of photons

for thick devices resulting more photo-generated charge carriers within the active layer of

the devices.
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Figure 3-23: Optical power density of the 100 W tungsten halogen white light source of
monochromator used in photodetector testing measured with the calibrated silicon
photodiode (Newport 818-UV) and power meter (Newport 1936-R).
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Figure 3-24: a) Spectral photocurrent density of photodetectors at reverse bias voltage of
-4 V, and b) J-V characteristics of each device measured with solar simulator, with
various P3HT:PCBM active layer thicknesses. :

3.4.5.1 Effect of Bias Voltage on EQE

Figure 3-25 shows the EQE plots of the photodetector with a) 330 nm, b) 230 nm

and c) 37 nm thick P3HT:PCBM active layers for different reverse bias conditions. As
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the reverse bias voltage was increased, the EQE also increased. This indicated that as the
reverse bias voltage increased, more of the photo-generated charge carriers were swept
towards the electrodes under a strong influential biased potential. With low reverse bias
voltage, not all photo-generated charge carriers could make it to collect at electrodes due
to low mobility and a weak electric field, and lost in the recombination process after their
lifetime. With an increasing reverse bias voltage, more and more carriers collected at the
electrodes and at some point all the generated carriers céllectéd at the electrodes. This is
called saturation conditidn and no more increase in EQE can be seen after this point even
with an increased reverse bias voltage. The rate of increment in EQE with an increase in
reverse bias voltage slows & i+ re..ches the saturation point. As seen in Figure 3-25(a) for
a 330 nm thick device, the EQE increased by 12% from 0 V to -1 V, and it increased only

by 2.6% from -3 V to — 4 V for 450 nm wavelength showing that it is approaching the

saturation point.
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Figure 3-25: External quantum efficiency (EQE) of a) 330 nm, b) 230 nm and ¢) 37 nm
thick P3HT:PCBM active layers of photodetector at various reverse bias voltages.
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3.4.5.2 Effect of Active Layer Thickness on EQE

Figure 3-26 shows the EQE of the polymer photodetector with various active
layer thicknesses at reverse bias of -4 V. This plot shows that the EQE incréases with
thickness of the active layer. The EQE is directly related with photocurrent density. As
photocurrent density increased with the active layer’s thickness due to the higher photon
absorption in thicker devices, as described in the previous section, simultaneously EQE
also increased with the active layer’s thickness. The EQE is found to be about 125%
higher in a 330 nm thick device compared to a 26 nm thick device at -4 V of reverse bias
and for 450 nm wavelength. The EQF and responsivity plot versus active layer thickness
7 for reverse bias of -4 V and wavelength of 580 nm is represented in Figure 3-27. This

plot shows the increasing trend of EQE and responsivity with the active layer’s thickness.
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Figure 3-26: External quantum efficiency (EQE) of polymer photodetectors for various
active layer thicknesses at reverse bias voltage of -4 V.
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Figure 3-27: External quantum efficiency (EQF) and responsivity of P3HT:PCBM
polymer photodetectors for various active layer thicknesses at reverse bias voltage of -4
V for 580 nm wavelength.

34.6 P3HT:ICBA Solér Cells with Silver Nanoparticles

The polymer solar cells of the structure glass/ITO/Ag/PEDOT:PSS/P3HT:ICBA/
Al were fabricated and tested to investigate the surface plasmon enhancement using silver
nanoparticles. The increased photocurrent density is reported by Kim et al. as a result of
enhanced absorption due to excited surface plasmons by Ag nanoparticles and overall
PCE increased from 3.05% to 3.69% [115]. Silver nanoparticles of three different
thicknesses, 5 nm, 6 nm and 13 nm, were sputtered onto patterned ITO substrates using
Cressington 208 HR sputter coater, and the Ag layers were annealed at 300°C for 1 hour.
In one device, initially 5 nm Ag layer was sputtered and then an additional 1 nm of Ag is
sputtered to create nucleated nmopaﬁicles (mesh of small nanoparticles on the surface of
a big nanoparticle) [116] which is referred to as the 6 nm Ag layer. Such nucleated

nanoparticles are reported to have broadband enhancement due to the presence of the
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mesh of nanoparticles with different shape and sizes [116). Figure 3-28 shows the SEM
images of Ag nanoparticles sputtered on the ITO coated glass substrates, a) 5 nm Ag
before annealing, b) S nm Ag after annealing at 300°C for 1 hour, c) nucleated
nanoparticle with small particles attached to the sides, and d) 13 nm Ag after annealing at

300°C for 1 hour. The beam voltage of SEM was set to 3 kV and the working distance

was 5 mm.

S4800 15 OkV 15 5mm x40 Ca SE(M)

Figure 3-28: The SEM images of Ag nanoparticles sputtered on the ITO coated glass
substrates, a) 5 nm Ag before annealing, b) 5 nm Ag after annealing at 300°C for 1 hour,
¢) nucleated nanoparticle with small particles attached to the sides, and d) 13 nm Ag after

annealing at 300°C for 1 hour. The beam voltage of SEM was set to 3 kV and the
working distance was 5 mm.

The 50 nm thin-layer of PEDOT:PSS and 355 nm of P3HT:ICBA polymer-

fullerene blend were deposited on to the Ag sputtered ITO substrates as an active layer.
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The detailed fabrication process is mentioned in Section 3.3.1. The only difference here is

PCBM fullerene derivative is replaced with ICBA. The fabrication parameters are given

in Table 3-3.

Table 3-3: Fabrication parameters of P3HT:ICBA solar cells with Ag nanopatrticles.

Parameter/Material Value/type

Solvent Chlorobenzene

P3HT Concentration 24 mg/ml

P3HT:ICBA Ratio 1:1 wt.

Additive (OT) 0% vol.

Ag Layers 5 nm, 13 nm, 6 nm (nucleated 5 nm + 1 nm)
Spin Coating Recipe 700 RPM 50 s

Thickness 355 nm (Surface Profiler)

PEDOT:PSS 3500 RPM, 30 s, ~ 50 nm

Ambient Conditions 20 °C, 58% Humidity (09/01/15, 12:50 PM)
Aluminum 100 nm, 0.4 nm/s, 108 Torr (Thermal evaporator)
Annealing 150 °C, 15 min (Post-production)

Contact Wire 0.25 mm dia. Copper wire

Egog Conductive silver epoxy

In these solar cells, the light is illuminated from the glass side through ITO. Part
of the incident light is reflected and part of it absorbed by the Ag nanoparticles. So the
presence of Ag nanoparticles on ITO decreases the transmission of light to the
P3HT:ICBA active layer and this loss of light energy depends on the thickness and
coverage of Ag nanoparticles. To study the effect on transmittance due to the Ag
nanoparticles on ITO substrates, the optical characterization is carried out under
Filmetrics F10-RT reflectometer.

Figure 3-29(a) shows the transmittance of ITO coated glass substrates with 5 nm,
- 6 nm and 13 nm Ag nanoparticles compared with the transmittance without any

nanoparticles. The Figure 3-29(a) shows the decrease of transmittance with the increase 7
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of Ag layer thickness especially around 450 nm wavelength. Interestingly, the
transmittance increased with 6 nm nucleated nanoparticles compared with a 5 nm layer.
Figure 3-29(b) shows the transmittance, reflectance and absorption profiles for a 355 nm
P3HT:ICBA active layer on a quartz substrate. Unfortunately, the absorption of
P3HT:ICBA layer has peak around 450 nm wavelength for which the transmittance is

mainly decreased due to presence of Ag nanoparticles.
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Figure 3-29: a) Transmittance profiles of 5 nm, 6 nm and 13 nm annealed Ag thin-films
on ITO coated glass substrate and without Ag thin-film, and b) transmittance, reflectance
and absorbance of a 355 nm thick P3HT:ICBA film on a quartz substrate.
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The polymer solar cells with and without Ag nanoparticles were tested under the

solar cell with an input optical power density of 97.6 mW/cm?. The solar cell with Ag

nanoparticles is referred to as the surface plasmon (SP) device and as the benchmark

(BM) device without Ag nanoparticles. Figure 3-30 shows the J-V characteristics of the

benchmark device compared with surface plasmon devices with, a) 5 nm Ag layer, b) 6

nm Ag layer, and c) 13 nm Ag layer. Table 3-4 gives the solar cells’ parameters of the

benchmark and surface plasmon devices. The measurement error calculation is shown in

Appendix B.

Table 3-4: Solar cell parameters for benchmark (BM) and surface plasmon (SP) devices.

BMS5nm SPSnm

BM6nm SP 6nm

BM 13nm SP 13nm

*

Jsc
) 2.64 245 250  2.09 2.76 2.49
Voc
0.77 0.80 7 0.79 0.78 0.81
s 0.76
Je
(Al 1.94 1.81 1.66 1.49 14 10
z'{‘;;’ 035 040 035 0.40 0.35 0.40
6.60 557 | 639 635 6.54 7.40
&) |
Rsp
, 12.3 10.7 $.40 13.3 9.60 10.9
(kﬂa e
FF£06
o 33 I 36 3 o
P CE(;()"OO" 0697 0741 | 0595 0609 | 0695 0.696
% PCE 6.47 2.35 014

Enhancement
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Figure 3-30: J-V characteristics of benchmark (BM) devices compared with surface
plasmon (SP) devices with a) 5 nm Ag, b) 6 nm Ag, and c) 13 nm Ag layers.
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In each case, surface plasmon devices showed the best results with maximum
PCE of 0.741% for 5 nm Ag nanoparticles. The PCE enhancement observed was 6.47%
for 5 nm Ag layer, 2.35% for 6 nm Ag layer and 0.14% for 13 nm Ag layer. PCE
enhancement decreased with an increase in Ag layer’s thickness. This is due to the loss of
incident optical power on thicker Ag layer (transmittance loss). The short circuit current
density is lower for SP devices compared to BM devices, but open circuit voltage and fill
factor are higher for SP devices. Series resistance decreased for SP devices except for 13
nm, and shunt resistance increased for SP devices except for S nm. Overall, the series
resistance is very high and fill factor is small for all devices showing S-shaped curves.
The high series resistance and low FF could be due to extremely thick 355 nm active
layer. The short circuit current density did not show any enhancement. The overall PCE
enhancement could be due to the improved charge transport and extraction resulted from -
the improved FF in SP devices. In conclusion, the polymer devices with thin active layer
(~150 nm) and thin Ag layer (< 5 nm) might result in enhanced short circuit current

density and further enhancement in PCE.

3.5 Conclusions
In conclusion, the effect of the active layer’s thickness on the performance of
polymer solar cells and photodetectors with P3HT:PCBM active layer was studied
experimentally. The overall improvement of polymer devices was seen with increasing
the thickness of active layer. The Vtransmittance decreased and absorption of photons
increased with thicker devices resulting generation of more charge carriers. On the other
hand, as the thickness of the active layer increaéed the problem with the charge extraction

arose due to longer and complicated network within the device and resulted in the




98

increase in series resistance. The electrical short circuit current through the device, as
well as the device’s PCE and EQE, increased with thickness. From these experimental
results, it was found that the active layer’s thicknesé has a vital role in the performance of
polymer devices, which can be improved by optimizing the device’s thickness. However,
the increase in performance with thickness is assumed to be valid only up to a certain
value, called optimal active layer thickness. In this experiment, the thickness of the
device was restricted to 345 nm due to fabrication difficulty in spin-coating, and at this
thickness, PCE of 1.09% and EQE of over 83% at around 460 nm wavelength was
recorded. The air-processed fabrication process of polymer devices introduced the risk of
exposure to moisture and oxygen degrading performance of devices. The devices with

higher performance can be fabricated within an inert atmosphere.



CHAPTER 4

POLYMER BETAVOLTAIC DEVICES

4.1 Introduction

Betavoltiac devices are energy sources that can last for decades [117] and have
potential applications in space missions [118]. The rapid growing space exploration
requires a long duration power supply as the refueling option is not feasible for such
applications. The photovoltaic energy source has been a major interest for such
applications for a long time [119], [120]. However, the photovoltaic solar cells need to be
exposed to sunlight all the time. This is not possible for certain circumstances in space
applications such as inside the spaceship, shadow or dark regions, and the outer solar
systems; For this reason, as an alternative of the solar energy source, betavoltaic power
sources have a high scope for space applications.

Other applications of these devices are unattended sensors, anti-tamper devices
and power supplies for biomedical devices (cardiac pacemaker [121] or prosthetic
devices) [122]. Although the first betavoltaic cell was reported by Rappaport in 1954
[123], further research and development of these cells was very sparse dﬁe to the limited
applications and semiconductor degradation, ahd high cost of suitable radioisotopes
[122]. Currently, alpha/betavoltaic devices based on inorganic @teﬁds such as silicon,

silicon carbide, and indium gallium phosphide are used with direct energy conversion due

99
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to their long term stability and good power conversion efficiency (PCE) of 5% to 10%
[124]-{128]. Cheng et al. achieved a high open circuit voltage of 1.64 V and 0.98% PCE
using GaN p-i-n homojunction betavoltaic microbattery [129]. In direct energy
conversion, highly energetic alpha/beta particles bombard and penetrate the
semiconductor material, and a stream of free electron-hole pairs is generated. The
electron-hole pairs contribute to the electrical output power generated by the
alpha/betavoltaic device. Investigation of different loss mechanisms and designing ways
to minimize these losses leads to the high performance betavoltaic devices [130].

Inorganic absorbers, such as silicon, silicon carbide, and indium gallium
phosphide, offer good conversion efficiency and long term stability, but require complex
equipment and hazarddus materials, as well as high temperature process to fabricate
[131]. These inorganic materials are brittle and cannot be used in flexible devices and
have heavy weight restricting the portability. The betavoltaic d¢vices of any shape can be
designed with flexible materials. Radiation causes defects in the inorganic semiconductor
materials resulting in shortened minority carrier diffusion lengths, increased leakage
currents, and overall degradation of the device’s performance [122].

The indirect energy conversion (previously explored by NASA Glenn Research
Center [118] for inorganic betavoltaic cells) involves a scintillator thin film used as an
intermediate layer between the alpha/beta particle source and the betavoltaic cell [127]
[132]. The scintillator layer, known as a phosphor screen, converts the energy of
alpha/beta particles into 1ight, and the active layer further convérts light energy into
electrical energy, based on the photovoltaic principle [133]. The PCE of such devices

depends on how well the phosphor screen generates the photons in the absorption region
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of the active layer and the loss of photons generated by phosphor in different directions
other than in the active layer [130). Sychov et al. have demonstrated indirect conversing
alpha battery and generated 21 pW electrical power using 300 mCi of Pu”® alpha emitter,
ZnS phosphor screen and AlGaAs photovoltaic cell [134]. The overall power conversion
of 0.11% was achieved with short circuit current of 14 pA and open circuit voltage of 2.3
V [134]. The directional photon loss was reduced and the electrical output power was
increased by 60% by applying a thin Valuminum reflector layer between the alpha source
and phosphor screen [134].

The radioisotope thermal generator (RTG) has been introduced to harvest thermal
energy into electricity by the decay of radioisotope such as plutonium-238 (Pu-238),
americium-241 (Am-241), polonium-208 (Po-208), polonium-210 (Po-210), strontium-90
(Sr-90), etc. [135]. The need of high temperature gradient (up to 1000°C) for
thermoelectric generation requires powerful radioisotopes that have serious health hazard
and needs proper shielding. Due to high temperature processing in RTG, usually
inorganic materials such as silicon-germanium, bismuth telluride, lead telluride are used
for stability at high temperature and are heavy in weight, increase production cost and
lack flexibility [136]. Also, proper protection arrangements are required due to high
temperature within the system [136]. Generac has developed 24" x 13" x 7" RTG
generatdr, RTGI6EZA1, of 36 pounds weight [137]. RTG modules are bulky and cannot
be used in portable devices such as waist watches, eiectronic gadgets, etc. The maximum
efficiency of thermoelectric generator is less than 10% [138], [139]. The betavoltaic

devices with benign radioisotope such as tritium can be used as a power source for
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portable devices. By using polymer active layer they can be made flexible and a low
weight power source.

In order to explore some non-traditional potential materials and methods of
- fabrication for betavoltaic that are cost-effective, flexible, and lightweight, a photovoltaic
conjugated polymer bulk heterostructure is investigated for betavoltaic application. The
main advantages of conjugated polymer devices are their ease of fabrication, cost
effectiveness, material flexibility, and light weight.

In this chapter, direct-conversion polymer-based betavoltaic cells, and theirr
degradation, as well as indirect-conversion polymer-based betavoltaic cells are explored.
The active pqumer layer is the semiconductive conjugated polymer-fullerene
P3HT:ICBA bulk heterojunction, where P3HT is poly (3-hexylthiophene), and ICBA is
indene-Cgp bisadduct fullerene derivative. The P3HT:fullerene bulk heterostructure is
widely explored for polymer-based photovoltaic cells [75], [78], [94], [98], [112], [140],
[141] and the degradation of these cells can be overcome by device fabrication in inert
atmosphere and device encapsulation. The alpha/betavoltaic device with organic material
- has not been previously explored. Kingsley et al. studied the radiation hardness to X-rays
of a thin organic photovoltaic device based on P3HT:PCBM [142], where PCBM is the
fullerene derivative phenyl-C61-butyric acid methyl ester. They observed the exponential
decay of the photocurrent in unencapsulated devices when exposed to a flux of 15-MV
X-rays [1742].

Here, the intermediate phosphor screen is explored that isolates the active
polymer P3HT:ICBA layer ’in a polymer-based device from the electron beam (e-beam),

and protects it from e-beam caused damage and degradation. The betavoltaic
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performance of these batteries is demonstrated by using scanning electron microscope
(SEM) as an e-beam source and for various e-beam energies. The loss mechanism in

indirect-conversion polymer-based betavoltaic batteries are also investigated and tried to

reduce them significantly.

42  Background

42.1 Betavoltaic

The betavoltaic is the process of generating an electric current from the kinetic
energy of beta particles emitted by a radioisotope invented almost 50 years ago. This is
another form of radioisotope energy (nuclear energy) harvesting unlike the widely used
thermal energy harvesting in nuclear power plants. The betavoltaic power source is well
suited for the low power electrical applications for long duration such as implantable
medical devices, sensors, and‘ for military and space applications. Betavoltaic batteries
can be designed to use in cellphones, laptops, and other electronic gadgets that consume
the considerable portions of current energy demand, as a powen; source for their lifetime.

The basic architecture of betavoltaic device and its operational principle is shown
in Figure 4-1 below. The radioisotope decays to emit beta particles (high-energy
electrons) that hit the semiconductor p-n junction device placed underneath. The emission
of beta particles from radioisotope is random in nature. When beta particles traverse
through the semiconductor material, the kinetic energy of beta particles is absorbed
creating the shower of free electrons and holes. These free electrons and holes are then
| collected at the opposite sides under the inﬂuence of an internal electric field dgveloped

at the junction of p-n junction device similar to the photovoltaic solar cells. The only
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difference is, instead of photons in case of solar cells, the electron beam is used to create
free electrons and holes in betavoltaic devices. Usually, radioisotopes have decades of

half-life providing power to the betavoltaic devices for decades.

e electron +
hole

Figure 4-1: Basic device architecture and operation of betavoltaic device.

As the beta particles are continuously hitting ther semiconductor material, ihese
materials need to be tolerant enough to these energetic particles to avoid any defects and
degradation. Some of the semiconductor materials used for betavoltaic devices are Si,
SiC, GaAs, InGaP, etc. Having radioisotope as their source, betavoltaic devices have risk
of radiation exposure to the living organism. However, using low energy isotopes such as
tritium with less than 19 keV of beta emission [143], which is blocked by a thin sheet of

aluminum or dead cells in human skin, the risk of health hazard can be significantly
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avoided. The chemicals used in other batteries available on the market have a similar
kind of health risk. In radioisotopes the activity decreases with time reducing the power
of emission; therefore, during the design phase of the betavoltaic devices, it is important
to consider the amount of power required at the end of the battery’s life and initial
radicisotope loading.
422 Organic Betavoltaic

After the discovery of semiconductive conjugated polymers, they were used iri
almost all kinds of optoelectronic devices as an alternative for inorganic semiconductors.
Therefore, semiconductive conjugated polymers can also be used in betavoltaic devices
for electrical power generation, opening the door to corganic betavoltaic. In this research,
the organic betavoltaic is introduced for the first time using the semiconductive
conjugated polymer blend with fullerene derivative. These organic betavoltaic devices
generate electricity when exposed with beta particles. However, these polymers are not
radiation hardened compared to their inorganic counterparts and degrade quickly and
have a limited lifetime. This problem with organic bétavoltaic can be solved by designing
a new architecture. Figure 4-2 shows the schematics of organic betavoltaic with |
intermediate scintillator layer, also called indirect conversion architecture. The
scintillator layer converts kinetic energy of beta particles into photons and then the
photons are converted into electricity by the organic semiconductor material similar to
the organic photovoltaic solar cells. This way the scintillator isolates the high-enefgy beta

particles from sensitive polymer layer and increases the lifetime of the device.
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Figure 4-2: Indirect conversion device architecture of organic betavoltaic device with
intermediate scintillator layer.

423 Betavoltaic Characterization and Parameters

The betavoltaic devices ére characterized by measuring and plotting -V curve
under the exposure of beta particles (e-beam). The output electrical power depends on the -
input e-beam power. Some of the beta;roltaic parameters such as short circuit current and
open circuit voltage are the same as in the case of photovoltaic solar cells described in
Section 2.2.2. Other parameters are described below.

Electron Beam (Beta particles) Current, I,_p.qm (pA): The e-beam or beta-
particle current from the beta source is the number of electrons emitted per second. It

depends on the radioisotope.
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Accelerating Voltage, V,.. (kV): The voltage used to accelerate the electron
beam as it is emitted from the beta source to hit the device. In scanning electron
microscope (SEM), it is varied to change the kinetic energy of the electron beam so that
the beam penetrates the sample to the desired depth. If e is the electron charge, the
kinetic energy (keV) associated with accelerating voltage (kV) is

Eyin = eV | Eq. 4-1

Input Electron Beam (Beta particles) Power, P;, (nW): The input electrqn

beam power is the product of accelerating voltage (kV) and electron beam current (pA)
Pin = Vaccle-peam- Eq. 4-2

Output Electrical Power, P,,(nW): If V,,4,(V) and I,,,,(pA) are the voltage

and current values along the I-V curve at which the maximum power is produced so that

the output electrical power is given as
Pout = VmaxImax- Eq. 4-3
Power Conversion Efficiency, PCE (%): The efficiency of betavoltaic device to

convert input e-beam power into output electrical power:

PCE = —maxtmaz _ Pour Eq. 44

Vaccle-beam P,

424 Beta Sources
An ideal beta source should have a long half-life for extreme duration lifetime of
betavoltaic device, emits beta particles in a range suitable for scintillator for better
efficiency, and has little or no gamma and other harmful emission for safety. The
common beta sources include tritium (H3), carbon-14 (C'), phosphorous-32 (P32), and

nickel-63 (Ni%%) [128] [143]. Tritium is an isotope of hydrogen with two neutrons and one
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proton. Tritium decays with a half-life of 12.3 years into helium-3 by the emission of beta

particles with an average energy of 5.7 keV [143] [144]. Due to its benign nature, tritium

is currently the preferred beta source in commercial betavoltaic batteries, self-

luminescent products, luminous paints, signage and high end wristwatches [144] [145].

Table 4-1 provides the information on different beta sources. In this research, the

electron beam from AMRAY 1830 SEM was used to simulate the beta particle radiation

with energy in the range of 10 keV to 30 keV.

Table 4-1: Various beta sources and their properties [128], [143]-[145].

Isotope Averagem- Maximum beta Half-life Price T
energy (keV) energy (keV) (years)
Carbon-14 49 1% 5730 N/A
(o)
phesphorons- 690 1709 14.3 days N/A
neEH |
nickel-63 (Ni™) T 67 92 ~$4000/curie
Promethiam- 62 225 2.6 NA
147 @m'")

The nuclear waste from a nuclear power plant can be utilized as the beta source

for these betavoltaic devices. The spent fuel or used fuel from the nuclear reactor is the

radioactive isotope that is no more efficient to use in nuclear power plants. However,
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these spent fuels are still high energetic to produce electricity if used in betavoltaic
devices. Annually, a typical nuclear power plant generates about 20 metric tons of used
fuel which totals about 2000 to 2300 metric tons of the nuclear waste from the nuclear
industry every year [146]. There is a big challenge for the nuclear waste management
because costs about 400 billion dollars over 75 years [147]. Using these spent fuels in
betavoltaic batteries helps for the management of the nuclear waste on the one hand and

generates revenue out of the waste on the other hand.

4.3 Direct Conversion Betavoltaic

43.1 Device Architecture

The direct conversion betavoltaic device consists of beta source (radioisotope)
that generates beta particles continuously and the photovoltaic stack based on polymer-
fullerene heterostructure that generates electrical power when bombarded with beta
particles. The basic architecture of photovoltaic stack of polymer direct conversion
betavoltaic device consists of glass/ITO/PEDOT:PSS/P3HT:ICBA/Al as shown in
Figure 4-3. The ITO serves as anode and aluminum serves as cathode, PEDOT:PSS is
the hole transport layer, whereas P3HT:ICBA is the active layer of the bétavoltaic device.
The electron beam is exposed from the aluminum cathode film as shown in Figure 4-3.
When an energetic beta particle encounters a semiconductor conjugated polymer-
~ fullerene blend of P3HT:ICBA, a shower of electrons and holes are generated along the
77 path of the particle as it loses kinetic energy. As shown in Figure 4-3, the energetic beta
particle from beta source penetrates the thin aluminum layer and reach the active layer of

P3HT:ICBA, where it generates free electrons and holes. Those holes are collected at
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ITO anode effectively with the help of intermediate PEDOT:PSS layer and electrons are
collected at aluminum cathode, resulting the output electrical power from the betavoltaic
device. This architecture of betavoltaic device is suitable for inorganic semiconductors
such as silicon, GaN, etc. where the damage caused by high-energy beta particle is
minimal. However, for the sensitive polymer semiconductor, the direct conversion
betavoltaic are not suitable due to their venerability and performance degradation under
direct exposure of high-energy beta particles. One of the loss mechanism in this

architecture is the absorption of beta particle’s kinetic energy in the aluminum layer.

e-beam

OGO IR )

Figure 4-3: Direct conversion polymer-fullerene heterostructure betavoltaic device
architecture. '

43.2 Fabrication |

The polymer betavoltaic device consists of bulk heterojunction of P3HT:ICBA
thin film as an active layer, PEDOT:PSS thin film as the hole transport layer, indium tin
oxide (ITO) and aluminum as the electrodes. The basic structure for such devices is

glass (or PET)/ITO/PEDOT:PSS/P3HT:ICBA/Al. The PET stands for polyethylene
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terephthalate. The fabrication process of polymer photovoltaic stack, similar to the air
process published by Nam et al. [112], was carried out inside class 100 cleanroom in the
Institute for Micromanufacturing (IfM). The fabrication of photovoltaic stack started with
patterning of 0.14 micron ITO (sheet resistance of 5-15 Q/sq) on 1.1 mm boro-
aluminosilicate glass substrates (Delta Technologies) or, ITO (sheet resistance of 60
Q/sq) coated 175 pum-thick PET substrates (Sheldahl) using standard photolithography
process as follows.

The ITO coated glass (PET) substrates (1 inch x 1 inch) were rinsed with acetone,
isopropanol (IPA) and with de-ionized (DI) water, and then dried with nitrogen (N2)
blow. Substrates were then baked on a hot plate for 15 minutes at 150°C to remove any
solvent residue. The Shipley 1830 positive photoresist was spin-coated at 1500 RPM for
30 seconds. Then the photoresist was soft baked on a hot plate at 90°C for 5 minutes for
drying. The transparency plastic masks as shown in Figure 3-10 (left) were aligned to
each substrate using transparent tape, and then the substrates were exposed to ultraviolet
light at 365 nm for 18 minutes. After exposure, the masks were removed from the
substrates and the substrates were developed using MF-319 developer for approximately
30 seconds or until all UV-exposed photoresist had clearly been removed. Due to the
positive photoresist, the black part of the transparent maskrdeﬁnes the region where the
ITO will remain after etching. After complete development of the exposed part of the
photoresist, the substrates were rinsed with DI water and hard baked on a hot plate at
110°C for 10 minutes. The next step was wet etching of ITO where individually each
substrate was submersed in 20% hydrochloric acid (HCl) warmed to 75°C for around 3

minutes or until the targeted ITO had been completely etched away. The presence of ITO
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was checked using multimeter to ensure that ITO was etched away completely or not.
Finally, substrates were ultra-sonicated in baths of acetone and IPA to remove photoresist
and other contaminants, then thoroughly rinsed with DI water and dried on hot plate at
150°C for 15 minutes.

Next, the P3HT and ICBA solutions were prepared. The P3HT and ICBA, bought
from Sigma Aldrich, were measured using AND HR-60 scale inside a dry nitrogen
glovebox into separate vials according to desired concentration and required quantity of
solution. Based on the desired concentration and quantity of the solution, the
chlorobenzene solvent was added in each vial with magnetic stir bar. The amount of
P3HT and ICBA were used such that the ratio of 1:1 by weight of P3HT:ICBA was
achieved. Then the vials were tightly sealed and removed from the glovebox and placed
onto a stirring hotplate at 50°C for 15 to 18 hours. On the day of fabrication, the two
solutions of P3HT and ICBA were filtered with 0.45 um PTFE filters and mixed together
in a single vial with a new magnetic stir bar and kept on a stirring hotplate at 50°C for an
additional 1 hour. The desired amount of PEDOT:PSS (approximately 1 ml for each
substrate) was transferred in a vial from the refrigerator, ultra-sonicated for 5 minutes and
kept at room temperature for 30 minutes.

During the device fabrication inside class 100 cleanroom, PEDOT:PSS was
filtered with 0.45 um PVDF filter and spin-coated 1 ml per substrate with micropipette
onto the ITO patterned glass substrates at 3500 RPM for30 seconds to create about a 40
nm thick film. Then the substrates were annealed at 110°C for 10 minutes. After
annealing, P3HT:ICBA solution was then dynamically dispensed 200 pul per substrate

with micropipette while the substrate was spinning to get a uniform layer of polymer-
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fullerene blend. The polymer devices with an active layer thickness from 135 nm to 345
nm were fabricated using polymer-fullerene solution concentrations from 10 mg/ml to 18
mg/ml, and spin-coating from 650 RPM to 1000 RPM for 50 seconds. The P3HT:ICBA
and PEDOT:PSS layers were washed away using chloroform and water, respectively,
using a cotton swab to expose some part of ITO for anode connection. Then substrates
were baked at 70°C for 5 minutes to dry on a hotplate to remove the solvent.

After drying, the substrates were placed into a sample holder and stainless steel
shadow masks (see Figure 3-10 (right)) were placed over each substrate to define the
cathode regions. Then, Denton Vacuum DV-502A or Denton 502B thermal evaporator
was used to thermally deposit 100 nm thin cathode film of aluminum at a base pressure of
about 10E-6 Torr. Then the substrates were annealed at 150°C for 15 minutes. Finally,
copper wires were attached to aluminum contacts (cathodes) and exposed ITO contact
(anode) with conductive silver epoxy (Electron Microscopy Sciences), and epoxy was
cured at 75°C for about 20 minutes. Figure 4-4 shows the step-by-step fabrication
process of photovoltaic stack with P3HT:ICBA active layer. With this fabrication
prdcess, six polymer devices, each of 3 mm x 3.5 mm surface area, were fabricated on
each substrate sharing common anode. Figure 4-5 shows the top view of six polymer
devices on a single substrate and the cross section of a single device, and ready to test

device with scintillator screen.
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Steps

1.

2.5cm x 2.5 cm ITO coated
glass/PET substrate
Photolithography, wet etching
of ITO with HCL.

Patterned ITO

Spin-coating PEDOT:PSS
Spin-coating P3HT:ICBA
blend

Aluminum thermal deposition

Glass

ITO

Photoresist (51813)
PEDOT:PSS
P3HT:ICBA Blend
Aluminum

Figure 4-4: The step-by-step fabrication process of photovoltaic stack with P3HT:ICBA

active layer.

10 mm

Active Area
10.5 mm?

Anode Cathode

Figure 4-5: The top view of six polymer devices on a single substrate and cross section
of a single device (left), and ready to test device with scintillator screen (right).




115

43.3 Test Setup
4.3.3.1 Optical Characterization

The Filmetrics F10-RT reflectometer was used for optical characterization of
P3HT:ICBA blend serving as the active layer in polymer betavoltaic devices. The

FilmMeasure software was used to measure optical data from Filmetrics device and

recorded in the PC. This includes the measurement of reflectance and transmittance of the

active layer of the betavoltaic device. For each measurement, the baseline setup was
carried out using standard samples such as Al,O; and light deflecting background before
testing. To measure the emission spectrum of Ce:YAG scintillator, a 15 nW He-Cd 325
nm laser light using Omnichrome (Melles Griot, series 56, 45-MRS-302-120)
photoluminescence laser was used to excite the scintillator and the emitted light was
measured with the Ocean Optics USB 2000 spectrometer.
4.3.3.2 Input E-Beam Power

| The input e-beam current at diﬁ‘erent accelerating voltages from AMRAY 1830
SEM was measured using Faraday cup (Ted Pella Inc., 651-P). The Faraday cup is a
conductive cup designed to capture charged particles in the vacuum. Figure 4-6 shows

the SEM image of Faraday cup during éxperiment. The e-beam current is adjusted using

condenser lens. The electron beam from SEM was focuscd on the central hole of a _

Faraday cup (see Figure 4-6), the Keithley 6487 picoammeter connected to SEM was
‘used to measure the e-beam current, and recoded with a PC equipped with LabView
software. During each measurement, initially, the e-beam current with no e-beam (i.e.
zero accelerating voltage) was measured to establish any offset value of the e-beam

current in the system. Later, all measured e-beam currents were corrected by subtracting
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this offset value. The product of the e-beam current and accelerating voltage gives the

- -

Figure 4-6: The SEM image of Faraday cup (left) and the zoomed view of central hole of
Faraday cup (right) used to measure e-beam power from AMRAY 1830 SEM.

input e-beam power.

R

4.3.3.3 Betavoltaic Testing

AMRAY 1830 SEM was used to test direct and indirect conversion betavoltaic
devices. The e-beam with kinetic energy (Ej;,) in the range of 10-30 keV were generated
using AMRAY 1830 SEM to simulate beta source isotopes of tritium (H?) and nickel-63
(Ni) [143]. Figure 4-7 shows the SEM images of betavoltaic devices under testing and
Figure 4-8 shows the scherﬁatic of betavoltaic device testing setup using AMRAY 1830
SEM. The e-beam is exposed from the Al side. The Keithley 6487 picoammeter was used
to measure I-V curves of betavoltaic devices and recorded in a PC equipped with
LabView software. Initially, dark I-V of each betavoltaic device was measured and
recorded. Then the noise current was obtained by adjusting the zero current at ‘zero bias
voltage for the dark /-V. This noise current was then subtracted from each current values
at all bias voltage in I-V curve to get final dark I-V. After this, lighf LV of betavoltaic
devices were measured and recorded at differeht e-beam energies. A similar procedure

was used to subtract the noise current from all light /-V curves as done in dark IV,
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Figure 4-7: SEM images of betavoltiac devices under testing.

AMRAY 1830

SEM
4 )

Display

PC with
LabView

Keithley 6487
Device Under Test Picoammeter

Figure 4-8: Schematic of betavoltaic device testing setup using AMRAY 1830 SEM.

4.3.3.4 Raman Spectroscopy

In direct conversion betavoltaic devices, the thin-film of P3HT-ICBA blend is
directly exposed to the high-energy electron beam. The Raman spectroscopy (Horiba
XploRA PLUS Raman microscope) was used to analyze the effect of direct e-beam

exposure to the P3HT:ICBA thin film. Raman analysis was targeted to study any
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morphological or molecular changes occur within the P3HT:ICBA film under the direct
exposure to e-beam and its consequences to the performance of direct conversion
betavoltaic devices. The Raman spectrum is a plot of the intensity of Raman scattered
radiation, when the light incidents on a sample, as a function of the Raman shift
(frequency difference of scattered radiation from the incident radiation in units of
wavenumbers, cm™'). The Raman spectrum gives the chemical fingerprint of a sample. It
provides a qualitative assessment of the chemical composition of the sample [148]-{150].
Some functional groups are more Raman active than others [149]. So, if the chemical
composition or functional group changes within the sample, the rdifferencc in Raman

spectrum can be seen. With the change in functional group, the bond characteristics also
| changes, resulting in different intensity in Raman spectrum. For example, if the high-

energy e-beam breaks the backbone of the polymer chain, the intensity change can be

seen in Raman spectrum.
43.4 Results and Discussion

The | direct conversion betavoltaic devices = of structure
AVP3HT:ICBA/PEDOT:PSS/ITO/glass (structure shown in Figure 4-3) were tested
within AMRAY 1830 SEM. The e-beam is exposed from Al side. In the direct energy
conversion, the input high-energy e-beam from SEM penetrates the top aluminum
(cathode) layer and reaches the active layer to generate a shower of electrons and holes
(exciton pairs) within the P3HT:ICBA film. The e-beam generated exciton pairs were
then dissociated at the P3HT:ICBA polymer-fullerene heterojunction and collected at
opposite electrodes, holes at ITO anode and electrons at aluminum cathode, to generate

electrical potential difference between these two electrodes of betavoltaic devices. Table
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4-2 gives the fabrication parameters for direct conversion polymer betavoltaic devices

and Figure 4-9 shows the measured /- characteristics of a typical direct conversion

polymer betavoltaic device on glass substrate under a direct e-beam.

Table 4-2: Fabrication parameters for direct conversion betavoltaic devices.

Parameter/Material Valuelgge

Solvent Chlorobenzene
P3HT Concentration 18 mg/ml
P3HT:PCBM Ratio 1:1 wt.

Additive (OT) 0% vol.
Spin Coating Recipe 650 RPM for 50 s
Thickness 345 nm (Surface Profiler)
PEDOT:PSS 4000 RPM, 30 s, ~ 50 nm
Ambient Conditions 20.8°C, 56% Humidi?
Aluminum 100 nm, 0.4 nm/s, 10 Torr (Thermal evaporator)
Annealing 150°C, 15 min (Post-production)
Contact Wire 0.25 mm dia. Copper wire
Enog Conductive silver epoxy
3 -

Current [nA]

Voltage [V]

Figure 4-9: [V characteristics of glass/ITO/PEDOT:PSS/P3HT:ICBA/A], direct
conversion betavoltaic devices for electron kinetic energies of 5, 8,9, and 10 keV.
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The PCE of betavoltaic device is defined as

I

V .
PCE = —/—2=_T2% _, 100. Eq. 4-5

Vace * le-beam

Where Vpax and I, are the device voltage and current at maximum power point, at which
the maximum electric power of the device is obtained. ¥, is the accelerating voltage of
the e-beam and I,.peqm is the measured e-beam current. The maximum PCE obtained for
direct conversion betavoltaic devices shown in Figure 4-9 is 0.068% for E;, = S keV at
which the e-beam current (/,.peam) Was 7.74 pA, and the value measured for Vg, and Ipax
were 40 mV and 659 pA, respectively. The electrical output power P, and short circuit
current Isc increased with Ej,. The Py, and Isc at 10 keV are 78.4 pW and 3.67 nA,
respectively.

Since the P3HT in the air is reported to degrade under exposure to X-rays [142],
the degradation of polymer betavoltaic cells upon exposure to the e-beam was
investigated. The polymer betavoltaic devices on glass with three different thicknesses of
the active P3BHT:ICBA layer, 225 nm, 180 nm, and 55 nm, were tested under direct 10
keV e-beam. The I-V characteristics were measured in time during the continuous direct
e-beam exposure. Degradation was observed in all devices and the results are shown in
Figure 4-10. The analysis of the data shows that the device with the thinnest active layer
(55 nm) degrades fastest, especially in terms of rthe open circuit voltage Voc, which
reduces to 31% of the initial V¢ value in 13 minutes. In comparison, the V¢ for the 180
nm device reduces to 44% of the initial value, and for the 225 nm device, it reduces to
57% of the initial value in 13 minutes. It is also noticed that the degradation of active

polymer material increased with Ej;,.
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Figure 4-10: I-V characteristics of direct conversion polymer betavoltaic devices with a)
225 nm , b) 180 nm, or c¢) 55 nm thick P3HT:ICBA active layer measured in different
time intervals under direct exposure of 10 keV e-beam. The e-beam current from the

SEM was 69 pA.
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One of the causes of low performance of direct conversion devices could be the
interaction between the input energetic electron beam from the beta-source with the
collecting electrons at the aluminum cathode. The energetic e-beam could deflect and
minimize the electron collection efficiency at aluminum electrode. In addition, the
exposure of e-beam over time could create damage on aluminum, reducing its
conductivity, as well as breaking the backbone chain of the conjugate semiconductive
polymer.

Figure 4-11 shows the Raman spectrum of P3HT-ICBA thin-films on quartz
substrates with different thicknesses, 120 nm (2000 RPM, 50 seconds) and 160 nm (1000
RPM, 50 seconds) prepared with spin coating P3HT:ICBA solution (1:1 wt.), with and
without e-beam exposure. Each sample was exposed to 20 kV e-beam for 15 minutes
insidle AMRAY 1830 SEM. The Raman spectrum is acquired for 30-45 seconds. With 25
nW laser power, initially 50% and 25% neutral density (ND) filters were used. The ND
filter allows only a certain percentage of laser power to incident on the sample. However,
the sample was damaged instantly with this power. Then the 10% ND filter was used to
reduce the incident power on P3HT:ICBA sample further which corresponds to about 2
mW incident power on the sample out of 25 mW laser power. In both cases, change in
the Raman spectrum is noticed around 1500 to 2000 cm” and 2500 to 3000 cm™ Raman
shifts. The Raman peak around 1447 cm™ Raman shift corresponds to P3HT {151], [152],
thiophene C = C bond [153]. The change in the Raman spectrum around 1500-1900 cm™
corresponds to the C=C, 1600 cm” corresponds to C—C in aromatic ring chain
vibrations, and 2800 to 3000 cm™ corresponds to the C — H vibrations [154]. These

results show that the e-beam is affecting the bonding chain in the polymer, which could
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degrade its semiconductive property with long exposure. This effect is more pronounced

in thinner films shown in Figure 4-11, as the change in the Raman spectrum is larger in

120 nm film than 160 nm film.
a) ! 160 nm P3HT:ICBA Film
e Jnexposed
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Figure 4-11: Raman spectrum of a) 160 nm, and b) 120 nm, P3HT:ICBA thin-films with

and without e-beam exposure. The samples were exposed under 20 kV e-beam for 15
mmutes inside AMRAY 1830 SEM.

The low PCE of devices with direct conversion method and their performance
degradation over time confirms the need of a scintillator intermediate layer that will

avoid the direct device exposure to the e-beam and will convert the electron kinetic

energy into light energy.
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44 Indirect Conversion Betavoltaic

44.1 Device Architecture

The basic architecture of indirect conversion polymer-fullerene heterostructure
betavoltaic device consists of AI/P3HT:ICBA/PEDOT:PSS/ITO/glass (or PET)/quartz (or
PET)/scintillator as shown in Figure 4-12. Unlike direct conversion betavoltaic device, in
the case of the indirect conversion betavoltaic device, the energetic beta particles from
beta source (radioisotope) encounter scintillator material. As these beta particles
penetrate the scintillator, their kinetic energy generates shower of electrons and holes
along the path they travel. The scintillator is special kind of material in which the
generated electrons and holes recombine momentarily to generate photons (usually
visible spectrum of light). These photons then travel towards the photovoltaic stack
placed underneath the scintillator and get absorbed in an active layer of P3HT:ICBA to
generate electrical current similarly as in photovoltaic solar cell. In this way, the indirect
conversion betavoltaic devices are modified forms of photovoltaic solar cells. Here, the
scintillator-generated photons are isotropic in nature and not necessarily travel only
towards the active layer to get absorbed. In reality, they travel in all directions and only
part of it gets absorbed in the active layer to generate usable output electrical power. The
overall PCE of indirect conversion betavoltaic device is the efficiency of the scintillator
to convert beta particle’s kinetic energy to intermediate light energy ﬁmes the PCE of
photovoltaic stack to convert scintillator-generated light energy into electrical power. The
different loss mechanisms in this case include the directional loss (photons travelling to

other directions than active layer), internal interaction loss (photons lost due to absorption
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within scintillator material itself) and external interaction loss (photons lost due to

absorption in surrounding media before reaching the active layer).

YIvld

Scintillator photon

Figure 4-12: Indirect conversion polymer-fullerene heterostructure betavoltaic device
architecture.

442 Scintillator for Indirect Conversion Betavoltaic

The performance of indirect conversion betavoltaic devices strongly depends on
the efficiency of scintillator to convert beta particle’s kihetic energy into photons.
Therefore, it is desired that the scintillator material be as efficient as possible. The two
best candidates for inbrganic scintillators are cerium-doped yttrium aluminum garnet
(Ce:YAG) and thatlium-doped cesium iodide (CslI:Tl). The emission spectrums of thése
scintillators match well with the absorption spectrum of many semiconducting polymers
including the polymer-fullerene blend of P3HT:ICBA. The Ce:YAG is a non-
hygroscopic, chemically inert inorganic scintillator having emission range from 500 nm

to 700 nm with an emission peak around 550 nm and a decay time of 70 ns {155}-{157].



126

The CsI:Tl is known as the brightest scintillator and has the greatest light output of all
scintillator emitting 54 photons/keV [158]. The CsI:T] has a large emissiqn range from
375 nm to 725 nm with peak emission at 550 nm and decay time of 1 ps [157], [158].
The Csl:Tl exhibits somewhat plastic mechanical properties which makes it very durable
in situations of extreme acceleration.

However, it is somewhat hygroscopic and would need to be well-encapsulated to
ensure long term efficiency [157]. Figure 4-13 shows the normalized emission spectrums
of Ce:YAG and CsI: Tl [159] scintillators, and normalized absorption spectrum of 260 nm
thick P3HT:ICBA polymer-fullerene blend on a quartz substrate. The absorption
spectrum of P3HT:ICBA blend was measured with Filmetrics F10-RT reflectometer. The
emission spectrum of Ce:YAG was acquired by exciting a Ce:YAG screen with a 325 nm
laser and measuring the emitted light with an Ocean Optics USB 2000 spectrometer.
Figure 4-13 shows that emission of CsL:Tl is better matched with absorption of the

P3HT:ICBA blend.
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Figure 4-13: The absorption spectrum of 260 nm thick P3BHT:ICBA blend on a quartz
substrate, the emission spectrum of Ce:YAG and CsL:Tl scintillators. The emission
spectrum of CsI: Tl is obtained from Phosphor Technology Ltd. [159].
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443 Test Setup

The test setup for characterization of indirect conversion betavoltaic devices is
similar to that of the direct conversion devices already mentioned in Section 4.3.3.
Specifically, the testing setup of betavoltaic device is shown in Figure 4-8. The only
difference is, in the case of direct conversion devices, e-beam is exposed from Al side
while in indirect conversion from the scintillator side and photons pass through glass
substrate to the active layer.

4.4.4 Fabrication

The indirect conversion betavoltaic device consists of a scintillator layer and a

photovoltaic stack of polymer-fullerene blend. The detailed fabrication process of

photovoltaic stack is given in Section 4.3.2. The deposition of the scintillator layer is
described below.
4.4.4.1 Scintillator Deposition

The 10 um Ce:YAG scintillator screen was deposited on a 1.58 mm quartz
substrate (Technical Glass Products) and on a 175 um-thick PET substrate using
sedimentation process. A 1.58 mm quartz substrate Was kept in the glass dish (16.4 cm
diameter and 8.0 cm depth) with barium chlioride solution. The glass rod with a diameter
of 0.5 cm was placed under one end to give drainage tilt as shown in Figure 4-14. A total
of 150 ml barium chloride solution was prepared by mixing 2.9 ml of analytical reagent
(A.R.) grade barium chloride solution (0.4g/L. BaCl,2H,0 in demineralized water) and
147.1 ml water. The Ce:YAG phosphor (PhosphorTech Corp.) suspension was prepared
in a conical flask with potassium silicate solution diluted with demineralized water. The

136 ml suspension was prepared by mixing 322.87 mg of Ce:YAG phosphor powder, 30
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ml of potassium silicate solution (sg 1.057) and 106 ml of water. The suspension was
then poured in the glass dish with quartz substrate and barium chloride solution, using a
funnel. The solution was allowed to settle for 2 hours and was sucked off gently, using a
pipette. Finally, the quartz substrate with phosphor layer on it was removed carefully
from the glass dish and dried completely on a hot plate. A similar procedure was
followed to deposit the Ce:YAG screen on the PET substrate. Figure 4-14 shows the

experimental setup for the Ce:YAG screen deposition.

Conical Flask

Figure 4-14: Ce:YAG scintillator screen deposition on quartz substrate using
sedimentation process.

4.4.5 Results and Discussion

The indirect conversion betavoltaic devices of structure scintillator/quartz(PET)/

glass(PET)/ITO/PEDOT:PSS/P3HT:ICBA/AIl (structure shown in Figure 4-12) were
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fabricated and tested to overcome any shortcomings of direct conversion betavoltaic
devices. Such indirect conversion betavoltaic devices offer stability and high
performance. In these devices, the intermediate scintillator screen is introduced as shown
in Figure 4-12, which converts the e-beam Kkinetic energy into photons. So the optical
characteristics of the P3HT:ICBA layer such as absorption profile is important in this
case. Figure 4-15 shows the optical characteristics of P3HT:ICBA 1:1 ratio by weight
thin film on a quartz substrate measured with VFilmetrics F10-RT reflectometer. The
emission spectrum of Ce:YAG scintillator, as shown in Figure 4-13, indicates a good

match with the absorption spectrum of P3HT:ICBA blend.
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Figure 4-15: Optical characteristics of the 160 nm thick P3HT:ICBA 1:1 wt. thin film on
a quartz substrate.

Table 4-3 shows the fabrication parameters of photovoltaic stack for /- V curves in
Figure 4-16. The P3HT:ICBA polymer device on 1.1 mm boro-aluminosilicate glass
(Delta Technologies) with Ce:YAG scintillator intermediate layer on 1.58 mm quartz

substrate is denoted by symbol G. As shown in Figure 4-16, I-V curves were acquired for
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two accelerating voltages of 7 kV and 10 kV at low and high e-beam current modes. The
output electric current of the betavoltaic device increased with the e-beam current. For
the same accelerating voltage, the input e-beam power increases with the increase of e-
beam current. Data in Table 4-4 and Figure 4-17 show that the PCE of G devices

increases with the e-beam input power and in almost a linear fashion.

Table 4-3: Fabrication parameters for indirect conversion betavoltaic devices.

ParameteIMateal lltlz 7 ) o
Solvent Chlorobenzene '
P3HT Concentration 10 mg/ml
P3HT:PCBM Ratio 1:1 wt.

Additive (OT) 0% vol.
Spin Coating Recipe 800 RPM for 50 s
Thickness 135 nm (Filmetrics)
PEDOT:PSS 3500 RPM, 30 s, ~ 50 nm
Aluminum 100 nm, 0.4 nm/s, 10°® Torr (Thermal evaporator)
Annealing 150°C, 15 min (Post-production)
Contact Wire 0.25 mm dia. Copper wire
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Figure 4-16: I-V characteristics of indirect conversion betavoltaic G devices (polymer
device on glass substrate and scintillator on quartz) for 7 kV (low current 27 pA, high
current 158 pA) and 10 kV (low current 60 pA, high current 300 pA).




131

Table 4-4: Input e-beam current, accelerating voltage, e-beam power and PCE for
indirect conversion G devices.

Voce (KV)  Ieseam (PA) P (BW) PCE (%)

7 27 0.19 0.0112

10 60 0.60 0.0214

20 130 2.60 0.0420 ‘
30 110 3.30 0.0492
0.06 -«
0.05 - p
’
d -8 ’
g 0.04 ""'o ~‘J
w 003 { 1
g I 4
0.02 4
i
0.01 -.0“
0 L] L J . .
0 1 2 3
E-Beam Power (uW)

Figure 4-17: Betavoltaic PCE at different e-beam powers of G devices (polymer device
on glass substrate and scintillator on quartz).

As mentioned before, G denotes the polymer device on glass substrate with
scintillator on quartz substrate, P denotes the polymer device on PET substrate with
scintillator on a quartz substrate, and the polymer device on PET substrate with phosphor
on PET is denoted by PP. In general, the indirect energy conversion polymer-based
devices with scintillator performed better compared to the direct conversion polymer-

based devices without scintillator. However, the PCE of indirect conversion betavoltaic




132

G devices is still low as shown in Figure 4-17. One of the reasons for the low
performance of these indirect conversion betavoltaic devices is the directional loss. Here,
in G devices, the 1.58 mm quartz and 1.1 mm glass substrate significantly separate the
Ce:YAG scintillator from the P3HT:ICBA active layer. This results in directional and
external interaction losses since a significant number of scintillator-generated photons
was lost in lateral directions and absorbed in glass and quartz substrates instead of being
absorbed in the P3HT:ICBA active layer of the betavoltaic device.

These losses can be minimized by reducing the distance between photon-
generating scintillator and photon-absorbing polymer active layer. These losses were
considerably reduced by replacing 1.1 mm glass substrate by thin 175 pm PET substrate
for polymer device fabrication. At E;;, = 10 keV, the Py, Isc, and the PCE were almost
doubled in P device compared to G device (see Figure 4-18 and Table 4-6). Figure 4-18
shows the I-V characteristics of several different types of betavoltaic devices. Table 4-5
gives the fabrication parameters for photovoltaic stack of devices with I-V curve in
Figure 4-18. The performance indirect conversion betavoltaic device was further
improved by using scintillator layer on thin PET substrate called RadiantFlex
(PhosphorTech). The RadiantFlex, a proprietary scintillator of PhosphorTech Company,
has a 10 pm-thick layer of Ce:YAG on a 60 um-thick PET substrate. The shoﬁ circuit
current increased by 19 times, output electrical power increased by 23 times and PCE
increased by 39 times at 10 keV in PP device compared to G device (seec Figure 4-18 and
Table 4-6). Table 4-6 gives the Isc, Voc, Pow, and the PCE for G, P, and PP betavoltaic
devices for E;~=10 keV, 20 keV and 30 keV. The measurement error calculation is

shown in Appendix B. The improvement in device performance is due to further reducing
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distance between scintillator and polymer layers that significantly minimized the

directional and external interaction losses.

Table 4-5: Fabrication parameters for G, P, PP indirect conversion betavoltaic devices.

Parameter/Material Value/slge
Solvent Chlorobenzene
P3HT Concentration 15 mg/ml
P3HT:PCBM Ratio 1:1 wt.

Additive (OT) 0% vol.

Spin Coating Recipe 700, 800, 900, 1000 RPM for 50 s

Thickness 180, 165, 160,150 nm (Surface Profiler)
PEDOT:PSS 3500 RPM, 30 s, ~ 50 nm

Ambient Conditions 20°C, 50% Humidity

Aluminum 100 nm, 0.4 nm/s, 10°® Torr (Thermal evaporator)
Annealing 150°C, 15 min (Post-production)

Contact Wire 0.25 mm dia. Copper wire

Epoxy Conductive silver €poxy
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Figure 4-18: I-V characteristics of indirect conversion betavoltaic devices: a) G device,

b) P device, c) PP device in dark (i.e. no e-beam) and for 10, 20 and 30 keV e-beams.
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Table 4-6: Different betavoltaic device parameters of indirect conversion G, P and PP

devices.

G

Polymer device on
glass with
phosphor on
quartz

|

Polymer device on
PET with
phosphor on
quartz

PP

Polymer device on
PET with
phosphor on PET

Electron Beam Energy —

Le-beam (DA) 120+ 0.5 750+3.4
Pin (nW) 1.2+0.05 7.8+0.7 23+3.1
Isc(nA) 1.2 9.6 40.0
Voc (V) 0.29 0.43 0.48
Poyr (nW) 0.24+0.01 2.7+0.1 11.8+0.5
PCE (%) 0.020 £ 0.002 | 0.035+ 0.004 | 0.052+0.009

Ie-peam (PA) 120+ 0.5 390+ 1.8 750+3.4

Pin (uW) 1.2+ 0.05 7.8+0.7 23+3.1
Isc(nA) 22 13 41
Voc (V) 0.38 0.47 0.53
P, (nW) 049+0.2 36+0.1 1304
PCE (%) 0.040+ 0.003 | 0.050+ 0.006 | 0.060+0.009
Ie-beam (PA) 73+£0.3 260+ 1.2 330+ 1.5
P (AW) 0732003 | 51205 | 97213
Isc(nA) 24 100 240
Voc (V) 0.50 0.55 0.56
Py (nW) 5.7+0.2 22+0.6 62+1.6
PCE (%) 0.78 + 0.06 043+0.05 | 0.6+0.05
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4.4.5.1 Comparison of Ce:YAG and Csl:Tl Scintillators

So far, the indirect conversion betavoltaic devices with Ce:YAG scintillator are
presented. Although Ce:YAG is non-hygroscopic and a stable scintillator, the light
emitting capabilities of CsI:Tl is better compared to Ce:YAG as it is known as the
brightest scintillator, discussed in Section 5.2.1.2.1. Slightly hygroscopic in nature,
CsL:Tl if used with proper encapsulation can provide better performance with indirect
conversion betavoltaic devices. Also, from Figure 4-13, the emission spectrum of CsI:T]
is wider in the visible regions and better matched with the absorption spectrum of active
P3HT:ICBA layer compared to Ce:YAG. Next, the behavior of energetic electron beams
were simulated in these two, Ce:YAG and CsI:Tl, scintillators and indirect conversion
betavoltaic devices were fabricated and tested with these two scintillators to compare the
performances.
44.5.1.1 Monte-Carlo Simulations of Ce:YAG and CsI:Tl. The Monte Carlo
simulations can be used to study the random physical phenomenon such as electron beam
interaction with solid materials [160], [161]. These simulations help to understand the
light generation nature of different scintillator materials and optimize them for specific
application such as betavoltaic batteries with organic active layer. The betavoltaic device
architecture with the intermediate scintillator layer offers the indirect energy conversion
process for the betavoltaic device [127], [132], discussed in Section 5.2.1.2.

The Monte Carlo simulations using CASINO, a free software for simulating
electron trajectory in solid for low energy electron beam (0.1 to 30 keV) [162] [163], for
two different scintillators, Ce:YAG and CsL:Tl, weré conducted. The simulations

provided the penetration depth of the input electron beam and catholuminescence
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intensities of these two scintillators. The 10,000 electrons were used in the simulation at
30 kV electron beam accelerating voltage. Figure 4-19 shows the electron beam
trajectories in XZ plane within (a) Ce:YAG film and (b) CsI:Tl film. From Figure 4-19,
it is seen that most of the electron beam energy get absorbed by 3 pm depth of Ce:YAG
and 3.5 um depth of CsI:Tl. These being optimized thicknesses of scintillators to be used

for the best performance at 30 kV of electron beam accelerating voltage.

Figure 4-19: The 30 keV electron beam trajectories of 10,000 electrons in (a) Ce:YAG
and (b) CsL:T1 obtained from CASINO Monte Carlo simulations. ‘
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The use of a thicker layer of a scintillator could lead towards the photon loss due
to self-absorption within scintillator material before those photons get released towards
the active P3HT:ICBA layer [134]. In addition, if a thinner layer is used, some of the e-
beam penetrates through the scintillator and reach the glass substrates losing part of their
kinetic energy with no use. Figure 4-20 shows the catholuminescence intensity
comparison between Ce:YAG and CsI:T! scintillators at 30 kV electron beam accelerated
voltage. The catholuminescence intensity provides the photon generation capability of
scintillators when these are bombarded with energetic electron beam. The simulation
results at 30 kV e-beam accelerated voltage show that Csl:Tl is comparatively more
efficient for photon generation than Ce:YAG shown in Figure 4-20, which is further

verified with the experimental results shown in Section 4.4.5.1.2.
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Figure 4-20: The Catholuminescence intensity profile of Ce:YAG and CsL:Tl

scintillators for 30 kV electron kinetic energy obtained from CASINO Monte Carlo
simulations.
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445.1.2 Experimental Results. The optical properties of scintillators and polymer
P3HT:ICBA thin film were measured before testing betavoltaic devices. Figure 4-21
shows the measured reflectance, transmittance and estimated absorbance of P3HT:ICBA

thin film on quartz substrate. The measurement was done with spectral reflectometer

Filmetrics F10-RT.
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Figure 4-21: The optical characteristics of the 260 nm thick P3HT:ICBA (1:1 wt.) thin
film on a quartz substrate obtained from Filmetrics F10-RT reflectometer.

Next, the betavoltaic devices were tested under a scanning electron microscope
(SEM) using AMRAY 1830 SEM to simulate the beta particles with two different

scintillators. Figure 4-9 shows the testing setup of the betavoltaic device. Table 4-7

shows the fabrication parameters of the photovoltaic stack.
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Table 4-7: Fabrication parameters for indirect conversion betavoltaic devices with
Ce:YAG and Csk:Tl scintillators.

.}
Parameter/Material Valnel:zge
Solvent Chlorobenzene
P3HT Concentration 18 mg/ml
P3HT:PCBM Ratio 1:1 wt.

Additive (OT) 0% vol.

Spin Coating Recipe 700 RPM for 50 s

Thickness 260 nm (Surface Profiler)

PEDOT:PSS 3500 RPM, 30 s, ~ 50 nm

Ambient Conditions 21.39°C, 43% Humidity

Aluminum 100 nm, 0.4 n/s, 10® Torr (Thermal evaporator)
Annealing 150°C, 15 min (Post-production)

Contact Wire 0.25 mm dia. Copper wire

Epoxy Conductive silver epoxy

The electron beams with 10 keV, 20 keV and 30 keV electron energies were used
to test polymer betavoltaic devices with two scintillators, Ce:YAG and CsL:Tl. The
Keithley 6487 picoammeter conhected with SEM was used to measure the betavoltaic I-V
characteristics of devices placed inside SEM and recorded with a PC equipped with
LabView software. Figure 4-22 shows the betavoltaic /-V characteristics, and Table 4-8
gives the betavoltaic parameters, of polymer betavoltaic devices with Ce:YAG and CsL:Tl

scintillators for (a) 10 kV, (b) 20 kV and (c) 30 kV e-beam kinetic energies.
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Figure 4-22: The betavoltaic I-V characteristics compared with Ce:YAG and CsL:Tl
scintillators at (a) 10 kV, (b) 20 kV and (c) 30 kV e-beam accelerated voltage.
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Table 4-8: Electron beam and betavoltaic device parameters obtained when tested with
Ce:YAG and CsL:Tl scintillators.

Vace (KV) 10 20 30

Io.beam (PA) 395+ 0.2 124+ 0.6 228 + 1

P (pW) 0.4 £ 0.02 25+02 6.8+ 0.9
Isc(nA) 2.38 8.17 20.9
Voc (V) 0.47 0.51 0.55

With Pou (nW)

Ce:YAG out 0.65+0.02 | 221+£0.07| 6.5+0.1
PCE(%) | 0.16+0.01 | 0.09+0.01 | 0.10+0.02
FF (%) 58+3

53+3 57+3
Isc (nA) 3.74 10.4 25.4

Voc (V) 0.48 0.52 0.56
With Pour @W) | 0934003 | 2.75£0.08 | 7.90+0.2
CsL:Ti PCE(%) | 02420.02 | 0.1120.01 | 0.12£0.02

FF (%) 52+3 51+3 55+3

From Figure 4-22, it is seen that the betavoltaic devices performed better with
CsI:Tl than Ce:YAG at 10 kV, 20 kV and 30 kV electron beams. The better
catholuminescence intensity result from the Monte Carlo simulation of CsI:T1 and better
match of emission profile of CsL:Tl Qith absorption profile of P3HT:ICBA compared to
Ce:YAG is verified with these experimental results. The increase in short circuit current
by 57% at 10 kV, 27% at 20 kV and 21% at 30 kV by using CsL: Tl compared to Ce:YAG
demonstrated the promising opportunities of CsI:Tl scintillator for polymer betavoltaic
devices. The small increase in open circuit voltages is also observed by replacing
Ce:YAG with CsI:Tl scintillator. However, the fill factor (FF) is observed better in the

case of Ce:YAG. With Vup and Iyp being the voltage and current at maximum power
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point, the open circuit voltage Voc, and the short circuit current Isc, the FF factor is

calculated using the formula

Vupl
FF = Tuelup
Voclsc

Eq. 4-6

In all cases, the output electrical power from the betavoltaic devices increased
with input electron beam energy showing that the active polymer-fullerene layer
performs better in the presence of high input light energy. Also, at high electron kinetic
energies, the electron beam can penetrate deeper into the scintillator that is closer to the
polymer device placed underneath, thus reducing photon loss within the scintillator, i.e.
internal interaction loss. The various electron beam parameters used in experiment, such
as e-beam accelerated voltage, e-beam current, e-beam power, and other betavoltaic
device parameters obtained from experiment are listed in Table 4-8. Using CsL:Tl, the
PCE is greater by 50% at 10 kV, 22% at 20 kV and 20% at 30 kV compared with
Ce:YAG. The maximum PCE of 0.24% is obtained at 10 kV with CsI: T scintillator. The

measurement error is shown in Appendix B.

4.4.5.2 Role of Thin Reflecting Film on Scintillator

In case of indirect conversion betavoltaic devices, the photons generated within
scintillator due to electron beam excitation are isotropic in nature. That means the photon
éan travel in any direction. Ideally, it is required that all generated photons should reach
and absorbed within the active layer, and contribute to the generation of the exciton pairs.
It can be presumed that almost 50% of generated photons travel in an upward direction,
see Figure 4-12, which is opposite of the active layer. Such loss of photons due to

isotropic nature can be minimized to a certain extent by applying a thin reflecting layer
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on top of the scintillator that will reflect all the photons traveling upwards back to the
active layer and help to enhance the incident optical power on the active layer [134]. It is
required that such thin film needs to be highly reflecting and at the same time should
ensure minimal loss of e-beam kinetic energy, as the e-beam has to pass this thin film to
reach the scintillator. Aluminum is well-known as a good reflector of both visible light
and radiated heat [164], [165]. Additionally, aluminum is non-toxic, and light metal with
a density of 2.7 g/lem® causes minimal loss to e-beam energy [165]. Therefore, the

aluminum thin film is perfect fit for this application. Figure 4-23 shows the cross-section

of the indirect conversation betavoltaic device.

1.83 mm

10 um Ce:YAG

izl 60 um PET

M| 175 pm PET

Device

Figure 4-23: Cross section of indirect conversion betavoltaic device without thin
reflecting film on top of the scintillator to study the directional loss.

The area of betavoltaic device is 10.5 mm’ (3 mm x 3.5 mm), so the equivalent
radius of the device is 1.83 mm (Area = 10.5 mm? = nr?). Consider the case without
the reflecting film on top of the scintillator and suppose the e-beam generates a photon at
the center of the scintillator as shown in Figure 4-23. The minimum angle @ that the

photon makes with the device’s surface (horizontal plane) such that it hits the device and
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0.245

gets absorbed is @ = tan™? (1_33_) = 7.6° (see Figure 4-23). This means that only

photons within a cone of angle 180-26 reach the device and the others are lost. Hence,

the percentage of optical power that reaches the device without the reflecting film on top

180-20

of the scintillator is 60

= 45.78% (without Al).

Now consider the case with a 30 nm aluminum thin-film reflector on top of
Ce:YAG scintillator as shown in Figure 4-24. Here, the angle 8 is the same as in the
previous case, i.e. 7.6° (see Figure 4-23). The minimum angle a that the photon makes

with the device’s surface (horizontal plane) such that it reflects back from the aluminum

thin film and hits the polymer device is @ = tan™* (%9520—3) = 14.9° (see Figure 4-24).

Since the reflectance of a 32 nm thin aluminum film at 546 pm wavelength is 90.4%

[166], almost 90% of all photons within the cone of the angle, 180-2a, reflect back and

hit the polymer active layer. Therefore, the percentage of optical power that reaches

active layer with the thin aluminum reflecting film is “'9[(180'2::;(180-29)) =

83.3% (with Al).

Hence, by neglecting other losses, the percentage enhancement in the incident
optical power on the polymer device with a 30 nm of aluminum thin reflecting layer on

top of the scintillator can be written as

0.833 — 0.4578

% Enhancement in incident optical power = 0.4578

=82%. Eq. 4-7

This shows that neglecting other photon losses and with 30 nm aluminum thin-film of

90% reflectance on top of the scintillator, up to 82% enhancement in the incident optical
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power onto the active layer of betavoltaic devices can be achieved, which would

significantly enhance the overall performance of the device.
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Figure 4-24: Cross section of indirect conversion betavoltaic device with a 30 nm
aluminum thin reflecting film on top of the scintillator to study the directional loss.

44521 Monte-Carlo Simulations with Al Thin-Film on Scintillator. The
mathematical calculations in Section 5.3.2.2 show the enhancement in the incident optical
power on the active layer by applying a thin reflection film on top of the scintillator.
However, the loss in electron beam kinetic energy needs to be studied due to the presence
of such reflecting film. Here, electron beams were simulated for Ce: YAG scintillator with
a 30 nm aluminum thin film on top of it to investigate the e-beam energy loss caused by
the aluminum layer using CASINO Monte-Carlo simulations. In these simulations, 120
nm of e-beam radius was used and 100,000 electrons were used for 10 kV, 20 kV and 30
kV accelerating voltages. The device architecture for simulation was Al (30 nm)/Ce:YAG
(10 pm)/PET (60 pm). Figure 4-25 shows the catholuminescence intensity profiles of

Al/Ce:YAG/PET architecture for 10 kV, 20 kV and 30 kV accelerating voltages. The e-
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beam kinetic energy absorbed by 10 nm and 30 nm Al thin films on top of Ce:YAG are
2.50% and 3.37%, respectively, obtained from catholuminescence profiles. Figure 4-26
shows the cross-sectional view of absorbed e-beam energy in Al/Ce:YAG/PET device
architecture for a) 10 kV, b) 20 kV and c¢) 30 kV accelerating voltages. So the
calculations and simulations show that the presence of a 30 nm aluminum film offers
about 82% incident optical power enhancement, whereas only less than 4% e-beam
kinetic energy loss. This means the enhancement in overall performance of indirect
conversion betavoltaic devices can be achieved with the thin reflecting film (30 nm of Al)
on top of the scintillator. In the next section, the experimental results presented verify the
calculation and simulation results. Also, in the next section, these simulation results are
used to calculate the overall efficiency of indirect conversion betavoltaic device with and

without thin aluminum reflecting film on top of the scintillator.
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Figure 4-25: Catholuminescence intensity profiles of Al/Ce:YAG/PET device
architecture for 10 kV, 20 kV and 30 kV accelerating voltages obtained from CASINO
Monte-Carlo simulations.
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Figure 4-26: Cross-sectional view of absorbed e-beam energy in Al/Ce:YAG/PET
device architecture for a) 10 kV, b) 20 kV, and c) 30 kV accelerating voltages.
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Experimental Results. The 10 nm and 30 nm thin-films of aluminum

were deposited on top of Ce:YAG scintillator using Denton 502B thermal evaporator and

used to test the indirect conversion betavoltaic devices. Figure 4-27 shows the Ce:YAG

films used in device testing. The polymer betavoltaic devices with a 235 nm thick active

layer of P3HT:ICBA were fabricated on PET substrates. Figure 4-28 shows the optical

characteristics of a 235 nm thick P3HT:ICBA active layer on quartz substrate measured

in Filmetrics F10-RT reflectometer.

Figure 4-27: a) Ce:YAG film, b) Ce:YAG with a 10 nm aluminum film, and c¢) Ce:YAG
with a 30 nm aluminum film.
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Figure 4-28: Transmittance, reflectance and absorbance of 235 nm P3HT:ICBA film on

a quartz substrate.
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Devices were tested in AMRAY 1830 SEM with 10 keV, 20 keV and 30 keV e-
beam energies. The short circuit currents and open circuit voltages increased with Al
reflecting films on top of Ce:YAG scintillators. The enhancement in PCE was obtained
with Al layer on Ce:YAG for all accelerating voltages. The maximum PCE of 0.33% is
obtained with 30 nm of Al on Ce:YAG for 20 kV. The enhancement with a 30 nm Al on
Ce:YAG for 10 kV was 18.5%, for 20 kV was 26.9% and for 30 kV was 26.7% when
compared with devices with pristine Ce:YAG scintillator. Over 80% enhancement in
incident optical power on the active layer due to aluminum reflecting film calculated
above and less than 4% e-beam energy loss in aluminum film obtained from Monte-Carlo
simulations were confirmed with these experimental results. Table 4-9 shows the
fabrication para:heters of photovoltaic stack. Figure 4-29 shows the betavoltaic I-V
characteristics with and without Al reflecting layer on Ce:YAG scintillator for a) 10 kV,
b) 20 kV, and ¢) 30 kV accelerating voltages. Table 4-10 provides the e-beam parameters
and Table 4-11 gives the various betavoltaic device parameters. The measurement error
calculation is given in Appendix B.

Table 4-9: Fabrication parameters for indirect conversion betavoltaic devices with Al
thin-film on top of Ce: YAG scintillator.

E ... . . _____ __ ___ .. ]
Parameter/Material Value/:zge
Solvent Chlorobenzene
P3HT Concentration 18 mg/ml
P3HT:PCBM Ratio 1:1 wt.

Additive (OT) 0% vol.

Spin Coating Recipe 700 RPM for 50 s

Thickness 235 nm (Surface Profiler)

PEDOT:PSS 3500 RPM, 30 s, ~ S0 nm

Ambient Conditions 21.88°C, 54% Humidity

Aluminum 100 nm, 0.4 nm/s, 10°® Torr (Thermal evaporator)

150°C, 15 min (Post-production)



151

<
— [ '
£-01 0.1 0.2 03 7 o (X3
g Voitage [V] Ny
e -5 + ,_....;;-;';'}‘"
e . ..J..o: ‘- ./“o.’ L d
R P e Call
P W D S 10kV Ce:YAG
o e 10KV Ce:YAG_10nm Al
15 | = = «10kV Ce:YAG_30nm Al
20 9 oge
cJd
b) i
10 i
o)
—_ :d
! o » -
£ 01 0.1 0.3 05 : [
£ Voltage [V] B
3 -10 1 . ..-';Il
NS i
. LTS XA ':‘ ——— -
- e 20kv Ce:YAG
.30 4 e 20kv Ce:YAG_10nm Al
= = «20kv Ce:YAG_30nm Al
c) 37 1!
i
10 + j"
- f
§- 01 49 . 0.1 03 os ) oz
& Voltage [V] / "
3 -
o‘.' . p ’
-m L ......o../’"
@cette ‘...ﬂ .;’ -
cese®e® b . '
cee® sae®e .o w < P -
SR - LT Ne =T ==—Dark
nspey eeeee 30kV Ce:YAG
: = 30kV Ce:YAG_10nm Al
<70 - = = =30kV Ce:YAG_30nm Al

Figure 4-29: Betavoltaic /-V characteristics with and without Al reflecting layer on
Ce:YAG scintillator for a) 10 kV, b) 20 kV, and c) 30 kV accelerating voltages.



152

Table 4-10: Accelerating voltage, e-beam current and e-beam power used to test indirect

conversion betavoltaic devices with and without aluminum reflecting film on top of
Ce:YAG scintillator.

Accelerating voltage (kV) 10 20 30
L

E-beam Current (pA) 529+0.2 1150£0.5 293+ 1

E-beam Power (pW) 0.529+0.002 230+0.01 8.79+0.04

Table 4-11: PCE and other betavoltaic device parameters with and without thin
aluminum reflecting film on top of Ce:YAG scintillator.

Scintillator | -' A) +2
%

Ce:YAG
10nm Al

The overall PCE of indirect conversion betavoltaic device () is the product of
efficiency of the scinti‘llator to convert e-beam kinetic energy to photons (1) and PCE of
photovoltaic stack to convert photon energy to the electrical output power (n2) as shown
in Figure 4-30. The following is the overall 'PCE calculation for 10 kV accelerating

voltage with and without Al thin-film on top of Ce:YAG scintillator.
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n1 = Doptew
Pe-peam
n2 = Petectricol
Poptkd

Noverann = N1* 92

Figure 4-30: Power conversions in indirect conversion betavoltaic devices and overall
efficiency calculation.

For 10 kV e-beam without Al layer

The input e-beam power (Pe_peam) is the product of e-beam current measured
from 1830 AMARAY SEM using Faraday cup and accelerating voltage, provided in
Table 4-10, which is 528.9 nW for 10 kV. Assuming that the light generating efficiency
of Ce:YAG with e-beam excitation being 71 = x, the optical power generated by the
Ce:YAG is Popticat = XPe-peam = 528.9x nW. The output electrical power from the
betavoltaic device was obtained from I-V curves listed in Table 4-11. For 10 kV and

without Al, the electrical output power is Peecericat = ImpVYmp = 4.85 + 0.29 = 1.41 nW.

Therefore, the PCE of photovoltaic stack is 2 = “clectzicat — 122 Now  the overall

Poptical 528.9x

PCE of betavoltaic device can be obtained as

528.9x

n=nlxn2= (x * ) * 100% = 0.27% (without Al). Eq. 4-8
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For 10 kV e-beam with 10 nm Al layer

In the case of a 10 nm Al thin film on top of Ce:YAG, the e-beam power lost in
Al film is 2.5%, as obtained from the CASINO simulation. So the e-beam power incident
on Ce:YAG for 10 kV is P,_peam = (1 —0.025) * 528.9 nW = 516 nW. Then the
optical power generated by the scintillator with e-beam excitation is Pypeicar =

XP,_peam = 516x nW. The PCE of photovoltaic stack can be written as 72 =

Pglectrical - 4.75+0.34 - 1.615
Poptical 516x 516x

(from Table 4-11). Now the overall PCE of betavoltaic

device is

1615 _
n=nlsn2= (x R ) +100% = 0.31% (with 10nm Al).  Eq. 4-9

516x

For 10 kV e-beam and with 30 nm Al layer

In the case of a 30 nm Al thin film on top of Ce:YAG, the e-beam power lost in
Al film is 3.37%, as obtained from the CASINO simulation. So the e-beam power
incident on Ce:YAG for 10 kV is Py_peqm = (1 —0.0337) * 528.9 nW = 511 nW.
Then the optical power generated by scintillator with e-beam excitation is Pppicat =

XP._peam = 511x nW. The PCE of photovoltaic stack can be written as 72 =

P,lectr(cﬂl — 4.88+0.35 — 1.708
Poptical 511x 511x

(from Table 4-11). Now the overall PCE of betavoltaic

device is

1.708
512x

n=nlxn2= (x * ) * 100% = 0.33% (with 30nm Al). Eq. 4-10
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45 Conclusion

The polymer betavoltaic devices with P3HT:ICBA active layer are demonstrated
for the first time using the direct and indirect energy conversion methods. Direct energy
conversion, where the energetic beta particle directly hits the betavoltaic device, is not
suitable for polymer betavoltaic devices due to their vulnerability and degradation upon
direct exposure to the e-beam. In addition, the low performance of such direct conversion
polymer betavoltaic devices was observed. The indirect conversion method, which
incorporates the scintillator intermediate layer, is more suitable for polymer betavoltaic
devices as this intermediate layer isolates energetic e-beam from the polymer active layer
and avoids any possible damage. The photons generated by the scintillator layer are
absorbed by the active layer of the polymer device and cause much less damage to the
polymer layer.

It is observed that the betavoltaic PCE increases proportionally with the incident
e-beam power for polymer devices on glass or PET with phosphor on quartz. We have
reduced directional and external interaction losses significantly in PP device on PET with
phosphor on PET by reducing the distance between phosphor screen and active layer of
polymer device. The maximum betavoltaic PCE of 0.78% is achieved at 10 keV e-beam
energy for PP device using the indirect energy conversion method. The output electrical
power increases with the input beam power and the maximum achieved output electrical
power is 62 nW at 30 keV.

Due to the limitation of e-beam power from the SEM, e-beam with a maximum
energy of 30 keV was used to test the devices. However, it is expected that more

electrical power can be achieved at higher e-beam energies. The performance of indirect
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conversion betavoltaic devices with two different scintillators, Ce:YAG and CslI:Tl, was
investigated. The optical characteristics of scintillators showed that the emission profile
of CsI:Tl is better matched with absorption profile of P3HT:ICBA active layer. Also, the
Monte Carlo simulations indicated that CsI: Tl is more efficient in light generation with é—
beam excitation compared to Ce:YAG. These results were verified with the experimental
resulting by testing indirect betavoltaic devices with Ce:YAG and CsL:Tl scintillators,
where the devices with CsL:Tl performed better at 10 kV, 20 kV and 30 kV e-beam
energies. The performance of indirect conversion betavoltaic device is further enhanced
by applying a thin aluminum-reflecting layer on top of the scintillator reducing
directional loss. Degradation results suggest that the whole device encapsulation should
be considered in the future device design. The self-absorption loss in scintillator is
another important factor that needs to be considered for the future development of high
performance betavoltaic devices. The Monte Carlo simulations provided the optimal
thickness of Ce:YAG and CsI:Tl scintillator that can help to reduce internal interaction

and self-absorption losses.



CHAPTER 5

CONCLUSIONS AND FUTURE RECOMMENDATIONS

S.1  Conclusions

In conclusion, a simplified analytical model of a p-n junction silicon solar cell is
developed for homogeneous and inhomogeneous generation rates. Two different types of
boundary conditions, intrinsic boundary condition for thick devices and surface
recombination boundary condition, were explored. Surface recombination was found to
be more physical for thin-fiim solar cells. The effect of different solar cell parameters
such as the device layer’s thickness, impurity doping concentration, surface
recombination velocity, and minority carrier’s lifetime on the solar cell performance was
studied. The performance increased with decreasing surface recombination velocity. The
open circuit voltage increased with impurity doping concentrations and the minority
carrier’s lifetime. The device has the optimal front layer thickness at which maximum
power is harvested.

The polymer solar cells based on conjugated polymer P3HT and fullerene
derivative PCBM were studied as a cost effective alternate to the inorganic solar cells.
The active layer thickness of widely used polymer solar cells and photodetectors with

P3HT:PCBM active layer was experimentally optimized. The P3HT:PCBM solar cells
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with various thicknesses from 20 nm to 345 nm were fabricated using the air-processed
spin-coating technique. The optical characterization of P3HT:PCBM thin films with
various thicknesses on quartz substrates was carried out to investigate the role of active
layer thickness on absorption, transmittance and reflectance of incident optical power
from 380 nm to 1050 nm wavelength band. The absorption of light energy increased and
transmittance decreased with the increase of thickness of the active layer. Then the
electrical characterization was conducted on the polymer solar cells with various
P3HT:PCBM active layer thickness by plotting J-V curves, calculating short circuit
current density, open circuit voltage, series and shunt resistances, fill factor and PCE.
The short circuit current and PCE increased with the thickness of the device, however,
the series resistance decreased. The overall performance of the solar cell and
photodetector increased with active layer thickness.

The polymer betavoltaic devices with P3HT:ICBA active layer with direct and
indirect conversion device architecture were introduced as a long duration power source.
These self-powered betavoltaic devices best suit for the applications where solar cells
have limitations due to the absence of sunlight inside buildings, spaceships, shadow
regions, space in outer solar system, etc. The degradation of direct conversion betavoltaic
devices under exposure of e-beam was studied and indirect conversion approach was
implemented. The electrical power was successfully generated from these betavoltaic
devices with two different scintillators, Ce:YAG and CsI:Tl. The loss mechanism was
investigated and minimized by modifying the device’s design. The optimal thickness of

the scintillator layer was calculated using Monte-Carlo simulations and the directional



159

loss of scintillator-generated photons was minimized using thin reflecting film on top of
the scintillator.

This research was mainly focused on investigating various novel clean energy
sources as an alternate of the current carbon emission causing energy sources to address

the increasing future energy demand with minimal negative environmental impact.

5.2  Future Recommendations

The analytical model of p-n junction thin-film solar cell developed in this research
helps to optimize the various solar cell parameters. The maximum PCE of thin-film
silicon solar cell obtained is less than 10%. This is due to the thin absorber layer. The
PCE of these devices can be further enhanced by applying surface plasmon enhancement
scheme incorporating metal nanoparticles. Usually, amorphous silicon is used for thin-
film solar cells with p-i-n structure. This analytical model can be extended to such p-i-n
structure and for various other semiconductors such as a-Si, InGaAs, GaN, etc..The
model can be modified to apply to the polymer solar cells to study the role of various
parameters on their performances and optimize them.

The experimental optimization of polymer solar cells and photodetectors attempts
to optimize the active layer’s thickness. Further enhancement can be obtained by
investigating the optimal postproduction annealing time and temperature. Fabrication of
the polymer devices in inert atmosphere and proper encapsulation is another
recommendation to increase the PCE. The acidic PEDOT:PSS etches the ITO cathode in
the long run reducing the lifetime of the solar cells [87]. Use of non-acidic graphene
oxide interfacial layer could improve the lifetime of these devices [88], [89]. The

graphene film offers high transparency, electrical conduction and mechanical flexibility,
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which makes it a good candidate as a transparent electrode for polymer solar cells as a
replacement for ITO. Replacing PCBM fullerene derivative with ICBA increases the
open circuit voltage and PCE of polymer devices [91]. Similarly, high performing
polymer devices are introduced by replacing P3HT conjugated polymer with new donors
PCPDT-BT, PCPDT-DFBT, PDTP-DFBT, PBDTT-DPP, etc. [140]. The tandem
polymer solar cell architecture with low bandgap polymers can be implemented to
enhance the performance further [140], [167].

The primary investigations and application of conjugated polymer in polymer
betavoltaic devices is presented in this dissertation. The performance of such devices has
room to increase. To develop the technology further and establish it as a long duration
energy source, the following future recommendations are suggested:

» Fabrication of polymer photovoltaic stack in inert atmosphere and proper
encapsulation.

> Using single thin and flexible transparent substrate to deposition photovoltaic
stack on one side and scintillator layer on the other side to reduce the gap further
between the active layer and the scintillator layer, and thus photon loss.

» Investigation and application of other more efficient scintillator materials.

» Optimization of the active layer’s thickness of photovoltaic stack and scintillator.

» Investigation of the effect of high-energy e-beam on polymer-fullerene active
layer in direct conversion betavoltaic devices.

> Testing betavoltaic devices with radioisotope instead of e-beam under SEM.

> Invesiigation of other device architectures such as cylindrical or spherical with

radioisotope at the center to reduce the directional loss.
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Table A-1: Keithley 2400 sourcemeter voltage measurement accuracy (local or remote

sense) [168].

Range Accuracy (1 Year) 23°C + 5°C

+ (% rdi + volts)

0.015% + 10 mV

Table A-2: Keithley 2400 sourcemeter current measurement accuracy (local or remote

sense) [168].

Range Accuracy (1 Year) 23°C £ 5°C

+ (% rdg. + amps)

10 pA 0.027% + 700 pA
0.027% + 60 nA

100 mA 0.055% + 6 pA

Table A-3: Keithley 6487 picoammeter specifications [169].

Range Accuracy (1 Year)

+ (% rdi + offset)

0.3% + 400 fA
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B.1  Solar Cell

The error in the voltage measurement is calculated using the Keithley 2400
Sourcemeter voltage measurement accuracy for 20 V range provided in Table A-1 and is
given as

AV = +(0.015% of 20V + 1.5 mV) = +4.5 mV.

The error in the current measurement is calculated using the Keithley 2400
Sourcemeter current measurement accuracy for 100 pA range provided in Tible A-2 and
is given as |

= $(0.025% of 100 pA + 6 nA) = 131 nA.

The observed error in input optical power density is AP, /P;, = 0.02%. Then the

error in FF calculation is obtained as

AFF _ 1A]up| + |AVup| A]sc| lAVoc
F  lup ! [V |+ Jsc Voc

Similarly, the error in PCE calculation is obtained as

APCE=|A]MP| |AVup|
PCE ~ |Jup ! 1Vypl

APm

B2 Betavoltaic Device
The errors in voltage and current measurements are calculated using the Keithley
6487 picoammeter specifications provided in Table A-3 and are given as
AV = $(0.1%0f10.1V+ 1 mV) = +11.1 mV.
Al = +(0.3% of 2 nA + 400 fA) = 16.4 pA.
The observed error in e-beam current is Al,_peam/le-beam = 0.45%. Then the

error in input e-beam power, output power and PCE are calculated as
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AIe—beam
—_— =V |—.
Pin acc

Ie-—beam

APout AIMP' |AVMPl

Iup Vue

APCE _ |Alyp| | |AVmp| |APin|
= + + .
E Iyl 1Vypl [Pyl

Where Iyp and Vyp are the current and voltage at the maximum power point.
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